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Identification of Survival-Associated
Hub Genes in Pancreatic
Adenocarcinoma Based on WGCNA
Liya Huang1, Ting Ye1, Jingjing Wang1, Xiaojing Gu1, Ruiting Ma1, Lulu Sheng2* and
Binwu Ma3*

1Department of Gastroenterology, The General Hospital of NingXia Medical University, Yinchuan, China, 2Department of
Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China, 3Department of
Neurology, The General Hospital of NingXia Medical University, Yinchuan, China

Pancreatic adenocarcinoma is one of the leading causes of cancer-related death
worldwide. Since little clinical symptoms were shown in the early period of pancreatic
adenocarcinoma, most patients were found to carry metastases when diagnosis. The lack
of effective diagnosis biomarkers and therapeutic targets makes pancreatic
adenocarcinoma difficult to screen and cure. The fundamental problem is we know
very little about the regulatory mechanisms during carcinogenesis. Here, we employed
weighted gene co-expression network analysis (WGCNA) to build gene interaction
network using expression profile of pancreatic adenocarcinoma from The Cancer
Genome Atlas (TCGA). STRING was used for the construction and visualization of
biological networks. A total of 22 modules were detected in the network, among
which yellow and pink modules showed the most significant associations with
pancreatic adenocarcinoma. Dozens of new genes including PKMYT1, WDHD1,
ASF1B, and RAD18 were identified. Further survival analysis yielded their valuable
effects on the diagnosis and treatment of pancreatic adenocarcinoma. Our study
pioneered network-based algorithm in the application of tumor etiology and discovered
several promising regulators for pancreatic adenocarcinoma detection and therapy.

Keywords: WGCNA, gene module, network construction, functional regulator, pancreatic adenocarcinoma

INTRODUCTION

Pancreatic cancer ranks the 7th leading cause of cancer mortality worldwide with increasing incidence
and poor outcomes (McGuigan et al., 2018). According to the SEER registry, 60,430 new cases and
48,220 deaths of pancreatic cancer have been estimated in the United States in 2021 (Siegel et al., 2021).
And pancreatic cancer is predicted to rise from being the 4th to the 2ndmost common cause of cancer-
related death in the United States by 2030 (Rahib et al., 2014). Pancreatic adenocarcinoma and its
variant are the most prevalent subtype of pancreatic cancer and attributed to approximately 90% of all
cases (Feldmann et al., 2007). Pancreatic intraepithelial neoplasia, intraductal papillary mucinous
neoplasms and mucinous cystic neoplasms are the best characterized precursors of this cancer
(Esposito et al., 2014). Due to the insidious nature of pancreatic adenocarcinoma, most patients
have already carried metastases such as node upon diagnosis, resulting in 5-years relative survival of
about 10% (Luchini et al., 2016; Siegel et al., 2021). Although great efforts including surgical resection,
adjuvant chemotherapy and serum biomarker CA19-9 have been made in early detection and
treatment of pancreatic adenocarcinoma, medical limitations still exist because of low sensitivity
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and high expenses. Recently, several driver genes including KRAS,
CDKN2A, TP53 and SMAD4 have been identified from an
evolutionary perspective (Vogelstein and Kinzler, 2015;
Makohon-Moore and Iacobuzio-Donahue, 2016). Another study
has explored novel immune-related gene signatures in pancreatic
adenocarcinoma (Chen B. et al., 2021). However, the above
evidence is far from adequate to provide therapeutic targets as
multiple initiating events embedded with genes were undiscovered
in pancreatic adenocarcinoma. Hence, it is imperative to identify
new risk genes and their regulatory network in order to elucidate
pancreas carcinogeneticmechanisms as well as guide researchers to
develop new therapeutic strategies.

As a systematic method used in oncology research that aims
at finding co-expressed genes through calculating gene
connectivity, weighted gene co-expression network analysis
(WGCNA) can analyze the relationship between modules and
specific traits followed by clustering genes and forming
modules (Langfelder and Horvath, 2008; Chang et al., 2013;
Yang et al., 2018). It is widely used in exploring functionality of
the whole transcriptome for its particularly powerful
computing capability (Zhou et al., 2018). In this study, we
employed WGCNA to build a gene interaction network using
the expression profile of pancreatic adenocarcinoma from The
Cancer Genome Atlas (TCGA). A total of 22 modules were
detected in the network, among which yellow and pink
modules showed the most significant associations with
pancreatic adenocarcinoma. Dozens of new genes including
PKMYT1, WDHD1, ASF1B, and RAD18 were identified.
Further survival analysis yielded their valuable effects on
the progression of pancreatic adenocarcinoma.

METHODS

Pancreatic Adenocarcinoma
RNA-Sequencing Datasets
The RNA-sequencing data of 175 pancreatic adenocarcinoma
patients was downloaded from the TCGA database (https://
portal.gdc.cancer.gov/). As previously described, the gene
expression levels were quantified as FPKM (fragments per
kilobase per million mapped reads) using TopHat and HTSeq-
count (Kim et al., 2013; Anders et al., 2015). The TCGA sample
information was listed in Supplementary Material S1. Within
the 175 tumor samples, 2 samples did not have stage information,
7 samples were in stage I, 24 samples were in stage II, 139 samples
were in stage III, and 3 samples were in stage IV. The sample
distribution also stressed the importance of identification of new
genes for diagnosis and therapy.

Co-Expression Network Construction
R package WGCNA was used for hub genes screening and co-
expression of gene pair detection. Elements in the gene co-
expression matrix were the weighted values of correlation
coefficient between gene pairs. The soft-thresholding function
was applied to calculate the power parameter. Dynamic tree cut
method was utilized to identify co-expressed gene modules and a
dendrogram of genes was produced via a hierarchical clustering

approach based on dissimilarity of the unsigned topological
overlap matrix (TOM). Finally, genes with similar expression
profiles were grouped into network modules.

Enrichment Analysis of Module Genes
R package clusterProfiler was used to perform functional
enrichment analysis on clustered genes in pink and yellow
modules. A hypergeometric distribution test was applied to
detect enrichment terms, and p values were adjusted by false
discovery rate (FDR) method with a cutoff FDR <0.05 (Yu et al.,
2012).

Visualization of Gene Networks
Construction and analysis of networks were carried out using
STRING (11.0) (Szklarczyk et al., 2019).

The Survival Analysis of Hub Genes
There were 175 pancreatic adenocarcinoma patients with the
overall, disease free survival time (months) and the survival
status. We performed survival analysis using the Cox
proportional hazard regression model on these samples
(Andersen and Gill, 1982). For each gene, the patients were
divided into two groups: the patients with expression levels
smaller than the median and the patients with expression
levels greater than or equal to the median. The Kaplan-Meier
plot was used to describe the survival curves of these two groups
of patients. The significance of the survival difference between
these two patient groups was evaluated by the log-rank test p
value. If the p value was less than 0.05, its survival was considered
as significantly different. The R package survival (https://CRAN.
R-project.org/package�survival) was used to perform the survival
analysis.

RESULTS AND DISCUSSION

Construction of Co-Expression Network
We used the Pearson’s correlation coefficient to cluster the
samples in TCGA. After removing outliers, we drew a sample
clustering tree (Figure 1A). The weighted gene co-expression
network was constructed from 60,483 genes through WGCNA
approach. Here, soft-thresholding power was set to be twelve
to satisfy scale-free topology of the network (Figure 1B), in
which R2 was used to check how well the network fit the scale
freeness. And we detected 22 modules in this network, whose
relationship was shown in a cluster dendrogram (Figure 1C).
The number of members in different modules varied widely.
Besides the grey module comprised of many un-classified
members, turquoise module contained the maximum 1,508
genes, while the minimum 36 genes were included in darkred
module.

Each module represented a group of genes with similar
expression profiles across samples. Next, we quantified
module-trait associations (Supplementary Material S2),
among which the pink and yellow modules showed the most
significant associations with pancreatic adenocarcinoma. The
corresponding correlation coefficients of pink and yellow
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modules were 0.3 (P � 4 × 10−5) and −0.28 (P � 2 × 10−4),
respectively. Clearly, Gene Significance (GS) and Module
Membership (MM) analysis illustrated that genes highly
significantly associated with pancreatic adenocarcinoma were
also the most important elements of modules associated with
pancreatic adenocarcinoma (Figure 1D).

Enrichment Analysis of Module Genes
Next we performed Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analysis of these two
modules. As presented in Figures 2A,B, genes in the pink module
were significantly enriched in cell cycle, DNA replication, nuclear
division, and regulation of cell cycle phase transition with adjusted

FIGURE 1 | Identification of modules associated with the clinical traits of pancreatic adenocarcinoma. (A) Clustering dendrogram of 175 samples. (B) The
relationship between soft threshold (power) and network properties. Left panel: The relationship between soft-threshold (power) and scale-free topology. Right panel:
The relationship between soft threshold (power) and mean connectivity. We set the soft threshold (power) to be twelve to satisfy scale-free topology of the network. (C)
Total genes were clustered in 22 modules. Each module was marked with one color. (D) A scatterplot of Gene Significance (GS) for disease vs. Module
Membership (MM) in the pink (left panel) and yellow (right panel) modules.

FIGURE 2 | Functional enrichment analysis of genes in the pink module. (A)GO analysis showed the top 10 enriched biological processes in the pink modules. (B)
KEGG analysis showed the top 10 enriched pathways in the pink modules.
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p value smaller than 0.05, while genes in the yellow module were
not enriched in any terms or pathways (data not shown),
conferring the importance of these biological functions on
pancreatic adenocarcinoma development. And genes in the pink
module were selected for the following functional analysis.

Identification of Hub Genes
To further elucidate gene regulatory relationship in the module,
we constructed co-expressed gene networks in the pink module
(Supplementary Material S3) and identified master regulators
with most connections with others. Finally, PKMYT1, WDHD1,
ASF1B, and RAD18 stood out in the network. Next, we
investigated their expression patterns in pancreatic
adenocarcinoma. As expected, PKMYT1 (Figure 3A),
WDHD1 (Figure 3B), ASF1B (Figure 3C), and RAD18
(Figure 3D) were significantly up-regulated in tumor tissues
compared to adjacent normal tissues from TCGA,
emphasizing their promising roles in carcinogenesis.

Functional Analysis of Survival-Associated
Key Genes
Protein kinase, membrane associated tyrosine/threonine
(PKMYT1), also known as MYT1, is a member of the
WEE1 family of protein kinases, exerting key effects on
Golgi and endoplasmic reticulum assembly (Chen et al.,
2020). PKMYT1 was firstly recognized as a kinase capable
of phosphorylating Cdc2 at Thr14 and Tyr15 (Mueller et al.,
1995). Increasing studies have revealed its negative roles in cell
cycle progression through suppressing cell cycle-associated
factors, such as Cyclin A and CDK1 (Varadarajan et al.,
2016), leading to its promising relationship with cancer.
Previous studies have shown that PKMYT1 promoted cell
proliferation and apoptosis resistance in multiple cancers,
such as esophageal squamous cell carcinoma (Zhang et al.,
2019), non-small cell lung cancer (Sun et al., 2019), prostate
cancer (Wang et al., 2020), hepatocellular carcinoma (Liu

FIGURE 3 | Relative mRNA expression of four hub genes in pancreatic adenocarcinoma and adjacent normal tissues from TCGA. (A) PKMYT1. (B)WDHD1. (C)
ASF1B. (D) RAD18. The expressions of these genes were significantly up-regulated in tumor samples.
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et al., 2017), and gastric cancer (Zhang et al., 2020). Also
overexpression of PKMYT1 predicted unfavorable prognosis
in breast cancer (Liu Y. et al., 2020) and clear cell renal cell
carcinoma (Chen et al., 2020), implicating it as an appealing
therapeutic target. Nevertheless, an understanding of the
correlation between PKMYT1 and pancreatic
adenocarcinoma remains elusive, and our Kaplan-Meier
analysis indicated, for the first time, better overall survival
in the low transcription group approaching significance
(Figure 4A), consistent with its tumor promotion roles in
other cancers. However, disease free survival time did not show
difference between low and high expression groups of
PKMYT1 (Figure 5A). Through our network-based
analysis, we also emphasized its crucial roles in the
regulation of cell cycle (Figure 2A), which provided
experimental clues for further investigations.

WD repeat and high-mobility group box DNA-binding
protein 1 (WDHD1), an orthologue of Ctf4 in budding
yeast and Mcl1 in fission yeast, is a DNA-binding protein
involved in DNA replication and cell cycle (Abe et al., 2018).
Recent studies have observed the overexpression of WDHD1
in the great majority of lung cancers and esophageal squamous
cell carcinomas (Sato et al., 2010). WDHD1 has also been

reported to facilitate the abrogation of G1 checkpoint upon
DNA damage, leading to genomic instability and eventually
tumorigenesis (Zhou et al., 2020). Moreover, WDHD1 could
accelerate cell proliferation, cell viability, and metastasis in
several cancers including cholangiocarcinoma and breast
cancer (Sato et al., 2010; Liu et al., 2019; Ertay et al., 2020;
Zhou and Chen, 2021). In accordance with the above research,
both our overall and disease free survival analysis exhibited
that high levels of WDHD1 correlated with poor patient
outcome (Figures 4B, 5B), confirming the oncogenic
function of WDHD1 in pancreatic adenocarcinoma and
expanding it roles in cancer biology which need further
validations.

As one of histone H3-H4 chaperone anti-silencing function
1 (ASF1) isoforms, ASF1B plays important roles in chromatin-
based progression of cellular DNA replication and
transcription regulation, especially in cell proliferation (Paul
et al., 2016). Accumulating evidence has shown that up-
regulation of ASF1B stimulated cancer cell proliferation,
DNA replication and migration, accompanied by restrained
cell cycle arrest and apoptosis (Misiewicz-Krzeminska et al.,
2013; Han et al., 2018; Zhou et al., 2019; Liu X. et al., 2020;
Zhang et al., 2021), which was also consistent with our

FIGURE 4 |Overall survival analysis of the four hub genes in pancreatic adenocarcinoma based on the Kaplan-Meier plotter. (A) PKMYT1. (B)WDHD1. (C) ASF1B.
(D) RAD18. The high expressions of these four genes were associated with high risk.
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enrichment analysis of module genes (Figure 2A). In addition,
several studies have underlined the important prognostic
impact of ASF1B on a variety of cancers (Corpet et al.,
2011; Chen Z. et al., 2021; Feng et al., 2021). Another
exciting finding was that ASF1B could regulate immune
infiltration through affecting immune-related genes and
pathways such as antigen processing and presentation and
natural killer cell-mediated cytotoxicity (Hu et al., 2021; Zhan
et al., 2021), conferring its strong hints on potential
immunotherapeutic target for several malignancies. The
both overall and disease free survival analysis also
demonstrated that the high expression of ASF1B was
associated with high risk (Figures 4C, 5C), suggesting it
serving as a tumor promoter in pancreatic adenocarcinoma.

RAD18 is an E3 ubiquitin ligase best known for its key roles
in the monoubiquitylation of proliferating cell nuclear antigen
(PCNA) in response to stalled replication forks, thus initiating
DNA damage repair signaling (Williams et al., 2011; Kanu
et al., 2016; Yang et al., 2017). Increasing reports have shown
that RAD18 enhanced motility and invasiveness of cancerous
cells, evidenced by the positive correlations between RAD18
and vital mediators of cell invasion and proliferation such as
MMP-1 and MMP-9 (Zou et al., 2018; Xie et al., 2019).

Meanwhile, a recent study has found elevated RAD18 was
associated with gastric cancer progression and poor prognosis
(Baatar et al., 2020), considering it as a novel prognostic
biomarker. Accordingly, both overall and disease free
survival time was significantly higher in patients with low
RAD18 expression, compared with the high RAD18 expression
group (Figures 4D, 5D), highlighting its potential values in the
treatment and prognosis of pancreatic adenocarcinoma.

CONCLUSION

Gene correlation approaches provide preliminary steps toward
genetic interaction networks and offer clues about the function of
unknown genes. Here, we employed WGCNA to identify novel
hub genes including PKMYT1,WDHD1, ASF1B, and RAD18, and
proposed for the first time their oncogenic roles during pancreatic
adenocarcinoma progression. Further survival analysis verified
their effective roles in predicting prognosis. In-depth
mechanisms explaining their ability to allow neoplastic cells to
breach tumorigenic barriers are needed. Meanwhile, we should not
ignore the limitations of WGCNA as it is based on transcriptomic
data and insufficient to reflect cell status globally, in which

FIGURE 5 | Disease free survival analysis of the four hub genes in pancreatic adenocarcinoma based on the Kaplan-Meier plotter. (A) PKMYT1. (B)WDHD1. (C)
ASF1B. (D) RAD18. The high expressions of WDHD1, ASF1B and RAD18 were associated with high risk.
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multilayer data including mutations, copy number variations and
proteomic data is also needed to be taken into account for bettering
understanding mechanisms triggering cancer. Also, stronger
computing power and more reasonable statistical methods
should be stressed to improve gene correlation analysis.
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Extracellular Vesicle-Derived miR-
105-5p Promotes Malignant
Phenotypes of Esophageal Squamous
Cell Carcinoma by Targeting
SPARCL1 via FAK/AKT Signaling
Pathway
Binjun He1,2, Kang Zhang2, Xiaoliang Han2, Chao Su2, Jiaming Zhao2, Guoxia Wang2,
Guzong Wang2, Liuya Zhang2* and Wenbin Hu2*

1Department of Thoracic Surgery, Shaoxing People’s Hospital (Zhejiang University School of Medicine), Shaoxing, China,
2Department of Thoracic Surgery, Affiliated Hospital of Shaoxing University /Shaoxing Municipal Hospital, Shaoxing, China

Objective: Esophageal squamous cell carcinoma (ESCC) presents high morbidity and
mortality. It was demonstrated that blood-derived vesicles can facilitate ESCC
development and transmit regulating signals. However, the molecular mechanism of
vesicle miRNA secreted by tumor cells affecting ESCC progression has not been explored.

Methods: The mRNA-related signaling pathways and differentially expressed genes were
screened out in TCGA dataset. The levels of miRNA-105-5p and SPARCL1 were
determined by qRT-PCR. Protein level determination was processed using Western
blot. The interaction between the two genes was verified with the dual-luciferase
method. A transmission electron microscope was utilized to further identify extracellular
vesicles (EVs), and co-culture assay was performed to validate the intake of EVs. In vitro
experiments were conducted to evaluate cell function changes in ESCC. A mice tumor
formation experiment was carried out to observe tumor growth in vivo.

Results: MiRNA-105-5p expression was increased in ESCC, while SPARCL1 was less
expressed. MiRNA-105-5p facilitated cell behaviors in ESCC through targeting SPARCL1
and regulating the focal adhesion kinase (FAK)/Akt signaling pathway. Blood-derived
external vesicles containing miRNA-105-5p and EVs could be internalized by ESCC cells.
Then, miRNA-105-5p could be transferred to ESCC cells to foster tumorigenesis as well as
cell behaviors.

Conclusion: EV-carried miRNA-105-5p entered ESCC cells and promoted tumor-
relevant functions by mediating SPARCL1 and the FAK/Akt signaling pathway, which
indicated that the treatment of ESCC via serum EVs might be a novel therapy and that
miRNA-105-5p can be a molecular target for ESCC therapy.

Keywords: EVs, miR-105-5p, SPARCL1, ESCC, FAK/AKT, proliferation, migration, invasion
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INTRODUCTION

Esophageal carcinoma (EC) ranks sixth in mortality (544,000
deaths) and seventh in incidence (604,000 new cases) in 2020
(Sung et al., 2021), which means that EC is a serious threat to
human health. Esophageal squamous cell carcinoma (ESCC)
makes up the majority of EC (Lin et al., 2013). ESCC is
formed by the abnormal proliferation of esophagus squamous
epithelium, which is a kind of cancer with unobvious early clinical
features. Besides, most ESCC patients are diagnosed at advanced
stages accompanied by distant metastasis, and their 5-year
survival rates are lower than 20% after receiving conventional
therapies (Siegel et al., 20182018; Sawada et al., 2019).
Accordingly, finding effective therapeutic approaches for ESCC
patients is of substantial importance to the enhancement of
advanced ESCC patients’ survival.

With deeper investigations of miRNAs in recent years, it has
been confirmed that miRNAs can mediate the growth and
metastasis of multiple cancers (Xu et al., 2018; Sheng et al.,
2019; Wu et al., 2021). For instance, miRNA-10b-3p is capable
of fostering ESCC growth and metastasis (Priniski et al., 2019).
MiRNA-133b can inhibit ESCC cell processes (Zeng et al., 2019).
MiRNA-105-5p is a member of miRNAs, yet there have been
relatively few studies about its role in cancers. Currently, it has
only been reported that miRNA-105-5p modulates PES1 in liver
cancer stem cells to facilitate cell growth (Wei et al., 2019).
Nonetheless, there has been no research on the relationship
between miRNA-105-5p and ESCC. To this end, the present
study aimed to gain deeper insight into the regulatory
mechanism.

Extracellular vesicles (EVs) are extracellular membrane
particles’ component with diameters of 40–1,000 nm, whose
outer layer is a bilayer lipid membrane while the inside
encapsulates different proportions of DNA, RNA, and protein
components (Jin et al., 2021). Numerous reports indicate that
EVs are usually existing in body fluids, including cerebrospinal
fluid, blood, urine, saliva, pleural effusion, and ascites (Caivano
et al., 2015). EVs have many biological functions, such as
intercellular information exchange, protecting and repairing
damaged cells and tissue, participating in immune response,
and promoting angiogenesis (Abels and Breakefield, 2016; Xu
et al., 2016). Recently, research has suggested that serum EVs can
transfer miRNAs to tumor cells to regulate tumorigenesis. For
example, exosomal miRNA-660-5p is sent to foster the metastasis
of non-small cell lung cancer (NSCLC) cells (Qi et al., 2019).
MiRNA-21 carried on Evs can be transferred to ESCC cells to
induce ESCC cell proliferation (Tanaka et al., 2013). Nevertheless,
whether miRNA-105-5p in Evs could modulate ESCC remains
unknown.

To conclude, we confirmed that serum EV-derived miRNA-
105-5p could be transferred to ESCC cells to foster the
progression of ESCC cells by regulating the focal adhesion
kinase (FAK)/Akt signaling pathway, indicating that miRNA-
105-5p might be a novel signal facilitating ESCC development.

MATERIALS AND METHODS

Bioinformatics Methods
ESCC-related miRNA chip data GSE55856 (normal: n = 108,
tumor: n = 108) were accessed from the GEO database, and
differential analysis was performed to screen differentially
expressed miRNAs (DEmiRNAs) using the “limma” package (|
logFC|>2, padj < 0.01). Meanwhile, the ESCC-related miRNA
dataset (normal: n = 13, tumor: n = 96) was downloaded from the
TCGA database and differential analysis was conducted to screen
DEmiRNAs using the “edgeR” package (|logFC|>2, padj < 0.01).
The target miRNA was confirmed, and the expression position of
the target miRNA was localized via the EVmiRNA database.
Bioinformatics databases including miRDB (http://mirdb.org/),
mirDIP (http://ophid.utoronto.ca/mirDIP/index.jsp#r), and
TargetScan (http://www.targetscan.org/vert_71/) were
employed to predict the target mRNAs of the target miRNA.
Besides, ESCC-related mRNA expression data were obtained
from TCGA database and differential analysis was carried out
to screen differentially expressed mRNAs (DEmRNAs) (|logFC|
>1.5, padj < 0.01). Then, the differential mRNA and the predicted
target gene were taken to intersect. The ultimate target mRNA
that had the binding sites of the target miRNA was obtained.
GSEA software was utilized to conduct pathway enrichment
analysis on target genes, so as to further investigate the
mechanism of target miRNA and its target genes affecting ESCC.

Patient Samples
This paper included 64 ESCC patients admitted to the Shaoxing
People’s Hospital from June 2017 to December 2018. ESCC
tissue and adjacent normal tissue samples (within at least 2 cm
away from the edge of a tumor) were obtained by surgical
resection. All specimens had detailed clinical information, and
their tissue samples were confirmed by experts. All patients did
not receive radiotherapy, chemotherapy, biotherapy, or
traditional Chinese medicine treatment before operation.
Peripheral blood was collected from all patients before the
operation, and the blood samples of 20 healthy people were
also obtained at the same time. This study was authorized by the
Hospital Ethics Committee, and written informed consent was
acquired from all participants.

Cell Culture
Normal human esophageal epithelial cell line HEEC and ESCC
cell line TE-1 were purchased from BeNa Culture Collection
(BNCC, Beijing, China). ESCC cell lines Eca109, EC9706, and
NEC were ordered from American Type Culture Collection
(ATCC, Manassas, VA, USA). All the above cell lines were
cultured in Dulbecco’s Modified Eagle’s Medium (Thermo
Fisher Scientific, Waltham, MA, USA) supplemented with 10%
fetal bovine serum (Thermo Fisher Scientific, Waltham, MA,
USA) routinely. The culture conditions were 37°C and 5% CO2

atmosphere. All cells were utilized for subsequent assays after
four passages.
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Cell Transfection
The MiRNA-105-5p-mimic, miRNA-105-5p-inhibitor, and their
corresponding negative controls (NCs) ordered from
GenePharma (Shanghai, China) were transfected into ESCC
cells using Lipofectamine 2000 (Thermo Fisher Scientific,
Waltham, MA, USA).

The SPARCL1 overexpression vector (oe-SPARCL1) and
overexpression negative control (oe-NC) were bought from
GenePharma (Shanghai, China). Oe-SPARCL1 and oe-NC
were transfected into ESCC cells by the Lipofectamine 2000
reagent kit. After 48 h of cell incubation, the transfection
efficiency was tested.

Separation of EVs in Serum
Serum-derived EVs were purified using the EVs isolation kit
(Invitrogen, Carlsbad, CA, United States). In short, reagent and
serum samples were subjected to incubation (30 min) and
proceeded to centrifugation (10,000 rpm, 5 min, room
temperature). Thereafter, precipitated EVs were gathered for
resuspending in phosphate-buffered saline (PBS).

Transmission ElectronMicroscope Analysis
After EVs were suspended in PBS, a single drop of suspension was
dripped in a sample-loaded copperplate. After 1 min of standing
at room temperature, the redundant liquid was removed using a
piece of filter paper. Subsequently, 2% uranyl acetate (5 μl) was
dripped in the sample-loaded copperplate and the samples were
negatively stained for 1 min at general temperature. Then, the
redundant negative staining reagent was removed. After being
dried under an incandescent lamp, the electron microscope H-
7600 (Hitachi High-Technologies, Japan) was employed to
observe the result, and images were photographed for further
analysis.

Intake of EVs by ESCC Cells
Serum EVs were labeled using the PKH67 Green Fluorescent Cell
Linker Mini Kit (Sigma, USA). ESCC cells [10 cells/ml (Sawada
et al., 2019)] were plated and cultured for 4 h to foster cell
attachment. Subsequently, 2 μl PKH67-labeled EVs were added
into the plate and maintained to culture for 48 h. Next, the
medium was discarded and the cells were rinsed with PBS and
fixed in 4% paraformaldehyde for 10 min to enhance cell
permeability. Then, the paraformaldehyde was abandoned and
cells were washed with PBS, after which 1 ml 1% bovine serum
albumin (BSA) was added and cells were incubated for 20–30 min
at room temperature to reduce the staining background. The
F-actin and nucleus in the cytoskeleton were stained through
adding Alexa Fluor® 594 Phalloidin and the DAPI of appropriate
concentration. At last, the intake of EVs in blood-adherent cells
by ESCC cells was observed via a fluorescence microscope.

Co-culture of ESCC Cells and
Serum-Derived EVs
After being filtered by a 0.22 μm sterilizing filter, serum-derived
EVs (20 μg/well) were added into a plate laid with ESCC cells for
routine culture in an incubator according to the quantitative

results of a bicinchoninic acid kit (Beyotime, China). ESCC cells
were isolated for subsequent experiments after 48 h.

RNA Extraction and qRT-qPCR
For the quantification of miRNA-105-5p, total RNA was
extracted from cells, tissue samples, and EVs using RNAiso
Plus (TaKaRa, Japan) and QIAzol Lysis Reagent (Qiagen,
Hilden, Germany). Then, the total RNA was reverse-
transcribed into complementary DNA (cDNA) by using the
Superscript II Reverse Transcription Assay Kit (Invitrogen,
USA). For detection of SPARCL1 in cells and tissue samples,
total RNA was extracted from tissue samples and cells by using
TRIzol reagent (TaKaRa, Japan) and transcribed into cDNA by
using the M-MLV Reverse transcriptase Assay Kit (TaKaRa,
Japan). The concentration of RNA was measured via
NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific,
USA). qRT-PCR was performed on the ABI 7500 Real-Time PCR
system (Thermo Fisher Scientific, USA) using SYBR Prime Script
TM RT-qPCR Kit (Takara, Japan). GAPDH and U6 were used as
internal controls. The primers were displayed in Table 1. Relative
expression levels of miRNA-105-5p and SPARCL1 were analyzed
by the 2−ΔΔCt method.

Western Blot
Total proteins were isolated from ESCC cells and EVs using
radio-immunoprecipitation assay (Beyotime, China) lysis
buffer containing 1% proteinase inhibitor (Beyotime,
China). The concentration of the proteins was measured by
the BCA protein assay kit (Thermo Fisher Scientific,
United States). After denatured at high temperature, protein
samples were separated on 10% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (30 μg/lane) and
transferred onto polyvinylidene fluoride membranes
(Millipore, USA). After being blocked with 5% BSA/Tris-
buffered saline with Tween-20 (TBST) for 60 min, the
membranes were incubated with primary antibodies
overnight at 4°C. On the following day, the membranes
were washed with 1 × TBST (Solarbio, China) at room
temperature three times with 5 min for each time.
Thereafter, the membranes were reacted with horseradish
peroxidase-conjugated secondary antibody goat anti-rabbit
at room temperature for 120 min, after which the
membranes were washed with 1 × TBST in triplicate with

TABLE 1 | Primer sequences for qRT-PCR.

Genes Sequences

miRNA-105-5p Forward: 5′-TCGGCAGGTCAAATGCTCAGAC-3′
Reverse: 5′-CTCAACTGGTGTCGTGGA -3′

U6 Forward: 5′-CTCGCTTCGGCAGCACA-3′
Reverse: 5′-AACGCTTCACGAATTTGCGT-3′

SPARCL1 Forward: 5′- GCCTGGAGAGCACCAAGAGGCC -3′
Reverse: 5′- ATGGTCCCCAGCCAAAAGCCTC -3′

GAPDH Forward: 5′- GACCTGACCTGCCGTCTA-3′
Reverse: 5′-AGGAGTGGGTGTCGCTGT-3′
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20 min for each time. Finally, the electrochemiluminescence
(ECL) assay kit (Solarbio, China) was utilized for protein
bands visualization and images were captured for further
observation. The antibodies for Western blot were listed in
Table 2.

Cell Counting Kit-8 Assay
ESCC cells at the logarithmic phase were digested and then 200 μl
cells (1 × 104 cells/ml) were seeded in plates for routine
incubation. After the cells were cultured for 0, 24, 48, and
72 h, each well was supplemented with 20 μl Cell Counting
Kit-8 (CCK-8) solution (Yeasen, Shanghai, China) and the
cells were incubated in a constant-temperature incubator for
an additional 1 h. At last, the absorbance of each well at
450 nm was identified by SpectraMax M5 (Molecular
Devices, USA).

Wound Healing Assay
ESCC cells at the logarithmic phase were digested, and then 5×105

cells were seeded into plates. After single cell layers were formed,
a scratch was made on cells using the tip of a sterile pipette. After
being washed with PBS, cells were routinely cultured in FBS-free
medium. The cell migration area was photographed at 0 and 48 h
under an inverted microscope, and the cell migration rate was
calculated as: cell migration rate = (width at 0 h − width at 48 h)/
width at 0 h.

Transwell Invasion Assay
ESCC cells at the logarithmic phase were digested, and 200 μl of
cells in an FBS-free medium were then seeded into upper
Transwell chambers laid with matrix at a density of 2 × 105

cells/ml. The upper chambers were placed in plates, and the lower
chambers were added with a fresh medium containing 10% FBS.
After being cultivated at 37°C for 24 h, a soaked cotton swab was
used to remove the cells in the upper chambers, after which the
cells in the lower chambers were fixed in 4% paraformaldehyde
for 10 min and stained with 0.1% crystal violet for 15 min. Five
fields were randomly selected, photographed, and counted under
an inverted microscope.

Tumor Formation in Nude Mice
A total of 10 female BALB/C nude mice (4–6 weeks old, weighing
15–20 g) were ordered from the Shanghai Institute of Materia

Medica, Chinese Academy of Sciences (Shanghai, China). The
mice were divided into two groups with five mice in each group.
Approximately 1 × 107 ESCC cells that were diluted by 200 μl PBS
were subcutaneously injected into the left hindlimb of nude mice.
Tumor volume was monitored every 3 days. Tumor volume was
calculated with a formula of: volume= [length × width (Lin et al.,
2013)]/2 (mm3). When the tumor volume of nude mice reached
100 mm3, the serum-derived EVs (20 μg) of ESCC patients were
injected into nude mice, with an equivalent amount of PBS being
blank control. The injection was performed every 3 days with
three consecutive weeks in total. At the end of the third week, the
mice were given euthanasia. Then, the tumors were isolated and
weighed. The isolated tumors were frozen and stored in liquid
nitrogen for further analysis.

Immunohistochemistry
The tumor tissue of nude mice was fixed in 4% paraformaldehyde
and then put into a refrigerator at −4°C. Then, tumor tissue
samples were dehydrated in a graded ethanol solution,
transparently disposed by xylene, embedded in paraffin, and
sliced to about 5 μm slices. Thereafter, the slices were stained
with corresponding primary and secondary antibodies,
counterstained with hematoxylin, dehydrated, and fixed for
further observation. The antibodies for immunohistochemistry
were listed in Table 3.

Dual-Luciferase Reporter Gene Assay
The amplified wild-type (WT) and mutant (MUT) 3′UTR of
SPARCL1 were cloned into the multiple cloning sites of the
pmirGLO luciferase vector (Promega, USA) to generate
SPARCL1-WT and SPARCL1-MUT vectors. Using the
Lipofectamine 2000 reagent kit, SPARCL1-WT/SPARCL1-
MUT vectors and NC-mimic/miRNA-105-5p mimic were co-
transfected into ESCC cells. After 48 h of transfection, Firefly and
Renilla luciferase activities were evaluated using the Dual-
Luciferase Reporter Assay kit (Promega, United States). Each
transfection was repeated three times.

Statistical Analysis
Each assay underwent at least three repetitions. Statistics were
processed using GraphPad Prism seven software (La Jolla, CA,
USA). Measurement data were exhibited as mean ± standard
deviation. The differences between two groups were analyzed by
Student’s t-test, and one-way analysis of variance was adopted to
compare more than two groups. p < 0.05 was regarded as
statistically significant.

TABLE 2 | Antibodies for Western blot.

Antibodies Sources Dilution multiple Co. No

TSG101 Rabbit antibody 1:2,000 abcam (ab125011)
CD9 Rabbit antibody 1:2,000 abcam (ab92726)
CD63 Rabbit antibody 1:1,000 abcam (ab217345)
SPARCL1 Rabbit antibody 1:500 abcam (ab107533)
FAK Rabbit antibody 1:2,000 abcam (ab40794)
p-FAK Rabbit antibody 1:1,000 abcam (ab4792)
Akt Rabbit antibody 1:500 abcam (ab8805)
p-Akt Rabbit antibody 1:1,000 abcam (ab38449)
GAPDH Rabbit antibody 1:10,000 abcam (ab181602)
IgG H&L Goat anti-rabbit 1:10,000 abcam (ab6721)

TABLE 3 | Antibodies for immunohistochemistry.

Antibodies Sources Dilution multiple Co. No

SPARCL1 Rabbit antibody 1:50 abcam (ab125011)
FAK Rabbit antibody 1:250 abcam (ab40794)
p-FAK Rabbit antibody 1:200 abcam (ab4792)
Akt Rabbit antibody 1:1,000 abcam (ab8805)
p-Akt Rabbit antibody 1:200 abcam (ab38449)
IgG H and L Goat anti-rabbit 1:1,000 abcam (ab6721)
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RESULTS

MiRNA-105-5p Is Increased in ESCC Tissue
and Cells
8 and 45 DEmiRNAs were obtained from the GSE55856 chip and
TCGA-ESCCmiRNA dataset, respectively, after differential analysis
(Figures 1A,B), among which miRNA-105-5p was expressed highly
in tumor tissue. Meanwhile, miRNA-105-5p was markedly elevated
in tumor tissue in TCGA-ESCC (Figure 1C), and highmiRNA-105-
5p expression level indicated poor prognosis (Figure 1D). Hence,
miRNA-105-5p was chosen. Then, qRT-PCR result suggested that
the miRNA-105-5p level was stimulated in ESCC tissue than in
normal tissue (Figure 1E). Similarly, cell lines implicated a similar
result to tissue: miRNA-105-5p was noticeably increased in ESCC
cell lines (Figure 1F) andmost highly expressed in the TE-1 cell line.
As a result, the TE-1 cell line was chosen for subsequent experiments.
Taken together, we confirmed that miRNA-105-5p was highly
expressed in ESCC and might be a factor indicating the
unfavorable prognosis of ESCC patients.

MiRNA-105-5p Facilitates ESCC Cell
Progression
Since it was discovered that patients with high expression ofmiRNA-
105-5p had poor prognosis, we speculated that miRNA-105-5p was
a predictor for the unfavorable prognosis of ESCC. In order to verify
this speculation, firstly, miRNA-105-5p-inhibitor/miRNA-105-5p-
mimic was transfected into TE-1 cells and the transfection efficiency
was confirmed by qRT-PCR (Figure 2A). Then, CCK-8 assay results
suggested that ESCC cell viability was reduced/improved upon
miRNA-105-5p silencing/overexpression (Figures 2B,C). The
results of wound healing assay and Transwell assay uncovered
that silencing/overexpressing miRNA-105-5p inhibited/enhanced
the cell migration and invasion of ESCC (Figures 2D,E).
Collectively, the above experimental results unveiled that miRNA-
105-5p facilitated ESCC cell processes and it was likely to be an
oncogene of ESCC.

SPARCL1 is the Direct Target of
miRNA-105-5p
To gain further insight into the mechanism by which miRNA-105-
5pmodulates ESCC, the downstreammRNAofmiRNA-105-5pwas
explored. Bioinformatics databases including miRDB, mirDIP, and
TargetScan were utilized to predict the target mRNAs of miRNA-
105-5p, which were overlapped with 1,712 downregulated
DEmRNAs from the TCGA-ESCC dataset (Figure 3A). About
10 DEmRNAs that had binding sites with miRNA-105-5p were
obtained. Pearson correlation analysis uncovered that SPARCL1was
the strongest negatively correlated withmiRNA-105-5p (Figure 3B).
Meanwhile, SAPARCL1was notably decreased in tumor tissue when
compared with that in normal tissue (Figure 3C). A qRT-PCR result
showed that SPARCL1 was poorly expressed in ESCC cancer tissue
and cells, and the expression trend of miRNA-105-5p was opposite

FIGURE 1 | MiRNA-105-5p is activated in ESCC. (A) Heatmap for
DEmiRNAs in the GSE55856 miRNA chip; (B) Heatmap for DEmiRNAs in
TCGA-ESCCmiRNA dataset; (C)MiRNA-105-5p expression in TCGA-ESCC;
(D) Survival analysis of miRNA-105-5p expression in TCGA-ESCC
dataset; (E)MiRNA-105-5p expression in cancer and adjacent normal tissue;
(F) MiRNA-105-5p expression in normal human esophageal epithelial cell line
and ESCC cell lines; *p < 0.05.
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(Figures 3D,E). Therefore, we identified SPARCL1 as a potential
target of miRNA-105-5p. Firstly, we predicted the binding sequence
of miRNA-105-5p and SPARCL1 3′UTR through a bioinformatics
database (Figure 3F). WT-SPARCL1 andMUT-SPARCL1 were co-
transfected into TE-1 cells with miRNA-105-5p mimic and NC
mimic. A Luciferase activity result showed that miRNA-105-5p
overexpression decreased the luciferase activity of the WT
SPARCL1 reporter but not the MUT reporter, indicating that
SPARCL1 was the direct target of miRNA-105-5p (Figure 3G).
To further verify the regulatory relationship between miRNA-105-
5p and SPARCL1, we transfected miRNA-105-5p inhibitor/mimic
into the TE-1 cell line. The result of qRT-PCR showed that
SPARCL1 expression was significantly decreased/increased after
the overexpression/silence of miRNA-105-5p in TE-1 cells
(Figure 3H). Overall, it could be concluded that SPARCL1 was
the direct target of miRNA-105-5p.

MiRNA-105-5p Modulates ESCC Cell
Functions by Targeting SPARCL1
Rescue experiments were carried out to verify whether miRNA-
105-5p could modulate ESCC cell processes via mediating

SPARCL1. Firstly, miRNA-105-5p and SPARCL1 were
overexpressed in TE-1 cells meanwhile, and the qRT-PCR
result suggested that SPARCL1 expression in the miRNA-105-
5p-mimic + oe-SPARCL1 group was higher than that in the
miRNA-105-5p-mimic + oe-NC group (Figure 4A).
Subsequently, CCK-8 assay revealed that SPARCL1 suppressed
the proliferative ability of ESCC cells and counteracted the
promoting effect of miRNA-105-5p on ESCC cell proliferation
(Figure 4B). Similarly, wound healing and Transwell invasion
assays uncovered that the facilitating effect of miRNA-105-5p on
ESCC cell migration and invasion was attenuated by
overexpressing SPARCL1 (Figures 4C,D). Collectively, these
experiments unveiled that miRNA-105-5p could regulate
ESCC cell processes through targeting SPARCL1.

SPARCL1 Inhibits ESCC Cell Behaviors by
Modulating FAK/Akt Signaling Pathway
To observe the SPARCL1-related signaling pathway, we
performed GSEA and further discovered that SPARCL1 was
markedly enriched in FAK signaling (Figure 5A). Research
unveiled that the FAK/Akt signaling pathway is closely

FIGURE 2 |MiRNA-105-5p fosters ESCC cell progression. (A) The efficiency of silencing or overexpressingmiRNA-105-5p in ESCC cells; (B,C) Effect of silencing/
overexpressing miRNA-105-5p on cell viability; (D,E) The effect of silenced/overexpressed miRNA-105-5p on cell migratory and invasive capacities of ESCC were
assessed via wound healing assay (40×) (D) and Transwell invasion assay (100×) (E), respectively; *p < 0.05.
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associated with ESCC malignant progression (Meng et al., 2016;
Zhu et al., 2018). Hence, we examined if there was a connection
between SPARCL1 and FAK/Akt signaling. We observed that the
levels of phosphorylated FAK and phosphorylated Akt were
decreased in SPARCL1-overexpression cell lines, while total
FAK and Akt levels remained the same (Figure 5B), which
uncovered that SPARCL1 could suppress the activation of the
FAK/Akt signaling pathway. Thereafter, ESCC cells with

overexpressed SPARCL1 were processed by using p-Akt
activator SC-79 (10 μM) (Wang et al., 2017) with PBS as
control, after which the Western blot result suggested that the
activity of the FAK/Akt signaling pathway inhibited by SPARCL1
was reversed by p-Akt activator SC-79 (Figure 5C). Finally,
tumor-relevant behaviors of ESCC cells were observed in
different treatment groups, and finding that adding SC-79
promoted ESCC cell proliferation, migration, and invasion and

FIGURE 3 | SPARCL1 is the direct target of miRNA-105-5p. (A) Venn diagram of downregulated DEmRNAs and the predicted target mRNAs of miRNA-105-5p;
(B) Correlation of miRNA-105-5p and the 10 overlapping mRNAs; (C) SPARCL1 expression in TCGA-ESCC dataset; (D) SPARCL1 expression in cancer and adjacent
normal tissue; (E) SPARCL1 level in normal human esophageal epithelial cell line and ESCC cell lines; (F) Putative binding sites between miRNA-105-5p and SPARCL1;
(G) The targeting relationship between miRNA-105-5p and SPARCL1; (H) The effect of silencing/overexpressing miRNA-105-5p in ESCC cells on SPARCL1 level;
*p < 0.05, **p < 0.01.
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counteracted the inhibitory effect of SPARCL1 on ESCC cells
(Figures 5D–F). Collectively, we demonstrated that SPARCL1
was capable of repressing ESCC cell processes via inhibiting the
FAK/Akt signaling pathway.

MiRNA-105-5p in EVs can Be Transferred to
ESCC Cells
Studies indicated that exosomes and EVs could transfer miRNAs
that they carry to cancer cells (Zheng et al., 2018; Wan et al.,
2020). Accordingly, miRNA-105-5p expression was observed in
different exosomes or EVs via the EVmiRNA database, finding
that miRNA-105-5p mainly existed in serum exosomes and
microvesicles, while EVs contained exosomes and

microvesicles (Figure 6A). Hence, it was speculated that
miRNA-105-5p in EVs could be transferred to ESCC cells. In
order to verify this speculation, firstly, transmission electron
microscope and Western blot were employed to assess the
expression of EV-related proteins (TSG101, CD9, and CD63)
to identify that EVs were successfully extracted from blood
(Figures 6B,C). Then, the qRT-PCR result revealed that
miRNA-105-5p existed in both the serum EVs of ESCC
patients (case-EVs) and normal persons (control-EVs), and
miRNA-105-5p expression in the EVs of ESCC patients was
higher relatively (Figure 6D). Subsequently, Evs of ESCC patients
were labeled using PKH67, and ESCC cells were labeled by Alexa
Fluor® 594 Phalloidin and DAPI, after which the Evs and ESCC
cells were co-cultured with PBS as the blank control. After co-

FIGURE 4 | MiRNA-105-5p regulates ESCC cell proliferation, migration, and invasion by targeting SPARCL1. (A) SPARCL1 expression in TE-1 cells transfected
with NC-mimic + oe-NC, miRNA-105-5p-mimic + oe-SPARCL1, and miRNA-105-5p-mimic + oe-NC; (B–D) TE-1 cell proliferation, migration, and invasion in each
group were tested via CCK-8 assay (B), wound healing assay (×40) (C), and Transwell invasion assay (×100) (D), respectively; *p < 0.05.
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FIGURE 5 | SPARCL1 inhibits ESCC cell progression by modulating FAK/Akt signaling pathway. (A)GSEA result of SPARCL1; (B) The protein expression levels of
SPARCL1 and FAK/Akt signaling pathway-related proteins in ESCC cells upon SPARCL1 overexpression; (C) The protein expression levels of SPARCL1 and FAK/Akt
signaling pathway-related proteins in ESCC cells with an addition of p-Akt activator SC-79; (D–F) CCK-8 assay (D), wound healing assay (40×), and (E) Transwell
invasion assay (×100) (F) were carried out to evaluate whether SPARCL1 suppresses ESCC cell proliferation, migration, and invasion via FAK/Akt signaling
pathway; *p < 0.05.
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FIGURE 6 |MiRNA-105-5p in EVs can be transferred to ESCC cells. (A)Bar chart of miRNA-105-5p expression in different exosomes or microvesicles detected by
the EVmiRNA database; (B) Transmission electron microscope was used to observe the forms of serum EVs of ESCC patients and normal persons (ratio: 100 nm); (C)
Protein expression of EVs markers TSG101, CD9, and CD63 in serum EVs of ESCC patients and normal persons; (D)MiRNA-105-5p expression in serum EVs of ESCC
patients and normal persons; (E) A fluorescence microscope was employed to detect whether serum EVs of ESCC patients could be internalized by ESCC cells: I.
Alex Fluro594 phalloidin-labeled F-actin (red fluorescence); II. PKH67-labeled microvesicles (green fluorescence); III. DAPI-labeled cell nuclei (blue fluorescence); IV:
Merge; Scale bar = 50 nm; (F) MiRNA-105-5p expression in ESCC cells after ESCC cells were co-cultured with serum EVs of ESCC patients. *p < 0.05.
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culture was finished, it was confirmed via a fluorescence
microscope that the EVs of ESCC patients could be
internalized by ESCC cells (Figure 6E). At last, qRT-PCR
result indicated that miRNA-105-5p was conspicuously
increased in ESCC cells (Figure 6F). Taken together, we
confirmed that miRNA-105-5p in EVs could be transferred to
ESCC cells.

Serum EVs-DerivedmiRNA-105-5p of ESCC
Patients Promotes ESCC Cell Functions
In order to validate that EV-carried miRNA-105-5p could
facilitate ESCC cell processes after entering ESCC cells, the
ESCC cells that were co-cultured with PBS or serum EVs of
ESCC patients were screened, and then cell biological
experiments indicated that ESCC cell proliferation, migration,
and invasion were noticeably fostered after ESCC cells were co-

cultured with the serum EVs of ESCC patients (Figures 7A–C).
Collectively, these experiments proved that EVs in the blood
could promote ESCC cell progression after being internalized by
ESCC cells.

Serum EVs-Derived miRNA-105-5p Fosters
ESCC Cell Growth In Vivo Through
Targeting SPARCL1 and Regulating FAK/
Akt Signaling Pathway
ESCC cells were subcutaneously injected into the left hindlimb of
nude mice. When the tumor volume of nude mice reached
100 mm3, the serum EVs of ESCC patients were injected into
the tumor of nude mice, with an equal amount of PBS as blank
control. The injection was performed every 3 days. Three weeks
later, the growth curves of the tumors of nude mice were drawn,
and the tumors were weighed. The tumors formed by the serum

FIGURE 7 | Serum EV-derived miRNA-105-5p of ESCC patients accelerates cell processes. (A–C) CCK-8 assay (A), wound healing assay (×40), /(B) and
Transwell invasion assay (×100) (C)were performed to evaluate ESCC cell proliferation, migration, and invasion after ESCC cells were co-culturedwith PBS or serum EVs
of ESCC patients, respectively; *p < 0.05.
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EVs of ESCC patients grewmore rapidly and were larger in size than
those of the control group (Figures 8A–C). The qRT-PCR result
revealed that miRNA-105-5p upregulation after tumors were
injected with the serum EVs of ESCC patients (Figure 8D).
Thereafter, immunohistochemistry was carried out to detect the
protein levels of SPARCL1, FAK, p-FAK, Akt, and p-Akt in tumors;
the result indicated that the protein expression of SPARCL1 in
tumors injected with the serum EVs of ESCC patients was
downregulated, whereas those of p-FAK and p-Akt were
upregulated (Figure 8E). Collectively, from these experimental
results, we identified that serum EV-derived miRNA-105-5p
could foster ESCC cell growth in vivo by targeting SPARCL1 and
modulating the FAK/Akt signaling pathway.

CONCLUSION

Studies have uncovered that the dysregulation of miRNAs can affect
the progression ofmultiple cancers (Chen et al., 2020; Tan et al., 2020;
Yehia et al., 2020). Here, it was discovered that miRNA-105-5p was

prominently increased in ESCC and was likely to be an unfavorable
factor for ESCC prognosis through bioinformatics analysis. A qRT-
PCR result implicated that miRNA-105-5p was highly expressed in
ESCC. Subsequently, a series of cell biological experiments further
proved that miRNA-105-5p could promote the progression of ESCC
cells. To sum up, these experimental results validate that miRNA-
105-5p is a hopeful molecular target for ESCC treatment.

SPARCL1, also known as Hevin, MAST9, and SCI, is a family
member of the SPARC proteins in matricellular proteins (Isler et al.,
2001; Bertucci et al., 2004). Research revealed that SPARCL1 was an
adhesion molecule mediating the cell–matrix interactions and got
involved in physiological processes such as cell proliferation, cell
adhesion, muscle differentiation, and B lymphocyte maturation
(Bolshakov and Siegelbaum, 1995; Oritani and Kincade, 1998;
Claeskens et al., 2000; Maak et al., 2001). With the research on
SPARCL1 going deeper in recent years, it has been found to play a
vital role in affecting progression of cancers through being regulated
by miRNAs. For instance, targeting SPARCL1 by miRNA-539-3p
facilitates the progression of epithelial ovarian cancer cells (Gong
and Fan, 2019). Nevertheless, the role of SPARCL1 in ESCC has not

FIGURE 8 | Serum EV-derived miRNA-105-5p fosters ESCC cell growth in vivo by targeting SPARCL1 and regulating FAK/Akt signaling pathway. (A) Tumors of
nude mice that were injected with PBS or serum EVs of ESCC patients; (B) Growth curves of tumors of nude mice; (C) Tumor weight of nude mice; (D)MiRNA-105-5p
expression in tumors of nude mice; and (E) The protein expression of SPARCL1 and proteins related to FAK/Akt signaling pathway in tumors of nude mice (×200);
*p < 0.05.
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been reported yet. Herein, it was discovered thatmiRNA-105-5p had
binding sites with SPARCL1 through bioinformaticsmethods. Given
this finding, firstly, SPARCL1 expression in ESCC tissue and cell
lines was detected, finding that SPARCL1 was poorly expressed.
Meanwhile, dual-luciferase reporter assay and qRT-PCR confirmed
that miRNA-105-5p could target SPARCL1 and regulate its
expression. Additionally, a series of in vitro experiments validated
that miRNA-105-5p was capable of fostering ESCC cell progression
via mediating SPARCL1.

FAK is located in the focal adhesion that forms between cells
growing with extracellular matrix constituents. FAK can activate
the FAK/Akt signaling pathway via receiving signals from
integrin, fibrin, etc. Activated FAK can combine with Scr to
form a complex, and the Tyr397 of activated FAK can directly
combine with the SH2 domain of P13K to activate P13K.
Activated P13K is capable of activating Akt so as to regulate
cell growth (Gan et al., 2006). Currently, loads of studies have
reported that mRNA can regulate ESCC cell proliferation and
metastasis via the FAK/Akt signaling pathway. For example,
LOXL2 fosters the tumorigenesis of head and neck squamous
cell carcinoma through FAK/Akt signaling (Liu et al., 2020).
Here, the GSEA result implicated that SPARCL1 was enriched in
the FAK/Akt signaling pathway. Based on this, the Western blot
result suggested that SPARCL1 was able to suppress the FAK/Akt
signaling pathway. Thereafter, ESCC cells with SPARCL1
overexpression were processed using p-Akt activator, and cell
biological experiments were then conducted to evaluate ESCC cell
behaviors. Taken together, we proved that SPARCL1 was capable
of repressing the progression of ESCC cells through deactivating
the FAK/Akt signaling pathway.

Quite a few studies have demonstrated that EVs can be used to
treat tumors in recent years (Zheng et al., 2017; Wang et al., 2019).
Therefore, miRNA-105-5p expression was observed via the
EVmiRNA database, finding that miRNA-105-5p mainly existed
in serum exosomes and Evs. Then, the serum Evs of ESCC patients
and normal persons were obtained. qRT-PCR revealed thatmiRNA-
105-5p existed in blood and that the serum Evs of ESCC patients
could be internalized by ESCC cells, leading to elevatedmiRNA-105-
5p expression in ESCC cells, ultimately facilitating ESCC cell
behaviors. Subcutaneous transplantation xenograft models are
widely applied to the study on the treatment of tumors with
miRNAs in Evs (Wang et al., 2020; Zhao et al., 2020). In this
study, it was also confirmed that serum EV-derived miRNA-105-5p
could promote tumor growth by employing subcutaneous
transplantation tumor models in nude mice. Collectively, the

above experimental results fully verified that serum EV-derived
miRNA-105-5p can be transferred to ESCC cells to foster the
tumorigenesis of ESCC.

Altogether, we demonstrated that serumEV-derivedmiRNA-105-
5p could be transferred to ESCC cells and foster the progression of
ESCC by targeting SPARCL1 and regulating the FAK/Akt signaling
pathway. The discovery of this functional mechanism will supply a
rationale for ESCC therapy. Furthermore, how miRNA-105-5p
regulates the expression of other target genes in ESCC or in a
broad scope of other cancers remains to be further studied in the
near future. This study also had certain defects, like this study carried
out cell function verification only using one cell line, and we will use
other ESCC cell lines to further verify the results of this study.
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Few breakthroughs have been achieved in the treatment of lower-grade glioma (LGG) in
recent decades. Apart from the conventional pathological and histological classifications,
subtypes based on immunogenomics would provide reference for individualized treatment
and prognosis prediction. Our study identified four immunotypes of lower-grade glioma
(clusters A, B, C, and D) by bioinformatics methods in TCGA-LGG and two CGGA
datasets. Cluster A was an “immune-cold” phenotype with the lowest immune infiltration
and longest survival expectation, whereas cluster D was an “immune-rich” subtype with
the highest immune infiltration and poor survival expectation. The expression of immune
checkpoints increased along with immune infiltration degrees among the clusters. It was
notable that immune clusters correlated with a variety of clinical and immunogenomic
factors such as age, WHO grades, IDH1/2 mutation, PTEN, EGFR, ATRX, and TP53
status. In addition, LGGs in cluster D were sensitive to cisplatin, gemcitabine, and immune
checkpoint PD-1 inhibitors. RTK-RAS and TP53 pathways were affected in cluster D.
Functional pathways such as cytokine–cytokine receptor interaction, antigen processing
and presentation, cell adhesion molecules (CAMs), and ECM–receptor interaction were
also enriched in cluster D. Hub genes were selected by the Matthews correlation
coefficient (MCC) algorithm in the blue module of a gene co-expression network. Our
studies might provide an immunogenomics subtyping reference for immunotherapy
in LGG.

Keywords: lower-grade glioma, immunogenomics, immune clusters, glioma, tumor-immune microenvironment

INTRODUCTION

Lower-grade gliomas were previously regarded as World Health Organization (WHO) grade I and
grade II gliomas in contrast to high-grade gliomas. Nowadays, the concept of diffuse lower-grade
gliomas (LGGs), which refer to WHO grades II and III astrocytomas, oligodendrogliomas, and
oligoastrocytomas (Eckel-Passow et al., 2015; Zeng et al., 2018), was applied to better define the
slowly invasive and relatively indolent progression features. With a 10-year median survival, nearly
70% of LGG patients tend to gradually transform into high-grade glioma patients in which the tumor
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immune microenvironment (TIM) and genetic changes play vital
roles (Appolloni et al., 2019; Nejo et al., 2019). The prognosis of
LGG could hardly be predicted accurately by conventional
pathological and histological classifications; thus, new subtypes
based on immunogenomics are urgently required.

Classifications based on molecular and genetic markers had
been adapted since the 2016 WHO classification of the central
nervous system tumors (Louis et al., 2016) and were emphasized
in the 2021 version (Louis et al., 2021). Isocitrate dehydrogenase
(IDH) mutation plays an important role in altering the tumor
immune microenvironment. The decrease of PD-L1 in IDH
mutation gliomas means a strong T-cell activation (Han et al.,
2020). In LGG, oligodendroglioma and astrocytoma were further
classified based on 1p/19q co-deletion, p53 mutation, alpha-
thalassemia/intellectual disability syndrome X-linked (ATRX)
mutation, and telomerase reverse transcriptase (TERT)
promoter mutation in IDH1/2-mutant gliomas (Ohba et al.,
2020). The tumor microenvironment (TME) of glioma could
be delineated by infiltrating immunocytes and genetic landscapes.
It has been reported that the innate immune cells would be
manipulated and reprogrammed in the TME to facilitate the
tumorigenesis, progression, and spread and subsequently lead to
tumor immune evasion in gliomas (Zindl and Chaplin, 2010;
Hinshaw and Shevde, 2019). Tumor mutational burden (TMB),
which is closely correlated with immune infiltration, consists of
the base substitutions, insertion, or deletion mutations of the
whole exome. A study had classified LGG patients into two
groups based on TMB and found that the infiltration of B
lineage, CD4 T cells, CD8 T cells, neutrophils, macrophages,
and dendritic cells would lead to shorter overall survival along
with the high expression of immune checkpoints PD-1 and
CTLA-4 (Yin et al., 2020).

