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Real-Time Reconstruction of the
Complex Field of PhaseObjects Based
on Off-Axis Interferometry
Xiang Li†, Guanyuan Qin†, Wenhui Yu, Huixian Li, Rui Hu, Junle Qu and Liwei Liu*

Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics
and Optoelectronic Engineering, Shenzhen University, Shenzhen, China

Quantitative phase imaging (QPI) can acquire dynamic data from living cells without the
need for physical contact. We presented a real-time and stable dynamic imaging system
for recording complex fields of transparent samples by using Fourier transform based on
off-axis interferometry. We calculated and removed the system phase without sample to
obtain the real phase of the sample, so as to ensure that the system has the ability to
accurately measure the phase. The temporal and spatial phase sensitivity of the system
was evaluated. Benefit from the ability to record the dynamic phase and phase profile of a
specimen, a standard sample (polystyrene microspheres) is investigated to demonstrate
the efficiency of this imaging system and we have observed the variation of erythrocyte
membrane during Red Blood Cells (RBCs) spontaneous hemolysis with different mediums.
Experimental results indicate that the phase of non-anticoagulant RBC changed
apparently than anticoagulant RBC and the system could be applied to real-time
noninvasive and label-free identification of living cells.

Keywords: real-time, complex field, living cells, off-axis interferometry, dynamic imaging

1 INTRODUCTION

Most living cells are almost transparent when illuminated by visible light, essentially acting as phase
objects. Same techniques such as phase-contrast microscopy and differential interference difference
microscopy can carry out microscopic imaging of transparent samples, consequently revealing the
structural details of biological systems [1, 2]. In spite of this, the information of the illumination field
obtained by these techniques is only qualitative, and it is difficult to describe the morphology of the
sample quantitatively. Both non-interference and interference methods have been widely used in
quantitative phase imaging of biological samples. For example, the microscopy based on intensity
transfer equations can realize phase imaging of biological samples through a series of numerical
operations [3–6]. However, it is limited by the complexity of the calculation process and the long
time required. The advantages of digital holographic microscopy (DHM) are rapid, non-destructive,
and high-resolution which is widely used in the study of cell structural characteristics, cell
deformation, cell dynamics, etc., [7–10]. Meanwhile, it can also be combined with other
technologies [11–13] to form a multi-mode microscopic imaging technology. The acquisition
rate of this technique is limited only by CCD and has the ability to measure the morphological
characteristics of living cells in real-time [14, 15]. However, it should not be ignored that the real-
time monitoring quality and the longest observation time of QPI will be limited by the overall
stability of the imaging system [16, 17]. In off-axis DHM, the low contrast of interference fringes
usually reduces the phase sensitivity of the system. In addition, camera dark noise, read noise and
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other instrumental parameters may affect the measurement
sensitivity of the system [18]. The spatial sensitivity of the
system is easily affected by speckle noise factors such as
scattering field of impurities on optical elements and random
interference noise patterns generated by specular reflection of
various surfaces in the system, or environmental factors such as
mechanical vibration and air density fluctuations. Spatial light
interference microscopy (SLIM) is considered as a method to
reduce speckle noise inherent in laser light source [19]. In
conclusion, it is significant to check and reduce the influence
of noise and environmental factors on measurement sensitivity
during post-processing. In the process of off-axis spatial filtering,
the Fourier transform involved will also bring unnecessary noise
to the image. Therefore, in order to ensure the spatial phase
sensitivity of QPI, it is particularly important to subtract the
background phase.

In this paper, an off-axis real-time digital holographic
microscopy system based on Mach- Zehnder interferometer
was designed, to solve the above problems, we acquired the
background phase firstly by dealing with the interference
fringe without a sample then the phase caused only by the
sample can be computed by subtracting the background phase.
Consequently, the dynamic imaging of the phase only caused by
the sample could be achieved. To verify the feasibility of the

imaging system, we have demonstrated the experiments on
polystyrene microspheres and red blood cells [20–23].

2 SYSTEM AND METHODS

2.1 Experimental Setup
A typical setup of off-axis interferometry is depicted in
Figure 1A. A continuous wave (CW) laser (MRL-III-650L,
Changchun new industry), which was used for the imaging
Mach-Zehnder interferometer, was steered to the first non-
polarized beam splitter (NPBS), after which the beam was
separated to perform off-axis interferometry.

The sample was placed on a three-axis displacement table for
wide-field illumination. An objective (Daheng Optics, GCO-213
40x, NA = 0.60) imaged the sample to a scientific complementary
metal-oxide-semiconductor (sCMOS) camera which was
positioned at the imaging plane of the objective, where an
exact (magnified) replica of the sample field can be formed.
The acquisition rate of the sCMOS that we used
(PCO.Panda.4.2, Germany) is 48 frames/s when acquiring at
the full resolution of 2048 × 2048 pixels. To produce a clean
reference beam, a 20 μm pinhole was placed within the reference
path at the common focus of a pair of lenses (L1 and L2)

FIGURE 1 |Working principle and spatiotemporal calibration of the system. (A) Schematic of the experimental setup. NPBS, non-polarized beam splitter; SCMOS,
scientific complementary metal-oxide-semiconductor camera; OB, objective lens; S, stage. (B) 30 s phase measurement of the system without sample. (C) Temporal
Phase Sensitivity. (D) phase measurement of the system without sample along the white line. (E) Spatial Phase Sensitivity. φ(sym): phase of the system without sample,
σ: Standard deviation of the phase without sample.
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performing spatial filtering. Finally, the reference field was
slightly tilted relative to the sample beam and interfered with
the sample beam to form uniform phase modulation fringes in
sCMOS. The standard Fourier transform (FT) algorithm was
adopted to reconstruct the amplitude and phase [24]. Specifically,
the camera respectively recorded a hologram with and without a
sample and performed a fast two-dimensional Fourier transform
(By selecting the higher-order information in the spectrum to
fundamental and performing the inverse Fourier transform), by
subtracting and unwrapping the phase information, the phase
directly related to the sample can be obtained. Off-axis
interferogram was recorded after optimized the fringe contrast
with an exposure time of 10 ms. The temporal and spatial phase
sensitivity was evaluated as shown in Figure 1B,D (a 30 s
continuous and a series of different points measurement of the
phase without samples). The absolute value of the phase is not
meaningful, but the relative change of the phase is meaningful.
The standard deviation of points was selected to demonstrate the
time-space domain phase fluctuation, the smaller the value, the
more stable the phase, which shows great temporal-spatial
stability as shown in Figure 1C,E.

2.2 Principle
As for the spatial coherence imaging system, the intensity comes
out at sCMOS has the form:

I �
∣∣∣∣∣U0

∣∣∣∣2 + ∣∣∣∣∣U1(x, y)∣∣∣∣2 + 2
∣∣∣∣∣U0

∣∣∣∣∣∣∣∣∣∣U1(x, y)∣∣∣∣∣cos(φ(x, y) + 2πfxx

+ 2πfyy + φn)
(1)

|U0|2 and |U1(x, y)|2 represent the irradiance distribution of
reference and the irradiance distribution of sample respectively,
φ(x, y) represents the optical delay caused by the sample, which
is the amount of interest in the experiments, fx and fy ,
respectively, represent the spatial frequencies of fringes with X
and Y direction, and φn is the additional phase modulation
introduced by the environment noise. For easy description, we

denote 2πfxx + 2πfyy as φsym. By Fourier high-pass filtering,
the interference term U(x, y) can be isolated:

U(x, y) � 2
∣∣∣∣∣U0

∣∣∣∣∣∣∣∣∣∣U1(x, y)∣∣∣∣∣cos(φ(x, y) + φsym + φn) (2)
By applying Euler’s formula, j represents an imaginary unit:

U(x, y) � ∣∣∣∣U0

∣∣∣∣∣∣∣∣U1(x, y)∣∣∣∣(ej(φ(x,y)+φsym+φn) + e−j(φ(x,y)+φsym+φn))
(3)

In the spectrum, the interference term U(x, y) is divided into
two parts as follow, which distribute along the center
fundamental frequency signal symmetrically and contain the
same high-frequency information, F is the Fourier operator,
u(kx, ky) is the Fourier transform of U(x, y).

u(kx, ky)+1 �
∣∣∣∣∣∣∣∣U0

∣∣∣∣∣∣∣∣F(
∣∣∣∣∣∣∣∣U1(x, y)

∣∣∣∣∣∣∣∣ej(φ(x,y)+φsym+φn))
�
∣∣∣∣∣∣∣∣U0

∣∣∣∣∣∣∣∣u(kx− 2πfxx,ky− 2πfyy) (4)

u(kx, ky)−1 �
∣∣∣∣∣∣∣∣U0

∣∣∣∣∣∣∣∣F(
∣∣∣∣∣∣∣∣U1(x, y)

∣∣∣∣∣∣∣∣e−j(φ(x,y)+φsym+φn))
�
∣∣∣∣∣∣∣∣U0

∣∣∣∣∣∣∣∣u(kx+ 2πfxx,ky+ 2πfyy) (5)

By taking any term (u(kx, ky)+1 or u(kx, ky)−1) in the
spectrum as higher-order information and return it to the
fundamental frequency:

u(kx, ky)±1 �
∣∣∣∣∣U0

∣∣∣∣∣F(∣∣∣∣∣U1(x, y)∣∣∣∣∣e±j(φ(x,y)+φn)) (6)
The term φsym introduced by moving reference beam is

eliminated.
The phase and amplitude information of the sample could be

obtained by inverse Fourier transform of u(kx, ky)±1 in the
spectrum back to the spatial domain:

FIGURE 2 |Complex field and Phase measurement results of polystyrene microspheres. (A) Interferogram image at 0.1 s. (B) Amplitude image at 0.1 s. (C) Phase
image at 0.1 s. (D) Phase profile of horizontal direction curves at the location indicated by the white dashed line shown in (C).
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ϕ(x, y) � φ(x, y) + φn (7)
The phase calculated here includes the phase caused by non-

samples, which we solve in this paper by the following method. The
phase caused by ambient noise or the possible presence of impurity
scattering field φn in the system can be obtained by performing the
same process above on the interferogramwithout samples. Finally, the
real phase value of the target sample can be obtained by calculating the
difference between the phase value obtained with and without the
sampleφ(x,y) � ϕ(x,y) − φn. It can be seen from Figure 1 that this
method can make the system have good measurement sensitivity.

2.3 Sample Preparation
To demonstrate the phase stabilization ability of the proposed
method, we performed QPI of polystyrene sphere as well as the
RBC spontaneous hemolysis. For the study, all cell samples were
taken from three-month-old mice. After euthanasia on mice (Put
the mouse’s body straight, lift it up about 30° diagonally, and
instantly break the cervical vertebra according to IACUC
guidelines), we extracted blood by removing the eyeballs of
mice. For comparison, we divide the obtained blood into two
parts, one immediately poured into a centrifuge tube with
anticoagulant and the other not, centrifuged for 5 min at a

speed of 2000 RPM, and then sucked 2 μl red blood cells on a
slide for imaging experiments with our experimental system.
Animal related experiments were approved by Guangdong
Medical Experimental Animal Center (Code: C202110-01).

3 RESULTS

Using quantitative phase imaging techniques for live cell monitoring
canbetter reflect other cell information such as phase, optical thickness,
etc.We first achieved the complex field and phasemeasurement ability
of our system using standard samples (polystyrene microspheres) as
shown in Figure 2. Polystyrene microsphere is a common test target
because of its simple and easily identifiable structure. The polystyrene
microspheresweuse are about 10micronswith refractive index of 1.60.
We took a hologram of the sample as shown in Figure 2A inOlympus
oil medium with approximate refractive index of 1.52. Figure 2B,C
show the overall amplitude and phase distributions with Fourier
transform (FT) algorithm. The phase information shows the
spherical structure of the sample, what’s more, we plotted the
phase profile as shown in Figure 2D to verify the effectiveness of
our imaging system. (Real-time dynamic process of the polystyrene
microspheres See Supplementary Figure S1).

FIGURE 3 | Complex field and Phase measurement results of red blood cells without and with anticoagulant (the results of the first row are without anticoagulant).
(A,E) Interferogram image at 1 s (B,F) Amplitude image at 1 s (C,G) Phase image at 1 s (D,H) Phase profile of horizontal direction curves at the location indicated by the
white dashed line shown in (C,G).
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Then, we imaged living red blood cellswith differentmediums. The
result of the complex field of the blood cell without anticoagulant and
its phase profile at 1s are shown in Figure 3A–D, and Figure 3E–H
shows the results of the red blood cell with anticoagulant. After
obtaining the interferogram (Figure 3A) with high contrast, the
complex field of this sample was obtained by using the algorithm
introduced above, as shown in Figure 3B,C. To verify the accuracy of
the achieved phase, the phase value across the middle white line was
plotted (Figure 3D) which showed the unique structure of RBCs.

To observe the morphological changes of red blood cells during
spontaneous hemolysis, phase measured for 4 consecutive hours,

the results of the first 2 h were shown in Figure 4. On the one hand,
it can be clearly observed that the structure of the non-
anticoagulant RBC membrane has undergone significant
changes as shown in Figure 4A–E which is caused by the
variation of its osmotic pressure between internal and external
during cell spontaneous hemolysis [7]. Specifically, the RBC
(Figure 4A) has a complete structure that means it has two
peaks which can be seen from its phase curve shown in
Figure 3D. An hour later, as shown in Figure 4F, the RBC
only has one peak which indicates both that its cell membrane
morphology has changed and it has died. From Figure 4 C,D,E, we

FIGURE 4 | (A–E) are phase measurement results of red blood cells without anticoagulant in 2 hours. (F) Phase profile of horizontal direction curves at the location
indicated by the white dashed line shown in (A,C,E); (G–K) are phase measurement results of red blood cells with anticoagulant in 2 h. (L) Phase profile of horizontal
direction curves at the location indicated by the white dashed line shown in (G,I,K).

FIGURE 5 | (A) Phase Maximum variation of red blood cells without anticoagulant. (B) Phase Maximum variation of red blood cells with anticoagulant. σ: Standard
deviation of the RBC Phase Maximum.
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can find that the morphology of the RBC is basically unchanged
cause of death of the cell. On the other hand, the results in
Figure 4G–K show that the anticoagulant RBC membrane has
not changed significantly and the RBC has two peaks all the time as
shown in Figure 4L. Comparing Figure 4A–E with Figure 4G–K,
it can be found that due to the addition of anticoagulants to the
samples, which enabled the RBC to maintain physiologically active
for a long time and with no obvious variation of the RBC phase.
The dynamic phase of the RBC was continuously acquired after
2 hours for approximately 120 min with 30 s intervals as shown in
Supplementary Figures S2, S3.

To show the phase variation of the non-anticoagulant and
anticoagulant RBC in 2 hours qualitatively, we continually
recorded the maximum phase of the cells with 10min intervals
and calculate its average value as shown in Figure 5A and
Figure 5B. Apparently, the maximum phase of non-
anticoagulant RBC trended to change in one direction, but of
which the anticoagulant RBC changed little and leveled off at
the same time. The standard deviation was used to show the
stability of data usually. Compared with the anticoagulant RBC,
the standard deviation of the non-anticoagulant RBC phase
maximum is bigger which means non-anticoagulant RBC has
changed sharply and the addition of anticoagulants has the effect
of making the cell morphology last longer.

4 CONCLUSION

In summary, we have measured the complex field of objects using
off-axis interferometry. The dynamic phase and phase profile are
used to describe the morphology changes of the sample. We have
observed the spontaneous hemolysis process of red blood cells with
two different mediums in 2 hours (with anticoagulant or not). For
the non-anticoagulant RBC, the cell membrane changed
significantly during spontaneous hemolysis. We also
quantitatively described the spontaneous hemolysis of red blood
cells in two ambient fluids by using the standard deviation of the
maximum phase. The advantages of our system are that good
measurement stability of the system is obtained by subtracting the
background phase, the phase and profile information are combined
and can be detected in real-time, and the time of one single shoot
needed is about 0.1 s. We believe that this work can be applied to
the physiological detection of living cells.
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High-throughput deep tissue imaging and chemical tissue clearing protocols have brought
out great promotion in biological research. However, due to uneven transparency
introduced by tissue anisotropy in imperfectly cleared tissues, fluorescence imaging
based on direct chemical tissue clearing still encounters great challenges, such as
image blurring, low contrast, artifacts and so on. Here we reported a three-
dimensional virtual optical clearing method based on unsupervised cycle-consistent
generative adversarial network, termed 3D-VoCycleGAN, to digitally improve image
quality and tissue transparency of biological samples. We demonstrated the good
image deblurring and denoising capability of our method on imperfectly cleared mouse
brain and kidney tissues. With 3D-VoCycleGAN prediction, the signal-to-background ratio
(SBR) of images in imperfectly cleared brain tissue areas also showed above 40%
improvement. Compared to other deconvolution methods, our method could evidently
eliminate the tissue opaqueness and restore the image quality of the larger 3D images
deep inside the imperfect cleared biological tissues with higher efficiency. And after virtually
cleared, the transparency and clearing depth of mouse kidney tissues were increased by
up to 30%. To our knowledge, it is the first interdisciplinary application of the CycleGAN
deep learning model in the 3D fluorescence imaging and tissue clearing fields, promoting
the development of high-throughput volumetric fluorescence imaging and deep learning
techniques.

Keywords: optical clearing, deep learning, deep tissue imaging, light-sheet, image processing

INTRODUCTION

Fluorescence microscopy has been playing an increasingly indispensable role in depiction of
biological microstructures and functions. Up to now, confocal microscopy is still the most
extensive and successful commercial fluorescence imaging system [1]. Nevertheless, the tissue
anisotropy, the signal attenuation or absorption, the optical aberration of imaging system will all
cause severe image blurring and degradation in the practical imaging process, limiting the further
development of biological research at micro-scale [2]. On the one hand, the low fluorescence image
quality greatly decreases the resolving power and further analysis accuracy of imaging systems for
microstructural information. On the other hand, the reduction of fluorescence signal deep inside
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biological tissues will influence the imaging depth and imaging
speed of thick tissues, restricting the experimental research
efficiency for large-scale biological tissues. So far, many
researchers have made great efforts to improve the imaging
efficiency and image quality from different aspects, including
physical, chemical, and digital ways [3–5].

To acquire detailed 3D information physically, a series of
advanced optical imaging techniques have been developed for
deep tissue imaging in recent years, such as two-photon
excitation microscopy (TPEM) [6], fluorescence micro-optical
sectioning tomography (fMOST) [7], and light-sheet fluorescence
microscopy (LSFM) [8]. Compared with the confocal
microscopy, the two-photon absorption effect provides lower
background signal level, phototoxicity and photobleaching for
biological imaging. Besides, longer wavelength of laser used in
TPEF could realize larger penetration depth for fluorescence
excitation and detection, improving the 3D imaging capability
of fluorescence microscopy. fMOST broke the 3D imaging
limitations for brainwide mapping neurite level by using a
continuous tissue sectioning microtome and synchronous
wide-field detection. And the synchronous tissue sectioning
and imaging idea could be also introduced into various
conventional imaging systems for high-speed 3D imaging and
reconstruction, including serial two-photon tomography [9],
automatic serial sectioning polarization sensitive optical
coherence tomography [10] and so on. Further, as a rapid,
high-resolution imaging technique, LSFM has played an
important part in large-scale mesoscopic biological research
due to its large field of view and good optical sectioning
capability. Especially for millimeter-level biological tissue
imaging, LSFM has shown unprecedented imaging speed and
throughput, which is at least dozens of times higher than some
conventional fluorescence microscopies [11].

Although these microscopic imaging systems have made
significant progress in depicting biological microstructures and
functions, it is not sufficient for us to improve the image quality
and imaging depth only by physical means. It is because the
strong scattering and attenuation effect introduced by the
biological tissue anisotropy will directly cause severe image
degradation and noise, which could not easily be overcome or
bypassed by upgrading the optical system. Hence, the chemical
tissue clearing techniques were proposed to improve the tissue
homogeneity and ensure refractive matching between tissues and
surrounding buffers. Especially as a powerful combination with
LSFM imaging techniques, various tissue clearing protocols have
been developed and modified for larger imaging depth and better
imaging quality in 3D tissue imaging [12–14]. For example,
CUBIC-series allows whole-brain even whole-body clearing
and enables single-cell-resolution visualization and
quantification of nucleus and neural activities in centimeter-
scale brains [15]. And the previously unknown details and
anatomical connections such as non-dividing stem cells near
perisinusoidal areas under the fluorescence microscope could also
be revealed by using DISCO-series protocols [16]. Besides, an
ultrafast optical clearing method (FOCM) was also proposed to
clarify 300-um-thick mouse tissue slices in 2 min with low
morphological deformation, fluorescent toxicity and easy

operation [17]. Nevertheless, in spite of the great clearing
effect on tissues of rodent animals, these clearing protocols
have not perfectly resolved the compactness and refractoriness
of brain tissues, especially the white matter. So far, as the most
important partner of high-throughput imaging systems (e.g.,
LSFM), the development of chemical tissue clearing techniques
is still booming for expanding the 3D tissue imaging depth and
image quality.

Except for improvements of imaging systems and tissue
preparation techniques, another popular approach is image
deconvolution. An image restoration process, namely
deconvolution, is established for enhancing the tissue details
and image quality by typically modeling the image acquisition
and degradation process as the summation of image noise and
convolution between sample and systematic point spread
function [18]. Many classic deconvolution methods, such as
Richardson-Lucy deconvolution and Huygens deconvolution
have shown great image enhancement performance for
different requirements, including resolution improvement,
image deblurring and noise suppression [19, 20]. However,
inevitably, tissue anisotropy and scattering generally lead to
deficiency of some 3D information, getting in the way of
accurate acquiring or estimation of systematic point spread
function, which is very important for the deconvolution
process. Particularly, the fast large-scale tissue imaging process
is generally accompanied by unforeseeable uncertainty of point
spread function distortion and image degradation. As a kind of
emerging state-of-the-art technique, deep learning has gradually
shown powerful efficiency and wide feasibility, especially in image
super-resolution, image restoration and aberration correction
[21–23]. However, almost current deep learning-based image
processing methods need a large number of exquisitely
prepared paired datasets. Due to the hardware and
experimental limitation, it is difficult even impossible to
acquire enough high-quality ground-truth in paired datasets
for some deep learning models, such as convolutional neural
networks and U-Net [24–26]. In recent years, a series of
unsupervised deep learning models are proposed to realize
feature transformation between two types of data with
unpaired datasets [27–29]. For example, CycleGAN model has
been widely applied in two-dimensional (2D) medical image
processing, which realized good efficiency comparable to
supervised deep learning models [30–32]. Nevertheless,
CycleGAN was mainly used in non-fluorescent imaging and
2D image processing. The wide application and successful
verification in 3D high-throughput fluorescence microscopy
has hardly ever been reported before.

Here we report a three-dimensional virtual optical clearing
method based on cycle-consistent generative adversarial network,
termed 3D-VoCycleGAN, to improve the transparency of
imperfect cleared biological tissues and image quality of LSFM
images. First of all, we selected the blurred 3D image volumes and
clear 3D image volumes from the raw 3D image data with varying
transparency and contrast as datasets for further network
training. Then we built a CycleGAN deep learning model with
two 3D ResUNet-based generators and two 3D PatchGAN-based
discriminators to realize fast prediction and transformation from
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blurred image volumes to clear image volumes. By testing the
method on the 3D image data acquired from a custom-built
LSFM system, we verified evident improvements with
homogeneous digital tissue clearing and good image contrast
on imperfect cleared mouse brain tissues and mouse kidney
tissues. Besides, compared to other deconvolution methods,
our virtual clearing method showed good image restoration
and transparency enhancement effect with evident speed
advantage, especially for 3D images deep inside biological
tissues. To our knowledge, it is the first time that CycleGAN
model has been used for enhancing the clearing effect of chemical
tissue clearing, and restoring the 3D blurred LSFM images. Our
virtual optical clearing method could effectively remedy the
insufficiency of chemical tissue clearing and deep tissue
imaging techniques, illustrating promising potential in future
3D histology and volumetric fluorescence imaging.

METHODS

The Main Framework of Virtual Optical
Clearing
The tissue spatial anisotropy and imperfect tissue clearing effect
generally leads to heterogeneous image contrast or image
blurring, limiting further image biological structure
identification and analysis. We proposed a CycleGAN-based
approach to restore image quality with various tissue
transparency and contrast in 3D LSFM imaging. The main
framework of our virtual optical clearing method is shown in
Figure 1A. According to different types of tissue properties and
clearing effect, we selected several representative 3D image
volumes with specific structural information from the raw
LSFM data to generate datasets for network training. In the
tissues, 3D volumes with high image contrast, low noise and

FIGURE 1 | Framework of virtual optical clearing method and 3D-VoCycleGAN architecture. (A) The framework and workflow of our virtual optical clearing method.
The 3D-VoCycleGAN consists of two generators and two discriminations (B) The network structure of generators. 3D ResUNet was used to build the two generators in
our network (C) The network structure of discriminators. 3D PatchGAN was used to build the two discriminators in our network.
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good transparency were regarded as well-cleared tissue areas.
And the cropped 3D image data from the well-cleared tissue areas
was performed 3D deconvolution to further suppress background
signal out of focus and improve image contrast for generating the
target domain image data. At the same time, 3D image volumes
with severe blurring and background noise in imperfectly cleared
area was selected as the source domain image data. It is noticed
that unlike the supervised deep learning-based methods, we need
not realize accurate data pre-alignment between the two domains
in our method. Hence, various types of biological samples could
be used to build datasets for our experiments, including mouse
brain tissues and kidney tissues acquired by using our custom-
built LSFM system.

In the specific network training process, we defined the source
domain and the target domain as domain X and domain Y,
respectively. Taking the GPU memory requirements of network
training into account, 200 groups of unpaired 3D image volumes
with 256 × 256×16 pixel3 size were randomly cropped from the
domain X and domain Y to generate the training datasets. In
order to improve the training efficiency and avoid overfitting,
image volumes with insufficient foreground were automatically
discarded before training [33]. And these image volumes were
normalized and then fed into the network for training. To ensure
higher generalization capability of our network, during each
training process, we performed data augmentation on the
input image volumes by introducing a series of random
changes, such as flipping, rotation, and so on. As the loss
function iteratively minimized, the non-transparent 3D tissue
image identified and learned the clearer structural features from
the cleared 3D tissue image. After the deep learning network was
well optimized, the original large LSFM image data with varying
spatial transparency and contrast was sent to the network for
implementing fast image prediction and image quality
restoration.

3D-VoCycleGAN Architecture
In our 3D-VoCycleGAN, we built the two generators by using
ResUNet, which has been proved to have great biological feature
extraction capability [34]. The ResUNet used in our generators is
a kind of encoder-decoder cascade structure, which is composed
of four downsampling blocks and upsampling blocks (Figure
1B). In the encoder path, each downsampling block contained a
max pooling and two convolution layers, each layer of which
comprised 3 × 3×3 kernel followed by a batch-normalization
layer and a ReLU activation function. And the encoder encoded
the input image stack into multiple feature representations at
different levels throughmax pooling. Then the decoder consisting
of four upsampling blocks symmetrical to the encoder was used to
decode data information back to the original dimension. Each
upsampling block consisted of trilinear interpolation, skip
connection, and convolution layers. The skip connection
concatenated the high-level features and spatial information
between encoder and decoder, thus retaining more details and
capturing finer information. Finally, we established a residual
connection between the input and the output of the decoder to
avoid the gradient vanishing problem and improve the
performance of the network [35].

For building the discriminators, we modified the five-layer
conventional structure of PatchGAN [31] into a 3D form
(Figure 1C). In the PatchGAN, conventional operation with
a stride of 2 and padding of 1 was used in the first three
conventional layers, each layer of which was followed by an
instance normalization layer, and a LeakyReLU activation
function. And the channel numbers were doubled as the
image resolution was halved in the first three conventional
each time. And the channel numbers of the five
convolutional layers were 64, 128, 256, 512 and 1,
respectively. Considering that the size of the input stack was
256 × 256×16, we set the kernel size of the last two convolution
layers to 3 × 3×3, making the size of the output patch 32 × 32×2.
Finally, the last convolutional layer reduced the channel
numbers of the feature map to 1, and a sigmoid activation
function was used to normalize the output value into [0, 1].

Our 3D-VoCycleGAN was implemented based on the Pytorch
deep learning framework. The learning rate of the Adam
optimizer was set to 0.0002 in the first 100 epochs and
linearly decayed to 0 in the next 100 epochs. The batch size
was set to 1. The overall training and prediction processes based
on our method were implemented in a Dell 7,920 workstation
equipped with RTX 3090 GPU (24 GB memory).

Loss Function
The deep learning model of 3D-VoCycleGAN contained two
generators GXY (from domain X to Y), GYX (from domain Y to
X) and two discriminators DX, DY. The two generators GXY,
GYX aimed to realize transformation from 3D image volumes
of domain X to 3D image volumes of domain Y and inverse
image transformation from domain Y to domain X,
respectively. In each domain, an image volume could be the
output of the generator or come from the original training
data. Hence, two discriminators were used to judge which
situation the image volumes belong to. In a word, the goal of
the generator was synthesizing images and fooling the
discriminator, while the discriminator tried to accurately
winnow truth from falsehood. The standard GAN loss [36]
was given as follows:

lGAN(GXY) � Ey~pdata(y)[logDY(y)] + Ex~pdata(x)
[log (1 −DY(GXY(x)) ,] (1)

lGAN(GYX) � Ex~pdata(x)[logDX(x)] + Ey~pdata(y)
[log (1 −DX(GYX(y)) ,] (2)

where x denotes the blurred stack in domain X, y denotes
the clear stack in domain Y. Ex~pdata (x), Ey~pdata (y) were the
expectation operators. However, standard GAN loss usually
suffers from mode collapse and vanishing gradients, which
severely degrades network performance and stability. Here we
used LS-GAN loss [37] as objective function:

lGAN(GXY) � 1
2
Ex~pdata(x)[(DY(GXY(x)) − 1)2], (3)

lGAN(DY) � 1
2
Ey~pdata(y)[(DY(y) − 1)2] + 1

2
Ex~pdata(x)

[(DY(GXY(x)))2],
(4)
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lGAN(GYX) � 1
2
Ey~pdata(y)[(DX(GYX(y)) − 1)2], (5)

lGAN(DX) � 1
2
Ex~pdata(x)[(DX(x) − 1)2] + 1

2
Ey~pdata(y)

[(DX(GYX(y)))2],
(6)

The original cycle consistency loss calculated the L1 loss
between the original image and reconstructed image. We
incorporated a 3D multi-scale structural similarity index metric
(MS-SSIM) to construct a detail preserving transformation [38].
The cycle consistency loss was defined as follows:

lcycle (GXY, GYX) � Ex~pdata (x)[‖GYX(GXY(x)) − x‖1]
+Ey~pdata (y)[����GXY(GYX(y)) − y

����1] + η · lMS-SSIM, (7)
lMS-SSIM(GXY, GYX) � 1 −MS-SSIM(x, GYX(GXY(x))) + 1

−MS-SSIM(y, GXY(GYX(y))), (8)
where η represents the weight factor for the lMS−SSIM term. And it
was set to 0.2 in all experiments. An additional identity loss was
used to constrain the generator to build an identity mapping
when well-cleared volumes of the target domain were provided.

lidentity(GXY, GYX) � Ex~pdata (x)[‖GYX(x) − x‖1]
+ Ey~pdata (y)[����GXY(y) − y

����1] , (9)

Saliency constraint has been proved to be effective for content
preservation on 2D microscopic images [39]. And we added it to
our 3D-VoCycleGAN for maintaining fine structures and
information. By appropriately setting the threshold value, we
could separate the foreground with detailed structure from the 3D
samples. Therefore, the two generators focused on the essential
structures of foreground at the early training stage and avoided
appearance of artifacts in background with the aid of saliency
constraint. The saliency constraint loss can be written as:

lsaliency(GXY, GYX) � Ex~pdata (x)[����Tα(x) − Tβ(GXY(x))
����1]

+Ey~pdata (y)[����Tβ(y) − Tα(GYX(y))����1], (10)

where Tα(x) � sigmoid[100(x − α)] and Tβ(x) �
sigmoid[100(x − β)] are binary functions parameterized by
threshold α and β.

