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Editorial on the Research Topic

Advances in distributed energy resources aggregation for the low

carbon future

To realize low carbon energy systems, a large number of Distributed Energy Resources

(DERs), including energy storage systems, electric vehicles, and flexible loads have been

integrated into power grids, from transmission systems to distribution networks.

However, system reliability is facing severe challenges due to the intermittency of

distributed energy resources. In recent years, with the digitalization of power systems,

Advanced Metering Infrastructure (AMI) and Internet of things (IoT) devices have been

widely deployed. Meanwhile, as a huge amount of real-time information about the system

and end-user status become available, distributed energy resources aggregation draws

increasing attention from both academia and industry. It is expected to facilitate the

operation of low-carbon energy systems. Therefore, research on the enhancement of

distributed resource aggregation capability has been continuously funded by various

national research projects. New principles, technologies, and methods to help enhance

distributed resource aggregation capability have emerged, especially positive progress has

been made in the following aspects: 1) renewables and distributed energy, 2) low-carbon

and energy efficiency, 3) scheduling strategy and optimization.

To present the latest progress and future development trend of distributed energy

resources aggregation capacity enhancement and share academic and technical

achievements, we organized “Advances in Distributed Energy Resources” to address

this hot issue. The call for articles received a great response from scholars in related fields,

and many submissions were received. After the editorial team organized an expert review,

13 articles were finally selected for inclusion in this issue. Through this issue, we hope to

discuss the latest advances, theoretical results, and future directions of advances in

distributed energy resources aggregation for the low carbon future and jointly promote
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the research of new principles, new technologies, and new

methods of distributed energy resources aggregation, low-

carbon and energy efficiency, scheduling strategy and

optimization. Brief information on the 13 accpted papers as

follows.

1 Renewable and distributed energy

Improving power grid resilience under extreme weather

conditions with proper regulation and management on

DERs—Experiences learned from Texas power crisis in 2021 by

Pan and Li.

Small-Signal Distributed Frequency Modeling and Analysis

for Grid-Forming Inverter Based Power System by Qi et al.

Robust Bi-Level Planning Method for Multi-Source System

Integrated with Offshore Wind Farms Considering Prediction

Error by Jian et al.

Control strategy of distributed energy micro-grid involving

distribution system resilience by Wu et al.

2 Low-carbon and energy efficiency

Optimization For Transformer District Operation

Considering Carbon Emission And Differentiated Demand

Response by Jia et al.

A Low-carbon Dispatch Strategy for Power Systems

Considering Flexible Demand Response and Energy Storage by

Han et al.

Multi-objective Optimization of Multi-energy Flow Coupling

System with Carbon Emission Target Oriented by Zong et al.

Fast and Accurate Traction Induction Machine Performance

Calculation Method for Integrated On-board Charging in Vehicle

to Grid Application by Cai et al.

3 Scheduling strategy and optimization

An optimal scheduling strategy for integrated energy systems

using demand response by Lin et al.

Multi-agent schedule optimization method for regional energy

internet considering the improved tiered reward and punishment

carbon trading model by Li et al.

Day-ahead operation of an urban energy system considering

traffic flows and peak shaving by Peng et al.

Optimal capacity allocation model for integrated energy

microgrid considered aggregation of prosumers under multi-

market mechanisms by Wang et al.

Unified Active and Reactive Power Coordinated Optimization

for Unbalanced Distribution Network in Radial and Looped

Topology by Zeng et al.
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Unified Active and Reactive Power
Coordinated Optimization for
Unbalanced Distribution Networks in
Radial and Looped Topology
Yuanjing Zeng1*, Yang Wang2 and Peishuai Li 3

1Industrial Center, Nanjing Institute of Technology, Nanjign, China, 2Economic Research Institution, State Grid Jiangsu Electric
Power Co., Ltd., Nanjign, China, 3School of Automation, Nanjing University of Science and Technology, Nanjing, China

Facing the high proportion of distributed generations incorporating in a single phase, the
active distribution network has become more unbalanced with flexible topology. In this
paper, a unified active and reactive power coordinated optimization (ARPCO) method,
which is applicable in both radial and looped unbalanced distribution networks, is
proposed. Aiming to reduce power losses and restrain undervoltage and overvoltage
problems, the ARPCO model which regulates the active and reactive power output of
distributed generations coordinately and optimally is constructed. A novel trust region
sequential linear programming (SLP) method, which is effective in nonlinear and nonconvex
model solving, is developed and employed in APRCO model solution. A multi-scenario
case study based on the modified IEEE 123 node distribution system shows that the
proposed method is able to reduce the system active power loss and solve undervoltage
and overvoltage problems efficiently, at the same time maximizing the utilization of
distributed generations.

Keywords: distributed energy resources, active and reactive power coordinated optimization, unbalanced
distribution network, radial and looped topology, trust region SLP

1 INTRODUCTION

With construction of low-carbon energy systems, the penetration of distributed generations (DGs) in
distribution networks (DNs) has been growing rapidly (D’Adamo et al., 2009). The large amounts of
grid-connected DGs have been changing the voltage level and power flow distribution of the DN (Wu
et al., 2017) evidently; especially, the frequent power variation of DGs may cause voltage fluctuation
and overvoltage and undervoltage problems, even sacrificing power quality. Under the worst
conditions, it may lead up to the DGs out of service and destruction of electric equipment,
which is a severe waste of renewable energy and power grid assets (Tonkoski et al., 2012;
Eftekharnejad et al., 2013; Gao et al., 2018; Zhang et al., 2019). On the other hand, the
integrated inverter-based DGs are excellent active and reactive power supply resources with a
fast response speed; thus, it promotes the controllability and optimal operation potential of DN
significantly (Li et al., 2018).

Generally, the reasonable reactive power optimization can restrain supply voltage fluctuation
introduced by DGs and reduce active power loss of DN. In Chen et al. (2015), a centralized reactive
power optimization method designed for low-voltage DN is proposed to reduce power losses. In
Daratha et al. (2014) and Wang et al. (2014), volt/var optimization of DN is implemented by
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comprehensive regulation of on-load tap changers (OLTCs),
static var compensators (SVCs), and CBs. In Tonkoski et al.
(2011) and Lemkens et al. (2013), the photovoltaic (PV) active
power curtailment strategy based on voltage droop is proposed to
restrain the overvoltage problem. Although the DN safe operation
is ensured, the renewable energy power is wasted. Actually, the
typical DGs, for example, PVs, are installed in DN with inverters,
of which the active and reactive power can be controlled
separately. In addition, in Barr and Majumder (2014), grid
voltage feedback is introduced into the reactive power control
loop of the DG inverter to limit the voltage rise of point of
common coupling (PCC) by real-time adjustment of DG reactive
power output. However, voltage is regulated locally by this
method and voltage qualification of the whole network cannot
be guaranteed. Calderaro et al. (2014) proposes a DN voltage
control method with the objective of minimizing the reactive
power output of DGs, and the DN voltage is regulated with
relatively small occupation of DG capacity. Li et al. (2020) further
considers the coordination of PV reactive power output and
OLTC. It has been widely known that the remaining capacity of
DGs can be high-quality reactive power sources to provide
auxiliary services as voltage regulation, power losses, and so
forth. In Farivar et al. (2012), a second-order cone
programming (SOCP)-based inverter varoptimization model is
established to reduce DN active power losses within the bus
voltage limitations, and Zheng et al. (2016) develop an alternating
direction method of multipliers based on the full distributed
algorithm to solve the proposed SOC model.

The above research studies are all based on balanced network
assumption; however, the low-voltage DN is always unbalanced
due to the fact that the load unbalance, line parameter
asymmetry, and open-phase operation are ubiquitous (Omar
and Rahim, 2012; Kekatos et al., 2016). Moreover, rooftop PVs
and electrical vehicles aggravate unbalance in low-voltage DN
(Kamh and Iravani, 2010; Yan and Saha, 2012). Therefore, the
three balanced assumptions will introduce large errors in DN
operation, and adopting the multi-phase model in the unbalanced
system has been widely accepted (Kamh and Iravani, 2010; Wang
et al., 2015). In Daratha et al. (2014), a coordinated optimization
model is developed for unbalanced DN, which coordinates
OLTC, CBs, and reactive output of DGs to control DN bus
voltage and reduce active power loss. In addition, Mostafa et al.
(2013) proposed a multi-objective optimization method for
operating DN co-operating a large number of single-phase
solar generators, and the current unbalance and energy loss
are minimized via reactive compensation devices and
reconfiguration switches. Moreover, both the bus active and
reactive power injection impact the bus voltage significantly
due to the high R/X ration in DN. It is complex that the
active power and reactive power output of DGs are coupled
tightly, which may need other measures when the inverter active
power is high and the inverter remaining capacity cannot
compensate overvoltage adequately. Consequently, Kulmala
et al. (2014) present a sensitivity-based active and reactive
power coordinated control algorithm. In the case of
overvoltage, reactive power control should be carried out
preferentially. If the reactive power control method cannot

restore the bus voltage, the active power control is
implemented, which usually includes DG active power output
curtailment. However, in the aforementioned method, the active
and reactive powers are controlled individually, which is not
consistent with the fact that DG active and reactive powers are
highly coupled.

To fill the research gaps shown as above, a unified active and
reactive power coordinated optimization (ARPCO) method is
proposed for unbalanced DN incorporating distributed grid-
connected PV generations. The proposed method coordinates
active and reactive output powers of PVs via the constructed
optimization model, which could maximize the active power
output of PVs as well as minimize active power loss on the
premise of supply voltage qualification under various operation
statuses of DN. Moreover, the proposed ARPCO is highly
applicable in both radial and looped topologies.

The main contributions of this paper are described as follows:

(1) With consideration of high coupling between active and
reactive power outputs of DGs, the ARPCO model which
is unified in radial and looped topologies is established to
maximize the unitization of DGs and minimize active power
loss of DN.

(2) A trust region sequential linear programming (SLP)
algorithm is proposed to solve the ARPCO model
effectively. The proposed SLP is effective in nonconvex
and nonlinear model solving, while its accuracy and
convergence speed are improved evidently compared with
the existing fixed step-size SLP.

The rest of the paper is organized as follows: Section 2
presents the established ARPCO model. In Section 3, the
trusted region SLP algorithm is illustrated detailedly in the
ARPCO model solution. The multi-scenario case study based
on modified IEEE 123 node unbalanced DN is described in
Section 4, which validates the proposed method. Section 5
concludes this paper.

2 COORDINATED OPTIMIZATION MODEL

2.1 Objective Functions
The main objectives of this study are as follows:

— To minimize active power loss of the unbalanced radial and
looped DN.
— To maximize active power utilization of the grid-
connected DGs.

For an unbalanced DN with N nodes, the active power loss
equals the sum of active power injections of all nodes including
the slack bus or substation bus

Ploss � ∑N
i�1

∑
φ�A,B,C

Pφ
i (1)

where Pφ
i is the active power injection of phase φ at node i.
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The second objective is to maximal utilization of DG’s active
power, and all the DGs’ active power output is summed as

PDG � ∑
(i,φ)∈GDG

Pφ
i,DG (2)

where Pφ
i,DG is the DG active power of φ phase at node i.

(i, φ) ∈ GDG represents that there is a DG connected to phase
φ at node i.

Whole injection of each node can be described as

Pφ
i � {Pφ

i,DG + Pφ
i,load (i,φ) ∈ GDG

Qφ
i P

φ
i,load otherwise

� {Qφ
i,DG + Qφ

i,load (i,φ) ∈ GDG

Qφ
i,load otherwise

(3)

where Pφ
i,load and Qφ

i,load represent the active and reactive power
loads in i node phase φ, respectively, while Qφ

i,load is the reactive
power output of DG.

Combing Eqs 1, 2, the objective function is determined by

Ploss − PDG � ∑
φ�A,B,C

Pφ
1 +∑N

i�2
∑

φ�A,B,C
Pφ
i,load (4)

where node 1 is the slack bus.
In Eq. 4, load data are given and fixed. Therefore, minimizing

Ploss − PDG is equivalent to minimize slack bus active power
injection, which is a function of DGs’ active and reactive
power output. It can be understood that when DGs’ active
power output is maximized and active power loss is
minimized with a certain load, the slack bus active power
injection should be minimized. Thus, the active power
absorbed from the transmission network by DN is minimized.
Consequently, the objective function of the coordinated
optimization is achieved by

minf � ∑
φ�A,B,C

Pφ
1 (5)

2.2 Constraints
In the coordinated optimization model, the state variable, voltage
of each node, and the control variable, active and reactive power
output of the grid-connected DGs, must satisfy the following
constraints:

SABC � diag[VABC] · [YABC] · [VABC]p (6)
umin ≤ uφ

i ≤ u
max (7)

0≤Pφ
i,DG ≤Pφ

i,frc ∀(i,φ) ∈ GDG (8)⎧⎨⎩ −αSφi,DG ≤Q
φ
i,DG ≤ αS

φ
i,DG 0< α< 1(Pφ

i,DG)2 + (Qφ
i,DG)2 ≤ (Sφi,DG)2 ∀(i, φ) ∈ GDG

(9)

where Eq. 6 is the power flow equation for an unbalanced system;
SABC, VABC, and VABC represent the bus power injections, bus
voltage vector, and system admittance matrix, respectively, and
more details about the unbalanced power flow equations can be
seen in the reference (Nguyen, 1997); uφi is voltage magnitude of i
node φ phase, and umin and umax are the allowable lower bound

and upper bound, respectively; Pφ
i,frc is the maximum active

output of the DG by forecast; Sφi,DG is the inverter capability of the
DG, and α is a coefficient, which limits the reactive power output
of the DG.

The feasible region of a DG generated by Constraints 8, 9 is
shown as the shadow in Figure 1A. In this study, the
nonlinear constraint of DG is linearized by approximating
arcs AB and CD in Figure 1A with lines ab and cd in
Figure 1B, respectively.

Then, the shadow in Figure 1B, namely, the feasible region of
each DG, can be described by four linear constraints:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0≤Pφ

i,DG ≤P
φ
i,frc

−αSφi,DG ≤Q
φ
i,DG ≤ αS

φ
i,DG 0< α< 1

Qφ
i,DG − Qφ

i,frc − t(Pφ
i,DG − Pφ

i,frc)≤ 0
Qφ

i,DG + Qφ
i,frc + t(Pφ

i,DG − Pφ
i,frc)≥ 0

(10)

where

t � αSφi,DG − Qφ
i,frc�����

1 − α2
√

× Sφi,DG − Pφ
i,frc

(11)

Qφ
i,frc �

���������������(Sφi,DG)2 − (Pφ
i,DG)2√

(12)

To sum up, the coordinated optimization model is
achieved by

{ minf
s.t(6), (7), (10) (13)

3 TRUST REGION SLP METHOD

The proposed ARPCO model is a nonlinear and nonconvex
program due to the power balance Constraints 7. In recent
papers, many heuristic algorithms based on artificial
intelligence have been proposed to find good solutions to the
optimization problem, such as the genetic algorithm (Moradi and
Abedini, 2012), differential evolution (Basu, 2016), particle

FIGURE 1 | Active and reactive power feasible region of DG.
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swarm optimization (Gomez-Gonzalez et al., 2012; Schweickardt
et al., 2016), and so forth. Moreover, the effective mathematical
methods such as SLP (Olofsson et al., 1995; Mohapatra et al.,
2013) and successive quadratic programing (SQP) (Palma-
Behnke et al., 2004) are also proposed. However, artificial
intelligence heuristic algorithms do not guarantee an optimal
solution and are unreliable for practical applications. As for the
SLP and SQP, they suffer from choosing an appropriate step
size; for example, the small step size usually leads to slow
convergence and the large step size decreases the
convergence accuracy. Thus, in this paper, a trust region SLP
method is proposed to achieve both a fast convergence speed
and high accuracy by designing a self-adaptive step size.

3.1 Trust Region Technology
Trust region methods are a class of numerical methods for
optimization, which compute a trial step by solving a trust
region subproblem (Yuan, 2015). To be more specific, for a
general optimization problem

min
x∈X

f(x) (14)

where f(x) is the objective function and X is the feasible set
generated by all the constraints.

At the kth iteration, a trust region algorithm obtains a trial step
dk by solving the following trust region subproblem:

⎧⎨⎩ min
d∈Xk

mk(d)
s.t ‖ d‖Wk

≤Δk

(15)

where mk(d) is a model function that approximates the
objective function f(xk + d) near the current iteration point
xk, Xk is an approximation to the feasible set, ||·||Wk is a norm,
and Δk > 0 is the trust region radius, which is altered with
iteration.

3.2 Linear Approximation
One of the essential parts of trust region methods is the choice of
trust region subproblem. Linear programing (LP) has been
proved efficient by many scholars; thus, LP is combined with
the trust region algorithm in this paper.

Assuming that (u0, x0) is a certain operation status of
unbalanced DN, the linear approximation of the ARPCO
model can be described as

⎧⎪⎨⎪⎩ minF(u0, x0) + ΔuFΔu + ∇xFΔx
s.t.ΔuhΔu + ΔxhΔx + h(u0, x0) � 0
ΔugΔu + ΔxgΔx + g(u0, x0)≤ 0

(16)

where F(x) is the objective function, h(u, x) represents the
equality constraints, g(u, x) represents the inequality
constraints, u and x represent the state and controllable
variables, respectively, F(u0, x0) is the objective function value
for the operation status (u0, x0), ∇(.)F(.) is the gradient of
objective F, and Δ(.) shows the variation of variable.

Therefore, at the kth iteration, the LP-based trust region
subproblem of (14) is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min ∑
φ�A,B,C

ΔPφ
1,k + Pφ

1,0

[ΔPABC
k

ΔPABC
k

] � Jk[ ΔθABCk

ΔUABC
k

]
s.t. umin ≤ uφ

i,k + Δuφ
i,k ≤ u

max

0≤Pφ
i,DG,k + ΔPφ

i,DG,k ≤P
φ
i,frc

−αSφi,DG ≤Qφ
i,DG,0 + ΔQφ

i,DG ≤ αS
φ
i,DG

Qφ
i,DG,k + ΔQφ

i,DG,k − Qφ
i,frc − t(Pφ

i,DG,k + ΔPφ
i,DG,k − Pφ

i,frc)≤ 0
Qφ

i,DG,k + ΔQφ
i,DG,k + Qφ

i,frc + t(Pφ
i,DG,k + ΔPφ

i,DG,k − Pφ
i,frc)≥ 0

‖ uk‖∞ ≤Δk

(17)
where subscript k represents the value of the kth iteration,
Δuk is the vector of control variables’ variation, namely,
ΔPφ

i,DG,k and ΔQφ
i,DG,k, and J is the Jacobian matrix of power

flow Eq. 6.

3.3 Trust Region Radius
The essential part of the trust region algorithm is to determine an
appropriate trust region radius during each iteration. At the kth
iteration, let dk be a trial step which solves the trust region
subproblem (15). Then, the predicted reduction of the original
optimization model (14) is computed by

Predk � mk(0) −mk(dk) (18)
and the actual reduction of (15) is

Aredk � f(xk) − f(xk + dk) (19)
The ratio is defined by

rk � Aredk

Predk
(20)

Then, the trust region radius of the next iteration is
determined by

Δk+1 �
⎧⎪⎨⎪⎩ max[Δk, 4 ‖ dk‖∞] rk > 0.9

Δk 0.1≤ rk ≤ 0.9
min[Δk/4, ‖ dk‖∞/2] rk < 0.1

(21)

It is proven in Powell and Yuan, 1990 that the trust region
method features global convergence and local superlinear
convergence.

The actual implementation of the proposed trust region SLP
method is summarized as below:

Step 1. Initialization.

• Set the iteration counter k = 1;
• Initialize error bound err1 and err2, trust region radius Δ0;
• Initialize control variables u0, namely, Pφ

i,DG,0 and Qφ
i,DG,0,

and solve the power flow Eq. 6 with u0 to acquire the state
variables x0, namely, uφi,0 and θφi,0, as well as the Jacobian
matrix J0.

Step 2. Solve the trust region subproblem.
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• Generate the LP-based trust region subproblem (17);
• Solve LP (17) and acquire Δuk, namely, ΔPφ

i,DG,k
and ΔQφ

i,DG,k;
• Calculate Predk, Aredk, and rk by (18), (19), and (20),
respectively.

Step 3. Check convergence.

• Calculate the initial operation point of the next iteration:

uk+1 � { uk rk < 0
uk + Δuk rk > 0

(22)

• If both 0<Aredk < err1 and ‖ uk‖∞ < err2 hold, jump to
Step 4, else continue;

• Solve the power flow Eq.6 with uk+1 and calculate trust
region radius of the next iteration by (21);

• Increase the iteration counter by k = k+1, then jump to
Step 2.

Step 4. Acquire the optimal solutions.

• Solve the power flow Eq. 6with uk+1, get state variables xk+1,
and calculate the optimal objective function by F(xk+1, uk+1)

4 CASE STUDY

In order to verify the effectiveness of proposed ARPCO method for
unbalanced DN, the case study is implemented on themodified IEEE
123 node unbalanced test feeder (Feeders, 1991) employing the
MATLAB software. A Newton–Raphson power flow solver is
developed, and the LP-based subproblem is modeled and solved
in YALMIP (Lofberg, 2004) by the Cplex solver. The hardware
environment is Intel i5 @ 3.3 GHz CPU with 4 GB RAM. The OS is
win7 64 bit, the MATLAB version is R2015a, the YALMIP version is
20150204, and the Cplex version is 12.6.

4.1 TheModified IEEE 123Node Test Feeder
The IEEE 123 node unbalanced distribution test feeder is used
and modified by installing several distributed PVs, as is shown in
Figure 2.

The voltage level of the test system is 4.16 kV, and the slack bus
(node 1) voltage is set as 1.05 p.u. The total active load is
3,490 kW, while the total reactive load is 1,925 kVar. Due to
large load difference up to hundreds of kilowatts among different
phases and asymmetric line parameters, the three-phase
unbalance is severe in this system. Moreover, it has many zero
self-impedance as well as zero mutual-impedance branches and
single-phase or two-phase branches; thus, its numerical
conditions are very complex.

In the test system, three single-phase PVs whose capacity is
500 kVA are connected to node 27 phase C (PV 27), node 65
phase B (PV 65), and node 101 phase A (PV 101), respectively.
Then, two three-phase PVs are installed at node 47 (PV47) and
node 114 (PV114), while the capacity of each phase PV is
600 kVA. PV114 is three-phase combined, and the output
power of each phase can just be controlled simultaneously.
PV47 is three-phase-independent, and the output power of
each phase can be controlled independently.

FIGURE 2 | Diagram of the modified IEEE 123 nodes test feeder.

TABLE 1 | Comparison of active and reactive power outputs before and after optimization.

PV generators Phase Before optimization After optimization

Active/kW Reactive/kVar Active/kW Reactive/kVar

PV27 C 350 0 350 97.0
A 400 0 400 259.4

PV47 B 400 0 400 30.4
C 400 0 400 300

PV65 B 350 0 350 33.8
PV101 A 350 0 350 −32.7

A 400 0 400 −17.9
PV114 B 400 0 400 −17.9

C 400 0 400 −17.9
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In this study, three typical scenarios are designed with a secure
voltage range of all nodes set from 0.95 p.u. to 1.05 p.u. and the
reactive power output limitation coefficient α set on 0.5.

4.2 Optimal Reactive Power Allocation for
Loss Reduction
In scenario 1, all the PVs operate at the forecasted maximum
active power point without the reactive power output before
optimization, while all the PVs keep tracking the forecasted
maximum active power point with the reactive power output
instructed by the proposed strategy after optimization, as is
shown in Table 1.

Through this study, DGs like PV should undertake more
responsibility for the system optimization, such as voltage

regulation and loss reduction. Due to three-phase unbalance,
the reactive power output differs among three phases, such as
PV47, which is more accurate. The active power loss comparison
before and after optimization is shown in Table 2.

Usually, PV inverters own considerable remaining capability,
which can be used as reactive compensators if optimal allocated
for loss reduction.

4.3 Voltage Support Under a Heavy Load
In scenario 2, the active power outputs of PVs are set as 0, which
shows that the phenomenon occurs during night or cloudy days.
The active and reactive load is enlarged by 1.3 times considering
load increase in the future. Consequently, severe undervoltage
problems would happen. By the ARPCO method, PV inverters
are used as reactive compensators to support the system voltage,
guaranteeing supply voltage security, as is shown in Figure 3.

It can be seen that the voltage magnitude from bus 52 to bus
101 in phase A exceeds the lower voltage secure bound before
optimization. In comparison, the voltage magnitude of the whole
system is lifted and the voltage of all buses and all phases is kept
within the system secure voltage limitation with application of
ARPCO. What is more, the voltage rise degree of different

TABLE 2 | Comparison of active power losses before and after optimization.

Loss
before optimization (kW)

Loss
after optimization (kW)

Reduction ratio (%)

52.3 40.0 23.5

FIGURE 3 | Voltage magnitude comparison between before and after optimization: (A) phase A, (B) phase B and (C) phase C.
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phases differs from each other because detailed unbalanced
models are adopted and all PVs except PV114 could be
controlled in the single phase. As a result, unbalanced
reactive power compensation schemes are adopted according
to the actual situation of each phase and voltage unbalance is
alleviated.

The active power losses are also reduced in this scenario. The
relationship between the active power loss and maximum reactive
compensation capability of each PV inverter quantified by
coefficient α is studied, as is shown in Table 3.

From Table 3, it can be concluded that the bigger reactive
compensation capability usually brings bigger active power loss

reduction. However, when the system reactive power reserve is
adequate, the active power loss improvement is inconspicuous
with the increase of reactive power compensation capability. For
example, the active power loss decreases only 2.1 kW when the
maximum reactive power compensation capability increases
from 1/2 of PV capability to 3/4 of PV capability. Therefore,
the present load demand, future load increase, and reactive power
compensation demand should be taken into comprehensive
consideration when determining optimal installation capability
of DGs at the planning stage. Also, in this study, reactive power is
considered as “free;” thus a more accurate model which quantifies
“the price of reactive power” should be included in future work.

4.4 Maximize Active Power Output of DGs
When Overvoltage Occurs
In scenario 3, the maximum active power output equals the
installation capability for each PV, which generally occurs at
noon. If all the PVs keep on the MPPT mode, the inverters
retain no reactive power supply and severe overvoltage
happens due to voltage rise caused by high power injection
of PVs. To keep DN secure, either certain voltage regulators

TABLE 3 | Relationship between active power loss and maximum reactive
compensation capability.

Coefficient α Loss (kW) Reduction ratio (%)

0 197.4 —

1/4 160.0 18.94
1/2 148.6 24.74
3/4 146.7 25.63

FIGURE 4 | Voltage magnitude comparison between before and after optimization: (A) phase A, (B) phase B and (C) phase C.
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should be installed, such as OLTC, CBs, and SVCs, or the
active output of the PVs should be curtailed. By the proposed
APRCO, the active power output of the PVs is maximized,
that is, PV curtailment is minimized, to limit the voltage
magnitude within the allowable range, needless for extra
devices.

As is shown in Figure 4, severe overvoltage happens
especially in phase B due to PV power injection. Employing
the ARPCO, the voltages of all buses are regulated within the
allowable range. Moreover, the voltage unbalance is alleviated,
while the voltage in phases A and B drops with the voltage in
phase C rises slightly. This is because the ARPCO model is
constructed with consideration of high coupling between the
three phases.

As the active power and reactive power output of PVs are
optimized simultaneously, there is more PV active power
absorbed by DN than the active power curtailment method, as
shown in Table 4.

As shown in Table 4, PV27 needs to curtail 14 kW, PV47
needs to curtail 64 kW, PV 65 needs to curtail 8 kW, and PV101
needs to curtail 24 kW by APRCO. In contrast, at least 764 kW
needs to be curtailed if only the active power curtailment method
is employed. Then, there are about 7 times renewable energy
source waste in the traditional active power curtailment method
compared to APRCO.

4.5 Computational Performance Analysis
To validate effectiveness of the proposed trust region SLP
method, computational analysis is done toward the
proposed trust region SLP and two basic SLP methods with
fixed step sizes of 0.001 and 0.0002 apparently in the

aforementioned three scenarios. The convergence accuracy
is set on err1 = 10-6 and err2 = 2 × 10-3 apparently. The
result is given in Table 5.

The proposed trust region SLP method performs better in
terms of both convergence speed and convergence accuracy. This
is because the self-adaptive step size overcomes the conflict
between speed and accuracy. When the fixed step size is
adopted, either the convergence speed or the convergence
accuracy is low. For example, a step size of 0.001 convergences
much faster than 0.0002, while it fails to converge in scenario 2.
Also, the convergence progress of scenario 2 by different methods
is analyzed in Figure 5.

It can be inferred from Figure 5 that trust region SLP
converges much faster than the two SLPs with a fixed step
size. When choosing Δ = 0.0002, it still has not converged
after 50 iterations, while it starts to oscillate after about 30
iterations when choosing Δ = 0.001.

5 CONCLUSION

In order to fulfill the demand of operating radial and looped
unbalanced DN with increasing penetration of DGs, a unified

TABLE 4 | Active power output comparison among different strategies.

PV generators Phase Active power output

Maximum (kW) Coordinated (kW) Maximum (kW)

PV27 C 500 486 316
A 600 600 600

PV47 B 600 536 20
C 600 600 600

PV65 B 500 492 500
PV101 A 500 476 500

A 600 600 600
PV114 B 600 600 600

C 600 600 600

TABLE 5 | Relationship between active power loss and maximum reactive
compensation capability.

Coefficient α Iteration times/CPU time

Trust region Δ = 0.001 Δ = 0.0002

Scenario 1 14/6.32 s 33/16.67 s 134/66.15 s
Scenario 2 16/7.20 s oscillatory 105/56.65 s
Scenario 3 9/4.15 s 63/32.69 s 311/143.61 s

FIGURE 5 | Active power loss variation in scenario 2.
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ARPCO model is established and a trust region SLP method is
proposed to solve the constructed nonlinear and nonconvex
models in this paper. The multi-scenario case study based on
the modified IEEE 123 node test feeder shows that (1) active
power loss could be reduced and overvoltage as well as
undervoltage problems could be restrained by coordinated
optimization of DGs’ active and reactive power output; thus, it
increases the ability of DN absorbing DGs; (2) the proposed trust
region SLP method preforms well in both aspects of convergence
speed and computational accuracy, superior to the fixed step SLP
method. Meanwhile, it can satisfy the online optimization
requirement of unbalanced DN incorporating a large amount
of DGs.
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Control Strategy of Distributed Energy
Micro-Grid Involving Distribution
System Resilience
Jun Wu1, Rui Qiu1*, Mingyue Wang2, Rui Han1, Wenxin Huang1 and Zihui Guo1

1School of Electrical Engineering and Automation, Wuhan University, Wuhan, China, 2School of Electronic Information and
Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China

To realize low-carbon energy systems, distributed energy storage systems and flexible
loads have been integrated into power grids. System reliability, economy, and resilience,
therefore, face significant challenges. This article presents modeling of a distributed energy
micro-grid including wind turbines, micro gas turbines, waste heat recovery devices,
electric boilers, direct-fired boilers, battery energy storage, interruptible loads, and
transferable loads. At the same time, the optimal configuration of energy storage and
the demand-side response modeling are studied, and the combined optimization control
strategy of the two is demonstrated. The simulation results indicate that the proposed
control strategy has better performance than the traditional operation. In addition, this
article also clarifies the impact of control strategy on distribution system resilience. The
results show that the control strategy proposed in this article can achieve the resource
complementarity of demand-side response and energy storage, and realize the integrated
coordination of source, network, load, and storage. The distributed energy micro-grid
under this control strategy has the best overall economic benefit and the best capacity to
accommodate load growth.

Keywords: distributed energy micro-grid, demand-side response, battery storage, network modeling, distribution
system resilience

INTRODUCTION

It has been extensively reported that distributed renewable energy power generation technology
provides useful solutions to the energy crisis and excessive carbon emissions (Iqbal and Siddiqui,
2017). However, the direct connection between distributed renewable energy units and distribution
networks will affect the original power flow distribution status and short-circuit current
characteristics (Zho et al., 2021). The uncertainty of renewable energy is likely to cause
problems in the reliability of the energy supply, leading to the reconfiguration of protection and
control systems (Tian et al., 2020). A distributed energy micro-grid is a good solution to these
problems. The United States Electrical Reliability Technical Measures Solutions Association and the
European Union Micro-grid Project define a micro-grid (Muhammad Arif et al., 2020) as a small
energy system composed of distributed units, loads, energy storage, power electronic devices,
communication equipment, power transmission lines, and other facilities. It supplies users with
energy such as cooling, heating, and electricity and can be regarded as a unified and schedulable
whole. The distributed energy micro-grid is mainly divided into two types according to the operation
mode: grid-connected and independent (Wenwu et al., 2018). The independent micro-grid has a
weak connection with the utility grid. Because of its small scale and great sensitivity to uncertain
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factors, it has high requirements on flexible resource utilization,
operating economy, and energy supply reliability. With the help
of the independent micro-grid, it is possible to supply loads in
areas far from the utility grid such as mountainous areas, islands,
offshore oil platforms, etc. Besides, it can achieve complementary
coordination of cooling, heating, and electricity. This micro-grid
can bring superior social benefits (FENG et al., 2020). Therefore,
it is of great significance to study the modeling of distributed
energy micro-grid and explore how to establish a control strategy
for fully and flexibly calling toward the various resources in the
micro-grid, which makes the micro-grid better in operational
reliability, economy, and resilience.

Power system resilience is an important criterion to assess the
ability of a system to adapt and recover from the significant power
outages caused by accidents, deliberate attacks, or natural
disasters. During this period, electric utilities desire to serve as
much load as possible and to minimize the penalty cost for load
shedding, which is a critical measure of distribution system
resilience (Ma et al., 2018). There are approaches to enhance
resilience, one of them is to increase the penetration of distributed
energy resources (Shi et al., 2020). For some areas, rapid load
growth is also a threat to system resilience. Therefore, studying
the impact of a distributed energy system on load growth after
adopting a control strategy can reflect the impact on system
resilience. The operation of a micro-grid requires the support of
various resources that can be flexibly invoked. In terms of power
supply, the scheduling technology for conventional units has
matured. However, problems such as uncertain output and wind
abandonment still exist. As far as energy load, demand-side
response (DR) resources can be flexibly invoked, and the DR
technology enables both sides of supply and demand to
participate in the optimal scheduling simultaneously. Qi et al.
(2021) proposed a scheduling strategy that considers DR
classification and segmented participation in multi-timescale
source–load coordination. This method can effectively reduce
the cost of scheduling operations and promote the utilization of
renewable energy. Duan (2016) introduced a price-based demand
bidding mechanism, which effectively stabilizes load fluctuations
in dispatch. This bidding mechanism brings the surplus
adjustable capacity to the source side and increases the social
welfare of the power system. China has already implemented
guidelines and interface standards for power systems and DR
technology. Nonetheless, large-scale and automatic DR cannot be
carried out with the limitation of imperfect policies and
regulations (Zhang et al., 2014). Meanwhile, the personalized
demand on the load side prevents excessive interference in energy
usage upon scheduling. Therefore, only a few loads can
participate in DR. When considering DR in the process of
optimizing operation, it is necessary to arrange an appropriate
load response plan to achieve a win–win situation between supply
and demand. In addition, energy storage has attracted attention
due to its advantages including bidirectional power flow, energy
transfer across time, and low environmental impact. The
configurations of electric energy storage and power control in
the micro-grid can resolve uncertainties and improve the
reliability of the energy supply (Bahramirad et al., 2012).
Hajipour et al. (2015) carried out a micro-grid electric energy

storage plan based on the Monte Carlo method. This plan proved
that electric energy storage can effectively handle uncertain
factors and possess economic competitiveness. Ding et al.
(2011) adopted a new type of battery to optimize the
operation of the micro-grid. This type of energy storage has a
special operating environment and high management costs, and
it has little effect on the cost cutting of the micro-grid operation.
Considering the high cost and environmental pollution, it is
important to configure electrical energy storage rationally
before optimizing an operation. In the process of optimizing
the configuration of energy storage, the complementation of
resources in the distributed energy micro-grid should be
considered. At this time, considering DR is expected to make
the plan more economical and has better operating performance.
Tao et al. (2017) employed variable participation frequency to
control refrigerator temperature control load and optimized the
configuration of electric energy storage based on the probability
planning method. The results demonstrated that the DR resource
can partially replace the electric energy storage and improve the
economics of the micro-grid. Shi (2018) optimized the dual-layer
configuration of wind power and energy storage with the load
transfer, translation, and reduction being considered. The result
proved that the proposed DR method can cut operating costs,
improve power supply reliability, and reduce the configuration
requirements for electrical energy storage.

Existing research does not comprehensively consider factors
such as reservation of conventional units, thermal power
compensation, and waste heat depletion of the combined heat
and power (CHP) system or clarify the impact on distribution
system resilience. Based on the establishment of a distributed
energy micro-grid model, the control strategy introduced in this
article explores the abovementioned problems. The strategy uses
the integrated time series of typical days in the four seasons and
the idea of cost discounting to optimize the configuration of
energy storage. It also implements the flexible deployment of
multiple resources such as conventional units, wind turbines, DR,
and electrical energy storage in multiple time nodes. In the
process of energy storage configuration optimization, this
article compares the difference between whether to involve
DR. The results show that involving DR is beneficial to reduce
energy storage configuration capacity. This article creates four
combination modes of DR and energy storage, and the control
model is solved by GAMS to minimize the accumulative cost for
dispatchable DER operation. According to the results, the
operational reliability, economy, and interference to energy
consumption behavior of the four modes are compared.
Calculations are performed to illustrate the impact on
distribution system resilience. This article reveals a control
strategy that comprehensively considers reservation of
conventional units, thermal power compensation, waste heat
depletion of the combined heat and power system, optimal
configuration of energy storage and the DR, and the impact
on distribution system resilience. The strategy shows good
performance in promoting the integrated coordination of
source, network, load, and storage of a distributed energy
micro-grid, improving the reliability of energy supply, cutting
operating costs, reducing the interference to energy consumption,
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increasing system resilience, and advocating a way to guide the
planning of work in areas with a high load growth rate.

RESOURCE MODELING IN INDEPENDENT
MICRO-GRID

Main Structure of Independent Micro-Grid
The main structure of a CHP-independent micro-grid is shown in
Figure 1. The micro gas turbine is a gas–electric coupling device.
The waste heat recovery device is a gas–heat coupling device. The
direct-fired boiler is a gas–heat coupling device, and the electric
boiler is an electric–heat coupling device. The electric load is divided
into conventional electric load and electric boiler. Both conventional
electric load and heat load participates in DR partly. The electric
energy storage is treated as an electric energy transfer station.

Unit Modeling
The mathematical models of conventional controllable distributed
thermal power units such as micro gas turbines and waste heat
recovery devices, electric boilers, and direct-fired boilers are given
in Supplementary Appendix (Tao et al., 2017). And the active
power output characteristics of wind turbines can be found in the
Supplementary Appendix (Shi, 2018).

DR Resources
The current DR strategy is mainly composed of price type and
incentive type (Luo et al., 2020). The price-based DR uses a
pricingmechanism to guide users to respond to changes in energy
supply prices actively. Incentive DR signs an agreement between
the energy supply side and the user side and grants subsidies to
users to obtain direct load management rights. The real-time
power balance of the system is maintained by invoking
interruptible and transferable loads and other resources. The
agreement routinely stipulates the limit on the number of loads
participating in DR and other factors. Compared with the price-

based DR, incentive type one has a shorter response time, more
flexible method, and more obvious effect. The subsidy paid in this
way is smaller than the penalty fee caused by load shedding,
which is beneficial to cutting operating costs. In this article, the
independent micro-grid does not involve electronic transactions
with the utility grid. The user-side information is not transparent.
The responses under the price-based DR cannot be certainly
described and is difficult to be reflected in the optimization
model. Therefore, the incentive-based DR is selected. Taking
into account the incentive-type DR, the electric and heat load
components are decomposed as in Eqs 1, 2:

Pldr(i, t) � Pld(i, t) + Pin(i, t) − Pout(i, t) − Pitr(i, t) − Plsh(i, t)
(1)

Qldr(i, t) � Qld(i, t) + Qin(i, t) − Qout(i, t) − Qitr(i, t) − Qlsh(i, t),
(2)

where

Pld(i, t) is active power load at node i before DR is
implemented in time period t,
Pldr(i, t) is active power load at node i after DR is implemented
in time period t,
Pin(i, t) is active power load planned to be moved in,
Pout(i, t) is active electrical load planned to be removed,
Pitr(i, t) is active power load planned to be interrupted,
Plsh(i, t) is active electrical load cut off outside the
agreement, and
Q represents the heat load, where the subscripts have the same
meaning as those mentioned above, and the units of the above
load items are all kW.

Electric Energy Storage
Electric energy storage is mainly divided into power type and
energy type according to their technical characteristics. As far as
the independent micro-grid optimization, the main
consideration is the energy-type electric energy storage
possessing high energy density. Pumped water storage and
compressed air energy storage are not commonly used due to
the constriction of resource and geographical conditions.
Battery storage (BS) has been widely used in modern power
systems owing to its characteristics of commercialization and
large-scale energy storage. For example, BS can be used for the
operating power supply of power plants and substations or as
the backup energy of AC uninterrupted power supply (Zhu
et al., 2014). Recently, the performance of BS has been
improved, and the cost has declined. With rational
configuration, its technical benefits and economic investment
can be balanced. Therefore, we selected BS to form an electric
energy storage system and involved the flexible invocation of BS
resources in the independent micro-grid optimal scheduling.

For BS unit b, the main technical parameters are as follows:
rated capacity Emax(b) (kWh), self-discharge rate σ (h−1),
charging efficiency ηc(b), discharge efficiency ηd(b), maximum
state of charge SOCmax(b), minimum state of charge SOCmin(b),
maximum charging power Pmax

c (b) (kW), maximum discharge
power Pmax

d (b) (kw), set unit b with power in time period t as

FIGURE 1 | Schematic diagram of an isolated combined heat and power
micro-grid.
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E(b, t) (kW), external charging power for unit b Pc(b, t) (kW),
and external discharge power of unit b Pd(b, t) (kW). The
definition and calculation of the state of charge in the time
period t are shown in Eqs 3, 4, respectively.

SOC(b, t) � E(b, t)
Emax(b), (3)

SOC(b, t) � (1 − σ)SOC(b, t − 1)

+ [Pc(b, t)ηc(b) − Pd(b, t)/ηd(b)
Emax(b) ], (4)

OPTIMIZATION MODEL

Cost Calculation
1) Total cost of independent micro-grid operating expenses:

The calculation of the total cost of independent micro-grid
operating expenditures within the simulation duration Ctotal

(Yuan) can be calculated by Eq. 5:
Ctotal � Ccw − Cuw + Css + Cgas + CCO2 + Cop + Cld + CDR, (5)

where

Ccw is wind abandonment penalty cost (Yuan),
Cuw is consumption of wind power subsidies (Yuan),
Css is operating cost of micro gas turbine switch (Yuan),
Cgas is sum of fuel costs of micro gas turbines and direct-fired
boilers (Yuan),
CCO2 is cost of treating carbon dioxide released by micro gas
turbines and direct-fired boilers (Yuan),
Cop is operation and management cost of conventional
controllable distributed thermal power unit (Yuan),
Cld is load shedding penalty cost (including heat load and
electric load) (Yuan), and
CDR is cost of DR subsidies (Yuan).

The specific calculation formula of the above variables are
given in Supplementary Appendix.

Ctotal involves various cost items that reflect the economics,
environmental protection, and power supply reliability of an
independent micro-grid operation.
2) Cost of BS configuration conversion:

The calculation of the cost of optimizing the configuration of
the BS converted to the value Cbat (Yuan) within the simulation
duration is shown in Eq. 6:

Cbat � Kbat ∑NBus

i�1
NBS(i), (6)

where

Kbat is the investment of a BS unit, which is converted to the
value within the simulation duration considering the idea of cost
discounting [Yuan/(quantity × simulation time length)], and

NBS(i) is the number of BS units at node i.

Constraints
3) The switch state of the micro-gas turbine and action variable

constraints can be found in Yun et al. (2020), and the specific
computational formulas are provided in the Supplementary
Appendix.

4) The upper and lower limits of the active output of the micro
gas turbine:

Standby is the additional unit capacity of the power system to
ensure safe and stable operation when the power system is subject
to uncertain factors. The adjusted reserve is used to balance the
forecast error of the wind turbine output, and the spinning
reserve is used to deal with accidents. The upper and lower
limits of the active power output of the micro gas turbine are
shown in Eq. 7:

PCG(m, t)≤ u(m, t)[Pmax
CG (m) − RCG(m, t) − SCG(m, t)]

PCG(m, t)≥ u(m, t)[Pmin
CG (m) + RCG(m, t)], (7)

where Pmin
CG (m) is the minimum active power output of gas

turbine (kW), Pmax
CG (m) is the maximum active power output

of gas turbine (kW), u(m, t) is the switch machine state 0-1
variable in time period t, RCG(m, t) is the adjust reserve capacity
(kW), and SCG(m, t) is the spinning reserve capacity (kW).

5) The climbing constraints of micro gas turbines are detailed in
the Supplementary Appendix.

6) The upper and lower limits of the power of the electric boiler
and the heating power of the direct-fired boiler are given in the
Supplementary Appendix.

7) The actual active power output of the wind turbine and the
wind curtailment power constraints are given in the
Supplementary Appendix.

8) The load shedding power constraints are given in Eqs 8, 9:

0≤Qlsh(i, t)≤RH
lshQld(i, t), (8)

0≤Plsh(i, t)≤RE
lshPld(i, t), (9)

where RH
lsh is the coefficient of the heat load that the node

allows to remove, RE
lsh is the coefficient of the electric load that

the node allows to remove, Qld(i, t) is the node heat load, and
Pld(i, t) is the node electric load.
9) The DC power flow constraints are provided in the

Supplementary Appendix. The independent micro-grid
in this work has less load and the phenomenon of branch
power flow exceeding the limit is not easy to occur. Thus,
only the direct current wave is considered, and this can
meet the requirements for the electric network part.

10) Constraints in DR:
(a) The upper and lower limits of interruptible and

transferable load are given in Eqs 10–15:

0≤Qitr(i, t)≤RH
itrQld(i, t), (10)

0≤Pitr(i, t)≤RE
itrPld(i, t), (11)

0≤Qin(i, t)≤RH
sftQld(i, t), (12)
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0≤Pin(i, t)≤RE
sftPld(i, t), (13)

0≤Qout(i, t)≤RH
sftQld(i, t), (14)

0≤Pout(i, t)≤RE
sftPld(i, t), (15)

where RH
itr is the ratio of the maximum interruptible heat load of a

node to the original load, RE
itr is the ratio of the maximum

interruptible electric load of a node to the original load, RH
sft is

the ratio of the maximum transferable heat load of a node to the
original load, and RE

sft is the ratio of the maximum transferable
electric load of a node to the original load.

(b) Interruption duration constraint of the interruptible load is
given by:

Td(i)≤Tdmax(i), (16)
where

Tdmax(i) is the upper limit of the interruption duration
allowed by the node each time.

(c) Constraint on the total number of cut offs of
interruptible loads is given by:

∑N
t�1
U(i, t)△T/Td(i)≤ y(i), (17)

where y(i) is the total number of interruptions allowed by the
node per day.

(d) Interruption time interval constraint of the interruptible load
is given by:

∑t+n(i)
t

V(i, t)≤ 1, (18)

where n(i) is the minimum value of the time interval between the
two load cut off of the node, and V(i,t) is the 0–1 variable that
indicates whether the node is interrupted during the t period.

(e) Constraints of transferable load balance

It is assumed that the transferable load needs to be met within
1 day to control the impact of load movement on users. Then, the
total load moved in by a node in 1 day should equal the total load
moved out by the node:

∑24l
t�24(l−1)+1

Qin(i, t) � ∑24l
t�24(l−1)+1

Qout(i, t)

∑24l
t�24(l−1)+1

Pin(i, t) � ∑24l
t�24(l−1)+1

Pout(i, t)
∀i � 1, ..., NBus;∀l � 1, ..., L,

(19)

where L is the number of days included in the simulation duration.

11) BS operation constraints:

Assuming that the parameters of all BS units are the same and that
the initial state of charge and charging and discharging behaviors of

the BS units of the same node are consistent, the constraints that need
to be met by the BS unit group of a node can be listed as follows:

(a) The upper and lower limits of charge and discharge power
and the upper and lower limits of the state of charge are given
in the Supplementary Appendix.

