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Bottom-Up and Top-Down Attention
Impairment Induced by Long-Term
Exposure to Noise in the Absence of
Threshold Shifts
Ying Wang 1,2,3†, Xuan Huang 1,2,3†, Jiajia Zhang 1,2,3†, Shujian Huang 1,2,3, Jiping Wang 1,2,3,

Yanmei Feng 1,2,3, Zhuang Jiang 4*, Hui Wang 1,2,3* and Shankai Yin 1,2,3

1Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital,

Shanghai, China, 2Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China, 3 Shanghai Key Laboratory of

Sleep Disordered Breathing, Shanghai, China, 4Department of Otolaryngology, The First Affiliated Hospital, College of

Medicine, Zhejiang University, Hangzhou, China

Objective: We aimed to assess the effect of noise exposure on bottom-up and top-

down attention functions in industrial workers based on behavioral and brain responses

recorded by the multichannel electroencephalogram (EEG).

Method: In this cross-sectional study, 563 shipyard noise-exposed workers with clinical

normal hearing were recruited for cognitive testing. Personal cumulative noise exposure

(CNE) was calculated with the long-term equivalent noise level and employment duration.

The performance of cognitive tests was compared between the high CNE group (H-

CNE, >92.2) and the low CNE group; additionally, brain responses were recorded with

a 256-channel EEG from a subgroup of 20 noise-exposed (NG) workers, who were

selected from the cohort with a pure tone threshold <25 dB HL from 0.25 to 16 kHz

and 20 healthy controls matched for age, sex, and education. P300 and mismatch

negativity (MMN) evoked by auditory stimuli were obtained to evaluate the top-down

and bottom-up attention functions. The sources of P300 and MMN were investigated

using GeoSource.

Results: The total score of the cognitive test (24.55 ± 3.71 vs. 25.32 ± 2.62, p

< 0.01) and the subscale of attention score (5.43 ± 1.02 vs. 5.62 ± 0.67, p <

0.001) were significantly lower in the H-CNE group than in the L-CNE group. The

attention score has the fastest decline of all the cognitive domain dimensions (slope

= −0.03 in individuals under 40 years old, p < 0.001; slope = −0.06 in individuals

older than 40 years old, p < 0.001). When NG was compared with controls, the P300

amplitude was significantly decreased in NG at Cz (3.9 ± 2.1 vs. 6.7 ± 2.3 µV, p

< 0.001). In addition, the latency of P300 (390.7 ± 12.1 vs. 369.4 ± 7.5ms, p <

0.001) and MMN (172.8 ± 15.5 vs. 157.8 ± 10.5ms, p < 0.01) was significantly

prolonged in NG compared with controls. The source for MMN for controls was in the

left BA11, whereas the noise exposure group’s source was lateralized to the BA20.
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Conclusion: Long-term exposure to noise deteriorated the bottom-up and top-down

attention functions even in the absence of threshold shifts, as evidenced by behavioral

and brain responses.

Keywords: noise, attention function, P300, mismatch negativity, bottom-up, top-down

INTRODUCTION

Noise is one of the most common types of pollution in both
occupational and non-occupational environments (1). Long-
term noise exposure that exceeds certain levels can harm the
auditory system, resulting in progressive hearing loss and an
increase in hearing sensitivity threshold (2, 3). Meanwhile,
evidence of the non-auditory effects related to noise exposure
is growing (4, 5), such as, annoyance (6), disturbed sleep (7),
cardiovascular disease (8), and anxiety (9). In addition to these
effects, noise exposure affects a variety of cognitive processes,
such as reaction time, memory, perception, and attention (10).
Human error and, in some cases, increased accidents may
result from the alteration of attention performance (11). A
previous study demonstrated that noise exposure could impair
performance on the focused attention task (12), while some
studies found that noise could increase arousal levels and
accuracy in computerized attention tests (13). The effect of noise
exposure on attention performance remain rather inconclusive
(14, 15).

One of the influential parameters in the effect of noise on
attention performance could be noise characteristics. Jafari et al.
(10) discovered the decreased attention in low-frequency noise-
exposed subjects (16) and a significant reduction of visual and
auditory attention when noise intensity was at 95 dBA level.
Smith and Miles (17) found that subjects who were exposed to
noise for 5 h made more errors than those who were exposed
for 2 h in a reaction time task. Pawlaczyk-Łuszczyńska et al.
(18) discovered that the low-frequency noise might affect the
concentration and attention function. Furthermore, exposure
duration, intensity, education years, gender, age, hearing level,
and even basic diseases could all be influential parameters
regarding the effect of noise on attention performance and might
lead to these apparently contradictory results.

Attention is not a monolithic process, and two types of
attention are commonly distinguished: top-down and bottom-up
attention (19, 20). The voluntary allocation of attention to certain
features or objects is referred to as top-down attention (21).
Attention, on the other hand, is not only voluntarily directed.
Salient stimuli can attract attention, even though the subject
has no intention of focusing on these stimuli (22). Bottom-up
attention refers to solely being guided by externally driven factors
to stimuli (22). The attention process can be modulated by “top-
down” specific task goals and expectations as well as “bottom-
up” external-driving factors (23). “Bottom-up” attention plays a
critical role during auditory processing in noisy environments
(24), which is capable of tracking certain auditory stimuli in
noisy environments without paying attention voluntarily to the
auditory modality. In tasks with several components, noise may

cause an increase in concentration on the dominant or high-
probability component at the expense of other features (12).
However, there is still a scarcity of solid evidence from people
who have documented the effects of noise exposure on top-down
and bottom-up attention performance.

In this study, we aimed to evaluate the effect of noise exposure
on bottom-up and top-down attention functions in industrial
workers in the absence of peripheral hearing loss based on
behavioral and brain responses recorded by the multichannel
electroencephalogram (EEG). First, we utilized the Montreal
Cognitive Assessment (MoCA) cognitive test to assess the
cognitive performance, particularly attention, in a large cohort
of shipyard workers with long-term noise exposure. In addition,
we measured the P300 and the mismatch negativity (MMN),
which reflect the brain’s sound encoding, in a subgroup of 20
noise-exposed workers with pure tone thresholds <25 dB HL
from 0.25 to 16 kHz, selected from the cohort and 20 healthy
controls matched for age, gender, and education; their hearing
functions were further evaluated by a comprehensive test battery
containing both subjective and objective measures (25).

METHODS

Participants and Study Design
A large-scale epidemiological survey was conducted from June
to July 2019 (25). A questionnaire was used to collect the
cross-sectional physical examination data from 807 sanding,
welding, metal, and cutting workers, such as demographics,
noise exposure duration, type of work, history of major diseases,
including genetic and drug-related hearing loss, diabetes,
hypertension, smoking, and alcohol consumption, and use of
hearing protection devices. Audiologic evaluations and personal
cumulative noise exposure (CNE) estimates were conducted, as
described in our previous study (25). By the median (92.2 dBA-
year) of CNE, all participants were divided into two groups:
high CNE (H-CNE) and low CNE (L-CNE). Then, recruited
participants completed cognitive tests to assess the cognitive
function by professional physicals (26). The procedures and
criteria for participant inclusion and exclusion are outlined in
Figure 1. Inclusion criteria include: (1) age < 50 years; (2) air
conduction thresholds < 25 dB HL at 0.25–8 kHz in bilateral
ear; (3) employment duration > 2 years; (4) right-handed; and
(5) nativeMandarin speaker. Exclusion criteria include abnormal
tympanograms, a history of otological diseases, or reading or
language difficulties.

Furthermore, 20 participants were selected at random from
L-CNE group as the noise-exposed group (NG) based on the
following criteria: (1) under the age of 40 years; (2) pure-tone
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FIGURE 1 | The flowchart illustrates the study design and participants.

average (PTA) < 25 dB hearing level at any frequency between
0.25 and 16 kHz; (3) right-handedness; and (4) native Mandarin
speakers. The NG group underwent more extensive auditory
processing tests, such as an electrocochleogram (ECochG) and
auditory brainstem responses (ABR). A control group (CG)
of 20 healthy subjects without a history of occupational noise
exposure was matched for age, gender, education level, and
hearing thresholds. On-site measurements of ECochG and ABR
were taken. The high-density EEG was performed during a
routine visit to our hospital.

This study was approved by the Institutional Ethics Review
Board of the Shanghai Sixth People’s Hospital affiliated with
Shanghai Jiao Tong University and was registered in the
Chinese Clinical Trial Registry (http://www.chictr.org.cn/index.
aspx, registration number: ChiCTR-RPC-17012580). Potential
consequences and benefits of the study were explained, and a
written informed consent was obtained from every subject before
this study.

Cognitive Test
The MoCA Beijing Version (MoCA-BJ) was administered
by professional geriatricians (26), which is considered as
an acceptable tool for lower education level groups in both
urban and rural areas (27). The MoCA-BJ scale contained

seven cognitive domains (5 points-visuospatial and executive
function, 3 points-naming, 6 points-attention, 2 points-
abstraction, 3 points-language, 5 points-delayed memory, and
6 points-orientation) ranging from 0 to 30, with a higher
number indicating better performance. One point was used
for education adjustment, in which an additional point can
be added to the total score if the individual education years
≤12 years.

ECochG and ABR
The SmartEP auditory evoked potential system (Intelligent
Hearing Systems; Miami, FL) was used to measure the ECochG
and ABR in a soundproof room. The acoustic stimulation was
delivered via ER-3A insertable earphones (Etymotic Research;
Elk Grove Village, IL). The recording electrode was placed
near the tympanic membrane for ECochG or the hairline
in the middle of the forehead for ABR, and the reference
electrode was on the mastoid. The amplitude and latency
of the compound action potential (CAP) in ECochG and
waves I and V in ABR were measured in the response to
80 dB HL clicks. The stimulating rate was 13.1Hz, and the
electrical resistance was <3 kΩ . The responses were band-pass
filtered between 200 and 2,000Hz and averaged 1,024 times in
each trial.
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FIGURE 2 | Event-related potentials (ERPs) procedure. (A) The continuous auditory stimulus comprised both rarely presented target sounds and frequently presented

standard sounds in two tasks. (B) The 2-tone auditory oddball task (P300, for top-down analyses). The participants were required to discriminate the target stimulus

from the standard tone by pressing a button. (C) The passive listening task (MMN, for bottom-up analysis). The participants were instructed to watch the silent movie

without responding to the presented auditory stimulus.

Event-Related Potential
EEG Acquisition
Electroencephalogram signals were collected in a soundproof
room using the Geodesic EEG System (GES 300, Electrical
Geodesics; Eugene, OR). A 256-channel HydroCel Geodesic
Sensor Net was used to place all the electrodes, and all electrode-
skin impedance values were kept below 50 k� during the
recording. Responses were recorded online relative to a vertex
reference electrode (Cz) at a sampling rate of 1,000Hz and then
digitally filtered (0.3–70Hz). Participants were instructed to keep
awake and avoidmoving their eyes or changing their posture, and
the EEG data were monitored for signs of drowsiness.

Event-Related Potential Procedure
The auditory oddball task required participants’ responses
based on a cognitive decision regarding the auditory stimulus
types. The results of this oddball task were interpreted as
auditory “top-down” effects, principally (28). Afterwards, in a
passive listening task, participants would hear the same stream
of auditory stimuli as in the oddball task, and this passive
listening task could reflect the “bottom-up” attention effect (28).
Therefore, participants engaged in the following two auditory
tasks during EEG acquisition (Figure 2): (1) a 2-tone auditory
oddball task. The oddball task consisted of two stimuli that
were presented in a random order. One stimulus is the quasi-
random sequence of frequent standard tones (1,000Hz, an 85%
occurrence probability), while another stimulus is infrequent
deviant (target) tones (2,000Hz, a 15% occurrence probability).

The whole task consisted of a total of 1,000 auditory stimuli
with random interstimulus intervals (ISIs) ranging from 850
to 1,450ms. In the oddball paradigm, all stimuli (75-dB sound
pressure level with 50-ms duration shaped by a 5-ms rise/fall
time window) were delivered through a loudspeaker (Micro-
DSP, Sichuan, China) placed 100 cm from the subject at an 180
degrees azimuth. The participants were required to discriminate
the target stimulus from the standard tone by pressing a button
with their eyes closed to minimize any destructive effects due to
alterations in visual attention. (2) A passive listening task used
the same series of stimuli in the auditory oddball task. During
this task, we showed a silent movie to the participants to divert
their attention away from the presented auditory stimuli. They
were instructed to watch the movie and not respond to the
simultaneously presented target auditory stimuli.

ERP Analysis
Event-related potential (ERP) data were analyzed offline with
the Net Station 4.3 software (EGI). The continuous EEG
signals were digitally filtered between 0.1 and 40Hz, and then
segmented using the event stimulus timestamp. All epochs
were calculated 100ms before and 700ms after stimulus onset.
After segmentation, artifact detection was performed using the
Net Station artifact detection tool, which automatically detects
eye blinks and eye movements and marks bad channels. Data
were baseline-corrected using a 100ms pre-stimulus period. A
single-trial examination was performed for each participant, and
artifacts were rejected before grand averages were computed. The
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TABLE 1 | Demographic characteristics of subjects in the high-cumulative noise exposure (H-CNE) and low-CNE (L-CNE) groups.

H-CNE group L-CNE group

Variable ≤40 yrs.

(n = 216)

>40 yrs.

(n = 55)

Overall

(n = 271)

≤40 yrs.

(n = 245)

>40 yrs.

(n = 47)

Overall

(n = 292)

P-value#

Age, mean (±SD), yrs. 32.5 ± 4.4 45.7 ± 4.0 35.2 ± 6.8 31.7 ± 4.6 44.5 ± 3.0 33.8 ± 6.4 0.012

Sex, male, (%) 202 (93.5) 51 (92.7) 253 (93.4) 228 (93.1) 41 (87.2) 269 (91.8) 0.483

Education years, mean

(±SD), yrs.

10.2 ± 2.1 9.4 ± 2.0 10.1 ± 2.1 10.5 ± 2.1 9.8 ± 2.2 10.4 ± 2.1 0.0 76

Exposure duration,

mean (±SD), yrs.

8.9 ± 4.1*** 12.0 ± 5.5** 9.5 ± 4.6 6.6 ± 3.7 8.7 ± 4.3 7.0 ± 4.0 <0.001

CNE, median (IQR),

dBA-year

94.8 (92.5–105.4)*** 96.4 (92.9–106.4)*** 95.2 (92.5–106.4) 90.4 (76.0–92.2) 90.1 (77.8–92.2) 90.4 (76.0.9–92.2) <0.001

Diabetes, n (%) 2 (0.9) 2 (3.6) 4 (1.5) 2 (0.8) 0 (0) 2 (0.7) 0.362

Hypertension, n (%) 191 (88.4) 43 (78.2) 234 (86.3) 203 (82.9) 38 (80.9) 240 (82.2) 0.176

Smoking, n (%) 105 (48.6) 23 (41.8) 128 (47.2) 116 (47.7) 17 (36.2) 133 (45.9) 0.745

Drinking, n (%) 96 (44.4) 24 (43.6) 120 (44.3) 103 (42.4) 19 (40.0) 122 (42.1) 0.597

PTA, mean (±SD), dB

0.25–8 kHz 17.0 ± 4.4*** 18.0 ± 4.0 17.16 ± 4.3 15.4 ± 5.0 17.2 ± 4.3 15.67 ± 4.9 <0.001

10–16 kHz 31.2 ± 14.0* 39.2 ± 12.6 32.8 ± 14.1 28.4 ± 13.3 38.7 ± 10.0 30.0 ± 13.4 0.016

# Indicates statistical significance between the H-CNE and L-CNE groups. The number of asterisks indicates statistical significance against the L-CNE in the same age group (*,<0.05;

**, <0.01; ***, p < 0.001). H-CNE, high cumulative noise exposure group; L-CNE, low cumulative noise exposure group; PTA, pure-tone average (dB HL); yrs, years.

P300 elicited by the target in this task is a large, positive-going
potential that peaks around 300ms post-stimulus in normal
young adults. The MMN was quantified from the deviant-
standard difference waveforms. Peak latency or peak amplitude
was determined as the most negative (for MMN) or positive (for
P300) point. The amplitude was measured from the baseline,
defined as the mean voltage of the pre-stimulus interval, while
the latency was measured from the point in time when the
deviance occurred (100ms). We analyzed three (Fz, Cz, and Pz)
electrodes to observe the distribution of the P300 and MMN
components. Furthermore, the ERP data were input to the
GeoSource module of the Net Station software (version 4.5.7) to
compute the standardized low-resolution brain electromagnetic
tomography (sLORETA) for the purpose of source localization
(29, 30).

Statistics
For parametric data, the results were presented as a mean (SD) or
median [interquartile range (IQR)], and for categorical data, as
a number (percentage). Depending on the data type, Pearson’s 2
test, independent samples t-test, andMann–WhitneyU-test were
used to determine intergroup differences. A linear regression
line was fitted to the data to determine the decline rate of
cognitive test scores (slope) from 70 to 110 dBA-year of CNE,
which was compared using the Mann–Whitney U–test. The
independent samples t-test or the Mann–Whitney U–test were
used to compare the latencies and amplitudes of AEPs and ERPs
between the NG and CG. The 2-tailed p< 0.05 was considered to
indicate statistical significance, and data analysis was performed
using the SPSS 24.0 (IBM, Armonk, NY) and Prism version 9
(GraphPad Software).

RESULTS

Baseline Characteristics of Participants
The overall median CNE was ∼92.20 dBA-year approximately.
In the H-CNE group (n = 271), the mean age was 35.2 ± 4.4
years old and the median CNE was 95.2 (92.5–106.4) dBA-year,
whereas the mean age of the L-CNE group (n = 292) was 33.8 ±
6.4 years and the median CNE was 90.4 (76.0.9–92.2) dBA-year.
The subjects in the H-CNE and L-CNE groups werematched well
in terms of age, gender, education years, smoking and alcohol
drinking habits, and basic diseases. Furthermore, there were no
significant differences regarding the terms mentioned above in
the same age group (≤40 years and >40 years) between the H-
CNE and L-CNE groups. An overview of the demographic and
clinical characteristics is shown in Table 1.

Cognitive Test Results
Figure 3A presents the results of the MoCA-BJ education
adjustment scores and cognitive domain scores in H-CNE and L-
CHE subjects. The H-CNE group performed significantly worse
than the L-CNE group in the education adjustment scores
(24.55 ± 3.71 vs. 25.32 ± 2.62) and domains of attention,
visual spatial/executive (5.34 ± 1.02 vs. 5.62 ± 0.67; 3.37 ±

1.37 vs. 3.60 ± 1.13). For subjects under 40 years old, almost
all cognitive test scores in the H-CNE group were similar to
those in the L-CNE group. Only attention subscales differed
significantly between the L-CNE (5.64 ± 0.67) and H-CNE
groups (5.40 ± 1.00) (t = −3.071, p = 0.002). For subjects aged
over 40 years, attention scores, visual spatial/executive scores,
and education adjustment scores in the H-CNE group were 5.11
± 1.07, 2.71 ± 1.32, and 22.73 ± 3.72, respectively, while in
the L-CNE group, scores were 5.48 ± 0.68, 3.33 ± 1.28, and
24.13±2.83, respectively. There were significant differences in
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FIGURE 3 | The between-group differences in Montreal Cognitive Assessment Beijing Version (MoCA-BJ) scores. (A) Group analysis of MoCA-BJ scores between

high-cumulative noise exposure (H-CNE) and low-CNE (L-CNE) groups. For subjects aged under 40 years old, attention function scores were significantly higher in the

(Continued)
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FIGURE 3 | L-CNE group compared with the H-CNE group. For subjects aged over 40 years old, attention, visuospatial and executive, and education adjustment

scores showed a difference between H-CNE and L-CNE. (B) The scatter plot depicted the decrease of MoCA-BJ scores with the increase of CNE among participants

aged over 40 years or younger. For educational adjusted scores, attention, visuospatial/executive, naming, and language scores, there were significant differences in

the rate of decrease in scores with CNE. The asterisks indicates statistical significance between the L-CNE and the H-CNE group in the same age group (*, <0.05; **,

<0.01; ***, p < 0.001).

FIGURE 4 | Averaged P300 (A) and mismatch negativity (MMN) (B) recorded at Cz electrode. Top: Original responses to the standard and deviant stimuli from the 20

subjects in the NG and CG groups. There is a difference between the responses to two types of stimuli. (Dotted lines reflected the response evoked by target stimuli

while solid lines reflected the response evoked by standard stimuli; red lines presented the response in NG while blue lines were in CG). Button: sLORETA images of

the MMN and P300 components of the two groups at the sagittal, coronal, and axial slices of the maximum current density.

attention scores, visual spatial/executive scores, and education
adjustment scores between these two groups (t = −2.123, p =

0.036; t =−2.436, p= 0.017; and t =−2.436, p= 0.017).
Scatterplots revealed a negative relationship between cognitive

test scores and CNE, as the values of CNE increased,
the corresponding cognitive total scores and subscale scores
decreased (Figure 3B). There were significant differences in the
rates of decrease in scores among all individuals for educational
adjusted scores (Z= 1.903, p= 0.05), attention scores (Z= 2.984,
p= 0.003), and naming scores (Z = 2.131, p= 0.033). Among all
dimensions of cognitive domains, attention scores were the ones
with the fastest decline (slope=−0.03 point/dBA-year, p< 0.001
in individuals under 40 years old; slope=−0.06 point/dBA-year,
p < 0.001 in individuals over 40 years old).

MMN and P300
Demographic and clinical characteristics of the NG and CG
subgroups are compared in Supplementary Table 1. The NG

subjects (n = 20) were exposed for 8 h/day for an average of 6.9
years, with a mean PTA at 0.25–8 kHz of 9.3 ± 3.1 and 9.8 ±

4.3 dB at 10–16 kHz. Subjects in the CG group (n = 20) worked
in silent conditions and the mean PTA at 0.25–8 kHz was 10.4
± 2.7 dB and at 10–16 kHz was 13.1 ± 6.8 dB. There were no
significant differences in the amplitude and latency of ABR waves
Iand V, as well as the ECochG wave AP between the NG and CG
groups (all p > 0.05). The other clinical characteristics, such as
age, gender, years of education, and cognitive test scores, were
not significantly different between the two groups (all p > 0.05).

The group-averaged waveforms at Cz are presented in
Figure 4 and group-averaged latency and amplitude at Cz, Pz,
and Fz are shown in Supplementary Table 2. Overall, deviant
stimuli elicited much larger responses from both subgroups in
both P300 and MMNmeasurements. The peak latencies for both
P300 and MMN were longer in the responses of NG subjects. In
the NG group, subjects’ responses had slightly smaller P300 and
MMN amplitudes. The P300 latency and amplitude at Cz were

Frontiers in Neurology | www.frontiersin.org 7 March 2022 | Volume 13 | Article 83668311

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Wang et al. Noise Exposure and Attention Function

390 ± 12.1ms and 3.9 ± 2.1 µV, respectively, and the MMN
latency and amplitude at Cz were 172.8 ± 15.5ms and −2.7 ±

0.6 µV. In the CG group, the P300 latency and amplitude at
Cz were 369 ± 7.5ms and 6.7 ± 2.3 µV, respectively, and the
MMN latency and amplitude at Cz were 157.8 ± 10.5ms and
−3.2 ± 0.7 µV. The peak latency of MMN from all three sites
differed significantly between NG and CG groups (all p < 0.01),
while there was no significant between-group difference in the
amplitudes of MMN (p > 0.05).

The source localization was performed in both MMN and
P300 by using group-averaged EEG data from the 20 subjects in
each group (Figure 4). The maximum current strength of MMN
in CG was identified in the front lobe close to the left BA 11
(orbitofrontal area, voxel locations: −3, 52, −27), whereas the
maximum current strength of NG was considerably lateralized to
the right BA20 (inferior temporal gyrus, voxel locations: 39,−39,
−27). The source localization for the maximum current of P300
was in the left BA11, and there was not a significant difference
between the NG (locations:−3, 52,−27) and CG (locations:−10,
66,−13) groups.

DISCUSSION

The present study demonstrated that long-term noise exposure
impairs bottom-up and top-down attention functions in the
absence of threshold shifts, as evidenced by behavioral and
brain responses. The alterations of MMN and P300 suggested
impairments in bottom-up and top-down attention functions
in participants under long-term noise exposure. In the NG
subgroup, significantly lower MMN amplitudes were observed,
and the peak latencies of both MMN and P300 were considerably
longer. Furthermore, we found a shift of MMN source
localization in the right temporal lobe of the noise exposure
group, indicating a reorganization of the auditory cortex and
alterations of hemisphere dominance. In addition, CNE was
a significant factor in the impairment of cognitive function,
suggesting that the low-level noise was not as effective compared
with high levels of noise.

The association of ambient noise with attention function was
less investigated (31, 32), and nearly all early field studies of noise
exposure and cognitive performance had some weaknesses, such
as small sample sizes, inadequate noise measurement data, and
auditory evaluation of each subject accurately. On the other hand,
solid evidence from prospective and epidemiological studies (33)
revealed that hearing loss was an independent risk factor for
cognitive decline, containing the attenuated attention functions,
while the mechanism of this association has yet to be elucidated
(34). There was likely overlap among the peripheral auditory,
central auditory, and cognitive function (35). Animal studies
showed that even under a brief exposure to noise, there would
be a significant loss of cochlear afferent synapses (36–44). It
remained a concern whether such synapse loss could occur in
humans and lead to attention function deterioration. Further,
noise altered neuronal dendrites (45) and induced peroxidation
in specific areas of the lemniscal ascending auditory pathway
in mice (46). Noise exposure would result in the substantial

impairment of the auditory cortex function and behavioral
consequences in mice, regardless of the intensity and duration
of noise exposure (47). In the present study, the noise exposure
of each subject was documented by their employment duration
in the industrial environment, and by the noise survey in the
workplaces. All subjects were exposed to industrial noise for 8
h/day for more than 300 days/year. In addition, all individuals
maintained good hearing sensitivity over the frequency range
from 0.25 to 8 kHz (the hearing thresholds of NG subjects were
<25 dB from 0.25 to 16 kHz). The attention deficits observed in
this study could be attributable to hard-to-detect cochlea damage
and related central plasticity, as there was no interference from
hearing threshold or other confounders.

Besides top-down and bottom-up attention, attention could
be divided into arousal, sustained attention, selective attention,
and divided attention according to hierarchical models from
Sohlberg and Mateer (48). Selective attention might be a crucial
component of cognitive function (10). The altered amplitude
and latency of MMN and P300 could indicate a decrease in
not only bottom-up and top-down attention but also selective
attention, sustained attention, and divided function (49, 50). On
the one hand, the bottom-up and top-down attention models
claim that, although distinct processes mediate the attention
guidance based on bottom-up and top-down factors, both types
of attentional processes require a common neural apparatus, the
frontoparietal network (21). On the other hand, the anterior
attentional system (AAS), also known as the executive network,
oversees selective attention, sustained attention, and divided
attention. This system is related to the prefrontal dorsolateral
cortex, the orbitofrontal cortex, and the anterior cingulate cortex
(48), according to the Posner and Petersen neuroanatomical
model (48). The frontoparietal network is clearly the core area
of various attention models. Previous animal studies showed that
noise exposure could increase oxidative stress, decrease brain-
derived neurotrophic factor and synapse-associated protein
(51), and cause neuronal dendritic alteration and free radical
imbalance in the prefrontal cortex and hippocampus (45). In
the present study, we found a significant difference between the
NG and CG subgroups in the auditory oddball and the passive
listening tasks, indicating a decreased top-down and bottom-
up attention process as well as decreased selective, sustained,
and divided attention function. In addition, we found that the
source localization for maximal MMN was lateralized to the
right BA20 (inferior temporal gyrus) in NG subjects, while it
was the left BA11 (orbitofrontal area) in CG subjects. These
findings were consistent with previous studies, which discovered
that the frontal area was the source of MMN in subjects who
had not been exposed to noise, and the right temporal lobe
appeared to be more susceptible to functional reorganization in
subjects who had been exposed to noise (52, 53). Our findings
were consistent with that the speech-discrimination-induced
ERP was dominant in the right hemisphere in individuals
exposed to occupational noise, in contrast to the left hemisphere
dominance in control subjects (54). While there was no distinct
difference for the P300 source, the underlying mechanisms might
be that in noisy environments, bottom-up driven attention is
more important during auditory processing (24), and long-term
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noise exposure might deteriorate bottom-up driven attention
function first. Noise exposure induced the reorganization of
tonotopic areas (55), as well as structural and molecular changes
in human auditory (temporal gyrus) and non-auditory areas
(frontal area) (56). However, it was not clear whether similar
central plasticity occurs in association with difficult-to-test
cochlear damage, which could also reduce the auditory input
from cochleae to the auditory brain, although the thresholdmight
not be increased.

Our study has some limitations that should be taken into
consideration. We only compare the cognitive performances
between different levels of CNE and lack a set of data from the
control group of healthy subjects without noise exposure. Our
sample size for the EEG measurements remains small, and we
cannot completely rule out the existence of peripheral damage
in these subjects that requires more sensitive and reliable tests.
Due to the large sample size, no further cognitive assessments,
such as the Stroop test were performed to evaluate the
attention function.

CONCLUSIONS

In conclusion, we found that noise exposure deteriorated both
bottom-up and top-down attention functions, as evidenced
by the behavioral and brain responses. Behavioral test results
revealed that the higher cumulative noise exposure could
result in more severe damage to attention function, which
was also confirmed by the reduced ERP amplitude and
latency. The difficult-to-test cochlear damage, reorganization
of auditory and non-auditory areas, and hemisphere
dominance alteration might contribute to the significant
attention deficits.
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A novel experimental paradigm, “deconvolution of ears’ activity” (DEA), is presented

which allows to disentangle overlapping neural activity from both auditory cortices when

two auditory stimuli are presented closely together in time in each ear. Pairs of multi-tone

complexes were presented either binaurally, or sequentially by alternating presentation

order in each ear (i.e., first tone complex of the pair presented to one ear and second

tone complex to the other ear), using stimulus onset asynchronies (SOAs) shorter

than the neural response length. This timing strategy creates overlapping responses,

which can be mathematically separated using least-squares deconvolution. The DEA

paradigm allowed the evaluation of the neural representation in the auditory cortex of

responses to stimuli presented at syllabic rates (i.e., SOAs between 120 and 260ms).

Analysis of the neuromagnetic responses in each cortex offered a sensitive technique

to study hemispheric lateralization, ear representation (right vs. left), pathway advantage

(contra- vs. ipsi-lateral) and cortical binaural interaction. To provide a proof-of-concept of

the DEA paradigm, data was recorded from three normal-hearing adults. Results showed

good test-retest reliability, and indicated that the difference score between hemispheres

can potentially be used to assess central auditory processing. This suggests that

the method could be a potentially valuable tool for generating an objective “auditory

profile” by assessing individual fine-grained auditory processing using a non-invasive

recording method.

Keywords: auditory cortical responses, overlapping neural responses, auditory stimulation, least-squares

deconvolution, rapid acoustic stimulation

INTRODUCTION

The auditory system is a binaural system. Auditory cortices in right and left hemispheres receive
ascending projections originating from each ear. The resulting activity in one cortex is a mixture of
signals from both ears. The effects of monaural and binaural stimulation on cortical responses have
been studied considerably in humans, using techniques such as magnetoencephalography (MEG)
(Pantev et al., 1986). MEG is well suited to study hemispheric processing differences given the
low dispersion of the magnetic field and the location of the cerebral auditory cortical centers in
the temporal lobe of each hemisphere. For monaural sound presentation, there is evidence of a
predominant contra-lateral pathway in the human auditory system (Pantev et al., 1986, 1998;Mäkel
et al., 1993). The contra-lateral advantage is characterized by shorter latencies and larger amplitudes
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of the N100m. These measures reflect anatomical differences,
especially the larger number of neurons projecting on the
contra-lateral compared to the ipsi-lateral side of the ascending
auditory pathways. For binaural presentation at the cortical level,
MEG frequency-tagging of cortical steady-state responses can be
employed (Fujiki et al., 2002). Here, stimuli receive a marker, or
tag, using a specific modulation frequency. This makes it possible
to identify which stimulus evoked the observed cortical response.

The auditory system is a temporally fast system. It
can process acoustic stimuli presented with short temporal
disparities between the ears. Processing rapidly changing sounds
encompasses several levels of transformation from one cochlea to
the auditory cortex of both hemispheres. Unfortunately, a non-
invasive objective measure of binaural interaction in the auditory
cortex during rapid stimulation with temporally restricted
sounds is not yet available. However, if such a method were to be
available, research on the interaction and/or integration of signals
in the auditory cortex for stimuli presented at syllabic rates (i.e.,
between 4 and 10Hz) could provide new insights into normally
developed and disordered central auditory processing systems.

This report describes a novel experimental paradigm, named
“deconvolution of ears’ activity” (DEA), which makes use of the
least-squares (LS) deconvolution technique to allow separation of
left and right ear activity in each hemisphere to rapidly presented
stimuli (Bardy et al., 2014a,b). The LS deconvolution technique
is a mathematical algorithm designed to disentangle temporally
overlapping brain responses. The technique, described in Bardy
et al. (2014a), relies on the timing characteristics of the stimulus
sequence to be unequally spaced. This specific property is
called “jitter”. The LS deconvolution has been validated in a
pair paradigm using EEG data (Bardy et al., 2014b). In the
DEA paradigm, LS deconvolution is applied to a sequence of
stimuli presented in pairs either binaurally or sequentially, using
stimulus onset asynchronies (SOAs) shorter than the duration
of the cortical. Right and left ear activity is extracted from the
mixture of signals in both auditory cortices such that, using this
method, the signal propagation from each ear to each auditory
cortex can be tracked. The DEA paradigm is introduced in
this paper, and is evaluated on three normal hearing adults as
a proof-of-concept.

Two hypotheses were investigated: (1) the LS deconvolution
technique can disentangle temporally overlapping brain
responses in each auditory cortex originating from both ears
with a high test-retest reliability; and (2) an auditory profile
can be generated based on measures of the auditory pathway
lateralization, hemispheric advantage, ear advantage and
binaural cortical interaction.

METHODS

Subjects
Test and retest MEG data were obtained from 3 right-handed
adult subjects (3 males, age: 37, 32, 29) on two separate occasions.
Subjects had no history of neurological or audiological problems
and had pure tone audiometric thresholds ≤20 dB HL in all
octave frequencies between 250 to 8,000Hz. This study was
approved by and conducted under oversight of the Macquarie

University Human Research Ethics Committee. All subjects gave
written informed consent to participate in this study.

Stimulation
Two multi-tone (MT) stimuli, selected to optimize the amplitude
of the cortical response (Bardy et al., 2015), were obtained
by amplitude-modulated tone-bursts composed of carrier
frequencies of 2 and 1 kHz with modulation frequencies 800 and
400Hz respectively. Changing the frequency of the stimuli was
used to minimize the habituation of the cortical neural response.
The stimuli were presented through custom insert earphones,
using pneumatic tubes to deliver sound to the subject, with a
frequency response relatively flat between 500 and 8 kHz and an
approximate 10 dB/octave roll-off for frequencies below 500Hz
(Raicevich et al., 2010). The two MTs were presented in pairs,
using jittered SOAs with means of 120, 190, or 260ms. The jitter
distribution, permitting the deconvolution, was rectangular with
a width of 70ms and a step size of 13.3ms. The inter-pair interval
(IPI), representing the time interval between the onset of two
successive pairs of stimuli, was jittered with 400ms around an
average of 1,400ms. The MTs had a rise and decay time of 10ms,
a duration of 50ms and an rms intensity of 70 dB SPL. They
were presented through shielded transducers (Oldfield, 1971).
The stimuli were presented in three presentation conditions.
The first presentation condition was binaural (both stimuli of
the pair presented simultaneously to the right and left ears). In
the two other presentation conditions, stimuli were alternated
sequentially in each ear (i.e., when the left ear received the first
tone, the right ear received the second tone of the pair, and vice
versa). All 9 conditions (3 SOAs x 3 presentation conditions) were
randomly presented in a 25-min-long stimulus sequence.

In conditions where the cortical response was longer than the
SOA, brain responses overlapped in time, and LS deconvolution
described by Bardy et al. (2014a) was employed to disentangle
the occurring overlapping responses. Thus, for example, in the
alternating sequential condition, it was possible within each
auditory cortex to separate the activity elicited by the stimulus to
the right and left ears respectively from the overlapping cortical
response (Figure 1).

Procedure
MEG data were continuously recorded using a whole-head MEG
system (Model PQ1160R-N2, KIT, Kanazawa, Japan) consisting
of 160 coaxial first-order gradiometers with a 50mm baseline
(Kado et al., 1999; Uehara et al., 2003). MEG data were
acquired in a magnetically shielded room using a sampling
rate of 1,000Hz with a bandpass filter of 0.1–200Hz and
a 50Hz notch filter. For co-registration, the location of five
indicator coils placed on the participant’s head were digitized.
A pen digitizer (Polhemus Fastrack, Colchester, VT) was used
to measure the shape of each participant’s head which was then
carefully centered in the MEG dewar (position error <10mm for
each subject). Artifact removal from MEG data included signals
exceeding amplitude (>2,700 fT/cm) and magnetic gradient
(>800 fT/cm/sample) criteria (Yetkin et al., 2004). Averaging
and band-pass filtering between 3Hz (6 dB/octave, forward) and
30Hz (48 dB/octave, zero-phase) was performed for each trigger
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FIGURE 1 | (A) Schematic representation of the auditory input signal for a sequential presentation condition (e.g., Pair 1) followed by a binaural presentation condition

(e.g., Pair 2). The stimulus onset asynchrony (SOA) that represents the timing between the onset of the two auditory stimuli of a pair is jittered to allow deconvolution.

The time interval between the onset of two pairs is referred as the inter-pair interval (IPI). (B) Representation of the overlapping neural activity of Pair 1. The MEG signal

is recorded in both hemispheres in response to the first auditory stimulus presented to the right ear, followed closely by a stimulus presented in the left ear. (C)

Deconvolved neural responses in each auditory cortex obtained using the least-squares (LS) deconvolution technique.

condition using the non-contaminated epochs. The accepted
epochs after artifact rejection were exported from BESA 5.3
into MATLAB (MathWorks, Natick, MA) and downsampled
to 100Hz. Deconvolution was performed for each of the
160 channels to disentangle overlapping responses. For each
condition, recovered responses were defined by epochs of 100ms
pre-stimulus to 380 ms post-stimulus.

Statistical Analysis
Amplitudes and latencies were defined by peak measures of
magnetic global field power (mGFP) calculated on 40 sensors
located over the temporal lobe in each hemisphere. For each
subject and each condition, the N100m was defined as the
most positive peak in the 80–150ms following the sound onset.
The selected time window for the P200m was 120–200ms.
A repeated measures ANOVAs was performed. Greenhouse-
Geisser corrections for sphericity were applied, as indicated by
the cited ε value (Greenhouse and Geisser, 1959). Bonferroni
corrections were applied for post hoc analysis.

Individual laterality indices (LIs) for hemisphere, pathway,
ear and cortical binaural interaction were calculated. For each
subject, LIs were calculated based on the relevant mGFP response

amplitudes, time-averaged over a 200-ms window post-onset.
Figure 2 displays an example of auditory cortical responses
elicited by pairs of auditory stimuli presented binaurally or
alternated sequentially for an individual subject with SOAs
jittered around 190ms. For hemispheric lateralization, the LI
was calculated as the difference between left and right mGFP
response amplitudes (bottom vs. top 6 panels in Figure 2B)
normalized by the sum of left and right mGFP responses (i.e.

LI =
mGFP(left)−mGFP(right)

mGFP(left)+mGFP(right)
). The LI was +1 for a response

geared completely asymmetrical toward the left hemisphere,
zero for a symmetrical response, and −1 for a response
geared completely asymmetrical toward the right hemisphere.
For pathway advantage, the LI was calculated employing the
same method using the responses associated with the contra-
(panels labeled 3R, 4L, 5L and 6R in Figure 2B) and the ipsi-
lateral pathways (panels labeled 3L, 4R, 5R, 6L in Figure 2B).
The ear LI was calculated by comparing mGFP responses
from the left ear (3rd and 6th columns in Figure 2B) to the
responses from the right ear (4th and 5th columns in Figure 2B).
Finally, the binaural interaction LI was computed by comparing
binaural stimulation (first 2 columns in Figure 2B) andmonaural
stimulation responses (last 4 columns in Figure 2B). The
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FIGURE 2 | (A) Auditory input stimulation representing the binaural condition to the left, the sequentially alternated conditions “left ear” followed by “right ear” in the

middle and then the sequentially alternated “right ear” followed by “left ear” on the right. The stimulus onset asynchrony (SOA) represents the time between the start of

the two stimuli of a pair, while the inter-pair interval (IPI) represents the time interval between the onset of two successive pairs of stimuli. (B) Cortical responses from

subject 1 for SOAs jittered around 190ms. Multiple thin waveforms represent activity recorded by each of the 40 sensors located over the temporal lobe, in each

hemisphere, after LS deconvolution, from −100 to 380ms after stimulus onset. mGFP waveforms are represented with a thick black line, provided for both right and

left hemispheres, the 3 presentation conditions (1 x binaural, 2 x sequentially alternated) and both first and second tone-bursts. Latencies of the N100m and P200m

are indicated by crosses.

binaural interaction LI was computed for both hemispheres and
for each pathway (i.e., ipsi- and contra-lateral). For each subject,
the difference between the means for each LI was checked by the
Student’s t-test. The threshold for significance after Bonferroni
correction was p < 0.0041. Test-retest reliability indices were
obtained using the mean squared error for each measure of
LI as well as the intra-class correlation coefficients (ICCs) on
mGFP waveforms.