The total loss for generators could be expressed by:

LGenerator � lGAN(GXY) + lGAN(GYX) + λ · lidentity(GXY, GYX)
+ρ · lsaliency(GXY, GYX) + μ · lcycle (GXY, GYX), (11)

where the parameters λ, μ, ρ denotes the weight factor for the identity
loss, saliency constraint loss and cycle loss, respectively. We assigned
λ � 5, μ � 10, respectively. And we set ρ � 10 × e−0.1×n, where n
denotes training epoch number, making the network pay more
attention to the transformation of important details and ignoring
the interference from the background at the early stage of training.

Sample Preparation and 3D Image Data
Acquisition
The sample used in this study contained mouse brain and
mouse kidney tissues. For verifying the performance of our

method on tissue slices, we prepared Thy1-GFP mouse brains
and mouse kidney tissues, which were sectioned into 300-μm
and 200-μm thick slices, respectively. The mouse kidney tissue
slices were stained with DRAQ5 for labelling the cell nucleus
before cleared by FOCM reagents. The FOCM reagents were
prepared as 30% (wt/vol) urea (Vetec), 20% (wt/vol)
D-sorbitol (Vetec), and 5% (wt/vol) glycerol dissolved in
DMSO. When preparing the reagent, urea and D-sorbitol
were dissolved in DMSO and stirred at room temperature
overnight. After complete dissolution, glycerol was added and
stirred further. The reagents should be stored at room
temperature and shaken gently before using. Before
imaging experiments, the well-stained mouse brain and
kidney tissue slices were incubated in FOCM reagents for
several minutes.

For verifying the performance of our method on deep
tissues with millimeter-thickness, we prepared stereoscopic
mouse brain and kidney tissue blocks labelled with Alexa
Fluor 647 anti-mouse CD31 antibody (CD31-AF647,
BioLegend) by caudal vein injection. The Alexa Fluor
647 anti-mouse CD31 antibody (20 mg) was then diluted in
sterile saline (total volume of 150 ml). After the injection,
mice were placed in a warm cage for 30 min prior to perfusion.
Then mice were rapidly anesthetized with chloral hydrate
[5%, wt/vol, 0.1 ml/10 g, intraperitoneal (i.p.)] and
transcardially perfused with ice-cold 0.01 M phosphate
buffered saline (PBS, Coolaber) and paraformaldehyde
(PFA, 4% in PBS wt/vol, Saiguo Biotechnology Co., Ltd).
Mouse brains and kidneys were collected and incubated in
the same PFA solution at 4°C for 24–48 h for uniform fixation.
After fixation, mouse brains and kidneys were washed in
0.01 M PBS at room temperature (20–25°C) for 6–12 h. The
mouse brains and kidneys were clarified by the CUBIC-L/R+
protocol [xxx]. CUBIC-L [10 wt% of N-butyldiethanolamine
(Vetec) and 10 wt% of Triton X-100 (Sigma) in water] and
CUBIC-R+ [45 wt% of antipyrine (Vetec) and 30 wt% of
nicotinamide (Vetec) in water, buffered with 0.5% (v/w)
N-butyldiethanolamine (pH ~ 10)] was prepared for tissue
clearing. Mouse organs and tissues were incubated in CUBIC-
L for 7 d at 37°C with gentle shaking followed by PBS washing
at room temperature. After PBS clearing, the mouse brains
and kidneys was incubated and stored in CUBIC-R+ at room
temperature.

For generating 3D datasets and verifying the application of
our method, we acquired the experimental data of mouse
organs and tissues via a custom-built LSFM system. For
exciting fluorescence signal of mouse tissues labeled with
Thy1-GFP, DRAQ5, and CD31-AF647, two semiconductor
lasers (OBIS 488LS/637LX nm, Coherent) were aligned and
expanded by a pair of achromatic lenses with 30 and 250 mm
focal length, respectively. Like the classical selective plane
illumination microscopy, we used a cylindrical lens with
100 mm focal length and a low-NA objective (Olympus ×4/
NA 0.1/WD 18.5 mm) with long working distance to generate
a thin illumination sheet. And a mechanical slit (VA100 C/M,
Thorlabs) was set to 1 mm for controlling the thickness of the
illumination sheet. The fluorescence signal was collected by a
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tube lens (ITL200, Thorlabs), detection objective (Nikon ×4/
NA 0.2/WD 20 mm), a multi-channel emission filter (#87-247,
Edmund Optics) and a sCMOS camera (ORCA-Flash 4.0 V3,
Hamamatsu). And the biological samples were loaded on a 3D
motorized stage (KMT50SE/M-3D, Thorlabs) and performed
scanned imaging. In this system, we used the external trigger
mode with a synchronous signal to ensure high-frame image
acquisition. During the LSFM imaging process, each frame was
captured with a constant acquisition interval of 2 μm and total
exposure time of 10 ms. The corresponding camera acquisition
speed could be up to 100 fps. Due to the rapid imaging
advantage, the image acquisition process of a whole mouse
brain tissue slice could be finished in 4 min. All images were
transformed and stored as 16-bit Multi-TIFF format for post-
processing.

RESULTS

Image Enhancement Performance of
3D-VoCycleGAN for Mouse Brain Slices
Due to spatial anisotropy and structural complexity of biological
tissues, chemical tissue clearing still could not realize perfect
tissue transparency and image contrast. As for a pre-cleared
tissue, the clearing extent and spatial image degradation is
random across the whole 3D volume. Here we first
demonstrated our 3D-VoCycleGAN on Thy1-GFP mouse
brain slices to digitally improve the optical clearing extent and
image quality. Although the whole image showed the distribution
of fluorescence signal in the brain slice, some details such as nerve
fiber were still blurred as shown in Figure 2A. By using our 3D-
VoCycleGAN, the image background was greatly suppressed.

FIGURE 2 | The image enhancement performance of 3D-VoCycleGAN. (A) The comparison results before and after using 3D-VoCyleGAN (B) The image quality
enhancement results with Richardson-Lucy deconvolution, sparse deconvolution, and 3D-VoCycleGAN method. The size of cropped image volume was limited by the
GPU memory requirements of Richardson-Lucy deconvolution and sparse deconvolution. (C) The quantitative evaluation of the image quality enhancement
performance. The plotting curves of two line profiles showed the signal level and SBR of nerve fiber in the brain slice (D) The time consumption of different image
processing methods for the image volume. RL: Richardson-Lucy deconvolution, Sparse: sparse deconvolution, 3D-VoC: 3D-VoCycleGAN.
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Besides, the blurred nerve fiber in the original image became
more distinguishable after enhancement. Further, we cropped a
region-of-interest (ROI) from the brain slice to compare the
virtual optical clearing efficiency and image enhancing
performance with other deconvolution methods. Here we
performed sparse deconvolution [40], Richardson-Lucy
deconvolution and 3D-VoCycleGAN on a 500 × 500×32 pixel3

image volume. According to the results in Figure 2B, three
methods all realized image quality improvement to different
extents. Then we plotted the profiles of two lines across the
nerve fiber to quantitatively evaluate their differences of
performance. Although Richardson-Lucy also enhanced the
image resolution to some extent, the image background noise
suppression capability was not as good as the other methods. Our
3D-VoCycleGAN and sparse deconvolution showed better image
contrast and SBR improvements, which were both increased by
above 40% (Figure 2C). It is worth noting that although sparse
deconvolution showed very powerful image quality enhancing
capability comparable to our 3D-VoCycleGAN, the processing
time consumption for the image volume with same size is larger
than our method (Figure 2D). It usually takes a considerable
amount of time to finish the image processing by using
Richardson-Lucy deconvolution. And sparse deconvolution
could shorten the processing time with the aid of GPU
acceleration. Nevertheless, due to GPU memory limitation,
sparse deconvolution could not realize image processing of
large 3D data in one time. Although sparse deconvolution
could process the 3D image data volume by volume after
splitting the large 3D image data into several image stacks, the
final stitched 3D image will show uneven brightness and
background since these sub-volumes exist sparsity differences.
As for this image volume, the processing time consumption of
3D-VoCycleGAN, sparse deconvolution, and Richardson-Lucy
deconvolution were 0.8, 48 and 45s, respectively. Thereinto, we
performed 50 iterations of the Richardson-Lucy deconvolution by
using the DeconvolutionLab2 plugin in ImageJ/Fiji. Then, with
3D-VoCycleGAN, image processing of the whole brain slice with
3,100 × 3,500×180 pixel3 volume could be finished in only 141s.
Hence, our 3D-VoCycleGAN could realize great image quality
enhancement with short time consumption, showing the great
image processing efficiency in brain slice imaging.

Information Restoration of Images Deep
Inside Kidney Tissue Slices
Tissue slice imaging with chemical optical clearing protocols are
widely used in biological research. Although many chemical
tissue clearing methods have promoted biological structure
and function research, tissue scattering and refractive index
mismatching between multiple media in the imaging system
usually influence the image quality and microstructure analysis
under the slice surface. Our 3D-VoCycleGAN could contribute to
the information restoration of images deep inside tissue slices. As
shown in Figure 3A, labelled cell nucleus of the mouse kidney
tissue slice showed the distribution of glomeruli. However, the
tissue transparency was not enough to distinguish the detailed
nucleus or glomeruli. Especially, due to the uneven thickness and

structural anisotropy in axial direction, the clearing reagents
could not perfectly make the kidney tissue slice transparent.
For example, although the kidney tissue slice could be optical
cleared by the clearing reagents, the images deep inside the tissue
slice were still blurred due to inevitable light scattering or
attenuation. The fluorescence signal was nearly overwhelmed
in the strong background signal except the area from the tissue
surface to 115-μm depth (Figure 3B). By using our 3D-
VoCycleGAN, the fluorescence signal in deep tissue could be
quickly recovered. The axial images in Figures 3B,C showed the
profile of glomeruli and tubules across about 150-μm depth,
which improved the clearing depth of mouse kidney tissues by up
to 30%. Besides, we could also compare the 2D images in different
depths. When the imaging depth was 100 μm, the original image
could show distinguished cell nucleus with faint noise. Our virtual
optical clearing method could improve the image contrast with
details maintained as shown in Figure 3D. When the imaging
depth was 140 μm, the morphology of cell nucleus and glomeruli
were severely blurred (Figure 3E). With 3D-VoCycleGAN, the
final image quality was evidently improved, where some
information of nucleus and glomeruli was recovered. Hence,
to some extent, we could realize structural information
restoration of imperfectly cleared tissue slices in deep depth by
virtual optical clearing technique.

Virtual Optical Clearing of Large-Scale 3D
Tissues
Except for tissue slice imaging, high-throughput imaging for
large-scale 3D tissues also plays an increasingly important part
in biological research, especially in digital organ mapping and
brain network reconstruction. Here we demonstrated the 3D
image enhancement capability for stereoscopic mouse tissue with
above 1 × 1 × 1 mm3 volume by using our virtual clearing
method. To further depict the glomeruli distribution or
morphology of kidney tissue, we imaged and reconstructed a
mouse kidney tissue block with a custom-bulit LSFM system. As
shown in Figure 4A, the original 3D image volume has evident
space-variant opaqueness and structure blurring. In particular,
the structural contours of glomeruli were gradually blurred as the
axial depth increases, which was marked by the white arrow in
Figure 4A. The connections between glomeruli and arteries were
also very important for supporting some kidney functions.
However, in the imperfectly cleared kidney tissue, a branch of
the kidney artery was also overwhelmed in the background noise
(yellow arrow in Figure 4A). By using our virtual optical clearing
method, the glomeruli and artery branch were all evidently
recovered and distinguished (Figure 4B). And the anisotropic
tissue transparency was eliminated after virtual optical clearing.
From the depth color-coded z-projections, we could see the whole
image contrast and fluorescence signal intensity in various depths
were enhanced (Figures 4C,D).

In order to quantify the virtual optical clearing effect, we
selected two 2D images from two different z-depths. As shown
in Figure 4E, the original 2D image had low image quality,
including strong noise, blurring, and structure missing (two
blue arrows). After virtual optical clearing, the details and
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contours of glomeruli were enhanced greatly, which might be
meaningful to the morphological analysis of kidney
microstructures. Although the original 2D image in
Figure 4F had lower noise and blurring extent than the
original image in Figure 4E because of shallow imaging
depth, the vascular walls of two artery branches were still
difficult to be distinguished directly (two green arrows). Our
virtual optical clearing successfully recovered the details of two
vascular walls. Further, we evaluated the fluorescence signal
intensity and noise level in the two depths by plotting four
lines. As shown in Figure 4G, images processed by our method
had more distinguishable details about glomeruli and artery,
especially the contour of glomeruli and vascular walls. Besides,
our method improved the SBR of images by above 25%.
Meanwhile, we tested our method on 3D images of brain
vessels, which showed complex structures and dense
distribution in the mouse brain. For deep brain tissue 3D
imaging, tissue anisotropy and imperfect tissue clearing will
introduce strong scattering and attenuation of fluorescence
signal, resulting in vessel blurring and artifacts as shown in
Figure 4H. According to the comparison results of depth
color-coded z-projections, we could see the definition and
sharpness of vessels were greatly improved in various
depths by using our virtual optical clearing method. As
shown in Figures 4I,J, the vessel artifacts were suppressed
after virtual clearing. Similar to the results of kidney tissue, the
original vessel contours existed severe blurring. Our virtual
optical clearing method could effectively restore the
information and improve the image quality, indicating its
powerful image enhancement capability in 3D fluorescence
imaging.

DISCUSSION

High-throughput 3D fluorescence imaging and tissue clearing
techniques are playing an increasingly important role in
biological research. However, due to the tissue anisotropy and
structural complexity, chemical tissue clearing techniques
sometimes could not imperfectly clear the whole tissue,
resulting in image quality degradation, such as image blurring,
background noise, artifacts and so on. A series of methods
including physical, chemical and digital ways have been
proposed to improve the fluorescence image quality in recent
years. Here, we presented an unsupervised deep learning-based
image processing method, called 3D-VoCycleGAN to realize
further virtual optical clearing of imperfectly cleared tissues.
By making full use of the tissue anisotropy and space-variant
clearing extent, we built a virtual optical clearing method to
enhance the clearing effect of chemical tissue clearing techniques.
In our virtual optical clearing, we established a CycleGAN
architecture which consists of two pairs of 3D image
generators and discriminators to realize the transformation
and evaluation from low-quality LSFM images to high-quality
LSFM images. Needless of accurate data pre-alignment between
the source domain and target domain, our method need not
accurate data pre-alignment between the source domain and
target domain, which greatly improves the image processing
efficiency. Compared with other image enhancement methods,
our method showed more powerful image enhancement effect
and faster processing speed.With the 3D-VoCycleGAN, we could
restore more detailed mouse tissue structural information with
high SBR and image contrast, such as distinguished nerve fibers,
somas, glomeruli, and vessels.

FIGURE 3 | The image information restoration effect in a mouse kidney tissue slice. (A) Fluorescence image of a mouse kidney slice labelled with cell nucleus (B,C)
The comparison of clearing extent between original and fluorescence image processed by 3D-VoCycleGAN. (D,E) The image improvements in different imaging depths.
The image of z = 100 μm was given in (D) and image of z = 140 μm was given in (E).
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Particularly, it is the first time that the CycleGAN deep
learning model has been used for enhancing the clearing
effect of chemical tissue clearing, and restoring the 3D
blurred LSFM images. Furthermore, except for LSFM, our
3D-VoCycleGAN could also be used to process 3D images

captured by other 3D fluorescence imaging systems such as
confocal, two-photon microscopy and so on. From the
aspect of deep learning network architecture, the 3D
operations such as 3D max pooling and 3D convolution
in our 3D-VoCycleGAN are not only limited to specific

FIGURE 4 | The virtual optical clearing effect for millimeter-thicknessmouse tissues. (A) 3D fluorescence image of imperfectly clearedmouse kidney tissue. The two
dashed boxes represents 2D sections from two imaging depths (B) 3D fluorescence image of virtually optically cleared mouse kidney tissue by using 3D-VoCycleGAN.
The white and yellow arrows represents the glomerulus and artery branch, respectively. (C,D) The depth color-coded image of image volume in (A) and (B), respectively.
(E) The comparison results between original image and virtually cleared image for shallow depth shown in (A). The magnifications of insets were ×2. (F) The
comparison results between original image and virtually cleared image for deep depth shown in (A). Themagnifications of insets were ×1.5. The blue and green arrows in
(E) and (F) represented the structure details of glomeruli and artery branch, respectively. (G) The quantitative evaluation of tissue structural details. The plotting curves of
four groups of line profiles represented the glomeruli and artery branch (H) The comparison results between original and virtually cleared mouse brain vessels by using
depth color-coded z-projections. (I) The original 2D image showing blurred brain vessels (J) The 2D image corresponding to image (I) after virtual optical clearing. The
blue and green arrows represented the brain vessel details. The magnifications of insets were ×3.
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fluorescence imaging systems. From the aspect of dataset
preparation, the sparse deconvolution method which we
used to pre-process the 3D cleared tissue images was
proposed to improve the image quality of structured
illumination microscopy and proved to be available in
various 3D fluorescence imaging systems such as
confocal, two-photon, expansion microscopy and so on
[40]. Hence, the whole image processing flow of our 3D-
VoCycleGAN could be transferred to various 3D
fluorescence imaging systems by using related datasets. In
summary, our study promoted the combination and
application of digital image processing, chemical tissue
clearing and 3D fluorescence imaging techniques,
showing the promising development of interdisciplinary
technology in future high-throughput 3D biomedical
imaging and biological research.
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implantable collamer lens
implantation using AS-OCT
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Purpose: To develop a deep learning method to automatically monitor the

implantable collamer lens (ICL) position and quantify subtle alterations in the

anterior chamber using anterior segment optical coherence tomography (AS-

OCT) images for high myopia patients with ICL implantation.

Methods: In this study, 798 AS-OCT images of 203 patients undergoing ICL

implantation at our eye center from April 2017 to June 2021 were involved.

A deep learning system was developed to first isolate the corneoscleral, ICL,

and lens, and then quantify clinical important parameters in AS-OCT images

(central corneal thickness, anterior chamber depth, and lens vault).

Results: The deep learning system was able to accurately isolate the

corneoscleral, ICL, and lens with the Dice coefficient ranging from

0.911 to 0.960, and all the F1 scores >0.900. The relative error between

automated measurements and the ground truth for 95% (188 images out of

198) of LVs was within 10%. Intraclass correlation coefficients (ICCs) of the

machine-ground truth measurements ranged from 0.928 to 0.995.

The deep learning method also showed better repeatability than human

graders.

Conclusion: The deep learning method provides reliable detection and

quantification of AS-OCT scans for postoperative ICL implantation, which

can simplify and optimize the management of clinical outcomes of ICL

implantations. Also, this is a step towards an objective measurement of the

postoperative vault, making the data more comparable and repeatable to each

other.
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Introduction

High myopia has become a major public health issue

regarding its increasing prevalence around the world, with

10% of the world’s population estimated to be affected by

2050 [1, 2]. Nevertheless, for the correction of high myopia,

current mainstream laser-assisted refractive surgery can be risky

due to the thinning of corneal as well as structural alterations in

corneal biomolecules [3]. In recent years, the phakic intraocular

lens has been widely accepted as an option for high myopia

patients with its wide refractive correction range and

preservation of accommodation. One of the most worldwide-

used phakic intraocular lens types is the posterior chamber

phakic intraocular lens (EVO ICL; STAAR Surgical), which

involves placing an intraocular lens inside the eye without

manipulating the lens itself [4, 5]. Since the ICL is implanted

in the posterior chamber, it is crucial to monitor physiological

changes in the eye that may lead to adverse postoperative events.

For example, the inappropriate distance between the posterior

ICL surface and the anterior crystalline lens (lens vault, LV) can

lead to the risk of specific complications, such as anterior

subcapsular (ASC) cataracts, and considerable endothelial cell

loss [5, 6]. Therefore, the management of the postoperative

follow-ups is essential to the long-term success of ICL

implantation.

The development of the anterior segment optical

coherence tomography (AS-OCT) enables the acquisition

and visualization of high-resolution images of the

anterior segment structures [7, 8]. With its non-invasive

character, the device has been widely used in post-operative

follow-up for ICL implantation. Nevertheless, current

technology typically requires manual identification and

measurement of the structures, which would not be

clinically viable to manually label each parameter

individually in crowded ophthalmology clinics. Hence, an

objective method is required to automatically identify and

measure each scan.

Deep learning, a subfield of artificial intelligence (AI), has

proven to be effective for automatically analyzing ocular

images, including AS-OCT images [9–14]. However, there is

no attempt to automatically analyze AS-OCT images following

ICL implantations in patients, to whom an appropriate method

to manage the follow-ups can prevent major postoperative

complications. Herein, this study aims to develop a fully

automatic method based on deep learning to monitor the

ICL position and identify subtle alterations in the anterior

chamber for patients receiving ICL surgery, which could

promptly evaluate postoperative risks and discover adverse

events.

Methods

Subjects

This work included 203 patients undergoing posterior

chamber phakic intraocular lens (EVO ICL; STAAR Surgical)

implantation between April 2017 and June 2021 at the Eye

Center, the Second Affiliated Hospital of Zhejiang University,

College of Medicine, China. The surgeries were performed by

senior surgeons. Patients with a history of cataracts, glaucoma,

uveitis, or ocular surgery that could affect structures in AS-OCT

were excluded. The postoperative scans were obtained from the

swept-source Casia SS-1000 AS-OCT (Tomey Corporation,

Nagoya, Japan).

The Ethics Committee of the Second Affiliated Hospital of

Zhejiang University, College of Medicine, approved this study.

All methods adhered to the tenets of the Declaration of Helsinki.

Deep learning system development

To fully automatically obtain the values in the AS-OCT

images following ICL implantation in clinical practices, the

deep learning system consists of two approaches: the detection

approach and the quantification approach (Figure 1). We

developed the system using 598 images (75%) for training,

and the remaining 200 images for testing.

The detection approach involved automated recognition of

the corneoscleral, ICL, natural lens, and angle recess points

(Figure 1A): Each AS-OCT image was manually segmented

into 5 parts (the corneosclera, the ICL, the natural lens, and

the angle recess points for both left and right) to guide the

training of an improved U-Net network. The U-shape network

was composed of an encoder, decoder, and skip connection. The

encoder was made up of four downsampling blocks, and each

downsampling block consisted of two CBRs followed by a

pooling layer, while CBR is referred to as conv 3 × 3 layer +

batch normalization layer + ReLU layer. The decoder was

composed of four upsampling blocks, each containing an

upsampling layer followed by two CBRs. Skip connection was

employed between each downsampling block and upsampling

block at the same level to copy the features of the encoder into the

decoder for feature fusion. It is worth noting that two CBRs were

used for communication between the last downsampling block

and the first upsampling block, instead of using a skip

connection. The last block of the decoder used two conv

1 × 1+softmax layers to output a four-channel region

segmentation map and a three-channel angle recess points

positioning region map respectively. The purpose of

Frontiers in Physics frontiersin.org

Sun et al. 10.3389/fphy.2022.969683

23

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.969683


segmenting the angle recess points was to help create the line of

axis oculi in the quantification approach. And to improve the

segmentation robustness of the angle recess points, regions with a

radius of 20 pixels centered on the left and right angle recess

points are used for segmentation, instead of using individual

points.

Then, the quantification approach automatically obtained

central corneal thickness (CCT), anterior chamber depth (ACD),

and LV (Figure 1B): To automatically obtain the values, we

calculated the centroid of the maximum connected area of the

angle recess area, which was the final location coordinate of the

point. Then we connected the left and right angle recess points

(angle recess to angle recess, ATA), and make the perpendicular

bisector of ATA, which represents the line of axis oculi.

Afterward, the intersections of the contour and the axis oculi

were connected to calculate CCT, ACD, and LV respectively.

For network implementation, we used the Pytorch platform

with an Nvidia GeForce RTX 3090 GPU. During model

optimization, the number of training epochs was set to 150,

and the batch size was set to 1. Dice loss was implemented with a

learning rate of 0.00003. We applied an RMSprop optimizer with

a weight decay of 1 × 10−8, and a momentum of 0.9. In terms of

the learning scheduler, we used the StepLR scheduler with the

period of learning rate decay of 10, and the multiplicative factor

of learning rate decay was set to 0.5.

Performance of the deep learning system

To assess the performance of the system, we evaluated the

segmentation performance and the quantification performance

respectively.

The segmentation performances were assessed using the Dice

coefficient, which indicates the similarity between the manual

and automated segmentation. Besides, we used the error of

X-coordinate, Y-coordinate and absolute values to assess the

performance of the two angle recess points segmentation, and

precision, recall, F1 score and mean IoU to evaluate the

performance of the corneosclera, ICL, and the lens

segmentation. For comparison, the ResNet-18, state-of-the-art

ReLayNet [15], and DeepLabel V3+ (commonly used for OCT

segmentation) [16] models were also implemented.

To assess the accuracy, reproducibility, and repeatability of

the measurement, we performed various tests involving the

FIGURE 1
Flowchart of the deep learning system, which is able to monitor the ICL position and recognize subtle alterations in the anterior chamber using
AS-OCT images for patients with ICL. (A). The detection approach: each AS-OCT image wasmanually segmented into 5 parts (the corneosclera, ICL,
lens, and angle recess points for both left and right) and put into an improved U-Net architecture for the training process. Then, the test images went
through the detection approach to generate the segmentationmap. (B). The quantification approach: the centroid of the maximum connected
area of the angle recess area was calculated and defined as the final coordinate of the points. Then we connected the left and the right angle recess,
and make the perpendicular bisector of ATA, which represents the line of axis oculi. Afterward, the intersections of the contour and the axis oculi
were connected to calculate CCT, ACD, and LV respectively.
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following measurements: G-the ground truth, D-the deep

learning system, A-expert s, B-expert c. The ground truth

measurements were obtained by manually labeling the edges

of the corneosclera, ICL, natural lens, and angle recess points in

the test sets and connecting the intersections of the contour and

the axis oculi to calculate CCT, ACD, and LV respectively. The

relative error, defined as the ratio of the absolute error (D vs. G)

and the ground truth value, was used to evaluate the accuracy of

the measurements. Bland-Altman plots were used to visualize the

distribution of discrepancy between the measurements of ground

truth and the deep learning system. The intraclass correlation

coefficient (ICC) was used to indicate the degree of agreement

and correlation between individual measurements (G vs. D; G vs.

A; G vs. B). ICCs of 0.41–0.60, 0.60–0.80, and 0.80–1.00 were

taken as moderate, substantial, and excellent agreement,

respectively [17]. The root mean square (RMS) difference was

calculated to assess human-ground truth differences and

machine-ground truth differences, as well as the repeatability

of different methods.

Results

Patient characteristics

In total, 798 AS-OCT images from 203 patients (406 eyes)

collected from April 2017 to June 2021 were included for

analysis after 5 images were excluded (due to poor quality).

We used 598 images from 102 patients (204 eyes) for training

and validation (training:validation = 7:1) and 200 images from

101 patients (202 eyes) for testing. In the test set, 2 test images

were further excluded in the measurement step due to invalid

segmentation. The patients were in stable recovery with a

mean follow-up period of 130 days. The mean and standard

deviation of participant age was 28.6 ± 6.4 years (ranging from

19 to 52 years). There were 67 (33.0%) male participants and

136 (67.0%) females. The flowchart of the deep learning

system and an example of the performance are shown in

Figure 1.

Segmentation performance

To create the line of axis oculi in the quantification approach,

we segmented the angle recess area in the first step. The

segmentation performance of the angle recess area was

evaluated using the error of X-coordinate, Y-coordinate,

absolute value, and Dice coefficient. The system was able to

locate the angle recess area accurately. The mean-variance of the

left angle recess area was 0.013 ± 0.034mm for X-coordinate

and0.001 ± 0.031mm for Y-coordinate, and 0.037 ± 0.030mm

for absolute values (Figure 2). The Dice score was 0.865. The

mean-variance of the right angle recess area was

−0.038 ± 0.050mm for X-coordinate, −0.023 ± 0.049mm for

Y-coordinate, and 0.063 ± 0.054mm for absolute values

(Figure 2). The Dice score was 0.865 for the left angle recess

and 0.788 for the right. Compared with the traditional ResNet-19

model, our method exhibited a much higher performance

(Supplementary Table S1).

To obtain the edges of the corneoscleral, ICL, and natural

lens, these structures were also separated in the first step. Table 1

lists the segmentation performance of the corneosclera, ICL, and

natural lens (using the Dice score, mean IoU, precision, recall,

and F1 score), which indicated that the network possessed the

ability to accurately identify the structures. The Dice score of

these structures ranged from 0.911 to 0.960, and the mean IoU

ranged from 0.868 to 0.923. The precision, recall, and F1 score of

these structures ranged from 0.945 to 0.971, 0.894 to 0.976, and

0.926 to 0.960 respectively. Compared with previous models, the

numerical results showed that our U-Net-based method

outperformed the Deep Label V3+ and ReLayNet models

(Supplementary Table S2), especially in recognizing the

corneoscleral.

Measurement performance

Based on the performance of the segmentation step, we

developed an automatic method to quantify these essential

anterior segment parameters (ATA, CCT, ACD, and LV).

Table 2 lists the outcomes of the automated measurements

and ground truth.

We evaluated the accuracy of automated measurements

using relative errors between the output measurements and

the ground truth, as shown in Figure 3. The relative errors

FIGURE 2
The segmentation performance of the angle recess area. The
blue and orange dots represent the X-coordinate and
Y-coordinate errors of the angle recess area, respectively.
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indicated the high accuracy of the deep learning measurement.

More specifically, for all measurements of ATAs and ACDs, 89%

of CCTs and 95% of LVs, the relative error between automated

measurements and ground truth was within 10% compared with

the ground truth.

We also assessed the degree of agreement and correlation

between measurements using ICCs. The ICCs between the

deep learning method and the ground truth of ATA, CCT,

ACD, and LV ranged from 0.928 to 0.995, indicating excellent

agreement between the automated method and the ground

truth. The Bland-Altman plots (Figure 4) also confirmed the

excellent agreement and acceptable limits of agreement

between the automated method and the ground truth, with

the bias ranging from −0.05 to 0.01 mm. Furthermore, the

RMS difference between ground truth and various methods of

measurement (Figure 5) showed that human-ground truth

TABLE 1 The segmentation performance of the structures in AS-OCT following ICL implantation.