(b) BS power constraint at the end of the cycle:

At the end of a BS work cycle (1 day), the power stored in the BS
unit group of each nodeE(i, t � 24l), l � 1, ..., L (kWh) needs to be
limited to the upper limits SOCmax

end and lower limits SOCmin
end , so

there is a remaining power at the beginning of the next work cycle
that can be charged and discharged. The BS rated capacity is kept
unchanged during the simulation. This constraint can be
equivalent to the upper and lower bound constraints of the BS
state of charge at the end of each working cycle, as shown in Eq. 20:

SOCmin
end ≤ SOC(i, t � 24l)≤ SOCmax

end . (20)

12) BS configuration constraints which include constraints on
the number of BS units allowed to be installed on a single
node and the total number of BS units allowed to be installed
in the network has been provided by Yun et al. (2020). See
the Supplementary Appendix for specific formulas.

13) Power balance constraint
(a) Considering the active power balance constraint of DR and

BS configuration at the same time, as given in Eq. 21:

∑Mi

m�1
PCG(m, t) +∑Ni

n�1
Puw(n, t) + Pd(i, t) − Pc(i, t)

−∑Hi

h�1
PEB(h, t) − Pld(i, t) � ∑

j∈Ω(i)
P(i, j, t), (21)

where Mi is the number of micro gas turbines installed at the
node,Ni is the number of wind turbines installed at the node,Hi

is the number of electric boilers installed at the node, and Ω(i) is
the collection of nodes connected by the branches between nodes.

(b) Considering the thermal power balance constraint of the DR
and BS configuration at the same time, as given in Eq. 22:

∑NEB

h�1
QEB(h, t) + ∑NDB

d�1
QDB(d, t)

+ ∑NWHRU

m�1
QWHRU(l, t)≥Rc ∑NBus

i�1
Qldr(i, t). (22)

Because heat is easy to lose during transmission, a thermal power
compensation coefficient Rc larger than 1 is included to reserve
thermal power margin.

Strategy of BS Optimal Configuration
Considering DR
The BS optimal configuration based on specific data is an
important prerequisite for optimal scheduling. The modeling
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of configuration includes two aspects: constraints and
optimization goals.

14) Constraints: all constraints listed in Constraints.
15) Optimization goals: solving the number of access nodes

and units of the BS to minimize the value of C’
total. The

purpose is to optimize the overall economy of the
independent micro-grid when configuring the BS. The
calculation of this is shown in Eq. 23:

C′
total � Ctotal + Cbat. (23)

Control Strategy Considering DR and BS
Configuration
16) Constraints: constraints (1)–(9) and (11) in Constraints.

17) Optimization objective: solving the planned output
value of the thermal power unit, the consumed wind
power and abandoned wind power, and the thermal
power load removal during the day to be dispatched.
To formulate the BS charge and discharge, load
interruption, and transfer plan to minimize the value
of Ctotal. The BS is configured according to the solution
results of the model in Strategy of BS Optimal
Configuration Considering DR.

CALCULATION EXAMPLES AND ANALYSIS

Basic Parameter Settings
We built an independent micro-grid model of combined heat
and power based on the IEEE 33-node system. Based on the

FIGURE 2 | Diagram of network of the isolated micro-grid.
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optimized configuration of BS, the independent micro-grid
optimized dispatching takes into account DR and the
configuration of BS. The model contains 30 load nodes, 32
lines (numbered branch1–branch32), 16 micro gas turbines
and the corresponding heat recovery devices (numbered
CG1–CG16), two wind turbines (WT1 and WT2), one
direct-fired boiler (DB), and two electric boilers (EB1 and
EB2). Assuming that the access node of the unit has been
given, the information of each node in the micro-grid can be
obtained and is provided in Supplementary Appendix Table
SB1. The system voltage is 10 kV, and the reference capacity S
base is 10 MVA. Thus, the standard unit value of the electrical
network parameters can be obtained and is listed in
Supplementary Appendix Table SB2. The configuration of

the independent micro-grid network is shown in Figure 2.
Node 13 is a phase reference node.

WT1 and WT2 have the same parameters: PWr = 750 kW,
vin = 2.5 m/s, vr = 12 m/s, and vout = 20 m/s. The parameters of
EB1 and EB2 are the same: ηEH = 92.5%,Kop

EB = 1.35 Yuan/kwh,
Pmax
EB = 120 kw, and Pmin

EB = 0 kw. The technical parameters of
DB are as follows: ηDB = 85%, GCO2

DB = 0.3 kg/kwh, Pmax
DB =

500 kw, Pmin
DB = 0 kw, and Kop

DB = 2.25 Yuan/kwh. The
parameters of CG1–CG16 are shown in Supplementary
Appendix Table SB3: Rc = 1.1, Kcw = 0.75 Yuan/kwh, Kuw =
0.55 Yuan/kwh, Kgas = 2.4 Yuan/m3, Pmax(i, j) = 1.15 (p.u.),
and KCO2 = 0.25 Yuan/kg.

It is assumed that the predicted values of the electrical load and
thermal load of node i in time period t are expressed in the form

FIGURE 3 | Forecast values of the output of single wind turbine during typical days of four seasons.

FIGURE 4 | Forecast values of electric and heat load rate during typical days of four seasons.
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of “load base value at node i predicted value of load rate in time
period t.” The base value of the electrical load and thermal load of
each node is shown in Supplementary Appendix Table SB4. The
DR related parameters were set as follows: RH

itr = 0.2%, RE
itr = 0.2%,

RE
sft = 8%, RH

sft = 10%, KE
itr = 3 Yuan/kWh, KH

itr = 2 Yuan/kwh,
KE

sft = 1.85 Yuan/kWh, and KH
sft = 1.35 Yuan/kWh.

The BS unit parameters are selected as follows:NBusmax
BS = 200,

NALLmax
BS = 2,000,Kbat = 30 Yuan/(quantity *96 h), ηc = 95%, ηd =

95%, Emax = 6 kWh, SOCmax = 0.98, SOCmin = 0.2, SOCmin
end = 0.35,

SOCmax
end = 0.75, SOC(t � 0) = 0.5, σ = 0.01% h−1, Pmax

c = 1.2 kW,
and Pmax

d = 1.2 kW.

BS Optimized Configuration Parameter
Settings
Considering long-term operation and multiple load conditions,
we selected the typical daily data of the independent micro-grid
for the four seasons to optimize the configuration of the number
of BS access nodes and units. To avoid the different
configuration results of each typical day caused by solving in
the unit of day, the four curves of typical days in the four seasons
are integrated into a single curve which are in the order of
spring, summer, autumn, and winter. The forecast values of the
output of a single wind turbine is shown in Figure 3, and the
forecast values of the electric and heat load rate are shown in

Figure 4. Then, the simulation time of the BS optimal
configuration model T(96 h) can be obtained, including the
number of BS working cycles, L = 4. Additionally, both are set
as 0.1%.

Solution and Analysis of BS Optimal
Configuration
The CPLEX solver in GAMS is used to solve the independent
micro-grid BS optimal configuration model that takes DR into
account. The model is a mixed integer linear programming
problem, and the results are given in Table 1.

Regardless of DR, the same parameter settings are used to
solve the BS optimal configuration model, and the results are
provided in Table 2.

Under the same conditions, compare the total number of
configured BS units in Tables 1, 2, and it can be seen that the total
number has reduced by 45.14% after the implementation of the
incentive-type DR, indicating that the incentive-type DR can
effectively reduce the overall configuration requirements of the
independent micro-grid.

Optimized Scheduling Parameter Setting of
Independent Micro-Grid
We take the simulation duration of the scheduling model as T =
24 h. Assuming that the forecasted wind speed of the area where
the independent micro-grid is located in each period of the day
that needs to be dispatched is given, the forecasted value of the
active power output of a single wind turbine can be calculated
according to the model in Main Structure of Independent
Micro-Grid. The results are presented in Figure 5. The
predicted values of the electric load and heat load rate on
the day that needs to be dispatched are shown in Figure 6. Both
RH
lsh and RE

lsh are set as 0.

Solution and Analysis of Optimal Scheduling
of Independent Micro-Grid
Taking the results in Table 1 as the BS configuration scheme, the
CPLEX solver in GAMS is utilized to solve the mixed integer linear
programming problem. Taking the BS of node 11 as an example, the

TABLE 1 | Optimal configuration results of battery storage (BS) in the isolated
micro-grid considering DR.

Access node 4 11 19

Number of connected BS units 16 83 200
Total number of configured BS units

299

TABLE 2 | Optimal configuration results of battery storage (BS) in the isolated
micro-grid without considering demand-side response (DR).

Access node 6 10 22 24 31 32

Number of connected BS units 104 9 200 167 55 10
Total number of configured BS units 545

FIGURE 5 | Forecast values of wind speed and a single wind turbine’s output during the day to be dispatched.
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planned charging and discharging, and state-of-charge curves are
shown in Figure 7. The BS characteristics of the other nodes are
analogous to node 11.

Considering the DR and BS configuration of independent
micro-grid, the results of the plan values of heat power, active
power, and thermal power on the scheduling day are shown in

FIGURE 6 | Forecast values of electric and heat load rate during the day to be dispatched.

FIGURE 7 | Charging or discharging behaviors and state of charge of battery storage units at node 11.

FIGURE 8 | Planned values of heat power items during the day to be dispatched.
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Figures 8, 9, 10, respectively. If the total active power of the BS is
negative, it is in the charging state. On the other hand, the total
active power indicates the discharging state.

It can be seen from Figure 8 that the removed heat load is
satisfied when it is transferred to a low heat load rate and a high
electric load rate. On this occasion, the increase in heat load helps
to make effective use of waste heat. It can be seen from Figure 9
that the overall BS is charged from 1 to 6 o’clock and 21 to 24
o’clock when the electricity load rate is low and wind power
resources are abundant. On the other hand, it is discharged from
9 to 16 o’clock when the electricity load rate is high and wind
power resources have been consumed and cooperate with the
micro gas turbine to supply the electric load in the grid.

In addition, the following configurations are taken for
independent micro-grids: 1) DR is not implemented, and BS
is not connected; 2) DR is not implemented, and BS is

configured according to Table 2; 3) DR is implemented,
and BS is not connected. Subsequently, the same parameters
are used to solve the independent micro-grid optimization
scheduling. The comparison of the planned expenditures of
the independent micro-grid on the day of scheduling and the
total cost of operating expenditures in the four scenarios are
given in Table 3. For each scenario, the comparison of the total
cost of independent micro-grid expenditures considering the
BS investment converted to the value on the day that needs to
be scheduled is shown in Figure 11. In addition, to give
priority to the stable operation of the power system, the
remaining heat of the micro gas turbine is dissipated when
the heat load is light and the heat resources are abundant (not
“using heat to determine electricity”). The comparison of the
remaining heat dissipated in each scenario is shown in
Figure 12.

FIGURE 9 | Planned values of active power items during the day to be dispatched.

FIGURE 10 | Net active load values before and after considering demand-side response (DR).
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For the same calculation example, after the independent
micro-grid implements the incentive DR and optimally
configures the BS, the comparison results with other scenarios
are as follows:

(1) It can be seen from Table 3 that there is no load removal and
interruption in the plan, indicating that the model can
guarantee the reliability of energy supply at the plan level
and realize economic dispatch on the source side. From
Figures 8–10, it can be seen that the transferable load
makes the thermal and electrical load curves achieve “peak
shaving and valley filling.” Regarding the electric load, the
rise of the trough section allows part of the wind power that
was originally abandoned due to surplus to be absorbed. The
reduction in the peak section reduces the power supply
pressure of the unit and the dissipation of the waste heat.
Regarding the heat load, the reduction of the peak period
reduces the heating pressure, and the cost of the direct-fired
boiler is reduced to zero.

(2) It can be concluded from Table 3 that Ccw reduces by
89.598% compared with the situation where no measures
are taken. This is the minimum value in all scenarios. Cuw is
increased by 31.546% after no method is invoked, which is
the maximum value in all scenarios. The total cost of the
thermoelectric unit is reduced by 9.993% compared with
when no measures are taken, which is the minimum value in
all scenarios. Even considering the investment of the BS
equivalent to the dispatch date 30/4 = 7.5 yuan/
(quantity·24 h), C’

total is also reduced by 7.651% when
compared with when no measures are taken, which is the
minimum value in all scenarios. In addition, it can be seen in
Figure 12 that the remaining heat dissipation is reduced by
29.934% when no measures are taken, which is the minimum
value in all scenarios. Hence, it can be concluded that the
model proposed in this article has the best overall economics

TABLE 3 | Comparison of cost items of optimized dispatching plans under various scenarios.

Value (unit: Yuan) No DR, No BS
access

No DR, BS access DR, No BS access DR, BS access

Ccw 3744.96 1664.75 1500.00 389.55
Cuw 7800.22 9325.70 9446.52 10260.85
Cld 0.00 0.00 0.00 0.00
CitrE 0.00 0.00 0.00 0.00
CitrH 0.00 0.00 0.00 0.00
CsftE 0.00 0.00 3039.41 2775.51
CsftH 0.00 0.00 2958.15 2951.15
Css 202.37 100.02 152.73 100.02
Cgas
DB 38.74 16.16 0.00 0.00

Cgas
CG

39899.54 38364.94 37732.30 36987.60

CCO2
DB

11.75 4.90 0.00 0.00

CCO2
CG

8813.54 8487.61 8330.76 8170.01

Cop
EB 3138.30 2806.31 3146.52 2901.47

Cop
DB 299.68 125.05 0.00 0.00

Cop
CG 26280.37 23519.28 23635.59 22662.00

Ctotal 74629.03 65763.32 71048.94 66676.45

FIGURE 11 | Total expenditures of the isolated micro-grid considering
the cost of electrical energy storage.

FIGURE 12 | Residual heat dissipation under various scenarios.
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compared with other configurations and can further realize
the energy saving and emission reduction of independent
micro-grids.

(3) It can be concluded from Table 3 that for the same incentive
type DR, the transferable load is reduced after the BS is
optimized, especially for the transferable electric load, which
is reduced by 8.683%. This shows that the introduction of BS
can reduce the interference to energy consumption.
Combined with the analysis in Solution and Analysis of BS
Optimal Configuration, the simultaneous use of the two
resources has achieved complementary effects.

Impact on the Distribution System
Resilience
In the real system, the load will increase over time, and the
source side needs to be upgraded regularly to meet the load
demand. As mentioned earlier, studying the impact on load
growth after adopting a control strategy can reflect the impact
on system resilience. By examining the data reported here, we
can see that there exist redundant configurations of energy in
the network, indicating that a certain load increase is
acceptable. After considering the incentive DR or the
configuration of BS (see Solution and Analysis of Optimal
Scheduling of Independent Micro-Grid), the reduction of the
energy supply pressure during the peak load period means the
redundant capacity of the source side increases, and it has the
potential to accommodate more load growth. In this section,
the typical days of the four seasons are selected as the time
series, and the thermal load and electrical load of each period
are set to increase at the same rate (RLI) based on the original
load. The control strategy corresponding to each scenario is
employed to calculate the operation status until a convergence
solution cannot be obtained. Then, the previous value of RLI is
recorded as the critical load growth rate Rmax

LI of the micro-grid
in this scenario to measure its ability to accommodate load
growth. The model is programmed with GAMS, and the
solution is carried out by the CPLEX solver. The results are
shown in Table 4. Since only the parameter RLI is under
control, if the model does not have a convergent solution, it
indicates that the scheduling plan under the value of RLI

cannot be implemented as required, rather than there being
a problem within GAMS.

It can be seen from Table 4 that Rmax
LI reaches the smallest

when DR is not implemented and BS is not configured, Rmax
LI is the

largest when incentive-type DR is implemented and BS is
configured. This shows that the effective control of BS and DR

is beneficial to accommodate more load. The control strategy with
BS and DR at the same time shows the most effective way to
improve system resilience. This can further delay the upgrade of
the micro-grid and brings long-term comprehensive benefits for
the micro-grid while maintaining the required reliability of
energy supply.

CONCLUSION

Based on the establishment of a distributed energy micro-grid
model, this article carried out the control strategy for flexible
invocation of multiple types of resources such as conventional
thermal power generators, wind turbines, and incentive-type
DR, BS, etc. The interference of different resources combination
on network reliability, economy, and energy consumption
behavior was also compared. The impact on distribution
system resilience was demonstrated. Our simulation results
show:

(1) The method we proposed realizes the unified and flexible call
of various resources in the distributed energy micro-grid and
the integrated coordination of the elements of source,
network, load, and storage.

(2) The incentive DR reduces the configuration requirements of
the BS when optimizing the operation of micro-grid. The
access of the BS can reduce the interference to the energy
consumption behavior during the optimization schedule.
The two resources achieve complementary effects.

(3) Without sacrificing the reliability of energy supply, our
method enables the distributed energy system to achieve
economically optimal operation, greatest energy saving,
emission reduction, and the best system resilience.

This article expects the coordination and optimization of
active and reactive resources of distributed energy micro-grid,
more detailed energy storage models, more complex DR
strategies, and uncertainty modeling of wind turbine and load
in subsequent research so that the performance of the micro-grid
can be further optimized.
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Fast and Accurate Traction Induction
Machine Performance Calculation
Method for Integrated Onboard
Charging in Vehicle to Grid Application
Haiwei Cai1*, Ru Huang1, Hao Zhai1, Honghua Xu2, Shaojun Liu2 and Jingzhou Xu2

1School of Electrical Engineering, Southeast University, Nanjing, China, 2Nanjing Power Supply Company State Grid Jiangsu
Electric Power CO., LTD, Nanjing, China

Reusing traction electric machine windings in electric vehicles as an integrated filtering
inductor is a promising solution to reduce the size of the vehicle to grid (V2G) charging/
discharging system. Obviously, the integrated inductors need to meet the requirements of
traction and charging/discharging, which brings challenge for the design of tractionmachines.
As one of themost popular traction electric machine types, the high-speed inductionmachine
usually has large electrical time constant and consequently unacceptably long transient time in
the design stage when finite element analysis is adopted. In this article, a method is proposed
to quickly and accurately calculate the steady state performance of the induction machine by
time-stepping transient magnetic finite element analysis. First, the stator current magnitude is
ramped up from zero to full magnitude gradually to control the DCcomponent in rotor flux and
torque. Second, a multistep equivalent resistance method is adopted to decrease rotor time
constant and suppress slot-tooth harmonic transient response. The proposed method can
predict the FEA computation load before running the calculation, and it does not rely on the
machine parameter and feedback signal. Its performance is tested by an example induction
machine. The result shows that the proposed method can reduce the finite element
calculation time of a high-speed operating point by 99%.

Keywords: finite element, induction machine, torque, transient response, high-speed, equivalent resistance, V2G,
harmonic

1 INTRODUCTION

As an emerging type of distributed energy resources (DERs), the electric vehicle is increasingly
connected to the power grid in the two-way charging and discharging manner (Haghbin et al.,
2013; Khaligh and D’Antonio, 2019). To suppress the harmonics brought by the grid-connected
inverters, filter inductors are usually required to be installed between the inverter and the power
grid. Integrated filter inductors reused traction electric machine windings instead of adding an
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Abbreviation: Is, ids, iqs, stator current magnitude and dq components; idr, iqr, rotor current dq components; λdr, λqr, rotor flux
dq components; Rs, Rr, stator resistance and rotor resistance; Ls, Lr, Lm, stator, rotor, and mutual inductance; tsyn, electrical
synchronous period; ωe, synchronous angular frequency, ωe � 2π

tsyn
; τ, rotor electrical time constant, τ � Lr

Rr
; n, rotor mechanical

speed in round per minute; ωr, rotor speed, ωr � 2π poles
2

n
60; ωslip, s, slip frequency in rad/s and slip, ωslip = sωe = ωe − ωr; Te,

electromagnetic torque; Peak, subscript denoting the peak value; ′, ″, superscripts denoting 1st and 2nd order derivatives,
respectively; P, number of poles; ss, subscript denoting the steady state value.
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extra set of inductors for the purpose of reducing the charging
system size (Xiao et al., 2019; Metwly et al., 2020; Wang et al.,
2020). It is well known that the vehicle traction application
requires the machine to have high efficiency and small size,
while the V2G application focuses more on the power quality
such as harmonic components. Hence, it is necessary to make
sure the machine can satisfy the requirements of both
applications.

Induction machines (IMs) are commonly used in electric and
hybrid vehicle traction (Zhu and Howe, 2007; El-Refaie,
2013). To improve machine efficiency, the IMs need to
operate at high speed, which results in a large rotor
electrical time constant (τ � Lr

Rr
) and consequently a very

time-consuming transient response before obtaining steady
state performance (Yamazaki et al., 2012). Because finite
element analysis (FEA) can accurately calculate electric
machine performance, it is commonly used in the machine
design stage. However, the accuracy comes at the cost of large
amount of computation load and time; it becomes impractical
to design an IM that meets the traction and V2G applications
in an acceptable time length (Le Besnerais et al., 2010; Kim
et al., 2019).

To reduce the calculation time, many researchers have
proposed different ideas to calculate the initial steady state
performance in a relatively short time. The locked-rotor
method sets the rotor speed to be zero and increases rotor
resistance by a factor of 1

s to obtain a 1
s times faster transient

response time (Lin et al., 2017). However, to consider the tooth/
slot harmonics, the rotor speed must be changed back to the
normal speed, but such transition will introduce a new transient
response. In Lin et al. (2017), a compensation voltage is added to
original sinusoidal voltage excitation to eliminate the DC flux to
suppress the transient response, which works on permanent
magnet machines, but works on IMs because the two machine
types are very different.

The current excitation is transitioned to a voltage excitation in
Di et al. (2019), which reduces the transient time by as much as
66%. However, the research does not provide theoretical analysis
on the optimal transitionmoment. The time-harmonic (TH) FEA
and larger time step methods are also studied (Fu et al., 2012;
Rainer et al., 2012). However, these methods cannot guarantee
the accuracy of the result. Hence, they face the same transition
transient response issue when switched back to the accurate time-
stepping FEA model.

This article proposes a two-step IM performance calculation
method to accelerate the machine design process. The first step is
to control the DC component in rotor flux and torque by
gradually ramping up stator current magnitude. The second
step is to reduce the rotor time constant by slowing down
rotor speed and increasing rotor resistance simultaneously.

The content of this article is organized as follows: in Section 2,
the transient dynamic of the IM under current source excitation is
discussed. The performance of several existing methods is
analyzed. Section 3 presents and discusses the proposed
method. Then, the performance of the proposed method is
tested by an example induction machine in Section 4. Section
5 concludes the article.

2 PERFORMANCE OF EXISTING METHODS

2.1 Steady State Model in the DQ Reference
Frame
The rotor flux, current, and torque of an IM in synchronous d − q
reference frame can be expressed by (1–5). Since current
excitation is supplied to the stator winding, the transient
response is mainly on the rotor flux and current. Hence, the
stator voltage and flux equations are not included.

0 � Rridr − sωeλqr + λdr′ (1)
0 � Rriqr + sωeλdr + λqr′ (2)
λdr � Lridr + Lmids (3)
λqr � Lriqr + Lmiqs (4)

Te � 3P
4

Lm

Lr
λdriqs − λqrids( ). (5)

The reference d-axis is selected such that ids and iqs satisfy (6)
and (7), respectively, in the steady state.

idsss � 0 (6)
iqsss � Isss. (7)

Regardless of the transient waveform of the stator current, as
long as the steady state inputs Is andωslip are known, solving (1–4)
and setting all differential terms to be zero can obtain the steady
state rotor flux value as expressed by 8 and 9.

λdrss � τωslip

1 + τ2ω2
slip

LmIsss (8)

λqrss � 1
1 + τ2ω2

slip

LmIsss. (9)

When the current source is imposed on stator winding, the
transient response of the IM is mainly referring to oscillation of
the rotor current, flux, and torque. (10) and (11) can be derived

FIGURE 1 | Is waveform of the three methods (analytical model).
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from (1–4). Note that rotor speed ωr is an input value in the FEA
calculation, so slip frequency ωslip = sωe = ωe − ωr can be
designated.

λdr″ + 2
τ
λdr′ + 1

τ2
+ ω2

slip( )λdr � Lm

τ
ids′ + 1

τ
ids + ωslipiqs( ) (10)

λqr″ + 2
τ
λqr′ + 1

τ2
+ ω2

slip( )λqr � Lm

τ
iqs′ + 1

τ
iqs − ωslipids( ). (11)

Three existing methods, including constant Is method, step
function Is method, and ramp function Is method, will be
discussed in the following subsections (Cai, 2020). They are
different because of the different input stator current
waveforms as shown in Figure 1.

2.2 Existing Method 1—Constant Is
In the constant Is method, the steady state sinusoidal current is
supplied to stator winding from time zero until the
steady state is reached. (12) and (13) can be derived from
10 and 11.

λdr1 � λdrsse
− t
τ τωslip sinωslipt − cosωslipt( ) + λdrss (12)

λqr1 � λdrsse
− t
τ τωslip cosωslipt + sinωslipt( ) + λqrss. (13)

The transient electromagnetic torque can be calculated by
substituting (6), (7), (12), and (13) into (5). The result is shown in
14, where Tess � 3P

4
Lm
Lr
λdrssIsss.

Te1 � 3P
4

Lm

Lr
λdriqs � Tesse

− t
τ τωslip sinωslipt − cosωslipt( ) + Tess.

(14)
The ratio between the magnitude of the oscillating component

Tos1 � Tesse−
t
τ(τωslip sinωslipt − cosωslipt) and the steady state

component Tess, i.e., the torque error, can be calculated by 15.
Then, the number of synchronous electrical cycles kωe needed to
make the error smaller than εTe1 (practical steady state in
numerical computation) can be calculated by 16, which is a
function of s and τωslip.

εTe1 � e−
t
τ

���������
1 + τ2ω2

slip

√
(15)

kωe1 �
τωslip

2πs
ln

���������
1 + τ2ω2

slip

√
εTe1

⎛⎜⎜⎝ ⎞⎟⎟⎠. (16)

2.3 Existing Method 2—Step Function for Is
In the step function Is method, the input stator current
magnitude can be expressed by 17. When t > 0, (18) and
(19) can be derived.

iqs � 0 t � 0
Isss t> 0{ ; (17)

λdr2 � λdrsse
− t
τ − 1

τωslip
sinωslipt − cosωslipt( ) + λdrss (18)

λqr2 � λdrsse
− t
τ − 1

τωslip
cosωslipt + sinωslipt( ) + λqrss. (19)

Similar to (16), the number of synchronous electrical cycles
needed to reach a given error εTe2 can be derived as (20).

kωe2 �
τωslip

2πs
ln

���������
1 + τ2ω2

slip

√
τωslipεTe2

⎛⎜⎜⎝ ⎞⎟⎟⎠. (20)

2.4 ExistingMethod 3—Ramp Function for Is
In the ramp function Is method, Is is expressed by 21.

iqs �
Isss
t0

t t≤ t0
Isss t> t0

⎧⎪⎨⎪⎩ (21)

When t ≤ t0, the rotor flux is expressed by 22 and 23,

where θ3 � atan(τ
2ω2

slip−1
τωslip

).

λdr3 � λdrss
k02π

e−
t
τ cos ωslipt + θ3( ) − cosθ3 + ωslipt[ ] (22)

λqr3 � λdrss
k02π

−e− t
τ sin ωslipt + θ3( ) + sinθ3 + 1

τ
t[ ]. (23)

When t > t0 and iqs = Isss, rotor flux can be calculated by 24 and
25, where t* = t − t0, C1* � λdr30 − λdrss, and C2* � λqr30 − λqrss.
Note that λdr30 and λqr30 can be calculated by letting t � t0 �
k0 2π

ωslip
in 22 and 23.

λdr3 � e−
t*
τ C2* sinωslipt* + C1* cosωslipt*[ ] + λdrss; (24)

λqr3 � e−
t*
τ C2* cosωslipt* − C1* sinωslipt*[ ] + λqrss. (25)

Similar to (16) and (20), the synchronous electrical periods
needed to make the error smaller than εTe3 can be derived as (26).

kωe3 �
k0
s
+ τωslip

2πs
ln

������������������������
e
−2 k02π

τωslip − 2e
− k02π
τωslip cos k02π( ) + 1

√
k02πεTe3

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠. (26)

FIGURE 2 | Torque waveform of the three methods (analytical model).
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Performance of the three existing methods are evaluated with
an example IM, when ωe = 2π × 510, τωslip = 30, and s = 0.0196,
and the torque waveforms of the three methods are shown in
Figure 2. It should be pointed out that for simplicity of initial
discussion, the example uses an analytical model rather than a
finite element model, so the nonlinear behaviors have not been
considered yet.

Even though the ramp function Is method can significantly
reduce the transient response time when compared with the other
two methods, it still takes hundreds of cycles to reach the steady
state. In fact, it takes much longer time to decay from 10 to 1%
error than that from zero to 10% error.

3 PROPOSED METHOD—MULTISTEP
EQUIVALENT RESISTANCE METHOD

To further reduce the transient time, this article proposes the
multistep equivalent resistance method. It is well known that
as long as the value of Rr

s is not changed, the steady state torque
and flux (fundamental component) of the IM will remain the
same. By increasing Rr in proportion to s, the oscillation time
of rotor flux and torque can be reduced since τ � Lr

Rr
becomes

smaller. This approach is called the equivalent resistance (ER)
method.

To implement the ER method, when Rr needs to be
increased by a factor of kR, then the rotor bar resistivity
and rotor slip should also be multiplied by kR, and the rotor
mechanical speed should be modified as n* = n (1 − skR)/
(1 − s).

To calculate the accurate IM performance, it is necessary to
switch from the ER model back to the original model. Since the
ramp function method has shown obvious advantages over the
other twomethods, if it can be combined with the ERmethod, the
transient response time can be further reduced. Thus, kωe3 can be
updated as (27).

kωe3* � 1
kRs

1 + τωslip

2π
ln

e
− 2π
τωslip − 1
2πεTe3

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦. (27)

The relationship between τωslip and kωe3* at various kR values is
plotted in Figure 3, which shows that the peak value of kωe3* is
inversely proportional to kR. More importantly, the peak value of kωe3*
is 6.38, indicating that the IM can reach the steady state in less than 6.5
synchronous periods. In contrast, the existing methods will need
hundreds or thousands of periods.Hence, it seems reasonable to select
kR to be as large as possible. However, larger kRwill lead to larger tadd,
and the total transient response time may become longer instead.

To mitigate this problem, the multistep ER method is
proposed. The basic idea is to use a time-varying kR value
to smooth the transition, such that tadd can be greatly reduced.
As shown in Figure 4 (ωe = 2π × 510Hz and s = 0.0196), the
one-step ER method will introduce large oscillation when the

FIGURE 3 | τωslip vs. kωe3* at various kR values with the ramp function
(k0=1) for Is and equivalent resistance method adopted. εTe3 � 1%.

FIGURE 4 | Traditional single-step equivalent resistance method.

FIGURE 5 | Proposed multistep equivalent resistance method.
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transition happens. While in Figure 5, when a two-step ER
method is adopted, tadd becomes much shorter. It should be
pointed out if the rotor speed is increased to the actual speed
following a constant slope (ramp function) after the transition,
it becomes a special case of the multistep ER method.

Note that Figures 4, 5 are schematic waveforms; the actual
response of the finite element IM model involves complex
nonlinear behavior that is difficult to be expressed by accurate
analytical equations. Hence, the effectiveness of the proposed

multistep ER method will be proven in the next section by the
FEA model directly.

In short, the proposed method has two parts. First, stator
current magnitude Is is increased following a ramp function and
applied on q-axis while keeping the d-axis current to be zero
(arbitrary synchronous reference frame). Second, a multistep
equivalent resistance method is adopted.

4 VALIDATION OF THE PROPOSED
METHOD

A high-speed traction IM is selected for investigation as shown
in Figure 6 (cross section) and Table 1 (specs). For easiness of
understanding, the steady state value of τωslip is calculated
after the simulation, which is around 30. For the purpose of
comparison, the transient response of different methods

FIGURE 6 | Cross section of the example traction induction machine.

TABLE 1 | Specifications of the example induction machine.

Quantity Unit Value

Number of poles 4
Stator/rotor slot number 60/74
Stack length mm 153
Stator OD/ID mm 254/157
Rotor OD/ID mm 155.6/50
DC bus voltage V 300
Slip (s) 0.0196
Stator current (Peak) A 1,273
Rotor speed RPM 15,000

FIGURE 7 | Torque of the constant Is method (FEA result).

FIGURE 8 | Torque of the ramp function Is method (FEA result).

FIGURE 9 | Is and n waveform of the ramp function Is with the multistep
ER method (FEA result).
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including the three existing methods discussed earlier is also
calculated. The torque waveforms for constant Is and ramp
function Is methods are shown in Figures 7, 8, respectively.

To validate the effectiveness of themultistep ERmethod, the rotor
speed is increased from 0 to 15000RPM following a constant slope
from t = 6tsyn = 11.8ms to t = 12tsyn = 23.5ms (Figure 9). The torque
waveform is shown in Figure 10. It is found that there is almost no
additional transient response after the rotor speed reaches 15000RPM.
Hence, the total transient time is only 12tsyn (23.5ms). As shown, the
average value of the steady state torque is 112.5 Nm.

The number of electrical cycle needed to reach 1% torque error
is listed in Table 2. Since the constant Is method takes the longest
time to reach the practical steady state (1%), its computation time
is used as the reference for other methods. It is observed that the
transient response time of the FEA models is longer than that of
the theoretical analysis, which is the result of nonlinearity of the
core material (saturation).

The finite element results show that the calculation time
has been reduced from 2.877 s (constant Is method as shown
in Figure 7) to 23.5 ms (proposed method as shown in
Figure 10). Hence, the calculation time is reduced by more
than 99% for the test case. In fact, this test case is a very
challenging operating point in terms of finite element
calculation, which is the maximum speed (15000 rpm) and
low torque point. It is important to point out that the end time
of calculation is decided by the most challenging and time-
consuming points, rather than the average calculation time of
all operating points. To be more specific, if the constant Is

method takes 24 h to get the result, with the proposed method,
the calculation time is reduced to less than 12 min.

Compared with the other two existing methods (step function Is
method and ramp function Is method), the proposed method that
combines the ramp function Is method and the multistep ER
method can reduce transient response time by 98.9% and 96.5%,
respectively.

5 CONCLUSION

A method to significantly accelerate the time-stepping magnetic
transient FEA calculation of steady state performance of the high-
speed traction IM is proposed. The proposed method includes
two parts.

The first part is the ramp function Is method, which increases
the stator current magnitude from zero to full magnitude
following a constant slope, such that the DC component can
be controlled at a very low level from the beginning. This part
alone can reduce FEA calculation time by 76.5%.

The second part is the multistep equivalent resistance method,
which adjusts the rotor resistance inversely proportional to the
slipmultiple times during the transient stage, such that the additional
transient response due to the transition from the equivalentmodel to
original model is suppressed to a negligible level.

Note that these two parts can work separately and together,
either way can significantly reduce the FEA calculation time. The
proposed method has two important features. First, the maximum

FIGURE 10 | Toque of the ramp function Is method with the multistep ER method (FEA result).

TABLE 2 | Performance comparison of different methods.

Method Transient time (ms) Transient period %

Constant Is 2,877 1,467 100
Step function Is 2,200 1,122 76.5
Ramp function Is 675 344 23.5
Ramp function Is + multistep ER 23.5 12 0.82
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electrical cycle needed to reach the steady state can be easily
calculated before running the FEA model. Hence, the
computation load and time are predictable. Second, the proposed
method does not require knowing the parameter or feedback signal
of the machine. Hence, its performance is very stable and robust.

The performance of the proposed method is validated by the FEA
model of a typical high-speed traction IM. The result shows that the
proposed method can reduce the FEA calculation time by 99%. Since
the example calculation point is a very challenging test case, it is
reasonable to believe that assuming error tolerance is 1%, the ramping
up time of Is can be set at 6tsyn and the multi-step ER method can be
set to increase the rotor speed gradually within 6tsyn, then the
transient response time can be limited within 12tsyn in most cases.
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Robust Bi-Level Planning Method for
Multi-Source Systems Integrated With
Offshore Wind Farms Considering
Prediction Errors
Qingzhi Jian1, Xiaoming Liu1, Xinye Du2*, Yuyue Zhang1, Nan Wang1 and Yonghui Sun2

1Economic and Technological Research Institute, State Grid Shandong Electric Power Co., LTD., Jinan, China, 2College of Energy
and Electrical Engineering, Hohai University, Nanjing, China

Considering the economy, reliability, and output characteristics of multiple power sources
(MPS) and energy storage (ES) comprehensively, a multi-source system integrated with
offshore wind farms (OWFs) and its construction cost, and operating and maintenance
cost model are established. The system is mainly composed of OWFs, thermal power
plants, gas turbine power plants, and pumped hydro storage plants. Given the economy of
the power system and offshore wind power accommodation, a bi-level optimal capacity
configuration and operation scheduling method is proposed for the multi-source system
integrated with OWF clusters with the objective function of optimal total cost. Then, a
robust bi-level planning method for the multi-source system integrated with OWFs
considering the dual uncertainty of load and offshore wind power prediction is
proposed, in which the upper and lower models are solved by an improved particle
swarm optimization (PSO) algorithm and CPLEX solver, respectively. Based on the
method, the cost-optimal capacity configuration and operation scheduling scheme of
an MPS and ES can be obtained. Finally, an OWF group in Shandong Province is taken as
an example to check the validity and feasibility of the proposed method.

Keywords: offshore wind power integration, generation expansion planning, bi-level optimization, uncertainty,
economic optimization, improved PSO

1 INTRODUCTION

Onshore wind turbines have shown the trend of production saturation in recent years due to
excessive competition. As a new direction of new energy development, offshore wind power has
significant advantages (such as no occupation of onshore land, high wind speed, stable wind
direction, and proximity to the load center), creating a new situation in the development of wind
power all over the world (Nian et al., 2019; Wu et al., 2019). However, the anti-peak
characteristics of offshore wind power are particularly noticeable. The degree and
probability of strong anti-peak regulation of offshore wind power are greater than those of
onshore wind power. Large-scale offshore wind power integration will increase the difficulty of
peak regulation of an electric power system. The problem of poor controllability of a high
proportion of new energy power generation can be solved effectively with a multi-source
complementary strategy. Therefore, power system dispatching establishes the coordination
mechanism of multi-source complementary advantages and realizes the optimal planning of
multiple power sources (MPS) and energy storage (ES) on the premise of safety and stability,
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which is of great significance to reduce the power supply cost
and to improve the operation economy of the power system
and the level of renewable energy consumption.

In recent years, offshore wind power has developed rapidly
and has broad market prospects. So far, extensive research has
been conducted on offshore wind power (Kang et al., 2019;
Costoya et al., 2020; Zhang et al., 2020; Riboldi et al., 2021). Li
et al. (2020)compared and evaluated the characteristics and wind
energy potential of onshore and offshore wind power based on
the original wind records of onshore and offshore wind measured
at wind towers in the southeast coastal area of China. Jiang (2021)
proposed the review of the offshore wind turbine installation
technology, and the future development of four technical fields
was prospected to guide the development of offshore wind
turbine installation. The opportunity for combining offshore
wind turbines and wave energy converters was analyzed
through a spatial planning method, and the possibility of
combining different renewable technologies was considered
based on existing pressures and vulnerabilities through
quantitative indicators (Azzellino et al., 2019). Yang et al.
(2020), considering potential maintenance opportunities
brought by the dynamic speed of the winds, constructed a
novel weather-centered operation and maintenance framework
to combine the impact of wind on energy production and
maintenance plans. Ji et al. (2020), considering the effects of
an offshore station, DC cable, and onshore station, proposed an
offshore AC side impedance model of an MMC-HVDC system
for wind power integration. Most of the aforementioned studies
focus on the technical problems of offshore wind turbines and the
grid connection technology of offshore wind farms (OWFs),
while research on the power system suitable for the
integration of offshore wind power clusters with obvious anti-
peak characteristics is rarely mentioned.

Power planning is a significant and essential preliminary work
in the development of the power industry. As an important part
of power system expansion planning, it has many positive effects,
and there have already been a large number of relevant studies
(Gan et al., 2020; Lv et al., 2020; Chen et al., 2021; Xie et al., 2021).
Deng and Lv. (2020), to study the changes in optimization models
caused by the large penetration of variable renewable energy,
screened some studies on power system planning considering the
addition of variable renewable energy, and these models were
further deconstructed and compared. Li et al. (2021), given
various uncertainties and multi-energy demand-side
management, proposed a risk-averse method for
heterogeneous energy storage deployment in a residential
multi-energy microgrid. Hu et al. (2021)proposed a
complementary power generation model of wind-hydropower-
pumped storage systems, which used hydropower and pumped
storage to adjust the fluctuation of wind power. Considering
different vehicle-to-building schedules, a robust energy planning
approach for hybrid photovoltaic and wind energy systems in a
typical high-rise residential building was proposed (Liu et al.,
2021). In the study by da Costa et al. (2021),a method of
incorporating reliability constraints into the optimal expansion
planning of power systems was proposed based on the loss of load
probability and expected power of power systems, and the risk

measurement value-at-risk and conditional value-at-risk.
However, for the multi-source system with offshore wind
power having prediction errors that cannot be ignored, the
methods of optimizing the power capacity configuration and
operation scheduling are rarely mentioned.

Therefore, a robust bi-level planning method for a multi-
source system integrated with OWFs is proposed to realize the
optimal capacity configuration and operation optimization in the
receiving-end grid. Aiming at the disadvantages of strong
intermittency, large fluctuations, and the apparent anti-peak
characteristics of offshore wind power, in this study, a multi-
source system model suitable for the integration of offshore wind
power clusters is established. Based on the coordination and
optimization strategies of MPS and ES, a robust bi-level planning
model of the system is proposed, completely considering the
economy of the power system, the consumption level of offshore
wind power, and the prediction error of offshore wind power and
load. The improved particle swarm optimization (PSO) algorithm
with adaptive inertia weight is used to solve its upper model, and
through the case study, it is verified that under the same
population size and iteration times, the convergence accuracy
of the results is improved.

The remaining sections of this study are organized as follows:
The multi-source system integrated with OWFs is constructed in
Section 2. The robust bi-level planning model for the system
considering prediction errors is proposed in Section 3. Then, the
solution approach of the robust bi-level planning model is
proposed in Section 4. Case studies, results’ comparisons, and
analyses are conducted in Section 5. Finally, the conclusions of
this study are provided in Section 6.

2 MULTI-SOURCE SYSTEMS INTEGRATED
WITH OFFSHORE WIND FARMS

Based on the research on the output characteristics of MPS and
ES, selecting the appropriate equipment types is the basis for the
rational planning and coordinated operation of the power system
with offshore wind power. The model of the multi-source system
integrated with OWFs is shown in Figure 1. It can be seen from
Figure 1 that the multi-source system is mainly composed of

FIGURE 1 | Model of multi-source system integrated with OWFs.
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offshore wind power, thermal power (TP) generation, gas turbine
power (GTP) generation, and pumped hydro storage (PHS). TP
units are hardly affected by the geographical environment and
climate. Furthermore, TP plants have the characteristics of
flexible site selection, stable and reliable operation, and fast
and deep peak load regulation in the power system with
offshore wind power. The capacity configuration and
operation mode of a gas turbine (GT) are flexible, and the
unit can quickly adjust the power. On the premise of safety
and reliability, the GT unit can effectively improve the flexibility
of the power system to reduce the impact of offshore wind power
fluctuation on the system. PHS has high reliability and fast
response speed, which can reduce the peak-valley differences
of the system, and plays a certain role in reducing the effects of the
anti-peak characteristics of offshore wind power. When the
output of offshore wind power changes rapidly, the PHS
system can make corresponding adjustments to its fluctuations
in time.

3 ROBUST BI-LEVEL PLANNINGMODELOF
MULTI-SOURCE SYSTEMS

On the basis of considering the prediction error of offshore wind
power and load, a robust bi-level planning model of the multi-
source system integrated with OWFs is constructed to optimize
the capacity configuration and operation scheduling of MPS and
ES. The model structure is shown in Figure 2. The improved PSO
algorithm is used to optimize the capacity of MPS and ES in the
upper model. Taking into account the prediction error, the
operation scheduling scheme with the optimal cost is
generated in the lower model based on the capacity
configuration results. Through the optimization iteration of
the upper and lower models, the planning scheme of the
multi-source system with the best cost is obtained.

Upper Model
In this study, the coordinated planning of MPS and ES of a multi-
source system integrated with OWFs is carried out from the
perspective of realizing the optimal economy of the system. The
upper model takes the minimum total cost of the system
including construction, operating, and maintenance costs as

the objective function, and its decision variables are the
capacity of MPS and ES. To minimize the total cost of a
typical day, the objective function of the upper model can be
expressed by

minCTOTAL � CIM + COP, (1)
where CTOTAL, CIM, and COP are the total cost, construction and
maintenance cost, and operating cost of the multi-source system
in a scheduling cycle, respectively.

The system construction and maintenance costs are allocated
to each scheduling cycle in the life cycle through the discount rate,
and its mathematical model is given by

CIM � ∑
φ

(1 + βφ)PφWφλ(1 + λ)Lφ/(365((1 + λ)Lφ − 1)), (2)

where βφ is the ratio of the maintenance cost and construction
cost of system φ, including TP, GTP, and PHS systems. Pφ is the
unit cost of system φ.Wφ is the capacity of system φ. Lφ is the life
cycle of the unit in system φ. λ is the discount rate.

The capacity constraints of MPS and ES are considered in the
upper model, and its mathematical model is shown as

Wφmin ≤Wφ ≤Wφmax, (3)
where Wφmax and Wφmin are the upper and lower limits of the
planned capacity of system φ, respectively.

Lower Model
3.1.1 Objective Function
Considering the operating cost of TP, GTP, and PHS systems, the
minimum operating cost of the multi-source system is taken as
the objective in the lower model. The mathematical model of the
objective function is formulated as

minCOP � ∑T
t�1
(CFO(t) + CTO(t) + CPO(t)), (4)

where CFO(t), CTO(t), and CPO(t) are the operating costs of TP,
GTP, and PHS systems at time t, respectively. T is the number of
times in a scheduling cycle.

The operating cost of the TP system is the coal consumption
cost of TP units, and its mathematical model can be described by

CFO(t) � ∑NF

j�1
(ajPF,j(t)2 + bjPF,j(t) + cj), (5)

where aj, bj, and cj are the operating cost correlation coefficients
of TP unit j. PF,j(t) is the output power of TP unit j at time t.NF

is the total number of TP units.
The mathematical model of the operating cost of the GTP

system can be expressed by

CTO(t) � pn ∑NT

g�1
PT,g(t) ÷ η, (6)

where pn is the unit fuel consumption cost of natural gas. PT,g(t)
is the output power of GT unit g at time t. η is the generation
efficiency of GT unit g. NT is the total number of GT units.

FIGURE 2 | Structure of the robust bi-level planning model.

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 8848863

Jian et al. Robust Bi-Level Planning Method

39

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


The mathematical model of the operating cost of the PHS
system is given as

CPO(t) � ∑NH

k�1
(Sgen,k(t) + Spum,k(t)), (7)

{ Sgen,k(t) � sgen,kugen,k(t)(ugen,k(t) − ugen,k(t − 1))
Spum,k(t) � spum,kupum,k(t)(upum,k(t) − upum,k(t − 1)) , (8)

where Sgen,k(t) and Spum,k(t) are the start-up costs of PHS unit k
operating in generating and pumping modes at time t,
respectively. NH is the total number of PHS units. sgen,k and
spum,k are the start-up costs of PHS unit k operating in generating
and pumpingmodes, respectively. ugen,k(t) and upum,k(t) are used
to verify whether PHS unit k is in generating and pumping modes
at time t, respectively.

3.1.2 Constraints
1) Power balance constraint

∑NH

k�1
Pgen,k(t) +∑NF

j�1
PF,j(t) +∑NT

g�1
PT,g(t) + ∑NW

w�1
PW,w(t) − ∑NW

w�1
PE,w(t)

� ∑D
d�1

Pd(t) +∑NH

k�1
Ppum,k(t),

(9)
where Pgen,k(t) and Ppum,k(t) are the generating and pumping
power of PHS unit k at time t, respectively. PW,w(t) is the
predicted value of the wind power of OWF w at time t.
PE,w(t) is the wind power curtailment of OWF w at time t.
Pd(t) is the predicted value of active power of the load of node d
at time t. NW is the total number of OWFs. D is the number of
load nodes.