RESULTS

Cortical Responses to Rapidly Presented
Stimuli
Figure 3 presents means and standard deviations of N100m and
P200m amplitudes and latencies for ear, stimulus, pathway, and
hemisphere. Data analysis was conducted on the amplitude and
latency of N100m and P200m in response to the second stimulus
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FIGURE 3 | Latencies (left) and amplitudes (right) of mGFP N100m (top) and P200m (bottom) components. Each panel represents 3 presentation conditions: 1

binaural condition and 2 sequentially alternated conditions (stimulus presented first at either left or right ear). Within each presentation condition, three SOAs (∼120

ms, ∼190 ms and ∼ 260ms) are used, resulting in two responses to both stimuli of the pair, recorded from both right and left hemispheres. Error bars denote

standard deviations between participants.

of the pair. A repeated measure ANOVA was computed with
these factors: hemisphere (right, left), presentation condition
(binaural, sequentially alternated left ear first, sequentially
alternated right ear first), and SOA (∼120, ∼190, ∼260ms). The
effect of SOA was found to be significant for both amplitudes
and latencies of N100m (Amp. F(2,10)=46.48, p = 0.000009,
ε = 0.58; Lat. F(2,10) = 7.30, p = 0.03, ε = 0.54) and
for P200m amplitude (Amp. F(2,10) = 53.95, p = 0.000004,
ε = 0.78). Post hoc analysis for N100m and P200m Amp showed
a significant increase in amplitude from SOA ∼120 to SOA
∼190ms. The amplitude increased between SOA ∼190 to
SOA ∼260ms was only significant for N100m. A significant
interaction was present between SOA and presentation condition
for both N100m (F(4,20) = 10.07; p = 0.001, ε = 0.60) and
P200m [F(4,20) = 8.29; p = 0.004, ε = 0.60] latencies. Post
hoc analysis revealed a decrease in N100m response latency

when SOA increased from ∼120 to ∼190ms (p < 0.003) and
from ∼120 to ∼ 260ms (p < 0.02) for both sequentially
alternated presentation conditions, while this trend was absent
in the binaural presentation conditions. For P200m, the only
significant difference was between binaural presentation and
right-left sequential for SOA ∼260ms. A significant interaction
was observed between hemisphere and presentation condition
for N100m [Lat. F(2,10) = 41.78, p = 0.00001, ε = 0.75] and
for P200m [Amp. F(2,10)=16.18, p = 0.0007, ε = 0.87; Lat.
F(2,10)=14.60, p=0.001, ε = 0.82]. For N100m latencies, post
hoc analysis revealed shorter latencies in the right hemisphere
compared to the left hemisphere when stimuli were presented
binaurally (p<0.04). Moreover, pairwise comparisons revealed
longer latency for the ipsilateral pathway compared to the
contralateral pathway in the sequential stimulation mode for
both N100m and P200m when the second stimulus of the pair
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FIGURE 4 | Indices of hemispheric lateralization (A), pathway advantage (B), and ear advantage (C) for mGFP amplitudes in a 200ms post onset window, and for

N100m latency. Both test and retest conditions are shown. The binaural cortical interaction (D) is represented for the mean mGFP amplitude in the right and left

hemisphere for the contra- and ipsi-lateral pathways. Error bars denote standard deviations between conditions for each participant.

was presented to the left ear (p < 0.009) while this difference
was significant only for P200m (p < 0.037) when the second
stimulus was presented to the right ear. The amplitude of P200m

was also significantly larger in the left hemisphere when the
second stimulus of the pair was presented to the right ear.
Lastly, an interaction between hemisphere, SOA and presentation
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condition was significant for N100m [F(4,20) = 3.34, p = 0.02,
ε = 0.68]. Post hoc analysis revealed a significant difference
between hemispheres for all SOAs in sequential presentation
condition when the second stimulus of the pair was presented
to the right ear (p < 0.008). The SOA ∼ 260ms for the
binaural presentation was the only other condition that showed a
significant hemispheric difference.

Hemispheric Lateralization
The hemispheric lateralization index (LI) for response amplitude
presented in Figure 4A shows intra-subject differences on the
vertical abscissa, and inter-subject differences on the horizontal
abscissa. Subject 1 presented a rightward, subject 2 a large
rightward, and subject 3 a slightly leftward lateralization. The
t-test, which allows comparing the hemispheric LI to 0,
was significant for each subject (p<0.001) after Bonferroni
correction. No differences in symmetrical activation were found
for the latencies either for subject 1 (p = 0.86) or subject
2 (p= 0.51). However, significantly earlier latencies were found
in the right hemisphere for subject 3 (p= 0.0003).

Pathway Advantage
The pathway LI calculated by contrasting contra- vs. ipsi-lateral
pathway responses in the sequential conditions is represented
in Figure 4B. After Bonferroni correction, significantly larger
amplitudes and shorter latencies for the N100m and P200m
were measured in the contra-lateral pathway for all subjects
(p < 0.0001).

Ear Advantage
The statistical results of ear LI presented in Figure 4C indicated
no significant amplitude difference between the activity elicited
by the right and the left ear for subject 1 (p= 0.96) and for subject
2 (p = 0.01). A left ear advantage was observed for subject 3 for
both amplitude (p= 0.002) and latency (p= 0.002).

Cortical Binaural Interaction (CBI)
Figure 4D shows the CBI for the three subjects in both
hemispheres for contra- and ipsi-lateral pathways. The finding
of a positive CBI LI indicates that the response recorded in
the sequentially alternated condition is larger compared to the
response in the ipsi-lateral pathway. CBI of different natures are
observed for each subject. When collapsed across hemispheres,
the t-test showed that CBI was close to significance only for
subject 3 (subject 1: p = 0.02; subject 2: p =0.10; subject
3: p= 0.006).

Test-Retest Reliability
Two different test-retest reliability measures were computed.
First, the mGFP waveforms were compared for test and retest
conditions by computing the intra-class correlation coefficients
(ICCs) for the three subjects in a 250ms window post onset. A
mean ICC value larger than 0.75 for each subject (i.e., subject 1
= 0.78, subject 2 = 0.79; subject 3 = 0.84) demonstrated a good
test-retest reliability.

Second, a test-retest index was calculated using the mean
squared error (mean = 0.057; SD = 0.026) of all four indices

presented in Figure 4 (i.e., hemispheric lateralization, pathway
advantage, ear advantage and CBI).

DISCUSSION

The central aim of this paper was to introduce the deconvolution
of ears’ activity (DEA) paradigm which disentangles the activity
in both auditory cortices elicited by stimuli presented to both
ears simultaneously or separately. In this paradigm, the LS
deconvolution technique was applied to MEG data recorded
using pairs of stimuli presented either binaurally or alternating
sequentially (i.e., right-left and left-right). The DEA paradigm
allowed the investigation of auditory information transfer from
one specific ear to both auditory cortices. It could also be used to
explore response lateralization, the strength of crossed auditory
pathways and the response adaptation properties to auditory
stimuli closely separated in time. Furthermore, it allowed for
the investigation of non-linear processing in the brain and CBI,
mainly caused by inhibitionmechanisms (Imig and Brugge, 1978;
Imig and Reale, 1981; Reite et al., 1981; Papanicolaou et al., 1990).

We demonstrated the feasibility and test–retest
reproducibility of this non-invasive measure on 3 right-handed
normal-hearing subjects. The case studies provided examples
of different auditory processing characteristics at the cortical
level, identifiable at the individual level. The inter-individual
differences were detectable by assessment of the difference
in response between experimental conditions. For example,
hemispheric lateralization was assessed by computation of the LI
calculated from the responses in each hemisphere. The CBI was
investigated by contrasting binaural and monaural stimulation
both in contra- and ipsi-lateral pathways. The results collected
using the DEA paradigm allows an objective auditory processing
characterization and the generation of an individual “auditory
profile” in a relatively quick time (i.e., 25 min).

Experimental Results
The data recorded from three normal-hearing subjects confirmed
that both ears were represented in each cortical hemisphere.
However, differences in latency and amplitude were observed for
each response to various conditions.

Beyond the idea proposed by Poeppel (2003) that sound
processing in the brain is a bilateral phenomenon, the present
study revealed inter-individual differences in the hemispheric
lateralization of the cortical response. While two subjects showed
a rightward hemisphere lateralization for response amplitude,
the third subject had a leftward lateralization. These hemispheric
asymmetries and specializations for processing auditory stimuli
were also reported previously by Mäkel et al. (1993) and Jamison
et al. (2006). The cerebral lateralization of the auditory cortical
area however is still highly debated (Bishop, 2013; Scott and
McGettigan, 2013).

For all subjects tested, the N100m was larger and
approximately 10ms shorter for the contra-lateral compared to
the ipsi-lateral auditory pathway in the sequentially alternated
conditions. These results are in agreement with several studies
showing a contra-lateral dominance based on lateralization of
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the N100m component (Pantev et al., 1986, 1998; Tiihonen et al.,
1989; Woldorff et al., 1999).

Individual differences were also observed when comparing ear
activity. Further research will need to investigate whether this
objective measure of ear advantage is correlated with behavioral
performance on a dichotic listening task such as the Dichotic
Digits Test (Musiek, 1983).

The DEA paradigm allowed to investigate the suppression-
type interaction and neural mechanisms underlying the
processing of rapidly presented signals. As shown in Figure 4D,
different binaural interactions were observed. Amplitudes of
responses elicited in the sequentially alternated presentation
condition were found to be either slightly larger, slightly smaller
or of similar amplitude compared to the binaural presentation
condition. Inter-subject differences were observed with different
interactions depending on hemisphere and pathway involved.
A MEG study using complex tones showed that responses to
ipsi-lateral stimuli over the right auditory cortex are inhibited by
the stimuli presented in the contra-lateral (left) ear (Brancucci
et al., 2004).

Lastly, cortical responses to stimulus pairs separated by short
SOAs allowed the study of the representation in the auditory
cortex of stimuli presented closely together. The significant
interactions between hemisphere, presentation condition, and
SOA revealed by ANOVA indicate the complex binaural
interactions occurring in the brain when processing rapidly
presented stimuli.

We conclude that the DEA paradigm could represent a
technique to study interesting properties of the central auditory
system. Individual differences are of special interest as they
provide an alternative characterization of the hearing profile
of a person which could potentially be useful to for example
objectively identify auditory processing disorder (APD) subjects.
Using the LS deconvolution technique to separate overlapping
ear activity in both auditory cortices, recorded MEG data can
provide a measure for rapid temporal processing, response
lateralization, auditory pathway and ear advantage, and CBI
for rapidly presented sound stimuli. Such a test would allow
studying the temporal acuity of the human auditory system
when processing rapid changes in the acoustic signal. Moreover,
it could provide insights concerning the flow of neural signals
from the cochlea to the cerebral cortex. From a clinical
perspective, tests are needed to better evaluate and understand
the neurological characteristics of binaural processing occurring

in the auditory system. Such tests could contribute to the
diagnosis of neurodevelopment disorders, such as specific
language impairment (SLI) or dyslexia where abnormal crossing
pathways or the disability to process rapid auditory stimuli has
been identified (Lamminmäki et al., 2012). However, further
studies are needed to record normative data on normal hearing
subjects, that can then be used as a benchmark to characterize
other populations. Moreover, other complex sounds, such as
speech syllables (using carefully selected jitter parameters),
could be used in the future to investigate the influence of
stimuli on binaural interaction mechanisms and lateralization of
the response.
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Objective assessment of auditory discrimination has often been measured

using the Auditory Change Complex (ACC), which is a cortically generated

potential elicited by a change occurring within an ongoing, long-duration

auditory stimulus. In cochlear implant users, the electrically-evoked ACC

has been used to measure electrode discrimination by changing the

stimulating electrode during stimulus presentation. In addition to this cortical

component, subcortical measures provide further information about early

auditory processing in both normal hearing listeners and cochlear implant

users. In particular, the frequency-following response (FFR) is thought to

reflect the auditory encoding at the level of the brainstem. Interestingly,

recent research suggests that it is possible to simultaneously measure both

subcortical and cortical physiological activity. The aim of this research was

twofold: first, to understand the scope for simultaneously recording both

the FFR (subcortical) and ACC (cortical) responses in normal hearing adults.

Second, to determine the best recording parameters for optimizing the

simultaneous capture of both responses with clinical applications in mind.

Electrophysiological responses were recorded in 10 normally-hearing adults

while they listened to 16-second-long pure tone sequences. The carrier

frequency of these sequences was either steady or alternating periodically

throughout the sequence, generating an ACC response to each alternation—

the alternating ACC paradigm. In the “alternating” sequences, both the

alternating rate and the carrier frequency varied parametrically.We investigated

three alternating rates (1, 2.5, and 6.5Hz) and seven frequency pairs covering

the low-, mid-, and high-frequency range, including narrow and wide

frequency separations. Our results indicate that both the slowest (1Hz) and

medium (2.5Hz) alternation rates led to significant FFR and ACC responses

in most frequency ranges tested. Low carrier frequencies led to larger FFR

amplitudes, larger P1 amplitudes, and N1-P2 amplitude di�erence at slow

alternation rates. No significant relationship was found between subcortical

and cortical response amplitudes, in line with di�erent generators and

processing levels across the auditory pathway. Overall, the alternating ACC

paradigm can be used to measure sub-cortical and cortical responses as

Frontiers inNeurology 01 frontiersin.org

25

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2022.928158
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2022.928158&domain=pdf&date_stamp=2022-08-03
mailto:axelle.calcus@ulb.be
https://doi.org/10.3389/fneur.2022.928158
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2022.928158/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Calcus et al. 10.3389/fneur.2022.928158

indicators of auditory early neural encoding (FFR) and sound discrimination

(ACC) in the pathway, and these are best obtained at slow alternation rates

(1Hz) in the low-frequency range (300–1200 Hz).

KEYWORDS

auditory change complex, frequency following response (FFR), cortical auditory

evoked potential (CAEP), brainstem, auditory processing (AP)

Introduction

Auditory evoked potentials are electrophysiological

responses providing information on underlying

neurophysiological function of structures in the auditory

pathways. They are useful in audiological diagnostic assessment

and for populations who cannot provide reliable responses to

sounds. Electrophysiological responses are routinely used to

explore the viability of different stages of the auditory pathway,

from otoacoustic emissions, recording responses from the

organ of Corti, through to cortical auditory evoked potentials,

showing responsiveness of higher brain centers [e.g., (1–3)].

However, measurements can be time consuming particularly

if responses to multiple stimulus parameters are required,

for example, when recording responses to different sound

frequencies. Measurement of responses at different stages in the

auditory pathway allow for identification of site of lesion or loci

of sound transmission difficulties for individuals with atypical

sound processing abilities. The best approach to understanding

sound processing at different stages of the auditory pathway is

to measure concurrent responses at different sites.

Knebel et al. (4) have suggested that the combination

of speech auditory brainstem responses (ABRs) and cortical

responses to the same stimuli can be used to understand

the inter-relationship between the generators of the different

potentials and also the interaction between different brain

regions. Musacchia et al. (5) recorded simultaneous speech

ABRs and cortical onset responses (ORs) to /da/ stimuli to

determine if musicians compared to non-musicians exhibited

differences in ABRs and associated cortical ORs. They found that

stronger ABRs to periodicity was associated with shorter latency

of the OR and thatmusicians showed larger ABR amplitudes and

shorter OR latencies than non-musicians.

Krishnan et al. (6) reported an approach for simultaneously

acquiring the brainstem frequency following response (FFR)

and cortical evoked pitch responses. The FFR is a sustained

response evoked by the neurons in the brainstem able to track,

on a cycle-by-cycle basis, the frequency of the periodic stimuli—

phase locking. Pitch salience was varied by adapting the number

of stimulus periodicity in an iterated rippled noise. The cortical

responses to pitch were measured for stimulus onset (OR) and

in response to a change in the pitch salience of the stimulus

[auditory change complex, ACC (7)]. The ACC is a cortical

response evoked by a change in an ongoing stimulus, with a

fronto-central topographic distribution when referenced to the

mastoid (7, 8). Morphologically, the ACC is characterized by a

series of peaks usually within 50 and 250ms after the stimulus

onset – P1-N1-P2 response – and is measured using EEG

electrodes typically placed in fronto-central regions. The latency,

amplitude and morphology of the peaks (P1, P2) and trough

(N1) are used as indicators of neural synchrony and maturation

of the auditory pathways. Contrary to the OR, in which response

characteristics have not been associated with pitch salience, the

magnitude and latency of the ACC show a clear relation with

pitch perception. For example, Mathew et al. (9) observed strong

associations between the ACC and the ability to discriminate

between stimulating electrodes in cochlear implant (CI) users.

There is evidence that ACC responses to change in stimulus

characteristics relate to speech perception abilities: Han and

Dimitrijevic (10) showed a relationship between the N1 latency

for the ACC to modulation detection and speech perception.

However, behavioral discrimination seems to be best predicted

by combining both subcortical (brainstem FFRs) and cortical

(ACC) responses (6) to improve understanding of the processing

in different auditory regions.

This approach for simultaneous measurement of the

brainstem FFR and the ACC is of interest here. By means of a

modified ACC paradigm, in which the fundamental frequency

(F0) of an otherwise continuous stimulus, is periodically

alternated—the alternating ACC (8, 11) - we investigate spectro-

temporal processing in subcortical and cortical regions. The

goals of the current research were to determine if brainstem

FFRs and cortical ACC responses could be evoked and recorded

simultaneously to periodic frequency alternations in a stimulus,

allowing multiple measurements across the auditory pathway to

investigate F0 processing. We varied parameters to understand

the optimal approach for maximizing responses. This research

is directed at developing electrophysiological measures that can

help to understand perceptual capabilities in normal hearing,

hearing impairment, and listening with a CI. In particular,

we aim to develop electrophysiological paradigms that can

be efficiently used to objectively measure discrimination and

temporal processing abilities, hence allowing for identification

of spectral regions where signal transmission/processing might
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FIGURE 1

Schematic illustration of the paradigm containing di�erent types of auditory sequences. (A) The F0 of these sequences was either steady or

alternating between F0 and F0′, throughout the sequence. Three alternation rates were presented: slow (1Hz), medium (2.5Hz) and fast (6.5Hz).

(B) Sequence duration was fixed at 16 s. Sequences were separated by 2 s-long pauses.

be impaired. Such measures can also be used to evaluate phase

locking and adaptation in the auditory system (8).

Here, we investigate subcortical and cortical functional

integrity to periodic changes in F0 occurring at several

alternating rates. F0s were chosen to correspond to center

frequencies of CI electrodes, ranging from 300 to 3,000Hz,

for future application with CI users (using Advanced Bionics

frequency allocation table). Alternation rates varied from 1 to

6.5Hz, hence being close to the syllabic rate. This paradigm

aimed to identify the condition that would provide the most

information in a minimum amount of time, in the objective of

developing a reliable, fast clinical tool.

Methods

Participants

Ten young (21–27 years old, mean 23.66 years, 2 males)

English speakers participated in this study. All participants had

normal hearing defined as air-conducted pure-tone thresholds

of 25 dB HL or better at octave frequencies from 0.25 to

8 kHz in both ears. None of the participants reported a history

of neurological disorders. All participants provided written

consent as approved by the UCL Research Ethics Committee

(SHaPS-2018-DV-028) and were compensated for their time.

Stimuli

Participants were presented with 16-second-long pure tone

sequences. The fundamental frequency (F0) of these sequences

was either steady or alternating throughout the sequence.

In the steady sequences, F0 was set to 320Hz. In the

alternating sequences, both the alternation rate and the F0

varied parametrically. A schematic illustration of the paradigmis

provided in Figure 1. We investigated three alternation rates (1,

2.5 and 6.5Hz) and seven F0 changes, covering the low- (300–

1,320Hz), mid- (1,320–3,120Hz) and high- (2,620–3,120Hz)

frequency range, with varying separationsbetween the lower and

higher F0 within each frequency range (F0 and F0′, respectively).

Each F0 alternating condition consisted of two frequency

pairs alternating periodically at a given alternating rate. In

the low frequency range (300–1,320Hz) F0 alternated between

320–340Hz, 320–480Hz, 320–720Hz, and 320 −1,320Hz.

In the mid-frequency range (1,320–3,120Hz), F0 alternated

between 1,320–1,520Hz and 1,320–3,120Hz, whilst in the high-

frequency range, F0 alternated between 2,620–3,120Hz. The

range of F0 were selected to cover important speech frequency

range. Stimuli were presented at 75 dB (A), with alternating

polarities to minimize stimulus artifacts. Sound calibration was

performed separately for the low-, mid- and high-frequency

ranges, as an intensity average over the whole duration of

the sequences.
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TABLE 1 Summary of the stimulation metrics for all three alternation

rate, at one F0 change.

Alternation Number Number of Duration

rate of sequences F0/F0′ iterations

6.5Hz 5 520 1.3 min

2.5Hz 12 480 3.2 min

1Hz 30 480 8 min

Given that we presented seven F0 changes (see Stimuli), number of sequences and

duration must be multiplied by 7 to provide total duration.

Sequences were presented in random order, separated by a 2

second inter-stimulus interval. Participants were presented with

a total of 336 sequences (total recording time: 100min), over

two sessions that were scheduled no more than 2 weeks apart.

Note that there was no significant difference in the number of

rejected epochs during the first and second recording session

[subcortical data: t(9) = −1.58, p = 0.148; cortical data: t(9) =

−0.58, p= 0.574].

The number of sequences in each F0 condition was equalized

across alternation rates in order to generate approximately the

same number of iterations of the F0 and F0′ tones constituting

sequences (see Table 1).

Recording parameters

Participants watched a muted movie with subtitles while

seated comfortably in a double-walled, electrically shielded

soundproof booth.

Stimuli and trigger signals were generated using a custom

interface programmed in MATLAB, and delivered diotically

using a external soundcard (RME FireFace UC, 44.1 kHz)

connected to a custom-made trigger box which separated the

two channels and simultaneously sent the trigger to the BioSemi

system and the stimuli to electrically shielded ER-2 insert

earphones (Intelligent Hearing Systems, Miami, FL).

Electrophysiological responses were collected using a

BioSemi ActiveTwo system at a sampling rate of 8,192Hz

from 32 scalp electrodes positioned in the standard 10/20

configuration. Additional electrodes were placed on each

mastoid; recordings were re-referenced offline to the average of

activity at the mastoid electrodes.

Subcortical analyses

Epochs used to analyse subcortical FFRs were obtained by

applying a band-pass filter (200–4,000Hz) to the EEG data

recorded at Cz, epoching the data 0–16 s relative to target

onset, and averaging across epochs. Averaged mastoids to vertex

(Cz) is a commonly used electrode montage (12). The average

response was transformed to the frequency-domain (FFT of

131072 points) at a resolution of 0.0625Hz. Trials exceeding ±

100µ at Cz or Fz were excluded, leading to an average of 2%

rejected trials.

The frequency peak was computed as the highest amplitude

within 1Hz centered around the target frequencies of a given

sequence. Spectral noise floor was computed as the mean

amplitude within 10Hz surrounding the target frequencies (5Hz

on each side, excluding 5 immediately adjacent bins).

Cortical analyses

Evoked potentials of cortical origin were obtained by band-

pass filtering (0.5–35Hz) the EEG waveforms recorded at

electrode C3, C4, Cz (vertex of the head), F3, F4 and Fz at 35Hz,

and creating epochs lasting −0.5 to 16 s relative to each target

tone onset time. Fronto-central electrodes were chosen because

they are thought to provide the most reliable estimates of both

FFR and ACC measures (7, 13). Epochs were baseline corrected

using the mean value from −100 to 0ms. Trials exceeding ±

100µ at Cz or Fz were excluded, leading to an average of 18.14%

rejected trials.

To obtain the transient response, the magnitude of the

auditory-evoked P1, N1 and P2 for each participants’ set of

data was computed as the mean amplitude in a fixed time

window of 30–90, 75–150, and 150–290ms respectively, after

each alternation of frequency within every sequence type. The

time windows have been selected based on visual inspection of

the individual ERP responses, and are coherent with the typical

latencies for each peak (14). To obtain the frequency response,

data were epoched using a time window of 0 to 16 s relative to

each sequence onset time.

Statistical analyses

The aim of the first subcortical analysis was to determine

whether the FFR responses were significantly above the noise

floor. One outlier whose EEG responses were more than

3 S.D. above the interquartile range was excluded from the

analyses of the subcortical measures, and has also been

removed from the grand average plots (Figure 2) and boxplots

(Figure 3). A linear mixed-effects (LME) model was used

[lme4 package of R; (15)] to determine whether overall

measurement type (i.e., target frequency peak or spectral

noise floor), alternation rate (1, 2.5 or 6.5Hz), condition

(320 vs. 340Hz, 320 vs. 480Hz, 320 vs. 720Hz, 320 vs.

1,320Hz, 1,320 vs. 1,520Hz, 1,320 vs. 3,120Hz, and 2,620

vs. 3120Hz), and F0 category (F0 or F0′), or any of their

four-, three- and two-way interactions predicted the amplitude

of the response. Subsequently, a LME was conducted to

determine whether alternation rate, condition, and F0 category
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FIGURE 2

Frequency response of the subcortical grand average responses at Cz, for each condition (columns) at each alternation rate (rows). Vertical

dotted lines indicate the expected frequencies for each condition.

FIGURE 3

Boxplots of baseline-corrected amplitude (µV) of the subcortical response evoked by the F0 (upper row) and F0′ (lower row) in each of the

seven conditions (columns), at fast (red dots), medium (blue dots) and slow (green dots) alternating rates, recorded at Cz. The whiskers indicate

values that fall within 1.5 times the interquartile range. Dots falling outside the whiskers are outliers.

or any of their three- or two-way interactions significantly

predicted the amplitude of the FFR at the target peak.

In all models, the factor listener was used as a random

intercept. Only the significant predictors are reported in the

results section.

Visual inspection of the cortical measures (Figure 4, top

panel) suggested that, as the alternation rate increased, only

the P1 remained visible. This is due to the fact that, in the

fast alternation condition (6.5Hz), the ACC evoked by the new

F0 started 150ms after the previous F0, hence leading to an
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overlap between the P1 elicited by the new F0 and the N1-

P2 of the previous sound. Therefore, statistical analyses of the

cortical measures were run in two steps. First, we used an

LME model to determine whether alternation rate (1, 2.5 or

6.5Hz), condition, recording electrode and F0 range (F0 or F0′)

significantly predicted the amplitude of P1. Next, we fed a LME

with the same factors to determine if these could predict the

N1-P2 amplitude.

The correlation between brainstem and cortical measures

was investigated using Pearson correlation coefficient (r).

Results

Subcortical measure (FFR)

First, we set out to determine whether the amplitude of

the FFR evoked by both F0 and F0′ within a sequence was

significantly above the noise floor (Figure 2). The LME model

including the interaction between F0 category × condition

× measurement type interaction [F (6, 706) = 6.63, p <

0.001, η
2
p = 0.05] was significant. Overall, the amplitude of

the target frequency peak was always larger than amplitude

of spectral noise floor, i.e., positive signal-to-noise ratio [SNR;

F(1, 706) = 559.49, p < 0.001, η
2
p = 0.44]. However, the

magnitude of this effect was variable across conditions. As

shown in Supplementary Figure 1, the SNR was larger for F0s

in conditions 320 vs. 340Hz, 320 vs. 480Hz, 320 vs. 720Hz, 320

vs. 1320Hz than in the remaining conditions (1,320 vs. 1,520Hz,

1,320 vs. 3,120Hz, and 2,620 vs. 3,120Hz). The SNR was larger

for high F0s in condition 320 vs. 340Hz than in all remaining

conditions. To account for the differences in SNR in further

analyses, we computed the baseline-corrected amplitude as the

difference between target frequency peak and spectral noise floor

(Figure 3).

FIGURE 5

Voltage maps showing mean cortical activity during the

50–200ms post-stimulus time window. Negative values are

shown in blue, and positive values in red.

FIGURE 4

Average time- (upper row) and frequency- (lower row) domain representation of the grand average waveforms (at Cz) of the cortical response

to a-ACC stimuli aggregated across conditions, presented at fast (left), medium (middle) and slow (right) alternating rates.
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Next, we sought to identify factors that influenced the

amplitude of the FFR. A LME model indicated that only the

factor condition was significant [F(6,404) = 3.66, p = 0.001,

η
2
p = 0.05]. Bonferroni-corrected post-hoc t-tests indicated that

amplitude of the FFR evoked in both 320 vs. 340Hz and 320 vs.

480Hz conditions was significantly larger than that evoked in

the 2,620 vs. 3,120Hz condition (both ps < 0.05). This suggests

that, irrespective of the alternation rate, FFR amplitude is larger

for low- than mid- or high- frequency range (Figure 3).

Cortical measures

Figure 4 shows the grand average response evoked at Cz

at each of the alternation rates in the time- and frequency-

domain. Time-domain traces show the morphology of the

response transitioned from a transient P1-N1-P2 waveform

(Figure 4, slow condition) to a steady-state cortical response

(Figure 4, fast condition). Voltage maps are illustrated in

Figure 5. This is evident in the frequency domain plots where

the spectrum transitioned from having multiple peaks (integer

number of the slow and medium alternating rates) to an almost

unimodal frequency peak at the fast alternating rate. Note that

the morphology of the fast alternating may arise from the

overlap of ACC responses leading to the steady-state sinusoidal

morphology. Bearing this in mind, we will refer to P1 and N1

as the maximum and minimum of the time-domain response in

the fast condition, respectively.

An LME model applied to time-domain responses

indicated that P1 amplitude was significantly affected by

factors alternation rate and condition, as well as their two-way

interaction [respectively: F(2,2,490) = 41.02, p < 0.001, η
2
p =

0.03; F(2,2,490) = 5.93, p < 0.001, η2p = 0.00; F(12,2,490) = 3.84, p

< 0.001, η2p = 0.02]. Bonferroni-corrected post-hoc t-tests were

used to decompose the alternation rate × condition interaction

(Figure 6). P1 amplitude did not vary with condition at fast

alternation rates (all ps > 0.10). At medium alternation rates,

it was significantly larger at 320 vs. 340Hz than any other

condition (all ps< 0.05). At slow alternation rates, P1 amplitude

was significantly smaller in 320 vs. 480Hz than any other

condition (all ps < 0.05). Note that overall, P1 amplitude was

significantly larger at slow than medium (p= 0.020) alternation

rate, and at medium than fast alternation rate (p < 0.001). This

suggest that a slow alternation rate is optimal to elicit a large P1,

except in the 320 vs. 480 Hz condition.

Similarly, we investigated the effect of different parameters

on N1-P2 amplitudes. A LME model revealed that alternation

rate, condition and EEG recording electrode, as well as

the alternation rate × condition interaction were significant

[respectively: F(1,1,648) = 834.68, p < 0.001, η2p = 0.34; F(6,1,648)
= 14.26, p < 0.001, η

2
p = 0.05; F(5,1,648) = 7.56, p < 0.001,

η
2
p = 0.02; F(6,1,648) = 8.61, p < 0.001, η

2
p = 0.03]. N1-

P2 was significantly smaller at C3 and C4 than at F3, F4

and Fz (all ps <0.05). Bonferroni-corrected post-hoc t-tests

were used to decompose the alternation rate × condition

interaction. At medium alternation rates, N1-P2 amplitude

observed in conditions 320 vs. 1,320Hz and 1,320 vs. 3,120Hz

were significantly smaller than observed in conditions 1,320

vs. 1,520Hz and 2,620 vs. 3,120Hz, respectively (both ps <

0.05). At slow alternation rates, N1-P2 amplitude was smaller

in condition 320 vs. 340Hz than in all other conditions (all ps <

0.01) except in 1,320 vs. 3,120Hz (p = 0.445). On the contrary,

N1-P2 amplitude was larger in condition 320 vs. 480Hz than

both conditions 1,320 vs. 1,520Hz and 1,320 vs. 3,120Hz (both

ps < 0.05). Last, N1-P2 amplitude was larger in condition 2,620

vs. 3,120Hz than all other conditions (all ps < 0.05), except 320

vs. 480Hz (p = 0.085). Note that, similarly to P1 amplitude,

N1-P2 amplitude was significantly larger at slow than medium

FIGURE 6

Boxplots of amplitude of the P1 (cortical) response evoked in each condition, at fast (red dots), medium (blue dots) and slow (green dots)

alternating rates, recorded at Cz. The whiskers indicate values that fall within 1.5 times the interquartile range. Dots falling outside the whiskers

are outliers.
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FIGURE 7

Boxplots showing N1-P2 amplitude responses evoked in each condition, at medium (blue) and slow (green) alternating rates. The whiskers

indicate values that fall within 1.5 times the interquartile range. Dots falling outside the whiskers are outliers.

alternation rate (p < 0.0001). Together, this suggest that a

slow alternation rate might not influence the amplitude of the

subcortical response (see above), but appears to be the optimal

candidate to elicit large transient cortical responses.

As an exploratory follow-up, we sought to determine

whether increasing frequency separation between F0 and F0′ led

to a larger N1-P2 amplitude difference. This analysis was only

conducted on the four conditions where F0 = 320Hz. A LME

model revealed that alternation rate, condition and alternation

rate × condition interaction were significant [respectively:

F(1,453) = 250.9, p < 0.001, η
2
p = 0.36; F(3,453) = 7.48,

p < 0.001, η
2
p = 0.05; F(3,453) = 7.53, p < 0.001, η

2
p =

0.05]. Bonferroni-corrected post-hoc comparisons failed to show

significant amplitude differences between conditions at the

medium alternation rate (all ps >0.50, see first 4 Conditions

in Figure 7). However, at the slow alternation rate, the 320 vs.

480Hz condition led to significantly larger N1-P2 amplitude

differences than all three other conditions (all ps≤ 0.01). N1-P2

was also significantly larger in the 320 vs. 720Hz condition than

in the 320 vs. 340Hz (p < 0.01). No other comparisons were

statistically significant (ps > 0.10).

Relationship between subcortical and
cortical measures

To investigate the relationship between brainstem and

cortical responses we computed the correlation between P1

amplitude and FFR amplitude, as well as between N1-P2

amplitude difference and FFR amplitude. After aggregating

conditions for each of the three alternation rates, none of the

correlations were found to be significant (all ps >0.10), see

Figure 8. Similarly, there was no significant correlation between

the amplitude of either F0 or F0′ subcortical response and

amplitude of the ACC (all ps >0.10).

Discussion

The aim of this study was to identify stimulus parameters

that would maximize simultaneous recording of subcortical

(FFR) and cortical (OR) responses to the alternating ACC. Using

this paradigm, we were able to measure significant cortical ACC

and subcortical FFRs using the same stimuli. The alternating

ACCmaximizes data collection efficiency because each stimulus

change produces a response for averaging and time is not wasted

in dead periods between stimulus presentation.

The cortical and subcortical responses demonstrated

different patterns across frequency range (conditions),

frequency differences and alternation rate. Using a repeated-

measures design (n = 10), it appears that the optimal condition

for simultaneous subcortical and transient cortical recording

was slowly alternating (1Hz) between either 320 and 340Hz

or 320 and 480Hz (see Figure 4 upper row, Figures 6, 7).

Subcortical FFRs were overall larger in the low frequency

range, and for F0 than F0′, consistent with more robust phase-

locking at lower than higher frequencies (see Figures 2, 3). All

transient cortical measures were larger at slower alternation

rates, consistent with adaptation to repeating stimuli in the

human auditory cortex (16). The choice of F0 conditions might

depend upon the ACC response of interest. To maximize P1

amplitude, one might prefer the 320 vs. 340Hz condition rather

than 320 vs. 480Hz condition, which elicited the smallest P1

response. However, 320 vs. 480 sequences elicited the largest

N1-P2 difference. To our knowledge, this is the first study that

parametrically explored auditory stimulation for optimizing

recording parameters. Further studies replicating this finding
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FIGURE 8

Scatterplots of the relationship between FFR amplitude and both P1 amplitude (upper row) and N1-P2 amplitude di�erence (lower row). Shaded

lines represent the 95% confidence interval around the linear regression. Note that the fast-alternating rate did not allow enough time to elicit an

N1-P2, which are not shown.

on larger sample sizes would be useful both for researchers

and clinicians.

A previous study investigated the use of several presentation

schemes to measure the ACC to frequency changes (17). In

their study, the maximum time interval between alternations

was 500ms and the reported RMS amplitudes for the ACC were

in the range of 0.5 to 1 µV in adult listeners. This is smaller

(roughly 3 µV if we estimate the peak-to-peak amplitude from

the RMS scaling by sqrt(2) to obtain the peak amplitude and

assuming that positive and negative peaks have the same peak

amplitude) but comparable to our medium condition, where we

observed N1-P2 amplitudes in the order of 5 µV. However, this

was significantly smaller than in the slow alternating rate, where

the average ACC amplitude was on average 12µV, both of which

were obtained with a similar number of epochs and presumably

a similar amount of background noise. Recording time for any

condition of the slow (or medium) alternating rate was 8min,

making it considerably faster than previous studies using short,

broadband stimuli [e.g., (6)]. Interestingly, a similar alternation

rate was successfully used to elicit electrically-evoked FFR and

ACC in cochlear implant users (8, 18).

Whilst the slow alternating rate seems to be optimal for

the detection of transient ACC in the time-domain, we did

not investigate whether frequency-domain analysis will lead

to improved detection of the ACC. A visual inspection of

Figure 4 shows that use of a periodic alternation rate leads to a

spectrum with peaks at the alternation rate and its harmonics.

Therefore, the detection of the ACC could be performed in

the frequency-domain by taking the energy of the frequency

bin corresponding to the alternation rate and its harmonics

and comparing those to unrelated frequencies. It remains

unclear whether this approach will lead to better results than

in the time-domain but it could be a promising method for

detecting the ACC. Further studies could investigate if this

approach can indeed improve the detection of the ACC for

clinical applications.

There was no significant relationship between amplitude

for subcortical and either (cortical) P1 or N1-P2 response,

suggesting that they are measuring different aspects of

perception. This might appear to contrast with the literature

showing significant brainstem-cortical relationships (6, 19).

However, previous reports showed correlations between

subcortical FFR responses and late (> 500ms), cortical pitch

responses; or with N1 and P2 latency (19). Our results do

not indicate a clear relationship between the subcortical FFR

amplitude and cortical P1 or N1-P2 amplitudes most likely due
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to the different generators of the responses and the nature of

their behaviors [for reviews, see (20, 21)].

We anticipate that these measures will be useful for

objectively studying auditory processing in populations such as

children with dyslexia or auditory processing disorders (22–25).

Indeed, simultaneously acquired FFR and OR ACC would be

able to inform personalized auditory training programs, enable

teachers to position children in classroom locations with good

signal-to-noise ratios and provide clinicians with information to

optimally set up hearing aids, CIs or a combination of both.

Conclusion

We believe that the alternating ACC paradigm can be used

to measure sub-cortical and cortical responses that provide

complimentary information regarding auditory processing. For

probing auditory discrimination we recommend the use of slow

alternation rates (<3Hz) in the low-frequency range (300–

1,200Hz) to strike a balance between the sub-cortical and

cortical levels of processing. Future work is required to evaluate

how this can be used to inform clinical interventions for people

with CIs or other auditory processing difficulties.
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Evaluation of phase-locking to
parameterized speechenvelopes

Wouter David*, Robin Gransier and Jan Wouters

ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium

Humans rely on the temporal processing ability of the auditory system to

perceive speech during everyday communication. The temporal envelope of

speech is essential for speech perception, particularly envelope modulations

below 20Hz. In the literature, the neural representation of this speech

envelope is usually investigated by recording neural phase-locked responses

to speech stimuli. However, these phase-locked responses are not only

associated with envelope modulation processing, but also with processing of

linguistic information at a higher-order level when speech is comprehended.

It is thus di�cult to disentangle the responses into components from the

acoustic envelope itself and the linguistic structures in speech (such as

words, phrases and sentences). Another way to investigate neural modulation

processing is to use sinusoidal amplitude-modulated stimuli at di�erent

modulation frequencies to obtain the temporal modulation transfer function.

However, these transfer functions are considerably variable across modulation

frequencies and individual listeners. To tackle the issues of both speech and

sinusoidal amplitude-modulated stimuli, the recently introduced Temporal

Speech Envelope Tracking (TEMPEST) framework proposed the use of

stimuli with a distribution of envelope modulations. The framework aims

to assess the brain’s capability to process temporal envelopes in di�erent

frequency bands using stimuli with speech-like envelope modulations. In

this study, we provide a proof-of-concept of the framework using stimuli

with modulation frequency bands around the syllable and phoneme rate in

natural speech. We evaluated whether the evoked phase-locked neural activity

correlates with the speech-weighted modulation transfer function measured

using sinusoidal amplitude-modulated stimuli in normal-hearing listeners.

Since many studies on modulation processing employ di�erent metrics

and comparing their results is di�cult, we included di�erent power- and

phase-based metrics and investigate how these metrics relate to each other.

Results reveal a strong correspondence across listeners between the neural

activity evoked by the speech-like stimuli and the activity evoked by the

sinusoidal amplitude-modulated stimuli. Furthermore, strong correspondence

was also apparent between each metric, facilitating comparisons between

studies using di�erent metrics. These findings indicate the potential of the

TEMPEST framework to e�ciently assess the neural capability to process

temporal envelope modulations within a frequency band that is important for

speech perception.

KEYWORDS

temporal processing, envelope modulations, envelope encoding, auditory steady-

state responses (ASSR), speech processing
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Introduction

Natural speech is a complex and dynamic signal. One

prominent component of the speech signal is the temporal

envelope. The speech envelope contains slow modulations that

are related to linguistic information at different timescales

such as phrases, words, syllables, and phonemes (1, 2).

The modulation spectrum of the speech envelope exhibits

a prominent peak for slow modulations of 4–5Hz (3, 4),

which corresponds to the syllable rate in speech (1, 5–7).

Since the timescales of these slow modulations coincide with

spoken syllables, access to these envelope modulations and

their representation in the neural signal traveling through the

auditory pathway is essential for speech perception, especially

when access to spectral information is limited (8–12).

Two main electrophysiological paradigms are often used

to investigate the neural representation of these slow envelope

modulations throughout the auditory pathway. One paradigm

involves neural entrainment to speech, which refers to cortical

responses that consistently phase-lock to slow modulations

of the speech envelope (13). The relation between neural

responses and the speech envelope through phase-locking has

been established with magneto- and electroencephalography

(MEG/EEG) (14–16). While listening to speech, the phase

pattern of the neural response is consistent with the speech

envelope modulations of 4–8Hz (17, 18). Interestingly, several

studies suggested that speech perception performance is

associated with the degree of phase-locking to the speech

envelope (19–21). In other words, neural phase-locked

patterns that are less consistent with the speech envelope are

associated with degraded speech perception. For example,

higher disruption of neural phase-locking during listening

with electrical transcranial stimulation has been shown to

result in more degraded speech perception (22). These findings

suggest that phase-locking to the speech envelope in the

auditory pathway plays an important role in speech perception.

Moreover, hierarchical linguistic structures – such as words,

phrases, and sentences – are differentiated by input acoustical

cues and linguistic higher-order comprehension processes (23–

25). The phase-locked responses to speech from the auditory

pathway consist of cortical activity at different timescales (or

modulation frequency bands) that concurrently track different

linguistic structures at different hierarchical levels.

Analyses of phase-locked responses to speech have pointed

to distinct functional roles of the delta (1–4Hz) and theta (4–

8Hz) bands. On the one hand, phase-locking in the delta band

is largely associated with the amount of linguistic information

in the speech signal (26, 27) and with the listener’s proficiency

in the language (28–30). By manipulating the different levels of

linguistic structure in the speech signals, this can be studied.