Immune checkpoint inhibitors had promising therapeutic
effects in several tumors (Lipson et al., 2015; Emens et al.,
2017). The inhibition of PD-1 and CTLA-4 could notably
enhance immunosurveillance and prolong the survival time in
mouse glioma models (Wainwright et al., 2014; Xu et al., 2020).
However, the clinical application remains challenging because of
the “cold phenotype” of glioma (Qi et al., 2020). Our study would
seek for the most suitable immunotyping for immune checkpoint
blocking therapy.

Here, four immune clusters of LGG based on The Cancer
Genome Atlas (TCGA) immune datasets were identified and then
verified in two Chinese Glioma Genome Atlas (CGGA) datasets.
The immune cell infiltration features, hub genes, potential drugs,
and prognosis were studied by bioinformatics methods. This
study might offer reference for immunogenomics subtyping
for individualized LGG therapy.

METHODS

Data Processing
RNA-seq data (level-3, HTseq-FPKM) and clinical information
of lower-grade glioma (LGG, grade II–III) samples were obtained
from The Cancer Genome Atlas (TCGA) dataset. A total of 481
samples were finally selected after removing samples with no

survival state, no WHO grade, recurrent tumor, reduplicated
sequencing, and whose survival time were less than 1 day. In
addition, RNA-seq and clinicopathological data were obtained
from the Chinese Glioma Genome Atlas (CGGA) website as the
validation set. A total of 332 samples with complete survival
information were chosen from the CGGA-693 dataset (CGGA-
LGG-1) and 162 samples were obtained from the CGGA-325
dataset (CGGA-LGG-2). The batch effect correction was
performed by the R package termed “SVA.”

Identification of Immune-Related Clusters
in Lower-Grade Gliomas
Single-sample Gene Set Enrichment Analysis (ssGSEA) was
conducted in the three datasets based on the expression level
of 29 immunity-associated signatures by the R package “GSVA.”
Consensus clustering was then applied to define the immune
subgroups based on the ssGSEA scores by the
“ConsensusClusterPlus” package in R. The K-means clustering
algorithm was performed with 100 resampling iterations by
random selection of 80% of the total samples to ensure the
clustering stability. The best cluster number was determined
by the consensus matrix (CM) heat maps, cumulative
distribution function (CDF) curves, and delta area score of
CDF curves. A principal component analysis (PCA) was used
to illustrate the reliability of optimal methods. Thorsson et al.
(2018) had identified six immune function subtypes by an
extensive immunogenomic analysis: wound healing (C1), IFN-
γ dominant (C2), inflammatory (C3), lymphocyte depleted (C4),
immunologically quiet (C5), and TGF-β response (C6). A Sankey
plot was applied to visualize the relationships between our four
clusters and the six identified immune functional subtypes
mentioned previously.

Features of Immune Cell Clusters in the
Immune Microenvironment of Lower-Grade
Gliomas
The Estimation of Stromal and Immune cells in Tumors using
Expression data (ESTIMATE) algorithm was used to evaluate the
LGG microenvironment (Yoshihara et al., 2013). Immune scores
and stromal scores were calculated to reveal the abundance of
infiltrating immune and stromal cells. ESTIMATE scores were
calculated for reflecting non-tumor composites. Tumor purity
was inferred by the aforementioned scores. The Kruskal–Wallis
test was used to compare differences in multiple clusters. Heat
maps were drawn by the “pheatmap” package in R.

Estimation of Immune Cell Infiltration
TheMicroenvironment Cell Populations-counter (MCP counter)
algorithm (Becht et al., 2016) was used to quantitate the
abundance of immunocytes in heterogeneous tissues by the
“MCPcounter” R package. The absolute abundances of two
stromal cells and eight immune cells were evaluated by
immune cell scores, including T cells, CD8 T cells, cytotoxic
lymphocytes, B lineage, NK cells, monocytic lineage, myeloid
dendritic cells, neutrophils, endothelial cells, and fibroblasts.
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Prediction of Potential Drugs
The SubMap analysis (Hoshida et al., 2007; Roh and Chen, 2017)
from Gene Pattern (https://www.genepattern.org/) was used to
predict the response to immune checkpoint blockade (anti-PD-1
and anti-CTLA-4 immunotherapy). In addition, the chemotherapy
response was predicted based on the public pharmacogenomics
database termed “Genomics of Drug Sensitivity in Cancer” (GDSC,
http://www.cancerrxgene.org). The half-maximum inhibitory
concentration (IC50) of each patient was estimated by the R
package “pRRophetic” with Ridge’s regression, and the accuracy
of the prediction was estimated by a 10-fold cross-validation. The
IC50 of each sample in TCGA dataset was calculated based on the
predictionmodels of bleomycin and doxorubicin, and cisplatin and
gemcitabine.

Gene Set Enrichment Analysis
The GSEA algorithm was used to investigate the biological
functions and pathways of clusters A and D, with C2:CP
KEGG gene sets from MSigDB as the reference gene sets.
False discovery rate (FDR) < 0.05 was the screening threshold.

Weighted Gene Co-Expression Networks
Analysis and Protein–Protein Interaction
Networks Analysis
A weighted gene co-expression networks analysis (WGCNA)
algorithm was used to mine the synergistically expressed gene

modules. Immune-related genes from the ImmPort dataset
(https://www.immport.org/) were classified into different
modules which were significantly correlated with the four
immune clusters by the R package “WGCNA.” Samples were
clustered by a hierarchical clustering algorithm implemented in
the R function “hclust.” The soft thresholding power β = 3 was
selected by the R function “pickSoftThreshold” (scale free R2 = 0.
85). The expression matrix was converted into the adjacent matrix
and then into the topological matrix for gene clustering. An average
linkage hierarchical cluster approach was used to cluster genes into
a dendrogram. The STRING database (Szklarczyk et al., 2011) was
explored to construct the protein–protein interaction (PPI)
network. In the PPI gene network of the target module, hub
genes were the top ten genes ranked by the MCC algorithm of
“cytoHubba” plugin in Cytoscape 3.8.0. In addition, the survival
curves based on the best cut-off value of hub genes were drawn by
the “survminer” package in R.

Statistical Analysis
Student’s t-test was applied for normal distributions, and the
Mann–Whitney U-test was performed for nonparametric
distribution. Chi-square or Fisher’s exact tests were used for
categorical data. Kaplan–Meier curves and log-rank tests were
used to evaluate the survival time of different immune clusters.
The nonparametric Kruskal–Wallis (KW) test was used to
analyze the difference in IC50 in different clusters. The
Benjamini–Hochberg procedure was applied to control the

FIGURE 1 | Consensus clustering results in TCGA-LGG cohorts. (A) Consensus clustering matrix of k = 4 as the optimal cluster number. (B) CDF curves of the
consensus score from k = 2–9. (C) Delta area under the CDF curve. (D) Principal component analysis for the ssGSEA scores of four clusters. Each subgroup was
distinguished by different colors. (E) Sankey diagram to visualize the relationships between our four clusters and the six identified immune function subtypes.
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false discovery rate (FDR) for multiple testing. p < 0.05 was
considered statistically significant (* represented p < 0.05, **
referred p < 0.01, and *** referred p < 0.001).

RESULTS

Identification of Four Immune-Related
Clusters in Lower-Grade Gliomas
Unsupervised consensus clustering was applied to explore a novel
immune classification of LGGs based on the ssGSEA scores of
TCGA dataset. The optimal clusters number was found to be four

with maximal consensus within clusters and minimal ambiguity
among clusters (Figures 1A–C). PCA verified that the ssGSEA
scores could completely be distinguished into four subtypes
which were referred to as cluster A, cluster B, cluster C, and
cluster D in TCGA dataset (Figure 1D). The clustering results
were the same in CGGA-1 (Supplementary Figure S1A) and
CGGA-2 datasets (Supplementary Figure S1B). The Sankey
diagram revealed the immune function characteristics of the
four clusters (Figure 1E). The majority of clusters A and B
were related to the C5 function of “Immunologically Quiet.”
Cluster D was related to the C4 function of “Lymphocyte
Depleted.”

FIGURE 2 | Immune characteristics of the four clusters in the TCGA dataset. (A) Heat map of the four immune clusters based on ssGSEA scores. (B) Stromal
scores, (C) immune scores, and (D) tumor purity of different clusters. (E–J) Violin plots for the immune checkpoint gene expressions of PDCD1, CD274, PDCD1LG2,
CTLA-4, LAG3, and HAVCR2 in different clusters.
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Landscape of the Four Clusters in the
Tumor Immune Environment in
Lower-Grade Gliomas
We identified four immune clusters and their immune characteristics
in TCGA, CGGA-1, andCGGA-2 datasets (Figures 2A, 3A, 4A) were
shown in the heat maps. Cluster D showed the highest degree of
immune infiltration and it was followed by clusters C, B, and A.
Cluster D was considered the “immune-rich” phenotype with the
highest enrichment scores and the least tumor purity while cluster A
was the opposite which was regarded as an “immune cold” phenotype
(Figures 2A–D, Figures 3A–D, Figures 4A–D). Apart from that,
clusters A and B could be seen as a “low-immune infiltration”
subgroup whereas clusters C and D were considered as a “high-

immune infiltration” subgroup. The expression of the immune
checkpoint genes PDCD1 (PD-1), CD274 (PD-L1), PDCD1LG2
(PD-L-2), CTLA-4, HAVCR2, and LAG3 which played a vital role
in the oncogenesis and progression of LGG were expressed in the
following order: D > C > B > A (Figures 2E–J, Figures 3E–J,
Figures 4E–J).

Clinical Features and Gene Mutation
Characteristics of the Four Immune
Clusters
To evaluate the clinical features and gene mutation
characteristics among the four immune clusters, age, gender,

FIGURE 3 | Immune characteristics of the four clusters in the CGGA-1 dataset. (A) Heat map of the four immune clusters based on ssGSEA scores. (B) Stromal
scores, (C) immune scores, and (D) tumor purity of different clusters. (E–J) Violin plots for the immune checkpoint gene expressions of PDCD1, CD274, PDCD1LG2,
CTLA-4, LAG3, and HAVCR2 in different clusters.
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tumor grade, IDH1 (R132) status, IDH2 R172 status, PTEN
status, EGFR status, ATRX status ,and TP53 status in TCGA
dataset were counted (Table 1; Figure 5). In clusters A, C, and
D, people aged more than 40 years accounted for more
proportion, whereas those younger than 40 years were more
common in cluster B. WHO grade II glioma tended to be
common in the “low-immune infiltration” subgroup (clusters
A and B), whereas the “high-immune infiltration” subgroup
(clusters C and D) counted more in WHO grade III glioma. The
frequency of IDH1 (R132) mutation was much higher in the
“low-immune infiltration” subgroup than the “high-immune
infiltration” subgroup. The frequency of PTEN and EGFR

mutations was significantly higher in cluster D, which had
the highest immune infiltration. In clusters B and C, which
had mild immune infiltration changes, ATRX mutation
frequencies were higher than those in clusters with extreme
immune infiltration changes (clusters A and D). TP53 mutation
was common in cluster B. Gender and IDH2 (R172) mutation
status were not significant covariates in the immune
classification. In addition, the “low-immune infiltration”
subgroup (clusters A and B) showed longer overall survival
than the “high-immune infiltration” subgroup (clusters C and
D) (Figure 6), indicating that immune infiltration of LGG
played a negative role in the prognosis.

FIGURE 4 | Immune characteristics of the four clusters in the CGGA-2 dataset. (A) Heat map of the four immune clusters based on ssGSEA scores. (B) Stromal
scores, (C) immune scores, and (D) tumor purity of different clusters. (E–J) Violin plots for the immune checkpoint gene expressions of PDCD1, CD274, PDCD1LG2,
CTLA-4, LAG3, and HAVCR2 in different clusters.
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TABLE 1 | Correlations among the four immune clusters and clinical characteristics in the TCGA-LGG dataset.

Covariates Cluster Total A B C D p value

Age <40 221 (45.95%) 84 (43.3%) 85 (54.49%) 28 (45.16%) 24 (34.78%) 0.035
≥40 260 (54.05%) 110 (56.7%) 71 (45.51%) 34 (54.84%) 45 (65.22%)

Gender FEMALE 214 (44.49%) 95 (48.97%) 60 (38.46%) 28 (45.16%) 31 (44.93%) 0.2738
MALE 267 (55.51%) 99 (51.03%) 96 (61.54%) 34 (54.84%) 38 (55.07%)

Grade G2 230 (47.82%) 107 (55.15%) 83 (53.21%) 28 (45.16%) 12 (17.39%) 0
G3 251 (52.18%) 87 (44.85%) 73 (46.79%) 34 (54.84%) 57 (82.61%)

IDH1 R132 status Mutation 368 (76.51%) 161 (82.99%) 135 (86.54%) 37 (59.68%) 35 (50.72%) 0
Wild 113 (23.49%) 33 (17.01%) 21 (13.46%) 25 (40.32%) 34 (49.28%)

IDH2 R172 status Mutation 20 (4.16%) 12 (6.19%) 6 (3.85%) 1 (1.61%) 1 (1.45%) 0.2292
Wild 461 (95.84%) 182 (93.81%) 150 (96.15%) 61 (98.39%) 68 (98.55%)

PTEN status Mutation 29 (6.03%) 5 (2.58%) 8 (5.13%) 4 (6.45%) 12 (17.39%) 2.00E-04
Wild 452 (93.97%) 189 (97.42%) 148 (94.87%) 58 (93.55%) 57 (82.61%)

EGFR status Mutation 30 (6.24%) 7 (3.61%) 6 (3.85%) 6 (9.68%) 11 (15.94%) 0.001
Wild 451 (93.76%) 187 (96.39%) 150 (96.15%) 56 (90.32%) 58 (84.06%)

ATRX status Mutation 174 (36.17%) 45 (23.2%) 83 (53.21%) 26 (41.94%) 20 (28.99%) 0
Wild 307 (63.83%) 149 (76.8%) 73 (46.79%) 36 (58.06%) 49 (71.01%)

TP53 status Mutation 216 (44.91%) 66 (34.02%) 92 (58.97%) 29 (46.77%) 29 (42.03%) 1.00E-04
Wild 265 (55.09%) 128 (65.98%) 64 (41.03%) 33 (53.23%) 40 (57.97%)

FIGURE 5 | Heat map of clinical features and gene mutation. Characteristics of the four immune subtypes in the TCGA-LGG dataset.

FIGURE 6 | Kaplan–Meier survival curves of the four clusters in the (A) TCGA dataset, (B) CGGA-1 datasets, and (C) CGGA-2 datasets.
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Comparison of Immune and Stromal Cells
Among the Four Clusters
To explore the differential distribution of immunocytes and
stromal cells in tumor immunity clusters, the MCPcounter
algorithm was used to calculate the contents of two stromal
cells and eight immune cells in the four clusters in TCGA,
CGGA-1, and CGGA-2 datasets (Figures 7A–C). Immune cell
scores of CD8 T cells, B lineage, NK cells, myeloid dendritic
cells, endothelial cells, and fibroblasts in the “high-immune
infiltration” subgroup (clusters C and D) were significantly
higher than those in the “low-immune infiltration” subgroup
(clusters A and B). Then, the correlation landscape of
immunocytes was characterized to compare the relative
subpopulations of infiltrating immune cells and immune
scores among the four cluster patterns (Figure 7D). Cox
regression analysis of the 10 immune cells in TCGA, CGGA-
1, and CGGA-2 datasets are shown in Supplementary Figure
S2, revealing the prognostic risk factors of infiltrating
immunocytes.

Therapeutic Potential of Different Immune
Clusters
We compared the expression profiles of the four immune
clusters in TCGA datasets by the Subclass Mapping
algorithm which assessed the response to anti-PD-1 and anti-

CTLA-4 therapies. A significant correlation was observed when
comparing cluster D with the PD-1 response group (Bonferroni-
corrected p = 0.001, Supplementary Figure S3A). It revealed
that cluster D might have a better response to anti-PD-1 therapy
while no significant correlation of anti-CTLA-4 therapy was
observed in all the clusters. The “pRRophetic” algorithm was
applied to evaluate the sensitivity of four common chemical
drugs: cisplatin, bleomycin, doxorubicin, and gemcitabine for
the four immune clusters. A lower IC50 value would indicate a
better sensitivity in the prediction models. For bleomycin and
doxorubicin, the “low-immune infiltration” subgroup (clusters
A and B) was more sensitive than the “high-immune
infiltration” subgroup (clusters C and D). For cisplatin and
gemcitabine, cluster D was the most sensitive and cluster A was
the least sensitive compared with the other clusters (Figures
8A–D). Moreover, to compare the accuracy of the four immune
clusters, prognosis signatures in other references were used to
compare the C-index. The results were also exciting: in the
C-index for predicting the LGG survival possibility, our
immune clusters showed better predictive value than other
signatures (Maimaiti, Aierpati et al., 2022; Maimaiti, Aierpati
et al., 2021) (0.813 > 0.774 > 0.712 > 0.662, Supplementary
Figure S3B).

Gene Set Enrichment Analysis
A GSEA analysis was performed to screen the correlated
biological pathways in immune clusters A and D. Cluster D

FIGURE 7 | Immune cells scores of the four subtypes in 10 human immunocytes using the MCPcounter algorithm. (A) TCGA, (B) CGGA-1, and (C) CGGA-2
cohorts showed significantly different immune cell populations among the four subtypes. (D) Intrinsic correlation between infiltrating immunocytes and immune scores.
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was enriched in Allograft rejection, complement and
coagulation cascades, cytokine–cytokine receptor interaction,
graft versus host disease, antigen processing and presentation,
cell adhesion molecules (CAMs), ECM-receptor interaction,
and focal adhesion in TCGA, CGGA-1, and CGGA-2
datasets. Enrichment results of cluster A were not significant
under the strict FDR <0.05 threshold in all the three datasets
(Figure 9).

Mutation Landscapes in Lower-Grade
Gliomas
Tumor mutational burden of coding errors is reported to
have a certain correlation with the tumor immune
microenvironment. We explored this correlation of
different immune clusters in TCGA-LGG datasets (Figures
10A–D). The frequency of IDH1 missense mutations in the
“low-immune infiltration” subgroup was higher than that in

FIGURE 8 | Sensitivity of chemotherapeutics in different immune clusters. Differences in IC50 of (A) bleomycin, (B) cisplatin, (C) doxorubicin, and (D) gemcitabine
were estimated among the four immune clusters.

FIGURE 9 |GSEA enrichment analysis for clusters A and D in (A) TCGA, (B) CGGA-1, and (C) CGGA-2 datasets. No significant enrichment was found in cluster A
with a threshold of FDR <0.05.
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the “high-immune infiltration” subgroup (80 and 87% in
clusters A and B, 61 and 43% in clusters C and D). TP53
mutations were higher in clusters B (52%) and C (49%) than
those in clusters A (29%) and D (36%). Meanwhile, most of
them were missense mutations. The CIC missense mutation
was high in cluster A. ATRX mutations including missense
mutations, nonsense mutations, and multi-hit were at a high
frequency in clusters B and C. TTN, EGFR, and ATRX
mutations were common in the “high-immune infiltration”
subgroup. PTEN, KEL, and PLK3CA mutations were higher
in cluster D. the TP53 pathway was highly affected in cluster

A and RTK-RAS and TP53 pathways were affected in cluster
D (Figures 10E,F).

Weighted Gene Co-Expression Network
Analysis and the Immune Characteristics of
Hub Genes
The WGCNA networks of immuno-related genes with immune
infiltrating clusters were constructed. The optimal soft
thresholding power β was selected (Figures 11A, Figure 9)
and three modules were obtained (Figures 11B,C). Red, blue,

FIGURE 10 |Mutation landscapes of immune clusters. (A)Gene mutation landscape in cluster A, (B) cluster B, (C) cluster C, and (D) clusterD. Pathways affected
in (E) cluster A and (F) cluster (D).

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 89486510

Zhu et al. Immune Clusters in Lower-Grade Glioma

36

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


and green modules were positively correlated with the “high-
immune infiltration” subgroup (clusters C and D) and negatively
correlated with the “low-immune infiltration” subgroup (clusters
A and B), p < 0.05 was used as the threshold. The turquoise
module was positively correlated with clusters C and D and
negatively correlated with cluster A. The brown module was
positively correlated with cluster A and negatively correlated with
clusters B and D. Pink and yellow modules were positively
correlated with cluster B and negatively correlated with cluster
A. In the blue module, which was most correlated with cluster D,
the top ten hub genes selected by the MCC algorithm in the PPI
network were CD28, CD8A, CSF2, GZMB, IFNG, IL15, IL2,
IL2RA, IL7R, and PRF1(Figure 11D). Hub genes were positively
correlated with most of the immune cells and immune functions,
such as HLA, CCR, etc., (Figure 11E). A survival analysis showed

that high expression of CD28, CD8A, IFNG, IL2RA, IL7R, IL15,
and PRF1 had a poor prognosis whereas a better prognosis was
found in IL2 and GZMB (Figure 12).

DISCUSSION AND CONCLUSION

The prognosis of LGG patients had few significant improvements
in the past 30 years. Individualized therapeutic schedules were
because of the natural intrinsic heterogeneity of LGG (Deng et al.,
2020). Li et al. (2021) provided a metabolic signature-based
subgrouping method for LGG and Zhou et al. (2021) divided
LGG into three clusters based on a tertiary lymphoid structure to
provide potential treating options. Since the existence of an
afferent system between the brain and peripheral immune

FIGURE 11 |Weighed co-expression analysis of immuno-related genes in the TCGA cohort. (A) Selection of soft thresholding power (B)Gene dendrogram and the
correlation modules. (C) Heat map of module-trait relationships. (D) Hub genes and their internal correlation network. (E) Correlation heat map for hub genes and
immune gene sets.
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system had been demonstrated (Qi et al., 2020), immunotherapy
would be a promising strategy for its ability to penetrate the
blood–brain barrier (Xu et al., 2020). Wu et al. (2020) classified
diffuse LGGs into three immunological subtypes and found that
the high lymphocytic and macrophage M2 infiltrate subtype
indicated a worse prognosis. The immune microenvironment
of LGG remained complicated. We studied the correlations
between immunogenomic changes and immunity infiltration
features in LGG to identify proper immune clusters and hub
genes for precision treatment.

Our study identified four immune clusters in TCGA dataset
and they were verified in two CGGA datasets. Cluster A, which
had the lowest immune infiltration, was regarded as an “immune
cold” phenotype. Clusters A and B could be considered a “low-
immune infiltration” subgroup and both of them were closely
correlated with “Immunologically Quiet” (C5) functional
subtypes. Clusters C and D were considered the “high-
immune infiltration” subgroup when cluster D was inferred as
an “immune-rich” phenotype with the highest immune
infiltration degree. In general, the expression of immune
checkpoints such as PDCD1, CD274, PDCD1LG2, CTLA-4,
LAG3, and HAVCR2 increased along with the order (cluster
D > C > B > A), indicating higher hazards of immune escape in
high-immune infiltration clusters. LGGs in clusters A and B
tended to have a lower WHO grade, higher IDH1 mutation,
and better overall survival than those in the “high-immune
infiltration” subgroup. The LGGs in “immune-rich” cluster D
showed significant PTEN and EGFR mutation frequencies and
notable sensitivity to anti-immune checkpoint PD-1 therapy and
the chemotherapy of cisplatin and gemcitabine. On the contrary,
LGGs in the “low-immune infiltration” subgroup (clusters A and
B) were more sensitive to bleomycin and doxorubicin. The results
would provide potential individualized treatment
recommendations for LGGs. Cluster D was enriched in KEGG
pathways such as cytokine–cytokine receptor interaction, antigen

processing and presentation, cell adhesion molecules (CAMs)
and ECM-receptor interaction, reminding us that different
immunophenotypes may be caused by changes in the
aforementioned pathways. Meanwhile, RTK-RAS and TP53
pathways were affected in cluster D. In the blue module of
WGCNA networks, CD28, CD8A, CSF2, GZMB, IFNG, IL15,
IL2, IL2RA, IL7R, and PRF1 were selected as the hub genes which
were closely correlated with most of the immune cells. Seven of
them were correlated with a poor prognosis, two of them were
protective prognostic factors and one of them had no significant
association with prognosis.

An immune clustering analysis of our study indicated that
high-immune infiltration would lead to a worse prognosis with
immune checkpoint activation. This distinct feature might result
from the immunocyte recoding by cytokines and chemokines in
the LGG microenvironment (Hinshaw and Shevde, 2019).
Immunocytes were turned into tumor-promoting phenotypes
and conversely promoted tumor growth and immune evasion.
In addition, the relatively lower IDH1mutation and higher PTEN
and EGFR mutation frequency in high immune infiltration
clusters also supported the aforementioned inference.
Although LGG patients in cluster D would suffer poor
prognosis expectations, they might benefit from immune
checkpoint PD-1 inhibitors and chemotherapeutic drugs of
cisplatin and gemcitabine. Cisplatin and gemcitabine had
shown encouraging tolerance and efficacy in clinical trials
(Gertler et al., 2000; Massimino et al., 2002; Massimino et al.,
2005; Hall et al., 2019). The TME in LGG appears to be different
from other solid tumors because of the presence of the
blood–brain barrier or properties of macrophages. In the
present research, the M2-type macrophage was significantly
enriched in primary LGG, and the proportions of
macrophages can still constitute up to 50% in the TME of
LGG. Some researchers demonstrated that high levels of M2-
type macrophages were defined as the adverse prognostic factors

FIGURE 12 | Overall survival analysis of (A) CD8A, (B) CD28, (C) CSF2, (D) IFNG, (E) IL2RA, (F) IL15, (G) IL7R, (H) PRF1, (I) IL2, and (J) GZMB.
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in LGG. Conversely, high levels of M1-type macrophages and
CD8+T cells were identified as protective factors. Apart from
that, the revolution of drug delivery methods in nanoplatforms
and liposomes had shown a promising future to precisely deliver
the individualized chemotherapeutic drugs for LGGs (Shein et al.,
2016; Renault-Mahieux et al., 2021; Wang et al., 2021). Most of
the hub genes correlated with cluster D had the function of
immunocyte activation. CD28 is involved in T-cell activation, cell
proliferation induction, and T-cell survival. CD8 mediates
efficient cell–cell interactions within the immune system.
IFNG can activate effector immune cells and enhance antigen
presentation. IL2RA is involved in the regulation of immune
tolerance by controlling regulatory T cells. IL7R mediates the
proliferation of lymphoid progenitors. IL15 stimulates the
proliferation of T-lymphocytes. PRF1 plays a key role in
defence against neoplastic cells. IL2 can stimulate B-cells,
monocytes, lymphokine-activated killer cells, natural killer
cells, and glioma cells. GZMB mediates target cell death and
CSF2 promotes the production, differentiation, and function of
granulocytes and macrophages. Although the majority of hub
genes play a role in tumor promotion in the microenvironment of
LGG, which was consistent with the poor prognosis expectation
in cluster D, two hub genes termed IL2 and GZMB exerted a
protective role in prognosis. It revealed the complex inherent
interconnections of immunogenomic changes.

There are still some limitations in our study. First, we were
unable to conduct an external validation in native cohorts.
Second, we only used the ssGSEA and MCPcounter
algorithms to corroborate our findings, and we will need to
conduct assays to confirm our conclusion in the future. In
conclusion, immunotyping of LGGs revealed the heterogeneity
of the immune microenvironment and genomics changes. Our

classifications would be beneficial for individualized prognostic
prediction and anti-tumor therapy.
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Objectives: This study aimed to identify novel biomarkers for osteoarthritis (OA) and
explore potential pathological immune cell infiltration.

Methods: We identified differentially expressed genes (DEGs) between OA and normal
synovial tissues using the limma package in R, and performed enrichment analyses to
understand the functions and enriched pathways of DEGs. Weighted gene co-expression
network analysis (WGCNA) and distinct machine-learning algorithms were then used to
identify hub modules and candidate biomarkers. We assessed the diagnostic value of the
candidate biomarkers using receiver operating characteristic (ROC) analysis. We then
used the CIBERSORT algorithm to analyze immune cell infiltration patterns, and the
Wilcoxon test to screen out hub immune cells that might affect OA occurrence. Finally, the
expression levels of hub biomarkers were confirmed by quantitative reverse transcription-
polymerase chain reaction (qRT-PCR).

Results:We identified102up-regulated genes and110down-regulated genes. The functional
enrichment analysis results showed that DEGs are enriched mainly in immune response
pathways. Combining the results of the algorithms and ROC analysis, we identified GUCA1A
andNELL1 as potential diagnostic biomarkers for OA, and validated their diagnosibility using an
external dataset. Construction of a TF-mRNA-miRNA network enabled prediction of potential
candidate compounds targeting hub biomarkers. Immune cell infiltration analyses revealed the
expression of hub biomarkers to be correlated with CD8 T cells, memory B cells, M0/M2
macrophages, resting mast cells and resting dendritic cells. qRT-PCR results showed both
GUCA1A and NELL1 were significantly increased in OA samples (p < 0.01). All validations are
consistent with the microarray hybridization, indicating that GUCA1A and NELL1 may be
involved in the pathogenesis of OA.

Conclusion: The findings suggest that GUCA1A and NELL1, closely related to OA
occurrence and progression, represent new OA candidate markers, and that immune
cell infiltration plays a significant role in the progression of OA.
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INTRODUCTION

Characterized by cartilage degeneration, sclerosis of subchondral
bone and osteophyte formation, osteoarthritis (OA) is the most
common degenerative joint disease (Mathiessen and Conaghan,
2017). Patients with OA experience chronic pain, swelling,
malformation and joint stiffness, which may lead to
progressive disability and deterioration of patients’ quality of
life (Parkinson et al., 2017). It is estimated that approximately
9.6% of men and 18% of women worldwide aged 60 years or over
suffer fromOA, and by 2030 nearly 67 million people living in the
United States will have been diagnosed with the disease
(Hootman and Helmick, 2006; Li et al., 2017). Unfortunately,
current OA therapies cannot prevent or reverse the progress of
the disease, and are limited to inhibiting pain and alleviating
inflammation (Seed et al., 2011). Advanced patients undergo joint
replacement surgery.

Considerable attention has been given to identifying
promising biomarkers for disease diagnosis and therapy
through transcriptomic and microarray analyses (Demircioğlu
et al., 2019; Carr et al., 2020). A noteworthy study has found that
the m6A demethylase FTO, which plays a tumor-suppressing
role, may be a prospective risk biomarker for thyroid cancer (Tian
et al., 2020). Based on the Gene Expression Omnibus (GEO)
database, GZMA, PRC1 and TTK were enriched in the innate
immune cell-mediated immune response and immune-related
biological processes, validating them as potential targets for
rheumatoid arthritis (RA) therapy (Cheng et al., 2021). It has
also been reported that IFI27 may play a vital role in the
occurrence of systemic lupus erythematosus (SLE), and may
be a possible target for SLE diagnosis (Zhao et al., 2021).
Therefore, it is vital to explore the molecular mechanisms
underlying the development and progression of OA, and to
identify new and effective biomarkers for its diagnosis and
treatment.

In this study, we first acquired differentially expressed genes
(DEGs) in OA and normal synovial tissue by mining four GEO
datasets (GSE55235, GSE55457, GSE12021 andGSE82107). Next, we
conducted a series of enrichment analyses of functions and pathways
for these DEGs. To evaluate the key module and to screen out hub
biomarkers highly correlated with OA, we performed weighted gene
co-expression network analysis (WGCNA) and applied three
machine-learning algorithms: least absolute shrinkage and
selection operator (LASSO), support vector machine-recursive
feature elimination (SVM-RFE) and logistic regression. We
validated the selected hub genes using GEO datasets (GSE89408),
and verified their diagnostic value with receiver operating
characteristic (ROC) curves. A TF-mRNA-miRNA network was
then constructed, and potential candidate compounds targeting
the biomarkers were predicted. We used the CIBERSORT
algorithm and the Wilcoxon test to analyze the difference in
immune infiltration between OA and normal tissues and the
relationship between biomarkers and infiltrating immune cells,
and to identify hub immune cells that might affect OA. Finally,
the expression levels of hub biomarkerswere confirmed by qRT-PCR.
This study strengthens understanding of the mechanisms of
development and pathogenesis in OA at the transcriptome level,

and provides new insights into potential biomarkers for diagnosis and
treatment of OA.

MATERIALS AND METHODS

Data Collection
Gene expression profiles of OA and normal synovial tissue were
downloaded from the GEO database (https://www.ncbi.nlm.nih.
gov/geo/) (Barrett et al., 2013). To be eligible for selection, the
profiles must have been produced with Homo sapiens expression
profile analysis using array, and be of OA or normal synovial
tissue from joint synovial biopsies, the datasets must contain
more than five samples and complete sample information, and
each subject had to have one biopsy sample analyzed without
duplication. Three GPL96 datasets (GSE55235, GSE55457 and
GSE12021), and GSE82107 based on the GPL570 platform, were
selected as test sets, including 40 OA samples and 36 normal
samples. We downloaded the original GSE89408 count data, a
dataset based on the GPL11154 platform, as a validation set (22
OA and 28 normal synovial tissue samples). Patients’ clinical
features are detailed in Supplementary Material S1.

Data Processing and Identification of DEGs
The datasets were combined, and the sva package (Leek et al.,
2012) was used to normalize the original data (Supplementary
Figure S1). The DEGs were screened in the batch calibrated test
set using the limma package (Ritchie et al., 2015). We selected |
log2 fold change FC | > 1 and adj. p. value ＜ 0.05 as truncation
criteria.

Functional Enrichment Analyses
The GOplot program package (Walter et al., 2015) was used to
visualize the gene ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway and disease ontology (DO) analysis.
Terms and pathways with p < 0.05 were considered statistically
significant. We used the clusterprofiler R package (Yu et al., 2012) to
conduct GSEA on the DEGs using sequencing data, and the GSVA R
program (Hänzelmann et al., 2013) to identify pathways most closely
associated with DEGs, with p values <0.05 being considered
statistically significant. The h. all.v7.4. symbols gene set was
downloaded from MSigDB (Liberzon et al., 2015), and GSEA
analysis was performed on the gene set and gene expression
matrix to explore possible regulatory pathways involved.

WGCNA Network Analysis and Key Module
Identification
A co-expression network targeting DEGs was constructed using
the WGCNA package (Langfelder and Horvath, 2008). In
WGCNA analysis, all DEGs with an adjusted p value <0.05
and | log2 fold change FC | > 1 in the OA and normal
samples were taken as inputs for topology calculation, with
soft threshold values ranging from 1 to 20. The β value is
determined from the lowest value near scale-free network, and
the optimal soft threshold was determined to be 8. Following the
optimal soft threshold, the relation matrix was converted into an
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adjacency matrix and then into a topological overlap matrix
(TOM). We carried out average link hierarchy clustering, and
classified relevant modules according to the TOM, with the
number of genes in each module being no less than 50.
Similar modules were then merged. The Pearson method was
used to calculate correlation between the combined module and
OA, and hub modules and potential hub genes relating to clinical
traits were identified.

Machine Learning-Based Hub Biomarker
Screening
Machine-learning classification algorithms are increasingly being
used to predict feature genes associated with diseases. LASSO
(Engebretsen and Bohlin, 2019) is a regression analysis method
for both gene selection and gene classification. In order to avoid
collinearity generated by high-dimensional data, redundant genes
were eliminated using LASSO’s 10-fold cross validation
(GLMNET package) on the genes screened by WGCNA. SVM-
RFE (Yoon and Kim, 2009; Lin et al., 2012) is a machine-learning
method based on the support vector machine (SVM), which finds
the optimal variable by subtracting the feature vector generated
by SVM. The SVM-RFE method was then used on the genes
processed by LASSO for further screening to produce the optimal
number of genes, while minimizing classification errors and
overfitting. We then used univariate logistic regression analysis
to screen the genes, with p < 0.001 as the threshold. Finally, the
DEGs, SVM-RFE-screened genes and logistic regression-
screened genes were overlapped to identify hub biomarkers.

Validation of Hub Biomarkers
Expression analysis of the hub biomarkers was performed on the
test set. The ROC curves were then plotted using the pROC R
package (Robin et al., 2011), and the area under the curve (AUC)
was calculated separately to evaluate the predictive utility of
identified hub genes. Values of AUC >0.7 and p < 0.05
indicated that the genes were highly predictive for OA
diagnosis. The validation set GSE89408 based on the
GPL11154 platform was used to verify the analysis results.

Construction of Regulatory Network
The mirDIP database (Tokar et al., 2018) was used to predict the
potential miRNA of targeted hub genes and identify the miR
regulatory network. TF-hub gene interactions with p values <0.05
were selected from the TRRUST database (Han et al., 2018) to
establish upstream regulatory networks. In addition, compounds
with potential relationships to hub genes were searched in the
Comparative Toxicogenomics database (Davis et al., 2019).
Finally, the hub genes regulatory network was visualized based
on the Networkanalyst database (Zhou et al., 2019).

Analysis of Immune Cell Infiltration,
Correlations Between Hub Genes and
Immune Cell Infiltration
The CIBERSORT algorithm (Chen et al., 2018) was used to
calculate the proportions of different immune cell types,

according to the expression levels of immune cell-related
genes. The output results for 22 infiltrated immune cell types
were integrated to generate an immune cell component matrix for
analysis. Relationships between hub biomarkers’ expression levels
and immune cell infiltration were examined using Pearson’s rank
correlation analyses, conducted and visualized with the ggpubr R
package.

Identification of Hub Immune Cells
The Wilcoxon test was used to investigate differences in immune
cell content between different tissues. The random forest program
package was used to construct a random forest tree of the 22 kinds
of immune cells to identify the point with the minimum error,
and the immune cells were ranked by importance. Genes with
importance scores greater than two were selected for screening.
The identified immune cells were overlapped to screen out hub
immune cells that might affect the occurrence of OA.

qRT-PCR Validation of Hub Biomarkers
In order to confirm the results of bioinformatics analysis, we
collected synovial tissues from 10 OA patients and 10 patients
without OA for qRT-PCR verification. The study protocol was
approved by the ethics committee of Qilu Hospital of
Shandong University, and all patients signed informed
consent. Total RNA was extracted from synovial tissue
using TRIzol® Reagent (15596026, Thermo Fisher Scientific,
Inc.). An qRT-PCR kit (K1005S, Promega Biotech Co.) was
used to synthesize the first strand of cDNA from equal
amounts of total RNA samples, and real-time fluorescence
PCR was performed with SYBR Green Realtime PCR Master
Mix (QPK-201, TOYOBO Co., Ltd., Kita-ku, Osaka, Japan)
according to the manufacturer’s protocol. We selected ß-actin
as the inner control and employed the 2−ΔΔCt method to
quantify the relative mRNA level. The sequences of NELL1
were as follows: TCACAGGAAGCCACTGCGAGAA (sense)
and CCATCGTCATGGAAACCGCTTC (antisense). The
sequences of GUCA1A were as follows: GCAGAGGAGTTC
ACCGATACAG (sense) and GTCAGTGTGTCCAGGAGC
ATCT (antisense). The sequences of ß-actin were as
follows: CACCATTGGCAATGAGCGGTTC (sense) and
AGGTCTTTGCGGATGTCCACGT (antisense). One-way
analysis of variance was used for the statistical analysis,
and p < 0.05 indicated a significant difference.

RESULTS

Differentially Expressed Genes Between OA
and Normal Synovial Tissues
We analyzed the DEGs of 40 OA and 36 normal synovium
samples in the test set (GSE55235, GSE55457, GSE12021 and
GSE82107 datasets), and identified a total of 212 DEGs in the OA
samples compared with the normal group (Supplementary
Material S2). Figure 1A shows a heat map of the top 20
differential genes by log fold change, and the volcano map in
Figure 1B illustrates that 102 genes were significantly up-
regulated and 110 significantly down-regulated.
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Enrichment Analysis of DEGs
Next, in order to explore the potential biological mechanism of
OA progression, we observed the enrichment pathway of DEGs
from multiple perspectives. DO analysis revealed disease types
that may share a common pathogenesis with OA, such as pre-
eclampsia, periodontal disease and dental disease (Figure 2A).
GO enrichment analysis of the DEGs showed that the immune
response in OA samples was stronger than in the normal sample,
including regulation of leukocyte migration and myeloid
leukocyte migration. The top 10 biological processes were
selected, with Q values <0.05, as shown in Figure 2B. KEGG
pathway enrichment analysis showed related genes involved in,
for example, the IL-17 signaling pathway, cytokine-cytokine
receptor interaction and the TNF signaling pathway
(Figure 2C). These results indicated that immune-related
factors may affect the progression of OA, GSEA analysis was
performed on the gene set and expression matrix. The results
demonstrated that hypoxia, IL-2-STAT5 signaling and other
pathways play an important role (Figure 2D). These strong
evidence chains suggest that OA may be regulated by immune
pathways.

Further Screening With WGCNA Analysis
To further correlate clinical information with key genes, we
performed WGCNA analysis. The clustering of each sample
was good, with no outlier samples. A soft threshold from 1 to
20 was used for topology calculation, and the optimal soft
threshold was determined to be 8 (Figure 3A). Using the soft
threshold, the relational matrix was transformed into an

adjacency matrix, and then into a topological overlap matrix
(TOM) to determine average link hierarchical clustering. Related
modules were classified according to the TOM, with the number
of genes in each module being no less than 50 (Figure 3B).
Similar gene modules were merged, resulting in eight modules
(Figure 3C). Correlation between genes and clinical traits in the
module was calculated, revealing that the blue module containing
1,776 genes exhibited the highest positive correlation with OA
occurrence (r = 0.73), and the grey module containing 128 genes
had the highest negative correlation with OA occurrence (R =
−0.84). A total of 1,904 potential core genes were identified.

Exploration of Hub Biomarkers
Next, we applied a series of machine-learning
algorithms—LASSO, SVM-RFE and logistic regression—to
screen the most significant genes associated with OA. A total
of 1,904 potential hub genes screened byWGCNA in OA patients
were selected between the two groups to fit the LASSO regression
model. The next step was to use LASSO’s 10-fold cross-validation
to remove any further redundant genes, as a result of which 33
potential genes with non-zero coefficients identified in OA and
normal cohorts were screened out (Figure 3D). We used the
SVM-RFE algorithm for in-depth screening of these 33 genes.
The results showed that the RMSE value was lowest when 19
genes were selected as variables (Figure 4A). Taking occurrence
of OA as the dependent variable, univariate logistic analysis was
then carried out. The forest map produced 25 genes with p values
less than 0.001 (Figure 4B). Finally, we overlapped the genes of
the two previous identification algorithms with 212 DEGs, and

FIGURE 1 | Identification of significant differentially expressed genes (DEGs) in OA. (A) Heatmap of DEGs between OA and normal samples. (B) Volcano plot of
DEGs between OA and normal samples. Red rectangles/plots represent up-regulated genes and blue rectangles/plots represent down-regulated genes.
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identified GUCA1A and NELL1 as our hub biomarkers
(Figure 4C).

Validation of Hub Biomarkers
ROC and differential expression analysis were performed on
GUCA1A and NELL1, respectively. The results showed that
these genes had good predictive performance in the test set:
both GUCA1A (AUC = 0.822) and NELL1 (AUC = 0.871) were
significantly over-expressed in the OA samples (Figures 5A,B).
External validation using the GSE89408 dataset showed that the
expressions of GUCA1A and NELL1 were similar to the test set,
with both being up-regulated in OA tissues, and also had strong
diagnostic performance (GUCA1A, AUC = 0.747; NELL1, AUC
= 0.713) (Figures 5C,D). These results indicated that expressions
of GUCA1A and NELL1 were highly correlated with OA
progression, and that these genes may act as biomarkers to
diagnose and verify effective treatment of OA.

TF-mRNA-miRNA Network Analysis and
Prediction of Potential Candidate
Compounds
Regulatory networks play a key role in understanding disease
mechanisms. We used the TRRUST and mirDIP databases to

predict interactions between hub biomarkers and transcription
factors (TFs) as well as miRNA. A TF-mRNA-miRNA triple
network was then constructed. We found 3 TFs and 26 miRNAs
targeting NELL1, and identified two TF–GUCA1A pairs and
three miRNA–GUCA1A pairs (Figure 6A). This network
revealed hub nodes and their interactions associated with the
molecular mechanisms of OA, and indicated that NELL1 and
GUCA1A are related to multiple regulatory networks in OA
progression. These two hub biomarkers may play a crucial role in
the pathological process of OA. This enabled us to predict
potential candidate compounds targeting GUCA1A and
NELL1 that may alleviate OA patients’ symptoms (Figure 6B).

Analysis of Differences in Immune
Microenvironment
In view of the important role of immune-related pathways in the
occurrence of OA in enrichment analysis (Figure 2), the
CIBERSORT algorithm was used to analyze the content of
immune cells in the different samples. The bar chart in
Figure 7A illustrates the overall landscape of immune cell
distribution, and the heat map in Figure 7B details the
correlations of 22 immune cell types. The Wilcoxon test
showed that the OA samples contained more memory B cells,

FIGURE 2 | Functional enrichment analysis of DEGs. (A) DO analysis results for disease types that may share a common pathogenesis with OA. (B) The top 10
enriched biological processes of DEGs identified using GO analysis. (C) KEGG enrichment analysis based on the DEGs. The gradual bubble color represents the
adjusted p value, and the bubble size represents the gene count. (D) GSEA analysis of DEGs in the OA and normal groups.
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plasma cells, M0 macrophages and resting mast cells. Compared
with OA tissues, normal tissues had higher contents only of
resting CD4 memory T cells and activated NK cells (Figure 8A).

In addition, to identify hub immune cells that alter the immune
microenvironment in OA synovial tissues, we performed random
forest tree analysis on 22 immune cells (Figures 8B,C) and

FIGURE 3 | WGCNA-based identification of co-expression modules from merged datasets. (A) Soft thresholds (β) and scale-free topology fitting indices (R2). To
maximizemodel fit, a β value of eight was chosen. (B)Dendrograms generated via average linkage hierarchical clustering of identifiedmodules. (C) Associations between
modules’ clinical status in normal and OA patient samples, with individual rows corresponding to module eigengenes and columns corresponding to clinical
characteristics. Correlations and p values are shown in the first and second lines of each cell, respectively. (D) Coefficient profile plot generated against the
log(lambda) sequence, using the LASSO logistic regression algorithm to screen diagnostic markers. Different colors represent different genes.

FIGURE 4 |Machine learning-based hub biomarker screening. (A) Diagnostic marker screening using the SVM-RFE algorithm. (B) The 10 most significant genes
identified by univariate logistic analysis (p ＜ 0.001). (C) Overlapping genes predicted by the DEGs, logistic regression and SVM-RFE algorithms.
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overlapped the Wilcoxon test with the immune cells identified in
random forest trees. Finally, we identified six types of hub
immune cells that may affect the occurrence of OA
(Figure 8D): activated NK cells, activated mast cells, plasma
cells, M0 macrophages, resting mast cells and memory B cells.

Correlation Analysis of Immune Cells and
Hub Biomarkers
Correlation analysis between 22 kinds of immune cells and two
hub biomarkers in OA tissue produced statistically significant
results. GUCA1A is negatively correlated with memory B cells
and resting mast cells, while M0 and M2 macrophages are
positively correlated (Figure 9A). In addition, NELL1 is
positively correlated with CD8 T cells and M0 macrophages,
and negatively correlated with resting dendritic cells (Figure 9B).

qRT-PCR Validation of Hub Biomarkers
We performed radiological evaluations on the knee joints of different
groups of patients to verify the typical imaging manifestations of OA.
The results showed that compared with healthy donors, preoperative
knee X-ray and gross images of OA patients showed bone spur,
subchondral sclerosis and narrowing of joint space (Figure 10A).
Then, qRT-PCR was used to detect the expression level of hub
biomarkers in the OA synovium of the knee joint and normal control
groups. Statistical analysis proved that both GUCA1A and NELL1
were significantly over-expressed in the synoviumofOA samples (p<
0.01) (Figure 10B). All validations are consistent with the microarray
hybridization, indicating that GUCA1A andNELL1may be involved
in the pathogenesis of OA.

DISCUSSION

OA is a chronic degenerative joint disease that causes irreversible
bone erosion and cartilage destruction, and is one of the most
common causes of disability (Wight et al., 2017; Smolen et al.,
2018). However, because the pathophysiological mechanism of
OA is unclear and effective biomarkers are lacking, diagnosis and
treatment of OA is difficult. This study is the first to integrate
WGCNA and machine-learning algorithms to identify new
biomarkers associated with OA, and to explore the role of
immune cell infiltration in OA using CIBERSORT and
Wilcoxon tools.

In this study, we downloaded four gene expression profiles
(GSE55235, GSE55457, GSE12021, and GSE82107) from the
GEO database, and identified a total of 212 DEGs, including
102 up-regulated and 110 down-regulated genes in the OA
sample compared with the normal sample. Then, we
investigated the biological functions of these common DEGs
and KEGG analysis revealed these genes to be enriched in the
IL-17 signaling pathway and TNF signaling pathway, both of
which are inflammatory. IL-17 and TNF are pro-inflammatory
cytokines that are closely associated with cartilage destruction,
cartilage matrix degradation and bone resorption (Kenna and
Brown, 2013; Wang and He, 2018), both of which are promising
therapeutic targets related to OA, which is consistent with our
findings and highlights the correlation between these gene and
the pathogenesis of OA. Our GO enrichment analysis of DEGs
suggested that immune responses, such as regulation of leukocyte
migration and myeloid leukocyte migration, were stronger in OA
samples than in normal tissues. OA is a chronic inflammation

FIGURE 5 | Validation of hub biomarkers. (A) Expression and diagnostic value of GUCA1A in OA using the test set. (B) Expression and diagnostic value of NELL1 in
OA using the test set. (C) Expression and diagnostic value of GUCA1A in OA using the validation set. (D) Expression and diagnostic value of NELL1 in OA using the
validation set.
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disease, which closely related to immune cell infiltration of bone
and cartilage (Haseeb and Haqqi, 2013), and immune cell
infiltration of OA synovial tissue correlates with OA disease
progression and pain (Lopes et al., 2017). These results
confirm that immune-related factors may affect the
progression of OA, so continued efforts to identify OA-related
immune cell infiltration may be of value for treatment of this
disease.

To better understand the progression of OA, hub modules and
candidate biomarkers of OA were identified using WGCNA.
WGCNA analysis indicated that the blue and grey modules
containing 1,904 genes were most strongly correlated with
clinical characteristics of OA. Using three different machine-
learning algorithms (LASSO, SVM-RFE and logistic regression),
GUCA1A and NELL1 were identified as hub genes, which were
statistically significantly over-expressed in the OA samples (p <
0.05). ROC curve analysis showed that GUCA1A and NELL1 had
high sensitivity and specificity in OA diagnosis in both the test set
and the validation set. We also constructed a TF-mRNA-miRNA
network, enabling us to predict potential candidate compounds
targeting GUCA1A and NELL1 to elucidate the pathogenesis of
OA at the transcriptome level. NEL-like molecule-1 (NELL1), a
new secretory protein originally identified in unilateral coronal
craniosynostosis in humans (Ting et al., 1999), plays an
important role in osteogenic differentiation, bone regeneration,

chondrogenesis and inflammation (Aghaloo et al., 2006; Lee et al.,
2010; Cao et al., 2021). Recent research has reported the ability of
NELL1 to induce chondrogenesis and an anti-inflammatory
response in OA through up-regulation of runt-related
transcription factor 1 (RUNX1), making it a potential
candidate for articular cartilage repair (Li et al., 2020). In our
study, compared with healthy patients, we found that the
expression level of NELL1 increases in OA synovial tissues.
The ROC curve for NELL1 indicated that it has good
predictive performance in OA (AUC >0.87), suggesting that
NELL1 plays a significant role in the progression of OA. OA
is considered to be an inflammatory disease of the joint cartilage
and is caused by multiple factors. Inflammatory cytokines are
mainly expressed in OA, but under pathological conditions, the
body still has some anti-inflammatory gene expression for self-
protection and repair. When the ultimate balance between anti-
inflammatory and pro-inflammatory is broken, anti-
inflammatory genes can’t work as effectively (Wojdasiewicz
et al., 2014). NELL1 may play this role, and the expression of
NELL1 may be the body’s self-protection regulation. Li et al.
found that NELL1-haploinsufficient (NELL1+/6R) mice showed
elevated inflammatory markers and accelerated progression of
OA. After intra-articular injection of NELL1, the IL1β-induced
inflammation and cartilage degradation were rescued obviously
(Li et al., 2020). The above results remind us NELL1 may be a

FIGURE 6 | Construction of regulatory network. (A) TF-mRNA-miRNA network of hub biomarkers. (B) Potential candidate compounds targeting GUCA1A and
NELL1.
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promising target for precise treatment of OA for suppressing
inflammation and arthritis-related cartilage damage. The
guanylate cyclase activator 1A gene (GUCA1A), located in
6p21.1, encodes guanylyl cyclase-activating protein 1
(GCAP1), and has been identified as being involved in
dominant cone dystrophy, cone-rod dystrophy and macular
dystrophy (Payne et al., 1998; Wilkie et al., 2000). However,
GUCA1A has not previously been reported in OA-related studies.

We have identified that GUCA1A is also highly specifically
expressed in the synovial membrane of OA and has a high
diagnostic value (AUC >0.82) for OA. These results were
validated using the GSE89408 dataset. Finally, the results of
qRT-PCR showed both GUCA1A and NELL1 were
significantly increased in OA samples (p < 0.01). All
validations are consistent with the microarray hybridization,
indicating that GUCA1A and NELL1 may be involved in the

FIGURE 7 | Analysis of differences in immune microenvironment. (A) Relative proportions of synovial tissue infiltration by 22 different immune cell subtypes. (B)
Correlations among 22 different immune cell populations, with blue and red indicating positive and negative correlations, respectively. White indicates absence of any
correlation between the indicated immune cell populations.
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pathogenesis of OA, and thus we consider NELL1 and GUCA1A
to be very effective biomarkers for OA diagnosis.

To explore the potential pathological relevance of immune cell
infiltration in this disease, we used the CIBERSORT algorithm to
conduct a comprehensive evaluation of OA immune infiltration,
which provided insights into how these immune cells affect OA
pathology. We found that increased infiltration of memory B cells,

plasma cells, resting mast cells and M0 macrophages, and decreased
infiltration of restingmemoryCD4T cells and activatedNK cellsmay
be related to the occurrence and development of OA. De Lange-
Brokaar et al. have found that mast cell content is significantly higher
in OA samples compared with RA, and is associated with structural
damage inOApatients, suggesting the role ofmast cells in this disease
(De Lange-Brokaar et al., 2016). Previous studies have shown that

FIGURE 8 | Assessment of immune cell infiltration. (A) Comparisons of 22 immune cell types, with blue and red indicating normal and OA tissues, respectively.
(B,C) Random forest tree analysis of 22 immune cells. (D) Overlapping immune cells predicted by the immune cell and Wilcoxon test.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 90502710

Liu et al. Biomarkers and Immunity of Osteoarthritis

50

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


macrophages may regulate joint inflammation and OA severity
through various secretory mediators, and the modulation of
macrophage functional phenotypes appears to be an effective
treatment option to prevent OA or enhance cartilage repair and
regeneration (Wu et al., 2020; Zhang et al., 2020). Studies indicate that
accumulation of memory CD4 T cells is a common phenomenon

during the local inflammatory response of RA and OA joints, and is
involved in the progression of OA (Ezawa et al., 1997). Increasing
evidence suggests that NK cells are key to promoting immune cells in
OA, and that their interaction is promoted by the CXCL10/CXCR3
axis (Benigni et al., 2017). Our analysis results combined with the
above literature evidence have shown that resting mast cells, M0

FIGURE 9 | Correlation analysis of immune cells and hub biomarkers. (A) Correlation between GUCA1A and infiltrating immune cells. (B) Correlation between
NELL1 and infiltrating immune cells. p < 0.05 considered statistically significant.

FIGURE 10 | qRT-PCR validation of hub biomarkers. (A) X ray images and macroscopic views (arthroscopic image and intraoperative image) of knee joint from
healthy donors and OA patients. (B,C) Validation of GUCA1A and NELL1 by qRT-PCR between the OA group (n = 10) and the control group (n = 10). Data are mean ±
SEM; ppp < 0.01, and pppp < 0.001.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 90502711

Liu et al. Biomarkers and Immunity of Osteoarthritis

51

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


macrophages, resting memory CD4 T cells and activated NK cells
play important roles in OA, which should be the focus of further
research. However, no research has been conducted on the role of
memory B cells and plasma cells in OA, and further experimental
data are required. In our study, to screen out hub immune cells that
might alter the immune microenvironment in OA synovial tissues,
we performed random forest tree analysis on 22 immune cells, and
overlapped the Wilcoxon test with the immune cells identified in
random forest trees.We have identified six types of hub immune cells
that may affect the occurrence of OA: activated NK cells, activated
mast cells, resting mast cells, memory B cells, plasma cells and M0
macrophages. In addition, associations between GUCA1A, NELL1
and immune cells revealed these genes to be correlated with levels of
CD8 T cells, memory B cells, restingmast cells, resting dendritic cells,
and M0 and M2 macrophages. We hypothesize that GUCA1A and
NELL1 may be involved in the occurrence and progression of OA by
mediating the above immune cells, and further studies are needed to
clarify the complex interaction between genes and immune cells. The
above results suggest that various infiltrating immune cells play key
roles in OA pathogenesis.

Some potential limitations of this study must be considered
when interpreting the results. The CIBERSORT analysis was
based on limited genetic data that may deviate from
heterotypic interactions of cells, disease-induced disorders or
phenotypic plasticity. The exact mechanisms of NELL1 and
GUCA1A in regulating the initiation and progression of OA
require further investigation, and further experimental studies are
needed to validate the findings of this study.

CONCLUSION

In conclusion, we identify GUCA1A and NELL1 as diagnostic
biomarkers of OA, and find that memory B cells, plasma cells,
resting mast cells, M0 macrophages, resting CD4 memory T cells
and activated NK cells may relate to the occurrence and progression
of OA. These immune cells and immune-related genes may be
potential immunotherapeutic targets for patients with OA.
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The immune cell infiltration in TME has been reported to be associated with prognosis and
immunotherapy efficiency of lung cancers. However, to date, the immune infiltrative
landscape of lung adenocarcinoma (LUAD) has not been elucidated yet. Therefore, this
study aimed to identify a new transcriptomic-based TME classification and develop a risk
scoring system to predict the clinical outcomes of patients with LUAD. We applied
“CIBERSORT” algorithm to analyze the transcriptomic data of LUAD samples and
classified LUAD into four discrete subtypes according to the distinct immune cell
infiltration patterns. Furthermore, we established a novel predictive tool (TMEscore) to
quantify the immune infiltration patterns for each LUAD patient by principal component
analysis. The TMEscore displayed as a reliable and independent prognostic biomarker for
LUAD, with worse survival in TMEscrore-high patients and better survival in TMEscrore-low
patients in both TCGA and other five GEO cohorts. In addition, enriched pathways and
genomic alterations were also analyzed and compared in different TMEscore subgroups,
and we observed that high TMEscore was significantly correlated with more aggressive
molecular changes, while the low TMEscore subgroup enriched in immune active-related
pathways. The TMEscore-low subtype showed overexpression of PD-1, CTLA4, and
associations of other markers of sensitivity to immunotherapy, including TMB,
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immunophenoscore (IPS) analysis, and tumor immune dysfunction and exclusion (TIDE)
algorithm. Conclusively, TMEscore is a promising and reliable biomarker to distinguish the
prognosis, the molecular and immune characteristics, and the benefit from ICIs treatments
in LUAD.

Keywords: immune cell infiltration, prognosis, lung adenocarcinoma, tumor microenvironment, immunotherapy

INTRODUCTION

Although great advances have been achieved in both basic and
clinical cancer research (Gu et al., 2020; Jiao and Yang, 2020),
cancer still caused approximately 10 million of deaths in 2020
(Sung et al., 2021). With the high prevalence and poor prognosis,
lung cancer is ranked as the first leading cause of cancer-related
deaths worldwide, becoming a major global health problem
(Miller et al., 2019; Siegel et al., 2019; Sung et al., 2021).
Recently, the emergence of checkpoint blockade
immunotherapy (Pardoll, 2012; Topalian et al., 2015) has
significantly improved the strategies of LUAD. However, the
minority of response and resistance to these treatments
frequently impedes the clinical outcomes. Additionally, the
effects of ICIs are not only driven by genetic and epigenetic
alterations in tumor cells, but the tumor microenvironment
(TME) has also been reported to be a crucial regulator in
tumorigenesis (Dejima et al., 2021; Ye et al., 2022),
development, metastasis (Quail and Joyce, 2013), and
resistance to therapies (Ostman, 2012; Lu et al., 2020).