2) Offshore wind power curtailment constraint

0≤∑T
t�1

∑NW

w�1
PE,w(t)≤ e ×∑T

t�1
∑NW

w�1
PW,w(t), (10)

where e is the upper limit of the curtailment rate of offshore wind
power.

3) Equipment operating constraint

The operating constraints of TP units and GT units can be
uniformly expressed as

{ un(t)Pmin,n ≤Pn(t)≤ un(t)Pmax,n

rd,nΔt≤Pn(t) − Pn(t − 1)≤ ru,nΔt , (11)

where un(t) and Pn(t) are the on/off state and output power of
unit n at time t, respectively. Pmin,n and Pmax,n are the minimum
and maximum output power allowed by unit n, respectively. rd,n
and ru,n are the speed limits of power reduction and power rise of
unit n in unit time, respectively. Δt is the scheduling interval.

Power constraints of PHS units and storage capacity
constraints of the PHS plant can be referred to the study by
Lai et al. (2020).

Robust Bi-Level Planning Model
Considering Prediction Errors
The robust optimization problem with uncertain parameters can
be summarized as

{min
x∈Rn

f(x, ε)
s.t. gi(x, ε)≤ 0 ∀ε ∈ U, i � 1, 2, ...m.

, (12)

wherex is the decision variable. ε is an uncertain parameter and belongs
to a bounded closed setU.f is the objective function.g is the constraint.

Because of uncertainty factors such as an abnormal offshore wind
regime, errors often occur in prediction results of offshore wind power.
According to experience, the actual value of offshore wind power and
load can be equivalent to uncertain parameters with an unknown
probability distribution in the given sets. Robust optimization is
applicable to optimization problems with such uncertain parameters,
and the uncertainty is completely considered in the modeling
(Ratanakuakangwan and Morita, 2021). Therefore, a robust bi-level
planningmodel is proposed for twouncertain parameterswhich are the
predicted values of offshore wind power and load. The modified
constraints (9) and (10) in the lower model can be expressed as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑NH

k�1
Pgen,k(t) +∑NF

j�1
PF,j(t) + ∑NT

g�1
PT,g(t) + ∑NW

w�1
PWu,w(t) −∑D

d�1
Pu,d(t) −∑NH

k�1
Ppum,k(t)≥ 0

∑T
t�1
⎛⎝∑NH

k�1
Pgen,k(t) +∑NF

j�1
PF,j(t) −∑D

d�1
Pu,d(t) −∑NH

k�1
Ppum,k(t)⎞⎠≤ (e − 1)∑T

t�1
∑NW

w�1
PWu,w(t)

,

(13)

where PWu,w(t) and Pu,d(t) are, respectively, the wind power
value of OWF w and load value of node d considering prediction
errors at time t, which are random variables.

4 SOLUTION APPROACH

The aforementioned model is a mixed-integer nonlinear bi-level
planning model. The upper model is solved by the improved PSO
algorithm to generate a capacity configuration scheme of MPS and
ES. The inertia weight is fixed in PSO (Tsai et al., 2020), which is
easy to make the algorithm fall into local optimization. The
improved PSO algorithm changing the fixed weight into the
dynamic weight adjusted based on the premature convergence
and fitness value is adopted in this study.

The dynamic weight formula is shown as

ω �
⎧⎪⎪⎨⎪⎪⎩ ωmin +

[fj − fmin] × (ωmax − ωmin)
fav − fmin

fj ≤fav

ωmax fj >fav

, (14)

where fj is the fitness value of the j
th particle. fav and fmin are

the average fitness and minimum fitness, respectively. ωmax

and ωmin are the upper and lower limits of dynamic inertia
weights, respectively. Corresponding to the bi-level planning
model, fj is the objective function of the upper model, that is,
the total cost of the system including construction, operating,
and maintenance costs. The location of the swarm
corresponds to the capacity of MPS and ES planned by the
upper model.
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The lower layer of the robust bi-level planning model is a mixed-
integer quadratic programming (MIQP) problem, and the parameter
uncertainty is taken into account. The CPLEX solver is used to solve the
lowermodel and generate an operation scheduling scheme ofMPS and
ESwithminimumcost. Theflowof the robust bi-level planningmethod
for themulti-source system integratedwithOWFs is shown inFigure 3.

5 CASE STUDY

The typical daily power prediction of an OWF group in Shandong
Province, China, is used to verify the effectiveness of the proposed
robust bi-level planning method. The prediction curves of

offshore wind power and load in a scheduling cycle are shown
in Figure 4.

The unit construction cost and life cycle of the TP, GTP, and
PHS plants are shown in Table 1. The discount rate is 6.7%. The
power generation efficiency of the GT unit is 33%. The fuel
consumption cost of natural gas is ¥ 25 million/MW (¥ is the unit
of CNY).

Considering the uncertain factors in the prediction process,
three scenarios are designed for comparative analysis.

Scenario 1: Bi-level planning for the multi-source system
integrated with OWFs without considering prediction errors.

Scenario 2: Robust bi-level planning that takes the prediction
errors of offshore wind power into account, and the prediction
error of offshore wind power is within 10%.

Scenario 3: Robust bi-level planning that considers the dual
uncertainty of load and offshore wind power prediction. The
prediction error of offshore wind power is within 10%, and the
load prediction error is within 2.5%.

In the solution algorithm of the lower model, the population
size of the particle swarm is set to 100, the number of iterations is
set to 50, and the maximum and minimum inertia weights are 0.8
and 0.4, respectively. The capacity configuration scheme with the
optimal total cost under each scenario is shown in Table 2. The
construction cost corresponding to a scheduling cycle is shown in
Table 3, and the operating and maintenance costs of each
scenario in a scheduling cycle are shown in Table 4. As can
be seen, the total cost of the corresponding planning scheme in
scenario 1 is the lowest. With the increase of prediction
uncertainty, the planning scheme of scenarios 2 and 3
increases part of the power capacity and operating and
maintenance costs compared with scenario 1. Combined with
Table 3 and Table 4, it can be seen that the operating and
maintenance costs account for the largest proportion of the total
cost of the TP and GTP systems. The minimum total cost of the
system is taken as the objective function in the robust bi-level
planning model proposed in this study. Therefore, the planning
results will give priority to the cost. It can be inferred that the total
cost and output of the TP and GTP systems are largely
determined by the operating cost.

The optimal scheduling results according to the capacity
configuration scheme in each scenario are shown in Figure 5,
Figure 6, and Figure 7, respectively. In scenario 1, according to
the optimization results, the wind power curtailment is controlled
within 0.2%. It can be seen that under the planning scheme,
renewable energy is completely utilized on the basis of ensuring
the safe and stable operation of the power system. The PHS
system uses the excess electric energy at time 2 to pump water to
the upper reservoir and converts it into high-value electric energy

FIGURE 3 | Flowchart of the robust bi-level planning method for the
multi-source system.

FIGURE 4 | Prediction curves of offshore wind power and load.

TABLE 1 | Unit construction cost and life cycle.

Types Construction cost (×103¥/MW) Life cycle of unit
(year)

TP plant 182.00 30
GTP plant 125.00 20
PHS plant 528.57 80
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when the load demand is large, which ensures the safe operation
of the power system and solves the contradiction of supply and
demand during the climax and ebb periods of the power grid
effectively. It is known that in addition to time 2, when the wind
power value of the OWF cluster is greater than the load,

theoretically, there is no need for the PHS system to work in
the pumping mode at other times. In the actual situation,
considering the climbing constraints of the unit, the output
power cannot drop to 0 quickly in a short time. Therefore, the
excess power output from the OWF cluster and other power

TABLE 2 | Optimal capacity configuration results for each scenario.

Scenarios TP system (MW) GTP system (MW) PHS system (MW) Total cost (×105¥)

S1 1,246.00 1,856.44 187.44 952.45
S2 1,231.57 1,496.26 328.67 1,166.49
S3 1,616.44 1,538.11 623.45 1,278.99

TABLE 3 | Construction cost for each scenario.

Scenarios TP system (×103¥) GTP system (×103¥) PHS system (×103¥) Total construction cost
(×103¥)

S1 485.68 586.20 182.88 1,254.76
S2 480.05 472.47 320.68 1,273.20
S3 630.07 485.68 608.30 1,724.05

TABLE 4 | Operating and maintenance costs for each scenario.

Scenarios TP system (×105¥) GTP system (×105¥) PHS system (×103¥) Total operating and
maintenance costs (×105¥)

S1 479.70 459.60 60.24 939.90
S2 685.97 465.37 241.68 1,153.76
S3 729.70 529.02 302.70 1,261.75

FIGURE 5 | Operation planning result for scenario 1.

FIGURE 6 | Operation planning result for scenario 2.
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sources is absorbed by the PHS system as ES at 12, 18, and
other times. The same is true for scenarios 2 and 3. Because the
climbing constraint of the unit cannot fit the load curve, part of
the output power is converted into ES through the PHS system
and absorbed. According to Figure 5, Figure 6, Figure 7, and
Table 4, the TP system can maintain the minimum demand in
the power system, and its total cost is lower than that of GTP
and PHS systems. The GT unit features outstanding dynamic
characteristics and strong peak-load regulation capability, and
can quickly adjust the power output. Therefore, it is used as the
supplementary power source of the TP unit to meet the load
demand. The PHS system is not the main output power source
of the power system but mainly the power source for regulation
because of the constraints of unit capacity and reservoir
capacity.

In the interest of verifying the performance of the
improved PSO algorithm with dynamic inertia weight in
solving the robust bi-level planning model, the traditional
PSO algorithm is applied to solve the upper model in
scenarios 2 and 3 under the same population size and
iteration times, and the solution results of the two
methods are shown in Table 5. It can be seen that the
optimal cost of the schemes solved by the improved PSO
algorithm in scenarios 2 and 3 are 278.87 (×103¥) and 71.85
(×103¥) lower than that of the traditional PSO algorithm,
respectively. This proves that the PSO algorithm with
dynamic inertia weight has a stronger global optimization
ability, and the power capacity configuration and operation
scheduling scheme with a lower total cost can be obtained
when using this algorithm to solve the robust bi-level
planning model.

6 CONCLUSION

To adapt to the consumption of offshorewind power clusters, amulti-
source system model was constructed, which included the offshore
wind power, TP, GTP, and PHS systems. Moreover, considering the
system economy and offshore wind power consumption level, and
taking into account the dual uncertainty of load and offshore wind
power prediction, a robust bi-level planning method for the multi-
source system was proposed, in which the improved PSO algorithm
with dynamic weight was used to solve the model. The economic
optimal capacity configuration and operation scheduling scheme of
MPS and ES were generated based on the method proposed in this
study. The planning scheme realized the balance of supply and
demand between power sources and load and the peak load
shifting in the power grid. In addition, the method proposed in
this study improved the inclusiveness of prediction errors and made
the system have the advantages of good stability and high reliability.
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FIGURE 7 | Operation planning result for scenario 3.

TABLE 5 | Comparison of solution results.

Scenarios Total cost (×105¥)

PSO Improved PSO

S2 1169.28 1,166.49
S3 1,279.71 1,278.99
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Optimal Capacity Allocation Model for
Integrated Energy Microgrids
Considering Aggregation of
Prosumers Under Multi-Market
Mechanisms
Xinwen Wang1,2, Xiaoqing Bai1,2* and Puming Wang1,2

1School of Electrical Engineering, Guangxi University, Nanning, China, 2Key Laboratory of Guangxi Electric Power System
Optimization and Energy-Saving Technology, Guangxi University, Nanning, China

Traditional energy consumers gradually change to the new form of aggregation of
prosumers (AOP) in the integrated energy microgrid (IEM) on the demand side. The
emergence of the AOPs has led to the IEM’s structure changes, resulting in the emergence
of twomajor stakeholders, the integrated energy microgrid service providers (IEMSPs) and
the AOPs. The primary studies of this study are to configure the capacity for devices
managed by IEMSP and AOPs with minimal costs. To achieve satisfaction for both IEMSP
and AOPs, the approach of the non-cooperative game is used to allocate the capacity of
devices managed by IEMSP and devices of AOPs. In detail, the IEMSP acts as a leader
who determines the electricity pricing to minimize the cost, while the AOPs respond with
electricity purchase or sales as the followers according to the price information provided by
IEMSP. Moreover, electricity trading between AOPs is considered to reduce transmission
losses and promote energy consumption nearby. To investigate the application of the
multi-market mechanism in the optimal capacity allocation of IEM, a coupling mechanism
of green certificate trading, carbon emission trading, and the electricity market is built in the
proposed model. The cases are studied to verify the effectiveness of the proposed model
in terms of saving the configuration capacity, reducing carbon emissions, and increasing
the environmental benefits.

Keywords: aggregation of prosumers, integrated energy microgrid, integrated energy microgrid service provider,
linear ladder carbon trading, non-cooperative game capacity allocation, multi-market mechanism

1 INTRODUCTION

A large amount of greenhouse gas emissions has created an enormous burden on the earth’s
environment, and the power system has the most carbon emissions of all industrial systems (Chen
et al., 2010). The integrated energy microgrid (IEM) provides a new way to realize energy
conservation and emission reduction (Wang et al., 2019). There are substantial studies to solve
challenges in the optimal capacity allocation of the IEM. Akram et al. (2018) proposed two
constraint-based iterative search algorithms to size the devices in a wind/solar/battery grid-
connected microgrid in an optimal way. Atia and Yamada (2016) presented a model based on
mixed-integer linear programming to optimize an energy system with battery storage in its
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residential microgrids. Quashie et al. (2018) proposed bilevel
planning of microgrids and optimized storage capacity under the
management of a distribution system operator. Clairand et al.
(2019) discussed the generation planning problem in diesel-based
island microgrids with renewable energy sources. However, based
on the abovementioned studies, the research on the capacity
allocation of the IEM needs to pay attention to the introduction of
emerging things in the IEM, such as prosumers which can not
only consume but also produce energy (Parag and Sovacool,
2016).

Distributed energy sources in the IEM have the natural ability
to act as prosumers because they are located on the demand side.
Some studies have paid attention to the energy sharing and
trading among adjacent prosumers. The interaction and
optimization solution technology of the prosumer
management system are introduced by Zafar et al. (2018).
Chen et al. (2018) pointed out that the local energy sharing
mode of the interaction between the prosumers in the
distribution network has research value. Wang et al. (2020)
proposed the P2P energy trading based on the urban
community microgrid and considered the differentiated
characteristics of prosumers so as to realize the coordination
and complementarity of resources. Multiple prosumers can
aggregate together to be the aggregation of prosumers (AOPs).
In terms of the study of the AOP, Shafie-Khah et al. (2017)
proposed an operational household energy management system
to deal with the problem of operation of the production and
consumer groups, and Liu et al. (2017) put forward the dispatch
strategy of the prosumers to encourage users to participate in
energy sharing by a lower price than the internal electricity price
than the grid electricity price. A multi-microgrid hybrid energy
sharing framework is presented for a heat-electricity IEM with
combined heat and power by Liu et al. (2019). However, the
abovementioned questions do not discuss the impact of the
emergence of AOPs on the capacity allocation of the IEM.

At present, the most of existing traditional optimization
models only focus on the benefits of the comprehensive IEM
or the AOPs, lacking research on the optimization of the IEM
considering AOPs. This study introduces the AOPs into the
capacity allocation of IEM and considers the internal
transactions between AOPs. The emergence of the AOPs has
led to the IEM’s structure changes, resulting in the emergence of
the game between the IEMSP and the AOPs. The energy trading
process between the IEMSP and AOPs conforms to the game
situation of the non-cooperative game, so the non-cooperative
game is used to allocate the capacity of devices managed by
IEMSP and devices of AOPs.

Game-theoretic methods have been widely applied in the
interactions between prosumers (Teotia et al., 2020) and the
interactions between power companies and consumers (Yu and
Hong (2016) and Maharjan et al. (2013)). There has been some
research on the non-cooperative game in the integrated energy
system and demand response; for example, Yang et al. (2019)
constructed a multi-investor dynamic decision-making game
model for integrated energy system joint planning. Hu et al.
(2020) established a non-cooperative game model with the power
supplier as the main party and the electricity consumer as the

slave party and formulated the optimal time-of-use price strategy
with the goal of reducing the peak-to-valley difference. Demand
response is described as a Stackelberg game in the energy pricing
and dispatch problem for smart grid retailers byWei et al. (2015).
Pan et al. (2021) developed a multi-retail e-commerce retailer
based on non-cooperative game package design and multi-level
market power purchase strategy analysis.

In addition, with the proposal of carbon neutrality goals and
the establishment of a new renewable portfolio standards policy
in the document (National Energy Administration, 2021), it is
urgent to study the flexible application of market mechanisms
for carbon emission reduction of IEMs. An optimal planning
model was proposed by Ge et al. (2021) for IEMs considering
both distributed generators’ output uncertainties and carbon
emission punishments. Lu et al. (2021) established a bilayer
scheduling method for the community-integrated energy
service system based on carbon trading. Helgesen and
Tomasgard (2018) constructed a multi-regional
comprehensive green certificate and electricity market model
and analyzed the economic impact of tradable green certificates
on promoting renewable energy power generation. Cai et al.
(2020) put forward the implementation scheme of the green
certificate trading platform and built the underlying network
and application environment of blockchain. To sum up, the
research on the multi-market mechanism has attracted the
attention of the academic community, but there is a lack of
research on how to apply it in the capacity allocation of
the IEM.

To investigate the application of the multi-market mechanism
in the optimal capacity allocation of IEM, the study proposes a
coupling mechanism of green certificate trading, carbon emission
trading, and the electricity market as an example to introduce the
multi-market mechanism into the capacity allocation model. The
contributions of this study mainly include the following:

1) AOPs are considered in the capacity allocation of IEM, which
can save the configuration capacity of the device under the
same load and avoid waste of energy in IEM.

2) The approach of the non-cooperative game is used to solve the
optimal capacity allocation model for IEM considering AOPs,
thus obtaining the optimal capacity allocation results of the
capacity of devices managed by IEMSP and devices of AOPs
in IEM.

3) The multi-market mechanism is built based on the coupling
mechanism of green certificate trading, carbon emission
trading, and the electricity market to stimulate renewable
energy equipment and increase environmental benefits in
the IEM in the study.

The rest of this study is organized as follows: Section 2
introduces the AOPs in IEM and presents a model for devices
managed by IEMSP and devices of AOPs in IEM, respectively.
Section 3 describes the modeling of the multi-market
mechanism. Section 4 establishes the optimal capacity
allocation method model for IEMSP and AOPs. The IEMSP-
AOPs non-cooperative capacity allocation method is proposed in
Section 5. In Section 6, the effectiveness of the proposed method
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is verified by cases. Conclusions are in Section 7. Section 8 deals
with future work.

2 INTEGRATED ENERGY MICROGRID
CONSIDERING AGGREGATION OF
PROSUMERS
2.1 Modeling of Aggregation of Prosumers
With the development and further promotion of distributed
generation, small-scale energy users participate in energy
market transactions as prosumers in an IEM. Multiple
prosumers are aggregated together to form an AOP. Electricity
transactions can be made between AOPs. Figure 1 shows the
process of AOP transactions

0≤Ppv
m,t ≤Pmaxpv

m

PPV,U
m,t + PPV,S

m,t � Ppv
m,t

(1)

where PPV
m,t is the actual output PV value of the mth AOP in t

periods; PmaxPV
m is the maximum PV predicted according to

historical data; and PPV,U
m,t and PPV,S

m,t are the part of PV
generation used by the AOP and the part of PV generation
sold to the IEMSP, respectively. AOPs also have energy
storage devices, and their models are as follows:

PESScharge
m,t ≤ βm,t · ucharge

m

PESSdischarge
m,t ≤ (1 − βm,t) · udischarge

m

PESS,U
m,t + PESS,S

m,t � λESSm,t · PESSdischarge
m,t

(2)

where PESScharge
m,t and PESSdischarge

m,t are the power charge and
discharge of the energy storage device at time t, respectively;
βm,t is a binary variable. When the state of the energy storage
device is charging, the value is 1; otherwise, it is 0. uchargem is the
maximum charge rate; udischargem is the maximum discharge rate;
PESS,U
m,t and PESS,S

m,t are the part of energy storage used by the AOP
and the part of energy storage sold to the IEMSP, respectively; and
λESSm,t is the discharge efficiency of the mth energy storage device.

Since the charging state of the battery is related to the charging
state of the previous time and the charging and discharging
powers of the equipment, its mathematical model is described
as follows:

SOCEm,t � SOCEm,t−1 + (PESScharge
m,t ηchargem Δt)

− (PESSdischarge
m,t ηdischargem Δt) (3)

where SOCEm,t is the state of charge of thewth ES at time t; ηchargem
and ηdischargem are the charge and discharge efficiency for the
battery, respectively; and Δt is the charging time.

AOPs include inflexible load (IL) and translatable load (TL):

Pmin TL
m,t ≤PTL

m,t ≤P
max TL
m,t∑T

t�1
PTL,shif
m,t � 0

(4)

where PTL
m,t is the load translation amount of the TL user at time t

and Pmin TL
m,t and Pmax TL

m,t are the upper and lower limits of TL load
translation, respectively; when PTL,shif

m,t is positive, it means that
the translatable electrical load is transferred out, and on the
contrary, it means that it is transferred in.

2.2 Integrated Energy Microgrid
Architecture Considering Aggregation of
Prosumers
Figure 2 shows a typical schematic diagram of an IEM structure
considering AOPs.

The components involved in Figure 2 are IEMSP, AOPs,
general users, and so on. IEMSPs purchase electricity/natural
gas from the superior electricity/gas network, cooperate with
their own energy supply (PV, CHP, GB) and energy storage
equipment (ES, HS), and supply energy to various users and
obtain benefits in this way. AOPs install energy supply (PV)
and energy storage equipment (ES) according to their
conditions and purchase heat from IEMSP. General users
purchase electricity and heat from IEMSP according to their
electric and heating load needs.

2.3 Modeling of devices managed by IEMSP
1 Combined heat and power system model
CHP uses gas as fuel and high-quality thermal energy to drive gas
turbines for power generation. The thermal energy and electric
energy of CHP are obtained by consuming natural gas, and the
mathematical model is

PCHP
H,t � PCHP

G,t ηCHP,H

PCHP
E,t � PCHP

G,t ηCHP,E

PCHP
min ≤PCHP

H,t ≤PCHP
max

(5)

where PCHP
H,t and PCHP

E,t respectively represent the heating power
and electric power of CHP at time t; PCHP

G,t represents the natural
gas power consumed by CHP at time t; ηCHP,H and ηCHP,E

represent the heating efficiency and power supply efficiency of
CHP, respectively; and PCHP

min and PCHP
max represent the upper and

lower limits of CHP heating power, respectively.

FIGURE 1 | The frame of AOP transactions and modeling the devices in
the AOP.

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 8754993

Wang et al. Optimal Capacity Allocation for IEM

47

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


2 Photovoltaic Model
Based on data of a typical day, the actual power consumed by the
PV at time t cannot exceed the maximum predicted output at that
time

PPV,t ≤PPV
max (6)

where PPV,t represents the absorptive power at time t and PPV
max is

the maximum output power predicted on a typical day.

3 Gas Boiler Model
As systematic heat-generating equipment, GB can convert the
chemical energy generated by natural gas combustion into high-
grade heat energy, and its mathematical relationship is

PGB
H,t � ηGBP

GB
G,t

PGB
min ≤P

GB
H,t ≤P

GB
max

(7)

where PGB
H,t and PGB

G,t respectively represent the electric power
consumed and the natural gas power consumed; ηGB represents
the heating efficiency of gas boilers; and PGB

min and PGB
max

respectively represent the upper and lower limits of GB
heating power.

4 Electric Boiler Model
The thermal output and electric consumption of EB are
constrained as follows:

PEB
H,t � ηEBP

EB
E,t

PEB
min ≤P

EB
H,t ≤P

EB
max

(8)

where PEB
H,t and PEB

E,t are the production power and input electric
power of electric boiler equipment, respectively, and ηEB
represents the power generation efficiency of the EB.

5 Energy Storage Device Model
There are two types of energy storage devices in the microgrid
structure in this study, namely, the electricity storage unit (ES)
and the heat storage unit (HS).

1 Electricity Storage Unit Model
SOCE is the state of charge of the battery, which is the ratio of the
remaining storage capacity Ere to the configured capacity Ene,
generally expressed as follows:

SOCE � Ere

Ene
× 100% (9)

FIGURE 2 | IEM architecture considering AOPs.
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Since the state of battery charge is related to the state of charge
at the last moment and the power of the device, its mathematical
model is described as follows:

SOCEt � SOCEt−1 + ΔTuech
Pch
e η

ch
e

Ene
− ΔTuedis

Pdis
e

Eneηdise

(10)

where Pch
e and Pdis

e are the battery charging and discharging
powers, respectively; ηche and ηdise are the charging and discharging
efficiencies for the battery, respectively; ΔT is the charging time;
and uech and uedis represent the status flags of battery charging
and discharging, respectively.

2 Heat Storage Unit Model
SOCH is the state of the heat storage unit, which is the ratio of the
remaining heat storage Erh to the configured capacity Enh, and its
percentage form is as follows:

SOCH � Erh

Enh
× 100% (11)

Similarly, the current heat storage capacity of the heat storage
device is related to the previous heat storage state and the
charging and discharging heat of the device. The mathematical
model is described as follows:

SOCHt � SOCHt−1 + ΔTuhch
Pch
Hη

ch
h

Enh
− ΔTuhdis

Pdis
H,t

Enhηdish

(12)

where Pch
h and Pdis

h are the charging heat and discharging heat of
the heat storage device, respectively; ηchh and ηdish are respectively
the charging efficiency and discharging efficiency of the heat
storage device; ΔT is the heat storage time; and uhch and uhdis
represent the status flags of the charging and discharging of the
heat storage device, which can only be 0 or 1.

3 MODELING OF THE MULTI-MARKET
MECHANISM

The flexible application of market mechanisms has become an
essential means to break through the bottleneck of new energy
development in China, and the IEM can not only participate in
green electricity trading, carbon emission trading, and green
certificate trading but also use the electricity market
mechanism and other multi-market mechanisms to promote
renewable energy consumption and reduce carbon emissions.
The study considers three of these market mechanisms: the green
certificate transactions among AOPs, the linear ladder carbon
trading (LLCT) considered in the IEMSP, and the electricity
market, which are described below.

3.1 Green Certificate Transactions
Considered in the Aggregation of
Prosumers
3.1.1 Green Certificate Transactions
It is assumed that the AOPs can participate in green certificate
transactions. Some researchers used green certificate cross-chain

transactions according to the number of green certificates
obtained by the AOPs (Luo et al., 2021), and cross-chain
transactions will be carried out on three blockchains of AOPs,
green certificate transactions, and renewable energy.

The three blockchains constitute a chain group, which belongs
to the category of alliance chains. Blockchains are only open to
members participating in the green certificate trading market and
provide a guarantee for the information security of participants.
Smart contracts are contracted programs composed of Turing
complete program codes, and chain code technology is a further
development of smart contracts. As shown in Figure 3, new
energy generators, AOPs, green certificate transaction platforms,
and administrative supervision departments operate jointly
through the blockchain green certificate transaction chain code.

First of all, a unified green certificate trading market should be
established, in which the number of green certificates is shown in
Eq. 13:

NGRE � ∑W
w�1

Pw
c · Δt
1000

(13)

where NGRE represents the number of green certificates
participating in the transaction in the system, Pw

c is the actual
consumption of the wth renewable energy equipment, and W is
the number of renewable energy generators in the system.

The green certificate transaction model is shown in Eq. 14.
According to the comparison of realistic renewable energy power
generation and the prescribed quota, the model is as follows:

Ct
GRE �

⎧⎪⎨⎪⎩ [ − (ER − PGRE)] · TGRE

(PGRE − ER)TGRE

[Q · PGRE · TGRE − (ER − PGRE − Q)] · FGRE

PGRE >ER

ER − Q<PGRE <ER

PGRE ≤ER − Q

(14)
where Ct

GRE is the green certificate transaction, TGRE is the price
of green certificate transactions, PGRE is the actual consumption
of renewable energy, ER is the amount of renewable energy quota,
FGRE is the penalty price, andQ is the penalty margin of the green
certificate system.

Green certificate quota constraints:

∑v
i�1
GαiPi −NGRE � G∑v

i�1
ηiPio (15)

where G is the quantitative coefficient, NGRE represents the
number of green certificates that can be obtained for a unit of
green electricity production, αi is the proportion of the ith power
generation company’s renewable power generation within the
specified time, Pi is the ith power generation company’s initial
distribution of electricity, ηi is the actual power generation of the
ith power generation company, and Pio is the initial distribution
of power for the ith power generation company.

3.2 The Linear Ladder Carbon Trading
Considered in the IEMSP Capacity
Allocation
The initial assignation of carbon emission rights in the IEMSP
mainly includes gas boilers and CHP. A ladder carbon price can
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increase the carbon trading cost of large emission units, and the
ladder carbon price model in this study is as follows:

Ec � Echp + Egb

Egb � δh · Pd

Echp � δh · (Pa + φPb) (16)

where Ec is free carbon emission quota; Echp and Egb are free
carbon emission quota for CHP units and gas boilers,
respectively; δh is the carbon emission quota per unit heat
supply; Pd is heat supply for gas boilers; φ is the conversion
coefficient from power generation to heat supply; and Pa and Pb

are the heating capacity and power generation capacity of the
CHP unit, respectively.

PCO2 �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0 − Uα EP ≤EC − Uv

..

. ..
.

P0 − α EC − 2v≤EP ≤EC − v
P0 EC ≤ |EP|≤EC + v
P0 + θ EC + v≤EP ≤EC + 2v
..
. ..

.

P0 + Uθ EP ≥EC + Uv

∑|U|+1
u�0

Eu � EP − EC

(17)

where PCO2 is the price of each ladder of carbon emission rights, θ
is the increment of carbon price, α is the reward coefficient, v is
the increment of carbon quota, and EP represents the actual
carbon emissions.

When the carbon emission is less than the free allocation of
carbon emissions, the energy supply company can sell excess
carbon emission quotas in the carbon trading market. The lower

the carbon emission, the higher the carbon trading price; when
the carbon emission is greater than the carbon emission amount
allocated for free, the energy supply company needs to purchase
carbon emission rights in the carbon trading market. The total
cost of carbon trading is a linear function and the linear function
of the total carbon transaction costCCO2 is calculated according to
the stepped carbon price, which can be expressed as follows:

CCO2 �
⎧⎨⎩ ∑U+1

u

[PCO2 + (u − 1)θ]Eu EP ≥EC

CCO2 �
⎧⎨⎩ ∑|U|+1

|u|
[PCO2 + (u − 1)α]Eu EP ≤EC

(18)

where Eu is the carbon emission range of the uth stage.

3.3 Grid Time-Of-Use Tariff Model
Time-of-use (TOU) refers to the power grid encouraging users to
arrange the electricity time reasonably. Different electricity prices
are formulated for each time period according to the load change

cG ≜ [c1G, . . . , cTG] (19)
where cG represents the electricity prices for the grid.

3.4 IEMSP Electricity Price Model

cES ≜ [c1ES, . . . , cTES]
cEB ≜ [c1EB, . . . , cTEB] (20)
ctES � ctG − βS(ctG)
ctEB � ctG + βB(ctG) (21)

βS + βB < 1 (22)

FIGURE 3 | Green certificate transaction framework.
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ctEB < ctES (23)
where cES is the electricity sales price for IEMSP, cEB is the
electricity purchase price for IEMSP, βS is the adjustment
coefficient for the electricity sales price of the IEMSP, and βB
is the adjustment coefficient for the purchase price of the IEMSP.

4 OPTIMAL CAPACITY ALLOCATION
MODEL FOR INTEGRATED ENERGY
MICROGRID CONSIDERING
AGGREGATION OF PROSUMERS

4.1 Optimal Capacity Allocation Model of
IEMSP
The optimization objective of the IEMSP capacity allocation
model proposed in the study is to minimize the net present
value of the total cost within the capacity allocation period, in
which the total cost includes investment costs, operation costs,
maintenance costs, equipment residual value, and carbon
transaction costs. The carbon transaction costs are from the
linear ladder carbon trading (LLCT) considered in the IEMSP
capacity allocation as shown in Section 3.2

minCIEMSP � CIEMSP
inv +∑N

k�1

Ck
ope + Ck

mai + Ck
CO2

(1 + r)k − CIEMSP
rv

(1 + r)N

Ck
inv � ∑I

i�1
(ciinv · qk)

Ck
mai � ∑I

i�1
(cimai · pk)

(24)

where r is the coefficient of the present value; CIEMSP is the total
cost for IEMSP; N is the planning period; Ck

inv is the investment
cost of IEMSP for the kth year similarly; Ck

ope is the operating cost
for the kth year; Ck

mai is the maintenance cost; Ck
CO2

is the carbon
transaction cost for the kth year; CIEMSP

rv is the total residual value
for IEMSP; i represents the types of candidate equipment; ciinv and
cimai represent the investment cost per unit capacity and the
variable maintenance cost per unit power for the ith equipment,
respectively; the matrix qk � [qki ]1×i represents the ith device
configuration capacity at time t in the kth year; and pk �
[pk

i,t]i×8760 represents the ith device power at time t in the kth year

CIEMSP
rv � ∑M

i�1
(Cinv,i −∑N

n�1
Cdep,i)

Cdep,i � Cinv,i(1 − δi)/Ni

Cinv,i � cinv,i × qi

(25)

The average age method is used to calculate the depreciation of
equipment in the study. Suppose that the life of the ith device is
Ni; the depreciation expense for each year is Cdep,i; δi is the net
salvage rate of the ith device; Cinv,i is the investment cost of the ith
device; cinv,i is the unit capacity investment cost of the ith device,
related to the type to which they belong; and qi is the configured
capacity for the ith device

Ck
ope � ∑N

k�1
365∑d

n�1
pn,kC

n,k
ope

Cn,k
ope � ∑T

t�1
(ctGPgrid(t)Δt + cgasGgas(t)Δt) − CL

P − Cex
P − Cex

H )

Cex
P � ∑T

t�1
ctEBPpro,buy(t)Δt + ctESPpro,sell(t)Δt

CL
P � ∑T

t�1
ctESPLoad(t)Δt

Cex
H � ∑T

t�1
ctHB(Hpro,buy(t) +HLoad(t))Δt

(26)

where n indicates the nth typical daily operation scenario;
Cn,k
ope is the daily operating cost of IEMSP, which consists of

the purchase cost of electricity by the superior power grid, the
gas purchase cost of the superior gas network, the power
transaction of the AOPs Cex

P , the heat transaction Cex
H , and the

daily purchase profit of the general load CL
P; ctG is the

electricity price for the grid; cgas is the gas price for natural
gas; Pgrid(t) and Ggas(t) are the electricity purchased from the
grid and the natural gas bought from the gas grid,
respectively.

4.2 IEMSP Operation Constraints
1 Electric Power Balance Constraint

Pgrid,t + PCHP
E,t + PPV,t + Pdis

e,t + Ppro,sell(t) � Ppro,buy(t) + Pch
e + PL,t

(27)
where Pgrid,t represents the power purchased from the grid at the
tth time, PL,t is the general electrical load at the tth time, and
Ppro,sell(t) and Ppro,buy(t) are the electricity sold by the AOPs and
the electricity purchased by the AOPs, respectively.

2 Thermal Power Balance Constraint

PCHP
H,t + PGB

H,t + Pdis
H,t � Pch

H,t +HL,t +Hpro,buy(t) (28)
whereHL,t represents the heat load at time t andHpro,buy(t) is the
heat sold by the AOPs.

3 Natural Gas Bus Constraint

Ggas(t) � PCHP
G,t + PGB

G,t (29)
where Ggas(t) represents the natural gas purchased from the gas
network at time t.

4 The Upper Output Limit of the Equipment and
Investment Capacity Constraints Are Shown in the
Following Equation

0≤Pi,dev ≤Pmax
i,dev

0≤ qki ≤Qi
(30)

where Pmax
i,dev is the upper limit of the output of the ith device and

Qi is the upper limit of the construction capacity of the ith device.
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5 The Power Constraint of the Contact Line Between
the Grid and the IEMSP Is as Follows

Pmin
grid ≤Pgrid,t ≤Pmax

grid (31)
where Pmin

grid and Pmax
grid are the upper and lower limits of power

constraint of the contact line between the grid and the IEMSP,
respectively.

4.3 Aggregation of Prosumer Capacity
Configuration Model

minCAOP � Cinv
AOP +∑N

k�1

Ck
AOP,ope + Ck

AOP,mai + Ck
gre

(1 + r)k − CAOP
rv

(1 + r)N
(32)

where CAOP represents the capacity allocation cost of the AOPs,
Cinv
AOP is the investment cost, Ck

AOP,ope is the operation cost,
Ck
AOP,mai is the maintenance cost, CAOP

rv is the equipment
residual value, and Ck

gre is the green certificate transaction
cost. Green certificate transactions considered in the AOPs are
shown in Section 3.1, the maintenance cost and equipment
residual value are similar to those in the IEMSP capacity
configuration model, and the operation cost is shown in Eq.
32. Cn,k

ope,AOP is the daily operating cost for AOPs

Ck
AOP,ope � ∑N

k�1
365∑d

n�1
pn,kC

n,k
ope,AOP

Cn,k
ope,AOP � Cex

P + Cex
H

(33)

4.4 Aggregation of Prosumer Trading
Constraints
1 Power Balance

pin
m,t + Ppv

m,t + PESS
m,t � PTL

m,t + Lm,t + PESScharge
m,t

PtoIEMSP
m,t � PPV,S

m,t + PESS,S
m,t

(34)

where pin
m,t is the total power input of the mth AOP and PtoIEMSP

m,t
is the power sold to the IEMSP.

2 Tie Line Power Constraints
Tie line power constraints are introduced in the following
formula:

pin
h,t � ∑

j

(ph,j,t · σh,j) + pfromIEMSP
h,t

pout
j,t � ∑

h

(ph,j,t · σh,j) + ptoIEMSP
j,t

σh � k · ∣∣∣∣ph,x,t

∣∣∣∣ + r · p2
h,x,t

ph,j,t ≤ �σh,j

(35)

where pin
h,t represents the total power input of AOP h, which is the

sum of all powers obtained from other users on the network,

equal to the power exchanged from AOP h to AOP j at time t
multiplied by tie line losses σh, and then plus the power purchased
from IEMSP pfromIEMSP

h,t . The approximation of tie line losses σh
is made by a quadratic function of the power flow; k and r are
coefficients. The total power output equation can be obtained
similarly. In addition, the green certificate transaction constraints
among AOPs are shown in Section 3.1. The unit of k is [.], and
the unit of r is [kW−1]. The approximation of tie line losses is
linearized using the Special-Order Sets of Type 2 as follows:

∑
r∈R

X
h,h̃,t

� 1

PIEMSP
h,h,t � ∑

r∈R
ArXh,h,t

(36)

5 IEMSP-AOPS NON-COOPERATIVE
CAPACITY ALLOCATION METHOD

IEMSPs purchase electricity/natural gas from the superior
electricity/gas network, cooperate with their own equipment,
supply energy to various users, and obtain benefits in this way.
According to the abovementioned description, the optimization
of IEMSP and AOPs is based on the quoted price of IEMSP, and
their optimization results will react to the IEMSP quotation. This
energy trading process conforms to the game situation of the non-
cooperative game, so the non-cooperative game theory is used to
solve the problem of considering both AOP profits and IEMSP
profits in the study. The game is performed frequently in each
iteration.

Algorithm 1. IEMSP-AOPs non-cooperative capacity allocation
algorithm

1. Initialize all relevant parameters of the IEM. IEMSP receives
grid electricity prices, gas prices, load information, and PV
information.

2. IEMSP sends ctEB and ctES to AOPs and general users.
3. While (3) do: Optimal configuration of AOPs begin.
4a: Receive ctEB and ctES, according to formula (31), combined

with the load information of the AOPs, the green certificate cross-
chain transactions and the transactions between the AOPs, etc.
CAOP are optimized.

4b: Send Ppro,buy(t), Ppro,sell(t), andHpro,buy(t) to IEMSP. 5a:
According to Eq. 23, IEMSP confirms its optimal configuration
scheme.

5b: IEMSP updates the ctEB and ctES.
6: Solve (ctpEB, c

tp
ES) = argmin CIEMSP (ctEB, c

t
ES, Ppro,buy(t),

Ppro,sell(t)) and update (ctpEB, c
tp
ES); (Ppro,buy(t)p, Ppro,sell(t)p) =

argmin CAOP (ctEB, ctES, Ppro,buy(t), Ppro,sell(t)) and update
(Ppro,buy(t)p, Ppro,sell(t)p).

7: Stopping criteria: if { ∣∣∣∣CIEMSk − CIEMSk−1∣∣∣∣≤ ε∣∣∣∣CPROk − CPROk−1∣∣∣∣≤ ε } break.
8: Else: k = k+1
9: End if
10: End while.
The particle swarm optimization algorithm has simple

principles and easy implementation and a fast convergence
speed and can completely save the local optimal solutions and
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global optimal solutions of all particles in the iterative process; it
is very suitable for analyzing the non-cooperative game process in
this study. In the particle swarm optimization algorithm, the
number of iterations is set to 80, the number of populations is 60,

and the maximum allowable error of iterative convergence ε
is 10–3.

Nonlinear programming problems need to be solved for the
IEMSP as shown in Eq. 37:

{min CIEMSP

s.t.(16) − (23), (27) − (31) (37)

The optimization capacity allocation model is implemented in
MATLAB R2019b. For AOPs, the calculation of strategies and
cost is solved by GUROBI, and the nonlinear programming
problems need to be solved as shown in Eq. 38:

{min CAOP

s.t. (1) − (4), (34), (35) (38)

6 SIMULATION AND RESULTS

6.1 Simulation Settings
Simulation data come from a certain northern electric, gas, and
thermal coupling IEM (Cao et al., 2020) to study the optimal
capacity allocation model for IEM considering AOPs. The load
curve of IEM is shown in Figure 4. The capacity allocation period
is 8 years, and seven candidate devices can be selected for IEMSP,
which are shown in the Supplementary Appendix. This study
only discusses the purchase and sale prices of electricity; the heat
demand of the AOP is provided by IEMSP, the heat sale price of
IEMSP is still $0.07/kWh, and the grid electricity price is shown
in the Supplementary Appendix. The fixed price for natural gas
is $0.39/m3, the low calorific value of gas is 9.7 kW h/m3, and the
converted natural gas grid is $0.04/kWh. The coefficient of the
present value is 8%. The carbon trading cost is settled at the end of
each year. The carbon emission of GB and CHP units is 0.065 t/GJ
(Qu et al., 2018), the carbon transaction price is $38/t, and the
incentive coefficient and carbon price increment are 0.2; the
carbon quota increment v = 85000t (Li et al., 2021). The green
certificate price is set at $10 (Luo et al., 2021). If one of the parties
to the transaction breaches the contract or fails to meet the quota
standard, a penalty price will be formulated, which is three times
the green certificate.

To demonstrate the superiority of the proposed capacity
allocation method for IEM considering AOPs under the multi-
market mechanism in the study, four cases are compared in
Section 6.2.

Case 1: Traditional capacity allocation for IEM without considering
AOPs or the green certificate and carbon trading.

Case 2: Capacity allocation for IEM considering green certificate
and carbon trading, but electricity trading between AOPs
is not considered.

Case 3: Capacity allocation for IEM considering electricity trading
between AOPs, but without considering green certificate
and carbon trading.

Case 4: Capacity allocation for IEM considering trading between
AOPs and the green certificate and carbon trading using
the proposed model.

FIGURE 4 | Load curve.
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Among the cases, case 1 is the base case in which neither
AOPs nor green certificates and carbon trading are considered.
AOPs in the IEM are considered in the other three cases; the
electricity and heat load demand of the AOPs account for 15%
of the total load, and the general user load demand accounts
for 85% of the total load in cases 2–4. Case 4 uses the proposed
model in this study.

6.2 Optimal Result Analysis
Tables 1, 2 show the optimal allocation results and costs for
four cases. First of all, it can be seen from Tables 1, 2 that the
overall configuration capacity of IEM and carbon emissions in
case 1 is the most, and these in case 4 are the least under the
same load; the comprehensive costs for capacity allocation in
case 1 are the highest and that in case 4 is the lowest, proving
the superiority of the proposed model in case 4. Next, the
impact of trading between AOPs on the capacity allocation of
IEM considering AOPs is analyzed by comparing case 2 and
case 4, and the impact of green certificate and carbon trading
on the capacity allocation of IEM considering AOPs is
analyzed by comparing case 3 and case 4.

6.2.1 Comparative Analysis of IEM Capacity Allocation
Considering Trading Between Aggregation of
Prosumers or Not
This section compares case 2 with case 4.

1 Optimization game results of the purchase and sell prices
Based on the proposed method, when the AOP and the IEMSP
reach game equilibrium, the final electricity price adjustment
coefficient (PAC) is 0.895, the purchase PAC is 0.10 in case 4, the
sale PAC in case 2 is 0.893, and the purchase PAC is 0.09. By

formula (20), we can obtain the corresponding IEMSP electricity
sell and purchase prices as shown in Figure 5.

IEMSP purchase and sell price optimization results in case 2
and IEMSP purchase and sell price optimization results in case 4
are provided.

2 Equipment Selection and Capacity Configuration Results
Comparing case 2 and case 4 in Table 1, we can obtain that when
the electricity trading between AOPs is not considered, both the
capacity configurations of AOPs and IEMSP have increased
significantly. For example, the PV capacity configuration has
increased from 230 kW to 279 kW in IEMSP, and AOP’s PV
capacity configuration increases from 116 to 170 kW. To
conserve the equipment configuration capacity, the electricity
trading between AOPs should be considered on the AOP-
involved optimal capacity allocation method for IEM.

3 Economic Results
Comparing case 2 and case 4 from Table 2, when the electricity
trading between AOPs is not considered, both comprehensive
costs of AOP and IEMSP have increased, IEMSP’s comprehensive
costs have increased by 26.9%, and AOPs’ comprehensive costs
have increased by 53.2%, which illustrates that the consideration
of the electricity trading between AOPs will save a lot of costs and
improve the economy of the capacity configuration.

6.2.2 Analysis of the Impact of the Green Certificate
and Carbon Trading
This section compares case 3 with case 4.

1) Equipment Selection and Capacity Configuration Results

Case 3 did not consider green certificates and carbon trading
compared with case4; comparing case 3 and case 4 in Table 1, it
can be seen that for IEMSP, the PV configuration capacity
decreases from 230 kW in case 4 to 169 kW in case 3, and the
CHP configuration capacity increases from 260 kW in case 4 to
321 kW in case 3. For AOPs, the PV configuration capacity
decreases from 116 to 106 kW. Due to the high cost and small
carbon emissions of PV units compared to CHP units, the green
certificates and the carbon trading model used in case1 select the
PV configuration with small carbon emissions, which
demonstrates that the participation of the multi-market

TABLE 1 | Capacity allocation result of four cases.

case 1 2 3 4

IEMSP PV/kW 478 279 169 230
CHP/kW 260 276 321 260
ES/kWh 678 316 306 306
HS/kWh 699 469 344 389
GB/kW 67 72 98 68

AOPs PV/kW 0 170 106 116
ES/kWh 0 85 69 59

TABLE 2 | Cost of four cases.

case 1 2 3 4

IEMSP Carbon emission trading costs/×104 $ 0 −3.06 0 −2.18
Carbon emission/t 4.99 3.69 2.88 2.40
Operating costs/×104 $ 212.54 157.68 103 126.00
Capacity allocation costs/×104 $ 47.01 42.97 26.88 30.01
Comprehensive costs/×104 $ 259.55 203.59 138.88 159.98

AOPs Green certificate transaction costs/×104 $ 0 −0.45 0 −0.29
Carbon emission/t 0 0.56 0.42 0.34
Operating costs/×104 $ 0 26.45 15.78 17.29
Capacity allocation costs/×104 $ 0 5.46 2.99 4.33
Comprehensive costs/×104 $ 0 37.55 21.76 24.50
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mechanism proposed in this study improves the enthusiasm of
green equipment and reducing carbon emissions.

2) Economic Results

Comparing case 3 and case 4 from Table 2, we can first get that
the carbon emission trading costs and green certificate
transaction costs are zero when carbon emission trading and
green certificate transactions are not considered. Second, both
costs of IEMSP and AOP decrease in case 3, and IEMSP’s
comprehensive costs decrease by 13.2%; AOP’s comprehensive
costs decrease by 11.2% due to the fact that the system tends to
choose devices with small costs but large carbon emissions when
not considering market mechanisms. However, both carbon
emissions of IEMSP and AOP decrease in case 4 compared to
case 3, IEMSP’s carbon emission decreases by 16.7%, and AOP’s
carbon emission decreases by 20%.