When listening to a stream of synthesized Chinese sentences,

in which the sentence rate was not present in the envelope but

was encoded in the linguistic structure, native Chinese listeners

did show phase-locking at the sentence rate while native English

listeners did not (29). Neural phase-locking is also associated

with lexical, syntactic, and/or semantic changes in the linguistic

content when the speech is comprehended. The theta band

(4–8Hz), on the other hand, seems to be more dependent on

the saliency of the perceived acoustic envelope. To assess how

envelope modulations at these low frequencies are processed

by the auditory system, one can use techniques that alter the

linguistic content of speech. Distortions to the speech signal can

consequently also affect the linguistic message conveyed (31, 32).

These findings show that the envelope and the linguistic content

of speech are interdependent (13, 33–35). However, the relative

contributions to neural phase-locked responses of the speech

envelope on the one hand and the linguistic content of speech,

on the other hand, are difficult to disentangle from each other.

Several studies have shown the applicability to use amplitude-

modulated (AM) stimuli to assess phase-locked responses to

envelope modulations (36–39).

Sinusoidally amplitude-modulated (SAM) stimuli are

at the basis of the other paradigm to investigate the neural

representation of envelope modulations. These stimuli evoke

auditory steady-state responses (ASSR) (40) of which the

strength reflects the ability of the auditory pathway to phase-

lock to the stimulus’ modulation frequency (i.e., the response is

synchronized to the envelope fluctuations). ASSRs evoked by

stimuli with modulations below 20Hz originate predominately

from the auditory cortex, while those evoked with higher

frequencies originate from subcortical and brainstem regions

(41–44). Studies have indicated that speech perception

performance in noise is correlated with 40-Hz ASSRs (45–47)

and 80-Hz ASSRs (47–49). In addition, ASSRs elicited by

20-Hz and 4-Hz modulations are associated with phoneme

and sentence scores, respectively (48–50). To obtain a sense of

the overall capacity of neural modulation processing, ASSRs

are measured over a wide range of modulation frequencies.

The ASSR amplitude as a function of modulation frequency

is the temporal modulation transfer function (TMTF). The

TMTF shows a broad peak around 80 and 40Hz (36–39), and

also around 20Hz (36). Interestingly, the TMTF shows large

variations in ASSR evoked by modulation frequencies below

20Hz and across listeners (36). Therefore, to gain insight into

the overall processing capacity of these slow modulations,

one would have to measure several ASSRs within this range

to evaluate the overall capability to process speech-relevant

modulations. However, this approach is time-consuming

and could potentially be performed more efficiently using a

speech-like stimulus that contains the modulation frequencies

of interest.

To overcome the issues that are encountered with speech

and SAM stimuli, Gransier and Wouters (51) developed the

Temporal Envelope Speech Tracking (TEMPEST) framework.

The TEMPEST framework enables the creation of stimuli with

parameterized envelopes which can be used to assess the effect
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of specific characteristics of the speech envelope on neural

processing (e.g., envelopes that contain the same modulations

as natural speech). In the present study, we investigate

whether TEMPEST-based stimuli that consist of syllabic-

like and phonemic-like modulations—as present in natural

speech—can be used to gain insight into the speech-weighted

electrophysiological TMTF of normal-hearing listeners. To

this end, we elicited responses with TEMPEST stimuli based

on distributions of modulation frequencies close the syllable

(∼4Hz) and phoneme (∼20Hz) rates in speech. Furthermore,

we also recorded ASSRs, which are normally used to assess

the electrophysiological TMTF, with modulation frequencies

that covered the same range as those in the TEMPEST

stimuli. We compared the overall activity of the TEMPEST

neural responses and that of the ASSRs. We expect that the

overall TEMPEST neural activity corresponds to the speech-

weighted overall activity within the ASSR TMTF and that

the TEMPEST framework can be used to efficiently probe

the speech-weighted electrophysiological TMTF in normal-

hearing listeners. To this end, we used different power-

and phase-based electrophysiological metrics that are widely

used in the literature. Many studies make use of various

electrophysiological metrics (or terminologies) to characterize

phase-locked responses to AM stimuli. Some of the studies

made use of power-based metrics [e.g., in Gransier et al. (36),

Purcell et al. (37), Poulsen et al. (38)] while other studies applied

phase-based metrics [e.g., in Luo and Poeppel (17), Howard and

Poeppel (18)]. Due to the use of different metrics, comparing

results across studies is difficult. Therefore, we included different

power- and phase-based metrics and investigated how they

relate to each other in order to facilitate these comparisons

across studies.

Materials and methods

TEMPEST framework

Gransier and Wouters (51) introduced the TEMPEST

framework in which amplitude-modulated stimuli are created

based on an a-priori distribution of modulation frequencies

that are relevant for speech. The purpose of the TEMPEST

framework is to evaluate the overall envelope encoding ability

of the auditory system with stimuli containing a range of

envelope modulations. TEMPEST stimuli have a quasi-regular

envelope which is generated by concatenating windows over

time (Figure 1). Each window in the envelope can represent

the occurrence of an acoustic unit in natural speech. The

duration of each window depends on random sampling from

a probability distribution of modulation frequencies. Each

randomly sampled modulation frequency (fm) is inverted

to determine the duration (Twindow = 1/fm) of subsequent

windows (Figure 1). Furthermore, each window can have some

fixed or variable parameters, such as peak amplitude, onset time,

etc. A simple example is the SAM stimulus, which can be created

within the TEMPEST framework using sinusoidal windows with

a fixed peak amplitude and only one modulation frequency.

The next examples are two TEMPEST stimuli used in this

FIGURE 1

(A) A-priori modulation frequency distribution for syllabic-like envelopes (mean = 4Hz; standard deviation = 1Hz) and an exemplary envelope.

The right panel shows modulation spectra of 200 syllabic-like TEMPEST envelopes (yellow) along with the averaged distinct spectrum (black)

and the spectrum of the frozen envelope (red). (B) A-priori modulation frequency distribution for phonemic-like envelopes (mean = 20Hz;

standard deviation = 3Hz) and an exemplary envelope. The right panel shows modulation spectra of 200 phonemic-like TEMPEST envelopes

(yellow) along with the averaged distinct spectrum (black) and the spectrum of the frozen envelope (red). Histograms show the sampled

modulation frequencies of the exemplary envelopes. Horizontal gray lines depict the sampling of modulation frequency for two envelope

windows with corresponding window length (= 1/fm).
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study (Figure 1, right). These stimuli have different modulation

frequency distributions: one centered around 4Hz (syllable

rate) and one around 20Hz (phoneme rate) (Figure 1, left).

Due to sampling of the distributions, the envelope modulation

spectrum will also contain these modulation frequencies with a

peak at the center frequency. After its generation, the envelope

is used to modulate a carrier signal to finalize the creation of the

TEMPEST stimulus.

The main goal of this study is to validate whether the

TEMPEST framework can be used to assess the speech-weighted

electrophysiological TMTF in normal-hearing listeners. The

TEMPEST framework would be a useful tool to investigate the

overall neural capability to process envelope modulations which

can potentially be related to speech perception performance.

To this end, we generated “basic” TEMPEST stimuli using a

Gaussian probability function of low modulation frequencies

that are apparent in the speech envelope.

Participants

Ten normal-hearing native-Dutch young adults (ages from

19 to 27 years; 3 males and 7 females) participated in this study.

No participants had neurological deficits. All participants had

normal hearing (pure tone thresholds ≤ 25 dB HL for all octave

frequencies between 250 and 8,000Hz). This study was approved

by the Medical Ethical Committee of the UZ Leuven hospital

(study number: B322201524931). All participants gave written

informed consent before participation.

Stimuli

SAM stimuli

ASSRs with different modulation frequencies were recorded

to obtain individual electrophysiological TMTFs within the

modulation frequency ranges of the TEMPEST stimuli.

Modulation frequencies of the SAM stimuli were chosen

to sample the modulation bands of the TEMPEST stimuli

(Figure 1, left). Syllabic-like SAM stimuli with modulation

frequencies of 2–6Hz and phonemic-like SAM stimuli with

modulation frequencies of 17–23Hz were included. All SAM

stimuli were created in a custom stimulation software (52).

Modulation frequencies were adjusted such that there is an

integer number of cycles within one trial of 1.024 s. However,

we will further report using rounded modulation frequencies for

readability. Modulation depth was set at a maximum of 100% in

order to elicit as large ASSRs as possible. The carrier was speech-

weighted noise which was generated from the long-term average

spectrum of 730 Dutch sentences of the LIST corpus (53). Blocks

of 2.56min were recorded in each measurement session so that

300 trials in total were recorded for each modulation frequency.

TEMPEST stimuli

TEMPEST envelopes for this study were generated in

Matlab R2016b using Hann windows. Hann windows were used

because they have a start- and endpoint at zero to prevent

discontinuities in the envelope. The peak amplitude of the

windows was always at a maximum of 1 such that the effective

modulation depth of the TEMPEST stimuli was 100%. We

generated two types of TEMPEST stimuli: syllabic-like and

phonemic-like stimuli (Figure 1). Modulation distributions of

the TEMPEST stimuli were based on modulation rates that

are particularly important for speech, i.e., the natural rates of

syllables and phonemes (2, 7). The modulation distribution

of syllabic-like TEMPEST envelopes closely matched the low

envelope modulation spectrum of speech, which shows a peak

around 4Hz (3, 4). The phonemic-like modulation distribution

was based on phoneme length statistics in speech from which

the mean duration was found to be around 50ms (54), which

corresponds to a center modulation frequency of 20Hz. The

standard deviations of the distributions were 1Hz and 3Hz

the envelopes of the syllabic-like and phonemic-like TEMPEST

stimuli, respectively (Figure 1).

The duration of the syllabic-like and phonemic-like stimuli

were 5.12 s and 25.6 s long in order to reach a similar number

of envelope windows and to sufficiently sample the modulation

distributions. The envelopes were tested for sufficient statistical

similarity to the modulation distribution using the Kolmogorov-

Smirnov test with a significance level of α = 0.05. Additionally,

we applied criteria to ensure that the envelope modulation

samplemean and standard deviation did not deviate too far from

those of the a-priori distribution. We used 1µ ≤ 0.05Hz and

1σ ≤ 0.05Hz for syllabic-like envelopes, and 1µ ≤ 0.25Hz

and 1σ ≤ 0.1Hz for phonemic-like envelopes, with 1µ the

difference between the means and 1σ the difference between

standard deviations of the sample and a-priori distributions.

Envelopes that did not meet these criteria were discarded and

new ones were generated instead until they met the criteria. This

procedure was continued until 200 syllabic-like and phonemic-

like TEMPEST envelopes were obtained. Only 20% of the total

amount of generated envelopes passed the test and both criteria.

Finally, these envelopes were used to modulate segments of

speech-weighted noise based on Dutch LIST sentences (53).

In the main experiment, one single syllabic-like and

one phonemic-like stimulus were presented repeatedly to the

listener. These stimuli are referred to as frozen stimuli since

the same temporal pattern was used over again. The goal of

the frozen stimuli was to test robust neural phase-locking and

evoked power in the modulation distribution frequency range

and to compare this neural activity with ASSRs. Additionally,

the remaining syllabic-like and phonemic-like stimuli were

presented only once to the listener. Since these stimuli were

temporally different from each other, they are referred to

as distinct stimuli. Distinct stimuli were used as a baseline

measurement with respect to the frozen stimuli (17, 55–57).

Frontiers inNeurology frontiersin.org

39

https://doi.org/10.3389/fneur.2022.852030
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


David et al. 10.3389/fneur.2022.852030

The number of distinct stimuli equaled the number of repeated

presentations of the frozen stimulus so that bias by differences in

the number of trials is minimized (58). Stimuli were presented

in blocks of 5.12min, in which either frozen stimuli were

repeated or distinct stimuli were presented in random order.

In total, there were 156 frozen and distinct syllabic-like trials

(12 presentations in 13 blocks), and 180 frozen and distinct

phonemic-like trials (60 presentations in 3 blocks). Each block

was preceded with a short 2.56-s TEMPEST segment generated

with the same parameters. The evoked neural activity to this

segment contains an onset response that would interfere with

the main analysis. Therefore, the EEG recordings corresponding

to this segment were immediately discarded.

Equipment

Calibration and presentation setup

Presentation of all stimuli was done using custom-built

software interfacing with an RME-Hammerfall DSP Multiface II

soundcard and delivered monaurally through an Etymotic ER-

3A insert earphone to the right ear. All stimuli were calibrated

using a 2-cc coupler of an artificial ear (Brüel & Kjær, type

4,152) and presented at 70 dB sound pressure level (SPL) at

a sampling rate of 32 kHz. Two measurement sessions were

conducted whereby each session started with a set of ASSR

stimuli in a pseudo-random order which was followed by a

set of phonemic-like and syllabic-like TEMPEST stimuli in a

pseudo-random order as well.

EEG recording setup

EEG was recorded using a 64-channel BioSemi ActiveTwo

recording system with a sampling rate of 8,192Hz and a

recording bandwidth of 0 to 1,683Hz. A head cap with 64

Ag/AgCl recording electrodes was placed on the scalp of every

participant. The electrode positions were placed across the scalp

according to the international standard 10–20 system (59). All

recordings were made in a double-walled soundproof booth that

is equipped with a Faraday cage to avoid signal interference

as much as possible. Participants watched a silent movie by

choice while seated in a relaxing chair. They were offered a head

pillow and asked to move as little as possible to minimize head

movement/muscle artifacts.

Signal processing and response
quantification

Preprocessing

Offline signal processing was done in Matlab R2016b. EEG

recordings were high-pass filtered using a 1st order Butterworth

filter with a cut-off frequency of 0.5Hz to remove any DC

FIGURE 2

Visualization of the EEG recording electrodes used to form the

left channel (blue) and the right channel (red). The reference

EEG electrode Cz is indicated by the green color.

component and slow drifts. Recordings were referenced to

electrode Cz by subtracting the recording of Cz from those of

the other channels. 5% of the trials were discarded from the

analysis based on the highest peak-to-peak amplitudes, as they

were assumed to contain muscle and other recording artifacts.

Due to measurement errors, not all trials could be obtained from

each participant. Only 108 frozen phonemic-like trials could be

retained from Participant 7, while 162 phonemic-like trials could

be retained in all other cases. The minimum number of retained

syllabic-like trials is 115 and the maximum number is 136 across

all participants. Time signals of the parieto-occipital recording

electrodes were averaged into a left and a right hemispheric

channel. Recording electrodes O1, PO3, PO7, P9, P7, P5, CP5,

and TP7 formed the left hemispheric channel, while recording

electrodes O2, PO4, PO8, P10, P8, P6, CP6, and TP8 formed the

right hemispheric channel. See Figure 2 for a visualization of the

selected electrodes.

In the case of ASSRs, all 300 trials of each modulation

frequency were successfully recorded. Syllabic ASSR (fmod

= 2–6Hz) recordings were grouped into sweeps of 5 trials,

while phonemic-like ASSR (fmod = 17–23Hz) recordings were

grouped into sweeps of 1 trial. Syllabic-like and phonemic-like

ASSR sweep lengths were thus 5.12 s and 1.024 s, respectively.

Consequently, the number of cycles in each sweep is similar

for both syllabic-like and phonemic-like ASSRs in order

to have similar phase estimation during analysis. The rest

of the preprocessing procedure is the same as for the

TEMPEST recordings.
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Neural response analyses

Amplitude and phase for each modulation frequency were

extracted from the individual or averaged response trials after

transforming into the spectral domain. ASSR sweeps were

transformed using the discrete Fourier transform. TEMPEST

response trials were transformed into Fourier spectrograms with

Hanning windows in which the window length and window

overlap were tuned such that phase estimation is similar to that

for ASSRs. The window length was equal to the length of the

corresponding syllabic-like or phonemic-like ASSR sweep. The

window overlap corresponded to three times the reciprocal of

the mean modulation frequency in each TEMPEST stimulus

such that subsequent windows are, on average, one cycle from

each other. Thus, for syllabic-like TEMPEST, spectrograms

were computed with 5.12 s window length and 0.25 s window

step, whereas for phonemic-like stimuli, a window length

of 1.024 s and a window step of 0.05 s were used. Since

different spectrogram parameter values were used, the frequency

resolution differed between syllabic-like and phonemic-like

stimuli. Response bins are 0.195 Hz/bin and 0.977 Hz/bin,

respectively. Amplitude and phase were extracted from each

time-frequency bin in the spectrogram. These values were used

to compute several electrophysiological metrics listed below.

To gain insight into the characteristics and robustness of

the recorded neural responses and to compare the TEMPEST

responses with ASSRs, four electrophysiological metrics were

employed in our analysis. A small selection of metrics have been

employed because many different metrics are being used in the

literature and this makes comparisons and conclusions across

studies more difficult. In order to investigate how different

metrics relate to each other and to facilitate comparisons

between studies, the metrics used in our analyses represent

some of the most widely used ones in the power and phase

domain. Two of them are power-based metrics, namely power

and signal-to-noise ratio (SNR) of the averaged response.

Power is computed after obtaining the amplitude spectrum

of the averaged neural response and squaring the amplitude

in each frequency bin This metric reflects the overall neural

activity evoked by the stimulus (60). The SNR is taken as the

power of the averaged neural response divided by power of

the neural background noise. Power of the averaged neural

response is computed as the mean power across stimulus

trials in each frequency bin. Power of the neural background

noise is computed as the variance of power across stimulus

trials divided by the number of trials in each frequency bin.

This estimation of neural background noise is more viable

for TEMPEST responses than the estimation from neighboring

noise bins which is commonly used in case of ASSRs (40). This

is because TEMPEST responses are expected to contain evoked

power within a certain frequency band whereas ASSRs only have

evoked power in the modulation frequency bin. Additionally, as

the neural background noise typically exhibits a 1/f spectrum,

noise power at the lower frequency side is higher than at the

higher frequency side. Evoked responses to a repeated stimulus

expected to be consistent in power and phase across trials, while

neural background noise adds a random amplitude and phase to

that of the evoked response in each trial. Under this assumption,

variance in power across trials divided by the number of trials

reflects neural background noise power (61). The two power-

based metrics are ubiquitously used in the neuroscience field

to indicate the strength and quality of the measured averaged

response. The other two metrics are solely based on the phase of

the individual response trials: inter-trial phase coherence (ITPC)

and pairwise phase consistency (PPC). The first metric, ITPC,

indicates consistency of phase-locking to a stimulus based on

the magnitude of the average of unit vectors rotated by extracted

phases θn across N trials (17, 62).
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The ITPC is commonly used to investigate robustness of phase-

locking with different stimulus parameters (17, 18, 55, 57, 62–

64). However, despite its considerable presence in the literature,

the ITPC is biased by the number of trials with fewer trials

resulting in a larger positive bias in the outcome. This bias

could hamper comparison between conditions and/or studies

with different amounts of trials (58, 61, 65). In contrast to ITPC,

the PPC is an unbiased estimate of phase-locking because it is

based on the averaged dot product of all possible phase pairs θn

and θm across N trials (66).

PPC =
2

N(N − 1)

N−1
∑

n=1

N
∑

m=n+1

cos(θn−θm) (2)

When phase consistency is high, then distances between

phase pairs will become smaller and thus dot products will

be larger. The advantage of the PPC is that it allows for

comparison between studies and conditions even with different

trial numbers. Both ITPC and PPC take up values between 0

and 1, with 0 indicating no phase-locking at all and 1 indicating

perfect phase-locking across trials. Note that ITPC and PPC for

TEMPEST responses are computed for each time and frequency

bin. In order to obtain electrophysiological patterns as a function

of modulation frequency in each participant, results of each

metric were averaged in the time domain.

Responses were tested for significance against the neural

background noise using the Hotelling T² test (52, 67). ASSRs

were tested only at their modulation frequency bin while

TEMPEST neural activity was tested in each modulation

frequency bin of the spectral domain. To evaluate similarity

between ASSR patterns and between TEMPEST patterns

measured with different electrophysiological metrics and

whether different metrics would reveal different characteristics
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FIGURE 3

Illustration of ASSR pattern weighting and computation of the area under the curve. (A) the original ASSR pattern is weighted by the Gaussian

modulation distribution of the corresponding TEMPEST stimuli. The computed area under the weighted ASSR pattern is depicted as the shaded

area. (B) The computed area under the TEMPEST pattern is depicted as the shaded area. Syllabic-like pattern data came from the left

hemispheric channel in Participant 3.

of the neural patterns, the patterns were subjected to correlation

analyses. Only significant response bins were included in the

analyses. Additionally, because ITPC and PPC are bounded

between 0 and 1, their values were first transformed using the

Fischer z-transformation. Pearson’s correlation coefficients and

corresponding p-values were then reported. The significance

level was α = 0.05 at all times and post-hoc Bonferroni correction

was used to control for false discovery rate since multiple

correlations were being tested simultaneously.

Comparison between TEMPEST and ASSR
TMTF patterns

The main goal of this study is to investigate whether the

neural activity evoked by TEMPEST stimuli is comparable

to the overall ASSR activity (i.e., the TMTF) in the same

frequency band. Usually, the TMTF is obtained by setting out

ASSR amplitude as a function of modulation frequency (36–39).

However, in this study not only ASSR patterns of power, but also

of SNR, ITPC and PPCwere used.When the ASSR TMTF shows

a prominent peak, we hypothesize that the TEMPEST neural

activity would also show a relatively large peak and vice versa

for each metric. The presence of prominent peaks translates

into a larger area under the TMTF pattern. To compare the

TEMPEST patterns with those of ASSRs, areas under patterns

of the same metric were computed and correlated with each

other across all participants in the left and right hemispheres.

Before computing the area of ASSR patterns, patterns were first

weighted according to the corresponding TEMPESTmodulation

distribution in order to account for the relative contribution

of each modulation frequency to the TEMPEST neural activity.

Each modulation frequency of the SAM stimuli contribute

equally to the ASSR patterns. However, these contributions are

not equal anymore in case of TEMPEST due to the a-priori

modulation frequency distribution used to generate the stimuli.

To achieve this weighting of the ASSR pattern, it is multiplied

with the Gaussian curve of the corresponding syllabic-like or

phonemic-like TEMPEST modulation distribution. By doing

this, the TEMPEST and ASSR neural evoked activity can

be directly compared to each other after accounting for the

modulation distribution shape. Areas under the patterns were

computed between 2 and 6Hz for syllabic-like responses, and

between 17 and 23Hz for phonemic-like responses (Figure 3).

The area was computed by summing up the values in each

frequency bin within the restricted band. Finally, to test the

relative correspondence between the ASSR and TEMPEST

patterns, Pearson’s correlations between the TEMPEST and

ASSR areas across participants were computed. Only areas

of the same metric from ASSR and TEMPEST analyses were

correlated (e.g., the area of ASSR SNR was correlated with

the area of TEMPEST SNR). Partial Pearson’s correlations

were computed between TEMPEST and ASSR power area in

order to control for any potential effects of induced power

area. Induced power is the power that appears in the EEG in

any frequency band while listening to a stimulus. In order to

investigate whether neural phase-locking to the TEMPEST and

SAM stimuli correspond to each other, the correlation with

induced power must be controlled for. The induced power
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FIGURE 4

Unweighted ASSR power (red), noise (black), and PPC (yellow) patterns from the left hemispheric channel as a function of modulation frequency.

area in the syllabic-like frequency range was computed from

the averaged power spectrum of the distinct phonemic-like

TEMPEST stimuli, whereas the induced power area in the

phonemic-like frequency range was computed from the distinct

syllabic-like TEMPEST stimuli. The significance level for the

correlations was α = 0.05 and p-values were corrected with the

Bonferroni procedure.

Results

Evaluation of electrophysiological
metrics

ASSR

We measured ASSRs with 2–6Hz (syllabic-like) and 17–

23Hz (phonemic-like) modulation frequencies and obtained

the response pattern across modulation frequency for each

participant and electrophysiological metric, which is very similar

to how TMTFs are obtained elsewhere. Almost all ASSRs

were found to be statistically significantly different from noise

using the Hotelling T² test. Figure 4 shows the individual

ASSR patterns measured with response power and PPC for

syllabic ASSRs in the left hemispheric channel. In this case, the

patterns of these two metrics are relatively similar to each other

within each participant. The different shapes of the patterns

demonstrate the large variability in ASSRs across modulation

frequency and participants.

Patterns of the other electrophysiological metrics are not

shown but their similarity in shape to each other was evaluated

with correlation analyses. Examples of correlation scatterplots

for the syllabic-like responses in the left hemispheric channel are

shown in Figure 5. Table 1 summarizes all Pearson’s correlation

coefficients between the different electrophysiological metrics.

Since the response power and PPC patterns were relatively

similar, they were highly correlated with each other [r (38)

= 0.85, p < 0.0001]. The ITPC and PPC showed an almost

perfect linear correlation (Figure 5, bottom left) based on

the fact that the PPC is an unbiased estimate of phase-

locking compared to the biased ITPC due to the number

of trials. Exchanging the ITPC for PPC would not virtually

change the interpretation of the results. The next highest

correlations were found between SNR and PPC, which are

very high [from r (38) = 0.92 to r (64) = 0.99, p <

0.0001]. Comparing the ASSR power with SNR and PPC

resulted in moderate to high correlation coefficients. Each

correlation coefficient was found to be highly significant

(Table 1).

TEMPEST

When characterizing neural responses to TEMPEST

stimuli for each modulation frequency, all electrophysiological

metrics showed variation across participants. Figures 6,

7 show only response power and PPC patterns layered

over each other for syllabic-like and phonemic-like neural
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FIGURE 5

Scatter plots between di�erent ASSR electrophysiological metrics for syllabic-like stimuli in the left hemispheric channel.

responses, respectively. Patterns of the other metrics are not

shown, but pattern correlations between all four metrics are

presented in Table 1. In some participants, distinctive peaks

around the mean modulation frequency of the envelope

were found in their patterns. For example, participants 1,

3, 5, and 9 showed increased activity around 4Hz with

syllabic-like stimuli. Interestingly, unlike these participants,

participant 2 did not show peak activity around 4Hz but

a broader one around 7–8Hz with syllabic-like stimuli,

which corresponds to the range of second harmonic

frequencies. With phonemic-like stimuli, participants 3,

5, 6, 7, and 8 showed highly prominent peaks around

20Hz. As expected, responses to distinct stimuli did

not show the increased averaged neural activity as with

frozen stimuli.

Patterns of the other metrics are not shown but – like with

the ASSRs – their similarity to the PPC patterns was evaluated

with correlation analyses. Correlations between the different

electrophysiological metric patterns are shown in Table 2. Again,

unsurprisingly, the ITPC and PPC showed an almost perfect

linear correlation (r > 0.99) (Figure 8, bottom left). Exchanging

the ITPC for PPC would not virtually change the interpretation

of the results as well in this case. Other metric comparisons

resulted in moderate to high correlations except for power

vs. PPC in the left hemisphere for phonemic-like stimuli.

Correlations with PPC for power and SNR were not as strong

as those for ASSRs. Each correlation coefficient was found

to be highly significant, except for power vs. PPC in the left

hemisphere for phonemic-like stimuli (Table 2).

Comparison of TEMPEST and ASSR
neural activity

If an individual ASSR TMTF does not show a prominent

peak, then we expect that the TEMPEST neural pattern would

not show a peak as well and vice versa. To assess whether the

overall activity of ASSR TMTFs corresponds to the activity of

TEMPEST responses within participants, we computed the area

under the patterns and performed correlation analyses. Only
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TABLE 1 Pearson’s correlation coe�cients between di�erent electrophysiological metrics of syllabic-like and phonemic-like ASSRs in the left and

right hemispheric channels.

Syllabic-like Phonemic-like

Left Right Left Right

(df= 37) (df= 40) (df= 64) (df= 63)

Power vs. PPC 0.86* (<0.0001) 0.74* (<0.0001) 0.69* (<0.0001) 0.62* (<0.0001)

SNR vs. PPC 0.95* (<0.0001) 0.92* (<0.0001) 0.98* (<0.0001) 0.99* (<0.0001)

ITPC vs. PPC > 0.99* (<0.0001) > 0.99* (<0.0001) > 0.99* (<0.0001) > 0.99* (<0.0001)

SNR vs. power 0.81* (<0.0001) 0.63* (<0.0001) 0.68* (<0.0001) 0.63* (<0.0001)

Corresponding p-values are reported between parentheses. *Significant after post-hoc Bonferroni correction.

FIGURE 6

Two di�erent patterns, one of power (red) and one of PPC (yellow), plotted over each other across modulation frequency. The patterns are from

TEMPEST syllabic-like responses in the left hemispheric channel for each participant. Black patterns describe the baseline from distinct

responses. The shaded Gaussian curve represents the modulation frequency distribution of the stimuli (scaled arbitrarily).

areas under the ASSR and the TEMPEST pattern of the same

electrophysiological metric were used because comparing areas

with different metrics would not be insightful (e.g., area under

ASSR PPC pattern vs. area under TEMPEST SNR pattern).

The computed areas were directly correlated across all ten

participants for SNR and PPC of syllabic-like and phonemic-like

responses in the left and right hemispheres separately (Figure 9,

middle and right columns). Based on the almost perfect

correlation between ITPC and PPC (Tables 1, 2), ITPC was left

out because it would produce the same results as the PPC. All

correlation coefficients were found to be strong [r (8) = 0.75–

0.98] and highly significant after post-hoc Bonferroni correction

(p ≤ 0.001), except for the correlation coefficient between ASSR

and TEMPEST SNR area for syllabic-like responses in the

right hemispheric channel which was not significant anymore

after post-hoc correction (p = 0.013). For the power metric,

partial Pearson’s correlations between TEMPEST power area

and ASSR power area were computed in order to control for

any potential effects of induced power area. Partial correlation

coefficients were found to be strong [r (7) = 0.81–0.97] and

highly significant (p ≤ 0.001). These high correlations indicate

that the overall activity of the TEMPEST responses corresponds

to the speech-weighted overall activity of the ASSR TMTF.

Discussion

The TEMPEST framework was introduced by Gransier and

Wouters (51) to provide an efficient method to investigate the
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FIGURE 7

Two di�erent patterns, one of power (red) and one of PPC (yellow), plotted over each other across modulation frequency. The patterns are from

TEMPEST phonemic-like responses in the left hemispheric channel for each participant. Black patterns describe the baseline from distinct

responses. The shaded Gaussian curve represents the modulation frequency distribution of the stimuli (scaled arbitrarily).

TABLE 2 Pearson’s correlation coe�cients between di�erent electrophysiological metrics of syllabic-like and phonemic-like TEMPEST neural

responses in the left and right hemispheric channels.

Syllabic-like Phonemic-like

Left Right Left Right

(df= 42) (df= 39) (df= 22) (df= 27)

Power vs. PPC 0.79* (<0.0001) 0.49* (0.0012) 0.31 (0.14) 0.44 (0.017)

SNR vs. PPC 0.85* (<0.0001) 0.70* (<0.0001) 0.86* (<0.0001) 0.91* (<0.0001)

ITPC vs. PPC >0.99* (<0.0001) >0.99* (<0.0001) >0.99* (<0.0001) >0.99* (<0.0001)

SNR vs. power 0.92* (<0.0001) 0.70* (<0.0001) 0.49 (0.015) 0.54* (0.0025)

Corresponding p-values are reported between parentheses. *Significant after post-hoc Bonferroni correction.

neural representation of the stimulus’ envelope with speech-

like modulation frequencies. In this study, we aimed to

demonstrate a proof-of-concept of the TEMPEST framework

to efficiently assess the overall capability of temporal envelope

encoding in the auditory pathway. To this end, we investigated

whether the neural activity evoked by TEMPEST stimuli

corresponds to the speech-weighted electrophysiological TMTF,

which is classically measured with ASSRs. We used four

different electrophysiological metrics to characterize the neural

responses. Two metrics were purely based on power (evoked

power and SNR) and two other metrics were purely based on

phase (ITPC and PPC) of the individual trials or the averaged

trial of the neural response. These metrics were computed for

each modulation frequency to obtain neural activity patterns

as a function of modulation frequency. This approach is

similar to how TMTFs were obtained in other studies using

ASSR amplitude (36–39). Comparing the overall neural activity

pattern obtained with TEMPEST to the speech-weighted TMTF

obtained with ASSRs allowed us to investigate whether they

correspond to each other across listeners.

First, we compared neural activity patterns of different

metrics with each other for the ASSRs and the TEMPEST

responses separately. This is to investigate whether different

metrics would reveal different characteristics of the evoked

neural activity. A notable case is the almost perfect linear

correlation between the ITPC and PPC (Figures 5, 8, bottom

left panel) because these two metrics are similar to each other

except for a bias due to the number of trials in the ITPC
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FIGURE 8

Scatter plots between di�erent electrophysiological metrics for syllabic-like TEMPEST neural responses in the left hemispheric channel.

(66). Small deviations occurred because the number of trials

was slightly different which resulted in a slightly different bias

in ITPC. Furthermore, the bias was relatively small because

considerable numbers of trials were used to compute the ITPC

(58, 65). Consequently, ITPC results can be exchanged by PPC

results without loss of interpretation. As indicated by the high

and significant correlation coefficients (Table 1), all individual

ASSR TMTF patterns had the same characteristics regardless of

the metric used. In the case of TEMPEST activity, syllabic-like

patterns of all different metrics significantly correlated with each

other. However, phonemic-like patterns of power and PPC did

not correlate significantly with each other in both hemispheric

channels, and neither did the SNR and power patterns in the

left channel (Table 2). Interestingly, the power-based SNR was

highly correlated with the phase-based PPC for both ASSRs and

TEMPEST responses. While SNR and PPC are based on two

independent aspects of the response, i.e., power and phase, the

high correlation might be explained by better representation of

the phase pattern of the recorded responses due to higher SNR

(55, 57). The powermetric leads tomostly moderate correlations

for both ASSR and TEMPEST stimuli. However, power by itself

doesn’t tell much about the presence of a response compared

to the presence of background noise, which the SNR and PPC

can do to a certain extent. This interaction might explain the

smaller correlations between power and the other two metrics.

Nevertheless, the high correlations also indicate a high similarity

of the intersubject variability in envelope modulation processing

across modulation frequency across metrics. For example, if a

participant showed a large peak of SNR at a certain modulation

frequency, then a large peak of PPC is also expected to appear

at the same modulation frequency (Figures 5, 8). Therefore,

patterns obtained with different electrophysiological metrics,

are comparable.

Patterns obtained with TEMPEST stimuli differed across

participants which is consistent with the notion that neural

phase-locked activity varies considerably across individuals

(36). Participants 1, 3, 5, and 9 had relatively large neural

activity peaks around 4Hz when listening to syllabic-like

stimuli, while others showed less prominent or no peaks at all.

Participants who had prominent syllabic-like neural activity do

not necessarily have prominent phonemic-like neural activity

as well (e.g., participant 1 in Figures 6, 7), demonstrating
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FIGURE 9

Correlation scatterplots between ASSR and TEMPEST area under patterns of the same electrophysiological metric for syllabic-like (first row) and

phonemic-like (second row) neural responses. Pearson’s partial correlation coe�cients are shown only for the power metric whereas Pearson’s

correlation coe�cients are shown for the other metrics in the right bottom corner.

the variability across modulation frequency as well (36).

Interestingly, participant 2 had no prominent neural activity

around 4Hz when listening to syllabic-like stimuli, but it was

instead shifted up to around 8Hz. One likely explanation is

that the higher harmonics of the envelope modulations were

preferentially encoded and/or processed in the auditory system

in this participant, which ismore likely for such slowmodulation

frequencies (68, 69).

Some studies used non-speech stimuli with different

irregular envelope characteristics and investigated their evoked

response using phase coherence metrics (55, 57). Both studies

of Teng and colleagues used stimuli with dynamic acoustic

changes that occur at timescales similar to our stimuli. They

used several different stimuli with dynamics at different

timescales, some of which coincided with those of syllables

and phonemes in speech. Two of those stimuli were the theta-

and gamma-sounds. The theta-sound contained changes at

a mean timescale of 190ms (∼5Hz modulation rate) which

approximately corresponds to the syllable mean modulation

frequency of our syllabic-like TEMPEST stimuli. Similarly, the

gamma-sound was temporally related to the phoneme rate with

a mean timescale of 27ms (∼37Hz modulation rate). The

authors computed the ITPC of the brain’s response for each

modulation frequency [note that they used the formula from

Lachaux et al. (70), not formula (1) in this study]. Responses

evoked by theta sounds showed significantly increased ITPC

around 4Hz and those evoked by gamma sounds around

37Hz. The peaks that we found in the neural patterns within

the modulation frequency range of the TEMPEST stimuli

are reminiscent of this finding. Teng and Poeppel (57) also

included beta-sounds with mean timescales of 62 and 41ms

(modulation rates of ∼16 and ∼24Hz, respectively), thus these

stimuli are temporally more closely related to our phonemic-

like stimuli. However, they reported a considerable decrease in

ITPC with beta sounds compared to theta and gamma sounds.

In contrast, we did not find a decrease in ITPC and PPC

with phonemic-like TEMPEST stimuli compared to syllabic-like

TEMPEST stimuli, and similar conclusions can also be made

in the case of response power (Figures 6, 7). Another study

by Teng and colleagues used complex stimuli with irregular

1/f modulation spectra (56). They investigated robustness of

neural phase-locking by comparing ITPC results with frozen
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and distinct stimuli (n = 25). To this end, the ITPC of the

distinct stimuli was subtracted from the frozen ITPC. In a

way, this is subtracting the bias from the frozen ITPC and

this would be comparable to the PPC. The ITPC difference

that they found was at approximately 0.06 in the delta and

theta band, which is in line with our syllabic-like results

(Figure 6).

Luo and colleagues have also looked at the difference in ITPC

between responses evoked by the same (frozen) spoken sentence

and responses evoked by different (distinct) sentences (17, 62).

ITPC differences of responses to spoken sentences in the delta-

theta band are comparable to our syllabic-like PPC results.

Another study used mutual information to investigate how

much the response phase in the theta band encodes information

about the sentence stimulus (71). Peaks of mutual information

in the theta band varied across participants, which is in line with

the variability in ASSR TMTF for low frequencies (36) and with

our results that show variable peaks of activity using syllabic-

like stimuli. Additionally, small peaks of mutual information

were present in the 22–27Hz range in some participants

and were slightly visible in the grand-average pattern. This

frequency range is close to the modulation frequency range

of our phonemic-like stimuli. Furthermore, the difference in

order of magnitude in mutual information between the theta

band and the 22–27Hz range is similar to the difference that

our results exhibit between the syllabic-like and phonemic-

like responses. This similarity should be treated with caution

because our metrics are not related to mutual information. One

thing to keep in mind is that sentence stimuli contain a much

wider range of modulation frequencies than our syllabic-like and

phonemic-like TEMPEST stimuli.

The main goal of the study was to evaluate whether

the global neural activity evoked by TEMPEST stimuli was

qualitatively comparable to the speech-weighted overall activity

in the electrophysiological TMTF measured with ASSRs. To

this end, we computed the area under the patterns of power,

SNR, and PPC as a function of modulation frequency of

TEMPEST responses and area under the ASSR TMTFs by

summing up the values at significant response frequency

bins. Before the computation of the area, TMTFs were first

weighted with the Gaussian curve of the modulation frequency

distribution from the corresponding TEMPEST stimuli. We

then computed same-metric correlation coefficients between

these areas across participants. All correlations between ASSR

and TEMPEST were found to be strong and significant except

for the SNR in the right hemispheric channel (Figure 9).

These significantly high correlations indicate that the neural

activity evoked by TEMPEST stimuli is comparable to those

of the speech-weighted TMTF measured with the classical

ASSR paradigm. Furthermore, they also show that the

variability in the global neural patterns across listeners as

measured with TEMPEST stimuli is similar to that found

with ASSR TMTFs, which is consistent with the findings by

(36). Consequently, evoked TEMPEST responses characterized

by any of the three metrics (power, SNR, or PPC) can

be used as an indicator of individual neural temporal

processing capability within the modulation frequency band

of interest.

Although our approach of computing the area under the

patterns of TEMPEST neural activity and the TMTF does not

consider the exact pattern shapes, we found that the overall

activity evoked by TEMPEST stimuli strongly corresponds

to the overall activity found in the electrophysiological

TMTF. This result is a clear indication that the TEMPEST

framework has the potential to evaluate temporal envelope

processing in the auditory pathway. Furthermore, since

TEMPEST stimuli contain a range of envelope modulations as

determined by an a-priori modulation frequency distribution,

individual distribution-weighted electrophysiological TMTFs

can be efficiently determined, which would otherwise be

measured by multiple SAM stimuli, as is clear from Figures 6,

7. Further research on variations of TEMPEST stimuli

and improvement of the neurophysiological analyses can

potentially push the TEMPEST framework to more clinical

usability. Moreover, the TEMPEST framework provides

many possibilities to generate TEMPEST stimuli that are

parameterized, for example, by a modulation frequency

distribution, a modulation depth distribution, window shape

with optionally varying parameters, etc. Furthermore, the

framework also allows for more complex stimuli such as

nesting of two or more TEMPEST envelopes (51), which

combines multiple TEMPEST stimuli with different modulation

frequency distributions into one stimulus. This approach

would be comparable to combining multiple SAM stimuli

at different carrier frequencies and is commonly used to

electrophysiologically determine frequency-specific hearing

thresholds in infants (72).

Conclusion

The TEMPEST framework (51) provides stimuli that evoke

neural phase-locked activity with the same characteristics as

the electrophysiological TMTF classically measured with ASSRs

after weighting by the TEMPEST distribution. Since TEMPEST

stimuli contain a range of envelope modulation frequencies

in contrast to single-frequency SAM stimuli, they can be

used to efficiently probe temporal envelope processing in

the auditory pathway. Any of the four electrophysiological

metrics (evoked power, SNR, ITPC, or PPC) can be used to

evaluate the degree of neural tracking to amplitude-modulated

stimuli. Moreover, TEMPEST stimuli that contain speech-

like modulations (such as the syllable and the phoneme

rate in speech) have the potential to provide a better

understanding of the role of neural envelope processing

in speech perception. Not only that, but they could also
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potentially capture differences in temporal envelope processing

in different listener groups with different types of auditory

processing deficits. Future work would further investigate the

potential of the TEMPEST framework using more complex

stimuli by varying several other envelope parameters or

combining different stimuli into one stimulus with multiple

bands of modulation frequencies, and explore different analysis

techniques to exploit its full potential in the neuroscientific and

audiological fields.
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Age-related hearing loss is
associated with alterations in
temporal envelope processing in
di�erent neural generators
along the auditory pathway

Ehsan Darestani Farahani*, Jan Wouters and

Astrid van Wieringen

Research Group Experimental ORL, Department Neurosciences, KU Leuven, Leuven, Belgium

People with age-related hearing loss su�er from speech understanding

di�culties, even after correcting for di�erences in hearing audibility. These

problems are not only attributed to deficits in audibility but are also associated

with changes in central temporal processing. The goal of this study is

to obtain an understanding of potential alterations in temporal envelope

processing for middle-aged and older persons with and without hearing

impairment. The time series of activity of subcortical and cortical neural

generators was reconstructed using aminimum-norm imaging technique. This

novel technique allows for reconstructing a wide range of neural generators

with minimal prior assumptions regarding the number and location of the

generators. The results indicated that the response strength and phase

coherence of middle-aged participants with hearing impairment (HI) were

larger than for normal-hearing (NH) ones. In contrast, for the older participants,

a significantly smaller response strength and phase coherence were observed

in the participants with HI than the NH ones for most modulation frequencies.