TME chiefly consists of multiple subpopulations of T and B
lymphocytes, dendritic cells (DCs), macrophages, neutrophils,
andmyeloid-derived suppressor cells (MDSCs) (Belli et al., 2018).
The balance between pro-tumorigenic and anti-tumor factors in
the TME conducts tumor growth (Wellenstein and de Visser,
2018; Hinshaw and Shevde, 2019). Accumulating evidence has
indicated the TME immune composition is generally correlated
with prognosis and responsiveness to various cancer treatments.
On one hand, tumor-infiltrating lymphocytes (TILs), such as
CD4+ and CD8+ T cells, have been associated with longer survival
and better response to immunotherapy (Kawai et al., 2008;
Fridman et al., 2012). On the other hand, the tumor cells can
promote a suppressive TME, which challenges anti-tumor
immunity by inducing upregulation of inhibitory immune
signaling, suppressive cytokine secretion, and recruitment of
suppressive immune cells, such as tumor-associated
macrophages (TAMs) presenting pro-tumor effects by
secreting immunosuppressive cytokines, including interleukin-
10 (IL-10) and transforming growth factor-β (TGF-β)
(Mantovani et al., 2017), as well as immunomodulatory cells,
such as myeloid-derived suppressor cells (MDSCs) (Ostrand-
Rosenberg and Fenselau, 2018)and regulatory T cells (Tregs)
(Shimizu et al., 2010), which are all associated with unfavorable
prognosis. To be specific, focusing on cellular diversity shows that
TME heterogeneity could impact clinical outcomes and provide a
challenge for immunotherapy of LUAD (Wu F. et al., 2021;
Nguyen et al., 2021). Therefore, investigating the effects of
TME composition on the tumor cells will help us decode the
regulation of the microenvironment by the tumor.

To date, the emerging predictors for immunotherapy in
NSCLC are still imperfect, such as programmed death-ligand 1
(PD-L1) expression (Dempke et al., 2018) is thought to be
induced by interferon-γ (IFN-γ)- mediated immune responses
and tumor mutational burden (TMB) (Klein et al., 2021) is
reported to determine the tumor immunogenicity. It is
suggested that only reflecting the tumor cell intrinsic features
but ignoring the extrinsic factor, especially TME, is attributed to
inconsistencies. Thus, the characteristics of TME should be
further comprehensively explored to determine effective
biomarkers that precisely predict prognosis and considerably
optimize personalized immunotherapy.

Progress has been recently achieved by immunotherapy,
emphasizing the importance of TME in LUAD. It elucidates
that TME is not the single-cell population but a complex interface
among cancer cells, stroma, and infiltrating immune cells. Deeper
analyses of the NSCLC TME are necessary to refine the potential
application of these findings to clinical care. We applied
“CIBERSORT” algorithm to analyze the transcriptomic data of
500 LUAD samples in TCGA and classified the LUAD into four
discrete subtypes according to the distinct immune cell
infiltration patterns. Furthermore, we established the TME
scores to characterize and quantify the immune infiltration
patterns for each LUAD patient based on the mRNA
expression profiles. Conclusively, we investigated and validated
the association between TME score and the clinical outcomes, as
well as the efficacy of anti-PD- (L)1 treatment in LUAD, which
can facilitate the identification of ideal candidates for
personalized immunotherapeutic strategies.

METHODS

Datasets and Preprocessing
A total of 1,518 lung adenocarcinoma (LUAD) and 59 normal
tissue samples were retrieved and downloaded from the
corresponding datasets, including TCGA LUAD from TCGA
data portal (https://xenabrowser.net/datapages/) and GSE31210,
GSE37745, GSE50081, GSE68465, and GSE13213 from the NCBI
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/
geo/). The somatic mutation data (SNPs and small INDELs) were
downloaded from TCGA database (MuTect2 Variant
Aggregation and Masking). The raw data of the dataset from
Affymetrix were processed using the RMA algorithm in the
“Affy” package. The data from Agilent were downloaded with
the processed version. For TCGA dataset, RNA-sequencing data
(FPKM values) were transformed into transcripts per kilobase
million (TPM) values, which are more similar to those resulting
from microarrays and more comparable between samples
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(Wagner et al., 2012). The following inclusion criteria were used:
1) histologically confirmed LUAD, 2) simultaneously available
information on mRNA expression profile data and OS, 3) the
sample tissue was collected from the primary solid tumor (“01”),
and there was no duplication sample in TCGA, 4) genes were
recorded in all datasets, and 5) genes with more than 70% of the
missing value or 0 value were deleted. The remaining missing
values were imputed with KNN imputation approaches.
Therefore, 10,320 mRNAs were included in the analysis.

Consensus Clustering for the Tumor
Microenvironment
Distinguishing between tumor and normal tissue difference
expression genes (DEGs) in TCGA was performed with
“limma” (FDR <0.05 and |log2FC| > 1), which better identifies
the characteristics of tumor. Furthermore, the tumor
microenvironment was quantified by CIBERSORT (https://
cibersort.stanford.edu/)(Newman et al., 2015), a deconvolution
method for inference of tumor-infiltrating immune components
from bulk tissue gene expression profiles. Tumors with
qualitatively different immune cell infiltration patterns were
grouped using consensus clustering (100 iterations, resample
rate of 80%, and hierarchical cluster). This procedure was
performed with the “ConsensusClusterPlus” R package.

Identification of DEGs Associated With the
TME Phenotype
To functionally elucidate the biological characteristics of the TME
subtypes in LUAD, we employed random forest (RF), an efficient
and reliable machine learning method to identify DEGs between
subtypes of TME. We run RF 100 times with different seeds to
find the duplicated variables with at least 80% repetition rate to
further ensure the stability of variable selection.

Generation of TMEscore
To further elucidate the comprehensive profile of TME
characteristics, the construction of TME metagenes was performed
as follows: first, we further screened candidate prognostic genes from
DEGs. Next, a consensus clustering algorithm was employed to
define the cluster of genes. Then, a principal component analysis
(PCA) was performed, and principal component 1 was extracted to
serve as the signature score. After obtaining the prognostic value of
each gene signature score, we applied a method similar to GGI
(Sotiriou et al., 2006) to define the TMEscore of each patient:

TMEscore � ∑PC1i −∑PC1j,

where i is the signature score of clusters whose Cox coefficient is
positive and j is the expression of genes whose Cox coefficient is
negative.

Functional and Pathway Enrichment
Analysis
To further analyze the biological significance of the genes related to
TMEscore with KEGG andGO function analysis, the “clusterProfiler”

R package was adopted to annotate gene patterns (Wu T. et al., 2021).
The Benjamini–Hochberg procedure was used to control the false
discovery rate (FDR). We set the cut-off of adj. p-values to 0.2 so that
we could find more relevant pathways and functions based on the
small number of DEGs. Gene set enrichment analysis (GSEA)
illustrated the significantly different enriched pathways in the high-
and low-TMEscore groups. Gene sets were downloaded from the
MSigDB database of the Broad Institute (Subramanian et al., 2005)
and employed the Hallmark gene sets and 1,000 permutations. An
enrichment pathway between two subtypes was determined with an
FDR of <0.25 and the normalized enrichment score (NES).

Predicting the Patients’ Response to ICIs
The Cancer ImmunomeAtlas (https://tcia.at/) analyzed the immune
landscapes and antigenomes of 20 solid tumors that were quantified
by Immunophenoscore (IPS, a superior immune responsemolecular
marker) (Charoentong et al., 2017). The IPS value, which ranged
from 0 to 10, was positively correlated to tumor immunogenicity and
could predict the patients’ response to immune checkpoint
inhibitors (ICI treatment). Tumor Immune Dysfunction and
Exclusion (TIDE, http://tide.dfci.harvard.edu/), a computational
method to predict immune checkpoint blockade response, was
developed by Jiang et al. (2018). TIDE uses a set of expression
markers to profile two primary mechanisms of tumor immune
evasion: T-cell dysfunction and T-cell exclusion. Patients with higher
TIDE prediction scores represent a greater potential of tumor
immune escape; therefore, TIDE could evaluate patients who are
more likely to benefit from ICI. In addition, themRNA expression of
immune checkpoints was analyzed in different prognosis groups.

Statistical Analysis
Continuous variables were summarized as mean ± SD, and
categorized variables were described by frequency (n) and
proportion (%). Differences among variables were tested by the
Wilcoxon rank-sum test and Fisher’s exact tests. The relationship
between variables was tested by Spearman rank correlation analysis.
The cut-off value of TMEscore was calculated based on the correlation
between the patients’ survival and the TMEscore in TCGA with the
“survminer” package. Univariate and multivariate Cox regression
analyses were used to assess prognostic analysis. Batch effects from
non-biological technical biases were corrected using the “ComBat”
algorithm of the “sva” package. The “Maftools” package was used to
present the mutation landscape and identify the differential gene
mutations between groups. The heatmap was produced by the R
package “ComplexHeatmap.” A two-sided p < 0.05 was regarded as
statistically significant. All data processing was performed in R 4.0.2
software.

RESULTS

Landscape of Lung Adenocarcinoma TME
This study was conducted as per the flow chart shown in
Supplementary Figure S1. The information of 1,518 LUAD
patients is detailed in Supplementary Table S1. To classify the
LUAD TME, the consensus clustering algorithm was used to cluster
TME information obtained by CIBERSORT in TCGA-LUAD
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dataset (Supplementary Table S2). The most appropriate clustering
number was four (Figures 1A–D), which was selected by consensus
matrices and consensus cumulative distribution function (CDF)
curve. This analysis revealed that LUAD can be clustered into
four distinct TME subtypes termed S1–4. The patients with
subtype S4 had significantly longer overall survival (OS) than
patients with subtypes S1 and S2, and subtype S3 demonstrated
the worst survival (Figure 1E). These four TME subtypes varied
significantly based on the expression levels of LM22 gene signatures
(Figure 1F). The S4 subtype was characterized by increases in the
infiltration of CD 8+ T cells, resting NK cells, follicular helper T cells,
andM1macrophages, displaying S4was significantly associatedwith
immune activation. Meanwhile, resting mast cells, activated
dendritic cells, and regulatory T cells (Tregs) were enriched in

the S1 subtype, and the S2 subtype showed significant increases
in the infiltration of naïve B cells, plasma cells, and CD4+ memory-
activated T cells; on the contrary, M0 macrophages, M2
macrophages, and CD4+ memory-resting T cells showed high
infiltration in the S3 subtype, indicating an immunosuppressive
milieu. Taken together, we demonstrated that the four TME
subtypes were characterized by distinct immune cell infiltration
and prognosis.

Identification of DEGs and Functional
Annotation
To further identify the biological characteristics and differences
among TME subtypes, RF algorithm was employed to extract the

FIGURE 1 | Unsupervised clustering of the tumor microenvironment (TME) cells for 500 patients in the TCGA-LUAD cohort. (A–C) Consensus matrices of different
clusters. (D) Consensus cumulative distribution function (CDF) curve. (E) Kaplan–Meier (K-M) curves for overall survival (OS) of four different subtypes (log-rank test, p
=0.039). (F) Abundance pattern of 22 TME cell types in four TME subtypes.
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phenotype signatures. By 100 times analysis, a total of 77 DEGs
duplicated at least 80 times were identified (Supplementary
Table S3). Through consensus clustering analysis based on the
expression of the 77 most representative DEGs, we divided DEGs
into two different clusters termed G1 (62 DEGs) and G2 (15
DEGs) (Figure 2A). These two gene clusters were closely related
to distinct TME and played different biological roles. Then, GO
and KEGG enrichment analyses were performed with the
“clusterProfiler” R package. The G1 cluster was mainly

enriched in the MAPK signaling pathway, PI3K-Akt signaling
pathway, aldosterone syntheses, and focal adhesion pathways
(Figure 2B). The G2 cluster was mainly enriched in
hematopoietic cell lineage, B-cell receptor signaling pathway,
cytokine–cytokine receptor interaction, and primary
immunodeficiency (Figure 2C). Significantly enriched
pathways and molecular functions are summarized in
Supplementary Tables S4 and S5. Collectively, the coherence
between the prognostic and biological features in the two gene

FIGURE 2 | Construction of the TMEscore for LUAD patients. (A) Consensus matrices of differentially expressed genes (DEGs) among TME subtypes. (B and C)
KEGG pathway enrichment analysis results in G1 and G2. (D) K-M curve for OS of different TMEscore groups (log-rank test, p < 0.001). (E) Forest plots illustrating the
results of multivariate Cox proportional hazards model of clinical feature in TCGA cohort. (F) Heatmap of DEG expression and clinical characteristics. TMEscore, age,
sex, stage, smoke, therapy outcome, mutation of KARS, and mutation of EGFR are shown as patient annotations. Gene clusters are shown as gene annotations.
Top legend, gray indicates a missing value.
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subgroups indicated that this classification was reliable and
reasonable.

Construction and Validation of the
TMEscore in Six Independent Cohorts
Although the four TME subtypes were identified, their
clinical significance needed to be further evaluated and
quantified. Therefore, we build TMEscore based on TME

information in the TCGA-LUAD cohort to assess the
prognostic value. Association with a prognosis of 34 genes
(G1:22, G2:12) was confirmed by Cox regression analysis.
First, principal component analysis (PCA) was used to
compute two aggregate scores, TMBscore A from G1 and
TMBscore B from G2. Then, we performed univariate Cox
regression on each TMEscore to evaluate the prognostic
value. Finally, TMEscore A and TMEscore B were
integrated to obtain TMEscore for each sample. The

FIGURE 3 | Prognostic value of TMEscore for LUAD patients in five GEO cohorts. (A) K-M curve of all 1,018 patients in the GEO database between different
TMEscore groups (log-rank test, p < 0.001). (B–F) K-M curves of five independent GEO datasets in different TMEscore subgroups. (G) Forest plots illustrating the results
of the multivariate Cox proportional hazards model of clinical features in the GEO database. (H)Heatmap of DEG expression and clinical characteristics. TMEscore, age,
sex, stage, smoke, mutation of KARS, mutation of EGFR, and mutation of P53 are shown as patient annotations. Gene clusters are shown as gene annotations.
Top legend, gray indicates a missing value.
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prognostic value of the TMEscore was further assessed by the
log-rank test after classification as high-risk and low-risk
groups based on the corresponding optimal cut-off value
(−0.92) acquired by the “survminer” R package in the
TCGA-LUAD cohort. We visualized gene expression and
clinical features distribution in different risk groups with a
heatmap in TCGA and GEO datasets, respectively (Figures
2F and 3H). The Kaplan–Meier curve of TMEscore subgroups
showed that the patients in the low TMEscore group (median
survival time 3,169 days) had significantly better overall
survival than the high-TMEscore group (median survival
time 1,235 days; log-rank test, p < 0.0001; Figure 2D).
Moreover, the prognostic value of the TMEscore was
further assessed with five external datasets in the GEO
database: GSE37745, GSE31210, GSE13213, GSE50081 and
GSE68465. Similar results were found that the survival
advantage in the low TMEscore group in above cohorts,
with the corresponding p-value of 0.038, 0.033, 0.018,
0.0036, and 0.004 (Figures 3B–F). Meanwhile, we
integrated a total of 1,018 samples in the GEO datasets to
evaluate prognostic efficiency, indicating the low-TMEscore
group patients had better overall survival compared to the
high-TMEscore group (log-rank test, p < 0.0001; Figure 3A).
These findings suggested that TMEscore possessed a reliable
and robust capacity for predicting the prognosis for LUAD
patients.

TMEscore Was an Independent Prognostic
Factor for LUAD Patients
In addition to the TMEscore, other prognostic factors such as
individual and clinicopathological features were included. After
multivariable adjustments with age, sex, smoke situation, TNM
stage, and therapy outcomes in the TCGA cohort, the TMEscore
was confirmed as an independent prognostic indicator with a
hazard ratio of 0.383 [95% CI: 0.210–0.696] in the TCGA-LUAD
cohort (Figure 2E), 0.632 [95% CI: 0.475–0.839] in the GEO
datasets (Figure 3G). Elder, ever-smoker, advanced stage, and
non-response to therapy were also suggested to be independent
risk factors in different datasets, respectively.

Recent studies have reported that specific gene alterations,
such as TP53 (Sun et al., 2020), KRAS (Hamarsheh et al., 2020),
EGFR (Chen et al., 2015), and STK11 (Mazzaschi et al., 2021)
have an important role in the regulation of the tumor immune
microenvironment (TIME) and served as biomarkers to tumor
therapeutics (Lee et al., 2017; Krishnamurthy et al., 2021). We
further explore the predictive value of this TMEscore in LUAD
patients with EGFR/KRAS mutation (MUT) or wild type (WT).
Remarkably, this risk model had predictive power for both EGFR
wild type and EGFR mutation LUAD patients, except for patients
with TP53/EGFR co-mutations (Supplementary Figure S2).
Similarly, this risk model exhibited a robustly predictive value
in both KRAS wild type and KRAS mutation LUAD patients,
except for patients with KRAS/STK11 co-mutations LUAD
patients (Supplementary Figure S3). Among the EGFR/KRAS
wild-type/mutation population, the beneficial trends of low
TMEscore in the prognosis of LUAD patients were observed

in distinct subgroups, suggesting that TMEscore was an
independent and reliable prognostic indicator.

Different Biological Processes Between the
High-TMEscore Group and the
Low-TMEscore Group
For a comprehensive analysis of the potential regulatory
mechanisms resulting in different TMEscore groups, we
performed GSEA analysis between high and low TMEscore
subgroups. The results showed that 23 pathways were
enriched in different subgroups with FDR<0.25
(Supplementary Table S6). In high TMEscore group,
MYC targets V1 (NES = 2.28 and FDR = 0.001), MTORC1
signaling (NES = 2.08 and FDR = 0.011), MYC targets V2
(NES = 2.08 and FDR = 0.012), G2M checkpoint (NES = 2.00
and FDR = 0.021), glycolysis (NES = 1.79 and FDR = 0.014),
and other pathways were enriched (Figures 4A–D).
Meanwhile, the results revealed that complement (NES =
−1.74 and FDR = 0.231), inflammatory response (NES =
−1.69 and FDR = 0.212), IL6/JAK/STAT3 signaling (NES =
−1.64 and FDR = 0.181), IL2/STAT5 signaling up (NES =
−1.58 and FDR = 0.212) and interferon gamma response
(NES = −1.42 and FDR = 0.223), and other pathways were
correlated with the low TMEscore (Figures 4E–H). It is
suggested that the gene sets of the TMEscore high samples
were enriched in cancer and tumor metabolism-related
pathways, while the gene sets of the TMEscore low
samples were enriched in DNA repair and immune
response-related pathways.

The Molecular Characteristics of Distinct
TMEscore Subgroups
Genomic alterations and oncogenic signaling within the
tumors have been reported to affect anti/pro-tumor
immunity and TME activity (Hamarsheh et al., 2020;
Kumagai et al., 2020; Zhou et al., 2020; Fountzilas et al.,
2021), links between tumor mutations and TME subtypes
needed to be investigated. To illustrate the somatic variants
and acquire further biological insights into the
immunological characteristics of LUAD between TMEscore
subgroups, we utilized the Mutation Annotation Format
(MAF) files and performed the variants annotation. We
found higher mutation counts in the TME-high subgroup
than in the TME-low subgroup. Missense variations were the
most common mutation subtype, followed by nonsense and
frameshift deletions. The oncoplot of tumor somatic
mutation in the TCGA-LUAD cohort showed that TP53,
TTN, and MUC16 gene mutations in the high-TMEscore
group were approximately 20% higher than those in the low
TMEscore group (Figures 5A and B). Among a total of 54
differential mutated genes between two groups (p < 0.01;
Figure 5C), CMA1, HSPA12B, and FAM196A showed a
higher mutation frequency in the low-TMEscore group.
The other genes, such as TP53, TTN, and FBXL7, had a
higher mutation frequency in the high-TMEscore group.
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Collectively, this analysis indicated that transcriptomic-
based TME classification coupled with genomics analysis
can be exploited for further studies.

Combinations of TMEscore, Immune
Checkpoints, and TMB Improve Risk
Stratification and Survival Prediction
Previous studies have emphasized the importance of immune
checkpoint genes in modulating immune infiltration (Keir et al.,
2008; Andrews et al., 2019). Thus, we first compared the
expression pattern of immune checkpoint genes between
different patient groups delaminated by the TMEscore in
TCGA-LUAD and GEO datasets. PDCD1, CD86, CD80, and
CTLA4 showed significantly high expression in the low-
TMEscore group than in the high-TMEscore group (Figures
6A–D, F–I), which was further confirmed in five independent
validating cohorts (Supplementary Figure S4).

Considering the correlations between immune checkpoint
genes and TMEscore, we next combined TMEscore with
immune checkpoints expression to test whether they have an
influence on OS in LUAD patients. Though survival analyses
among four subgroups stratified by TMEscore and immune
checkpoint gene expression, we displayed that patients with
low PD-L1 and low TMEscore have prolonged OS compared
to those with low PD-L1 and high TMEscore (p = 0.005), and
among patients with high PD-L1 expression, a lower TMEscore

signified a remarkably better survival (p < 0.001) (Figure 7A). We
also found similar survival patterns among four patient
subgroups stratified by TMEscore and PD1/CTLA-4
expressions in the TCGA cohort (Figure 7A). We then
confirmed the results in the other five validation cohorts
(Figures 7B,C and Supplementary Figure S5). In
concordance with the TCGA dataset, patients with low
TMEscore have significantly better survival relative to the high
TMEscore group, even though with similar expression levels of
immune checkpoint genes (Figures 7B,C and Supplementary
Figure S5). In addition, TMB has been shown to have the
potential to generate a larger number of neoantigens and
make them more immunogenic (Schumacher and Schreiber,
2015), which is strongly associated with clinical outcomes and
response of immune checkpoint blockade response (Yarchoan
et al., 2017; Chan et al., 2019). We found that patients with low
TMB and high TMEscore had the worst prognosis (Figure 8A). It
is suggested that TMEscore, immune checkpoint genes, and TMB
can complement each other as prognostic biomarkers.

The TMEscore Predicts Clinical Outcomes
of Immunotherapy
Given the linkage between TMEscore and immune checkpoint
genes as well as TMB, we further explore the predictive potential
of TMEscore for immune checkpoint blockade response through
analyzing the correlation of TMEscore and published

FIGURE 4 |Gene set enrichment analysis (GSEA) in TMEscore groups. (A–D) Enrichment plots showingMYC targets V1, MTORC1 signaling, MYC targets V2, and
G2M checkpoint in the high-TMEscore group. (E–H) Enrichment plots showing complement, myogenesis, IL6/JAK/STAT3 signaling, and KRAS signaling up in the low-
TMEscore group.
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immunotherapy predictors, including TIDE and IPS. The
relationship between TIDE and TMEscore was investigated in
TCGA and GEO datasets. As expected, the high-TMEscore group
was characterized by a significantly higher TIDE score (Figures
6E and J). The IPS values (IPS-PD-1/PD-L1/PD-L2_pos and IPS-
CTLA-4_pos) increased in the low-TMEscore group compared to
the high-TMEscore group in TCGA (Figures 6K and L). It is
likely that the patients in the low-TMEscore group may have a
better immune microenvironment and respond better to ICIs
than those in the high-TMEscore group.

Furthermore, the practicability of the TMEscore was further
evaluated for speculation of the therapeutic benefit for ICI treated
patients. The patients who received anti-PD-L1 immunotherapy in
the IMvigor210 cohort were assigned based on high and low TME
scores. Given the contraindicatory prognostic and predictive value of
TMEscore, TMB, and immune checkpoint gene expression (PD-L1,
PD-1, and CTLA4), we next evaluated the synergistic effect of these
biomarkers in the prognostic and predictive stratification of LUAD.
Consistent with previous results, stratified survival analysis revealed
that the TMB status did not interfere with TMEscore-based

FIGURE 5 | Molecular variations between low-TMEscore and high-TMEscore groups. (A and B) Mutation profiles of high-TMEscore and low-TMEscore groups.
(C) Comparing differentially mutated genes between two subgroups by Fisher’s exact tests.
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predictions. Subtypes of the combination of TMEscore and TMB
showed significant survival differences (log-rank test, p = 0.0076;
Figure 8B). On the other hand, Kaplan–Meier analysis revealed
patients in the IMvigor210 cohort with TMEscore low and PD-L1
high obtained most favorable OS than either single positive (TME
low or PD-L1 high) or dual negative (TMEscore high PD-L1 low, p=
0.0018, Figure 8D). In addition, analysis of objective response also
supported that TMEscore low and PD-L1 high subgroup
represented an increased proportion of PR/CR/SD than either
single positive (TMEscore low or PD-L1 high) or dual negative
(p = 0.047, Figure 8E). Taken together, these findings indicate the
TME classification system and scoring system may explain the
effectiveness of immunotherapy in patients with low TMB and
low PD-L1, and these distinct classification systems, TMEscore, PD-
L1, and TMB might function as complementary factors for the
prediction of immunotherapy.

DISCUSSION

Although immune checkpoint inhibitors (ICIs) have
revolutionized treatment strategies of lung cancer, the overall
response rate of ICI monotherapies is still limited and no more
than 20% in NSCLC patients with EGFR/ALK wild-type
(Doroshow et al., 2019). It has been reported that TME plays
a crucial role in cancer development and anti-tumor process,

especially the immunotherapy response in cancers (Lu et al.,
2020; Ye et al., 2022). Therefore, characterizing the
tumor–immune microenvironment can improve the
personalized immunotherapeutic strategies.

Multi-omics data are often used for generating various
predictive or prognostic models through machine learning or
statistical modeling methods (Xu et al., 2021). However, to date,
comprehensive analyses based on integrated genomic and
transcriptomic profiles of the tumor and its TME remain rare
and lack efficient and useful models. Therefore, we constructed a
scoring system to classify and quantify the comprehensive tumor
immune landscape based on an immune-cell phenotype
algorithm and validation in external LUAD cohorts.

Transcriptomic analysis offers an opportunity to dissect the
complexity of tumors, including TME, dynamically regulating
cancer progression and influencing therapeutic outcomes (Cieslik
and Chinnaiyan, 2018; Thorsson et al., 2018). In our study, we
identified four distinct immune subtypes characterized by
different biological processes and prognosis, using
“CIBERSORT” algorithm to analyze the transcriptomic data of
TCGA-LUAD samples. Furthermore, we established the TME
scores to characterize and quantify the immune infiltration
patterns for each LUAD patient based on the DEGs among
the distinct subtypes. The TMEscore displayed as a reliable
prognostic immune-related biomarker for LUAD, with worse
survival in TMEscore-high patients and better survival in

FIGURE 6 | TMEscore in the prediction of immunotherapeutic benefits. (A–D) Expression of immune-checkpoint-relevant genes (PDCD1, CD86, CD80, and
CTLA4) between high- and low-TMEscore groups in TCGA and (F–I) all 1,018 patients in GEO datasets after batch correction. (E and J)Relationships between TIDE and
TMEscore in TCGA and GEO datasets. (K and L) Relative probabilities of response to anti-CTLA-4 and anti-PD-1/PD-L1 treatment (IPS score) in the low-TMEscore and
high-TMEscore groups in TCGA cohort.
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TMEscore-low patients and in both TCGA and other five
independent GEO cohorts. In addition, enriched pathways and
genomic alterations were also analyzed and compared in different
TMEscore subgroups, and we observed that a high TMEscore was
significantly correlated with more aggressive molecular changes
such as TP53 mutations. As expected from its increased immune
gene expression, the TMEscore-low subtype showed
overexpression of PD-L1, PD-1, CTLA4, and associations of
other markers of sensitivity to immunotherapy, including IPS
score and TIDE score. Our findings also revealed that the
TMEscore is a robust and reliable prognostic tool and
predictive indicator of the response to immunotherapy in the
IMvigor210 cohort. With further in-depth investigation, our

TMEscore might be utilized as an important supplementary
predictor to LUAD immunotherapy.

The tumor microenvironment (TME) is a complex interface
between cancer cells, stroma, and infiltrating immune cells
(Fridman et al., 2012). A previous study demonstrated that the
tumor microenvironment contexture plays a key role in tumor
development and immunotherapeutic efficacy (Stankovic et al.,
2018). TME heterogeneity, which impacts tumor progression and
prognosis, has been identified in cancers, especially LUAD (Lavin
et al., 2017; Zhang et al., 2019; Chen et al., 2020; Nguyen et al.,
2021). In addition, the difference in TME patterns was found to
be correlated to tumor heterogeneity and treatment diversity (Jia
et al., 2018; Vitale et al., 2021). Considering the individual

FIGURE 7 | Impact of immune checkpoint gene expressions and TMEscore on clinical outcome. Kaplan–Meier survival curves of overall survival among four patient
groups stratified by TMEscore and immune checkpoint genes (PD1, PD-L1, and CTLA-4) in TCGA dataset (A), GSE37745 dataset (B), and GSE50081 dataset (C).
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heterogeneity of the immune milieu, it was demanded to quantify
the TME patterns of individual tumors. Here, using the
“CIBERSORT” algorithm, we identified 22 human immune-
cell phenotypes and generated an individualized TMEscore to
assess TME patterns. Our study represents an essential step
toward understanding the crosstalk between malignant cells
and immune cells in LUAD.

Our findings of the TCGA molecular mutations displayed
significant differences in distributions across the TMEscore
subgroups. The largest difference in mutations between subgroups
was in TP53 mutations, which were more common in TME-high
samples than in TME-low samples (53 vs. 35%). TP53mutation is not
only the most common genetic event in NSCLC but also reported to
be associated with poor prognosis in cancers, especially non-small cell
lung cancer (Ozaki and Nakagawara, 2011). TP53 mutation could
affect disease progression, tumor cell characteristics, and the
therapeutic effect of different therapeutics (Wu and Hwang, 2019).
In addition, the more enrichment of KEAP1 mutations in TMEscore
high tumors than TMEscore lowmay be one potential explanation for
the distinct performance of ICI efficacy in LUAD. KEAP1 mutations
were reported to be enriched in patients with high TMB lacking T-cell
infiltration and immunologically cold (Marinelli et al., 2020), which
have been associated with decreased efficacy of ICIs in NSCLC in
published studies (Papillon-Cavanagh et al., 2020; Di Federico et al.,

2021). The differences in their molecular characteristics between
TMEscore subgroups might contribute to the diverse
immunogenic features and consequently varied responses to
immunotherapy.

To acquire a deeper insight into the biological feature of the
TMEscore subgroups, we further investigated enriched pathways
and immune characteristics of different TMEscore subgroups.
Patients with the low-TMEscore subtype, whose molecular traits,
including an abundance of infiltration immune active cells,
enhanced enrichment of immune-related pathways, such as
interferon gamma response, complement, inflammatory
response, were previously reported to predict the efficacy of
pembrolizumab. In addition, we also observed elevated IL6/
JAK/STAT3 signaling pathway in the low-TMEscore group,
modulating the IFN-γ-induced expression of PD-L1 (Zhang
et al., 2021). Collectively, the designated distinct TMEscore
subtypes of LUAD were identified, and the crucial insights
into the immunologic features of these subtypes were
provided. Meanwhile, we proved that the TMEscore showed
significant correlations with immune checkpoint genes (PD-
L1, PD-1, and CTLA-4), TMB, and other biomarkers of
immunotherapy, including IPS and TIDE, indicating that
TMEscore possessed the potential to predict the response to
immunotherapy. Previous studies have demonstrated that

FIGURE 8 |Kaplan–Meier survival curves of overall survival among four patient groups stratified by TMEscore and TMB in TCGA dataset (A) and IMvigor210 cohort
(B). Proportional representation of the objective response rate among subgroups categorized by TMEscore and TMB in the IMvigor210 cohort (C). Kaplan–Meier survival
curves of overall survival among four patient groups stratified by TMEscore and PD-L1 in the IMvigor210 cohort. (D) Proportional representation of the objective response
rate among subgroups categorized by TMEscore and PD-L1 in the IMvigor210 cohort (E). CR, complete response; PR, partial response; SD, stable disease; PD,
progressive disease.
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some biomarkers, such as TIDE and IPS, could predict patient
response to immunotherapy. TIDE, a creative computational
method to identify the induction of T-cell dysfunction in
tumors with high infiltration of cytotoxic T lymphocytes and
the prevention of T-cell infiltration in tumors with low-CTL
levels (Jiang et al., 2018), has been proven to predict the outcomes
of cancers treated with ICIs (Jiang et al., 2018). In addition, IPS
was developed to quantitatively predict patients’ response to anti-
PD-1/PD-L1 and anti-CTLA-4 therapies based on an 18-gene
signature including genes that reflect an ongoing adaptive Th1
and cytotoxic CD8 T-cell response (Charoentong et al., 2017).
Thus, the low-TMEscore patients presenting high IPS and low
TIDE scores may have a better response to immunotherapy.
However, both TIDE and IPS focused on the function and status
of T cells, which could not fully reflect the complexity of the TME
involved in the response to immunotherapy. Therefore, our
scoring system exhibits promising clinical flexibility for the
predictive value of anti-PD-(L)1 therapy.

Furthermore, patients in the high-risk subgroup presented with a
higher level of immune checkpoint molecules and showed higher
immunogenicity. However, PD-L1 expression and TMB are neither
the only nor the satisfying tool to identifyNSCLCpatients thatmight
benefit from therapy with immune checkpoints inhibitors (Klein
et al., 2021). One critical obstacle impeding the extensive utility of
TMB and PD-L1 expression is the determination of feasible cut-off
values. Moreover, these two predictors only focused on the intrinsic
features of tumors and may not cover other situations involved in
antitumor immune responses such as TME. Notably, we
demonstrated that it is reasonable to combine TMEscore with
PD-L1 or TMB together, and thus it might help make clinical
decisions in LUAD. Patients with TMEscore-low PD-L1 high or
TMB high should be preferentially recommended for ICI treatment,
while patients with TMEscore-low PD-L1 low, or TMEscore-high
PD-L1 high can optionally consider anti-PD- (L)1 therapy; however,
patients with TMEscore high/low PD-L1 or low TMB should
carefully choose anti-PD-(L)1 therapy. Taking this step further, it
is suggested that TMEscore can identify either potential sensitive
patients with low PD-L1 expression/low TMB who may benefit or
patients who do not respond to ICIs despite having a high PD-L1
expression/high TMB. In addition, we also explored the stability of
our TMEscore model. We found that patients with a lower
TMEscore were more likely to respond to ICB and had
improved overall survival in the IMvigor210 cohort treated with
checkpoint blockade. Collectively, combinations of TMEscore, TMB,
and PD-L1 could be applied not only as refined prognostic
stratification tools but also as more reliable predictive biomarkers
for personalized immunotherapy treatment.

Our study provides a translational rationale for evaluating
TME based on transcriptomic data and TMEscore as a biomarker
for immunotherapy response in patients with LUAD. However,
this study still has several limitations. First, while the composition
of the TME has been recognized as a determinant of cancer
progression and response to therapy, most analyses have focused
on a limited proportion of cell types. Nonetheless, there are still
numerous cellular and molecular mechanisms involved in
immunotherapy, and our TMEscore may not cover the
possible intra/extracellular situations involved in antitumor

immune responses. Second, since this study was a
retrospective analysis, the ability of the TMEscore in
predicting survival and response to immunotherapy should be
validated in a large-cohort, multi-center, and prospective study in
the future. Third, all quantifications of gene expression are
relative values, which makes it difficult to determine the
absolute threshold and cut-off values for clinical application.
Therefore, quantitative determinations of gene expression are
also needed. Specifically, the underlying molecular mechanisms
remain to be elucidated in LUAD in vivo and in vitro.

CONCLUSION

In conclusion, our translational rationale for TME classification
may help in distinguishing immune and molecular characteristics
and predicting clinical outcomes of LUAD patients. These
findings will further improve the implementation and utility of
precisely personalized immunotherapeutic strategies in LUAD.
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Identification of Immune-Related
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Bone Marrow Gene Expression
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Background: Multiple myeloma (MM) is characterized by abnormal proliferation of bone
marrow clonal plasma cells. Tumor immunotherapy, a new therapy that has emerged in
recent years, offers hope to patients, and studying the expression characteristics of
immune-related genes (IRGs) based on whole bone marrow gene expression profiling
(GEP) in MM patients can help guide personalized immunotherapy.

Methods: In this study, we explored the potential prognostic value of IRGs in MM by
combining GEP and clinical data from the GEO database. We identified hub IRGs and
transcription factors (TFs) associated with disease progression by Weighted Gene Co-
expression Network Analysis (WGCNA), and modeled immune-related prognostic
signature by univariate and multivariate Cox and least absolute shrinkage and selection
operator (LASSO) regression analysis. Subsequently, the prognostic ability of signature
was verified by multiple statistical methods. Moreover, ssGSEA and GSEA algorithm
reveled different immunological characteristics and biological function variation in different
risk groups. We mapped the hub IRGs by protein-protein interaction network (PPI) and
extracted the top 10 ranked genes. Finally, we conducted vitro assays on two
alternative IRGs.

Results: Our study identified a total of 14 TFs and 88 IRGs associated with International
Staging System (ISS). Ten IRGs were identified by Cox -LASSO regression analysis, and
used to develop optimal prognostic signature for overall survival (OS) in MM patients. The
10-IRGs were BDNF, CETP, CD70, LMBR, LTBP1, NENF, NR1D1, NR1H2, PTK2B and
SEMA4. In different groups, risk signatures showed excellent survival prediction ability, and
MM patients also could be stratified at survival risk. In addition, IRF7 and SHC1 were hub
IRGs in PPI network, and the vitro assays proved that they could promote tumor
progression. Notably, ssGSEA and GSEA results confirmed that different risk groups
could accurately indicate the status of tumor microenvironment (TME) and activation of
biological pathways.
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Conclusion: Our study suggested that immune-related signature could be used as
prognostic markers in MM patients.

Keywords: multiple myeloma, immune-related genes, whole bone marrow sequencing, prognostic model, IRF7,
SHC1

INTRODUCTION

Multiple myeloma (MM) is a B-cell malignancy characterized
by abnormal proliferation of clonal plasma cells in the bone
marrow. In recent years, its incidence has been on the rise and
it has become the second most common hematologic
malignancy (Mireles-Cano et al., 2020; Moser-Katz et al.,
2021). MM Patients face multiple inevitable relapses after
remission with multidrug combination therapy. The higher
the number of relapses, the shorter the remission period and
eventually the refractory relapse period, which seriously
affects the prognosis (Gerecke et al., 2016). The occurrence
of such condition is one of the greatest challenges in the
treatment of MM, as it leads to incurable MM. Therefore, it is
clinically important to explore the pathogenesis of MM in
depth and to discover new therapeutic targets to provide more
effective means for the treatment of MM.

Immunotherapy is a new therapeutic option and its efficacy
in the treatment of MM needs to be further investigated and
improved. The TME is closely related to the
immunotherapeutic response (Hou et al., 2019). Studies
have shown that dendritic cells (DCs) isolated from MM
patients not only have impaired function but also express/
produce low levels of key molecules that initiate the immune
response, including IL-12, human leukocyte antigen DR
(HLA-DR), CD40, CD86, and CD80 (Kawano et al., 2015).
The immune checkpoint cytotoxic T lymphocyte-associated
protein-4 (CTLA-4) on chromosome two interacts with
CD80/CD86 on DCs and negatively regulates the CD28
signaling pathway. Although the killing of MM cells by
CD4+ T cells is mediated by resident myeloid macrophages
(Haabeth et al., 2020), myeloid macrophages in MM is mainly
derived from TNF-α and immunosuppressive cytokines IL-10
and IL-1β in the tumor microenvironment, which not only
produce angiogenic factors that contribute to tumor growth
and invasion, such as vascular endothelial growth factor
(VEGF), IL-8, fibroblast growth factor-2, metalloproteinase
and cyclooxygenase-2, and colony-stimulating factor-1, but
also increase drug resistance in myeloma through direct cell-
to-cell interactions (Kawano et al., 2017). PD-L1 is expressed
in most MM plasma cells. Increased IFN-γ and toll-like
receptor (TLR) ligands induce PD-L1 expression in isolated
MM plasma cells (Tamura et al., 2020). Myeloid
differentiation factor 88 (MyD88) and TNF receptor-
associated factor 6 (TRAAF6) bridging proteins inhibit
TLR pathway and suppress not only TLR ligand-induced
PD-L1 expression but also IFN-γ-mediated PD-L1
expression (Liu et al., 2007). The above findings suggest
that the immune microenvironment plays a key role in
MM progression. In this study, we will reveal the abnormal

expression of immune-related genes (IRGs) in tumor
progression to provide effective diagnosis and treatment for
the disease. Nowadays, there have been several studies on the
prognosis prediction of MM, such as gene expression
inflammatory signature (Botta et al., 2016), EMC-92-gene
signature (Kuiper et al., 2012), and genome-wide
association studies (GWAS) of MM (Went et al., 2019), etc.
Although these study all predict survival status in MM
patients, we found that most of research either used
CD138+ selected cells microarray or mixed samples from
various time points. More importantly, prognostic
signature based solely on IRGs have not yet been developed
in MM patients. Therefore, an in-depth study of the treatment
and prognosis of IRGs and individualized immunotherapy is
essential to improve the prognosis of MM patients.

In this study, we investigated the potential prognostic value
of IRGs in MM by integrating clinical data and pre-treatment
gene expression profiling (GEP). Firstly, we identified 102
IRGs and transcription factors (TFs) driving MM progression,
and performed gene ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analyses.
Subsequently, immune-related prognostic signature was
developed in training cohort and validate in training and
testing cohorts. In addition, the protein-protein interaction
(PPI) network were extracted 10 Top IRGs. The results of the
bioinformatic analysis were supported by the identification of
IRF7 and SHC1 genes as hub IRGs, and the vitro assays
demonstrated that IRF7 and SHC1 have a function in
promoting tumor progression. These results suggested that
prognostic signature and hub IRGs may be promising and
molecular markers, which in turn provide targets for the
diagnosis and prognosis of MM.

MATERIALS AND METHODS

Data Collection and Pre-processing
Whole bone marrow GEP and corresponding clinical features
were obtained from The Gene Expression Omnibus (GEO)
(https://www.ncbi.nlm.nih.gov/geo/). Importantly, the whole
bone marrow samples in the GSE136400 dataset contains five
time points, such as before treatment, post Induction, post
transplant, post consolidation, and post maintenance. The aim
of the study was pre-treatment gene signature prediction, hence
we retained only before treatment 354 patients for bioinformatics
analysis. Samples were omitted genes with mean expression
values less than 0.1 to ensure the significance of the analysis.
Detailed clinical information for each sample is provided in
Supplementary File S1. We annotated 1,594 TFs and IRGs
based on the cis-chromosome and IMMPORT database
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(http://cistrome.org/CistromeCancer/CancerTarget/; https://
www.immport.org/home).

Weighted Gene Co-Expression Network
Analysis (WGCNA)
The ‘WGCNA’ package (Langfelder and Horvath, 2008) screened
the genes that were significantly associated with clinical features.
According to our previous study (Shen et al., 2021), a soft
threshold was determined, an adjacency matrix was clustered,
and a hub module was determined. The strongest positive
correlation was selected for further analysis by calculating the
Pearson correlation coefficient between the modules and
International Staging System (ISS). In this study, we classified
the transcriptome data into genes modules based on the
topological overlap matrix (TOM) and optimal soft threshold
(β = 7).

Functional Enrichment Analysis
We used the ‘cluster Profiler’ package for gene ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses of TFs and IRGs involved in disease
progression. All MM patients were divided into high- and
low-expression groups based on median expression for
subsequent GSEA analysis. In addition, we used the c2.
cp.kegg.v7.4. symbols and c5. go.v7.4. symbols gene sets
from the Molecular Signature Database (MSigDB) for GSEA
analysis. The number of permutations was set to 1,000. The
criteria for screening statistically significant pathways were set
as p-value less than 0.05 and FDR less than 0.05.

Construction and Validation of
IRGs-Related Signature
We randomly divided the 354 pre-treatment patients in the
GSE136400 dataset by a ratio of 6:4 (caret package in R
software). Of these, 214 patients were used as the training
set and the remaining 120 patients included in the testing set.
In addition, we also added a validation cohort (n = 134),
including post maintenance patients GEP. Univariate and
multivariate Cox regression analyses were used to
investigate the relationship between the expression of IRGs
and clinical prognosis in training set. Specifically, we selected
genes that were significantly associated with clinical prognosis
(p < 0.05). Subsequently, the LASSO-Cox regression method
was used to select the IRGs involved in the prediction model
from the above IRGs. In the training and testing cohorts, the
risk score of each individual was analyzed by regression
coefficients and their expression in multivariate Cox
analysis. MM patients in different sets were classified
according to median risk score in training set and survival
analysis was used to compare the clinical prognosis of high-
risk and low-risk patients. The diversity of clinical
information between the different risk groups and the
prognostic significance were assessed. The accuracy of the
prognostic model was verified using ROC curves with p < 0.05
as the significance criterion.

Comprehensive Analysis of Signature
Cox regression analysis was used to assess the independent
prognostic value. We analyzed differences in risk subgroups
and clinical characteristics. In addition, we used the ‘rms’
package to construct nomogram containing each IRG. The
assessment of the accuracy of model was achieved. In
addition, we performed a two-dimensional principal
component analysis (PCA) to explore the differences in the
discrete state distributions of different risk groups. We
combined the top10 genes in the PPI network with prognosis-
related IRGs from univariate Cox regression analysis in the entire
cohort to obtain two hub IRGs by Venn plot.

Immune Infiltration Assessment
The ‘GSVA’ package in R software was used to perform a gene set
enrichment analysis ssGSEA algorithm to unambiguously present
the infiltrating score of 29 tumor-infiltrating immune cells and
pathways (aDCs, APC co-inhibition, APC co-stimulation, B cells,
CCR, CD8+ T cells, Check-point, Cytolytic activity, DCs, HLA,
iDCs, Inflammation-promoting, Macrophages, Mast cells, MHC
class I, Neutrophils, NK cells, Parainflammation, pDCs, T cell co-
inhibition, T cell co-stimulation, T helper cells, Tfh, Th1 cells,
Th2 cells, TIL, Treg, Type I IFN Response, and Type II IFN
Response). Also, the relationship between the risk subgroups and
parameters related to immune cell infiltration in MM was
explored.

CCK-8 Cell Proliferation Detection
RPMI8226 and MM1S cells (2000 cells/well) were inoculated in
24-well plates and cultured for 24 h using Cell Counting Kit-8
(CCK-8 Kit) from Beyotime (Shanghai, China) (sort code
C0037). CCK-8 Cell Proliferation Assay Kit (C0037) was
purchased from Beyotime (Shanghai, China) and cells were
assayed according to its instructions viability. The human
MM cell lines RPMI8226 and MM1S were donated by the
Department of Hematology, Renji Hospital, Shanghai Jiaotong
University School of Medicine, China.

EdU Detection
EdU-488 cell proliferation assay kit Beyotime (catalog number
C0071S), RPMI8226 and MM1S cells (104 cells/well) were placed
in 24-well plates using BeyoClick™ and cultured for 24 h. Cell
proliferation capacity was detected using the EdU-488 Cell
Proliferation Assay Kit (C0071S) purchased from Beyotime
(Shanghai, China) according to the instructions.

Western Blot
RPMI8226 and MM1S cells (5×105 cells/well) were inoculated in
6-well plates and cultured for 24 h. After transfection and growth
to 95%, cells were lysed and harvested, and protein
concentrations were determined. Primary antibodies and their
dilution working solutions were as follows: anti-IRF7 (1:1000),
SCH1 (1:1000), HRP-conjugated secondary antibody (1:2000).
The Ultra Enhanced ECL kit (G3308, GBCBIO) was used to
amplify the exposure signal for western blot (WB) analysis.
Grayscale analysis of WB bands was performed using ImageJ
software.
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qPCR
Total microarray was extracted from hepatocellular carcinoma
cells and tissues using the Total microarray Extraction Kit
(R4107; GBCBIO, Guangzhou, China). then, the microarray
concentration was measured by nanodrop. Transcript First
Strand cDNA Synthesis Kit (0489703000; Roche) was used for
the reverse transcription reaction of microarray. Finally, qRT
PCR of IRF7 and SCH1 was performed using the Light Cycle 480
SYBR Green I Master Kit (04707516001; Roche) on a Light Cycle
480®II instrument with internal microarray control for GAPDH.

we used the 2-ΔCT method to infer the relative expression levels
of microarray. All primers for microarray are listed below:

IRF7: F primer-CTTCGTGATGCTGCGGGATA, R primer-
TTCTCGCCAGCACAGCTC, Product length 85bp. SHC1: F
primer-AGGTCCAACCAGGCTAAGGG, R-primer: GGGGGC
AGGAGATCCATAGT, Product length 120bp.

Statistical Analysis
All statistical analyses were performed using the R software
(v.4.0.1). The Wilcoxon test was applied for pairwise

FIGURE 1 | Flaw chart.
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comparisons. The Kaplan-Meier analysis with the log-rank test
was adopted for overall survival comparisons. More detailed
statistical methods for transcriptome data processing are
covered in the above section. p < 0.05 was considered
statistically significant.

RESULTS

Data Pre-processing
The flow chart of our study was shown in Figure 1. To investigate
the immune-related features of MM and their prognostic
associations, we downloaded the whole bone marrow
transcriptome microarray dataset and clinical information of
MM patients from the GEO database. Subsequently, we
randomly divided the 354 pre-treatment patients in the
GSE136400 dataset by a ratio of 6:4. Of these, 214 patients
were used as the training set and the remaining 120 patients
included in the internal validation set. Bioinformatics analysis
was subsequently performed.

Identification of MM Progression-Related
IRGs and TFs
To investigate genes that may be involved inMMdisease progression,
we focused on IRGs and TFs, as they may play a major role in tumor

progression. We constructed WGCNA for all patient samples and
excluded one sample (GSM4045581) based on the clustering. We
classified the transcriptome data into genes modules based on the
topological overlap matrix (TOM) and optimal soft threshold (β = 7)
(Figures 2A,B). The TOM was obtained from: the adjacency matrix
(matrix of weighted correlation values between genes) was converted
to a topological overlap matrix to reduce noise and false correlation,
and the new distance matrix was obtained. Subsequently, we
calculated the correlation between modules and clinical features
using Pearson method. The genes of the entire data were divided
into four modules, with the green module being the hub module for
International Staging System (ISS) (r = 0.39, p < 0.05) (Figure 2C).
Moreover, the classification categories from WGCNA present
different proportions of cell types. Most of all, green module had
the strongest positive correlation with Treg (r = 0.57), and the
strongest negative correlation with macrophages (r = -0.65), as
shown in Supplementary Figure S1. We overlapped the genes in
the green module with the known TFs and IRGs of the database,
101 TFs and IRGs associated with ISS were identified, which included
88 IRGs (Figure 3A) and 14 TFs (Figure 3C). This result suggested
that these 88 IRGs and 14 TFs may drive disease progression in MM.

Functional Enrichment Analysis
To investigate the biological functions of these 101 TFs and IRGs
that may be involved in disease progression, GO and KEGG
analysis were performed on the above-mentioned IRGs and TFs.

FIGURE 2 | WGCNA of all samples. (A) Soft threshold was identified by scale independence and mean connectivity. (B) Transcriptome data was classified into
different modules. (C) Association between the modules and clinical traits.
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GO analysis showed that genes were enriched mainly in cytokine
activity, receptor ligand activity, and leukocyte migration, etc.
(Figure 3B). In KEGG analysis, genes were mainly enriched in
immune-related pathways such as cytokine-cytokine receptor
interaction and natural killer cell mediated cytotoxicity
(Figure 3C), suggesting that these genes may influence tumor
immunity and thus regulate MM progression. Meanwhile, TFs
were mainly enriched in biological processes such as IgG binding,
G protein-coupled receptor binding and CCR chemokine
receptor binding (Figure 3D), and their functions were highly
diversified, suggesting that these TFs may have pro-cancer
potential.

Construction and Validation of
Immune-Related Prognostic Signature
Firstly, univariate Cox regression analysis was performed on all
IRGs to identify potential survival-related IRGs (Figure 4A) in
the training cohort. LASSO regression analysis (10-flods) was
used to select IRGs to avoid potential over-fitting (Figure 4B).
The coefficient of 10-IRGs were identified by multivariate Cox
regression analysis and used to develop optimal prognostic
characteristics for OS in MM patients (Figure 4C). The risk
score formula was obtained based on 10-IRGs = (-0.2138*BDNF) +
(0.6791*CD70) + (-0.3790*CETP) + (0.8628*LMBR1) +
(-0.1201*LTBP1) + (-1.0512*NENF) + (0.2852* NR1D1) +
(0.5262*NR1H2) + (0.1247*PTK2B) + (0.0623*SEMA4B).
Subsequently, patients were divided into high-risk and low-risk
groups by median risk score. In addition, we constructed a

nomogram based on the 10 IRGs (Figure 4D). In both the
training and internal testing sets, the calibration curves showed
that the one-year, three-year and five-year survival predictions
were consistent with the actual observations, indicating that the
prediction models were likely to be accurate (Figures 4E,F).
Subsequently, we performed PCA analysis to explore the discrete
distribution between the high-risk and low-risk groups, and the
results indicated that risk profile was able to accurately
differentiate patients (Figures 4G,H). To further validate the
reliability of the prognostic model, we plotted the distribution of
risk scores, survival status and corresponding gene expression levels
of the selected individuals in the training (Figures 5A,B) and internal
testing sets (Figures 5E,F). In the training set, the AUC values for
survival prediction at 1, 3 and 5 years were 0.681, 0.676, and 0.724
(Figure 5C). Kaplan-Meier analysis showed a better prognosis for
MM patients in the low-risk group compared to the high-risk group
(Figure 5D). In the internal testing set, the AUC values for survival
prediction at 1, 3 and 5 years were 0.550, 0.609, and 0.600
(Figure 5G). Kaplan-Meier analysis showed that the risk
stratification system was still discriminating for OS in MM
patients (Figure 5H), although it may be inappropriate for one-
year survival prediction. Moreover, we validated the predictive power
of our signature for long-termprognosis in postmaintenance patients
(n = 134). In another testing set, we also plotted the distribution of
risk scores, and survival status (Supplementary Figure S2A). As the
risk score increased, more patients died. Especially, for long-term
survival prediction, ROC curve analysis showed that risk score had
high predictive ability (AUC >0.7) (Supplementary Figure S2B).
Moreover, Kaplan-Meier analysis also revealed that the risk

FIGURE 3 |Biological function analysis of TFs and IRGs. (A) The venn plot of green module and IRGs. (B) IRGs for GO and KEGG pathway enrichment analysis (C)
The venn plot of green module and TFs. (D) The main biological process of TFs enrichment.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8978866

Wang et al. Risk Stratification of MM Patients

74

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


stratification system was still discriminating (Supplementary
Figure S1C).

It is worth noting we also conducted a web calculator to
identify survival possibility in MM patients (http://www.
empowerstats.net/pmodel/?m=0_immunesignatureFORmm).
To assess the independent prognostic value in the prognostic
model, we performed univariate and multivariate Cox regression
analyses. Risk score was associated with OS in MM individuals in
either the training or validation set (Figures 6A,B). Similarly, risk
score was an independent prognostic factor for survival in MM
patients (Figures 6C,D). Subsequently, in entire cohort, we
explored the correlation between risk scores and
clinicopathological parameters. The results showed that our
risk scores were significantly correlated with age
(Supplementary Figure S3A), ISS (Supplementary Figure
S3B), p53 mutation status (Supplementary Figure S3C),

albumin (Supplementary Figure S3D), β2-MG
(Supplementary Figure S3E), and LDH (Supplementary
Figure S3F). The feasibility of progression to advanced tumors
gradually increased with increasing risk score, suggesting risk
score could be as a indicator in MM progression.

Immune Infiltration andBiological Pathways
in Patients With Different Risk
A growing number of studies suggest that the tumor
microenvironment has an important and essential role in the
response to immunotherapy. The tumor microenvironment can
be reflected in the type and number of immune cells in the tumor.
To further understand the relationship between risk
characteristics, we used ssGSEA algorithm to explore the TME
in MM. Notably, risk scores were significantly associated with 10

FIGURE 4 |Construction and validation of immune-related signature. (A) A forest of univariate cox regression analysis in training set. (B) LASSO regression analysis
for most suitable λ. (C) A forest of multivariate cox regression analysis. (D) Nomogram based on 10-IRGs. (E) Calibration curve in the training set. (F) Calibration curve in
the internal testing set. (G) PCA plot in the training set. (H) PCA plot in the internal testing set. The red dots represent high-risk patients and blue dots represent low-risk
patients.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8978867

Wang et al. Risk Stratification of MM Patients

75

http://www.empowerstats.net/pmodel/?m=0_immunesignatureFORmm
http://www.empowerstats.net/pmodel/?m=0_immunesignatureFORmm
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


immune cell types, including aDCs, B cells, and Treg, among
others (Figure 7A). 8 relevant immune pathways were
significantly associated with the expression of risk scores,
including APC co-stimulation, CCR signaling, and immune
checkpoints (Figure 7B). The ssGSEA results further
confirmed that the risk score could indicate the immune status
of the TME. Next, GSEA was used to investigate potential
biological pathways differences between high-risk and low-risk
MM patients. Humoral immune responses and functional
pathways, such as cell cycle and DNA synthesis were
significantly enriched in the low-risk group (Figures 7C,E).
Biological processes such as viral defense responses,
endoplasmic reticulum protein transport and signaling
pathways such as microarray degradation and protein
transport were significantly enriched in the high-risk group
(Figures 7D,F).

Identify Hub IRGs in PPI Network
To identify potential interaction networks in protein level between 88
IRGs, a circular PPI network (STRING database) was mapped using

Cytoscape software (Figure 8A). Also, the top 10 IRGs in topology
degree were screened (Figure 8B). Subsequently, by Cox regression
analysis based on 88 IRGs, we found a total of 16 IRGs significantly
associated with OS for the entire cohort (Figure 8C). Then, we
overlapped the Top10 genes in the PPI network and prognostic genes
(Figure 8D). Finally, two genes overlapped at the Venn plot,
including IRF7 and SHC1. Hence, the above two IRGs were
identified as hub IRGs associated with prognosis in protein-
protein interaction level. In addition, TFs were identified as
important molecules directly regulating the expression of other
genes. Therefore, we explored the potential interactions between
the 14 TFs in WGCNA and the hub IRGs (IRF7 and SHC1).
Excitingly, the results suggested that interactions between TFs and
hub IRGs indeed exist (Figure 8E).

IRF7 and SHC1 Promote Tumor Cell
Proliferation
The results of our analysis suggest that IRF7 and SHC1 genes are
core IRGs associated with MM prognosis and may be key factors

FIGURE 5 | Survival prognostic prediction to test the prognostic model. (A, B) Distribution of risk scores, survival status and corresponding gene expression levels
of patients in the training set. (C) ROC analysis about one, three, and five-year survival prediction in the training set. (D) Kaplan–Meier analysis in the training set. (E, F)
Distribution of risk scores, survival status and corresponding gene expression levels of patients in the internal testing set. (G)ROC analysis about one, three, and five-year
survival prediction in the internal testing set. (H) Kaplan–Meier analysis in the internal testing set.
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in MM disease progression. To validate this analysis, we
overexpressed IRF7 and SHC1 in MM cell lines in vitro.
QPCR experiments and Western Blot assays verified the
successful overexpression of IRF7 and SHC1 (Figures 9A–D).
CCK8 immunofluorescence staining and EDU experiments
showed that compared to controls, overexpression of both
IRF7 and SHC1 promoted tumor cell proliferation (Figures
9E–H). These results support the conclusions of our
bioinformatic analysis.