6.3 Comparative Analysis of Different
Penetrations of Aggregation of Prosumers
in the Integrated Energy Microgrid
Penetration of AOPs refers to the proportion of AOPs that exist in
IEM. The penetration rate of case 4 is 15%. In this section, the
penetration rate is increased to 50 and 85% on the basis of case 4 for
comparison. The corresponding IEMSP electricity sell and purchase
prices are shown in Figure 6. With the change of penetration of
AOPs in IEM, the optimization results of the purchase and sale price
game and capacity configuration results are also changing.

1) Optimization Game Results of the Purchase and Sell Prices

The selling PAC is 0.895 and the purchase PAC is 0.10 in case
4 when the penetration of AOPs is 15%. When the penetration is
50%, the selling PAC is 0.89 and the purchase PAC is 0.08. When

FIGURE 5 | IEMSP purchase and sell price optimization results in case 2 and case 4.

FIGURE 6 | IEMSP purchase and sell price optimization results of different penetrations of AOPs.
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the penetration is 85%, the selling PAC is 0.7 and the purchase
PAC is 0.06. With the increase in penetration of AOPs, the
IEMSP purchase prices gradually increase, gradually approaching
the grid price. Increased penetration of the AOP makes it more
advantageous for them to fight for their interests in the price
game, while the sell prices of IEMSP are slightly lowered.

2) Capacity Configuration Results

As shown inTable 3, with the increase of penetration of AOPs,
the capacity configuration of AOPs has gradually increased and
the capacity configuration of IEMSP has gradually decreased.
From the perspective of the overall IEM, the overall capacity
allocation is greatly reduced with the increase of penetration of
AOPs under the same load of the overall IEM, which
demonstrates that the increase of penetration of AOPs can
effectively reduce the allocation of capacity in the IEM and
save resources, which also proves that it is necessary to take
the behavior of AOPs in the configuration of IEM into account.

6.4 Impact of Carbon Trading Price on
Operation Costs of IEMSP
From Figure 7, we can see that the carbon trading price has little
impact on the operation cost under the low price. When the
carbon trading price rises to $35, the IEMSP operation cost
increases obviously and the carbon trading cost decreases
significantly. With the continuous growth of carbon trading
prices, the system can profit through carbon trading. The
photovoltaic device reaches the upper limit when the carbon
trading price reaches $45/T. As the carbon trading price rises, the
carbon emission of the system will not change significantly, and
the operation state of the system tends to be stable. The analysis
shows that the carbon trading price fluctuation impacts the
system operation cost and carbon trading cost. Reasonable
carbon prices are beneficial for the capacity allocation of IEMSP.

6.5 Analysis of Earnings of Aggregation of
Prosumers Under Different Green
Certificate Prices
The price of the green certificate is adjusted from $6 to $12 and
the change in the income of the green certificate of the AOPs is
observed as shown in Figure 8.

It is assumed that the AOPs can participate in green certificate
transactions and green certificate cross-chain transactions

according to the number of green certificates obtained by the
AOPs to get a green income. It can be found from Figure 8 that
the higher the unit price of the green certificate, the more the
earnings obtained through cross-chain transactions.

7 CONCLUSION

To configure capacity for devices managed by IEMSP and devices
of AOPs in IEM with minimal costs, an IEMSP capacity
configuration cost model considering LLCT and an AOP
capacity configuration cost model considering green cross-
chain transactions are established. Electricity trading between
AOPs is considered to reduce transmission losses and promote
energy consumption nearby. The IEMSP-AOPs non-cooperative
capacity allocation algorithm is used to consider electricity price
trading between IEMSP and AOPs.

TABLE 3 | Capacity allocation results of different penetrations of AOPs.

Penetration of AOPs 0 15% 30% 50% 85%

IEMSP PV/kW 502 230 196 145 105
CHP/kW 240 250 230 214 183
ES/kWh 677 306 278 255 90
HS/kWh 698 389 305 212 99
GB/kW 67 67 67 68 68

AOPs PV/kW 0 116 199 249 390
ES/kWh 0 59 87 145 201

FIGURE 7 | Operating costs and carbon emission trading costs of
IEMSP under different carbon emission trading prices.

FIGURE 8 | Earnings under different green certificate prices.
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When trading between AOPs is considered under the 15%
penetration of AOPs in the IEM, IEMSP’s comprehensive costs
have decreased by 26.9% and AOPs’ comprehensive costs have
reduced by 53.2%, which illustrates that the consideration of the
electricity trading between AOPs will save a lot of costs and improve
the economy of the capacity configuration under the same load;
participation of the multi-market mechanism improves the
enthusiasm of green equipment and reduces carbon emissions.
When the multi-market mechanism is considered under the 15%
penetration of AOPs, both the carbon emission of IEMSP and AOP
decrease, IEMSP’s carbon emission decreases by 16.7% and AOP’s
carbon emission decreases by 20%. In addition, simulation results
demonstrate that the increase of the penetration of AOPs enables the
allocation capacity of devices in IEM to decrease under the
same load.

8 FUTURE WORK

The heating and gas network constraints will be considered in
the next research work; subsequent research will consider
enhancing the originality and complexity of device
modeling of IEM considering AOPs; this study uses the
particle swarm algorithm to solve the proposed game
model, which may cause the solution results to fall into
local optimum. How to make the solution the result of the
game model faster and more accurate will be further studied in
the future.
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A Low-Carbon Dispatch Strategy for
Power Systems Considering Flexible
Demand Response and Energy
Storage
Haiteng Han*, Tiantian Wei, Chen Wu, Xiuyan Xu, Haixiang Zang, Guoqiang Sun and
Zhinong Wei

College of Energy and Electrical Engineering, Hohai University, Nanjing, China

The consumption of traditional fossil energy brings inevitable environmental protection
problems, which also makes the low-carbon transition in industrial development imminent.
In the process of low-carbon transition, the power industry plays a very important role.
However, the large-scale integration of renewable energy resources such as wind power
and photovoltaic brings new characteristics to power system dispatch. How to design a
dispatch strategy that considers both low-carbon demand and economic cost has
become a major concern in power systems. The flexible resources such as demand
response (DR) and energy storage (ES) can cooperate with these renewable energy
resources, promoting the renewable energy generation and low-carbon process. Thus, a
low-carbon dispatch strategy for power systems considering flexible DR and ES is
proposed in this article. First, models of DR and ES based on their behavior
characteristics are established. Then, a carbon emission index is presented according
to China’s Clean Development Mechanism (CDM). Finally, the low-carbon dispatch
strategy for power systems is proposed through the combination of the carbon
emission index and flexible resource dispatch models. The simulation results show that
the proposed dispatch strategy can significantly improve wind power consumption and
reduce carbon emission.

Keywords: power system dispatch, flexible resources, demand response, energy storage, low-carbon dispatch
strategy

1 INTRODUCTION

Energy crisis and environmental protection issues are receiving more attention worldwide. Many
countries are focusing on the development of sustainable renewable energy resources. China is in the
stage of energy transformation, facing the challenge of carbon neutrality target by 2060. The strategy
of energy revolution has emerged, which paves the way for low-carbon industrial development. In
addition, in the process of energy structure transformation, flexible resources are important to
achieve low-carbon advancement in power systems.

The trend of clean power integration is irreversible. The uncertainties brought by large-scale
integration of renewable energy resources pose a higher challenge to the secure and stable operation
of power systems (Shan et al., 2018; Cheng et al., 2021). On the one hand, customers are guided to
stagger power consumption and optimize the load structure through reasonable demand response
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(DR) (Shu et al., 2017). On the other hand, high-quality ES
systems should be selected to match the generation dispatch of
the power system (Shan et al., 2018; Zhang et al., 2018). Generally,
DR in power systems refers to the electricity customer behavior of
changing their electricity consumption activities according to
market regulation signals (Hobbs et al., 1993; Federal Energy
Regulatory Commission, 2007; Zhang et al., 2008). The DR in the
electricity market can be classified into price-based response
(PDR) and incentive-based response (IDR) according to the
response mode. In addition, the electricity customers are
guided to respond to the power system dispatch in long-term
and short-term time scales (Wang et al., 2021). As an effective
method for optimal dispatch of power systems, DR has been
proposed in a large number of countries, helping change the
electricity consumption pattern. It supports not only the grid’s
peak-shaving and valley-filling but also renewable power
consuming (Gao et al., 2014; Aghaei and Alizadeh, 2013)
IDR can combine with PDR to improve the reliability and
flexibility of DR and make DR dispatched precisely in real
time (Xu et al., 2019). Zhang et al. (2021) propose an optimal
DR dispatch model considering supply–demand balance and
security constraints; the imbalance pressure caused by
renewable energy is alleviated. In the study by Hong-Tao
et al. (2018), Chen establishes a wind–solar power
consumption model, and it verifies the effectiveness of DR
on reducing the curtailment of wind and solar power. In the
study by Gao et al. (2019), Gao characterizes the uncertainty of
DR participation by considering the risk attitudes. It shows that
the introducing DR can improve the adequacy of generation
systems including wind power. In the study by Li et al. (2021), Li
develops an optimal DR dispatch strategy for DR dispatch
coordinated with the load aggregator to achieve joint
optimization of entity benefits. Furthermore, the application
of automatic DR in smart grids can greatly enhance the security
of power system operation (Taorong et al., 2020). DR can be
applied in frequency modulation to balance the active power
(Zhu et al., 2021) and ensure sufficient voltage balancing control
capacity (Tan and Shaaban, 2020).

Similar to DR, energy storage (ES) also has the function of
flexible regulation. The renewable power curtailment can be
reduced by introducing ES into the system. Thus, the ES
configuration strategy is regarded as an effective approach to
enhance the friendliness of wind and solar power generation
(Zhang et al., 2022). It is also helpful for the stability and
economic efficiency of power systems (Ani, 2021). Dorahaki
developed an optimal VPP dispatch model which contains
distributed wind power and ES devices. The ES device can
smooth the fluctuations caused by wind power in the study by
Dorahaki et al. (2020). In addition, the joint operation of
wind power and ES can relieve the contradiction of renewable
energy supply and reprogram the tariff profit (Zhang J. et al.,
2020). The storage duration, capacity, and charging/
discharging frequency of ES are investigated in the study
by Hargreaves and Jones, (2020) to make it suitable for
renewable energy systems. The combination of DR and ES
is more beneficial to promote the optimal operation of the
power systems (Wang et al., 2016; He et al., 2021). The

adverse impacts of wind power uncertainties on power
system stability can be solved by introducing DR and ES.
Su integrates DR to a hybrid Wind-PV-ES system, achieving a
goal of zero-curtailment of renewable power based on the
correlation analysis (Su et al., 2020). In the study by
Firouzmakan et al. (2019), DR and ES are considered in
comprehensive stochastic energy management system
containing micro-CHP units and renewable energy to
implement resource complementarity and improve integral
revenue. A multi-energy microgrid with wind–solar power
generation considering DR and ES is constructed to provide a
reasonable plan for multiple energy applications (Shen et al.,
2022). In conclusion, the integration of DR and ES offers
additional sources of flexibility in the system (Mimica et al.,
2022).

Carbon emission trading is an effective way to promote global
emission reduction through the market mechanism. In the study
by Lou et al. (2017), Lou includes carbon emission trading cost in
the objective function based on the concept of low-carbon
economy. It optimizes the power generation dispatch under
the random charging/discharging behavior of EVs and
effectively reduces the system’s carbon emission. At the same
time, the focus on carbon emission stimulates the demand for
EVs, which helps take the lead in achieving the goal of “carbon
peak” and “carbon neutrality” (Nie et al., 2022). Melgar-
Dominguez et al. (2020) demonstrates that implementing a
carbon emission trading scheme can make reduction in costs
of the supplied energy and purchase of emission allowances. By
incorporating the cost of carbon emission trading into a multi-
energy complementary system, the environmental factors and
system operating characteristics can be fully considered. Thus,
wind and photovoltaic power curtailment and load shedding are
reduced while minimizing system operating costs (Zhu et al.,
2019). In the study by Zhang W. et al. (2020), Zhang quantitively
evaluates the operation efficiency of different carbon emission
trading systems to determine whether they are profitable to the
economy and environment. Flexible resources such as DR and ES
can cooperate with renewable energy to optimize power system
dispatch and promote renewable power consumption. In
addition, the import of the carbon emission trading market
model can quantify the impacts of the dispatch strategy on
carbon emission.

The existing literature has examined the response
characteristics of DR and ES from various perspectives,
showing the enhancing functions of DR and ES on carbon
emission reduction. However, the integrated utilization of
flexible resources still needs to be further explored, especially
during the low-carbon transition period of power systems.
Therefore, we propose a low-carbon dispatch strategy that
combines carbon emission index and flexible DR and ES
resources in this study. The strategy that realizes the
reasonable coupling of conventional thermal power units,
flexible resources, and carbon trading can effectively reduce
wind power curtailment and quantitatively evaluate the
reduction of carbon emission.

The remainder of this study is organized as follows. First,
Section 2 establishes the models of DR and ES based on their
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behavioral characteristics. Subsequently, Section 3 proposes a
low-carbon dispatch strategy through the combination of carbon
market with the flexible DR resources and ES models. Section 4
demonstrates the effectiveness of the proposed strategy with
simulation results. Finally, Section 5 draws the conclusion of
this work.

2 MODELS OF FLEXIBLE RESOURCES IN
POWER SYSTEM DISPATCH
2.1 The Response and Configuration Model
of Multiple Demand Response Resources
We consider incentive-based DR (IDR) and price-based DR
(PDR) in this study. Here, three types of IDR including
interruptible load (IL), direct load control (DLC), and
transferable load (TL) are modeled.

Generally, IL and DLC adjust the response amount and
duration within a period according to a dispatch plan as there
is a supply–demand balance problem in the system.

The cost of IL and DLC can be expressed as

Cu(t) � μu · fu ·
∣∣∣∣Qu(t)

∣∣∣∣ ·Xu(t)/tu.int (1)
The dispatch of TL can shift part of the load from the peak

hours to the valley hours, releasing the load pressure and reducing
thermal unit start-ups and shutdowns.

The cost of TL response can be expressed as

Cv(t) � Pv(t) · Qv(t) ·Xv(t) (2)
The PDR participates in system dispatch according to price

signals, and the response amount and cost of PDR can be
expressed as

Qw(t) �
⎧⎪⎨⎪⎩ qw(t) − qw,max qw(t)> qw,max, lmp(t)≥ lmp1

qw,min − qw(t) qw,min >qw(t), lmp(t)≤ lmp2

0 othercases
(3)

When the locational marginal price is not in the threshold
interval, the PDR resource can choose whether to respond and
adjust to the specified load level. PDR can obtain the
corresponding economic compensation from the system. The
PDR acquisition response cost can be expressed as

Cw(t) � Pw(t) · Qw(t) ·Xw(t) (4)
The cost model of multiple DR is introduced above. Generally,

DR also requires considering the constraints such as response
duration, interval time, and amount constraints. The constraints
on DR resources are as follows.

• Maximum response duration constraint:

∑k+Tumax

t�k
Xu(t)≤Tumax, k � 1, 2, ..., T (5)

• Maximum response count constraint:

∑T
t�1
Xu(t)[1 −Xu(t)]≤Numax. (6)

• Minimum response interval time constraint:[Tu,int(t − 1) − Tu,min][Xu(t) −Xu(t − 1)]≥ 0 (7)

• Load response amount constraint:

Qumin ·Xu(t)≤ |Qu(t)|≤Qumax ·Xu(t) (8)

2.2 Energy Storage Model
The ES of power systems are modeled as follows. It is established
based on its charging/discharging power, charging/discharging
efficiency, maximum charging/discharging rate, self-discharging
rate, and state of charge (SOC).

• Charging and discharging power constraints:

{ 0≤pch(t)≤pch
r ·XES(t)

0≤pdis(t)≤pdis
r ·XES(t) (9)

• Charging and discharging capacity constraints:

⎧⎪⎪⎨⎪⎪⎩
Gch(t) � ηch · pch(t) · Δt, Gch(t)≤Gch

max

Gdis(t) � 1

ηdis
· pdis(t) · Δt, Gdis(t)≤Gdis

max

(10)

• Self-discharging capacity constraint:

Eself(t) � ES(t − 1) · (1 − r) (11)

• Storage capacity:

ES(t) � ES(t − 1) − Eself(t) + Gch(t) − Gdis(t) (12)

• SOC constraint:

SOCmin ≤
ES(t)
ESmax

≤ SOCmax (13)

3 THE LOW-CARBON DISPATCH MODEL
CONSIDERING FLEXIBLE DEMAND
RESPONSE AND ENERGY STORAGE

3.1 A Carbon Market Model Based on Clean
Development Mechanism Trading
Mechanism
The carbon emission trading mechanism is proposed to promote
CO2 emission reduction. Based on the current economic
situation, China participates in the Clean Development
Mechanism (CDM) market. The large-scale grid integration of
wind power is in accordance with the objective of the CDM. It can
meet the demand of low-carbon dispatch of power systems. With
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the introduction of the CDM, power generation entities are pre-
assigned a certain baseline of CO2 emissions, and the actual
carbon emission is monitored (Lou et al., 2017).

Depending on the actual situation in China, the allowance
allocation method is feasible. The allowance can influence the
trading scale of the emission trading market and is regarded as an
important factor of carbon emission trading cost. Therefore,
allowances need to be measured in advance to assess the cost.

Enterprises responsible for emission reduction obligations
attend the initial allocation of carbon emission trading
allowances. The competent department of carbon emission
trading distributes carbon emission allowances to them
through legal means.

Enterprises obtain carbon emission rights through the initial
allocation of carbon emission allowances. A reasonable allocation
method is conducive to the optimal allocation of resources. It can
enable enterprises to produce in a low-carbon and economically
efficient way (Lou et al., 2017). We adopt the industry baseline
method to calculate the free carbon emission allowances for
power producers.

M � ∑T
t�1
∑G
i�1
ξC · pi(t) · Δt. (14)

The amount of carbon allowances and the distribution method
set by the government directly affects the effect of the supply of
carbon emission rights. It further impacts the trading price in the
carbon emission trading market. If an enterprise does not get
enough allowances, it will enter the secondary market of trading
to buy more. Conversely, when an enterprise emits less carbon
than its allowances, it can earn revenue by selling the excess
emission allowances. Therefore, the carbon emission of the
participating carbon market in the model can be expressed as

MC � ∑T
t�1
∑G
i�1
ξCi · pi(t) · Δt. (15)

The different allocation methods lead to different amounts of
allowances for each enterprise. Thus, it indirectly affects the
reasonableness of the supply of allowances. As a result, the
motivation of enterprises to reduce emissions also changes,
which affects the trading price.

The cost of emission CC, namely, the costs incurred by carbon
emission trading or paying penalties for the excess can be
expressed as

CC � f(M,MC) (16)

3.2 The Dispatch Model Considering
Flexible Demand Response and Energy
Storage Resources.
3.2.1 The Objective Function of the Dispatch Model
The dispatch model consists of five main parts: f1, f2, f3 , f4,
and f5, representing the thermal unit dispatch cost, carbon
emission trading cost, penalty cost of wind power curtailment,
DR participation cost, and ES operation cost, respectively.

• Thermal unit dispatch cost

The thermal unit dispatch process includes the start-up and
shutdown cost and fuel cost.

The shutdown cost of thermal units is generally set to a small
constant independent of the duration of continuous operation,
and the start-up cost is set as an exponential function of the time
constant for the shutdown time. The start-up and shutdown costs
of thermal units are set as fixed parameters to simplify the
analysis in this article, which can be expressed as

Cup
i (t) � mi(t) · cupi (17)

Cdown
i (t) � ni(t) · cdowni (18)

Then, the start-up and shutdown costs of thermal units in a
dispatch cycle can be expressed as

C1 � ∑T
t�1
∑G
i�1
[Cup

i (t) + Cdown
i (t)] (19)

The fuel cost of thermal units is usually a binomial of its power
output, which can be expressed as

C2 � ∑T
t�1
∑G
i�1
⎡⎣ai · pi(t)2 + bi · pi(t) + ci · ui(t)⎤⎦ (20)

Thus, the total cost of thermal unit dispatch is expressed as

f1 � C1 + C2 (21)

• Carbon emission trading cost

Based on CDM, the cost of carbon emission trading is as
follows (Lou et al., 2017):

f2 � CC � KCDM · ΔMCDM + Kp · ΔMp −KCDM · ΔM′CDM

(22)⎧⎪⎨⎪⎩ ΔMCDM � max[0,min(MC −M,Mmax
CDM)]

ΔMp � max(0,MC −M − ΔMCDM)
ΔMCDM′ � max[0,min(M −MC,M

max
CDM)] (23)

When MC > M, it means that the actual emission is higher
than the allowances. In that case, it is required to obtain
allowances for the excess part through CDM trading or paying
penalty. The operating cost of the power systems will be increased
accordingly. WhenMC ≤M, it means the actual emission is lower
than the allowances. Then, the power systems can sell the surplus
allowances for profit, hence equivalently reducing the integrated
system cost.

• Penalty cost for wind power curtailment

f3 � ∑T
t�1
pw(t) ·Wpw (24)

• DR participation cost
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The DR participation cost in a dispatch cycle can be
expressed as

f4 � ∑T
t�1
⎡⎣∑Nu

u�1
Cu(t) +∑Nv

v�1
Cv(t) + ∑Nw

w�1
Cw(t)⎤⎦ (25)

• ES operation cost

According to the ES model presented in 2.2, the operation cost
of ES can be expressed as

f5 � ∑T
t�1
[Gch(t) · Vch(t) − Gdis(t) · Vdis(t)] (26)

Through integration of the aforementioned five subobjectives,
the main objective function can be expressed as

minf � f1 + f2 + f3 + f4 + f5 (27)

3.2.2 The Constraints of the Dispatch Model
The model also includes constraints on the operation of thermal
power units and relative constraints of DR and ES.

• Spinning reserve constraint:

∑G
i�1
yi(t) · psi(t) +∑k

j�1
Xv(t) · Qv(t)≥ γ · L(t) (28)

• Power balance constraint:

∑G
i�1
pi(t) +∑Nu

u�1
Qu(t) +∑Nv

v�1
Qv(t) + ∑Nw

w�1
Qw(t) +W(t) − pw(t)

+E(t) � L(t). (29)

• Upper and lower limit constraints of thermal unit output:

yi(t) · pi,min ≤pi(t)≤yi(t) · pi,max (30)

• Minimum start-up and shutdown time constraints:

{ [yi(t − 1) − yi(t)][Ti,on(t − 1) − Tu,i]≥ 0[yi(t) − yi(t − 1)][Ti,off(t − 1) − Td,i]≥ 0 (31)

• Ramping constraints:

{pi(t) − pi(t − 1)≤Ru,i

pi(t − 1) − pi(t)≤Rd,i
(32)

• Maximum start-up and shutdown power constraints:

⎧⎪⎨⎪⎩ �pi(t)≤ Sd,i · ni(t + 1) + pi,max · [yi(t) − ni(t + 1)] shutdowns at time t + 1
pi(t)≥pi(t − 1) − Rd,i · yi(t) − Sd,i · ni(t) shutdowns at time t
�pi(t)≤pi(t − 1) + Ru,i · yi(t − 1) + Su,i ·mi(t) startsup at time t

(33)

• System stability requirement:

∑NG

i�1
ps
i(t)≥ L(t) · β (34)

Constraints of DR resources in Eqs 1–8 (35)
Constraints of ES resources in Eqs 9–13 (36)

FIGURE 1 | Modified IEEE 30-bus test system.

FIGURE 2 | Outputs of thermal units at each period in Scenario 1
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4 CASE STUDY

To verify the effectiveness of our proposed low-carbon
dispatch strategy, a modified IEEE30-bus test system is
selected and shown in Figure 1. It has six thermal units
and 41 lines. The system is assembled with three DR
aggregators (named as D1, D2, and D3 in Figure 1)
containing different DR resources at Bus 5, 7, and 21,
respectively. D1 and D2 each contain three IDRs, and D3
contains one PDR resource. A wind farm with a total capacity
of 45 MW is located at Bus 28. An ES module with a capacity
of 500 MW·h is located at Bus 15. The relevant parameters of
thermal power units, DR resources, ES device, system load
forecast, and wind power forecast output are given in
Supplementary Material S1. The model proposed in this
study is solved by GAMS on a 16-core CPU/16G RAM PC. To
quantitively access the impact of flexible DR and ES resources
on the wind power consumption and carbon reduction, three
scenarios are designed as follows.

Scenario 1
In this scenario, DR resources do not participate in the system
dispatch process.

The outputs of thermal units are shown in Figure 2. The
amount of wind power curtailment and daily operation costs of
the system are shown in and Tables 1, 2, respectively.

It can be found from Table 1 that the wind power curtailment
occurs frequently in Scenario 1. In Table 2, the total cost of
system operation is $105512, of which the thermal unit dispatch
cost, carbon emission trading cost, and wind power curtailment
penalty are $87613, $2,985, and 14913, respectively.

Scenario 2:
In this scenario, only DR resources participate in the system
dispatch process.

The characteristic parameters of IDR and PDR resources are
listed in SupplementaryMaterial S1 and the LMP curves of PJM.

The outputs of thermal units, values of DR response, and
amount of wind curtailment are shown in Figures 3, 4; Table 3,
respectively. The daily operation costs of the system are listed in
Table 4.

The wind power curtailment amount in Scenario 1 and
Scenario 2 are 497.10 and 242.00 MW, respectively. Compared
with Scenario 1, the participation of DR resources in Scenario 2
helps reduce the wind power curtailment by 51.32%. In addition,
it is worth noting that the carbon emission trading cost before and

TABLE 1 | Amount of wind power curtailment at each period.

Time/h 1 2 3 4 5 6 7 8 9 10 11 12

Amount/MW 31.9 44.3 31 37.5 11 5.6 38.7 52.9 30 5.6 0 0

Time/h 13 14 15 16 17 18 19 20 21 22 23 24
Amount/MW 0 0 10.6 10.5 13.4 5.2 36.3 40.1 27.1 18.5 26.8 20.1

TABLE 2 | Daily operation cost of the system in Scenario 1

Total cost/$ Thermal
unit dispatch cost/$

Carbon emission trading
cost/$

Wind power curtailment
penalty/$

105,512 87,614 2,985 14,913

FIGURE 3 | Outputs of thermal units at each period in Scenario 2 FIGURE 4 | Response values of DRs at each period in Scenario 2
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after DR participation is $2,985 and $2,776 respectively. With DR
participation in the system dispatch, the overall outputs of
thermal power units decrease. In addition, the peak-to-valley
gap of the system is reduced, which directly reduces carbon
emission. DR provides more opportunity for wind power

generation and avoids frequent start-up and shutdown actions
of the thermal units. Therefore, it also helps relieving the pressure
of high load peaking.

Scenario 3
In this scenario, both DR and ES participate in the system
dispatch process.

The outputs of thermal units, values of DR response, and
variation of ES capacity are shown in Figure 5, Figure 6, and
Figure 7, respectively. The blue curve representing energy storage
capacity in Figure 7 is associated with the left Y-axis, and the
green and yellow bars representing the charging and discharging
capacity are associated with the right Y-axis. The daily operation
costs of the system are listed in Table 5.

In Scenario 3, the time distribution of wind power resources is
further optimized with the participation of ES in the system
operation process. The wind power here is completely consumed.
The flexible dispatch strategy and superior response performance
of DR resources and ES play an important role in wind power
consumption and system power balance maintenance. Moreover,
ES helps with relieving the pressure of peaking. In carbon
emission reduction, the effect of ES is reflected in the
consumption of wind power to reducing carbon emission at
the source-side.

TABLE 3 | Amount of wind curtailment at each period in Scenario 2

Time/h 1 2 3 4 5 6 7 8 9 10 11 12

Amount/MW 3 15.5 2.1 9.1 11 5.6 4 27.9 19.3 14.7 0 0

Time/h 13 14 15 16 17 18 19 20 21 22 23 24
Amount/MW 0 0 20.7 4.5 7.5 5.2 30.3 0.1 12.1 18.5 26.8 4.1

TABLE 4 | Daily operation costs of system in Scenario 2

Total cost/$ Thermal
unit dispatch cost/$

Carbon emission trading
cost/$

Wind power curtailment
penalty/$

DR response cost/$

97418 81,479 2,776 7,260 5,902

FIGURE 5 | Outputs of thermal units at each period in Scenario 3

FIGURE 6 | Response values of DRs at each period in Scenario 3

FIGURE 7 | Variation of ES capacity at each period in Scenario 3.
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As can be found from Table 6, the participation of DR in the
system dispatch process has optimized the operation of
thermal units, reducing their peaking pressure and the
costs arising from frequent start-ups and shutdowns. In
addition, the increase in wind power consumption results
in significant reduction in wind power curtailment penalty.
The improvement of thermal unit outputs has reduced the
carbon emission trading cost of the system by 7.00% with DR
participation. Although the involvement of ES brings added
costs to the system, it is notably less than the decrease in the
wind power curtailment penalty. Thus, compared with
Scenario 1 and 2, the total cost in Scenario 3 decreases by
7.67 and 13.77%, respectively.

5 CONCLUSION

In this article, we propose a low-carbon dispatch strategy for
power systems considering flexible DR and ES. First, the models
of flexible DR resources and ES is established based on their
behavior characteristics. Second, by combining the carbon
market model with the flexible DR resources and ES model,
the low-carbon dispatch strategy is proposed. Finally, the
effectiveness of the proposed strategy is verified with
simulations.

From the presented work, general conclusions can be drawn as
follows:

1) The cooperation of DR and ES has a remarkable impact on the
power system dispatch. The combined operation mode of DR
and ES effectively promotes peak-shaving and valley-filling.

2) The combined DR–ES dispatch has a notable function on
wind power consumption. Through the dispatch of flexible
resources, the wind power curtailment can be greatly reduced.

3) The low-carbon dispatch strategy can quantitatively evaluate
the reduction of carbon emission, realizing the reasonable
coupling of conventional thermal power units, flexible

resources, and carbon trading. It can help design carbon
reduction policies according to DR and ES activities.

In the future work, we plan to combine the uncertainties
derived from power and load with our framework and make the
proposed model appropriate for short-time scale dispatch
environment.
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TABLE 5 | Daily operation costs of the system in Scenario 3

Total cost/$ Thermal unit
dispatch costs/$

Carbon emission
trading cost/$

Wind power
curtailment penalty/$

DR response
cost/$

ES cost/$

90988 81,479 2,776 0 6,189 544

TABLE 6 | Comparison of costs in each scenario.

Scenario Total cost/$ Thermal unit
dispatch cost/$

Carbon emission
cost/$

Wind power
curtailment penalty/$

DR response
cost/$

ES cost/$

1 105,512 87,614 2,985 14,913 0 0
2 97,418 81,479 2,776 7,260 5,902 0
3 90,988 81,479 2,776 0 6,189 544
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GLOSSARY

Indices

t Index of hours

i Index of thermal units

l Index of branches

Parameters

μu Weight factor of IL and DLC

lmp1/lmp2 Maximum and minimum locational marginal price ($/MW·h)
qw,min/qw,max Maximum and minimum response amount of PDR (MW)

Tumax Maximum duration of a single DR response (h)

Numax Maximum response hours of DR in a dispatch cycle (h)

T A dispatch cycle

G Number of the thermal units

Tu,min Minimum response interval of DR (h)

Qumax/Qumin Maximum and minimum load response amounts of
DR (MW)

Pv(t)/Pw(t) Unit price of the compensation for TL/PDR in period
t ($/MW·h)
pch
r /p

dis
r Rated charging and discharging power of the ES (MW)

ηch/ηdis Charging and discharging efficiency of the ES

Gch
max/G

dis
max Maximum charging and discharging capacity of the ES (MW·h)

r Self-discharging rate of the ES

SOCmax/SOCmin Maximum and minimum state of charge

ESmax Rated capacity of the ES (MW·h)
ξC Initial allocation factor of carbon emission

ξCi Actual carbon emission intensity factor of the ith unit

cupi /cdowni Fixed start-up and shutdown costs ($/MW·h)
ai/bi/ci Fuel cost factors of the ith thermal unit

KCDM/Kp CDM unit price and unit excess penalty ($/ton)

Mmax
CDM Maximum amount of allowance power systems can trade through

the CDM (ton)

Wpw Unit price of wind power curtailment penalty ($/MW·h)
γ Reserve demand factor to deal with the system load forecasting error

pi,max/pi,min Upper and lower limits on the output power of the ith thermal
unit (MW)

Td,i/Tu,i Maximum and minimum continuous running time of the ith
thermal unit (h)

Ru,i/Rd,i Upward and downward ramping rates of the ith unit (MW/h)

Su,i/Sd,i Maximum start-up and shutdown power of the ith unit (MW/h)

β Minimum demand factor to meet the system stability requirement

Variables

Cu(t)/Cv(t)/Cw(t) Response cost of IL and DLC/TL/PDR in period t ($)

Qu(t)/Qv(t)/Qw(t) Response amount of IL and DLC/TL/PDR in
period t (MW)

Xu(t)/Xv(t)/Xw(t) Response state of IL and DLC/TL in period t

fu Response number of DR in a circle

tu.int Time interval after the last action of DR (h)

qw(t) Predicted day-ahead load in period t (MW)

lmp(t) LMP in period t ($/MW·h)
Tu,int(t) Accumulated interval from the last action of DR in period t (h)

XES(t) Status constraint variable of the ES in period t

pch(t)/pdis(t) Charging and discharging power of the ES in period t (MW)

Gch(t)/Gdis(t) Charging and discharging capacity of the ES in period
t (MW·h)
Eself(t) Self-discharge energy of the ES in period t (MW·h)
ES(t) Storage capacity of the ES in period t (MW·h)
M Free carbon emission allowance of the system (ton)

MC Actual carbon emission of the system (ton)

CC Cost incurred by carbon trading or paying penalty for the excess ($)

pi(t) Power output of the ith thermal unit in period t (MW)

f1 Thermal unit dispatch cost in a dispatch cycle ($)

f2 Cost of carbon emission trading in a dispatch cycle ($)

f3 Penalty cost of wind power curtailment in a dispatch cycle ($)

f4 Cost of DR participation in a dispatch cycle ($)

f5 Cost of ES operation in a dispatch cycle ($)

mi(t)/ni(t) Start-up and shutdown state of the ith thermal unit in period t

Cup
i (t)/Cdown

i (t) Start-up and shutdown cost of the ith thermal unit in
period t

C1 Start-up and shutdown cost in a dispatch cycle ($)

C2 Fuel cost of thermal units ($)

ΔMCDM/ΔM9CDM Allowance power systems purchased and sold
through the CDM (ton)

ΔMp Allowance power systems obtained through penalty payment (ton)

pw(t) Amount of wind power curtailment in period t (MW)

Vch(t)/Vdis(t) Contract price for ES charging and discharging in period
t (MW·h)
yi(t) State of the ith thermal unit in period t

psi(t) Spinning reserve provided of the ith thermal unit in period t (MW)

Fl(t) Active power of the branch l in period t (MW)

θ(t) Voltage phase-angle in period t

W(t) Wind power output in period t (MW)

E(t) Power supplied by the ES in period t (MW)

L(t) Predicted load of the system in period t (MW)

Ti,off(t)/Ti,on(t) Cumulative shutdown and start-up time of the ith unit
in period t (h)
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With the increasing penetration of new-type loads such as electric vehicles and hydrogen
fuel vehicles in urban power grids, the peak-to-valley load difference increases sharply,
and a multi-energy coordination model is desirable. This article proposes a day-ahead
operation model of an urban energy system considering traffic flows and peak shaving,
which can positively contribute to multi-energy complement and low-carbon emission.
The proposed model minimizes the total cost of electricity and gas by optimizing the
charging and discharging strategies of energy storage, in which the output of the wind
turbine and energy management of the energy hub are adaptively adjusted. The urban
energy system is represented by a second-order cone (SOC) energy flow model, and
hence, the optimization problem is modeled as a mixed integer SOC programming
(MISOCP). Finally, test results on an integrated urban energy network indicate that the
energy storage and multi-energy coordination can alleviate the peak load cutting and
valley filling. The relationship between urban grid operation cost and peak-valley difference
is also discussed. The maximum utilization of renewable energy sources using gasoline
vehicles has been presented in this study to illustrate cost and emission reductions for a
sustainable integrated electricity and transportation infrastructure.

Keywords: an urban energy system, peak shaving, traffic flows, multi-energy complement, low-carbon operation

1 INTRODUCTION

1.1 Motivation
In recent years, energy consumption and global environmental problems have become increasingly
serious, and the energy transition toward a low-carbon energy system is highly desirable
(Zhao et al., 2017). The energy internet provides great potential for reliable power supply and
an improved energy efficiency by integrating various energy production/conversion components,
including renewable energy sources (RESs), energy storage systems (ESSs), hydrogen fuel
vehicles (HVs), and electric vehicles (EVs) (Strasser et al., 2015; Meng and Wang, 2017; Yang and
Fang, 2017). At the same time, interactions between urban electrical, transportation, and natural
gas systems have become increasingly common due to the utilization of coupling components such
as microturbines, combined heat and power (CHP), and power to gas units (Mancarella, 2014;
Shabanpour-Haghighi and Seifi, 2015). The coupling of urban multi-energy networks positively
contributes to the improved energy utilization efficiency, multi-energy complement, and the
construction of a low-carbon sustainable energy system (Xu et al., 2020).

Traditionally, coupled energy systems have been operated and optimized independently
(Chen et al., 2014). The urban distribution network that is inactive generally has limited ability to
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regulate power flow, which results in the problem of a large
difference between the daily peak and valley of the net
load (Uddin et al., 2018). On the other hand, the traditional
energy storage has relatively small storage capacity with a
high investment cost, and hence, it is difficult to store energy
effectively on a large scale and for a long time (Zhao et al., 2020).
Considering the fact that the traditional urban distribution
network cannot fully meet the electricity demand of new-type
loads such as EVs and HVs, the development of day-ahead co-
optimization of multi-energy systems is of considerable interest.

Owing to the aforementioned considerations, the present
work develops a day-ahead co-optimization strategy for urban
energy networks considering traffic flows.

1.2 Literature Review

1.2.1 Research on Power-Transportation
Coordination
EVs and HVs have become a promising alternative to gasoline
vehicles (GVs) for decarbonizing the transportation sector
and combating climate change (IEA, Global EV Outlook, 2020).
An integrated demand response framework is designed to
regulate flexible resources in both networks through optimal
road tolls and electricity tariffs in Lv et al., 2021a. In Rotering
and Ilic (2011), the problem of growing peak load and grid
overloading is addressed based on a forecast of future electricity
prices, and the dynamic programming algorithm is employed
to find the economically optimal solution for the vehicle owner.
Hu et al. (2016) present an integrated optimization framework
for battery sizing, charging, and on-road power management
in plug-in hybrid EVs. The maximum utilization of RESs using
GVs has been presented in Saber andVenayagamoorthy (2011) to
achieve cost and emission reductions, which contributes to a low-
carbon integrated electricity and transportation infrastructure.
We note that most works consider the coupling between the
transportation system and the power grid. However, the coupling
between the power, natural gas, and the transportation systemhas
not been well considered.

1.2.2 Coordinated Optimization of Multi-Energy
Systems
A day-ahead optimal scheduling of the urban energy system
is proposed by Jin et al., 2016, in which the flexible and
reconfigurable topology of power distribution networks is
considered. The joint and unified optimization decision of
coupled power systems and natural gas systems is analyzed
in Martínez-Mares et al. (2011). Correa-Posada and Sánchez-
Martín (2015) determine the dynamic optimal operation strategy
of the electricity–gas integrated energy system, which includes a
transient natural-gas flow model. An integrated electricity–gas
system with steady-state energy flow models considering the
uncertainty of wind power is proposed in Gao and Li (2020).
Additionally, a new Benders decomposition-based algorithm is
proposed, which improves the solution efficiency for non-convex
models (Gao and Li, 2021). A new external dependency model
based on the energy hub (EH) is introduced to consider the
possible uncertainty in customer decision through stochastic

model processing (Neyestani et al., 2015).The stochastic optimal
model is investigated with the comprehensive consideration
of renewable generation and carbon-capture-based power-to-
gas technology (Li et al., 2018). However, we note that most
existing works on coordination optimization of integrated energy
systems do not consider the existence of new-type loads such as
EVs and HVs. Moreover, in most existing studies, a common
assumption is that the driving mode of EVs is known. Arrival
rates and times as well as the number of charging requests are
specified in advance in a deterministic or stochastic manner,
which can be determined from data-driven methods or queuing
theory or modeled with probabilistic models through Markov
decision processes. This assumption is reasonable for set-level
research, such as residential parking management or a single CS
management. However, it may not be appropriate if the system-
level interdependency is under investigation, which is proposed
in this article.

1.3 Contribution of This Study
To fill the research gaps summarized above, our model makes the
following contributions:

1) We propose a mixed-UE traffic flow model based on
an urban transportation system and divide the overall
vehicular flows into five categories: GV traffic flow, EV
traffic flow, HV traffic flow, HV charging flow, and EV
charging flow. Our model, hence, accurately simulates the
distribution of EVs and HVs in the urban transportation
network.

2) We develop a day-ahead optimal dispatch of an urban
energy system considering the transportation-network
operation model, which includes the electric–gas co-
optimization and the impact of traffic flows. Our model
positively contributes to multi-energy complement and
low-carbon operation. Moreover, the optimal energy
management of EHs reduces the peak-valley difference
caused by increasing penetrations of new-type loads such
as EVs and HVs.

The remainder of this article is organized as follows: Section 2
elaborates on the mathematical model of day-ahead operation
for an urban energy system considering traffic flows. Section 3
presents the performance of the proposed optimization model.
Finally, Section 4 presents the conclusions of the work.

2 DAY-AHEAD OPERATION OF AN URBAN
ENERGY SYSTEM CONSIDERING PEAK
LOAD SHAVING

This section first presents the day-ahead electricity–gas co-
optimization for urban energy systems, which includes the
operating constraint with regard to peak load shaving. Then, the
joint optimal dispatch model considers the electricity charging
load and hydrogen charging load on the traffic side. Finally,
through the optimal control of ESS and energy management of
EH, the peak shaving and valley filling of the urban system with
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FIGURE 1 | Schematic diagram of multi-energy systems.

high penetrations of wind power are realized. The multi-energy
systems are shown in Figure 1. There are many nodes connected
to EH in the urban distribution network. EH provides hydrogen
for the hydrogen charging station on the traffic side through the
internal P2H device, meets the heat load demand through the
CHP unit, and provides power for the charging station on the
traffic side simultaneously through the converter and CHP unit.
Five key assumptions are made in our work:

1) We use a nonlinear day-ahead optimal dispatch model of
an urban energy system that considers the transportation-
network operation model.

2) We use fixed natural gas price information to coordinate the
operation of electricity and natural gas systems. Unfixed gas
pricing often leads to market inefficiencies.

3) We assume that the wind power output is deterministic,
without considering the randomness of wind power output.

4) We use time-of-use price to calculate the cost of purchasing
electricity in an urban energy system.

2.1 Branch Flow Model of the Urban
Power Distribution Network
Since AC power flow constraints are non-convex, the day-ahead
dispatch of the urban energy system is a non-convex optimization
problem, which is difficult to solve.The second-order cone (SOC)
relaxation based on the branch flow model is implemented to
improve its computational tractability. Therefore, we use the
branch flow model to replace the nonlinear power flow model of
the urban distribution network (Baran and Wu, 1989):

̃Ui,t = U2
i,t ,∀i ∈Ω

node,∀t ∈ T , (1)

̃Iij,t = I2ij,t ,∀ij ∈Ω
line,∀t ∈ T , (2)

{{
{{
{

∑
j∈M(i)

Pij,t − ∑
k∈N(i)
(Pki,t − ̃Iki,tRki,t) = P

inj
i,t

∑
j∈M(i)

Qij,t − ∑
k∈N(i)
(Qki,t − ̃Iki,tXki,t) = Q

inj
i,t
∀i ∈Ωnode,∀t ∈ T , (3)

̃Uj,t = ̃Ui,t − 2(Pij,tRij,t +Qij,tXij,t) + ̃Iij,t (R2
ij +X

2
ij)∀ij ∈Ω

node∀ij ∈Ωline,

∀t ∈ T (4)

̃Iij,t ̃Ui,t = P2
ij,t +Q

2
ij,t∀i ∈Ω

node∀ij ∈Ωline,∀t ∈ T , (5)

Pinj
i,t = P

sub
i,t + P

DG
i,t − P

L
i,t + P

dis
i,t − P

ch
i,t − P

EH
i,t − P

GF
i,t − P

CHP
i,t − P

P2H
i,t ,

∀i ∈Ωnode,∀t ∈ T , (6)

Qinj
i,t = Q

sub
i,t +Q

DG
i,t −Q

L
i,t∀i ∈Ω

node,∀t ∈ T . (7)

Eqs 1, 2 replace the voltage and current quadratic terms in
the original nonlinear power flow equation with new variables.
The DistFlow model for radial electricity networks is formulated
by 3–7, in which variables of the squared voltage magnitude
and squared branch current are employed. Eqs 3–5 represent the
active and reactive power flow balance. Eqs 6, 7 represent the
injected active and reactive power of the node.

The operation of the urban AC distribution network should
satisfy the following security constraints:

{ P
sub
imin ≤ P

sub
i,t ≤ P

sub
imax

Qsub
imin ≤ Q

sub
i,t ≤ Q

sub
imax
∀i ∈Ωsub,∀t ∈ T , (8)

P2
ij,t +Q

2
ij,t ≤ S

2
ijmax∀ij ∈Ω

line,∀t ∈ T , (9)

PDG
i,t = P

DG
imax∀i ∈Ω

DGN ,∀t ∈ T , (10)

QDG
i,t = P

DG
i,t tan φ∀i ∈Ω

DGN ,∀t ∈ T , (11)

̃Uimin ≤ ̃Ui,t ≤ ̃Uimax∀i ∈Ωnode,∀t ∈ T . (12)

Constraint (8) limits the transmission power capacity of
the root node. Constraint (9) represents the feeder capacity
constraint. Then, curtailment constraints with respect to
distributed generation are given in 10, 11. Constraint (12) limits
the operating range of the squared voltage magnitude.

ESS operation constraints include charge and discharge state
constraints, storage capacity constraints, charge and discharge
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power constraints, and daily allowable charge anddischarge times
constraints (Gabash and Li, 2012), which are provided as follows:

ych
i,t + y

dis
i,t ≤ 1,∀i ∈Ω

ESS,∀t ∈ T , (13)

{0 ≤ P
dis
i,t ≤ y

dis
i,t P

e
max

0 ≤ Pch
i,t ≤ y

ch
i,tP

e
max
,∀i ∈ΩESS,∀t ∈ T , (14)

{E
ESS
i,t+1 = E

ESS
i,t + αPch

i,t − βP
dis
i,t

0.2Emax
i ≤ E

ESS
i,t ≤ 0.9E

max
i
,∀i ∈ΩESS,∀t ∈ T , (15)

{{
{{
{

∑
t
|ych

i,t+1 − y
ch
i,t | ≤ λ

ESS
max

∑
t
|ydis

i,t+1 − y
dis
i,t | ≤ λ

ESS
max
,∀i ∈ΩESS,∀t ∈ T . (16)

Constraint (13) denotes the charging and discharging states
of ESS, and constraint (14) represents upper limit of charge and
discharge. Eqs 15, 16 are energy constraints of ESS and daily
allowable charge and discharge times constraints, respectively.
Then, the quadratic equality (5) is further relaxed into the
following SOC inequality (Taylor and Hover, 2012; Farivar and
Low, 2013):

‖

‖

2Pij,t
2Qij,t
̃Iij,t − ̃Ui,t

‖

‖2

≤ ̃Iij,t + ̃Ui,t ,∀i ∈Ωnode∀ij ∈Ωline,∀t ∈ T , (17)

where ‖.‖2 is the mathematical expression of the Euclid norm.