Hemispheric asymmetry in the response strength was also altered in middle-

aged and older participants with hearing impairment and showed asymmetry

toward the right hemisphere. Our brain source analyses show that age-related

hearing loss is accompanied by changes in the temporal envelope processing,

although the nature of these changes varies with age.

KEYWORDS

age-related hearing loss (ARHL), neural generators, auditory temporal processing,

auditory steady-state response (ASSR), EEG

Introduction

Speech perception of individuals with hearing impairment (HI) is worse than that of

persons with normal audiometric thresholds (NH), even after correcting for differences

in hearing audibility (1–4). In addition to deficits in audibility, changes in central

auditory processing, and in particular temporal processing, account for impaired speech

perception of individuals with HI (5). Electrophysiological studies in animals have shown
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that HI is associated with increased neural responses to

amplitude-modulated stimuli in the auditory nerve fibers (6–

8) and the midbrain (9). Similarly, human studies showed

enhanced neural responses in the brainstem of adults around 60

years old with HI compared to NH ones in the same age range

(10, 11).

The temporal envelope of speech (slow fluctuations of 2 to

50Hz) is crucial for accurate speech understanding (12–14) and

transmits both prosodic and linguistic information (15). Speech

envelopes are encoded in the central auditory system through

synchronized (phase-locked) neural activity (16, 17). Temporal

envelope processing can be assessed through the auditory

steady-state responses (ASSRs; 16). ASSRs are auditory-evoked

responses to periodically varying acoustic stimuli and reflect the

ability of the auditory system to follow the temporal envelope of

sounds (18).

In our previous study (19), we investigated age-related

changes in the activity of subcortical and cortical neural

generators of ASSRs in middle-aged and older persons with

normal audiometric thresholds (<25 dB HL). Analyses showed

enhanced neural responses for older adults compared to younger

ones for relatively slow modulations (<50Hz). However, for

faster modulations (i.e., 80Hz), the neural responses were

reduced for older adults compared to younger ones. While

these age-related changes occur in persons with normal

hearing, it remains unclear how HI affects temporal envelope

processing. Aging is typically accompanied by decreasing

audiometric thresholds in the high frequencies (presbycusis).

These peripheral changes are accompanied by changes in

the central auditory system (10, 20) and associated neural

generators. The current study focuses on the potential

aggravating role of HI on the activity of the neural generators

for middle-aged and older adults.

Electrophysiological studies investigating how HI affects the

processing of the temporal envelope demonstrated enhanced

response strengths for middle-aged listeners with HI compared

to middle-aged NH ones [∼60 years old; (10, 11, 21, 22)]. In

contrast to middle-aged persons with HI, older adults with

HI (∼75 years old) did not show enhanced responses to

acoustic modulations (11). Note that stimulus audibility has

been corrected in these studies. The absence of an enhanced

response in older persons with HI could be because a significant

neural enhancement had already been observed with NH older

listeners and was, therefore, more a factor of aging than HI.

However, how HI affects the temporal envelope processing in

the different neural generators in middle-aged and older adults

remains unclear. Sensor-level analysis (i.e., analysis based on

the scalp’s data) may not be sensitive enough to reveal all the

dynamics of the neural generators underlying temporal envelope

processing in persons with HI. This is because the recorded

data at each sensor are a weighted average of the activity of

several neural generators due to the volume conduction of the

brain tissue.

On the other hand, brain source analysis estimates the

original activity of each neural generator using computational

modeling. In the current study, we use a source reconstruction

approach based on minimum-norm imaging (MNI). In this

approach, a large number of equivalent current dipoles in

the brain are considered. Then, the amplitudes of all dipoles

(for each time point) are estimated to reconstruct a source

distribution map with minimum overall energy (23, 24).

The MNI approach imposes minimal restrictions about

the number and location of the sources, contrary to more

common methods like dipole source analysis, which makes

prior assumptions regarding the number and location of the

sources. Another advantage of the MNI approach is the ability

to reconstruct a wide range of cortical and subcortical sources

simultaneously (25). The beamforming method, another well-

known method of brain source reconstruction, has more

difficulty in reconstructing the cortical and subcortical sources.

To reconstruct neural generators of ASSRs using beamforming

methods, a supplementary preprocessing is necessary to

suppress the correlated source from the other hemisphere

(26–28). Additionally, the beamforming approaches cannot

simultaneously reconstruct the cortical and subcortical sources.

Age-related hearing loss may also affect hemispheric

asymmetry in temporal envelope processing. Previous data have

shown that the pattern of neural synchronization in older

adults with normal audiometric thresholds is symmetrical across

hemispheres, while that of young NH adults is asymmetric

(29, 30). With age, this altered hemispheric asymmetry is in line

with the HAROLD model (31), which states that hemispheric

asymmetry is reduced in older people compared to younger

ones. Using brain source analyses, Farahani et al. (19) also

showed that hemispheric asymmetry is reduced for NH older

adults compared to younger normal hearing in response to

the 20 and 80Hz amplitude-modulated stimuli. However, age-

related hearing loss may affect hemispheric asymmetry on top

of age, as has been demonstrated for linguistic processing (32).

In their sensor-level EEG study, Goossens et al. (11) observed a

hemispheric asymmetry toward the right hemisphere for older

participants with HI. The observed changes in hemispheric

asymmetry in persons with HI are possibly due to anatomical

changes related to presbycusis, such as reduced integrity of white

matter tracts (33). However, it is also possible that the sensor-

level analysis cannot capture changes related to HI in the other

cohorts. It is expected that source-level analysis, due to the

higher sensitivity explained before, might reflect more changes

associated with HI concerning the hemispheric asymmetry than

the sensor-level analysis.

The current study aims to investigate potential changes

in temporal envelope processing for subcortical and cortical

neural generators along the auditory pathway in middle-aged

and older persons with age-related HI compared to normal-

hearing ones. Different studies have shown that the diminished

cochlear output of people with HI, due to hair cell loss and/or
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synaptopathy, activates various mechanisms to increase central

gain and preserve neural excitability (e.g., 32, 33). Hence, we

hypothesize that the neural generators of ASSRs in middle-

aged listeners with HI will show enhanced response strength

compared to those with NH. However, we do not expect such an

enhancement in older adults with HI because older adults with

NH already exhibit compensatory mechanisms of increasing

neural excitability and central gain (19, 34, 35). Concerning

hemispheric asymmetry in temporal envelope processing, we

hypothesize that the reconstructed activity at the auditory cortex

reveals an altered pattern of hemispheric asymmetry in listeners

with HI. However, these alterations may vary with age and

stimulation conditions.

We investigate the potential alterations during temporal

envelope processing of people with HI when stimulus audibility

was corrected for. We look into ASSRs’ cortical and subcortical

neural generators along the auditory pathway in young, middle-

aged, and older persons with and without HI. The activity of

these neural generators is reconstructed using aminimum-norm

imaging (MNI) approach (25). To investigate the response

strength and the phase-locking to the stimulus, the ASSR

amplitude and phase coherence are calculated for each neural

generator. This is done for ASSRs in response to 4, 20, 40,

and 80Hz acoustic modulations presented separately to the

left and right ears. The acoustic modulations at 4 and 20Hz

were presented as a model of the temporal envelope of syllables

and phonemes, respectively. The modulation frequencies of 40

and 80Hz were also selected because these modulations can

activate more subcortical neural generators than cortical ones

(26, 36). Potential alterations in hemispheric asymmetry are

FIGURE 1

Median audiometric thresholds (dB HL) of normal-hearing (NH)

and hearing-impaired (HI) participants, averaged across both

ears. Thresholds are indicated by circles, squares, and triangles

for young, middle-aged, and older persons, respectively. Error

bars indicate the interquartile range. NH, normal hearing; HI,

hearing impaired.

also investigated for the neural generators in the left and right

auditory cortices (31, 37).

Materials and methods

Participants

The EEG data were adopted from Goossens et al. (29).

Participants were either NH or with HI in three narrow age

cohorts, including 19 young (20–30 years, ninemen), 20middle-

aged (50–60 years, ten men), and 16 older adults (70–80

years, five men) in NH group and 14 middle-aged (50–60

years, four men) and 13 older adults (70–80 years, five men)

with HI. Only individuals who showed symmetrical hearing

based on the criteria of the audiogram classification system

(38) were eligible for participation. The participants in the

NH group had audiometric thresholds within normal limits

[≤25 dB HL] at all octave frequencies from 125Hz up to

and including 4 kHz in both ears (Figure 1). However, the

participants with HI had audiometric thresholds higher than 35

dBHL from 1 kHz onward (Figure 1). All middle-aged and older

participants with HI were diagnosed with age-related hearing

loss (i.e., presbycusis) and used hearing aids in both ears. To

avoid cognitive impairment as a confounder, only adults who

showed no indication of cognitive impairment were recruited.

The participants were screened using the Montreal Cognitive

Assessment Task (39), and the cutoff score was 26 out of 30.

This screening with a stringent cutoff score ensured that all

participants had cognitive capacities within the normal range.

All participants were Dutch native speakers. They were right-

handed based on the EdinburghHandedness Inventory (40), and

none of them had a medical history of brain injury, neurological

disorders, or tinnitus.

Stimuli

The acoustic stimuli were amplitude-modulated (AM)

noise at 4, 20, 40, and 80Hz and generated in MATLAB

(The MathWorks, Inc.). The white noise (bandwidth of 1

octave, centered at 1 kHz) was sinusoidally modulated with a

modulation depth of 100%. The modulation frequencies were

adjusted to ensure that there was an integer number of cycles

in an epoch of 1.024 s (41).

Loudness balancing

The stimuli were presented via ER-3A insert phones to the

left ear and the right ear. Each stimulus type was presented

for 300 s continuously. For NH participants, the stimuli were

presented at 70 dB SPL which they rated as comfortably loud.

For participants with HI, no hearing aids were used during

EEG recording. To correct for the audibility of listeners with
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HI, each individual was asked to adjust the intensity level until

he/she perceived it as comfortably loud, similar to the NH

participants. This arrangement allowed us to present stimuli to

all participants at equal loudness levels. There were two reasons

for using equal loudness levels to correct for stimulus audibility

instead of equal sensation levels. First, the equal sensation level

for participants with HI reaches ∼108 dB SPL, which exceeds

their uncomfortable loudness level (∼103 dB SPL). Second, it

was shown that the magnitude of the ASSR was highly correlated

with the perceived loudness of the acoustic modulations (42, 43).

So, the equal loudness level is an effective way to control for

differences in stimulus audibility between NH and HI.

Experiment protocol and EEG recordings

The experiment was conducted in a double-walled

soundproof booth with a Faraday cage. The experiment

procedure was arranged to ensure passive listening to acoustic

stimuli during a wakeful state. During acoustic stimulation, the

participants were asked to lay down on a bed and watch a muted

movie with subtitles via a 21-inch LCD monitor with 60Hz

vertical refresh rate. All participants were encouraged to lie

quietly and relaxed during the experiment to avoid movements

and muscle artifacts caused by fatigue, especially in older adults.

We used a large-size and very soft pillow to support the neck

and backside of the head.

The EEG data were recorded using the BioSemi ActiveTwo

system (BioSemi B.V., Amsterdam, the Netherlands, 2010) with

64 active electrodes. The electrodes were fixed in a head cap

according to the 10–10 electrode system. The EEG signals were

amplified and digitized at a sampling rate of 8,192Hz with a gain

of 32.25 nV/bit. The recording system used a built-in low-pass

filter with a cutoff frequency of 1,638 Hz.

EEG source analysis

The activity of the neural generators of ASSRs along the

auditory pathway was reconstructed using a method based

on MNI, which was suggested for ASSR source analysis

(25). An overview of this method is given below [for more

details, see (25)]. The analyses were performed in MATLAB

R2016b (MathWorks).

Preprocessing

To eliminate the low-frequency distortions and drift of the

amplifier, the EEG data were filtered by a zero-phase high-

pass filter with a cutoff frequency of 2Hz (Butterworth, second

order, 12 dB/octave). The filtered EEG data were split into

epochs of 1.024 s. Subsequently, 10% of epochs with the highest

peak-to-peak amplitude across channels were rejected for early

noise reduction.

Afterward, the EEG data were re-referenced to a common

average over all channels and epochs. To eliminate artifacts

caused by eye movements, eye blinks, and heartbeats, we used

independent component analysis (ICA) based on the Infomax

algorithm implemented in the FieldTrip toolbox (44). The

noisy components were identified with a visual inspection. In

the end, the remaining artifacts not recognized by ICA were

identified and eliminated using a threshold level of 70µV for the

maximum absolute amplitude of each epoch. To have a similar

effect on the group-wise results, we kept the same number of

epochs across participants. The first 192 artifact-free epochs (six

sweeps of 32 epochs) were preserved for subsequent analyses

to keep the same number of epochs across participants. We

chose not to use a lower number of epochs in each sweep to

keep our frequency resolution high enough (each frequency bin

corresponds to 0.03Hz). In case we could not find 192 epochs

(six sweeps of 32 epochs) for a participant, then we gradually

increased the threshold (step of 5 µV) up to 110 µV. These

epochs were selected out of 300 epochs of each participant per

condition. For the topographic map of ASSRs, see Farahani

et al. (45).

Source reconstruction and developing ASSR
map

Mixed head model

A mixed head model consisting of cortical and subcortical

regions was generated to reconstruct the neural generators

along the auditory pathway. This head model was generated

using the boundary element method (BEM), as implemented in

OpenMEEG (46). To this end, we used the template brain scan

of ICBM152 (47) and the default channel location file in the

Brainstorm application (48, 49).

Data averaging for group-wise analyses

Since the head model was generated based on a template

brain scan, we used a group-wise framework in our source

analyses instead of individual-level analyses to have a high

localization accuracy (45). So, the preprocessed epochs of

each participant were divided into sweeps of 32 concatenated

epochs and averaged across all participants. The outcome grand-

averaged sweep was used for source reconstruction.

Reconstruction source map of EEG in time domain

The distribution map of brain activity at each time point was

estimated using dynamic statistical parametric mapping [dSPM;

(50)] implemented in the Brainstorm application (48, 49).

In the dSPM method, the standard minimum-norm solution

is normalized with the estimated noise at each source (24).

This noise normalization eliminates the bias toward superficial
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sources, which is accompanied by the standard minimum-norm

solution (24, 51).

Noise covariance matrix

The noise covariance matrix required for dSPM was

calculated based on the EEG recorded in the absence of auditory

stimulation. The silence EEG of participants was filtered by

a zero-phase band-pass filter with a bandwidth of 4Hz and

modulation frequency as center frequency and concatenated

before calculating the covariance matrix.

Regularization parameter

For each experimental condition (i.e., stimulation type, age

group, and hearing status), the regularization parameter (λ2)

required for dSPM was specifically determined based on:

Equation 1

λ
2
=

1

SNR2
scalp

where SNRscalp is the signal-to-noise ratio (based on the

amplitude) of the whitened EEG data (52–54). The fast

Fourier transform (FFT) was applied for each channel, and the

magnitude of the spectrum at the modulation frequency was

considered the ASSR strength. The highest response magnitude

across channels was assigned to the signal of interest (19). The

EEG background noise was estimated based on the average

magnitude of 30 neighboring frequency bins on the left and the

right sides of the response frequency bin. The median of the

EEG background noise across channels was used as noise level

for calculating SNRscalp (25).

Generating ASSR map

ASSRmap shows the magnitude of the response for different

regions of the brain. To generate an ASSR map, the waveform

of each dipole was transformed to the frequency domain using

FFT. Then, for each dipole, the SNR of the ASSR was calculated

according to Equation 2.

Equation 2

SNR(dB)= 10

(

PS+N

PN

)

where PS+N is the power of the spectrum at the modulation

frequency, which shows the power of the steady-state response

plus neural background noise. PN indicates the power of the

neural background noise, which was estimated using the average

power of 30 neighboring frequency bins (corresponding to

0.92Hz) on each side of the modulation frequency bin.

The one-sample f-test based on SNR was employed

to recognize the dipoles with significant ASSRs (43, 55).

Results were corrected for multiple comparisons using the

false discovery rate (FDR) method (56). Finally, the ASSR

map illustrating ASSR amplitudes for dipoles with significant

responses and zero for the dipoles with no significant responses

was generated. The ASSR amplitude was calculated using

Equation 3. For subcortical regions, the activity at each point was

reconstructed using three orthogonal dipoles (across x, y, and

z). The ASSR amplitude for subcortical regions was calculated

based on Equation 4. A detailed explanation and a sample ASSR

map can be retrieved from the study by Farahani et al. (25).

Equation 3

ASSRamp=
√

PS+N−
√

PN

Equation 4

Subcortical ASSRamp=

√

ASSR2amp x+ASSR2amp y + ASSR2amp z

Defining regions of interest

fMRI studies show that the main neural generators of the

ASSRs along the auditory pathway are located in the cochlear

nucleus (CN), the inferior colliculus (IC), the medial geniculate

body (MGB), and the auditory cortex (AC) bilaterally (57–

60). Therefore, we defined eight regions of interest (ROIs) for

further analysis (Figure 2). At the subcortical level, the ROIs

were defined bilaterally in the CN (recognized with reference to

themedullary pontine junction; left CN: 0.49 cm3; right CN: 0.47

cm3), IC (identified with reference to the thalamus; left IC: 0.50

cm3; right IC: 0.55 cm3), and in the posterior thalamus (roughly

the posterior third of the thalamus; left MGB: 1.24 cm3; right

MGB: 1.45 cm3) (19, 60). The cortical ROIs of the AC were

defined bilaterally in the Heschl’s gyrus (left AC: 5.49 cm2; right

AC: 5.58 cm2) with reference to the transverse temporal gyrus in

the Desikan–Killiany atlas implemented in Brainstorm (48, 61).

Time series of ROIs and ASSR amplitude

A representative dipole in each ROI was selected for

subsequent analysis using the algorithm suggested by Farahani

et al. (25). First, inside each ROI, a patch with the highest mean

ASSR amplitude was selected. Then, a dipole with the most

similar response, regarding amplitude and phase, to the mean

ASSR of the patch was selected as the representative dipole. The

ASSR amplitudes of the representative dipoles in cortical and

subcortical ROIs were obtained based on Eq. 3 and Eq. 4 and

used for further analyses. The time series of the representative

dipole was used for subsequent phase coherence analysis.

Phase coherence

Phase coherence (or intertrial phase coherence) shows the

phase consistency of ASSRs across epochs (17, 62). It also

explains the phase-locking capability of a neural generator to

the acoustic stimulus and varies between 0 and 1 (45, 63). To

calculate the phase coherence, the time series of each ROI with
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FIGURE 2

The regions of interest (ROIs) along the auditory pathway. The

cortical ROIs are located bilaterally in the left auditory cortex

(LAC) and right auditory cortex (RAC). The subcortical ROIs

include the left and right medial geniculate body (LMGB, RMGB),

the left and right inferior colliculus (LIC, RIC), and the left and

right cochlear nucleus (LCN, RCN).

192 epochs were divided into 64 groups of three epochs. The

phase of group i (θi, i = 1, 2,..., 64) was obtained from the

complex responses averaged across the three epochs. Finally,

phase coherence was calculated based on Equation 5 (62).

Equation 5

PhaseCoherence=
1

N

√

√

√

√

√





N
∑

i=1

cos θi





2

+





N
∑

i=1

sin θi





2

For subcortical ROIs, the representative dipole had three time

series (x, y, and z components). To reduce the dimension

of this data, the optimal dipole direction representing most

of the variance of the ASSR was estimated using singular

value decomposition (SVD) (64). The three time series were

projected in the optimal direction, and the outcome was used for

calculating the phase coherence. It should be noted that before

SVD, the three time series were filtered by a zero-phase band-

pass filter with a bandwidth of 4Hz and modulation frequency

as the center frequency.

Hemispheric lateralization

To assess hemispheric asymmetry, we employed the

laterality index (LI). The LI is a normalized index with the range

of [-1, 1], where zero means symmetrical processing pattern and

positive and negative values show lateralization to the right and

left hemispheres, respectively. LI was calculated as:

Equation 6

LI =
ASSRamp R−ASSRamp L

ASSRamp R+ASSRamp L

where ASSRampR and ASSRampL denote the ASSR amplitude

(based on equations 3 and 4) of the neural generator located

in the right and left hemispheres, respectively. To prevent

inaccurate lateralization, the LI was only calculated when both

neural generators had a significant ASSR.

Statistical analysis

Since we used a group-wise framework and the value of

ASSR measures could not be obtained for each individual

participant, the standard deviation could not be calculated in

the traditional manner. The standard deviation was estimated

based on the jackknife resampling method for each of the

ASSR amplitude, phase coherence, and LI (65). The mean of

ASSR amplitudes, phase coherence, and LI were obtained from

all participants without resampling. The subsequent statistical

analyses were performed based on the mean, estimated standard

deviation, and the number of participants in each group, rather

than on individual data points (66, 67) using custom scripts in

MATLAB R2016b (MathWorks).

To investigate the overall effect of hearing impairment on

ASSR amplitude, a factorial mixed analysis of variance (FM-

ANOVA) with side of stimulation (two levels: left and right)

and neural generators (eight levels: two cortical generators

and six subcortical generators) as within-subject variables was

separately carried out for middle-aged and older participants

in response to 4, 20, 40, and 80Hz acoustic modulations. Post-

hoc comparisons were performed in cortical and subcortical

categories of neural generators. The two-sample t-test was

performed for each category based on the pooled mean and

the pooled standard deviations across neural generators. The

results were corrected for multiple comparisons using the

FDR method (56). In the tests with neural generators as a

within-subject variable, the sample size of the test has a high

number, and in turn, the statistical tests often showed very small

p-values. Thus, the effect sizes were also reported to measure

significance independent of sample size (68). Cohen’s d was

used as a measure of effect size. The description of magnitudes

of d was initially suggested by Cohen (69) and expanded by

Sawilowsky (70). The magnitudes of 0.01, 0.2, 0.5, 0.8, and 1.2

were described as very small, small, medium, large, and very

large effect sizes. Similar statistical analyses were also carried out

for phase coherence.

For hemispheric lateralization, a one-sample t-test with FDR

correction was employed to determine for which stimulation
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FIGURE 3

ASSR amplitudes of the neural generators in the auditory cortices and subcortical neural generators in NH and HI participants regardless of the

side of stimulation across age and modulation frequency. The circle and triangle symbols indicate the pooled means (i.e., the weighted average

of amplitudes across the side of stimulation and the side of generators; number of subjects as weights), and error bars represent the pooled

standard deviations (69).

conditions the LI differed significantly from zero. A significant

positive or negative LI shows lateralization to the right or left

hemispheres, respectively. Finally, the potential effect of hearing

impairment on hemispheric lateralization was investigated

using a two-sample t-test per modulation frequency and side

of stimulation.

Results

E�ect of hearing impairment on the
response strength of the neural
generators

Figure 3 illustrates the mean response strengths for the

cortical and subcortical neural generators (for anatomical

locations, see Figure 2) for young, middle-aged, and older

listeners for each of the four modulation frequencies. A

significant main effect of HI was found in the middle-aged and

older participants for 4, 20, 40, and 80Hz modulations (see

Table 1). However, the main effects in middle-aged participants

were the opposite of those of older participants. For the middle-

aged participants, the response strengths of listeners with HI

were larger than those of listeners with NH. In contrast, for the

older participants, a significantly smaller response strength was

observed in the listeners with HI compared to the NH ones for

4, 40, and 80Hz, yet not for 20Hz acoustic modulations.

Post-hoc testing in middle-aged participants showed

significantly larger response strengths for listeners with HI

than NH listeners for both the cortical and subcortical neural

generators and different modulation frequencies. The only

Frontiers inNeurology 07 frontiersin.org

59

https://doi.org/10.3389/fneur.2022.905017
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Farahani et al. 10.3389/fneur.2022.905017

TABLE 1 The results of the main e�ect of hearing impairment and post-hoc testing for ASSR amplitude and phase coherence.

ASSR amplitude Phase coherence

Middle-aged

NH, HI

OlderNH, HI Middle-aged

NH, HI

Older NH, HI

4Hz Aud. cortices d= −1.9

p < 0.001

d= 1.3

p < 0.001

d= −1.3

p < 0.001

d= 0.7

p < 0.001

Subcortical d= −1.6

p < 0.001

d= 1.0

p < 0.001

d= −0.6

p < 0.001

d= -0.3

p < 0.01

Main effect d= −1.7

p < 0.001

d= 1.1

p < 0.001

d= −0.7

p < 0.001

d= -0.1 n.s.

20Hz Aud. cortices d= 0.5

p < 0.001

d= 0.7

p < 0.001

d= 0.9

p < 0.001

d= 0.6

p < 0.001

Subcortical d= −1.2

p < 0.001

d= -1.1

p < 0.001

d= −0.1

n.s.

d= -1.1

p < 0.001

Main effect d= −0.6

p < 0.001

d= -0.6

p < 0.001

d= 0.1

n.s.

d= -0.7

p < 0.001

40Hz Aud. cortices d= −0.8

p < 0.001

d= 0.2 n.s. d= 0.1

n.s.

d= 2.0

p < 0.001

Subcortical d= −1.6

p < 0.001

d= 0.7

p < 0.001

d= 1.0

p < 0.001

d= 1.5

p < 0.001

Main effect d= −1.3

p < 0.001

d= 0.5

p < 0.001

d= 0.8

p < 0.001

d= 1.7

p < 0.001

80Hz Aud. cortices d= −1.5

p < 0.001

d= -0.1 n.s. d= −1.0

p < 0.001

d= 0.3 n.s.

Subcortical d= −4.0

p < 0.001

d= 0.7

p < 0.001

d= −1.9

p < 0.001

d= 0.8

p < 0.001

Main effect d= −3.2

p < 0.001

d= 0.4

p < 0.001

d= −1.6

p < 0.001

d= 0.6

p < 0.001

The post-hoc testing was performed per age cohort and modulation frequency for the neural generators in the auditory cortices and subcortical region. Cohen’s d and p-value were reported

for different age cohorts and different modulation frequencies. No significant differences were indicated with “n.s”.

exception was for the cortical generators with larger response

strengths for NH than participants with HI in response to the

20Hz stimuli. The effect sizes suggest a large difference [d≥ 0.8;

(69, 70)] between HI and NH middle-aged listeners in response

to the four different modulation frequencies. The results of

post-hoc testing are summarized in Table 1.

For the older listeners, post-hoc testing revealed significantly

smaller response strengths for listeners with HI compared to

NH participants in the subcortical category of neural generators

for all modulation frequencies, except for 20Hz. Similarly, post-

hoc testing revealed significantly smaller response strengths

for listeners with HI compared to NH participants for neural

generators in the auditory cortex in response to 4 and 20Hz

acoustic stimuli. The effect sizes demonstrate a large difference

(d ≥ 0.8) between HI and NH older listeners for 4Hz and a

medium difference (d ≥ 0.5) for other frequencies.

Briefly, the response strength of the listeners with HI showed

two different patterns of the changes in the middle-aged and

older participants for most modulation frequencies. With the

middle-aged participants, the response strength of listeners

with HI was larger than those of NH listeners. In contrast,

significantly smaller response strengths were observed in the

listeners with HI compared to the NH ones for most modulation

frequencies for the older participants.

E�ect of hearing impairment on the
phase coherence of the neural
generators

Phase coherence reflects the changes in phase-locking of

the responses regardless of the strength of the responses.

Figure 4 illustrates the mean phase coherence for the cortical

and subcortical neural generators (for anatomical locations, see

Figure 2) for young, middle-aged, and older listeners for each

of the four different modulation frequencies. A significant main

effect of hearing impairment was observed for the middle-aged

and older participants for most of the modulation frequencies.

Detailed results are summarized in Table 1. Again, two different

patterns of the changes were observed in the middle-aged with
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FIGURE 4

Phase coherence of the neural generators in auditory cortices and subcortical area in NH and HI participants regardless of the side of

stimulation across age and modulation frequency. The circle and triangle symbols indicate the pooled means, and error bars represent the

pooled standard deviations (69).

HI and older participants with HI. In most of the middle-aged

participants’ comparisons, HI listeners’ phase-locking was larger

than those of NH listeners. In contrast, a significantly smaller

phase-locking was observed for the older HI participants than

for the older NH ones.

Post-hoc testing in middle-aged participants showed a

significantly larger phase coherence for listeners with HI than

NH listeners in the cortical and subcortical neural generators

for 4 and 80Hz amplitude-modulated stimuli. The effect sizes

of mean differences (Cohen’s d) in these comparisons were

medium or large [d ≥ 0.5; (69, 70)]. However, there was

less phase coherence in listeners with HI than NH listeners

for cortical neural generators at 20Hz and subcortical neural

generators at 40Hz stimulation conditions.

For the older listeners, post-hoc testing revealed significantly

less phase coherence for listeners with HI compared to

NH participants in the auditory cortices for all modulation

frequencies, except for 80Hz. In these modulation frequencies,

Cohen’s d suggests a medium or large effect size (d ≥ 0.5)

of mean differences (69, 70). A similar effect was observed

for the subcortical neural generators in response to 40 and

80Hz acoustic stimuli. The effect sizes were large [d ≥ 0.8;

(69, 70)].

Hemispheric lateralization and hearing
impairment

To investigate potential changes in hemispheric asymmetry

of envelope processing in listeners with HI and NH ones,

we determined the LIs for the 4, 20, and 40Hz modulation

frequencies based on the ASSR amplitudes of the left and
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FIGURE 5

Hemispheric lateralization for normal-hearing (NH) and hearing-impaired (HI) listeners (indicated by solid lines and dotted lines, respectively) in

di�erent stimulation conditions (indicated by di�erent colors) and di�erent age groups. For 4, 20, and 40Hz stimuli, the laterality indexes (LIs)

were calculated based on the auditory cortex (AC), while for 80Hz stimuli the LIs were calculated based on the medial geniculate body (MGB).

The error bars illustrate the estimated standard deviations using the jackknife method (65).

right auditory cortices. For 80Hz modulation frequency, we

calculated the LI based on the ASSR amplitudes of the MGB,

given the importance of subcortical activities (36). Figure 5

illustrates the LIs of the AC for 4, 20, and 40Hz ASSRs in

three age groups and two sides of stimulation and the LIs of the

MGB for 80Hz ASSRs. The groups with significant hemispheric

asymmetry to the left or right hemisphere were determined

using a one-sample t-test (the results are summarized in

Supplementary Table 1).

The effect of hearing impairment on hemispheric

asymmetry was investigated for middle-aged and older listeners.

In most stimulation conditions, the hemispheric asymmetry in

the listeners with HI was significantly more toward the right

hemisphere than the hemispheric asymmetry of the NH ones.

More specifically, with middle-aged participants, the LIs of

listeners with HI were significantly more positive (toward the

right hemisphere) than those of the NH ones for the 4Hz (both

sides of stimulation), 20Hz (left side of stimulation), and 40Hz

(right side of stimulation) modulation frequencies. However,

for 80Hz AM stimuli, the hemispheric asymmetry was less

or similar for the listeners with HI than for the NH ones for

the left and right sides of stimulation, respectively. In these

comparisons, Cohen’s d suggests a large effect size (d ≥ 0.8)

of mean differences (69, 70). The results of statistical tests are

summarized in Table 2.

For the older participants, the LIs of listeners with HI

were similar or significantly more positive (toward the right

hemisphere) than those of the NH ones for the 4, 20, and

40Hz modulation frequencies for both the left and the right

sides of stimulation. A similar effect was observed for the 80Hz

modulations presented to the left ear, while for the right side

of stimulation, the LI of the listener with HI is more negative

(toward the left hemisphere) than that of the NH group. In these

comparisons, the effect sizes were large [d≥ 0.8; (69, 70)].
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TABLE 2 The results of the statistical comparison between the

laterality index of normal-hearing (NH) and hearing-impaired (HI)

listeners in di�erent stimulation conditions.

Stimulation condition Middle-aged

NH, HI

Older

NH, HI

4Hz Left ear d= −1.7

p < 0.001

d= -3.2

p < 0.001

Right ear d= −1.1

p < 0.01

d= -0.5 n.s.

20Hz Left ear d= −1.1

p < 0.01

d= 0.4 n.s.

Right ear d= 0.8

n.s.

d= -0.1 n.s.

40Hz Left ear d= 3.3

p < 0.001

d= -1.2

p < 0.05

Right ear d= −3.1

p < 0.001

d= 0.1 n.s.

80Hz Left ear d= 1.0

p < 0.05

d= -1.5

p < 0.001

Right ear d= −0.1

n.s.

d= 1.9

p < 0.001

Discussion

E�ect of age-related hearing impairment
on the dynamics of neural generators

Our results indicated meaningful changes in the neural

dynamics of middle-aged and older listeners with HI compared

to those of middle-aged and older NH listeners. The effect

of hearing impairment on the dynamics of the cortical and

subcortical neural generators was investigated in persons with

no indication of mild cognitive impairment to avoid the

confounding factors of age and cognitive ability as much as

possible. The acoustic modulations were presented at equal

loudness levels to the participants with HI to correct for stimulus

audibility. The cortical and subcortical neural generators’

activity was reconstructed using the MNI approach. It should be

noted that the selected parameters in the MNI approach, such

as the number of layers of the head model, the conductivity of

brain tissues, and the regularization parameters, may influence

the results of the source reconstruction. Since the same methods

and parameters were used for the different age cohorts with

and without hearing impairment, the comparisons and the

conclusions drawn from them remain reasonable.

Two different patterns of alterations were observed in the

middle-aged participants with HI and older participants with

HI. For middle-aged participants, we mainly found enhanced

response strength and higher phase-locking in the HI group

than NH, while for the older ones, we found decreased response

strength and less phase-locking in the listeners with HI. The

findings of middle-aged people agree with the literature (6, 21,

22). However, our results for the older participants are novel and

different from sensor-level analysis on the same data as here (11).

These findings for middle-aged and older participants with HI

are elaborated on below.

Our observation of enhanced response strength in HI

middle-aged listeners’ auditory cortex followsMillman et al. (22)

and Fuglsang et al. (21). Millman and colleagues investigated the

neural synchronizations in response to 2Hz acoustic modulated

noise between HI and NH similarly aged persons (∼60 years

old). Fuglsang et al. (21) reported magnified cortical responses

in participants with HI compared to NH participants for tone

sequences modulated at slow rates (4Hz) during a passive

listening task. They had also corrected for the audibility of

auditory stimuli for the participants with HI, and the age range

of participants was similar (∼65 years old).

The enhanced neural responses in the subcortical generators

of middle-aged adults with HI are in line with animal studies

which have shown that peripheral hearing loss is associated with

increased neural responses to amplitude-modulated stimuli in

the auditory nerve fibers (6–8) and the midbrain (9). Similarly,

human electrophysiological studies reported enhanced neural

responses in the brainstem of adults around 60 years old with

HI relative to NH ones in the same age range (10, 11).

Only a few studies report how age-related hearing loss affects

temporal envelope processing in older people (70–80 years old).

Using source analysis, we observed significantly less response

strength for the older adults withHI than theNHones. However,

sensor-level analysis on the same data yielded no significant

difference in response strengths between the older adults with

HI and NH ones (11). Note that the response strengths in the

sensor-level reflect a weighted average of the activity (due to

the volume conduction). Therefore, this approach may not be

as sensitive to small changes as brain source analysis which

estimates the original neural activity of each generator.

The reduced neural synchronization (response strength and

phase-locking) in the older adults with HI in the current study

agrees with the observations of Hao et al. (71). They found

reduced frequency-following responses (FFRs), under quiet and

noise conditions, in the older adults with presbycusis (60–82

years old) compared to NH similarly aged persons. However,

data regarding the effect of hearing impairment on FFRs are

not very consistent [for review, see (72)]. For instance, Presacco

et al. (73) did not find significant differences between the FFRs

in the older adults with HI (average 71 years old) and those in

the NH adults (average 65 years old). The discrepancies between

the findings of different FFR studies could be due to the different

age ranges involved.

In an experiment using continuous speech, Decruy et al.

(74) found evidence of enhanced envelope tracking to the

target talker in older adults with HI compared to NH

listeners. In a similar experiment, Presacco et al. (73) found
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no differences. These results are different from our findings

in the older participants with HI. The first possible reason

could be differences between experimental conditions. The

envelope tracking in our experiment is unattended, while in the

experiment of Decruy et al. (74), the participant should attend

to the stimuli. In speech envelope tracking onset responses

play an important role, while it is not applicable for ASSRs.

The second reason for different results refers to the source-

level analysis in our study and reconstructing the activity of

neural generators along the auditory pathway, while Decruy

et al. (74) and Presacco et al. (73) used sensor-level analysis

which considers all cortical activities.

For the relatively low frequencies (below 50Hz), there is an

age-related enhancement in the neural responses of NH older

adults compared to those of young and middle-aged adults

(19). Considering the age-related enhancement in the NH older

adults and the enhancement effect in the middle-aged adults

with HI (the current study), we expected to find an aggravated

effect of hearing impairment in the older participants with

HI. However, our results for the older adults with HI showed

reduced responses compared to NH participants in the same

age cohort. This novel finding suggests that the reduced effect

of age-related hearing loss and age-related degradation in the

older cohort (70–80 years) may be greater than a compensatory

enhancement effect in the representation of envelope processing

in this age cohort.

Potential mechanisms underlying the
changes in temporal envelope processing

Homeostatic compensatory mechanisms can explain the

enhanced response strength and phase-locking in the middle-

aged adults with HI. It is known that diminished cochlear output

in adults with HI activates various mechanisms which induce

central gain to increase neural excitability (75–77). However,

the potential compensatory mechanisms could be considered

maladaptive, because the response strength and phase-locking

in the middle-aged adults with HI were even higher than those

of NH middle-aged listeners.

For example, the hearing-impaired auditory nerve fibers at

the subcortical level show steeper loudness growth thanNHones

(7, 78) and enhanced onset responses (79). Spontaneous activity

is enhanced in the inferior colliculus (80) and the auditory cortex

of older compared to young animals (75, 81, 82). Along the

auditory pathway (from the brainstem up to the cortex), the

influx of inhibitory neurotransmitters into excitatory neurons

decreases, while it is preserved for inhibitory neurons (83–85).

The reduced response strength in the older adults with HI

can be explained by the normal age-related changes in this

age cohort. In a previous study on the adults with normal

audiometric thresholds, we observed enhanced neural responses

to envelope modulations for NH older persons compared

to young and middle-aged NH individuals (19). This age-

related enhancement can be attributed to the loss of functional

inhibition in older adults as a compensatory mechanism (19,

86, 87). These mechanisms are used in normal-hearing older

persons. On top of it, hearing impairment impacts neural

processing in the older adults with HI. Consequently, the

reduced response strength is detected for hearing impairment

at an older age despite correcting for audibility.

Both middle-aged with HI and older adults with HI have

similar patterns of hearing loss, with no significant differences

in pure-tone average (PTA) across all audiometric thresholds

(0.25–8 kHz) (88). However, age-related structural changes,

such as cerebral atrophy and demyelination, increase with

age (89, 90). The animal study of Wang et al. (91) showed

that, in addition to known cochlear synaptopathy, the central

synapses of spiral ganglion neurons are also pathologically

changed during aging, which suggests a central synaptopathy.

This central synaptopathy plays a significant role in weakened

auditory input and altered central auditory processing during

age-related hearing loss (91). The above-mentioned could also

explain the different results for middle-aged and older adults.

Hemispheric asymmetry

Generally, our results suggest that hearing impairment is

associated with altered hemispheric asymmetry in auditory

temporal processing. In most cases, this alteration occurs

through shifting toward the right hemisphere. This observation

follows previous studies suggesting altered hemispheric

asymmetry of event-related potentials in older adults with HI

(32, 92).

To the best of our knowledge, this study is one of the

first to investigate the association between hearing impairment

and hemispheric asymmetry in temporal envelope processing

using source analysis. In line with the HAROLD model (31),

it was previously documented that hemispheric asymmetry for

temporal envelope processing is reduced (more symmetric) for

the NH older adults compared to those of the younger ones

(29, 30). Using source analysis, Farahani et al. (19) reported that

hemispheric asymmetry is reduced in NH older adults compared

to NH younger ones in response to the 20 and 80Hz amplitude-

modulated stimuli. Although NH older is thus expected to

be associated with less asymmetrical neural processing, our

older participants with HI exhibit asymmetrical processing

patterns. The LI in the middle-aged and older participants

with HI exhibits a hemispheric asymmetry more toward the

right hemisphere than the hemispheric asymmetry of the NH

ones. This novel observation may be explained by the reduced

integrity of white matter tracts related to presbycusis (33). The

corpus callosum is a large bundle of white matter tracts that play

a key role in interhemispheric interactions (93). As such, white
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matter deficits in people with severe age-related hearing loss

can impact the hemispheric asymmetry in temporal envelope

processing. However, further research is needed to clarify the

relationship between the changes in the white matter and the

altered hemispheric asymmetry in older adults with HI.

The role of source-level analysis

In electrophysiological measurements, the recorded data at

each sensor are a weighted average of the activity of several

neural generators due to the volume conduction of the brain

tissue. However, brain source analysis allows us to estimate

the original activity of each neural generator. Such an analysis

increases our understanding of the potential alterations at

different levels of the auditory pathway across age and with or

without hearing impairment.

Furthermore, brain source analysis enables us to detect

relatively small changes in the activity of a neural generator

which may not be detectable in the sensor-level analysis. For

example, values of Cohen’s d (ASSR amplitude, Table 1) suggest

that the differences in the responses between listeners with HI

and NH are larger than those between HI and NH older adults.

In middle-aged adults, the results of sensor-level analyses (i.e.,

enhanced response strengths in listeners withHI, 10) were in line

with the results of source-level analysis (i.e., the current study).

However, in older adults, where the differences are smaller, the

sensor-level analysis yielded no significant difference in response

strengths between the older adults with HI and NH ones (11),

while brain source analysis usingMNI on the same data revealed

significant changes for the neural generators.