Dice MeanIoU Precision Recall F1 score

Two points

Left angle recess 0.865 — — — —

Right angle recess 0.788 — — — —

Three planes

Corneosclera 0.960 0.923 0.945 0.976 0.960

ICL 0.928 0.873 0.971 0.894 0.931

Lens 0.911 0.868 0.953 0.901 0.926

TABLE 2 The outcomes of the automated measurement and ground truth.

The automated measurement
Mean ± SD (mm)

The ground truth
Mean ± SD(mm)

ATA 9.499 ± 0.329 9.551 ± 0.324

CCT 0.639 ± 0.050 0.600 ± 0.048

ACD 2.887 ± 0.283 2.876 ± 0.284

LV 0.726 ± 0.266 0.729 ± 0.275

ATA, angle recess to angle recess; CCT, central cornea thickness; ACD, anterior chamber distance; LV, lens vault; SD, standard deviation.

FIGURE 3
The relative error of the automated measurement (Machine vs. Ground truth). The relative error = the absolute error/the ground truth × 100%.
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differences were not significantly different from machine-

ground truth differences in most cases. In addition, the

error bars of RMS differences between A, B, and G

measurements showed that the deep learning method

(without error bars) possessed better repeatability than

human experts.

Discussion

Postoperative follow-ups should be effectively managed to

prevent major complications for patients undergoing ICL

implantation. With the development of the AS-OCT, subtle

changes in the anterior chamber could be discovered and

FIGURE 4
Bland-Altman plots between deep learning system (D) and ground truth (G) measurements. (A) Bland-Altman plots for ATA. (B) Bland-Altman
plots for CCT. (C) Bland-Altman plots for ACD. (D) Bland-Altman plots for LV.

FIGURE 5
The RMS difference between ground truth and different methods of measurement.
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quantified during the follow-ups. In this study, we presented a

deep learning method to automatically monitor the position of

ICL and promptly identify minor changes in the anterior

chamber, including detecting the main structures (the angle

recess area, corneoscleral, ICL, and natural lens) and

quantifying the anterior chamber parameters (ATA, CCT,

ACD, and vault) in AS-OCT images for postoperative ICL

patients. The method was based on the U-Net architecture

and achieved human expert-level performance.

U-Net, comprising an encoder and a decoder network

connected by skip connections, has been showing great

promises in segmenting medical images [18–23], including

assisting in clinical follow-ups [24–26]. In this study, we

developed an improved U-Net architecture for the

segmentation module, which includes the segmentation of

angle recess points and other structures. Traditionally, in

localizing key points of ophthalmic images, the convolutional

neural networks (CNN) regression method, such as ResNet18, is

usually applied to output the coordinates of the target point [13].

Nevertheless, in our multi-task application scenario, using one

network for each task would increase the computation and

training costs, and tasks cannot promote each other’s

performance through interaction. In this study, a more

simplified and efficient method was introduced. The method

regarded the localization task as finding the segmentation map of

the target point regions and the centroids of their largest

connected region, to obtain the coordinates. In this way, the

two tasks can be completed with only an improved U-Net,

without integrating multiple networks, enhancing the

simplicity and versatility of the model. Compared with

previous models, our method showed a higher accuracy with

an absolute error of 0.037 mm for the left angle recess area and

0.063 mm for the right angle recess area (0.487, 0.389 for the

Resnet-18 model). In addition, the angle recess points are the key

anatomic landmark in the next quantification process, whose

performance can be affected by the radius of the points.

Therefore, it is crucial to select a proper value for the radius.

When trained on the same training data, we found that the

performance peaked at 20 pixels (Supplementary Figure S1). For

segmentation of the other structures, besides a high Dice

coefficient, the module also achieved a high F1 score and

mIoU, showing its great potential in accurately isolating AS-

OCT structures. For comparison, this method also outperformed

the RelayNet and DeepLabel V3+ models in identifying different

structures, especially for corneoscleral (Dice coefficient 0.925 vs.

0.888 vs. 0.960). Furthermore, ICCs between automated values

and the ground truth were relatively high, making it a reliable

method to assist in follow-ups in daily practice.

It is an important mitigation of vault-related adverse events

to closely observe ICLs with insufficient or excessive vault [5].

Previous studies showed the risk of cataract formation increases

when the vault is low (< 250 μm), while the risk of angle closure,

pupillary block, or pigment dispersion glaucoma increases when

the vault is high (> 750 μm) [27]. However, vault varied broadly

across studies [28], which ranges from 0 μm at two years to

1180 μm at one year of follow-up [29]. This may be due to several

factors, for example, different standards of various operators

when measuring, the size of the ICL [30], the follow-up time

when the vault was measured [31–33], the rise of the crystalline

lens [34, 35], and the age of the patient [36]. Therefore, an

objective method to automatically obtain the values can mitigate

the subjectivity of the measurement process, which may also

contribute to a better understanding of the postoperative vault.

Our results for the ICL segmentation showed a high Dice score,

mean IoU, precision, recall, and F1 score (all > 0.85), indicating

that our method can accurately detect the ICL. Also, 95% of the

relative error of LV was within 10% and the ICCs between

different measurements of LV showed excellent agreements

(all > 0.90), which illustrated that our deep learning method

can obtain the values with high reliability. In the future, with the

proposal of our deep learning method, experts are able to take full

advantage of the follow-up data and enhance the management of

ICL implantation, which also possesses the potential to optimize

the formula used for preoperative lens sizing.

Besides the vault-related adverse event, the endothelial cell

loss and other subtle changes in the anterior chamber should also

be aware. The loss of endothelial cells varied across studies, while

it is considered that the largest loss occurs during the early

postoperative period, and the surgical procedure is the main

cause of the loss [28]. Our deep learning system can separate the

corneosclera accurately (with the Dice score, mean IoU,

precision, recall and F1 score > 0.85) and automatically obtain

the CCT with excellent agreement with the ground truth (89% of

relative errors within 10%; ICCs > 0.90). In addition, age-related

alterations of the anterior chamber could affect ICL position over

the years. For example, there is an age-related increase in ciliary

muscle anteroposterior thickness, whichmight affect the position

of ICL [37]. Thus, we also obtained ACD and ATA to quantify

the changes in the postoperative anterior chamber with great

reliability (all relative errors within 10%; all ICCs > 0.95).

There are also some limitations to our study. First, our study

only included a relatively small data set with a specific population

(Chinese), which would benefit from external validation of other

ethnic groups. Second, the AS-OCT images were obtained from a

single type of equipment (Casia SS-1000 AS-OCT). This should be

further investigated if there is any difference among measurements

of various types of equipment. Finally, to better monitor the

postoperative risks, the method could be further developed into a

web-based or app-based dataset, which can also record other

information during the follow-ups. Above all, there has been an

acceleration of adopting newmodels of healthcare delivery following

the rapid changes to healthcare systems during COVID-19 [38].

In summary, we developed a deep learning method to

manage the follow-ups after ICL implantations, which can

monitor the position of ICL and identify the subtle changes in

the anterior chamber with high performance in both the
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segmentation and measurement process. This method could

assess the postoperative risk and discover the complications

timely, which can assist patients and ophthalmologists in daily

practice. Also, it is a relatively objective approach to obtain the

measurements in AS-OCT images, which can make the data

between different studies more comparable and repeatable to

each other, including eliminating the deviation caused by the

image rotation and personal equation.
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In the medical field, it is important to monitor and evaluate the blood supply

status of organs and tissues during the clinical surgery. However, this largely

depends on the surgeon’s experience and naked eye, which is easy to misjudge

due to the interference of blood stains or other factors. A portable and flexible

photoplethysmographic (PPG) detection probe is developed in this paper. And a

new evaluation methodology of blood supply status is proposed based on this

probe. Three typical indicators based on PPG is proposed to comprehensively

evaluate the blood supply status, which are the blood oxygen saturation and its

pulsation, differential characteristics of different lights, and time-frequency

energy spectral characteristic. The probe and its evaluation methodology are

verified using the brain of rats as a model.

KEYWORDS

optoelectronic sensor, blood supply probe, photoplethysmographic,
parathyroidectomy, biomedical photonic device, flexible applications

1 Introduction

In clinical surgery, it is necessary to collect and monitor the blood supply status of

organs and tissues. Depend on the blood supply status of organs and tissues, the

judgement could be given about its status of normal, abnormal or irreversible

inactivation, then the appropriate further surgery can be performed. For instance, the

judgment about the blood supply status of parathyroid gland (PG) decides surgery for

removing the diseased PG during parathyroidectomy. It is an essential skill for thyroid

surgeons to decide to remove or preserve mung bean-sized parathyroid glands through

evaluating blood supply status of the thyroid capsule. However, it largely depends on the

surgeon’s experience due to bloodstains, environmental disturbances and other

interferential factors, so the visual observation of the decision is subjective and has a

large error. Thus, the rapid and accurate identification of the blood supply status of organs

and tissues during the operation has great clinical value. Near-infrared (NIR) [1–3]
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photodetectors have been used in more and more medical and

health fields. The near-infrared autofluorescence (NIRAF) has

been used as a non-invasive, real-time, and automatic live

detection method for PG. Under the excitation and irradiation

of 785 nm laser, it was found that the fluorescence intensity of the

PG in all patients was always greater than the fluorescence

intensity of the thyroid and all other tissues of the neck,

especially the fluorescence intensity of the PG was 2–11 times

higher than that of the thyroid tissue [4]. A study in 2019 further

found that NIRAF could accurately distinguish between healthy

PG and diseased PG, thereby minimizing hypocalcaemia after

thyroidectomy [5]. Another application of organ or tissue blood

supply status detection is that for comatose patients, the

monitoring of brain activity is required to judge whether the

patient is alive or dead [6]. Cerebral blood flow [7, 8] or neural

activity [9, 10] can often be used as an auxiliary test to diagnose

brain death. Tests used to assess neural activity include EEG and

evoked potentials. The main limitations of tests in assessing

neural activity are interference from artifacts and the effects of

metabolic changes and medications. Cerebral angiography,

which is used to assess cerebral blood flow, is recognized as

the gold standard method for diagnosing brain death, but its

disadvantage is that it requires the patients to leave the intensive

care unit and use contrast agents [11]. And Doppler (TCD)

ultrasound examination is another method to evaluate blood flow

without invasive surgery [7, 8]. However, above methods is not

suitable for surgery due to its complex operation and large

instrument size. A portable detector to carry out real-time

monitoring of blood supply status during surgery is strongly

desired by surgeons. In some minimally invasive surgeries, they

need a flexible and small tube-like probe to insert into body and

approach the organ or tissues to detect the blood supply status

in situ.

The photoplethysmographic (PPG) and image PPG (iPPG)

technology has been used to measure the changes of blood

volume [12–14]. The recent publications show the possible

application of iPPG for intraoperative monitoring of tissue

perfusion during neurosurgery and abdominal surgery [15,

16]. However, in order to capture the changes in blood

perfusion, the imaging sensor of the iPPG system has higher

requirements on the frame rate, and at the same time, due to its

non-contact, it is more affected by movement and ambient light.

In addition, the change of PPG of micro organ capillary is too

weak to measure it with iPPG [17]. Compared with non-contact

iPPG, the contact-based PPG system has better optical accuracy,

and the sensitivity of the blood volume change received by the

photodiode is higher than that obtained after the secondary

conversion of the iPPG imaging sensor. And PPG could be

more simple, flexible and integrated.

This paper develop a portable and flexible micro-PPG

detection probe for surgeon to monitor and evaluate the

blood supply status of organs and tissues during the clinical

surgery. A new evaluation methodology of blood supply status is

proposed through verification using the brain of rats as a model.

The acquisition of PPG signal was extracted and the organ

activity was charactered with the sensitive eigenvalue from

PPG. Three typical indicators based on PPG is proposed to

comprehensively evaluate the blood supply status, which are

the Blood oxygen saturation and its pulsation, differential

characteristics of different lights, and time-frequency energy

spectral characteristic. The micro-probe has been verified

using the brain of rats as a model. This technology hopefully

provides a powerful technical means for in-situ detection of

micro-organ’s blood supply status in clinical operations.

2 Materials and methods

2.1 Design of portable flexible probe

The working principle of the PPG probe for identifying the

blood supply status of organs is described as follows in brief:

when a light beam of a certain wavelength illuminates surface of

the tissue, the contraction and expansion of blood vessels affect

the transmission or reflection of lights every time the pulse beats.

When the lights pass through skin and then are reflected back to

the photosensitive sensor, the lights will be attenuated to a certain

degree. The absorption of lights by muscles, bones, veins and

other connecting tissues is similar, but that by arteries is different.

Because of the pulsation of blood in the arteries, the absorption of

lights will change repeatedly according to the pulsation of the

blood. In the cardiovascular system, capillaries are the sites of

material exchange with tissues and organs. Since the movement

of red blood cells in the capillary microcirculation is a

heterogeneous fluid movement, red blood cells pass through

the capillaries one by one or one after another, but when the red

blood cells exchange substances in the capillary microcirculation

and the microcirculation boundary, the interaction of the

environment and the interaction between red blood cells,

prone to accumulation and aggregation, etc., will affect the

blood flow of capillaries. Under normal circumstances, the

blood volume is relatively stable due to the non-pulsating

nature of the rigid structure of capillaries. However, when

organs or tissues are damaged, red blood cells may

accumulate and aggregate, and capillary microcirculation is

blocked, resulting in corresponding changes in blood volume

and changes in blood flow parameters reflected by PPG. Also, the

growing transmural pressure of the arteries during the systole

compresses the connective tissues of the dermis in a local place,

which results in the increasing density of capillaries and changes

in blood volume [18–20]. Therefore, PPG can be used to evaluate

the blood supply status.

The flexible structure of the probe mainly includes two parts:

the first part is the flexible adhesive at the front end of the probe

acquisition, mainly using polydimethylsiloxane (PDMS), which

is a transparent flexible silicone, non-toxic insulating material
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with good light transmittance and good biocompatibility, which

will not affect the accurate collection of biological probes. The

second part is the flexible circuit board structure, which is

convenient for the application in the detection of minimally

invasive surgery in the body in the future, and can be flexibly bent

and moved. Figure 1A is the schematic drawing of the proposed

PPG probe in this work.

The photoelectric volume sensor SFH7050 contains three

light-emitting diodes (LED) with wavelengths of 532 nm for the

green light, 660 nm for the red light and 940 nm for the infrared

light, respectively. The PPG probe has a lampshade-like structure

as shown in Figure 1B at the front end, and the overall structure

of the probe is fixed by a flexible circuit board, which can flexibly

adapt to different surgical environments. The head of the PPG

probe has lampshade-like structure, similar size with the detected

organ or tissue, which can effectively prevent interferences from

the ambient light, so as to improve the accuracy and reliability of

the detection. In order to make the photoelectric sensor attached

closely and comfortable with the organs, a transparent flexible

PDMS film was coated inside the light shield. This structure can

effectively prevent the interferences of tissue fluid during the

detection of organ activity in the body without affecting the light

FIGURE 1
Portable and flexible PPG detection probe in this work. (A) Probe structure diagram; (B) Rat brain vivo experiment for verification; (C) Probe
circuit system diagram system.
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path. The PDMS film was obtained by coating it on a silicon

substrate with a thickness of 100 um by spinning coat PDMS

solution at 3,000 rpm for 30 s. Prebaked it at 150°C for 5 min on

hotplate, and hard baked at 250°C for 1 h on hotplate. In the end,

PDMS film was peeled off the substrate and adhered on the light

shield manually. In order to dynamically observe the PPG signal

from the organ (rat brain was used for this work) for a long time,

we added a casing for fixing. This tubular structure is also suitable

to be used as a hand-held or standalone medical device during

operation in an open surgical environment. Figure 1C is a photo

of the developed flexible PPG probe used in the experiment, and

Figure 1C is the functional block diagram of the PPG probe

system. The PPG probe system is mainly consisted of a

photoelectric sensor SFH7050, a large-area photodetector, an

analog front-end AFE4403, which is composed of a low-noise

receiver channel with an integrated analog-to-digital converter

for PPG signal acquisition, and an ultra-low power

microcontroller MSP430 for on-board signal processing. The

processed signal is then sent to a PC with WiFi for displaying the

results in real-time. The flexible PPG probe is powered by a 4.2 V,

240 mAh lithium battery. A fully charged battery can power the

probe for about 16 h.

The mirco-probe mentioned in this paper is mainly used to

determine the blood supply status of small organs/tissues, so as to

assist surgeons in rapid intervention. For example, in the removal

of parathyroid glands, for the judgment of necrotic parathyroid

glands, these tiny organs/tissues are often small in size, usually

about 6 mm long and 3–4 mm wide, and 1–2 mm

anteroposteriorly [21], the size of the rat brain window in this

experiment is only 7*6 mm. The size of the PPG sensor in this

article is only 4.7 mm × 2.5 mm x 0.9 mm. Therefore, on the one

hand, it can be adapted to small organs/tissues, and at the same

time, the data collected at a single point is also sufficient for

judging the blood supply status.

2.2 Experiments

A health Sprague-Dawley (SD) rat with a weight of 287 g was

used for the proof of concept experiment. It was anesthetized

with propofol (10 mg/ml solution, 0.012 ml/g) via

intraperitoneal injection (IP) and set in the stereotaxic frame.

A cranial window (size: 5 × 5 mm2) was produced into the skull of

the rat by drilling, so that the PPG detection probe can be

inserted into skull and attached Sulcus gyrus of brain. PPG

signal recording was initiated once the cranial window was

open, and it was followed with the excessive pentobarbital

sodium (150 mg/kg) injection through IP for euthanasia, and

observe the response of the brain activity by using the PPG

detector.

It should be pointed out that, before euthanasia, the rat was

also utilized for other studies to avoid the use of additional

animals in our study. All surgical and experimental procedures

followed the Guide for The Care and Use of Laboratory Animals

(China Ministry of Health) and were approved by the Animal

Care Committee of Zhejiang University, China. It should be

noted that when SD is injected intraperitoneally or intravenously

with sodium pentobarbital ≥100 mg/kg, it will experience

euthanasia [22]. Therefore, during the death of SD, the blood

circulation in the brain will gradually stop, and the brain

gradually loses the arterial blood supply.

2.3 Characteristic indicators and
evaluation methodology

In this paper, we provide three characteristic indicators to

comprehensively evaluate the blood supply status of organs and

tissues organs, which are related with organs and tissues vascular

insufficiency or irreversible inactivation. These three indicators

are the blood oxygen saturation and its pulsation, differential

characteristics of PPG signals of different lights, and time-

frequency energy spectral characteristics of PPG, which are

explained as follows.

2.3.1 Blood oxygen saturation and pulsation
The blood oxygen saturation [23] represents the ratio of the

volume of oxyhemoglobin (HbO2) bound to oxygen to the

volume of all bound hemoglobin (Hb) in the arterial blood,

i.e., the amount of oxygen in the blood, usually expressed as a

percentage. Lambert Beer’s law is the basic law of the

spectrophotometry [24], which describes the relationship

between the strength of the absorption under a certain

wavelength light of a substance, the concentration of the light-

absorbing substance, and the thickness of the liquid layer.

Derived from Lambert Beer’s law, the blood oxygen saturation

is expressed as follows:

SpO2 � A − B · R, R � IAC λ1/I λ1
DC

IAC λ2/I λ2
DC

, (1)

Here, A and B are constants, and can be obtained through

experiments. IAC and IDC are the intensity of the reflected lights

converted from light 1 (wavelength λ1) and 2 (wavelength λ2),

respectively. R essentially represents the ratio of the blood

absorption rate of the red light to the infrared light per unit

time. The value of R could be considered to be a constant because

of the relatively invariable blood for a very short period of time.

Thus, the spectrum of the PPG obtained in a short period of time

could be used to calculate the value of R, which then can be

transformed into the ratio of the spectral amplitude of the AC

components of the red light and infrared light. Once they are

normalized by the respective DC levels (also obtained from the

frequency spectrum), it becomes a DC normalized transmittance

with time for the tested period. Assuming that the red light and

infrared light spectra areY1 and Y2 respectively in a short time
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interval, the fundamental frequency of the red light PPG wave is

f λ1
AC , the DC level frequency is f λ1

DC , the fundamental

frequency of the red light PPG wave is f λ2
AC , and the DC

level frequency is f λ2
DC , then the blood oxygen saturation can

be expressed by Eq. 2:

SpO2 � A − B · Y1(f λ1
AC )/Y1(f λ1

DC )
Y2(f λ2

AC )/Y2(f λ2
DC ), (2)

As we know, due to the presence of blood supply, PPG will

regularly fluctuate with the diastole and contraction of the pulse.

After the PPG is converted to the frequency domain, in addition

to the DC component absorbed by bones, skin and other tissues,

there is also a fundamental frequency near the DC component,

which reflects the size of the pulse rate. The pulse rate is also an

important physiological parameter of the respiratory cycle [25],

which can characterize the activity of the organ. This has been

utilized to measure the pulsation as expressed by Eq. 3:

PulseRate � (f λ1
AC + f λ2

AC )*60
2

, (3)

2.3.2 Differential characteristics of PPG of
different lights

According to the absorption coefficient curves [26, 27],

HbO2 and Hb have different absorption coefficients for the

red and infrared lights. When the red light and infrared light

are irradiated on surface of an organ, the reflected light intensities

may vary with time, but the difference in the two reflected light

intensities remains almost unchanged, i.e. the intensity difference

of the two reflected lights is constant for a normal organ. On the

other hand, when the organ is malfunction, inactive or dead,

there is less or no saturated blood oxygen at all, and the intensity

difference of the two reflected lights is different from the normal

value, and normally the light intensity difference become

stronger as the organ activity becomes weaker. This

characteristic difference related to the reflected light intensity

of red light and infrared light can be utilized to detect and judge

the alive status of an organ during operation, as shown by Eq. 4:

Diff � Iλ1 − Iλ2 , (4)

2.3.3 Time-frequency energy spectral
characteristics of PPG

Due to the existence of blood supply, the PPG will beat

regularly with the relaxation and contraction of the heart.

Therefore, the PPG will have components in its fundamental

frequency and harmonic components, and its energy is higher at

this time [28]. With the occurrence of organ death, the blood

circulation of the organ gradually becomes weak and eventually

stops, the PPG no longer presents regular beat function, and the

energy gradually decreases when the fundamental frequency and

harmonic components are small. Therefore, the instantaneous

energy change of the PPG can be observed through the short-

time Fourier transform, so as to judge activity of the organ in

real-time. Eq. 5 represents the Fourier transform of a signal, and

Eq. 6 represents the power spectral density of the signal.

Y(t, f) � ∫+∞

−∞
w(t − τ)IAC(τ)e−j2πfτdτ, (5)

SPx(t, f) � ∣∣∣∣Y(t, f)∣∣∣∣2 �
∣∣∣∣∣∣∣∫

+∞

−∞
w(t − τ)IAC(τ)e−j2πfτdτ

∣∣∣∣∣∣∣
2

(6)

2.3.4 Evaluation methodology of blood supply
status

In a conclusion, we provide three characteristic indicators to

comprehensively evaluate the blood supply status, which are the

blood oxygen saturation and its pulsation, differential

characteristics of PPG signals of different lights, and time-

frequency energy spectral characteristics of PPG [29, 30].

These three indicators can show us the organs and tissues

vascular insufficiency or irreversible inactivation according

with the whole process of euthanasia of rats, there are actually

three stages:

1 Normal blood supply status

Diff> 0;

Because Hb has a higher absorption coefficient for red light,

and HbO2 has a higher absorption coefficient for infrared light.

At this time, the red reflected light detected by our probe is

stronger than the infrared reflected light intensity. Therefore, at

this time, there is enough HbO2 in the blood of the organ to

absorb a large amount of infrared light, that is, the blood

circulation is normal.

2 Abnormal blood supply status but is reversible

If Diff is close to 0, SpO2and Pulserate continue to

decrease, and the reflected light intensity of infrared light and

red light detected by probe are almost equal, indicating that the

content ofHbO2 andHb in the blood of the organ changes slowly

at this time, and blood circulation is blocked, the organs should

be treated immediately to restore the blood supply.

Diff → 0 ; SpO2 ↓ ;Pulserate ↓

3 Blood supply stops and is irreversible

At this time, the reflected light intensity of infrared light and

red light gradually tends to the constant DC component,

indicating that HbO2and Hbhave no dynamic changes. In

addition, the intensity of the reflected infrared light is much

greater than that of red light, indicating that there is no HbO2in

the blood of the organ. The blood circulation is suspended, and

the organ has been completely and irreversibly inactivated.
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Therefore, the advantage of this article is that necessary measures

can be taken to assist clinical treatment according to the three

stages.

Diff< 0 ;Energy → 0

3 Results and discussion

3.1 The difference between the intensity of
red and infrared light

The real-time change of PPG of the reflected red light and

infrared light is illustrated in Figure 2A, respectively. For the

initial period of the experiment, arterial blood still circulated in

the rat brain. For the active period, the initial reflected intensity of

the red-light (660 nm) was much stronger than that of the

infrared light (940 nm), and the difference became smaller

with time over a period of 100 s. Both the red light and

infrared light PPG waveforms oscillated regularly as the rat’s

brain is still active as normal. The intensities of the reflected red

light and infrared light from the rat brain were reversed after a

100 s and both of them varied with time irregularly. The rat was

near dead at this stage. After 750 s, the reflected infrared light

intensity becamemuch stronger than that of the red light, and the

difference became larger with the progress of time thereafter. The

rat was completely dead after 17 min. Two features can also be

noticed: 1) The regular oscillation of the PPG signal observed at

the initial stage became weaker after 100 s and disappeared

completely after 150 s, indicating the brain activity became

weaker; 2) The PPG base line increased with time. This is

because of the gradual blood coverage of the brain with time,

which leds to the increased DC components of the PPG signal.

Figure 2B shows the change of difference between the intensity of

reflected red light and infrared light obtained by the PPG probe.

Diff is equal to Red PPG minus IR PPG in Figure 2A. It can be

seen that the decrease in brain activity results in an overall

decrease in the difference between the red light and infrared

light reflected, which reveals the changes of brain blood supply

status.

3.2 Variation of SPO2 and pulserate

Figure 3A illustrates PPG of the red-light reflection as a

function of time for different periods in details (The data of

Figure 3 were extracted from the first 90 s data in Figure 2A for

calculation, Figure 2A only shows the 30 s data). As it can be seen

from Figure 3A, the pulsation intensity of the PPG decreased

with the increase of time, and the according pulserate decreased

FIGURE 2
Changes of blood supply status in the brain of rats after overdose of anesthetic injection by PPG. The results show three typical periods,
corresponding to different blood supply status. (A) Real-time change of red light (660 nm) and infrared light PPG (940 nm); (B) The difference (Diff)
between red light and infrared light PPG.
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gradually. According to Eq. 2, the change of blood oxygen

saturation in the rat brain can be calculated for the 90 s

period before the experiment with the result shown in Figure 3B.

As it is clear that during this period, the blood oxygen

saturation fluctuated greatly, but overall it showed a

downward trend with the increase of time. The pulserate of

the PPG of the rat was calculated by using Eq. 3 for the 90 s

before the experiment. As shown in Figure 3C, the pulsation

showed a gradual decline trend during the inactivation

process.

Further time-frequency analysis was conducted on PPG

signals to obtain more information of the brain activity, which

can be intuitive to grasp the changes in the light energy absorbed

by the brain of the rats after injection of pentobarbital sodium.

A 0.01–50 Hz band-pass filtering and wavelet processing

were first performed on the red light PPG signal, as to

remove DC component (Such as power supply) and high-

frequency interference (Such as changes in capillary density

and venous blood volume, temperature changes, etc.). The

result is shown in Figure 4A. It can be seen from the time

domain that the PPG wave signal gradually becomes sparse

during the euthanasia of rats injected with pentobarbital

sodium. It indicates that the rat’s heart gradually stops beating

during this process, resulting in insufficient blood supply to the

cerebral arteries, unchangeable light absorption, and PPG

waveform that gradually stops beating.

Then we converted to the frequency domain to analyse

the energy changes of the PPG signal during the euthanasia

of the rat. Use Eq. 5 to perform short-time Fourier transform

on the recorded PPG waveform to observe the instantaneous

energy change of the PPG wave as shown in Figure 4B, and

the energy gradually decreases when the fundamental

frequency and harmonic components are small. Figure 4C

shows the sum of the energy of all frequency components of

the PPG signal of the short-time Fourier transform, that is,

the sum of all frequency energy at each moment expressed in

Eq. 6. It can be seen that as the blood supply of the rat brain

gradually decreases, the energy of the PPG gradually

decreases. The energy change obtained according to the

time-frequency change more intuitively reflects the overall

FIGURE 3
Red light PPG of the rat brain in the first 90 s. (A) The intensity of the red light reflected every 10 s. (B) The change of blood oxygen saturation
gradually decrease. (C) Pulsation gradually decrease. Variation and analysis of Time-frequency energy spectrum characteristics.
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decreasing trend of PPG energy in the process of brain

inactivation in rats.

4 Conclusion

A portable and flexible PPG detection probe is developed in

this paper. And a new evaluation methodology of blood supply

status is proposed based on this probe. Three typical indicators

are proposed to comprehensively evaluate the blood supply

status, which are the blood oxygen saturation and its

pulsation, differential characteristics of PPG signals of

different lights, and time-frequency energy spectral

characteristics of PPG signal. Among them, the time-

frequency energy feature is the most important discriminant

indicator, followed by the red light and the Infrared light.

Differential features, the indicators with lower reference are

blood oxygen saturation and pulsation frequency. The probe

and its evaluationmethodology are verified using the brain of rats

as a model. In the future work, through a large number of

experimental or clinical samples, machine learning can be

used to build a model that can identify the three active states,

which will further improve the efficiency of discrimination. In

general, this technology provides a powerful technical means for

in-situ detection of micro-organ’s blood supply status in clinical

operations.

FIGURE 4
After removing the baseline drift of the original red light PPG, it can be seen that the pulsation gradually disappears, and low-frequency
components in the frequency domain are gradually decreasing, and the total energy is continuously decreasing. (A) Red light PPG after band-pass
filtering and wavelet processing; (B) Time-frequency change of red light PPG; (C) Energy change of red light PPG.
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Color fundus photograph
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Longitudinal disease progression evaluation between follow-up examinations

relies on precise registration of medical images. Compared to other medical

imaging methods, color fundus photograph, a common retinal examination, is

easily affected by eye movements while shooting, for which we think it is

necessary to develop a reliable longitudinal registration method for this

modality. Thus, the purpose of this study was to propose a robust

registration method for longitudinal color fundus photographs and establish

a longitudinal retinal registration dataset. In the proposed algorithm, radiation-

variation insensitive feature transform (RIFT) feature points were calculated and

aligned, followed by further refinement using a normalized total gradient (NTG).

Experiments and ablation analyses were conducted on both public and private

datasets, using the mean registration error and registration success plot as the

main evaluation metrics. The results showed that our proposed method was

comparable to other state-of-the-art registration algorithms and was

particularly accurate for longitudinal images with disease progression. We

believe the proposed method will be beneficial for the longitudinal

evaluation of fundus images.