DISCUSSION

As a clonal plasma cell abnormal proliferative tumor in the bone
marrow, MM is accompanied by the secretion of large amounts of
M proteins and is highly heterogeneous, leading to symptoms
such as hypercalcemia, renal damage, anemia, bone destruction,
and pathological clinical signs (Yanai et al., 2012; Corre et al.,
2021). With the advent of novel drugs such as
immunomodulators and proteasome inhibitors, the prognosis
of MM patients has improved significantly, but patients are still
repeatedly admitted to hospital for relapse and progression, so
multiple myeloma remains an incurable type of disease.
Therefore, it is clinically important to explore new molecular
biological markers to track the treatment effect of MM, predict

the disease progression, and provide more effective treatment
options for MM. In our study, we screened out 10-IRGs involved
in signature (BDNF, CETP, CD70, LMBR, LTBP1, NENF,
NR1D1, NR1H2, PTK2B and SEMA4) and two hub IRGs in
PPI network (IRF7 and SHC1). In vitro experiments showed that
IRF7 and SHC1 could promote the proliferation of MM cell lines.
It is suggested that IRF7 and SHC1 may play an important role in
promoting the progression of MM.We believed that the above 12
novel markers could provide more possibilities for future MM
therapies.

IRF7 is a major regulator of viral immune responses, which is
type I interferon-dependent and tumorigenic (Lan et al., 2019).
IRF7 not only affects tumor growth and malignant
transformation of various tumor populations, but also
regulates the development of myeloid-derived suppressor cells
in cancer (Robak et al., 2018). Previous reports have shown that
IRF7 is highly necessary for monocytes to differentiate them from
macrophages (Lu and Pitha, 2001). In IRF7-deficient mice, it has
potential effects on the accumulation of immature myeloid cells
and on the dynamics of IRF7 expression in myeloid cell
differentiation. Factors from tumors can prevent IRF7
expression in myeloid progenitor cells, which may lead to the
accumulation of G-MDSC (Yang et al., 2017). Targeting IRF7
may help to reverse the abnormal differentiation of myeloid cells
and thus play a role in tumor immunotherapy. This suggests that

FIGURE 6 | Independent prognostic analysis. (A,B) Forest plots of univariate Cox regression analysis in different sets. (C,D) Forest plots of multivariate Cox
regression analysis in different sets.
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IRF7 may be the key to MM immunotherapy. Overexpression of
SHC1 promotes activation of MM cell lines and progression of MM.
the SHC1 gene encodes an adaptor protein that is an important
regulator of several tyrosine kinase signaling pathways. In other
oncology studies, it has been suggested to promote
immunosuppression and is a key regulator of breast cancer (Ahn
et al., 2017). Furthermore, overexpression of SHC1 is associated with
low survival rates in stage IIA colon cancer (Grossman et al., 2007).
Previous studies have suggested that SHC1 associated with imbalance
in integrin expressionmay be a prognostic predictor of clear cell renal
cell carcinoma (ccRCC) (Lu et al., 2016). Interestingly, in our present
study, SHC1 was an important hub IRGs in the PPI network,
suggesting that SHC1 may play a general broad-spectrum
function in tumor progression.

In recent years, it has been found that the bone marrow
microenvironment plays a key role in the development of
MM. The bone marrow microenvironment is composed of
immune cells, fibroblasts, bone marrow-derived inflammatory
cells and lymphocytes. Under normal conditions, natural killer
cells (NK cells) and cytotoxic1 lymphocytes are present in the
bone marrow environment and can exert a powerful anti-tumor
response. However, the immunosuppressive microenvironment
arises due to the presence of tumor cells, which can be of great
benefit in expanding the immunosuppressive cell population
(Haabeth et al., 2020). A better understanding of the tumor
microenvironment can help to determine the prognostic value
and therapeutic outcome of MM patients. Immunotherapy is an
important and effective treatment for a large number of tumors,
and IRGs are closely associated with tumor progression (Murray

and Anagnostou, 2021). Currently, MM remains a difficult area of
treatment due to recurrence and repeated hospital admissions.
Therefore, the discovery of a more powerful tool is an urgent
need, and immunotherapy has become a new focus of public
attention. Although there has been an increasing number of
studies on the relevance of immunotherapy to MM in recent
years, more in-depth basic exploration and clinical trials are still
needed to apply IRGs to clinical diagnosis and treatment. In our
study, we developed a IRGs signature, and the important role of
our signature in prognosis was confirmed by various statistical
methods. In both the training and testing sets, the calibration
curves showed that the one-year, three-year and five-year survival
predictions were consistent with the actual observations. PCA
analysis to explore the discrete distribution between the high-risk
and low-risk groups, In the training set, the AUC values for survival
prediction at 1, 3 and 5 years were 0.681, 0.676, and 0.724. Kaplan-
Meier analysis showed a better prognosis forMMpatients in the low-
risk group compared to the high-risk group. Moreover, we validated
the predictive power of our signature for long-term prognosis in post
maintenance patients (n = 134). As the risk score increased, more
patients died. Especially, for long-term survival prediction, ROC
curve analysis showed that risk score had high predictive ability.
Compared with CD138+ selected cells microarray, whole bone
marrow microarray is cheaper and easier to promote to clinical
practice (Kuiper et al., 2012; Botta et al., 2016; Went et al., 2019). In
our study, ssGSEA algorithm was used to show the changes of
immune cells and immune function using the whole bone marrow
samples. These are all analyses that CD138 + selected cells microarray
can’t do.

FIGURE 7 | Immune infiltration analysis and GSEA. (A) A box plot showed difference of 21 immune cells in different risk subgroups. (B) A box plot showed
difference of eight immune related pathways in different risk subgroups. (C,D) GSEA analysis in the high-risk group. (E,F) GSEA analysis in the low-risk group.
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FIGURE 8 | Identification of hub IRGs related to prognosis in PPI network. (A) Based on the STRING database, 88 IRGs ring PPI networks are constructed. (B) PPI
network analyzes topological degree. (C) A forest plot of univariate Cox regression analysis in the entire set. (D) Venn plot of the Top10 IRGs of PPI network and
prognostic-related IRGs. (E) Analysis of the interaction between TFs and core IRGs.

FIGURE 9 | IRF7, SHC1 promote tumor cell proliferation. (A–D) qPCR experiment andWestern Blot experiment to detect the expression of IRF7 and SHC1. (E–H)
CCK8 immunofluorescence staining and EDU test to detect the proliferation of tumor cells in the experiment and the control group MM. Protein expression was
determined by western blotting and representative results from one of the three independent experiments are presented. Bar graphs were average of experimental
replicates from three independent experiments. Error bars represent mean ± s.d.; **p < 0.01; ***p < 0.001; by unpaired two-sided Student’s t-test.
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However, there are numerous limitations to our study that
should be considered. Firstly, our research was only based on the
GSE16400 dataset, and only pre-treatment whole bone marrow
GEP can be used for survival prediction. More independent data
sets are needed to verify the risk model we identified. When
extending our findings to different treatment or GEP, caution is
advised. Moreover, two hub genes in PPI network were validated
in vitro, and the other 10-IRGs were not further explored. Hence,
we will need to conduct more experiments in the future to
confirm our conclusion. In conclusion, our study identified a
risk model associated with MM prognosis through a series of
bioinformatics analyses, and this risk score may have important
implications for MM progression.
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Background: Coronavirus disease 2019 (COVID-19) is caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). Although unprecedented efforts
are underway to develop therapeutic strategies against this disease, scientists have
acquired only a little knowledge regarding the structures and functions of the CoV
replication and transcription complex (RTC). Ascertaining all the RTC components and
the arrangement of them is an indispensably step for the eventual determination of its
global structure, leading to completely understanding all of its functions at the
molecular level.

Results: The main results include: 1) hairpins containing the canonical and non-canonical
NSP15 cleavage motifs are canonical and non-canonical transcription regulatory
sequence (TRS) hairpins; 2) TRS hairpins can be used to identify recombination
regions in CoV genomes; 3) RNA methylation participates in the determination of the
local RNA structures in CoVs by affecting the formation of base pairing; and 4) The eventual
determination of the CoV RTC global structure needs to consider METTL3 in the
experimental design.

Conclusions: In the present study, we proposed the theoretical arrangement of NSP12-
15 and METTL3 in the global RTC structure and constructed a model to answer how the
RTC functions in the jumping transcription of CoVs. As the most important finding, TRS
hairpins were reported for the first time to interpret NSP15 cleavage, RNA methylation of
CoVs and their association at the molecular level. Our findings enrich fundamental
knowledge in the field of gene expression and its regulation, providing a crucial basis
for future studies.

Keywords: coronavirus, RNA methylation, nanopore, TRS hairpin, METTL3
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) is caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) (Li et al.,
2020) (Duan et al., 2020) with a genome of ~30 kb (Jiayuan et al.,
2020). By reanalyzing public data (Kim et al., 2020a), we
determined that a SARS-CoV-2 genome has 12 genes, which
are spike (S), envelope (E), membrane (M), nucleocapsid (N), and
ORF1a, 1b, 3a, 6, 7a, 7b, 8 and 10 (Li et al., 2021a). TheORF1a and
1b genes encode 16 non-structural proteins (NSPs), named NSP1
through NSP16 (Silva et al., 2020), while the other 10 genes
encode four structural proteins (S, E, M and N) and six accessory
proteins (ORF3a, 6, 7a, 7b, 8 and 10). Among the above 26
proteins, NSP4-16 are highly conserved in all known CoVs and
have been experimentally demonstrated or predicted to be critical
enzymes in CoV RNA synthesis and modification (Denison et al.,
2011), particularly including: NSP12, RNA-dependent RNA
polymerase (RdRP) (Yan et al., 2020); NSP13, RNA helicase-
ATPase (Hel); NSP14, RNA exoribonuclease (ExoN) and N7
methyltransferase (MTase); NSP15 endoribonuclease (EndoU)
(Kim et al., 2020b); and NSP16, RNA 2′-O-MTase.

NSP1-16 assemble into a replication and transcription
complex (RTC) (Yan et al., 2020). The basic function of the
RTC is RNA synthesis: it synthesizes genomic RNAs (gRNAs) for
replication or transcription of the ORF1a, 1b genes, while it
synthesizes subgenomic RNAs (sgRNAs) for jumping
transcription of the other 10 genes (Kim et al., 2020a). In
1998, the “leader-to-body fusion” model (Sawicki et al., 1998)
was proposed to explain the jumping transcription, however, the
molecular basis of this model was unknown until our previous
study in 2020 (Li et al., 2021a). In our previous study (Li et al.,
2021a), we provided a molecular basis for the “leader-to-body
fusion” model by identifying the cleavage sites of NSP15 and
proposed a negative feedback model to explain the regulation of
CoV replication and transcription. In addition, we revealed that
the jumping transcription and recombination of CoVs share the
same molecular mechanism (Li et al., 2021a), which causes rapid
mutation and inevitably outbreaks of CoVs. These findings are
vital for the further investigation of CoV transcription and
recombination. However, there will be a long way to
completely understand how the RTC functions in the jumping
transcription at the molecular level.

For a complete understanding of CoV replication and
transcription, particularly the jumping transcription, much
research (Yan et al., 2020) (Kim et al., 2020b) (Hillen et al.,
2020) has been conducted to determine the global structure of the
SARS-CoV-2 RTC, since the outbreak of SARS-CoV-2 in 2019.
Although some single protein structures (e.g., NSP15 (Kim et al.,
2020b)) and local structures of the RTC (i.e. NSP7&8&12&13
(Yan et al., 2020) and NSP7&8&12 (Hillen et al., 2020)) have been
determined, the global structure and all components of RTC are
still unknown. As the global structure of the CoV RTC cannot be
determined by simple use any one of current methods (i.e., X-ray,
NMR and Cryo-EM), ascertaining all the RTC components and
the arrangement of them is an indispensably step for the eventual
determination of its global structure, leading to completely
understanding all of its functions at the molecular level. In the

present study, we aimed to determine the theoretical arrangement
of NSP12-16 in the global structure of the CoV RTC by
comprehensive analysis of data from different sources, and to
preliminarily elucidate how the RTC functions in the jumping
transcription of CoVs at the molecular level.

RESULTS

Jumping Transcription, TRS and NSP15
Cleavage Site
First, we provide a brief introduction to the jumping transcription
of CoVs, the “leader-to-body fusion” model proposed in an early
study (Sawicki et al., 1998) and its molecular basis proposed in
our recent study (Li et al., 2021a). In the “leader-to-body fusion”
model, the realization of jumping transcription requires
transcription regulatory sequences (TRSs), which include
leader TRSs (TRS-Ls) and body transcription regulatory
sequences (TRS-Bs). Each CoV genome contains a TRS-L in
the 5′ untranslated region (UTR) and several TRS-Bs located in
the upstreams of genes except ORF1a and 1b. CoV replication
and transcription require gRNAs(+) as templates for the synthesis
of antisense genomic RNAs [gRNAs(-)] and antisense
subgenomic RNAs [sgRNAs(-)] by RdRP. When RdRP pauses,
as it crosses a TRS-B and switches the template to the TRS-L,
sgRNAs(-) are formed through jumping transcription (also
referred to as discontinuous transcription, polymerase jumping
or template switching). Otherwise, RdRP reads gRNAs(+)
continuously, without interruption, resulting in gRNAs(-).
Thereafter, gRNAs(-) and sgRNAs(-) are used as templates to
synthesize gRNAs(+) and sgRNAs(+), respectively; gRNAs(+)
and sgRNAs(+) are used as templates for the translation of NSP1-
16 and the other 10 proteins (S, E, M, N, and ORF3a, 6, 7a, 7b, 8
and 10), respectively. In our previous study (Li et al., 2021a), we
provided a molecular basis for the “leader-to-body fusion”model
by identifying the reverse complimentary sequences of TRS-Bs
[denoted as TRS-Bs(-)] as the NSP15 cleavage sites, which
actually functions in the regulation of CoV regulation. NSP15
cleaves gRNAs(-) and sgRNAs(-) at TRS-Bs(-). Then, the free 3′
ends (~6 nt) of TRS-Bs(-) hybridize TRS-Ls to realize “leader-to-
body fusion”. These findings associated the investigation of TRSs
to that of NSP15 cleavage sites.

In our previous study (Bei et al., 2022), we made a
generalization that a TRS motif is a (6~8-nt long for CoVs)
consensus sequence beginning with at least an adenosine residue
(A), and enriched with A and followed by C, based on the analysis
of 1,265 CoV genome sequences (Materials and Methods). We
defined that the antisense sequence of a TRS motif as the motif of
the corresponding NSP15 cleavage site (the NSP15 cleavage
motif). For example, the canonical TRS motif of SARS-CoV-2
and the corresponding NSP15 cleavage motif are ACGAAC and
GTTCGT, respectively.We defined the TRSmotif in the TRS-L as
the canonical TRS motif. Thus, the canonical TRS motif is unique
to a CoV genome, while the TRS motifs in TRS-Bs can be
canonical TRS motifs or non-canonical TRS motifs with little
nucleotide (nt) differences. By these definitions, we determined
canonical TRS motifs of all viruses in the order Nidovirales
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(Figure 1) and corrected some canonical TRS motifs reported in
the previous studies. For instance, the canonical TRS motifs of
mouse hepatitis virus (MHV), transmissible gastroenteritis virus
(TGEV), canada goose coronavirus (Goose-CoV) and beluga
whale coronavirus (BWCoV) were corrected from CTAAAC
(Grossoehme et al., 2009), CTAAAC (Sola et al., 2005),
CTTAACAAA (Papineau et al., 2019) and AAACA
(Mihindukulasuriya et al., 2008) to ATCTAAAC, ACTAAAC,
AACAAAA and AACAAAA, respectively. Canonical TRS motifs
are highly conserved in Alphacoronavirus, Gammacoronavirus,
Deltacoronavirus and Betacoronavirus genera except the
subgroup A (Figure 1). Betacoronavirus subgroup A has the
canonical TRS motif ATCTAAAC, which is different from
ACGAAC in Betacoronavirus subgroup B, C, D and E.
Different from Betacoronavirus subgroup B, Betacoronavirus
subgroup A, C, D and E, Alphacoronavirus,
Gammacoronavirus and Deltacoronavirus have non-canonical
TRS motifs in the TRS-Bs of four structural genes (S, E, M
and N), which were caused by mutations during evolution. These
TRS motif mutations resulted in the attenuation of CoVs in
Betacoronavirus subgroup A, D and E by down-regulating the
transcription of CoV genes exceptORF1a and 1b (Li et al., 2021b).
This confirmed that TRSs (Actually revealed as the NSP15
cleavage sites (Li et al., 2021a)) function in the regulation of
CoV transcription (Yount et al., 2006). Furthermore, a previous
study reported that the recognition of a TRS (Actually revealed as
the NSP15 cleavage site (Li et al., 2021a)) is independent on its
motif, but dependent on its context (Yount et al., 2006).

NSP15 Cleavage, RNA Methylation and TRS
Hairpin
A previous study (Kim et al., 2020a) reported that RNA
methylation sites containing the “AAGAA-like” motif
(including AAGAA and other A/G-rich sequences) are present
throughout the SARS-CoV-2 genome, particularly enriched in

genomic positions 28,500-29,500. This study used Nanopore
RNA-seq (Xu et al., 2019), a direct RNA sequencing method,
which can be used to measure RNA methylation at 1-nt
resolution although it has a high error rate. By analyzing the
Nanopore RNA-seq data, the previous study (Kim et al., 2020a)
concluded that the methylated RNAs have shorter 3′ polyA tails
than the unmethylated ones in SARS-CoV-2. Although the type
of RNAmethylation was unknown, the previous study (Kim et al.,
2020a) proposed that the “AAGAA-like”motif associates with the
lengths of 3′ polyA tails of gRNAs and sgRNAs. However, the
previous study did not answer the following questions: 1) it was
not explained that what functions the internal methylation sites
have, as they are far from 3′ ends, thus unlikely to contribute to
the lengths of 3′ polyA tails; and 2) the extremely high ratio
between sense and antisense reads (Li et al., 2021a) may result
from quick degradation of the antisense nascent RNAs due to
their shorter 3′ polyA tails, however, the “AAGAA-like” motif
occurs in both sense and antisense strands at a similar frequency.
Notably, the previous study (Kim et al., 2020a) shouldn’t have
neglected the analysis of the “AAGAA-like” motif on the
antisense strand, since only very a few antisense reads from
the Nanopore RNA-seq data were obtained for analysis.
Therefore, we proposed that RNA methylation sites containing
the “AAGAA-like”motif may have other biological functions and
conducted further analysis.

Different from the previous study (Kim et al., 2020a), our
study focused on the analysis of the “AAGAA-like” motif on the
antisense strand of the SARS-CoV-2 genome, particularly the
association between the “AAGAA-like” motif and the TRS or
corresponding NSP15 cleavage motifs. As a result, we discovered
that the “AAGAA-like” motif co-occurred with the NSP15
cleavage motif GTTCGT of four genes (S, ORF6, 7a and 8). In
our previous study (Liu et al., 2018), complemented palindrome
sequences in genomes of viruses in Betacoronavirus subgroup B
have been investigated and most of them are semipalindromic or
heteropalindromic. These complemented palindrome sequences

FIGURE 1 | Canonical TRS motifs in Coronaviridae. Embecovirus, Sarbecovirus,Merbecovirus, Nobecovirus and Hibecovirus are also defined as Betacoronavirus
subgroups A, B, C, D and E. SARS-CoV and SARS-CoV-2 belong to Betacoronavirus subgroup B. These canonical TRS motifs (in red color) of viruses in Coronaviridae
have been reported in our previous study (Bei et al., 2022).
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containing A-rich and T-rich regions form hairpins. The
“AAGAA-like” and GTTCGT motifs are located in the A-rich
and T-rich regions. Thus, the association between the “AAGAA-
like” and GTTCGT motifs was discovered by analysis of TRS
hairpins of the four genes (Figure 2). For analysis of TRS
hairpins, we defined: 1) hairpins containing the canonical and
non-canonical NSP15 cleavage sites are canonical and non-
canonical TRS hairpins, respectively; and 2) hairpins opposite
to TRS hairpins are opposite TRS hairpins (Figure 2). However,
the formation of opposite TRS hairpins is uncertain, as all
complemented palindrome sequences forming the TRS and
opposite TRS hairpins are asymmetric (semipalindromic or
heteropalindromic). Among the 10 genes, eight (S, E, M, N,
ORF1a, 1b, 3a, 6, 7a, and 8) have canonical TRS hairpins and
two (ORF7b and 10) may have non-canonical TRS hairpins
(Supplementary Table S1). Non-canonical TRS hairpins have
been reported in seven common recombination regions in one of
our previous studies (Li et al., 2021b) and identified in five
recombination events (Figure 3) in another one of our
previous studies (Li et al., 2021a). Therefore, TRS hairpins can

be used to identify recombination regions in CoV genomes.
NSP15 cleaves the canonical TRS hairpins of the seven genes
at canonical breakpoints, whereas it cleaves the canonical TRS
hairpin of ORF3a at an unexpected breakpoint “GTTCGTTTAT|
N” (the NSP15 cleavage motif is underlined; the vertical line
indicates the breakpoint and N represents any nt), rather than the
end of the canonical NSP15 cleavage motif “GTTCGT|TTATN”.
According to our definitions, “GTTCGT|TTATN” and
“GTTCGTTTAT|N″ are canonical and non-canonical NSP15
breakpoints, respectively. The discovery of non-canonical TRS
hairpins and non-canonical NSP15 breakpoints indicated that the
recognition of NSP15 cleavage sites is structure-based rather than
sequence-based.

How RTC Functions in Jumping
Transcription
Since several A-rich and T-rich regions are alternatively present
around each NSP15 cleavage site, many hypothetical TRS
hairpins (Figure 4A–C) containing the NSP15 cleavage site

FIGURE 2 | Canonical TRS hairpins in SARS-CoV-2. The canonical transcription regulatory sequence (TRS) motif ACGAAC is present in the upstreams of eight
genes (S, E,M, N, and ORF3a, 6, 7a and 8). Read on the antisense strands of the SARS-CoV-2 genome (GenBank: MN908947.3), “AAGAA” (in blue color) or “AAACH”
(Supplementary Table S1) represents an RNA methylation site, while “GUUCGU” (in red color) represents a NSP15 cleavage site. The positions are the start and end
positions of hairpins in the SARS-CoV-2 genome. NSP15 cleaves a single-strand RNA after U (indicated by arrows). In the present study, we defined: (1) the
hairpins containing the canonical and non-canonical NSP15 cleavage sites are canonical and non-canonical TRS hairpins, respectively; and (2) the hairpins opposite to
the TRS hairpins as the opposite TRS hairpins.
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can form. Thus, to investigate if a unique TRS hairpin can be
formed, we further analyzed the association between the
“AAGAA-like” and GTTCGT motifs in all possible TRS
hairpins of the eight genes (Supplementary Table S1) using
1,265 CoV genome sequences (Materials and Methods), leading
to discovery of the association between RNA methylation and
NSP15 cleavage. Here, we illustrate how the association was
discovered, using the M gene of SARS-CoV-2 as an example
(Figure 4). The minimum free energies (MFEs) of three possible
TRS hairpins in the M gene were estimated as -2.50, -4.00 and
-4.90 kcal/mol (Materials and Methods). Although the third
hairpin (Figure 4C) is the most stable one, the difference of
MFEs between the second (Figure 4B) and third hairpins is
marginal. The first (Figure 4A) and third hairpins require the
“AAGAA-like” and AAACH (Detailed later) motifs involved in
the base pairing, respectively. However, RNA methylation (e.g.,
m6A) of these motifs is not in favour of base pairing in the first
and third hairpins. Thus, only the second hairpin was able to
form. We proposed that RNA methylation participates in the
determination of the local RNA structures in CoVs by affecting
the formation of base pairing. RNA methylation of sequences
containing the “AAGAA-like” or AAACH motifs significantly

reduces the possibility of formation of many hairpins, ensuring
the formation of a unique TRS hairpin (Figure 4B) in all
likelihood. In the unique TRS hairpin, the NSP15 cleavage site
exposes in a small loop, which facilitates the contacts of NSP15,
while the loop of the opposite TRS hairpin may not contain
uridine residues for NSP15 cleavage. The structure of this small
loop can be used to explain the results of mutation experiments in
a previous study (Yount et al., 2006) that the recognition of a TRS
(Actually revealed as the NSP15 cleavage site (Li et al., 2021a)) is
independent on its motif, but dependent on its context. The TRS
hairpin can be used to explain the discovery that the recognition
of NSP15 cleavage sites is structure-based (TRS hairpin) rather
than sequence-based (NSP15 cleavage motif). The above results
indicated that TRS hairpins in nascent gRNAs(-) are
indispensable for the functions of the RTC in jumping
transcription (Figure 4D).

The following topic is which enzyme is responsible for the
internal methylation of CoV RNAs, which is supposed to be
done before the NSP15 cleavage for jumping transcription. A
recent study reported that NSP14 (no structure data available)
and NSP10&16 (PDB: 7BQ7), as N7 and 2′-O-MTase
respectively (Introduction), are crucial for RNA cap

FIGURE 3 | TRS hairpins in five recombination regions. (A-E) have already been published in our previous study (Li et al., 2021a). N represents any nt. All the
positions were annotated on the SARS-CoV (GenBank: AY278489) or SARS-CoV-2 (GenBank: MN908947) genomes. (A). The genome (GenBank: MN996532) of the
SARS2-like CoV strain RaTG13 from bats is used to show the 12-nt deletion; (B). The genome (GISAID: EPI_ISL_417443) of the SARS-CoV-2 strain Hongkong is used
to show the 30-nt deletion; (C). The genomes (GISAID: EPI_ISL_414378, EPI_ISL_414379 and EPI_ISL_414380) of three SARS-CoV-2 strains from Singapore are
used to show the 382-nt deletion; (D). The genome (GenBank: MT457390) of the mink SARS2-like CoV strain is used to show the 134-nt deletion; (E). The genome
(GenBank: AY274119) of the SARS-CoV strain Tor2 is used to show the 29-nt deletion . (F). These recombinant events occurred at the non-canonical NSP15
breakpoints that also end with at least an uridine residue (“U”), due to the cleavage of the non-canonical TRS hairpins.
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formation (Krafcikova et al., 2020). This suggested that NSP14
and NSP10&16 are unlikely to function in the internal
methylation of CoV RNAs. Although the previous study
excluded METTL3-mediated RNA (m6A) methylation for
lack of the canonical motif RRACH (R and H represent A/G
and A/C/T, respectively) (Kim et al., 2020a), we still found many
internal methylation sites containing the AAACH motif in the
SARS-CoV-2 genome by reanalyzing the Nanopore RNA-seq
data. Notable instances include “agTtt” (AAACT on the
antisense strand) at the positions 29408 and 29444
(corresponding to the underlined capital letter), and “tgTtt”
at the position 29170. Particularly, “tgTtt”, “cgTtt”, “agTtt” and
“tgTtt” located at the positions 25402, 26258, 26494 (Figure 4C)
and 28235 co-occurred with the NSP15 cleavage motif of four
genes (ORF3a, E,M and N). In addition, “tgTtt”, “tgTtt”, “ttctT”
(the “AAGAA-like” motif on the antisense strand) and “tgTtt”
were located at the positions 21566, 21570, 21577 and 21579
(Supplementary Table S1), which are closely linked and
flanking the GTTCGT motif of the S gene, which merits
investigation in the future. The above findings indicated that
METTL3 functions in RNA (m6A) methylation of sequences
containing the AAACH motif for ORF3a, E, M and N, and
possibly the “AAGAA-like”motif for S, ORF6, 7a and 8. Finally,
we proposed the theoretical arrangement of NSP12-15 and
METTL3 in the global RTC structure (Figure 4D) by the
integration of information from many aspects, particularly
including: 1) identification of NSP15 cleavage sites in our
previous study (Li et al., 2021a); 2) discovery of the AAACH
motif co-occurred with the NSP15 cleavage motif of four genes;
3) discovery of the association between RNA methylation and

NSP15 cleavage; and 4) discovery of the TRS hairpins of eight
genes (S, E, M, N, and ORF3a, 6, 7a and 8).

By comprehensive analysis of the above results, we
constructed a model to answer how the RTC functions in the
jumping transcription of CoVs. In this model, the RTC processes
double-strand RNAs (dsRNAs) and single-strand RNAs
(ssRNAs) in two situations (Figure 4D), respectively. In the
first situation, NSP13 unwinds dsRNAs (Yan et al., 2020) to
produce ssRNAs(+) or ssRNAs(-), which are processed in two
routes. In one route, NSP12 synthesizes RNAs with error
correction by NSP14 to produce dsRNAs using unwound
ssRNAs(+) or ssRNAs(-) as templates (Knoops et al., 2008).
The other route processes ssRNAs(+) or ssRNAs(-), which can
be methylated at internal sites and cleaved by NSP15 for jumping
transcription. Then, the ssRNAs(+) and ssRNAs(-) are further
processed in different ways: most ssRNAs(+) are uncleaved and
packaged by the N protein (this is still not clear), while ssRNAs(-)
can be uncleaved or cleaved for jumping transcription or
degraded, which is regulated by a negative feedback
mechanism (Li et al., 2021a). In the second situation, the RTC
processes ssRNAs: uncleaved ssRNAs(+) and ssRNAs(-) are used
as templates for replication; cleaved ssRNAs(-) are used as
templates for transcription. The model can be used to explain
the extremely high ratio between sense and antisense reads
analyzed in our previous study (Li et al., 2021a) and the
experimental result that knockdown of NSP15 by mutation
increases the accumulation of viral dsRNA in another previous
study (Deng et al., 2017). According to our model, knockdown of
NSP15 increases the uncleaved gRNAs(-), which continue to be
templates to produce more dsRNAs.

FIGURE 4 | How RTC functions in jumping transcription. N represents any nt. Using theM gene of SARS-CoV-2 as an example, the first (A) and third (C) hairpins
require the “AAGAA-like” or AAACHmotifs involved in the base pairing. RNAmethylation of sequences containing the “AAGAA-like” or AAACH (in blue color) motifs is not
in favour of base pairing, ensuring the formation of a unique TRS hairpin (B) containing a NSP15 cleavage site in the loop (D) 5′-3′ represents the strand of the SARS-
CoV-2 genome. NSP12-14 form the main structure of the RTC; NSP7 and NSP8, acting as the cofactors of NSP12, may be also included in the main structure of
the RTC (Yan et al., 2020); NSP15 and METTL3 are coupled with the main structure. The RTC processes the double-strand RNAs (dsRNAs) and single-strand RNAs
(ssRNAs) in two situations. Nascent RNAs are synthesized in one route using unwound ssRNAs(+) or ssRNAs(-) as templates. In the other route, ssRNAs(-) can be
uncleaved or cleaved for jumping transcription or degraded, which is regulated by a negative feedback mechanism (Li et al., 2021a). NSP15 cleaves a ssRNA in a small
loop in the second route.
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CONCLUSION AND DISCUSSION

In the present study, we proposed the theoretical arrangement of
NSP12-15 and METTL3 in the global RTC structure and
constructed a model to answer how the RTC functions in the
jumping transcription of CoVs. More importantly, our results
reveal the complex associations between RNA methylation,
NSP15 cleavage, CoV replication and transcription at the
molecular level. Our findings enrich fundamental knowledge
in the field of gene expression and its regulation, providing a
crucial basis for future studies. NSP12-14 form the main structure
of the RTC; NSP7 and NSP8, acting as the cofactors of NSP12,
may be also included in the main structure of the RTC (Yan et al.,
2020); NSP15 and METTL3 are coupled with the main structure.
The results of previous experiments suggest that NSP8 is able to
interact with NSP15 (Lianqi et al., 2018). Future research needs to
be conducted to determine the structures of NSP12&14,
NSP12&15, NSP12&METTL3 and NSP15&METTL3
complexes by Cryo-EM. These local RTC structures can be
used to assemble a global RTC structure by protein-protein
docking calculation. Our model does not rule out the
involvement of other proteins (e.g., ORF8) in the global RTC
structure or other proteins in the internal methylation of the
“AAGAA-like”motif. Future drug design targeting SARS-CoV-2
needs to consider protein-protein and protein-RNA interactions
in the RTC, particularly the structure of NSP15 and the TRS
hairpin complex.

MATERIALS AND METHODS

The Betacoronavirus genus includes five subgenera (Embecovirus,
Sarbecovirus, Merbecovirus, Nobecovirus and Hibecovirus), which
were defined as subgroups A, B, C, D and E (Bei et al., 2022). In our
previous study (Li et al., 2021b), 1,265 genome sequences of viruses
in the Embecovirus, Sarbecovirus, Merbecovirus, Nobecovirus
subgenera were downloaded from the NCBI Virus database
(https://www.ncbi.nlm.nih.gov/labs/virus). Two genome sequences
(RefSeq: NC_025217 and GenBank: KY352407) of viruses in the
Hibecovirus subgenus were also downloaded. Among 1,265
genomes, 292 belongs to Betacoronavirus subgroup B (including
SARS-CoV and SARS-CoV-2). 1,178, 480 and 194 genome
sequences of viruses in the Alphacoronavirus, Gammacoronavirus
and Deltacoronavirus genera were downloaded to validate the TRS
motifs (Figure 1). Nanopore RNA-seq data was downloaded from
the website (https://osf.io/8f6n9/files/) for reanalysis. Data cleaning
and quality control were performed using Fastq_clean (Zhang et al.,
2014). Statistics and plottingwere conducted using the software R v2.
15.3 with the Bioconductor packages (Gao et al., 2014). Protein
structure data (PDB: 6 × 1B, 7BQ7 and 7CXN) were used to analyze

NSP15, NSP10&16 and NSP7&8&12&13, respectively. The
structures of NSP12-16 were predicted using trRosetta (Yang
et al., 2020). The minimum free energies (MFEs) of hairpins
were estimated by RNAeval v2.4.17 with parameters by manual
adjustment.
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Rare Variants in Novel Candidate
Genes AssociatedWith Nonsyndromic
Patent Ductus Arteriosus Identified
With Whole-Exome Sequencing
Ying Gao1†, Dan Wu1†, Bo Chen2, Yinghui Chen3, Qi Zhang3 and Pengjun Zhao3*

1Department of Pediatric, Shidong Hospital, Shanghai, China, 2Department of Cardiothoracic Surgery, School of Medicine, Heart
Center, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China, 3Department
of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Background: Patent ductus arteriosus (PDA) is one of the most common congenital heart
defects causing pulmonary hypertension, infective endocarditis, and even death. The
important role of genetics in determining spontaneous ductal closure has been well-
established. However, as many of the identified variants are rare, thorough identification of
the associated genetic factors is necessary to further explore the genetic etiology of PDA.

Methods: We performed whole-exome sequencing (WES) on 39 isolated nonsyndromic
PDA patients and 100 healthy controls. Rare variants and novel genes were identified
through bioinformatic filtering strategies. The expression patterns of candidate genes were
explored in human embryo heart samples.

Results: Eighteen rare damaging variants of six novel PDA-associated genes (SOX8,NES,
CDH2, ANK3, EIF4G1, and HIPK1) were newly identified, which were highly expressed in
human embryo hearts.

Conclusions:WES is an efficient diagnostic tool for exploring the genetic pathogenesis of
PDA. These findings contribute new insights into the molecular basis of PDA and may
inform further studies on genetic risk factors for congenital heart defects.

Keywords: congenital heart defects, patent ductus arteriosus, whole-exome sequencing, rare variants, single-
nucleotide polymorphism

INTRODUCTION

The ductus arteriosus (DA) is a normal fetal structure that connects the pulmonary artery and
descending aorta to maintain blood circulation during the fetal period (Benitz, W. E. et al., 2016).
From the perspective of cardiac development, the DA functionally shuts down 15 h after birth in
healthy, full-term infants (Crockett, S. L. et al., 2019). This process involves abrupt contraction of the
muscular wall of the DA, which is associated with a proper balance among neurohumoral factors. An
increase in the levels of contractile elements, such as peroxidase O2 and endothelin-1, and decrease in
the levels of relaxants, such as prostaglandin E2 and nitric oxide, are the main events causing closure
of the DA (Crockett, S. L. et al., 2019). Neural crest-derived cells migrate into the subendothelial
space under the action of these hormones and transform into vascular smoothmuscle cells (VSMCs).
With contraction of themedial membrane and circular muscle in the DA, the lumen is shortened and
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finally closed (Li, N. et al., 2016). However, the maintenance of
DA patency after birth has a pathological effect (Benitz, W. E.
et al., 2016).

Failure of the DA to close after birth is termed patent DA
(PDA), which is one of the most common heart defects, affecting
approximately 1 in 2000 full-term infants and 8 in 1000
premature infants (Hoffman, J. I. et al., 2002). Persistent
ductal shunting may lead to pulmonary overcirculation and
induce systemic hypoperfusion, thereby increasing the risk of
pulmonary hypertension, infective endocarditis, heart failure, and
even death (Mitra, S. et al., 2018). However, its etiology and
pathogenesis remain unclear.

PDA has both inherited and acquired causes. The preliminary
understanding of the genetic mechanism of PDA was based on
the studies in patients with syndrome. Previous studies have
confirmed the association of several chromosomal syndromes,
including Turner (45, XO), Kartagener, and Klinefelter (47,
XXY), with PDA (Groth, K. A. et al., 2013; Gravholt, C. H.
et al., 2019; Yang, D. et al., 2019). In addition to chromosomal
rearrangements, a single gene mutation can also cause syndromic
PDA, including Noonan (PTPN11 mutation), Holt-Oram (TBX5
mutation), and char (TFAP2B mutation) syndrome (Satoda, M.
et al., 2000; Pannone, L. et al., 2017; Vanlerberghe, C. et al., 2019).
However, the genetic mechanism of nonsyndromic PDA (isolated
findings without other abnormalities) remains unclear. Rare
damaging mutations in MYH11 and TFAP2B were detected in
several isolated nonsyndromic PDA patients (Harakalova, M.
et al., 2013). Erdogan et al. (Erdogan, F. et al., 2008) performed an
array comparative genome hybridization analysis of 105 patients
with congenital heart defects and identified a 1.92 Mb deletion of
chromosome 1q21.1 (CJA5) in a PDA patient. Genetic
determinants of nonsyndromic PDA is still unknown.

Therefore, in this study, we recruited 39 unrelated
nonsyndromic PDA patients and 100 healthy children for
WES. Using a series of bioinformatics filtering steps, we
identified 18 rare damaging variants in six candidate PDA-
associated genes (SOX8, NES, CDH2, ANK3, EIF4G1, and
HIPK1). Notably, these candidate genes were also highly
expressed in human embryonic hearts. This identification of
new pathogenic genes could help to elucidate the detailed
underlying mechanism of PDA and promote further
experimental analyses.

MATERIAL AND METHODS

Patients and Consent
Thirty-nine isolated nonsyndromic PDA patients of Han Chinese
ethnicity and 100 healthy children (aged between 2 months and
13 years) were recruited from Xinhua Hospital affiliated with
Shanghai Jiao Tong University (Shanghai, China). The structural
heart phenotypes of all participants were assessed using
echocardiography or cardiac catheterization. A diagnosis of
PDA was made in the patient group by cardiac catheterization
or surgery. Patients with a history of complex congenital heart
disease were excluded from the study. The study protocol and

ethics were approved by the Medical Ethics Committee of Xinhua
Hospital. Informed consent was obtained from the parents of all
participants. The study was conducted in accordance with the
Declaration of Helsinki and the International Ethical Guidelines
for Health-Related Research Involving Humans.

DNA Extraction and Whole-Exome
Sequencing
The genomic DNA of all participants was extracted from blood
samples using QIAamp DNA Blood Mini Kit (QIAGEN,
Germany). DNA samples were stored at –80°C until further
use. Genomic DNA was eluted, purified, amplified by ligation-
mediated polymerase chain reaction, and then subjected to
DNA sequencing on an Illumina platform. The target depth of
the DNA sequencing was x100. Qualified DNA samples from
the PDA and control groups were subjected to WES to detect
rare variations. Read quality was checked using Fastp
software(Chen, S. et al., 2018) and raw sequence data were
aligned to human genome (human_glk_v37) using BWA
(v0.7.12-r1039). Duplicated and low-quality reads (Per base
sequence quality <20) were removed by using Picard software
(https://broadinstitute.github.io/picard). Alignment quality
was assessed using qualimap software (Okonechnikov, K.
et al., 2016).

Single-Nucleotide Polymorphism
Identification and Quality Filtering
Single nucleotide polymorphisms (SNPs) account for much of the
phenotypic diversity among individuals.

SNPs and insertions/deletions were detected using the
HaplotypeCaller module of GATK4 software (Mckenna, A.
et al., 2010), based on sequence alignment of the clinical
samples to the reference genome. Before detection, we
recalibrated the base qualities using the BaseRecalibrator
module of GATK4 software (Mckenna, A. et al., 2010) to
improve variant detection accuracy based on the quality with a
depth (QD) criterion >2. The resulting BAM files were then
sorted, indexed, and processed using base quality score
recalibration (Okonechnikov, K. et al., 2016). The GATK
HaplotypeCaller module was then used for variant calling. We
used ANNOVAR53 (Wang, K. et al., 2010) to annotate the
variants for functional and population frequency information
with the 1000 Genomes (Clarke, L. et al., 2012), Refseq (O’leary,
N. A. et al., 2016), ExAC (Karczewski, K. J. et al., 2017), ESP6500
(Liang, Y. et al., 2019), gnomAD, SIFT (Flanagan, S. E. et al.,
2010), clinvar (Landrum, M. J. et al., 2020), PolyPhen (Flanagan,
S. E. et al., 2010), MutationTaster (Steinhaus, R. et al., 2021),
COSMIC (Forbes, S. A. et al., 2011), gwasCatalog, and OMIM
databases (Amberger, J. S. et al., 2017). All potentially damaging
variants of the candidate genes were classified into five groups:
pathogenic, likely pathogenic, variant of uncertain significance,
likely benign, and benign (Richards, S. et al., 2015). Finally, the
rare damaging variants were filtered according to the American
College of Medical Genetics criteria guidelines (Figure 1).
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Variant Filtering Based on Fisher’s Exact
Test and Burden Analysis
The difference in allele frequency for each SNP between cases and
controls was compared using the Fisher’s exact test with R statistical
software packages; a p-value < 0.05 was considered statistically
significant. Subsequently, we aggregated the SNP data based on
gene expression levels and conducted a gene-based burden analysis
to increase statistical power. Candidate pathogenic genes were
filtered based on the results of burden analysis according to the
following criteria: 1) p-value or false-discovery rate (FDR) < 0.05, 2)
hit for at least one variant in three cases, and 3) not found in any
sample of the control group. We then prioritized genes based on the
p value of Fisher’s exact test and burden analysis.

Functional Enrichment and Network
Analysis
To further filter the candidate genes associated with PDA, we
performed functional enrichment analysis to identify the
functions of candidate genes identified through the
aforementioned filtering steps. Pathway analysis of the candidate
gene profiling results was performed using Gene Ontology (GO;
version 30.10.2017) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway (http://www.genome.jp/kegg/pathway.html)
mapping within the web-based tool Database for Annotation,
Visualization, and Integrated Discovery (Gene Ontology, C. 2015;
Kanehisa, M. et al., 2017). GO terms represent a network of
biological processes that overlap in space and are clustered

according to their relationships (Gene Ontology, C. 2015). The
threshold was set to an adjusted p-value < 0.05. In addition, we
prioritized these genes based on functional enrichment analysis.
Furthermore, to detect the relationship between the candidate genes
and known disease-causing genes, we constructed the
protein–protein interaction (PPI) network (Brohee, S. et al., 2008)
using Cytoscape software based on the STRING database.

Tissue Collection and Expression Detection
In addition to the genes prioritized using the steps described above, we
further prioritized genes according to their expression levels in the
human embryonic heart. Previous studies have divided eight
embryonic weeks (56 days) into 23 internationally accepted
Carnegie stages (O’rahilly, R. 1987). To further investigate the
potential function of our candidate genes, human embryonic
hearts in different Carnegie stages (S10–S16) were collected after
medical termination of pregnancy from patients at Xinhua Hospital.
RNA was extracted and purified using the Experion automated gel
electrophoresis system and RNeasy MinElute Cleanup Kit. The
expression patterns of candidate genes were subsequently detected
using the Affymetrix HTA 2.0 microarray.

RESULTS

Population
Among the 39 patients, 28% had common cardiac defects,
including atrial septal defect (n = 7), ventricular septal defect

FIGURE 1 | Bioinformatics filtering strategy workflow for the candidate genes. Through a series of filtering methods, we finally identified 6 candidate genes. The
potentially damaging variants in candidate genes were subjected to validation via human embryonic heart expression analysis.
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(n = 2), and others (n = 2) (Table 1). All subjects were born at full
term, and no other major cardiac structural abnormalities or
developmental syndromes were identified. WES, with an average
depth of coverage of approximately x105 per base, identified
411,344 single-nucleotide variants and 23,101 insertions/
deletions across the genome. Through a series of filtering
strategies (see Figure 1), rare damaging variants were screened
with a threshold of 0.5% minor allele frequency. As illustrated in
Figure 2, we found more rare damaging variants in the PDA
group than in the control group, including splice-site, nonsense,
and missense mutations. Consistently, the C > T and G > A

substitutions accounted for the majority of single-base mutations
compared with other types (Figure 2). Based on these mutations,
we adopted a bioinformatics filtering strategy to identify
candidate genes associated with PDA.

Variants Identified Based on Fisher’s Exact
Test
Based on the results of Fisher’s exact test, we identified 44 variants
that were more frequently detected in the PDA group than in the
control group (FDR <0.05, p < 0.05), as presented in Table 2 (p <
0.01). We then prioritized these variants based on the p-value; the
top 10 variants with statistical significance are shown in Figure 3.
Notably, we found that the SNPs rs103826685 and rs32552095
located in SLC9B1 and HLA-DRB1, respectively, had the most
significantly different frequencies between the patient and control
groups (p < 0.0001).

Candidate Genes Identified Based on
Burden Analysis
To further increase statistical power, we aggregated the SNP
data at the gene level and performed burden analysis. Under a
significance threshold of 0.05, we observed 57 genes with
potential pathogenicity as candidate PDA-associated genes
(Table 3 (p < 0.01)). We then prioritized these genes based

TABLE 1 | Characteristics of 39 PDA patients.

Patients characteristics Numbers

Age (year) 2.92 ± 2.44
Male-to-female ration (%) 62%
BMI (kg/m2) 16.58 ± 4.34
PDA size (mm) 2.87 ± 1.68
Birth weight (kg) 2.96 ± 0.73
Gestational age (week) 39.04 ± 1.46
Associated cardiac defect n (%)
VSD n (%) 2 (5%)
ASD n (%) 7 (18%)
Others n (%) 2 (5%)

All values are expressed as mean ± SD or n (%)

FIGURE 2 | The comparisons of the rare damaging variants between the PDA and control groups. The number of variants in each variant classification and SNV
class between cases and controls are presented in (A–D), respectively.
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on the p-value from the burden analysis; the top 10 genes with
statistical significance are displayed as a heatmap in Figure 4.
The top three genes with high confidence were NPIPB5,
SLC9B1, and HLA-DRB1. Notably, SLC9B1 and HLA-DRB1
were also in the top significant genes based on Fisher’s
exact test.

Functional Analysis
Functional enrichment analysis of the 101 candidate differentially
expressed genes identified through Fisher’s exact test and burden
analysis revealed that the main enriched GO terms in the
upregulated gene set were thiol-dependent ubiquitinyl
hydrolase activity (TermID: GO:0036459), peptide antigen

binding (TermID: GO:0042605), and ubiquitin-dependent
protein catabolic process (TermID: GO:0006511). Particular
focus was placed on terms representing prostaglandin,
apoptosis, and heart development (Figure 5). Moreover,
KEGG analysis of the direct gene targets in PDA patients
revealed enrichment in pathways related to cell adhesion
molecules (TermID: path: hsa04514, p < 0.001), viral
myocarditis (TermID: path: hsa05416, p = 0.0035), and
asthma (TermID: path: hsa05310, p = 0.01; Figure 6). Based
on functional enrichment analysis, 29 pathway genes related to
cardiovascular development were screened.

Network Analysis
To further explore their roles, the 29 candidate genes were
mapped to construct a PPI network along with 240 known
pathogenic genes involved in cardiovascular development
(Supplementary Table S1). The 240 known genes from the
literature were divided into two groups related to
cardiovascular development and PDA, respectively. In the
network, the candidate genes NES and CDH2 showed the
most direct and strongest relationship with known pathogenic
genes in both groups. Moreover, CDH2 and NES had the highest
molecular weights and were located at the center of the PPI
network (Figures 7, 8). Therefore, based on the degree of
correlation, we screened out 11 candidate genes for final
verification.

Detection of Candidate Gene Expression in
the Human Embryonic Heart
To further investigate the potential function of our candidate
genes, we detected the expression levels of the 11 screened out
genes in human embryonic hearts at different Carnegie stages.
After prioritizing the candidate genes based on expression
levels, the final six pathogenic genes (SOX8, NES, CDH2,
ANK3, EIF4G1, and HIPK1) were identified (Figure 9).
Among them, CDH2 was the most highly expressed in the
embryonic heart (Figure 10).

TABLE 2 | SNP filtering Based on Fisher Exact Test.

Chromosome Gene Mutation position Mutation type p-value

1 LRRC8C 90179703 T > G 0.006
1 NES 156640657 A > C 0.000
11 LRRC4C 40136434 C > T 0.006
14 SLC7A8 23612372 T > G 0.001
16 SOX8 1034733 A > C 0.006
16 NPIPA1 15045634 T > C 0.000
16 NPIPB5 22545658 A > C 0.000
16 NPIPB5 22546505 G > T 0.000
16 NPIPB5 22546506 A > C 0.000
19 MAP3K10 40719910 C > G 0.006
3 ZNF717 75786264 G > T 0.001
3 EIF4G1 184033621 G > C 0.000
3 MUC4 195506722 G > A 0.001
3 MUC4 195506723 T > G 0.001
3 MUC4 195514174 G > T 0.000
4 USP17L20 9217567 C > A 0.006
4 USP17L17 9246041 C > A 0.006
4 SLC9B1 103826685 T > A 0.000
4 LRBA 151770608 A > C 0.006
6 VARS 31746821 G > A 0.006
6 HLA-DRB5 32487344 T > C 0.000
6 HLA-DRB1 32552095 C > T 0.000
7 TCAF2 143400090 G > A 0.001

FIGURE 3 | Single SNP allele frequency and genotype frequency p-values were obtained using the fisher exact test. X-axis represents the position of each snp
(represented in circles) on human chromosome, Y-axis is the–log p-value of Fisher Exact test. Top 10 variants in our study were represented in the figure.
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TABLE 3 | Gene filtering based on Burden analysis.

Gene Case mutation Case normal Control mutation Control normal p-value

ASIC3 5 34 0 100 0.001
CFAP45 4 35 0 100 0.006
CYP21A2 4 35 0 100 0.006
EVI5 4 35 0 100 0.006
HIPK1 4 35 0 100 0.006
HLA-DRB1 25 14 0 100 0.000
HLA-DRB5 6 33 0 100 0.000
KRT39 5 34 0 100 0.001
LRRC4C 4 35 0 100 0.006
MAP3K10 4 35 0 100 0.006
NPIPA1 13 26 0 100 0.000
NPIPB5 31 8 0 100 0.000
POTEE 5 34 0 100 0.001
SLC9B1 29 10 0 100 0.000
SLX4 4 35 0 100 0.006
SOX8 4 35 0 100 0.006
TBC1D3F 4 35 0 100 0.006
TCAF2 5 34 0 100 0.001
USP17L11 5 34 0 100 0.001
USP17L17 6 33 0 100 0.000
USP17L18 5 34 0 100 0.001
USP17L2 6 33 0 100 0.000
USP17L20 5 34 0 100 0.001
VARS 4 35 0 100 0.006
ZNF717 6 33 0 100 0.000

FIGURE 4 | Heatmap representing the top 10 genes identified in Burden analysis. Heatmap that shows the mutational burden (p-value< 0.05) of the top 10 gene
based on gene-based burden analysis in PDA patients. The heatmap was generated by using R package, the mutation values were normalized per gene over all PDA
samples. Each box in the heatmap represent a single variant in a case, with the dark red indicating high gene mutation ration in gene-based Burden analysis.
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DISCUSSION

The underlying molecular genetic mechanisms of PDA remain
largely unknown as one of the most common congenital heart
defects. In this study, we explored the clinical characteristics of 39
PDA patients and 100 healthy controls by performing WES to
identify rare variants and candidate PDA-associated genes.
Through a series of bioinformatic filtering strategies, we
prioritized the candidate genes via Fisher’s exact test, mutation
burden analysis, gene network construction, and expression levels
in embryonic hearts. Finally, we identified 18 rare damaging
variants in six novel candidate genes (SOX8, NES, CDH2, ANK3,
EIF4G1, and HIPK1) associated with PDA. Among these, CDH2
was highly expressed in the human embryonic heart and appears
to be the most important candidate gene identified in our study.

CDH2 encodes N-cadherin, a member of a protein family
regulating cadherin-mediated cell–cell adhesion in multiple
tissues. The structure comprises a single transmembrane
domain, cytoplasmic domain, and five conserved
extracellular cadherin domains (ECI–V) (Alimperti, S. et al.,
2015). We found two variants (rs25565020 and rs25532304) in
CDH2 in four patients with PDA. In addition, CDH2 had the
highest molecular weight and was located at the center of the
PPI network, both among known CHD- and PDA-related
genes. Further investigation showed that CDH2 is highly
expressed in human embryonic hearts. Previous studies in
mice have also noted the importance of CDH2 in the proper
development of the heart, brain, and skeletal structures
(Radice, G. L. et al., 1997). Moreover, genetic analyses in
zebrafish revealed that mutation in the EC-I or EC-IV
domains of cdh2 play important role in embryonic
development (Masai, I. et al., 2003). Mayosi, B. M. et al.
(2017) used WES to detect novel rare variants in patients
with arrhythmogenic cardiomyopathy and found that CDH2
mutation changes the conserved amino acids of CDH2 protein.

Since the relationship between CDH2 and PDA is unclear,
additional studies are needed to determine how genetic
perturbations of CDH2 contribute to PDA.

In our study, 16 patients (42%) had the same variant
(rs156646936) in NES. In the network analysis, we observed a
strong correlation between NES and known pathogenic genes.
NES belongs to the human tissue kallikrein family of secreted
serine proteases (Luo, L. et al., 1998), which play an important
role in carcinogenesis, including in breast, prostate, and testicular
cancers, and leukemia (Luo, L. Y. et al., 2001). Further experimental
evidence suggests that the function of NES as a tumor suppressor

FIGURE 5 | Bubble plot of the GO analysis. Bubble plot summarizing enrichment for the most significant biological process GO terms associated to differentially
expressed genes. The bubble size indicates the frequency of the GO term, while the color indicates the p-value.

FIGURE 6 | Bubble plot of the KEGG pathway analysis. The
representative enriched pathways shown by KEGG analysis. The bubble size
indicates the frequency of the KEGG term, while the color indicates the
p-value.
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may be achieved by hypermethylation of the CpG islands (Li, B.
et al., 2001). However, this is the first report of NES mutations in
PDA. ANK3 is a member of the ankyrin family, which is expressed
in several different isoforms inmany tissues. ANK3 plays key roles in
cell motility, activation, proliferation, contact, and the maintenance
of specializedmembrane domains. In our study, eight patients (10%)
had variants in ANK3. ANK3 variants have previously been
associated with schizophrenia, autism, epilepsy, and intellectual
disability (Leussis, M. P. et al., 2013; Wirgenes, K. V. et al.,
2014). Studies from knockout mouse models have revealed that
loss of ANK3 function leads to defects in cardiac calcium handling
and arrhythmias (Mohler, P. J. et al., 2004). Although the roles of
NES and ANK3 in the pathogenesis of PDA are supported by
bioinformatic analyses, our study was limited by the lack

of experimental evidence to validate the deleteriousness of the
variants.

EIF4G1 encodes a protein, that is, a component of the multi-
subunit protein complex EIF4F. EIF4G plays a crucial role in
translation initiation and serves as a scaffolding protein that binds
several initiation factors (the cap-binding protein eIF4E, the RNA
helicase eIF4A, and eIF3) (Haimov, O. et al., 2018). In our study,
15 patients had three types of variants in EIF4G1, and the same
variant (rs184033621) was detected in 14 patients. EIF4G1
modulates the proliferation, apoptosis, and angiogenesis of
most tumor types by limiting steps during the initiation phase
of protein synthesis and interacting with ubiquitin-specific
protease 10 (USP10) (Cao, Y. et al., 2016). Moreover, EIF4G1
phosphorylation specifically activates the PKC-Ras-ERK

FIGURE 7 | Interaction between our candidate genes and known CHD-related genes. PPI network was generated by Cytoscape software and our candidate
pathogenic genes and the known CHD-related genes were uploaded in STRING database. Each node represents one gene, and each edge represents the protein-
protein interaction collected from BioGRID.
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signaling pathway, which is involved in the control of cell growth
and proliferation (Dobrikov, M. et al., 2011). Diseases associated
with EIF4G1 include Parkinson’s disease, nonsmall cell lung
carcinoma, and prostate cancer (Cao, Y. et al., 2016).
Although the relationship between EIF4G1 and cardiovascular
development remains unknown, our results suggest that EIF4G1
might be potentially pathogenic in terms of PDA.

HIPK1 belongs to the Ser/Thr family of protein kinases as part
of the HIPK subfamily. HIPK1 is related to pathways involved in
the regulation of TP53 activity and cardiac conduction. The
homeodomain-interacting protein kinases HIPK1 and HIPK2
play key roles in embryonic development by regulating
transforming growth factor β-dependent angiogenesis (Aikawa,
Y. et al., 2006; Shang, Y. et al., 2013). HIPK1 loss-of-function
conditional knockout mice exhibit defects in primitive/definitive
hematopoiesis, vasculogenesis, angiogenesis, and neural tube
closure (Shang, Y. et al., 2013). In addition, HIPK1 can
interact with homeobox proteins and other transcription
factors to regulate various biological processes, including signal
transduction, apoptosis, embryonic development, and retinal
vascular dysfunction (Aikawa, Y. et al., 2006). In our study,
only two HIPK1 variants (rs114516009 and rs114506069) were

detected in four individuals with PDA; these are novel variants
that have not been reported previously. Further investigation
showed that HIPK1 is highly expressed in human embryonic
hearts. However, additional experiments are needed to
determine the genetic mechanism by which HIPK1 contributes
to PDA.

SOX8 is a member of the SRY-related HMG-box (SOX) family
of transcription factors, which are involved in the regulation of
embryonic development and in determining cell fate (Haseeb, A.
et al., 2019). In our study, the same rare variant (rs1034733) was
detected in three patients with PDA. SOX8 expression is essential
in the developing heart, which correlates with heart septation and
differentiation of the connective tissue of the valve leaflets
(Montero, J. A. et al., 2002). Moreover, a previous study
revealed that SOX8 overexpression might be associated with
hypoxia-induced cell injury by activating the PI3K/AKT/
mTOR and MAPK pathways (Gong, L. C. et al., 2017).
Interestingly, DA closure after birth is closely related to the
blood oxygenation level, and hypoxia can lead to an increase
in endogenous PGE2 release, which directly leads to opening of
the DA (Benitz, W. E. et al., 2016). Therefore, SOX8 may be a
novel candidate gene involved in the pathogenesis of PDA.

FIGURE 8 | Interaction between our candidate genes and known PDA-related genes. PPI network was generated by Cytoscape software and Our candidate
pathogenic genes and the known CHD-related genes were uploaded in STRING database. Each node represents one gene, and each edge represents the protein-
protein interaction collected from BioGRID.
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In conclusion, through a series of bioinformatics filtering
steps, we identified 18 rare damaging variants in six novel
candidate genes (SOX8, NES, CDH2, ANK3, EIF4G1, and
HIPK1) associated with PDA. The discovery of these genes
opens up a new field for genetic research on PDA and provides
new ideas for understanding the pathogenesis of PDA.
Nevertheless, our study has some limitations. The lack of
parental samples and the small sample size limited our
ability to identify the detailed genetic background of PDA.
Thus, more fundamental research is needed to determine
candidate genes that contribute to PDA. We hope to
confirm these findings with larger sample sizes.
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the level of gene expression.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 92192510

Gao et al. Novel Candidate Genes in PDA

99

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Medical Ethics Committee of Xinhua
Hospital. Written informed consent to participate in this
study was provided by the participants’ legal guardian/next
of kin.