Conclusion

The present study investigated the effect of age-related

hearing loss on the dynamics of the neural generators involved

in the temporal envelope processing for middle-aged and older

adults. The activity of the cortical and subcortical neural

generators of ASSRs was reconstructed for participants with

HI and NH ones using the MNI approach. This approach

allows for a detailed analysis of the neural generators’ activity

along the auditory pathway (25). Our results showed that

age-related hearing loss, with correction for audibility, is

accompanied by changes in response strength and phase-

locking of the neural generators of the ASSRs. However, the

patterns of the changes in the middle-aged participants are

different from those of older ones. With the middle-aged

participants, the response strength and phase coherence of

listeners with HI were larger than those of NH listeners.

In contrast, for the older participants, a significantly smaller

response strength and phase coherence were observed in

the listeners with HI compared to the NH ones for most

modulation frequencies. This is an essential finding to develop

rehabilitation strategies for hearing-impaired persons across the

aging life span.

With our novel approach, we observed that middle-aged

and older participants with HI exhibit a hemispheric asymmetry

more toward the right hemisphere than the hemispheric

asymmetry of the NH ones. This observation can be explained

by the brain structural changes associated with presbycusis in

the middle-aged and older adults.
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Evangelisches Krankenhaus Oldenburg, Oldenburg, Germany, 5Hörzentrum Oldenburg gGmbH,

Oldenburg, Germany, 6Hearing Speech and Audio Technology, Fraunhofer Institute for Digital Media

Technology (IDMT), Oldenburg, Germany

For supporting clinical decision-making in audiology, Common Audiological

Functional Parameters (CAFPAs) were suggested as an interpretable

intermediate representation of audiological information taken from various

diagnostic sources within a clinical decision-support system (CDSS). Ten

di�erent CAFPAs were proposed to represent specific functional aspects

of the human auditory system, namely hearing threshold, supra-threshold

deficits, binaural hearing, neural processing, cognitive abilities, and a

socio-economic component. CAFPAs were established as a viable basis for

deriving audiological findings and treatment recommendations, and it has

been demonstrated that model-predicted CAFPAs, with machine learning

models trained on expert-labeled patient cases, are su�ciently accurate

to be included in a CDSS, but it requires further validation by experts. The

present study aimed to validate model-predicted CAFPAs based on previously

unlabeled cases from the same data set. Here, we ask to which extent domain

experts agree with the model-predicted CAFPAs and whether potential

disagreement can be understood in terms of patient characteristics. To these

aims, an expert survey was designed and applied to two highly-experienced

audiology specialists. They were asked to evaluate model-predicted CAFPAs

and estimate audiological findings of the given audiological information about

the patients that they were presented with simultaneously. The results revealed

strong relative agreement between the two experts and importantly between

experts and the prediction for all CAFPAs, except for the neural processing

and binaural hearing-related ones. It turned out, however, that experts tend

to score CAFPAs in a larger value range, but, on average, across patients

with smaller scores as compared with the machine learning models. For the

hearing threshold-associated CAFPA in frequencies smaller than 0.75 kHz and

the cognitive CAFPA, not only the relative agreement but also the absolute

agreement between machine and experts was very high. For those CAFPAs
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with an average di�erence between the model- and expert-estimated values,

patient characteristics were predictive of the disagreement. The findings are

discussed in terms of how they can help toward further improvement of

model-predicted CAFPAs to be incorporated in a CDSS for audiology.

KEYWORDS

precision audiology, CDSS, expert validation, audiological diagnostics, expert

knowledge, machine learning, CAFPAs

Introduction

Audiological diagnostics mostly relies on test batteries

of audiological measures conducted on a patient in need.

Experts in audiology characterize patients’ hearing impairment

by combining the knowledge derived from those audiological

measures and additional information from anamnesis as

well as their subjective impression of the respective patient.

However, experts’ experience differs depending on the number

of previously treated patients and the range of seen cases (1).

On the other hand, large amounts of diverse patient data are

available in clinical databases which originate from different

audiological tests. Thus, theoretically, the knowledge saved in

different databases could be made available to any audiologist

with different levels of expertise. This is one long-term goal of

the current research.

Toward precision audiology, the clinical decision-support

system (CDSS) provides the potential to improve the objectivity

of audiological diagnostics by supporting experts with

information about probabilities for different audiological

findings or treatment recommendations, such as the usage of

hearing devices (2). Thereby, less experienced professionals

could be supported by a CDSS with an expanded basis of

diagnostic knowledge. However, more experienced experts

could benefit from the statistical knowledge fed into a CDSS,

which exploits a large amount of data and derives knowledge

about base rates and association patterns between features that

are relevant for audiological recommendations (2, 3).

Currently, CDSSs are not widely adopted in audiology. This

is due to a couple of challenges to be solved, such as the

integration of different data sources for the same audiological

finding (4), the integration of CDSS into the clinical decision-

making process of experts (5), and the accomplishment of

interpretability of algorithms implemented into a CDSS by

clinicians (3). To overcome the latter challenge, it has been

recommended to develop CDSS in collaboration with domain

experts in the respective medical field (6–8). Expert knowledge

can be incorporated into the developmental process in different

regards: First, when planning a CDSS, concepts and definitions

need to be discussed with domain experts (2). Second, highly-

experienced experts can be asked to provide insights into

their decision-making process or can be asked to gain insights

into the decision-making process of a trained algorithm to be

implemented in a CDSS (3). Furthermore, domain experts are

needed to provide labels, i.e., to estimate audiological findings, if

those are not yet available in a certain database (unlabeled data)

[e.g., (9, 10)]. Finally, whenever algorithms were trained on an

existing database (3, 11), domain experts can be asked to validate

machine-predicted labels (10, 12, 13), and the concordance

between experts’ and algorithmic decisions can be statistically

evaluated (9).

In audiology, some CDSS approaches exist for different

decision types of the field. For example, a CDSS has been

designed for tinnitus diagnosis and therapy (14) and another

one for diagnosing idiopathic sudden hearing loss (15), and for

the selection of a suitable hearing aid device type (16). However,

these approaches do not rely on test batteries containing a

combination of audiological measurements to comprehensively

characterize patients. For such a purpose, Sanchez-Lopez et al.

(17, 18) performed a classification of hearing-impaired patients

based on published research data. Their auditory profiles classify

patients along the dimensions of audibility- and non-audibility-

related distortions. Importantly, their approach combines data-

driven knowledge with audiological model assumptions (17).

Aiming to further ameliorate clinical applicability, Buhl et al.

(19–22) and Saak et al. (23) rendered a series of development

steps toward a CDSS for audiology, which strongly relies on

expert knowledge and is targeted toward future interpretability

and integration across different data sources. The CDSS should

operate on diverse clinical databases, and it aims at covering

the complete audiological decision-making process, including

the classification of audiological findings for given patients,

as well as suggesting appropriate treatment recommendations

(summarized as diagnostic cases). In the proposed CDSS,

Common Audiological Functional Parameters (CAFPAs; 19)

were employed as an interpretable intermediate layer between

audiological tests and diagnostic cases (cf. Figure 1B). CAFPAs

were thus introduced as abstract parameters that aim to cover all

relevant functional aspects of the human auditory system, while

not depending on the exact choice of audiological measures

applied to a patient (19). Figure 1A provides an overview of

the defined CAFPAs which represent an abstract and common

data format based on which different audiological test batteries

can be combined and compared, given that a link from
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a respective measurement to CAFPAs has been established.

Buhl et al. (19) introduced the choice of 10 CAFPAs and

established the first link to audiological measures and diagnostic

cases by means of an expert survey in the inverse direction

of the audiological diagnostic process. Thus, 11 audiological

experts estimated CAFPAs and distributions of audiological

measurement outcomes for given diagnostic cases. This study

provided a proof of concept and demonstrated the feasibility of

the CAFPA approach.

Aiming to establish a link to individual patients which can

be used as training data for machine learning approaches, by

means of a second expert survey conducted with 12 experts,

Buhl et al. (20) collected CAFPA labels and diagnostic cases for

the given measurement outcomes of an existing audiological

database. The respective database of individuals with mild-to-

moderate hearing impairment contained patients’ results on

the audiogram, one speech test, and loudness scaling. The

audiological measures were visually summarized on result sheets

for every patient. The patient data was sorted into categories

corresponding to expert-estimated diagnostic cases (labels), and

probability density functions were derived for each category

and each measurement parameter as well as CAFPA. Thereby,

plausible distributions that can be used as training data for

classifying diagnostic cases were obtained.

Furthermore, Buhl et al. (21) investigated if CAFPAs

provide similar information as included in the audiological

measurements and, consequently, if the classification

in a CDSS can be performed based on the CAFPAs as

intermediate representation instead of directly based on the

measurements. For this purpose, classification was performed

based on measurements and CAFPAs, employing the training

distributions from Buhl et al. (20), including cross-validation.

These analyses revealed that, in most cases, approximately

the same classification performance in terms of sensitivity

and specificity was achieved by CAFPAs as with direct

measurements. This means that they contain all the relevant

information that is important for classification.

In the above-summarized studies, the relationships between

audiological measurements and CAFPAs were established based

on expert knowledge only. Thus, the link was not quantified by

prediction models and therefore the association pattern could

not be used as envisaged in the use case of a CDSS, where

CAFPAs for individual, new patients need to be automatically

predicted. Aiming to establish an automatic prediction of

CAFPAs, Saak et al. (23) statistically derived CAFPAs based

on the CAFPA expert labels (collected for 240 out of 595

patients included in the database) and the corresponding

outcomes of audiological measures from Buhl et al. (20).

This was done by means of regularized regression models

(with lasso and elastic net penalties) and random forests. The

trained prediction models were shown to have an adequate

to good performance, with coefficients of determination (R²)

between 0.6 and 0.7 for the CAFPAs related to the hearing

threshold. However, the neural CAFPA CN showed insufficient

predictive performance (0.17). As compared with the expert

labels, the statistical models tended to predict fewer extreme

values for CAFPAs (23). Saak et al. (23) also analyzed the

importance of different audiological measures (features) for

the prediction and demonstrated that the models indicated

audiologically plausible relationships between the measurement

outcomes and the CAFPAs. Finally, Saak et al. (23) applied

the trained models to predict CAFPAs for the unlabeled part

of the database and provided the first consistency check of

the model-derived CAFPAs by means of an unsupervised

learning approach. More specifically, cluster analysis identified

five plausible groups of individuals which were in line with

the audiological findings. However, no comparison with “true”

labels for audiological findings was possible as expert-estimated

diagnostic cases (assumed as ground truth) were not available

for the unlabeled patients.

Aiming for further validation of statistically derived CAFPA

values, to connect all components, and to finally build a CDSS

operable for individual patients (based on labeled data), Buhl

(22) applied the classification approach from Buhl et al. (21) to

technically evaluate the predictions in the use case of a CDSS

(Figure 1B, lower left part). The classification was performed

on expert-estimated CAFPAs and model-predicted CAFPAs.

It has then been investigated which CAFPAs were relevant

for high classification performance in different diagnostic

decisions. Furthermore, the interpretability of the system was

assessed. It was shown that predicted CAFPAs lead to a

similar classification of patients into the different diagnostic

cases [prediction accuracy of 0.64–0.78 (depending on the

investigated audiological parameter) for optimal weighting of

CAFPAs]. The predicted CAFPAs can in general already be

used in the classification, but some misclassifications occur that

can both be related to the fact that less extreme CAFPAs are

predicted by the regression models (23), and to the properties

of the data set. However, for a definitive validation of the

statistically derived CAFPAs, especially for unlabeled patients,

their evaluation by independent experts remains indispensable.

For the purpose of investigating if the current CAFPA

prediction can plausibly be applied to unlabeled patients (and

consequently to new individual patients in the use case of a

CDSS) and to further investigate the properties of the prediction

models, the present study aims at an expert validation of the

statistically derived CAFPAs [blue and green (dashed) arrows

in Figure 1B, right part]. Two highly-experienced audiological

experts were asked to assess model-predicted CAFPAs given

the measurement outcomes of individual patients and to

update the values if they considered a given model-derived

CAFPA to be inappropriate. The deviations between model-

predicted and expert-validated CAFPAs are statistically analyzed

to investigate how disagreements between the model and

experts might depend on audiological measurements and

to understand how the CAFPA prediction could further be
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FIGURE 1

(A) Definition of Common Audiological Functional Parameters (CAFPAs). From left to right, the functional aspects CA1-CA4 and CU1-CU2 are

frequency-dependent, and from top to bottom, the functional aspects range from peripheral to central. The CAFPAs are defined on a

continuum ranging on the interval [0 1], with 0 representing “normal” and 1 representing “maximally impaired”. Panel (A) of the figure was taken

from Buhl (22). (B) Schematic representation of the clinical decision-support system (CDSS) by Buhl (22) (left part, based on labeled data) and

relationships to the current study (right, based on unlabeled data). Labeled and unlabeled measurement data originate from the same database

(light brown box). Light green arrows depict expert knowledge and blue arrows depict statistical predictions of CAFPAs. Numbered arrows

represent contributions of previous studies: collection of expert knowledge in the opposite direction of audiological diagnostics (19); collection

of expert knowledge based on individual patients from the currently used database (20); comparison of classification based on audiological

measures vs. expert-estimated CAFPAs (21); comparison of classification based on expert-estimated CAFPAs vs. model-predicted CAFPAs. The

prediction models were developed by Saak et al. (23) based on the expert-estimated CAFPAs from Buhl et al. (20). The prediction models were

derived based on labeled patients (left) and applied to unlabeled patients (right). The experts’ task in the current study was to validate the

model-predicted CAFPAs (dashed light green arrow) and to estimate audiological findings for unlabeled patients.

improved. In addition, experts were asked to also estimate

audiological findings based on the given measurement data (for

the purpose of collecting corresponding labels for diagnostic

cases, cf. Figure 1B, lower right part) and to fill out a short

questionnaire asking about how they approached the CAFPA

evaluation task.

Specifically, the study aimed to provide an answer to the

following research questions (RQs):

1. What is the magnitude of relative and absolute agreement of

experts with model-predicted CAFPAs? Whereas the relative

agreement indicates whether experts and statistical models

provide CAFPAs leading to equivalent rank orders of the

evaluated patients, the absolute agreement indicates average

deviations from the opinion of experts and models across

all patients. Both are relevant criteria to understand the

overlap between automatic and expertise-based audiological

decision-making based on CAFPAs.

2. If a disagreement between model-predicted and expert-

validated CAFPAs exists, does it depend on certain

characteristics of the patients’ test data?

3. Are the estimated audiological findings consistent with expert

labels from previous studies collected from patients in the

same database?

4. Is the applied expert validation approach a reliable check of

the model-predicted CAFPAs?

Materials and methods

Data set and audiological experts

For the present study, patients’ data displayed to the experts

along with model-predicted CAFPAs [as estimated by Saak

et al. (23)] were provided by the Hörzentrum Oldenburg

gGmbH. The dataset contained N = 595 cases for which

data were available on medical history, speech recognition in

noise performance [Goettingen sentence test, GOESA (24)], two

audiological measurements [audiogram and adaptive categorical

loudness scaling (25)], and performance on two cognitive

tests [German vocabulary test, WST (26); and DemTect (27)].

Patients varied with respect to their degree of hearing loss. A

detailed description of the database can be found in Gieseler

et al. (28). For n = 240 patients, expert labels for CAFPAs and

audiological findings were collected by Buhl et al. (20).

The model-predicted CAFPAs for unlabeled patients were

taken from Saak et al. (23), where three statistical learning

models (lasso regression, elastic net, and random forests) were
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trained based on 80% of the labeled patients of Buhl et al. (20)

and evaluated based on the remaining 20%. The prediction for

the 355 existing unlabeled patients was performed using these

trained models. Thus, for each statistical learning algorithm, the

predictions were obtained by averaging the predicted CAFPAs

across 20 models derived from 20 different missing imputed

data sets. The code running the predictionmodels was published

along with Saak et al. (23), and it has been applied without

any changes. All models performed well, but they were slightly

different in their performance accuracy. To account for variation

in model performance for the CAFPAs to be evaluated by the

experts enrolled in the present study, 50% of the evaluated

cases were displayed with estimated CAFPAs based on the best

performing model for the respective CAFPA. For the second

half of the cases, CAFPAs were taken from the respective worst-

performing models.

Two highly-experienced experts (authors AR and UE)

evaluated the model-predicted CAFPAs. Both have substantial

scientific and clinical experience of more than 20 years (with

more than 7,500 seen patients), including all degrees of hearing

loss and treatment options. The experts are familiar with

the measurements presented in the expert validation survey

as well as with measurements performed in clinical practice

and their combined interpretation with additional information

about patients.

Due to their elaborated experience, two experts were

estimated to be sufficient for the purpose of this study. In

addition, the experts involved here did not participate in the

previous surveys (19, 20) and thereby their expert knowledge

was not yet depicted in the current prediction models. This

allows for an independent view on the predicted CAFPAs.

Moreover, the statistical analysis of differences between the

model-predicted and expert-validated CAFPAs (cf. Section

Statistical analyses) is better interpretable if the comparison

between statistical and expertise-based prediction is performed

by individual experts.

Expert survey design

The original survey design from Buhl et al. (20) was adopted

and implemented as an electronic survey on PsychoPy 3 Builder

(29). Same as in Buhl et al. (20), the information sheet of a

given patient was presented to the expert on the left side of

FIGURE 2

Patient data and CAFPA evaluation sheet as implemented in the electronic version of the expert survey. Patient cases were displayed one at a

time. The survey sheet is shown in German as the survey was conducted in Germany. For the main terms, a translation is given in the following.

Upper row: Patient ID, gender, and age. Measurements: Audiogram (right and left), LL: air conduction, KL: bone conduction, and hearing loss

plotted over frequency. Goettingen sentence test (GOESA) in noise, intelligibility plotted over SRT. Loudness scaling (Adaptive CAtegorical

LOudness Scaling (ACALOS); right and left), loudness plotted over level, and black line: normal-hearing reference. Native language. Tinnitus

according to the home questionnaire (right and left). Hearing problems in quiet and in noise (scale from none to very much). Verbal intelligence

test: z-score (negative scores: below average, positive scores: above average). Socio-economic status: lower class, middle class, and upper

class. DemTect: suspicion of dementia, mild cognitive impairment, and age-specific normal cognitive abilities. CAFPAs: the meaning of the

di�erent parameters is given in Figure 1A.
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the screen (see Figure 2), one patient at a time. On the right

side of the screen, statistically predicted CAFPAs for the given

patient were presented on the range highlighted by the traffic-

light color. A visual analog scale of the same range was displayed

below. Experts were requested to use this scale and indicate their

estimate for all 10 CAFPAs using the respective slider. They were

instructed that their slider setting could be perfectly overlapping

with the bar indicating the model estimate, or it could deviate

from it. The experts were clearly informed about the meaning of

the displayed CAFPAs. They thus knew that these were estimates

originating from trained statistical algorithms by Saak et al. (23).

After placing the slider for all CAFPAs, the experts were able

to proceed to the next page by pressing the button displayed

at the lower right corner of the screen. On the next page, the

same patient’s data were displayed again, but on the right side

of the screen, audiological findings were now listed, asking

the experts to select those that they considered appropriate

(multiple answers were allowed). Audiological findings were as

follows: 1. normal hearing; 2. cochlear hearing loss (with the

options high-frequency, middle-frequency, low-frequency, or

broadband hearing loss); 3. conductive hearing loss; 4. central

hearing loss. After indicating the appropriate audiological

finding(s), experts could proceed with evaluating the next

patient. There were separate blocks of 15 patients each, such

that experts could interrupt their evaluation for shorter or longer

breaks. It was possible to restart the survey on another day and

continue with the block of patients who were not yet evaluated

before. Experts were not informed about the repeated patients.

These were just displayed randomly to them in between new

patient cases. Expert 1 evaluated CAFPAs predicted for 150 cases

which were randomly selected out of the 355 existing unlabeled

patient cases. The cases were chosen to equally correspond to the

five clusters of Saak et al. (23) to represent different hearing loss

degrees as uniformly as possible. Half of them were predicted

with the best and worst performing models, respectively. For

evaluating the within-expert agreement, 15 of these cases were

presented two times to Expert 1. Expert 2 evaluated 15 patient

cases repeatedly, 12 out of those were also evaluated by Expert 1.

Expert 2 only received patient cases associated with the CAFPAs

predicted by the models with the best performance accuracy.

After each session of 15 cases, a form was displayed, and

experts were asked to indicate their confidence in deciding on

the CAFPAs’ values and the suggested audiological findings.

Furthermore, at the end of the survey, they were requested

to reveal their expert validation approach and to indicate

which measurement information they used while updating

each CAFPA. More specifically, we asked whether experts

have evaluated the displayed measurements or the statistically

estimated CAFPAs first and whether they considered the

predicted CAFPAs at all. Furthermore, for each measurement,

a list of all CAFPAs was displayed to the experts one by one,

and they were asked to mark whether a certain CAFPA was

relevant for a given measurement. If none of the CAFPAs was

considered to be related to a specific measurement, experts were

asked to choose the reason from the options, “The measurement

is not known to me,” “The measurement is not important for

the characterization of patients,” or “Not possible to decode or

represent in CAFPAs.” In addition, the expert’s approach to the

expert validation task was assessed by amultiple-choice question

where different potential approaches or components of those

were suggested (Supplementary Tables A1, A2 for details).

Statistical analyses

All analyses were conducted with the R Software for

Statistical Computing (30). To estimate the stability of the

CAFPA ratings within and relative agreement across experts,

as well as the relative agreement between the model-predicted

and expert-validated CAFPA, intraclass correlation coefficients

(ICCs) were computed along with their 95% confidence intervals

(CIs). The ICC is a widely used tool for measuring inter-

rater agreement. It indicates a correlation within the same class

of data (here repeated measurements of CAFPAs by different

sources: Statistical model, Expert 1, and Expert 2). Whereas

the correlation coefficient refers to different variables, the ICC

is a correlation of the same variable measured in different

conditions. The psych package (31) has been used for this

purpose by applying a two-way mixed-effects model [ICC3k

(32)]. The relative agreement between experts, as well as between

statistical models and experts, indicates whether the raters

were ranking the patient cases in terms of CAFPAs in an

approximately equivalent order. If the patients’ rank orders were

approximately overlapping between raters, the ICC would take

on a value close to 1. Within-expert stability and cross-expert

agreement were taken as necessary preconditions (reliability) for

estimating the relative overlap between experts’ ratings vs. those

of the statistical models.

Not only rank order agreement but also absolute agreement

was relevant to understand the overlap betweenmodel-predicted

and expert-validated CAFPAs. To estimate absolute agreement,

a series of linear mixed effect regression (LMER) models

were fitted by means of the package lme4 (33), separately for

each CAFPA as an outcome variable. The condition model-

predicted vs. expert-validated was dummy coded (0= statistical

model). Random intercepts were included when regressing a

CAFPA onto the within-patient condition factor to estimate

the absolute difference between CAFPA ratings of Expert 1 vs.

the statistical models. Given the dummy coded within-patient

factor, a negative β-weight (fixed effect) will indicate higher

CAFPA values provided by the statistical models on average

across patients as compared with the expert. In analogy, a

positive β-weight indicates the expert to rate a certain CAFPA

higher than the model. These analyses were only based on data

from Expert 1, because Expert 2 evaluated only a few patients,
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TABLE 1 Agreement between experts and stability of experts’ ratings.

E1–E2 (agreement; N = 15;

rated first time by both

experts)

E1–E1 (stability; N = 15;

rated 2 times)

E2–E2 (stability; N = 15;

rated 12 times)

CAFPAs ICC [CI] p-Value ICC [CI] p-Value ICC [CI] p-Value

CA1 0.90 [0.72; 0.97] 0.00 0.49 [−0.53; 0.83] 0.11 0.99 [0.99; 1.00] 0.00

CA2 0.96 [0.87; 0.98] 0.00 0.97 [0.92; 0.99] 0.00 0.99 [0.98; 1.00] 0.00

CA3 0.95 [0.86; 0.98] 0.00 0.99 [0.97; 1.00] 0.00 0.99 [0.98; 1.00] 0.00

CA4 0.92 [0.75; 0.97] 0.00 0.84 [0.53; 0.95] 0.00 0.98 [0.96; 0.99] 0.00

CU1 0.52 [−0.43; 0.84] 0.09 0.89 [0.68; 0.96] 0.00 0.96 [0.92; 0.98] 0.00

CU2 0.94 [0.81; 0.98] 0.00 0.90 [0.71; 0.97] 0.00 0.98 [0.96; 0.99] 0.00

CB singular 0.00 0.85 [0.54; 0.95] 0.00 0.92 [0.84; 0.97] 0.00

CN 0.00 [−1.98; 0.66] 0.00 0.82 [0.47; 0.94] 0.00 0.96 [0.91; 0.98] 0.00

CC 0.71 [0.15; 0.90] 0.01 0.96 [0.88; 0.99] 0.00 0.94 [0.88; 0.98] 0.00

CE 0.86 [0.58; 0.95] 0.00 0.97 [0.91; 0.99] 0.00 0.96 [0.92; 0.98] 0.00

CA1–CA4, hearing threshold-related CAFPAs; CU1–CU2, Suprathreshold-deficits related CAFPAs; CB, binaural hearing; CN, neural processing; CC, cognitive components of hearing;

CE, socio-economic status; E1, Expert 1 who rated 15 patient cases two times; E2, Expert 2 who rated 15 patient cases 12 times; ICC, intra-class correlation; CI, confidence interval.

Bold numbers indicate estimated agreements with a lower than acceptable effect size.

but repeatedly multiple times. Per design, the data from Expert

2 were collected for reliability estimates with many repetitions.

Last, we aim to test whether the measured audiological

data of the patients can explain potentially observed differences

between the model-predicted and expert-validated CAFPAs.

Thus, patients’ audiological measures were included as

additional predictors in the above described within-patient

factor models, estimated separately for each CAFPA. Cross-

level interactions between the within-patient condition

variable and measurements tested whether the difference

between the expert and the statistical model depended on the

audiological measurements.

After performing the described statistical analyses, a post-

survey interview with the experts was conducted. In a semi-

structured discussion with all coauthors (from which two acted

as experts), all results and links among the results were discussed,

while especially focusing on the experts’ perspective.

Results

Stability of experts’ ratings and
agreement between experts

Prior to assessing the agreement between statistical CAFPA

predictions vs. experts’ evaluations, the reliability of experts’

ratings needs to be quantified. Table 1 provides a comprehensive

summary of these reliability analyses for the 10 CAFPAs

(displayed as columns). Within-expert agreements were very

high as indicated by the ICC values close to 1. The ICCs

expressing very high stability within Expert 2, who rated the

CAFPAs many times repeatedly, are all above 0.90, with a very

narrowCI. Thus, learning effects during the first round of ratings

were adjusted by multiple repetitions in this case. The ICCs

indicating stability within Expert 1 are somewhat lower, but

satisfactory (all above 0.80), except for the CA1. However, CA1

was the CAFPA to be rated first, and the 15 patients used for

stability estimates were presented as the first cases to the expert

and repeated later. Thus, the low ICC of this first CAFPA can be

explained by the fact that the expert had to familiarize himself

with the task at the beginning of the survey. This was probably

the case for the second expert as well; however, by analyzing

“12 repetitions in that case,” the agreements were adjusted, and

one run of ratings will not have such a substantial effect on the

agreement estimates across 12 columns of 15 patients’ ratings.

Experts 1 and 2 were in high agreement with respect to all

but three CAFPAs (refer to the first column of Table 1). The

outlier CAFPAs were CU1, CB, and CN. In the case of CB and

CN, the two experts did not agree with each other at all, such

that the model returned a hint toward singularity. By exploring

the distribution of the CB estimates within Expert 1 and Expert

2, it became obvious that the first expert evaluated all 15 patient

cases used for reliability estimates with an approximately zero

CB value and a very narrow value range slightly above zero

in the case of CN. This was not the case for Expert 2 who

used a somewhat broader but also restricted value range for

these two CAFPAs. A post-survey interview with both experts

provided further insights into the experts’ reasoning on these

patient cases with respect to CB and CN. These qualitative

reports are outlined below in the discussion section and used

for interpreting the quantitative findings summarized in Table 1.

Overall, we can conclude that, for most of the CAFPAs, the

experts’ evaluations were reliable in terms of stability within

experts and agreement of two different experts with different

experience backgrounds.
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Relative agreement between CAFPAs
predicted by statistical models vs. experts
(RQ 1)

Table 2 provides a comprehensive summary of the ICC

estimates indicating an agreement between the statistically

predicted CAFPAs and the two experts based on 15 cases rated

by all. The second column of the table indicates an agreement of

CAFPA predictions between the statistical model and Expert 1

TABLE 2 Relative agreement between statistically predicted CAFPAs

and experts’ opinion.

M-E1-E2 M-E1

CAFPAs ICC [CI] p-Value ICC [CI] p-Value

CA1 0.94 [0.85; 0.98] 0.00 0.94 [0.92; 0.96] 0.00

CA2 0.98 [0.94; 0.99] 0.00 0.96 [0.94; 0.97] 0.00

CA3 0.97 [0.93; 0.99] 0.00 0.96 [0.95; 0.97] 0.00

CA4 0.94 [0.87; 0.98] 0.00 0.94 [0.91; 0.95] 0.00

CU1 0.73 [0.36; 0.90] 0.00 0.86 [0.80; 0.90] 0.00

CU2 0.94 [0.86; 0.98] 0.00 0.90 [0.86; 0.93] 0.00

CB 0.63 [0.13; 0.87] 0.01 0.56 [0.39; 0.68] 0.00

CN 0.39 [−0.43; 0.78] 0.13 0.43 [0.21; 0.59] 0.00

CC 0.88 [0.72; 0.96] 0.00 0.75 [0.65; 0.82] 0.00

CE 0.91 [0.79; 0.97] 0.00 0.82 [0.75; 0.87] 0.00

CA1–CA4, hearing threshold-related CAFPAs; CU1–CU2, Suprathreshold-deficits

related CAFPAs; CB, binaural hearing; CN, neural processing; CC, cognitive components

of hearing; CE, socio-economic status; M, model = statistical model-predicted CAFPA,

refer to Saak et al. (23); E1, Expert 1 who rated 15 patient cases two times and in total 150

different patients (used in second columnM-E1); E2, Expert 2 who rated 15 patient cases

12 times; ICC, intra-class correlation; CI: confidence interval.

Bold numbers indicate estimated agreements with a lower than acceptable effect size.

on the basis of 150 patients. These relative agreements between

the models and Expert 1 are also displayed as scatterplots

in Figure 3, separately for each CAFPA. The table and the

scatterplots clearly reveal high agreement rates of experts with

the statistically predicted CAFPAs, except for CB and CN. We

can thus conclude that 8 out of 10 CAFPAs are valid and can

be readily used in a CDSS for audiological decision-making.

Reasons for the low validity of the statistically predicted CB and

CN, as well as potential measures for improving the prediction

of these two CAFPAs in the future, are discussed below.

Absolute agreement between CAFPAs
predicted by statistical models vs. experts
(RQ 1)

We next investigated the absolute agreement between

CAFPAs predicted by statistical models vs. experts. Despite

proximal rank order equivalence of patients between experts

and statistical decisions on the CAFPAs, the question remains

whether, on average, across patients, experts, and the models

agree. Table 3 provides a numeric summary of the results

(see above for explanations of the modeling approach). As

indicated by the first column of the table (β-weights), all but

two differences were negative. This means that the CAFPAs

CA1–CA4, CU1–CU2, CB, and CN were on average corrected

across patients to lower values by Expert 1 as compared with

the predictions of statistical models. On a scale between 0 and

100 (rescaled CAFPAs to range between 0 to 100, instead of 0

to 1), these negative differences ranged between 2.09 and 17.79

scale point units. Thus, most of the average differences between

the expert’s vs. the statistical models’ CAFPA estimates were very

FIGURE 3

Scatterplots visualizing the relative agreement between statistically predicted CAFPAs and the expert’s opinion (for Expert 1, N = 150 patients;

corresponding to the second column of Table 2).
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TABLE 3 Main e�ect of evaluator in the linear mixed e�ects regression

(LMER) models with evaluators (M and E1) nested within patients.

CAFPAs β (SE) CI p-Value

CA1 −2.09 (0.70) −3.48;−0.71 0.00

CA2 −2.33 (0.64) −3.60;−1.06 0.00

CA3 −3.20 (0.64) −4.46;−1.94 0.00

CA4 −3.37 (0.85) −5.05;−1.68 0.00

CU1 −5.14 (1.07) −7.24;−3.04 0.00

CU2 −6.95 (0.83) −8.60;−5.31 0.00

CB −17.79 (1.43) −20.61;−14.98 0.00

CN −10.71 (1.24) −13.61;−8.27 0.00

CC 0.27 (1.04) −1.79; 2.33 0.79

CE 7.21 (1.05) 5.15; 9.27 0.00

CA1–CA4, hearing threshold-related CAFPAs; CU1–CU2, Suprathreshold-deficits

related CAFPAs; CB, binaural hearing; CN, neural processing; CC, cognitive components

of hearing; CE, socio-economic status.

Evaluator was dummy coded with 0=machine learningmodel, 1= expert (1). Npatients =

150. β: regression weight (fixed effect) of CAFPAs depending on the within-patient factor

(machine learning model vs. expert); it indicates the difference between experts’ ratings

across patients on average as compared with the statistical model; SE, standard error of

the regression weight estimate; CI, confidence interval.

small but significant. Larger deviations only occurred for CB and

CN, for which statistical predictions turned out to be currently

still insufficiently valid in terms of relative agreements as well.

The cognitive processing and socio-economic CAFPAs (CC and

CE) were rated on average across patients slightly higher by the

expert as compared with the statistical models. However, the

difference was not significant for CC.

On the dependency of the disagreement
between statistical models and the expert
from patients’ characteristics (RQ 2)

Given that expert and statistical predictions slightly but

significantly differed on average, we explored whether patient

characteristics (their audiological measurements) explain these

differences. Themodeling approach has been outlined above and

the results are summarized in Table 4. For better readability, only

significant effects are provided in the table. However, note that

all listed interactions were estimated as explained above and in

the note of the table.

The difference for CA4 does not depend on any patient

characteristics, and for none of the CAFPAs, the difference

between the expert and the model was associated with the

age of the patients. In the post-survey interview (see also

discussion below), experts also confirmed not to have considered

the age when concluding about any of the CAFPAs. The

difference between the statistical model and expert evaluation

of the socio-economic CAFPA depended on the biological

sex of the patients, which is plausible, given sex differences

in status evaluations in society in general. Patient differences

in pure tone average (PTA) explained the difference between

the expert and the model on CA1-CA3. PTA also explained

differences in the neural processing CAFPA; however, in

general, the results of this CAFPA need to be interpreted with

caution. The speech recognition in noise performance (see

above GOESA) was relevant for the observed differences on

CU1–CU2, CB, and CN. These results were also discussed

with the experts in the post-survey interview and were in line

with the experts’ reports with respect to which measurements

they considered when intending to correct the displayed

model’s estimated value for a given CAFPA. Finally, Adaptive

Categorical Loudness Scaling (ACALOS) further contributed

to accounting for the difference between the expert and the

statistical model.

Questionnaire about experts’ approach
and relationships between
measurements and CAFPAs (RQ 4)

The general questionnaire part of the survey provided

additional subjective information to be linked with the analysis

outcomes. The answers (by Expert 1) about the expert

validation approach revealed that the expert considered patient

characteristics as a complete picture. In addition, specific links

between measurements and CAFPAs were considered from

both directions, that is, thinking about which measurement

information was important for a certain CAFPA, as well as

to which CAFPAs a certain measurement contributed. The

exact choice and formulation of answers are provided in the

Supplementary Table A1.

Related to that, the questions about associations between

CAFPAs and a respective measurement provided more detailed

information about the links indicated by the expert. The

CAFPAs CA1–CA4 were clearly related to the audiogram; the

cognitive CAFPA CC to the verbal intelligence test (WST) and

to DemTect; and the socio-economic CAFPA CE to the SWI.

In contrast, CU1–CU2 and CN were related to a combination

of audiogram, ACALOS, GOESA, native language, and verbal

intelligence test. The binaural CAFPA was not linked to any

measurement, meaning that the expert found no information

about this aspect in the patient characteristics. These links are

plausible and comparable to the results of the statistical analyses

as described above, as well as to the variable importance analysis

by (23).

CAFPA distributions for given
audiological findings (RQ 3)

Finally, we investigated the differences between

model-predicted and expert-validated CAFPAs sorted

to audiological findings as estimated by the experts, for
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TABLE 4 β-weights (of the cross-level interaction) indicating whether the di�erence between the expert and statistical model depends on the patients’ audiological measures.

1CA1 1CA2 1CA3 1CA4 1CU1 1CU2 1CB 1CN 1CC 1CE

Predictors β p-Value β p-Value β p-Value β p-Value β p-Value β p-Value β p-Value β p-Value β p-Value β p-Value

Age

Sex 3.24 0.00 6.15 0.02 −4.31 0.02

PTA 0.10 0.01 0.17 0.00 0.17 0.00 −0.42 0.00

SES −2.70 0.00

GOESA 2.59 0.00 1.75 0.00 −2.03 0.00 4.18 0.00

WST

DemTect 1.05 0.03 −2.10 0.00

Tinnitusright −4.73 0.00

Tinnitusleft

ACALOS1.5L2.5 −0.10 0.00 −0.21 0.02

ACALOS1.5L50 0.11 0.00 0.22 0.04 −0.46 0.00

ACALOS4L2.5

Note that only significant results have been listed and an empty cell in the table indicates a null effect. Shaded rows or columns indicate that no significant results were obtained at all for the respective predictor or CAFPA.

CA1–CA4, hearing threshold-related CAFPAs; CU1–CU2, Suprathreshold-deficits related CAFPAs; CB, binaural hearing; CN, neural processing; CC, cognitive components of hearing; CE, socio-economic status.

1 indicates the difference between the expert and the statistical models. p-values indicate the probability of observing the respective prediction of the difference, or more extreme ones, assuming the null hypothesis of no difference is true. The coefficient

estimates originate from 10 different models, one model for each CAFPA. All predictors listed in the table were simultaneously included in the model, along with their interaction with the within-patient condition variable (model= 0; expert= 1). Thus,

β-weights indicate cross-level interaction effects (within-patient condition variable and between-patient predictors as listed in the first column of the table).
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FIGURE 4

CAFPA patterns for the four most frequent audiological findings (columns) as indicated by Expert 1. Model-predicted (first row) and

expert-validated CAFPAs (second row). The background color represents the median of the respective CAFPA for all patients associated to the

respective audiological finding. The horizontal color bar includes the interquartile range in addition to the median.

the purpose of performing a plausibility check in the

applied context toward a CDSS. From the 150 patient

cases evaluated by Expert 1, the combinations of four

audiological findings were mainly chosen: normal hearing,

high-frequency hearing loss, broadband hearing loss,

and the combination of high-frequency and broadband

hearing loss. Other findings were chosen very rarely (less

than six).

Figure 4 depicts model-predicted and expert-validated

CAFPAs for different audiological findings. Usually, only small

differences are visible by comparing the median (background

color) of model-predicted and expert-validated CAFPAs. Thus,

the differences as described above comprise a small influence

of CAFPAs as compared to the possible range and vary only

a little across audiological findings. Interquartile ranges of

CAFPAs within audiological findings are partly larger for expert-

validated CAFPAs, showing that the expert found slightly

more variability across patient cases than was covered by

the prediction models. For CB (binaural) and CN (neural),

the correction toward zero as described above influenced

all audiological findings in the same way, resulting in

median values close to zero and a very small interquartile

range. A more detailed view on interquartile ranges along

with distributions of the different CAFPAs is displayed in

Supplementary Figure A3.

Discussion

The present study aimed at an expert validation of model-

predicted CAFPAs to be used as an intermediate layer in

a CDSS for audiology. For this purpose, we performed an

expert survey with two highly-experienced audiological experts

and statistically analyzed differences between model-predicted

and expert-validated CAFPAs, as well as associations of the

observed differences with audiological measurements and

patient characteristics.

Expert validation of model-predicted
CAFPAs

The main finding was that experts agreed on most

model-predicted CAFPA values, except for the binaural

CAFPA CB, and the neural CAFPA CN (RQ 1). For these,

in a considerable number of patients, large corrections

were proposed by experts. This finding was consistently

revealed by different statistical analyses, i.e., the assessment

of relative and absolute agreement between experts and

prediction models, the questionnaire inquiring about the

experts’ validation approach and their understanding of the

relationships between audiological measurements and the
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different CAFPAs, and the evaluation of CAFPAs aligned to

expert-estimated audiological findings.

For all CAFPAs, except for CB and CN, experts proposed

only small corrections on the model-predicted CAFPAs given

the measurement data of a sample of patients. Therefore, we

conclude that the model-based prediction of these CAFPAs is

already well applicable to unlabeled patients. Slight potential

for improvement can however be inferred based on the results

obtained. The relative agreement between prediction models

and both experts was high, except for the supra-threshold

CAFPA CU1. The same was applied to the cognitive CAFPA

CC when assessing the agreement between model-predicted

CAFPAs and Expert 1. Consequently, the agreement among the

two experts was rather narrow, but still acceptable for CU1

and CC.

Interestingly, the main evaluator effect (absolute agreement)

assessed between prediction models and Expert 1 was significant

for all CAFPAs, but not CC. That is, the cognitive CAFPA was

on average across patients not corrected by the expert. This

could be due to the fact that the range of available patient data

is restricted especially in the case of CC where low CAFPA

values represent typical functioning. According to the variable

importance analyses by Saak et al. (23) and the experts’ reports,

the CCCAFPAwasmainly estimated and concluded on the basis

of the DemTect scores, which is a screening test for cognitive

impairment. DemTect scores in the present sample, however, are

rather in the typically functioning range.

Linear mixed effects regression models revealed that the

small, but statistically significant evaluator effects, reflecting

differences between the model-predicted and expert-validated

CAFPAs, on all remaining seven CAFPAs followed mostly

plausible associations with audiological measurements (RQ 2).

For instance, analyses indicated that patients’ GOESA scores

were significantly associated with four CAFPAs, namely CU1,

CU2, CB, and CN. This relationship is especially plausible for the

supra-threshold CAFPAs, CU1, and CU2, as well as the neural

CAFPA CN (see below). However, theoretically one would

expect that the binaural CAFPA would not be associated with

GOESA, which was measured in the S0N0 condition (speech

and noise from the frontal direction), i.e., binaural processing

should not be characterized by the given speech test outcome.

Furthermore, these empirical relationships were in line with the

experts’ responses in the questionnaire where they were asked to

indicate expected links between audiological measurements and

the different CAFPAs. This procedure is similar to the variable

importance analysis of Saak et al. (23), which illustrated the links

between audiological measurements (features) and the CAFPAs

by means of statistical associations learned from the labeled part

of the dataset.