KEYWORDS

registration, color fundus photograph, retinal imaging, diabetic retinopathy, disease
progression

Introduction

Diabetic retinopathy (DR) is one of the major diseases that can cause blindness. It is

estimated that about 600 million people will have diabetes by 2040 [1], a third of whom

will be affected by DR [2]. Regular follow-up and accurate analysis of longitudinal

examinations play an important part in the management of DR [3]. However, the

quantitative analysis of longitudinal images is still challenging, due to the tremendous

discrepancies between the images caused by vastly different photographing conditions,
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involuntary eye movements, and pathological changes [4], which

can disturb the observation and influence the evaluation of

retinal image biomarkers [5]. Registration, which means the

process of establishing pixel-to-pixel correspondence between

two images, grants us the chance to eliminate these discrepancies

before longitudinal assessment [6]. Therefore, a preliminary

registration of two retinal images is required to reduce these

effects and generate a reliable disease progression conclusion.

As a necessary work of retinal image analysis, the registration

of retinal fundus images is a classic topic, in which tremendous

efforts have been put into this area during past decades. From a

methodological point of view, retinal image registration methods

can be classified into three groups: feature-based, intensity-based,

and hybrid methods. In feature-based registration methods,

invariant features of the retinal images are extracted and

utilized for seeking the best geometric transformation between

two images. Retinal vessel bifurcations [7–11], optic disc, and

fovea [12, 13] are previously commonly used features. However,

some of these features rely on the segmentation of retinal

structures and are sensitive to image quality. Therefore, easily-

obtained and stable key-point detection is the premise for robust

registration through feature-based methods, for example, Harris

corner [14], scale invariant feature transform (SIFT) [15], and

Speeded-Up Robust Features (SURF) [16] are classic feature

points that have been extensively studied. Hernandez-Matas

et al. [17, 18] introduced a feature-based registration

framework exploiting the spherical eye model and pose

estimation. In intensity-based methods, the intensity

information is calculated and used to measure the similarity

of the images and the registration performance, such as cross-

correlation [19], mutual information [20], and phase correlation

[21]. Hybrid registration methods combine feature-based and

intensity-based methods together to seek better performance [4,

22]. Compared to single feature-based or intensity-based

methods, hybrid methods have great potential for more

accurate and practical image alignment, but it is less

investigated. Although the registration of color fundus

photographs has been intensively studied, the steps of seeking

higher and more robust performance have never stopped.

Although there has been intensive research work in

registration, further research is still needed. First, novel

registration methods developed on other modalities should be

applied to retinal images to seek better performance. Second,

instead of paying attention to the improvement and development

of registration methods, researchers should focus more on the

clinical applicability of the proposed methods, which is extremely

important for longitudinal follow-up examinations. Third, the

development and evaluation of registration methods rely on the

publication of open-access datasets. To the best of our

knowledge, the Fundus Image Registration (FIRE) dataset is

the only registration dataset that has been made publicly

available [23]. We thought it would be useful to develop a

registration dataset made up of longitudinal images with

clarified medical diagnoses. Therefore, developing registration

methods in clinical settings and establishing registration datasets

would be greatly beneficial for interdisciplinary cooperation and

clinical transformation of computation methods.

In this study, a robust registration method for longitudinal

color fundus photographs based on both feature and intensity is

proposed. An ablation study showed the necessity of combining

the two main parts. A comprehensive comparison between the

proposed algorithm and other state-of-the-art methods was

conducted to investigate its features. The dataset will be

available for registration research. We believe this work will

be beneficial to follow up retinal image analysis and disease

progression assessment.

Materials and methods

The proposed registration framework is a combination of

feature-based and intensity-based methods. The flow of this work

is shown in Figure 1.

Retinal image datasets

For the evaluation of the proposed registration method, we

use two datasets, FIRE and FI-LORE, consisting of color fundus

image pairs different from each other in terms of actual

photographing and patient conditions. These datasets are

described in detail hereinafter.

The Fundus Image Registration (FIRE) dataset [23]

comprises 134 image pairs, which are further classified into

three categories according to their characteristics. Category S

contains 71 image pairs with more than 75% overlap area and

super-resolution but no anatomical changes, while category P

contains 49 image pairs with less than 75% overlap area and no

anatomical changes. Category A contains 14 image pairs with

high overlap and large anatomical changes due to retinopathy,

which can be used to mimic practical longitudinal examinations.

All the images have a resolution of 2,912 × 2,912 pixels.

FIRE provides ground truths for the calculation of registration

errors.

The Fundus Image for Longitudinal Registration (FI-LORE)

dataset consists of 83 color fundus image pairs from 78 eyes of

54 diabetic retinopathy patients who underwent longitudinal

examinations at the Second Affiliated Hospital of Zhejiang

University, School of Medicine, from May 2020 to July 2020.

Photograph conditions, involuntary movements of the eye, and

disease progression and treatments, such as laser scars, all

contribute to the differences of each image in a pair.

Additionally, some of them are of low image quality because

of complications, such as cataracts. FI-LORE can fully reflect

practical conditions of the follow-up in clinics and test the

robustness of the proposed method. All the images have a
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resolution of 1,500 × 1,500 pixels. Finally, to compute the

registration error, we follow the annotation rule of the FIRE

dataset [23], carefully choosing 10 corresponding points and

repeatedly correcting the exact location of the points to guarantee

the reliability of the ground truths. The FI-LORE dataset will be

made publicly available.

Proposed registration framework

To normalize the images in different datasets taken at

different examinations, preprocessing is the first step in the

algorithm. First, the mask provided by the FIRE dataset was

utilized to delete the blank margin of the original images.

Second, the cropped images are further resized to 1,500 ×

1,500 pixels to reach unity of the whole dataset. Furthermore,

to simplify the calculation process, the RGB images are

transformed into grayscale images.

Radiation-variation insensitive feature transform (RIFT) is

a feature-based registration method with great robustness to

non-linear radiation distortion (NRD) [24]. NRD is a rather

common phenomenon that can be caused by involuntary

movements of the eye. Therefore, we think it can be used for

retinal image alignment tasks. The detail of the RIFT calculation

can be found in the original article [24]. The alignment process

is realized by the RANdom SAmple Consensus (RANSAC)

algorithm [25]. Then, an affine transformation matrix p is

generated on the resized image pairs (500 × 500 pixels).

NTG, the normalized total gradient, was proposed by Chen

et al [26], working as a registration measure. The employment

of a NTG is based on the observation that the gradient

difference is sparsest when the two images are perfectly

aligned. The NTG is thought to outperform other intensity-

based measures, such as mutual information, residual

complexity, correlation ratio, and normalized cross-

correlation. However, there is no study to assess the validity

of the NTG in retinal images. The detail of NTG calculation is

given by Chen et al. [26].

Registration evaluation

To quantitatively assess the performance of the registration

result, we adopt a widely accepted registration error calculation

method [23], which requires the ground truths of image pairs.

Given the sets of reference points,

YI � {y1
I , y

2
I , y

3
I/y10

I } ⊂ R2and YR � {y1
R, y

2
R, y

3
R/y10

R } ⊂ R2,

where I and R represent the registered image and reference,

FIGURE 1
Flowchart of the proposed algorithm.
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respectively, the mean registration error (MRE) can be

calculated as

MRE(YI, YR, p) � 1
10
∑10

i�1
����yi

R − p(yi
I)����2. (1)

The ‖‖2 here represents the Euclidean norm. Hence, the closer

MRE is to 0, the better the registration performance will be. To

assess the registration results of a total dataset, we here utilize the

success plot [18], where the x-axis marks the registration error

threshold under which registration is considered to be successful

and the y-axis marks the percentage of successfully registered image

pairs of the given threshold. The area under the curve (AUC) is

counted to quantitatively assess the registration method.

Results

Results of the ablation study

To better understand the contributions of each part of the

registration framework and validate the effectiveness of the

TABLE 1 Results of the ablation study in the FIRE dataset.

Category Method Mean registration error
(pixels)

AUC of
the success plot

Mean SD

S (n = 71) RIFT 2.436 0.230 0.903

NTG 2.087 0.241 0.917

RIFT + NTG 2.335 0.239 0.907

P (n = 49) RIFT 86.702 44.233 0.510

NTG 740.736 50.607 0.280

RIFT + NTG 86.638 44.235 0.512

A (n = 14) RIFT 7.903 1.280 0.796

NTG 12.704 3.157 0.765

RIFT + NTG 7.706 1.294 0.810

FIRE (n = 134) RIFT 33.327 16.115 0.713

NTG 272.598 35.595 0.556

RIFT + NTG 33.229 16.116 0.717

Bold values represent the highest AUC in the specific category.

FIGURE 2
Registration success plot of the ablation study. The x-axismarks, in pixels, the registration error threshold under which registration is considered
to be successful. The y-axis marks the percentage of successfully registered image pairs for a given threshold.
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combination of RIFT and NTG, we conducted an ablation study

to see the registration performance of these two procedures

themselves. Table 1 shows the registration results of the

ablation study in the FIRE dataset. Figure 2 is the success plot

of the ablation study. From the results, we can see that the NTG

performs better in image pairs with high overlap, but once the

overlap is small, the NTGmethod performance is relatively poor.

However, RIFT is on the opposite side of the NTG. The

combination of the algorithms outperforms each one of them.

Therefore, the combination of RIFT and NTG grants algorithm

robustness to image pairs of different overlap areas.

Comparison to other registrationmethods

To further assess the accuracy of the proposed method in

color fundus image registration, we compare our results to other

state-of-the-art image registration methods which are already

utilized in the FIRE dataset, including GDB-ICP [27], Harris-

PIIFD [28], ED-DB-ICP [29], RIR-BS [30], SIFT + WGTM [31],

SURF + WGTM [31], ATS-RGM [32], EyeSLAM [33], GFEMR

[34], VOTUS [35], REMPE [18], and a deep-learning based

registration method proposed by Rivas-Villar et al [36].

Figure 3 is the qualitative illustration of the proposed method

FIGURE 3
Registration results of the proposed algorithm in the FIRE dataset. The overlap decreases from the top row to bottom. (A) and (B) are image pairs
without registration. (C) Image pairs shown in an overlaying form after registration. (D) Checkerboard comparisons of the proposed method.

TABLE 2Comparisons to state-of-the-art image registrationmethods.

Method Year S P A FIRE

GDB-ICP [27] 2007 0.814 0.303 0.303 0.576

Harris-PIIFD [28] 2010 0.900 0.090 0.443 0.553

ED-DB-ICP [29] 2010 0.604 0.441 0.497 0.533

RIR-BS [30] 2011 0.772 0.049 0.124 0.440

SIFT + WGTM [31] 2012 0.837 0.544 0.407 0.685

SURF + WGTM [31] 2012 0.835 0.061 0.069 0.472

ATS-RGM [32] 2015 0.369 0.000 0.147 0.211

EyeSLAM [33] 2018 0.308 0.224 0.269 0.273

GFEMR [34] 2019 0.812 0.607 0.474 0.702

VOTUS [35] 2019 0.934 0.672 0.681 0.812

REMPE [18] 2020 0.958 0.542 0.660 0.773

Deep learning method [36] 2021 0.908 0.293 0.660 0.657

RIFT + NTG (proposed) 2021 0.907 0.512 0.810 0.717

Bold values represent the highest AUC in the specific category.
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registration results. Table 2 lists the methods used for

comparison and the AUC of the success plot. Figure 4

contains the success plot of the proposed method and some

other methods whose results are publicly available online. From

the aforementioned results, one can conclude that the proposed

method is competitive to the leading registration methods in

FIGURE 4
Registration success plot of the comparisons between the proposed and other registrationmethods. The x-axis marks, in pixels, the registration
error threshold under which registration is considered to be successful. The y-axis marks the percentage of successfully registered image pairs for a
given threshold.

FIGURE 5
Registration results of the proposed algorithm in FI-LORE. The pairs listed, respectively, represent poor illumination quality, pathological
change, and disease progression, which are common conditions in longitudinal examinations. (A) and (B) are image pairs without registration. (C)
Image pairs shown in an overlaying form after registration. (D) Checkerboard comparisons of the proposed method.
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category S. The AUC of category P clearly underperforms some

algorithms. But the proposed method outperforms all the

methods in category A, which stands for the longitudinal

study. Therefore, we think the proposed method can remain

robust under the anatomical changes and disease progression

and is well worth further study.

Results in the FI-LORE dataset

Retinal images in real clinical conditions may be of poor

quality due to complications such as cataracts, loss of focus, and

various light conditions, posing great problems to the practical

use of registration. As described earlier, FI-LORE is a collection

from real ophthalmologic practice, which can be used to validate

the utility of the proposed method. Figure 5 shows some image

pairs before and after registration. We can see that despite these

image pairs having dissimilar illumination conditions,

pathological changes, and disease progression, our method can

robustly align the longitudinal images to a satisfying extent.

Figure 6 is the success plot of the proposed method and other

state-of-the-art color fundus image registration methods in FI-

LORE. The AUCs of RIFT, NTG, RITF + NTG (proposed),

REMPE, and GFEMR are 0.841, 0.755, 0.850, 0.840, and 0.808,

respectively. Through the quantitative analysis of the registration

results in FI-LORE, we have validated the superior performance

of the registration method in real clinical conditions.

Discussion

Longitudinal assessment of DR retinal images is of great

importance, and longitudinal registration is an important and

fundamental task which has often been neglected in clinical

situations, especially for follow-up examinations. Precise

alignment of different examination images is the premise for

accurate detection and analysis of pathological changes, which

has already been adopted in some automated retinal image

analyzing devices [37]. In this study, we proposed a hybrid

registration method with comprehensive experiments showing

its excellent performance in longitudinal images and established

a color fundus photograph dataset with pixel-wise annotation

ground truth. In Table 1, the NTG shows the best performance in

category S, and RIFT registered better in category P. We can

conclude that the intensity-based registration method, NTG, is

more precise in image pairs with large overlap while RIFT is the

opposite. Thus, the combination of RIFT and NTG is reasonable

and has been proved to be the best on the whole FIRE. Results

from the intensive comparison experiments showed that our

method is comparable to state-of-the-art image registration

methods, such as GFEMR [34], VOTUS [35], and REMPE

[18]. For longitudinal images in category A, the proposed

method outperformed other state-of-the-art methods, for

which we think it is suitable for the clinical evaluation of

disease progression in follow-up examinations. This

conclusion is further validated using a private dataset, FI-

LORE, with more longitudinal images. Taking all of these into

consideration, we believe the proposed method is good at

registering longitudinal retinal images and will be beneficial in

clinical use. It should be noted that in category P, which is made

up of images with partial overlap, the MRE and AUC are far less

than those in the other two classes. The main source of error

came from several misregistered image pairs which show anMRE

of nearly a thousand pixels. The same trends can also be observed

in some state-of-the-art methods. The private dataset also

contains images with less overlap, and the proposed method

can also register them, as shown in Figure 6. Further research is

needed to validate its performance and investigate the reason

why these algorithms did not perform well in category P. During

image pre-processing, we thought resizing might affect the final

results. In the current study, the size of 500 × 500 pixels is

recommended. We conducted experiments on 250 × 250 and

750 × 750 pixels, results of which can be found in Supplementary

Material. Also, mutual information was evaluated to confirm the

performance of the NTG, and relevant results are given in

Supplementary Material.

Most of the development of registration methods focuses

on either feature-based or intensity-based registration. As far

FIGURE 6
Registration success plot of the registration results in FI-
LORE. The x-axis marks, in pixels, the registration error threshold
under which registration is considered to be successful. The y-axis
marks the percentage of successfully registered image pairs
for a given threshold. The AUCs of RIFT, NTG, RITF + NTG
(proposed), REMPE, and GFEMR are 0.841, 0.755, 0.850, 0.840,
and 0.808, respectively.
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as we know, only several studies adopted hybrid methods. In

2016, Saha et al. proposed a hybrid method using Speeded-Up

Robust Features (SURF) and Binary Robust Independent

Elementary Features (BRIEF) [4], which are both well-

known registration methods and their combination

generated better performance. In our study, two registration

methods, RIFT and NTG, were adopted, and further

investigation revealed their own characteristics in image

registration. To the best of our knowledge, this is the first

study that used RIFT and NTG in ophthalmic imaging and

investigated their applicability to different image overlaps. We

think that the two-step hybrid registration method is

promising in retinal imaging.

Deep learning has been showing great potential in medical

image processing, including segmentation and registration.

Several methods have been proposed to attempt to utilize deep

learning in retinal image registration [36, 38–45]. However, to

the best of our knowledge, there are two inherent problems

limiting the development of deep learning-based registration.

On the one hand, unlike other image processing issues

(segmentation, enhancement, etc.), registration contains

two steps theoretically, feature recognition and feature

alignment. In retinal image registration, these usually mean

retinal feature extraction (feature points, vessel network, etc.)

and retinal feature alignment. Therefore, an inevitable

question comes up, that is, when and where to adopt deep

learning in the registration workflow. Different researchers

provided various solutions. Some researchers adopted deep

learning in the feature detection process and further aligned

the feature points using conventional image alignment

methods, such as RANSAC[40, 41], while some work

constructed an outlier-rejection network to compute the

image transformation matrix [45, 46]. There is no

consensus on how deep learning should be added to the

registration pipeline [46]. Moreover, in most deep learning-

based registration algorithms, accurate registration relies on

accurate segmentation, which is still an ongoing research topic

in medical image processing. On the other hand, training and

validation of deep learning networks rely on massive labeled

data. In the specific topic of image registration, ground truth

annotation is labor-intensive and time-consuming. For some

deep learning methods using vessel segmentation, the

networks also need large annotated vessel segmentation

datasets. From these two perspectives, we tend to believe

that although deep learning has shed light on medical

image processing and analysis, it is still in the exploration

stage for image registration. In the current study, we compare

a state-of-the-art registration method with the proposed

method, and the results showed that for longitudinal retinal

image registration, our proposed method still stood out. Deep

learning-assisted retinal image registration should be paid

more attention to find out whether it is actually superior to

conventional algorithms.

The development of retinal image registration methods is

limited due to the lack of registration datasets. As far as we know,

FIRE is the only dataset that focuses on retinal image registration

and proposes pixel-level ground truth which can be used for the

development and evaluation of registration methods. However,

the longitudinal category contains only 14 image pairs,

significantly small when compared to other categories. Taking

this situation and the clinical use of registration methods into

account, we collected and annotated 83 image pairs, especially for

longitudinal image registration tasks. These image pairs are

different in photograph conditions, involuntary movements of

the eye, and disease progression and treatments. We believe that

the adoption of this dataset can greatly benefit the study of retinal

image registration.

Because of the specialty of registration in retinal image

analysis, some methods have been claimed to be put into

clinical use. To the best of our knowledge, there is one

registration software, the DualAlign i2k software package

(Clifton Park, NY), that has been made commercial. The

software was developed based on the GDB-ICP algorithm,

which has been compared in our work [27]. With growing

interest in image registration, more novel and efficient methods

have been proposed to ensure better and swifter registration

performance. These methods show promise for medical image

registration tasks. However, due to the lack of interdisciplinary

cooperation of medical and computer science researchers, the

study of these novel methods for medical use is limited. In this

study, we focus on two methods and validate their performance.

We believe more research is needed to provide more possibilities

for more precise and swifter image analysis in real clinical use.

There are some limitations to our current study. First, the

proposed algorithm performed relatively poorly in the category

which stands for images with small overlay. However, there are also

some similar image pairs in the FI-LORE dataset, but the proposed

methods did not perform like that, which is confusing. More image

pairs are needed to further test this method. Second, in the current

study, we still focus on unimodality registration tasks. The

performance of this method in multi-modal tasks needs more

examination. Third, some state-of-the-art methods should be

compared with the local dataset FI-LORE, but due to the lack of

reliable source codes and our inability to completely repeat the

methods, we failed to put them into further comparison. Finally,

there are some artificial intelligence algorithms that have been

developed for retinal image registration tasks [22, 47, 48]. We

have compared one deep learning algorithm, but further studies

are needed to investigate deep learning in the context of retinal

image alignment.

Conclusion

RIFT can better align images with small overlap, while the

NTG is more precise with large overlap image pairs. Thus, the
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combination of RIFT and NTG was reasonable and

outperformed single RIFT or NTG. The proposed method

was comparable to other state-of-the-art registration

algorithms and was especially accurate for longitudinal

images with disease progression. We believe that the

proposed method will be beneficial for the longitudinal

evaluation of fundus images.
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Optical clearing technology offers a prospective solution to improve the

imaging depth and quality of optical microscopy, but there is still a lack of

quantitative standards to accurately evaluate transparency effects so the

composition and concentration of most reagents are not optimal. Here, we

propose a transparency quantitative analysis method (TQAM) based on the

tissue area recognition technique to achieve the high-throughput reagent

concentration gradient screening. After optimizations of reagent

composition, concentration, operation time and other parameters of the

optical clearing, we develop a new ultrafast optical clearing method with

quantified analysis (FOCMS) with excellent transparency effect, simple

operation, improved imaging depth and quality, minor morphological

change and outstanding fluorescence retention. Applied the FOCMS to an

application of human brain tissue, significant differences are observed between

glioma and normal human brain tissue, while these differences are difficult to be

found without the assistance of FOCMS. Therefore, FOCMS shows great

application potential in clinical diagnosis and treatment, pathological analysis

and so on.

KEYWORDS

ultrafast optical clearing, transparency quantitative analysis, human brain, glioma,
deep tissue imaging

Introduction

High resolution optical imaging of deep biological tissue shows great significance in

the fields of tissue structure and medical diagnosis [1]. However, the strong scattering and

high turbidity in biological tissue greatly hinder the penetration capability and imaging

quality of the optical imaging system. Various optical imaging systems such as laser

scanning confocal imaging (LSCM) [2], multiphoton imaging [3], stimulated Raman
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scattering imaging [4], and photoacoustic imaging [5] have been

developed to improve the penetration depth, but they are usually

suffered from low imaging speed and high cost [6]. Moreover,

these optical imaging systems are not enough to satisfy the

requirements for biological studies such as whole brain or

organ imaging [7, 8]. Optical clearing is a promising method

utilizing refractive index matching and tissue decolorization,

which greatly reduces the scattering of biological tissue and

significantly improves the penetration depth and

resolution [9–12].

There are three major clearing methods including organic

solvent-based tissue clearing, aqueous-based tissue clearing, and

hydrogel embedding tissue clearing. The DISCO [13, 14]

technology based on organic solvents achieves the

transparency of large-volume biological tissues, and

transparency of intact human organs has been obtained with

the development of the SHANEL method [7]. However, this

organic solvent-based tissue clearing method causes tissue

deformation, especially for large tissues and requires a

complex operation. The aqueous-based tissue clearing

technologies such as SeeDB [15], Scale [16], and CUBIC [17],

have successfully achieved versatile whole-organ staining and

imaging [17, 18]. They have the advantages of simple and safe

operation, and good fluorescence preservation, but suffer from

long clearing time and poor clearing efficiency. The advancement

of the hydrogel embedding tissue clearing method well improves

the optical clearing efficiency and maintains the integrity of the

tissue morphology. However, high concentrations of detergents

and harsh treatments may result in the loss of native

biomolecules and damage to tissue architecture [12, 19, 20].

Optical clearing method is often combined with light sheet

microscopy to achieve rapid three-dimensional imaging of

organs and even the whole body [21]. The previous clearing

methods are designed to be transparent to large biological tissues,

however, they have defects of either severe fluorescence

quenching, long clearing time, morphology distortion or

complicated operations, which seriously limit the applications

in combing with commonly used optical imaging systems such as

LSCM and two-photon microscopy. We recently proposed a fast

optical clearing method (FOCM) with simple protocols and

common reagents, achieving efficient transparency, easy

operation and less fluorescence toxicity [22]. Current optical

clearing approaches use human eyes to evaluate the transparency

effect in most scenarios, however, there is still a lack of accurate

quantitative evaluation standards for the transparency effect.

Thus, the composition and concentration of reagents are not

optimal.

To solve this issue, quantitative measurements of optical

clearing have recently been developed using spectrophotometer

[8] and microplate reader [23], but these are not widely used due

to the high cost of measurement devices. Here, we propose the

TQAM based on the brain slice area recognition technique,

which achieves high-throughput gradient screening of reagent

concentrations. This concentration gradient screening benefits

the optimization of the reagent composition, concentration,

operation time and other parameters of the optical clearing,

and the mutual comparison of various optical clearing reagents.

Through the concentration gradient screening, we propose a

novel ultrafast optical clearing method, FOCMS, only consisting

of DMSO and urea. This paper focuses on optimizing the optical

clearing performances on time, imaging depth and quality,

transparency effect and fluorescence retention, and expands

the application scenarios of FOCMS optical clearing

technology. Taking human glioma as an example, we find that

there are distinct differences between glioma and normal human

brain tissue, however, these differences are difficult to be

observed if the tissue is not cleared by FOCMS. Therefore, the

FOCMS optical clearing technology is expected to greatly

promote its application in clinical diagnosis and treatment,

pathological analysis and other fields with the combination of

optical imaging systems.

Material and method

Experimental procedure and method

For traditional immunofluorescence imaging, the mice were

first subjected to operations including anesthesia, perfusion,

brain removal, and sectioning, followed by

immunofluorescence staining of brain slices, and finally

mounting and imaging, shown in Figure 1A. To improve the

quality of immunofluorescence imaging, FOCMS is a method

that contains optical clearing after immunofluorescence staining,

and this optical clearing process only takes 5 min to complete

which is less than the imaging preparation time.

Immunofluorescence staining. After decolorization, brain

slices were incubated with primary antibodies in PBST (0.01 M

PBS with 0.1% Triton X-100) at 37°C for 48–96 h with shaking,

followed by washing at 37°C for 1 h in PBST three times. Then

incubated with secondary antibodies under the same conditions.

Optical Clearing Method. PBST should be sopped up by

KimWipes after washing and labeling samples. The sample only

needs to incubate for 3–10 min using 600 μl FOCMS reagent at

room temperature in dishes. After FOCMS clearing Figure 1B,

the sample should be mounted (Figure 1C) immediately to

isolate air.

Laser Scanning Confocal Microscopy (LSCM). An inverted

confocal microscopy FV1000 (Olympus) was used to perform

fluorescence imaging of the brain section. A He-Ne laser

(543.5 nm) and laser diode (473 and 635 nm) were used as

the light source. To acquire the fluorescent images, we used

different objective lenses including a ×20 air objective lens

(Olympus, UPLSAPO ×20, N.A.0.75, WD 0.6 mm), ×40 air

objective lens (Olympus, UPLSAPO ×40, N.A.0.95, WD

0.18 mm) and ×60 oil objective lens (Olympus,
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UPLSAPO ×60, N.A.1.35, WD 0.15 mm). For maximum

intensity projection, the imaging interval on z axis was set as

the half of z-axis resolution of different objectives (1.09 μm

per slice for ×20 objective, and 0.48 μm per slice

for ×60 objective).

Three-Dimensional Reconstruction. The reconstruction

method is to find an extremum after preprocessing of

normalization, denoising, removing isolated noise, and then

use this extremum as the center to judge whether the

26 adjacent points satisfy the requirements of the threshold

condition. If the point satisfies the threshold condition, we

judged it as cell tissue. The coordinates of cell tissues are

considered as the new center, and the fluorescence intensity at

the center is used as the new baseline of the threshold. Then it is

judged whether the intensity of the surrounding points of the

new center satisfies the new threshold condition. Repeat this until

no extremummeets the threshold limit and then rejudge whether

the reconstructed structure is a cell. Set the reconstructed

structure as zero and loop the above process with the next

extreme point until there is no extreme point that meets the

preset condition.

Transparency Quantitative Analysis Method (TQAM).

Transparency was measured by placing the sample in a Petri

dish with a black background. The optical clearing process was

imaged using a camera (Sony ilce-6000) with the same

parameters. The white light source was used to provide

uniform brightness and the distance between the sample and

the camera was set as 4 cm.

TQAM was achieved using MATLAB R2020a. The detailed

procedures are: first, normalize and automatically identify the

brightness of the captured images with the assistance of black

borders and white grids, and find the black area where the brain

slice is located for cropping. Second, enhance the image contrast.

Third, binarization and isolated noise are performed to obtain

the first pre-identified brain slice area. The threshold of the black

area is generally set at a large value to remove noise, while the

threshold of the white area sets a small value to prevent the

ventricle from being mistaken for an area with brain tissue.

However, the coordinates of the brain slice region pre-identified

for the first time are often inaccurate because there is no

significant difference in average light intensity between the

brain slice and outside of the brain slices. To address this,

FIGURE 1
FOCMS used for immunostaining imaging and tissue recognition. (A) Optical imaging process including brain preparation, slicing,
immunostaining, optical clearing and imaging. (B) Reagents preparation of FOCM. (C) Biological sample clearing and mounting procedure before
optical imaging. (D) Brain slice range recognition process. The six images are results of normalized, enhancement, pre-recognition, differentiated
processing and denoising, binarization of customized threshold and removing isolated noise, respectively. White: brain area, black: background.
The sum of white pixels is the area of the brain slice.
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differentiate the original image to reduce the noise intensity of

the background using coordinates of a pre-identified brain slice.

Finally, binarize, and remove the isolated noise to obtain the

region where the brain slice is located, as shown in Figure 1D.

The means of brightness of the brain area before and after

optical clearing are It0 and It, respectively. And the average values

of the area outside the brain slice before and after optical clearing

are Ib0 and Ib, so the transparency is defined as:

T � 1 − |It − Ib|
|It0 − Ib0|. (1)

When T = 0 without optical cleaning, the closer T is to 1,

the better the optical cleaning effect. It is worth mentioning

that the method is also suitable for the transparency evaluation

of other biological tissues and optical clearing methods with

proper parameter adjustment. For colored tissues, the brain

slice needs to be placed on a Petri dish with a white

background, and then the optical clearing process is

photographed using a camera. Finally, the tissue area

identification and transmittance calculation are performed

based on the images.

Sample preparation

Mice and Mouse Brain Samples. Adult mice C57BL/6 and

Thy-GFP-M mice were used in the optical clearing and imaging

process. Mice were rapidly anesthetized with chloral hydrate (5%

wt/vol, 0.1 ml/10 g, intraperitoneal (i.p.)), then transcardially

perfused with ice-cold 0.01M PBS (Solarbio) and

paraformaldehyde (4% in PBS wt/vol, Sinopharm Chemical

Reagent Co., Ltd.). Brain tissues were incubated in the same

paraformaldehyde solution at 4°C for 24–48 h for uniform

fixation. After fixation, 300-μm-thick brain slices were

sectioned using a vibrating slicer (VT 1200S, Leica).

Human Brain Sample. Human brain tissues were fixed in

paraformaldehyde at 4°C for 24 h and then 300 μm thick brain

slices were sectioned using a vibrating slicer. Before the

immunofluorescence staining and optical clearing, the brain

slices were incubated in CHAPS and N-Methyldiethanolamine

solutions at 4°C for 24 h to remove the influence of the blood.

Antibodies Selection. Primary antibodies: chicken

polyclonal anti-GFAP antibody (Abeam, ab4674, dilution 1:

250) for labeling astrocytes; goat polyclonal anti-CD31

antibody (R&D system, AF3628, dilution 1:100) for labeling

human vascular endothelial cells; mouse polyclonal anti-CD31

antibody (R&D system, BBA7, dilution 1:100) for labeling

vascular endothelial cells.

Secondary antibodies: donkey anti-chicken IgY H&L (FITC)

(abcam, ab63507); goat anti-chicken IgY H&L (Alexa Fluor® 647)
(abcam, ab150175); donkey anti-goat IgG H&L (Alexa Fluor®

555) (abcam, ab150134); donkey anti-mouse IgG H&L (Alexa

Fluor® 647) (abcam, ab150107).