AUTHOR CONTRIBUTIONS

PZ contributed to design of the study and performed the
statistical analysis. YC, BC, and QZ collected the blood
samples from all subjects. YG and DW wrote the first draft of
the manuscript and contributed to this study equally. PZ revised

the manuscript. All authors have read and agreed to the published
version of the manuscript.

FUNDING

This study received financial supports from National Natural
Science Foundation of China (82070386), the Project of Shanghai
Municipal Health Commission (Grant No.201940393).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.921925/
full#supplementary-material

REFERENCES

Aikawa, Y., Nguyen, L. A., Isono, K., Takakura, N., Tagata, Y., Schmitz, M. L., et al.
(2006). Roles of HIPK1 and HIPK2 in AML1- and P300-dependent
Transcription, Hematopoiesis and Blood Vessel Formation. EMBO J. 25
(17), 3955–3965. doi:10.1038/sj.emboj.7601273

Alimperti, S., and Andreadis, S. T. (2015). CDH2 and CDH11 Act as Regulators of
StemCell Fate Decisions. Stem Cell. Res. 14 (3), 270–282. doi:10.1016/j.scr.2015.
02.002

Amberger, J. S., and Hamosh, A. (2017). Searching Online Mendelian Inheritance
in Man (OMIM): A Knowledgebase of Human Genes and Genetic Phenotypes.
Curr. Protoc. Bioinforma. 58, 1–12. doi:10.1002/cpbi.27

Benitz, W. E., Watterberg, K. L., Cummings, S. J. J., Eichenwald, E. C., Goldsmith,
J., Poindexter, B. B., et al. (2016). Patent Ductus Arteriosus in Preterm Infants.
Pediatrics 137 (1). 1. doi:10.1542/peds.2015-3730

Brohée, S., Faust, K., Lima-Mendez, G., Vanderstocken, G., and van Helden,
J. (2008). Network Analysis Tools: from Biological Networks to Clusters
and Pathways. Nat. Protoc. 3 (10), 1616–1629. doi:10.1038/nprot.
2008.100

Cao, Y., Wei, M., Li, B., Liu, Y., Lu, Y., Tang, Z., et al. (2016). Functional Role of
Eukaryotic Translation Initiation Factor 4 Gamma 1 (EIF4G1) in NSCLC.
Oncotarget 7 (17), 24242–24251. doi:10.18632/oncotarget.8168

Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). Fastp: an Ultra-fast All-In-One
FASTQ Preprocessor. Bioinformatics 34 (17), i884–i890. doi:10.1093/
bioinformatics/bty560

Clarke, L., Zheng-Bradley, X., Zheng-Bradley, X., Smith, R., Kulesha, E., Xiao, C.,
et al. (2012). The 1000 Genomes Project: Data Management and Community
Access. Nat. Methods 9 (5), 459–462. doi:10.1038/nmeth.1974

Crockett, S. L., Berger, C. D., Shelton, E. L., and Reese, J. (2019). Molecular and
Mechanical Factors Contributing to Ductus Arteriosus Patency and Closure.
Congenit. Heart Dis. 14 (1), 15–20. doi:10.1111/chd.12714

Dobrikov, M., Dobrikova, E., Shveygert, M., and Gromeier, M. (2011).
Phosphorylation of Eukaryotic Translation Initiation Factor 4G1 (eIF4G1)
by Protein Kinase Cα Regulates eIF4G1 Binding to Mnk1. Mol. Cell. Biol. 31
(14), 2947–2959. doi:10.1128/MCB.05589-11

Erdogan, F., Larsen, L. A., Zhang, L., Tumer, Z., Tommerup, N., Chen,W., et al. (2008).
High Frequency of Submicroscopic Genomic Aberrations Detected by Tiling Path
Array Comparative Genome Hybridisation in Patients with Isolated Congenital
Heart Disease. J. Med. Genet. 45 (11), 704–709. doi:10.1136/jmg.2008.058776

Flanagan, S. E., Patch, A.-M., and Ellard, S. (2010). Using SIFT and PolyPhen to
Predict Loss-Of-Function and Gain-Of-Function Mutations. Genet. Test. Mol.
Biomarkers 14 (4), 533–537. doi:10.1089/gtmb.2010.0036

Forbes, S. A., Bindal, N., Bamford, S., Cole, C., Kok, C. Y., Beare, D., et al. (2011).
COSMIC: Mining Complete Cancer Genomes in the Catalogue of Somatic
Mutations in Cancer. Nucleic Acids Res. 39 (Database issue), D945–D950.
doi:10.1093/nar/gkq929

Gene Ontology, C. (2015). Gene Ontology Consortium: Going Forward. Nucleic
Acids Res. 43, D1049–D1056. doi:10.1093/nar/gku1179

Gong, L.-C., Xu, H.-M., Guo, G.-L., Zhang, T., Shi, J.-W., and Chang, C. (2017).
Long Non-coding RNA H19 Protects H9c2 Cells against Hypoxia-Induced
Injury by Targeting MicroRNA-139. Cell. Physiol. Biochem. 44 (3), 857–869.
doi:10.1159/000485354

Gravholt, C. H., Viuff, M. H., Brun, S., Stochholm, K., and Andersen, N. H. (2019).
Turner Syndrome: Mechanisms and Management. Nat. Rev. Endocrinol. 15
(10), 601–614. doi:10.1038/s41574-019-0224-4

Groth, K. A., Skakkebæk, A., Høst, C., Gravholt, C. H., and Bojesen, A. (2013).
Klinefelter Syndrome-A Clinical Update. J. Clin. Endocrinol. Metabolism 98 (1),
20–30. doi:10.1210/jc.2012-2382

Haimov, O., Sehrawat, U., Tamarkin-Ben Harush, A., Bahat, A., Uzonyi, A., Will,
A., et al. (2018). Dynamic Interaction of Eukaryotic Initiation Factor 4G1
(eIF4G1) with eIF4E and eIF1 Underlies Scanning-dependent and
-Independent Translation. Mol. Cell. Biol. 38 (18). 1. doi:10.1128/MCB.
00139-18

Harakalova, M., van der Smagt, J., de Kovel, C. G. F., Van’t Slot, R., Poot, M.,
Nijman, I. J., et al. (2013). Incomplete Segregation of MYH11 Variants with
Thoracic Aortic Aneurysms and Dissections and Patent Ductus Arteriosus. Eur.
J. Hum. Genet. 21 (5), 487–493. doi:10.1038/ejhg.2012.206

Haseeb, A., and Lefebvre, V. (2019). The SOXE Transcription Factors-SOX8, SOX9
and SOX10-Share a Bi-partite Transactivation Mechanism. Nucleic Acids Res.
47 (13), 6917–6931. doi:10.1093/nar/gkz523

Hoffman, J. I. E., and Kaplan, S. (2002). The Incidence of Congenital Heart Disease.
J. Am. Coll. Cardiol. 39 (12), 1890–1900. doi:10.1016/s0735-1097(02)01886-7

Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. (2017).
KEGG: New Perspectives on Genomes, Pathways, Diseases and Drugs. Nucleic
Acids Res. 45 (D1), D353–D361. doi:10.1093/nar/gkw1092

Karczewski, K. J., Weisburd, B., Thomas, B., Solomonson, M., Ruderfer, D. M.,
Kavanagh, D., et al. (2017). The ExAC Browser: Displaying Reference Data
Information from over 60 000 Exomes.Nucleic Acids Res. 45 (D1), D840–D845.
doi:10.1093/nar/gkw971

Landrum, M. J., Chitipiralla, S., Brown, G. R., Chen, C., Gu, B., Hart, J., et al. (2020).
ClinVar: Improvements to Accessing Data. Nucleic Acids Res. 48 (D1),
D835–D844. doi:10.1093/nar/gkz972

Leussis, M. P., Berry-Scott, E. M., Saito, M., Jhuang, H., de Haan, G., Alkan, O., et al.
(2013). The ANK3 Bipolar Disorder Gene Regulates Psychiatric-Related
Behaviors that Are Modulated by Lithium and Stress. Biol. Psychiatry 73
(7), 683–690. doi:10.1016/j.biopsych.2012.10.016

Li, B., Goyal, J., Dhar, S., Dimri, G., Evron, E., Sukumar, S., et al. (2001). CpG
Methylation as a Basis for Breast Tumor-specific Loss of NES1/kallikrein 10
Expression. Cancer Res. 61 (21), 8014–8021.

Li, N., Subrahmanyan, L., Smith, E., Yu, X., Zaidi, S., Choi, M., et al. (2016).
Mutations in the Histone Modifier PRDM6 Are Associated with Isolated
Nonsyndromic Patent Ductus Arteriosus. Am. J. Hum. Genet. 98 (6),
1082–1091. doi:10.1016/j.ajhg.2016.03.022

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 92192511

Gao et al. Novel Candidate Genes in PDA

100

https://www.frontiersin.org/articles/10.3389/fgene.2022.921925/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.921925/full#supplementary-material
https://doi.org/10.1038/sj.emboj.7601273
https://doi.org/10.1016/j.scr.2015.02.002
https://doi.org/10.1016/j.scr.2015.02.002
https://doi.org/10.1002/cpbi.27
https://doi.org/10.1542/peds.2015-3730
https://doi.org/10.1038/nprot.2008.100
https://doi.org/10.1038/nprot.2008.100
https://doi.org/10.18632/oncotarget.8168
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1038/nmeth.1974
https://doi.org/10.1111/chd.12714
https://doi.org/10.1128/MCB.05589-11
https://doi.org/10.1136/jmg.2008.058776
https://doi.org/10.1089/gtmb.2010.0036
https://doi.org/10.1093/nar/gkq929
https://doi.org/10.1093/nar/gku1179
https://doi.org/10.1159/000485354
https://doi.org/10.1038/s41574-019-0224-4
https://doi.org/10.1210/jc.2012-2382
https://doi.org/10.1128/MCB.00139-18
https://doi.org/10.1128/MCB.00139-18
https://doi.org/10.1038/ejhg.2012.206
https://doi.org/10.1093/nar/gkz523
https://doi.org/10.1016/s0735-1097(02)01886-7
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1093/nar/gkw971
https://doi.org/10.1093/nar/gkz972
https://doi.org/10.1016/j.biopsych.2012.10.016
https://doi.org/10.1016/j.ajhg.2016.03.022
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Liang, Y., Jiang, L., Zhong, X., Hochwald, S. N., Wang, Y., Huang, L., et al.
(2019). Discovery of Aberrant Alteration of Genome in Colorectal Cancer
by Exome Sequencing. Am. J. Med. Sci. 358 (5), 340–349. doi:10.1016/j.
amjms.2019.07.012

Luo, L.-Y., Meyts, E. R.-D., Jung, K., and Diamandis, E. P. (2001). Expression of the
Normal Epithelial Cell-specific 1 (NES1; KLK10) Candidate Tumour
Suppressor Gene in Normal and Malignant Testicular Tissue. Br. J. Cancer
85 (2), 220–224. doi:10.1054/bjoc.2001.1870

Luo, L., Herbrick, J.-A., Scherer, S. W., Beatty, B., Squire, J., and Diamandis, E. P.
(1998). Structural Characterization andMapping of the Normal Epithelial Cell-
specific 1 Gene. Biochem. Biophysical Res. Commun. 247 (3), 580–586. doi:10.
1006/bbrc.1998.8793

Masai, I., Lele, Z., Yamaguchi, M., Komori, A., Nakata, A., Nishiwaki, Y., et al.
(2003). N-cadherin Mediates Retinal Lamination, Maintenance of Forebrain
Compartments and Patterning of Retinal Neurites. Development 130 (11),
2479–2494. doi:10.1242/dev.00465

Mayosi, B. M., Fish, M., Shaboodien, G., Mastantuono, E., Kraus, S., Wieland, T.,
et al. (2017). Identification of Cadherin 2 ( CDH2 ) Mutations in
Arrhythmogenic Right Ventricular Cardiomyopathy. Circ. Cardiovasc Genet.
10 (2). 1. doi:10.1161/CIRCGENETICS.116.001605

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A.,
et al. (2010). The Genome Analysis Toolkit: a MapReduce Framework for
Analyzing Next-Generation DNA Sequencing Data. Genome Res. 20 (9),
1297–1303. doi:10.1101/gr.107524.110

Mitra, S., Florez, I. D., Tamayo,M. E.,Mbuagbaw, L., Vanniyasingam, T., Veroniki, A. A.,
et al. (2018). Association of Placebo, Indomethacin, Ibuprofen, and Acetaminophen
with Closure of Hemodynamically Significant Patent Ductus Arteriosus in Preterm
Infants. JAMA 319 (12), 1221–1238. doi:10.1001/jama.2018.1896

Mohler, P. J., Splawski, I., Napolitano, C., Bottelli, G., Sharpe, L., Timothy, K., et al.
(2004). A Cardiac Arrhythmia Syndrome Caused by Loss of Ankyrin-B Function.
Proc. Natl. Acad. Sci. U.S.A. 101 (24), 9137–9142. doi:10.1073/pnas.0402546101

Montero, J. A., Giron, B., Arrechedera, H., Cheng, Y. C., Scotting, P., Chimal-
Monroy, J., et al. (2002). Expression of Sox8, Sox9 and Sox10 in the Developing
Valves and Autonomic Nerves of the Embryonic Heart. Mech. Dev. 118 (1-2),
199–202. doi:10.1016/s0925-4773(02)00249-6

O’Leary, N. A., Wright, M. W., Brister, J. R., Ciufo, S., Haddad, D., McVeigh, R.,
et al. (2016). Reference Sequence (RefSeq) Database at NCBI: Current Status,
Taxonomic Expansion, and Functional Annotation. Nucleic Acids Res. 44 (D1),
D733–D745. doi:10.1093/nar/gkv1189

O’Rahilly, R. (1987). Human Embryo. Nature 329 (6138), 385. doi:10.1038/
329385e0

Okonechnikov, K., Conesa, A., and García-Alcalde, F. (2016). Qualimap 2:
Advanced Multi-Sample Quality Control for High-Throughput Sequencing
Data. Bioinformatics 32 (2), btv566–294. doi:10.1093/bioinformatics/btv566

Pannone, L., Bocchinfuso, G., Flex, E., Rossi, C., Baldassarre, G., Lissewski, C., et al.
(2017). Structural, Functional, and Clinical Characterization of a
NovelPTPN11Mutation Cluster Underlying Noonan Syndrome. Hum.
Mutat. 38 (4), 451–459. doi:10.1002/humu.23175

Radice, G. L., Rayburn, H., Matsunami, H., Knudsen, K. A., Takeichi, M., and
Hynes, R. O. (1997). Developmental Defects in Mouse Embryos Lacking
N-Cadherin. Dev. Biol. 181 (1), 64–78. doi:10.1006/dbio.1996.8443

Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., et al. (2015).
Standards and Guidelines for the Interpretation of Sequence Variants: a Joint
Consensus Recommendation of the American College of Medical Genetics and
Genomics and the Association for Molecular Pathology. Genet. Med. 17 (5),
405–424. doi:10.1038/gim.2015.30

Satoda, M., Zhao, F., Diaz, G. A., Burn, J., Goodship, J., Davidson, H. R., et al.
(2000). Mutations in TFAP2B Cause Char Syndrome, a Familial Form of Patent
Ductus Arteriosus. Nat. Genet. 25 (1), 42–46. doi:10.1038/75578

Shang, Y., Doan, C. N., Arnold, T. D., Lee, S., Tang, A. A., Reichardt, L. F., et al.
(2013). Transcriptional Corepressors HIPK1 and HIPK2 Control Angiogenesis
via TGF-β-TAK1-dependent Mechanism. PLoS Biol. 11 (4), e1001527. doi:10.
1371/journal.pbio.1001527

Steinhaus, R., Proft, S., Schuelke, M., Cooper, D. N., Schwarz, J. M., and Seelow, D.
(2021). MutationTaster2021. Nucleic Acids Res. 49 (W1), W446–W451. doi:10.
1093/nar/gkab266

Vanlerberghe, C., Jourdain, A.-S., Ghoumid, J., Frenois, F., Mezel, A., Vaksmann,
G., et al. (2019). Holt-oram Syndrome: Clinical andMolecular Description of 78
Patients with TBX5 Variants. Eur. J. Hum. Genet. 27 (3), 360–368. doi:10.1038/
s41431-018-0303-3

Wang, K., Li, M., and Hakonarson, H. (2010). ANNOVAR: Functional Annotation
of Genetic Variants from High-Throughput Sequencing Data. Nucleic Acids
Res. 38 (16), e164. doi:10.1093/nar/gkq603

Wirgenes, K. V., Tesli, M., Inderhaug, E., Athanasiu, L., Agartz, I., Melle, I., et al.
(2014). ANK3 Gene Expression in Bipolar Disorder and Schizophrenia. Br.
J. Psychiatry 205 (3), 244–245. doi:10.1192/bjp.bp.114.145433

Yang, D., Liu, B. C., Luo, J., Huang, T. X., and Liu, C. T. (2019). Kartagener
Syndrome. QJM 112 (4), 297–298. doi:10.1093/qjmed/hcy242

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Gao, Wu, Chen, Chen, Zhang and Zhao. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 92192512

Gao et al. Novel Candidate Genes in PDA

101

https://doi.org/10.1016/j.amjms.2019.07.012
https://doi.org/10.1016/j.amjms.2019.07.012
https://doi.org/10.1054/bjoc.2001.1870
https://doi.org/10.1006/bbrc.1998.8793
https://doi.org/10.1006/bbrc.1998.8793
https://doi.org/10.1242/dev.00465
https://doi.org/10.1161/CIRCGENETICS.116.001605
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1001/jama.2018.1896
https://doi.org/10.1073/pnas.0402546101
https://doi.org/10.1016/s0925-4773(02)00249-6
https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1038/329385e0
https://doi.org/10.1038/329385e0
https://doi.org/10.1093/bioinformatics/btv566
https://doi.org/10.1002/humu.23175
https://doi.org/10.1006/dbio.1996.8443
https://doi.org/10.1038/gim.2015.30
https://doi.org/10.1038/75578
https://doi.org/10.1371/journal.pbio.1001527
https://doi.org/10.1371/journal.pbio.1001527
https://doi.org/10.1093/nar/gkab266
https://doi.org/10.1093/nar/gkab266
https://doi.org/10.1038/s41431-018-0303-3
https://doi.org/10.1038/s41431-018-0303-3
https://doi.org/10.1093/nar/gkq603
https://doi.org/10.1192/bjp.bp.114.145433
https://doi.org/10.1093/qjmed/hcy242
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Identification of Important Modules
and Biomarkers That Are Related to
Immune Infiltration Cells in Severe
Burns Based on Weighted Gene
Co-Expression Network Analysis
Zexin Zhang†,1, Yan He†,1, Rongjie Lin†,3, Junhong Lan1, Yueying Fan1, Peng Wang*,1,2 and
Chiyu Jia*,1

1Department of Burns and Plastic and Wound Repair Surgery, Xiang’an Hospital of Xiamen University, School of Medicine,
Xiamen University, Xiamen, China, 2Department of Burns and Plastic and Cosmetic Surgery, The Ninth Affiliated Hospital of Xi’an
Jiaotong University, Xi’an, China, 3Department of Orthopedics, The 900th Hospital of Joint Logistic Support Force, Fuzhou, China

Background: Immunosuppression is an important trigger for infection and a significant
cause of death in patients with severe burns. Nevertheless, the prognostic value of
immune-related genes remains unclear. This study aimed to identify the biomarkers
related to immunosuppression in severe burns.

Methods: The gene expression profile and clinical data of 185 burn and 75 healthy
samples were obtained from the GEO database. Immune infiltration analysis and gene set
variation analysis were utilized to identify the disorder of circulating immune cells. A
weighted gene co-expression network analysis (WGCNA) was carried out to select
immune-related gene modules. Enrichment analysis and protein–protein interaction
(PPI) network were performed to select hub genes. Next, LASSO and logistic
regression were utilized to construct the hazard regression model with a survival state.
Finally, we investigated the correlation between high- and low-risk patients in total burn
surface area (TBSA), age, and inhalation injury.

Results: Gene set variation analysis (GSVA) and immune infiltration analysis showed
that neutrophils increased and T cells decreased in severe burns. In WGCNA, four
modular differently expressed in burns and controls were related to immune cells.
Based on PPI and enrichment analysis, 210 immune-related genes were identified,
mainly involved in T-cell inhibition and neutrophil activation. In LASSO and logistic
regression, we screened out key genes, including LCK, SKAP1 and GZMB, and LY9. In
the ROC analysis, the area under the curve (AUC) of key genes was 0.945, indicating
that the key genes had excellent diagnostic value. Finally, we discovered that the key
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genes were related to T cells, and the regression model performed well when
accompanied by TBSA and age.

Conclusion:We identified LCK, SKAP1, GZMB, and LY9 as good prognostic biomarkers
that may play a role in post-burn immunosuppression against T-cell dysfunction and as
potential immunotherapeutic targets for transformed T-cell dysfunction.

Keywords: immunosuppression, burns, WGCNA, LASSO, GSVA, CIBERSORT, prognostic biomarker

INTRODUCTION

There are 180,000 people who die as a result of burns, with 47 percent
of those fatalities linked to infection-related complications. Infections
in severe burns are often caused by an overactive inflammatory
response and immunosuppression. In severe burns, adaptive immune
functions represented by T cells are suppressed and inflammatory
responses represented by neutrophils and dendritic cells are activated
(Miller et al., 2007; Sood et al., 2016; Hampson et al., 2017). Impaired
skin and intestinalmucosal barriers are exposed to pathogens, and the
disorder of peripheral blood cells results in a low response to
pathogens (Neely et al., 2004; Wrba et al., 2017). All of that
mentioned above lead to uncontrollable infection and death
(Fitzwater et al., 2003).

Immunosuppression in severe burns is considered to be
significantly correlated with prognosis. In the early stages of
burns, PAMP-mediated innate immune translation was
enhanced, such as macrophages, dendritic cells, and neutrophils
being recruited to the injured site to clear necrotic tissue.
Subsequently, the adaptive immune response is impaired, such as
Th cell subtype imbalance, where Th1 cells are inhibited and Th2
cells are activated, resulting in immunosuppression. Inflammatory
factors, cytokines, and immune cells have a significant prognostic
value in severe burns (Hur et al., 2015; Osuka et al., 2019). Previous
studies have explored the prognostic value of platelets, inflammatory
factors, immune-related cytokines, and scoring scales. However, the
accuracy and clinical practicability need to be improved. These
prognostic factors cannot explain the disturbance of homeostasis
after severe burns, especially immunosuppression (Hur et al., 2015;
Lip et al., 2019; Geng et al., 2020). Alterations in gene expression
profiles underlie disease development and can reflect changes in
homeostasis from a pathophysiological perspective, explaining the
mechanisms that affect prognosis and providing therapeutic targets
for subsequent studies (Gaetani et al., 2019; Zou andWang 2019). In
addition, gene detection is convenient, economical, and has a strong
stability in the application of prognosis. Genes have been used as
biomarkers to model the prognosis of a variety of diseases, showing
strong prognostic power. However, their application to burns is rare
(Sandquist and Wong 2014; Foth et al., 2016; Gavrielatou et al.,
2020). Therefore, it is meaningful to explore immune-related genes
in severe burns for revealing their value as prognostic biomarkers
and immune therapeutic targets.

This study is a large population-based prognostic study
involving 185 burn patients. We investigated the relationship
between gene expression profiles and the prognosis of severe
burns using machine learning algorithms (Newman et al., 2015).
The disorder of immune cells in severe burns was investigated by

CIBERSORT and gene set variation analysis (GSVA)
(Hänzelmann et al., 2013). The genes related to the disorder
of immune cells were identified in WGCNA. We used the Least
Absolute Shrinkage and Selectionator operator (LASSO) and
logistic regression to create a prognostic model for immune-
related genes. Additionally, we identified the correlation between
cellular subtypes and genes, which were associated with immune
abnormalities following severe burns. The research aimed to
provide a certain basis and reference value for revealing the
prognostic value of genes associated with immunosuppression.

METHODS

Acquisition of RNA Data
We downloaded three microarray expression profiles and clinical
data of severe burns (GSE19743, GSE77791, and GSE37069) from
the GEO database (http://www.ncbi.nlm.nih.gov/geo/). Patients
>18 years or <55 years and sampling time between 280 and 705 h
were selected to remove the influence of age and sampling time.
(Table 1). Meanwhile, we downloaded clinical information
(survival, burn area, sampling time, and age) from three
datasets. GSE37069 was utilized to screen immune- and
prognostic-related genes between burn and control
(Supplementary Data Sheet S1), GSE77791 and GSE19743
were utilized to be the training cohort and validating cohort,
between survival and non-survival, respectively (Supplementary
Data Sheets S2, S3). There was no need for patients’ consent and
ethical approval as all data were taken from public databases. The
experimental procedure was as shown in Figure 1.

TABLE 1 | Clinical data of burn patients and health controls in GSE37069 and
GSE19743.

Group (burn) Sex Age Time of sampling

N Male Female

GSE19743 28 24 4 37.61 ± 7.98 439.28 ± 117.86
GSE37069 81 57 24 37.41 ± 10.45 411.92 ± 124.76
P 0.109 0.271 0.311

Group (health) Sex Age Time of sampling

N Male Female

GSE19743 25 14 11 30.21 ± 8.16 —

GSE37069 37 17 20 32.59 ± 11.03 —

P 0.709 0.364 —
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Data Processing
The expression profiles were processed by the package of R
software, “Affy.” The background correction of the expression
value and normalization of the expression profile data were
performed, including conversion of original data format, the
supplement of missing value, background correction, and data
standardization by using the Quantile method.

GSVA
GO term related to immune cells was selected from theGSEAwebsite
(http://www.gsea-msigdb.org/gsea/index.jsp). The GSVA analysis
was performed between burns and healthy controls in GSE37069
by the “GSVA” package in R software. Unqualified samples were
removed prior to the variance analysis. The result of GSVA was
analyzed by the R package “limma” to calculate the differences in
enrichment results between severe burns and healthy controls.

Immune Infiltration Analysis
“CIBERSORT” is a machine learning algorithm that can analyze
the proportion of immune cells from RNA-seq (Newman et al.,
2015). We downloaded the expression profile of GSE37069,
GSE19743, and GSE77791 to select 81, 28, and 76 burn
patients and 37, 25, and 13 healthy controls, respectively, and
performed an immune infiltration analysis by using the
“CIBERSORT” package in R software. Cell subtypes with p <
0.05 in three gene sets were considered as key immune cells
(KICs) for further analysis. Next, the “ggplot2” package in the R
software was used to visualize the different proportion of KICs
between burn patients (Group2) and healthy controls (Group1).

WGCNA
WGCNA could construct a scale-free distribution network by using
soft power to classify genes with the same expression trend and
analyze the correlation between genes and traits (Langfelder and
Horvath 2008). We performed WGCNA on the gene set GSE37069
by using the “WGCNA” package in the R software and identified
gene modules associated with key immune cells. The intersection of
GSVA and immune infiltration analysis are defined as clinical traits
to identify immune-related gene modules.

Differential Expression Analysis
We utilized the “LIMMA” package in R software (version 4.0.5) to
analyze DEGs in GSE19743, GSE77791, and GSE37069 datasets
(FDR<0.05, |logFC|>1) and took the intersection of genes in
GSE19743, GSE77791, GSE37069, and immune-related modules.

Enrichment Analysis and PPI
We performed an enrichment analysis of differently expressed
genes in the immune-related gene modules.(modules with
differential genes more than 20 were selected). We used the
DAVID6.8 online tool (https://david.ncifcrf.gov) to perform
the enrichment analysis of Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) and the “ggplot2”
package in R software was used to draw a bubble chart. We
constructed the interaction network between the enrichment
results (FDR<0.05). We selected immune-related genes in the
enrichment analysis and constructed the PPI network which
was visualized by Cytoscape and hub genes selected by
MCODE.

FIGURE 1 | A graphical summary of the research design.

TABLE 2 | Clinical data of burn patients in GSE77791 and GSE19743.

Group Sex Age TBSA Time
of sampling (GSE19743)N Male Female Severe (30–49) Major (49–100)

Death 23 19 4 40.73 ± 7.67 3 20 422.24 ± 122.32
Survival 81 70 11 40.67 ± 10.74 21 60 393.33 ± 113.19
P 0.147 0.974 0.001 0.544
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LASSO and Logistic Regression
In GSE19743 and GSE77791 (age 18–55, TBSA >30%,
sampling time 280–705 h), we performed a LASSO
regression analysis by using the “lasso” package of R
software to screen hub genes. The hub genes were
analyzed by ROC curves and the variables with AUC>0.6

were selected for a logistic regression to establish the
regression model. The regression model used GSE77791 as
the training cohort and GSE19743 as the validation cohort.
The nomogram plot was utilized to calculate the risk score,
and the model was evaluated by the ROC curve and
calibration curve.

FIGURE 2 | Results of GSVA and CIBERSORT (A) Heat map of 203 GO terms between severe burns and controls. (B,C) Different terms of GSVA with |logFC|
>0.35, p < 0.05.
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Multidimensional Validation
To explore the effects of burn area and age on the model, we
reincorporated 161 patients of GSE19743 and GSE77791 to
validate the prognostic ability of the key genes. Burn area, age,
and key genes were included in for modeling. Regression models
were constructed by random grouping (70% training cohort and

30% validation cohort). A nomogram was drawn to calculate the
risk score, and the ROC curve was used to evaluate the accuracy.

Correlation Analysis
A correlation analysis was performed between key immune cell
subtypes and genes, LCK, SKAP1, GZMB, and LY9. The patients

FIGURE 3 | Results of CIBERSORT. (A) Different ratios of the 22 immune cells between severe burns and controls in GSE19743. (B) Different ratios of the 22
immune cells between severe burns and controls in GSE37069. (C) Different ratios of the 22 immune cells between severe burns and controls in GSE77791.
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FIGURE 4 |Results ofWGCNA and different expression analysis. (A)Genes in GSE37069 were divided into 12modules in different colors. Genes in the same color
module have similar expression patterns. (B,C) Soft power of WGCNA. (D) Correlation genes and immune cells. The ordinate is the gene module; the abscissa is the cell
type. Blue are negative correlations and red are positive correlations. (E–G) The ordinate is the -log10p value; the abscissa is the logFC. (H) Intersection of genes in
GSE19743, GSE37069, GSE77791, and immune cell-related genes in WGCNA.
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were divided into two groups according to the risk score (high
risk: score>0.5, low risk: score<0.5). The prognosis, age, gender,
TBSA, and inhalation injury were contrasted between the high-
and low-risk groups.

Validation of Key Gene Expression
To further verify the prognostic value of the key genes, we verified
the expression profiles of key genes in death and survivors of burn
patients in independent cohorts, GSE19743 and GSE77791. We
converted the fluorescence values of each sample to log2 and
averaged the different probes of the same gene.

Statistics Method
Variables are represented by mean±σ. Comparisons of data were
made by using the Chi-square test for categorical data or
Student’s t-test for normalized quantitative data as
appropriate. The multiple logistic regression model was
utilized to examine the relationship between mortality and
variables. The criterion variable was death as the outcome.
The explanatory variables included age, gender, %TBSA, and
expression of genes. ROC and calibration curves were utilized to
process prognostic ability logistic models.

RESULT

Acquisition of RNA Data
We selected 28, 76, and 81 burn patients with a control group of
25, 13, and 37 health controls in the GSE19743, GSE77791, and
GSE37069 datasets. GSE19743 and GSE77791 (training and
validating cohorts) had 104 severe burns, with 81 survivors
and 23 deaths (Table 2).

GSVA
We selected 203 immune-related GO terms which had significant
differences in immune-related pathways between normal and severe
burns (Figure 2A). Adj. p < 0.05, |logFC| > 0.35 are considered to be
different GO terms in the differential analysis (Figure 2B). In severe
burns, the enrichment score of neutrophil, dendritic, monocyte, and
NKT cell-related pathways were increased while T cells, B cells, and
macrophages were decreased (Figure 2C).

Immune Infiltration Analysis
An analysis of immune infiltration showed that plasma cells,
T cells CD8, T cells CD4 naive, T cells CD4 memory resting,
T cells CD4 memory activated, NK cells resting, monocytes,
macrophages M0, dendritic cells resting and neutrophils were
KICs (Figures 3A–C). We took the intersection of GSVA and
CIBERSORT results. All seven kinds of immune cells, which were
utilized for WGCNA, had a significant difference between burns
and healthy controls.

WGCNA
Genes in GSE37069 were divided into twelve modules
(Figure 4A). The soft power was 22 (R > 0.85) (Figures
4B,C). Yellow, turquoise, green, and blue modules were
related to the proportion of immune cells and named

immune-related modules (correlated to T cells, p < 0.05,
correlation coefficient > 0.5) (Figure 4D).

Differential Expression Analysis
We obtained 2,937, 5,481, and 3,233 differential expression genes
from GSE37069, GSE19743, and GSE77791 (|logFC|>2, adj. p <
0.05) and there are 748 differential expression genes in immune-
related modules (Figures 4E–G).

Enrichment Analysis and PPI
The blue module was mainly enriched in T-cell activation,
lymphocyte differentiation, and T-cell differentiation
(Figure 5A). The green module was mainly enriched in
neutrophil degranulation and neutrophil activation involved in
immune response (Figure 5B). Turquoise was mainly enriched in
neutrophil degranulation and neutrophil activation involved in
immune response and regulation of inflammatory response
(Figure 5C). Yellow was mainly enriched in the antigen
receptor-mediated signaling pathway, immune response-
activating cell surface receptor signaling pathway, and immune
response-activating signal transduction pathway (Figure 5D). A
total of 210 immune-related genes were found in the
aforementioned immune-related enrichment results, which
were mainly related to the function and cell structure of
immune-related genes such as T cells, immune response,
MHC II class protein complex, CD4 receptor, and Ca2+ signal
pathway (Figures 5E–G). Three core modules were selected in the
MCODE module, which were marked by blue, red, and orange,
with a total of 53 hub genes (Figures 6A–D).

LASSO and Logistic Regression
26 variables were screened out in LASSO and logistic regression,
and 7 genes that had AUC >0.6 were selected. Four immune-
related genes LCK, SKAP1, GZMB, and LY9 were obtained by
logistic regression modeling (Figures 7A–D). A nomogram plot
was drawn to calculate the risk score of each patient, and the ROC
curves were used to evaluate the prognostic ability of the risk
score. AUC was 0.930 in the training cohort and AUC was 0.919
in the validation cohort (Figures 7E–G). The aclibration curve
shows that the regression model has a good prediction ability
(Figure 7H). 161patientswere randomly divided into two groups,
training cohort (70%) and validation cohort (30%). Results
showed that AUCtraining = 0.946, AUCvalidation = 0.902
(Figures 7I,J). The risk of non-survival was calculated by the
nomogram containing risk score, age, and TBSA. AUCrisk

score+TBSA+age = 0.945 > AUCrisk score = 0.933 (p < 0.05)
(Figures 7K,L). Incorporating TBSA and age improves model
predictive ability. Dead patients were older in age, had larger
TBSA, and were not different in inhalation injury (Figures 8A,B)
(Table 3). LCK, SKAP1, GZMB, and LY9 are associated with
T cell CD4 naive, T cell CD4 memory activated, and T cell CD8
(Figures 8C,D).

Validation of Key Gene Expression
In GSE19743 cohort, key genes, LY9, SKAP1, GZMB, and LCK,
were highly expressed in survival patients. The same result was
presented in GSE77791 (Figures 9A–H).
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FIGURE 5 |Results of the enrichment analysis. (A–D) The ordinate is the pathway name and the abscissa is the proportion of genes in the pathway. The redder the
circle, the bigger the p value. (A) Enrichment analysis of genes in the blue module in WGCNA, (B) in green, (C) in turquoise, and (D) in yellow. (E–G) Results of the
enrichment analysis with 210 immune-related genes that we got from the pathway in the enrichment analysis in the four gene modules.
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FIGURE 6 | Results of PPI network of 210 immune-related genes. (A) The interaction of 210 genes, different colors means different interaction groups. (B–D) Blue
is module 1, orange is 2 and red is 3.
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FIGURE 7 | Results of regression, multidimensional verification, and correlation between key genes and immune cells. (A,B) The ordinate is the correlation
coefficient between gene expression and prognosis. λ was utilized to screened genes and the number aforementioned is the number of genes. (C) AUC of the four key
genes in GSE77791. The larger the area under the curve, the stronger the prediction ability. (D) AUC of the four key genes in GSE19743. (E) Nomogram plot of logistic
regression which can be utilized to calculate the risk score between severe burns and controls. (F) AUC of logistic regression with selected patients (18 < age<55,
TBSA>30, 280 h < sample times <706) in the training cohort (GSE77791). (G) AUC of logistic regression with selected patients (18 < age<55, TBSA>30%, 280 h <
sample times <706) in the validation cohort (GSE19743). (H) Calibration curve of logistic regression. The closer bias-corrected curve and ideal curve are, the better
predictive regression model is. (I,J) Selected patients (N = 104, 18 < age<55, TBSA>30, 280 h < sample times <706) were divided into two cohorts in randomly to train
and validate regression model, the training cohort had 70% patients, and the validation cohort had 30%. (K,L) All patients (N = 161, 1 < age<99, TBSA>30%, 280 h <
sample times <706) in GSE77791 and GSE19743 were divided into two cohorts randomly to train and validate the regression model, the training cohort had 70%
patients, and the validation cohort had 30%.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 90851010

Zhang et al. Immunosuppression in Severe Burns

111

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


DISCUSSION

Physiological characteristics of the inflammatory response and
immunosuppression in severe burns are the disorder of the
number and proportion of immune cells. After severe burns,
monocytes, macrophages, and neutrophils are activated. DAMP
and PAMP recognize TLR to activate NF-κB. NF-κB is involved
in the activation of inflammatory factors such as IL-1, IL-6, IL-8,

FIGURE 8 | Results of the correlation between key genes and immune cells. (A,B) Different TBSA and years between survival and non-survival patients. Non-
survival is older and has a larger TBSA. (C,D) Horizontal and ordinate are the names of the genes and cells. The figure in the circle means correlation and red means
positive correlation and blue means negative.

TABLE 3 | Differences between high- and low-risk burns that were divided by the
regression model in inhalation injury.

Group In inhalation
injury

Value of chi-square P

Yes No

High risk 6 9 0.216 0.624
Low risk 14 28

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 90851011

Zhang et al. Immunosuppression in Severe Burns

112

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


IL-18, and TNF, resulting in a strong inflammatory response
(D’Arpa and Leung 2017). Subsequently, immune function is
inhibited. The antigen-presenting function of the macrophages

and the killing function of the neutrophils are weakened, followed
by the decreasing proliferation of T cells, particularly in the
differentiation, proliferation, and function of Th cells (Miller

FIGURE 9 | Results of the differential expression analysis of the microarray data in two independent cohorts.(A–D) In GSE19743, key genes, SKAP1, LY9, LCK,
and GZMB, were up-regulated in survival patients. (E–H) In GSE77791, key genes, SKAP1, LY9, LCK, and GZMB, were up-regulated in survival patients.
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et al., 2007). The main manifestation is the inhibition of Th1 cell
differentiation, and a relative increase of Th2 cell differentiation
leads to pro-inflammatory inhibition and anti-inflammatory
activation. The changes in cytokines and cell proportion are
not only the results of severe burns but also the important
causes of immunosuppression and inflammatory response
syndrome, which are related to the prognosis of patients and
play an important role in the development of immunotherapy
targets (Hur et al., 2015). In the GSVA results (Figure 2C), we
found that the pathway of the T cell, and macrophage (negative
regulated) were activated in the controls contrast to severe burns,
and the pathways of the neutrophil and monocyte were inhibited,
which may be an important reason for the activation of
neutrophil, monocyte, and macrophages and the inhibition of
T-cell function in severe burns. All the aforementioned data are
consistent with the previous research. In addition, we also found
that the pathways of B cells, NK cells, and T follicular-
assistedpara-cellular were inhibited while dendritic cells were
activated. These cells are the key to the immune response, but
have not been revealed in the immunosuppression of
severe burns.

The intersection of Cibersort and GSVA results showed
that the disorder of immune cell subtypes in severe burns
included T cell CD8, T cell CD4 naive, T cell CD4 memory
resting, T cell CD4 memory activated, NK cell resting,
monocytes, macrophages M0, dendritic cells resting, and
neutrophils. Subtype disorders of immune cells are an
important basis for immune dysfunction. Although the
quantitative changes and pathway activation/inhibition of
these subtypes have not been studied in the burn, they play
an important role in the proliferation, differentiation, and
function of T cells, NK cells, mononuclear macrophages,
dendritic cells, and neutrophils. The decrease of CD4 naive
T cells directly leads to the decrease of Th cells. In our study,
we found that CD4 naive T cells decreased in severe burn
patients, which could differentiate into Th1, Th2, Th17, and
Treg cells (Zhou et al., 2009). In addition to the decrease in cell
number, the proportion of different cell subtypes is also
imbalanced. For example, Th1/Th2 decreased and Treg/
Th17 increased in severe burns, which are important causes
of adaptive immune dysfunction (O’Sullivan et al., 1995;
MacConmara et al., 2011; Rendon and Choudhry 2012;
Valvis et al., 2015). Our study found that CD8T cells and
NK cells decreased in severe burns, which are principal cells
against pathogens. In the early stages of burns, an
inflammatory response will lead to an increase in the
number of CD8 cells and NK cells, but a significant
decrease will soon follow (Sherwood and Toliver-Kinsky
2004; Patil et al., 2016). Although the reason for the
depletion of NK cells has not been found, excessive stress
can lead to the depletion of CD8T cells, which may be the
reason for the significant reduction of CD8T cells in the mid-
burn stage (Sherwood and Toliver-Kinsky 2004; Kurachi
2019). Our study also found that monocytes, macrophages,
dendritic cells, and neutrophils were significantly increased in
patients with severe burns. The aforementioned cells were the
key cells of the inflammatory response, connecting innate

immunity, and adaptive immunity. Neutrophils, dendritic
cells, and mononuclear macrophages are activated after a
burn, causing a strong inflammatory response, which is an
important cause of subsequent multiple organ failure and
sepsis (Sherwood and Toliver-Kinsky 2004). In addition,
over-activated neutrophils will also suppress the function
of T cells and affect the adaptive immune response (Aarts
et al., 2019). We believe that the changes of these cell subtypes
play an important role in the immunosuppression of severe
burns, and have a significant prognostic and therapeutic
value. Therefore, we used WGCNA to analyze gene changes
associated with these immune cells.

Considering that T cells are the main effector cells of adaptive
immune response and play an important role in
immunosuppression after burns, we selected modules
correlated to T cells. Four modules containing differently
expressed genes were found to be associated with cell subtypes
in the WGCNA analysis (Figures 4A–D), with 748 genes related
to the immune pathway (Figures 4E–H). The related pathways
are mainly related to the immune-related gene functions and cell
structures such as T cells, immune response, MHC II class protein
complex, CD4 receptor, and Ca2+ signal pathway (Figures
5A–D). The main physiological manifestation of
immunosuppression in patients with severe burns is a decrease
in the adaptive immune response. T cells are key cells for adaptive
immune response. Th1/Th2 ratio is an important factor in
immune function. Th-1 produces IL-2 and IFN-γ and activates
the immune response. Th-2 produces IL-4 and IL-10 and inhibits
the immune response (Abbas et al., 1996). The Ca2+ signal
pathway is associated with IL-2 production and plays an
important role in immune function (Sayeed 1996). In
addition, Th17 secretes IL-22 to active epithelial cells,
participating in chemotaxis, tissue repair, and antimicrobial
peptide expression to prevent bacterial invasion and
epithelial cell proliferation and differentiation (Rendon and
Choudhry 2012). This effect of Th-17 cells is important
because severe burns can induce mucosal atrophy and
apoptosis, as well as damage to the homeostasis of intestinal
epithelial cells (Magnotti and Deitch 2005). Intestinal mucosal
barrier is impaired as early as 5 minutes after severe burns,
which increases the risk of bacterial translocation and sepsis.
Th-17 cells have been proved to be able to prevent local and
systemic proliferation of common infection sources after
burning, such as Bacteroides fragileus, Klebsiella pneumoniae,
and Candida albicans (Rendon and Choudhry 2012; Rani et al.,
2014). T cells are not only an important manifestation of
immunosuppression, but also an important therapeutic target
for improving immune function. IL-15 treatment can improve
the reduction of CD4 + T (Th) cells. Blocking CD47/CD172
signaling pathway can improve the reduction of CD4 + T cells
and CD8 + T cells, thereby improving immune function (Patil
et al., 2016; Beckmann et al., 2020). Flt3 ligand treatment can
alleviate T-cell dysfunction and significantly improve the
prognosis of septic mice. Therefore, we believe that T-cell-
related genes play an important role in the development of
T-cell function inhibition, have an important prognostic value,
and are likely to be targeted for immunotherapy.
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Among 210 immune-related genes in PPI network, 53 genes
are hub genes (Figures 6A–D). Twenty-six genes were finally
selected by LASSO regression, of which seven genes had
significant indigenous prognosis (AUC > 0.7, p < 0.05),
namely LCK, SKAP1, CX3CR1, FYN, GZMB, LY9, and FYN.
The genes were incorporated into the logistic regression to
construct the regression that included 4 key genes, LCK,
SKAP1, GZMB, and LY9 (Figures 7A–D). In the GSE77791
(training cohort), AUC = 0.930 (Figure 7F), and calibration curve
indicated that the model had an excellent prediction ability
(Figure 7H). In the GSE19743 (validation cohort), AUC =
0.919 (Figure 7G). We included age and TBSA in the
regression model for all patients (161), AUCrisk score+TBSA+age =
0.945 >AUCrisk score = 0.933 (Figure 7L). The prediction ability of
the model was improved. In addition, there were significant
differences in the burn area and age between survival and
non-survival patients (Figures 8A,B). So, the prognostic
function of our regression includes the effects of burn area
and age.

LCK, SKAP1, GZMB, and LY9 are related to T cells, such as
T cells CD4 naive, T cells CD4 memory activated, and T cells
CD8. The correlation between gene expression and cell
proportion indicates that genes may be potential biomarkers
that characterize the number and function of cells.

The protein encoded by the LCK gene is a key molecule for
differentiation and maturation of developing T cells. LCK
exists in all normal T cells. In the cells, LCK is located in the
plasma membrane and vesicles around the centrosome, which
is related to the cytoplasmic tail of CD4 co-receptors on helper
T cells and CD8 co-receptors on cytotoxic T cells, to help
T-cell receptor (TCR) complexes signal and participate in the
TCR-mediated T-cell activation (Shebzukhov et al., 2017).
Human somatic cell experiments showed that the inhibition
of LCK expression led to the inhibition of the TCR pathway,
thereby hindering the differentiation and development of
T cells. Targeted destruction of LCK can lead to T-cell
development stagnation in the thymus (van Oers et al.,
1996). Although there are few studies on the LCK gene in
severe burns, the expression of the LCK gene is significantly
related to T-cell subtypes, which is an important molecule to
characterize the number and activity of T cells. In addition,
therapies targeting LCK have been shown to promote/inhibit
T-cell growth and development in a variety of diseases such as
type 1 diabetes, colon cancer, asthma, and organ transplant
rejection, thereby altering disease outcomes (Sabat et al., 2006;
Gholamin et al., 2015). Therefore, LCK, depending on its
correlation with T cells, is expected to provide a predictive
value for T-cell function and become an important target for
the treatment of T-cell dysfunction in severe burns.

SKAP1 gene encodes T-cell adaptor protein which is a key
regulator of TCR-mediated LFA-1 signaling (inside-out/
outside-in signaling), T-cell receptor-induced activation of
LFA-1 to promote T-cell adhesion and interaction with
antigen-presenting cells (APCs) (Witte et al., 2017). SKAP1
deficiency affects TCR activation (Lim et al., 2016). The
expression of SKAP1 was correlated with T-cell function
and disease development. In SKAP1 deficient mice, it was

found that IL17 cytokines decreased and T-cell infiltration
decreased, which alleviated collagen-induced osteoarthritis
(Smith et al., 2016). Th17 is an important mucosal immune
cell, which has an important relationship with intestinal flora
translocation after burns. SKAP1 deficiency may lead to Th17
deficiency and promote the development of the disease.
Although SKAP1 has not been studied in
immunosuppression after burns, we believe that SKAP1 can
characterize T-cell function and is a promising
immunotherapy target for improving T-cell function.

GZMB encodes Granzyme B which is mainly secreted by
natural killer (NK) cells and cytotoxic T lymphocytes (CTLs).
Granzyme B induces target cell apoptosis and can impact
processes such as tissue remodeling, barrier function,
autoantigen generation, and angiogenesis. It plays an
important role in wound healing, chronic inflammation,
and scar formation (Śledzińska et al., 2020). Therefore, the
expression of GZMB reflects the differentiation of T-cell
subtypes to some extent. LY9 encodes a homocellular
surface receptor that exists on all thymocytes and is highly
expressed on innate lymphocytes such as iNKT cells. LY9 plays
an important role in maintaining T-cell subtype
differentiation. The level of IL-4 in LY9-deficient mice was
significantly increased, and IL-4 was mainly secreted by Th2
cells, which inhibited the inflammation and immune responses
(Cuenca et al., 2018). In our experiment, we found that LY9
was significantly down-regulated, which may be one of the
molecular mechanisms of the Th cell subtype disorder.
Although GZMB and LY9 have not been further studied in
the immunosuppression of severe burns, the proteins encoded
by GZMB and LY9 play an important role in T-cell immune
function, T-cell subtype differentiation, and wound healing.
Obviously, GZMB and LY9 can be used as prognostic factors
which can characterize physiological changes after
severe burns.

Key genes have great potential in post-burn
immunosuppression, which will be a meaningful research
direction. In addition, in the differential expression analysis, it
was found that in the two independent cohorts, the expression of
key genes in survival patients was significantly increased (Figures
9A–H), which may indicate that the down-regulation of key
genes is an important factor leading to immunosuppression and
death, which needs further research.

Our experiment is the first to use WGCNA, GSVA, and
LASSO regression to construct a gene prognosis model with
genes in three severe burns cohorts (185 patients). In contrast to
prognostic models for platelets, coagulation disorders, IFN-γ,
IL-2, IL-4, Burn Severity Index (ABSI) score, Ryan score,
Belgium Outcome Burn Injury (BOBI) score, and modified
Baux score, our prognostic model was based on gene
expression profile, which had a higher accuracy and was
more convenient for clinical operation (Hur et al., 2015; Lip
et al., 2019; Geng et al., 2020). Others use bioinformatics
methods to study the pathophysiology of severe burns, but
most are limited to animal models or have unstable and
inaccurate prognostic indicators (Li et al., 2016; Fang et al.,
2020; Liu et al., 2021). We first introduced WGCNA,
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CIBERSORT, GSVA, and LASSO into the analysis to find
prognostic factors from the pathophysiological mechanism of
immunosuppression after severe burns, so our prognostic model
is more stable and reliable. In addition, we found that key genes
were associated with immunosuppression after severe burns and
were related to the ratio of specific immune cell types, which
provided an important direction for the future development of
immunotherapy targets. Of course, our experiment is also
insufficient. We need to collect more information about
patients, such as whether shock resuscitation or sepsis
occurs, to further stabilize our model. Nevertheless,
compared with other clinical prognosis models, our model
showed a good prognosis ability in collaboration with age
and burn area, and the gene expression and prognosis model
were verified multi-dimensionally (three large cohorts,
sequencing datasets, and multiple groupings).

SUMMARY

Our study found that immunosuppressive-related genes after
severe burns had important prognostic value. The prognostic
ability of LCK, SKAP1, GZMB, and LY9 in the gene expression
profiles of 185 severe burns was superior to the current prognostic
models and scale score.
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Identification of Immune-Related Hub
Genes in Thymoma: Defects in CD247
and Characteristics of Paraneoplastic
Syndrome
Lin-Fang Deng1,2*

1College of Sciences, Shanghai University, Shanghai, China, 2College of Medicine, Shanghai University, Shanghai, China

Background: Thymomas (Ts) and thymic carcinomas (TCs) are rare primary tumors of the
mediastinum. Paraneoplastic syndrome (PNS) is an important feature of thymoma, which
presents great challenges to clinicians.

Methods: The present study uses the weighted gene co-expression network analysis
(WGCNA) to identify possible immunologic mechanisms of thymoma. RNA sequencing
data from thymoma samples were downloaded from the TCGA. Core genes were taken
from the module that is closely related to the WHO’s stage of classification. Enhanced
analysis using the online database “Metascape” and an overall survival (OS) analysis were
carried out via the Kaplan–Meier method. The hub genes were obtained from the
protein–protein interaction (PPI) network. In addition, we jointly analyzed multiple sets
of PNS data related to thymomas from other sources to verify the correlation between
thymomas and PNS. The impact of hub genes on the prognosis of PNS was evaluated via
the ROC curve, with simultaneous analysis of immune infiltration by CIBERSORT.

Findings: The 14 immune hub genes closely related to thymomas were found to be jointly
involved in the T-cell receptor signaling pathway. Compared to the normal thymus and
type B1/B2 thymoma, there is a lower number of T-cells in type A/B3 thymoma and thymic
carcinoma. The expression of genes related to the T-cell receptor signaling pathway
appeared defective. The low expression of CD247 and the decrease in the number of
mature T-cells are common features among thymomas, specific pulmonary fibrosis,
rheumatoid arthritis, and systemic lupus erythematosus.

Keywords: Thymomas, immune, WGCNA, paraneoplastic syndrome (PNS), CD247

INTRODUCTION

Thymomas (Ts) and thymic carcinomas (TCs) are rare primary tumors of the mediastinum,
originating from the thymic epithelium (Scorsetti et al., 2016). The World Health Organization
(WHO) divides thymoma into type A, AB, B1, B2, B3, and C according to the morphology of
thymoma epithelial cells and the ratio of lymphocytes to epithelial cells in tissues (Marx et al., 2015;
Travis et al., 2015). Type C is a thymic carcinoma, and others are thymomas. Thymomas are
relatively common primary anterior mediastinal mass, while thymic carcinoma is rare. These two can
be synchronous. Thymoma sometimes can develop into carcinomas, but it usually takes 10 to
14 years (Ettinger et al., 2013). In addition to the WHO classification system, the Masaoka staging
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system and TNM staging system are also commonly used in
clinical thymoma (Ried et al., 2018). Masaoka classifies
thymomas into stages I, II (IIa and IIb), III, and IV (IVa and
IVb) according to their comprehensive capsule infiltration and
tumor metastasis (Masaoka, 2010). However, the TNM staging
system includes lymph nodes in the evaluation criteria, which is
of great significance for thymoma. In general, there appears to be
a clear correlation and correspondence between several staging
methods.

Due to the insidious onset and slow progression of thymoma,
the first diagnosis is usually found by chance in physical
examination, or physical discomfort caused by paraneoplastic
syndrome (PNS). PNS is an important feature of thymoma,
bringing great challenges to clinicians (Blum et al., 2020). The
common PNS of thymoma are myasthenia gravis, total red cell
aplasia, polymyositis, systemic lupus erythematosus, rheumatoid
arthritis, Cushing syndrome, and syndrome of inappropriate
antidiuretic hormone secretion (Rajan and Zhao, 2019;
Rubinstein et al., 2019; Hashimoto et al., 2020; Sideris and
Huang, 2020). A sizeable percentage (25–40%) of thymoma
patients with myasthenia gravis, and more than 15% of
patients with fever and immunodeficiency such as syndromes
(Zhao et al., 2020; Liao et al., 2021). Thus, deciphering the
relationship between this particular clinical symptom and
tumor is crucial for the treatment of thymoma. The treatment
and management of thymomas include chemoradiotherapy, the
use of corticosteroids, immunotherapy, tyrosine kinase
inhibitors, and surgical resection. However, the complications,
caused by surgery and radiotherapy, such as radiation
pericarditis, radiation pneumonia, and pulmonary fibrosis can
hasten the patients’ death (Ettinger et al., 2013; Jeffrey Yang et al.,
2020; Tian et al., 2020; Yu et al., 2020).

In recent years, with the development of systems biology, an
increasing number of researchers have explored and predicted the
prognostic targets of tumors from the perspectives of gene
expression and molecular interaction. However, the etiology of
thymoma is still unclear, and the association between PNS and
thymoma is also ambiguous. Therefore, this study explores the
biochemical mechanism of thymoma from the perspective of
systems biology. Weighted correlation network analysis
(WGCNA) is a high-quality method for finding clusters
(modules) of highly correlated genes (Langfelder and Horvath,
2008; Langfelder and Horvath, 2012), which is a method of data
reduction and unsupervised classification. This method can form
a module of co-expressed genes to simplify the complex data
matrix. Moreover, we can further explore the correlation between
gene network and phenotype of concern and explore the hub
genes in the network. This method has been widely used since its
development. For example, Tian et al. used WGCNA to identify
two gene co-expression modules involved in the process of lung
squamous cell carcinoma metastasis and suggested that CFTR,
SCTR, and FIGF genes could be used as a potential prognostic
biomarker (Tian et al., 2017). Magdalena Niemira et al. (2019)
applied WGCNA for exploring molecular networks associated
with clinical traits such as tumor size, SUV max, BMI, smoking
status, recurrence-free survival, and disease-free survival
(Niemira et al., 2019). In addition, WGCNA has been applied

to breast cancer, liver cancer, colon adenocarcinoma, and other
diseases (Yin et al., 2018; Zhou et al., 2018; Wang et al., 2019).

This study analyzes the immunologic mechanism of thymoma
by WGCNA. RNA sequencing data from thymoma samples were
downloaded from the TCGA. The thymomas datasets
GSE177522, GSE57892, and GSE29695 from GEO were used
as the validation set to verify the reliability of the results. In
addition, we jointly analyze multiple sets of PNS data related to
thymomas (GSE33566, GSE93272, and GSE138458) to explore
the internal relationship between thymomas and PNS.

MATERIALS AND METHODS

Data Sources and Pre-Processing
RNA sequencing data and clinical information for thymomas were
downloaded using TCGAbiolinks, a third-party tool officially
recommended by GDC in R language (Colaprico et al., 2016;
Silva et al., 2016; Mounir et al., 2019). The TCGAbiolinks tool
downloads data through GDC official API. There were 119 cases
of thymomas (including 36 cases of type AB thymoma, 15 of type A
thymoma, 14 of type B1 thymoma, 30 of type B2 thymoma, 13 of type
B3 thymoma, and 11 of thymic carcinomas) and two cases of normal
thymus tissue. The validation sets GSE177522, GSE57892, and
GSE29695 were downloaded from the GEO official website
(https://www.ncbi.nlm.nih.gov/geo/). Some common PNS data
were also downloaded from the GEO official website, including
rheumatoid arthritis (GSE93272), systemic lupus erythematosus
(GSE138458), and pulmonary fibrosis (GSE33566).

The workflow of the study is shown in Figure 1.

Screening of Immune Gene and Noise Gene
The purpose of this study is to find out the relationship between
thymoma and immunity. Therefore, a total of 2,381 genes in all
immune-related pathways were collected from the KEGG website
(https://www.genome.jp/kegg/). First, we extract the expression
profiles of these immune genes from thymoma data. For details of
the gene list, cf. Table 1.XLSX of the Supplementary Materials
(SM). Second, noise genes were screened by the correlation
method. Specifically, the Spearman correlation coefficient
matrix of immune genes was calculated. It was determined
that the two genes are not correlated when the correlation
coefficient r is in the range of (−0.2, 0.2). When a gene is not
correlated with 70 % of the remaining genes, it is determined to be
a noise gene (cf. SI-1 of the Data Sheet 1.PDF). The data matrix of
the optimized immune-related genes is 2023 * 121.