In contrast, for the binaural CAFPA CB and the neural

CAFPA CN, the relative agreement between experts and the

prediction model was limited. The absolute agreement analyses

showed the largest differences between model-predicted and

expert-validated CAFPAs, for these among all other CAFPAs as

well (RQ 1). These findings can be interpreted in the light of all

analyses conducted in the present study. The difference between

the model-predicted vs. expert-validated binaural CAFPA CB

was associated with patients’ scores on GOESA and ACALOS,

while the expert indicated in the questionnaire that none of

the provided measurements allows for conclusions about this

CAFPA. In a post-survey interview with both experts, the

questionnaire statement was confirmed one more time. That is,

according to both experts, the available measurements displayed

in the expert survey and used for statistical predictions of

CAFPAs do not provide sufficient information about binaural

processing (RQ 2). This assessment is consistent with the

literature (34–39). Both experts agreed in the joint interview

that information from a localization task, as well as speech

intelligibility measured in a spatial condition, would be needed

for CB evaluation, whereas the displayed condition for GOESA

was S0N0. However, Expert 1 also reported being able to gain

an impression of the binaural hearing abilities of patients from

the available data. A potential decision strategy would be as

follows: One would adapt the CAFPA CB toward zero (green,

normal) if no binaural problem was expected in the light of

all other measurements provided. Therefore, in the case of CB,

the absolute agreement and relationships with the audiological

measurements need careful interpretation in line with these

reports of the expert. Nevertheless, the revealed associations

by the statistical analyses may also indicate experts’ implicit

assumptions about the measurements which are not explicated

in their decision-making process.

The evaluator effects for the neural CAFPA CN were

associated with several measurements, namely the audiogram

(PTA), GOESA, DemTect, and ACALOS. Out of these, GOESA

was most strongly associated with CN updates by the expert.

These associations are mainly consistent with the questionnaire

reports. However, in the post-survey interview, Expert 1

emphasized again his decision-making strategy and commented

on the importance of these measurements for the assessment

of the neural CAFPA CN. According to both experts, generally

in clinical practice, the challenge persists with evaluating neural

aspects of hearing loss. These can be characterized by certain

measurements such as brainstem-evoked response audiometry

or electrocochleography (31), but there is no common and

established selection of measurement approaches, and the

availability of such measures largely varies across patient cases.

Therefore, experts’ diagnostic decision-making process contains

several steps. They reported to first consider the audiogram and

a speech test in combination, and only if inconsistencies pop up,

additional measurements, such as brainstem-evoked response

audiometry or electrocochleography would be potentially

suggested. This diagnostic rationale explains the approach

explicated by Expert 1 on how he approached the validation task:

CN for patients with consistent results among the audiogram

and GOESA has been corrected toward zero. Thereby, the expert
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validation of CN relies on the partially explicated diagnostic

rationale only, given that no additional information on neural

sources of hearing loss was available in the studied patient

database. These aspects need improvement toward a reliable

CDSS algorithm in the domain of CN and also CB.

The audiological findings as estimated by the experts

provided further opportunities to assess how decisive differences

betweenmodel-predicted and expert-validated CAFPAs were for

the final diagnostic outcome (RQ 3). The CAFPA patterns of

patients sorted into distinct classes according to the experts’

labels for audiological findings were consistent with those

which were statistically derived by Saak et al. (23) when

clustering unlabeled cases based on model-predicted CAFPAs.

The most frequently occurring diagnostic findings (normal

hearing, high-frequency hearing loss, broadband hearing loss,

and a combination of high-frequency and broadband hearing

loss) are approximately equally distributed. This is a consistency

check, given that the patients for the current survey were

chosen to equally represent the clusters of Saak et al. (23).

By comparing the CAFPA distributions (median) of model-

predicted and expert-validated CAFPAs, we found in general

no noticeable changes in the CAFPA patterns for all CAFPAs

except for CB and CN. That is, the above-discussed approach

of the experts (correcting these CAFPAs toward zero if no

inconsistencies in the data were present) had a similar impact

on all audiological findings. This is plausible given that the

employed categories of audiological findings [as introduced in

Ref. (20)] mainly relate to audibility, and most of the patients

did not show extreme findings with regard to binaural hearing

or neural aspects of hearing loss. This is in general a property of

the database which contains mainly mild-to-moderate hearing

impairment collected in a pre-clinical context for the purpose of

hearing aid fitting.

In summary, the performed expert validation and

corresponding statistical analyses revealed that the CAFPA

prediction models as trained by Saak et al. (23) are applicable

to unlabeled patient cases. For all CAFPAs except for CB and

CN, the expert-validated CAFPAs as well as the audiological

findings collected in this study can be additionally used for

further training of the prediction models.

For CB and CN, the current prediction models need

improvement by considering additional measurements. In these

cases, with the measurement data at hand, experts indicated

the respective CAFPAs to be normal if no inconsistencies were

observed in the data. They both concluded that additional

information was necessary to evaluate CB and CN. It is thus

plausible that the expert’s diagnostic decision-making approach

for these two CAFPAs is not reflected by the models that learn

from the multivariate association pattern of the audiological test

battery taken as input and are by design not able to apply If-

Then rules in a similar way as experts do. However, the current

predictions are still useful as a starting point or the first best

guess for CB and CN. Future models need to be trained on

additional information for these two CAFPAs on a potentially

more comprehensive clinical sample.

On the importance of experts’ qualitative
reports on their decision-making
approach to improving statistical
predictions

The present study clearly demonstrated the importance

of combining expert knowledge and statistical learning in

the design of a CDSS for audiology. The expert validation

and corresponding statistical analyses to investigate agreement

between model-predicted and expert-derived CAFPAs provided

important insights into the current properties and the necessary

future improvement of the CDSS proposed by Buhl (22) and the

prediction models of CAFPAs (23). Furthermore, the collected

qualitative data on the experts’ decision-making process are

highly valuable to complement statistical conclusions.

Questionnaire reports revealed that the experts were

confident in evaluating model-predicted CAFPAs and

combining these statistical proposals with their views on the

respective audiological findings (RQ 4). First, this conclusion

is supported by plausible expert-validated CAFPAs, which are

consistent with the indicated links between measurements

and CAFPAs by experts in the questionnaire. Second, the

questionnaire also assessed the experts’ approach to the task.

These data confirmed that Expert 1 was comfortable with the

task of making diagnostic decisions on the basis of proposed

solutions achieved by statistical predictions. The concept

of CAFPAs was also valued by the expert. In summary, the

expert concluded a case based on an overall impression of

the patient in terms of measurements as well as CAFPAs and

additionally reflected upon the respective links between these

two information sources. As a limitation, it should be however

mentioned that only two audiological experts were involved in

this study, and future studies will need to validate a designed

CDSS on additional experts with different levels of experience.

The two experts involved in this study are highly experienced

and provided valuable insights and opinions in a post-survey

interview. Their suggestions are consistent with literature,

e.g., regarding their reported limitations, such as insufficient

available measurements for CB and CN hitherto considered for

deriving these CAFPAs. Future studies with more experts with

varying levels of experience could assess how the approach to

correcting CAFPAs and associations between measurements

and CAFPAs implied by the experts’ opinion depend on

experts’ experience. Also, it could be investigated which level

of experience is required to perform the expert validation task

accurately. It will be crucial that only experts are included who

are sufficiently familiar with the typical audiological diagnostic

process and are well acquainted with the CAFPA concept.
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Their knowledge may be structured differently depending on

the experience. Potentially, experts have more implicit links

between different aspects of the audiological diagnostic process

given higher levels of experience.

The current expert validation was highly informative for

the successful implementation of CAFPAs for designing a CDSS

for audiology (RQ 4): (1) The model-predicted CAFPAs were

validated here by experts, (2) the expert-validation data were

statistically analyzed, and (3) qualitative questionnaire and post-

survey interview reports of the experts provided a consistency

check and additional insights on the experts’ decision-making

process (9, 10, 13), as discussed above. Thereby, experts’

opinions collected here assure the use of CAFPAs in the context

of CDSS (2). It should be mentioned that the present expert

survey was closely related to the expert survey procedure of Buhl

et al. (20). This ensures comparability of the obtained experts’

labels and diagnostic conclusions. However, there was a crucial

difference. The present study employed an expert validation of

model-predicted CAFPAs for previously unlabeled cases instead

of simple labeling of CAFPAs. This has the advantage to provide

information on how experts accept diagnostic conclusions

suggested by a data-driven diagnostic approach.

In summary, the present study contributed to linking expert

knowledge and machine learning toward the development of

a CDSS for audiology. This link needs to be interpretable.

Interpretability was assured in several regards in the current

CDSS (22) as well as in the analysis applied in this

study. First, the CAFPAs themselves act as an interpretable

intermediate layer of a CDSS (19). Second, the variable

importance assessments in Saak et al. (23) provided a basis for

interpretability of the statistical learning models and allowed

insights into the underlying measurements for the different

CAFPAs. Third, in the present study, by means of linear mixed

effect models, we investigated how differences between model-

predicted and expert-validated CAFPAs depend on audiological

measurements of the patients. Thereby, we could learn about

the experts’ implicit approach and interpretation of the CAFPA

concept. Although the current version of the CDSS based on

CAFPAs was built upon only one audiological database, the

proposed methodological approach is generalizable to further

data of a similar structure.

Toward future application in the clinical
decision-support system and outlook

The outcomes of the present study provide insights into

how the CDSS of Buhl (22) could be further improved toward

applicability for new patients. For all CAFPAs except for the

binaural CAFPA CB and the neural CAFPA CN, the prediction

models of Saak et al. (23) can be improved by including the

expert-validated CAFPAs as additional labels in the training

process and thereby taking the proposed corrections of the

two experts involved in this study into account. In the future,

this could be done even more efficiently, for example, by

using a procedure as described by Baur et al. (13). There, an

iterative data annotation approach has been suggested. First,

a machine learning algorithm is trained based on a number

of available labeled data points, and then, expert labeling is

included iteratively by presenting experts with those respective

data points that show the most uncertain labels.

For CB and CN, the prediction models of Saak et al. (23)

are not yet accurate enough in their current version for use

in a CDSS. The automatic prediction of the binaural CAFPA

should be included in the future as soon as a database with

appropriate audiological measurements is available. The neural

CAFPA will require even more research to be included in

the decision-support system. This is because the diagnostic

process for neural aspects of hearing loss is not well-defined

by domain experts, not even with respect to the choice of

necessary measurements for a straightforward diagnostic. More

specifically, including CN, further discussions with clinicians

from different sites are needed to learn more about which

measurements are employed for which patients in the clinical

practice. Second, appropriate datasets need to be accessed that

contain consistent measurement outcomes across patients. This

stepmay include existing datasets, but it may also be necessary to

collect structured data for a new group of patients. Third, if data

are available, expert labels for CAFPAs can be collected, and/or

CAFPAs can be predicted, and a subsequent expert validation be

performed (see below for a discussion about expert validation

for including additional databases).

The integration of additional databases including more

balanced and more severe patient cases is required not only to

back up the CDSS with a larger number of patients but also

to cover the whole range of potential audiological findings and

treatment recommendations. Therefore, the CAFPAs provide

great potential, as they are defined as a measurement-

independent representation of audiological knowledge. The

applied expert-validation approach can be used in the future

to validate CAFPAs that were predicted on the basis of

different audiological measurements and variable amounts of

information available for different patients. This is relevant

because clinical practice is characterized by heterogeneity in

data availability for different patient cases. In this respect, the

expert validation approach could be included in two ways

in a hybrid ML-based CDSS combining machine learning

and expert knowledge. On the one hand, as explained above,

expert validation can be used to derive corrected CAFPAs

for additional measurement information in a to-be-connected

database. Thereby, it could also be beneficial if the specialization

of a respective expert corresponds to the new measurements

contained in a dataset. On the other hand, the expert validation

could be used on the basis of single patients during the operation

of the CDSS in clinical practice, i.e., if the uncertainty of
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the predicted CAFPAs (or classified audiological finding or

treatment recommendation) exceeds a certain threshold, the

system would ask for an expert validation of CAFPAs for the

respective patient [related to the approach of Ref. (13)]. In this

case, either the current physician could be asked to expert-

validate the CAFPAs, or the CDSS would not continue for

the current patient, but the patient’s data and CAFPAs would

be stored to later perform (offline) expert validation on such

stored cases.

In contrast to knowledge- or rule-based CDSS (40),

expert knowledge would not explicitly be modeled to be

incorporated in an ML-based CDSS. Instead, expert knowledge

is implicitly incorporated into the CDSS, as it is included

in the data (labels for CAFPAs or diagnostic cases) and the

relationships between different layers of the CDSS (audiological

measures, CAFPAs, and diagnostic cases) are derived from data

(supervised ML). With expert validation as performed in this

study, the data (CAFPAs) underlying these relationships can

be optimized to best fit to experts’ implicit understanding of

the relationships.

Overall, the present study demonstrated not only the need,

but also the potential to incorporate diverse information on

expert knowledge in the development (and application) of

a CDSS.

Conclusion

The present study provided important insights into the

advantages, limitations, and potential improvement of the

current prediction of CAFPAs.

The performed expert validation and corresponding

statistical analyses revealed that the current CAFPA prediction

models are applicable to unlabeled patient cases. For all

CAFPAs except for the binaural CAFPA CB and neural

CAFPA CN, the experts’ agreement with the model-

predicted CAFPAs was high, and only small corrections were

performed, which were associated with plausible underlying

audiological measures by the linear mixed effect models.

Therefore, the expert-validated CAFPAs can be employed as

additional labels for further training of the respective CAFPAs

‘prediction models.

In contrast, large corrections were performed for the

CAFPAs CB and CN. The expert’s approach of correcting

these CAFPAs toward zero if the overall impression of the

patient was normal was revealed by the post-interview, along

with the fact that appropriate measurement information was

missing in the database. The current predictions are useful as

a starting point or the first best guess for CB and CN, but

future models need to be trained on additional information

for these two CAFPAs on a potentially more comprehensive

clinical sample.

Audiological findings were found to be consistent with

previous expert labels on the same data set. Due to the

definition of these categories mainly in threshold-related terms,

the large corrections for CB and CN similarly affected all

audiological findings.

In summary, the present study contributed to linking expert

knowledge and machine learning toward the development of a

CDSS for audiology. By means of linear mixed effect models,

we investigated how differences between model-predicted and

expert-validated CAFPAs depend on audiological measurements

of the patients. Thereby, we could learn about the experts’

implicit approach and interpretation of the CAFPA concept.

Although the current version of the CDSS based on CAFPAs

was built upon only one audiological database, the proposed

methodological approach is generalizable to further data of a

similar structure.

In the future, the expert validation approach could also be

used to establish relationships with additional measurements

included in different databases. If a prediction is performed on

parts of a database, experts could be asked to validate and correct

the predicted CAFPAs based on a larger choice of measurements

presented within the expert validation survey.
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Debilitating hearing loss (HL) a�ects ∼6% of the human population. Only 20%

of the people in need of a hearing assistive device will eventually seek and

acquire one. The number of people that are satisfied with their Hearing Aids

(HAids) and continue using them in the long term is even lower. Understanding

the personal, behavioral, environmental, or other factors that correlate with

the optimal HAid fitting and with users’ experience of HAids is a significant

step in improving patient satisfaction and quality of life, while reducing

societal and financial burden. In SMART BEAR we are addressing this need

by making use of the capacity of modern HAids to provide dynamic logging

of their operation and by combining this information with a big amount of

information about themedical, environmental, and social context of each HAid

user. We are studying hearing rehabilitation through a 12-month continuous

monitoring of HL patients, collecting data, such as participants’ demographics,

audiometric and medical data, their cognitive and mental status, their habits,

and preferences, through a set of medical devices and wearables, as well as

through face-to-face and remote clinical assessments and fitting/fine-tuning

sessions. Descriptive, AI-based analysis and assessment of the relationships

between heterogeneous data and HL-related parameters will help clinical

researchers to better understand the overall health profiles of HL patients, and

to identify patterns or relations that may be proven essential for future clinical

trials. In addition, the future state and behavioral (e.g., HAids Satisfiability and

HAids usage) of the patients will be predicted with time-dependent machine

learning models to assist the clinical researchers to decide on the nature of

the interventions. Explainable Artificial Intelligence (XAI) techniques will be

leveraged to better understand the factors that play a significant role in the

success of a hearing rehabilitation program, constructing patient profiles. This

paper is a conceptual one aiming to describe the upcoming data collection

process and proposed framework for providing a comprehensive profile for

patients with HL in the context of EU-funded SMART BEAR project. Such

patient profiles can be invaluable in HL treatment as they can help to identify

the characteristics making patients more prone to drop out and stop using

their HAids, using their HAids su�ciently long during the day, and being more

satisfied by their HAids experience. They can also help decrease the number

of needed remote sessions with their Audiologist for counseling, and/or HAids

Frontiers inNeurology 01 frontiersin.org

86

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2022.933940
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2022.933940&domain=pdf&date_stamp=2022-08-26
mailto:iliadoue@med.uoa.gr
mailto:qiqi.su@city.ac.uk
https://doi.org/10.3389/fneur.2022.933940
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2022.933940/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Iliadou et al. 10.3389/fneur.2022.933940

fine tuning, or the number of manual changes of HAids program (as indication

of poor sound quality and bad adaptation of HAids configuration to patients’

real needs and daily challenges), leading to reduced healthcare cost.

KEYWORDS

explainable AI (XAI), Deep Learning, big data, hearing loss, Hearing Aids, prognosis

prediction, Long Short-Term Memory (LSTM), attention mechanism

Introduction

Hearing Loss (HL) is a public health problem that affects one

out of three people over the age of 65, while debilitating HL is

estimated to affect 6% of the population (466 million people)

according to World Health Organization (WHO) statistics1.

As per the same statistics, its annual management cost is

estimated at more than 555 billion Euros (1) for the European

countries and at 750 billion Dollars globally. HL should not

be considered as an isolated health problem. Apart from the

associated financial cost, HL severely affects communication

and is associated with various comorbidities. Multiple studies

have suggested that hearing impairment is associated with

psychological and physical illness, such as cognitive disorders

and dementia. An increase in the hearing threshold of 25

decibels (dB) corresponds to a loss of 7 cognitive years (2),

and is associated with increased anxiety and depression (3), and

even higher mortality rate (4). On the other hand, adults with

hearing impairment tend to isolate themselves by limiting their

participation in social events (5), thereby reducing their quality

of life significantly (6).

Although the only available and validated management

solution that currently exists for HL is the fitting and use of

hearing assistive devices, only one in five people in need of a

Hearing Aid (HAid) will eventually seek, acquire, and continue

to use one efficiently (7, 8). A “HAid experience” refers to

the process of living with a HAid and involves all the real-life

challenges, coping strategies, and facilitations that the uses of

HAid may evoke. Improvements in the HAid experience can

lead to minimization of drop-out risk and enhancement of the

overall quality of life (9).

The key factors in improving the HAid experience include,

but are not limited to, proper fitting, affordability and

accessibility of the follow-up services, and their combination

with thorough and evidence-based personalized counseling

and training on how to use the selected HAid (10). Since

everyday patient needs and HL degree are not static and

might change over time, there are still many factors that

audiologists find challenging to address, including selecting

1 https://www.who.int/news-room/fact-sheets/detail/deafness-and-

hearing-loss

optimal HAid configurations or best counseling approach

according to individual patient profile and lifestyle (7, 11–

13). Dynamic monitoring and collecting information about a

patient’s hearing and cognitive capacity, as well as their ability

to control settings in real time in order to cope in different

sound environments, could be very helpful toward this direction

(14, 15). The development and validation of prediction models

using the collected information and making accurate prognoses

of how each patient’s HAid experience will unfold are of

major priority.

The use of Artificial Intelligence (AI) models in prognosis

studies has gained traction increasingly in recent years due to its

ability to handle large amounts of messy data (16), to learn from

different types of data (17), and to facilitate clinical management

of patients (18). Researchers have incorporated AI models in

prognosis in clinical cancer research, such as breast cancer

with Support Vector Machine (SVM) (19), colorectal cancer

with Long Short-Term Memory (LSTM) (20), and glioblastoma

with Prognosis Enhanced Neural Network (PENN) (21). As

well as the prognosis for adult congenital heart disease with

Convolutional Neural Network (CNN)-LSTM (22), rate of

kidney disease with an ensemble of Logistic Regression, Decision

Tree, Random Forest (RF), and K-Nearest Neighbor (KNN)

(23), and COVID-19 with a segmentation network (24).

The effectiveness of AI models in HL prognosis has also

been investigated by many researchers. Sensorineural Hearing

Loss (SNHL) is the most common form of permanent HL

resulting from the damage to the auditory nerve and/or the

hair cells in the inner ear. Abdollahi et al. (25) constructed

eight Machine Learning (ML) models to predict SNHL after

chemoradiotherapy, including Decision Stump, Hoeffding,

C4.5, Bayesian Network, Naïve, Adaptive Boosting (AdaBoost),

Bootstrap Aggregating, Classification via Regression, and

Logistic Regression (LR). The average predictive power of

all models was found to be more than 70% in terms of

accuracy, precision, and Area Under Curve (AUC). Idiopathic

Sensorineural Hearing Loss (ISSHL) is characterized by an acute

dysfunction of the inner ear. Zhao et al. (26) developed several

ML models for ISSHL prediction, including SVM, Multilayer

Perceptron (MLP), RF, and AdaBoost. A similarly high level

of accuracy is also reported and varies between 78.6 and

80.1%. Bing et al. (27) evaluated several Deep Learning (DL)
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and ML models to predict the dichotomised hearing outcome

of ISSHL in order to identify the best predictive model for

clinical application. Six input feature collections derived from

149 potential predictors have been used with Deep Belief

Network, LR, SVM, and MLP. Best predictive performance was

achieved by Deep Belief Network when evaluated with accuracy,

precision, recall, F-score, Receiver Operating Characteristic

Curve (ROC), and AUC, achieving 77.58% of accuracy and

0.84 of AUC. Ototoxic-induced HL, more specifically, the

ototoxic effects in participants who were exposed to cigarette

smoke and/or pesticides were evaluated by Artificial Neural

Network, KNN, and SVM (28). While all models showed a good

performance during training, KNN achieved the highest training

accuracy with about 90% in two of the five datasets.

Attention-based DL models have also gained popularity in

the medical domain recently. Bahdanau et al. (29) proposed the

first attention mechanism, also known as the Soft Attention,

for a Neural Machine Translation task using LSTM. The

advantage of using attention mechanisms with LSTM is that it

prevents the LSTM from forgetting certain input features when

analyzing long-term dependencies and from putting too much

weight on certain input features. Despite the lack of research

using attention-based LSTM for HL patients specifically, a

similar approach has been adapted for other comorbidities.

Park et al. (30) used a Frequency-aware Attention-based

LSTM (FA-Attn-LSTM) to investigate medical features that

can be considered as critical for predicting the risk of

cardiovascular disease. Wall et al. (31) proposed a framework

for audio classification, specifically for chronic and non-chronic

lung disease and COVID-19 diagnosis, with attention-based

bidirectional LSTM (A-BiLSTM).

AI, particularly DL models, in general are appreciated for

their ability to achieve high prediction accuracy. However,

for sensitive domains, such as health care, accuracy is not

the only determining factor (32). The inherent limitation of

many AI systems is their black box nature, which means that

humans are unable to easily understand the inner workings of

these systems or how they arrive at their conclusions. Thus,

automated decision-making systems that employ AI models

are not widely accepted (32) due to a lack of trust from the

end users. The integration of AI models into medical domains

also faces criticisms where the models may fail to adhere to

high standards of accountability, reliability, and transparency

for medical decisions (33). It also complicates the issue of

accountability in the event of a wrong decision (34).

Explainable AI (XAI) aims to overcome these limitations

by explaining the learned decisions of AI models, thus giving

end-users the ability to trust the models (35) and understanding

why the models made certain decisions (32). Different XAI

methods have been proposed over the years, particularly in the

fields of computer vision and natural language processing. Yet

very few studies have explored the potential applications of XAI

methods to themedical field (34), especially in prognosis studies.

A number of researchers have adapted Local Interpretable

Model-agnostic Explanation (LIME) (36) to explain a CNN-

based diagnostic model, including chronic wound classification

(37), gastral image classification (38), and Alzheimer’s diagnosis

(39). Gu et al. (40) proposed an auxiliary decision system for

breast cancer diagnosis and prediction with Extreme Gradient

Boosting (XGBoost) and SHapley Additive exPlanations (SHAP)

(41). Chakraborty et al. (17) developed a similar framework

that was inspired by Gu et al. (40) using XGBoost and SHAP

for prognosis in breast cancer patients. In the HL domain,

Lenatti et al. (42) applied SHAP to explain the classification

results of RF in predicting whether or not a patient has HL.

In particular, SHAP is used to investigate the local predictions

for each of the two output classes in four scenarios: true

positive, true negative, false positive, and false negative. They

have found that Age is the most important feature that impacts

the classifier. In particular, values of age equal to 74 contribute

positively to the model correctly predicting participants with

HL (true positive), whereas values of age equal to 25 contribute

negatively to the model correctly predicting participants without

HL (true negative).

To the best of our knowledge, this is the first conceptual

paper on a framework that leverages AI and XAI for prognosis

forHL benefit and usage.ML techniques have been implemented

previously in studies focusing on the prognosis of SNHL, ISSHL,

and HL induced by ototoxic drugs and other substances (25–

28), and modeling has also been attempted with synthetic data

in more progressive types of HL, such as age-related or noise-

induced HL (43). Nevertheless, we are unaware of any such

attempts with real multi-source big data to date.

In the EU-funded SMARTBEAR project2, we are developing

and validating a prognosis framework to address this scientific

gap for HL patients. AI and XAI techniques will help identify

and explain particular trends and factors in the large amount

of heterogeneous data collected that correlate with the success

or failure of hearing rehabilitation. In particular, the proposed

framework composes the predictive power of LSTM with

Attention Mechanism with the explanatory abilities of SHAP,

and it will be used to answer several questions to provide a

comprehensive profiling of HL patients.

The purpose of this article is to describe the planned data

collection process, as well as the upcoming analyses to identify

and explain particular trends and factors that correlate with the

success or failure of hearing rehabilitation: drop-out of HAids

usage, more hours of HAids usage and higher benefit from it,

and less frequent need for manual adjustments or fine tuning

of the HAids. As this is a conceptual paper, data collection is

expected to begin in autumn 2022, followed by the experiments

of the proposed methods.

2 https://www.smart-bear.eu/
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FIGURE 1

Participants’ flow of action.

Materials and methods

Participants

Five thousand elderly participants from six different EU

countries will be included in the study. In particular, these

six countries are divided into five study groups and 1,000

participants are recruited from each, namely France, Greece,

Italy, Romania, and Portugal-Spain. A smaller-scale pilot study

with 100 participants is already underway in the island of

Madeira. The large-scale project is scheduled to begin in autumn

2022 and run for 24 months. Subjects will be included in the

study based on the following eligibility criteria:

1. Age and birth gender: males and females, 67–80 years old.

2. Medical history: at least 2 of the following conditions:

cardiovascular diseases (CVDs: hypertension, coronary

disease, heart failure), hearing loss, balance disorders, mild

depression, mild cognitive impairment, frailty.

3. Cognitive function according to MoCA score: participants

with 26–30/30 (no cognitive impairment), and 18–26/30

(mild cognitive impairment) will be included (44). Score

lower than 18/30 corresponds to mild dementia which is not

addressed in SMART BEAR so those participants scoring <

18/30 will be excluded.

4. Excellent toModerate level of mobility, which corresponds to

be able to perform simple tasks such as walking and jumping

independently, with or without the help of a mechanical

equipment, for example, a cane.

5. Ability to read.

6. Ability to use the basic functions of a smartphone (answer,

call, check a notification, open an application).

Participants who meet the aforementioned criteria but

present a severe or life-threatening condition, such as severe

depression or high risk of heart failure, will be excluded from

the study. All participants willing to provide their informed

consent and voluntarily participate in the study will undergo an

initial clinical assessment as shown in Figure 1. According to the

results of this screening assessment, a specific set of devices and

clinical procedures will be allocated to each participant. These

devices are being obtained through joint procurement for all

six countries and will be the same in terms of type, model, and

configuration for all participants.

Participants with hearing loss

We intend to recruit one thousand people with HL to a

degree that requires amplification. Participants with a moderate

to severe unilateral or bilateral HL, as indicated by their pure

tone audiogram, are considered eligible for HAid fitting if their

HL negatively impacts their communication ability, cannot be

treated surgically, or can be treated but the surgery is contra-

indicated for the particular participant. Participants will only be

excluded from Fitting if they do not wish to be fitted with aHAid,

or if they have profound HL (Pure tone average 0.5–4 kHz >

80 dB), and have not received any benefit from recent previous

HAid fitting and use.

Audiological assessment

The same audiometric assessment (Figure 2) will be

conducted on all participants with suspected or diagnosed

HL by experienced personnel who have undergone additional

internal training on every procedure of the clinical protocol

by the clinical coordination team of the SMART BEAR. Joint

procurement will ensure that the equipment (including HAids)

and relevant software will be the same for all countries.

Following the audiometric assessment, all participants will

be fitted with HAids according to the same fitting protocol.

The exact fitting protocol will be defined once the specific

model and manufacturer of the HAids is selected during

the international procurement procedure as discussed above.
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FIGURE 2

Audiological assessment flow of action.

HAids configuration will then be fine-tuned in accordance

with the participant’s experience level, listening preferences,

and language preferences. There will be a predefined HAids

program for all participants, other programs may be added

based on the judgment of the audiologists and the needs of the

participants. Pure tone audiometry will follow the British Society

of Audiology3 guidelines.

In accordance with the SMART BEAR fitting protocol,

participants will be monitored for 12 months after they have

been fitted with either one or two HAids (same manufacturer,

same model). As shown in Figure 2, participants will also

have continuous access to remote and face-to-face fine-tuning

services provided by the SMART BEAR audiologists. Through

the SMART BEAR clinician’s dashboard, the audiologists will

have access to participants’ data and HAids log throughout

this period.

Source of data

SMART BEAR is a large-scale multi-centric clinical study

that aims to integrate state-of-the-art technology into everyday

life of senior citizens with specific comorbidities, composing off-

the-shelf and user-friendly devices onto an innovative platform.

There are three subsystems in the SMART BEAR architecture

as shown in Figure 3, namely the mobile phone application,

the SMART BEAR HomeHub, and the SMART BEAR Cloud

3 https://www.thebsa.org.uk/wp-content/uploads/2018/11/OD104-

32-Recommended-Procedure-Pure-Tone-Audiometry-August-2018-

FINAL.pdf

(SB@Cloud). Data are collected (i) during participants’ clinical

assessments via the clinician dashboard (e.g., anamnestic

history, physiological and audiometric measurements), (ii) from

all linked portable devices via the mobile phone application

(e.g., HAid program, heart rate, and steps measurement), and

(iii) through the mobile phone application itself (e.g., through

questionnaires about their mood, diet, medication adherence

and sleep quality). The HomeHub accumulates data from

different home-based device sensors, such as weight scales

and movement sensors. Finally, SB@Cloud securely stores and

analyses the collected data through model and data-driven big

data analytics during a 12-month period for each participant.

A total of 24 variable and covariates are collected

through SMART BEAR HAids, including timestamp

of the measurement, environmental noise, and manual

program adjustments. Supplementary Table 1 provides a

detailed description of each variable and covariate. Several

other covariates are also being considered and are shown

in Supplementary Table 2. The additional 241 covariates

are collected in order to monitor the participants’ other

comorbidities based on their demographics, biological,

environmental, and behavioral characteristics. There is a

need to consider the impact of these additional covariates

on the outcomes since they have been previously shown to

affect to HL and HAid experiences, such as age, occupation,

education, family history, mood disorders, cognitive function,

diet, glucose levels and medication (3, 45–47). They are also

currently being investigated for their correlation to hearing, as

in the case of cardiovascular diseases, poorer mobility, frailty,

and balance disorders (46, 48, 49). Furthermore, the medical

and audiological assessment will also be supplemented by
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FIGURE 3

The SMART BEAR architecture.

additional sensor data as listed in Supplementary Table 3, such

as blood pressure measured by the blood pressure tracker and

physical activity measured by the smart watch. These variables

are collected as a part of SMART BEAR’s commitment to

collect a wide range of data which will be explored as a part of

data-driven analysis.

Sample size

SMART BEAR is aiming at collecting and analyzing

big data—integrating information from many thousands of

participants and different data sources. In Big Data, common

sample size calculations cannot apply (50). Big data studies need

to consider the marginal costs vs. the marginal value of possible

sample sizes and include asmany participants as possible (51). In

SMART BEAR, the maximum number of participants that can

be recruited based on available resources and time is 5,000. In

accordance with the requirements of the study, this number is

considered sufficient for ensuring the impact analysis obtained

at the end of the project to be significant. In the case of HL,

200 participants with HL will be recruited from each of the

five study groups, creating a sample of 1,000 participants with

HL. These participants will then be fitted with either one or

two HAids depending on whether one or both ears require

amplification. Therefore, the total number of HAids to be used

in the planned data collection is estimated between 1,000 and

2,000. The SMART BEAR platform is designed to facilitate the

collection of data from a maximum number of 2,000 HAids, in

case all participants suffer from bilateral HL. Data collected from

up to 2,000 HAids are also considered to be sufficient based on

previous experience (50).

Analysis methods

The questions that will be addressed with the proposed

framework are based on future events. The prediction model

will be used, for example, to predict future HAid usage or

future drop-out rate. As a result, the model is fundamentally

constructed with participants’ historical medical history, HAid

usage and habit, as well as the outcomes of medical and

audiological assessments. As such, the collected SMART BEAR
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data are sequential in nature and can be viewed as time

series data.

The proposed framework uses an attention-based LSTM

(attn-LSTM) as the prediction model and then applies SHAP

to interpret the model predictions. More specifically, SHAP

is employed to identify those characteristics that influence

the model predictions. To enable continuous learning and

provision of personalized solutions, the pipeline for the

proposed framework is to pre-process the data, hyper-tune the

model, train/test the model with the optimal set of hyper-

parameters selected from hyper-tuning, and then apply the XAI

method. The performance of the prediction models is evaluated

using different set of evaluation metrics for classification and

regression problems.

Pre-processing the data

The temporal element of the collected data is determined

by the Time variable, which records the date and time of the

collected variables every 60 s when the SMART BEAR HAids are

active in use. In SMART BEAR, clinicians also have the option of

choosing how the data are aggregated for different analysis. Due

to this, the data frequency is transformed first in order to allow

hourly, daily, weekly, monthly, or yearly predictions, depending

on the choice of clinician.

Transforming the distribution of the features allows the

ML and DL algorithms to converge faster and minimize the

weight of any variable with extreme values. Standardization

and normalization are two pre-processing techniques that are

particularly important for training an LSTM algorithm, since

standardization on the data centers the noise from trend

reverse signals and prevents activation functions to saturate (52),

whereas normalization prevents the weights of the model being

skewed (53).

Ordinal variables will be transformed with ordinal encoding

and nominal variables will be transformed with one-hot

encoding in order to convert these variables into either binary or

multiple values with a numerical form. If the expected outcome

variable is categorical then these will be treated label encoding.

Another important pre-processing step is to handle missing

data. Several studies regarding data completeness in medical

data were reviewed by Chan et al. (54) and found that the

percentage of missing values of a variable, such as clinical status,

laboratory results, and clinical actions or procedures, can reach

as high as 98%. There is a possibility that this phenomenon

might also be observed with data collected through SMART

BEAR HAids due to connectivity issue and lack of participant

adherence. As a result, simply deleting rows with missing values

is not feasible for treating missing data, and imputation and

model-based approaches should be used instead. There are

several types of both imputation and model-based methods.

For imputation methods, there are mean, median, zero, linear

interpolation, forward, and backward, whereas for model-based

methods, there are linear regression, KNN, and Multiple-value

Imputation. A generic method was suggested by Salgado et al.

(55) for the purpose of evaluating the performance of various

methods for handling missing data. To start with, use a sample

of the dataset that contains no missing data as ground truth,

and then introduce the proportions of missing data at random

in increments of say 5%. In the next step, compute the sum

of squared errors (SSE) between the ground truth and the

reconstructed data, for each method and for each proportion of

missing data. Repeat these steps for each method and calculate

the average SSE. Lastly, select the method that performed best at

the level of missing data in the given dataset.

In addition, there is the question of how to deal

with outliers—“samples that are exceptionally far from the

mainstream data” (56). Even with a thorough understanding of

the data, outliers can still be difficult to detect (56); however,

statistical methods can assist in the identification of them.

As standard deviation method is more suited for data with a

normal distribution, therefore, it is used after the data have been

standardized and normalized. Given the mean and standard

deviation of the dataset, z-score can be computed for every ξi,

which is the number of standard deviations away from themean,

as a way to identify outliers (57). Data points can be declared

as outliers if their z-score standard deviation is greater than

a predefined threshold. The threshold used in this analysis is

three, as it is common practice to identify outliers in data with

Gaussian or Gaussian-like distributions.

Lastly, it is important to determine whether there is

multicollinearity among the variables. Multicollinearity refers

to when there is a lack of orthogonality among two or more

variables, and it often creates problems in a regression model

(58) because the model results tend to fluctuate significantly

when changes are made to independent variables that are highly

correlated. In terms of hearing data, multicollinearity is often

met among several variables. A typical example is the pure tone

thresholds across different frequencies. Pure tone thresholds

are measured in frequency bands with each representing a

cochlear region, and the neighboring frequencies tend to be

highly correlated (59). Moreover, pure tone audiogram also

shows a high correlation among the sensitivity of the two

ears for each participant when symmetric hearing is present

(59). A common method of checking whether the data are

multicollinear is to use the Variance Inflation Method (VIF)

for each independent variable. In general, a VIF value of 10

indicates weak multicollinearity, and a variable with a higher

value is typically considered to have a high correlation with

another independent variable (58). A simple way to eliminate

highmulticollinearity variables is to remove them. However, this

may not be feasible in practice. As a result, alternative methods,

such as transforming the variables or performing Principal

Component Analysis, should be considered instead, depending

on the data and the expected outcome. Finally, data will be split

into training, validation, and testing sets.
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In this conceptual paper, the pre-processing steps discussed

here are generic. While these techniques should be considered

regardless of the questions to be answered, specific pre-

processing methods, such as handling missing data and

multicollinearity variables, will only become apparent following

the data collection.

Hyper-tuning the model

The model is validated on the validation set during hyper-

tuning in order to determine the set of optimal hyper-

parameters. The hyper-tuning is performed using the Keras

Tuner4 library to determine the set of optimal hyper-parameters

for model trained with TensorFlow5. There are many hyper-

parameters that need to be determined when training an LSTM

model. For this analysis, the number of hidden states in each

layer, choice of activation function, learning rate, dropout rate,

and batch size are hyper-tuned.

It is imperative to adjust the number of hidden units

according to the complexity of the data and select an activation

function that is capable of learning the complex relationship in

the data. Learning rate is also important because if it is too fast,

the model converges too quickly, while if it is too slow, it reaches

some local minima. Dropout is a regularization technique while

training a DL model, aiming at improving generalization and

reducing overfitting. Last but not least, the batch size is the

number of samples of training data that will be propagated

through the model and should be adjusted accordingly as it

impacts the stability of the learning process. Furthermore, the

model will also be trained with early stopping in order to prevent

overfitting. Early stopping is implemented through a callback

function, which monitors the progress of the training, and if

no improvements are made during the course of training, the

training is terminated early.

Proposed model architecture

The proposed prediction model, attn-LSTM, will be trained

on the training set with the set of optimal hyper-parameters

from hyper-tuning, and the results are reported by predicting

the unseen testing set. Table 1 shows the proposed model

architecture of attn-LSTM and hyper-parameters setting for

each layer. It should note that the choice of learning rate and

batch size is hyper-tuned for the entire model and not for each

individual layer.

LSTM (60) is a refined variant of the Recurrent Neural

Network that is designed with a feedback architecture such that

the current time step prediction is influenced by the network

activation from the previous time steps as inputs. LSTM is one

of the widely used DL technique for analyzing time series data

4 https://keras.io/keras_tuner/

5 https://www.tensorflow.org/

TABLE 1 Proposed model architecture.

Layer no. Layer

description

Hyper-parameters setting

1 Input layer N/A

2 LSTM layer Hidden units are hyper-tuned between

32 and 512. Activation function is

hyper-tuned between Sigmoid and Tanh.

3 Self-attention

layer

N/A

4 Dropout layer Dropout rate is hyper-tuned between

0.001 and 0.1.

5 Flatten layer N/A

6 Output (dense)

layer

Regression problems: hidden unit is 1,

and activation function is hyper-tuned

between ReLu, Sigmoid, and None.

Binary classification problem: hidden

unit is 2, and activation function is

Softmax and Sigmoid.

and is capable of learning long-term time series data as well

as short-term time series data (61). The hidden layer inside

an LSTM network contains recurrently connected special units

called memory cells and their corresponding gate units: input

gate, forget gate, and output gate (60) as shown in Figure 4.

The input gate is responsible for preventing the memory stored

in a memory cell from perturbations by irrelevant inputs.

Similarly, the output gate is there so other units are protected

from perturbations by currently irrelevant stored memory. To

optimize the performance of the LSTM, information that is no

longer required by the LSTM is removed in the mechanism of

the forget gate.

At each timestep t, the cell takes an input vector, xt , and

produces an output vector, ht , which also refers to the hidden

state of the LSTM. Firstly, the cell needs to determine whether

the information from the previous timestep, t − 1, should be

kept or not with the forget gate, ft . The forget gate takes the

input vector at current timestep, xt , and the hidden state from

the previous timestep, ht∗−1, and produces an output between

0 and 1 where 0 represents “completely forget this information”

and 1 represents “completely keep this information”. The forget

gate, ft , is calculated as follows:

ft = σ (wx xt + wh ht−1 + b) ,

where σ is the sigmoid function,wx, wh are the weighting factor,

and b is the bias vector. More specifically, the sigmoid function

is calculated as:

σ (x) =
1

1+ e−x
.
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FIGURE 4

An illustration of the LSTM network.

The next step is to quantify the importance of the new

information with the input gate, it :

it = σ (wx xt + wh ht−1 + b),

which is also a function of input vector at current timestep, xt ,

and the hidden state from the previous timestep, ht−1. Then,

a new vector named st is created which decides if the new

information should be stored in the cell state or not. This is

done by applying a hyperbolic tangent function, tanh, to the

input vector at current timestep, xt , and the hidden state from

the previous timestep, ht−1. It is calculated as:

st = tanh(wx xt + wh ht−1 + b) ,

and the value of new information is transformed to a value

between−1 and 1, where−1 means the new information is

subtracted from the cell state and 1means the new information is

added to the cell state. The current cell state, ct , is finally updated

by taking the previous cell state, ct−1, the forget gate, ft , the input

gate, it , and st into consideration by:

ct = ft ⊙ ct−1 + it ⊙ st ,

where ⊙ is the element-wise product. Then, the output gate,

ot , determines what information from the cell state is going

to be the output. The output gate is also a function of input

vector at current timestep, xt , and the hidden state from the

previous timestep, ht−1, and outputs a value between 0 and 1.