Optical Clearing Reagents Preparing. FOCMS reagent was

prepared only using 30% (wt/vol) urea dissolved in DMSO,

shown in Figure 1B. FOCM reagent was prepared as 30% wt/

vol urea, 20% wt/vol Dsorbitol, and 5% wt/vol glycerol dissolved

in DMSO. When preparing the reagent, urea and Dsorbitol were

dissolved in DMSO and stirred at room temperature (25°C)

overnight. After complete dissolution, glycerol was added and

stirred further. The reagents can be stored at room temperature

for several months and shaken gently before use.

Results

Optimization of FOCMS using
concentration gradient screening

The TQAMmethod accurately calculates the optical clearing

capacity and the area change of the brain tissue, so this method is

used for high throughput gradient screening of the optical

clearing reagents. Through concentration gradient screening of

three solvents (urea, sorbitol and glycerol) used in FOCM for

optical clearing, it is found that the optical clearing ability

becomes better for the 300 μm brain slice with the decrease of

sorbitol concentration (Figure 2A), when the concentration of

urea and glycerol are 30% and 5% wt/vol, respectively. At the

sorbitol concertation of 20% wt/vol, the transparency of brain

slices is only 0.56 within 5 min, while it reaches 0.79 when the

sorbitol concertation drops to 0% wt/vol, shown in Figure 2B.

The transparency using FOCM achieves 0.76 after 30 min optical

clearing, while that of using FOCM reagent with 0% wt/vol

sorbitol is up to 0.87 under the same condition. Besides, the

FOCM reagent causes severe shrinkage of the brain slice which is

less than 60% of the original area and cannot recover to the

original size, as shown in Figure 2C. In comparison, the FOCM

reagent with 0% wt/vol sorbitol shrinks the brain slice

morphology and then swells back to its original size,

indicating better tissue morphology preserving ability than

that of FOCM. Therefore, the sorbitol in the FOCM reagent

reduces the optical clearing effect and causes morphology

deterioration. Besides, we found that the increase of glycerol

concentration has less influence on optical clearing ability, and

deteriorates the brain slice morphology at the urea concentration

of 30% wt/vol and the sorbitol concentrations of both 0% and

20% wt/vol.

Compared to FOCM, FOCMS (without sorbitol and glycerol)

has the advantages of simpler operation, faster transparency

time, better optical clearing effect and less tissue deformation

(Figure 2D), especially in areas with higher fiber content and

tighter tissues. Using the same concentration gradient screening

technology, we analyzed the urea concentration in FOCMS and

found that the transparency of the brain slice reaches 0.65 when

the urea concentration is 0% (only DMSO solvent). The

transparency ability improves with the increase of urea
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concertation from 0% to 30% wt/vol, shown in Figure 2E. At the

urea concentration of 30% wt/vol, the transparency of brain slice

using FOCMS is 0.73 at 3 min, then increase to more than 0.8 at

5 min and finally reaches up to 0.87, while that of using FOCM is

up to 0.76 at the same condition. When the urea concentration

continues to rise, the optical clearing effect deteriorates. Thus,

FOCMS has the best optical clearing ability when the urea

concentration is 30% wt/vol. During the optical clearing using

FOCMS, brain slices shrink rapidly within 30 min first, and reach

the most at 3 min, but gradually recover. Moreover, the

morphology of brain slices has severe changes with the rise of

the urea concentration increase. When the urea concentration is

30% wt/vol, the area shrinks the most at 3 min, reaching about

64% of the original area, and then gradually recovers, shown in

Figure 2F,G. When the urea concentration exceeds 30% wt/vol,

the changes in brain area are similar to that of 30% wt/vol. The

area difference between and after optical clearing is less than 15%

and there are minor changes after 30 min of the optical

clearing. Therefore, optical clearing has an optimal time of

about 5 min.

FIGURE 2
FOCM and FOCMS concentration gradient screening. (A) Variation of transparency with different sorbitol concentrations in FOCM reagent. (B)
Comparison of transparency of brain slices using FOCM reagent with sorbitol concentration of 0% and 20% wt/vol for 5 min. (C) Changes of brain
tissue area with sorbitol concentration in FOCM reagent. (D) Comparison of optical clearing effects between FOCM and FOCMS at 0 min, 1 min,
3 min, 5 min, 10 min and 30 min (E) Variation of transparency with different urea concentrations in FOCMS reagent. (F)Morphology caused by
FOCMS reagents. The cyan solid line is the slice boundary before optical clearing, and the yellow dotted line is after optical clearing. (G) Changes of
brain tissue area with urea concentration in FOCMS reagent. Scaler bar: 2 mm, statistical significance (**p < 0.01, *p < 0.05).
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Imaging depth and quality improvement
using FOCMS

FOCMS achieves rapid optical clearing for biological tissues

with simple operation, which greatly benefits the improvement of

the imaging depth and resolution of fluorescence microscopy.

Figure 3 compares the imaging of brain tissues before and after

optical clearing using LSCM. Without optical clearing, the range

of clear imaging is only about 50 μm. The SNR ratio is greatly

reduced after the imaging depth of 50 μm. The SNR ratio drops

FIGURE 3
Fluorescence imaging of brain tissue (A) before and (B) after optical clearing. Green: nucleus, blue: glia cell, red: blood vessel. Comparison of
glia cell imaging at the depth of 35 μm and 230 μm (C) before and (D) after clearing, respectively. Scalebar: 50 μm.

FIGURE 4
Fluorescence imaging quality after FOCMS. (A) Imaging of brain tissue with detailed structure exhibition after FOCMS clearing. Green: neurons,
blue: glia cell, red: blood vessel. (B) Selected single imaging at the depth of 150 μm in (A). (C) Imaging of neurons with high NA objective lens. Scale
bar: 10 μm (D)Normalized fluorescence corresponding to the neuronal Soma, glial synapse, and blood vessel at the depth of 150 μm in (B) indicated
by the dashed line, respectively. Scale bar: 50 μm.
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with the increase of imaging depth. At the depth of 100 μm, no

more effective information is obtained when the SNR ratio is

close to 0 (Figure 3A). However, the imaging depth improves to

230 μm using FOCMS, and the SNR maintains almost

unchanged, shown in Figure 3B. Figures 3C,D are the imaging

of glia cells at the depth of 35 and 230 μm before and after

FOCMS clearing, and the upper left corner is an enlarged view of

a single glia cell.

Comparing the results of Figures 3C,D, it can be seen that the

synaptic intensity of glia cells after optical clearing is significantly

stronger than that of before clearing, the number of glia cells is

greater and the morphology preserves better, indicating that

optical clearing using FOCMS significantly improves the

imaging quality even in the imaging depth of LSCM (50 μm).

When the depth reaches 230 μm, there is almost no effective

information remaining before optical clearing, while after light

clearing, some of the glial cells are still resolved, and the synapses

are clearly visible.

We further evaluated the results of deep tissue imaging using

the FOCMS clearing technique. Figure 4A shows the LSCM

imaging after FOCMS clearing, in which neurons are in green,

glial cells in blue, and blood vessels in red. The sub-image on the

right is the enlarged part of the white dashed box in Figure 4A to

show the detailed three-dimensional morphological structures of

neurons, glial cells and blood vessels. It is clearly seen that the

synapses of glial cells and the vascular walls of blood vessels in

Figure 4B show the selected single imaging at the depth of

150 μm in (a). LSCM imaging with high NA clearly displays

the dendrites and axons of neurons (Thy1-GFP-M mice) with an

imaging resolution higher than 1 μm, as shown in Figure 4C.

Figure 4D shows the normalized fluorescence intensity of

neuronal Soma, glial synapse and blood vessel in (b), where

the full width at half maximum (FWHM) of neuronal Soma is

7.99 μm, and the minimum distance between the three glial

synapses is 2 μm and the diameter of the blood vessel is

7.57 μm, respectively. It can be found that when the imaging

depth is 150 μm, the structure of cells and tissues still has a high

signal-to-noise ratio. We also found that the structures of cells

and brain tissues still have a high signal-to-noise ratio at the

imaging depth of 150 μm. Therefore, the FOCMS optical clearing

technology on brain tissues shows significant improvements in

the imaging depth of the microscopic imaging system. Besides,

the FOCMS does not quench the exogenous fluorescence like

immunofluorescence and chemical dyes and the endogenous

fluorescence such as GFP, indicating its excellent fluorescence

retention ability.

Applications in human brain tissue with
FOCMS

FOCMS significantly improves the depth and quality of

imaging with minimal time and effort which shows great

potential in the applications of clinical diagnosis and

treatment, pathological analysis, etc. Here, we demonstrated

an application using FOCMS in human brain tissue imaging.

As shown in Figures 5A,B describe the three-dimensional LSCM

imaging of normal human cerebral blood vessels and brain

glioma (GBM) without optical clearing, respectively. The top

left image is the original imaging result, the top right image is the

detailed structure of blood vessel morphology, and the bottom

two images are the selected single imaging at the depth of 50 μm

(left) and 200 μm (right) in (a) (b), respectively. Unfortunately,

using these imaging results without optical clearing, the

morphological differences are not sufficient to distinguish

between normal human brain tissue and glioma, and

pathological analysis cannot be performed.

After using FOCMS, three-dimensional imaging of normal

human brain tissue and glioma are shown in Figures 5C,D,

respectively. Among them, the top left image is the original

result of imaging, the top right is the detailed structure of blood

vessel morphology, and the bottom two images are the selected

single imaging at the depth of 50 μm (left) and 200 μm (right),

respectively. Owning to the FOCMS optical clearing, the

morphological differences between normal human brain tissue

and glioma are obvious. Compared to normal blood vessels,

blood vessels of glioma are lump-shaped, with tortuous,

disordered structure, and enlarged diameter. Therefore,

FOCMS technology demonstrates the ability that it can be

used to solve the problem of unclear boundary identification

of glioma.

Unlike mouse brain tissues, human brain tissues have higher

fiber content, greater cell density, tighter tissues, and many

impurities, which severely reduces the optical clearing effect.

Compared to FOCM, we found that FOCMS technology has a

better optical clearing effect on human brain tissue and smaller

morphological changes, shown in Supplementary. Comparing

the results in the white dotted circles in Figures 5A,C, it is found

that there is no significant difference in the morphology of

human cerebral blood vessels before and after optical clearing.

Figure 5E,G shows the three-dimensional morphology of normal

human cerebral blood vessels before (yellow) and after (red)

FOCMS optical clearing, respectively, and found that they are

well merged. Besides, there is no significant difference in the

vascular morphology of gliomas before and after FOCMS optical

clearing as well, indicating that the FOCMS technology will

not cause obvious deviation in the imaging results of brain

tissues.

Since there is no ideal imaging for comparison in practical

applications, we use a three-dimensional reconstruction

algorithm to separate the signal from the noise for the

calculation of the signal-to-noise ratio (SNR). SNR is

defined as:

SNR � 10 × log10
Is
In
, (2)
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FIGURE 5
Application of FOCMS in human brain tissue imaging. Comparison of three-dimensional imaging of (A) normal human brain tissue and (B)
glioma without optical clearing. Top left: the original imaging, top right: detailed structure of blood vessel morphology, bottom: selected single
imaging at the depth of 50 μm (left) and 200 μm (right) in (A) and (B), respectively. After using FOCMS, three-dimensional imaging of (C) normal
human brain tissue and (D) glioma, respectively. Top left: the original imaging, top right: detailed structure of blood vessel morphology, bottom:
selected single imaging at the depth of 50 μm (left) and 200 μm (right) in (C) and (D), respectively. Comparison of (E) morphology changes and (F)
SNR of normal brain tissue before and after FOCMS. (G) Morphology changes and (H) SNR for glioma with and without optical clearing. Scale bar:
50 μm.
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where Is the mean of signal and In is the mean of noise. The final

SNR of multiple immunofluorescence staining is the mean of

each channel.

Figures 5F,H represent the SNR of 3D imaging at different

imaging depths with normal human brain tissue and glioma,

respectively. The blue line represents before optical clearing and

the orange line represents after optical clearing. For both normal

human brain tissue and glioma, the results show that the SNR after

optical clearing is higher than that of before optical clearing at the

imaging depth of 50 μm (the range of LSCM) and 200 μm. The

mean SNR of normal human brain tissue before optical clearing is

6.54, while it reaches 10.23 after FOCMS clearing. For glioma tissue,

the mean SNRs are 11.72 and 12.33 before and after optical clearing,

respectively. The SNR of glioma tissue is higher than that of normal

human brain tissue, which may be due to the changes in the

composition of brain tissue during carcinogenesis. With the

increase of imaging depth, the SNR without optical clearing

gradually decreases. However, the SNR after FOCMS clearing

decreases first and then increases, mainly due to the staining

effect of the middle position of the tissue during the staining

process being worse than that of the edge position. In summary,

the FOCMS method effective improve the imaging depth and

quality of human brain tissues without changing the tissue

morphology, demonstrating the applications in clinical diagnosis

and treatment and pathological analysis.

Conclusion

In this paper, we propose a new technology, FOCMS, using a

new reagent consisting of only DMSO and urea for optical clearing

with better performance. The results show that the transparency

reaches 0.73 which is an 87.2% improvement compared to that of

FOCM when the urea concentration is 30% wt/vol at the optical

clearing time of 3 min. It is achieved owing to the TQAM we

proposed based on the brain slice area recognition technique. This

method accurately calculates the transparency of optical clearing

reagents and the morphological changes in brain slices.

Furthermore, high-throughput gradient screening is performed

on the reagent composition, concentration, processing time and

other parameters of the optical clearing technology using this

method. Using the TQAM, we analyze the influences on the

three solutes (urea, sorbitol and glycerol) of FOCM via

concentration gradient screening. It is found that the increased

sorbitol concentration reduces the optical clearing effect and

prevents morphological shrinkage from returning to the pre-

clearing area. Moreover, glycerol has less effect on optical

clearing and made the area change more severe. Compared to

FOCM, FOCMS without sorbitol and glycerol reagents has the

advantages of simpler operation, faster transparency, better optical

clearing effect, and less morphological change.

The FOCMS technology achieves ultra-fast and effective

optical clearing with little fluorescence quenching only by

simply incubating the brain tissue sample for about 5 min.

After FOCMS clearing, the results show that the glial cells

show stronger synaptic signals, better morphology, and

significantly improved imaging quality at the imaging depth of

50 μm. Besides, more than 200 μm of imaging depth is achieved,

and the SNR keeps almost unchangeable, enabling clear imaging

of neurons and glial synapses, blood vessel walls and other tissues

with a resolution of more than 1 μm. Moreover, FOCMS

technology does not quench most of the exogenous and

endogenous fluorescence and has outstanding fluorescence

retention ability. The FOCMS technology has been

successfully applied to the human brain tissue and it is shown

that FOCMS is superior to FOCM in improvements of optical

clearing effect, SNR (56.4% stronger) and preservation of

morphology. We also demonstrate an application of solving

the problem of unclear identification of brain glioma

boundaries, which shows great potential in clinical diagnosis

and treatment, pathological analysis, etc.
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Three-dimensional natural color
imaging based on focus level
correlation algorithm using
structured illumination
microscopy

Mengrui Wang1,2†, Tianyu Zhao1†*, Zhaojun Wang1, Kun Feng1,
Jingrong Ren1, Yansheng Liang1, ShaoweiWang1 andMing Lei1*
1MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi
Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of
Physics, Xi’an Jiaotong University, Xi’an, China, 2Department of Engineering Mechanics, SVL and
MMML, Xi’an Jiaotong University, Xi’an, China

Taking advantages of high-resolution, natural color restoration, and high

imaging speed, optical sectioning structured illumination microscopy (OS-

SIM) plays an important role in geology, biology, and material science.

However, when encountering chromatic aberration or dealing with samples

with semitransparent surface, the HSV (Hue, Saturation, and Value) decoding

algorithm suffers intensity deviation and fading color. In this paper, we propose

a focus level correlation algorithm for 3D color image reconstruction inOS-SIM.

Simulations and experiments demonstrate that the algorithm can restore color

of sample authentically, and improve the image processing speed by about 45%.

This new algorithm successfully improves the results and the speed of optical

sectioning reconstruction, expanding the application of OS-SIM.

KEYWORDS

structured illumination microscopy, optical sectioning, natural color, 3D image, focus
level correlation algorithm

Introduction

Due to the advantages of noncontact and minimally invasive observation, optical

microscopy plays an essential role in morphology analyzing, which is one of the most

important research areas in material science and geological fields [1, 2]. However, the

conventional wide-field microscopy cannot obtain optical section directly, as the image

obtained by the camera is the superposition of the in-focus information and the defocused

background. For this reason, many three-dimensional (3D) imaging technologies have

been developed, such as confocal laser scanning microscopy (CLSM) and two photon

microscopy [3–5].

CLSM is one of the most widely used technique obtaining high-resolution 3D

scans of micrometer-scale specimens [3]. It uses a highly focused laser to scan the

sample point by point. The reflective or fluorescence signal is filtered by the detection
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pinhole and collected by the photomultiplier tube. Since only

the signal excited at the laser focus can pass through the

detection pinhole, CLSM can reduce the out-of-focus

information and obtain a background-free image [3].

However, CLSM is too time-consuming to implement

scans for centimeter-scale creatures, and the focused laser

is detrimental for the samples. Furthermore, CLSM ignores

the color information of the specimens. Color is an essential

feature in geological research, which reflects the optical

properties of crystals and is the direct basis for the

classification and identification of minerals [6, 7]. In this

case, it is necessary to develop an imaging technology which is

able to accurately present the natural color of samples with

complex microstructures.

Structured illumination microscopy (SIM) is another way

obtaining optical section, and has found widely applications

for 3D imaging and measurement in biological, medical and

geological fields due to its advantages of high spatial resolution,

fast imaging speed and natural color imaging [8–11]. The

structured illumination was first applied on microscopy by

Neil et al. to eliminate the out-of-focus background

encountered in wide-field microscopy [12]. OS-SIM uses

sinusoidal fringes with different phases to illuminate the

sample, which appear only near the focal plane. The

contrast of the structured illumination rapidly attenuates in

the out-of-focus area and become uniform wide-field

illumination. With decoding algorithm, the in-focus

information can be separated from the background, and a

3D image of the sample can be reconstructed from optical

sections. In our previous work, a DMD (digital micromirror

device) based LED-illumination SIM has been reported that is

suitable for 3D imaging [13–15]. By using Hilbert transform

reconstruction, the image acquisition time can be reduced by

1/3 [16]. An HSV (Hue, Saturation, and Value) decoding

algorithm realized full-color optical section [17]. With this

well-developed OS-SIM system, we successfully obtained

numbers of full-color 3D images of typical insect samples,

such as shining leaf chafer, tiger beetles and so on [18].

However, due to the dependence on modulation depth of

the HSV decoding algorithm, the sectioning images often

suffer from intensity deviation and residual fringes under

chromatic aberration. In addition, for samples with

semitransparent surface, the modulation depth of the fringes

changes considerably between surfaces of different reflective

properties, leading to the variation of the optical section

intensity and fading color of the reconstructed 3D image.

In this paper, we propose a focus level correlation (FLC)

algorithm to reconstruct 3D natural color image in OS-SIM.

For samples with varying colors and semitransparent

surface like minerals, the results of reconstruction are

improved with authentic colors and about 45% faster

speed. This new algorithm is expected to expand the

application of OS-SIM.

Materials and methods

Principle of optical sectioning with
structured illumination microscopy

In the conventional wide-field microscope, the targeted in-

focus information is inevitably merged with an unwanted out-of-

focus background because the image is limited by the depth-of-

field. SIM provides an approach to extract the in-focus

information from the raw images by illuminating the sample

with a nonuniform structured light. Only the in-focus part is

modulated by the structured illumination, and the modulation

depth attenuates rapidly as the defocus distance increases. Thus,

the in-focus information can be decoded by algorithms. A typical

kind of structured illumination is sinusoidal fringe with light

intensity distribution like

S(x) � 1 +m · sin (2πνx + φ) (1)

wherem denotes the modulation depth, ] is the spatial frequency,
and φ is the spatial phase. Under the illumination of the

sinusoidal fringe, the image of the sample is

I � Iout + Iin · [1 +m · sin(2πνx + φ)] (2)

where Iout and Iin respectively represent the out-of-focus and the

in-focus part of the sample. The optical sectioning image IOS can

be obtained by the RMS operation of three raw images with an

adjacent phase-shift of 2π/3:

IOS �
�
2

√
3

������������������������������������(I0° − I120°)2 + (I120° − I240°)2 + (I240° − I0°)2
√

(3)

In addition, the wide-field image IWF can also be acquired

simultaneously with

IWF � Iout + Iin � 1
3
(I0° + I120° + I240°) (4)

3D color image reconstruction based on
focus level correlation algorithm

The most usual way to reconstruct color image is

transforming the raw images into RGB (Red, Green, and

Blue) space. Results can be received after calculating the RMS

of each channel with Eq. 3 and recombining three channels.

However, because lights with different wavelength focus on

different planes and the modulation depth is related to the

focus level, the modulation depths of R, G, and B are not

identical in practice. The sectioning images suffer from color

distortion caused by the chromatic aberration. In theory, the

intensity of the optical sectioning image is proportional to the

modulation depth according to Eqs 2, 3. Therefore, the ratio of R,

G, and B intensities will change compared with the raw image,

leading to the color distortion.
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FIGURE 1
Flowchart diagram of the 3D color image reconstruction algorithm based on focus level correlation. (A) Phase-shift raw images. (B)Modulation
depth curve of a pixel (x0, y0). (C) Height map of maximum focus level. (D) Valid height map. (E) Height map with interpolation. (F) 3D image.
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To restore the original color, a new 3D color image

reconstruction algorithm named focus level correlation (FLC) is

employed, whose flowchart is shown in Figure 1. With phase-shift

raw images Ii(x, y, z) (i = 1, 2, 3) captured (Figure 1A), the wide-field

image IWF(x, y, z) can be directly obtained by Eq. 4. Both of the raw

images andwide-field images are converted to grayscale imagesGi(x,

y, z) and GWF(x, y, z). The optical sections GOS(x, y, z) can be

obtained by RMS decoding operation, which indicate the averaged

sectioning images of the three colors RGB. To calculate the focus

position for each (x, y) and noticing that the intensity of optical

section is maximum at the focus position, we define the focus level

FL(x, y, z) as the proportion of GOS(x, y, z) and GWF(x, y, z):

FL(x, y, z) � GOS(x, y, z)
GWF(x, y, z) (5)

Figure 1B illustrates the focus level curve of a pixel (x0, y0),

showing a distinct peak at the focal plane. The maximum of

focus level along z axis and the corresponding argument are

acquired for each (x, y). For pixels which have low SNR (signal-

to-noise ratio) of focus level, they tend to result in wrong focus

positions (Figure 1C). Therefore, a reliability measurement is

implemented that the maximum of focus level along z axis has

to exceed a threshold to be considered valid (Figure 1D). After

interpolation on the invalid (x, y) by the valid height map

hvalid(x, y), the whole height map h(x, y) can be obtained

(Figure 1E). By restoring the color of wide-field images on

corresponding position of height map, the 3D color image I3D
can be finally reconstructed (Figure 1F).

To demonstrate the color aberration in OS-SIM, we

simulate the HSV decoding algorithm [17] and the FLC

algorithm. The raw image (Figure 2A) is a rectangle with

color gradients, generated by varying R, G, and B values to

cover different colors. The image added with normal

sinusoidal fringe of which modulation depth is 0.6 is

shown in Figure 2B. For simulation of the chromatic

FIGURE 2
Simulation of theHSV decoding algorithm and the FLC algorithm in this paper. (A) Raw image. (B) Image addedwith normal sinusoidal fringe. (C)
Image added with sinusoidal fringe with chromatic aberration. (D) Image restored by the HSV decoding algorithm under chromatic aberration. (E)
Image restored by the FLC algorithm under chromatic aberration. (F) Intensity curve of R, G, and B along the red dashed line in (D,E). (G) Image added
with sinusoidal fringe with modulation depth variation. (H) Image restored by the HSV decoding algorithm under modulation depth variation. (I)
Image restored by the FLC algorithm under modulation depth variation. (J) Intensity curve of R, G, and B along the yellow dashed line in (H,I).

Frontiers in Physics frontiersin.org

Wang et al. 10.3389/fphy.2022.1041577

64

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1041577


aberration, the image is added with sinusoidal fringe of

different R, G, and B modulation depth which is 0.9, 0.5,

and 0.1 respectively (Figure 2C). As a result, the image

decoded by the HSV decoding algorithm (Figure 2D)

significantly deviates from the raw image in intensity and

appears residual fringes. In contrast, the image decoded by the

FLC algorithm (Figure 2E) restores the raw image with 100%

accuracy. Figure 2F shows the intensity curve of R, G, and B

along the red dashed line in Figures 2D,E for comparison. To

simulate the modulation depth variation caused by varying

FIGURE 3
3D imaging result of azurite (see Supplementary Video S1). (A)MIP image along z axis. (B)MIP image along x axis. (C)MIP image along y axis. (D)
Height map of the sample, with the profile along the black line-scan. (E) Detail image of the malachite in (A). (F) Image restored by the HSV decoding
algorithm corresponding to the region of (E). (G) Detail image of the white crystal in (A). (H) Image restored by the HSV decoding algorithm
corresponding to the region of (G).

Frontiers in Physics frontiersin.org

Wang et al. 10.3389/fphy.2022.1041577

65

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1041577


reflective properties, the raw image is added with sinusoidal

fringe with modulation depth changing from 1 to 0

(Figure 2G). As a result, the image decoded by the HSV

decoding algorithm (Figure 2H) loses intensity at low

modulation depth areas, while the image decoded by the

FLC algorithm (Figure 2I) still restores the raw image

authentically. Figure 2J shows the intensity curve of R, G,

and B along the yellow dashed line in Figures 2H,I for

comparison. In addition, the HSV decoding algorithm

needs to compute the RMS operation in three channels H,

S, and V [17], while the FLC algorithm firstly converts the

color images to grayscale images and then compute the RMS

operation in the single grayscale channel, thus the processing

time of optical sectioning is saved by 67% theoretically.

FIGURE 4
3D imaging result of blue-veins stone (see Supplementary Video S2). (A)MIP image along z axis. (B)MIP image along x axis. (C)MIP image along y
axis. (D) Height map of the sample, with the profile along the black line-scan. (E) Raw image of the white area with focused modulated fringe. (F)
Image restored by the FLC algorithm corresponding to the region of (E). (G) Image restored by the HSV decoding algorithm corresponding to the
region of (E). (H) Raw image of the blue area with focused modulated fringe. (I) Image restored by the FLC algorithm corresponding to the
region of (H). (J) Image restored by the HSV decoding algorithm corresponding to the region of (H).
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Natural color optical sectioning structured
illumination microscopy system

The natural color OS-SIM system is same as our previous

work [11, 19]. The LED (SOLIS-3C, Thorlabs Inc.) light enters

the total internal reflected (TIR) prism and is then reflected onto

the DMD (V7000, ViALUX GmbH, Germany) to be modulated

into a binary grating. After that, the light is collimated by an

achromatic collimating lens (f = 200 mm), passes through a 50/

50 beam-splitter, and is focused by the objective lens (×4, NA 0.2,

Thorlabs Inc., United States) to illuminate the sample. Volume

data of the sample can be obtained by axially moving the

translation stage (3-M-122.2DD1, 25 mm travel range, Physik

Instrumente GmbH and Co., KG, Germany), while moving in

landscape orientation enables the extension of the field of view

(FOV). A color sCMOS camera (pco.edge 5.5 CLHS, 100 fps at

2,560 × 2,160 pixels, PCO AG, Germany) is used to capture the

2D images. DMD patterns generation, stage movement and

image record are controlled by custom software programmed

in C++ to implement hardware synchronization.

Results

To demonstrate the better color restoration capability of the

FLC algorithm, we capture images of two mineral samples with

varying natural colors. The first mineral sample is a piece of

azurite with rich colors, which consists of dark blue and

semitransparent crystal, accompaning with green malachite in

the brown oxidized zone of copper lodes. Figure 3 shows the

imaging result of the azurite, and Supplementary Video S1

presents its reconstructed 3D image. The max intensity

projection (MIP) images along z, x, and y axis are shown in

Figures 3A–C, respectively. Figure 3D shows the height map of

the sample with the profile along the black line-scan. Figure 3E

shows a detail on the malachite, and Figure 3F shows the

corresponding image restored by the HSV decoding

algorithm. It can be seen that the HSV decoding algorithm

arises residual fringes while the FLC algorithm is not affected.

Figure 3G shows a detail on the white crystal, and Figure 3H

shows the corresponding image restored by the HSV decoding

algorithm. The HSV decoding algorithm fails to restore the color

on the white crystal that the brightness loses seriously. The whole

3D image is stitched from 99 data sets (9 rows and 11 columns)

with 236 layers at 20 μm axial intervals and 2,048 × 2,048 pixels

for each field, which means the total raw data is 547.6 GB, and the

whole 3D volume is 11.3 mm × 14 mm × 4.7 mm. The total

image processing time of the HSV decoding algorithm and the

FLC algorithm are 104 min and 72 min, which means the

processing speed is improved by 44% (Windows 10, 32GB

RAM, Intel Xeon W-2123 at 3.6 GHz, MATLAB R2017a).

Another mineral sample is blue-veins stone, with mixed

colors of blue, white and red. Its blue surface is

semitransparent, on which the modulated fringe is difficult to

be projected. Figure 4 shows the imaging result of the blue-veins

stone, and Supplementary Video S2 presents its reconstructed 3D

image. TheMIP images along z, x, and y axis are shown in Figures

4A–C, respectively. Figure 4D shows the height map of the

sample with the profile along the black line-scan. Figures

4E,H, respectively show the raw images of the white area and

blue area with focused modulated fringe, that the modulation

depth of fringe in Figure 4H is quite lower than that in Figure 4E.

As a result, the HSV decoding algorithm restores the image of the

white area fairly well (Figure 4G) compared to the image restored

by the FLC algorithm (Figure 4F). However, the color of blue area

restored by the HSV decoding algorithm (Figure 4J) fades a lot

due to the low modulation depth of fringe, while the FLC

algorithm still restores the raw blue color (Figure 4I). The

whole 3D image is stitched from 35 data sets (5 rows and

seven columns) with 264 layers at 7 μm axial intervals and

2,048 × 2,048 pixels for each field, which means the total raw

data is 216.6 GB, and the whole 3D volume is 6.6 mm × 8.9 mm×

1.8 mm. The total image processing time of the HSV decoding

algorithm and the FLC algorithm are 41 min and 28 min, which

means the processing speed is improved by 46%.

Discussion and conclusion

The RMS operation in Eq. 3 determines that the intensity of

optical sections is proportional to the modulation depth. The

HSV decoding algorithm is aimed to solve the color distortion

caused by chromatic aberration, but it still does not get rid of the

dependence on modulation depth and performs poorly when the

surface is weakly modulated. The FLC algorithm abandons direct

computation of the color optical sections, but firstly figures out

the height map through the focus level and then restores the color

from wide-field images which are not affected by the modulation

depth. Therefore, it thoroughly solves the color restoration

problem.