2.2 Model of the Energy Hub
The EH (Chen et al., 2019) depicted in Figure 1A represents the
coupling between electricity and gas networks. CHP represents
the key component of this EH, which generates electricity and
heat simultaneously, and the urban distribution network provides
the charging service for EVs through the EH. The energy
conversion efficiency between the input and output energy flows
of the EH is formulated in 18

[L
e
i,t

Lh
i,t
] = [ηee vηCHP,e

0 vηCHP,h + (1− v)ηgh
][P

EH
i,t

FEH
i,t
]. (18)

Eq. 19 represents the dispatch factor of the EH input gas flow

0 ≤ v ≤ 1. (19)

Then, the EH also needs to satisfy the following operating
constraints:

FEH,min ≤ FEH
i,t ≤ FEH,max, (20)

Schp,min ≤ vF
EH
i,t ≤ Schp,max, (21)

Sgf ,min ≤ (1− v)FEH
i,t ≤ Sgf ,max. (22)

Constraint (20) gives the range of total gas purchases of EH.
Constraints (20) and (21) represent the production capacity of
CHP units and gas furnaces, respectively.

FIGURE 2 | Components of the energy hub.

For a specific case, the nodes of the distribution network
are connected to some components of EH, for example, only
CHP units or gas furnaces, as shown in Figure 2. On the other
hand, the power distribution network converts electric power
into hydrogen through P2H devices to provide hydrogen supply
services for hydrogen-fueled vehicles on the traffic side (Korpas
and Holen, 2006; Pan et al., 2021).The structure of P2H is shown
in Figure 3.

The energy conversion efficiency between the input and output
energy flows of P2H is given in 23 and 24

Hel,t = ηe2hyP
P2H
i,t Δt/Hc, (23)

0 ≤Hel,t ≤H
max
el . (24)

Constraint (23) calculates the energy conversion efficiency
between the input and output energy flows of P2H. Constraint
(24) limits the hydrogen production.

FIGURE 3 | Structure of P2H.
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2.3 Transportation System Modeling
The user equilibrium (UE) model has been widely used to
describe the urban transportation system in transportation
research. In the case of the given traffic network and
traffic demand, the UE model can output the current traffic
state, namely, the traffic flow distribution on the road. The
transportation systemmodel in this article is based on themixed-
UE traffic flow model (Wei et al., 2018). We divide the overall
vehicular flows into five categories: GV traffic flow, EV traffic
flow, HV traffic flow, HV charging flow, and EV charging flow.
The difference between traffic flow and charging flow lies in that
the former represents the route choice of EVs and HVs, while
the latter represents the charging choice of EVs and HVs. Traffic
link has regular link, charging link, and bypass link.The charging
links correspond to EV and HV queuing and charging events
in EVCSs and HVCSs, and bypass links denote bypass events at
EVCSs and HVCSs (Lv et al., 2021b; Teng et al., 2021).

The improved mixed-UE transportation model is a nonlinear
complementary problem (NCP) consisting of four constraint sets

UE −NCP{Cons− Flow,Cons−Time
Cons−Cost,Cons−CP } (25)

where constraint sets are presented as follows:
Cons− Flow:

∑
ρ∈λrs

g

f g
ρ,rs,t = πgqrs,t , (26)

∑
ρ∈λrs

e

f e
ρ,rs,t = πeqrs,t , (27)

∑
ρ∈λrs

h

f h
ρ,rs,t = πhqrs,t , (28)

xg
a,t =∑

rs
∑
ρ∈λrs

g

f g
ρ,rs,tδ

g
a,ρ,rs +∑

rs
∑
ρ∈λrs

e

f e
ρ,rs,tδe

a,ρ,rs +∑
rs
∑
ρ∈λrs

h

f h
ρ,rs,tδh

a,ρ,rs, (29)

xe
a,t =∑

rs
∑
ρ∈λrs

e

f e
ρ,rs,tδe

a,ρ,rs, (30)

xh
a,t =∑

rs
∑
ρ∈λrs

h

f h
ρ,rs,tδh

a,ρ,rs, (31)

πg + πe + πh = 1,πg ,πe,πh > 0. (32)

Cons−Time:

trga,t = t0a [1+ 0.15(
xg

a,t

crg
a
)

4

], (33)

tch,ea,t =
Ee

pser,e
+ tmax

a,ch,e(
xe

a,t

cch,e
a

)
3

,xe
a,t ≤ cch,e

a , (34)

tch,ha,t =
Eh

pser,h
+ tmax

a,ch,h(
xh

a,t

cch,h
a

)
3

,xh
a,t ≤ cch,h

a . (35)

Cons−Cost:

cg
ρ,rs,t =∑

a
ωtrga,tδ

g
a,ρ,rs, (36)

ce
ρ,rs,t =∑

a
ωtrga,tδ

g
a,ρ,rs +∑

a
(ωtch,ea,t + λ

e
a,tEe)δe

a,ρ,rs, (37)

ch
ρ,rs,t =∑

a
ωtrga,tδ

g
a,ρ,rs +∑

a
(ωtch,ha,t + λ

h
a,tEh)δh

a,ρ,rs. (38)

Cons−Cp:

0 ≤ f g
ρ,rs,t⊥c

g
ρ,rs,t − u

g
rs,t ≥ 0, (39)

0 ≤ f e
ρ,rs,t⊥c

e
ρ,rs,t − u

e
rs,t ≥ 0, (40)

0 ≤ f h
ρ,rs,t⊥c

h
ρ,rs,t − u

h
rs,t ≥ 0. (41)

Constraint set Cons− Flow describes flow conservation in the
TN. Specifically, constraints (29)–(31) indicate that the traffic
flow on each link is equal to the sum of the flows on all paths
that pass through the link. Constraints (26)–(28) explain that the
traffic flow on all paths connecting each O-D pair is equal to the
corresponding traffic demand. Constraint set Cons−Time gives
link travel time and estimation of different link types, respectively.
For regular link a ∈ T rg

A , constraint (33) uses the Bureau of
Public Roads (BPR) function [Bureau of Public Roads (1, 1964)]
to represent the link travel time as a function of xg

a . In constraint
(7), the first and second terms denote the charging time and
queuing time, respectively. Constraint set Cons−Cost describes
the travel costs of GVs, EVs, and HVs that choose path ρ. Note
that the cost for EVs and HVs contains both travel cost and
charging cost, respectively. Constraint set Cons−Cp represents
the complementarity condition of the Wardrop UE principle
(Sheffi, 1985), which indicates that noGV/EV/HV travelers could
decrease their travel costs by unilaterally switching their route
choices.

By changing the electricity price and hydrogen price for each
period of time, we calculate the transportation networkmodel 24
times. Then, we can get the load curve of each charging station
and hydrogen charging station in a day according to Eqs 42, 43.
In addition, the heat load Lh

i,t can be obtained from the literature
(Soroudi, 2017)

Le
i,t = E

exe
a,t , (42)

Lh
i,t = E

hxh
a,t . (43)

2.4 The Day-Ahead Optimization Dispatch
Model of an Urban Energy System
With the goal of minimizing the sum of gas purchase cost
and electricity purchase cost, we established a day-ahead
optimization dispatch model of an urban energy system, and the
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FIGURE 4 | Framework of the optimization dispatch model.

optimizationmodel is summarized below (Lu et al., 2020; Bakeer
and Hossam, 2021; Cheng et al., 2021; Lu et al., 2020; Bakeer and
Hossam, 2021; Cheng et al., 2021).

The objective function is provided as

minμe,tP
sub
i,t + μg ,t (FEH

i,t + F
CHP
i,t + F

GF
i,t ) . (44)

The objective function (44) is subject to Day-ahead operation

constraints:
{{{
{{{
{

(1) − (4)
(6) − (17)
(18) − (24)
(42) − (43)

Figure 4 shows the framework of the day-ahead optimization
dispatch model of an urban energy system, which clarifies the
interactions between power and transportation networks from
the modeling perspective.

3 CASE STUDY

The urban energy system shown in Figure 5 is composed of a
transportation network and a 33-node urban electricity network
with five EHs located at nodes 6, 16, 18, 21, and 30 and two
P2H units at nodes 8 and 10. CS1–CS8 are charging stations
which correspond to nodes 6, 16, 12, 27, 18, 25, 21, and 30
in the power network, respectively. HFS1–HFS7 are hydrogen
charging stations which correspond to nodes 6, 16, 21, 30, 18,
10, and 8 in the power network, respectively. In addition, two
0.4-MW capacity wind farms are connected at nodes 14 and 33,
while two 1.8-MW capacity ESSs are connected at nodes 11 and
29, respectively. The computational tests were conducted on a
laptop with Intel Core 1.0 GHz CPU and 16 GBmemory, and the
MISOCP model was programmed in GAMS and solved with the
GUROBI solver.

3.1 Electric Vehicle Charging Load and
Hydrogen Load
Figure 6 shows the daily heat load, the charging load of EVs, and
the hydrogen load of HVs on the traffic side. As can be observed
from this figure, the charging load curve of EVs has the same
trend with the hydrogen load curve of HVs, and both have the

characteristic of double peaks. During the morning rush hour
from 8:00 to 10:00 and the evening rush hour from 17:00 to 19:00,
the electric load andhydrogen load on the traffic side are relatively
high, while the heat load is higher during the day and lower at
night (Ye et al., 2021). The trend of these three loads is consistent
with that of the total load.

3.2 The Anti-Peak-Shaving Characteristic
of Wind Power Production
Figure 7 shows the comparison of the wind power output curve,
total original load curve, and total net load curve without
considering energy storage. In this figure, load 0 represents the
total original load curve, and load 1 represents the total net load
curve without considering the energy storage. As can be observed
from the figure, wind turbines produce more output at night,
which results in a lower net load at the valley time. However, the
output of wind turbines is less in the daytime, and hence, it cannot
significantly reduce the peak load. Consequently, the daily wind
power production results in a larger peak-to-valley difference of
net load.

3.3 Coordination Between ESS and Wind
Power Production
It is noteworthy that when the ESS participates in the power
regulation of the power grid, the disadvantages brought by
the anti-peak-shaving of wind power can be well compensated.
As shown in Figure 8, load 3 represents the total net load
considering energy storage andmulti-energy regulation, and load
2 represents the total net load without considering multi-energy
regulation. ESS charges at night when the power load is low and
the wind power output is large and discharges during the day
when the load is relatively high and the wind power output is
small. As a result, peak cutting and valley filling of the power load
are achieved.

3.4 Complementary Operation of
Multi-Energy Coupling
Natural gas is simultaneously converted into heat and electricity
through CHP units and only into heat through the gas furnace.
Figure 9 shows the total purchase of natural gas at each time
period, from which we can observe that the amount of gas
purchase of gas is larger at the time period when the power load
is high than that at the time period when the power load is low.
As shown in Figure 8, the difference between curve load 2 and
load 3 ismainly due to themulti-energy complement. In addition,
the EV load is relatively high at time periods from 7:00 to 17:00.
To summarize, increasing the power supply of CHP units can
effectively reduce the peak load, but this impact on valley filling
is not obvious.

3.5 Impact of ESS Strategies on Urban
Energy System Operation
As discussed above, ESS can play an important role in power
systems. Reasonable ESS scheduling decisions can alleviate the
impact of wind power on the distribution network and promote

Frontiers in Energy Research | www.frontiersin.org 6 May 2022 | Volume 10 | Article 88359874

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Peng et al. Operation of Urban Multi-Energy System

FIGURE 5 | Topology of the urban energy system.

FIGURE 6 | Hourly multi-energy load.

peak shaving and valley filling. Figure 10 and Figure 11 show the
charge–discharge curve of ESS and the SOC state of charge of
ESS, respectively. We can note that for time periods from 0:00
to 7:00, the net load is relatively with low power consumption
and high wind power production, and ESS charges to satisfy
the load electricity demand. The SOC state of charge rises in
preparation for the next stage of the discharge process. For time
periods from 8:00 to 11:00, the electricity price is high and the net
load is relatively high. ESS reduces the load peak by discharging.
From 16:00 to 19:00, the load reaches the peak again, and ESS
continues to discharge, which reduces the power purchase cost
from the main grid. At the same time, in order to ensure the
normal operation of the next charge and discharge cycle, the ESS
charges and returns to the original state of charge at time periods
from 20:00 to 24:00.

FIGURE 7 | Anti-peak-shaving characteristic of wind power production.

We introduce an index δPa to measure the average peak-valley
difference:

δPa = ∑
tpeak

Pi,tpeak/Npeak − ∑
tvalley

Pi,tvalley/Nvalley. (45)

Table 1 lists mean peak-valley differences and the total
operation costs under different ESS capacities. As shown in this
table, the increase in ESS capacity positively reduces the average
peak-valley difference of power demands and reduces the total
operating costs. This is because a higher energy storage capacity
can provide more sufficient charging power in load valley and
discharging power in load peak, which also reduces the purchase
of power at the peak time, thus reducing the operating cost.
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FIGURE 8 | Hourly load curves under three scenarios.

FIGURE 9 | Hourly total purchase of natural gas.

FIGURE 10 | Hourly charge–discharge curve of ESS.

FIGURE 11 | Hourly SOC state of charge of ESS.

TABLE 2 | Cost comparison under different constraint values of average
peak-valley difference.

λ/MW 1.37 1.27 1.15 1.10 1.05
Cost/$ 25145.35 25282.07 25731.15 25952.80 26179.76

3.6 Cost Comparison Under Different
Values of Average Peak-Valley Difference
To control the load peak-valley difference to an ideal level, we
add an additional linear constraint (46) into the original model.
Meanwhile, we set the energy storage capacity to be fixed at the
original value

δPa ≤ λ. (46)

λ denotes the load peak-valley difference which we want
to get. By modifying the value of λ, we can obtain the
corresponding operating costs under different requirements of
average peak-valley difference, and the results are summarized in
Table 2.

Generally, a more ideal peak-valley difference increases the
total operating cost, which indicates that the operating cost
and the requirement of peak shaving and valley filling are
contradictory.The reason is that if we set the value of λ to be small,
we need to increase the net load during the valley time.Therefore,
part of the wind power will be curtailed during the load valley,
and additional electricity needs to be purchased from the main
grid, which reduces the peak-to-valley difference and inevitably
increase the total operating cost.

TABLE 1 | Average peak-valley difference under different ESS capacities.

Capacity of ESS/MW 1.8 2.2 2.6 2.8 3.2
Mean peak-valley difference/MW 1.37 1.27 1.16 1.11 1.00
Cost/$ 25145.35 25029.00 24919.91 24868.68 24778.03

Frontiers in Energy Research | www.frontiersin.org 8 May 2022 | Volume 10 | Article 88359876

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Peng et al. Operation of Urban Multi-Energy System

4 CONCLUSION

We have presented a day-ahead co-optimization approach of
unban energy systems considering traffic flows and peak shaving.
Based on the numerical results obtained, we can draw the
following conclusions:

• Optimal charging and discharging dispatch strategies of
energy storages can alleviate the peak-valley difference
caused by the anti-peak-shaving characteristic of wind
power production.
• In addition, multi-energy complement can significantly
reduce the peak-valley difference and contribute to the
improved energy utilization efficiency. However, increasing
the supply of natural gas can reduce the peak load, but the
effect on valley filling is not obvious.
• When the ESS capacity is fixed, the higher the peak shaving
and valley filling requirements, the greater the operating
cost.

Our work, hence, might help the operators of urban
energy systems to produce operating decisions of multi-
energy production sources and satisfy the requirement
from multi-energy demands. Our work might also help the
design of a future low-carbon energy system. Meanwhile, in
future research, we will consider the optimal dispatch model
of the transportation system into the day-ahead dispatch
model of the urban energy system to further improve social
benefits. Reasonable traffic management strategies can give

full play to the initiative of the urban distribution network
to achieve peak shaving and valley filling and economic
optimization.
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GLOSSARY

Indices and sets
i, j Subscript indices of nodes in electricity networks

t Subscript indices of time periods

min Superscript index of minimum value

max Superscript index of maximum value

Ωnode Set of electrical nodes

Ωline Set of branches

Ωsub Set of root nodes

ΩESS Set of (energy storage system) ESS nodes

ΩDGN Set of DG nodes

T Operational cycle.

Trg
A Set of regular links in a transportation network.

Tch
A Set of charging links in the transportation network

TRS Set of origin–destination (O-D) pairs

TR Set of origin nodes

TS Set of destination nodes.

λrsg ,λrse ,λ
rs
h Set of gasoline vehicles/electric vehicles/hydrogen fuel vehicles

(GV/EV/HV) paths connecting an O-D pair r-s, where
r ∈ TRs ∈ TS and rs ∈ TRS

Variables
U i,t Voltage of electrical nodes

I ij,t Current magnitude through branch ij

Pij,t , Qij,t Active and reactive power flow through branch ij

Pinj
i,t ,Q

inj
i,t The injected active and reactive power of node i

Psub
i,t ,Q

sub
i,t Output active and reactive power of the root node

PDG
i,t ,Q

DG
i,t Output active and reactive power of the distributed generation

PL
i,t ,Q

L
i,t Active and reactive power load

Pch
i,t ,P

dis
i,t Active power charge and discharge of ESS

PEH
i,t Input power flow of the energy hub (EH)

PGF
i,t Input power flow of the gas furnace (GF)

PCHP
i,t Input power flow of combined heat and power (CHP)

PP2H
i,t Input power flow of power to hydrogen (P2H)

ychi,t ,y
dis
i,t Binary variable

EESS
i,t Energy level of the ESS

Lei,t ,L
h
i,t Dispatched electricity and heat demand

FEH
i,t Input gas flow of the energy hub

v Percentage of gas fed into combined heat and power

Hel,t Hydrogen production

f gρ,rs,t GV flow on path ρ ∈ λrsg between O-D pair r-s

f eρ,rs,t EV flow on path ρ ∈ λrs
e between O-D pair r-s

fhρ,rs,t HV flow on path ρ ∈ λrs
h between O-D pair r-s

xea,t Aggregated traffic flow on link a ∈ Tch
A

xga,t Aggregated traffic flow on link a ∈ Trg
A

xha,t Aggregated traffic flow on link a ∈ Tch
A

trga,t Travel time on link a ∈ Trg
A

tch,ea,t Average time that EVs spend on link a ∈ Tch
A

tch,ha,t Average time that HVs spend on link a ∈ Tch
A

cgρ,rs,t GV travel cost on path ρ ∈ λrs
g between O-D pair r-s

ceρ,rs,t EV travel cost on path ρ ∈ λrs
e between O-D pair r-s

ch
ρ,rs,t HV travel cost on path ρ ∈ λrs

h between O-D pair r-s

ugrs,t Minimal travel cost of GVs between O-D pair r-s

uers,t Minimal travel cost of EVs between O-D pair r-s

uhrs,t Minimal travel cost of HVs between O-D pair r-s

Pi,tpeak ,Pi,tvalley Peak and valley net load

Parameters
Rij,t The resistance of branch ij

X ij,t The reactance of branch ij

tanφ Power factor of DG output

Pe
max Upper limits of ESS charge and discharge power

α, β Charge and discharge efficiency coefficient of ESS

Emax
i Maximum storage capacity of ESS

λESSmax Maximum charging and discharging times of ESS

ηee Transformer efficiency of the energy hub

ηCHP,e Electrical efficiency of combined heat and power

ηCHP,h Thermal efficiency of combined heat and power

ηgh Gas furnace efficiency

ηe2hy Electrical efficiency of P2H

Hc The higher heating value of hydrogen

πg , πe, πh Ratio of GV/EV/HV traffic demand

δga,ρ,rs If path ρ ∈ λrs
g passes link a ∈ Trg

A , δg
a,ρ,rs = 1; otherwise, δ

g
a,ρ,rs = 0.

δea,ρ,rs If path ρ ∈ λrs
e passes link a ∈ Tch

A , δe
a,ρ,rs = 1; otherwise, δe

a,ρ,rs = 0.

δha,ρ,rs If path ρ ∈ λrs
h passes link a ∈ Tch

A , δh
a,ρ,rs = 1; otherwise, δh

a,ρ,rs = 0.

t0a Free flow travel time on link a ∈ Trg
A

crga Traffic flow capacity of link a ∈ Trg
A

cch,ea ,c
ch,h
a Maximum allowable vehicular flow of charging link a ∈ Tch

A

pser,e, pser,h Average service rate at charging stations

Ee, Eh Charging demand of unit traffic flow.

tmax
a,ch,e, t

max
a,ch,h Maximum waiting time at charging stations

qrs,t Trip rate (traffic demand) between O-D pair r-s

ω Monetary cost of travel time.

λea,t ,λ
h
a,t Charging price at charging stations

μe,t Time of use price

μg,t Unit price of natural gas

Npeak, Nvalley Number of peak and valley periods
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Multi-Objective Optimization of
Multi-Energy Flow Coupling System
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In this paper, aiming to achieve the target of carbon emission orientation, a multi-objective
optimization model of the multi-energy flow coupling system is proposed, in which all the
environmental protection, system economy, and energy efficiency are comprehensively
considered as the addressed objectives. To solve the developed model, by combining the
analytic hierarchy process (AHP) and the improved entropy weight method, a so-called
AHP-improved entropy weight method is proposed and utilized for weighting the
considered objectives, and the model is transformed into a single objective
optimization problem, namely, the collaborative optimization model. Then, to expedite
the process, a simplified primal dual interior point method is proposed to solve the model.
Finally, the results of a case study indicate that the proposed multi-objective collaborative
optimization can obtain the optimal solution of the system. In addition, the convergence
and global optimization ability of the simplified primal dual interior point method show
better characteristics when solving the proposed model.

Keywords: multi-energy flow coupling system, multi-objective collaborative optimization, combined weighting
method, simplified primal-dual interior point algorithm, carbon emission

1 INTRODUCTION

Energy is the basis and important guarantee for human survival. There are many problems in
traditional energy systems, such as independent energy supply, low cascade utilization level, energy
waste, and environmental pollution (Zhou et al., 2013; Fan et al., 2021; Hu et al., 2022). The multi-
energy flow coupling system (MEFCS) is an energy system form that integrates public cold, heat,
electricity, and gas. Its purpose is to integrate multiple energy sources, such as electric energy, natural
gas, and thermal energy in a certain area, so as to realize collaborative optimal operation,
collaborative management, and complementary mutual assistance among various forms of
energy subsystems (Zhao et al., 2018; Klyapovskiy et al., 2019). In addition, under the
background of “double carbon”, the transformation of clean and low-carbon energy is an
inevitable trend of global energy development.

Traditional energy systems are planned and operated independently, and only a single
situation needs to be considered in their optimal scheduling. However, for a multi-energy flow
coupling system, the correlation among energy subsystems should be considered in planning and
operation (Sirvent et al., 2017). In Liu et al. (2019), considering the multi-timescale
characteristics, an electrical and thermal energy sharing model of interconnected microgrids
with combined heating and power (CHP) and photovoltaic systems was built, in which CHP
could operate in a hybrid mode by selecting the operating point flexibly. In Wang et al. (2019), a
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multi-objective bi-level optimization model considering the
total cost and carbon dioxide emission was built, while the
energy efficiency of multi-energy flow coupling system was
ignored. In Barati et al. (2015) and Clegg and Mancarella
(2016), under the condition of meeting the basic needs of
power, gas, and heat loads, the coordinated planning of multi-
energy flow coupling system was considered, in order to reduce
the construction cost of transmission lines, gas pipelines, and
power plants as much as possible. In Koltsaklis and Knápek
(2021), the authors presented an optimization framework for
the optimal scheduling of a multi-energy microgrid, where a
number of aggregated end-users were considered. In Nicolosi
et al. (2021), a novel mixed integer linear programming
optimization algorithm has been developed to compute the
optimal management of a micro-energy grid, where the total
cost, the NOx, and the CO2 emissions of the system were taken
into consideration. To meet the safety constraints, in Wang D.
et al. (2018), an optimal coordination control strategy (OCCS)
for a hybrid energy storage system was developed considering
the state-space equation to describe the OCCS, the constraints
of the OCCS, and the objective function to express the optimal
coordination control performance. In Sun et al. (2020), the
authors considered the day ahead optimal scheduling problem
of electricity gas interconnected systems, where the two-way
energy flow was taken as a non-convex nonlinear mixed
integer linear programming problem, and a second-order
cone programming (SOCP) method has been proposed. In
Luo et al. (2018) and Zhang et al. (2021), the uncertainty
caused by renewable energy and multi-energy load was
considered, and the robust optimization and stochastic
optimization methods were adopted to deal with it
respectively, so as to ensure that the system can still
maintain stable operation under the worst conditions. In
Ghosh and Kamalasadan (2017), a grid-connected two mass
DFIG and a grid-supportive single mass squirrel cage
induction generator-based flywheel energy storage system
model have been considered for controller design and
proof-of-concept exploration. In Wang L. et al. (2021), the
flexible resources (FRs) on both the energy supply and load
sides were introduced into the optimal dispatch of the
integrated electricity-heat energy system (IEHES) and
further modeled to alleviate the renewable fluctuations, and
the solution for FRs participating in IEHES dispatch was given,
with goals of maximizing the renewable penetration ratio and
lowering operation costs. It can be seen that most of the
existing results consider optimization of the economic
objectives of the multi-energy flow coupling system, where
the index is relatively single, and less consideration is paid on
the carbon emission level in the operation of the system. At the
same time, the operation strategy is the lack of comprehensive
comparison and verification.

In solving the MEFCS collaborative optimization model,
when considering multiple optimization objectives including
carbon emission, investment and operation cost, and energy
utilization, the traditional single objective optimization
algorithm may be difficult to ensure that the solution result
is the optimal solution of the original problem. In Wang W.

et al. (2021), the load characteristics and various constraints of
the integrated community energy system were considered, and
the operating model with the goal of minimizing operating
costs was optimized. In Ma et al. (2018), the energy
consumption cost and environmental cost of the multi-
energy flow coupling system were considered
comprehensively, the optimal scheduling model of multi-
energy flow coupling system was proposed, and the optimal
scheduling model was transformed into a mixed integer linear
programming problem. In Xiao et al. (2018), the method of the
probability scenario had been used to model the uncertainties
of the distributed renewable energies (DREs) and loads, which
could better characterize the impact of uncertainty on the
planning and design of the MEFCS. In Yang et al. (2018), a
two-stage robust generation scheduling model was proposed
for the dynamic safety constraints of the natural gas pipeline
network and the uncertainty of wind power, and a new
solution method was developed to avoid the nonlinearity of
gas flow constraints. In Wu et al. (2021), the multi-objective
optimization model was transformed into a single objective
optimization model through the multi-objective programming
hierarchical solution method, and the primal dual interior
point method was used to solve the model. Based on the fast
particle swarm optimization algorithm, in Qu et al. (2021), a
dual-decomposition-based distributed algorithm was designed
to address the problem that the data and information of the
EHs during the operation were confidential and should be kept
by each owner, where the optimal consensus problem was used
for the dual problem to update the multipliers, in Li et al.
(2020), the proposed MEFCS planning model, formulated as a
two-stage MILP problem, was solved by the Benders
decomposition (BD) method to determine the optimal
capacity of each component in MEFCS planning.

To be pointed out that, the research on the optimization of
multi-energy flow coupling system at home and abroad mainly
focuses on the simplification of the optimization model.
However, on the one hand, it will lead to the reduction of
solution accuracy, at the same time, because the models are
more and more complex, which are difficult to be simplified.
Therefore, the heuristic algorithm has become an important
way to deal with optimization problems. However, the
traditional heuristic algorithm has the problems of poor
convergence and easy to fall into local optimization, and
how to find a simplified and better algorithm is another
motivation of this paper. Based on the above discussions, in
this paper, the environmental protection goal is taken as the
leading factor, the economic and energy efficiency goals are
comprehensively considered, the multi-objective collaborative
optimization model is developed for the multi-energy flow
coupling system, which can be transformed into a single
objective optimization model through the linear
combination of the analytic hierarchy process and the
improved entropy weight method, and then the model can
be solved by using the simplified primal dual interior point
method. The results avoid falling into local optimization and
accelerate convergence. Case studies verify the effectiveness of
the proposed algorithm.
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2 MODELING OF MULTI-ENERGY FLOW
COUPLING SYSTEM

A typical multi-energy flow coupling system structure is shown in
Figure 1, which is internally connected through the power grid,
thermal pipe network, and cooling transmission network. The
equipment involved distribution power source includes a wind
turbine (WT) and photovoltaic (PV). Cogeneration includes
CHP, a gas turbine (GT), a waste heat boiler (WHB), a
ground source heat pump (HP), an electric refrigerator (ER),
an absorption refrigerator (AR), and other energy conversion
equipment, as well as electric energy storage (EES), heat energy
storage (HES), and other energy storage equipment.

2.1 Modeling of Distributed Generations
2.1.1 Wind Turbine

PWT
t � 1

2
ηwπr2ρv3t , (1)

where PWT
t indicates the wind turbine generation power (kW) in

time period t, ηw is the wind energy utilization efficiency of the wind
turbine, r represents the blade radius (m), ρ represents the air density
(kg/m3), and vt is the air velocity (m/s) in time period t.

2.1.2 Photovoltaic

⎧⎪⎪⎨⎪⎪⎩ PPV
t � PtestL

ac
t [1 +K(θst − θrt)]

Ltest
,

θst � θoutt + 30Rt,

(2)

where PPV
t refers to the output power (kW) of photovoltaic

equipment during the period t, Ptest represents the test power
(kW) under standard conditions t, Lact refers to the light intensity
(W/m2) in the period t, Ltest is the test light intensity (W/m2) under

standard conditions,K is the power temperature coefficient, which is
taken as −0.0047; θst , θrt , and θoutt represent the solar panel
temperature, reference temperature, and external ambient
temperature (°C), respectively; normally the reference
temperature is taken as 25 °C; and Rt expresses the solar
radiation intensity (kW/m2) in time period t.

2.2 Modeling of Energy Conversion Unit
2.2.1 Cogeneration Unit
The cogeneration unit generates electric energy and heat energy
at the same time by consuming natural gas. Its operation mode
can be expressed as

{PCHP
t � ηP,CHPGCHP

t ,
HCHP

t � ηH,CHPGCHP
t ,

(3)

where PCHP
t , HCHP

t , and GCHP
t are the electric power, thermal

power, and gas power consumed by the internal cogeneration
unit in scheduling period t, respectively, and ηP,CHP and ηH,CHP

are the power generation efficiency and heating efficiency of
cogeneration units, respectively.

2.2.2 Gas Turbine and Waste Heat Boiler
The gas turbine generates electric energy by consuming natural
gas, and part of the discharged flue gas can be transformed into
available calorific value through a waste heat boiler. Their
working characteristics can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
PGT
t � ηGTLgasV

gas
t

t
,

HGT
t � PGT

t

(1 − ηGT − ηl)
ηGT

,

HWHB
t � ηWHBH

GT
t ,

(4)

wherePGT
t andHGT

t indicate the gas turbine generation power andflue
gas waste heat power during the period t, respectively; Lgas represents

FIGURE 1 | Typical structure of the multi-energy flow coupling system.
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the low calorific value of natural gas, which is set as 9.78 kWh/m3 in
this paper; Vgas

t expresses the natural gas consumption during the
period t; t is the scheduling period; ηGT and ηl represent the power
generation efficiency and loss rate of gas turbine, respectively; ηWHB is
the recovery efficiency of the waste heat boiler; and HWHB

t is the heat
recovery power of the waste heat boiler in time period.

2.2.3 Ground Source Heat Pump
The heat pump is a high-efficiency and energy-saving equipment
in the multi-energy flow coupling system. It can convert low-
grade heat energy into high-grade heat energy by consuming
electric energy. Its operation mode is given by

HHP
t � ηHPP

HP
t , (5)

whereHHP
t andPHP

t represent the heat energy generated and electric
energy consumed of the ground source heat pump during the period
t, respectively; and ηHP is the conversion efficiency of the heat pump.

2.2.4 Electric Chiller and Absorption Chiller
The electric chiller generates cold power by consuming electric power
during operation, and the absorption chiller generates cold power by
absorbing thermal power. Its mathematical model is as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
CEC

t � ηECP
EC
t ,

ηAC � ηAC0 βAC
aAC(βAC)2 + bACβAC + cAC

,

CAC
t � ηACH

AC
t ,

(6)

whereCEC
t andCAC

t represent the cool power generated in time period
t of the electric chiller and absorption chiller, respectively; ηEC and ηAC
represent the conversion efficiency of the electric chiller and absorption
chiller, respectively; PEC

t indicates the electric energy consumed of the
electric chiller during the period t; HAC

t represents the heat energy
consumed of the absorption chiller during the period t; ηAC0 is the rated
conversion efficiency of the absorption chiller; aAC, bAC, and cAC are
the refrigeration coefficient of the absorption chiller, respectively; and
βAC is the load rate when the absorption chiller is working.

2.3 Modeling of Energy Storage Equipment

Ei,t � Ei,t−1(1 − σ i) + Pc
i,tη

c
i − Pd

i,t/ηdi , (7)
where Ei,t represents the energy storage of energy storage
equipment i in time period t, Pc

i,t and Pd
i,t are the charging

power and discharging power of energy storage equipment i in
time period t, ηci and ηdi represent the charging efficiency and
discharging efficiency of energy storage equipment i, and σ i is the
consumption rate of energy storage equipment i.

3 MODELING OF MULTI-OBJECTIVE
COLLABORATIVE OPTIMIZATION

In the multi-objective collaborative optimization of MEFCS
considering carbon emissions, the optimization objectives

considered in this paper include the environmental
protection objective, economic objective, and energy
efficiency objective.

3.1 Each Optimization Objective Function
3.1.1 Environmental Protection Objective
Aiming at minimizing the CO2 emission of MEFCS in 1 day, the
optimization model can be established as follows:

min F1 � ∑24

t�1[αgas · (PGT
t + GCHP

t ) + αgrid · (PHP
t + PEC

t )], (8)
where αgas and αgrid represent the CO2 emission coefficient
corresponding to the combustion of natural gas and the
consumption of electric energy; in this paper, they are taken
as 184 g/kWh and 877 g/kWh, respectively.

3.1.2 Economic Objective
In order to minimize the operation cost of MEFCS in 1 day, the
optimization model can be formulated as

⎧⎪⎪⎨⎪⎪⎩
min F2 � ∑24

t�1(cgridPgrid
t + cgasG

gas
t ) +∑N

i�1c
ma
i Pi,

Pgrid
t � PHP

t + PEC
t ,

Ggas
t � PGT

t + GCHP
t ,

(9)

where cgrid and cgas are the cost coefficients corresponding to the
electric energy and natural gas consumed by the system,
respectively; cma

i is the maintenance cost of equipment i; Pi is
the rated capacity of equipment i; and N represents the total
amount of equipment.

3.1.3 Energy Efficiency Objective
Primary energy utilization is defined as the ratio of MEFCS load
to MEFCS primary energy input in a day. Aiming at the
maximum utilization of primary energy, the optimization
model can be formulated as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max F3 � WPL +WHL +WCL

∑24

t�1(Pgrid
t

1 − ζ
+ Ggas

t ),
WPL � ∑24

t�1P
L
t ,

WHL � ∑24

t�1H
L
t ,

WCL � ∑24

t�1C
L
t ,

(10)

whereWPL,WHL, andWCL represent the total load of the system
in a day, respectively, and ζ represents the network loss rate of
transmission line, which is usually chosen as 5%.

3.2 Constraint Condition
3.2.1 Energy Balance Constraints
1) Power balance constraint

Pgrid
t + PCHP

t + PGT
t + PWT

t + PPV
t + PES,d

t

� PL
t + PHP

t + PES,c
t + PEC

t .
(11)

2) Heat energy balance constraint
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HCHP
t +HHP

t +HWHB
t +HHS,d

t

� HL
t +HHS,c

t +HAC
t .

(12)

3) Cool energy balance constraint

CEC
t + CAC

t � CL
t . (13)

3.2.2 Upper and Lower Limits of Equipment Output

0≤Oi,t ≤Pi, (14)
where Oi,t represents the output power of equipment i in
period t.

3.2.3 Energy Storage Constraints

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Pc
i,t ≤ υ�P

c
i ,

Pd
i,t ≤ (1 − υ)�Pd

i ,
υ ∈ {0, 1},
Ei,1 � Ei,24,
μi Pi ≤Ei,t ≤ �μiPi,

(15)

where �Pc
i and �Pd

i represent the upper limit of charging and
discharging power of energy storage equipment i, respectively;
υ represents 0–1 variable; Ei,t is the energy storage of equipment i
in period t; and �μi and μi represent the upper and lower limits of
the charging and discharging state of the energy storage
equipment i, respectively.

3.3 Collaborative Optimization Objective
The developed optimization model is a multi-objective
optimization problem. First, the optimal solution of each
objective is obtained through single objective optimization,
and then the optimization results of each objective are
standardized, so the multi-objective optimization is
transformed into single objective optimization with the
help of the linear weighting method. Finally, the single
objective optimization algorithm can be solved.

3.3.1 Normalization and Standardization
As the environmental protection goal and economic goal belong
to very small goals, that is, the smaller the final result, the better,
while the energy efficiency goal belongs to maximum goals, the
larger the final result, the better. Therefore, before establishing the
collaborative optimization objectives, each single objective should
be normalized and standardized, which can be expressed as
follows:

S1(Fi) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, Fi ≤Fi,min,

Fi,max − Fi

Fi,max − Fi,min
,

0, Fi >Fi,max,

Fi,min <Fi ≤Fi,max, (16)

S2(Fi) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, Fi ≤Fi,min,

Fi − Fi,min

Fi,max − Fi,min
,

1, Fi >Fi,max,

Fi,min <Fi ≤Fi,max, (17)

where S1 and S2 represent the membership function of very small
target and maximum target, respectively, Fi is the ith objective
function, and Fi,min and Fi,max are the minimum and maximum
of the ith objective function, respectively.

3.3.2 Index Weighting
Generally, the methods of weighting indicators can be divided
into subjective method, objective method, and the combination of
subjective and objective methods. The subjective weighting
method is simple to operate and does not need the support of
original data, but the subjectivity of weighting results is often too
large. The objective weighting method can show the relationship
between indicators well, but it has high requirements for the
original data. Therefore, in this paper, a new combinationmethod
based on the analytic hierarchy process (AHP) and the improved
entropy weight method is adopted.

The analytic hierarchy process first judges the relative
importance of each index through decision-making experts
and scores each index with an integer between 1 and 9, and
then the judgment matrix is obtained,

A �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a11 a12 / a1n
a21 a22 / a2n
..
. ..

.
1 ..

.

an1 an2 / ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (18)

where n denotes the number of indicators. A is a positive
reciprocal matrix, which satisfies aij � 1/aji.

To be noted that, due to the environmental protection goal is
taken as the leading factor in this paper, when forming the
judgment matrix, the score of the environmental protection
index is relatively high so that the final weight is relatively
maximum.

Then check the consistency of the judgment matrix,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
CR � CI

RI
,

CI � λmax − n

n − 1
,

(19)

where CR represents the consistency proportion. If CR< 0.1, the
consistency verification passes, otherwise the judgment matrix
needs to be modified. CI and RI represent the consistency index
and average random consistency index, respectively. λmax is the
maximum eigenvalue of judgment matrix A.

When the judgment matrix A passes the consistency check,
the eigenvector corresponding to its maximum eigenvalue λmax is
obtained and normalized, that is, the weight vector is obtained by
the analytic hierarchy process,

ω1 � [ω1
1,ω

1
2,/,ω1

n]T. (20)
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The entropy weight method reflects the amount of
information contained in each index through the entropy
value of each index. Generally speaking, the smaller the
entropy value, the greater the amount of index information
and the greater the weight should be set. Since the standard
entropy weight method is mainly applied tomultiple schemes, the
entropy weight method can be improved by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pi � 1 + Si(1 + Si,min) + (1 + Si) + (1 + Si,max),
Hi � pi,min lnpi,min + pi lnpi + pi,max lnpi,max

ln 3
,

(21)

where pi represents the characteristic specific gravity of the ith
target,Hi is the entropy of the ith target, and Si is the membership
function of the ith objective.

To be noted that, this improvement is mainly to adapt to the
optimization model. The objective functions have been processed
and converted into the form of membership function. Therefore,
in order to adapt to this form, the index value is replaced by
membership Si. Because this is not an evaluation problem, there
are no multiple schemes to be evaluated. Therefore, the possible
maximum and minimum values of each membership degree are
substituted into the formula to reduce the individual deviation. In
this way, there are three evaluation schemes in terms of quantity,
that is, m � 3. Therefore, the above formula is obtained.

According to the calculation results of entropy value of each
index, the weight of each index can be obtained by

ω2
i �

1 −Hi

n −∑n
i�1Hi

. (22)

Therefore, the weight vector is obtained by the improved
entropy weight method,

ω2 � [ω2
1,ω

2
2,/,ω2

n]T. (23)
In order to obtain the combined weight of AHP and improved

entropy weight method, the coupling vector is taken as follows:

[θ1, θ2] � [θ11, θ12,/, θ1n, θ
2
1, θ

2
2,/, θ2n], (24)

where θ1i and θ2i represent the coupling weight of index I for
weight coefficients ω1

i and ω2
i , respectively, which can be

expressed as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θ1i �

ω1
i

ω1
i + ω2

i

,

θ2i �
ω2
i

ω1
i + ω2

i

.

(25)

Therefore, the weight after coupling is

ωp
i � θ1iω

1
i + θ2iω

2
i . (26)

Normalize it, one has

ωi � θ1iω
1
i + θ2iω

2
i∑n

i�1(θ1iω1
i + θ2iω

2
i ). (27)

Then, the combined weight of the AHP improved entropy
weight method can be finally expressed as

ω � [ω1,ω2,/,ωn]T. (28)

3.3.3 Collaborative Optimization Objective
After obtaining the index weight, combined with the standardized
objective function in the above sections, we can obtain the
comprehensive satisfaction goal, that is, the collaborative
optimization objective is given as

max F � ω1S1(F1) + ω2S1(F2) + ω3S2(F3). (29)

4 OPTIMIZATION ALGORITHM

Based on the above analysis, it can be found that the multi-
objective collaborative optimization of the multi-energy flow
coupling system considered in this paper is a complex
nonlinear programming problem. In order to make the
solution speed and convergence meet the requirements of
practical problems, the simplified primal dual interior point
algorithm is used in this paper. For the sake of brevity, first,
the optimization model described above is transformed into the
following general form:

⎧⎪⎨⎪⎩max F(x),
s.t. h(x) � 0,
gmin ≤g(x)≤gmax,

(30)

where x is the state variable, including the output power, external
power purchase, gas purchase, etc., of each equipment, h(x) is the
equality constraint, including the power balance constraint of the
system, the energy balance constraint at the beginning and end of
the scheduling cycle of energy storage equipment, etc.; g(x) is the
inequality constraint, including the upper and lower limits of
equipment output, energy storage charge and discharge
constraints, etc.; and gmax and gmin represent the upper and
lower bounds of the inequality, respectively.

When dealing with this optimization model with the
traditional interior point algorithm, relaxation variables u �
[u1,/, ur]T and l � [l1,/, lr]T are introduced first, where r
represents the number of inequality constraints; thus, the
original inequality constraints are transformed into the
equality constraints. The resulting optimization model is
formulated as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min − F(x),
s.t. h(x) � 0,

g(x) + u � gmax,
gx − l � gmin,
u> 0, l> 0.

(31)

At the same time, the size of relaxation variables u and l should
be restricted to ensure that the objective function F(x) is always
far away from the solution boundary so that it can be solved in the
feasible domain as follows:
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⎧⎪⎪⎨⎪⎪⎩
min − F(x) − μ∑r

i�1
log(li) − μ∑r

i�1
log(ui),

s.t. h(x) � 0,
g(x) + u � gmax,
g(x) − l � gmin,

(32)

where μ represents the introduced disturbance factor.
At this point, the inequality constraints contained in the

optimization model described in this paper have all been
converted into the equality constraints, and the
Lagrange function for this optimization problem can be
expressed as

L � −F(x) − yTh(x)
−zT[g(x) − l − gmin]
−wT[g(x) + u − gmax]
−μ∑r

i�1
log(li) − μ∑r

i�1
log(ui),

(33)

where y, z, and w all represent the Lagrange operators, also
known as the dual variables. By deriving this Lagrange function,
the optimal solution to this optimization problem can be
obtained.

In this paper, by simplifying the original dual interior point
algorithm, the simplified original dual interior point method can

FIGURE 2 | Calculation flow of multi-objective collaborative optimization.
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be utilized to solve the optimization model, and the simplified
process is to rewrite the inequality constraint to⎧⎪⎨⎪⎩

ĝ(x)≤ ĝmax,

ĝ(x) � [g(x),−g(x)]T,
ĝmax � [gmax,−gmax]T, (34)

where ĝ(x) and ĝmax represent the generalized inequality
constraints and generalized upper bounds, respectively.

It can be found from the traditional interior point algorithm
that in the process of dealing with inequality constraints, the

upper and lower bounds of inequality constraints need to be
relaxed, and then converted into equality constraints,
respectively. At the same time, Lagrange operators are also
introduced for equality constraints converted from upper-
bound inequality constraints and lower-bound inequality
constraints, respectively, which introduce more variables in
the Lagrange function. This simplification algorithm greatly
reduces the relaxation variables and corresponding Lagrange
operators introduced in the optimization model, improves the
convergence speed of the algorithm while guaranteeing the

FIGURE 3 | Flowchart of the collaborative optimization of MEFCS.
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calculation accuracy, and reduces the amount of programming
to a certain extent. The rest of the algorithm is handled
similarly to the traditional algorithm, which are not
discussed here. For ease of understanding, the multi-
objective collaborative optimization calculation flow of the
multi-energy flow coupling system based on the simplified
primal dual interior point algorithm is shown in Figure 2,
where rgap is the dual gap, ε represents the convergence
accuracy, which is taken as 10–6 in this paper, and Kmax

represents the maximum number of iterations, normally is
set as 300.

Based on the above analysis, the collaborative optimization of
MEFCS dominated by the carbon emission targets in this paper
can be summarized as the following steps:

Step 1. Enter parameter information of the multi-energy flow
coupling system, such as system load, rated capacity of each unit,
equipment parameters, and time-of-use electricity price.

Step 2. Establish the steady-state operation model of each
equipment, as shown in Eqs 1–7.

Step 3. Establish the objective functions and constraints of the
MEFCS, as shown in Eqs 8–15.

Step 4. Weight each objective function using the analytic
hierarchy process-improved entropy weight method, as shown
in Eqs 18–28.

Step 5. Convert each objective function into a collaborative
optimization objective through the membership function and the
obtained weight information, as shown in Eqs 16, 17, 29.

Step 6. Solve the MEFCS collaborative optimization model by
the primal dual interior point algorithm until the optimal
solution is obtained or the algorithm does not converge.

The above steps can be clearly represented by the flowchart
shown in Figure 3.

5 CASE STUDY

5.1 Case Description
In this paper, the typical multi-energy flow coupling system shown
in Figure 1 is selected as an example. The capacity of each
equipment is as follows: one photovoltaic generator unit with a
rated output of 700 kW and one wind turbine generator unit with a
rated output of 500 kW, one cogeneration unit with a rated output of
3MW, one gas turbine with a rated output of 2MW, one waste heat
boiler with a rated output of 1MW, four heat pumps with a rated
output of 500 kW, four electric refrigerators and four absorption
refrigerators with a rated output of 200 kW, and four batteries and
heat storage equipment with a rated capacity of 500 kwh. Other
economic and technical parameters of the equipment can be found
in Wang Y. et al. (2018) and Huang et al. (2019). The time of use
electricity price information of the multi-energy flow coupling
system is shown in Figure 4, and the price of natural gas is 2.71
yuan/m3 (Shen et al., 2020). The load data of the system are shown in
Figure 5.

5.2 Results Analysis
The output curve of each equipment is shown in Figure 6. It can be
seen that the supply of electric energy and heat energy of the system
is mainly guaranteed by a gas turbine and heat pump, but only the
output of each equipment is not enough to meet the load demand
during the peak load period of the system. At this time, the system

FIGURE 4 | Power purchase price of MEFCS.
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needs to purchase electricity from the external power grid to jointly
supply energy to the load. In addition, it can be seen from the figure
that the discharge time of the power storage equipment is 03:00–21:
00, and the heat release time of the heat storage equipment is 06:
00–19:00. In other periods, that energy storage equipment is in the
charged states.

While using the multi-objective collaborative optimization
model proposed in this paper to solve the multi-energy flow
coupling system, three separate objectives are solved respectively.
After finding the individual optimization of each objective, its
state variables are substituted into the other two objectives to
obtain the respective results of the three objectives in this case.

FIGURE 6 | Output of each equipment of MEFCS.