It is calculated as follows:

ot = σ (wx xt + wh ht−1 + b) .

Finally, the hidden state, ht , at timestep t is updated with the

current cell state, ct , and the output gate, ot , by:

ht = tanh(ct)⊙ ot .

The use of attention-based LSTM was initially designed for

natural language processing tasks and has been extended to

other areas such as computer vision and time series prediction.

The attention mechanism is also inspired by the human

biological system, such that humans do not process large

amounts of data all at once, but instead selectively focus on

certain distinct parts of information (62). Moreover, integrating

an attention mechanism into an LSTM model architecture may

also enhance the interpretability of the model (63), since the

attention mechanism can be used to demonstrate which features

are important for predicting a particular outcome. The specific

attention mechanism adopted in this framework is the Self-

attention similar to the one proposed by Vaswani et al. (64),

where the mechanism is relating different positions of a single

sequence in order to gain a representation of the sequence.

Vaswani et al. (64) introduced a generalized definition

for attention functions in which the inputs of the function

consist of three vectors: queries (q), keys (k), and values

(v). In practice, the attention function is computed on a

set of queries simultaneously and packed into the matrix

Q, and similarly the keys and values are packed into the

matrix K and V, respectively. The concepts of Q, K, and

V were first introduced in the context of NLP, specifically

with Encoder-Decoder models. Taking the task of machine

translation as an example, the query is derived from the Decoder

layers reading the current translated text, whereas the key

and value are derived from the Encoder layers reading the

original sentence.

However, Self-attention is a special case of the attention

mechanism where all of the queries, keys, and values come

from the same place, such that Q = K = V (64). The

mechanism queries only the inputs to obtain the self-attention,

and from the self-attention a new representation of the inputs
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can be constructed. In this framework, the inputs of the attention

function are the sequence of hidden state vectors for all timesteps

produced by LSTM,H =
(

h1, h2, . . . , hn
)

, therefore,H = Q =

K = V .

The next step is to calculate a compatibility score for each

hidden state vector in the LSTM. More specifically, it involves

scoring the compatibility of each hidden state vector in H against

the hidden state vector for which the self-attention is calculated.

The specific compatibility score used in this framework is similar

to the proposed by Vaswani et al. (64) and calculated as follows6:

Compatibility score =
HH⊤

√

dH
,

where dH is the dimension of the sequence of hidden state

vectors and it is a dot-product-based compatibility score. For

example, the compatibility score of the first hidden state vector,

h1, is calculated by scoring each hidden state vector, h2, . . . , hn,

against h1, with h1 · h⊤1 /

√

dH , h1 · h⊤2 /

√

dH , . . . , h1 ·

h⊤n /

√

dH . The other commonly used compatibility score is the

additive-based one, where the compatibility score is computed

using a single hidden layer feed-forward network. Dot-product-

based compatibility scores can be space-efficient andmuch faster

in practice when compared to additive-based compatibility

scores (64).

Each compatibility score for each hidden state vector

is then sent through to the Softmax function in order to

normalize the scores so that all scores are positive and sum

to 1. Finally, the output of the self-attention function is

calculated as a weighted sum of the hidden state vectors and

the compatibility score. The matrix of the output is calculated

as follows7:

Attention (H) = softmax

(

HH⊤

√

dH

)

H.

Evaluating the model performance

The results of the trained attn-LSTM are reported

by predicting the unseen testing set and evaluated using

different sets of metrics for classification and regression

problems. For classification problems, the evaluation

metrics are accuracy, precision, recall, F1 score, and AUC.

Accuracy, precision, and recall can be derived from a

confusion matrix, and F1 score is the harmonic mean

of precision and recall. Each of the metric is calculated

6 The original notation for the generalized compatibility score in

Vaswani et al. (64) is QK⊤

√
dk
.

7 The original notation for the generalized output of the attention

function in Vaswani et al. (64) is Attention (Q, K, V) = softmax

(

QK⊤

√
dk

)

V .

as follows:

Accuracy =
TP + TN

TP+ FP + TN + FN
,

Precision =
TP

TP+ FP
,

Recall =
TP

TP+ FN
,

F1 score = 2 ∗
Precision ∗Recall

Precision + Recall
.

Finally, AUCmeasures the area under the ROC curve, which

is a graphical representation of how well the model performed

and shows the relationship between True Positive Rate and False

Positive Rate.

For regression problems, four standard error estimators

are used, namely Symmetric Mean Absolute Percentage Error

(sMAPE), Mean Absolute Scaled Error (MASE), Mean Absolute

Percentage Error (MAPE), and Weighted Average Percentage

Error (WAPE). The error estimators are calculated as follows:

sMAPE =
200

N

N
∑

t=1

∣

∣yi − ỹi
∣

∣

∣

∣yi
∣

∣+
∣

∣ỹi
∣

∣

,

MASE =
1

N

N
∑

t=1

∣

∣yi − ỹi
∣

∣

1
t+N−1

∑t+N
j=2

∣

∣yj − yj−1

∣

∣

,

MAPE =
1

N

N
∑

t=1

∣

∣yi − ỹi
∣

∣

yi
,

WAPE =

∑N
i=1

∣

∣yi − ỹi
∣

∣

∑N
i=1

∣

∣yi
∣

∣

,

where yi is the true value, ỹi is the predicted value, and N is the

number of data points.

Since sMAPE,MASE, andMAPE are percentage-based error

estimators, they are scaled-independent so that they can also

be used for comparing prediction performance across different

datasets. In addition, all error estimators are symmetric, which

means that both positive and negative prediction errors are

penalized equally. However, MAPE has the disadvantage that the

errors tend to blow-up when the variable values are low, causing

the results to be misleading. Thus, WAPE is also applied here

since the errors are weighted by the total values.

Explaining the model

SHAP (41), more specifically, Kernel SHAP, is a local, post-

hoc, and model-agnostic XAI method that can be used for both

classification and regression problems. Post-hoc interpretation

means that the interpretability is created after the model has

been constructed (32) and aims to provide an explanation

for the black-box models (65). Another method is ante-

hoc, in which the decision-making process or the basis of a

technique of a model can be understood by humans without

additional information (65). Some of the ante-hoc methods
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include LR, Decision Tree, and KNN. Both ante-hoc and post-

hocmethods can be further divided into two approaches,Model

(Global) Explanation and Instance (Local) Explanation. The

Local Explanation approach explains only the model prediction

for the single data instance, whereas the Global Explanation

approach explains the inner workings of the entire model

trained on a dataset. Model-agnostic is a subcategory of post-

hoc methods, such that it can be applied to a variety of models,

whereas model-specific can only be applied to one specific type

of model.

SHAP uses the Shapley value from Game Theory to assign

importance to each feature. In effect, the feature contributions

(Shapley values) are calculated by the marginal contribution of

the feature over every feature so that how the model behaves in

its absence is analyzed, and then the prediction of the model can

be written as the sum of bias and single feature contributions

(41). According to Lundberg et al. (79), SHAP belongs to the

family ofAdditive Feature AttributionMethods,meaning that the

Shapley values are applied to binarised features, where a value

of 0 corresponds to an unknown feature value, and a value of 1

corresponds to a feature being observed. The explanation model

can be written mathematically as:

g
(

z
′
)

= φ0 +

M
∑

i=1

φiz
′

i ,

where g is the explanation model of the prediction model, z
′

∈

{0, 1}M where z′is the binarised feature and M is the number

of binarised input features, φ0 is the model output without

binarised inputs, and φi ∈ R are the Shapley values (41). When

compared with the other state-of-the-art explanation approach,

LIME (36), SHAP satisfies three crucial properties that LIME

does not: Local Accuracy, Missingness, and Consistency (41).

Local accuracy requires consistency between the outputs of

the explanation model and the prediction model. Missingness

requires features missing in the original input to have no impact

on the output. Lastly, consistency ensures that the impact of a

feature does not decrease as it increases or remains the same.

Local accuracy is particularly important for providing

explanations, as it ensures that the explanation model is less

susceptible to adversarial attacks (66). Adversarial attacks refer

to when the outputs of a classifier can be manipulated by a

small perturbation of an input to conceal the biases of a system.

In the study of Slack et al. (67), the authors attempted to fool

both LIME and SHAP in order to determine if the feature

contributions can be manipulated through the use of biased

classifiers. It was found that the SHAP is less vulnerable to

adversarial attacks than LIME due its local accuracy property.

It is for these reasons that SHAP was chosen over LIME in

our framework.

SHAP is a local XAI method that has been used to explain

local predictions in many studies. For instance, Lenatti et al.

(42) investigated the contribution of specific feature values to an

individual prediction based on SHAP values. It is nevertheless

also possible to obtain a global SHAP explanation by calculating

the mean absolute SHAP values for each feature across the

datasets allowing the global importance of each feature and

the relative impact of all features over the entire dataset to

be determined.

The results of SHAP will therefore be presented in the form

of a visualization, in particular, the summary plots8 will be used

where it combines the feature importance with feature effects.

The x-axis of the plots represents the SHAP value, or the impact

on the model prediction, of each feature, the y-axis lists all the

features and ordered according to their importance, and the

color depicts the value of the feature from low to high.

In addition to the summary plots proposed to be used here,

SHAP values can be analyzed in a variety of ways, including a

dependence plot to demonstrate the global interaction effects

between features. SHAP values may also be useful for assessing

the contribution of features to an incorrect prediction, as

demonstrated in the work of Lenatti et al. (42).

Expected outcome and predictors

The objectives of the SMART BEAR project in relations

to HL are to answer several questions using the collected

SMART BEAR data and the proposed predictive framework that

leverages XAI techniques in order to develop a comprehensive

profiling of patients with HL. Table 2 summarizes the expected

outcome and its associated predictors (characteristics) for each

question, and how this framework is applied to each question is

discussed below.

Asmentioned previously, this is a conceptual paper meaning

that the precise details of the pre-processing techniques, optimal

hyper-parameters for each question, and the prediction and

explanation results will only be available once the study is

commenced in autumn 2022.

Q1—Identification of those characteristics that
make patients more prone to drop-out and
stop using their HAids

The optimal drop-out rate should be less than the general

population with HL (7), therefore, the expected outcome for

Q1 is to be <45–50% for aged populations. Clinicians have

the option of choosing how the data are aggregated in order

to determine what the drop-out rate will be in the future in

days, weeks, months, or years. In cases where a weekly analysis

is required, for example, the average of HL chronicity, degree

of HL, and manual adjustments of volume/program, and the

sum of time of HAids usage are calculated for each week to

8 https://shap-lrjball.readthedocs.io/en/latest/generated/shap.

summary_plot.html
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TABLE 2 A description of the predictive models, their expected outcome, and associated predictors.

Prediction

models (PM)

Predictors Outcome

variables

Expected

outcome

Value type

Q1 Age, biological gender, hearing loss type, hearing loss chronicity,

degree of hearing loss, manual adjustments of volume/program,

overall HAids satisfaction, time, time of hearing aids usage

Dropout <45–50% Y/N

Q2 Age, biological gender, hearing loss type, hearing loss chronicity,

degree of hearing loss, time

Time of HAid

usage

Adults should use their

HAids >10 h a day.

Minutes/day

Q3 Age, biological gender, hearing loss type, hearing loss chronicity,

degree of hearing loss, number of visits, manual adjustments of

volume/program, time

GHABP score Described in detail

below.

(Integer)

Q4 Age, biological gender, hearing loss type, hearing loss chronicity,

degree of hearing loss, overall HAids satisfaction, manual adjustments

of volume/program, time, time of hearing aids usage

Number of

face-to-face

sessions

<4 visits to the

Audiologist’s in the first

6 months.

(Integer)

Q5 Age, biological gender, hearing loss type, hearing loss chronicity,

degree of hearing loss, overall HAids satisfaction, manual adjustments

of volume/program, time, time of hearing aids usage

Number of

remote sessions

<4 visits to the

Audiologist’s in the first

6 months.

(Integer)

Q6 Age, biological gender, hearing loss type, hearing loss chronicity,

degree of hearing loss, noise exposure, overall HAids satisfaction, time,

time of hearing aids usage

Number of

manual changes

per day

<3 per day. (Integer)

convert the data frequency. Apart from handling missing data,

outliers, and multicollinearity among the variables, continuous

variables such as age, degree of HL, and time of HAids usage

are standardized and normalized, nominal variables such as

gender are one-hot encoded, and ordinal variables such as HL

chronicity, HL type, andmanual adjustment of volume/program

are ordinal encoded. In addition, the outcome variable is also

treated with label encoding, with 1 representing Yes and 0

representing No, for making a binary classification.

Attn-LSTM is then employed to predict whether or not a

participant will stop using their HAids in the future and the

identification of characteristics that have an impact on this

prediction is carried out through SHAP. Finally, the predicted

future number of drop-out participants is compared to the

general population with HL in order to compute the drop-

out rate.

Q2—Identification of those characteristics that
make patients more prone to use their HAids
su�ciently long during the day

It is recommended that adults should use their HAids for

more than 10 hours a day (76). Due to this, data are aggregated

to have a daily frequency by default. This is done by taking the

average of HL chronicity, degree of HL, manual adjustments

of volume/program, and overall HAids satisfaction for each

day, and the sum of time of HAids usage for each day in

minutes. It should note that, although the data are transformed

to have a daily frequency by default, clinicians will still have the

option to choose to analyse monthly HAid usage, for example, if

required. Similarly to Q1, continuous variables are standardized

and normalized, while nominal and ordinal variables are one-

hot and ordinal encoded, respectively. Missing data, outliers,

and multicollinearity will also be treated with appropriate pre-

processing techniques.

As a regression problem, attn-LSTM is used to predict

participants’ future HAids usage. SHAP is then used to interpret

the model prediction to identify which characteristics influence

participants to use their HAids more often.

Q3—Identification of those factors augmenting
the benefit of patients from using their HAid

The Glasgow Hearing-Aid Benefit Profile (GHABP)9 is

a questionnaire that was designed to assess the operational

management forHAid benefit, both at the systematic and clinical

levels (15). The questionnaire will assess 4 situations with 6

questions, which are scored with 1 being the best score and

5 being the worst score. Whitmer et al. (77) recruited 1,574

participants and were asked to rate their hearing disability,

handicap, HAid use, HAid benefit, HAid satisfaction, and

residual (aided) disability with the GHABP questionnaire.

The participants were divided into none, unilateral, and

bilateral aided users and assessed in the four situations: quiet

conversations, TV listening, noisy conversations, and group

9 https://www.hey.nhs.uk/wp/wp-content/uploads/2020/09/

HEY1167-2020-GHABP.pdf
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conversations. Their findings regarding the normative GHABP

score for HAid benefit will be used as the expected outcome

for Q3.

Q3 is also a regression problem as the future GHABP

score is predicted with attn-LSTM, and the reasons for this

prediction are provided by SHAP. When clinicians require

a monthly analysis, for example, the average of the GHABP

score, HL chronicity, degree of HL, number of visits, and

manual adjustments of volume/program, and the sum of time

of HAids usage are calculated for each month to convert the

data frequency. For Q3, pre-processing steps are similar to those

used for previous questions, where continuous variables such as

age, degree of HL, and time of HAids usage are standardized

and normalized, nominal variable such as gender are one-

hot encoded, and ordinal variables such as GHABP score, HL

chronicity, HL type, number of visits, and manual adjustments

of volume/program are ordinal encoded.

Q4—Identification of those factors decreasing
the number of needed face-to-face sessions
with their audiologist for counseling and/or
HAid fine tuning, as an indicator of better
self-management and optimal initial HAid
configuration

The number of face-to-face with the audiologists is

suggested to be <4 times in the first 6 months (78).

Following this, the data are transformed to have a monthly

frequency by default, with the options of analyzing the data

at other frequencies still available. Therefore, the average of

HL chronicity, degree of HL, number of visits, overall HAids

satisfaction, and manual adjustments of volume/program, and

the sum of time of HAids usage are calculated for each month.

Nominal variables such as gender are one-hot encoded, ordinal

variables such as overall HAids satisfaction, HL chronicity,

HL type, number of visits, and manual adjustments of

volume/program are ordinal encoded, and continuous variables

such as age, degree of HL, and time of HAids usage are

standardized and normalized.

As a regression problem, the future number of face-to-face

sessions is predicted using attn-LSTM, and the characteristics

affecting the prediction are investigated with SHAP.

Q5—Identification of those factors decreasing
the number of needed remote sessions with
their audiologist for counseling and/or HAid
fine tuning, as an indicator of better
self-management and optimal initial HAid
configuration

Similar with Q4, the suggested number of remote sessions

with the audiologists is also to be <4 times in the first 6

months (Tecca, 2018). Therefore, the default frequency is also

set to be monthly, and attn-LSTM is used to predict the

number of remote sessions with the audiologists in future

months. SHAP is then used to identify the characteristics

that influence participants to request fewer sessions with

their audiologist. The pre-processing steps are also in line

with Q4.

Q6—Identification of those factors decreasing
the number of manual changes of HAid
program, as indication of poor sound quality
and bad adaptation of hearing aid configuration
to patients’ real needs and daily challenges

Although there is no precise definition for the optimal

number of manual adjustments of the HAids, clinical experience

has shown that fewer than three manual changes per day is

considered as acceptable. By default, data are transformed to

have a daily frequency in order to predict future daily manual

adjustments with attn-LSTM, with SHAP providing information

on the characteristics that impact the prediction.

It is also possible for clinicians to select a different

data frequency for this analysis if required. The average

of HL chronicity, degree of HL, number of visits, overall

HAids satisfaction, and manual adjustments of volume

and program, and the sum of time of HAids usage are

calculated for each day to convert the data frequency. Pre-

processing steps also consists of handling missing data,

outliers, multicollinearity. As well as transforming continuous

variables with standardization and normalization, ordinal

variables with ordinal encoding, and nominal variables with

one-hot encoding.

As a final point, SHAP values are analyzed with the same

principle for all questions. The y-axis on the SHAP summary

plot would indicate the most important feature on average for

attn-LSTM to predict a certain outcome. The x-axis, along with

the color, would show the impact of each feature value on

the model prediction. For example, the SHAP values for Q1

may indicate that perhaps Age is the most important feature

on average for participants to stop using their HAids. More

specifically, younger participants might be less likely to drop out,

whereas perhaps participants with a lower HAids usage might be

more likely to stop using their HAids. As for Q3, SHAP result

might show that perhaps HL type influences future GHABP

score the most on average, where participants with a mixed type

of HL might be more likely to benefit from their HAids.

Results—Discussion

This paper is a conceptual paper that synthesizes previous

work on prediction models in healthcare and audiology (20,

27, 30, 31), and further describes the design and methods of

the Big Data research project SMART BEAR with which we
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are aiming to fill the identified knowledge gaps. To the best

of our knowledge, SMART BEAR represents the first research

initiative in hearing research aimed at integrating such large

and heterogeneous datasets and analyzing them using AI and

XAI methods.

According to Mellor et al. (12), many factors beyond the

pure tone audiogram should be monitored and dynamically

adapted in order to achieve optimal hearing rehabilitation.

Prognostic prediction models using audiometric and other

lifestyle or medical data may be helpful toward achieving this

goal. Education level (68), cognitive performance (69), and

performance on speech recognition tests (70) have previously

been suggested as potential prognostic factors. Following this,

a wide range of data is collected in SMART BEAR as

shown in Supplementary materials 2, 3, such as demographics,

audiometric data, cognitive status, mental status, habits, and

biological gender. Taking advantage of the ability of modern

HAids to record their dynamic operation will also enable a

relatively low-cost collection of data, such as hours of HAid

use, from a large population, while clinical assessment will

provide insight into the clinical context of the collected data.

Furthermore, instead of assessing patients in a laboratory

environment, SMART BEAR is collecting data both at the office

and in real life through clinical assessments and smart sensors.

The created and continuously updated data can then be

viewed as sequences with temporal elements and contain

high-dimensional clinical variables (63). Therefore, collected

SMART BEAR data will be analyzed through time-dependent

multivariate prediction models that are capable of handling

both classification and regression problems while ensuring a

high level of accuracy. The XAI method will then be applied

in order to explain the model to clinicians so that they will be

able to better understand how the model arrives at the predicted

results. In this study, attention-based LSTM is proposed to be the

prediction model and then using SHAP to interpret the model.

The proposed framework introduced in this conceptual paper

can also be applied to other comorbidities within the SMART

BEAR project.

The findings of this analysis will have implications in clinical

practice, health policies and research.

Clinical and research implications

With proper analysis and interpretation of SMART BEAR

results, the most accurate patient profile to date can be created

for HL patients, allowing it to serve as a valid proxy for

anticipated behavior even before the initial HAid fitting session.

According to the analysis of synthetic hearing data conducted

within the context of the H2020 project EVOTION10, higher

levels of physical activity are associated with longer daily HAid

10 https://h2020evotion.eu/

use (43). Therefore, SMART BEAR results also aim to provide

a better understanding how physical activity, such as walking,

affects HAid experience in order to incorporate physical activity

promotion into hearing rehabilitation for different populations.

Furthermore, different factors relating to hearing rehabilitation

might be identified with different participants. This is shown

in the data-driven analysis with the subjective data of 572

HAid users conducted by Sanchez-Lopez et al. (71), where

participants with different HL degree preferred different types

of hearing rehabilitation. Other factors may include presence of

particular comorbidities or different living situations, therefore,

the combinations and interactions between the factors will also

be examined in SMART BEAR.

The patient profiling proposed by SMART BEAR may be

able to assist manufacturers and clinicians in making optimal

choices in terms of HAid model and configuration options,

or, in future stages, it could create automatic fine-tuning of

HAids (12). In this context, after the end of the study, SMART

BEAR is considering providing access, upon request, to the de-

identified dataset for future exploration. Participants will be fully

informed and will provide their consent so access to their de-

identified data can be granted in the future for specific scientific

purposes. Open Access will be provided for the following

SMART BEAR datasets: anonymised data from demographics,

questionnaires, interviews, anonymised sensor raw data, video

of the protocols for annotation, and anonymised data from basic

clinical information for annotation. It is envisaged that this

policy will facilitate the use of SMART BEAR’s gained knowledge

by a range of different stakeholders.

Limitations

All participants in SMART BEARwill be fitted with the same

HAid model, following the same fitting protocol, with the use of

the same algorithm. Although the fine-tuning and the program

selection of the HAids will be based on the needs and preferences

of each participant, the fitting of the HAids may not be optimal

for every participant when only one universal fitting protocol is

used. However, this choice was made since the comparison of

programs or algorithms is not in the scope of SMART BEAR,

as well as in order to avoid unnecessary heterogeneity or lower

quality of the data as a result of systematic errors. This limitation

will be taken into account in the interpretation of our results.

Moreover, SMART BEAR participants will only be between

the ages of 67 and 80, which means that its results cannot be

generalized to a population younger than that. Data like hours

of usage and changes in programs will be subject to connectivity

loss, which is a significant barrier in similar projects (50). The

impact of loss of follow-up patients, such as the unavailability of

information regarding continuation of usage, is also expected to

be low, provided that this percentage will remain in the predicted

range (below 20%). Close follow-ups and dedicated helpdesks
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will help minimize these risks, while imputation and model-

based approaches will facilitate dealing with missing data, as

explained above. Another limitation will be the variation in the

population between six different countries with socioeconomic

and cultural diversities; however, comparison between study

groups is expected to produce useful results. Finally, speech

audiometry in quiet or in noise is not part of the SMART

BEAR data collection. This is due to the fact that there do not

currently exist any universally validated materials that could be

used across all six countries and thus in all languages. Speech

audiometry, while recognized as having clinical value in fitting

choices, does not fall under the scope of SMART BEAR. As an

alternative approach to assess HAid benefit, we are aiming to

collect other parameters, including real-life data, such as hours

of usage and manual changes of programs, as well as interview

data, such as the GHABP questionnaire.

It is noteworthy that unlike the evaluation metrics used in

this paper to evaluate a prediction model, there are currently no

widely accepted objective metrics for evaluating XAI methods.

Though the proposed XAImethod will be validated by clinicians

and medical experts in SMART BEAR, this will only provide a

subjective assessment of the XAI method. To this end, existing

evaluation metrics for XAI metrics, such as Rosenfield’s set

(72), should be tested in the future with the collected data

in order to obtain both objective and subjective validation.

Although SHAP is one of the best known XAI methods, it is

often criticized for long computation time and Shapley values

do not work if features are correlated (73). As a result, the

proposed framework may be unable to deliver what clinicians

require in cases where the characteristics to be identified are

correlated. Therefore, alternative methods of XAI should be

considered in the future. Among them is Attention Mechanism-

based XAI methods, such as the one proposed by Choi et al.

(74) and Schockaert et al. (75). An attention mechanism-based

XAI method can provide an explanation for Recurrent Neural

Network or its variants by assigning corresponding values to the

importance of the different sub-sequence of the input sequence

according to the model and may be more suitable for the

proposed prediction model.

Conclusion

SMART BEAR is, to the best of our knowledge, the first

big data study whose goal is to integrate heterogeneous and

contextualized HAid, medical, societal, and environmental data

in order to develop and validate a prognosis framework using

AI and XAI methods. The outcomes of the project are expected

to benefit multiple stakeholders in the field of Audiology, such

as HAid users, manufacturers, clinicians, researchers, and health

policy makers, as well as to influence current practice and future

research. These outcomes could also improve confidence in

integrating AI models in the medical field, particularly with

encouraging AI to be used in the medical decision-making

process by utilizing XAI methods to enhance its interpretability,

transparency, and accountability.
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Başagaoglu H, et al. Explainable artificial intelligence reveals novel insight
into tumor microenvironment conditions linked with better prognosis in
patients with breast cancer. Cancers. (2021) 13:3450. doi: 10.3390/cancers131
43450

18. Huang S, Yang J, Fong S, Zhao Q. Artificial intelligence in cancer
diagnosis and prognosis: opportunities and challenges. Cancer Lett. (2020) 471:61–
71. doi: 10.1016/j.canlet.2019.12.007

19. Ferroni P, Zanzotto F, Riondino S, Scarpato N, Guadagni F, Roselli M.
Breast cancer prognosis using a machine learning approach. Cancers. (2019)
11:328. doi: 10.3390/cancers11030328

20. Bychkov D, Linder N, Turkki R, Nordling S, Kovanen PE,
Verrill C, et al. Deep learning based tissue analysis predicts outcome
in colorectal cancer. Sci Rep. (2018) 8:3395. doi: 10.1038/s41598-018-
21758-3

21. Vasudevan P, Murugesan T. Cancer subtype discovery using prognosis-
enhanced neural network classifier in multigenomic data. Technol Cancer Res
Treat. (2018) 17:153303381879050. doi: 10.1177/1533033818790509

22. Diller GP, Kempny A, Babu-Narayan SV, Henrichs M, Brida M, Uebing A,
et al. Machine learning algorithms estimating prognosis and guiding therapy in
adult congenital heart disease: data from a single tertiary centre including 10 019
patients. Eur. Heart J. (2019) 40, 1069–1077. doi: 10.1093/eurheartj/ehy915

23. Javed Mehedi Shamrat FM, Ghosh P, Sadek MH, Kazi MdA, Shultana
S. Implementation of machine learning algorithms to detect the prognosis rate
of kidney disease. In: 2020 IEEE International Conference for Innovation in
Technology (INOCON). (2020). p. 1–7.

24. Zhang K, Liu X, Shen J, Li Z, Sang Y, Wu X, et al. Clinically applicable
AI system for accurate diagnosis, quantitative measurements, and prognosis
of COVID-19 pneumonia using computed tomography. Cell. (2020) 181:1423–
33.e11. doi: 10.1016/j.cell.2020.04.045

25. Abdollahi H,Mostafaei S, Cheraghi S, Shiri I, RabiMahdavi S, Kazemnejad A.
Cochlea CT radiomics predicts chemoradiotherapy induced sensorineural hearing
loss in head and neck cancer patients: a machine learning and multi-variable
modelling study. Physica Medica. (2018) 45:192–7. doi: 10.1016/j.ejmp.2017.10.008

26. Zhao Y, Li J, ZhangM, Lu Y, Xie H, Tian Y, et al. Machine learning models for
the hearing impairment prediction in workers exposed to complex industrial noise:
a pilot study. Ear Hear. (2019) 40:690–9. doi: 10.1097/AUD.0000000000000649

27. Bing D, Ying J, Miao J, Lan L, Wang D, Zhao L, et al. Predicting the hearing
outcome in sudden sensorineural hearing loss via machine learning models. Clin.
Otolaryngol. (2018) 43:868–74. doi: 10.1111/coa.13068

28. Tomiazzi JS, Pereira DR, Judai MA, Antunes PA, Favareto APA. Performance
of machine-learning algorithms to pattern recognition and classification of hearing
impairment in Brazilian farmers exposed to pesticide and/or cigarette smoke.
Environ Sci Pollut Res. (2019) 26:6481–91. doi: 10.1007/s11356-018-04106-w

29. BahdanauD, Cho K, Bengio Y. Neural machine translation by jointly learning
to align and translate. ArXiv:1409.0473. (2014). doi: 10.48550/arXiv.1409.047363

30. Park HD, Han Y, Choi JH. Frequency-aware attention based LSTM networks
for cardiovascular disease. In: 2018 International Conference on Information and
Communication Technology Convergence (ICTC). (2018). p. 1503–5.

31. Wall C, Zhang L, Yu Y, Mistry K. Deep recurrent neural networks with
attention mechanisms for respiratory anomaly classification. In: 2021 International
Joint Conference on Neural Networks (IJCNN). (2021). p. 1–8.

32. Burkart N, Huber MF. A survey on the explainability of supervised machine
learning. J Artif Int Res. (2021) 70:245–317. doi: 10.1613/jair.1.12228

33. Anderson C. Ready for prime time?: AI influencing precision medicine but
may not match the hype. Clin OMICs. (2018) 5:44–6. doi: 10.1089/clinomi.05.03.26

34. Tjoa E, Guan C. A survey on explainable artificial intelligence (XAI): toward
medical XAI. In: IEEE Transactions on Neural Networks and Learning Systems, Vol.
32 (2021). p. 4793–813.

35. Schlegel U, Arnout H, El-Assady M, Oelke D, Keim DA. Towards
a rigorous evaluation of XAI methods on time series. 2019 IEEE/CVF
International Conference on Computer Vision Workshop (ICCVW). (2019) 4197–
201. doi: 10.1109/ICCVW.2019.00516

36. Ribeiro MT, Singh S, Guestrin C. “Why should i trust you?”: explaining
the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, (2016). 1135-
1144.

37. Sarp S, Kuzlu M, Wilson E, Cali U, Guler O. The enlightening role
of explainable artificial intelligence in chronic wound classification. Electronics.
(2021) 10:1406. doi: 10.3390/electronics10121406

38. Malhi A, Kampik T, Pannu H, Madhikermi M, Framling K. Explaining
machine learning-based classifications of in-vivo gastral images. In: 2019 Digital
Image Computing: Techniques and Applications (DICTA). (2019). p. 1–7.

39. Das D, Ito J, Kadowaki T, Tsuda K. An interpretable machine learning model
for diagnosis of Alzheimer’s disease. PeerJ. (2019) 7:e6543. doi: 10.7717/peerj.6543

40. Gu D, Su K, Zhao H. A case-based ensemble learning system for
explainable breast cancer recurrence prediction. Artif Intell Med. (2020)
107:101858. doi: 10.1016/j.artmed.2020.101858

41. Lundberg SM, Lee SI. A unified approach to interpreting model predictions.
In: Proceedings of the 31st International Conference on Neural Information
Processing Systems. (2017). p. 4768–4777.

Frontiers inNeurology 16 frontiersin.org

101

https://doi.org/10.3389/fneur.2022.933940
https://www.hear-it.org/sites/default/files/multimedia/documents/Hear_It_Report_October_2006.pdf
https://www.hear-it.org/sites/default/files/multimedia/documents/Hear_It_Report_October_2006.pdf
https://doi.org/10.1037/a0024238
https://doi.org/10.1371/journal.pone.0119616
https://doi.org/10.1016/j.gaitpost.2012.10.006
https://doi.org/10.1016/j.otc.2018.01.016
https://doi.org/10.1016/S0140-6736(16)31678-6
https://doi.org/10.3109/14992027.2013.769066
https://doi.org/10.1097/AUD.0000000000000980
https://doi.org/10.1097/00003446-199012000-00004
https://doi.org/10.1080/14992020500429484
https://doi.org/10.1177/2331216518773632
https://doi.org/10.3109/14992027.2015.1046504
https://doi.org/10.3389/fpsyg.2015.00556
https://doi.org/10.1055/s-0042-1748460
https://doi.org/10.1109/ACCESS.2019.2919683
https://doi.org/10.3390/cancers13143450
https://doi.org/10.1016/j.canlet.2019.12.007
https://doi.org/10.3390/cancers11030328
https://doi.org/10.1038/s41598-018-21758-3
https://doi.org/10.1177/1533033818790509
https://doi.org/10.1093/eurheartj/ehy915
https://doi.org/10.1016/j.cell.2020.04.045
https://doi.org/10.1016/j.ejmp.2017.10.008
https://doi.org/10.1097/AUD.0000000000000649
https://doi.org/10.1111/coa.13068
https://doi.org/10.1007/s11356-018-04106-w
https://doi.org/10.48550/arXiv.1409.047363
https://doi.org/10.1613/jair.1.12228
https://doi.org/10.1089/clinomi.05.03.26
https://doi.org/10.1109/ICCVW.2019.00516
https://doi.org/10.3390/electronics10121406
https://doi.org/10.7717/peerj.6543
https://doi.org/10.1016/j.artmed.2020.101858
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Iliadou et al. 10.3389/fneur.2022.933940

42. Lenatti M,Moreno-Sánchez PA, Polo EM,MolluraM, Barbieri R, Paglialonga
A. Evaluation of machine learning algorithms and explainability techniques to
detect hearing loss from a speech-in-noise screening test. Am J Audiol. (2022)
1–19. doi: 10.1044/2022_AJA-21-00194 [Epub ahead of print].

43. Saunders GH, Christensen JH, Gutenberg J, Pontoppidan NH, Smith
A, Spanoudakis G, et al. Application of big data to support evidence-based
public health policy decision-making for hearing. Ear Hear. (2020) 41:1057–
63. doi: 10.1097/AUD.0000000000000850

44. Nasreddine ZS, Phillips NA, BÃ©dirian V, Charbonneau S, Whitehead
V, Collin I, et al. The montreal cognitive assessment, moca: a brief screening
tool for mild cognitive impairment. J Am Geriatr Soc. (2005) 53:695–
9. doi: 10.1111/j.1532-5415.2005.53221.x

45. Carpenter MG, Campos JL. The effects of hearing loss
on balance: a critical review. Ear Hear. (2020) 41 (Suppl.
1):107S−19S. doi: 10.1097/AUD.0000000000000929

46. Oishi N, Shinden S, Kanzaki S, Saito H, Inoue Y, Ogawa K.
Influence of depressive symptoms, state anxiety, and pure-tone thresholds
on the tinnitus handicap inventory in Japan. Int J Audiol. (2011)
50:491–5. doi: 10.3109/14992027.2011.560904

47. Samocha-Bonet D, Wu B, Ryugo DK. Diabetes mellitus and hearing loss: a
review. Ageing Res Rev. (2021) 71:101423. doi: 10.1016/j.arr.2021.101423

48. Manson J, Alessio H, Cristell M, Hutchinson KM. Does
cardiovascular health mediate hearing ability? Med Sci Sports Exerc. (1994)
26:866–71. doi: 10.1249/00005768-199407000-00009

49. Simões JFCPM, Vlaminck S, Seiça RMF, Acke F, Miguéis ACE.
Cardiovascular risk and sudden sensorineural hearing loss: a systematic review and
meta-analysis. (2022) Laryngoscope. doi: 10.1002/lary.30141 [Epub ahead of print].

50. Dritsakis G, Kikidis D, Koloutsou N, Murdin L, Bibas A, Ploumidou
K, et al. Clinical validation of a public health policy-making platform for
hearing loss (EVOTION): protocol for a big data study. BMJ Open. (2018)
8:e020978. doi: 10.1136/bmjopen-2017-020978

51. Nayak B. Understanding the relevance of sample size calculation. Indian J
Ophthalmol. (2010) 58:469. doi: 10.4103/0301-4738.71673

52. Sethia A, Raut P. Application of LSTM, GRU and ICA for stock price
prediction. In: Information and Communication Technology for Intelligent Systems.
Singapore: Springer (2019). p. 479–487.

53. Selvin S, Vinayakumar R, Gopalakrishnan EA, Menon VK, Soman KP.
Stock price prediction using LSTM, RNN and CNN-sliding window model.
2017 International Conference on Advances in Computing, Communications and
Informatics (ICACCI). (2017). p. 1643–7.

54. Chan KS, Fowles JB, Weiner JP. Review: electronic health records
and the reliability and validity of quality measures: a review of the
literature. Med Care Res Rev. (2010) 67:503–27. doi: 10.1177/107755870935
9007

55. Salgado CM, Azevedo C, Proença H, Vieira SM. Missing data. In: Secondary
Analysis of Electronic Health Records, MIT Critical Data, editor (New York, NY:
Springer International Publishing) (2016). p. 143–62.

56. KuhnM, Johnson K. Feature Engineering and Selection: A Practical Approach
for Predictive Models. Boca Raton, FL: CRC Press (2019).

57. Ilyas IF, Chu X. Data Cleaning. New York, NY: ACM (2019).

58. Alin A. Multicollinearity. Wiley Interdiscip Rev Comput Stat. (2010) 2:370–
4. doi: 10.1002/wics.84

59. Coren S. Summarizing pure-tone hearing thresholds: the
equipollence of components of the audiogram. Bull Psychon Soc. (1989)
27:42–4. doi: 10.3758/BF03329892

60. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput.
(1997) 9:1735–80. doi: 10.1162/neco.1997.9.8.1735

61. Preeti BR, Singh RP. Financial and non-stationary time series forecasting
using LSTM recurrent neural network for short and long horizon. In: 2019

10th International Conference on Computing, Communication and Networking
Technologies (ICCCNT). (2019). p. 1–7.

62. Niu Z, Zhong G, Yu H. A review on the attention mechanism of deep
learning. Neurocomputing. (2021) 452:48–62. doi: 10.1016/j.neucom.2021.03.091

63. Choi E, Bahadori MT, Sun J, Kulas J, Schuetz A, Stewart W.
Retain: an interpretable predictive model for healthcare using reverse
time attention mechanism. Adv Neural Inf Process Syst. (2016) 9:29.
doi: 10.48550/arXiv.1608.05745

64. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al.
Attention is all you need. In: Advances in Neural Information Processing systems
30 (NIPS 2017). Long Beach, CA: Curran Associates (2017).

65. Zhang Y, Weng Y, Lund J. Applications of explainable
artificial intelligence in diagnosis and surgery. Diagnostics. (2022)
12:237. doi: 10.3390/diagnostics12020237

66. Janizek JD, Sturmfels P, Lee S-I. Explaining explanations: axiomatic feature
interactions for deep networks. J Mach Learn Res. (2021) 22:1–54.

67. Slack D, Hilgard S, Jia E, Singh S, Lakkaraju H. Fooling LIME and SHAP.
In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society. (2020).
p. 180–6.

68. Fuentes-López E, Fuente A, Valdivia G, Luna-Monsalve M. Does educational
level predict hearing aid self-efficacy in experienced older adult hearing aid users
from Latin America? Validation process of the Spanish version of the MARS-HA
questionnaire. PLoS ONE. (2019) 14:e0226085. doi: 10.1371/journal.pone.0226085

69. Meister H, Rählmann S, Walger M, Margolf-Hackl S, Kießling J. Hearing
aid fitting in older persons with hearing impairment: the influence of cognitive
function, age, and hearing loss on hearing aid benefit. Clin Interv Aging. (2015)
10:435. doi: 10.2147/CIA.S77096

70. Davidson A, Marrone N, Wong B, Musiek F. Predicting
hearing aid satisfaction in adults: a systematic review of speech-
in-noise tests and other behavioral measures. Ear Hear. (2021)
42:1485–98. doi: 10.1097/AUD.0000000000001051

71. Sanchez-Lopez R, Dau T, Whitmer WM. Audiometric profiles and
patterns of benefit: a data-driven analysis of subjective hearing difficulties
and handicaps. Int J Audiol. (2022) 61:301–10. doi: 10.1080/14992027.2021.
1905890

72. Rosenfeld A. Better metrics for evaluating explainable artificial intelligence.
In: 20th International Foundation for Autonomous Agents and Multiagent Systems
(AAMAS ’21). (2021), 45–50.

73. Molnar, C. (2020). Interpretable Machine Learning. Available online
at: https://www.lulu.com/ (accessed July 02, 2022).

74. Choi KS, Choi SH, Jeong B. Prediction of IDH genotype in
gliomas with dynamic susceptibility contrast perfusion MR imaging
using an explainable recurrent neural network. Neuro Oncol. (2019)
21:1197–209. doi: 10.1093/neuonc/noz095

75. Schockaert C, Leperlier R, Moawad A. Attention mechanism for multivariate
time series recurrent model interpretability applied to the ironmaking industry.
arXiv[Preprint].arXiv:2007.12617 (2020).

76. Laplante-Lévesque A, Nielsen C, Jensen LD, Naylor G. Patterns of
hearing aid usage predict hearing aid use amount (data logged and self-
reported) and overreport. J Am Acad Audiol. (2014) 25:187–98. doi: 10.3766/jaaa.
25.2.7

77. Whitmer WM, Howell P, Akeroyd MA. Proposed norms for the glasgow
hearing-aid benefit profile (Ghabp) questionnaire. Int J Audiol. (2014) 53:345–51.
doi: 10.3109/14992027.2013.876110

78. Tecca JE. Are post-fitting follow-up visits not hearing aid best practices?Hear.
Rev. (2018) 25:12–22.

79. Lundberg S, Lee S-I. A unified approach to interpretingmodel predictions. In:
Proceedings of the 31st International Conference on Neural Information Processing
Systems. Long Beach, CA: Curran Associates (2017). p. 4766–75.