In addition, the FLC algorithm also improves the axial

resolution of the reconstructed 3D image. The optical section

of traditional OS-SIM has a depth corresponding to the full width

at half maximum (FWHM) of spatial frequency intensity

distribution [14], leading to unclear profile of its 3D image.

However, the FLC algorithm condenses each pixel in the 3D

image to its focus position, so the 3D image can precisely display

the surface of the sample. Moreover, the 3D image reconstructed

by traditional OS-SIM often contains wrong focused pixels

(Figure 1C) which appear to be noises and decline the 3D

image quality, while the reliability measurement in FLC

algorithm eliminates and replaces them, ensuring the accuracy

and fineness of the 3D image.

In summary, we present a focus level correlation algorithm

for 3D color image reconstruction in OS-SIM, proved to restore

color authentically and without affected by chromatic aberration
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or modulation depth variation, and improve the reconstruction

speed by about 45%. Capability of high precision height map

measurement and natural color restoration allows OS-SIM to

apply in 3D imaging on various kinds of minerals. This technique

may find potential applications in geology, material science, and

biology, especially analyzing translucent and colorful samples.
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Magnification endoscopy with narrow-band imaging (ME-NBI) technology is

widely used in the early diagnosis of precancerous lesions and gastric cancer,

which is critical to reducing the incidence of gastric cancer and improving the

survival rate of gastric cancer patients. The diagnosis based on ME-NBI image is

mostly in manual way in clinics. In order to improve its objectivity and efficiency,

here we proposed a lightweight attention mechanism deep learning model to

automatically classify ME-NBI images for artificial intelligence (AI) diagnosis of early

gastric cancer, low-grade intraepithelial neoplasia, and non-neoplasm. We

collected 4,098 images from 990 patients for model training and validation and

evaluated the performance of our model by comparisons with that of other

models, such as the benchmark model. An additional 587 images from

296 patients were collected as an independent test set to further evaluate our

method’s performance. The validation set showed that the overall accuracy, recall,

precision, F1 score, and the area under the curve of our method were higher than

those of other methods. The independent test set showed that our method

achieved state-of-the-art classification for low-grade intraepithelial neoplasia

(accuracy = 93.9%, sensitivity = 92.6%). Our method displayed the advantages

of lightweight and high effectiveness in classifying effectiveness, which is the

potential for AI diagnosis of early gastric cancer, low-grade intraepithelial

neoplasia, and non-neoplasm.

KEYWORDS

gastric cancer and precancerous lesions, deep learning, magnification endoscopy with
narrow-band imaging, artificial Intelligence, automatic classification
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1 Introduction

Gastric cancer (GC) is the third leading cause of cancer death

worldwide, with one million new cases and 783,000 additional

deaths reported globally in 2021 [1]. GC has a series of evolution

processes, gradually developing from chronic gastritis (CGT),

intestinal metaplasia (IM), and low-grade intraepithelial

neoplasia (LGIN) [2]. With the progression of lesions, the risk

of cancer significantly increases. For example, patients with IM

and LGIN are about 10 and 25 times more likely to develop GC

than ordinary people[2, 3]. The 5-year overall survival rate of

patients with pathological early gastric cancer (EGC) is higher

than 90% [4], while in Asian countries such as South Korea and

Japan, the survival rate for patients with advanced gastric cancer

is less than 20% [5, 6]. Therefore, timely detection and accurate

classification of precancerous lesions and EGC are crucial for

providing proper treatment, reducing the incidence of gastric

cancer, and improving the survival rate of EGC patients.

Endoscopy is the primary tool for examining and diagnosing

various gastric injuries [7]. Standard endoscopes include white-

light imaging (WLI) endoscopy, narrow-band imaging (NBI)

endoscopy, and magnification endoscopy with narrow-band

imaging (ME-NBI). Compared with WLI and NBI, ME-NBI

can observe the morphology of gastric mucosal surface

microstructures and microvessels in detail, which has been

widely used in diagnosing clinical gastric lesions, especially

EGC [8, 9]. However, there are many problems in clinical

gastroscopy. First, the diagnosis of endoscopic images is often

subjective and depends on the professional knowledge and

experience of endoscopists; when endoscopists are

inexperienced, misdiagnosis or missed diagnosis will be caused

[10, 11]. Secondly, endoscopy will produce many images, so the

artificial classification of endoscopic images is a labor-intensive

process; when the number of patients is large, the lack of

endoscopists and fatigue will further aggravate the missed

diagnosis or misdiagnosis of patients[12]. Computer-aided

diagnosis (CAD) provides an objective and automatic

classification method; it can help doctors make more effective

decisions in a shorter diagnosis cycle. Studies have shown that

CAD can improve the efficiency and accuracy of diagnosing

gastrointestinal lesions [13–15].

Early CAD systems were usually based on manual feature

extraction algorithms[16–19]. Kanesaka et al.[14] designed 8

gray level co-occurrence matrix (GLCM) features and

developed a CAD system based on these manual features

and the coefficient of variation of feature vectors for GC

detection. Van D S F et al. [16] developed a CAD system for

early esophageal cancer detection in high-definition endoscopic

images by calculating local color and texture features based on

the original and Gabor-filtered images. However, these methods

rely on human-designed algorithms for feature extraction and

fail to realize automatic identification of gastric lesions.

Moreover, the manual features are insufficient to fit the

diversified features of actual lesions[20] and cannot be

generalized to practical diagnostic applications.

Deep learning (DL) can automatically capture the subtle

features in images and has better accuracy and flexibility than

manual feature extraction methods. It has made significant

progress in the application of computer vision[21–24] and has

been widely used in the field of medical images to solve

automatic classification [25–28], segmentation [29–31],

localization [32–34], and other tasks. Several scholars have

recently demonstrated DL’s applicability in automatic

endoscopic image analysis[35–38]. Horiuchi et al.[39]

proposed a classification method based on GoogleNet, which

could automatically identify EGC and gastritis in ME-NBI

images with an accuracy of 85.3%. Yan T et al. [40]

developed a diagnostic system for IM detection based on the

EfficientNet B4 network, and the accuracy for patients reached

88.8%. In terms of detecting LGIN, Cho et al.[41] developed a

classification system for gastric lesions based on 5017 WLI

images and the DL model, and the accuracy for LGIN was

78.5%, lower than that of endoscopists. Lui et al.[42] developed

a classification system based on 3000 NBI images that could

automatically classify LGIN, high-grade intraepithelial

neoplasia (HGIN), and GC and achieved better classification

performance than primary endoscopists. Liu et al.[43]

automatically classified gastritis, LGIN, and EGC based on

the transfer learning method and ME-NBI images and

achieved an average accuracy of 96%.

However, there are still some problems in the automatic

classification of gastric lesions based on deep learning. First,

existing studies use transfer learning methods, but there is no

study on using an end-to-end training model to classify images in

small sample datasets. The transfer learning method can solve the

problem that training on small sample datasets is challenging to

fit, but this method assumes that the source domain datasets and

the target domain datasets are correlated, which may reduce the

accuracy when the images of the two datasets are quite different

[44]. In addition, the traditional DL model has relatively high

structural complexity and large volume; even when combined

with transfer learning, it still has problems of slow convergence

or overfitting on small sample datasets. Second, no research

group has classified non-neoplasm (gastritis, IM), LGIN, and

EGC based on ME-NBI images and deep learning. Third, the

classification performance of precancerous lesions in existing

studies needs to be improved.

The attention mechanism can improve the classification

performance of deep learning models [45], which has been

confirmed in medical image analysis tasks [46, 47]. Inspired

by F. Wang et al. [48], this study proposed a deep learning model

of attention mechanism. Based on this model, an automatic

classification framework for non-neoplasm, low-grade

intraepithelial neoplasia, and early gastric cancer based on

ME-NBI images was developed. The main contributions of

this paper are as follows:
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1) A deep learning model with the attention mechanism and

cost-sensitive learning was proposed, which can strengthen

the discrimination ability of subtle feature differences of

gastric lesions and solve the problem of class imbalance in

the dataset. This is the first time an attention mechanism

model has been introduced into the endoscopic analysis of

gastric lesions.

2) The lightweight model was implemented, which allows the

model to be trained from scratch on the small sample

gastroscopy dataset and does not require pre-trained

weights, and significantly reduces the training and

deployment time of the model.

3) An automatic classification method was developed based on

the proposed model, and the classification of non-neoplasm

(including gastritis and IM), LGIN, and EGC based on ME-

NBI images were performed for the first time, and state-of-

the-art performances were obtained in the classification of

LGIN. This method can be used as an additional diagnostic

tool in diagnosing gastric lesions under clinical endoscopy.

2 Materials and methods

2.1 Materials

This study was conducted in accordance with the Declaration

of Helsinki and approved by the Institutional Review Board of

Peking Union Medical College Hospital, Beijing, China. This was

a retrospective study, and the data were analyzed anonymously,

so informed consent from patients was not required. Endoscopic

images were captured using the GIF-H260 Z endoscope with an

EVIS LUCERA CV-290 endoscopic video imaging system

(Olympus OpticalCorp, Tokyo, Japan), and saved as graphic

files of type JPEG (Joint Photographic Experts Group) with two

resolutions: 1920 × 1080 pixels and 1440 × 1080 pixels.

All ME-NBI images were collected retrospectively from

patients admitted to the Department of Gastroenterology,

Peking Union Medical College Hospital, from February

2014 to February 2020. Images of poor quality due to under-

inflation, defocus, mucus, blur, and lack of pathological diagnosis

were excluded from the study. Finally, 4098 ME-NBI images

from 990 patients were collected, including 336 EGC images

from 101 patients, 1182 LGIN images from 324 patients, and

2580 non-neoplasm images from 565 patients.

All patients were confirmed by biopsy pathology, with

pathological diagnosis as the gold standard. The final

pathological results were determined by endoscopic

submucosal dissection or surgical resection for suspected

cancerous lesions during endoscopy. Two Peking Union

Medical College Hospital pathologists made the pathological

diagnosis based on tissue sections. Patients with EGC, LGIN,

and non-neoplasm confirmed by histology were eligible for this

study. Three endoscopists from the Department of

Gastroenterology, Peking Union Medical College Hospital,

evaluated and classified the gastroscopic images: first, two

endoscopists (with more than 7 years of gastroscopy

experience) carefully reviewed all ME-NBI images according

to the pathology report, those images that did not match the

anatomical location in the pathology report were discarded, and

the final retained images were captured at almost the exact

location as the biopsy or surgical location where the doctor

suspected the abnormality, and have corresponding tissue

samples; later, according to pathological diagnosis, two

endoscopists divided the remaining images into EGC, LGIN,

and non-neoplasm (including gastritis and IM); when two

endoscopists have different opinions on image classification,

the third endoscopist (with more than 10 years of gastroscopy

experience) will review, verify, and determine the image category.

In this study, a 5-fold cross-validation was performed on the

training set. The training set was divided into five groups using a

patient-based random sampling method. The images of a single

patient with a type of lesion were only assigned to one

group. When a patient had different lesions, the images of

each type of lesion might appear in different groups, and the

number of patients with the same type of lesion in different

groups was the same. Then, five iterations of training and

validation were performed, with one different group for

validation in each iteration and the remaining four groups for

training. The number of images acquired in this study is minor.

In order to improve the robustness of the system, the data

augmentation strategy was implemented for the training

group. We augmented the training group by rotation (±15°),

flip (vertical and horizontal), and other transformations that did

not affect the image features, while the validation group was not

augmented.

Another new dataset was collected and used as the

independent test set. All ME-NBI images with pathologically

confirmed were collected from consecutive patients who

underwent gastroscopy at Peking Union Medical College

Hospital from March 2020 to December 2020. With the same

exclusion criteria as above, a total of 587 ME-NBI images from

296 patients were finally collected. The overall median age of the

test set was 56, with a range of 24–89, and the sex ratio between

males and females was 177/119. Table 1 shows the image

category composition of the datasets used in this study and

the population characteristics of the patients in the test set.

2.2 Methods

2.2.1 Data preprocessing and cost-sensitive
learning

The original gastroscopy image contains a black border and

text information that does not contribute to disease identification

and may contain patient information. Therefore, in the

preprocessing process, the black border of the original image
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is firstly removed by cropping, then the text information is

removed to protect the patient’s privacy. After that, the image

size was uniformly adjusted to 224 × 224 pixels.

There is a severe class imbalance problem in our dataset;

that is, the number of samples in the minority class is

significantly less than that in the majority class, which will

make the model obtain more prior information from the

majority class samples, resulting in the classification results

biased toward the majority class, and thus affecting the

classification accuracy. Cost-sensitive learning uses a unique

penalty term or weight value for each class to characterize the

importance of different classes. Usually, it uses a smaller

weight value for the majority class and a larger weight

value for the minority class to adjust the loss value of each

class to minimize the cost of misclassification and alleviate the

bias of class imbalance. In order to solve the problem of class

imbalance in our dataset, this study introduced cost-sensitive

learning into the model and redesigned the loss function. We

first set each category’s penalty or weight value; the method for

obtaining the weight value is shown in Equation 1:

Wj � Ntotal

C ·Nj
. (1)

In the above equation, j represents the category, Wj

represents the weight value of the category, Ntotal represents

the total number of samples, C represents the number of

categories and Nj represents the number of samples of

category j. Then, we introduced the weight value into the loss

function and got the weighted loss function, as shown in

Equation 2:

Loss � − 1
N

∑N
i�1
∑C
j�1
Wj · Yij · log(Pij). (2)

In the above equation, N represents the number of batch

samples,i represents the sample, Yij represents the actual label of

samples, and Pij represents the predicted probability value. In the

calculation process, Yij is presented as one-hot and contains only

0 and one elements. In order to avoid unnecessary calculation,

only Yij with the value of one and the predicted value of the

corresponding position are kept. The modified weighted loss

function is shown in Equation 3:

Loss � − 1
N

∑N
i�1
∑C
j�1
Wj · 1[ij′] · log(Pij′). (3)

In Equation 3, j, represents the actual category label of the ith

sample.

2.2.2 Lesion classification framework
The Attention Module [48] adopts the (bottom-up, top-

down) encoding and decoding structure, which can refine the

attention to the image in feedforward learning, highlight the

subtle feature differences between different lesions, enhance

feature selection, and promote gradient update in feedback

learning. The separable convolution layer [49] maps cross-

channel correlation and spatial correlation separately,

improving the model’s performance without increasing the

number of model parameters and computational complexity.

The Inception module [50] can effectively reduce

parameters, extend network depth through factorizing

convolution, and combine multi-layer feature fusion

technology to achieve better performance with lower

computational cost. Dilated convolution [51, 52] expands

the convolution range by inserting spaces between the

elements of the small-size convolution kernel; it can

obtain the same “receptive field” and feature learning

ability as the large-size convolution kernel under the

condition of occupying a few parameters. Inspired by these

techniques, this study designs a new lightweight convolution

neural network model and develops a framework for

automatically classifying EGC, LGIN, and non-neoplasm

gastroscopy images based on this model. The details are as

follows:

Firstly, by referring to the structural characteristics of the

attention module, this study designs two types of attention

modules, the AttenSeparableConv block and the

AttenInception block. The two attention modules have the

same branching structure. AttenSeparableConv block uses

stacked separable convolution layers as convolution units of

TABLE 1 Demographics of the dataset used in this study.

The training set The test set

No. Of
images

No. Of
patients

No. Of
images

No. Of
patients

Median age
(range)

Sex (M/F)

Overall 4,098 990 587 296 59 (24–89) 177/119

EGC 336 101 50 36 68 (36–87) 23/13

LGIN 1,182 324 169 96 57 (32–89) 57/39

non-neoplasm 2,580 565 368 164 52 (24–77) 97/67
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trunk branches, while AttenInception block uses stacked

Inception units as convolution units of trunk branches.

Secondly, the unit composed of two separable convolution

layers and the Maxpooling layer is used as the dimension

reduction unit to reduce the dimension of the feature map, and

the trade-off between the bottleneck of the feature map and

pooling can be effectively balanced. In order to reduce the

number of model parameters and computational complexity,

we replace the convolution kernels of all separable convolution

layers in the model with the dilated convolution kernels of size

2 × 2 and dilated rate 2 and name the new convolution layer as

Dilated SeparableConv layer. The final model structure is

shown in Figure 1. The model contains four dimension

reduction units, two AttenSeparableConv blocks, and three

AttenInception blocks. The dimension reduction units are

located at the starting position and the low, middle, and

high-level feature extraction positions to reduce the

dimension of the feature map timely. Affected by structural

differences, at the same position of the model, the number of

parameters occupied by the separable convolution layer far

exceeds that occupied by the factorization convolutional layer.

For example, the number of parameters occupied by

AttenInception block 1 is 1.28 million. If an

AttenSeparableConv block 3, in which the structure is the

same as AttenSeparableConv block1-2, is set at this location,

the number of parameters occupied by this block is

2.38 million. And the parameters difference between the

two blocks increases with the depth of the position.

Therefore, we only use AttenSeparableConv blocks in the

shallow layer of the model and use AttenInception blocks

in the deeper layer of the model to extend the network depth,

to effectively balance the number of parameters and

performance. We set the AttenSeparableConv block after

the first and second dimension reduction units for low-level

feature extraction. The AttenInception block is set after the

third and fourth dimension reduction units for middle and

high-level feature extraction. Another three separate Dilated

SeparableConv layers are used for head and tail feature

learning, respectively. The above components make up the

feature extractor. The global average pooling layer, the fully

connected layer, and the softmax loss function compose the

classifier. After the ME-NBI image is input to the network, the

feature extractor identifies the feature, and the classifier

outputs the probabilities that the image belongs to three

gastric lesions.

The schematic diagrams of the AttenSeparableConv block

and AttenInception block are shown in Figure 2. The trunk of the

AttenSeparableConv block is composed of two stacked

Unit1 units, each of which contains three Dilated

SeparableConv layers. We added a RELU activation function

and a batch normalization layer before and after each Dilated

SeparableConv layer. Relevant studies have shown that a short-

time connection can improve the classification performance of

attention-oriented structures [48], so we added a short-time

connection to Unit1 to improve the classification performance

of AttenSeparableConv blocks. The trunk of the AttenInception

block is composed of stacked Unit2 units, and different

AttenInception blocks contain different amounts of

Unit2 units in the trunk. The trunk of AttenInception block1-

2 at the middle-level feature extraction position contains three

Unit2 units, and the trunk of AttenInception block3 at the high-

level feature extraction position contains two Unit2 units.

Unit2 adopts the Inception block. In the original literature,

the Inception block has convolution kernels of various sizes

(1×n, n×1, n = 3,5,7) [50]. In this study, a relatively large

convolution kernel (n = 5 or 7) is used in the Unit2 of

FIGURE 1
The framework of the classification method of gastric lesions.
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AttenInception block1-2, while a small convolution kernel (n =

3) is used in the Unit2 of AttenInception block3. The attention

branches of the two types of attention modules both use the

Maxpooling layer as the bottom-up structure and the linear

interpolation layer as the top-down structure to retain the

characteristics of the original attention branch structure, and

the Sigmoid function is retained for the mixed attention

constraint. Unlike the original attention branch structure, this

study only retained one convolution layer and added the RELU

function to this convolution layer to enhance the

learnable feature change space. The weight of the trunk

feature map is realized by multiplying and then adding the

output of the attention branch and the output of the trunk

feature map.

2.2.3 Training details
Adam was used as the network optimizer for all CNN

models with a learning rate of 0.0001, training epochs of 150,

and a batch size of 8. All experiments were performed on an

AMD Ryzen 7-1700X eight-core processor

CPU and a GeForce GTX 1080 Ti GPU(graphics processing

units).

2.2.4 Evaluation metrics
Accuracy (ACC), recall (RE), precision (PRE), F1 score (F1),

and the area under the curve (AUC) were used to evaluate the

classification performance of the model, and each metric was

calculated for an independent category. ACC and F1 evaluation

comprehensive classification ability, RE represents the

susceptibility to disease, PRE representative disease

recognition accuracy, and receiver operating characteristic

(ROC) curve can measure classifier robustness. The AUC

value is automatically calculated according to the ROC curve,

which can intuitively reflect the comprehensive classification

ability of the model, and its range is between 0 and 1. The

larger the value, the better the performance of the classification

model. The calculation of each metric is shown in

equations (4)–(7):

ACC � TP + TN

TP + TN + FP + FN
, (4)

RE � TP

TP + FN
, (5)

PRE � TP

TP + FP
, (6)

F1 � 2 ×
PRE × RE

PRE + RE
. (7)

TP, TN, FP, and FN stand for True Positive, True Negative,

False Positive, and False Negative, respectively. To evaluate the

overall performance of the model, the overall accuracy (OA),

recall (OR), precision (OP), F1 Score (OF1), and AUC (O-AUC)

were obtained by adding and calculating the average metric of

each category. For the 5-fold cross-validation experiments, the

average results of multiple cross-validation experiments were

evaluated using the evaluation metrics with 95% confidence

intervals (CI).

3 Results
We first evaluated the model’s performance on the validation

set. In order to demonstrate the effectiveness of the proposed

method for three types of gastric lesions classification, we

performed ablation studies, cost-sensitive learning tests, and

comparison tests with other advanced methods on the

validation set. We used the 5-fold cross-validation method;

the whole training set was divided into five groups and

performed five experiments. In each experiment, a different

group was used as the validation set, and the remaining four

groups were used for training. We evaluated the model

performance on the validation set. The final result was the

average of five experiments. OA, OR, OP, OF1, and O-AUC

were used as evaluation metrics to evaluate the classification

FIGURE 2
The proposed AttenSeparableConv Block and AttenInception Block.
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performance. The number of parameters of each model was

counted to indicate the computational complexity of different

models. In addition, the classification performance of the

proposed method was further evaluated on an independent

test set.

3.1 Ablation studies

We first performed ablation studies to demonstrate the

proposed attention mechanism model’s effectiveness. Xception

[49]and Inception-ResNetV2 [50] with ImageNet pre-trained

weights were used as benchmark models and compared with

our three models: Our model 1 and Our model 2, which were

obtained by removing the attention branch, and MainNet (the

model in Figure 1), which was obtained by adding attention

branch based on Our model 2. The difference between Our

model 1 and Our model 2 is the factorization convolution kernel

in Unit2 of AttenInception block1 to 2 (Figure 1). In Our model

1, the convolution kernel size was 1 × 5,5 × 1, while in Our model

2, the convolution kernel size was 1 × 7,7 × 1. The classification

performance of our three models (Our model 1, Our model 2,

and MainNet) was compared with that of the benchmark model

to prove the performance of the designed models, and the

proposed models can be compared with each other to show

the role of attention mechanism further. In order to ensure the

fairness of the comparison, the training conditions of all models

were the same (learning rate = 1E-4, batch size = 8, epochs = 150),

and the input image size was consistent with the original

network, that was, the input image size of Inception-

ResNetV2 and Xception model was 299 × 299, while the

input image size of our three models was 224 × 224.

Table 2 summarizes the overall classification performance

of five methods for three kinds of gastric lesions. The values in

bold in the Table 2 represent the optimal values. Compared

with other methods, MainNet obtained the highest OA, OR,

OP, OF1, and O-AUC, which were 93.7%, 84.9%, 88.7%,

85.4%, and 97.5%, respectively. MainNet had 11.4M

parameters, nearly half the number of parameters for the

Xception and less than one-fifth of the number for

Inception-ResNetV2. These results showed that our

attention mechanism model achieves lightweight while

maintaining high classification performance. In addition,

Our model 1 and Our mode 2 achieved comparable

classification performance with Inception-ResNetV2,

proving the superiority of our backbone model. In terms of

speed, the prediction time of our three models was 0.54 ms for

each image, which was less than the prediction time of

the benchmark model, which verified that the model

trained from scratch proposed in this study was more

conducive to the classification of endoscopic images of

gastric lesions than the transfer learning model pre-trained

on the natural image dataset. In addition, the

overall classification performance of MainNet was

better than that of Our model 1 and Our model 2;

Our model 2’s classification performance was better than that of

Our model 1. These comparison results showed that using the

attention mechanism can effectively improve the model’s

classification performance, and using a large convolution kernel

in the middle-level feature extractor helps improve the model’s

classification accuracy.

3.2 Cost-sensitive learning test

In order to prove the effectiveness of cost-sensitive

learning in solving the problem of class imbalance in

dataset, the performance of MainNet with and without

cost-sensitive learning is compared. The results are shown

in Table 3. As can be seen from Table 3, the classification

performance of MainNet with cost-sensitive learning was

significantly better than that of MainNet without cost-

sensitive learning, and the difference in OR was particularly

prominent, reaching 3.3%. This indicated that combining

cost-sensitive learning with our attention mechanism model

can effectively improve the model’s sensitivity to minority

samples in the imbalanced dataset and the overall

classification performance.

TABLE 2 Statistical comparison of ablation studies.

Methods OA,%
(95% CI)

OR,%
(95% CI)

OP,%
(95% CI)

OF1,%
(95% CI)

O-AUC,%
(95% CI)

P (M) Time (ms)

Inception-
ResNetV2 [50]

91.6 (88.4–94.8) 78.5 (69.9–87.1) 87.6 (82.0–93.2) 81.2 (72.8–89.6) 96.0 (94.0–98.0) 55.9 0.96

Xception [49] 92.9 (90.0–95.8) 82.2 (72.9–91.5) 88.2 (83.8–92.6) 84.4 (77.0–91.8) 97.4 (96.1–98.7) 22 0.60

Our model 1 (N1, N2) 90.8 (85.5–96.1) 81.9 (72.7–91.1) 86.7 (78.6–94.8) 82.6 (71.7–93.5) 96.1 (93.0–99.2) 10.4 0.54

Our model 2 (N1, Y2) 92.5 (88.8–96.2) 83.5 (82.5–84.5) 87.3 (80.2–94.4) 84.6 (76.5–92.7) 96.5 (93.8–99.2) 10.8 0.54

MainNet (Y1, Y2) 93.7 (90.4–97.0) 84.9 (74.8–95.0) 88.7 (82.2–95.2) 85.4 (82.1–88.7) 97.5 (95.6–99.4) 11.4 0.54

N1, no use of attention branch in all blocks of the model; N2, The small size factorization convolution kernel of 1* 5,5 *1 was used in Unit2 of AttenInception Block1 to three; Y1, attention

branch was used in all blocks of the model; Y2, a large size factorization convolution kernel of 1* 7,7 *1 was used in Unit2 of AttenInception Block1 to three; P, parameters; M, million.
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3.3 Comparison with other advanced
methods

To further verify the proposed method’s effectiveness, we

compared our method’s classification performance with other

advanced methods on our dataset. We selected some

characteristic classification methods for gastric lesions, which

either have lighter models[53] or better classification

performance [40, 54]. These advanced methods include: the

classification method of intestinal metaplasia proposed by Yan

et al. [40], the classification method of chronic atrophic gastritis

proposed by Zhang et al. [53], and the classification method of

atrophic gastritis and intestinal metaplasia proposed by Zheng

et al.[54]. The models in these advanced methods are pre-trained

in ImageNet. While for our model, we trained it from scratch on

the gastric lesion dataset. Other training conditions of all

methods are the same to ensure the fairness of comparison.

The statistical results of the evaluation metrics are shown in

Table 4. As can be seen from Table 4, the OA, OR, OP, OF1, and

O-AUC obtained based on MainNet are significantly higher than

those obtained by other methods. In terms of the number of

parameters, our model’s parameters are higher than that of

Zhang et al.’s method (11.4M vs 8.1M), which is much lower

than that of Yan T et al.’s 19.5M and Zheng et al.’s 25.6M. In

terms of computational efficiency, the average test time of our

method is 0.54 ms per image, while the average test time of Zhang

et al., Yan T et al., and Zheng et al. are 0.45 ms, 0.60 ms, and

0.79 ms per image, respectively. Zhang et al.’s method show lower

parameters and higher computational efficiency. However,

compared with their method, the proposed method achieves

3.1%, 7.2%, and 5.5% performance increments in OA, OR, and

OP, respectively. The results show that compared with other

advanced methods, our method can achieve a better balance

among classification performance, number of parameters and

computational efficiency.

Supplementary Table S1 summarizes the performance of

several methods in per-category classification. It can be seen

that in the identification of EGC, the ACC, RE, F1, and AUC

obtained based on MainNet were higher than those obtained by

other advanced methods, and only the PRE was lower than that

obtained by Zheng et al. [54]. In identifying LGIN, our method

obtained the highest ACC, PRE, F1, and AUC, and only the RE

was lower than that of Zheng et al. [54]. In identifying non-

neoplasm, the proposed method performed better than all other

methods and achieved the highest values of ACC, RE, PRE, F1,

and AUC.

3.4 Model evaluation on the independent
test set

We further evaluated MainNet’s classification performance

on the independent test set. A total of 587 ME-NBI images from

296 patients were included in the test set, including 50 EGC

images from 36 patients, 169 LGIN images from 96 patients, and

368 non-neoplasm images from 164 patients. The classification

performance of the MainNet on the test set was compared with

the results of other studies, and our best-performing model was

compared with human experts.

3.4.1 Comparison with other research results
First, MainNet was trained on the training set using the 5-fold

cross-validation method, and then the average results on the

independent test set were counted and compared with the

TABLE 3 Statistical comparison of MainNet with different class imbalance processing methods.

Methods OA,%
(95%CI)

OR,%
(95%CI)

OP,%
(95%CI)

OF1,%
(95%CI)

O-AUC,%
(95%CI)

MainNet (without CSL) 92.5 (89.1–95.9) 81.6 (73.2–90.0) 86.8 (80.7–92.9) 83.5 (75.7–91.3) 96.2 (92.7–99.7)

MainNet (with CSL) 93.7 (90.4–97.0) 84.9 (74.8–95.0) 88.7 (82.2–95.2) 85.4 (82.1–88.7) 97.5 (95.6–99.4)

CSL, cost-sensitive learning.

TABLE 4 Statistical comparison with other related advanced methods.

Methods OA,% (95% CI) OR,% (95% CI) OP,% (95% CI) OF1,% (95% CI) O-AUC,% (95% CI) P (M) Time (ms)

[53] 90.6 (88.4–92.8) 77.7 (71.5–83.9) 83.2 (77.8–88.6) 79.4 (75.1–83.7) 95.4 (93.9–96.9) 8.1 0.45

[40] 91.7 (89.6–93.8) 78.5 (70.4–86.6) 83.8 (78.8–88.8) 80.1 (74.5–85.7) 96.1 (94.4–97.8) 19.5 0.60

[54] 91.4 (88.4–94.4) 79.1 (71.2–87.0) 87.3 (83.1–91.5) 81.8 (74.7–88.9) 96.2 (94.4–98.0) 25.6 0.79

MainNet 93.7 (90.4–97.0) 84.9 (74.8–95.0) 88.7 (82.2–95.2) 85.4 (82.1–88.7) 97.5 (95.6–99.4) 11.4 0.54

P, parameters; M, million.
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average results of Cho et al. [41] which was obtained in their

independent test based on 5-fold cross-validation. We adopted

the same evaluation metric as the literature[41]. The results are

shown in Table 5. It can be observed that the accuracy (ACC),

sensitivity (SE), specificity (SP) and AUC of the proposed method

for each category were higher than those of Cho, et al., and only the

SP of LGIN (95.4% vs. 96.1%) and SE of non-neoplasm (82.9% vs.