Weighted Gene Co-Expression Network
Analysis
This study uses WGCNA (version: 1.70–3), downloaded by
BiocManager (version: 1.30.10) in the R suite, to construct the
immune co-expression network (Langfelder and Horvath,
2008; Langfelder and Horvath, 2012). After screening and
testing the immune expression matrix, the Pearson
correlation coefficient matrix is calculated and a suitable
soft threshold is selected.
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cij � cov(i, j)
σ iσj

,

where cov(i, j) refers to the covariance of genes i and j, σ
represents the standard deviation of gene, and cij is the
Pearson correlation coefficient between genes i and j. Then,
the adjacency matrix, a matrix of weighted correlation between
genes, was constructed using the power function. This method
strengthens the strong correlation and weakens the weak
correlation or negative correlation, which makes the
correlation value more in line with the scale-free network
characteristics and more biological significance.

aij �
∣∣∣∣cij

∣∣∣∣β,

where aij is adjacency between those two genes. Then, the
topological overlap matrix (TOM) was constructed using the
adjacency function to reduce noise and false correlation.

TOMi,j � Iij + aij

min(ki + kj) + 1 − aij
,

where Iij is the product’s sum of the adjacency coefficients of the
nodes connected by genes i and j, and k refers to the sum of the
adjacency coefficients of the given gene with all other genes in the
weighted network. The TOM is a method to quantitatively

describe the similarity in nodes by comparing the weighted
correlation between two nodes and other nodes.

Identification of Clinically Significant
Modules and Immune Hub Genes in
Thymoma
The co-expression module is a collection of genes with high
topological overlap similarity. First, principal component analysis
(PCA) was used to find the first principal component of each
module (module eigengene, ME) to represent the expression
pattern of the module. Then, the correlation between these
modules and clinical data was calculated to determine the
concerned clinical information and gene modules. Module
membership (MM) and gene significance (GS) were used to
describe the reliability of a gene in the module. The
intramodular connectivity may be interpreted as a measure of
MM. Genes with intramodular connectivity greater than 0.8 were
selected as hub genes (highly connected genes).

Survival Analysis of Hub Genes
The ability of hub genes to predict survival is based on
Kaplan–Meier analysis by using the “survival” package
(version: 3.2–7) in the R suite. First, the expression profile of
hub genes was extracted from TCGA data. Second, the median

FIGURE 1 | Workflow of searching hub genes in thymoma.
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expression value of each hub gene was determined. Third, the
tumor samples were divided into high-expression groups and
low-expression groups with the median of each gene as the
boundary. The median sample is divided into high-expression
groups. Finally, differences in survival between high- or low-
expression groups were assessed for significance by the log-rank
test. If p< 0.05, we consider the gene to be a validated hub gene.

Functional Enrichment of Hub Genes
In order to analyze the biological functions and signaling
pathways of differentially expressed genes in thymoma-related
modules, we perform enrichment analysis using the online
database “Metascape” (https://metascape.org/gp/index.html#/
main/step1) (Zhou et al., 2019). At the same time,
protein–protein interaction (PPI) network can be given by
Metascape, which uses the molecular complex detection
(MCODE) algorithm.

CIBERSORT
CIBERSORT (Newman et al., 2015) is an R package/webpage tool
for deconvolution of the expression matrix of human immune
cell subtypes based on the principle of linear support vector
regression. The proportions of the 22 tumor-infiltrating immune
cells (TIICs) from each sample were determined by using the
“CIBERSORT” (R package). CIBERSORT was used to analyze the
relative expression levels of 547 genes in individual tissue samples
according to their gene expression profiles, to predict the
proportion of 22 types of TIICs in each tissue. CIBERSORT
derived a p-value for the deconvolution of each sample, which
provided a measure of confidence in the results, and p < 0.05 was
considered accurate. Significant results (p < 0.05) were selected
for subsequent analysis.

The CIBERSORT results of TCGA thymoma data were
downloaded from the GDC website (https://gdc.cancer.gov/
about-data/publications/panimmune) (Thorsson et al., 2018).
The CIBERSORT result of GEO data was computed using the
“cibersort” package of R (the number of permutations: perm
=1,000). For details of the list, see Supplementary Material:
results_cibersort.xlsx.

RESULTS

Immune Gene Expression Profile Data in
Thymoma
A total of 2,381 genes related to immune pathways were obtained
from the KEGG website. The data matrix of the immune gene
expression profile of thymoma was obtained by taking
intersection with TCGA thymoma expression profile data, and
the matrix dimension was 2247 p 121. Then the noise genes were
screened by the correlation method, and the optimized immune
gene expression data matrix of thymoma was obtained, with the
matrix dimension of 2023 p 121. The optimized matrix avoided
the interference of noise in the analysis, and there was a strong
correlation between the 2,023 immune genes that remained. The
correlation heat map of the immune expression data before and
after noise reduction is shown in Figure 2.

Construction of Weighted Gene
Co-Expression Network
WGCNA was used to construct a network based on the
expression matrix of 2023 immune genes and clinical data
from 121 thymoma samples.

A dendrogram of samples was clustered by the average linkage
method and Pearson’s correlation method to check the quality of
the data from the 121 samples, and no outliers were identified for
removal (Figure 3A). To construct a scale-free network, we set
the soft threshold power β to 8, and the independence degree to
0.9 (Figure 3B). The result showed that there were a total of five
co-expression modules; the gray module contains genes that
could not be incorporated into any other module (Figures 3C–E).

According to the topological overlap matrix (TOM), the
connection relationship between genes in each module could
be obtained. Different colors indicate that the weight in different
modules was greater than 0.35, and the immune gene interaction
network of thymoma was visualized by Cytoscape. Among them,
LEF1, RHOH, APBB1IP, CD1B, CAMK4, and TCF7 interact with
more than 30 immune genes, which are the core genes of the
immune network of thymoma, shown as Figure 4.

Association of Modules With Clinical Traits
and Determination of Core Genes
In addition, we calculated the correlation between module genes
and clinical traits of thymoma. For each module, the gene co-
expression was summarized by the eigengene, and the
correlations of each eigengene with clinical traits were
calculated, such as history myasthenia gravis, radiation
therapy, gender, OS, OS time, age, tumor, tissue or organ,
Masaoka stage, and WHO stage. We found that the blue
module had the highest correlation with the WHO stage (cor �
0.72, p � 8e − 21) (Figures 5A,B).

Therefore, the blue module was analyzed for core genes. The
first 87 intersection genes of the blue module with the highest
correlation (intramodular connectivity >0.7) were selected as the
core genes for subsequent study and enrichment analysis. For
details of the core gene list, cf. Table 4.XLSX of the
Supplementary Material. The results of functional enrichment
analysis were obtained by the online database Metascape; terms
with a p-value < 0.01, a minimum count of 3, and an enrichment
factor >1.5 (the enrichment factor is the ratio between the
observed counts and the counts expected by chance) were
collected and grouped into clusters based on their membership
similarities. We selected the top 20 clusters with their
representative enriched terms, mainly involving T-cell
activation (GO:0042110), T-cell receptor (TCR) signaling
pathway (WP69), human immunodeficiency virus 1 infection
(hsa05170), hematopoietic cell lineage (hsa04640), primary
immunodeficiency (hsa05340), hemostasis (R-HSA-109582),
adaptive immune response (GO:0002250), human T-cell
leukemia virus 1 infection (hsa05166), and leukocyte activation
involved in immune response (GO:0002366) (Figure 5C).
Metascape combines DisGeNET, a comprehensive platform
integrating information on human disease–associated genes
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FIGURE 2 | Heat map of immune gene correlation matrix clustering. (A) Correlation matrix clustering hot map of 2,247 immune genes in TCGA thymoma data. (B)
The 2,023 immune gene correlation matrix clustering heat map. Of these, 224 noise genes are eliminated by the correlation method. Redmeans positive correlation, blue
means negative correlation, and white means no correlation.

FIGURE 3 | WGCNA of immune genes in thymoma. (A) Cluster analysis of samples to detect outliers. (B) Determination of soft-thresholding power in weighted
gene co-expression network analysis. The left shows the scale-free fit index (y-axis) as a function of the soft-thresholding power (x-axis). The right shows the average
connectivity (degree, y-axis) as a function of the soft-thresholding power (x-axis). (C,D) Module eigengene dendrogram and heatmap of eigengene adjacency. (E)
Clustering dendrogram of genes, with dissimilarity based on the topological overlap, together with assigned module colors.
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and variants, and gives the disease information related to these
core genes (Figure 5D), most of which are autoimmune diseases
or T-cell-related diseases, such as precursor T-Cell lymphoblastic
leukemia-lymphoma, T-cell lymphoma, combined
immunodeficiency, and lupus erythematosus. Metascape also
gives a summary of enrichment analysis in PaGenBase.
PaGenBase is a novel repository for the collection of tissue-
and time-specific pattern genes. The results show that most of
these core genes were specifically expressed in the thymus
(Figure 5E), which proved the correctness of these core genes
to some extent.

At the same time, the protein–protein interaction (PPI)
network of core genes was given by Metascape (Figure 5F),
which applied a mature complex identification algorithm
called MCODE to automatically extract protein complexes
embedded in such a large network. Where the T-cell receptor
signaling pathway was the core cluster in this PPI network
(log10(p) � −37.4), the hub genes of this cluster include

CD247, CD8A, CD8B, PRKCQ, CD3E, CD3G, GRAP2, VAV1,
CD4, LCK, ZAP70, LCP2, ITK, FYN, and LAT.

Validation of Hub Genes in the Expression
Level
In the 87 core genes screened by WGCNA, which have a strong
correlation with WHO’s classification of thymomas, a core
cluster, the T-cell receptor signaling pathway, was obtained by
PPI enrichment analysis, which contained 15 interrelated hub
genes. We observed the expression levels of these 15 genes in
TCGA data using a thermal map (Figure 6A), and found that
these hub genes that were lowly expressed in type A and type B3
thymomas and thymic carcinomas are highly expressed in type
B1 and type B2 thymomas. There is no consistent expression
pattern in AB thymomas, but thymoma patients with MG have
relatively low-expression in AB (cf. SI-2 of the Data Sheet 1.PDF).
To verify these results, three groups of thymic tumor data were

FIGURE 4 | Immune gene interaction network of thymoma. According to the gene interaction table obtained byWGCNA, the edges with a weight greater than 0.35
in five modules are selected to draw the immune network of thymoma. The size of the circle and the depth of the color indicate the different number of edges, cf. Table
3.XLSX of the Supplementary Material.
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used as validation data, and the data processing method was
consistent with TCGA data, which were standardized. In
GSE57892, type A and B3 thymoma and thymic carcinoma
has almost low expression in these 15 hub genes, while type
B2 thymoma has a large expression level (Figure 6C). The data
GSE177522 also verify the result that the 15 hub genes were

almost low expressed in thymic carcinoma (Figure 6D). The data
GSE29695 clearly show that B3 thymoma cannot be expressed in
these 15 hub genes, and the relative expression levels of B1 and B2
were higher (Figure 6E).

The WHO stage is mainly based on the morphology of
thymoma epithelial cells and the ratio of lymphocytes to

FIGURE 5 | Association of modules with clinical traits and determination of core genes. (A) Module–trait associations: each row corresponds to a module
eigengene and each column to a trait. Each cell contains the corresponding correlation and p-value. (B) Scatter plots of GS score and MM for genes in the blue module.
(C) Pathway and process enrichment analysis: bar graph of enriched terms across 87 core genes (intramodular connectivity >0.7) in the blue module, colored by
p-values. (D) Summary of enrichment analysis in DisGeNET, colored by p-values. (E) Summary of enrichment analysis in PaGenBase, colored by p-values. (F)
Protein–protein interaction (PPI) network of 87 core genes.
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epithelial cells in tissues. We know that these 15 genes which have
a strong correlation with WHO classification belong to the T-cell
receptor signaling pathway. Interestingly, the variation trend of
the proportions of three T-cells in different thymic tumor
subtypes obtained from the CIBERSORT algorithm in
Figure 6B was very consistent with the variation trend of the
expression levels of these 15 hub genes (cf. Table 2.XLSX of the
Supplementary Materials). A similar trend of expression
spectrum and immune infiltration can be used as an
inspiration for the phenomenological hypothesis in this group
of hub genes.

Certainly, for sake of comprehending whether the 15 hub
genes are related to the prognosis of patients, we performed a
Kaplan–Meier analysis of these genes according to the clinical
data of 119 cases of thymomas in TCGA. It was found that 14

genes were associated with prognosis except FYN (p < 0.05). The
Kaplan–Meier survival curves of 15 hub genes are given in SI-6 of
the Data Sheet 1.PDF.

Taken together, these validation analyses confirm that the
more severe the subtype of thymomas is, the less the number of
T-cells is, and the expression of related genes in the T-cell
receptor signaling pathway is defective.

DISCUSSION

In this study, we obtained 14 hub immune genes of thymomas
through statistical analysis. The common correlation pathway of
these 14 genes was the T-cell receptor signaling pathway, and
their expression was closely related to the WHO stage.

FIGURE 6 | Validation of hub genes in the expression level. Expression levels of 15 hub genes in TCGA data. (B) The proportion of T-cells of each thymic tumor
subtype in TCGA data obtained by the CIBERSORT algorithm. (C) Expression levels of 15 hub genes in GSE57892 data. There are 25 samples in total, including two
cases of type AB thymoma, five of type A thymoma, three of type B2 thymoma, five of type B3 thymoma, seven of thymic carcinomas, and three of cell line. (D)
Expression levels of 15 hub genes in GSE177522 data. There are 19 samples in total, including 11 cases of thymic carcinoids, two cases of thymoma, and six cases
of the normal thymus. (E) Expression levels of 15 hub genes in GSE29695 data. There are 41 samples in total, including nine cases of type AB thymoma, one of type A
thymoma, 10 of type B1 thymoma, nine of type B2 thymoma, six of type B3 thymoma, one of type A/B thymoma, one of type B1/B2 thymoma, and four of the cell line. In
particular, cell lines and subtypes of less than three samples were not included in the study.
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It is well known that there are generally no specific
symptoms for patients with thymomas, but they may have
nonspecific symptoms such as chest pain, chest tightness,
palpitation, fatigue, and cough. Therefore, they are often
ignored by patients who miss the best opportunity for early
diagnosis. The first diagnosis is usually found by chance in
physical examination or because of the physical discomfort
caused by PNS. Thymoma is closely related to autoimmune
disorders, and most of its concomitant PNS are autoimmune
diseases. Therefore, in this study, we selected two kinds of
autoimmune PNS, namely, systemic lupus erythematosus
(GSE138458) and rheumatoid arthritis (GSE93272), as the
objects of discussion. At the same time, specific pulmonary
fibrosis (GSE33566), a severe complication that often occurs
after thymic tumor surgery, was also selected. There were 330
samples in dataset GSE138458, including 307 cases of
systemic lupus erythematosus (SLE) and 23 cases of healthy
control. For dataset GSE93272, there were 232 cases of
rheumatoid arthritis (RA) and 43 cases of healthy control.

The dataset GSE33566 includes 93 cases of idiopathic
pulmonary fibrosis (IPF) and 30 cases of healthy control.

Considering the condition that the p-value of survival analysis
was less than 0.01 and the p-value of expression difference was
less than 0.01, we found that ITK, ZAP70, CD247, and LCK were
lower expressed in patients with specific pulmonary fibrosis than
in healthy controls (Figure 7A–i). The expression of CD8 A,
ZAP70, CD247, CD4, GRAP2, CD3 G, LCK, and PRKCQ in
patients with rheumatoid arthritis was lower than that in healthy
controls (Figure 7A–ii). Compared with the healthy control
group, the expression levels of ITK and CD247 in patients
with systemic lupus erythematosus decreases (Figure 7A–iii).
All hub genes expression levels were significantly different
between the highest and lowest quartiles, and the area under
the curve (AUCs) of these genes was higher than 0.6 (Figures
7B–i,ii,iii), confirming the authenticity of the differences in these
genes in their respective PNS. We calculated the proportion of
immune cells in patients with three types of by CIBERSORT
concomitantly, and found that the proportion of T-cells that were

FIGURE 7 | Paraneoplastic syndrome. (A–i) Idiopathic pulmonary fibrosis, GSE33566; (A–ii) rheumatoid arthritis, GSE93272; (Aiii) systemic lupus erythematosus,
GSE138458; (A–i,ii,iii) violin maps of hub genes with significant differences in expression in three PNS. (B–i,ii,iii) The area under the curve of these significant genes
(AUC) by receiver operating characteristics (ROC) analysis. (C–i,ii,iii) The box patterns of T-cells with significant differences in the proportions of three PNS. (D) Outline
map of intersection genes of three PNS (cf. Table 2.XLSX of the Supplementary Materials). (E) The Kaplan–Meier survival curves of CD247.
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CD4 naive in patients with specific pulmonary fibrosis and
rheumatoid arthritis was significantly different, while the
number of T-cells gamma delta in patients with systemic
lupus erythematosus was significantly different.

In summary, the decreased proportion of T-cells and the lack
of hub gene expression are the common links between thymomas
and specific pulmonary fibrosis, rheumatoid arthritis, and
systemic lupus erythematosus. The lack of expression of
different core genes may be the reason why different patients
tend to have different PNS.

Obviously, CD247 was at a low expression level in all three
PNS (Figure 7D), and the Kaplan–Meier survival curves of
CD247 in TCGA data (p � 0.0056) were given in
(Figure 7E). The protein encoded by CD247 (also called
CD3ζ) is T-cell receptor zeta. The zeta chain plays an
important role in coupling antigen recognition to several
intracellular signal-transduction pathways. Low expression of
the antigen results in impaired immune response (Call et al.,
2006). Moreover, this gene plays an important role in intrathymic
T-cell differentiation, and its lack of expression may lead to the
reduction of mature T-cells. Petros Christopoulos et al. (2015)
proposed a novel thymoma-associated immunodeficiency in
2015. Its characteristics are an accumulation of CD247-
deficient, hyporesponsive naive γδ and αβ T-cells and an
increased susceptibility to infections (Christopoulos et al.,
2015). In 2018, his team further suggested that deficient
CD247 expression was a typical histopathological characteristic
of thymomas with cortical features (Christopoulos et al., 2018).
Recent evidence has demonstrated that CD247 is a potential
T-cell–derived disease severity and prognostic biomarker in
patients with idiopathic pulmonary fibrosis (Li et al., 2021).
Some studies have shown that CD3ζ plays a vital role in
multiple autoimmune diseases, such as the gene expression
assays showing that CD3ζ mRNA levels are downregulated in
PBMCs of patients with RA when compared to healthy controls
(Li et al., 2016). Moreover, available evidence suggests that SLE is
associated with a deficiency in a cluster of differentiation 247
(Takeuchi and Suzuki, 2013). CD247 is shared by various
autoimmune disorders and supports a common
T-cell–mediated mechanism. A classic T-cell phenotype in SLE
is the downregulation and replacement of the CD3ζ chain that
alters T-cell receptor signaling (Martins et al., 2015).

In summary, the common characteristics of thymomas and
these three PNS are the low expression of CD247 and the
inhibition of T-cell differentiation.

CONCLUSION

In this study, 14 hub immune genes closely related to thymomas,
jointly involved in the T-cell receptor signaling pathway, were found
by analysis of the expression data of immune genes in thymomas.
Compared with normal thymus and type B1/ B2 thymoma, the
number of T-cells in type A/B3 thymoma and thymic carcinoma is
less, and the expression of genes related to T-cell receptor signaling
pathway is low. Then, we also discussed the expression of these 14
core genes in three PNS, and found that CD247 has not onlyminimal
expression inmultiple subtypes of thymomas, but also low expression
in specific pulmonary fibrosis, rheumatoid arthritis, and systemic
lupus erythematosus. The low expression of CD247 and the decrease
in the number of mature T-cells are the common features of
thymomas and these three PNS.
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Background: Immunotherapy is a treatment that can significantly improve the prognosis
of patients with colon cancer, but the response to immunotherapy is different in patients
with colon cancer because of the heterogeneity of colon carcinoma and the complex
nature of the tumor microenvironment (TME). In the precision therapy mode, finding
predictive biomarkers that can accurately identify immunotherapy-sensitive types of colon
cancer is essential. Hypoxia plays an important role in tumor proliferation, apoptosis,
angiogenesis, invasion and metastasis, energy metabolism, and chemotherapy and
immunotherapy resistance. Thus, understanding the mechanism of hypoxia-related
genes (HRGs) in colon cancer progression and constructing hypoxia-related signatures
will help enrich our treatment strategies and improve patient prognosis.

Methods: We obtained the gene expression data and corresponding clinical information
of 1,025 colon carcinoma patients from The Cancer Genome Atlas (TCGA) and the Gene
Expression Omnibus (GEO) databases, respectively. We identified two distinct hypoxia
subtypes (subtype A and subtype B) according to unsupervised clustering analysis and
assessed the clinical parameters, prognosis, and TME cell-infiltrating characteristics of
patients in the two subtypes. We identified 1,132 differentially expressed genes (DEGs)
between the two hypoxia subtypes, and all patients were randomly divided into the training
group (n = 513) and testing groups (n = 512). Following univariate Cox regression with
DEGs, we construct the prognostic model (HRG-score) including six genes (S1PR3, ETV5,
CD36, FOXC1, CXCL10, and MMP12) through the LASSO–multivariate cox method in the
training group. We comprehensively evaluated the sensitivity and applicability of the HRG-
score model from the training group and the testing group, respectively. We explored the
correlation between HRG-score and clinical parameters, tumor microenvironment, cancer
stem cells (CSCs), and MMR status. In order to evaluate the value of the risk model in
clinical application, we further analyzed the sensitivity of chemotherapeutics and
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immunotherapy between the low-risk group and high-risk group and constructed a
nomogram for improving the clinical application of the HRG-score.

Result: Subtype A was significantly enriched in metabolism-related pathways, and
subtype B was significantly enriched in immune activation and several tumor-
associated pathways. The level of immune cell infiltration and immune checkpoint-
related genes, stromal score, estimate score, and immune dysfunction and exclusion
(TIDE) prediction score was significantly different in subtype A and subtype B. The level of
immune checkpoint-related genes and TIDE score was significantly lower in subtype A
than that in subtype B, indicating that subtype A might benefit from immune checkpoint
inhibitors. Finally, an HRG-score signature for predicting prognosis was constructed
through the training group, and the predictive capability was validated through the
testing group. The survival analysis and correlation analysis of clinical parameters
revealed that the prognosis of patients in the high-risk group was significantly worse
than that in the low-risk group. There were also significant differences in immune status,
mismatch repair status (MMR), and cancer stem cell index (CSC), between the two risk
groups. The correlation analysis of risk scores with IC50 and IPS showed that patients in the
low-risk group had a higher benefit from chemotherapy and immunotherapy than those in
the high-risk group, and the external validation IMvigor210 demonstrated that patients with
low risk were more sensitive to immunotherapy.

Conclusion: We identified two novel molecular subgroups based on HRGs and
constructed an HRG-score model consisting of six genes, which can help us to better
understand the mechanisms of hypoxia-related genes in the progression of colon cancer
and identify patients susceptible to chemotherapy or immunotherapy, so as to achieve
precision therapy for colon cancer.

Keywords: colon cancer, hypoxia-related genes, molecular subtype, tumor microenvironment, immunotherapy,
immune checkpoint blockade, HRG-score

INTRODUCTION

Colon cancer is the fifth most common malignancy, with more
than 1 million new cases every year (Sung et al., 2021). Metastasis
and recurrence have always been the main problems leading to
refractory colon cancer (Bekaii-Saab et al., 2019; Mayer et al.,
2015; Sartore-Bianchi et al., 2016), and about 30–50% of patients
with primary colon cancer will relapse and die from metastatic
cancer (Arnold et al., 2015; Siegel et al., 2021). Surgical treatment
is the main treatment for colon cancer, and the 5-year survival
rate is about 50% (Ferlay et al., 2010). The 5-year survival rate for
patients with distal metastasis is even worse at about 14%. With
the advances in treatments such as surgery, radiation therapy,
chemotherapy, and immunotherapy, the survival rate in colon
cancer patients has improved significantly (Jahanafrooz et al.,
2020). Up to now, the tumor stage has been the most important
factor in judging the severity of a patient’s disease, specifying
treatment strategy, and predicting the prognosis (Compton et al.,
2000).

Moreover, given the high heterogeneity in molecular genetics
and histopathology, the treatment strategies based on the tumor-
node-metastasis staging system may not be effective across all

individuals. With the advance in genomic technology, many
epigenetic changes have been identified as potential prognostic
biomarkers in colon cancer patients, such as aberrant DNA
methylation processes, noncoding RNA and microRNA
disorders, and histone modification changes (Kandimalla et al.,
2021; Vymetalkova et al., 2019). However, genetic changes still
play a key role in the progression of colon cancer. Therefore, the
construction of prognostic markers based on changes in genes is
vital to enable individualized treatment decisions, which may
then guide the choice of treatment strategy and the accurate
prediction of patient prognosis.

Tumor cells are metabolically active, so hypoxia often occurs
in the center. Hypoxia affects the tumor immune
microenvironment (TIME) directly and indirectly, with much
evidence favoring an immunosuppressive effect (Chouaib et al.,
2018; You et al., 2021). For tumor cells, hypoxia enhances
angiogenesis and remodeling by inducing hypoxia-inducible
factor (HIF) expression, which is a marker of tumor
proliferation, metastasis, and recurrence (King et al., 2021).
Potential mechanisms include altered gene expression,
oncogene activation, inactivation of anti-oncogenes, decreased
genome stability, and clonal selection (Emami Nejad et al., 2021).
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Under normal oxygen tension, the HIF protein is unstable and
easily degraded by proteasome (Semenza et al., 2010; Semenza
et al., 2021). In hypoxic cells, HIF proteins are not easily
degraded, thereby creating an immune-unfavorable
microenvironment by regulating the transcription of downstream
genes, ultimately leading to immune resistance (Chouaib et al., 2018;
Noman et al., 2019). Hypoxia can regulate the status of the tumor
immune microenvironment by promoting the recruitment of innate
immune cells and interfering with the differentiation and function of
adaptive immune cells (Palazon et al., 2014). For colon cancer,
hypoxia also promotes epithelial–mesenchymal transformation
(EMT) and ultimately leads to further migration and invasion of
tumor cells (Choietal et al., 2017).

In the study, we systematically evaluated the patterns of hypoxia-
related genes and tumor immune microenvironment characteristics
of COAD patients by clustering the expression of hypoxia genes. We
identified two subtypes with distinct clinical and immune
characteristics in COAD and constructed an HRG-score signature
based on the expression profile of HRGs.HRG-score serves as a
reliable predictor of overall survival, clinical characteristics, and
immune cell infiltration, which has the potential to be applied as
a valuable biomarker for COAD immunotherapy.

MATERIALS AND METHODS

Dataset Collection and Processing
The gene expression data (fragments per kilobase million, FPKM)
and the corresponding clinicopathological information of colon
carcinoma were downloaded from TCGA-COAD project
(https://portal.gdc.cancer.gov/) databases and the GSE39582
cohort (https://www.ncbi.nlm.nih.gov/geo/).

In order to obtain reliable results, samples with no information
on survival outcomes were excluded, and a total of 1,025 COAD
patients were eventually included in the follow-up analysis. Details of
these 1,025 COAD patients are presented in Supplementary Table
S1. Beforemerging the expressionmatrices of TCGA-COADproject
and GSE39582 cohort, the FPKM values of TCGA-COAD were
transformed into transcripts per kilobasemillion (TPM), which were
considered to be more comparable with the microarray data. In
addition, all raw data were normalized and standardized to eliminate
batch effects by using the R software package. Meanwhile, we
downloaded the IMvigor210 cohort from the website, which was
a cohort study for evaluating the clinical response of atezolizumab in
metastatic urothelial cancer (mUC) (Mariathasan et al., 2018). In the
IMvigor210 cohort, we excluded the patients with no clinical
response information and a total of 298 patients for subsequent
validation (Supplementary Table S2). In total, 200 hypoxia-related
genes (HRGs) were retrieved from the MSigDB database (http://
www.broad.mit.edu/gsea/msigdb/), and the full details of these genes
are shown in Supplementary Table S3.

Consensus Clustering Analysis Based on
Hypoxia-Related Genes
Unsupervised clustering analysis was employed to classify
patients into distinct molecular subtypes according to the

expression of 200 HRGs. In order to increase the intra-class
correlation and decrease the correlation, the consensus clustering
algorithm was performed and repeated 1,000 times to ensure the
stability of the clusters, which we plotted using the R package
“ConsensusClusterPlus.”

Relationship Between Molecular Subtypes
With the Clinical Parameters and Prognosis
of Colon Carcinoma
We compared the relationships between molecular subtypes,
clinical parameters, and prognosis to examine the clinical
value of the two subtypes identified by consensus clustering.
Furthermore, we also analyzed the expression of the HRGs
among the two subtypes. The clinical parameters included age,
sex, T stage, N stage, M stage, and TNM stage. Kaplan–Meier
curves were used to assess the differences in overall survival
among different molecular subtypes.

Molecular and Immune Features Between
Subtypes
GSVA enrichment analysis was employed to assess and compare
the difference in biological pathways between the distinct
molecular subtypes. and the hallmark gene set (c2.
cp.kegg.v7.2) was retrieved from the MSigDB database.
Meanwhile, we estimated the relative abundance of 23
immune cells in colon carcinoma using a single-sample gene
set enrichment analysis (ssGSEA) algorithm, which was
performed using the GSVA R package.

Considering the role of the tumor microenvironment (TME)
in tumor progression, we also evaluated the Stromal, Immune,
and ESTIMATE scores of each sample by the ESTIMATE
algorithm to determine the degree of immune cell infiltration
of each subtype. We not only estimated and compared the
expression level of six common immune checkpoint-related
genes, such as CD274 (PD-L1), PDCD1LG2 (PD-L2), PDCD1
(PD-1), CTLA4, LAG3, and TIGI, but also calculated the patient
TIDE score to evaluate the immunotherapy response.

Identification of Differentially Expressed
Genes
DEGs between the two hypoxia-related subtypes were identified
using the “limma” R package, and the significance criterion for
defining DEGs was |log fold change (FC)| > 0.585 and adjusted
p-value < 0.05. Furthermore, we performed Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis on DEGs to identify the related gene
functions and enriched pathways through the “clusterProfiler” R
package with a cut-off p value < 0.05 and an adjusted p value < 0.05.

Construction of the Prognostic
Hypoxia-Related Gene Score
First, univariate Cox regression analysis was performed on DEGs
to identify those linked to the prognostic value with a p-value <
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0.05. Second, a total of 1,025 patients were randomly categorized
into the training group (n = 513) and testing group (n = 512) at a
ratio of 1:1; then, the patients in the training group were used to
construct the hypoxia-related prognostic HRG-score, and the
testing group was used for validation. Finally, based on hypoxia-
related prognostic DEGs, The LASSO–Cox regression analysis
was then utilized to develop the prognostic HRG-score in the
training group, which was performed using the “glmnet” R
packet. The HRG-score formula is as follows: HRG-score = Σ
(Expi * Coefi), where Coefi and Expi denote the risk coefficient
and expression of each gene, respectively. Based on the HRG-
score formula, each patient can get a specific risk score. A total of
513 patients in the training group were assigned, based on a
median value, to the high-risk group (n = 256) and low-risk group
(n = 257). Similarly, a total of 512 patients in the testing group
were assigned to HRG-score-related subgroups based on the
formula constructed by the training group. The receiver
operating characteristic (ROC) curve, which is used to judge
the accuracy of the prognostic risk model, was generated by the
“timeROC” R package, and principal component analysis (PCA)
was performed using the “ggplot2” R package.

RNAseq data (level3) and the corresponding clinical
information for 450 colon cancer tumors were obtained from
The Cancer Genome Atlas (TCGA) dataset (https://portal.gdc.
com). First univariate and multivariate cox regression analyses
and forest plots were used to display each variable (p-value, HR,
and 95% CI) via the “forest plot” package. Based on the results of
multivariate Cox proportional risk analysis, column line plots
were created using the “rms” package to predict the total
recurrence rate in 1, 2, and 3 years. The line graphs provide
graphical results for these factors, allowing the prognostic risk of
individual patients to be calculated by the points associated with
each risk factor.

Correlation Analysis of the HPR-Score With
Clinical Parameters
A Chi-square test was applied to explore the correlation between
the HRG-score and the clinical parameters (age, gender, T stage,
N stage, M stage, and TNM stage). To assess whether the HRG-
score is an independent prognostic factor associated with
prognosis, we performed univariate analysis and multivariate
analysis on the training group and testing group. Kaplan-
Meier analysis was used to compare survival outcomes of
patients between high- and low-risk and assessed the
correlation between the survival outcome and HRG-score. We
further analyzed the relationship between HRG-score and
molecular subtypes through a boxplot.

Evaluation of Immune Status and Mismatch
Repair Status Between the High- and
Low-Risk Groups
The CIBERSORT algorithm was used to calculate the relative
abundance of 22 infiltrating immune cells per sample in the low-
and high-risk groups (Supplementary Table S11). We explored
the correlation between the 22 infiltrating immune cell fractions

and the 7 genes in the PRG scores. In addition, we compared the
expression levels of immune checkpoints between the low- and
high-scoring groups and analyzed the relationship between the
HRG score and the cancer stem cell (CSC) index.

Sensitivity Analysis of Chemotherapy and
Immunotherapy
In a project to evaluate the difference in the treatment effect of
five chemotherapeutic agents in patients in the high-risk and low-
risk groups, the semi-inhibitory concentration (IC50) values of
chemotherapeutic agents were analyzed by the R package
“pRRophetic.” We acquired the IPS of colon cancer patients in
TCGA-COAD project from TCIA database and compared the
IPS of the distinct risk group to evaluate the response to immune
checkpoint-blocking therapy. We further explored the
relationship between immunotherapy sensitivity and HRG-
score by the IMvigo210 cohort.

Statistical Analysis
All statistical analyses were performed using R software (v4.0.2).
p-values <0.05 were considered statistically significant if not
explicitly stated.

RESULT

Identification of Hypoxia Gene-Related
Subtypes in Colon Carcinoma
A total of 1,025 patient samples with complete survival information
from TCGA-COAD project and GEO-GES39582 were included in
our study. To further investigate the expression characteristics of
HRGs in colon carcinoma, we used a consensus clustering
algorithm to cluster the patients based on the expression of the
200 HRGs. Our result found that when K = 2, the intra-group
correlations were the highest, and the inter-group correlations were
the lowest, indicating sorting the entire patients into two subtypes
may be the most optimal selection (Figure 1A). PCA analysis
revealed the significant differences between the two subtypes
(Figure 1B), suggesting there existed significant heterogeneity in
the expression of hypoxia genes in patients with colon carcinoma.
The Kaplan–Meier curves showed an obvious difference in the
prognosis between the two hypoxia subtypes, and the prognosis in
patients with subtype A was significantly better than that in
patients with subtype B (log-rank test, p = 0.011; Figure 1C).
Furthermore, we compared the correlations of the two subtypes
with clinical parameters and the expression of hypoxia genes. As
the heatmap showed (Figure 1D), there were no significant
differences in clinical parameters between the two subtypes;
however, compared with subtype A, most of the hypoxia-related
genes were highly expressed in subtype B.

Function Enrichment of the Molecular
Subtypes
GSVA enrichment analysis showed that metabolism-related and
DNA synthesis-related pathways including butanoate

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 9193894

Wang et al. Hypoxia-Related Subtypes in CRC

132

https://portal.gdc.com
https://portal.gdc.com
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


metabolism, propanoate metabolism, pyruvate metabolism, fatty
acid metabolism, nonhomologous end joining, base excision
repair, DNA replication-related pathway were upregulated in
subtype A, while T- and B-cell receptor signaling pathway,
natural killer cell-mediated cytotoxicity, antigen processing
and presentation, checkpoint signaling pathway, and NOD-
like, RIG-I-like, and Toll-like receptor signaling pathways were
upregulated in subtype B(Figure 2A, Supplementary Table S4).

Characteristics of the Tumor
Microenvironment in Distinct Subtypes
The tumor microenvironment (TME) has been proved to play an
important role in tumor progression and immune response. We
evaluated the 23 immune cells’ infiltration levels of each patient

by applying the ssGSEA (Supplementary Table S5) and found
significant differences in the infiltration of most immune cells
between the two subtypes (Figure 2B). The infiltrate levels of 20
immune cell types, including activated B cells, activated CD4+

T cells, activated CD8+ T cells, natural killer T cells, and
regulatory T cells, were significantly higher in the subtype B
than those in the subtype A. The ESTIMATE algorithm was used
to evaluate the TME score (stromal score, immune score, and
ESTIMATE score) of each patient through the “ESTIMATE” R
package (Supplementary Table S6), and we found that the
stromal score, immune score, and ESTIMATE score were
significantly higher in subtype B than subtype A (Figure 2C).
Recently, the immune checkpoint blockade has achieved
promising results in the immunotherapy of tumors. Therefore,
we subsequently analyzed the expression levels of several

FIGURE 1 | HRG subtypes and clinical parameters and biological characteristics of two distinct subtypes of samples divided by consistent clustering. (A)
Consensus matrix heatmap defining two subtypes (k = 2) and their correlation area. (B) PCA showing a remarkable difference in transcriptomes between the distinct
HRG-subtypes, and each dot represents a single sample. (C) KM survival curve analysis showed that the overall survival time of the distinct HRG-subtypes was different
(log-rank tests, p < 0.001). (D) Differences in clinical parameters and HRG expression levels between the two distinct HRG-subtypes.
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important immune checkpoint-related genes, such as CD274
(PD-L1), PDCD1LG2, PDCD1, CTLA4, LAG3, and TIGIT
(Figures 2D–I). We found that the expression levels of six
immune checkpoint-related genes in subtype B were higher
than those in subtype A, indicating that patients in subtype B
were more likely to form an immunosuppressive
microenvironment and escape from immune surveillance.

Construction and Validation of the
Prognostic Hypoxia Related Gene-Score
We identified 1,132 DEGs between the two HRG-related
subtypes, of which 139 genes were upregulated in subtype A
and 993 genes were upregulated in subtype B (Figure 3A,
Supplementary Table S7). Then, we conducted GO and
KEGG enrichment analysis on the 1,132 DEGs to explore the
potential function and pathway through the “clusterProfiler” R
package. In the GO analysis, the top 5 most significantly enriched
terms were collagen-containing extracellular matrix, extracellular
matrix organization, extracellular structure organization, positive
regulation of cell adhesion, and negative regulation of immune
system process (Figure 3B, Supplementary Table S8).In the
KEGG analysis, the top 5 most significantly enriched terms
were PI3K-Akt signaling pathway, cytokine–cytokine receptor
interaction, cell adhesion molecules, phagosome, and focal

adhesion (Figure 3C, Supplementary Table S9). Univariate
Cox regression analysis was employed on the 1,132 DEGs and
437 genes associated with the prognostic value with a p-value
<0.05 and were identified as candidate genes for subsequent
analysis (Supplementary Table S10). Then, all patients were
classified into training group (n = 513) and testing group (n =
512) at a ratio of 1:1 randomly, the training group for developing
the prognostic signature and the testing group for validation.
LASSO regression analysis on the 437 candidate genes was
performed to exclude overlapping genes and reduce the fitting
effect of the signature (Figures 3D,E). Finally, six genes were
included to construct the risk model after multivariate Cox
proportional risk regression analysis, four of which were
associated with high risk and two with low risk (Figure 3F).
According to the results of the multivariate Cox proportional risk
regression analysis, the HRG-score was constructed as follows:
Risk score = (0.2665 * expression of S1PR3) + (0.2478* expression
of ETV5) + (0.2115* expression of CD36) + (0.2808* expression
of FOXC1) + (−0.1735* expression of CXCL10) + (−0.0976*
expression of MMP12). According to the median risk score,
patients in the training group were classified into high-risk
group (n = 256) and low-risk group (n = 257) (Figure 3G).
When compared to the low-risk group, we found that more
patients died and a shorter survival time in the high-risk group
(Figure 3H). The expression levels of six genes involved in the

FIGURE 2 | Correlations of tumor immune cell microenvironments and two HRG-subtypes. (A) GSVA of biological pathways between two distinct subtypes, in
which red and blue represent activated pathways and blue represents inhibited pathways, respectively. (B) Relative abundance of 23 infiltrating immune cell types in the
two HRG-subtypes. (C)Correlations between the two CRC subtypes and TME score. (D–I) Expression levels of PD-L1, PD-L2, PDCD1, LAG3, TIGIT, and CTLA4 in two
distinct HRG-subtypes. (*p < 0.05; **p < 0.01; ***p < 0.001).
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construction of our HRG-score signature are shown in Figure 3I.
Kaplan–Meier survival analysis revealed that there existed a
significant difference in survival time between the low- and
high-risk group, and the patients in the low-risk group had a
longer survival time (p < 0.001) (Figure 3J). The principal
component analysis (PCA) showed that patients with different
risks were well separated into two clusters (Figure 3K). The AUC
values for the 1-, 3-, and 5-year survival were 0.726, 0.722, and
0.715, respectively (Figure 3L).

Validation of the Hypoxia Related
Gene-Score Signature
In order to verify the practicality and credibility of the model, we
performed the same analysis for internal validation using a testing
group (n = 512). Based on the median risk score in the training
group, all patients in the testing group were classified into the
low-risk group (n = 244) and high-risk group (n = 268)
(Figure 4A). Compared to the low-risk group, the proportion
of patient deaths tended to be high in the high-risk group
(Figure 4B). Heatmap was also plotted to analyze the
expression of the six genes involved in the HRG-score
signature between the high- and low-risk groups (Figure 4C).

Kaplan–Meier analysis showed that the survival probability of the
high-risk group was significantly lower than that of the low-risk
group (p < 0.04) (Figure 4D). The principal component analysis
(PCA) showed that the patients with different risk scores can be
stratified into two clusters distinctly (Figure 4E). The AUC values
for the 1, 3, and 5 years of ROC were 0.748, 0.727, and 0.726
respectively, indicating our model’s good predictive efficacy
(Figure 4F). Nomograms of S1PR3, ETV5, CD36, FOXC1,
CXCL10, and MMP12 expression and independent clinical
risk factors (age and pathological stage) were constructed
(Supplementary Figure S4). A higher total number of points
in the nomogram represents a worse prognosis. In addition, the
C-index value was 0.779 (p < 0.001). The deviation-corrected line
in the calibration plot was close to the ideal curve (i.e., 45° line),
indicating good agreement between the predicted and observed
results.

Correlation Analysis of Hypoxia Related
Gene-Score and Clinical Parameters
We plotted a heatmap of clinical parameters for the patients in
the training group and found statistically significant differences in
T, N, M, and TNM stages between high- and low-risk groups

FIGURE 3 | Construction of the HRG-score in the training set based on the differentially expressed genes of two distinct HRG-subtypes. (A) Volcano plot of
differentially expressed genes between the two distinct HRG-subtype. Gray dots represent not significant genes, green dots represent upregulated genes in HRG-
subtype A, and red dots represent upregulated genes in HRG-subtype B (B–C)GO and KEGG enrichment analyses of DEGs among two distinct HRG-subtypes. (D–E)
LASSO regression analysis and partial likelihood deviance on the prognostic genes. (F) Forest plot of multivariate cox regression analysis for prognostic genes.
(G–H)Ranked dot and scatter plots showing the HRG-score distribution and patient survival status. (I)Heatmap of the expression of six genes involved in the HRG-score
in low- and high-risk groups. (J) Survival analysis of the patients in low- and high-risk groups. (K) PCA based on the prognostic signature. (L) ROC curves to predict the
sensitivity and specificity of 1-, 3-, and 5-year survival according to the HRG-score.
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(Figure 5A). We further analyzed the relationship between the T
stage, N stage, M stage, and TNM stage and risk score separately.
As shown in Figure 5B, we found significant differences in risk
scores for T, N, M, and TNM stages, and patients’ clinical stage
deteriorated as risk scores increased, suggesting that high-risk
scores predicted poor outcomes for patients. In addition, we also
analyzed the correlation between the risk score of the testing
group and the clinical parameters (Supplementary Figure S1A)
and obtained the same result that the risk score can be used to
evaluate the prognosis of patients (Supplementary Figure
S1B–E). Univariate and multivariate Cox regression analyses
were employed to assess whether HRG-score could be used as
an independent prognostic factor. The univariate Cox regression
analysis indicated that the HRG-score was an independent factor
predicting poor survival in the training group (HR = 1.701, 95%
CI: 1.485–1.948) (Figure 5C). After adjusting for other
confounding factors, the multivariate analysis yielded similar
results that the HRG-score can be a prognostic factor for
patients in the training group (HR = 1.419, 95% CI:
1,226–1.641) (Figure 5D). Univariate and multivariate Cox
regression analyses were also employed in the testing group,
and we also got the same result (HR = 1.505, 95% CI: 1.344–1.686
and HR = 1.297, 95% CI: 1.147–1.467, Supplementary Figure
S2A,B).

Evaluation of Tumor Microenvironment and
Checkpoints Between the High- and
Low-Risk Groups
CIBERSORT algorithm was performed to assess the association
between the HRG-score and the abundance of immune cells. The

scatter diagrams showed that the HRG-score was positively
correlated with macrophage M2, neutrophils, and macrophages
M0 and negatively correlated with macrophages M1, plasma cells,
T cell CD4 memory activated, T-cell follicular helper, and T cell
CD8 (Figure 6A). We observed that the stromal score and
ESTIMATE score were significantly higher in the low-risk
group than the high-risk group (Figure 6B). Figure 6C shows
that 22 immune checkpoints were differentially expressed in the
two groups, and the expression of most immune checkpoint-
related genes was higher in the low-risk group than that in the
high-risk group. We also assessed the correlation between the six
genes of the HRG-score signature and the abundance of immune
cells. We observed that most immune cells were significantly
correlated with the six genes (Figure 6D).

Correlation Analysis of PRG-Score With the
MMR Status and CSC Index
Inactivating mutations in mismatch repair genes such as MLH1,
MSH2, MSH6, and PMS2 can cause mismatch repair (MMR)
dysfunction and then lead to microsatellite high instability (MSI-
H). Patients with high microsatellite instability (MSI-H) are more
sensitive to immunotherapy and can benefit from
immunotherapy drugs. Correlation analyses revealed that a
high HRG-score was significantly correlated with proficient
mismatch repair status (pMMR), while a low HRG-score was
associated with deficient mismatch repair (dMMR) status
(Figure 7A), suggesting that patients with low-risk scores
benefit from immunotherapy better than those with high-risk
scores. Stem cells (CSCs) are a small subset of undifferentiated
cells in tumor tissues, which have strong self-renewal potential

FIGURE 4 | Validation of the HRG-score signature in the testing set. (A,B) Ranked dot plot indicates the PRG-score distribution, and the scatter plot presents the
patients’ survival status. (C)Heatmap of the expression of six genes involved in the HRG-score in low- and high-risk groups. (D) KM analysis of the OS between the low-
and high-risk groups. (E) PCA demonstrated that the patients in the different risk groups were distributed in two directions. (F) ROC curves to predict the sensitivity and
specificity of 1-, 3-, and 5-year survival according to the PRG-score.
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and tumorigenic potential, and can form tumors in a low number
in vivo. The correlation analysis between the PRG-score and CSC
index showed that PRG-score was negatively correlated with the
CSC index (R = −0.31, p < 0.001), indicating that tumor cells with
lower HRG-score had a lower degree of cell differentiation and
distinct stem cell properties (Figure 7B).

Analysis of the Sensitivity of
Chemotherapeutics and Immunotherapy
Based on Hypoxia Related Gene-Score
We next selected four chemotherapy drugs currently used for the
treatment of colon carcinoma to assess the sensitivity of patients in
the low- and high-risk groups to these drugs. As shown in Figure 7C,
we found that the patients in the low-risk group showed more
sensitivity to chemotherapy drugs indicating that the low-risk
group may benefit more from chemotherapy drugs. Meanwhile,
the applicability of different HRG-score samples to combined
therapy of anit-CTLA4 and anti-PD1 was compared by IPS. The
analysis showed a significant difference (p = 0.00023 < 0.05) that the
IPS of the low-risk group treated with the combination of anti-
CTLA4 and anti-PD1 was relatively higher than that of the high-risk

group, indicating that the patients with low HRG-score had a better
therapeutic effect on Immunotherapy (Figure 7D). To further
evaluate the robustness of our HRG-score signature, we calculated
the risk score of patients in the IMvigor210 cohort based on the
formula of HRG-score and analyzed the correlation of risk score with
the effect of immunotherapy. As shown in Figure 7E, there existed
significant differences in risk scores between the complete remission/
partial remission (CR/PR) group and stable disease/progressive
disease (SD/PD) group, and the risk score of patients in the CR/
PR group was significantly lower than that of patients in the SD/PD
group (p = 0.0031 < 0.05). To further improve the clinical application
of our model, we constructed a nomogram containing HRG-score
and clinical parameters to predict overall survival at 1, 3, and 5 years
(Supplementary Figure S3A), and the calibration plots suggested
that the nomogram had a good performance in predicting the
survival of colon cancer patients (Supplementary Figure S3B).

DISCUSSION

CRC is an extremely common malignant tumor. In recent years,
there is a tendency to develop to the right half of the colon, which

FIGURE 5 | Correlation and independent prognosis analysis of HRG-score and clinical parameters in the training set. (A,B) Univariate and multivariate analyses of
the prognostic value of the HRG-score. (C) Relationships between clinical parameters and the low- and high-risk groups. (D) Clinical application value of HRG-score in
predicting T stage, N stage, M stage, and TNM stage, respectively (*p < 0.05; **p < 0.01; ***p < 0.001).
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is closely related to heredity, living habits, and colorectal
adenoma (Zhang et al., 2020). According to the latest data, the
global incidence rate of CRC is the second only to breast cancer
and lung cancer, and the mortality rate is the second only to lung
cancer. At present, the main treatment of CRC is surgical
treatment, supplemented by neoadjuvant radiotherapy and
chemotherapy, postoperative radiotherapy and chemotherapy,
and immunotherapy. The main prognostic key issues affecting
CRC are currently the need for timely surgical intervention and
effective radiotherapy treatment. Unfortunately, more than 50%
of CRC patients experience tumor recurrence, metastasis,
invasion, and resistance to chemotherapy drugs at the time of
diagnosis or during their follow-up treatment (Song et al., 2021),
thus losing the standard of care of surgical treatment with
radiotherapy and subsequently having a poor prognosis as well
as poor quality of survival. Chemotherapy is a relative option for
patients with CRC who cannot tolerate surgical intervention;
however, there are still no specific chemotherapeutic agents for
CRC. A growing body of evidence suggests that multiple genes
and cellular pathways are involved in the development of CRC.
To date, the lack of knowledge about the exact molecular
mechanisms underlying CRC progression has limited the
ability to treat advanced diseases. Therefore, it is necessary to
identify the key genes and pathways of CRC in order to

understand its molecular mechanism, explore potential
biomarkers, and develop more effective diagnostic and
therapeutic strategies.

Hypoxia-inducible factor (HIF) played an important role in
cancer biology, including angiogenesis, cell survival, glucose
metabolism, and invasion (Zhang et al., 2021). HIF can
facilitate metabolic metastasis and enhance the non-
mitochondrial mechanism of ATP production, thus providing
energy for tumor cells (Gatenby et al., 2004). In addition, HIF
stabilization can lead to inhibition of apoptotic pathways through
silencing of mitochondrial activity. Hypoxia can mitigate the
infiltration rate of immune cells and their function in the TME
(You et al., 2021). Glycolysis can lead to acid TME with a pH as
low as 5.8 to 6.5, and the acidic environments can inhibit immune
cell differentiation and function. With the advance of high-
throughput sequencing, identification of molecular
characterization gradually becomes a significant method for
biomedical research, which can be used for identifying
biomarkers for prognosis predicting, recurrence monitoring,
and clinical risk stratification (Wang et al., 2009; Xiao et al., 2018).

The growth and progression of malignant tumors are
associated with immunosuppression, and tumor cells evade
immune surveillance through different mechanisms, including
the activation of immune checkpoints pathways that suppress

FIGURE 6 | Evaluation of the TME and checkpoints between the two risk groups. (A) Correlations between HRG-score and immune cell types. (B) Correlations
between HRG-score and TME score. (C) Expression of immune checkpoint-related genes in the low- and high-risk groups. (D) Correlations between the relative
abundance of immune cells and six genes involved in the HRG-score. (*p < 0.05; **p < 0.01; ***p < 0.001)
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anti-tumor immune responses. The successful development of
immune checkpoint genes (ICGs) was a milestone event in tumor
immunotherapy and was named one of the top 10 scientific
discoveries by Nature in 2013 (Wolchok et al., 2014). ICGs inhibit
and kill tumor cells by enhancing the body’s anti-tumor immune
function and have shown significant clinical efficacy in the
treatment of a variety of malignancies, becoming an important
tool in tumor therapeutics (Wang et al., 2018). Based on the
expression of 120 hypoxia-related genes, 1,025 colon cancer
samples from TCGA-COAD project and GEO-GSE39582 were

separated into two heterogeneous subtypes, with significant
differences in OS between the two subtypes. Hypoxia is an
important factor in the poor prognosis of tumor by regulating
cancer hallmark, thus creating physical barriers conducive to
tumor survival (Abou Khouzam et al., 2022). We found most
hypoxia-related genes are highly expressed in subtype B, and the
patients in subtype B had a worse survival outcome than those in
subtype A. We then compared the several expression levels of six
known immune checkpoint genes (PD-L1, PD-L2, PD-1, LAG3,
TIGIT, IDO1, and CTLA-4)between the two subtypes, and the

FIGURE 7 |Comprehensive analysis of the HRG-score in COAD. (A)Relationships between the HRG-score andMMR status. (B) Relationships between the HRG-
score and CSC index. (C) Relationships between HRG-score and sensitivity of five chemotherapeutics. (D) Prediction of the response of different risk samples to the
combination of anti-CTLA4 and anti-PD1 based on IPS. (E) Boxplot for assessing HRG-score in predicting anti-PD-L1 response through the IMvigor210 cohort.
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expression level of the six genes was significantly higher in
subtypes B than subtype A. The previous studies reported that
the high expression level of immune checkpoint genes was more
likely to form an immunosuppressive microenvironment and
promote tumor immune escape (Dunn et al., 2022); meanwhile,
the upregulation of immune checkpoint genes (ICGs) was
positively correlated with high immune cell infiltration (Hu
et al., 2021). The TME score and immune cell infiltration have
been reported to be tightly associated with the immunotherapy of
cancers and the prognosis (Luo et al., 2020). Thus, we also
analyzed the relationship between subtype and immune cell
infiltration. Compared with subtype A, the expression level of
most immune cells including activated B cells, activated
CD4+T cells and activated CD+8 T cells was significantly
higher in subtype B. In addition, we also observed that the
stromal score and ESTIMATE score were higher in B than A.
These results suggest that patients in subtype A may benefit from
immune checkpoint inhibitor therapies. TIDE comparison
between the two groups showed that patients with subtype B
were more likely to form immune escape than patients with
subtype A, which further confirmed our previous results.

Our findings suggest that hypoxic genes differ in the course of
changes in the colon. Therefore, we constructed a robust and
effective prognostic HRG-score and validated its predictive
ability. We explored the expression level of six genes of our
HRG-score and found a significant difference between the risk
groups. There were significant differences in clinical parameters,
prognosis, TME, ICGs, MMR status, CSC index, and drug
sensitivity between low- and high-risk HRG-score patients. It
will help to better understand the molecular mechanism of
colorectal cancer and provide new ideas for targeted therapy
(Bai et al., 2020; Huo et al., 2021; Yan et al., 2021).

Immunotherapy is a promisingmethod in cancer treatment and
has achieved remarkable efficacy in the treatment of colorectal
cancer (Ganesh et al., 2019). Due to the high heterogeneity of
molecular genetics and histopathology of colon cancer,
immunotherapy still has limitations and obstacles (Makaremi
et al., 2021). TME plays a crucial role in the tumorigenesis and
progression of COAD, and the immunosuppressive function is one
of the causes of poor response to treatment. Immune cells of TME
are involved in tumor suppression and progression. Immune-
infiltrating cells in TME are mainly composed of dendritic cells,
macrophages, NK cells, T cells, and B cells (Koi et al., 2017).
Surveillance and elimination of abnormal antigens is an essential
feature of the normal function of the immune system.
Macrophages and NK cells play a crucial role in stimulating the
adaptive immune system that targets tumor cells (Markman et al.,
2015), and a higher level of NK cells and CD8+ T-cell infiltration
often predicts a better prognosis (Sconocchia et al., 2014). In our
study, we discovered that the relative abundance of B cells,
CD8+T cells, NK cells, and macrophages cells was significantly
higher in the low-risk group.

In summary, this study conducted a comprehensive
bioinformatic analysis of two new molecular subgroups of
hypoxic genes and colorectal cancer patients and constructed
an HRG-score model consisting of six genes. However, due to the
limitations of bioinformatics analysis, further clinical sample
testing and cellular and animal experiments are needed to
explore the function of hypoxia genes in colorectal cancer and
the related molecular mechanisms in depth.
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and Nonalcoholic Fatty Liver Disease
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Background: Periodontitis is associated with periodontal tissue damage and teeth loss.
Nonalcoholic fatty liver disease (NAFLD) has an intimate relationship with periodontitis.
Nevertheless, interacted mechanisms between them have not been clear. This study was
intended for the exploration of shared gene signatures and latent therapeutic targets in
periodontitis and NAFLD.

Methods: Microarray datasets of periodontitis and NAFLD were obtained from the Gene
Expression Omnibus (GEO) database. The weighted gene co-expression network analysis
(WGCNA) was utilized for the acquisition of modules bound up with NAFLD and
periodontitis. We used ClueGO to carry out biological analysis on shared genes to
search their latent effects in NAFLD and periodontitis. Another cohort composed of
differential gene analysis verified the results. The common microRNAs (miRNAs) in
NAFLD and periodontitis were acquired in the light of the Human microRNA Disease
Database (HMDD). According to miRTarbase, miRDB, and Targetscan databases, latent
target genes of miRNAs were forecasted. Finally, the miRNAs–mRNAs network was
designed.

Results: Significant modules with periodontitis and NAFLD were obtained via WGCNA.
GO enrichment analysis with GlueGo indicated that damaged migration of dendritic cells
(DCs) might be a common pathophysiologic feature of NAFLD and periodontitis. In
addition, we revealed common genes in NAFLD and periodontitis, including IGK,
IGLJ3, IGHM, MME, SELL, ENPP2, VCAN, LCP1, IGHD, FCGR2C, ALOX5AP, IGJ,
MMP9, FABP4, IL32, HBB, FMO1, ALPK2, PLA2G7, MNDA, HLA-DRA, and
SLC16A7. The results of differential analysis in another cohort were highly accordant
with the findings of WGCNA.We established a comorbidity model to explain the underlying
mechanism of NAFLD secondary to periodontitis. Finally, the analysis of miRNA pointed
out that hsa-mir-125b-5p, hsa-mir-17-5p, and hsa-mir-21-5p might provide potential
therapeutic targets.

Conclusion: Our study initially established a comorbidity model to explain the underlying
mechanism of NAFLD secondary to periodontitis, found that damaged migration of DCs

Edited by:
Tao Huang,
(CAS), China

Reviewed by:
Lifei Ma,

Chinese Academy of Medical
Sciences and Peking Union Medical

College, China
BL Gan,

Guangxi Medical University, China

*Correspondence:
Xiumei Wang

hrbwangmei@163.com
Shibo Sun

shibosun8@hrbmu.edu.cn

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 09 May 2022
Accepted: 16 May 2022
Published: 28 June 2022

Citation:
Xu W, Zhang Z, Yao L, Xue B, Xi H,

Wang X and Sun S (2022) Exploration
of Shared Gene Signatures and
Molecular Mechanisms Between

Periodontitis and Nonalcoholic Fatty
Liver Disease.

Front. Genet. 13:939751.
doi: 10.3389/fgene.2022.939751

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 9397511

ORIGINAL RESEARCH
published: 28 June 2022

doi: 10.3389/fgene.2022.939751

143

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.939751&domain=pdf&date_stamp=2022-06-28
https://www.frontiersin.org/articles/10.3389/fgene.2022.939751/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.939751/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.939751/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.939751/full
http://creativecommons.org/licenses/by/4.0/
mailto:hrbwangmei@163.com
mailto:shibosun8@hrbmu.edu.cn
https://doi.org/10.3389/fgene.2022.939751
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.939751


might be a common pathophysiological feature of NAFLD and periodontitis, and provided
potential therapeutic targets.