FIGURE 5 | Load of MEFCS
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The comparison between the operation results of each scheme
and the operation results of multi-objective collaborative
optimization is shown in Table 1. It can be found from
Table 1 that the CO2 emission under multi-objective
collaborative optimization increases by 3.8% compared with
that under single objective F1 optimization, the system
operation cost increases by 6.1% compared with that under
single objective F2 optimization, and the primary energy

utilization rate decreases by 7.2% compared with that under
single objective F3 optimization. Although each objective
under multi-objective collaborative optimization is not the
optimal solution, the contradiction and conflict between each
single objective are balanced in the optimization process. On the
premise of taking the minimum carbon emission of the system as
the leading objective, the comprehensive satisfaction of the
system is significantly higher than the solution results of each

FIGURE 7 | Period by period analysis of single objective and multi-objective optimization results. (A) Comparison of environmental protection objectives by period.
(B) Period by period comparison of economic objectives. (C) Period by period comparison of energy efficiency objectives.

TABLE 1 | Comparison between multi-objective collaborative optimization and single-objective optimization.

Operation form Multi-objective
collaborative optimization

Single objective optimization

F1 optimal F2 optimal F3 optimal

F 0.9685 0.8943 0.8304 0.8612
F1 (kg) 10,403.5 10,022.2 15,113.3 10,543.7
F2 (yuan) 14,568.8 16,205.2 13,727.1 14,037.3
F3 (%) 79.04 81.67 67.94 86.33
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single objective, and a relatively satisfactory optimal scheduling
scheme is given.

In order to further compare the differences between the multi-
objective collaborative optimization proposed in this paper and
the traditional single objective optimization, the optimization
results of each single objective and the multi-objective
collaborative optimization results are analyzed period by
period, as shown in Figure 7. In the figure, F123−1, F123−2, and
F123−3 represent the environmental protection objective,
economic objective, and energy efficiency objective under
collaborative optimization, while F11, F22, and F33 represent
the environmental protection objective, economic objective,
and energy efficiency objective under single objective
optimization. Figure 7A shows the carbon emissions in each
period of the two optimization methods. It can be seen from the
figure that the two carbon emission curves cross each other.
Except that the carbon emissions during collaborative
optimization in 17:00–21:00 are significantly higher than those
in single objective optimization, they are very close in other times.
It shows that when taking the minimum carbon emission as the
leading objective, the effect of collaborative optimization is not
different from the single objective optimization with the
minimum carbon emission, and the working state of each
equipment is also relatively stable. Figure 7B shows the cost
curves of the two optimization methods. During 3:00–12:00, the
cost of multi-objective collaborative optimization is about 100
yuan/h higher than that of single objective optimization, and the
two curves almost coincide after 12:00. It can be seen from
Table 1 that the comprehensive satisfaction of multi-objective
collaborative optimization is obviously higher than that of single
objective optimization. On this basis, it ensures that the operation
cost of the system is not too high, and it is almost the same as that
of single objective optimization in most periods, indicating that
the result of multi-objective collaborative optimization is ideal.

Figure 7C shows the comparison of energy efficiency of the two
methods in each period. Although the operation energy efficiency
of multi-objective optimization in each period is not as good as
that of single objective energy efficiency optimization, the overall
operation result is relatively stable, indicating that each
equipment can achieve stable energy supply and continuous
output during the operation of the system, and the working
state is not easy to fluctuate violently.

In order to highlight the effectiveness of the simplified primal
dual interior point method proposed in this paper, the particle
swarm optimization (PSO) algorithm is selected to compare with
the algorithm proposed in this paper. The solution process curves
of the simplified primal dual interior point method and particle
swarm optimization algorithm for the system comprehensive
satisfaction objective are shown in Figures 8A,B, respectively.
They tend to converge at the 25th and 65th iterations,
respectively. It can be seen that the convergence of the
simplified primal dual interior point method is better than
that of the particle swarm optimization algorithm. In addition,
from the solution results of the two algorithms, it can be seen that
the simplified primal dual interior point method finally converges
near 0.9685, while the particle swarm optimization algorithm
finally converges only near 0.8352, which still has a certain
deviation from the global optimal solution. Therefore, the
global optimization ability of the simplified primal dual
interior point method proposed in this paper is also stronger
than that of the particle swarm optimization algorithm.

6 CONCLUSION

In this paper, the multi-objective collaborative optimization model
of MEFCS has been developed considering each of the
environmental protection, system economy, and energy efficiency

FIGURE 8 | Solving process of the comprehensive satisfaction objective for MEFCS. (A) Simplified primal dual interior point method. (B) Particle swarm
optimization algorithm.
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as the objectives of this study, in which the carbon emission
orientation goal could be achieved. Moreover, the simplified
primal dual interior point method has been used to solve the
constructed model. According to the obtained results, the
following findings have been concluded: 1) The contradiction
and conflict between the three objectives (CO2 emission, system
operation cost, and primary energy utilization rate) were relatively
balanced under the proposed collaborative optimization operation,
which have clearly demonstrated that the satisfaction of
collaborative optimization operation considering multiple
objectives could be higher than that considering a single
objective of the system. 2) Each equipment of the system could
achieve stable energy supply as well as continuous output
throughout the whole operation process, whereas the working
state was difficult to fluctuate sorely. 3) At the same time, the
operator could adjust the weight of the three objectives through his
own will, so as to get the best operation results that meet his
requirements. 4) In addition, the simulation results have illustrated
that the simplified primal dual interior point method being adopted
in this paper has better convergence and global optimization ability
in multi-objective collaborative optimization. However, more
investigations are needed regarding the sensitivity analysis on the

critical parameters of the multi-energy flow coupling system, which
will be considered in our future research work.
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GLOSSARY

Acronyms

AHP Analytic hierarchy process

AR Absorption refrigerator

BD Benders decomposition

CHP Combined heating and power

DRE Distributed renewable energy

EES Electric energy storage

ER Electric refrigerator

FRs Flexible resources

GT Gas turbine

HP Heat pump

HES Heat energy storage

IEHES Integrated electricity-heat energy system

MEFCS Multi-energy flow coupling system

OCCS Optimal coordination control strategy

PV Photovoltaic

SOCP Second-order cone programming

WHB Waste heat boiler

WT Wind turbine

Parameters

ηw Wind energy utilization efficiency

r Blade radius

ρ Air density

Ptest Test power under standard conditions

Ltest Test light intensity under standard conditions

K Power temperature coefficient

ηP,CHP Power generation efficiency

ηH,CHP Heating efficiency of cogeneration units

Lgas Low calorific value of natural gas

ηGT Power generation efficiency

ηl Loss rate of gas turbine

ηWHB Recovery efficiency of waste heat boiler

ηHP Conversion efficiency of the heat pump

ηEC ηAC Conversion efficiency of electric chiller and absorption chiller

ηAC0 Conversion efficiency of absorption chiller

aAC bAC cAC Refrigeration coefficients of absorption chiller

βAC Load rate

αgas αgrid CO2 emission coefficient corresponding to the combustion of
natural gas and the consumption of electric energy

cgrid cgas Cost coefficients corresponding to the electric energy and natural
gas consumed by the system

N Total amount of equipment

WPL WHL WCL Total load of the system in a day

ζ Network loss rate of transmission line

CR Consistency proportion

CI Consistency index

RI Average random consistency index

Variables

PWT
t Wind turbine generation power in period t

vt Air velocity in period t

PPV
t Output power of photovoltaic equipment in period t

Lact Light intensity in period t

θst Solar panel temperature in period t

θrt Reference temperature in period t

θoutt External ambient temperature in period t

Rt Solar radiation intensity in period t

PCHP
t Electric power consumed by internal cogeneration unit in period t

HCHP
t Thermal power consumed by the internal cogeneration unit in

period t

GCHP
t Gas power consumed by the internal cogeneration unit in

period t

PGT
t Gas turbine generation power in period t

HGT
t Flue gas waste heat power in period t

Vgas
t Natural gas consumption during in period t

HWHB
t Heat recovery power of the waste heat boiler in period t

HHP
t Heat energy generated of the ground source heat pump in period t

PHP
t Electric energy consumed of the ground source heat pump in

period t

CEC
t Cool power generated of EC in period t

CAC
t Cool power generated of AC in period t

PEC
t Electric energy consumed of the electric chiller in period t

HAC
t Heat energy consumed of the absorption chiller in period t

Ei,t Energy storage of energy storage equipment i in period tEnergy storage of
equipment i in period t

Pc
i,t P

d
i,t Charging power and discharging power of energy storage equipment i

in period t

Oi,t Output power of equipment i in period t

�Pc
i
�Pd
i Upper limit of the charging and discharging power of energy storage

equipment i

Ei,t Energy storage of energy storage equipment i in period tEnergy storage of
equipment i in period t

σ i Consumption rate of energy storage equipment i

cma
i Maintenance cost of equipment i

Pi Rated capacity of equipment i

�μi μi Upper and lower limits of the charging and discharging state of the
energy storage equipment i

S1 S2 Membership function of a very small target and maximum target

Fi ith objective function

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 87770015

Zong et al. Multi-Objective Collaborative Optimization of MEFCS

94

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Fi,min Fi,max Minimum and maximum of the ith objective function

ηci ηdi Charging efficiency and discharging efficiency of energy storage
equipment i

λmax Maximum eigenvalue

pi Characteristic specific gravity of the ith target

Hi Entropy of the ith target

Si Membership function of the ith objective

x State variable

h(x) Equality constraint

g(x) Inequality constraint

gmax gmin Upper and lower bounds of inequality

ĝ(x) Generalized inequality constraints

ĝmax Generalized upper bounds
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An Optimal Scheduling Strategy for
Integrated Energy Systems Using
Demand Response
Shunfu Lin, Mengchen Lin, Yunwei Shen* and Dongdong Li

School of Electrical Engineering, Shanghai University of Electric Power, Shanghai, China

With the development of power-to-gas (P2G) technology and demand-response (DR)
technology, new ideas have been proposed for research into the scheduling strategy for
integrated energy systems (IER). Focusing on wind power consumption, this paper
proposes a day-ahead scheduling strategy for IER with P2G equipment, taking into
consideration DR. On the energy consumption side, a demand elasticity matrix is
introduced to describe the user’s participation in DR. On the energy supply side, P2G
equipment is introduced to improve the coupling of electricity and natural gas, and
scenario generation and reduction techniques are introduced to describe the
uncertainty of renewable energy output. The maximum net income of the IER is set as
the objective function. The optimal scheduling scheme of the system was obtained by
solving the scheduling model. The results indicate that the proposed strategy outperforms
the traditional operation and can achieve peak cutting and valley filling, maximize the net
income of the IER operators, promote the consumption of renewable energy and improve
the energy utilization rate of the system.

Keywords: integrated energy system, optimal scheduling strategy, demand response, wind power consumption,
scenario generation and reduction

1 INTRODUCTION

According to the latest report of the National Energy Administration, the proportion of renewable
energy in China has increased significantly, but the accompanying problem of renewable energy
consumption has not been solved. The main goal of the new integrated energy system (IES) is to
improve energy utilization (Yang et al., 2019). At present, it is important to achieve multi-energy
complementarity and improve system flexibility and energy utilization. Determining the optimal
scheduling strategy of the IES has become crucial. The IES involves many devices, and the operation
of different subsystems varies greatly. The high penetration of renewable energy increases the
difficulty of optimizing system scheduling. Taking into account as many factors as possible to
develop an economic, efficient and environmentally friendly scheduling scheme has been a popular
line of research in recent years. Power-to-gas (P2G) and demand-response (DR) technology is
becoming increasingly mature, which brings new ideas for the research into scheduling strategies for
the IES.

At present, most of the research on the optimal scheduling of the IES assumes an economic
perspective. The system scheduling strategy model is established with the goal of minimum cost
or maximum benefit, and the output of each unit under this goal is obtained by solving the
model. A large number of achievements have been made in the research into optimal dispatching
of the IES (Gu et al., 2017a; Ran et al., 2017). The researchers in (Hongjie et al., 2015) describe the
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effect of peak cutting and valley filling by the square of the net
load change rate in adjacent periods. The economic conversion
coefficient is introduced into the economic objective function
of comprehensive cost. This strategy was shown to be effective
in stabilizing net load fluctuation and improving consumption
capacity. Studies (Zhinong et al., 2017; Lin et al., 2019; Khani
and Farag, 2018), respectively, introduce the penalty
mechanism into the objective function and constraint
condition to coordinate the maximum wind power
consumption and the minimum low-carbon economic cost.
In (Zhinong et al., 2017), an improved successive linearization
method is proposed, which speeds up the convergence effect
and improves the solution efficiency. In (Khani and Farag,
2018), the utilization rate of energy is improved. Studies (Liu
et al., 2020; Ran et al., 2017) introduce the concept of an energy
hub and establish an optimization model taking into account
the characteristics of the conversion between electricity, gas
and thermal energy. In (Liu et al., 2020), a day-to-day
optimal economic dispatching model is established to
minimize the operation cost of the micro-energy network.
In (Ran et al., 2017) a two-tier optimization model is
established that not only considers the comprehensive
energy cost, but also takes into account the energy
efficiency, which plays a positive role in the economic
operation and renewable energy consumption.

The studies mentioned above, however, do not consider the
impact of DR on the scheduling. In the scheduling of the IES,
DR technology has been vigorously promoted (Gu et al., 2017b;
Nolan and Malley, 2015). Many scholars have taken into
account DR in their research into the scheduling strategy of
the IES (Wang et al., 2018; YangBotterud et al., 2020; Zhang
et al., 2021). The scheduling model in (Wang et al., 2018;
Huang et al., 2022) takes into account the dynamic
characteristics of the water temperature of the heating
pipeline, transmission delay and loss, and the conversion
characteristics of electric heating demand, which can

achieve the time translation of the power and heat supply-
and-demand curve and the optimal substitution between
power and heat energy. In (Cui et al., 2020) a ground-
source heat pump is introduced and a double-layer
optimization model of source-load coordination is
proposed. The upper model adopts price-based DR to adjust
electricity load, and introduces user satisfaction factor. The
lower model adopts incentive DR to adjust heat load. The
researchers in (HongZhong et al., 2019) proposed the concept
of generalized energy storage resources in the system, making
full use of energy coupling and complementarity. By
integrating and using generalized energy storage
resources, the operation cost can be reduced and the
consumption level can be improved while ensuring the safe
operation of the system. Studies (Ding et al., 2021; Zhang et al.,
2021) propose a comprehensive DR model for electricity, gas
and heat loads to strengthen the coupling relationship between
the three, and realize the horizontal time transfer and
vertical substitution of the three loads. The studies
described here, however, do not take into account the
impact of the uncertainty of renewable energy output on
dispatching.

To overcome these problems, this paper proposes a day-ahead
scheduling strategy for IES that takes into account DR. Based on
the traditional scheduling model, it makes the following
additions:

(1) On the energy consumption side, a demand elasticity matrix
is introduced to describe the user’s participation in the DR;

(2) On the energy supply side, P2G equipment is introduced to
improve the electrical pneumatic coupling of the IES;

(3) Scenario generation and reduction techniques are introduced
to describe the uncertainty of renewable energy output.

The maximum net income of the IES operators is set as the
objective function. The optimal scheduling scheme of the system

FIGURE 1 | The integrated energy system framework.
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is obtained by solving the scheduling model. The results indicate
that the proposed strategy outperforms the traditional operation
and can achieve peak cutting and valley filling, maximize the net
income of the system operators, promote the consumption of
renewable energy and improve the energy utilization rate of the
system.

2 INTEGRATED ENERGY SYSTEM
ARCHITECTURE

In this paper, the IES includes the following units: wind turbine
(WT), photovoltaic (PV) unit, micro-turbine (MT), heat recovery
unit (REC), gas boiler (GB), electric refrigeration (EC) unit,
electrical boiler (EH), absorption refrigerator (AC), P2G
equipment, heat exchanger (HX), battery (BT), natural gas
storage tank (NGS), cold storage tank (CS) and heat storage
tank (HS).

The IES framework is shown in Figure 1. The green line
represents the flow direction of electric energy; the red lines
represent the direction of natural gas transmission; and the blue
and yellow lines represent the direction of cold and heat transfer,
respectively. The left virtual box represents the energy source of
the system, including distributed renewable energy, an external
power grid and a natural gas network. The right virtual box
represents the user’s load, including electricity load, natural gas
load, cold load and heat load. Electricity can be converted into
natural gas through P2G equipment. The electric refrigeration
unit and electrical boiler convert electric energy into cold energy
and heat energy, respectively. The micro-turbine consumes
natural gas to generate electricity. Heat energy produced in the
process is recovered by the heat recovery unit and part of the heat
is supplied to the heat exchanger. The remaining heat is supplied
to the absorption refrigerator to convert into cold energy. The gas
boiler consumes natural gas to produce heat. When energy is
abundant, energy storage devices are used to store energy for
occasional needs.

3 SCHEDULING MODEL OF THE
INTEGRATED ENERGY SYSTEM

3.1 Demand Response
The price-based DR uses time-of-use electricity price to guide
users to adjust load demand to achieve peak cutting and valley
filling, thereby improving the electricity load characteristic. In the

case of time-of-use electricity price, the change of load is
expressed by the price elasticity matrix, which is based on the
price elasticity coefficient of electricity. The elasticity coefficient is
the ratio of the rate of change in demand to the rate of price
change:

εij � ΔQj

Qj
/ΔPj

Pj
(1)

where Qj and ΔQj represent electricity demand and its
adjustment, respectively; and Pj and ΔPj represent electricity
price and its adjustment, respectively. If i = j, εij denotes the
coefficient of self-elasticity, otherwise the cross-elastic coefficient.

According to the price elasticity coefficient, the change of
electricity load expressed by the price elasticity matrix can be
obtained as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ΔQ1/Q1

ΔQ2/Q2

..

.

ΔQn/Qn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ε11 ε12 . . . ε1n
ε21 ε22 . . . ε2n
..
. ..

. ..
.

εn1 εn2 . . . εnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦•
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ΔP1/P1

ΔP2/P2

..

.

ΔPn/Pn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

3.2 Uncertainty of Renewable Energy
Output
Renewable energy output is affected by many factors and presents
uncertainty. To reduce the impact of uncertainty on the
scheduling of the IES, this paper uses an autoregressive
moving average model to generate scenarios of renewable
energy output. The autoregressive moving average model is as
follows:

Pt � ∑R
i�1
aiPt−1 + ei −∑M

i�1
biPt−1 (3)

where ai and bi represent the autoregressive coefficient and
moving average coefficient, respectively; R and M represent

TABLE 1 | Description of the four cases.

P2G Demand response Uncertainty of new
power output

Case 1 Not considered Not considered Not considered
Case 2 Considered Not considered Not considered
Case 3 Considered Considered Not considered
Case 4 Considered Considered Considered

TABLE 2 | The economic parameters of the IER and power grid.

Parameter/(¥/kWh) Value Parameter/(¥/kWh) Value

RP2G 0.28 cmt 0.025
cpv 0.025 cwt 0.029
cbt 0.4 cng 1.1
chs 0.4 ccs 1.1

TABLE 3 | The operating parameters of the equipment in the IER.

Parameter/kW Value Parameter Value

Gas boiler capacity 500 COPAC 1.2
Micro-turbine capacity 500 COPMT 0.35
Heat recovery unit capacity 90 COPREC 0.35
Electrical chiller capacity 200 COPGB 0.9
Electrical heater capacity 200 COPEC 3
Absorption chiller capacity 90 COPEH 3
Power to gas capacity 300 COPP2G 0.6
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the autoregressive order and moving average order, respectively;
and ei represents independent white noise and follows the normal
distribution.

The steps of scenario reduction are as follows：
Step 1: Calculate the geometric distance between each pair

of scenes in the scene set S1; Step 2: Calculate the sum of the
distances between each scene and other scenes, find the scene
with the smallest value and record it as C1; Step 3: Merge the
scenes C1 and C2, which is closest to C1 by geometric
distance, into a new scene and record it as scene C3. The
probability of scene C3 is the sum of the probabilities of
scenes C1 and C2; Step 4: Delete scenes C1 and C2, then add
scene C3 to the scene set S1 to generate a new scene set and
record it as S2.

The new scene set S2 has one fewer scene than S1. The
operations above are repeated until the number of scenes

meets the requirement, and then the scene reduction can be
realized.

3.3 Objective Function
The net income of the operator of the IES includes the revenue
from the sale of energy, the cost of purchasing energy and the
operation cost of the equipment. The formula is as follows:

FUP � max(RE − CBUY − COP) (4)
where RE represents the revenue from the sale of energy to users;
CBUY represents the cost to the operator of purchasing energy;
and COP represents the operation cost of the equipment. Eqs 5–7
provide more details:

RE � ∑T
t�1
[Rt

DLP
t
DL + Rt

GLQ
t
GL + Rp2gQ

t
P2G] (5)

FIGURE 2 | The load curves (left) and the wind turbine and photovoltaic output curves (right).

FIGURE 3 | Operation results of the four cases. FIGURE 4 | Load curves after the demand response in Case 4.
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where RDL and RGL represent the coefficients of return on electricity
and gas sales, respectively; PtDL and Qt

GL represent the amount of
electricity and gas purchased by consumers at time t, respectively;
Rp2g represents the coefficients of P2G equipment; and Qt

P2G

represents the amount of gas converted by the P2G equipment.

CBUY � ∑T
t�1
[ ctbuy,dlPt

PBUY + ctbuy,glQ
t
NGBUY ] (6)

where ctbuy,dl and c
t
buy,gl represent the unit price of electricity and

gas purchased by the system operator at time t, respectively; and

FIGURE 5 | Scenario generation and reduction of the wind turbine output curve in Case 4.

FIGURE 6 | Scenario generation and reduction of the photovoltaic unit output curve in Case 4.

FIGURE 7 | Equivalent wind turbine (left) and photovoltaic unit (right) output curves in Case 4.
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PtPBUY and Qt
NGBUY represent the amount of electricity and gas

purchased by system operators at time t, respectively.

COP � ∑T
t�1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cpvP
t
PV + cwtP

t
WT + cmtP

t
MT

+cbt(Pt
BT_D +

∣∣∣∣∣Pt
BT_C

∣∣∣∣∣)
+cng(Qt

NG_D +
∣∣∣∣∣Qt

NG_C

∣∣∣∣∣)
+ccs(Ht

CS_D +
∣∣∣∣∣Ht

CS_C

∣∣∣∣∣)
+chs(Ht

HS_D +
∣∣∣∣∣Ht

HS_C

∣∣∣∣∣)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

where cpv/wt/mt/bt/ng/cs/hs represent the coefficients of the operating
costs of the equipment corresponding to the subscript; PtMT

represents the micro-turbine output at time t; PtPV and PtWT

represent the photovoltaic and wind turbine output at time t,
respectively; and PtBT/NG/CS/HS_C represent the charging power of
energy storage equipment corresponding to the subscript; and
PtBT/NG/CS/HS_D represent the discharging power of energy storage
equipment corresponding to the subscript.

3.4 Constraint Conditions
3.4.1 Constraints on Energy Supply Equipment
The energy supply equipment includes a gas boiler and
cogeneration device. The operation of the energy supply
equipment must meet certain equation constraints and
inequality constraints:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
HGB_EX � COPGBQGB_EN

PMT � ωMTHREC_EX

HREC_EX � COPRECHREC_EN

PMT +HREC_EN � COPMTQMT_EN

(8)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
PMT_MIN ≤PMT ≤PMT_MAX

−PMT_D ≤Pt+1
MT − Pt

MT ≤PMT_U

QREC_MIN ≤QREC_EX ≤QREC_MAX

QGB_MIN ≤QGB_EX ≤QGB_MAX

−PGB_D ≤Pt+1
GB − Pt

GB ≤PGB_U

(9)

where COPGB represents the conversion efficiency of the gas
boiler; ωMT represents the ratio of the generating power and the
heating power of the cogeneration device; COPREC represents the
conversion efficiency of the heat recovery unit; and COPMT

represents the conversion efficiency of the micro-turbine. As
shown in Eq. 9, the output power of the micro-turbine and
gas turbine meets the upper and lower limit constraints and
climbing constraints. The output power of the heat recovery unit
meets the upper and lower limit constraints.

3.4.2 Constraints on Energy Conversion Equipment
The energy conversion equipment includes an electrical chiller,
an absorption chiller, an electrical heater and a P2G device. The
operation of the energy conversion equipment must meet certain
equation constraints and inequality constraints.

FIGURE 8 | Power balance in Case 1.
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
HEC_EX � COPECPEC_EN

HAC_EX � COPACHAC_EN

HEH_EX � COPEHPEH_EN

QP2G_EX � COPP2GPP2G_EN

(10)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
HEC_MIN ≤HEC_EX ≤HEC_MAX

HEH_MIN ≤HEH_EX ≤HEH_MAX

HAC_MIN ≤HAC_EX ≤HAC_MAX

QP2G_MIN ≤QP2G_EX ≤QP2G_MAX

(11)

where COPEC/EH/AC/P2G represents the conversion efficiency of
the equipment corresponding to the subscript. As shown in Eq.
11, the output power of the electrical chiller, electrical heater,
absorption chiller and P2G device meet the upper and lower limit
constraints.

3.4.3 Constraints on the Battery
The operating condition of battery can be expressed by the stored
energy state. The mathematical model of the battery is as follows:

SOCt
BT � SOCt−1

BT + [ηbt,cPt
BT_C − Pt

BT_D/ηbt,d]Δt (12)
where ηhs represents the self-discharge rate of the battery; ηbt,c
and ηbt,c represent the battery charging and discharging

efficiency, respectively; PBT_C and PBT_D represent the battery
charging and discharging power, respectively; and SOCBT

represents the stored energy state of the battery.
To avoid overcharging and discharging and thus shortening

the service life of the battery, the following constraints are met
during operation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xbt_c · PBT_C,MIN ≤PBT_C ≤Xbt_c · PBT_C,MAX

Xbt_d · PBT_D,MIN ≤PBT_D ≤Xbt_d · PBT_D,MAX

SOCBT_MIN ≤ SOCt
BT ≤ SOCBT_MAX

0≤Xbt_c +Xbt_d ≤ 1∑T
t�1
(Xbt_c +Xbt_d)≤N

(13)

where Xbt,c and Xbt,c are binary variables representing states of
charge and discharge, respectively. The output power and the
stored energy state of the battery meet the upper and lower limit
constraints, respectively. N represents the maximum number of
times the battery can be charged and discharged.

3.4.4 Constraints on the Heat Storage Tank
The mathematical model of the heat storage equipment is as
follows:

FIGURE 9 | Power balance in Case 4.
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Wt
HS � Wt−1

HS (1 − ηhs) + (ηhs,cQt
HS_C − Qt

HS_D/ηhs,d)Δt (14)
where ηhs represents the self-discharge rate of the heat
storage equipment; ηhs,c and ηhs,c represent the efficiency of the
heat storage equipment to absorb and release heat energy, respectively;
QHS_C and QHS_D represent the endothermic and exothermic power
of the heat storage equipment, respectively; and WHS represents the
state of stored energy in the heat storage equipment.

To avoid excessive absorbing and releasing and thus
shortening the service life of the heat storage equipment, the
following constraints are met during operation:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Xhs_c · QHS_C,MIN ≤QHS_C ≤Xhs_c · QHS_C,MAX

Xhs_d · QHS_D,MIN ≤QHS_D ≤Xhs_d · QHS_D,MAX

WHS,MIN ≤WHS ≤WHS,MAX

0≤Xhs_c +Xhs_d ≤ 1

(15)

where Xhs,c and Xhs,c are binary variables representing the
endothermic and exothermic state of the heat storage
equipment, respectively. The output power and the stored
energy state of the heat storage equipment meet the upper and
lower limit constraints, respectively.

Since the mathematical model and the constraints of the
natural gas storage tank and cold storage tank in this paper
are the same as those of the equipment heat storage tank, the
explanation and description are not repeated here.

3.4.5 Power Balance Constraint Conditions
Power balance of four kinds of energy should always be satisfied
during equipment operation. As shown in the following formula:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
PWT + PPV + PMT + PBT_D + PDBUY � PBT_C + PEC_EN + PEH_EN + PP2G_EN + PDL

QP2G_EX + QNG_D + QGBUY � QNG_C + QMT_EN + QGB_EN + QGL

HEC_EX +HAC_EX +HCS_D � HCS_C +HCL

HEH_EX +HREC_EX +HGB_EX +HHS_D � HHS_C +HHL

(16)

where PP2G/EC/EH represents the power consumption of the
equipment corresponding to the subscript; QMT/GB_EN

represents the natural gas consumption of the equipment
corresponding to the subscript; QP2G_EX represents the natural
gas supply of the P2G equipment; HREC/EH/GB_EX represents the
heating power of the equipment corresponding to the subscript;
HEC/AC_EX represents the refrigeration power of the equipment
corresponding to the subscript; andHCL/HL represents the cooling
and heating load.

4 CASE STUDY

For this study, a park-level IES as an example, four cases were set
up, as shown in Table 1. Case 1 does not take into account any
factors. Case 2 takes into account the introduction of P2G
equipment. In Case 3, the influence of DR is considered as
well as the P2G equipment. Based on Case 3, Case 4
introduces scenario generation and reduction to describe the
uncertainty of renewable energy output.

4.1 Basic Data
The economic parameters of the IER and power grid involved in
this study are shown in Table 2, and the operating parameters of
the equipment in the IER are shown in Table 3 (Gu et al., 2020).

The electricity, natural gas, cooling and heating load curves are
shown on the left of Figure 2, and the wind turbine and
photovoltaic outputs are shown on the right.

4.2 Economic Analysis
The CPLEX solver in GAMS is used to solve the optimal
scheduling model. Figure 3 shows the income and cost details
of the IER operators in the four cases.

After the introduction of the P2G equipment (Case 2), the
operation cost increased by ¥50.40, the energy purchase cost of
the system decreased by ¥139.57 and the net income increased by
¥1,197.13. These changes occurred because the surplus wind
turbine and photovoltaic output can be converted into natural
gas through the P2G equipment. It can not only solve the problem
of renewable energy consumption, but also reduce the cost of
natural gas purchased by the system from the natural gas network
and increase the net income of the system.

Compared with Case 2, the system revenue of Case 3 decreased
by ¥129.72, because the user transferred the load during the
period of high electricity price to the period of low electricity price
after participating in the DR. The energy purchase cost was
reduced by ¥235.58, because after the user participated in the
DR, the system achieved peak cutting and valley filling, and the
energy supply pressure was reduced. The cost of purchasing
electricity and natural gas from the external power grid and
the natural gas network was therefore reduced. The operating cost
increased by ¥7.56, and the net income increased by ¥89.26.
Compared with Case 1, the net income of Case 3 increased by
¥1,286.39.

Compared with Case 3, the energy purchase cost of Case 4
decreased by ¥26.37, the operating cost increased by ¥2 and the
net income increased by ¥24.39. These changes occurred because
Case 4 takes into consideration the uncertainty of renewable
energy output. It can further improve the utilization of renewable

FIGURE 10 | Waste rate of wind turbine output in the four cases.
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energy and reduce the purchase cost of external energy.
Compared with Case 1, the net income of case 4 increased by
¥1,310.78.

The results presented above show that Case 4 (i.e., the
proposed strategy), which introduces P2G equipment and
takes into account the user’s participation in the DR and the
uncertainty of wind turbine and photovoltaic output, is
economical and greatly improves the net income of the system.

4.3 Scheduling Plan Analysis
Figure 4 shows the load curves after users participate in the DR in
Case 4. Affected by the energy price, users transfer part of the load
during the period of high electricity prices to the period of
electricity prices, which has a positive effect on peak cutting
and valley filling.

Figure 5 shows 200 output curves of the wind turbine, five
output curves after scenario reduction, and the corresponding
probability of five scenes. Figure 6 shows 200 output curves of the
photovoltaic units, five output curves after scenario reduction,
and the corresponding probability of the five scenes. The output
of the five scenes after scenario reduction is multiplied by their
corresponding probabilities, and the equivalent output curve can
be obtained by summing the five products. Figure 7 shows the
equivalent wind turbine output curve and the equivalent
photovoltaic unit output curve.

By comparing the equivalent output curves with the originally
predicted output curves, one can see that there is a certain gap in
the output. If the dispatching is carried out according to the
original data, there will be an imbalance between supply and
demand.

Figure 8 shows the balance of electric power, natural gas power,
cold power and thermal power in Case 1, and Figure 9 shows the
same balance in Case 4. By comparing Figures 8, 9, one can see that,
in Case 4 (P2G equipment added), the amount of power purchased
from the power grid increases during the period of low electricity
prices. The electric energy is converted into natural gas to supply gas
load through the P2G equipment, and the rest is stored by energy
storage equipment for standby. The amount of natural gas purchased
from the natural gas network is reduced, and the natural gas load
changes from relying only on the natural gas network tomainly on the
P2G equipment. Since the natural gas supply is sufficient, the output
of the gas boiler and micro-turbine increases. Accordingly, the output
of the absorption refrigerator and heat exchanger is also increased.

As the cost coefficient of the photovoltaic unit in this study is
lower than that of the wind turbine, all the output of the photovoltaic
unit has been preferentially consumed, and only the wind energy is
wasted. Figure 10 shows the waste rate of wind turbine output in the
four cases. From Case 1 to Case 4 (i.e., with the introduction of the
P2G equipment, DR technology and scenario generation and
reduction technology), the waste rate gradually decreases. Case 4,
the proposed strategy, has the optimal consumption ability.

5 CONCLUSION

Based on economic principles, this paper introduces a
demand elasticity matrix in the price-based DR. According
to the predicted wind turbine and photovoltaic unit outputs
in the next 24 h, the scenario generation and reduction
technology are used to obtain the equivalent wind turbine
and photovoltaic unit output curves. P2G equipment is
introduced to enhance the electro-pneumatic coupling of
the system. The GAMS solver is used to solve the model
and obtain the optimal energy purchase plan and scheduling
scheme of the energy equipment, the energy conversion
equipment and the energy storage equipment. Taking a
park-level IES as an example, four cases were set up.
Analysis and comparison of the results show that the
proposed strategy performs well in achieving peak
cutting and valley filling, maximizing the net income of
the system operators, promoting the consumption of
renewable energy and improving the energy utilization rate
of the system.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

SL, ML, YS, and DL contributed to conception and design of the
study. SL and YS organized the database. ML performed the
statistical analysis and wrote the first draft of the manuscript. All
authors contributed to manuscript revision, read, and approved
the submitted version.

FUNDING

This work was supported in part by the National Natural Science
Foundation of China (51977127), in part by the project supported
by the Science and Technology Commission of Shanghai
Municipality (19020500800), “Shuguang Program” (20SG52)
supported by Shanghai Education Development Foundation
and Shanghai Municipal Education Commission, “Chen
Guang” project supported by Shanghai Municipal Education
Commission and Shanghai Education Development
Foundation (21CGA64) and Shanghai Sailing Program (No.
21YF1414700) supported by Shanghai Municipal Science and
Technology Commission.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 9204419

Lin et al. An Optimal Scheduling Strategy

104

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


REFERENCES

Cui, Y., Jiang, T., and Wuzhi, Z. (2020). Source Load Coordinated Economic
Dispatch of Regional Integrated Energy System Considering Wind Power
Consumption[J]. Power Syst. Technol. 44 (07), 2474–2483.

Ding, Y., Chen, H., and Wu, J. (2021). Multi Objective Optimal Scheduling of
Electricity Gas Heat Integrated Energy System Considering Comprehensive
Energy Efficiency [J]. Automation Electr. Power Syst. 45 (02), 64–73.

Gu, H., Li, Y., and Yu, J. (2020). Bi-level Optimal Low-Carbon Economic Dispatch
for an Industrial Park with Consideration of Multi-Energy Price Incentives[J].
Appl. Energy 262, 11427. doi:10.1016/j.apenergy.2019.114276

Gu, W., Lu, S., Wu, Z., Zhang, X., Zhou, J., Zhao, B., et al. (2017). Residential CCHP
Microgrid with Load Aggregator: Operation Mode, Pricing Strategy and Optimal
Dispatch[J]. Appl. Energy 205, 173–186. doi:10.1016/j.apenergy.2017.07.045

Gu, W., Wang, J., Lu, S., Loo, Z., and Wu, C. (2017). Optimal Operation for
Integrated Energy System Considering Thermal Inertia of District Heating
Network and Buildings[J]. Appl. Energy 199, 234–246. doi:10.1016/j.apenergy.
2017.05.004

Hongjie, J., Wang, D., and Xu, X. (2015). Study on Some Problems of Regional
Integrated Energy System [J]. Automation Electr. Power Syst. 39 (07), 198–207.
doi:10.7500/AEPS20141009011

HongZhong, L., Yujiao, F., and Xiao, B. (2019). Study on Optimal Operation of
Regional Integrated Energy System Considering Generalized Energy Storage
[J]. Power Syst. Technol. 43 (09), 3130–3138.

Huang, Y., Dan, L., and Yan, G. (2022). Day Ahead Optimal Scheduling
Strategy of Electric Thermal Integrated Energy System Considering Heat
Network Transmission Delay and Heat Storage [J/OL]. Electr. Meas.
Instrum. 1, 1–9.

Khani, H., and Farag, H. E. Z. (2018). Optimal Day-Ahead Scheduling of Power-
To-Gas Energy Storage and Gas LoadManagement inWholesale Electricity and
GasMarkets. IEEE Trans. Sustain. Energy 9 (2), 940–951. doi:10.1109/tste.2017.
2767064

Lin, K., Chen, Z., and Zhang, Y. (2019). Wind Power Consumption and Successive
Linear Low-Carbon Economic Dispatching of Power Gas Interconnection
Network with Power-Gas [J]. Automation Electr. Power Syst. 43 (21), 23–33.

Liu, Z., Liu, R., and Ning, L. (2020). Day Ahead Economic Optimal Dispatching
Strategy of Micro Energy Network from Power to Gas [J]. Trans. China
Electrotech. Soc. 35 (S2), 535–543.

Nolan, S., and Malley, M. (2015). Challenges and Barriers to Demand Response
Deployment and Evaluation[J]. Appl. Energy 152, 1–10. doi:10.1016/j.apenergy.
2015.04.083

Ran, H., Qian, A., and Zhu, Y. (2017). Hierarchical Optimal Scheduling of Regional
Integrated Energy System Based on Energy Hub [J]. Electr. Power Autom.
Equip. 37 (06), 171–178.

Wang,W., Yang, L., andWang, L. (2018). Optimal Dispatching of Electric Thermal
Integrated Energy System Considering the Heat Storage Characteristics of
Heating Network [J]. Automation Electr. Power Syst. 42 (21), 45–52.

Yang, N., Huang, Y., and Dong, B. (2019). Research on Joint Planning Method of
Power Natural Gas Integrated Energy System Based on Multi-Agent Game[J].
Proc. CSEE 39 (22), 6521–6533.

YangBotterud, J., Zhang, N., Botterud, A., and Kang, C. (2020). On an Equivalent
Representation of the Dynamics in District Heating Networks for Combined
Electricity-Heat Operation. IEEE Trans. Power Syst. 35 (1), 560–570. doi:10.
1109/tpwrs.2019.2935748

Zhang, T., Guo, Y., and Li, Y. (2021). Optimal Dispatching of Regional Integrated
Energy System Considering the Response of Electrical and Thermal
Comprehensive Demand [J]. Power Syst. Prot. Control 49 (01), 52–61.

Zhinong, W., Zhang, S., and Sun, G. (2017). Study on Peak Shaving and Valley
Filling of Electricity Gas Interconnected Integrated Energy System Considering
Electricity to Gas [J]. Proc. CSEE 37 (16), 4601–4609+4885.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Lin, Lin, Shen and Li. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 92044110

Lin et al. An Optimal Scheduling Strategy

105

https://doi.org/10.1016/j.apenergy.2019.114276
https://doi.org/10.1016/j.apenergy.2017.07.045
https://doi.org/10.1016/j.apenergy.2017.05.004
https://doi.org/10.1016/j.apenergy.2017.05.004
https://doi.org/10.7500/AEPS20141009011
https://doi.org/10.1109/tste.2017.2767064
https://doi.org/10.1109/tste.2017.2767064
https://doi.org/10.1016/j.apenergy.2015.04.083
https://doi.org/10.1016/j.apenergy.2015.04.083
https://doi.org/10.1109/tpwrs.2019.2935748
https://doi.org/10.1109/tpwrs.2019.2935748
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Multi-Agent Schedule Optimization
Method for Regional Energy Internet
Considering the Improved Tiered
Reward and Punishment Carbon
Trading Model
Tianxiang Li1, Qian Xiao1*, Hongjie Jia1, Yunfei Mu1, Xinying Wang2, Wenbiao Lu1 and
Tianjiao Pu2

1Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin, China, 2China Electric Power Research Institute,
Beijing, China

Regional energy internet (REI) contains massive market agents, whose interests and
objectives vary from each other. In consequence, it is challenging to stimulate the energy
conservation and emissions reduction participation of each agent by the conventional
schedule optimization method. This paper proposes a multi-agent schedule optimization
method for REI considering the improved tiered reward and punishment carbon trading
model. Firstly, the energy flow constraints and device constraints of REI are established.
Secondly, to tighten restrictions on carbon emissions, the relative carbon emission is used
as the criterion to establish the improved tied reward and punishment carbon trading
model. Next, to analyze the real multi-agent game situation in the market, different agents
are classified, and the objective functions are defined based on their revenue. Finally, a
two-layer algorithm is used to solve the above multi-agent model. Simulation results verify
that the proposed method can effectively reduce carbon emissions and significantly
enhance the revenue of the region.

Keywords: carbon trading, multi-agent game, regional energy internet, schedule optimization, reward and
punishment mechanism

1 INTRODUCTION

Low-carbon and environmentally friendly energy production is the foundation of sustainable
development in the world. Therefore, reducing the carbon emissions of energy systems gradually
become a key research work. At present, with the gradual integration of energy systems, the research
in this area mainly focuses on the following two aspects. The first is establishing a detailed carbon
trading system to limit carbon emissions (Zhang et al., 2020), and the second is establishing an
energy internet optimization system to improve energy efficiency (Yu et al., 2016).

Many scholars have made outstanding contributions to the energy internet carbon trading model.
Huang et al. (2021) summarized the research status and application prospect of low carbonization
technology, and respectively refined the carbon emissions reduction removal technologies of energy
supply side and consumption measurement. Li et al. (2021) established a multi-layer key index
system of source-net-network-load, and set a carbon index membership function suitable for central
cities on the premise that the subjective and objective weight deviations were the smallest sum of
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squares. Yuan et al. (2022) introduced carbon capture power
plants, which improved peak regulation capabilities and system
economic benefits for cogeneration units, while the carbon
emissions were reduced. Cui et al. (2021) introduced a
comprehensive and flexible operation mode of carbon capture
power plants on the source site, which was considered on the load
side demand response. This mode explored the dispatching
advantages of the complementary low-carbon characteristics of
the two means, achieving a high degree of wind power
consumption. Li and Niu (2021) summarized the current
technical characteristics of the power system and believed that
the expansion of renewable energy, the early withdrawal of coal
power, the application of carbon capture technology, and the
guarantee of transformation investment need to be handled in the
future energy transition. Cui et al. (2022) proposed a multi-time
scale source-load dispatch method of power system with wind
power considering low-carbon characteristics of carbon capture
power plant, which was able to take advantage of the dispatch of
source-load adjustable resources to achieve low power systems
the goal of carbon economy schedule. However, the above
literature did not put strong restrictions on ultra-high carbon
emissions enterprises, which was not conducive to significant
control of carbon emissions.

Optimizing energy internet operation and reducing energy
consumption is one of the current research priorities. Zhang et al.
(2016) fully considered the characteristics of renewable energy
and the characteristics of user demand response. He proposed a
renewable energy day dispatch method to improve the revenue of
the energy system. Based on the current energy internet operation

model, Zhang et al. (2015) proposed a new energy Internet
optimization model that considered electricity, heat, and gas.
Because of the distribution characteristics of the energy internet,
Xiao et al. (2022) proposed a side-cloud collaborative
architecture. Under this architecture, the system optimization
scheduling was realized by using multi-server layering, and the
rapid scheduling of the energy internet was realized. Bahrami
et al. (2015) and Zhang et al. (2019) extended the demand
response of the traditional power system to the heat and gas
system and proposed an optimal dispatching method that
considered multi-dimensional demand response.
Mohammadian et al. (2021) proposed a data-driven classifier
for extreme outage prediction based on Bayes decision theory,
which can guarantee the optimization effect and significantly
improve the optimization rate of the energy system.
Kamruzzaman et al. (2021) used deep reinforcement learning
to improve the elasticity of the power system and then laid the
foundations for improved energy efficiency and a low-carbon
economy. In the microgrid scenario, Zeng et al. (2019) proposed a
grid optimization and energy management method based on a
deep neural network. Mohsenian-Rad et al. (2010) proposed an
autonomous demand-side management based on game-theoretic
energy consumption scheduling, which provided direction for the
low-carbon transformation of smart grids in the future. Peng et al.
(2021), Wang et al. (2020), and Chen et al. (2019) used the edge
computing method to realize the hierarchical optimization of
energy internet. However, the above literature did not consider
the game relationship between different agents of energy internet
adequately. It is difficult to mobilize the enthusiasm of the energy

FIGURE 1 | Regional energy internet.
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internet to participate in energy conservation and emissions
reduction only by general overall optimization.

To reduce REI’s carbon emissions and enhance the different
agents’ revenue, this paper proposes a multi-agent schedule
optimization method for REI considering the improved tiered
reward and punishment carbon trading model.

Compared with other works, the main contributions of the
paper are summarized as follows.

1) This paper establishes a tiered reward and punishment carbon
trading model for REI, which includes reward zone, ladder
punishment zone, and index punishment zone. The model
can reward enterprises that actively participate in reducing
carbon emissions, and gradually raises the price of carbon to
limit those enterprises that exceed carbon emissions standards.

2) This paper establishes a multi-agent schedule optimization
method considering carbon trading for REI, which considers
the interest demands of different agents in REI. This method
divides all kinds of agents into supply agents, service agents
and user agents. Then it sets up the objective function
according to its actual revenue, which can stimulate the
vitality of agents to participate in emissions reduction and
market competition.

The rest of this paper is organized as follows. Section 2
establishes the REI mathematical model. The proposed tied
reward and punishment carbon trading model is detailed in
Section 3, and the proposed multi-agent schedule
optimization method considering carbon trading is detailed in
Section 4. In Section 5, this paper uses two sets of contrasting
scenes to support the advantages of the proposed model and
method. Finally, some conclusions are given in Section 6.

2 REGIONAL ENERGY INTERNET MODEL
AND MAIN WORK OF THIS PAPER

2.1 Regional Energy Internet Model
The REI model is shown in Figure 1.

There are three external energy suppliers, namely electric supply
company, heat supply company and gas supply company. In the
REI, there are supply agents, service agents and user agents. Supply
agents have gas generators, thermal boilers and gas holders to supply
this region. Service agents have wind turbine generators,
photovoltaic generators, power to gas generators, combined heat
and power generators and gas boilers. Service agents can use these
devices to optimize regional operations. User agents have three kinds

FIGURE 2 | The main work of this paper and the effects.
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of load, there are electric load, heat load and gas load. In this model,
service agents are responsible for optimizing area operation.

2.1.1 Energy Flow Constraints
1) Electric flow constraints can be expressed as follows.

pUBe,t � pESCe,t + pSSe,t + pVSe,t (1)
pVSe,t � pWTG

t + pPGt + pCHP
e,t − pPTGe,t (2)

Where pUBe, t is the electric power of load after demand response at
the time t, pESCe, t is electric power purchased from the electric
supply company at the time t, pSSe, t is electric power purchased
from supply agents at the time t, pVSe, t is electric power offered by
service agents at the time t, pWTG

t is electric power offered by wind
turbine generators at the time t, pPGt is electric power offered by
photovoltaic generators at the time t, pCHP

e, t is electric power
offered by combined heat and power generators at the time t,
pPTGe, t is electric power consumed by power to gas generators at the
time t.

2) Heat flow constraints can be expressed as follows.

pUBh,t � pHSC
h,t + pSSh,t + pVSh,t (3)

pVSh,t � pCHP
h,t + pGBh,t (4)

Where pUBh, t is the heat power of load after demand response at the
time t, pHSC

h, t is heat power purchased from heat supply company
at the time t, pSSh, t is heat power purchased from supply agents at
the time t, pVSh, t is heat power offered by service agents at the time
t, pCHP

h, t is heat power offered by combined heat and power
generators at the time t, pGBh, t is heat power offered by the gas
boiler at the time t.