92.2) were lower than those of Cho, et al. The comparison results

showed that the proposed method improved classification

performance in classifying EGC, LGIN, and non-neoplasm

gastric lesions images. Based on deep learning, Liu et al.[43]

divided gastric ME-NBI images into EGC, LGIN, and chronic

gastritis (CGT). Their recall (which means the same as our SE)

for EGC and LGINwere 99% and 92%, respectively. Compared with

the SE of our method for EGC and LGIN(93.2%, 92.6%,

respectively), it can be seen that the classification performance of

ourmethod for LGINwas better than that of Liu et al., but the SE for

EGC was lower than that of Liu et al.

3.4.2 Comparison with endoscopists
Our best model’s classification results were further compared

with those of two endoscopists with more than 8 years of

endoscopy experience on the independent test set. The best

model refers to a MainNet model that achieves the best

classification performance on the test set by 5-fold cross-

validation. Two endoscopists classified the images without

knowing the image category labels. Overall accuracy (OA),

sensitivity (OS), specificity (O-SP), and Kappa is used to

measure the agreement among raters, which can quantify the

degree of agreement between the classifier and the gold standard.

Table 6 summarizes the overall classification performance of

our best model and two endoscopists on EGC, LGIN, and non-

neoplasm. It can be seen that the Kappa, OA, OS, and O-SP of the

best model were 0.859, 95.0%, 93.2%, and 96.1%, respectively, which

were higher than those of Endoscopist 1 and Endoscopist 2 (the

optimal values were bolded). Figure 3 compares accuracy, sensitivity,

and specificity for each category between our bestmodel and the two

endoscopists. It can be seen that the best model’s accuracy for EGC

and LGIN was better than that of the two endoscopists, while the

accuracy for non-neoplasm was slightly lower than that of

Endoscopist 1 and the same as that of Endoscopist 2. Besides,

our best model showed higher sensitivity to EGC and LGIN, but

slightly lower sensitivity to non-neoplasm.

We calculated the correlation between the predicted and

actual labels for each image by the best model and the two

endoscopists and reflected the results in the confusion matrix

shown in Figure 4. As can be seen from Figure 4, in the

identification of EGC images, the best model had the lowest

number of misclassified images; two out of 50 images were

misclassified as non-neoplasm, while there were four

misclassified images for Endoscopist 1 and Endoscopist 2. In

the identification of LGIN, the number of misclassified images of

the best model was 16, much lower than the 38 images of

Endoscopist 1 and 27 images of Endoscopist 2. In identifying

non-neoplasm, the number of images correctly identified by the

best model was 342, which was lower than that of Endoscopist 1

and Endoscopist 2 (363 and 348, respectively).

3.4.3 Model binary classification
To further evaluate the binary classification performance of

MainNet on gastric lesions, three groups of tests were performed,

including classification tests for cancer or non-cancer (EGC vs Others),

LGIN or non-LGIN(LGIN vs Others), non-neoplasm or neoplasm

(non-neoplasmvsOthers).Weplotted theROCcurve of the best binary

classification model in each group of tests and obtained the AUC, as

shown in Figure 5. In the discrimination of cancer or non-cancer, the

AUC reached 0.981; In the discrimination of LGIN or non-LGIN, the

AUC reached 0.984; In the discrimination of non-neoplasm or

neoplasm, the AUC reached 0.988. The binary classification results

show that the performance of MainNet was well decomposed.

TABLE 5 Per-category average classification performance according to the 5-fold cross-validation.

Methods Classes ACC,%
(95%CI)

SE,%
(95%CI)

SP,%
(95%CI)

AUC,%
(95%CI)

[41] EGC 80.8 (77.9–83.4) 52.4 (45.0–59.8) 89.2 (86.5–91.5) 70.8 (67.5–73.9)

LGIN 87.1 (84.6–89.3) 22.2 (14.5–31.7) 96.1 (94.4–97.4) 59.1 (55.7–62.6)

non-neoplasm 83.1 (80.4–85.6) 92.2 (89.0–94.8) 75.8 (71.6–79.7) 84.0 (81.3–86.5)

MainNet EGC 96.8 (95.1–98.5) 93.2 (89.9–96.5) 97.1 (95.0–99.2) 98.8 (98.0–99.6)

LGIN 93.9 (93.4–94.4) 92.6 (88.4–96.8) 95.4 (91.5–99.3) 97.6 (97.1–98.1)

non-neoplasm 92.9 (91.7–94.1) 82.9 (74.2–91.6) 97.3 (95.5–99.1) 98.5 (98.4–98.6)

TABLE 6 Statistical comparison of two endoscopists and the best
model’s performance in three-category classification.

Methods OA (%) OS (%) O-SP (%) Kappa

Endoscopist 1 94.7 89.4 94.5 0.842

Endoscopist 2 94.2 90.2 95.2 0.834

The best model 95.0 93.2 96.1 0.859
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4 Discussion and conclusion

Although ME-NBI can provide imaging of gastric mucosal

surface microstructure and microvascular morphology and is

widely used in clinical diagnosis of early gastric cancer and

precancerous lesions, qualitative assessment of ME-NBI

images requires much training, and even experienced

endoscopists may misdiagnose or miss a diagnosis. In

addition, in the case of limited medical resources, it is

unrealistic to manually examine a large number of ME-NBI

images, which may cause missed diagnosis or misdiagnosis.

Therefore, it is significant to realize the accurate and

FIGURE 3
Bar charts compare the per-category accuracy, sensitivity, and specificity between two endoscopists and the best model.

FIGURE 4
Three confusion matrixes for two endoscopists and the best model’s predictions, respectively.

FIGURE 5
ROC curve for the three best binary classification models. ROC, receiver operating characteristic; AUC, area under the curve; EGC, early gastric
cancer; LGIN, low-grade intraepithelial neoplasia.
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automatic diagnosis of gastric lesions in clinical practice. In this

study, we developed an automated diagnosis system based on a

deep learning model with the attention mechanism, which could

automatically classify ME-NBI images in a small sample dataset

into EGC, LGIN, and non-neoplasm. The classification

performance of the proposed method is verified on the

validation set and independent test set, respectively.

In this paper, we first conduct ablation studies on the

validation set to verify the role of the attention module. The

attention module in MainNet adopted the structure of the

attention branch combined with the trunk. The encoding and

decoding structure of the attention branch can refine the

attention to the image and use the branch’s output to weight

the trunk’s output to enhance feature selection. Then the

attention module was embedded into the model in a stacked

manner to refine attention to subtle lesion features. We used

efficient convolution layers such as the separable and

factorization convolutional layers as the basis and introduced

a dilated convolution kernel to reduce the parameters further. By

adopting this attention-guided feature learning mode, combined

with the parameter reduction strategy, MainNet achieves better

classification performance than the backbone and the benchmark

models when the parameters are only 11.4M. Our proposed three

models are relatively lightweight (10.4M, 10.8M, and 11.4M

parameters, respectively) but achieve similar or even better

classification performance than Inception-ResNetV2. This

phenomenon is related to model complexity. Inception-

ResNetV2 demonstrates excellent classification performance

on large natural image datasets by increasing network

complexity and parameters; however, in practical applications,

these heavyweight characteristics limit the implementation of

Inception-ResNetV2 on small sample datasets (such as most

medical image datasets). On the contrary, Our models are

relatively simple and effectively balance computational

complexity and task requirements, ultimately achieving

classification performance comparable to Inception-ResNetV2.

Our dataset has a severe class imbalance problem, and the

deep learning model will tend to over-classify the majority

category in the imbalanced dataset. When the appropriate

solution is not taken, the accuracy of the majority category

may be high, while the overall accuracy is low. As seen in

Table 3, the classification performance of MainNet using cost-

sensitive learning was higher than that of MainNet without cost-

sensitive learning. This indicates that the introduction of cost-

sensitive learning can effectively solve the problem of class

imbalance in data sets and improve the classification accuracy

of gastric lesions.

In the comparison experiment with other advanced methods,

the overall classification performance of the MainNet was better

than other methods, OA was improved by at least 2.0%, OR was

improved by at least 5.8%, and most of the evaluation metrics of

per-category classification were also significantly improved. It is

worth noting that MainNet outperforms other advanced

methods even without using cost-sensitive learning. This

indicates that the proposed method could effectively improve

the classification performance. It is especially noted that for these

advanced methods, we adopted the same training mode as in the

original literature; we fine-tuned these pre-trained models on the

gastric lesion dataset. While for our model, we trained it from

scratch on the gastric lesion dataset. Experimental results show

that our end-to-end training model outperforms these pre-

trained models on the gastric lesions dataset.

The classification performance of MainNet on an

independent test set was further compared with the results of

related studies. As seen in Table 5, compared with Cho et al. [41],

our method’s ACC for EGC, LGIN, and non-neoplasm increased

by 16.8%, 6.8%, and 9.8%, respectively. We believe that the

model’s superiority and the practical solution to the class

imbalance problem are one of the reasons that make our ACC

better than those of Cho et al. Still, the most important reason is

the difference in image modality. ME-NBI images were used in

this study, while Cho et al. conducted their analysis based onWLI

images. However, gastric lesions usually show changes in

mucosal surface microstructure. It is difficult for conventional

WLI to capture subtle disease features, especially for LGIN. Liu

et al. [43] performed EGC, LGIN, and chronic gastritis (CGT)

classification based on deep learning and ME-NBI images. Liu

et al. obtained 92% and 99% sensitivity for LGIN and EGC,

respectively, while the sensitivity of our method for LGIN and

EGC was 92.6% and 93.2%, respectively. In general, the

sensitivity of our method for LGIN exceeds that of Liu et al.

and achieves state-of-the-art classification performance.

However, the sensitivity of our method to EGC is lower than

that of Liu et al., which may be related to the small sample size of

EGC in our dataset. In this study, there are only 369 EGC images

in the training set and 50 EGC images in the test set. In such

conditions, the feature variation space that the model in training

can learn is limited, and the generalization effect and accuracy of

the test set are affected. This problem can be solved by including

more EGC samples.

Besides, the classification performance of the best model was

compared with that of human experts in the independent test set.

The results in Table 6 showed that the overall classification

performance of the proposed method was better than that of

the two endoscopists. In addition, it can be observed from

Figure 3 that the diagnostic accuracy of EGC, non-neoplasm,

and LGIN decreased successively in both the proposed method

and the two endoscopists. For endoscopists, EGC is a severe

gastric disease with significant imaging features associated with

significant mortality, so they will emphasize identifying such

lesions. For our method, although the number of EGC samples in

our dataset is small, the attention mechanism model can

strengthen the learning of subtle feature differences, and cost-

sensitive learning can solve the classification bias that tends to the

majority classes. Those make our method achieve better

classification performance than endoscopists. On the contrary,
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LGIN is a lesion characterized by cellular atypia of mucosal

structure, different degrees of atypia and different feature

patterns also make it difficult to identify accurately, so the

accuracy of LGIN by both us and endoscopists is relatively

low. However, benefiting from the attention-guided feature

learning model, the accuracy of our method for LGIN exceeds

that of endoscopists.

Although our method performs better than other methods in

gastric ME-NBI image lesion classification, this study still has

some limitations. First of all, the data of this study were collected

in the same hospital, and the endoscopic equipment in different

centers and the characteristics of different populations may have

an impact on the method’s performance; in the subsequent study,

we will collect endoscopic images from different centers and

analyze them. Secondly, there are few EGC and non-neoplasm

samples in the dataset of this study, which may affect the

accuracy; more samples will be included in subsequent studies

to improve the system’s accuracy further. In addition, we only

analyzed gastric lesions in this study; after more cases were

included, esophagitis and early esophageal cancer will be

included in the system to increase the clinical application

value of the system. Besides, grading the severity of the

lesions is crucial to the prognosis and formulation of

treatment plans; so far, only the classification of lesions has

been completed in this study, and the severity of lesions will be

further graded in subsequent studies. Finally, the proposed

method is a supervised learning method, which still requires

doctors to carry out a large amount of data annotation work in

the early stage, causing a specific workload for doctors; in

subsequent studies, methods based on self-supervised deep

learning models can be used to solve this problem.

In this study, we designed an attention-guided deep learning

model and introduced cost-sensitive learning into the model.

Based on this model, we developed an automatic classification

method for gastric lesions, which achieved good diagnostic

performance on a limited number of ME-NBI images and

outperformed other advanced methods. In addition, we

achieved the most advanced classification performance for

LGIN and non-neoplasm. Through an in-depth literature

review, we found that this was the first time to automatically

classify non-neoplasm, LGIN, and EGC based on the deep

learning model and gastric ME-NBI images. And the first

time to introduce the attention mechanism model into the

automatic classification of gastric lesions. The number of

parameters in our model was only 11.4 million, which allowed

the model to be trained end-to-end on small sample medical

datasets and can shorten the prediction time per image. The

prediction time of each image of our method was only 0.54 ms,

whichmet the demand for real-time diagnosis. In conclusion, our

approach can provide objective and accurate guidance

information for endoscopists in real time and has an excellent

clinical application prospect.
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Using one objective for excitation and detection simultaneously, oblique plane

microscopy (OPM) provides a mounting-friendly approach for optical

sectioning. Unfortunately, the original OPM has three major defects: the

mechanical constraints when placing the objectives, the phase loss and the

resulting anisotropy of the point spread function (PSF). In order to alleviate the

above defects, an ellipsoidal mirror assisted oblique plane microscopy (EM-

OPM) was proposed. By inserting an ellipsoidal mirror into the optical path to

help collect the light beam, the problem of placing the objectives was solved.

The numerical calculation results showed that EM-OPM can obtain higher

relative light intensity and larger effective area of exit pupil than OPM when the

tilt angle of the light sheet becomes larger. The imaging simulation results

showed that EM-OPM effectively solves the problem of resolution reduction in

the Y direction of OPM. In addition, optimization of the higher-order terms of

the ellipsoidal mirror further improved the imaging ability of EM-OPM in large

field of view (FOV).

KEYWORDS

oblique plane microscopy, (point spread function), phase loss, mechanical constraint,
ellipsoidal mirror, light-sheet fluorescence microscopy, anisotropy

1 Introduction

In order to achieve high-speed, high-resolution, low damage and large FOV imaging

simultaneously, light sheet fluorescence microscopy (LSFM) came into being [1–3]. The

biggest difference between light sheet microscopy and wide field microscopy comes from

different illuminating methods. In classical configuration of LSFM, there are two

orthogonally placed objective lenses with the sample at the common focal point. One

objective lens, also known as the illumination objective, focus laser light to a thin sheet

which is always perpendicular to the optical axis of the other objective also known as the

detection objective. The key point of LSFM is that only the sample located in the focal

plane of the detection objective lens is illuminated, while the upper and lower samples are
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not affected. Therefore, LSFM can be used for long-term

biological studies with high axial resolution and minimal

phototoxicity.

Although LSFM has the above advantages, it has some

limitations. The dual objective geometry and the need for

side-on illumination restricts the type of sample that can be

mounted between the objectives. In addition, in a high-resolution

LSFM system, the sample has to directly contact the non-sterile

optical surface to ensure the high numerical aperture of the

immersion objective lens. These challenges have led to innovative

strategies for optical path design, including LSFM that uses the

same objective lens for illumination and detection [4, 5].

In 2008, Dunsby proposed oblique plane microscopy (OPM)

to enable LSFM using a single objective to illuminate the

specimen and collect the resulting fluorescence at the same

time [6]. As shown in Figure 1A, the light sheet emitted from

the edge of O1 illuminate the sample obliquely. The fluorescence

illuminated by the light sheet is also captured byO1 but cannot be

imaged by it directly because of the severe optical aberrations.

The solution in OPM is to employ a one-to-one magnification

system which simultaneously follow both the sine and Herschel

condition by introducing O2 [7]. The oblique intermediate real

image is then brought to lie perpendicular to the optical axis ofO3

and can be imaged in a conventional way by a camera. Due to the

improvement of illumination path, OPM can be assembled based

on standard inverted microscopes, and is suitable for traditional

sample placement and laser based auto focusing. However, there

are three main defects in the original OPM: 1, mechanical

constraint between O2 and O3; 2, Loss of phase information

on pupil plane (Short for Phase Loss); 3. Anisotropy of PSF [8, 9].

For the first defect, in addition to sacrificing the numerical

aperture of O3 for working distance, installing a micro mirror

afterO2 can also eliminate themechanical size limitation between

O2 and O3 [10–12]. However, the fine fabrication and accurately

installation of a micro mirror is technically challenging. Using a

diffractive grating can achieve the same goal, but the intensity

will be dispersed by the diffractive element [13]. To mitigate the

impact of the second defect, Yang et al introduced a small special

water container at the rear focus to change the refractive index of

the light beam on both sides, so that almost all beams from O2

can be collected byO3 [14]. Although the phase loss of the system

is effectively reduced, the addition of the water container

increases the difficulty of focusing the system and intensifies

the mechanical constraint between O2 and O3. A similar idea was

also put forward later [15], while facing the same challenge. For

the third defect, Kim et al introduced a polarizer to change the

polarization state of the beam thus improve the anisotropy of the

overall PSF [16]. However, the improvement is unstable and the

polarized beam splitter (PBS) in the optical path makes the phase

loss more serious. To sum up, OPM and its existing improved

system cannot solve the three defects mentioned above at the

same time.

In this paper, inspired by the optical property of ellipse, we

proposed an ellipsoidal mirror assisted oblique plane microscopy

(EM-OPM), which provides some advantages over the original

OPM and other OPMs. In this configuration, the light beam

emitted by O2 is collected by O3 after being reflected by the

ellipsoidal mirror, thus avoiding the top-to-top placement of O2

FIGURE 1
Schematic diagram of OPM system and EM-OPM system (A) 2D optical path diagram of OPM system (B) Enlarged view of the part bounded by
dotted lines in Figure (A–C) 2D optical path diagram of EM-OPM system (D) The three-dimensional schematic diagram of the dotted line in
Figure (B).
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and O3. Numerical results demonstrate the advantages of EM-

OPM in terms of relative light intensity and relative effective

pupil area. Imaging simulation results prove that the resolution

of EM-OPM in Y direction is improved. In addition, the

optimization of ellipsoidal mirror further improves the large

FOV imaging capability of EM-OPM.

2 Materials and methods

2.1 EM-OPM

As mentioned above, the original OPM has three defects. In

order to solve these three problems, we proposed a new optical

configuration, namely EM-OPM, which is expected to solve these

three defects simultaneously. Except for the introduction of an

ellipsoidal mirror (EM) between O2 and O3, EM-OPM uses

elements similar to the original OPM. The expression of the

EM is:

z � cr2

1 + ������������
1 − (1 + k)c2r2√ (1)

where c represents the curvature, k represents the conic

coefficient. In our design, c = 0.01 and k = 0.01. r is the unit

radial coordinate and z is the height of ellipsoidal mirror.

The way the sample is illuminated is depicted in Figure 1B.

The inclined light sheet used for illuminating the sample in OPM

is formed by scanning an inclined beam with an angle of α to the

focal plane. The layout of EM-OPM is shown in Figure 1C. The

back focus ofO2 is coincident with one of the focuses of EMwhen

back focus of O3 is coincident with the other. By adjusting the

tilting angle of each element, the major axis of EM is parallel to

the light sheet and perpendicular to the optical axis of O3 at the

same time. Although the real image of the sample is still inclined

to the focal plane ofO1, it lies parallel to the focal plane ofO3, thus

make the ordinary flat field imaging using O3 possible. Our

design can be understood as an extension of the remote focusing

(RF) system [17], because the information of the sample is

further copied from the back focal plane of O2 to a more

flexible space by an EM.

2.2 Mechanical constraint

The mechanical constraint of O2 and O3 is mainly due to the

fact that the working distances of the two objective lenses is far

less than their mechanical dimensions. To make sure that the

objectives will not grind against each other, the working distance

(WD2 for O2 and WD3 for O3) and the radius of the glass cover

plate (rCG2 for O2 and rCG3 for O3) should meet at least one of the

following requirements:

{WD2 +WD3 · tan α> rCG2 · tan α
WD2 · cos α + rCG2 · sin α> rCG3 (2)

In the system proposed by Dunsby, O2 is a 40×/0.85 air

objective with rCG2 = 3.750 mm and WD2 = 0.200 mm. To meet

the requirements above when α = 45 for example, WD3 must be

greater than 2.510mm, otherwise rCG3 must be less than

2.793 mm. We can use d, the distance between the vertices of

O2 and O3, to indicate the severity of the mechanical constraint.

In OPM:

d �
�������������������������������
WD2

2 +WD2
3 + 2 ·WD2 ·WD3 · sin α

√
(3)

In EM-OPM, d is determined by the parameters of the EM,

which can be calculated as:

d � 2 ·
��������

k

c2(1 − k)2
√

(4)

2.3 Phase loss

The phase loss mainly occurs between O2 and O3 (Some

OPM using a planar micro mirror lose extra 50% intensity due

to the introduction of PBS). To make it clear, it is the reduction

in NA and the tilting placement of O3 that result in the phase

loss. In order to calculate the phase loss, it is necessary to

calculate the initial pupil ignoring O3 and the effective pupil of

the complete system. The calculation of the initial and effective

pupil can be based on either the strict analytic geometry method

[18] or the Monte Carlo algorithm. In this paper, the three-

dimensional point clouds representing the pupils of OPM and

EM-OPM are obtained after ray tracing using Monte Carlo

algorithm. The Delaunay triangulation algorithm is used to

convert the three-dimensional point cloud into a triangular

mesh [19]. Then, all the meshes are traversed, and the area of

each triangular mesh is calculated separately. After

accumulation, the approximate effective pupil area can be

obtained. Based on the theory above, we compared the

effective pupil of OPM and EM-OPM.

2.4 Point spread function

The third defect of OPM is the anisotropy of PSF. Because

objective lenses with large numerical aperture are used, the

paraxial approximation scalar diffraction theory is no longer

applicable [20]. Based on the vector diffraction theory [21], the

electromagnetic field distribution at any point p (x, y, z) in the

focus area of the objective lens can be regarded as the

superposition of all diffracted plane waves that can pass
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through the pupil of the objective lens within the solid angle

(determined by NA).

E(x, y, z) � − i
λ
∫β

0
∫2π

0
sin θ cos θA(θ,φ)P(θ,φ)

× exp[ikn(z cos θ + x sin θ cosφ + y sin θ sinφ)]dθdφ
(5)

With 0<θ<β, where β is the maximum focus angle of the objective

lens. φ represents the azimuth angle in the object plane, λ

represents the wavelength. A (θ, φ) is the amplitude of the

incident beam. p (θ, φ) indicates the polarization state of the

EM field in the focal region.

The effective pupil can be cut into a large number of sub

regions by using the Monte Carlo algorithm to trace a large

number of rays. The position of each sub region can be

approximately determined by one of the points ui (θi, φi, ri).

It is approximately considered that the plane wave from each sub

region to the pointp has a unique direction vector. Then Eq. (5)

can be written by a discretely way as:

E(x, y, z) � ∑
(ui(θi ,φi ,ri)∈R)

sin θi cos θA(θi,φi)P(θi,φi)
× exp[ikn(z cos θi + x sin θi cosφi + y sin θi sin φi)]

(6)

In this study, the numerical calculation is programmed by a

personal code script based on Matlab software. The code allows

to simulate PSFs for OPM and EM-OPM under different

conditions, such as different NA, different light sheet

angles, etc.

3 Results and discussion

As a single-objective LSFM methods, OPM offers a

convenient approach for optical sectioning using a

conventional epi-fluorescence microscope. The trade-offs it

has to make in order to achieve the convenience of sample

mounting sacrifice the imaging quality. Unfortunately, all of

the improved configurations up to now have failed to reduce

the three defects mentioned above simultaneously. By inserting

an ellipsoidal mirror into the space near the focal region of O2

and titling the following elements accordingly, we

reconstructed OPM into EM-OPM. EM-OPM has obvious

progress compared with OPM, especially in the alleviation

of the three defects. We used numerical calculations to

illustrate these advances.

We proved the alleviation of the first defect by comparing the

space between O2 and O3 in EM-OPM and OPM. Except for

some extremely high NA objectives for special purposes, only a

series of small NA objectives with ×10 magnification can meet

the requirements in Eq. (5). Therefore, O3 is a 10×/0.3 air

objective which has a working distance of 3.100 mm in

original OPM. Even it is very easy to align and the working

distance is plenty, the distance between the two vertices is only

3.241 mm (Figure 2A). In contrast, in EM-OPM, the distance

between the two vertices is relaxed to 20.202 mm (Figure 2B). It

significantly eased the mechanical constraint and therefore

increased the flexibility of O3 selection.

FIGURE 2
Comparison betweenOPM system and EM-OPM system (A) In OPM system, the distance between two objective lens vertices is 3.241 mm (B) In
the EM-OPM system, the distance between the two objective lens vertices is 20.202 mm (C) Comparison of effective pupil of OPM system and EM-
OPM system (45 top view) (D) Comparison of effective pupil of OPM system and EM-OPM system (front view) (E) The relative intensity of the two
systems varies with α from 0 to 90 (F) The relative effective exit pupil area of the two systems varies with α from 0 to 90 (G) The ellipticity of the
PSF of the two systems with different α and the PSF distribution of the two systems when α = 45.
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The effective pupil of OPM and EM-OPM when α = 45 are

shown in Figures 2C,D. Both remaining a small part of the

spherical shell, the effective pupil of OPM is cut out while the

effective pupil of the EM-OPM is still complete. Due to the

reduction of NA of objective lens, the pupil of both systems

becomes smaller. Effective pupil of EM-OPM faithfully reflects

the reduction of NA but avoids the influence of the inclined

placement of O2 and O3. When α < 42, the relative light

intensity and the relative effective pupil area of OPM and

EM-OPM are approximately the same (Figure 2E). However,

EM-OPM system has higher relative light intensity and larger

effective pupil area when α ≥ 42 (Figure 2F). When α is too

large, both systems are unable to collect the light from O2. For

OPM, α should be smaller than 75, while for EM-OPM, α

should be smaller than 85. Calculation result shows that EM-

OPM can make more effective use of fluorescence. This is

exactly the goal of researchers to reduce phase loss when

improving OPM.

The third defect of OPM system, namely the anisotropy of

PSF, can also be understood as the loss of resolution in Y

direction. Generally, the more complete the effective pupil, the

more complete the high-frequency information contained in the

optical system, which means that the resolution of the system in

each direction is not lost. According to the results in the previous

section, the PSF of EM-OPM is predicted to be more isotropic.

The numerical calculation results also agree with this idea. In

Figure 2G, the anisotropy of PSF is measured by a defined

parameter, μ calculated as:

μ � FWHMy of PSF
FWHMxof PSF

(7)

With the increase of α, μ of theOPM increases, while μ of EM-

OPMis relatively stable. For example, whenα=45, the PSF of EM-

OPMpresents aperfect quasi-Gaussiandistribution,while thePSF

of OPM is elongated along the y-direction. In other words, EM-

OPM can recover the Y direction loss of resolution in OPM.

We then demonstrate the power of EM-OPM by presenting

the imaging simulation of OPM and EM-OPM. We focus on the

imaging performance of Fluorescence conjugated to the focal

plane of O3, therefore the simulation results are 2D images.

Firstly, we generate the ground truth pattern used for simulation.

Here to highlight the difference in resolution, we choose hollow

circular structure to be the sample pattern which is aimed to

model nuclear pore complexes (NPCs). This pattern consists of

octagons labelled at their vertices for the convenience of

calculation. The positions of the centers of octagons randomly

distributed within an active area of 81.92 × 81.92 μm2 and the

octagon radius is randomly distributed between 400 nm and

1200 nm. Secondly, we simulate the imaging process. In most

algorithms used for single molecule localization microscopy

(SMLM) simulation [22, 23], PSF is usually space-invariant. In

order to accurately study the imaging results under different

FOV, we have established the communication between our

imaging simulation algorithm and Zemax/OpticStudio™.

Because the built-in ray tracing package of Zemax can easily

calculate the PSF at different FOVs. Therefore, the PSF of

different areas in the FOV can be obtained and then

convolved with the ground truth image. Figure 3A is the

simulation result obtained using the OPM system, and

Figure 3B is the one obtained using the EM-OPM system.

The improvement of EM-OPM can be found by comparing

the imaging results of the entire FOV or ROI area delineated

by white solid lines. OPM will significantly reduce the Y

resolution of the image, while EM-OPM can achieve higher

resolution in both directions.

EM-OPM has significant advantages over OPM, but the

ellipsoidal mirror will introduce serious coma, which limits

the use of EM-OPM in large FOV. It is also illustrated by the

severe degradation of imaging quality in the large FOV area in

Figure 3B (note the two octagons marked with arrows). In order

to improve the imaging capability in large FOV, we designed an

optimization function to comprehensively evaluate the imaging

ability of each vertex in the field of 60 × 60 μm2, and optimized

the high-order terms in the expression of EM. The optimization

results are shown in Figure 4A,B. It can be seen that the

normalized Strehl ratio of the optimized EM-OPM at each

FIGURE 3
Simulated image obtained by imaging with OPM and EM-OPM (A) Simulation image of OPM (B) Simulation image of EM-OPM.
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FOV point is higher than that of the pre-optimized EM-OPM.

The optimization result indicates that the imaging contrast of the

system at each position in the large FOV is improved.

The imaging simulations of OPM, EM-OPM and EM-OPM

(optimized) were then carried out respectively. To compare the

resolution and edge distortion of these three systems at the same

time, fluorescence beads distributed randomly are chosen to be the

ground truth pattern. Several fluorescent beads are set to be in a

group, and the center of each group are still randomly distributed

within an active area of 81.92 × 81.92 μm2.We also define that the

fluorescent beads of each group are randomly distributed in a circle

with a radius of 3000 nm. The simulation results of the three

systems are shown in Figures 4C–E respectively. The simulation

results prove again that the original OPM system has the problem

of reduced resolution in the Y direction, whichmakes it impossible

to distinguish some fluorescent spheres with close distance using

OPM. In EM-OPM, the problem of PSF anisotropy has been

significantly alleviated. However, the decrease of image contrast

and serious side lobe indicate that the imaging capability in large

FOV is still unsatisfying. Fortunately, the optimized EM-OPM

make some change. A line segment is used to extract the intensity

distribution in the ROI regions in Figures 4C–E and the resolution

comparison of the three systems is shown in Figure 4F. It can be

seen that OPM is unable to distinguish the two fluorescent beads

that are close to each other, EM-OPM can barely distinguish them,

and the optimized EM-OPM further improves the resolution.

4 Conclusion

EM-OPM proposed in this paper is an improvement based

on OPM. An ellipsoidal mirror is inserted into the space

between O2 and O3. The optical property of the ellipse is

used to collect the beam so that the mechanical constraint

between O2 and O3 can be solved. The change of relative

intensity and the change of relative effective pupil area

under different tilt angles of the light sheet are studied and

compared by numerical calculation method. The results prove

that: the relative light intensity and the relative effective pupil

area of OPM and EM-OPM are approximately the same when

α < 42, and the relative light intensity and the relative effective

pupil area of EM-OPM are larger than that of OPM when α ≥
42. This means EMOPM can make more effective use of

fluorescence and retain as much optical high-frequency

information as possible. The alleviation in phase loss is also

the basis for the improvement of PSF anisotropy. Compared to

OPM, EM-OPM has higher resolution in Y direction for any tilt

angle of the light sheet.

Due to the complexity of the actual imaging system, image

simulation based on space-variant PSFs is carried out.