Keywords: periodontitis, nonalcoholic fatty liver disease, WGCNA, dendritic cell migration, miRNAs–mRNAs

INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD), accompanied by
varying levels of hepatic fat accumulation, can gradually
progress to nonalcoholic steatohepatitis, cirrhosis, and
hepatocellular carcinoma, which has fatal consequences
(Wesolowski et al., 2017). It was reported that the prevalence
of NAFLD accounted roughly 25%, with the prospect of further
increase according to expanding populations with metabolic
syndrome (Younossi et al., 2016; Estes et al., 2018). According
to the pathophysiology of NAFLD, some kinds of medical
treatments with respective effects are being assessed in clinical
trials. It is regrettable that these drug candidates have been found
bringing unpalatable side effects or are limited by efficacy
(Alkhouri et al., 2020; Younossi et al., 2021; Barritt et al.,
2022). Currently, there has been a lively investigation over the
participation of periodontitis in the occurrence and development
of NAFLD. Some scholars even believed that there was a
comorbidity effect between the two diseases (Rosato et al.,
2019). Suffering from oral microbial imbalance brought about
by anaerobic Gram-negative bacteria chiefly, periodontitis is
associated with periodontal tissue damage and teeth loss
(Kuraji et al., 2021). It was reported that there were 1.1 billion
people with severe periodontitis worldwide in 2019 (Chen et al.,
2021). Actually, mechanical debridement is hard to absolutely
clear periodontitis infection and prolonged antibiotic exposure is
effective but unsafe (Rotundo et al., 2010; Rams et al., 2020).

From the beginning, periodontitis has contributed to the
development of NAFLD owing to systemic inflammation and
oxidative stress on the basis of vitro study (Tomofuji et al., 2007).
Then, Porphyromonas gingivalis, the main pathogenic bacteria of
periodontitis, resulted in the development of NAFLD, above
which academic discussion had continued ever since (Furusho
et al., 2013; Nagasaki et al., 2021; Yamazaki et al., 2021).
Epidemiological investigation reported that NAFLD incidence
was increasing with the combination of periodontitis, which
could increase the risk of progression to liver fibrosis as well
(Akinkugbe et al., 2017a; Akinkugbe et al., 2017b; Iwasaki et al.,
2018; Suominen et al., 2019; Kuroe et al., 2021). The potential
associations between periodontitis and NAFLD has been
discussed from in vitro, in vivo, and epidemiologic
perspectives, but the genetic and biological mechanisms of
connection between periodontitis and NAFLD is unknown.
Although most studies suggest that periodontitis can affect
NAFLD outcomes, the effect of genetic and biological
mechanisms might be bidirectional and extremely valuable.

In order to have insights into the mechanisms of diseases, gene
microarray technology is developed, which can generate thousands
of gene expression data in various diseases. Despite periodontitis and
NAFLD being two relatively independent pathological process,
periodontitis feels more like a trigger, once it is lit, it will quicken

NAFLD aggravation. To explain the trigger, the weighted gene co-
expression network analysis (WGCNA) was applied to seek the
clusters of shared genes in periodontitis and NAFLD. This method
has been utilized to explain genetic mechanism related to various
disease phenotypes effectively (Zhu et al., 2020; Yao et al., 2021).
Through the deep analysis of the Gene Expression Omnibus (GEO)
database, we found that genes related to “dendritic cell migration”
were presented in modules hugely relevant to periodontitis and
NAFLD, which meant that biological pathway “dendritic cell
migration” might play a significant role in periodontitis and
NAFLD. In addition, the unique gene signatures in periodontitis
and NAFLD were also identified and microRNAs (miRNAs) might
play a regulatory role. So far as we know, this is the first study to
utilize the bioinformation technique to explain the gene signatures
between periodontitis and NAFLD, which is expected to provide
new diagnostic and therapeutic windows for these two diseases.

METHODS

Download and Preprocessing of the Gene
Expression Omnibus Dataset
We used the key words “Nonalcoholic Fatty Liver Disease” or
“periodontitis” to search NAFLD and periodontitis gene
expression profiles in which the data at original or processed
state could be for the return to analysis in the GEO database
(Barrett et al., 2013). Finally, the GEO dataset numbered
GSE16134 was accepted, which contained a total of 241
periodontitis samples and 69 healthy samples. The GSE48452
and GSE63067 microarray datasets were used for NAFLD, which
contained raw transcriptomics data from the human liver tissue.
In GSE48452 dataset, 73 samples of human liver grouped into C
(control = 14), H (healthy obesity = 27), S (steatosis = 14), and N
(NASH = 18) from original references. In GSE63067dataset, two
human steatosis and nine human nonalcoholic steatohepatitis
(NASH) together with their respective control patterns were
analyzed from original references. The original data were
processed with background correction, normalization, and
relative expression calculation. Log2 transformation was
applied to gene expression profiling and the probes were
matched with their gene symbols on the basis of annotated
files from relevant platforms. Ultimately, we acquired the
genetic matrix with row and column defined as specimen
names and gene symbols, respectively, for the following analysis.

Weighted Gene Co-Expression Network
Analysis
A popular algorithm, WGCNA, is applied to seek gene co-
expression modules with the great importance of biology and
discover the relevance between diseases and gene networks
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(Langfelder and Horvath, 2008). Consequently, WGCNA was
utilized for the acquisition of modules bound up with NAFLD
and periodontitis. All the differential genes (DEGs) from healthy
and disease samples satisfying p value < 0.05 were collected for
WGCNA analysis (Supplementary Data S1). Clustering of
samples was doing well and the threshold of cutting line was
30. The soft thresholds ranging from 1 to 20 were used for
topology calculation and optimum soft threshold was identified
as 6. According to the soft threshold, the matrix of correlations
was converted to the adjacency matrix and then into a topological
overlap matrix (TOM). With the average-linkage hierarchical
clustering method which followed, the genes were clustered. The
modules were divided according to TOM, each of which
contained at least 50 genes. The cutting height of gene module
was 0.7 and similar modules were combined. After that, gene
significance (GS) and module membership (MM) in every
module were calculated for plotting the scatter plots. At last
we applied Pearson correlation analysis to estimate the relevance
of disease emergence with the merged modules.

Identification of Shared and Unique Gene
Signatures
The modules with high correlation with NAFLD and
periodontitis were chosen and the shared genes in modules

positively related to NAFLD and periodontitis were crossed
and overlapped through venn (Bardou et al., 2014). The
nonredundant GO terms can be classified and visually
arranged into networks grouped by functions through
ClueGO, which is a Cytoscape plug-in unit (Bindea et al.,
2009). Hence, we used ClueGO to carry out biological analysis
on the shared genes to search their latent effects in NAFLD and
periodontitis, in which the biological process (BP) of GO analysis
was highlighted. The unique gene signatures in NAFLD and
periodontitis were distinguished through the protein–protein
interaction (PPI) network and cluster analysis, the latter of
which was calculated by the “MCODE” algorithm with default
parameters in Cytoscape software (version: 3.7.2).

RESULTS

TheCo-ExpressionModules in Periodontitis
and Nonalcoholic Fatty Liver Disease
With the application of WGCNA, four modules in total were
recognized in GSE48452 and GSE63067, each of which had
different color betokening separate module. For the assessment
of relevance between disease and each module, a heatmap was
plotted on the basis of Spearman correlation coefficient, in which
module “green” had the highest relevance to NAFLD (Figures

FIGURE 1 |Weighted gene co-expression network analysis (WGCNA). (A) The cluster dendrogram of co-expression genes in NAFLD. (B) The cluster dendrogram
of co-expression genes in periodontitis. (C) Module–trait relationships in NAFLD. Each cell contains the corresponding correlation and p-value. (D) Module–trait
relationships in periodontitis. Each cell contains the corresponding correlation and p-value. NAFLD, nonalcoholic fatty liver disease.
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1A,C). The module, with the core (r = 0.77), was positively related
to NAFLD, including 920 genes. Four modules in total were
recognized equally in GSE16134, in which the module “cyan” was
the strongest and positively related to periodontitis (r = 0.3),
including 522 genes (Figures 1B,D).

The Common Gene Signatures in
Periodontitis and Nonalcoholic Fatty Liver
Disease
Seventy-nine genes were crossed and overlapped in the relevant
core modules of NAFLD and periodontitis, which was recognized
as gene set 1 (GS1). Periodontitis could be the important risk
factor for the development of NAFLD according to current study.
GlueGo was used to discuss the latent functions of GS1 through

the GO enrichment analysis. The top three markedly enriched
GO terms about BP were “dendritic cell migration,” “regulation of
alpha-beta T cell activation,” and “cytokine receptor activity”
(Figure 2A). Dendritic cell migration represented 44.68% of all
the GO terms (Figure 2B), meaning that this pathway might be
vital to both NAFLD and periodontitis.

The Unique Gene Signatures in
Periodontitis and Nonalcoholic Fatty Liver
Disease
A PPI network was subsequently established at protein levels for
green module of NAFLD. MCODE analysis was applied to
acquire clusters. There were 34 nodes and 274 edges in cluster
1 (score = 16.606) (Figure 3A). Cluster 2 embodied 13 nodes and

FIGURE 2 | ClueGO enrichment analysis. (A) The interaction network of GO terms generated by the Cytoscape plug-in ClueGO. (B) Proportion of each GO terms
group in the total. GO, gene ontology. **p < 0.05.
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78 edges (score = 13.000) (Figure 3B). Cluster 3 embodied 43
nodes and 209 edges (score = 9.952) (Figure 3C). Cluster 3 was
primarily related to dendritic cell migration, which was
represented with the functional enrichment analysis
(Figure 4A). Consequently, it was inferred that cluster 3
pertained to common genes section from NAFLD and
periodontitis. The other two clusters were recognized as
unique gene signatures in NAFLD. The PPI network was
established at protein levels for cyan module of periodontitis
equally. MCODE analysis was also applied to acquire the clusters.
There were 33 nodes and 387 edges in cluster 1 (score = 24.188)
(Figure 3D). Cluster 2 embodied 13 nodes and 71 edges (score =
11.833) (Figure 3E). Cluster 3 embodied 13 nodes and 34 edges
(score = 5.667) (Figure 3F). Coincidentally, cluster 3 was
primarily related to dendritic cell migration, which was
represented with the functional enrichment analysis
(Figure 4B). The other two clusters were recognized as unique
gene signatures in periodontitis.

The Differential Genes Analysis in
Periodontitis and Nonalcoholic Fatty Liver
Disease
There were 91 upregulated genes and 33 downregulated genes
being represented in GSE48452 and GSE63067. Concurrently,
there were 664 upregulated genes and 402 downregulated genes
represented in GSE16134. Of all the upegulated genes, 21
overlapped genes were discovered (IGK, IGLJ3, IGHM, MME,
SELL, ENPP2, VCAN, LCP1, IGHD, FCGR2C, ALOX5AP, IGJ,

MMP9, FABP4, IL32, HBB, FMO1, ALPK2, PLA2G7, MNDA,
and HLA-DRA). On the other hand, one downregulated gene was
overlapped (SLC16A7), which were recognized as gene set 2
(GS2) (Figure 5A). Representing remarkable enrichment of
dendritic cell migration, dendritic cell chemotaxis, and neutral
lipid catabolic process, the genes of GS2 were explored through
the functional enrichment analysis, which was highly accordant
with the findings of WGCNA (Figure 5B).

Identification and Analysis of Common
miRNAs in Periodontitis and Nonalcoholic
Fatty Liver Disease
In the light of the Human microRNA Disease Database (HMDD)
(Huang et al., 2019), 43 miRNAs were found to be related to
NAFLD and 33 miRNAs were related to periodontitis
(Supplementary Data S2). There were five overlapped
miRNAs (hsa-mir-125b-5p, hsa-mir-155-5p, hsa-mir-17-5p,
hsa-mir-200b-5p, and hsa-mir-21-5p) between NAFLD and
periodontitis. There followed the enrichment analysis of five
miRNAs, which revealed a variety of biological functions that
these miRNAs are involved in. Similarly, “dendritic cell
migration” got involved in these biological processes according
to the heatmap, signifying that miRNAs associated with
pathogenesis of NAFLD and periodontitis could also regulate
dendritic cell migration (Figure 6A). Hence, our findings were
proved again. According to miRTarbase (Chou et al., 2018),
miRDB (Chen and Wang, 2020), and Targetscan (Morovat
et al., 2022) databases, latent target genes of five miRNAs were

FIGURE 3 | The PPI network. (A–C) The clusters 1-3 extracted from green module in NAFLD. (D–F) The clusters 1-3 extracted from the cyan module in
periodontitis. PPI, protein–protein network; NAFLD, nonalcoholic fatty liver disease.
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forecasted (Figure 6B). Unfortunately, hsa-mir-155-5p was not
retrieved in the database, and hsa-mir-200b-5p had no
overlapped target genes. Finally, the miRNAs–mRNAs
network was designed (Figure 6C).

DISCUSSION

As noted earlier, NAFLD has a high prevalence in periodontitis,
indicating that some susceptibility factors in periodontitis may
trigger the initiation and progression of NAFLD. Although it is not
yet clear that how hazardous factors are delivered to liver from
periodontium, the following two routes have been highly accepted.
Blood transmission of bacteria, endotoxin, and inflammatory
mediators from the periodontal tissues is the first aspect
correlating periodontitis and NAFLD. Delivery of oral bacteria
via the digestive tract is the second aspect, which brings out the
imbalance of the intestinal bacteria (Kuraji et al., 2021). Regardless

of dangerous medium such as periodontal bacteria,
lipopolysaccharide and proinflammatory mediators, or intestinal
dysbacteriosis, the precise role of them in effect of periodontitis on
NAFLD needs further studies. So far, no studies have discussed the
susceptibility of NAFLD in periodontitis at the genetic level.

Drawing support from WGCNA, we first discussed the
common mechanisms of periodontitis and NAFLD. The
differentially expressed genes in common were found in the
intersection of GS1 and GS2, such as VCAN, LCP1, and
ENPP2. Functional enrichment analysis concerned included
dendritic cell migration, regulation of alpha-beta T cell
activation, cytokine receptor activity, dendritic cell chemotaxis,
and neutral lipid catabolic process. Finally, the miRNAs–mRNAs
network was designed. More importantly, genes related to
“dendritic cell migration” were presented in modules hugely
relevant to periodontitis and NAFLD and experienced
repeated verification. In addition, miRNAs might play a
regulatory role in periodontitis and NAFLD. Playing a major

FIGURE 4 | GO biological process analyses of clusters. (A) The GO biological process analyses of three gene clusters in NAFLD. (B) The GO biological process
analyses of three genes clusters in periodontitis. GO, gene ontology; NAFLD, nonalcoholic fatty liver disease. **p < 0.05.
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role in innate immunity, dendritic cells (DCs) could capture and
present antigens, which are also the bond to adaptive immunity
(Steinman, 2001). The research shows that transmission of
bacteria from periodontal tissues to distant sites via systemic
circulation might appear at highly migrated DCs (Carrion et al.,
2012). Porphyromonas gingivalis, as major pathogens in
periodontitis, can attack DCs, reduce the level of proapoptosis
protein expression, and prolong the survival of DCs (Meghil et al.,
2019). This type of bacteria not only damages immune
homeostasis of DCs, but also disrupts DCs homing to
secondary lymphoid organs, the latter of which makes the
inflammation migrate to vascular circulation (Miles et al.,
2014). Unfortunately, it could avoid intracellular killing in
DCs by targeting to dendritic cell-specific intercellular
adhesion molecule-3-grabbing nonintegrin (El-Awady et al.,
2015). However, oral microbial diversity destines that
Porphyromonas gingivalis do not fight alone. In a previous
study, a union of three oral microorganisms, Streptococcus
gordonii, Fusobacterium nucleatum, and Porphyromonas
gingivalis, drove bacterial growth, attack and stability in DCs,
and regressed DCs maturation via coordinated effects, which
generated microbial transmission and inflammatory spread (El-
Awady et al., 2019). After-effects of bacteria themselves are taken
out, lipopolysaccharide or proinflammatory cytokines, coming
from periodontitis and bringing about low-grade systemic
inflammatory state, is closely related to DCs (Kanaya et al.,
2004; Jardine et al., 2019; Psarras et al., 2021). With its
receptors distributed extensively in the human body, inactive
gingipains, as critical virulence factors of Porphyromonas
gingivalis, leads to proinflammatory response in DCs (Ciaston

et al., 2022). All in all, DCs not only play a central role in initiating
and exacerbating periodontitis but also could be considered as
potential contributing factors to the development of systemic
diseases related to periodontitis, one of which is NAFLD.

It is generally known that intestinal microbial imbalance is
intimately connected to NAFLD. First, anomalous abundance
changes of bacterial phyla affect the severity of NAFLD (Boursier
et al., 2016). Second, metabolite of intestinal bacteria results in
fatty degeneration of liver cells, insulin resistance, and hepatic
fibrosis (Ji et al., 2019). Third, endotoxemia attributed to the
increase in intestinal permeability is related to pathogenesis of
NAFLD (Wang et al., 2022). However, the mechanism of the
pathology in which the intestinal flora imbalance induced by oral
bacteria contributes to NAFLD has been unclear. Studies have
pointed out that Porphyromonas gingivalis plays a major role in
the process via interfering with the metabolic and immune
profiles (Wang et al., 2022). It is not clear if DCs also affect
the transmission of pathogenic bacteria and their toxic
metabolites to the liver through the portal vein. The existing
fact remains that the physiological action of DCs can be affected
by the intestinal microbes (Yang et al., 2021). On the other hand,
numerous researches have proved that migratory DCs could
dominate induction of enteric T regulatory cells to manage
commensal bacteria or to set up oral tolerance targeted at
dietary antigens (Esterházy et al., 2016; Esterházy et al., 2019;
Russler-Germain et al., 2021). Although the action mechanism of
DCs in NAFLD is not completely clear, existing studies have
confirmed the important role of DCs. DCs play a
proinflammatory role in the animal models with nonalcoholic
steatohepatitis (NASH). With CD11c+ DCs or CD103+ DCs

FIGURE 5 | Identification of the common DEGs and ClueGO enrichment analysis. (A) The Venn diagram of the upregulated and downregulated genes in
periodontitis and NAFLD. (B) The interaction network of GO terms generated by the Cytoscape plug-in ClueGO and proportion of GO terms in the total. GO, gene
ontology; NAFLD, nonalcoholic fatty liver disease. **p < 0.05.
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consumption, decreased expression of proinflammatory
cytokines and chemokines could prevent liver fibrosis (Nati
et al., 2016; Schuster et al., 2018). Recent research has also
shown that depletion of type 1 conventional DCs attenuates
liver pathology in the NASH mouse models (Deczkowska
et al., 2021). As noted previously, NAFLD has a high
morbidity in periodontitis, indicating that predisposing factors
in periodontitis could touch off NAFLD. In our modeling, both
the discovery cohort and validation cohort reached the
conclusion that dendritic cell migration played an important
part in gene function enrichment analysis. Previous studies
also support our view. Consequently, damaged migration of
DCs might be a common pathophysiologic feature of NAFLD
and periodontitis, whichmeans that dendritic cell migration plays
a key role and provides critical therapeutic target in the

comorbidity model. MiRNA, as endogenous noncoding
regulatory RNA, plays huge roles in the regulation of post-
transcriptional gene. We have constructed the
miRNAs–mRNAs network with the benefit of HMDD,
miRTarbase, miRDB, and Targetscan databases. Interestingly,
the target genes of common miRNAs, having no intersection
with GS1 and GS2, still enriched in “dendritic cell migration”,
which might be related to the indirect interaction of genes.
Among these miRNAs, epigenetic silencing of miR-125b-5p
resulted in liver fibrosis in NAFLD (Cai et al., 2020).
Differential expression of miR-125b-5p influenced the
functions of DCs (Hu et al., 2017). Mast cells had a close
associate of periodontitis, and overexpressed miR-125b-5p in
its own exosomes (Ekström et al., 2012; Tetè et al., 2021). We
speculated that periodontitis might be affected by miR-125b-5p.

FIGURE 6 | (A) The functional enrichment analysis of five common miRNAs. The arrow indicated the dendritic cell migration signaling pathway. (B) The Venn
diagram of predicted target genes of miRNAs according to miRTarbase, miRDB, and Targetscan databases. (C) MiRNAs–mRNAs network. MiRNAs, microRNAs.
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Similarly, miR-17-5p and miR-21-5p were reported to play a part
in periodontitis and migration of DCs and were predicted to get
involved in NAFLD (Du et al., 2016; Kim et al., 2017; Reis et al.,
2018; Cui et al., 2019; Zhang et al., 2020; Lin et al., 2022).
Although these miRNAs have not been verified in the
microenvironment of comorbidity with periodontitis and
NAFLD, they also provide important therapeutic targets.

Considering the reality of the situation, experimental
validation is currently not possible because clinical specimens
of NAFLD are extremely difficult to obtain. Therefore, this is a
limitation of our study and we will gradually collect samples for
vitro assays. All in all, our study has established a comorbidity
model to explain the underlying mechanism of NAFLD
secondary to periodontitis, found that damaged migration of
DCsmight be a common pathophysiologic feature of NAFLD and
periodontitis, and provided potential therapeutic targets.
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Integrated Bioinformatics Analysis
Identifies Robust Biomarkers and Its
Correlation With Immune
Microenvironment in Nonalcoholic
Fatty Liver Disease
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Shibo Sun*
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Objective: Nonalcoholic fatty liver disease (NAFLD) is a serious threat to human health
worldwide. In this study, the aim is to analyze diagnosis biomarkers in NAFLD and its
relationship with the immune microenvironment based on bioinformatics analysis.

Methods: We downloaded microarray datasets (GSE48452 and GSE63067) from the
Gene Expression Omnibus (GEO) database for screening differentially expressed genes
(DEGs). The hub genes were screened by a series of machine learning analyses, such as
support vector machine (SVM), least absolute shrinkage and selection operator (LASSO),
and weighted gene co-expression network analysis (WGCNA). It is worth mentioning that
we used the gene enrichment analysis to explore the driver pathways of NAFLD
occurrence. Subsequently, the aforementioned genes were validated by external
datasets (GSE66676). Moreover, the CIBERSORT algorithm was used to estimate the
proportion of different types of immune cells. Finally, the Spearman analysis was used to
verify the relationship between hub genes and immune cells.

Results: Hub genes (CAMK1D, CENPV, and TRHDE) were identified. In addition, we
found that the pathogenesis of NAFLD is mainly related to nutrient metabolism and the
immune system. In correlation analysis, CENPV expression had a strong negative
correlation with resting memory CD4 T cells, and TRHDE expression had a strong
positive correlation with naive B cells.

Conclusion: CAMK1D, CENPV, and TRHDE play regulatory roles in NAFLD. In particular,
CENPV and TRHDE may regulate the immune microenvironment by mediating resting
memory CD4 T cells and naive B cells, respectively, and thus influence disease
progression.
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INTRODUCTION

Nonalcoholic Fatty Liver Disease (NAFLD) is defined by the
presence of hepatic steatosis in the absence of significant alcohol
consumption or causes other than the metabolic disorders
constituting the metabolic syndrome, which is a leading cause of
chronic liver disease and affects about 10% of the world population
(Sven et al., 2020). Hepatic pathologies of NAFLD range from simple
hepatic steatosis to nonalcoholic steatohepatitis (NASH), even
developing into liver fibrosis, liver cirrhosis, and hepatic
carcinoma (Kabbany et al., 2017). With the increasing incidence
of obesity, diabetes, hyperlipidemia, and cardiovascular disease,
NAFLD has become increasingly prevalent, which represents the
hepatic manifestation of metabolic syndrome. The global prevalence
of NAFLDwill be increasing soon. Despite the enormous burden on
healthcare costs, there is no effective cure approved for NAFLD.
Lifestyle interventions are recommended as first-line management
in guidelines, but it is difficult to achieve favorable and persistent
outcomes in the real world regrettably (Polyzos et al., 2019).

With the drastic development of generation sequencing
technologies, systems biology techniques including genomics,
metabolomics, transcriptomics, and proteomics provide new
insight into solving this task. An increasing number of studies
have indicated that NAFLD is linked to metabolic disorders
(Huang and Kong, 2021; Luukkonen et al., 2021; Osborne
et al., 2021). Immunity is also involved in the development
and progression of NAFLD (Barrow et al., 2021; Huby and
Gautier, 2021; Song et al., 2021). Nonetheless, there is still a
lack of insensitive and targeted biomarkers that may be widely
used in the clinical setting, which causes significant challenges for
clinical diagnosis and treatment, especially for early diagnosis and
follow-up strategy.

Therefore, an exploration into the molecular mechanism in
NAFLD is necessary. To address these issues, we applied the
GEO database to mine DEGs between NAFLD patients and
normal patients, and determined the correlation between robust
biomarkers, immune microenvironment and nutrient metabolism.
Using various bioinformatics analysis methods, we described the
differential genes and verified these genes in the external gene
dataset, and finally screened CAMK1D, CENPV, and TRHDE. In
addition, we found compounds or environmental poisons that
might have a potential relationship with hub genes in the
comparative toxicology database, which provided an important
theoretical basis for the primary prevention and treatment of
NAFLD.

MATERIALS AND METHODS

Datasets and Data Preprocessing
Raw transcriptomic data from two microarray datasets
(GSE48452 and GSE63067) based on the GPL11532 and
GPL570 platforms, both taken from the liver tissue, were
downloaded from the GEO database. Normalization was
performed on the raw data using the sva package. PCA
showed that the aforementioned analysis method was better at
eliminating batch effects (Supplementary Figure.S1). Twenty-

one healthy liver control tissues, as well as 27 NAFLD liver tissue
samples, were ultimately included in the screening set. In
addition, we downloaded the GPL6244 platform–based
GSE66676, derived from liver wedge biopsies, as an external
validation dataset. Particular clinical characteristics of the
patients in the dataset are presented in Supplementary
Datasheet S1.

Screening and Validation of Hub Markers
As previous studies have done (Hu et al., 2022; Jiang et al., 2022),
differentially expressed genes (DEGs) were screened in
GSE48452 and GSE63067 in a batch-calibrated screening set.
DEGs between NAFLD samples and normal samples were
screened using the limma program package, with P. adj.
value <0.05 selected as the cutoff criterion. Considering the
situation of datasets, we did not set logFC as the threshold.
Subsequently, the core genes were further screened in the
aforementioned DEGs using a 10-fold cross-validation of
LASSO (glmnet package). Alternatively, support vector
machine–recursive feature elimination (SVM-REF) is a
support vector machine–based machine learning method that
builds on DEGs by removing support vector machine–generated
feature vectors (e1071 and msvmRFE program packages) to find
the optimal core genes. Simultaneously, we screened DEGs using
one-way logistic regression with NAFLD as the dependent
variable, using p < 0.001 as the threshold. In the WGCNA
analysis, all DEGs satisfying p. value <0.05 in normal and
NAFLD samples were used as input, and each sample
clustered well, with a shear line of 30 as the threshold, and
one outlier sample was excluded. Subsequently, a soft threshold
from 1 to 20 was used for topology calculation to determine the
optimal soft threshold of 6. The curve is smoothest when β was 6.
Based on the soft threshold, the relationship matrix was
converted to an adjacency matrix and then to a topological
overlap matrix (TOM) for mean linkage hierarchical
clustering, and the related modules were classified according
to TOM with the number of genes in each module not less
than 50. The gene module shear height in this study was 0.7, and
similar module merging was performed. In addition, GS and GS
of each module were calculated. In addition, GS and MM within
each module were calculated for scatter plots. Finally, the Pearson
method was used to calculate the correlation between the merged
modules and the occurrence of NAFLD.

Enrichment Analysis
GO enrichment analysis is a common bioinformatics method
used to search for comprehensive information on large-scale
genetic data, including BP, CC, and MF. In addition, KEGG
pathway enrichment analysis is widely used to understand
biological mechanisms and functions. At the same time, DO
enrichment analysis can be used to explore the diseases in which
the genes of interest are predominantly involved. Finally, GO,
KEGG pathway, and DO analyses were visualized using the GO
plot program package. Finally, primary signaling pathways
associated with core genes were further explored using the
cluster profile package and the GSVA package. The
h.all.v7.4.symbols.gmt gene set was downloaded from MSigDB,
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FIGURE 1 | Differentially expressed genes. (A,B) Differentially expressed genes (DEGs) were identified in GSE48452 and GSE63067, respectively, with
upregulated genes indicated in red and downregulated genes in green in the volcano plot; in addition, the heat map shows the top 10 differentially expressed genes. (C)
After batch correction, we again identified DEGs in the screening set using the limma package, and the volcano plot in red indicates upregulated genes and green
indicates downregulated genes. (D) The DEGs from the three aforementioned screens were crossed, resulting in the identification of 19 core DEGs.
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and the gene set was subjected to GSVA analysis with the gene
expression matrix to explore the regulatory pathways that may be
involved.

Construction of Hub Gene Regulatory
Network
First, potential miRNAs targeting hub genes were predicted using
mirDIP and Starbase databases, with the threshold set to
minimum score = very high, to identify the regulatory
network of miRs downstream of core genes. In addition, the
TRRUST database contains 800 human transcription factors
(TFs), and TF-core gene reciprocal pairs with p-values <
0.05 were selected to build upstream regulatory networks. In
addition, we queried the Comparative Toxicogenomic database
for compounds or environmental reads that might retain
potential relationships with core genes. Finally, the core gene
regulatory network was visualized based on the Networkanalyst
database (Supplementary Figures S2, S3).

Immune Analysis Algorithm
As previous studies have done (Lu et al., 2021; Shen et al., 2021),
the CIBERSORT algorithm calculates the proportion of different
immune cell types based on the expression levels of immune
cell–related genes. The output of the 22 infiltrated immune cells
was integrated to generate a matrix of immune cell fractions for
analysis (the CIBERSORT program package). The correlation of
core genes with the content of the 22 immune cell types was
calculated using the Spearman method.

Statistical Analysis
All statistical analyses were performed using R software (v.4.0.1).
Detailed statistical methods for transcriptome data processing are
covered in the aforementioned section. p < 0.05 was considered
statistically significant.

RESULT

DEGs in Different Datasets
In the beginning, we identified 50 differentially expressed genes
(DEGs) in GSE48452, and the volcano map shows 28 upregulated
genes as well as 22 downregulated genes; in addition, the heat
map shows the top 10 differentially expressed genes (Figure 1A).
In addition, 1725 DEGs were identified in GSE63067, and the
volcano map and heat map demonstrates 885 upregulated genes
as well as 840 downregulated genes (Figure 1B). In addition, after
batch correction, we again identified DEGs in the screening set
using the limma package, with the volcano map demonstrating
77 upregulated genes as well as 66 downregulated genes
(Figure 1C). Ultimately, we crossed DEGs from the three
aforementioned screens and ultimately identified 19 core
DEGs. In detail, TMEM154, TSPAN3, CAMK1D, TRHDE,
PEG10, ME1, SATB2, SNAP25, ANKRD18A, ISM1, and
SGCB were upregulated in NAFLD, while APOF, SYP, OPN3,
CENPV, IGF1, AMDHD1, P4HA1, and MRPL21 were
downregulated within NAFLD samples (Figure 1D).

Enrichment Analysis in DEGs
To explore the potential biological mechanisms of the 19 DEGs
and the development of NAFLD, KEGG analysis illustrated the
possible biological mechanisms of NAFLD development such as
glioma, hypertrophic cardiomyopathy, and other disease
processes (Supplementary Figure S2A). In addition, DO
analysis revealed 19 differential genes that may have shared
pathogenesis in diseases such as cell type benign neoplasm
(Supplementary Figure S2B). Meanwhile, the BP section of
the GO enrichment analysis suggested the important role of
the dicarboxylic acid metabolic process, pyruvate metabolic
process, etc. (Supplementary Figure S2C). Finally, we
downloaded the corresponding gene sets from MSigDB and
performed the GSVA analysis of the gene sets and gene
expression matrices to explore the potential pathways involved
in the pathogenesis of NAFLD, and the results showed that
allograft rejection, cholesterol homeostasis, complement, and
inflammatory response pathways have significant roles
(Supplementary Figure S2D). Interestingly, taken together,
the established chain of evidence suggests a possible
involvement of the immune system with the nutritional
metabolic system in NAFLD.

Integrated LASSO Analysis, Machine
Learning Algorithm, and Logistic Analysis
for Screening Hub Biomarkers
Among the aforementioned 19 DEGs, we further screened the
core genes using a 10-fold cross-validation of LASSO and finally
screened 12 potential genes (Figures 2A,B). At the same time, we
performed an in-depth screening of the differential genes using a
machine learning approach with SVM, and the results showed the
lowest RMSE values when all 19 genes were included (Figure 2C).
Finally, we performed a one-way logistic analysis of the
expression of the 19 DEGs, with NAFLD occurrence as the
dependent variable, and the final results of Moritu showed
that 15 genes entered the subsequent analysis (Figure 2D).

WCGNA Analysis Was Used for Further
Screening
To further link clinical information to key genes, the expression
of only 1,989 genes that met p. value <0.05 in the analysis of
differences between normal and NAFLD samples was used as
the input matrix in WGCNA analysis. The samples clustered
well, and one outlier sample was excluded using a shear line of
30 as the threshold (Figure 3A). Subsequently, a soft threshold
of 1–20 was used for topological calculations, and the optimal
soft threshold was determined to be 6 (Figure 3B). Based on the
soft threshold, the relationship matrix was converted to an
adjacency matrix and then to a topological overlap matrix
(TOM) for mean linkage hierarchical clustering, and the
related modules were classified according to TOM with no
less than 50 genes in each module, and the similar gene
modules were finally merged (Figure 3C), resulting in the
identification of three modules. In addition, to calculate the
correlation between genes within modules and clinical traits, we
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found that the green module included the highest correlation
with the occurrence of NAFLD (p = 0.83), so this was used as the
core module (Figure 3D). In addition, GS and MM were
calculated for 1,196 genes within the green module, and
correlation scatter plots were drawn (Figure 3E). We found a
direct correlation between GS and MM of genes within the core
module, which verified our speculation from another
perspective.

Exploring Predictive Value of Biomarkers
To identify core biomarkers, we cross-tabulated relevant genes
fromWGCNA, LASSO, Logistic, andmachine learning, and finally
identified seven biomarkers as our candidate genes (Figure 4A).
We performed ROC analysis on each of these seven genes in the
screening set, and the results showed that all genes had excellent
predictive performance in the screening set: CAMK1D (AUC =
0.859, Figure 4B), CENPV (AUC = 0.864, Figure 4C), OPN3
(AUC = 0.891, Figure 4D), SATB2 (AUC = 0.840 (Figure 4E),
SNAP25 (AUC = 0.868, Figure 4F), TRHED (AUC = 0.848,
Figure 4G), and TSPAN3 (AUC = 0.926, Figure 4H).

The Validation of Hub Biomarkers
To validate the accuracy of seven aforementioned genes, we performed
validation in an external validation set. In the dataset, also with liver
tissue sequencing, only CAMK1D, CENPV, and TRHDE obtained
differential expression between samples (Figure 5A), and in addition,
as shown in Figure 5B, ROC analysis also demonstrated better
predictive performance for three aforementioned biomarkers
(CAMK1D, AUC = 0.632; CENPV, ADU = 0.651; TRHED,
ACU = 0.676). In addition, we queried the Comparative
Toxicogenomics database for compounds or environmental
toxicants that may have potential relationships with core genes.
Finally, the core gene regulatory network was visualized based on
the Networkanalyst database (Supplementary Figures S3, S4).

The Analysis of Differences in Immune
Microenvironment
Considering the important role of the immune pathway in NAFLD
in the GSEA gene enrichment analysis, we used the CIBERSORT
algorithm to analyze the immune cell content in various tissues.

FIGURE 2 | Hub biomarker screening. (A,B) LASSO regression analysis. (C) Machine learning approach with SVM. (D) Logistic regression analysis.
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The results indicated higher levels of CD8 T cells, activated NK
cells, and follicular-helper T cells in normal samples; in NAFLD
tissues, only Macrophages M1 had a higher enrichment fraction
compared to normal liver tissue (Figure 6A). In addition, the
results of PCA analysis also showed a natural heterogeneity in the
distribution of immune cells between the two tissues (Figure 6B).
At the same time, the bar chart illustrates the general landscape of
immune cell distribution between the different tissues (Figure 6C).
Finally, as shown in Figure 6D, we performed a correlation
analysis of all immune cells in the CIBERSORT algorithm,
showing Macrophages M0 had the strongest negative
correlation with T cells CD4 memory resting (r = −0.47) and
T cells CD8 had the strongest positive correlation with Dendritic
cells resting (r = 0.64).

Correlation Hub Biomarkers With Immune
Infiltrating Cells
To explore the association of our identified core genes CAMK1D,
CENPV, and TRHDE with immune cell content, we performed
separate correlation analyses. Unfortunately, there was no

statistically significant correlation between the
CAMKD1 expression and the content of 22 types of
aforementioned immune cells (Figure 7A). In addition, the
CENPV expression had a significant negative correlation with
resting memory CD4 T cells, r = −0.581 (Figures 7B,D).
Simultaneously, TRHDE expression had a strong positive
correlation with naive B cells, r = 0.538 (Figures 7C,D). Based
on our results, we propose a speculation that the core genes
CENPV and CRHDE may be involved in disease progression and
regulate the immune microenvironment by mediating resting
memory CD4 T cells and naive B cells, respectively.

DISCUSSION

NAFLD is a disease spectrum of a series of liver diseases,
including simple fatty infiltration (steatosis) and fat and
inflammation [nonalcoholic steatohepatitis (NASH)), and
cirrhosis] without excessive alcohol consumption (<20 g a day
for women and <30 g a day for men is adopted). NAFLD is
associated with metabolic syndrome, including insulin resistance,

FIGURE 3 | WCGNA analysis was used for further screening. (A) Each sample clustered well, with a shear line of 30 as the threshold and one case of outlier
removed. (B) Topological calculations with soft thresholds from 1 to 20 to determine the optimal soft threshold of 6. (C) Based on soft thresholds, the relationship matrix
is converted to an adjacencymatrix and then to a topological overlapmatrix (TOM) for average link hierarchy clustering, which classifies the relevant modules according to
TOM. (D) Calculating the correlation between genes within modules and clinical traits, we found that the green module had the highest correlation with the
occurrence of NAFLD (p = 0.83). (E) The scatter plot of the correlation between GS and MM for 1,196 genes within the green module.
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hyperlipidemia, type 2 diabetes, and obesity. It is considered to
represent the hepatic manifestation of this syndrome (de Alwis
and Day, 2008; Anstee et al., 2011). An epidemiological model
predicts that the prevalence of NAFLD/NASH will continue to
increase and the mortality of associated diseases will double by
2030 (Estes et al., 2018). NAFLD is gradually becoming the
fastest-growing cause of HCC; many risk factors for NAFLD
are also independently associated with HCC, and screening for
NAFLD-related HCC is difficult, so the exploration of the
pathogenesis of NAFLD, related biomarkers, primary
treatment, and prevention is urgent (Ioannou, 2021). In our
study, we applied the GEO database to mine differential genes
in NAFLD patients versus normal patients to identify strong
biomarkers for correlation with the immune microenvironment.
We characterized the differential genes in NAFLD patients versus
normal patients by using various raw letter analysis methods and

validated these differential genes in an external genetic dataset,
finally screening for CAMK1D, CENPV, and TRHDE, and
illustrating the relevance of these biomarkers to the immune
microenvironment. In addition, we queried the Comparative
Toxicogenomics database for compounds or environmental
toxicants that may have potential relationships with core
genes, providing a historic theoretical basis for the primary
prevention and treatment of NAFLD.

Previous studies have shown that among multiple genetic risk
factors, an SNP in the gene-encoding patatin-like phospholipase
domain-containing 3 (PNPLA3) strongly predicts an increased
risk of developing NAFLD. The G allele of the PNPLA3 rs738409
(148M) variant is associated with an increased risk of NAFLD
development, and progression of NAFLD to NASH, liver fibrosis,
and even cirrhosis (Romeo et al., 2008; Valenti et al., 2010).
Epidemiological studies have shown that fatty acids (FAs) and

FIGURE 4 | Exploring the predictive value of biomarkers. (A) Cross-tabulation of relevant genes from WGCNA, LASSO, Logistic, and machine learning to identify
candidate genes. (B–H) ROC analysis of the aforementioned genes.
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palmitoleic acid levels in NAFLD patients predict increased risk
factors for CVD-related mortality and that the principal driver of
CVD in NAFLD patients is a mutagenic lipid profile caused by
increased hepatic lipogenesis. However, the specific pathogenesis
of dilated cardiomyopathy and hypertrophic cardiomyopathy
associated with the NAFLD process is unknown and needs to
be further explored (Lai et al., 2019; Soehnlein and Libby, 2021).
On the other hand, plasma amino acid concentrations have been
associated with the pathogenesis of NAFLD and the progression
of NASH, but the exact mechanisms are unclear. Concentrations
of AA are altered in metabolic diseases such as T2DM, NAFLD,
and obesity, and an established chain of evidence suggests that
AA concentrations are associated with insulin resistance. BCAA
has been of interest and may play a role in promoting peripheral
and hepatic insulin resistance and in accelerating the T2DM

process. In obese patients with NAFLD, fasting BCAA levels are
elevated and associated with peripheral insulin resistance,
possibly in relation to the liver being the site of protein and
amino acid metabolism. In contrast, however, serine and glycine
are found to be reduced in metabolic diseases such as NAFLD,
suggesting that glycine metabolism is associated with the
pathogenesis of NAFLD (Hyötyläinen et al., 2016; Gaggini
et al., 2018). In our study, through the KEGG analysis of
NAFLD, the DO analysis of the screened differential genes,
GO analysis, and GSVA analysis, we found that the
pathogenesis of NAFLD may involve the immune system and
the nutritional metabolic system.

To further validate the correlation between DEGs screened
from the database and NAFLD, LASSO regression analysis,
machine learning, and logistic regression analysis were

FIGURE 5 | Validation of hub biomarkers. (A) Candidate genes were validated in the external validation set, and those marked in red indicate differential expression
between samples. (B) ROC analysis of candidate genes in the external dataset, with blue annotations indicating good predictive performance for the gene.
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performed on 19 DEGs. Machine learning with SVM was chosen
over other tools because of its ability to function with
extraordinary accuracy and effective model. In addition, SVM
machine learning has a nonlinear processing characteristic that
allows it to produce a more accurate output than other
algorithms, even when the data contain a large variability.
However, in this study, when using the SVM’s machine
learning approach for in-depth screening of DEGs, RMSE only
showed a minimum when all genes were included. The weighted
gene coexpression network analysis (WGCNA) is a simple
method that allows the construction of gene expression
networks by aggregating highly related genes into modules, a
method that allows visualization of the most representative AMI
genes. These core elements of the biological network are more
likely to represent essential genes with more critical functions
(Langfelder et al., 2011). In order to identify the core biomarkers,
we crossed the relevant genes screened by the previous methods
and identified a total of seven candidate genes, and after ROC
analysis, we found that all seven genes had strong predictive
power. ROC analysis also demonstrated good predictive power
for these three core biomarkers. We have predicted potential

candidate compounds for these three hub genes, which are
important for both primary prevention and subsequent
targeted therapy in patients.

The CAMK1 family of calmodulin-dependent kinases is
widely expressed in hepatocytes, endothelial cells, immune
cells, and the essential nervous system (CNS) (Parkinson et al.,
2007; Wayman et al., 2008). CAMK1D may play a role in hepatic
gluconeogenesis (Rausch et al., 2018). Lina Xu et al., using
integrated Hi-C, Nanopore, and RNA sequencing techniques
to analyze liver tissues from normal and NAFLD mice, found
thousands of regions in the genome with 3D chromatin
organization and genomic rearrangements in the genome and
revealed genetic dysregulation accompanying these variants.
These genes were identified in NAFLD and were affected by
genetic rearrangements and spatial organization disruption.
Among them, CAMK1 expression was downregulated by
alternating CNV and SV, chromatin loop, domains, and
interaction matrix (Xu et al., 2021). In the type 2 diabetes
CDC123/CAMK1D GWAS (genome-wide association studies)
locus, rs11257655 affects transcriptional activity by altering the
binding of the protein complexes of FOXA1 and FOXA2, a

FIGURE 6 | Analysis of differences in the immune microenvironment. (A) The CIBERSORT algorithm was used to analyze the content of immune cells in different
tissues, and the red markers are the immune cells with different content in the two different samples. (B) PCA analysis of the distribution of different immune cells in
NAFLD and normal tissue samples. (C) A holistic view of the distribution of immune cells between different tissues. (D) Correlation analysis was performed on all immune
cells in the CIBERSORT algorithm.
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potential molecular mechanism in type 2 diabetes (Fogarty et al.,
2014). Christophe Fromont et al. first validated CAMK1D as a
target for diabetes therapy in an in vivo experiment (Fromont
et al., 2020). A single nucleotide polymorphism (SNP) genotyping
of 11,530 cases pointed out that SNP rs10906115A of CDC123/
CAMK1D was significantly associated with susceptibility to type
2 diabetes in the Japanese population (Imamura et al., 2011).
However, the specific mechanism of regulation of NAFLD by
CAMK1D is unclear. CENPV is a component of mitotic
chromosomes associated with cytoplasmic microtubules. Elena
Chiticariu et al. found that CENPV localizes to primary cilia in
interphase, regulates cilia levels of acetylated microtubulin (α-
tubulin), and is overexpressed in basal cell carcinomas and
adnexal skin tumors (Chiticariu et al., 2020). CENPV levels

are critical for cell viability, and either decreased or increased
protein levels lead to cell death. cENPV provides an interesting
link between the chromosomal passenger complex (CPC),
primary contraction of mitotic chromosomes, and peristomal
heterochromatin. The depletion of CENPV leads to a strong CPC
phenotype (difficulties in chromosome bi-orientation and a
failure to complete cytokinesis), followed rapidly by apoptotic
cell death (Tadeu et al., 2008). The function of the CENPV gene is
more organelle-specific and its role in the regulation of NAFLD
has not yet been reported, and determining its detailed role and
mechanism remains an exciting challenge for subsequent
research. TRHDE was reported to be a DNA methylation
marker for precancerous lesions in oral cancer (Shridhar et al.,
2016). The overexpression of the noncoding long RNA TRHDE-

FIGURE 7 | Correlation hub biomarkers with immune-infiltrating cells. (A–C) Analysis of the correlation between the hub gene and immune cell content, with those
marked in red indicating a statistically significant correlation between the gene and immune cells. (D)Once again, statistically significant correlations were made between
hub genes and immune cell content.
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AS1 inhibits lung cancer progression via the miRNA-103/
KLF4 axis (Zhuan et al., 2019). In a study of the genomic
signature of gliomas, TRHDE was found to be positively
correlated with the disease pathogenesis process (Liang et al.,
2017). In a study of the genetic basis of thyrotropin receptor
antibodies and hyperthyroidism in mice immunized with CXB
recombinant inbred strains, it was uncovered that the TRHDE
expression is controlled by thyroid hormones and is linked to
genes related to thyroid function, which represents an extremely
intriguing result (Aliesky et al., 2006). There are no studies on the
role of TRHDE in NAFLD, but it has been reported in oral cancer,
lung cancer, and glioma development, and its relationship with
thyroid hormones could be explored in depth.

Inflammation is a hallmark of NAFLD that continues to
progress to NASH and is characterized by a severe
dysregulation of different innate and adaptive immune cell
compartments, with immune cells regrouping in the liver and
being activated (Parthasarathy et al., 2020). We have presently
obtained two alternative views on the inflammatory response in
NAFLD. While dysregulated immune cells can further exacerbate
liver damage, the inflammatory response that occurs early in the
process of liver injury may be substantial for tissue healing and
repair (Wynn and Vannella, 2016; Eming et al., 2017). Our
analysis of the immune cell content of NAFLD and normal
tissues showed that normal tissues had higher levels of T cells
CD8, activated NK cells, and follicular-helper T cells, while only
Macrophages M1 had a relatively high enrichment fraction in
NAFLD samples. A study in triple-transgenic model pigs suggests
that CD8 T cells play a crucial role in adipose inflammation,
recruiting and activating macrophages after activation in adipose
tissue, which differs from our results for several reasons; we
speculate, first, that CD8 T cells may not be consistently highly
expressed throughout the development of the disease. Second,
CD8 T cells may act more early in the development of NAFLD,
and the exact cause and mechanism may need to be further
explored (Zhang et al., 2021). NK cells perform a fundamentally
meaningful role in liver fibrosis and are generally thought to
reduce fibrotic events by eliminating activated hepatic stellate
cells or altering the phenotype of hepatic macrophages. However,
previous studies have found NK cell dysfunction in some patients
with hepatocellular carcinoma and an association with a poor
prognosis (Cai et al., 2008). In an analysis of the differences in NK
cell surface markers and cell function correlations between
NAFLD and ordinary volunteers, it was discovered that
peripheral blood NK cells from NAFLD patients had reduced
abundance and function (Sakamoto et al., 2021). The regulatory
role of follicular-helper T cells (Tfh) is more in viral and
autoimmune hepatitis. Xiaowen Wang et al. showed that in
studies of blood from HBV-infected mice and patients with
chronic HBV infection, the Tfh cell response to HBsAg was
required for HBV clearance and that this response was blocked.
The inhibition of Treg cell activity with anti-CTLA4 neutralizing
antibodies restored the ability of Tfh cells to acquire HBV
infection and could be implemented in the treatment of
chronic HBV-infected patients. The dysregulation of the
immune response to Tfh also induces lethal autoimmune

hepatitis (Wang et al., 2018). The role of pro-inflammatory
Macrophage M1 in NASH is primarily to exert
immunomodulatory activity, with Macrophage
M1 accumulating in areas of inflammation to secrete pro-
inflammatory factors that exacerbate the progression of
inflammation (Sun et al., 2021). The increase or decrease in
the number of these immune cells can only suggest the
occurrence of immune dysregulation in NAFLD tissues and
the recruitment of some immune cells, which can be useful for
subsequent studies and can be used clinically to slow down the
progression of NAFLD or reverse the disease process to some
extent by regulating the level of immune cells. The most
significant negative correlation was demonstrated between
Macrophages M0 and resting memory CD4 T cells, indicating
that Macrophages M0 may be related to the activation of resting
memory CD4 T cells, CD8 T cells, and dendritic cells. The most
direct positive correlation between CD8 T cells and dendritic cells
resting suggests that CD8 T cells inhibit dendritic cell recruitment
through immune cell interactions during the NAFLD
recruitment. However, this is only speculation and further
experiments are needed to verify the exact relationship and
mechanism of action.

Is there a relationship between the infiltration of immune
cells and the screened hub biomarkers? To address this question,
we analyzed the correlation between CAMK1D, CENPV, and
TRHDE and immune cells, and finally found that CENPV
expression had a direct negative correlation with resting
memory CD4 T cells, and TRHDE expression had a strong
positive correlation with naive B cells; we venture to guess that
CENPV and TRHDE may regulate resting memory CD4 T cells
and naive B cells through certain pathways, and have an impact
on disease progression remission or recovery in NAFLD in
terms of immune and inflammatory responses. Despite our
findings, our conclusions need to be adopted with caution
due to the limitations of our study. Our study is limited to
the processing of previous data, and the timeliness and accuracy
of our findings need to be verified, which may provide a
reference for clinical diagnosis, but more detailed basic
experiments and clinical trials are needed to support our
findings before they can be applied to clinical treatment.
Moreover, NAFLD samples are difficult to obtain, and it is
difficult for us to conduct more assays.

In summary, we screened the GEO database for differential
genes in two datasets, GSE48452 and GSE63067, and performed
LASSO regression analysis, SVM machine learning analysis,
logistic regression analysis, and WGCNA analysis on the
differentially expressed genes. Seven candidate genes
(CAMK1D, CENPV, OPN3, SATB2, SNAP25, TRHED, and
TSPAN3) were finally screened, and three hub genes
(CAMK1D, TRHDE, and CENPV) were identified after the
external dataset validation. In GO analysis, we found that the
disease process in NAFLD is strongly associated with nutritional
metabolism and the immune system, and we identified more
excessive levels of macrophage M1 in NAFLD than in normal
tissue through immune cell content analysis. The ultimate
analysis of hub genes and immune cell correlations suggests
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that CENPV and TRHDE may influence the disease process in
NAFLD by regulating resting memory CD4 T cells and naive
B cells through certain pathways. This may additionally provide a
theoretical basis for subsequent clinical treatment.
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Background: Lynch syndrome is a genetic disease resulting from mismatch

repair gene mutation. Vaccine therapy can enhance the immunogenicity of

Lynch syndrome and improve the therapeutic efficacy of immunotherapy.

However, there is no approved Lynch syndrome vaccine coming onto the

market.

Methods: Herein, we used gene knockdown method to construct Lynch

syndrome cell model, paving way for us to develop Lynch syndrome tumor

lysate vaccine. Then the isograft technique was employed for constructing the

tumor-bearing mouse model of Lynch syndrome. And this isograft model was

treated with PD-1 monoclonal antibody and tumor vaccine, respectively. Flow

cytometry was used for detecting the proportion of immune cells and

immunosuppressive cells, and ELISA was used for detecting the contents of

chemokines and cytokines in the blood circulation system and tumor tissues of

mice. Finally, IHC was used to detect the effects of tumor vaccines as well as

PD-1 antibody on tumor tissue proliferation and angiogenesis.

Results: The results demonstrated that tumor vaccine could prolong the overall

survival of mice, and improve the disease-free survival rate of mice. The vaccine

could increase the proportion of inflammatory cells and decrease the

proportion of anti-inflammatory cells in the blood circulation system of

mice. In addition, tumor vaccine could also improve inflammatory infiltration

in the tumor microenvironment and reduce the proportion of

immunosuppressive cells. The results of IHC showed that tumor vaccine

could inhibit angiogenesis and tumor cell proliferation in mouse tumor tissues.

Conclusion: In colon cancer associated with Lynch syndrome, tumor vaccine

can hinder the growth of tumor cells, and assist immunotherapy whose

therapeutic effect on this kind of cancer is thus enhanced.
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Introduction

Immune checkpoint-inhibitors (ICIs) have been the most

common clinical treatment for solid tumors, which are

extensively applied in treating many cancers including

melanoma, breast cancer and lung cancer due to the good

therapeutic effect (Vaddepally et al., 2020). At present, many

ICIs have got market approval, such as ipilimumab, nivolumab

and pembrolizumab, which have shown great efficacy in clinical

practice. For example, nivolumab combined with chemotherapy

can prolong the median survival time of patients with esophageal

cancer from 11.1 months (chemotherapy) to 13.1 months

(nivolumab plus chemotherapy) (Janjigian et al., 2021). In a

clinical study of patients with advanced triple-negative breast

cancer, the researchers found that for patients with high tumor

mutational burden (TMB) whose TMB over 10, pembrolizumab

increased the objective response rate to 14.3% compared with

chemotherapy (8.3%) (Winer et al., 2020). There are many ways

by which ICIs work. Currently, ICIs drugs mainly target common

immune checkpoints such as CTL4, PD-1 and PD-L1. By binding

to the above targets, ICIs are able to mask immunosuppressive

signals, thereby inhibiting the immune escape of tumor cells,

alleviating the state of T cell depletion in the tumor

microenvironment (TME) and improving the activity of the

immune system (Jia et al., 2020). Much as ICIs have shown

promising therapeutic effects in clinical practice, many patients

do not respond well to the treatment with ICIs as a result of T cell

depletion and poor immunogenicity of cancer cells (Blank and

Mackensen, 2007). The way to improve the therapeutic effect of

ICIs in such kind of patients is a pressing matter for scientists and

clinicians.

Lynch syndrome is an autosomal dominant hereditary

disease resulted from mutations in mismatch repair genes,

and patients with Lynch syndrome have a higher risk of being

diagnosed with colorectal and endometrial cancer. Lynch

syndrome is the most common genetic syndrome giving rise

to colorectal cancer, accounting for 3% of newly diagnosed

colorectal cancer incidences (Sinicrope, 2018). Because

patients with Lynch syndrome have inherited mutations in

mismatch repair genes, they often exhibit microsatellite

instability (MSI) and TMB-H after cancer onset, and

interestingly, these two phenotypes are considered to have a

fair response to immunotherapy (Rizzo et al., 2021). Current

clinical practice has found favorable efficacy of immunotherapy

in patients with Lynch syndrome. The results of ICIs treatment in

patients with pan-cancer Lynch syndrome showed that the

objective response rate is 94% (16/17), of which 94% (15/16)

have persistent response without disease progression and relapse

(Bari et al., 2020). Since cancer patients with Lynch syndrome

have a good drug response to ICIs, the way to improve the

therapeutic effect of ICIs on those patients is an urgent clinical

problem to overcome, which is also the key to enhance the

survival rate of patients with Lynch syndrome.

The tumor vaccine is a vaccine designed by using tumor

tissue antigens, which contains tumor-specific antigens, aiming

at eliciting an immune response against tumor antigens

(Buonaguro and Tagliamonte, 2020). Recently, researchers

have found that the therapeutic effect of ICIs can be

enhanced once the patient’s immune system is mobilized after

the inoculation of tumor vaccine. For example, TAS0314 long-

chain peptide vaccine has been found to have a synergistic anti-

tumor immune effect with PD-1/PD-L1, which can enhance the

therapeutic effect of PD-1/PD-L1 blockage by promoting the

infiltration of cancer-specific cytotoxic T lymphocytes (CTLs) in

tumor tissues (Tanaka et al., 2020). Since tumor cells from

patients with Lynch syndrome are immunogenic and have a

large number of mutation sequences, we speculated that tumor

vaccines based on Lynch syndrome cells may help stimulate the

patient’s immune system and promote anti-tumor immunity to

improve the sensitivity of ICIs. In this study, we first used gene

knockout method to construct mouse MC38Mlh1KD cells, which

underwent homotransplantation to construct a mouse model of

Lynch syndrome. Then mice were treated with tumor vaccine,

and PD-1 blockage separately to explore the synergy of tumor

vaccine on PD-1 blockage treatment. This study investigated the

synergy of tumor vaccine on PD-1 blockage therapy for colon

cancer in Lynch syndrome in the hope of providing more

theoretical basis and reference for treating Lynch syndrome

clinically.

Materials and methods

Cell culture and vaccine preparation

The murine colon carcinoma cell line MC38 (BNCC337716),

purchased from BeNa Culture Collection (BNCC), was cultured

in DMEM-H medium containing 10% FBS along with 1% P/S.

The cells were cultured in a constant temperature incubator at

37°C with 5% CO2. The lentiviral vector encoding Mlh1 shRNA

was synthesized by GenePhama (China) and transfected into

MC38 cells to construct dMMR CRC model cells with stable

knockdown of Mlh1 (MC38M1h1 KD).

The tumor vaccine was prepared based on well-

immunoreactive dMMR-type mouse tumor cells

(MC38Mlh1 KD). MC38Mlh1 KD cells were collected, and

repeatedly frozen and thawed between −80°C and 37°C

(5 minutes each, 4 cycles), followed by one heat shock
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treatment (42°C, 5 min). Lysates from collected tumor cells were

stored at −80°C.

In Vivo animal experiment

To detect the specific effect of tumor vaccine treatment on the

survival time and tumor tissues of mice, 30 C57/BL6 mice aged

6–8 weeks acquired from Nanjing Institute of Model Animals were

equally divided into two groups. The control group were injected

with 2 × 106 (Sinicrope, 2018) MC38Mlh1 wildtype cells in the right lower

limb ofmice, while the experimental groupwere injected with 2 × 106

(Sinicrope, 2018) MC38Mlh1KD cells. These mice were all treated with

vaccine (injected with tumor cell lysate, 10 mg/kg bw, s.c., biweekly).

The survival time experiment was enrolled 20 C57/BL6 mice with

10mice in each group. Treatment continued until 70 days or until the

mice died. The tumor tissues detection experiment was enrolled

10 C57/BL6 mice with 5 mice in each group. Mice were euthanized

after 35 days of treatment, and then measured the tumor tissues

volume and weight.