3) Gas flow constraints can be expressed as follows.

pUBs,t � pPSCs,t + pSSs,t + pVSs,t (5)
pVSs,t � pPTGs,t − pCHP

s,t − pGBs,t (6)
Where pUBs, t is the gas power of load after demand response at the
time t, pPSCs, t is gas power purchased from gas supply company at
the time t, pSSs, t is gas power purchased from supply agents at the
time t, pVSs, t is gas power offered by service agents at the time t,
pPTGs, t is gas power offered by the power to gas generators at the

time t, pCHP
s, t is gas power consumed by combined heat and power

generators at the time t, pGBs, t is gas power consumed by the gas
boiler at the time t.

2.1.2 Device Constraints
1) Power to gas generators constraints can be expressed as

follows.

pPTGs,t � ηPTGpPTGe,t (7)
0≤ pPTGe,t ≤ pPTGmax (8)

Where ηPTG is the efficiency of the power to the gas generators,
pPTGmax is the maximum input power of the power to gas generators.

2) Combined heat and power generators constraints can be
expressed as follows.

pCHP
e,t � ηCHP

e pCHP
s,t (9)

pCHP
h,t � ηCHP

h pCHP
s,t (10)

0≤ pCHP
s,t ≤ pCHP

max (11)
Where ηCHP

e is the electric efficiency of the combined heat and
power generators, ηCHP

h is the heat efficiency of the combined heat
and power generators, pCHP

max is the maximum input power of the
combined heat and power generators.

3) Gas boiler constraints can be expressed as follows.

pGBh,t � ηGBpGBs,t (12)
0≤ pGBs,t ≤ p

GB
max (13)

Where ηGB is the efficiency of the gas boiler, pGBmax is the maximum
input power of the gas boiler.

4) Wind turbine generators constraints can be expressed as
follows.

0≤ pWTG
t ≤ pWTG

fore,t (14)

FIGURE 3 | Traditional carbon trading model.

FIGURE 4 | The proposed tiered reward and punishment carbon
trading model.
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Where pWTG
fore, t is current wind turbine generators forecast power at

the time t.

5) Photovoltaic generators constraints can be expressed as
follows.

0≤ pPGt ≤ pPGfore,t (15)
Where pPGfore, t is current photovoltaic generators forecast power at
the time t.

2.2 Main Work of This Paper
To solve the problems of high carbon emissions and insufficient
enthusiasm of all agents in the REI, this paper proposes the
improved tiered reward and punishment carbon trading model
and the multi-agent schedule optimization method considering
carbon trading. As shown in Figure 2, the carbon trading model
rewards and punishes counterpart enterprises, which achieves the
goal of reducing carbon emissions. The multi-agent gamemethod
can consider the subjectivity of different agents participating in
energy conservation and emissions reduction, which achieves the
goal of reducing carbon emissions and enhancing revenue. The
connection between the two parts is as follows. The carbon
trading model helps the multi-agent method control carbon
emissions, and the multi-agent game method helps the carbon
trading model mobilize the enthusiasm of different subjects to
participate in energy conservation and emission reduction.

3 THE TIED REWARD AND PUNISHMENT
CARBON TRADING MODEL

The traditional carbon trading model often punishes and rewards
carbon trading in a single-priced monopoly, which is not
conducive to mobilizing the enthusiasm of all kinds of agents
in the market to participate in energy conservation and emissions
reduction. The traditional carbon trading model is shown in
Figure 3.

This traditional model will enable some enterprises to
arbitrage revenue from it. For example, if the revenue of one
enterprise emitting a unit of carbon dioxide is greater than the
benchmark price of carbon emissions per unit k, this model does
nothing to limit the enterprise’s carbon emissions!

Therefore, to stimulate the enthusiasm of stakeholders in the
energy market to participate in energy conservation and
emissions reduction, the improved tiered reward and
punishment carbon trading model is proposed in this paper,
which is shown in Figure 4.

E � Er − Eg (16)
In Figure 4, the horizontal axis E is the relative carbon
emission for the entire simulation period, which can be
calculated by the formula (Zeng et al., 2019), and the
vertical axis P is the carbon price per unit given by the
government. In formula (Zeng et al., 2019), Er is the actual
carbon emissions of the enterprise, Eg is the free carbon
emissions of the enterprise. The reward and punishment
carbon trading model include reward zone, ladder
punishment zone and index punishment zone. The reward
zone can reward enterprises with lower carbon emissions on a
tiered basis. In the same way, the ladder punishment zone can
punish enterprises with higher carbon emissions at different
levels. And the index punishment zone can limit enterprises
with extremely high carbon emissions.

Compared with the traditional carbon trading model, the
improved tiered reward and punishment carbon trading model
has the following advantages:

1) It can reward or punish enterprises with different carbon
emissions at different levels, which can mobilize the
enthusiasm of enterprises to participate in energy
conservation and emissions reduction.

2) It can eliminate the possibility of some high-carbon emissions
enterprises profiting from it.

3.1 Reward Zone
When an enterprise’s relative carbon emission E is less than
zero, it means this enterprise’s actual carbon emissions Er
under the free carbon emissions of the enterprise Eg. On this
occasion, this enterprise should be rewarded. The reward
amount should be determined by the enterprise’s relative
carbon emission E. This paper divides the reward zone into
three levels. The carbon price per unit P can be calculated as
follows.

FIGURE 5 | Multi-agent game relationship diagram.
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P �
⎧⎪⎨⎪⎩ −kα1 −v ≤E < 0;

−kα2 −2v ≤E < − v;
−kα3 −3v ≤ E < − 2v.

(17)

Where k is the benchmark price of carbon emissions per unit, αk
(k =1, 2, 3) is the carbon emissions incentive factor, v is the
carbon emissions classification unit.

The cost of carbon emissions Cco2 can be calculated as follows.

Cco2 �
⎧⎪⎨⎪⎩ −k[α1(−E)] −v ≤E < 0;

−k[α1v + α2(−E − v)] −2v ≤E < − v;
−k[α1v + α2v + α3(−E − 2v)] −3v ≤E < − 2v.

(18)

In the reward zone, the carbon price per unit given by the
government and the cost of carbon emissions is negative. That
means this enterprise is rewarded for reducing carbon
emissions.

3.2 Ladder Punishment Zone
When an enterprise’s relative carbon emission E is more than
zero, it means this enterprise should be punished for its carbon
emissions. If the enterprise’s carbon emissions are less than the
set standard 3v in the meantime, its carbon price will fall into the
ladder punishment zone. This paper divides the ladder
punishment zone into three levels. The carbon price per unit
P can be calculated as follows.

P �
⎧⎪⎨⎪⎩ kβ1 0≤E < v;

kβ2 v ≤E < 2v;
kβ3 2v≤E < 3v.

(19)

Where βk (k = 1, 2, 3) is the carbon emissions punishment factor.
The cost of carbon emissions Cco2 can be calculated as follows.

Cco2 �
⎧⎪⎨⎪⎩ kβ1E 0≤ E < v;

k[β1v + β2(E − v)] v ≤E < 2v;
k[β1v + β2v + β3(E − 2v)] 2v ≤ E < 3v.

(20)

In the ladder punishment zone, the carbon price per unit
presents a ladder distribution. That means this enterprise is
punished for carbon emissions, and the price of the
punishment varies with the amount of carbon emitted.

3.3 Index Punishment Zone
When an enterprise’s relative carbon emission E is more than
3v, it means that the enterprise’s carbon emissions seriously
exceeded the standard. In this case, the punishment must be
increased to ensure the environmental protection of the energy
system. Therefore, this paper sets up an index punishment zone.
In this zone, the carbon price per unit P can be calculated as
follows.

P � kβ3e
(E−3v) (21)

The cost of carbon emissions Cco2 can be calculated as follows.

Cco2 � k⎡⎢⎢⎢⎢⎢⎣β1v + β2v + β3v + ∫E−3v

3v
β3e

(E−3v)dE⎤⎥⎥⎥⎥⎥⎦ (22)

In the index punishment zone, the carbon price per unit
presents exponential growth.

4 THE MULTI-AGENT SCHEDULE
OPTIMIZATION METHOD CONSIDERING
CARBON TRADING
There are many different types of agents in REI, and the general
optimization of REI operation is not conducive to mobilizing the
enthusiasm of all agents to participate in energy conservation and
emissions reduction. According to the characteristics of different
agents in REI, various agents are divided into supply agents,
service agents and user agents. Then the objective function is set
according to their actual interests, and an optimization
scheduling method considering multi-agent carbon trading is
proposed. The interests of each agent are affected by the policies
of other agents. The game relationship of the three types of agents
is shown in Figure 5.

4.1 Supply Agents
Supply agents refer to all market agents who profit by producing
and selling energy. Their main feature is that they have energy
production facilities. Their revenue is mainly influenced by the
number of purchases by lower-level buyers and the cost of energy
production. When such supply agents are optimized, their energy
comprehensive revenue can be maximized by adjusting their
price to service agents and their energy supply project. Supply
agents’ objective function IS can be calculated as follows.

IS � max(ISSale − CSS − CSC − CCO2) (23)
Where ISSale is the supply agents’ revenue of energy sales, CSS is
the supply agents’ cost of energy production, CSC is the comfort
cost of supply agents. They can be calculated as follows.

ISSale � ∑T

t�1δ
SS
t p

SS
t Δt (24)

Where t is current simulation time, T is total simulation time, δSSt
is energy sale price from supply agents at the time t, pSSt is the
amount of energy sale power from supply agents at the time t, Δt
is the length of simulation time.

TABLE 1 | Supply agents’ price limit.

Types of energy Maximum (USD/MW) Minimum (USD/MW)

Electricity 115 0
Heat 110 0
Gas 110 0

TABLE 2 | Service agents’ price limit.

Types of energy Maximum (USD/MW) Minimum (USD/MW)

Electricity 90 85
Heat 90 85
Gas 90 85
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CSS � ∑T

t�1
⎡⎣∑

m∈M
(γSSm pSSm, tΔt + εSSm p

SS
m, tΔt)⎤⎦ (25)

Where m is the current device number, M is the gathering of all
supply agents’ devices. γSSm is the service cost per unit of devicem,
which usually includes equipment maintenance, sewage
treatment and so on. εSSm is the product cost per unit of device
m. pSSm, t is the power of device m at the time t.

CSC � ∑T

t�1k1
⎡⎢⎣(δSSt

δ
)k2

− 1⎤⎥⎦ (26)

Where k1 is the product coefficient of comfort for supply agents,
k2 is the index coefficient of comfort for supply agents, δ is the
average market energy price.

Supply agents’ revenue is affected by various market factors.
Supply agents can change their price to service agents δSSt and
supply project pSSm, t to enhance their revenue.

4.2 Service Agents
Service agents refer to all market agents who profit from energy
conversion and dispatching. Their main feature is that they have
power to gas, gas boiler and other energy conversion equipment.
Their revenue is influenced by market conditions, equipment
performance and other agents’ policies. When service agents are
optimized, their energy comprehensive revenue can be
maximized by adjusting their energy purchasing power, energy
selling price and conversion strategy. Service agents’ objective
function IV can be calculated as follows.

IV � max(IVSale − CVS − CVC − CVB − CCO2) (27)
Where IVSale is the service agents’ revenue of energy sales,
CVS is the service agents’ cost of equipment maintenance,
CVC is the service agents’ comfort cost, CVB is the service
agents’ cost for purchasing energy. They can be calculated as
follows.

IVSale � ∑T

t�1δ
VS
t pVSt Δt (28)

Where δVSt is energy sale price from service agents at the time t,
pVSt is the amount of energy sold power from service agents at the
time t.

CVS � ∑T

t�1
⎛⎝ ∑

u∈U
γVSu pVSu,tΔt⎞⎠ (29)

Where u is the current device number, U is the gathering of all
service agents’ devices. γVSu is the service cost per unit of device u,
which usually includes equipment maintenance, energy efficiency
conversion and so on. pVSu, t is the power of device u at the time t.

CVC � ∑T

t�1k3
⎡⎢⎣(δVSt

δ
)k4

− 1⎤⎥⎦ (30)

Where k3 is the product coefficient of comfort for service agents,
k4 is the index coefficient of comfort for service agents, δ is the
average market energy price.

CVB � ∑T

t�1δ
SS
t p

VB
t Δt (31)

Where pVBt is the amount of energy buying power from supply
agents at the time t.

Service agents can change their price to user agents δVSt , service
project pVSu, t and the amount of energy buying power from supply
agents pVBt to enhance their revenue.

4.3 User Agents
User agents refer to all market agents who benefit in other ways.
They usually act as a user of energy rather than participating in
energy production and transmission activities. In the process of
energy optimization, the minimum energy purchase cost of the
user agents is considered. User agents’ objective function IUS can
be calculated as follows.

IUS � min(CUB + CUC + CUCT) (32)
Where CUB is the user agents’ cost of buying energy, CUC is the
user agents’ comfort cost, CUCT is the carbon limits cost of user
agents. They can be calculated as follows.

CUB � ∑T

t�1δ
VS
t pUBt Δt (33)

Where pUBt is the amount of energy buying power from service
agents at the time t. In this paper the user agents can only
purchase energy from the service agents, so pUBt is the same as the
actual load after the demand response.

TABLE 3 | Device parameters.

Types of devices Efficiency Service cost (USD/MW) Maximum power (MW)

Power to gas 0.80 4 1.50
Combined heat and power (heat efficiency) 0.65 3 1.05
Combined heat and power (electric efficiency) 0.25 3 0.30
Gas boiler 0.90 6 3.00

TABLE 4 | Carbon trading scenes.

Scene
number

Scene description

1 No carbon trading model
2 The traditional carbon trading model (Figure 3)
3 The improved tiered reward and punishment carbon trading

model (Figure 4)
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CUC � ∑T

t�1[ y
2Lt

(pUBt )2 − ypUBt + y
2
Lt] (34)

Where y is the comfort coefficient of user agents, Lt is the initial
load before the demand response.

CUCT � ∑T

t�1k5(CCO2)k6 (35)
Where k5 is the product coefficient of carbon limits for user
agents, k6 is the index coefficient of carbon limits for user agents.
Although carbon emissions are not directly emitted by users, the
energy consumption of users has a great influence on the carbon
emissions of the park. Therefore, this paper uses CUCT to limit
user agents’ energy consumption.

User agents can change their amount of energy buying power
from service agents pUBt to reduce its’ cost.

4.4 Optimization Calculation Method
Multi-agent game is different from multi-objective optimization.
It is not simply to pursue maximum comprehensive revenue. It is
trying to find a stable operating point where no one can enhance
his revenue by chance himself. This feature can be expected as
follows.

i ∈ O, aij ∈ Ai, s ∈ S (36)
Where i is the current agent, O is the gathering of agents in the
REI, aij is agent i ’s action j, Ai is the gathering of agent i ’s

FIGURE 6 | Renewable energy and load data.

TABLE 5 | Carbon trading results.

Scene number Carbon emissions (t) Cost of carbon
emissions (USD)

Comprehensive revenue (USD)

1 12.29 0 5,246.64
2 12.21 347.25 4,905.01
3 12.05 498.21 4,776.63

TABLE 6 | Game scenes.

Scene number Consider electric game Consider heat game Consider gas game

1 × × ×
2 × √ ×
3 × √ √
4 √ √ √

FIGURE 7 | Comparison of carbon emissions.
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TABLE 7 | Game results.

Scene number Energy
sales revenue (USD)

Carbon emissions (t) Comprehensive revenue (USD)

1 997.72 12.66 434.22
2 1,053.16 12.40 504.29
3 5,056.96 12.38 4,509.06
4 5,274.84 12.05 4,776.63

FIGURE 8 | Comparison results.

FIGURE 9 | Multi-agent results.
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actions, s is a current station, S is the gathering of stations in
the REI.

At Station s, if Satisfies

∀i ∈ O,∀aij ∈ Ai (37)
Ia

i
p

i ≥ I
aij
i (38)

Then (a1* , a2* , . . . , ai*, . . .) is the equilibrium solution at station s.
Where I

ai′
i is agent i ’s revenue at actor ai*, I

aij
i is agent i’s revenue

at actor aij.
Considering that the multi-agent game process of REI is

complex, this paper divides the whole operation optimization
process into the following two parts: the upper price game and
the bottom device game. The algorithm can be expressed as
follows.

5 SIMULATION RESULT

To verify the superiority of the proposed method, this paper
establishes an REI for simulation which includes supply,
service and user agents. Supply agents possess electric
generators, gas holders and thermal boilers. Service agents
possess wind turbine generators, photovoltaic generators,
combined heat and power generators, power to gas
generators and gas boilers. User agents include electric, gas
and heat load. The energy flow model and device model are
shown in Section 2. This paper sets the simulation time as
24 h, and the time interval as 1 h. To ensure the rationality of
the simulation results, the price needs to be limited. Supply
agents’ price limit is shown in Table 1, and service agents’ price
limit is shown in Table 2. At the same time, the efficiency
should be set, unit service cost, and maximum output
power constraints of the various device according to the
situation of the region. Device parameters are shown in
Table 3. Parameters in the carbon trading model are shown
in Table 4.

The renewable energy forecast value and initial load value are
shown in Figure 6. This paper sets that the output power of
renewable energy in the REI cannot exceed its predicted value. At
the same time, the demand response in this paper is in the form of
an interruptible load, so the actual user load value cannot exceed
the initial value.

To fully explain that the proposed improved tiered reward and
punishment carbon trading model and the proposed multi-agent
game method in this paper are beneficial to the REI, this paper
sets up a simulation scenario under the principle of control
variables. In section 5.1, considering three kinds of energy
games, only the carbon trading model for simulation is
changed; in section 5.2, considering the proposed tiered
reward and punishment carbon trading model, only the game
energy types for simulation are changed. The other parameter
settings of the two sets of scenes are the same.

5.1 Carbon Trading Scenes Analysis
To verify the advantages of the proposed tiered reward and
punishment carbon trading model, this paper sets up three
scenes which are shown in Table 4 for comparison.

In Table 4, there are 3 scenes to simulate. In scene 1, the
carbon trading model is not considered, which means the
revenue of the whole region will not be affected by carbon
emissions; in scene 2, the traditional carbon trading model in
Figure 3 is considered; in scene 3, the improved tiered reward
and punishment carbon trading model in Figure 4 is
considered.

The simulation results are shown in Table 5.
The comparison of carbon emissions is shown in Figure 7.
In Table 5 and Figure 7, the results indicate that: from scene 1

to scene 3, carbon emissions significantly decrease by about 2.2%,
which illustrates the method proposed in this paper is useful to
control carbon emissions. But the cost of carbon emissions
rises, which makes the comprehensive revenue decrease. This
is an accepted thing. Controlling carbon emissions will reduce
revenue.

5.2 Game Scenes Analysis
To verify the advantages of the proposed multi-agent game
method, this paper sets up 4 scenes which are shown in
Table 6 for simulation. In Table 6, there are 4 scenes to
simulate: in scene 1, supply agents, service agents and
user agents only focus on immediate revenue, do not
consider the impact of other market players; in scene 2,
each agent only considers heat game; in scene 3, consider
heat and gas game; in scene 4, consider electric, heat and
gas game.

The simulation results are shown in Table 7.
The comprehensive revenue and carbon emissions are shown

in Figure 8.
In Table 7 and Figure 8, the results indicate that as more types

of energy games are considered, the higher the energy sales
revenue. That’s because when taking the energy game out of
the equation, supply agents and service agents only consider
immediate revenue. At this moment, these agents do not
analyze market conditions for an inflated price, which makes
the region’s energy sales revenue fall instead. When considering
fewer types of energy games, the carbon emissions go up, this is
because users do not consider the market game, blindly
reducing the demand response, increasing the total energy
consumption, thus making carbon emissions up. Compared
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with scene 1, in scene 4, carbon emissions significantly decrease
by about 5.1%.

More carbon emissions make the cost of carbon emissions rise,
plus with the influence of energy sales revenue, both of them
make comprehensive revenue decline.

5.3 Game and Device Results Analysis
Multi-agent game results are shown in the Figure 9.

In Figure 9, the changing user loads make supply agents’ and
service agents’ prices change with time. Heat price is always very
high (the upper limit is often reached), this is because the heat
demand in this paper is large. For service agents, the revenue of
increasing the price is higher than the losses of the comfort
function. In contrast, natural gas demand in this REI is low,
reducing the price to increase the comfort function brings more
revenue.

Device optimization results are shown in Figure 10.
In Figure 10, the results indicate that: WTG generators’

power and PV generators’ power are almost the same as
predicted, this is because renewable energy is given priority
in this paper. CHP generators are used when renewable energy
cannot meet system requirements and there is a simultaneous
thermoelectric demand. As for service agents, it is cheaper to
supply heat through GB generators than buy it from supply
agents. As opposed to this, P2G generators are not being used
because it is inefficient. Demand response exists for all three
energy sources at any one time, the demand response is
affected by load type, energy price and renewable energy
power. When the initial load is high, user agents need to

bear higher energy costs, so they will increase demand
response. The gas load at each time is low, that is, why gas
demand response is low.

6 CONCLUSION

To reduce REI’s carbon emissions and enhance the different
agents’ revenue, this paper proposes a multi-agent schedule
optimization method considering the improved tiered reward
and punishment carbon trading model. The advantages of this
method are as follows.

1) The proposed improved tiered reward and punishment
carbon trading model can reward or punish enterprises at
different levels to reduce carbon emissions. Considering
the game, this paper only changes the carbon trading
model for simulation, and the results show that
compared with the traditional model, the proposed
model can reduce carbon emissions by about 1.3% in
the REI.

2) The proposed multi-agent schedule optimization method
can stimulate the energy conservation and emissions
reduction participation of each agent to reduce carbon
emissions and enhance revenue. Considering the
improved tiered reward and punishment carbon trading
model, this paper only changes the game energy types for
simulation, and the results show that compared with the
non-game method, this method can reduce carbon emissions

FIGURE 10 | Device optimization results.
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by about 5.1% and significantly enhance the revenue of
the REI.

Nevertheless, the different carbon emissions of the different
devices are not considered in this paper. This will be the focus of
future work.
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Improving Power Grid Resilience
Under Extreme Weather Conditions
With Proper Regulation and
Management of DERs—Experiences
Learned From the 2021 Texas Power
Crisis
Weiqi Pan and Yang Li*

Department of Electrical Engineering, Southeast University, Nanjing, China

Due to climate change in the past few decades, extreme weather conditions have become
more frequent and caused power outages with enormous damage to the well-being and
the economy. Affected by extremely cold weather, the 2021 Texas power crisis deployed
the most significant firm load shedding in US history, costing the economy $10 billion to
$20 billion via direct and indirect loss. The North American Electric Reliability Organization
(NERC), Federal Energy Commission (FERC), and other literature studies conducted post-
event analysis from the perspective of conventional power systems’ planning and
operation, and little discussion was made on the distributed energy resources (DERs).
Based on the actual data on the 2021 Texas power crisis, this study analyzed the role of
DERs in this event and showed the importance of effective regulation and management in
improving power grid resilience under such extreme weather conditions.

Keywords: grid resilience, extreme weather, power crisis, DERs, regulation and management

1 INTRODUCTION

In the past few decades, extreme weather conditions have occurred frequently due to climate change.
Such weather conditions pose challenges to the power system reliability and have become the leading
causes of large-scale power outages, causing enormous damage to the well-being and the economy
(Jufri et al., 2019). From February 8th to 20th, 2021, the severe winter storm Uri swept across Texas
and the south-central areas in the US and caused the 2021 Texas power crisis in the bulk electric
system (BES) operated by the three independent system operators and regional transmission
organizations (ISO/RTOs), namely, the Electric Reliability Commission of Texas (ERCOT), the
Southwest Power Pool (SPP), and the Midcontinent Independent System Operator (MISO) (Federal
Communications Commission, 2021).

In the south-central US, this event is the fourth major power system event caused by extreme
weather conditions over the past 10 years, following the event in February 2011, January 2014, and
January 2018. As shown in Figure 1, the 2021 Texas power crisis is more destructive and long-lasting
than the previous cold weather events (Sperstad et al., 2020). Figure 1A shows the lowest
temperature is 28°C below the average daily local temperature, and the largest unavailable
generation due to cold weather is over 60 GW during the event in the affected area. Meanwhile,
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Figure 1B shows the high magnitude and the long-lasted time of
the power interruption in the 2021 event as compared to the
previous events. It needs to be noted that the manual firm load
shed is the largest in US history over 24 GW, and a few areas were
without power for 4 days (Federal Energy Regulatory
Commission, 2021).

Regarding the unprecedented damaging results and negative
cascading impacts, the 2021 Texas power crisis has drawn
significant attention from the both power industry and
academia. The North American Electric Reliability
Organization (NERC) and the affected ISO/RTOs have already
published the official reports revealing the event’s details. In
addition, the Federal Energy Commission (FERC) has
investigated and released an official report (Midcontinent
Independent System Operator, 2021a; Southwest Power Pool,
2021a; the University of Texas at Austin and Energy Institute,
2021). The official reports attribute the direct reasons for massive
generation outages to the inadequate winter operation
preparedness of generation units and natural gas production
infrastructure. Meanwhile, in academia, researchers have
examined this event from multiple aspects. Busby et al. (2021)
analyzed the subsequent cascading effects after load shedding on
Texas’ economy and politics. Yan et al. (2021) showed the
importance of power grid safety management, emergency
response, power grid differentiation planning, and emergency
material reserves in preventing such power system outages under
extreme weather conditions. Wu et al. (2021) quantitatively
provided access to the impact of generator weatherization,
demand response, and energy storage on mitigating this power
outage. Zhang et al. (2022) identified this event as the energy
insufficiency-caused power outages which are primarily caused
by the insufficient fuel supply of natural gas. Hence, official
reports and the literature analysis of this event are provided
from the perspective of conventional power systems’ planning
and operation.

Meanwhile, in south-central US systems which had a high
penetration of renewables, natural gas generators take major
responsibilities in maintaining the real-time balance between
power supply and demand. However, as those generators are

expensive, their limited capacity can hardly cope with the
increased uncertainties from both supply and demand sides in
the near future. In addition, for long-lasting extreme weather
conditions such as in February 2021, natural gas generators may
suffer from the issue of gas supply as what has happened in the
2021 Texas power crisis. It should be noted that the coordinated
control of flexible distributed energy resources (DERs) can help
maintain the supply and demand balance; the long-term
regulations and management of DERs can also be useful in
facilitating the system operation in long-lasting extreme
weather conditions. However, little discussion was made on

FIGURE 1 |Consequence diagrams comparing the four power outages in the previous 10 years in south-central US by unavailable generation VS tempearture (A),
and interrupted power VS interruption duration (B).

FIGURE 2 | Areas affected by this event.
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the regulation and management of DERs under extreme weather
conditions.

Hence, based on the actual data on the 2021 Texas power
crisis, this study analyzes the importance of effective regulation
and management of DERs in improving power grid resilience
under such extreme weather conditions. The rest of this article is
organized as follows: Section 2 describes the event timeline and
detailed facts. Section 3 analyzes the problem and potential
effects from the perspective of regulation and management of
DERs. Section 4 concludes this article.

2 EVENT SUMMARY

2.1 Basic Information of the Affected Region
In the US, threemain interconnections, the Eastern Interconnection,
the Western Interconnection, and ERCOT, connect the regional
grids in a physical network structure and conduct the cross-regional
transmission for reliability and commercial purposes. The
interconnections operate independently with limited electricity
transmission capacity between them. The power systems affected
in this event include the areas operated by ERCOT, SPP, and MISO.
Their regions are as shown in Figure 2, and the event-related data
are shown in Table 1.

The ERCOT serves 90% load in Texas. As shown in Table 1,
the installed generation capacity in the ERCOT is over 100 GW
(Climate Central, 2014). SPP serves 14 states in the central US
with over 94 GW generation capacity (Midcontinent
Independent System Operator, 2021b). MISO serves 15 states
across the central US with over 198 GW generation capacity
(Electric Reliability Council of Texas, 2020). However, only the
south part of MISO with 42 GW installed generation capacity was
affected in the event. Meanwhile, the ERCOT has limited
interstate transmission capacity and operates independently
from the US Eastern Interconnection and US Western
Interconnection. The total transmission capacity was
1220 MW, which only accounts for 1.8% of the system peak
load (Electric Reliability Council of Texas, 2022a). Thus, its
maximum load shed reaches 20,000 MW and lasts 70 h.
Different from ERCOT, SPP and MISO are connected by the
193 transmission lines and are jointly connected to the Eastern
Interconnection, which provides sufficient transmission
availability (Southwest Power Pool, 2021b). Thus, their
maximum load shed and duration are significantly lower.

As for the regulation, the independent agency FERC is
responsible for regulating the interstate transmission and
wholesale of the electricity market and the interstate
commerce and transportation of the oil and gas market.

Oversight by FERC, the NERC is responsible for improving
the reliability and security of the power systems over the
nation. The specific duties include developing and enforcing
the reliability standards, monitoring BES, and assessing the
system adequacy annually. The regional electricity, gas, and oil
retail services are regulated through the public utility
commissions or equivalent. For instance, within Texas, the
electricity market is mainly regulated by the Public Utility
Commission of Texas (PUCT), and the intrastate oil and gas
industry is regulated by the Railroad Commission. It is noticeable
that because of the relative independence of ERCOT, the
electricity market is largely unregulated by FERC rules.

2.2 Timeline of the Event
The cold weather-related power outage (the 2021 Texas power
crisis) caused cascading damages to over 4.5 million people, and
at least 210 people were dead due to power shortage-related
reasons (Federal Energy Regulatory Commission, 2021).
According to the Federal Reserve Bank of Dallas (FRBD), this
event costed the economy $10 billion to $20 billion via direct and
indirect loss (Federal Reserve Bank of Dallas, 2021). For the BES
reliability, 1045 individual BES generating units, with a combined
nameplate capacity of over 192 GW in ERCOT, SPP, and MISO,
experienced over 4000 times of outages, derates, and failures to
start; several transmission lines tripped or had congestion
problems; the curtailed load was not fully restored until the
temperature rose after February 19th.

The worsening situation of the power grid operation was
related to the dropping temperature (Eskandarpour et al.,
2017). In this event, the extreme weather condition has two
distinct characteristics. First, the below-average freezing
temperature lasted relatively long, from February 8th to
February 18th. Second, the temperature was much lower than
the historical average daily temperature. Specifically, the climate
was mild in early February with an average temperature of 15°C in
the south-central US. From February 8th to 14th, the average
temperature dropped to 0°C, and some regions experienced
extreme weather conditions such as freezing rains or
snowstorms. The severe cold weather lasted until the 18th,
when the average temperature dropped as low as −20°C
(Wundergroud, 2022).

With the clear deviation of weather conditions along with the
event process, this study examines the performance of the power
grid under different phases based on weather conditions.

2.2.1 Phase 1 (Early February to February 8th)
By early February, ERCOT, SPP, andMISO were already aware of
the upcoming extreme weather conditions in the mid-February

TABLE 1 | Comparison of the affected ISO/RTOs in the 2021 Texas power crisis.

Region Installed capacity (MW) Peak load in winter
2021 (MW)

Maximum load shed
capacity (MW)

Duration (h)

ERCOT 104,500 69,871 20,000 70
SPP 94,648 43,661 2,718 5.3
MISO South 41,865 29,946 700 14.3
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and had issued winterization preparation notices to the system
generator owners (GOs), generator operators (GOPs),
transmission owners (TOs), and transmission operators
(TOPs), suggesting a series of preparation actions, including
updating the information of the generation capacity, checking
the fuel supply, and implementing the winterization preparation
process based on the generation type (Electric Reliability Council
of Texas, 2021a).

In response to the alert, all types of generators declared a series
of winter operation preparedness actions. According to the
record, the response actions of the wind generators included
performing annual service and winterization checks, canceling
planned maintenance, and ordering additional nitrogen for
maintaining the hydraulic braking system; the response actions
of the solar units included preparing inverters by checking the
functionality of heaters and ensuring adequate temperature
settings and functioning alarms; the response actions of
natural gas-fired units included checking freeze protection,
checking natural gas inventories and placing natural gas
commodity order in advance, and testing heating supplies and
protective equipment (Federal Energy Regulatory Commission,
2021).

Meanwhile, the natural gas production infrastructures, closely
coupled with the natural gas-fired generation units, also declared
the winterization preparations. The preparations mainly focused
on freezing protection, fluid management, and staffing
communications for the natural gas production side. A few
gas production facilities shut down before the event in the
case of potential freezing issues. The preparations focused on
the electric power supply, equipment maintenance, and
personnel deployment for the natural gas-processing side. The
pipeline facilities focused on the storage activity reports and
arranging staffing at critical field operations.

2.2.2 Phase 2 (February 8th to February 14th)
As the temperature decreased, the load demand for heating
increased sharply. With an average daily electricity demand
increase of 18% from February 9th to February 14th, the

electricity demands in affected areas were approaching the
historical peak of wintertime by the end of Phase 2 (Electric
Reliability Council of Texas, 2021c). Meanwhile, affected by the
extreme weather conditions, the generation capacity on the
supply side began declining. Although most generation units
had declared the preparations for cold weather in Phase 1, most of
the units still experienced freezing, transmission system issues, or
failure to operate under low ambient temperature. Among the
affected generation units, the generation capacity of the wind
turbines is mostly reduced due to freezing issues. Under cold
weather, the precipitation and condensation caused icy layers on
turbine blades, further leading to the balancing, bearing, and
other problems for wind turbines. In the event, wind turbine
outages and derates caused by freezing issues accounted for 23%
of the total outages (Federal Communications Commission, 2021;
Southwest Power Pool, 2021b; Eskandarpour et al., 2017). Thus,
the operators utilized natural gas generation to compensate for
the deficit caused by wind turbines. As shown in Figure 3,
compared to the net generation proportions at the beginning
of February, the proportion of wind generation declined steadily
since February 9th, while the natural gas generation proportion
has been increasing to compensate for the loss in wind generation
(Energy Information Administration, 2021a). At this phase, the
BES reliability was still maintained.

2.2.3 Phase 3 (February 15th to February 20th)
Along with the deteriorating weather condition, the large-scale
and long-lasted decline in the generation capacity occurred in
all the affected power systems. With a total of 95 GW, the
unavailable generation reached its peak on February 17th,
accounting for 37% of the total installed capacity in the
affected areas (Federal Energy Regulatory Commission,
2021). All the system operators deployed the multi-stage
emergency energy actions (EEA) to utilize the demand
resources to maintain the system’s reliability. The load shed
in ERCOT, SPP, and MISO is shown in Figure 4 (Electric
Reliability Council of Texas, 2021b). Specifically, the following
actions were taken:

FIGURE 3 | Net generation proportion.
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The ERCOT initiated the EEA procedures to maintain the
dropping system frequency from the night on the 14th to the
morning on the 19th. At 0:15 a.m. on February 15th, EEA 1 was
declared when the reserve dropped below the minimum
responsive reserve requirement of 2300 MW. The demand
resource 30-min Emergency Response Service (ERS-30) was
deployed for 847.15 MW (Electric Reliability Council of Texas,
2022b). At 1:07 a.m. on February 15th, EEA 2 was declared. The
demand resources 10-min Emergency Response Service (ERS-10)
and the responsive reserve service (RRS) were declared
successively for 51.6 and 423 MW load reduction (Electric
Reliability Council of Texas, 2022c). At 1:20 a.m., when the
frequency dropped to 59.938 Hz, ERCOT announced EEA 3
and instructed the immediate firm load reduction. The load
shedding lasted from the 15th to the 18th, and the reduction
peak was at 19:00 on February 15th with up to 200,000 MW,
which accounts for approximately 37.7% of ERCOT’s peak
demand. At 10:00 a.m. on February 19th, ERCOT lowered the
emergency level to EEA 2. At 11:00 a.m. on the same day, ERCOT
lowered the level to EEA 1, which indicates that ERCOT has been
restored from the system emergency states (University of Texas at
Austin and Energy Institute, 2021).

SPP is connected with the Eastern Interconnection through
MISO, having more power transmission capacity than
ERCOT. However, due to the transfer limit during the
event, when the importable power supply decreased, SPP
could not maintain system balance and declared EEA from
February 15th. At 5:00 a.m. on February 15th, at the risk of not
meeting the required operating reserves, SPP began EEA 1 and
made public appealing to the customers to reduce power
consumption. At 7:22 a.m. on February 15th, as the
unplanned generation outages exceeded 3300 MW, SPP
declared EEA 2 and began interrupting interruptible,
curtailable load and utilizing demand resources. At 10:08
a.m., because of the reduced imports and insufficient
reserves, SPP stated EEA 3, under which could terminate
the load export and request firm load shedding (Southwest
Power Pool, 2021a).

MISO is directly connected with the Eastern Interconnection.
In this event, MISO imported large amounts of power flows to
maintain system stability. However, the inadequate generation
forced MISO to declare EEA on the 16th. At 4:59 p.m. on
February 16th, MISO declared EEA 2. At 6:40 p.m. on
February 16th, MISO declared EEA3. At 8:41 p.m.; all the
curtailed loads were restored (Midcontinent Independent
System Operator, 2021a).

3 EVENT ANALYSIS

At the worst point, the total unavailable generation accounted for
38.8, 33.2, and 40.2% of the installed capacity in ERCOT, SPP,
and MISO South, respectively, due to freezing issues and fuel
supply shortage (Federal Energy Regulatory Commission, 2021).
However, the scale of load shedding in ERCOT is remarkably
higher and lasted for the longest time. The underlying reasons for
this difference are complex and could be partly explained by the
varying interconnection transmission capabilities among the
three regions. During this event, SPP conducted the power
inflows, ranging from 4000 to 6000 MW, and MISO South
imported 3000 MW. Compared to SPP and MISO, which have
abundant transmission capability with the Eastern
Interconnection, ERCOT is restrained by the limited
transmission capability to conduct power import to alleviate
system imbalance. Hence, this section targets ERCOT and
analyzes the impact of regulatory and management on DERs.

3.1 Winter Assessment of Distributed
Generation
3.1.1 Inaccurate Assessment of Winter Generation
Capability
After the power outage event in February 2011, ERCOT
scheduled the winterization checking process to assess the
generator operating capacity for 75 to 80 generators annually.
ERCOT evaluates the generator winter preparation based on the

FIGURE 4 | Load shed in ERCOT, SPP, and MISO South during the event.
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self-reported questionnaire instead of the on-site visit. In the
survey just before the 2021 event, 96% of the investigated
generators declared they completed winterization. However,
the post-event analysis demonstrated that 82% of the
generators that have submitted winter preparation reports
experienced at least once or more outages, derates, and start
failures.

The overestimation of the winter generation capability can be
categorized into two aspects. First, the winter inspection checking
list has not been modified since 2011. However, the installed
capacity of the power generators has changed over the past years,
as shown in Figure 5. Based on Electric Reliability Council of
Texas (2021d), the generation proportions of wind turbine
generators and natural gas-fired generators increased
dramatically from 8.5 to 26% and 40 to 52%, while the
generation proportion of coal-fired generation decreased from
22 to 6%. Compared to coal-fired generators, wind turbines are
more vulnerable under cold weather conditions. Second, most of
the winter preparation data are self-reported, including the newly
integrated distributed generators. As data validity cannot be
ensured, ERCOT could hardly evaluate the winter generation
capability accurately.

3.1.2 Lack of Intention to Upgrade the Cold Weather
Critical Components
As the central and south US have temperature climates, most
power generation facilities do not have the ability to operate in
extremely cold winter. Wind turbines, solar panels, and natural
gas production facilities are all vulnerable to freezing weather.
Therefore, after the rotational load shedding event in 2011,
ERCOT once made suggestions to the generators and natural
gas production facilities to upgrade the cold weather critical
components (Federal Energy Regulatory Commission and the
North American Electric Reliability Corporation, 2011).
However, regarding the concerns about retrofitting, most

generation units lack intention to make substantial upgrades.
Because conventionally extreme cold weather was considered a
small-probability event, the upgraded generation units with
higher operating costs may become less competitive in the
market most of the time. Meanwhile, in extreme cold weather,
the generators which have not been upgraded could shut down
without being punished.

Nonetheless, from the perspective of social welfare, the
investment in upgrading the cold weather critical components
of the power system could effectively reduce the loss in extreme
weather conditions. Using the value of lost load (VOLL) as the
measurement, FRBD evaluated the total social loss as over $4.3
billion (Federal Reserve Bank of Dallas, 2021). Meanwhile, the
cost of winterizing the piece of equipment for each gas plant is
between $50,000 and $500,000, suggesting a total cost of up to $9
million to upgrade the 162 natural gas-fired generation units in
Texas; The cost of installing the internal warming equipment for
the wind turbines is up to $40,000 per blade, making it costly and
infeasible to retrofit for all the 13,000 wind turbines in Texas
(Federal Energy Regulatory Commission and the North
American Electric Reliability Corporation, 2011). Hence,
compared to the loss in social welfare, winterization upgrading
investments are cost-effective.

3.2 Deployment of Demand-Side Resources
In Texas, the residential sector generally consumes 37% of the
total electricity generation. As 60% of households use electricity
as the primary heating fuel (White et al., 2021; US Energy
Information Administration, 2019), the residential section
takes approximately 51% of total demand during winter peak
hours, followed by 26% of the large commercial and industrial
and 23% of the small commercial loads. Consequently, with
extreme weather conditions, the residential electricity demand
increased sharply. In phase 2 of the 2021 event, driven by the
extreme cold weather, the actual load was higher than the
forecasted load, especially during peak hours, as shown in
Figure 6 (Energy Information Administration, 2021b; Electric
Reliability Council of Texas, 2021c). From February 9th to 14th,
the mean absolute percentage error (MAPE) between the actual
load and the day ahead forecast was 8.9%, which indicates a
significant error in load prediction compared to the yearly
average MAPE in 2020 of 1.7%.

In phase 3 of the 2021 event, EEA showed great importance in
utilizing demand resources to stabilize system frequency, relieve
transmission congestion, and maintain system operation.
However, during this event, the deployment of demand-side
resources suffers from two issues that limit their values.

3.2.1 Failure on Identifying Critical Loads Related to
Natural Gas Production
As aforementioned, the flexible balancing resources in ERCOT
relied on the natural gas-fired generators. Thus, when the system
encountered unprecedented demands and the loss of wind
generation for consecutive days, the proportion of natural gas
generation relative to the total generation increased from an
average of 43% in 2021 to 72%, as shown in Figure 3. Hence, the
need for natural gas fuel increased during the 2021 event.

FIGURE 5 | Structure of installed generation capacity in ERCOT from
2011 to 2021.
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However, all-natural gas production loads were classified as
curtailable loads, and some pieces of key equipment involved in
the natural gas production were turned off. Consequently, the loss
of power supply to natural gas infrastructure caused 23.5 percent
of the decline in natural gas production. As shown in Figure 7,
power supply issues account for an 18.1% loss in natural gas
production from February 14th to 15 February 2021.

In practice, the regulations of the PUCT for the Texas state
that the load units need to apply for becoming an important
load to its transmission operator, and the transmission
operator would then collect the self-reported information
and report to PUCT every year. Under such a rule, the
system operator only has the self-declared loads (Texas
Tribune, 2021). For the loads for natural gas production,
processing, and transmission which are not self-declared,
system operators had classified them as curtailable loads.
This phenomenon aggravates the fuel supply shortage for
the natural gas-fired generators.

3.2.2 Late Utilization of Demand-Side Resources
The concept of demand-side resources was initially proposed to
reduce energy consumption to alleviate the pressure on the
supply side of the system to manage the energy. After the

large-scale integration of clean energy, the demand side
resource management has gradually shifted to a “power-based”
approach on a shorter time scale to balance real-time power
supply and demand and provide auxiliary services such as
frequency regulation and capacity reserve.

In phase 2 of the 2021 event, although system operators
predicted the long-lasting extreme weather with rain and
snow, they did not issue early warnings, or power reserve
appeals to the users until the wind turbines were interrupted
and fuel supply declined. Until phase 3, when the load in
the affected areas approached the history peak and the
generation declined, ERCOT and SPP started to utilize
demand-side resources with the power reserve appeal on
February 14th (Southwest Power Pool, 2021a). Hence, the
system operator did not act early and failed to take
advantage of “the energy-based” property of demand-side
resources in this event.

Energy not served (ENS) is used to evaluate the amount of
insufficiency of generation relative to the forecast demand,
calculated by taking the integral of load shedding over the
blackout time (Menati and Le, 2021). As shown in Figure 8,
in the period of EEA in ERCOT, the ENS was estimated as
1170 GWh. With a large amount of demand-side energy
consumption in Texas, exploring the potential of demand-side
resources to maintain the level of natural gas storage can be
valuable.

Long-term energy management is defined as the pre-event
energy conservation education or programs to encourage
customers to voluntarily reduce electricity consumption during
the peak load hours to alleviate system peaking-load operation
pressure and avoid system blackouts (Electric Reliability Council
of Texas, 2021a). The timely and efficient notifications to the
customers could help reduce the peak demand (Darby and
McKenna, 2012). In the power system event in California in
the summer of 2020, after predicting extremely high demand,
CAISO effectively sent flex alerts to users through mobile apps,
social media, and press media, making public appeals to users to
reduce electricity consumption on August 17th and 18th. Hence,
the actual peak electricity usage became 4972 MW and 3488 MW,

FIGURE 6 | Comparison of real and forecast load from February 1st to February 20th in 2021.

FIGURE 7 |Cause of the natural gas production decline from 2021/2/14
9:00 a.m. to 2021/2/15 9:00 a.m. (measured by the natural gas production
volume).
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lower than the day-ahead peak demand forecast, and further
avoided the large-scale firm load shedding event (Hu et al., 2020).

In the Texas event, the operators made public energy
conservation appeal by the 14th. The system had experienced
significant power outages and unexpectedly high demand, which
exacerbated the system imbalance. Thus, the public conservation
appeals did not have expected effects on load reduction. As the
cold temperature was predicted to be long-lasting and the load
demand had already exceeded the load forecast, the load demand
pattern in the extreme weather event was not fully addressed, and
the public was not notified of the possible power system
blackouts. Thus, as the coldest temperature arrived, the users
lacked intention and adequate preparation to reduce electricity
usage, which was reflected by the rising demand after public
appeals.

Due to the predicted long-lasting duration of this event, the
public should be educated before the coldest temperature arrives
on the night of February 14th. Except for the monetary-incentive
demand response programs, the effects of the high impact, low-
cost information, and education programs should be valued. The
electricity conservation target could be achieved by encouraging
users’ behavioral change by providing information on past energy
use, conservation strategies, or peer consumption. The longer-

term of such programs would conduct more energy savings
(Delmas et al., 2013). Thus, the potential of pre-event load
reduction on mitigating ENS is examined. It is assumed that
the natural gas storage saved from pre-event load demand
conservation could be used to compensate for the primary
energy shortage during the coldest weather condition. Based
on the publicly available data, the estimation of the saved
natural fuel storage can be expressed as follows:

natural gas fuel saved (MMBtu) � r · c · h∑t

1
Ptqt, (1)

where t is the time period from February 9th to February 14th,
measured in hours; q is the ratio of the natural gas-fired
generation capacity over the total generation at the time t; r is
the average load reduction rate; the average amount of natural gas
c used to generate a kilowatt-hour (kWh) is assumed to be
7.43 cubic feet; and the average heat content per one thousand
cubic feet (Mcf) of natural gas h equals 1.037 MMBtu.

Figure 9 shows the load reduction during the pre-outage time
period and the incremental generation capacity during the load
shed period. It is estimated that a 25% reduction of daily average
electricity consumption between February 9th and 14th could
fully compensate for the energy deficiency during the power

FIGURE 8 | Energy deficiency in ERCOT during EEA.

FIGURE 9 | Effect of pre-event load conservation on mitigating energy deficiency.
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outage. Although it is practically hard for the end-users to reduce
the electricity usage by an average daily amount of 25% during
such extreme weather, the value of load resources could not be
underestimated. Table 2 demonstrates the incremental
proportion relative to the initial energy storage on February
15th under different amounts of average daily reduction.

Because of the abundant natural resources in natural gas and
wind energy, ERCOT has been leading in transitioning to the
coal-light generation structure that extensively explored the
potential of clean energies. The transition has shown
significant improvement in energy efficiency and
decarbonization. When the frequently occurred power outages
could warn the unpredicted system vulnerabilities related to
natural gas production under the extreme weather conditions
and underscore the importance of primary energy supply during
the extremely cold weather conditions. Long-term demand-side
management could efficiently alleviate such fuel shortage
pressure through effective and efficient programs in a costly
manner.

4 CONCLUSION AND DISCUSSION

In the past few decades, extreme weather conditions have been
rising due to global climate change. For the power grid operation,
the observed outages to the bulk electric system showed a
significant increase in the weather-related events, leading to
enormous damage to people and the economy.