Simulation results show that OPM loses resolution in Y

direction, while EM-OPM can achieve higher resolution in

both directions. The simulation results of imaging also reveal

the weakness of EM-OPM in the large FOV imaging. In order

to improve the imaging ability in large FOV, we carried out

optimization for high order terms of the ellipsoidal mirror.

The optimization improved the normalized Strehl ratio of the

system at each vertex within the field of 60 × 60 μm2. The later

imaging simulation proves that the optimized EM-OPM

further improves the resolution and contrast in large FOV.

With the development of ultra-precision machining

capability of free-form surface, the optimized EM-OPM is

expected to replace OPM in low and medium resolution

applications.

FIGURE 4
Optimization results and imaging simulation comparison of OPM, EM-OPM and EM-OPM (optimized) (A) Normalized Strehl ratio of EM-OPM
and EM-OPM (optimized) at each FOV point (B) 3D profile of the optimized ellipsoidal mirror (C) Simulation imaging results of OPM (D) Simulation
imaging results of EM-OPM before optimization (E) Simulation imaging results of optimized EM-OPM (F) Resolution comparison of three systems.
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Recent developments in single-molecule localization microscopy (SMLM)

enable researchers to study macromolecular structures at the nanometer

scale. However, due to the complexity of imaging process, there are a

variety of complex heterogeneous noises in SMLM data. The conventional

denoising methods in SMLM can only remove a single type of noise. And,

most of these denoising algorithms require manual parameter setting, which is

difficult and unfriendly for biological researchers. To solve these problems, we

propose a multi-step adaptive denoising framework called MSDenoiser, which

incorporates multiple noise reduction algorithms and can gradually remove

heterogeneous mixed noises in SMLM. In addition, this framework can

adaptively learn algorithm parameters based on the localization data without

manually intervention. We demonstrate the effectiveness of the proposed

denoising framework on both simulated data and experimental data with

different types of structures (microtubules, nuclear pore complexes and

mitochondria). Experimental results show that the proposed method has

better denoising effect and universality.

KEYWORDS

noise reduction, super-resolution image processing, multi-step denoising framework,
adaptive parameter selection, localization data

1 Introduction

The spatial resolution of conventional optical microscopy techniques is limited to

about half the wavelength of light. This is mainly due to the diffraction of light: when the

light source passes through the optical imaging system, it will form a spot on the focal

plane, which we call point spread function (PSF). PSF has normally a central peak of about

200–300 nm in width. Super-resolution microscopy overcomes the resolution limit, and

achieves a spatial resolution on the order of 10–20 nm [1]. Among a variety of super-

resolution imaging techniques, single-molecule localization microscopy (SMLM) with a
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straightforward principle and outstanding spatial resolution

gains intensive attention from researchers [2]. SMLM is

primarily based on the fact that the spatial coordinates of

single fluorescent molecules can be established with high

precision, if their PSFs do not overlap with each other.

Currently, SMLM is able to image subcellular structures (such

as nuclear pores complexes, viruses, chromatin complexes, and

cytoskeletal filaments) with unprecedented details, and provides

great opportunities for biomedical researchers in resolving

biological structures at the nanoscale [3]. Unlike many other

super-resolution microscopy strategies, such as Stimulated

Emission Depletion (STED) [4] and Structured Illumination

Microscopy (SIM) [5] that generate grayscale images directly,

SMLM requires a series of complicated procedures to processes

the raw images and finally reconstructs a final super-resolution

image, as can be seen from the description below. Taking single

color SMLM as an example, we label biological structures with a

specific type of fluorescent molecules, and separate the spatially

overlapping fluorescent emissions from these molecules into a

series of sub images using the photophysical characteristics of the

fluorescent molecules. In each diffraction-limited region, we

control to excite only one or two fluorescent molecule. In this

case, we can keep a low overlapping probability. After

accumulating thousands of image frames of randomly

distributed fluorescent molecule images, we apply a proper

single molecule localization algorithm to the raw images to

precisely find the center locations of each molecule. We

combine all of the gathered localization points to create a

localization table, which contains at least x, and y positions of

individual emitters and sometimes complements by information

on localization uncertainty, and emitter intensity, etc. Finally, we

use the localization table to render a super-resolution image,

which can present super-resolution topography information of

the observed structures.

A typical SMLM image is usually suffered from a large

amount of mixed and complex background noises, which are

originated from autofluorescence, out-of-focus fluorescence,

camera noises, as well as non-specific labelled fluorescent

molecules. These background noises lead to the degradation of

super-resolution image quality and affect the subsequent data

analysis and processing [6, 7]. For example, in a cluster analysis

task, background noises may cause excessive molecule counts,

and this overcounting might lead to bias in cluster analysis and

wrong interpretations of the biological findings [8]. Therefore,

the localization table in SMLM should be cleaned before any

further quantification, and background noise removal in SMLM

data has an important engineering significance.

To remove background noises and improve the quality of

super-resolution image, researchers have made many attempts.

Usually, they first optimize the hardware in the imaging system

to obtain high quality raw images. For example, illumination via

Total Internal Reflection Fluorescence (TIRF) is introduced to

improve the signal to noise ratio (SNR) of the raw image [9].

And, the selection of image sensors with high sensitivity, such as

electron-multiplying charge-coupled device (EMCCD) and

scientific complementary metal-oxide semiconductor (sCMOS)

cameras, can further improve image SNR [10]. Due to the

complexity of the imaging process, a large amount of noises

are still introduced into the localization table, and thus should be

processed before reconstructing a final super-resolution image.

Although many image analysis strategies have been established

for conventional fluorescence microscopy images [11, 12], these

strategies cannot apply directly to localization-based super-

resolution images, because a conventional fluorescence image

is composed of pixels or voxels, while an SMLM image is

composed of a series of 2D or 3D localization coordinates.

The data form of the localization table makes many trivial

operations on conventional images (such as thresholding and

subtraction) to become challenging. One usual solution to these

challenges is to transform the localization table into a grayscale

image (that is, a reconstructed super-resolution image), and then

perform denoising analysis on the grayscale image. However, this

will inevitably lead to a loss of the precise localization

information, and affects the analysis results in downstream

tasks (such as clustering, co-location analysis) [13]. According

to above discussions, it would be greatly beneficial to perform

denoising directly from a localization table.

Most of the current denoising methods for localization table are

based on clustering algorithms. Andronov et al adopt Voronoi

Tessellation for clustering of protein complexes, where the

clustered localization points have smaller Voronoi cell areas than

the non-clustered points. The Voronoi Tessellationmethod uses this

feature to achieve the purpose of denoising [14]. For another

example, a background noise filter is included in the

ThunderSTORM plug-in [15], which adopts Density-Based

Spatial Clustering of Applications with Noise (DBSCAN) to filter

out the localization point with poor localization.However, DBSCAN

requires a careful parameter setting on radius and minimum

number, which seriously affects the efficiency of denoising [6].

Machine learning-based clustering methods are also propose to

denoise the localization data. For example, Williamson et al used

neural networks to classify points from localization table as either

clustered or non-clustered, based on a sequence of values derived

from each point’s nearest-neighbor distances, and the non-clustered

points are defined as noise [16]. However, these denoising

algorithms can only remove a certain kind of noises, which are

not sufficient for the remove of complex heterogeneous background

noises. In addition, most of these methods need to determine

manually the threshold or parameters, which is difficult and

unfriendly for biological researchers.

Inspired by the fusion denoising algorithms and techniques

in the field of image and point cloud processing [17–20], here we

propose a multi-step adaptive denoising framework for super-

resolution localization data, called MSDenoiser. This framework

makes full use of the different characteristics of reported

denoising algorithms (including Voronoi Tessellation [21],
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Local Outlier Factor (LOF) [22] and DBSCAN), and gradually

removes the free non-polymer localization points, non-polymer

localization points near the sample signal point area, and non-

specific localization points. To solve the problem of manual

parameter determination in the LOF and DBSCAN

algorithms, our MSDenoiser framework uses the G-means

algorithm to automatically generate a set of clusters with

centers, and adaptively estimates the parameters in LOF and

DBSCAN algorithms without manual intervention. At the same

time, to evaluate the effect of the denoising framework on

experimental microtubule datasets without groundtruth, we

propose an evaluation index based on skeleton information.

We proved that the evaluation index is consistent with the

existing denoising evaluation index. We verified the

performance of the proposed MSDenoiser framework in

simulated and experimental datasets (microtubule, nuclear

pore complexes, and mitochondrial protein). From

experimental results, we found that the MSDenoiser

framework can effectively eliminate the mixed noises, achieve

less detail loss and higher image SNR. Compared with the

commonly used denoising algorithm in SMLM, we showed

that the proposed framework has better performance and

convenience in processing localization data from different

types of biological structures.

2 Materials and methods

2.1 The multi-step adaptive noise
reduction framework for single-molecule
localization microscopy image

The proposedMSDenoiser framework includes four steps (as

shown in Figure 1). Firstly, a Voronoi Tessellation-based method

is used to remove free non-polymer localization points (The

green box in Figure 1). Secondly, G-means algorithm is used to

generate a group of clusters with centers. Features of the clusters

are counted, which are passed to the LOF and DBSCAN

algorithms as parameters (The orange box in Figure 1).

Thirdly, LOF is used to remove non-polymer localization

points near the sample signal area (The purple box in

Figure 1). Finally, DBSCAN is used to eliminate non-specific

localization clusters (The blue box in Figure 1).

2.1.1 Remove non-polymeric localizations using
Voronoi Tessellation

Voronoi Tessellation has been applied in various fields from

mathematics to natural sciences, and is usually used for

clustering tasks in the field of super-resolution imaging [14,

23]. In Voronoi Tessellation, an image is divided into multiple

polygonal regions centered on a set of points (seeds), with a single

localization point at the center [24]. Voronoi cell represents the

affected area of seed points, and the cell area provides an accurate

measurement of local density of seed points. This property makes

Voronoi Tessellations more suitable for describing the properties

and neighborhoods of single molecules. Large Voronoi cells will

be generated in low density area or randomly distributed points.

Therefore, for a set of localization points with density of less than

a given threshold, we can define it as noise.

2.1.2 Remove the noise near the structure point
using local outlier factor

Local Outlier Factor (LOF) is an unsupervised outlier

detection method [25]. LOF determines a point as an outlier

by comparing the density of each point with its k neighborhood

points, and considers the samples with densities much lower than

those of its neighbors to be outliers. However, some boundary

points may be excluded from the signal region, because their

FIGURE 1
Themulti-step adaptive noise reduction framework for SMLM image. The circles represent signal points, the triangles represent different type of
noise points. Orange triangles represent nonspecific clusters, green triangles represent free non-polymer localization points, and purple triangles
represent non-polymer localization points near the signal point.
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density is lower than that of the signal region. These

characteristics enable LOF to be a good algorithm to deal with

edge effect of point clouds, because LOF can remove non-

polymer localization points near the signal point.

2.1.3 Remove nonspecific clusters using density-
based spatial clustering of applications with
noise

Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) is a typical density-based clustering method.

DBSCAN divides the region with sufficient density into

clusters, and can find clusters of arbitrary shapes in noisy

spatial dataset. DBSCAN defines two parameters:

neighborhood search radius (Eps), the minimum number of

points within the search radius (MinPts) [6]. The algorithm

starts from the point that has not been visited, and divides the

data points into three types according to these two parameters:

core points, boundary points, and noise points. DBSCAN has

good noise recognition ability, and can filter the background

noise. However, the setting of algorithm parameters is subjective,

and it is difficult to determine appropriate parameters to ensure

the quality of denoising.

2.1.4 Adaptive parameter selection using
G-means algorithm

LOF and DBSCAN algorithms are used to identify high-

density and low-density regions of point sets. The LOF algorithm

eliminates as many non-clustered localization points as possible

to minimize their interference to the DBSCAN algorithm in the

next step. In this way, LOF effectively separates biologically

relevant clusters from non-biologically relevant spurious

clusters. But, the LOF algorithm requires an input parameter:

k. The DBSCAN algorithm is able to distinguish noise points and

signal points, from any shapes of clusters. However, two

parameters are required for DBSCAN: Eps and MinPts.

To solve the problem of parameter selection in LOF and

DBSCAN, we automatically generate a group of clusters with

their centers by G-means algorithm, and count the features of the

clusters to estimate the parameters of LOF and DBSCAN. Since

the cluster centers generated by G-means can be affected by

isolated noise and offset, which will further affect the parameters

estimation, here we reprocess the data by Voronoi Tessellation to

remove the isolated noise, so that the cluster center can better

represent each cluster.

2.2 Simulated and experimental data

We simulated two representative kinds of biological

structures (filament and ring) with different localization

densities (1000 μm−2~10,000 μm−2) to evaluate the feasibility of

the proposed denoising framework, which can cover most

experimental scenes.

Step 1: Generation of groundtruth dataset with no

localization error or background noise. We firstly obtained a

ring structure image with a radius of 150 nm and a structure

diameter of 60 nm using Python language. Secondly, we

downloaded the microtubules data from an open dataset

website (https://srm.epfl.ch/Datasets). We used the QC-

STORM plug-in to locate and render the microtubule data,

and obtained the filament structure image [26]. Finally, we

merged the images of the two structures and obtained the

groundtruth dataset by ThunderSTORM plug-in.

Step 2: Generation of noise dataset. The noise dataset

includes background clusters and random noise. To simulate

false localization events due to background fluorescence, we

generated 30 background clusters with the same localization

density as the foreground. To better evaluate the effectiveness

of the proposed denoising framework, we generated random

noise with different noise level (from 5% to 50%), and the noise

level was defined as a percentage of the number of foreground

localization points.

Step 3: Generating simulated localization dataset with

filament and ring structures. We combined the datasets in

Step 1 and 2 to obtain a localization dataset with filament and

ring structures.

To verify the effectiveness of the framework in the context of

complex biological structures, we performed analysis on

experimental dataset of microtubules, nuclear pore complexes

and mitochondrial protein. Microtubules (alpha-tubulin) were

obtained by indirect immunolabeling with AlexaFluor647 (DOL

1–4) in COS7 cell staining. Nuclear pore complexes data were

obtained by staining the gp210 protein of the Xenopus nuclear

pore complex with Alexa647. Mitochondrial protein data were

obtained by labeling mitochondrial protein TOM22 with a

secondary antibody immunolabeling strategy in COS7 cells.

These experimental datasets include tube-like and amorphous

structures, and thus are excellent reference structures to verify the

denoising effect. These data are downloaded from ShareLoc.XY

(https://shareloc.xyz/#/).

2.3 Evaluation criteria

We evaluated the performance of algorithm using two

commonly used metrics in the simulated dataset with

groundtruth: Recall and F1-score. The calculation process is

formulated as follows:

Recall � TP

TP + FN

F1 − score � 2 * Precision * Recall
Precision + Recall

where Precision = TP/(TP + FP), and TP, FP, FN are true-

positive (TP), false-positive (FP) and false-negative (FN),

respectively. Recall represents the proportion of the total noise
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that is correctly removed. The larger of the value of recall, the

more noise is removed. The F1-score metric balances the results

of Precision and Recall. The value of F1-score ranges from 0 to 1,

with 1 representing the best result of the algorithm and

0 representing the worst output result.

Because the experimental dataset lacks groundtruth, we try to

extract skeleton from microtubule data as groundtruth, and use

pixel accuracy (PA) as the evaluation metric of microtubule

experimental data. The generation process of skeleton

groundtruth is as follows:

Step1: Calculate the microtubule width. We select a relatively

straight microtubule structure as our ROI, and then process the

ROI vertically. We calculate the width of the horizontal cross

section on each pixel of the ROI, and then fit it using a Gaussian

function. The full width at half maxima (FWHM) is used to

represent the microtubule width.

Step2: Extract the skeleton. We use the method mentioned in

[27] to extract the skeleton information of microtubule data.

Step3: Expand the skeleton and get the groundtruth. The

skeleton is expanded based on the calculated microtubule width.

The expansion process is to add pixel values to the edge of the

skeleton to expand the overall pixel value, and thus achieve the

skeleton expansion. In this way, we obtain the groundtruth of

microtubule data.

Based on skeleton groundtruth information, pixel accuracy

(PA) can be defined as follows:

PA � ∑n
i�0∑m

j�0Yij

∑n
i�0∑m

j�0Xij

wherem, n denote the number of vertical and horizontal pixel of

the image, respectively, X denotes the noisy Groundtruth image,

and Y denotes the noisy image calculated by the algorithm. PA

indicates the proportion of correctly labeled noise pixel to the

total noise pixel. Therefore, PA can be used to evaluate the

denoising efficiency of the algorithm.

3 Results and discussion

3.1 Validation based on skeleton
evaluation criteria

We simulated filament and ring data to verify the

effectiveness of the proposed evaluation metric (PA) based on

skeleton information. We selected the localization data with a

localization density of 4000 μm−2, and added random noise with

a noise level of 50% and 30 localization background clusters. We

used skeleton extraction algorithm in Section 2.3 to extract the

skeleton of the rendered image (see in Figure 2B). We calculated

the average microtubule width of the original image to be 45 nm.

To eliminate the error caused by the uneven distribution of

localization density of super-resolution image, we rounded up

the calculated microtubule width and took 50 nm as the basis for

the skeleton expansion. The expansion results were served as the

groundtruth image of the structure signal point in our

experiments, as shown in Figure 2C. We used the difference

operation between the signal point groundtruth image and the

original image to obtain the groundtruth image of noise data.

We performed quantitative evaluation using three

parameters (Recall, F1-score and PA) under different noise

reduction ratio (from 10% to 90%), as shown in Figure 2D.

We can see that the trends of all parameters (PA, Recall and F1-

score) are generally consistent with each other. When the

proportion of noise reduction is low, the correlation between

the three parameters is strong and keeps rising rapidly. With the

increase of the proportion of noise reduction, the rising of F1-

score value is not as fast as those in Recall and PA. The reason is

that, with the increase of proportion of noise reduction, some

structure signal points may also be recognized as noise and thus

removed, leading to the decrease of Precision and the affecting of

the F1-score value. In addition, the evaluation metric based on

skeleton has a disadvantage: it cannot evaluate the noise

reduction in an area close to the structure signal points. This

is also the reason for the difference in the value of Recall and PA,

despite the strong correlation. From this analysis, we shown that

the skeleton-based evaluation index PA is consistent with Recall

and F1-score, and thus PA can quantitatively evaluate the

denoising effect of experimental microtubule data.

3.2 Comparing the denoising performance
using simulated data

To test the image denoising performance of MSDenoiser, we

compared it with DBSCAN, Statistical Outlier Removal Filter

(SORF) [28] and Radius Outlier Removal Filter (RORF) [29]

using simulated data. DBSCAN is a commonly used denoising

method in the field of super-resolution microscopy, while SORF

and RORF are commonly used denoising methods in the field of

point cloud.We adopted grid search strategy to select the optimal

parameters of DBSCAN, RORF and SORF respectively in the

following experiments, as shown in Figure 3. DBSCAN algorithm

requires two parameters, Eps and MinPts. We set the input value

of Eps to be 20–200 nm and the input value of MinPts to be

10–100, and used a total of 100 sets of parameters to find the best

parameter combination. Similarly, the radius value of the RORF

algorithm ranges from 20 nm to 200 nm, and the num_points

value ranges from 10 to 100. The value of std_ratio for SORF

ranges from 0.2 to 2, and the value of num_neighours ranges

from 10 to 100. Note that RORF and SORF select the best

combination from sets of parameters. Under different noise

levels and localization densities, because the optimal

parameters of the compared algorithms will be different, we

select the optimal parameter combination for DBSCAN, RORF

and SORF. For example, we show the heat map with optimal
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parameter selection under different localization densities in

Figure 3. In contrast, our proposed MSDenoiser framework

can automatically compute parameters without manual

intervention.

Firstly, we compared the denoising performance of

MSDenoiser and the three reported algorithms (DBSCAN,

RORF and SORF) under the same localization density and

different noise levels. The localization density of simulated

data is 4000 μm−2 and the noise level ranges from 5% to 50%.

As shown in Figure 4, we find that all the four algorithms have

small detail loss, but MSDenoiser achieves a balance of less

detail loss and better SNR, and thus improves the quality of

super-resolution images. However, although the results were

similar at different noise levels, the value of Recall and F1-

score changed. This is because the amount of non-specific

clustering noise is unchanged. This finding also points out the

bottleneck of the compared algorithms, that is, they cannot

remove the non-specific clustering. At low noise level, the

denoising performance of MSDenoiser is slightly worse than

RORF, but it is still better than DBSCAN and SORF. The

Recall value of MSDenoiser is not affected by the increase of

noise, and reaches the maximum value of 0.86, when the noise

level is 50%. The F1-score reaches the maximum value of 0.92.

While the three reported algorithms benefit slightly from the

careful selecting parameters, our proposed MSDenoiser can

still achieve a good overall performance, without involving

manual parameter search. Experiments with different noise

levels demonstrate the robustness of our MSDenoiser method.

Then, we compared the denoising performanceX of

MSDenoiser and the other three compared algorithms

under the same noise level and different localization

densities. The noise level of simulated data is 50%, and the

localization densities ranges from 1000 μm−2 to 10,000 μm−2.

As shown in Figure 5, MSDenoiser performs slightly worse on

FIGURE 2
Comparison of the different evaluation metric. (A) Raw image. (B) The skeleton image. (C) The groundtruth image, which is the expanded
skeleton image. (D) Three evaluation results with different noise reduction ratio.
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simulated data with localization densities ranging from

1000 μm−2 to 3000 μm−2 (see in Figure 5G). When the

localization density increases to larger than 4000 μm−2,

MSDenoiser achieves the best denoising performance.

However, it is important to emphasize again, the

MSDenoiser produces the best overall denoising results

without the need of labor-intensive manual parameter setting.

Using the above discussions, we showed that MSDenoiser

is capable to provide good denoising performance on

simulated data with different localization densities and

different noise levels. This new framework fully integrates

the advantages of Voronoi Tessellation, LOF and DBSCAN,

and selects parameters adaptively according to localization

data, without reducing the effectiveness in removing mixed

noise in SMLM data.

3.3 Comparing the denoising performance
using experimental microtubule data

To verify the denoising ability of MSDenoiser in real dataset,

we compared the performance among MSDenoiser, DBSCAN,

RORF and SORF, using experimental microtubule data. Non-

polymeric localizations and nonspecific clusters are distributed

randomly within the field of view. We downloaded the

experimental microtubule data from ShareLoc.XYZ, which

includes 1231693 localization coordinates in the field-of-view of

300 μm2, and the localization density is 4106 μm−2. We showed in

Figure 6E the raw image and its local enlarged details (rendered at

100 nm and 20 nm, respectively). We extracted the skeleton as the

groundtruth of experimental microtubule data, and used them for

quantitatively evaluating the denoising algorithms.

FIGURE 3
Heat map for parameter selection of different algorithms with different localization density using grid search. (A)Heat mat of DBSCAN. (B)Heat
mat of RORF. (C) Heat map of SORF. The blue boxes indicate the optimal parameters.
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Firstly, we discussed the parameter selection strategy for the four

algorithms. The MSDenoiser can adaptively determine the

parameters in the denoising framework. The parameters, Eps and

MinPts, which are automatically calculated byMSDenoiser, can also

be used by DBSCAN. In fact, for the experimental microtubule data,

MSDenoiser sent the two parameters (Eps = 67 nm, MinPts = 215)

to DBSCAN. The parameters in RORF and SORFwere estimated by

experience. The average localization density of experimental data

was calculated to be 4106 μm−2. The initial parameters were found

according to the localization density in simulated data, and adjusted

repeatedly according to the denoising effect. Therefore, the

parameter are not required to be optimal at the beginning. The

parameters in RORF are radius = 60 nm and num_points = 100,

respectively. The parameters in SORF are std_ratio = 0.2 and

num_neighbors = 80, respectively. Note that MSDenoiser

framework does not require any manual intervention.

Then, we evaluated the denoising performance among these

methods using PA value.We used experimental microtubule data as

input data (as shown in Figure 6E, which were rendered from

localization table data), and applied the four denoising methods to

the localization table. We further analyzed the denoising

performance from these methods. We found that MSDenoiser

achieves the best denoising effect (that is, the highest PA value).

Actually, as seen in Figures 6A–D, the PA value are 0.90 from

DBSCAN, 0.92 from RORF, 0.90 from SORF, and 0.94 from

MSDenoiser, respectively. From the local enlarged image, we

FIGURE 4
Comparison on the denoising performance in simulated microtubule data with different noise levels. (A) Raw rendered image. (B) Denoised
image from DBSCAN. (C) Denoised image from RORF. (D) Denoised image from SORF. (E) Denoised image from MSDenoser. (F) Skeleton based
groundtruth. (G) The dependence of F1-score on noise level.
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observed that MSDenoiser removes nonspecific clusters, while

DBSCAN does not remove this type of noise (see the white

arrow in Figures 6A–D). Other methods removed these noises,

along with the signal points of the microtubule structure, since we

can see broken structures (see the yellow arrow in Figures 6A–D).

MSDenoiser removed noise, but kept more signal points from

microtubule structures.

3.4 Comparing the denoising
performance using experimental
amorphous structure data

In previous section, we demonstrated the applicability of

MSDenoiser in relatively uniform and tube-like structures

(microtubules). Here, we showed the denoising performance

of MSDenoiser in datasets from nuclear pore complexes and

mitochondrial protein (which contain amorphous features

commonly seen in SMLM). We compared the denoising

performance among MSDenoiser, DBSCAN, RORF, and SORF.

We downloaded experimental nuclear pore complexes and

mitochondrial protein datasets from ShareLoc.XYZ. In the

nuclear pore complexes dataset, a total number of

631214 fluorophores were identified from a field-of-view of

191 μm2, and the localization density is 3305 μm−2. In the

mitochondrial protein dataset, a total number of

2270989 fluorophores were identified from a field-of-view of

2668 μm2, and the localization density is 1002 μm−2. Since there

are no groundtruth for these experimental datasets, we only

showed the results before and after denoising.

The parameter selection strategy in these two datasets is

similar to that used in the experimental microtubule dataset.

FIGURE 5
Comparison on the denoising performance in simulated patch microtubule data with different localization density by different methods. (A)
Raw rendering image. (B)Denoised image fromDBSCAN. (C)Denoised image from RORF. (D)Denoised image from SORF. (E)Denoised image from
MSDenoiser. (F) Skeleton based groundtruth. (G) The dependence of F1-score on localization density.
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FIGURE 6
Comparison on the denoising performance of different methods using experimental microtubule data. (A) Denoised image from DBSCAN. (B)
Denoised image from RORF. (C) Denoised image from SORF. (D) Denoised image from MSDenoiser. (E) Raw rendered image. The white arrows in
(A–C) indicate noise, and thewhite arrow in (D) indicates the better denoising performance ofMSDenoiser at the same location. The yellow arrows in
(A–C) indicate broken microtubule structure, and the yellow arrow in (D) indicates the structure continuity from MSDenoiser at the same
location.

FIGURE 7
Comparison on the denoising performance of different methods using experimental nuclear pore complexes data. (A) Denoised image from
DBSCAN. (B)Denoised image from RORF. (C)Denoised image from SORF. (D)Denoised image fromMSDenoiser. (E) Raw rendered image. Thewhite
arrows in (A–E) indicate noise in ring structure, the white arrow in (D) indicates the better denoising effect of MSDenoiser at the same location.
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The parameters in DBSCAN were determined from the

parameters automatically calculated by MSDenoiser. For the

experimental nuclear pore complexes dataset, the parameters in

DBSCAN are Eps = 42 nm and MinPts = 52, respectively. For

the experimental mitochondrial protein dataset, the parameters

in DBSCAN are Eps = 45 nm and MinPts = 58, respectively.

According to the average localization density of experimental

data (3305 μm−2 for nuclear pore complexes, and 1002 μm−2 for

the mitochondria), we empirically selected the parameters in

the RORF and SORF algorithms. For the experimental nuclear

pore complexes dataset, the parameters in RORF are radius =

70 nm and num_points = 100, respectively, and the parameters

in SORF are std_ratio = 0.2 and num_neighbor = 40,

respectively. For the experimental mitochondrial protein

data, the parameters in RORF are radius = 30 nm and

num_points = 90, respectively, and the parameters in SORF

are std_ratio = 0.2 and num_neighbor = 50, respetively. The

MSDenoiser framework can adaptively determine parameters

without manual intervention.

We then analyzed the denoising performance of the four

algorithms qualitatively using experimental nuclear pore

complexes and mitochondrial protein datasets. The results

are shown in Figures 7, 8. The reported three algorithms only

removed part of the nonpolymer localization points, and the

noise in the ring structure of the nuclear pore complexes was

not effectively removed (see the white arrows in Figures

7A–E). Similarly, the reported algorithms did not remove

the nonspecific clustering from the mitochondrial protein

data (see the white arrows in Figures 8A–E). However,

these problems can be effectively solved by our new

MSDenoiser algorithm, which is able to retain maximum

details of biological structures and remove most of the

noises. The experimental results on nuclear pore complexes

and mitochondrial protein datasets show that our proposed

algorithm also have good ability in removal of the mixed

noises that are common on experimental data.

From the above results, we show that our proposed

MSDenoiser framework can be applied to localization data

from different biological structures. Using this new

framework, we can not only obtain better denoising results,

but also adaptively determine parameters without manually

intervention.

4 Conclusion

We developed a new denoising framework, called

MSDenoiser, for improving the image quality in SMLM. In

this framework, we combine the advantages of different

reported denoising algorithms (Voronoi Tessellation, LOF and

DBSCAN) to remove the noise of different features, and

adaptively estimate the parameters required by the new

framework using the G-means algorithm. In this framework,

we aim to remove heterogeneous noises (free non-polymer

FIGURE 8
Comparison on the denoising performance of different methods using experimental mitochondrial protein data. (A) Denoised image from
DBSCAN. (B)Denoised image from RORF. (C)Denoised image from SORF. (D)Denoised image fromMSDenoiser. (E) Raw rendered image. Thewhite
arrows in (A–E) indicate nonspecific clustering, the white arrow in (D) indicates the better denoising effect of MSDenoiser at the same location.
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localization points, non-polymer localization points near the

sample signal point area, and non-specific localization points).

Using simulated and experimental datasets, we compared the

denoising performance of MSDenoiser with DBSCAN (a

commonly used denoising method in SMLM), RORF and

SORF (commonly used denoising methods in point cloud).

We found that MSDenoiser achieves better denoising effect

than the three reported methods in the removal of mixed

noises. Moreover, as compared with DBSCAN, RORF and

SORF, the MSDenoiser can adaptively obtain parameters

without manual intervention. We also verified the applicability

of MSDenoiser in amorphous biological structures (nuclear pore

complexes and mitochondrial protein), and proved that

MSDenoiser has good robustness on different biological

structures. Of course, there are still some limitations on our

proposed MSDenoiser framework. The main limitation is the

denoising speed, which needs to be improved for processing large

SMLM localization table data. Because the MSDenoiser

framework is composed of multiple algorithms, it takes a large

amount of time on the automatic parameter selection process

(G-means). When the field of view increases, the time spent in

the parameter selection will increase significantly. In the future,

we plan to develop a more efficient algorithm to take the place of

G-means algorithm, so that we could shorten the processing time

without reducing the denoising performance. Nevertheless, we

believe this study points out a new strategy for solving the noise

reduction challenge in SMLM.
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