To detect the effect of tumor vaccine and PD-1 treatment on the

survival time of mice, 40 C57/BL6 mice aged 6–8 weeks acquired

from Nanjing Institute of Model Animals were injected with 2 × 106

(Sinicrope, 2018) MC38Mlh1KD cells in the right lower limb of mice to

construct an isograft dMMR colon cancer model. The mice were

divided into control group (treated with IgG) (Rockland

Immunochemicals Inc., Boyertown, PA, USA), vaccine treatment

group (injected with tumor cell lysate, 10 mg/kg bw, s.c., biweekly),

PD-1 treatment group (injected with murine PD-1 monoclonal

antibody 2.5 mg/kg bw, i.v., biweekly) or double treatment group

(simultaneously injected with 10mg/kg bw tumor cell lysate and

2.5 mg/kg PD-1 monoclonal antibody) according to different

treatment methods, with 10 mice in each group. Treatment

continued until 70 days or until the mice died.

To detect the changes of TME in mouse tumor tissues,

20 C57/BL6 mice aged 6–8 weeks obtained from Nanjing

Institute of Model Animals were divided into groups

according to the above treatments, 5 mice in each

group. Mice were euthanized after 35 days of treatment, and

whole blood of mice was obtained by eyeball blood sampling

method. The tumor tissues were used for subsequent detection.

Tumor length and width were measured to calculate tumor

volume by using the mathematical formula: volume (mm3) =

(width2 (Janjigian et al., 2021) × length)/2.

Flow cytometry

Blood samples were obtained from previously collected

whole blood. Blood samples were collected 150 μl/time from

each mouse once every 2 weeks by eyeball blood sampling

method. For flow cytometry detection of tumor tissues, tumor

tissues were first collected from mice, mashed and passed

through a 100-μm cell strainer and prepared into single cells

suspensions. A panel of conjugated antibodies (Abcam, UK) was

subsequently used for staining: FITC Anti-CD3 antibody, APC

Anti-CD8 alpha antibody, PE Anti-CD4 antibody, PE Anti-

NKR-P1C (NK1.1), FITC Anti-CD11b antibody, APC Anti-

Ly6g antibody (gr1), FITC Anti-CD19 antibody, FITC Anti-

CD83 antibody, PE/Cy7® Anti-PD1 antibody, PerCP/Cy5.5®

Anti-PD-L1 antibody, PE Anti-LAG-3 antibody, PE Anti-

CTLA4 antibody. Negative controls were stained by

lymphocytes of the appropriate isotype. Flow cytometry was

performed using BD FACSVerse™ and analysis of flow

cytometric data was performed using BD FACSuite software.

ELISA test

Under the instructions of manufacturer, ELISA kits

(MultiSciencesBiotech, China): Mouse TNF-a ELISA Kit,

Mouse CCL4/MIP-1β ELISA Kit, Mouse IL-10 ELISA Kit,

Mouse IL-13 ELISA Kit, Mouse CCL11/Eotaxin ELISA Kit,

Mouse CCL5/RANTES ELISA Kit were employed for

measuring expression of immune factors in serum.

Immunohistochemistry test and
hematoxylin-eosin staining

Fresh tumor tissues were taken and fixed by immersion in

formalin solution, and the formalin-fixed tissues were

subsequently sectioned using paraffin embedding. Hematoxylin-

eosin (H&E) staining was used for histopathological observation.

For IHC staining, antigen recovery was first performed in EDTA

buffer at pH = 9.0, followed by blocking of endogenous peroxidase

activity as well as non-specific binding using ltraSen-sitive S-P kits

(Maixin Biotechnology, China). Sections were incubated with rabbit

anti-human anti-PD-L1 (Abcam, United Kingdom), rabbit anti-

human anti-Ki-67 (Abcam, United Kingdom), and rabbit anti-

human anti-CD31 monoclonal antibody at 4°C. Secondary

antibody-horseradish peroxidase co-incubation was subsequently

used (Maixin Biotechnology, China), and 3,3-diaminobenzidine-

tetrahydrochloric acid was used as chromogen for coloration

(Maixin Biotechnology, China).

The scoring criteria for staining intensity were as follows: staining

(0), weak staining (1), moderate staining (2) and strong staining (3).

The scoring criteria for the positive proportion of stained tumor cells

were as follows: 0 (0%), 1 (1%–10%), 2 (11%–50%), 3 (51%–80%),

and 4 (>80%). The staining results were evaluated semiquantitatively

by multiplying the staining intensity by the percentage of positive

tumor cells. Then the sections were scored by two experienced

pathologists, and the average of the scores was selected as the

final result. For evaluation of microtubule density, the number of

microvessels per unit area was calculated using 3 random fields after

staining with CD31, and the mean value was seen as the final result.
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Quantitative real-time polymerase chain
reaction

Trizol reagent (Takara, Japan)was employed for the extraction as

well as purification of total DNA. qRT-PCR was performed in

triplicate in the ABI 7500 fast real-time PCR System (Applied

Biosystems, United States). The relative expression level of

Mlh1 was calculated through normalization to GAPDH internal

controls. The following primers were used for PCR detection:

Mlh1: forward: 5′-CTCCAAGATGAGGCTGTAGGAA-3′;
reverse: 5′-CCTATGAGATGGAAGGCAAGA-3′; GAPDH

forward: 5′-CTGGGCACTGAGCACC-3′; reverse: 5′-AAGTGG
TCGTTGAGGGCAATG-3′.

Western blot

The extraction of total protein and the measurement of protein

concentration were performed respectively by using

radioimmunoprecipitation assay lysis buffer (Beyotime, China)

and the BCA protein assay kit (Thermo Fisher Scientific,

United States), respectively. Protein samples were separated by

10% SDS-PAGE and then transferred onto Polyvinylidene

fluoride membrane (Millipore, United States). Afterwards, the

membrane was blocked in 5% skim milk at 37°C for 1 h and

then incubated with the primary antibodies at 4°C overnight.

After incubating with Horseradish Peroxidase-conjugated

secondary antibody for 1 h at 37°C, the membrane was washed in

TBST and prepared for signal detection. The bands were visualized

using an ECL chemiluminescent detection system (Thermo Fisher

Scientific, United States). The primary antibodies and second

antibody were purchasing from Abcam (United Kingdom), as

anti-Mlh1 antibody (ab92312), anti-GAPDH antibody (ab9485),

goat anti-rabbit IgG H&L antibody (ab6721).

Data analysis

In this paper, Graphpad Prism 8 was used to plot the data and

data analysis, and one-way ANOVAwas used for significance test

in advance, and Student’s t-test was used for intergroup analysis.

p < 0.05 was considered statistically significant.

Results

Tumor vaccines combined with ICIs can
remarkably prolong the survival time of
Lynch syndrome model mice

We first constructed dMMR CRC model cells with stable

knockdown of Mlh1 (MC38Mlh1 KD), and measured the

transfection efficiency through qRT-PCR and western blot.

The results exhibited the mRNA and protein expression levels

of Mlh1 were significantly decreased in sh-Mlh1 group compared

to sh-NC group (Supplementary Figures S1A, B). And then, we

injected with 2 × 106 MC38Mlh1 KD cells in the right lower limb of

mice to construct an isograft dMMR colon cancer model. In

order to verify whether the vaccine effect was specific to the

Lynch syndrome model (MC38Mlh KD), we treated with vaccine to

control group and experimental group. The results exhibited

tumor vaccine significantly improve the disease-free survival rate

of MC38Mlh KD group mice (Supplementary Figures S2A–C), the

tumor volume and weight inMC38Mlh KD group were significantly

decreased compared to MC38Mlh wildtype group (Supplementary

Figures S2D–F). These results clarified the vaccine effect was

specific to the Lynch syndrome model. Subsequently, we

explored whether vaccines made by tumor supernatant could

increase the anti-tumor activity of PD-1 antibody in Lynch

syndrome. Mice were treated with IgG, vaccine, Anti-PD-

1 antibodies or vaccine plus Anti-PD-1 antibody on the third

day after tumor inoculation in mice vaccinated with MC38Mlh1 KD

cells. (Figure 1A). The survival time of mice after treatment

demonstrated that with a contrast to anti-PD-1 antibody

treatment alone, anti-PD-1 antibody treatment combined with

vaccine treatment of mice could improve the overall survival time

of tumor mice (Figure 1B). The result also revealed that the

combined therapy achieved 70-days survival in more mice than

PD-1 antibody or vaccine therapy alone did (Figure 1C).

Tumor vaccines combined with ICIs can
slow the growth rate of tumors in
homografted mice

The above results illustrated that tumor vaccines combined

with ICIs could elevate the overall survival time of mice, and we

redesigned to treat mice with IgG, vaccine, Anti-PD-1 antibodies

or vaccine plus Anti-PD-1 antibody, respectively. Mice were

euthanized on day 35, tumor tissues were excised and tumor

sizes were measured (Figure 2A). The results demonstrated that

the size and weight of tumor tissues in mice were considerably

reduced after treatment with vaccine or PD-1 antibody, and the

size and weight of tumor tissues could be minimized when

treating combined therapy (Figures 2B,C).

Tumor vaccines can alter the circulatory
immune environment in mice

Here, we then analyzed the changes in the immune system of

mice after treatment. Mouse blood was collected while euthanizing

mice, half of which was used for the detection of chemokine content

and the rest was used for analysing the content of specific immune

cells in the blood using flow cytometry. The results showed that NK

cell content was markedly increased, CD19+ B cell and CD8+ cell
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contents were evidently decreased after treatment with the vaccine.

After PD-1 antibody treatment, the content of CD4+ T cells

decreased, and the contents of CD8+ T, NK, CD11b+/Gr1+

CD19+ as well as CD83+ B cells were significantly increased

(Figure 3A). The results of combined treatment showed that

blood CD4+ T cells, NK cells, and CD19+ B cells were

significantly increased and CD11b+/Gr1 cell content was

remarkably decreased in mice compared with PD-1 antibody

therapy alone (Figure 3A). The results showed that the

combination therapy could promote the inflammatory

response and improve the effect of PD-1 antibody therapy.

We also detected the contents of chemokines in the serum of

mice, and the results suggested that the contents of TNF-α,
MIP1β, and IL-13 in the serum were notably increased, and

the content of Eotaxin was significantly decreased after treatment

with the vaccine. After treatment with PD-1 monoclonal

antibody, the levels of TNF-α, MIP1β and RANTES in serum

were significantly increased. The content of MIP1β was

remarkably increased while the contents of IL-10 and IL-13

were remarkably decreased in the combined treatment group

compared with PD-1 monoclonal antibody treatment group

(Figure 3B). To sum up, we found that the combination

FIGURE 1
Combination therapy with vaccine and PD-1 blockage improves clinical outcomes in the Lynch syndrome colon cancer mouse model. (A)
Schema of tumor implantation and treatment (C57/BL6mice were injected with MC38Mlh1 KD cells in the right lower limb and divided into four groups
with ten mice in each group). (B) Kaplan-Meier survival curves of mice that were implanted with MC38Mlh1 KD colon cells and were treated with
different combinations of IgG, Vaccine and PD-1 antibody. (C) The percentages of mice that remained survival at 70th day following tumor
implantation and therapy. Statistical significance was measured using Student’s t-test and one-way ANOVA. *, p < 0.05.
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therapy could promote the inflammatory response and reduce

the immunosuppression of the circulatory system.

Cancer vaccines can alter the tumor
microenvironment

After exploring the effects of PD-1 antibody, vaccines, and

combination therapy on the immune system, we probed into the

possible effects of various treatment combinations on the TME. In

the study, the tumor tissues of mice were excised, and a part of fresh

tissues were taken for IHC and H&E staining. The results of H&E

staining demonstrated that the immune cell infiltration in the

treatment group was more significant than that in the control

group (Figure 4A). The result of PD-L1 IHC staining showed

that PD-L1 expression was increased in the vaccine treatment

and PD-1 antibody treatment groups, and the combination

treatment group exhibited the strongest increasing (Figure 4A).

Subsequently, in this study, the cell infiltration in tumor tissues was

tested by flow cytometry. The result showed that the increase of

various immune cells was not notable after vaccine treatment, while

the CD4+ T, CD8+ T and CD11b+/Gr1+ cell infiltration was

remarkably increased in PD-1 antibody treatment

group. Compared with PD-1 antibody treatment group, the

CD8+ T cell content was significantly increased while CD11b+/

Gr1+ cell infiltration was remarkably decreased in the combined

treatment group (Figure 4B). After examining the infiltration of

immune-related cells, we also detected the infiltration of cells

carrying immune checkpoint-related proteins. The results showed

that there was an increase in cells carrying CTL4+ and LAG3+

proteins after treatment with vaccine, and there was a significant

increase in cells carrying PD-L1 and LAG3 proteins after PD-1

antibody treatment. The results showed that both vaccine treatment

and PD-1 antibody treatment caused stress synthesis of

FIGURE 2
Combination therapy processed better anti-tumor effects than PD-1 blockage and vaccine alone. (A) Schema of tumor implantation and
treatment (C57/BL6 mice were injected with MC38Mlh1 KD cells in the right lower limb and divided into four groups with five mice in each group). (B)
Tumors of each groupwere photographed after being stripped frommice. (C) Tumor size andweight were tested after removal frommice. Statistical
significance was measured using Student’s t-test and one-way ANOVA. *, p < 0.05 vs. Control; #, p < 0.05 vs. Anti PD-1.
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immunosuppressive proteins in cancer cells (Figure 4C). What’s

more, the results of combination therapy showed that compared

with PD-1 antibody therapy alone, the expression of PD-L1 and

LAG3 in tumor tissues weremarkedly decreased, and the expression

of CTLA-4 was significantly increased. These data showed that the

combination therapy exhibited a better inhibitory effect on immune

escape than PD-1 monoclonal antibody therapy alone (Figure 4C).

Tumor vaccine combined with ICIs
inhibited the proliferation of tumor tissue
and angiogenesis

To further explore the effect of vaccine, PD-1 antibody and

combination therapy on the treatment of Lynch syndrome, we

applied IHC to detect the proliferation and angiogenesis of

tumor tissues in mice. The result of Ki67 expression

demonstrated that vaccine, PD-1 antibody, and

combination therapy treatment could reduce the level of

tumor cell proliferation in Lynch syndrome, and

combination therapy acted the best effect (Figures 5A,B).

The results of CD31 staining illustrated that vaccine, PD-1

antibody and combination therapy treatment reduced

angiogenesis in Lynch syndrome mouse model, and

combination therapy exhibited the best effect (Figures

5A,B). The above results suggested that vaccine and PD-1

antibody treatment could inhibit the proliferation level of

tumor cells and reduce angiogenesis in tumor tissues,

combination therapy treatment exerted the best inhibitory

effect.

FIGURE 3
Flow cytometry is used to determine the levels of specific immune cells and chemokines in plasma. (A) Phenotyping of peripheral blood
leukocytes frommice with different treatment combinations. (B) Plasma cytokine levels frommice with different treatment combinations. Statistical
significance was measured using Student’s t-test and one-way ANOVA. *, p < 0.05 vs. Control; #, p < 0.05 vs. Anti PD-1.
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Discussion

Cancer therapy for patients with Lynch syndrome has been a

tricky point, and the advent of immunotherapy, especially ICIs,

has enormously improved the survival of patients with Lynch

syndrome (Lee and Le, 2016; Winer et al., 2019). Because of the

strong immunogenicity of tumor tissues in patients with Lynch

syndrome, patients have a great response to ICIs (Cerretelli et al.,

2020). At present, in addition to the use of ICIs for treating

cancer patients with Lynch syndrome, cancer vaccine is also an

effective treatment method. At present, many studies have

attempted to use tumor vaccines to prevent the incidence of

tumors in patients with Lynch syndrome. For example,

researchers have discovered that injection of immunogenic

frameshiftpeptides (FSP) into patients with Lynch syndrome

can prevent the incidence of Lynch syndrome-related cancers

(von Knebel Doeberitz and Kloor, 2013; Majumder et al., 2018).

In addition, tumor antigen peptide vaccines prepared by using

FIGURE 4
Effect of different combination of treatment on TME. (A)Representative H&E staining and IHC frommicewith different treatment combinations.
(B–C) Flow cytometric phenotyping of cells in colon cancer TME. Statistical significance was measured using Student’s t-test and one-way ANOVA.
*, p < 0.05 vs. Control; #, p < 0.05 vs. Anti PD-1.
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tumor-specific antigens can directly kill tumor tissue or improve

the therapeutic effect of other immunotherapies by stimulating

the patient’s immune system and recruiting killer immune cells

(Soares et al., 2015). At present, a large number of clinical trials

related to cancer vaccines have been carried out, and encouraging

results have been obtained in melanoma (Carreno et al., 2015; Li

et al., 2017). In this study, we firstly clarified that tumor vaccine

effect was specific to the Lynch syndrome model (MC38Mlh KD).

Besides, we prepared MC38Mlh1KD Lynch syndrome model cells

into cell lysate vaccine and treated homograft mice with different

methods, and found that tumor vaccine combined with PD-1

blocking therapy could increase the survival rate of mice and

prolong the overall survival time of tumor-bearing mice.

Subsequent experiments also revealed that the combined

treatment could reduce the growth rate of tumor tissues in

mice. The current study found that combining tumor vaccines

with immunotherapy can hinder tumor growth by improving the

therapeutic effect of traditional immunotherapy. For example,

the team of Duraiswamy et al. (2013). combined tumor vaccines

with PD-1/CTLA-4 blockage to successfully improve the activity

of effector T cells in mouse tumor cells, weaken the inhibitory

effect of T-reg and strengthen the therapeutic effect of PD-1/

CTLA-4 blockage. Herein, we found that tumor vaccines

prepared from Lynch syndrome cell lysates could assist the

therapeutic effect of ICIs and markedly improve the survival

time of tumor-bearing mice.

The TME is a collection of a series of cells in tumor tissues

such as tumor cells, mechanistic cells, and immune cells,

which can affect the growth of tumor tissues in a variety of

ways, such as lower oxygen content can inhibit the immune

response and promote the division of tumor tissues, in

addition, lower pH can also curb the activity of immune

cells, attenuate the effect of chemotherapeutic drugs, and

facilitate immune escape of tumors (Vanichapol et al.,

2018; Lei et al., 2020). Since the TME has a significant and

auxiliary part in the growth of tumor tissue, its targeting role

FIGURE 5
Effect of vaccine, PD-1 blockage and combination therapy on cellular proliferation, and vessel density in tumors. (A,B) Ki67+ cells and
microvessel density are quantified in mice treated with different therapy. Statistical significance was measured using Student’s t-test and one-way
ANOVA. *, p < 0.05 vs. Control; #, p < 0.05 vs. Anti PD-1.

Frontiers in Genetics frontiersin.org09

Ye et al. 10.3389/fgene.2022.877833

175

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.877833


in cancer therapy cannot be disregarded. There are many

current treatments to target the TME, such as the study team

using the combination therapy of Apatinib to promote the

immune response of the immune system by improving blood

supply to tumor tissues and reducing the hypoxic condition of

tumor tissues (Zhao et al., 2019). In addition, there are pH-

sensitive nanomedicines designed using the tumor

pH microenvironment to inhibit tumor development by

inducing apoptosis in tumor tissue (Wijesinghe et al.,

2013). Recent studies have found that tumor vaccines are

an effective means to improve the TME and avoid immune

escape from tumor tissues, for example, Xu et al. (2020).s team

regulated the TME through Listeria-based hepatocellular

carcinoma vaccine and induced macrophage differentiation

to M1 phenotype to promote immune system killing of tumor

tissues. In this study, we examined the immune infiltration in

the circulatory system and TME of homograft mice treated

with tumor vaccine using flow cytometry and ELISA, and

found that killer immune cells such as CD8, CD4, and NK

were significantly increased after treatment, while

immunosuppressive cells MDSC and immunosuppressive

cells with PD-1 and LAG3 antigens were increased after

PD-1treatment and significantly decreased after vaccine

combination therapy. This suggests that tumor vaccines

can reverse the drug resistance response of tumor tissues

to PD-1 treatment and inhibit the resistance of tumor tissues

to PD-1 blocking therapy. In addition, we detected the

contents of immune factors and cytokines in the

circulatory system of mice after vaccine treatment, and

the results demonstrated that the contents of

immunosuppressive cytokines were notably reduced in the

combined treatment group, and the expression levels of

inflammatory cytokines such as TNF-α and MIP-1β were

remarkably elevated in the combined treatment group. In

summary, this study found that cancer vaccines can increase

the anti-tumor immune cell content in tumor tissues by

improving the TME and regulating immune infiltration,

which can not only inhibit the development of cancer

itself, but also synergize ICIs immunotherapy.

Angiogenesis of the TME and proliferation of tumor tissue

are the main causes of rapid tumor development (Zhao et al.,

2019). Therefore, this study also examined the effects of

immunotherapy as well as vaccine therapy on tumor cell

proliferation and tumor tissue angiogenesis, and the results

showed that vaccine therapy could enhance the inhibitory

effect of immunotherapy on tumor cell proliferation and

improve the inhibitory effect of immunotherapy on

angiogenesis. In this study, we found that the combination

therapy could greatly inhibit the proliferation of tumor cells

and the angiogenesis of tumor tissues, thus inhibiting the growth

of tumor tissues.

In summary, this paper found that tumor vaccines had a

therapeutic effect on colon cancer induced by Lynch syndrome,

which can also assist ICIs therapy to improve the therapeutic

effect of ICIs. At the same time, tumor vaccines could regulate the

TME, increase immune infiltration in tumor tissues, reduce the

proportion of immunosuppressive cells, inhibit tumor growth by

inhibiting tumor cell proliferation and angiogenesis in tumor

tissues, and exert a therapeutic role in colon cancer caused by

Lynch syndrome. Tumor vaccine was confirmed in our study to

have a great therapeutic effect on colon cancer caused by Lynch

syndrome. The therapeutic effect of ICIs treatment was improved

by tumor vaccines and investigated by animal experiments. This

study provides a reliable theoretical reference for the treatment of

related cancers caused by Lynch syndrome. Although this study

is enough to prove the role of cancer vaccines in treatment, there

are still shortcomings. In this study, we applied the Lynch

syndrome model with MC38Mlh1 KD cells injected into the limb

of mice, which lacked the content of the native colon cancer

environment. We would try to construct modeling grafted colon

cancer with a proper microenvironment in the follow-up study.

Due to conditions and other reasons, this paper does not well

simulate the actual incidence of Lynch syndrome, and does not

further explore the molecular mechanism by which the vaccine

works. The team intends to further construct an in vivo immune

reconstitution model and further study the effect of

tumor vaccines and the molecular mechanism using

techniques such as gene editing on a model closer to Lynch

syndrome.
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Identification of a lncRNA based
signature for pancreatic cancer
survival to predict immune
landscape and potential
therapeutic drugs

Di Ma1†, Yuchen Yang1†, Qiang Cai1, Feng Ye1, Xiaxing Deng1,2*
and Baiyong Shen1,2*
1Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine,
Shanghai, China, 2Shanghai Key Laboratory of Translational Reseach for Pancreatic Neoplasms,
Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine,
Shanghai, China

Pancreatic cancer is one major digestive malignancy with a poor prognosis.

Given the clinical importance of lncRNAs, developing a novel molecular panel

with lncRNAs for pancreatic cancer has great potential. As a result, an 8-

lncRNA-based robust prognostic signature was constructed using a random

survival forest model after examing the expression profile and prognostic

significance of lncRNAs in the PAAD cohort from TCGA. The efficacy and

effectiveness of the lncRNA-based signature were thoroughly assessed.

Patients with high- and low-risk defined by the signature underwent

significantly distinct OS expectancy. Most crucially the training group’s AUCs

of ROC approached 0.90 and the testing group similarly had the AUCs above

0.86. The lncRNA-based signature was shown to behave as a prognostic

indicator of pancreatic cancer, either alone or simultaneously with other

factors, after combined analysis with other clinical-pathological factors in

Cox regression and nomogram. Additionally, using GSEA and CIBERSORT

scoring methods, the immune landscape and variations in biological

processes between high- and low-risk subgroups were investigated. Last but

not least, drug databases were searched for prospective therapeutic molecules

targeting high-risk patients. The most promising compound were Afatinib, LY-

303511, and RO-90-7501 as a result. In conclusion, we developed a novel

lncRNA based prognostic signature with high efficacy to stratify high-risk

pancreatic cancer patients and screened prospective responsive drugs for

targeting strategy.

KEYWORDS

drug response, immune landscape, prognostic model, long non-coding RNA,
pancreatic cancer
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Introduction

Pancreatic cancer is known as a highly lethal malignancy

with a poor prognosis. Accounting for approximately

496,000 new patients per year worldwide, pancreatic cancer

ranks 14th in new cases among 36 major types of cancer

(Sung et al., 2021). However, the disease reaches as high as

the 4th in cancer-related death, with the death number around

466,000 annually. On average, the 5-year survival rate of

pancreatic cancer is below 10% at the time of diagnosis

(Mizrahi et al., 2020; Zhu et al., 2021). Nowadays, surgical

resection remains the optimal treatment for pancreatic cancer

by increasing the 5-year survival rate to around 20%

(Christenson et al., 2020). For unresectable tumors,

nonetheless, the efficacy of other approaches such as

chemotherapy, radiotherapy, and systemic therapies, despite

receiving incremental progress during the last decade, requires

further assessment. To note, due to lacking severe symptoms in

the early stage, the diagnosis of pancreatic cancer is of great

difficulty and often delayed. Therefore, novel molecular markers

of satisfying sensitivity and accuracy become an urgent demand

for diagnosis and prognosis evaluation purposes. Besides, new

strategies for screening patients with higher long-term risk are

also expected for better clinical decision-making.

Not surprisingly, considerable amounts of studies have

revealed the possibility and value of molecular signatures in

the diagnosis and prognosis of pancreatic cancer over the last few

years. For instance, Wu et al. have developed a nine-gene (MET,

KLK10, COL17A1, CEP55, ANKRD22, ITGB6, ARNTL2,

MCOLN3, and SLC25A45) panel to predict the overall

survival of pancreatic cancer (Wu et al., 2019). Other groups

have also built several signatures based on genes associated with

different biological aspects of pancreatic cancer including

autophagy, methylation, and metabolic changes (Yu et al.,

2021; Xiao et al., 2022; Zhang et al., 2022). Nowadays it is

widely acknowledged that the dysregulation of non-coding

RNA is closely correlated to different types of tumors

including pancreatic cancer. Hence, signature classifiers

generated from non-coding RNAs have also been carried out

using micro RNA (miRNA), long non-coding RNA (lncRNA),

circular RNA (circRNA) and so forth. Nevertheless, the value of

non-coding RNAs in assessing pancreatic cancer has not been

thoroughly explored, as most of them emphasized prognosis

prediction but failed to provide detailed hints on clinical decision

making.

Therefore, this study aims to identify the clinical significance

of lncRNAs for pancreatic cancer evaluation and construct a

comprehensive lncRNA-based signature with high prognostic

efficacy to monitor outcomes of pancreatic cancer patients.

Besides, the molecular signature is used to explore the

immune landscape and potential therapeutic targets and small

molecules between risk subgroups. In detail, expression and

clinical data of pancreatic cancer patients were acquired from

public databases including The Cancer Genome Atlas (TCGA),

Cbioportal, and Cancer Cell Line Encyclopedia (CCLE). An 8-

lncRNA classifier was then constructed by applying Cox and

random survival forest (RSF) regression in differentially

expressed lncRNAs (DElncRNAs). The capacity of the

signature as a prognostic indicator was evaluated in different

aspects. To emphasize, the immune feature landscape, possible

therapeutic targets, and molecules were subsequently checked in

patients with a high-risk score according to the signature in

detail, holding the potential to expand the current therapeutic

strategies for the pancreatic cancer population.

Materials and methods

RNA-sequencing cohorts

An RNA-seq dataset of 177 pancreatic cancer patients

involving RNA expression value and matched clinical

information was obtained from the TCGA data portal (http://

portal.gdc.cacner.gov/repository) and the Cbioportal website

(http://cbioportal.org). Fragments per million reads (FPKM)

normalized expression value was used for further analysis.

The cohort was then randomly split with a 2:1 ratio into a

training group and a testing group.

Cancer cell line data

Expression profiles of human cancer cell lines (CCLs) were

achieved from the Broad Institute CCLE project (http://portals.

broadinstitute.org/ccle). To search for potential therapeutic

agents, sensitivity data of compounds in CCLs were achieved

from the Cancer Therapeutics Response Portal, Board institute

(CTRP, http://portals.broadinstitute.org/ctrp) and PRISM

repurposing dataset (http://depmap.org/portal/prism). The

algorism of drug sensitivity was described in previous studies.

Briefly, the database provided the area under the curve (AUC)

values as the readout of drug sensitivity. The lower AUC values

indicate higher drug sensitivity. Compounds with more than 20%

missing data were excluded from the dataset, and the K-nearest

neighbor algorithm (K-NN) was applied to estimate the AUC

values. To further investigate the mechanism of actions (MoA) of

the drugs screened out, the Connectivity Map tools database

(CMap, http://clue.io) with more than 2000 small molecule

perturbagen types was applied for specific analysis.

Construction of lncRNA-based prognostic
signature

The human lncRNA annotation profile was obtained from

the GENCODE website (GRCh38.p13, release 39, http://
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gencodegenes.org/human). After the acquisition of lncRNA

expression data as described above, the lncRNAs were

separated from gene-coding RNA and other non-coding

RNAs. Differentially expressed lncRNAs (DElncRNAs) were

identified with the criteria of absolute log2 fold-change

(log2FC) > 1 and adjusted p-value < 0.05 between tumor and

control tissues. Afterward, univariate Cox regression was

conducted to identify prognostic lncRNAs which shared a

correlation with the overall survival (OS) time of the patients

in the cohort (p < 0.05). Thus, the candidate prognostic lncRNAs

were determined by overlapping the DElncRNAs and prognostic

lncRNAs.

To develop the lncRNA-based signature, the univariate Cox

proportional hazards regression was first applied to preliminarily

narrow the candidates using the training group. Subsequently, an

RSF regression based on minimal depth was used to finally

identify the signature. The RSF regression model underwent

iteration 1,000 times to construct a lncRNA-based OS

classifier with the largest C-index value. Eventually,

multivariate Cox regression was employed to select candidates

as independent indicators to form the 8-lncRNA-based signature

retained for the next analysis. According to the classifier, each

sample in the cohort was endowed with a risk score following the

equation:

RiskScore � ∑
n

k�1
Coefk × Expk

in which Coefk was the coefficients of each sample, Expk was the

expression of member lncRNAs of the signature. The cohort was

divided into high-risk and low-risk groups by the mean value of

the risk score. Afterward, the efficacy and effectiveness of the

lncRNA classifiers in both training, and validation cohorts were

evaluated by the Kaplan-Meier long-rank test, Time-dependent

ROC curve analysis, multivariate Cox regression and nomogram

scoring.

Immune function analysis

Algorithms including CIBERSORT and ssGSEAwere applied

to compare the pattern of immune infiltration between high-risk

and low-risk groups. Moreover, the Tumor Immune Dysfunction

and Exclusion (TIDE) scoring method were employed to assess

the response to immunotherapy, extent of immune dysfunction,

immune exclusion, and microsatellite instability (MSI) for

patients in high-risk and low-risk groups.

Statistical analysis

All statistical analyses were conducted with the R software

platform (v4.0.2, R Foundation for Statistical Computing,

Vienna, Austria). Some major R packages included “edgeR,”

“limma,” “survival,” “ROCR,” “ggplot2,” “pRRophetic,” and

“randomForestSRC”. To compare variables in multiple groups,

Student’s t-test and ANOVA analysis were used for parametric

factors, whereas theWilcoxon rank-sum test and Kruskal–Wallis

test were applied for nonparametric factors. To measure the

correlation of different variables, Spearman’s rank-order

correlation and Pearson’s r correlation were set. Furthermore,

Kaplan-Meier and the log-rank test were used for survival

analysis. The area under the curve (AUC) was measured to

judge the efficacy of the receiver operating characteristic

curve. For all statistical calculations, a two-tailed p < 0.05 was

considered significant.

Results

Construction of lncRNA based prognostic
signature

The whole RNA transcriptome profile containing tumor

tissue (n = 177) and adjacent control (n = 4) was obtained

from the TCGA portal as described above. Of the

14,078 lncRNAs extracted from the RNA-seq dataset,

540 lncRNAs were identified as DElncRNA under the

condition of absolute log2 FC > 1 and adjust p < 0.05

(Figure 1; Figure 2A; Supplementary Figure S1). On the other

hand, a univariate Cox regression analysis was used to select

2676 prognostic significant lncRNAs (p < 0.05) that possibly

correlated to the OS time of the patients. A Venn diagram was

created by overlapping DElncRNAs and univariate COX positive

lncRNAs to select the candidate lncRNAs (Figure 2B). Next, a

random survival forest (RSF) model was built based on minimal

depth to screen out lncRNAs were most relevant to the prognosis.

The RSF went through 1,000 times iterations under the criterion

of largest C-index value and eventually led to an 8-lncRNA

signature as the prognostic signature model for pancreatic cancer

(Figure 2C). Thus, the multivariate Cox regression was applied to

determine the risk score for each patient by values of coefficient

and expression as described above (Supplementary Figure S2A).

The detailed information on the elemental lncRNAs was listed as

follows (Table 1).

Assessment of the prognostic potentiality
of lncRNA based signature

As the 8-lncRNAs-based classifier for pancreatic cancer

was constructed, its efficacy for prognosis induction was

evaluated in all aspects. First, patients were divided into

high-risk and low-risk groups according to the median

value of the risk score in all the training, validation and

whole groups. Hence, the distribution of risk scores, the
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correlation between vital status and risk score and the

expression pattern of elemental lncRNAs were shown in

detail (Figures 2D–F). To investigate the relationship

between 8 prognostic lncRNAs and the risk score.

Spearman’s correlation analysis was conducted among the

expression of element lncRNAs and the risk score

(Supplementary Figure S2B). Interestingly, the expression of

most members was found strongly correlated with the level of

risk score, represented by MIR600HG with a Spearman’s

coefficient of −0.54 and CASC8 with 0.58. In addition,

certain components of the classifier share a closer

relationship in expression. For example, the correlation

coefficient between Lnc-PQLC1-10 and CASC8 was more

than 0.5, suggesting a potential biological relevance might

exist between them in the development of pancreatic cancer.

Afterward, the expression of lncRNAs of the prognostic

classifier was compared in groups with different risk levels to

further evaluate the differential expression pattern accompanied

by the risk score (Supplementary Figure S2C). As a result, 7 out of

8 components (Lnc-ROBO2-3 excluded) of the signature

expressed differently between groups with different risk levels.

Among them, 5 lncRNAs (Lnc-PQLC1-10, CASC8, Lnc-KAT7-

3, MIR924HG and Lnc-PDK2-5) were found up-regulated in

patients with a higher risk score, while MIR600HG and Lnc-

FIGURE 1
The work flow of the study.
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FIGURE 2
Development of lncRNA based molecular signature. (A) Volcano plot showed DElncRNAs identified from the TCGA-PAAD dataset. (B) Venn
diagram of candidate lncRNAs obtained by overlapping DElncRNAs and Cox positive lncRNAs in the training cohort. (C)OOB error in 1,000 iteration
of the random survival forest regression. (D) Distribution of the lncRNA based signature and expression of component lncRNAs in training group. (E)
Distribution of the lncRNA based signature and expression of component lncRNAs in testing group. (F) Distribution of the lncRNA based
signature and expression of component lncRNAs in whole group.

TABLE 1 Information of the lncRNAs in pancreatic cancer prognostic signature. 8 lncRNA-based molecular classifier.

Gene id Gene name Chromosome Start point End point

ENSG00000236901 MIR600HG 9q33.3 125871773 125877756

ENSG00000267015 LncPQLC1-10 18q23 79337837 79344139

ENSG00000246228 CASC8 8q24.21 127277047 127482140

ENSG00000248954 Lnc-KAT7-3 17q21.33 49887597 49936831

ENSG00000271874 Lnc-RAD1-3 5p13.2 34647370 34656270

ENSG00000240241 Lnc-ROBO2-3 3p12.3 78266893 78298888

ENSG00000267374 MIR924HG 16q22.1 39113067 39800322

ENSG00000276851 Lnc-PDK2-5 17q21.33 50094064 50094647

Frontiers in Genetics frontiersin.org05

Ma et al. 10.3389/fgene.2022.973444

182

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.973444


RAD1-3 expressed lower in the high-risk group. Therefore, more

studies and experiments are in great need to explore the possible

biological role of these novel lncRNAs in tumorigenesis and the

development of pancreatic cancer.

For the Kaplan-Meier survival curve, high-risk and low-

risk groups were compared in the training, validation, and

whole cohorts respectively (Figures 3A–C). In all cohorts,

patients in high-risk groups showed significantly poorer

outcomes of shorter average survival time where p <
0.01 unanimously. These results indicated that the OS- and

RFS classifiers are significantly linked with the prognosis of

pancreatic cancer, which holds the potential as an effective

prediction model. The results claimed that the 8-lncRNA-

based signature strongly correlated to the outcome of

pancreatic cancer, thus holding the possibility as a

prognosis indicator. The time-dependent receiver operating

characteristic (ROC) analysis was subsequently performed.

The areas under the ROC curve (AUCs) of the classifier were

0.94, 0.97 and 0.90 for 1, 3, and 5 years of anticipation in the

training group (Figure 3D), 0.87, 0.86 and 0.86 in the

validation group (Figure 3E), 0.75, 0.83 and 0.81 for 1, 3,

and 5 years in the whole group (Figure 3F). Moreover, the

lncRNA-based panel signature was also assessed when the

recurrence happened to predict other outcomes of the disease

(Supplementary Figures S3C,D). Despite the signature that

could differ the recurrence time and status in K-M regression,

it failed to meet comparable accuracy in ROC analysis with less

than 0.5 in 5-year anticipation.

Comprehensive analysis of lncRNA based
signature and clinical characteristics

As described, the 8-lncRNAs-based molecular signature was

capable of being a novel prognosis indicator with high efficacy for

pancreatic cancer. Nevertheless, whether the lncRNA-based

signature was relevant to conventional clinicopathologic

characteristics remains unclear and requires further study.

Clinical data were obtained as previously described and major

clinical factors were listed with the risk score for combined

analysis.

First, the extent of tumor stage and histological grade were

found positively associated with the risk score in Pearson’s chi-

square analysis, supporting the conclusion that a higher risk

FIGURE 3
Evaluation of the efficacy of lncRNA based signature. (A–C) The Kaplan-Meier survival curves compared the patients in high- and low-risk
subgroups of all training, testing and whole cohorts. (D–F) The ROC curve anticipated the 1, 3, and 5 years survival of patients in all training, testing
and whole cohorts.

Frontiers in Genetics frontiersin.org06

Ma et al. 10.3389/fgene.2022.973444

183

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.973444


score represents advanced tumor progression and worse outcome

(Supplementary Figure S3A,B). Next, major clinicopathological

characteristics including the risk score were jointly assessed in a

two-step Cox regression analysis. As a result, the age of patients,

number of malignant lymph nodes, and the risk score were the

three factors significantly associated with survival time in a

univariate Cox test and thus further went through a

multivariate Cox analysis (Figure 4A). Interestingly, all the

three variables remained significant in the following

multivariate Cox survival test (Figure 4B). Therefore, the 8-

lncRNA-based signature and its risk scoring could be

considered an independent factor for the prognosis prediction

of pancreatic cancer.

To develop a practical, comprehensive model for outcome

prediction in pancreatic cancer, a nomogram involving the

risk scoring and other clinical characteristics was established

(Figure 4C). In the very method, each clinical feature received

one certain point according to its statistical weight in

prognosis prediction. And the total points reflected the

probability of 1, 3, and 5 years of survival. To note, the risk

score of the lncRNA-based signature was of most importance

and predominance while factors such as gender and

histological grade of the tumor weighted minimally in the

model.

Functional enrichment analysis between
risk subgroups

To gain a deeper understanding of the novel mechanism

underlying the lncRNA-based molecular classifier, Gene set

enrichment analysis (GSEA) was applied to investigate

distinguished genes, pathways, and biological processes

between subgroups with a different risk scores. In specific,

1755 differentially expressed genes (DEGs) were identified

between the high-risk and low-risk subgroups at the condition

of absolute log2FC > 1 and p < 0.05. For signaling pathways

described in Kyoto Encyclopedia of Genes and Genomes

(KEGG), these DEGs were significantly enriched in

27 pathways in the high-risk group and 16 pathways in the

low-risk group, respectively. Among them, cell cycle, DNA

replication, retinol metabolism, spliceosome, and systemic

lupus erythematosus were the top 5 KEGG pathways enriched

in the high-risk group according to normalized enrichment score

(NES), while calcium signaling pathway, hematopoietic cell

lineage, neuroactive ligand-receptor interaction primary

immunodeficiency and renin-angiotensin system were the

most relevant pathways in low-risk group (Figures 5A,B). In

addition, biological process (BP) was also evaluated as a major

aspect of gene annotation (GO) analysis, where chromatin

FIGURE 4
Assessment of prognostic ability of both separate and combined usage of risk score and clinical factors. (A)Uni-andmultivariate Cox regression
by risk score and other clinical factors as OS predictor. (B) Nomogram including risk score determined by the lncRNA-based signature and other
clinical factors for OS prognostic assessment.
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assembly or disassembly, chromatin organization involved in the

regulation of transcription, chromosome segregation,

cornification, and DNA conformation change were the most

associated BP in the high-risk group, and neurotransmitter

transport, regulation of membrane potential, regulation of

postsynaptic membrane potential, regulation of trans synaptic

signaling and signal release were enriched in the low-risk group

(Figures 5C,D).

Last but not least, hallmark gene sets defined by Molecular

Signature Database (MSigDB, http://software.broadinstitute.

org/gsea/misigdb) were also checked. Interestingly, gene

clusters related to E2F targets, G2M checkpoint, glycolysis,

interferon α response, and MYC targets were the top

hallmarks positively correlated to the high-risk group, but

only 3 clusters, allograft rejection, KRAS signaling, and

pancreas β cells were relevant to the low-risk group in our

whole cohort (Figures 5E,F).

Estimation of the tumor immune
microenvironment

With the increasing application of immunotherapy for

pancreatic cancer in recent years, it is intriguing to investigate

the possible variation of immune microenvironment among risk

subgroups. To date, the infiltration and enrichment of 22 main

immune cells in the subgroups were analyzed via the

CIBERSORT algorithm (Figure 6A; Supplementary Figure

S4A). The result suggested that patients with a high-risk level

tended to have decreased B naïve cells but elevated M1 and

M2 subtypes of macrophages andmast cells, while other immune

cells remained indifferent. Moreover, Kaplan-Meier survival

regression was performed to investigate the effect on patient

outcomes imposed by specific immune cells according to

CIBERSORT scoring (Supplementary Figure S4B–G). And in

agreement with their infiltration profile, B naïve cell, M1/

M2 Macrophage and mast cells were also observed to impose

a significant effect on the prognosis of patients in the cohort.

Besides CIBERSORT, ssGSEA was also used to compare the

activity of some major immune cells and functions between

different risk subgroups (Figure 6B). Noticeably, antitumoral

immune cells including B cells, CD8+ T cells, T helper cells and

Neutrophils, accompanied by immune functions such as T cell

inhibition, T cell stimulation and type II IFN response were

discovered a reduced activation in high-risk rather than low-risk

patients.

Since the immune microenvironment was altered among

different risk subgroups, it is reasonable to speculate the effect

FIGURE 5
Enrichment of distinguished genes, pathways, and biological processes between low- and high-risk subgroups. (A) Top enriched KEGG
signaling pathways in high risk group. (B) Top enriched KEGG signaling pathways in low risk group. (C) Top enriched GO biological processes in high
risk group. (D) Top enriched GO biological processes in low risk group. (E) Top enriched hallmarks in high risk group. (F) Top enriched hallmarks in
low risk group.
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of immunotherapy in risk subgroups might differ

simultaneously. Therefore, the expression and risk profile in

the cohort were assessed by the Tumor Immune Dysfunction

and Exclusion (TIDE, http://tide.dfci.harvard.edu) and

compared between risk subgroups (Figures 6C,D). To note,

the high-risk group of the cohort received decreasing TIDE

score as well as the extent of immune dysfunction, implying a

favorable effect of immunotherapy might occur among

patients with a high-risk score according to the molecular

classifier. Nonetheless, the level of immune exclusion and MSI

were equal between high- and low-risk subgroups

(Figures 6E,F).

FIGURE 6
Exploration of immune landscape between low- and high-risk subgroups. (A) CIBERSORT algorithm evaluated the level of 22 major immune
cells between risk subgroups. (B) ssGSEA assessed the extent of main immune cells and activations. (C) TIDE scoringwas compared between risk sub
groups. (D) Immune dysfunction was compared between risk sub groups. (E) Immune exclusion was compared between risk sub groups. (F)MSI was
compared between risk sub groups.
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Identification of potential therapeutic
molecules for high-risk score patients

CTRP and PRISM databases, containing large drug

sensitivity profiles in thousands of CCLs, are widely used for

estimating drug response. CTRP involves 481 compounds from

860 CCLs while PRISM contains 1,448 compounds from

499 CCLs. According to the results above, patients with a

high-risk score from our signature were more likely to have a

deteriorative outcome. Thus, potential therapeutic agents with

FIGURE 7
Spearman correlation and differential drug response analysis for high risk group. (A) Positive drugs identified in CTRP database. (B) Positive drugs
identified in PRISM database.
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higher drug sensitivity were searched particularly for high-risk

patients in two different approaches.

First, drug response profiles were obtained from CTRP and

PRISM databases separately. The differential drug response was

compared between high- (top 20%) and low-risk (bottom 20%)

patients to screen out agents with lower estimated AUC values in

high-risk patients (log2FC > 0.05). Subsequently, spearman

correlation analysis was applied between the AUC value of specific

candidates and the risk score of the patients, in which correlation

coefficient r<−0.3 for CTRP and r<−0.5 for PRISMwere considered

potentially effective. Altogether, 2 compounds (selumetinib and

afatinib) from CTRP and 5 compounds (Ro-4987655, PD-

0325901, fluocinolone-acetonide, ingenol-mebutate, 12-O-

tetradecanoylphorbol-13-acetate) from PRISM were identified in

which all these molecules had a significantly lower value of AUC

in high-risk patients compared to low-risk ones (Figures 7A,B).

To further confirm the effectiveness and mechanism of

these drug candidates in the cohort, the CMap mode-of-action

(MoA) database including nearly 3000 small-molecule

compounds was applied. The CMap algorithm compares

the expression profile of DElncRNAs in different risk

subgroups with the existing response pattern of gene

expression for thousands of drugs and molecules in the

library. In specific, the CMap score of less than −95 will be

considered potentially effective. Positive agents selected via

CTRP and PRISM were evaluated in the CMap library,

respectively. And all agents with CMap score less

than −95 were also listed below (Table 2).

Discussion

As a lethal malignancy that causes the second most cancer-

related death, pancreatic cancer remains a critical global health

challenge. Despite tremendous progress has been made during past

decades in understanding the genesis and development of this fatal

disease, only a fraction of patients have the opportunity to receive

radical or surgical resection. Currently, an increasing number of

curative approaches including chemotherapy, targeted therapy, or

immunotherapy are available for patients with unresectable or

metastatic disease, but with merely reluctant effects. To improve

the process of clinical decision-making, physicians and surgeons

dedicated years to looking for novel strategies for better diagnosing

and prognosis guiding for pancreatic cancer. At the moment,

clinicians depend largely on pathological factors such as TNM

classification, AJCC tumor staging, or histological grade of the

tumor to select proper therapy and forecast the outcome for a

certain patient. Nonetheless, novel biomarker panels with high

accuracy and specificity are widely accepted as a promising

approach that could shed light on improving clinical surveillance

and management of pancreatic cancer.

In recent years, the roles of non-coding RNA including micro

RNA (miRNA), circular RNA (circRNA) and lncRNA have been

increasingly emphasized in tumor biology. Numerous studies have

revealed that dysregulated lncRNA participates in processes of

carcinogenesis and progression of pancreatic cancer. For

instance, Liu has reported that lncRNA NR2F1-AS1 promotes

proliferation and invasion of pancreatic cancer by regulating the

neighboring NR2F1 gene and activating AKT/mTOR signaling

pathway (Liu et al., 2022). Huang has demonstrated that

lncRNA LNC00842 prompts the malignancy of pancreatic

cancer by preventing acetylate PGC-1α from deacetylation and

remodeling the metabolic status of cancer cells (Huang et al., 2021).

Additionally, Zheng has announced that lncRNALINC00673 serves

as a tumor suppressor by accelerating the ubiquitination of

oncogene PTPN11 via binding to miRNA-1231 and competing

for the endogenous RNA (ceRNA) mechanism (Zheng et al., 2016).

As our knowledge of translating molecular profiling and genetic

TABLE 2 Information of candidate agents identified by CTRP, PRISM and CMap databases. Candidate molecules identified by public databases.

Name Description Status CMap score

Selumetinib MEK inhibitor Approved 3.28

Afatinib EGFR inhibitor Approved −34.5

Ro-4987655 MEK inhibitor Phase I NA

PD-0325901 MEK inhibitor Phase I/II 2.64

Fluocinolone-acetonide Glucocorticoid receptor agonist Approved 0

Ingenol-mebutate PKC activator Approved 85.49

12-O-tetradecanoylphorbol-13-acetate PKC activator Phase I/II NA

LY-303511 Casein kinase inhibitor No data −98.38

RO-90-7501 Beta amyloid inhibitor No data −98.17

TG-101348 FLT3 inhibitor Phase I/II −97.64

Baeomycesic-acid Lipoxygenase inhibitor No data −97.24

Pirarubicin Topoisomerase inhibitor Phase II −97.22

PIK-75 DNA protein kinase inhibitor No data −96.65
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defects into novel biomarkers and targets soars, the potentiality of

lncRNA in pancreatic cancer is not to be neglected.

The major pursuit of the present study is to construct a

lncRNA-based molecular signature that hosts high efficacy in

predicting the outcomes of pancreatic cancer. We have noticed

that all patients with pancreatic cancer are now treated with one

universal norm mainly based on imaging experiments. The lack of

corresponding biomarkers and specified measures possibly result in

unsatisfactory therapeutic effects. Therefore, another purpose of the

study is to develop a tailored treatment for a certain proportion of

patients with possible high risk and worse outcomes.

To achieve these goals, the TCGA-PAAD cohort was randomly

split and applied for prognostic analysis. After screening out the

differentially expressed lncRNAs and prognostic lncRNAs that were

Cox-positive, an RSF model based on minimal depth were

established to finally identify target lncRNAs and to form a

lncRNA based classifier with the highest efficacy and

effectiveness. Hence, the cohorts were subsequentially divided

into high-risk and low-risk groups according to the median

value of the risk scores by the signature. The survival status of

the high-risk and low-risk groups was then compared via Kaplan-

Meier survival analysis. The result indicates a huge gap between the

subgroups where individual samples with high-risk scores reveal

remarkably worse prognoses than their counterpart in low-risk

groups. In addition, the signature exhibits superior efficacy in

prognosis anticipation, where the AUC value in ROC analysis

exceeds over 0.90 for all 1, 3, and 5 years prediction of OS in the

training group and reaches 0.75 to 0.83 overall. Furthermore, the

signature was approved by the uni- and multivariate Cox as one

independent predictive factor withmarked significance. Last but not

least, a combined predictionmodel that includesmultiple associated

factors was carried out using a nomogram to put the prognosis

prediction of pancreatic cancer into practice.

Despite our analysis suggesting that the lncRNA-based signature

is of both expressional and prognostic significance, most component

lncRNAs consisting it remains unknown in tumor biology. As the

champion with the highest coefficient value among all member

lncRNAs, the association between CASC8 and the malignant tumor

has beenmarked recently. It was reported that CASC8 promoted the

proliferation of retinoblastoma cells via manipulating the

methylation of miRNA-34a (Yang B. et al., 2020). Besides,

inhibiting CASC8 led to decreased development in non-small cell

lung cancer and enhanced sensitivity against chemotherapy,

implying CASC8 might be a novel target for cancer treatment in

the future (Jiang et al., 2021). MIR600HG is another

elemental lncRNA with a high coefficient but rather negative

than positive. Pieces of the literature suggested that MIR600HG

suppressed metastasis and development by targeting oncogenic

ALDH1A3 in colorectal cancer (Yao and Li, 2020). Nevertheless,

other studies also indicated that MIR600HG induced but not

hindered the progression of the same disease, reflecting its

complex nature in tumor biology (Huang et al., 2022).

Furthermore, the finding that elemental lncRNAs had

considerable mutual correlation in expression suggests some of

them might have relevant mechanisms. More functional study is

in great need to gain a deeper understanding of these lncRNAs

which might unravel novel mechanisms in pancreatic development.

Pancreatic cancer is well known for its feature of immune

suppression due to the oncogenic drivers (Bear et al., 2020). By far

no single-agent immune therapywas proven clinically effective. And

immunemodulators are jointly applied with other treatments. After

decades of dedication, scientists gradually unraveled the pivotal role

of the classical oncogene KRAS and the activation of its mutation in

pancreatic cancer. Not only as the trigger of carcinogenesis, but the

inception of mutant KRAS signaling also orchestrates a complex

network of immunosuppression by manipulating the tumor

microenvironment (TME) in pancreatic cancer. Evidence shows

that the hyperactivation of KRAS prevents both the innate and

adaptive immunity by regulating the expression of immune

checkpoint CD47 and PD-L1, activating immune suppressive

cells, modulating the level of major histocompatibility complex

class I (MHC), forming an inconvenient stromalmicroenvironment

and so forth (cancer cell p2). Despite all the disadvantages,

developing novel strategies of immunotherapy for pancreatic

cancer is still able to catch the public interest. Several

approaches have been proposed for future combinatorial

treatments such as stimulating the antigen specificity of T cell

immunity, increasing the function of effector T cells, and

diminishing the immunosuppressive myeloid and stromal cells.

In this study, the assumption was made that risk subgroups

might relate to different immune landscapes. Thus, activation of

major immune cells and functions were compared by CIBERSORT

and ssGSEA. The result revealed that the activation of a series of

major immune cells including B naïve cell, CD8+ T cell, T helper cell

and neutrophils were modestly down-regulated in the high-risk

group, suggesting that the activation of immune cells in tumors of

the high-risk patients are possibly paralyzed. Consistently, crucial

immune functions such as T cell inhibition, T cell stimulation and

IFN response were also found to decline in the high-risk

group. Taking together, the enhanced immunosuppression in the

high-risk group might be one possible explanation for its notorious

outcome.

Of note, as one pivotal component in the tumor

microenvironment of pancreatic cancer, the activation of

M2 macrophage was found elevated in high-risk patients. The

polarization of tumor-associated macrophage (TAM) has been

widely accepted as one symbolic event in early and advanced

tumorigenesis. Also, several studies confirmed increased

M2 deviation of macrophages that promotes tumor behaviors

including tumor proliferation, metastasis, and immune escape in

pancreatic cancer (Yang S. et al., 2020). Moreover, a meta-analysis

containing 1,699 patients with pancreatic cancer concludes that the

activity of M2 macrophage is not only closely associated with

carcinogenesis, but also has a clear impact on the OS of

pancreatic cancer, and thus might be considered a diagnostic

and therapeutic target in the future (Yu et al., 2019).
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Besides, the gene enrichment and tumor immune analysis

unanimously observed an increased interferon-alpha response in

the high-risk subgroup. As one of the oldest immune-based

therapeutic options for cancer treatment, interferon-alpha is

widely used to suppress tumor growth in melanoma, lymphoma,

renal carcinoma and so forth. In pancreatic cancer, some clinical

trials suggested that chemotherapy based on interferon might

improve the overall outcome after surgical resection (Jensen

et al., 2014; Ohman et al., 2017). Nonetheless, more efforts are

still required to assess the potential of interferon as a first-class

approach in a certain population of pancreatic cancer.

In addition, the potential responsibility for the immunotherapy

was evaluated by TIDE analysis. Paradoxically, the result indicated

that the high-risk group positively correlated with the declined level

of TIDE score and immune dysfunction to their low-risk peer,

suggesting promising anticipation of therapeutic effect in the high-

risk group. To our knowledge, the TIDE algorithm was built on

specific tumor types of melanoma and non-small cell lung cancer

(NSCLC). The unique characteristic of heterogeneity and

immunosuppression in pancreatic cancer could leave the result

debatable. In sum, further studies are drastically needed to gain a

deeper understanding of immune activity in pancreatic cancer

before novel promising therapeutic strategies are to be developed.

Last but not least, potential small molecules that might have

therapeutic effects, particularly for high-risk patients were searched

viaCTRP, PRISM andCMap databases. As the only agent identified

by CTRP and PRISM with a negative CMap score, Afatinib belongs

to the tyrosine kinase inhibitor family and is mainly effective for

epidermal growth factor receptor (EGFR) and human epidermal

growth factor receptor 2 (HER2). Afatinib, under the commercial

name of Gilotrif, has received approval as a first-line treatment for

NSCLC. Other indication includes advanced breast cancer with

HER2 positive. On-going and complete clinical trials are revealing

the potential efficacy of Afatinib in lung cancer other than NSCLC,

Head, and Neck squamous cell carcinoma, glioma, and prostate

cancer (Molife et al., 2014; Reardon et al., 2015; Hayashi et al., 2022;

Kao et al., 2022). Noticeably, two studies exploring the effect of

Afatinib on pancreatic cancer acquired only negative results (Haas

et al., 2021; van Brummelen et al., 2021). In a phase I study, Afatinib,

together with another agent selected from the CTRP database,

Selumetinib, was administrated on KRAS-mutated pancreatic

cancer (van Brummelen et al., 2021). The result suggested that

despite the combination can be used on KRAS-mutated tumors

without severe complications, the clinical efficacy was also limited.

The other phase II trial concluded that the combination therapy of

Afatinib plus gemcitabine did not exhibit a synergistic effect and

failed to surpass gemcitabine application alone (Haas et al., 2021).

Yet it is still not clear if Afatinib might be more beneficial to certain

portions of pancreatic cancer patients.

According to CMap analysis, 5 novel molecules exhibited

strong therapeutic potentiality (CMap < −95). LY303511 inhibits

the activity of casein kinase 2, which is known to prompt the

translation from the G1 to G2 phase and therefore down-

regulated cellular proliferation in A549 cells (Kristof et al.,

2005). Afterward, LY303511 also increases apoptosis in tumor

cells via sensitizing TRAIL signaling in HeLa cells (Tucker-

Kellogg et al., 2012). However, little is known about the

function of LY303511 in pancreatic cancer, and no clinical

trial using the agent were carried out so far. TG-101348, a

selective JAK antagonist, is one rising star in the antitumor

pharmacy. It has been extensively studied in hematology by

both in vitro and in vivo models (Lasho et al., 2008; Wernig

et al., 2008; Lasho et al., 2010). Running clinical studies are

investigating the role of this promising molecule in leukemia and

myeloproliferative neoplasm. Interestingly, a recent study

showed that TG-101348 ameliorates hepatic fibro-genesis by

inhibiting the TGF-β relied upon activation of hepatic

fibroblasts, indicating a broad future prospective of this novel

molecule (Akcora et al., 2019).

Conclusion

To. conclude, this study generated a novel lncRNA-based

signature based on a random forest model to predict the overall

survival of pancreatic cancer. The efficacy and effectiveness of

the signature were evaluated individually and combined with

other clinical characteristics. This lncRNA panel, either alone

or in combined efforts with other clinical factors, can provide a

novel strategy for prognosis anticipation and clinical decision of

pancreatic cancer. High-risk patients entitled to the signature

tend to have considerably worse outcomes than their low-risk

counterparts. And enhanced immunosuppression might be one

reasonable explanation. Last but not least, potential therapeutic

molecules were excavated from public databases. The result

turns out Afatinib, LY-303511, TG-101348 and Pirarubicin

could be candidates that are particularly effective for patients

with a high-risk score. But before understanding all this, more

efforts on validation and mechanistic exploration of these genes

and drugs are still in great demand.
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