This study examined the 2021 Texas power crisis caused by
the extremely cold weather, mainly from the perspective of

DERs’ regulation and management. Based on the public data, it
is estimated that the natural gas fuel supply saved by a daily
average load reduction of 25% in ERCOT before the coldest
weather could compensate for the total energy deficiency
during the event. Also, the reliable power supply to the
critical natural gas production loads could improve another
15% of the natural gas supply. Although it is practically hard to
reach the daily average of 25% of load reduction, the value of
the long-term demand-side “energy” management should be
valued. Also, it is essential to realize the tight coupling
relationship between natural gas production and electricity
supply to identify the critical loads. Hence, the effective
regulations and management of DERs have proven vital for
improving the power grid resilience under such extreme
weather conditions.
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Small-Signal Distributed Frequency
Modeling and Analysis for
Grid-Forming Inverter-Based Power
Systems
Xiaojing Qi1, Jianyong Zheng1* and Fei Mei2

1School of Electrical Engineering, Southeast University, Nanjing, China, 2College of Energy and Electrical Engineering, Hohai
University, Nanjing, China

More and more renewable energy sources are integrated into power grids, leading to a
power electronic-based low-inertia power system. The grid-forming (GFM) inverter is an
effective method for improving the inertia of the system. However, with the increased GFM
inverters in the system, how the multiple control parameters affect the frequency response
is still not clear. In this study, first, the power-phase model of the power grid is established;
then, a small-signal distributed frequency model of the GFM inverter-based power system
is established associating with the power-phase model of the power grid and the power-
frequency model of the GFM inverter. Based on the proposed model, the influence of the
multiple parameters to the frequency response is analyzed. It is concluded that both the
inertia and damping coefficient affect the settling time, overshoot, and oscillation of the
frequency. Finally, the simulation results verify the proposed model and the conclusion.

Keywords: low-inertia system, grid-forming inverter, small-signal model, distributed frequency response, frequency
dynamics

INTRODUCTION

Recently, more and more renewable energy sources (RESs) have been developed to alleviate the
increasingly tight power supply of fossil energy (Huang et al., 2011). These RESs adopt the
inverter as the interface connected to the power grid. The inverter grid-connected control can be
classified into two types: the grid-following (GFL) and grid-forming (GFM) controls. The GFL
inverter lacks the inertia and damping compared to the traditional synchronous generator (Liu
et al., 2016). Therefore, the increased penetration of RESs has greatly decreased the overall inertia
level of the power system, which raises great challenges to the stability of the system, especially for
the low-inertia system, such as the microgrid in the islanded mode (Alipoor et al., 2018). To
address this problem, the GFM control is considered to be a simple and effective approach for
improving the inertia of the system (Quan et al., 2020a) (Quan, 2021) (Wu et al., 2016). The well-
known virtual synchronous generator (VSG) control belongs to the GFM control methods (Wu
et al., 2016).

The GFM inverter usually adopts power synchronization control which includes the two
parameters of inertia and damping (Quan et al., 2020b). These two parameters play critical roles
in improving the performance andmaintaining the stability of the power system. Compared with the
synchronous generator, the virtual inertia and damping coefficient of the GFM inverter are realized
in the control software; hence, they are flexible and adjustable. The design of the inertia and damping
for a single GFM inverter has been studied well (Wu et al., 2016), (Quan et al., 2020b). However, how
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to optimally determine the virtual inertia and damping coefficient
for multiple GFMs in a GFM-based power system to get better
stability and dynamic performance is still a challenge.

To optimally design the multiple inertias and damping factors,
a suitable model should be established first. However, for such a
large nonlinear system, the small-signal model is suitable for the
optimal design of virtual inertia and damping coefficient. A grid-
forming inverter-based power system is comprehensively
modeled in (Pogaku et al., 2007), where the small-signal
stability issues are analyzed by plotting zero-pole locations.
Based on the grid-forming technology, many stability
performances in terms of regulating frequency and voltage can
be achieved, for example, asymptotical (Bidram et al., 2013) and
finite-time (Ge et al., 2021). However, these studies consider the
control design from the perspective of a power electronic-based
inverter and do not fully consider the interaction between grid-
forming inverters and power networks.

Based on the traditional small-signal modeling method, a
detailed system model including grid-following inverters and
grid-forming inverters is built with the node admittance
matrix, and a H2 norm-based control algorithm is proposed to
optimize the virtual inertia in order to improve the stability of the
low-inertia power system (Poolla et al., 2019). However, the nodal
admittance matrix cannot describe how the load power
fluctuation affects the system frequency in an explicit way.
Hence, it is not conducive to the parameter optimization.
Differently, a model with multiple GFMs was established by
using direct current power flow in Ademola-Idowu and
Zhang, 2018, and the optimized design of the virtual inertia
and damping coefficient was also described as a H2 norm
minimization problem. A more detailed demonstration was
proposed in Mešanović et al., 2016 for the system model using
DC power flow, based on which a comparison among the H∞, H2,
and pole optimizations for damping active power oscillations was
presented. Nevertheless, the DC power flow algorithm is not
applicable for a low-voltage microgrid or low-inertia system
where most DGs are connected (Frack et al., 2015) (Kundur,
1994).

Therefore, this study proposes a state space small-signal
model for the multi-GFM system. Based on the proposed
model, the relationship between the load fluctuation and

frequency change is explicitly expressed, which is
beneficial to the numerical optimization of the parameters
of virtual inertia and damping coefficient. Moreover, the
dynamic characteristic of the frequency is also
demonstrated by the proposed state space model. Finally,
the influence of the parameters on the dynamic response is
analyzed and verified.

MODELING FOR THE
GRID-FORMING-BASED SYSTEM

System Description
As shown in Figure 1, in an inverter-based power system, the
GFM inverter is necessary to form the AC voltage. Under these
conditions, the swing-equation-based power control or power
synchronization control will be applied to realize the frequency
synchronization and power sharing. Consequently, the control
parameters of the power control, for example, the damping factor
and virtual inertia, will remarkably affect the system frequency
dynamics. Moreover, due to the difference of these power control
parameters, the frequency of the system will demonstrate the
features of distribution. Hence, it is meaningful to establish a
dynamic model to describe the frequency dynamics of the system.

As shown in Figure 2, the system nodes are divided into two
types. One is the node that is connected with GFM inverters, and
it is called the GFM-node. The voltage and frequency of the GFM-

FIGURE 1 | Diagram of the GFM inverter-based power system.

FIGURE 2 | Diagram of the inverter-based power system.
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node are determined by the GFM inverter. The last nodes are
classified into one type that injects active and reactive power into
the node. In this study, these nodes are treated as the
disturbance nodes.

Modeling of the Grid-Forming Inverter
The GFM active power control part simulates the inertia, droop
characteristics, and damping action of the synchronous machine.
It is assumed that the GFM active power control equation similar
to the second-order rotor motion equation of the synchronous
machine can be expressed as Eq. 1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dΔθgi
dt

� Δωgi

Mi
dΔωi

dt
� Pset,i − Pgi

ωn
−Dp,iΔωgi

ωgi � Δωgi + ωn

(1)

where Δθgi denotes the phase variation of GFM node i at the
current operation point, Mi is the virtual inertia of the i-th GFM
inverter, Dp,i is the damping coefficient, Pset,i is the set value of
active power, Pgi is the output active power,ωn is the rated angular
frequency, and ωgi is the angular frequency of the i-th GFM
inverter. Considering all the GFM nodes, Eq. 1 can be written in
matrix formation:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dΔθg
dt

� Δωg

dΔωg

dt
� M−1

ωn
(Pset − Pg) −M−1DpΔωg

(2)

Modeling of the Power Grid
To establish the model of the GFM inverter-based system, how
the phase angles of the GFM inverters and the injected power of
disturbance nodes affect the power of the GFM inverter through
the impedance network needs to be clarified. To this end, the
Jacobian matrix is adopted:

[ ΔP
ΔQ] � [H N

J L
][ Δθ

ΔV/V
] (3)

where matrices H, N, J, and L are derived from the fundamental
power flow equations. In the high-voltage power system, it has N
= 0 and J = 0, which means that the voltage is related with the
reactive power, while the frequency is dependent on the active
power. Hence, the influence of the reactive power can be ignored
when analyzing the frequency dynamics. Then, Eq. 3 is
simplified as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ΔP1

ΔP2

..

.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣H11 H12 /
H21 H22 /

..

. ..
.

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣Δθ1Δθ2
..
.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

where ΔPi and Δθi denote the power and phase variation of node i
at the current operation point, respectively. The elements of the
matrix are linearized from the fundamental power equation:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Hij � zPi

zδj
� UiUj(Gij sin δij − Bij cos δij) , i ≠ j

Hii � zPi

zδi
� −Ui ∑j�n

j�1,j ≠ i

Uj(Gij sin δij − Bij cos δij) , i � j

(5)
Distinguishing the GFM nodes and disturbance nodes, Eq. 4

can be rearranged as

[ΔPg

ΔPd
] � [Hgg Hgd

Hdg Hdd
][ΔθgΔθd ] (6)

Integrated Model
The phase angle vector of the GFM nodes Δθg is the state
variable of the system, while Δθd is the dependent variable. The
power of the disturbance node will be the disturbance that
occurs with the phase angle and frequency variations. To extract
the disturbance from Eq. 6, Kron reduction is applied to Eq. 6,
obtaining

FIGURE 3 | Diagram of in the 9-buses system.

TABLE 1 | | Parameters of the system and the inverters.

Base values

fbase � 50Hz ωbase � 2πfbase Ubase � 345kV Sbase � 100MVA

Power network parameters (per-unit values)

Lines R X B

Line 14 0 0.0576 0
Line 45 0.017 0.092 0.158
Line 56 0.039 0.17 0.358
Line 36 0 0.0586 0
Line 67 0.0119 0.1008 0.209
Line 78 0.0085 0.072 0.149
Line 82 0 0.0625 0
Line 89 0.032 0.161 0.306
Line 94 0.01 0.085 0.176
Loads S5 � 0.9 + j0.3,S7 � 1 + j0.35,S9 � 1.25 + j0.5

Parameters of GFM inverters (per-unit values)
M and D of GFM1: 8,200
M and D of GFM2: 16,300
M and D of GFM3: 24,400
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ΔPg � (Hgg −HgdH
−1
dd

Hdg)Δθg +HgdH
−1
dd

ΔPd (7)

Then, combining Eqs. 2 and 7, it has

d

dt
[ Δθg
Δωg

] � [ − (ωnM)−1(Hgg −HgdH
−1
ddHdg) I

−M−1Dp
]

× [ Δθg
Δωg

] + [ 0
−(ωnM)−1HgdH

−1
dd
]ΔPd

+ [ 0
−(ωnM)−1 ]Pset (8)

which is the space state model of the system. The state variables
Δθg and Δωg represent the dynamics of the phase angle and

frequency of the GFM nodes. Therefore, we can conveniently
evaluate the dynamic response of the frequency for every GFM
node during the dynamic process. Thereby, we can optimally
design the control parameters of the GFM power controller.

POLE ANALYSIS

In this section, the proposed model is applied to a 9-buses system
as shown in Figure 3. Three GFM inverters are connected at bus
1, bus 2, and bus 3. Three loads are connected at bus 5, bus 7, and
bus 9. The parameters are listed in Table 1.

Using the concrete parameters of the 9-buses system shown in
Figure 3, the model of Eq. 8 can be obtained. Then, based on the

FIGURE 4 | Root locus of the system when the parameters vary.
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FIGURE 5 | Frequency response of the electrical simulation and the proposed small-signal model.

FIGURE 6 | Frequency response when the inertia changes.
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model, the root locus when the inertias vary is investigated. The
inertia and damping parameters for the three GFM inverters are
denoted as M = (M1, M2, M3) and Dp = (Dp,1, Dp,2, Dp,3) for
GFM1, GFM2, and GFM3. Figure 4A–C shows the pole variation
when the inertia parameter of the three GFM inverters changes.

Generally, the poles of the system rule the dynamic response of
the frequency. Each pair of the conjugate poles has the parameters
of damping factor and damping oscillation frequency (the real
part of the pole). The high damping factor can reduce the
oscillation and overshoot during the dynamic response. The

FIGURE 7 | Frequency response when the damping changes.

FIGURE 8 | Frequency response with different load variations.
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large damping oscillation frequency reduces the settling time,
which means that it increases the response speed. As can be seen
in Figure 4A–C, with the inertia increasing, all of the poles move
toward the imaginary axis, which means that the response will
become slow. It is reasonable since the inertia is increased.
Moreover, the damping factor is reduced due to the increased
inertia. This will enhance the overshoot and oscillation.

Figure 4D–F shows how the damping factor affects the poles.
Generally, the damping factors reflect the droop coefficient;
hence, they are usually designed by the frequency support
capacity. However, from Figure 4D–F, it is shown that the
damping factors also influence the dynamic response. With
the damping factor decreasing (frequency supporting capacity
decreasing), the poles move toward the imaginary axis, which
means that the response will become slow; meanwhile, the
damping becomes worse. It will cause severe overshoot and
oscillation on frequency dynamics.

SIMULATION RESULTS

Model Verification
To verify the correctness of the proposed model, the electrical
simulation in Simulink is conducted as a comparison. The
adopted parameters are M = (8, 16, 24) and Dp = (200, 300,
400). The disturbance appeared on node 7 with 0.01 p.u. active
power increase. As shown in Figure 5, the frequency responses of
the electrical simulation and the proposed small-signal model
demonstrate that the dynamic feature of the frequency can be
perfectly described by the proposed small-signal model. However,
there is a small steady-state error which appears on the proposed
small-signal model. This is introduced by the linearization of the
Jacobian matrix. Nevertheless, the steady-state value can be
obtained by the direct static-state droop computation. Hence,
the dynamic feature described by the proposed model can still be
adopted optimally to design the control parameters of the GFM
inverters.

Performance Verification
Furthermore, to evaluate the effect of the control parameters to
the frequency performance, the simulation with different
parameters is performed. Figure 6 shows the different
frequency dynamic responses with the inertia variations, and
the pole figures are also displayed for a reference. In Figure 6,
the first column shows that the inertia of GFM1 changes from 8
to 40, while the other parameters stay invariable. The second
column shows that the inertia of GFM2 changes from 16 to 80,
and the third column shows the inertia of GFM3 changes from
24 to 120. From the results in Figure 6, first, it is concluded that
the inertia only affects its own rate of change of frequency
(RoCoF) but has no effect on the RoCoF of the other node;
increasing the inertia of GFM1 only reduces the RoCoF of
GFM1 but without the influence of RoCoFs of GFM2 and
GFM3. Second, increasing the inertia will move the poles
right, which increases the settling time; all the settling times
of the frequencies for the three inverters become larger. Third,
increasing the inertia also decreases the damping of the system;

hence, the oscillation and overshoot of the frequencies of the
three inverters are deteriorated.

Figure 7 shows the distributed frequency response of different
GFM inverters when the damping coefficients change. The first
column shows that the damping coefficient of GFM1 changes
from 200 to 50, while the other parameters stay invariable. The
second column shows that the damping coefficient of GFM2
changes from 300 to 75, and the third column shows that the
damping coefficient of GFM3 changes from 400 to 100.
Observing the frequency waveforms in Figure 7, first, we can
conclude that the damping coefficient still acts as the droop
coefficient that denotes the frequency supporting capacity.
Hence, reducing the damping coefficients will reduce the
frequency steady-state value. Second, the reduced damping
coefficient moves the pole toward the imaginary axis; hence,
the settling time becomes larger with the reduced damping
coefficient. Third, decreasing the damping coefficient decreases
the damping of the system; hence, the oscillation and overshoot of
the frequencies of the three inverters are deteriorated. Last, the
damping coefficient has no effect on the RoCoFs of the frequency.

Moreover, to comprehensively evaluate the effectiveness of the
proposed model, the load power disturbance is imposed on
different nodes. Figure 8 shows the frequency response when
the load steps 0.01 p.u. active power. The parameters of the
inverters are set asM = (8 16 24) and D = (200 300 400). As shown
in Figure 8, the frequency of GFM2 and GFM3 performs a good
dynamic response, while the frequency of GFM1 shows a large
overshoot. This because that the inertia of GFM1 is set too small,
which occurs as a poor damping factor of the
corresponding poles.

CONCLUSION

In this study, a state space small signal model is established for the
multiple GFM low-inertia system. The system is modeled in an
input–output state space model where the load power is the
disturbance input and the frequency of every node is the output.
The proposedmodel can perfectly describe the dynamic feature of
the frequency. From the proposed model, it is concluded that
increasing the inertia and reducing the damping coefficient will
increase the settling times of the frequencies, deteriorate the
oscillation, and overshoot of the frequencies. Moreover,
increasing the inertia will decrease the RoCoF of its own node
frequency, while the damping coefficient has no effect on the
RoCoFs of the frequency.

Furthermore, the proposed model is based on the small-signal
stability theory; therefore, it is limited to analyze the large-signal
stability. In the future work, we will focus on the suitable model
for a large-signal stability analysis.
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Optimization for Transformer District
Operation Considering Carbon
Emission and Differentiated Demand
Response
Dexiang Jia1, Yu Zhou2, Zhongdong Wang2, Yuhao Ding3, Hongda Gao1, Jianye Liu1 and
Ganyun Lv3*

1State Grid Energy Research Institute Co.,Ltd., Beijing, China, 2State Grid Jiangsu Electric Power Co.,Ltd., Nanjing, China,
3School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing, China

With the promotion of the “dual carbon” goal, a large number of distributed photovoltaic
power are connected to the distribution network. Since the current operation optimization of
the low-voltage transformer district is based on single objectives such as the economy and
power reliability, themodel is relatively simple and difficult to adapt to the large-scale access of
photovoltaics. Therefore, this article comprehensively considers carbon emissions, different
load characteristics, and differentiated demand response of the district. An optimization
method for low-voltage transformer district operation under the dual-carbon background is
proposed. First, the typical structure of a low-voltage transformer district is introduced.
Second, the load types and characteristics of the low-voltage transformer district are
analyzed, and differentiated demand response models are established for different types
of loads. Finally, taking theminimumeconomic cost and carbon emission as the objective, the
low-voltage transformer district operation optimization model considering carbon emission
and differentiated demand response is established by considering the voltage overrun of the
photovoltaic access point, substation capacity constraint, and carbon emission constraint.
The simulation results show that the model can effectively reduce the economic cost and
carbon emissions of the low-voltage transformer district, achieve more than 95% reasonable
utilization rate of new energy in the low-voltage transformer district, improve the lateral time
distribution of load in the low-voltage transformer district, and provide an effective means for
low-carbon scheduling of distribution networks.

Keywords: low-voltage transformer district, photovoltaic access, load characteristics, differentiated demand
response, carbon emission, optimal scheduling

1 INTRODUCTION

In recent years, with the increasingly prominent global environmental pollution problems and
energy crisis, General Secretary Xi Jinping proposed the strategic goal of “carbon peaking and carbon
neutrality” at the United Nations General Assembly, demanding to reduce the carbon emission level
of the distribution network transformer district (Wei et al., 2021). The new energy power generation
represented by photovoltaics has developed rapidly. However, with the increase of photovoltaic
penetration rate, the coordination of the source and load in the low-voltage transformer district has
become more difficult (Zhao et al., 2019). Demand-side response can be used to absorb new energy
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and improve the interaction between the source and load in the
district (Huang D. et al., 2022). Therefore, carbon emissions and
demand-side response characteristics should be fully considered
in the optimal scheduling of the low-voltage transformer district.

At present, the optimal scheduling of the transformer district
mainly focuses on distributed power generation. Ma et al., 2021
proposed a robust optimization planning model for a transformer
district considering the uncertainty of photovoltaic intensity and
considering the ability of the distribution network transformer
district to accept distributed photovoltaics and obtained the best
access point and optimal installation capacity of photovoltaics.
Al-Ismail, 2020 started from the impact of distributed power
generation on the transformer district and analyzed three aspects:
distribution network reconfiguration technology, distributed
power generation location and capacity optimization, and filter
selection and location optimization, and summed up the strategy
for optimal operation in the transformer district. Chen et al., 2020
proposed a layered control method for source-load-storage
control in the transformer district to achieve optimal
autonomy of the distribution network based on the multi-time
scale complementary characteristics of controllable distributed
power generation, energy storage systems, and loads. Cong et al.,
2022 aimed at the volatility and intermittent problems brought by
the increase in the installed capacity of photovoltaic power
generation to the distribution network and proposed a fault
recovery self-healing reconfiguration control optimization
strategy for the distribution network based on an improved
group search algorithm, which improved the efficiency of the
distribution network. Zhang X. et al., 2021 analyzed the
calculation method of flexibility provided by each component
in the distribution network, established a two-layer optimal
scheduling model for the distribution network with distributed
photovoltaics considering flexibility, and introduced intuitive
fuzzy programming to obtain the comprehensive optimal
scheduling scheme. The above literature shows that in the
optimal scheduling of the transformer district, taking into
account the high proportion of the new energy consumption
rate and low-carbon emissions at the same time is of great
significance to the flexible resource planning of the
transformer district, which is helpful to achieve energy saving
and emission reduction in the transformer district.

Demand response is an important means to stabilize the
output of distributed power generation and improve the
consumption rate of new energy. The influence of demand
response should be fully considered in the optimal scheduling
of the low-voltage transformer district (Shafie-khah et al., 2019).
Some scholars have carried out research on the demand response
characteristics of low-voltage transformer districts. Shi et al., 2020
constructed a user DR model based on the elasticity coefficient
matrix of real-time electricity prices, analyzed the charging load
demand of electric vehicles at the same time, and established a
robust optimal dispatch model for an active distribution network.
Khalid et al., 2018 proposed an active distribution network that
considers demand response; the double-layer collaborative
configuration model stimulates the charging and discharging
of electric vehicles to reduce the peak-to-valley difference of
the load and adapt to the various planning requirements of

electric vehicle charging stations. Jin et al., 2020 applied the
evaluation of the operation status of the distribution network
transformer district based on a fuzzy comprehensive evaluation
of the incentive demand-side response and realized the
comprehensive optimization of the voltage and load of the
distribution network transformer district while reducing the
peak load. Zhu et al., 2022 considered the user participation in
demand response and established an optimal scheduling model of
active distribution based on price and incentive demand
response; the model has given full play to the flexibility of
demand response. Qiu et al., 2021 used triangular fuzzy
numbers to describe the uncertainty of demand response and
established a distribution system with the goal of minimum users
on the load side and maximum wind power consumption. The
network master-slave game economic model achieves the game
equilibrium by optimizing the real-time electricity price strategy
and demand response strategy. However, the existing related
studies have not considered the timeliness of demand response
and the impact of different loads, which will make the response
resources not fully utilized, making it difficult to achieve the
expected effect of district scheduling. At the same time, these
studies have not considered the difference in response elasticity
coefficient and real-time electricity price among different users,
without classification of load types, and the amount of electricity
change and price change in the considered price-based demand
response is linear, which does not conform to the actual situation
and cannot reflect the actual demand response features.

To sum up, in order to deal with the current adverse effects of
the countys photovoltaics on the optimal dispatch reliability and
economic low-carbon operation of the low-voltage transformer
district and make full use of demand response resources to
increase the consumption of renewable energy and smooth the
load curve at the same time, this article comprehensively
considers carbon emissions and differentiated demand
response. First, the basic structure of the low-voltage
transformer district is introduced. Second, the load types and
characteristics of the low-voltage transformer district are
analyzed, and a differentiated demand response model is
established for different types of loads. Under the conditions
of photovoltaic access point voltage exceeding the limit and
carbon emission constraints, an optimization model of low-
voltage transformer district operation was established
considering carbon emissions and differentiated demand
response. Finally, the effectiveness of the optimal scheduling
model was verified through simulation solutions.

2 BASIC STRUCTURE OF THE
LOW-VOLTAGE TRANSFORMER DISTRICT

The low-voltage transformer district refers to the 10kV/0.4kV
power supply area provided by several distribution transformers.
The typical low-voltage transformer district structure constructed
in this article is shown in Figure 1.

This low-voltage transformer district is divided into the
transformer layer, the branch layer, the casing layer, and the
user layer from top to bottom, which can play the function of
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“connecting the previous and the next” in the construction of the
energy Internet. The transformer layer is composed of energy
controllers, photovoltaic energy storage devices, and smart
transformers. The branch layer includes branch monitoring
terminals, environmental sensors, and single-phase intelligent
miniature circuit breakers. The casing layer mainly includes
smart IoT energy meters, intelligent reversing switches, and
smart locks. The user layer includes residential load, industrial
load, charging pile load, photovoltaics, and energy storage
devices. The district can be used for online automated
operations, distributed photovoltaic monitoring, reasonable
analysis of the operating status of the platform, extraction of
the differentiated behavior characteristics of users in the district,
orderly charging of electric vehicles, and response to residential
industrial energy consumption and take into account the

distributed photovoltaic consumption and carbon emissions in
the district, which can effectively promote the district. It is an
important guarantee for further attracting investment and
construction of low-voltage transformer districts in the future.

3 DIFFERENTIATED DEMAND RESPONSE
MODEL

The demand-side response mechanism is mainly divided into
price-based demand response and incentive-based demand
response (Chen et al., 2019). In order to more accurately
describe the characteristics of demand response behavior in
low-voltage transformer districts, this article considers the
classification of loads and adopts differentiated price-based

FIGURE 1 | Structure of the typical low-voltage transformer district.
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demand response. There are certain differences in the electricity
consumption behavior, real-time electricity price, and elastic
coefficient of different loads.

3.1 Load Characteristics of the Low-Voltage
Transformer District
This article divides the electricity load of low-voltage transformer
districts into three types according to the electricity consumption
characteristics of them. They are residential electricity load,
industrial electricity load, and electric vehicle charging pile
electricity load.

The typical low-voltage transformer district electricity
consumption category is mainly residential electricity load.
This kind of load is not restricted by grid dispatching. The
user’s consumption behavior greatly affects the load
fluctuation of the low-voltage transformer district. With the
popularization of air conditioners, lighting, and other
equipment, the impact of climate change and time factors on
residential electricity load has become more significant (Meng
et al., 2019).

Industrial electricity load is linked to economic factors. The
economic situation of the district where the low-voltage
transformer district is located directly affects the power
consumption level of the industrial load, thereby affecting the
growth or decline trend of the load in the entire low-voltage
transformer district. In the electricity market, the electricity price
is variable. The stepped electricity price and the time-of-use
electricity price also show a complex relationship with the
industrial load in a low-voltage transformer district (Chau
et al., 2018).

The load of electric vehicle charging piles is easily affected by
many factors, including the parameters of the electric vehicle
itself, the number of charging piles, and many other factors
(Zhang Y. et al., 2021). The intraday charging and discharging
characteristics of large-scale electric vehicle charging piles will
increase the peak-to-valley difference of the load. When the
electric vehicle charging piles are connected on a large scale
during the peak load period, it is not conducive to the safe and
economic operation of the low-voltage transformer district.
Therefore, the maximum accessible load of the charging pile is
limited by the distribution capacity of the low-voltage
transformer district (Tan et al., 2021).

3.2 Differential Price-Based Demand
Response
Price-based demand response guides users to actively adjust
their electricity consumption habits according to their own
electricity consumption through time-of-use electricity
prices. In this article, the differential price-based demand
response (DPDR) is used to construct a relationship model
between the change of load demand and the change of
electricity price according to the actual electricity
consumption. Introducing power consumption satisfaction

can avoid user satisfaction drop due to excessive load
response:

Rp � 1 − ∑T
t�1|ΔPt |∑T
t�1Pt

In the formula, Rp is satisfaction with electricity consumption.
Pt and ΔPt are the load amount and the load transfer amount
before the demand response in the period of time, respectively. T
is the scheduling period. Since different types of loads have
different response characteristics of electricity consumption to
electricity prices in the dispatch period, the corresponding elastic
coefficients are also different. Considering the use of the
differentiated electricity price elasticity coefficient matrix to
build a demand response model as follows:

PPDR
t � Pt + Rp · ΔPt ,

εm � ΔPm/Pm

ΔDm/Dm
,

Em �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ε1,1m ε1,2m / ε1,tm
ε2,1m ε2,2m / ε2,tm
..
. ..

.
1 ..

.

εt,1m εt,2m / εt,tm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
ΔPm,t � [Pm,1 / Pm,t] · Em · [ΔDm,1

ΔDm,1
/

ΔDm,t

Dm,t
]T

,

In the formula,m represents the load type, wherem = 1, 2, and
3 represent the residential, industrial, and charging pile loads,
respectively. PPDR

t is the load amount after the demand response
in period t. εm is the electricity price elasticity coefficient of them
class load. ΔPm and ΔDm are the amount of change in m class
electricity Pm and electricity price Dm, respectively. Em is the
elastic coefficient matrix of electricity price of them class load; the
diagonal elements of the matrix are the self-elastic coefficients of
each corresponding time period, and the off-diagonal elements
are the cross elastic coefficients between the corresponding two
time periods. Pm,t , ΔPm,t , Dm,t , and ΔDm,t are respectively the
load before the demand response, the load change amount, the
electricity price, and the electricity price change amount of m
class load- in period t.

The three types of loads in this transformer district
mentioned in this article have different proportions in the
entire station area, and different types of loads have different
electricity price demand balance relationships in different
time periods, and there are differences in response elasticity.
At present, in the study of price-based demand response
models, electricity price differentiation or elastic coefficient
differentiation response models are mostly used (He et al.,
2021), which are obviously insufficient. However, this article
comprehensively considers the load power consumption
characteristics of the station area and constructs a
different type of load response elasticity according to the
difference in response elasticity of different types of loads. A
new price-type response mechanism is established based on
the electricity price elasticity matrix response matrix that
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takes into account the differences in classified loads and
electricity consumption periods.

4 INTRADAY OPTIMAL DISPATCH MODEL
OF THE LOW-VOLTAGE TRANSFORMER
DISTRICT CONSIDERING CARBON
EMISSIONS AND DPDR

This article divides the load side into three types to participate
in differentiated price-based demand response when
constructing the optimal dispatch framework of a low-
voltage transformer district. The power side includes
photovoltaic output and grid power purchase. In summary,

a low-voltage transformer district scheduling framework
considering carbon emissions and DPDR can be
constructed as shown in Figure 2. On the premise that the
output of each unit in the low-voltage transformer district and
the battery charge and discharge meet various constraints,
different considerations are considered on the power side and
the load side. The output of different types of power sources
and the power consumption characteristics of different types
of loads are aimed at the lowest total operating cost of the low-
voltage transformer district, and the MILP algorithm is used
to solve the problem to realize the optimal scheduling scheme
of the low-voltage transformer district.

4.1 Objective Functions
In the optimal scheduling of the low-voltage transformer district,
according to the forecasted values of photovoltaics and load
power, taking into account the carbon emission and DPDR
and aiming at the lowest total operation cost of the low-
voltage transformer district, the objective function of the
operation optimization of the low-voltage transformer district
is established as follows:

minF � ∑T
t�1
(Fbuy,t + Fw,t + FCO2,t + FSL,t − Fsell,t),

In the formula, F is the total operating cost of the low-
voltage transformer district. T is the scheduling cycle for the
day ahead. Fbuy,t is the power purchase cost. Fw,t is the
operation and maintenance cost. FCO2,t is the carbon
disposal cost. FSL,t is the satisfaction loss cost. Fsell,t is the
electricity sales revenue. The specific model of each
scheduling cost is as follows:

4.1.1 Power Purchase Costs

Fbuy,t � Cbuy,t · Pbuy,t · Δt,

FIGURE 2 | Scheduling framework of the low-voltage transformer district considering carbon emissions and differential demand response.

FIGURE 3 | Typical intra-day predicted values of photovoltaic output
and load.
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In the formula, Fbuy,t is the electricity purchase cost in the
transformer district in period t. Cbuy,t is the unit power purchase
cost in period t. Pbuy,t is the power purchased in period t. Δt is the
duration of the scheduling period.

4.1.2 Operation and Maintenance Costs

Fw,t � ∑Nw

i�1
Cw,i · Pi,t · Δt

In the formula,Fw,t is the operation andmaintenance cost in period
t.Nw is the number of units for which the operation andmaintenance
cost needs to be calculated. Cw,i is each operation and maintenance
cost of unit i. Pi,t is the operating power of unit i in period t.

4.1.3 Carbon Disposal Costs

FCO2,t � CCO2 · QCO2,t · Δt

QCO2,t � ∑NCO2

x�1
ECO2,x · Px,t

In the formula, FCO2,t is the carbon disposal cost in period
t. CCO2 is the unit carbon disposal cost. QCO2,t is the total
amount of carbon emissions in the transformer district in
period t . NCO2 is the number of units that need to calculate
the carbon treatment cost. External power purchase,
photovoltaic power generation, and battery charging and
discharging all have carbon emissions. ECO2,x is the carbon
emission intensity of unit x, which refers to the carbon
emission generated by the unit power growth. Px,t is the
output power of unit x in period t.

4.1.4 Satisfaction Loss Costs
The user has the most suitable energy consumption in each
period, which calls the users baseline load. When the user
deviates from the baseline load, there is a satisfaction loss,
which is quantified by the following function:

FSL,t � (1
2
λj,m · P2

j,m,t − θj,m · Pj,m,t) · Δt,

In the formula, FSL,t is the satisfaction loss cost in period t. λj,m
and θj,m are the constant coefficients of energy preference. Pj,m,t is
the actual load of the m class load in low-voltage transformer
district j during period t.

4.1.5 Electricity Sales Revenues

Fsell,t � Csell,t · Psell,t · Δt
In the formula, Fsell,t is the electricity sales revenue in

period t. Csell,t is the benefit of electricity sales per unit
in period t. Psell,t denotes the photovoltaic power sales in
period t.

4.2 Constraints
4.2.1 Power Balance Constraint

Pbuy,t + PPV ,t + Pdis,t � Pcha,t + Psell,t + PPDR
t

In the formula, PPV ,t is the photovoltaic power generation in
period t. Pcha,t and Pdis,t are the battery charging and discharging
powers in period t, respectively.

4.2.2 Constraint on the Receiving Capacity of the
Low-Voltage Transformer District
The penetration capacity of distributed photovoltaics affects the
operation state of the transformer district. If the penetration rate
of photovoltaics is too high, it will have adverse effects on the
district, such as power quality degradation (Ma et al., 2021).
Therefore, when the distributed photovoltaics are connected to
the low-voltage transformer district, it is necessary to consider the
receiving capacity of the distributed photovoltaics in the pressing
area. The total capacity of the distributed photovoltaics in the
access point should not exceed the receiving capacity of the
transformer district for photovoltaics. The constraint formula
of the admission capacity of the low-voltage transformer district
as follows:

∑T
t�1
PPV ,t ≤PPV ,max

In the formula, PPV ,max is the maximum receiving capacity of
the low-voltage transformer district for photovoltaics.

4.2.3 Access Point Voltage Violation Constraint
There is a certain error in the forecast value of photovoltaic
output, and with the increase of photovoltaic penetration rate, the
voltage of the access point has a greater possibility of exceeding
the limit (Huang M. et al., 2022). To reduce the probability of
voltage overlimit, we set constraints as follows:

Vmin ≤φbuy · Pbuy,t + φPV · PPV ,t ≤Vmax

In the formula, Vmin and Vmax are the upper and lower limits
of the voltage, respectively; 0.4 and 5.4 are taken in this article.
φbuy and φPV are the power-voltage sensitivity coefficients
corresponding to the purchasing power and photovoltaic
power, respectively.

4.2.4 PV Inverter Capacity Constraint
During photovoltaic power generation, the photovoltaic inverter
provides a certain amount of power to the grid, while maintaining
a part of the adjustable ability, and can absorb or emit part of the
power to adjust the voltage of the photovoltaic access point
(Elkayam and Kuperman, 2019). The total output in the PV
inverter must meet the capacity constraints:����������

P2
PV ,t + P2

sell,t

√
≤PINV
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In the formula, PINV is the rated capacity of the photovoltaic
inverter.

4.2.5 Battery Charge and Discharge Constraints

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0≤Pdis,t ≤Pdis,max

0≤Pcha,t ≤Pcha,max

Pdis,max � (SOC,t−1 − SOC,min) · CESS · γdis
Pcha,max � (SOC,max − SOC,t−1) · CESS/γcha

{ SOC,min ≤ SOC,t ≤ SOC,max

SOC,0 � SOC,T

In the formula, Pcha,max and Pdis,max are the maximum charge
and discharge powers of the battery, respectively. SOC,t is the state of
charge of the battery in period t. SOC,0 and SOC,T represent the state of
charge in period 0 and T, respectively. SOC,max and SOC,min are the
maximum and minimum states of charge of the battery, respectively.
CESS is the rated capacity of the battery. γcha and γdis are the charge
and discharge rates of the battery, respectively.

4.2.6 Carbon Emission Constraints

∑T
t�1
QCO2,t ≤QCO2,max

In the formula, QCO2,t is the carbon emission of the low-
voltage transformer district in period t.QCO2,max is the maximum
allowable carbon emission of the low-voltage transformer district.

4.2.7 Grid Interactive Power Constraints

{Pbuy,min ≤Pbuy,t ≤Pbuy,max

Psell,min ≤Psell,t ≤Psell,max

In the formula, Pbuy,max and Pbuy,min are the maximum and
minimum values of the purchased power, respectively. Psell,min

and Psell,max are the maximum and minimum values of the sold
power, respectively.

4.2.8 User Satisfaction Constraint

Rp ≤Rp,min

In the formula, Rp,min is the minimum electricity consumption
satisfaction.

4.3 Solving the Algorithm
The low-voltage transformer district operation optimization model
established in this article, considering carbon emissions and
differentiated demand response includes variables such as power
purchase and photovoltaics as well as the charging and discharging
states of the battery. It is a nonlinear programming problem.
Therefore, the mixed integer linear programming (MILP) method
is used to convert into a linear model for solving. The method

searches the nodes in the solution space tree, discards the nodes that
cannot generate feasible solutions, and searches the child nodes of the
live nodes until the optimal solution is found (Zhu et al., 2017). The
MILPmodel established is simulated and solved by calling the Yalmip
toolbox and Gurobi solver in Matlab.

5 SIMULATION ANALYSIS

In order to verify the correctness of the optimization model of the
low-voltage transformer district proposed in this article, a typical
low-voltage transformer district demonstration project in a city is
taken as an example scenario. The type of users in the transformer
district is analyzed according to the information such as the low-
voltage transformer district geographic information, the number
of users, and the capacity of the power system. The users in the
low-voltage transformer district are divided into residential users,
industrial users, and charging pile users. The load of this low-
voltage transformer district has a trend of upward translation,
showing a certain load characteristic.

5.1 Basic Data
The summary of the calculation example is as follows: the total
capacity of the photovoltaic power generation system in the
low-voltage transformer district is 2800 kW. The rated
capacity of the photovoltaic inverter is 250 kW. The total
capacity of the battery is 300 kW. The charge and discharge
rates are both 30%. The maximum and minimum charge states
are 0.8 and 0.2, respectively. The initial energy storage is
30 kW. The parameters of each element in the calculation
example are shown in Table 1. The calculation example takes
24 h before the day as the scheduling period and 1 h as the
length of the scheduling period, and the power is constant
during the scheduling period. The power consumption on the
load side is divided into three periods: peak periods, usual
periods, and valley periods. The peak periods are the 10:00–15:
00 period and the 18:00–21:00 period; the usual periods are the
7:00–10:00 period, the 15:00–18:00 period, and the 21:00–23:
00 period; the valley periods are the 0:00–7:00 period and the
23:00–24:00 period. The time-of-use electricity prices for
residential, industrial, and charging pile loads are shown in
Table 2. The elastic coefficients of the three types of loads are
shown in Table 3. The photovoltaic electricity sales prices are
0.68, 0.4, and 0.11 yuan/(kW · h) during the peak-to-valley
period. The maximum allowable carbon emission in the low-
voltage transformer district is 1500 kg.

In order to verify the effectiveness of the operation
optimization model of the low-voltage transformer district
proposed in this article, three types of load scenarios in two
modes are designed for comparative analysis. Mode 1 is the most
basic optimization mode, and carbon emissions and demand
response are not considered in the dispatch model. Mode 2 is a
comprehensive optimization model on the basis of considering
DPDR, and carbon emission factors are further considered. Three
types of load scenarios are resident load, industrial load, and
charging pile load.
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5.2 Simulation Results
Figures 4, 5 shows the scheduling results, including the load
demand, conventional output, and battery charge and discharge
conditions of the three types of load scenarios in different modes.

From Figure 4 and Figure 5, it can be concluded that Mode 1
does not consider DPDR and carbon emissions, and the load of
the three types of loads in each period remains unchanged. When
the load is in the valley period, the photovoltaic output not only
meets the load demand but also charges the battery. When
charging to the maximum state of charge, the solar panel may
be abandoned in the transformer district. When the load is in the
usual period, the state of charge of the battery remains constant,
and the load demand is jointly supplied by photovoltaics and

power grid purchases. When the load is in the peak period, the
photovoltaic output is low. In addition to battery discharge, a
large amount of power needs to be purchased from the external
power grid to meet the load demand. This model has a relatively
high power purchase, a low photovoltaic consumption rate, and a
high photovoltaic rejection rate. This operation mode is not
conducive to the safe and stable operation of the transformer
district and will also increase the economic cost of the
transformer district. Mode 2 considers DPDR and carbon
emissions. DPDR reduces the load during peak hours and
increases the load during valley hours in response to the
electricity price. The photovoltaic power generation increases;
also, the photovoltaic consumption rate increases, and the
economic cost of the transformer district is reduced. In
summary, considering demand response and carbon emissions
in the optimal scheduling of low-voltage transformer districts can
improve the photovoltaic absorption rate and the utilization rate
of demand response resources in the transformer district and
improve the matching degree of source-load measurements.

The load comparison curve before and after considering the
DPDR is shown in Figure 6, including the load values of the three

TABLE 1 | Operation parameters of each unit in the low-voltage transformer district.

Transformer district unit Lower power limit/kW Upper power limit/kW Operation and maintenance
cost in each

period/yuan/(KW·h)

Carbon intensity/Kg/(kW·h)

Photovoltaic 0 350 0.0235 0.015
Electricity Purchase 0 400 − 0.79
Electricity Sales 0 100 − −

ESS Power Storage 0 300 0.012 0.15
ESS Power Discharge 0 300 0.1 0.15

TABLE 2 | Time-of-use electricity price of three types of load.

Load type Peak
electricity price/Yuan/(KW·h)

Usual
electricity price/yuan/(KW·h)

Valley
electricity price/yuan/(KW·h)

Resident Load 0.86 0.52 0.13
Industrial Load 0.94 0.6 0.51
Charging Pile Load 1.5 0.8 0.5

TABLE 3 | Differential elastic coefficients of three types of load.

Load type Self-elastic coefficient Mutual-elastic coefficient

Resident Load −0.2 0.03
Industrial Load −0.05 0.33
Charging Pile Load −0.12 0.02

FIGURE 4 | Optimal scheduling outputs of units in Mode 1.

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 9356598

Jia et al. Optimization For Transformer District Operation

143

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


FIGURE 5 | Optimal scheduling outputs of units in Mode 2.

FIGURE 6 | Load comparison curve of three scenarios before and after demand response.

FIGURE 7 | Comparison curves of PV absorption rates in three scenarios under two modes.
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types load scenarios of users in each time period under the two
models.

As can be seen from Figure 6, compared with Mode 1 and Mode
2, the three types of loads in Mode 2 use the elastic change of
electricity price to guide the load to transfer laterally in time during
the dispatch cycle under the action of DPDR and perform peak
shaving and valley filling to reduce the load. DPDR smooths the load
curve, reduces the cost of demand response, and provides a guarantee
for the stable operation of the low-voltage transformer district.

Figure 7 shows the comparison curves of photovoltaic
consumption in three types of load scenarios under the
two modes.

It can be seen from Figure 7 that the photovoltaic absorption
rate of the three types of loads in Mode 1 are only 88.8, 72.8, and
77.7%, the rate is low, and the photovoltaic rejection rate is high.
The photovoltaic absorption rate of the three types of loads in
Mode 2 compared with that of Mode 1 has improved, reaching
96.1, 82.5, and 84.9%, meeting the requirement of a photovoltaic

consumption rate of 80% or more in the low-voltage transformer
district. Photovoltaic energy is fully utilized.

Figure 8 shows the comparison curve of carbon emissions
before and after comprehensively considering carbon emissions
and differentiated demand response, including the carbon
emissions of three types of load scenarios in each period
under two modes.

It can be seen from Figure 8 that in Mode 1, the overall carbon
emission level of the low-voltage transformer district is relatively high
during the dispatch period because the carbon emission factor is not
considered. Mode 2 considers carbon emissions in the optimization
objective while taking into account carbon constraints. Since the
carbon emission of new energy sources such as photovoltaic power
generation is very small, the charging and discharging of the battery
itself will not produce a lot of carbon emissions, and the carbon
emission intensity of external power purchases in the transformer
district is relatively high, so it is preferred to use new energy for power
generation. The battery will store the excess energy in part of the

FIGURE 8 | Comparison curves of carbon emission in three scenarios under two modes.

TABLE 4 | Optimal scheduling costs in three scenarios under two modes.

Scenarios Operation costs/yuan Mode 1 Mode 2

Resident Load Electricity Purchase Cost 683.13 540.11
Operation And Maintenance Cost 71.31 66.64
Satisfaction Loss Cost 69.77 61.34
Carbon Disposal Cost 434.74 378.00
Electricity Sales Revenue 186.99 66.42
Total Operating Cost Of Transformer District 1071.96 979.67

Industrial Load Electricity Purchase Cost 802.91 596.58
Operation And Maintenance Cost 70.76 70.15
Satisfaction Loss Cost 33.91 28.76
Carbon Disposal Cost 272.44 221.19
Electricity Sales Revenue 563.21 419.15
Total Operating Cost Of Transformer District 616.81 497.53

Charging Pile Load Electricity Purchase Cost 1802.64 1540.67
Operation And Maintenance Cost 73.38 72.04
Satisfaction Loss Cost 52.90 46.51
Carbon Disposal Cost 398.93 356.36
Electricity Sales Revenue 464.37 369.19
Total Operating Cost Of Transformer District 1863.48 1646.39
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period for use in the photovoltaic valley period. If the photovoltaic
and the battery cannot meet the load demand, the electricity will be
purchased from the outside. From the optimization results, it can be
seen that in the optimization model of the three scenarios, the
photovoltaic power generation increased by 1.0, 0.5,, and 0.6%,
the power purchase decreased by 11.7, 20.8,, and 11.0%, and the
carbon emissions decreased by 13.1, 18.8,, and 10.7%. It is proved that
considering carbon emission targets and constraints in the optimal
scheduling of a low-voltage transformer district can reduce the total
carbon emissions of the district.

From Table 4, it can be concluded that due to the good
economy of DPDR, it has a significant impact on the operation
cost of the transformer district, in addition. The dispatch model
takes carbon emissions as the optimization target, which reduces
the carbon treatment cost of the transformer district and further
reduces the total operating cost of the transformer district.
Compared with Mode 1, Mode 2 reduces the total operating
costs of the three user types by 8.6, 19.3,, and 11.6%, respectively.
The scheduling results show that considering carbon emissions
and differentiated demand response in the optimal scheduling of
the low-voltage transformer district can reduce the total operating
cost and carbon emissions of the transformer district, which
proves the correctness of the scheduling model.

6 CONCLUSION

In order to deal with the carbon emission and source-load
coordination problems of the low-voltage transformer
district under the dual-carbon background, this article
takes into account the differences in time-of-use electricity
prices and the elasticity of different types of loads and builds a
differentiated price-based demand response model. On this
basis, considering the carbon emission factor, a low-voltage
transformer district optimization model is established with
the goal of the lowest total operation cost of the station area,
and the MILP method is used to solve the algorithm
optimization. The simulation results show that

1) This article proposes a low-voltage transformer district operation
optimization method that considers demand response differences
and carbon emissions so that demand response resources can be
fully utilized, and the output fluctuations of the district are
reduced. The optimization method also reduces errors due to
PV uncertainty and improves the reliability of the optimal
scheduling of the district.

2) TheMILPmethod proposed in this article can efficiently solve
the above model, can significantly improve the optimization
convergence speed, and has good adaptability to the dynamic
environment.

3) The research in this article has important significance for
improving the coordination of the source, load, and storage in
the low-voltage transformer district. However, this article only
considers the differential price demand response and does not
consider the incentive demand response. The reliability of optimal
dispatch is relatively low. More research is needed in this area in
the future.
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