Frontiers inNeurology 17 frontiersin.org

102

https://doi.org/10.3389/fneur.2022.933940
https://doi.org/10.1044/2022_AJA-21-00194
https://doi.org/10.1097/AUD.0000000000000850
https://doi.org/10.1111/j.1532-5415.2005.53221.x
https://doi.org/10.1097/AUD.0000000000000929
https://doi.org/10.3109/14992027.2011.560904
https://doi.org/10.1016/j.arr.2021.101423
https://doi.org/10.1249/00005768-199407000-00009
https://doi.org/10.1002/lary.30141
https://doi.org/10.1136/bmjopen-2017-020978
https://doi.org/10.4103/0301-4738.71673
https://doi.org/10.1177/1077558709359007
https://doi.org/10.1002/wics.84
https://doi.org/10.3758/BF03329892
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.neucom.2021.03.091
https://doi.org/10.48550/arXiv.1608.05745
https://doi.org/10.3390/diagnostics12020237
https://doi.org/10.1371/journal.pone.0226085
https://doi.org/10.2147/CIA.S77096
https://doi.org/10.1097/AUD.0000000000001051
https://doi.org/10.1080/14992027.2021.1905890
https://www.lulu.com/
https://doi.org/10.1093/neuonc/noz095
https://doi.org/10.3766/jaaa.25.2.7
https://doi.org/10.3109/14992027.2013.876110
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


TYPE Original Research

PUBLISHED 29 August 2022

DOI 10.3389/fneur.2022.943816

OPEN ACCESS

EDITED BY

Alessia Paglialonga,

Institute of Electronics, Information

Engineering and Telecommunications

(CNR), Italy

REVIEWED BY

Andrej Kral,

Hannover Medical School, Germany

Waldo Nogueira,

Hannover Medical School, Germany

*CORRESPONDENCE

Stefan Weder

stefan.weder@insel.ch

SPECIALTY SECTION

This article was submitted to

Neuro-Otology,

a section of the journal

Frontiers in Neurology

RECEIVED 14 May 2022

ACCEPTED 25 July 2022

PUBLISHED 29 August 2022

CITATION

Schuerch K, Wimmer W, Dalbert A,

Rummel C, Caversaccio M,

Mantokoudis G and Weder S (2022)

Objectification of intracochlear

electrocochleography using machine

learning. Front. Neurol. 13:943816.

doi: 10.3389/fneur.2022.943816

COPYRIGHT

© 2022 Schuerch, Wimmer, Dalbert,

Rummel, Caversaccio, Mantokoudis

and Weder. This is an open-access

article distributed under the terms of

the Creative Commons Attribution

License (CC BY). The use, distribution

or reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Objectification of intracochlear
electrocochleography using
machine learning

Klaus Schuerch1,2, Wilhelm Wimmer1,2, Adrian Dalbert3,

Christian Rummel4, Marco Caversaccio1,2,

Georgios Mantokoudis1 and Stefan Weder1*

1Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of

Bern, Bern, Switzerland, 2Hearing Research Laboratory, ARTORG Center for Biomedical Engineering

Research, University of Bern, Bern, Switzerland, 3Department of Otorhinolaryngology, Head and

Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland, 4Support Center

for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional

Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland

Introduction: Electrocochleography (ECochG) measures inner ear potentials

in response to acoustic stimulation. In patients with cochlear implant (CI),

the technique is increasingly used to monitor residual inner ear function. So

far, when analyzing ECochG potentials, the visual assessment has been the

gold standard. However, visual assessment requires a high level of experience

to interpret the signals. Furthermore, expert-dependent assessment leads to

inconsistency and a lack of reproducibility. The aim of this study was to

automate and objectify the analysis of cochlear microphonic (CM) signals in

ECochG recordings.

Methods: Prospective cohort study including 41 implanted ears with residual

hearing. We measured ECochG potentials at four di�erent electrodes and

only at stable electrode positions (after full insertion or postoperatively). When

stimulating acoustically, depending on the individual residual hearing, we

used three di�erent intensity levels of pure tones (i.e., supra-, near-, and

sub-threshold stimulation; 250–2,000 Hz). Our aim was to obtain ECochG

potentials with di�ering SNRs. To objectify the detection of CM signals, we

compared three di�erentmethods: correlation analysis, Hotelling’s T2 test, and

deep learning. We benchmarked these methods against the visual analysis of

three ECochG experts.

Results: For the visual analysis of ECochG recordings, the Fleiss’ kappa value

demonstrated a substantial to almost perfect agreement among the three

examiners. We used the labels as ground truth to train our objectification

methods. Thereby, the deep learning algorithm performed best (area under

curve = 0.97, accuracy = 0.92), closely followed by Hotelling’s T2 test. The

correlation method slightly underperformed due to its susceptibility to noise

interference.

Conclusions: Objectification of ECochG signals is possible with the

presented methods. Deep learning and Hotelling’s T2 methods achieved

excellent discrimination performance. Objective automatic analysis of CM
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signals enables standardized, fast, accurate, and examiner-independent

evaluation of ECochG measurements.

KEYWORDS

ECochG, signal processing, deep learning, Hotelling’s T2, correlation analysis, residual

hearing, electroacoustic stimulation, cochlear implant

1. Introduction

Electrocochleography (ECochG) measures electrical

potentials generated by the inner ear in response to acoustic

stimulation. In patients with cochlear implant (CI), using the

implanted electrode, these potentials can be picked up directly

from the inner ear. The technique is increasingly used to

monitor the inner ear function during and after implantation.

Research groups were able to correlate changes in the ECochG

signal with traumatic events during implantation (1–6).

In order to assess ECochG potentials (either intra or

postoperatively), the analysis is most commonly performed

by visual inspection, which is currently the gold standard.

Therefore, the interpretation is heavily relying on the expertise

of the examiner. This entails several problems: i) a high level

of experience is needed to interpret the signals correctly. Thus,

inexperienced clinicians and researchers are unable to exploit

the technique; ii) the examiner determines whether or not an

ECochG response is present, which may result in a lack of

reproducibility; iii) longitudinal comparisons are hampered as

the assessment is not absolutely identical. iv) research groups

use different types of analysis, which makes the comparability of

clinical findings and study results difficult or impossible (4, 7–

12); v) due to the inconsistent assessment, patients with a poor

signal-to-noise ratio (SNR) are often not reported. However,

in order to draw correct conclusions, all measurements should

be reported (13, 14); and vi) the analysis of ECochG signals is

complex, which makes immediate judgment difficult. This is, of

course, a prerequisite when an instant assessment is required

(e.g., in the operating theater).

ECochG itself is an umbrella term for different

electrophysiological signal components of the inner ear

(i.e., the cochlear microphonic, CM, the auditory neurophonic,

ANN, the compound action potential, CAP, the summating

potential, SP). These signal components can be highlighted by

measurements with different acoustic polarities (condensation,

CON and rarefaction, RAR). The difference potential (DIF) is

calculated by subtracting the CON and RAR polarities. The DIF

response mainly represents the CM signal (15). In addition, the

sum highlights the summating potential (SUM), which mainly

represents the ANN (16). However, CM and ANN potentials

cannot be isolated, especially at high stimulation levels and low

frequencies (17). In intra and postoperative recordings, most

commonly the CM/DIF signal is used as it is the largest andmost

robust signal component (18). For this reason, in this article, we

will limit the analysis to the CM/DIF signal. Even though the

CM/DIF signal is the strongest potential, there are some things

to keep in mind. The amplitude of the signal is in the microvolt

range and varies greatly between individuals. While certain

patients show large amplitudes, in others, the potentials are very

small, resulting in a poor SNR. Furthermore, the morphology

and latency of the CM/DIF signal might vary significantly

depending on the remaining intact hair cells (19–21). These

factors (i.e., poor SNR, different wave morphology) must be

taken into account when analyzing ECochG potentials.

For the reasons given above, an automated and objective

evaluation would be highly desirable. This would standardize

and significantly simplify the analysis of the signals and make it

independent of the examiner. For ECochG signals, an approach

using Fast Fourier Transform (FFT) has been proposed (18, 22–

24). However, this method is not always applicable, especially

for short signals, since they do not have a stationary period

and adjacent frequencies cannot be accurately distinguished.

For other electrophysiological signals, objectified analyses have

become established in clinical practice. For example, for auditory

brainstem responses (ABR), correlation analysis is used (25, 26).

In the evaluation of cortical auditory evoked potentials (CAEP),

Hotelling’s T2 test has yielded a sensitivity at least comparable

to that of visual inspection (27–29). In other medical disciplines

(i.e., identification of cardiac arrhythmias in electrocardiograms,

ECGs), deep learning (DL) strategies could be successfully

implemented (30–33).

The aim of this study was to automate and objectify

the analysis of CM/DIF signals in ECochG recordings. The

employed method should i) be comparable to visual analysis,

(ii) allow the interpretation of intra- and postoperative ECochG

signals by clinicians and researchers who do not have much

experience in the field, (iii) allow immediate feedback, (iv)

should be replicable by other clinical and research centers, (v)

allow reproducible comparison of longitudinal data (since the

same analysis is performed).

2. Materials and methods

This prospective cohort study was conducted in accordance

with the Declaration of Helsinki and was approved by the
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local institutional review board (KEK-BE 2016-00887 and 2019-

01578). All participants gave written informed consent before

participation.

2.1. ECochG data

We performed ECochG measurements in 36 subjects (n

= 41 ears). All subjects used a Med-El implant (MED-

EL, Austria). Pure tone audiograms were performed in

a certified acoustic chamber with a clinical audiometer

(Interacoustics, Denmark). Hearing thresholds were collected

either immediately preoperatively or, in the case of postoperative

measurements, on the same day as the ECochG measurement.

We obtained pure tone air conduction hearing thresholds in

dB hearing level (HL) at 125, 250, 500, 750, 1,000, 1,500, 2,000,

and 4,000 Hz using either headphones or plug-in earphones.

Pure tone averages (PTAs) were calculated as the mean hearing

threshold at 125, 250, 500, and 1,000 Hz. PTAs and patient

demographics are shown in Table 1.

We recorded ECochG potentials using the Maestro Software

(version 8.03 AS and 9.03 AS, MED-EL, Austria). The system

setup was identical to our previous study (10). We measured

ECochG potentials at electrodes 1, 4, 7, and 10 (with electrode

1 at the tip) and only at a stable electrode position (i.e., either

intraoperatively after completed electrode insertion or in a

postoperative setting). When stimulating, depending on the

individual hearing threshold, we used three different intensity

levels: supra-threshold level (5 dB below discomfort level),

near-threshold level (10 dB above hearing threshold), and sub-

threshold level (10 dB below hearing threshold). Thereby, the

acoustic amplitude level was restricted as shown in Table 2.

Our aim was that not all stimulations would elicit an ECochG

response and that, depending on the stimulation level, the SNR

was different. As an acoustic stimulus, we used pure tones with

settings shown in Table 2. ECochG potentials were recordedwith

two polarities (i.e., CON, and RAR). For each ECochG response,

we recorded 100 epochs per polarity. The two polarities were

subtracted to form the CM/DIF signal.

2.2. Preprocessing of ECochG signals

As preprocessing, we used the following steps: i) if present,

removal of stitching artifacts, ii) application of a Gaussian

weighted averaging method to increase the SNR and exclude

uncorrelated epochs from further analysis, and iii) a 2nd order,

forward-backward filtered Butterworth bandpass filter (cutoff

frequencies 10 Hz / 5 kHz for visual analysis, and 100 Hz

/ 5 kHz for objective evaluation methods). To increase the

SNR in our ECochG recordings, we calculated the Gaussian

weighted epochs SGE(i) as described by Davila et al. (34) and

Kumaragamage et al. (35). We used the following equation:

SGE(i) =

2
∑

l=−2

(e
−[0.5( l

σ ·(5−1)/2
)2]

· SE(i+l))

whereas, l is the index number, starting from –2 to 2 that

accounts for five epochs SE averaged under the Gaussian

window, and i is the index number of the epochs in SE. The

SD of the Gaussian window σ was set to 0.4. Each Gaussian

weighted epoch SGE(i) was then correlated with the mean of

all epochs Sapprox. SGE(i) with a correlation less than –0.2 were

excluded to form the final ECochG response S. If more than 10%

of epochs had to be removed, only the 10 worst correlated were

discarded. Finally, we calculated the SNR using the +/- averaging

method (36).

2.3. Visual analysis

ECochG data were visually analyzed by three examiners

with extensive experience in the field. The goal was to have a

labeled data set that was used i) to train and test the objective

algorithms, and ii) to obtain a benchmark for evaluating the

accuracy, specificity, and sensitivity of the objective detection

methods. Using Labelbox (37), the data were presented to the

examiners as a subplot with six individual graphs representing

i) the DIF response, ii) the SUM response, iii) the CON

and RAR responses, and iv-vi) their individual FFT traces

(an example is shown in the Supplementary material). Each

examiner had to assess 4133 ECochGs with the question if a

CM/DIF response was present or not (dichotomous question).

Thereby, we used a blinded design in which the investigators

did not discuss the assessment to avoid bias in the individual

assessment. Signals classified as CM/DIF response by two

examiners (and noise by one examiner) were presented a second

time to all three examiners (to minimize volatility errors). Only

ECochG signals that were finally considered valid responses

by all three investigators were classified as responses. These

were used as ground truth for the objective classification. We

used Fleiss’ kappa to compare the raters. Fleiss’ kappa is a

measure of agreement between multiple raters in classifying

items (38).

2.4. Objective detection methods

We included the following objective detection methods:

i) Hotelling’s T2 test, ii) correlation analysis, and iii) a DL

convolutional neural network (CNN). To train and evaluate our

objective analysis, we benchmarked these methods against the

visual analysis of the three experts.

The dataset was divided into two parts: 70% for training

and 30% for testing purposes. We used the training subset
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TABLE 1 Demographic of included subjects.

Subject ID Gender Age (years) Side Etiology Electrode ToM (month) PTA (dB HL)

io 1 M 49 L Meningitis Flex 28 io 52.5

io 2 M 69 L Progressive HL Flex 28 io 58.8

io 4 F 45 L Progressive HL Flex 28 io 93.8

io 5 F 60 L Progressive HL Flex 24 io 66.3

io 6 M 51 R Progressive HL Flex 28 io 60.0

io 7 M 75 R Progressive HL Flex 28 io 52.5

io 8 F 77 L Progressive HL Flex 28 io 75.0

io 9 M 36 R Congential genetic Flex 26 io 48.8

io 10 M 71 R Progressive HL Flex 28 io 71.3

io 11 F 70 L Progressive HL Flex 28 io 50.0

io 12 F 27 R Congential genetic Flex 28 io 62.5

io 13 M 66 R Meniere’s disease Flex 28 io 72.5

io 14 F 53 L Progressive HL Flex 28 io 78.8

io 15 M 59 R Progressive HL Flex 28 io 48.8

io 16 F 78 L Progressive HL Flex 28 io 86.3

io 17 F 28 R Progressive HL Flex 26 io 33.8

io 18 M 86 L Progressive HL Flex 26 io 91.3

io 19 M 21 R Progressive HL Flex 28 io 78.8

io 20 F 61 R Sudden HL Flex 28 io 81.3

io 23 M 59 L Progressive HL Flex 28 io 77.5

io 24 F 37 L Sudden HL Flex 26 io 83.8

po 0 F 60 R Progressive HL Flex 28 10 68.8

po 1 M 73 R Progressive HL Flex 28 17 110.0

po 2 M 75 L Progressive HL Flex 24 46 66.3

po 3 M 80 L Congential genetic Flex 28 9 85.0

po 4 F 27 R Congential genetic Flex 28 20 101.3

po 5 F 66 R Progressive HL Flex 28 28 92.5

po 6 F 73 R Meniere’s disease Flex 28 78 90.0

po 7 M 82 L Progressive HL Flex 28 75 113.8

po 8 F 25 R Congential genetic Flex 28 57 85.0

po 9 F 43 R Progressive HL Flex 28 22 83.8

po 10 F 60 R Progressive HL Flex 24 13 97.5

po 11 F 73 L Progressive HL Flex 28 70 100.0

po 12 M 50 R Meningitis Flex 28 11 81.3

po 13 F 68 L Progressive HL Flex 28 22 93.8

po 14 F 52 R Congential genetic Flex 24 174 95.0

po 15 M 50 L Meningitis Flex 28 6 75.0

po 16 M 66 R Meniere’s disease Flex 28 7 106.3

po 17 M 56 R Sudden HL Flex 28 11 91.3

po 18 M 75 R Progressive HL Flex 28 70 96.3

po 19 F 63 R Progressive HL Flex 24 131 91.3

Mean 58.4 43.9 79.2

PTA, pure tone average; HL, hearing loss; ToM, time of measurement in months after implantation; io, intraoperative; po, postoperative.

to train and validate the models. For training, both features

(ECochG signals) and labels (ground truth determined by the

examiners) were provided. The test set was used to evaluate

the performance of the model. Here, only features were

provided. The predictions of the model were then compared to

the labels.

2.4.1. Hotelling’s T2 test

Based on Hotelling’s T2 method described by Golding et al.

and Chesnaye et al. for objective detection of CAEP signals, we

adapted the method to ECochG signals (27, 29). The Hotelling’s

T2 test for one sample is a multivariate extension of the Student’s

t-test (39, 40). With Hotelling’s T2 test, we can test the null
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TABLE 2 Settings for acoustic stimulation and maximum possible

acoustic stimulation level (maximum amplitude).

Frequency Stimulus Recording Measurement Maximum

(Hz) duration delay window amplitude

(ms) (ms) (ms) (dB HL)

250 12 1 19.1 109

500 8 1 9.6 115

750 6.67 1 9.6 123

1,000 5 1 8.0 122

1,500 4 1 8.0 122

2,000 3 1 6.5 122

hypothesis (H0) whether Q features are statistically different

from Q hypothesized values.

In our case, the ECochG recordings were the features and

the hypothesized values were noise. The ECochG recordings

were divided into Q windows along the time axis called ’time-

voltage-means’ (TVMs). The mean value was taken from each

Q-window, resulting in the following N× Q voltage matrix V:

V =









v11 . . . v1Q
...

. . .
...

vN1 . . . vNQ









Where N was the number of epochs and vij the j
th voltage

means from the ith epoch. The corresponding hypothetical

values (noise) were an array of size 1 × Q filled with zeros.

The noise was zero because the expected mean value of an

ECochG signal should be zero due to the bandpass filtering. The

number of used TVMs resulted in a down sampling, illustrated

in Figure 1.

We performed the calculations using a python (v 3.9.7)

script and the hotellings function from the spm1d module (v

0.4) (41, 42). As significance level α, we used 0.01 to tune the

number of voltage means Q for each acoustic stimulus frequency

individually. The optimal number of TVMs for the Hotelling

T2 test was calculated based on the maximum accuracy. For

this purpose, the number of TVMs was successively increased

in steps of five from 5 to 195 and the Hotelling’s T2 test was

calculated on the training set.

2.4.2. Correlation analysis

Our correlation algorithm is based on the method of Wang

et al. which explores the correlation of ABR signals (26). The

correlation procedure relies on the repeatability of the similarity

of two waveforms. The degree of similarity can be quantified

by calculating the Pearson correlation coefficient. A positive

correlation close to one reflects the presence of a response, while

a zero correlation shows the absence of response (25).

In our calculations, we treated the two polarities

(CON/RAR) separately and finally averaged the correlation

coefficients. The two polarities were separate, treated as

they evolve inversely (which is caused by condensation and

rarefaction phased acoustic stimuli). The procedure is shown in

Figure 2. Finally, we fitted a logistic regression model based on

the correlation coefficients.

2.4.3. Deep learning

Our DL classification approach was based on the method

used to automatically identify cardiac arrhythmia in ECG

signals. Several DL approaches to cardiac arrhythmia detection

have been proposed in the literature (30–33). Among them,

time frequency scalograms using continuous wavelet transform

(CWT) and AlexNet showed convincing results (32, 33).

AlexNet is a large convolutional neural network (CNN)

containing about 6,50,000 neurons and 60 million parameters.

It consists of five convolutional layers, and three fully

connected layers and is optimized for image classification

(43).

Time frequency scalogram images for the classifier were

generated from our dataset using CWT and the Python

module PyWavelets (44). In this process, a Morlet wavelet

shrinks and expands to map the signals into a time-

frequency scalogram. We chose the Morlet wavelet because

it offers a good compromise between spatial and frequency

resolution (33, 45). We normalized the scalograms and

compressed them to a dimension of 224 × 224 × 3

for width, height, and depth (red, green, blue). ECochG

DIF traces and their wavelet transformation are shown in

Figure 3.

We used PyTorch (v 1.11.0) and the pre-trained (on the

ImageNet database) AlexNet loaded from torchvision (v 0.6.0)

to take advantage of the already good classification properties

(46, 47). We substituted the last two classifiers of the AlexNet

for binary classification output. The rest of the network was

left exactly as it was during initialization. Stochastic gradient

descent with momentum was used to train the model. The

mini-batch size was 8 and the maximum epoch was 25 with

the learning rate being 1e-4, and a momentum of 0.9. We

used 10-fold cross-validation to detect overfitting. We then

trained the model with the full training set to increase model

performance.

2.5. Statistical analysis

We used accuracy, sensitivity, and specificity to evaluate our

algorithms. The algorithms were compared using the area under

the receiver operating characteristic (ROC) curve, also known as

the area under the curve (AUC). We used a one-sided DeLong

test with a confidence level of 0.95 using the roc.test function of

the pROC package (v 1.18.0) with R (v 4.1.2) (48, 49).
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FIGURE 1

Di�erence potential (DIF) curves in blue show a recognizable CM/DIF signal (A1,A2) and noise with no visible CM/DIF component (B1, B2) in

response to a 500 Hz stimulus. The orange curve in (A1,B1) shows 5 time-voltage-means (TVMs), and the green curve in (A2,B2) shows 10 TVMs

used to calculate Hotelling’s T2 test. It is evident that in this example, an increase of the TMVs leads to better mapping of the CM/DIF signal with

higher accuracy.

3. Results

3.1. ECochG recordings and
preprocessing

Gaussian weighted averaging significantly increased the

mean SNR from 2.50 dB (standard deviation, SD, 2.39) to 4.18

dB (SD 1.86) as demonstrated by the one-tailed paired-samples

t-test (p < 0.001). In total, 4133 DIF signals were labeled visually

by the three experts. Labeling took between 13.5 and 15 h (on

average, 12 s per signal). In contrast, objective analysis using the

algorithms took less than 25 ms per signal (the duration was

determined on a notebook XPS 13 9360 (Dell, Round Rock, TX,

USA) and does not include the training time of the algorithms,

which was substantially longer).

3.2. Visual analysis

The Fleiss’ kappa value of the agreement for the examiners

and all stimulation frequencies are shown in Table 3. Results

demonstrated a substantial to almost perfect agreement among

the examiners (50). Particularly, for the mid-frequencies (500

Hz – 1 kHz), the examiners were very much in agreement.

This agreement was a little lower for the lowest (i.e.,

250 Hz) and the two highest frequencies (i.e., 1,500 and

2,000 Hz), but still substantial. However, between the three

examiners, there was a systematic discrepancy in the visual

assessment. The false-positive rates (FPRs) for examiners 1,

2, and 3 were 0.110, 0.068, and 0.032, respectively. That is

examiner 1 still considered signals with a lot of noise as

valid responses, whereas examiner 3 only accepted clearer

neurophysiological traces.

Table 4 shows an overview of the stimulation frequencies,

the stimulation levels, the SNR, and the number of signals where

the experts identified a CM/DIF response. For frequencies of 500

Hz and above, when stimulated at supra-threshold level, a clear

CM/DIF component was found in 53.3%.

For all frequencies, the supra-threshold stimulation showed

the largest amplitudes (p < 0.001, one-tailed paired-samples

t-test), the biggest SNR (p < 0.001) as well as the most

visible signals. Near-threshold stimulation showed larger
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FIGURE 2

The correlation analysis handles CON and RAR recordings separately and proceeds as follows: (i) the ECochG recordings are divided into CON

and RAR; (ii) CON and RAR are each divided into two randomly arranged bu�ers of the same size (Bu�ers 1–4, 50 epochs each); (iii) the Pearson

correlation coe�cients for CORR CON and CORR RAR are calculated from bu�er 1 and 2 and bu�er 3 and 4, respectively; (iv) CORR is

calculated from the mean of CORR CON and CORR RAR. Since CORR depends on the subdivision of bu�ers, steps ii–iv (shaded area) are

repeated 100 times and averaged to get the final correlation coe�cient CORR COEFF. CON, condensation; RAR, rarefaction; CORR, correlation;

COEFF, coe�cient.

FIGURE 3

The blue DIF curves (A1,B1) show a recognizable CM/DIF signal (A1) and noise with no visible CM/DIF component (B1), respectively, in response

to a 500 Hz stimulus. Their corresponding time frequency scalograms generated using continuous wavelet transformation (CWT) are shown in

(A2,B2). These scalograms were then used to train and test the deep learning algorithm. DIF, di�erence; CM, cochlear microphonic.

amplitudes (p < 0.001), and bigger SNR (p < 0.001) than

sub-threshold stimulation. However, this was not the case

for 250 Hz stimulation amplitudes (p = 0.104). Regarding

visual analysis, near-threshold levels showed significantly

more visible CM/DIF responses than sub-threshold levels,

except at 250 Hz. At this frequency, we identified the

same number of responses for near-threshold and sub-

threshold levels.

Frontiers inNeurology 07 frontiersin.org

109

https://doi.org/10.3389/fneur.2022.943816
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Schuerch et al. 10.3389/fneur.2022.943816

3.3. Comparison of objectification
methods

All objectification methods presented in Table 5 showed

good performance in detecting CM/DIF responses (51). The

ROC curves of the objectification methods for all mixed

frequencies are shown in Figure 4. The DL method performed

best (AUC = 0.97, accuracy = 92%), followed closely by

Hotelling’s T2 test (AUC = 0.96, accuracy = 91%). Statistically,

this difference was not significant (p = 0.14). In contrast,

the correlation analysis method underperformed as a classifier

(AUC = 0.85; accuracy = 83%). This difference was statistically

significant (DL p < 0.001; Hotelling’s T2 test p < 0.001). Table 5

shows the performance of the algorithms for all frequencies.

TABLE 3 Fleiss’ kappa among all three examiners.

Frequency (Hz) Fleiss’ kappa Interpretation

250 0.748 Substantial agreement

500 0.860 Almost perfect agreement

750 0.868 Almost perfect agreement

1,000 0.858 Almost perfect agreement

1,500 0.799 Substantial agreement

2,000 0.740 Substantial agreement

Mean 0.815 Almost perfect agreement

Interpretation according to Landis and Koch et al. (50).

4. Discussion

This study demonstrates that it is possible to objectively

and automatically determine whether a CM/DIF response

is present or not. All three algorithms investigated showed

very good to excellent discrimination performance. Especially

Hotelling’s T2 test and the DL method revealed excellent results

(mean accuracy was 91 and 92% with an AUC of 0.96 and

0.97, respectively).

4.1. Preprocessing

ECochG traces are usually displayed as averaged signals

(both, intra,- and postoperatively). During signal recordings,

noisy epochs can affect the signal quality and reduce SNR

(34). In addition, there are large inter-individual differences.

While some patients show very prominent potentials, in

others the signal amplitude is small (1, 3, 10, 12, 52). If

ECochG is to be used routinely in the operating room and

postoperative setting, however, all patients (including those

with small signals) must be analyzed. In our cohort, the

previously described Gaussian weighted averaging method

(34, 35) showed a substantial increase in SNR of ECochG

signals of all frequencies. Our calculations improved the

mean SNR by 1.68 dB. Kumarange et al. were able to

improve the SNR by 3.5 dB. However, they used extracochlear

ECochG recordings, whereas we measured from inside

the cochlea.

TABLE 4 Overview of the stimulation frequencies, the individual intensities, and the SNR.

Frequency (Hz) Threshold n Ampl (dB) Ampl STD SNR (dB) SNR STD n visible % n visible

250 Supra 226 27.33 2.71 2.68 1.34 49 21.7

Near 222 26.19 2.32 2.32 0.40 10 9.0

Sub 135 26.50 2.21 2.28 0.27 6 4.4

500 Supra 301 27.61 5.32 4.41 5.55 144 47.8

Near 283 25.00 2.48 2.62 0.66 43 15.2

Sub 161 24.50 2.60 2.37 0.39 2 1.2

750 Supra 225 28.00 5.92 4.20 5.30 114 50.1

Near 272 25.30 3.45 2.80 2.70 63 23.2

Sub 190 24.92 2.84 2.41 1.17 12 6.3

1,000 Supra 212 29.62 7.88 5.64 6.96 120 56.6

Near 333 25.24 3.86 2.95 2.83 123 36.9

Sub 200 24.09 2.60 2.38 0.78 10 5.0

1,500 Supra 193 27.44 6.31 3.98 5.18 102 52.8

Near 301 24.38 3.11 2.40 1.20 67 22.2

Sub 187 23.84 3.43 2.30 1.03 8 4.3

2,000 Supra 176 27.35 7.05 4.24 5.39 110 62.5

Near 270 24.09 3.23 2.40 0.95 81 30.0

Sub 227 23.23 3.23 2.42 1.02 35 15.4

Frequency, pure tone frequency in Hz; Ampl, peak-to-peak amplitude (dB re 1 µV): SD, standard deviation; SNR, signal-to-noise ratio; n, number of entries. n visible: signals where all

examiners indicated a visible cochlear microphonic component.
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TABLE 5 Performance of objectification methods.

Frequency Correlation analysis Hotelling’s T2 test Deep learning

(Hz) Acc Sens Spec CI AUC Acc Sens Spec CI AUC Q Acc Sens Spec CI AUC

250 0.92 0.19 1 0.04 0.64 0.90 0.83 0.91 0.04 0.96 90 0.96 0.88 0.98 0.03 0.98

500 0.85 0.50 0.99 0.05 0.91 0.93 0.95 0.92 0.03 0.97 80 0.92 0.94 0.91 0.04 0.97

750 0.84 0.50 0.98 0.05 0.88 0.93 0.91 0.93 0.04 0.98 100 0.94 0.91 0.95 0.03 0.97

1,000 0.81 0.58 0.94 0.05 0.84 0.86 0.95 0.82 0.05 0.97 85 0.91 0.88 0.92 0.04 0.97

1500 0.82 0.42 0.97 0.05 0.82 0.95 0.95 0.94 0.03 0.99 105 0.93 0.95 0.92 0.04 0.99

2,000 0.77 0.44 0.95 0.06 0.81 0.89 0.78 0.96 0.05 0.91 100 0.84 0.71 0.92 0.06 0.92

all 0.83 0.52 0.95 0.02 0.85 0.91 0.91 0.91 0.02 0.96 0.92 0.88 0.94 0.02 0.97

Q is the number of TVMs used in Hotelling’s T2 test. The optimal number of TVMs depends on the frequency and is given in the Q column. Stim, stimulus frequency (Hz); Acc, accuracy;

Sens, sensitivity; Spec, specificity; CI, 95% confidence interval; AUC, area under the receiver operator characteristic curve; Q, number of used TVMs for Hotelling’s T2 test.

FIGURE 4

ROC curves comparing correlation analysis, Hotelling’s T2 test, and deep learning (DL) methods. The false positive rate (FPR) is the dependent

variable (x-axis) in the DL and correlation algorithms. As Hotelling’s T2 test does not specify probabilities, we used p-values instead. Since p is

inversely proportional to probabilities, we mapped 1-p. The black line shows a random classifier. ROC, receiver operator characteristic; p,

p-value.

4.2. Visual analysis

In our study, the visual evaluation of the data was

carried out by three independent examiners who have many

years of experience in this field. Per recording, it took them

12 s on average to judge if a signal was present or not.

In contrast, with the described computer algorithms, the

evaluation was available after a few milliseconds. This time

span may not sound like much. But it is crucial, especially

in the intraoperative real-time setting, where immediate

decisions must be made to prevent possible inner ear

injury.

Regarding the visual analysis, the agreement of the three

examiners was very good, especially in the frequency range

between 500 and 1,000 Hz. Disagreements occurred mainly

in borderline cases with low SNRs (another reason why the
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SNR needs to be improved, if possible). The agreement among

the experts was still substantial, but lower 250 Hz and for

the two highest frequencies (i.e., 1,500 and 2,000 Hz). At 250

Hz, among all measured intracochlear ECochG, the SNR was

the lowest (also refer to Table 4) (8). For the two highest

frequencies, in some cases, it was difficult to distinguish

between natural signal fluctuations and reproducible CM/DIF

signal components.

It is important to note that a low SNR can affect the

waveform morphology. In our data, e.g., CON and RAR

responses did not evolve in opposite directions to each other,

or there was a change in the usual morphology (e.g., the

characteristic frequency of the CM/DIF signal was too low,

or the ECochG traces had an irregular shape). This resulted

in one examiner detecting a CM/DIF response while the

other detected only noise. In our analysis, we found that

the overall agreement was high, but one expert was rather

cautious and another more tolerant in his assessment. This

issue can be addressed by using an automated, quantitative

and objective evaluation method, as suggested by our study.

This allows for a uniform evaluation of the signals, which

simplifies the comparison between individuals and different

implantation centers or even makes it possible in the first

place.

The analysis of the three stimulation levels showed that

supra-threshold stimulation most frequently elicited a visually

present CM/DIF signal. In addition, the SNR (except at 250

Hz) was substantially higher compared to the near- and sub-

threshold levels. With supra-threshold stimulation, in our

cohort, for the frequencies 500 Hz and above, a clear CM/DIF

response was detected in 53.3% of cases. This implies that

in a significant proportion of cases, no clear response could

be detected. Additionally, this is despite the fact that most

of the measurements took place in a postoperative setting

and patients had a measurable residual hearing on the day

of examination. However, it should be noted that the PTA of

our study population shows a large variance and was, in some

individuals, above 90 dB (compare Table 1). Consequently, the

stimulus intensity was not always equally above the hearing

threshold. In addition, recordings were measured from 4

different electrodes. For many subjects, ECochG responses were

not visible at all electrodes. In literature, the situation regarding

the prevalence of CM/DIF responses when stimulating above

the hearing threshold is controversial. While some authors

have found a close correlation between hearing threshold and

CM/DIF signal threshold (11), other scientists have not found

a clear relationship (1, 2, 8, 9, 12, 22, 23). Based on our

data (refer to Table 4), we must assume that this correlation

is both level- and frequency-dependent. For near-threshold

and sub-threshold simulations, we detected significantly fewer

visually detectable ECochG signals. Interestingly, the sub-

threshold stimulation also showed CM/DIF responses in some

cases (9, 23). Especially at 2,000 Hz, this finding was more

pronounced.

4.3. Comparison of the objectification
methods

In our study, DL with CNN AlexNet on time-frequency

scalogram plots using CWT showed the best discrimination

performance. The advantage of this method is that the

morphology of the electrophysiological signal is taken into

account. Similar to visual inspection, our algorithm was able to

identify the CM/DIF response in the time-frequency scalograms

shown in Figure 3. Another advantage of DL is its independence

from preprocessing steps of ECochG signals (e.g., filtering). We

trained our network with both, filtered and unfiltered data and

could observe an almost identical accuracy of 90%.

Hotelling’s T2 test showed the highest sensitivity of our

tested algorithms. This high sensitivity is also known from other

research (27–29). However, in order to achieve good results with

the Hotelling T2 method, the signal must be free of artifacts

and baseline wander. Both signal phenomena occur in ECochG

measurements and must be addressed by using preprocessing

steps. Furthermore, an optimal length of the TVMs must be

defined. This is a trade-off; if the TVMs are too long, they

contain the natural fluctuation of the ECochG signal (e.g., peaks

and valleys). This results in TVMs with zero amplitude (similar

to noise). If the TVMs are too short, the robustness and thus the

test sensitivity decreases (overfitting) (29, 39).

Finally, the correlation analysis gave good objectivity to our

data, although it did not reach the performance of the other two

methods. It should be noted that signal artifacts can also have

a high correlation and thus reduce the accuracy of this method.

Such artifacts arise, e.g., from stitching or other unwanted effects

(25). To overcome this, one could try to eliminate artifacts with

more elaborate techniques or correlate only segments that are

not affected.

In summary, the DL algorithm and Hotelling’s T2 test

are very well suited for the objective assessment of ECochG

signals; we achieved a high accuracy with both approaches. By

using one of these methods, we can evaluate CM/DIF signals

independently of the expertise of the examiner. In this article, we

focused on the methodology itself with the question of whether

a CM/DIF response was present or not. In the next step, further

calculations could be included. For example, the evolution of

amplitude or latency during electrode insertion. Furthermore,

the advantages of the methodology are the immediate result

as well as the reproducibility, which allows the comparison i)

between individuals, ii) between different implant centers as

well as iii) of longitudinal data. Finally, an automated ECochG

assessment tool would pave the way for future standardized and

widespread use in the clinical setting.
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4.4. Limitations

Our data set was limited to 4133 ECochG recordings.

Additional signals would further improve the methodology,

increase the generalization of our models and reduce overfitting.

Moreover, the data were visually reviewed by three experts. If

more experts were incorporated into the algorithm, this may

also refine the evaluation. Systemic noise can hamper the use of

objective algorithms. In particular, the correlation analysis and

Hotelling’s T2 test were found to be vulnerable. The DL method

on the other hand was less dependent on data preprocessing and

less sensitive to noise interference.

We have applied our methodology only when the electrode

position was stable. In the next step, the objectification methods

must also be tested during insertion, i.e., when the electrode

is in motion. Furthermore, in the current study, we restricted

ourselves to the CM/DIF signal. However, the methodology

could also be used for the other signal components (i.e.,

ANN/SUM, CAP, SP). The combination of different data

features is also advisable (4, 53) and must be evaluated in a

future study.

5. Conclusion

Objectification of ECochG signals is possible with the

methods presented in this paper. Our DL algorithm and

Hotelling’s T2 test achieved a high accuracy to detect CM/DIF

responses that had previously been identified by three ECochG

experts. Objective automatic analysis of CM/DIF signals

enables standardized, fast, accurate, and examiner-independent

evaluation of ECochG measurements.
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For characterizing the complexity of hearing deficits, it is important to consider

di�erent aspects of auditory functioning in addition to the audiogram. For

this purpose, extensive test batteries have been developed aiming to cover

all relevant aspects as defined by experts or model assumptions. However,

as the assessment time of physicians is limited, such test batteries are often

not used in clinical practice. Instead, fewer measures are used, which vary

across clinics. This study aimed at proposing a flexible data-driven approach

for characterizing distinct patient groups (patient stratification into auditory

profiles) based on one prototypical database (N = 595) containing audiogram

data, loudness scaling, speech tests, and anamnesis questions. To further

maintain the applicability of the auditory profiles in clinical routine, we built

random forest classification models based on a reduced set of audiological

measures which are often available in clinics. Di�erent parameterizations

regarding binarization strategy, cross-validation procedure, and evaluation

metric were compared to determine the optimum classification model. Our

data-driven approach, involving model-based clustering, resulted in a set of

13 patient groups, which serve as auditory profiles. The 13 auditory profiles

separate patients within certain ranges across audiological measures and

are audiologically plausible. Both a normal hearing profile and profiles with

varying extents of hearing impairments are defined. Further, a random forest

classification model with a combination of a one-vs.-all and one-vs.-one

binarization strategy, 10-fold cross-validation, and the kappa evaluationmetric

was determined as the optimal model. With the selected model, patients

can be classified into 12 of the 13 auditory profiles with adequate precision

(mean across profiles = 0.9) and sensitivity (mean across profiles = 0.84).

The proposed approach, consequently, allows generating of audiologically

plausible and interpretable, data-driven clinical auditory profiles, providing

an e�cient way of characterizing hearing deficits, while maintaining clinical

applicability. The method should by design be applicable to all audiological

data sets from clinics or research, and in addition be flexible to summarize
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information across databases by means of profiles, as well as to expand

the approach toward aided measurements, fitting parameters, and further

information from databases.

KEYWORDS

auditory profiles, precision audiology, data mining, machine learning, patient

stratification, audiology

Introduction

It has become increasingly evident that characterizing

hearing deficits by the audiogram alone is not enough.

In addition to a loss of sensitivity, other factors, such as

suprathreshold distortions, determine how well individuals can

understand speech in daily life and communicate efficiently (1–

5). However, it is yet an open issue which measures should

be applied to achieve “precision audiology,” i.e., to characterize

the individual patient as completely and exactly as necessary

without losing too much time on comparatively irrelevant

measurements. Hence, a number of approaches were described

in the literature that differ in their general purpose, their amount

of measurements included, and their evaluation method to

characterize the most relevant measures.

For instance, van Esch et al. (6) proposed a test

battery (“auditory profile”) for standardized audiological testing

comprising eight domains (pure-tone audiometry, loudness

perception, spectral and temporal resolution, speech perception

in quiet and in noise, spatial hearing, cognitive abilities, listening

effort, and self-reported disability and handicap) aiming to

describe all major aspects of hearing impairment without

introducing redundancy among measures. Similarly, the BEAR

test battery was proposed for research purposes to characterize

different dimensions of hearing and was evaluated with patients

with symmetric sensorineural hearing loss (7). In spite of the

benefit of the proposed test batteries, widespread adoption in

clinical practice is currently lacking. The complete BEAR test

battery, for instance, takes ∼2.5 h to complete (7), even though

a shorter version for clinical purposes was also proposed in

(8). Nevertheless, in clinical practice, time is short and the

assessment of patients on such a multitude of tests may not

be feasible.

To tackle time constraints, Gieseler et al. (9) aimed at

determining clinically relevant predictors for unaided speech

recognition from a large test battery, thus, reducing the amount

of required tests. They showed that pure-tone audiometry,

age, verbal intelligence, self-report measures of hearing loss

(e.g., familial hearing loss), loudness scaling at 4 kHz, and an

overall physical health score were most important in predicting

unaided speech recognition, with the pure-tone audiometry

serving as the best predictor. Their model, however, left

38% of the variance in predicting unaided speech recognition

unexplained, indicating that further measures may be related to

unaided speech recognition. At the same time, their analyses

were tailored toward explaining unaided speech recognition

performance as an outcome measure. Predictors for aided

speech recognition performance, in contrast, or other outcome

measures, may vary. In Lopez-Poveda et al. (10), for instance,

temporal processing deficits as measured by the frequency-

modulation detection threshold (FMDT) were shown to be most

relevant in predicting aided speech recognition performance.

When including only predictors available in clinical situations,

however, the unaided speech recognition threshold (SRT) in

quiet was determined to be the best predictor. This demonstrates

the discrepancy between research and clinical applications and

highlights the importance to analyze insights from both clinical

and research datasets in combination. It further shows that the

relevance of predictors depends on the outcome measures, as

different predictors were determined most relevant for unaided

and aided speech recognition.

To improve patient characterization in the field of audiology,

patient data, therefore, need to be summarized efficiently and

flexibly. By summarizing patient data flexibly, the generated

knowledge could be used in a variety of settings (e.g., in

clinics, for mobile assessments, and decision-support systems

in general), and for a variety of outcome measures (e.g.,

diagnostic outcomes or unaided and aided speech recognition

performance). This, however, poses several challenges. First,

patients need to be characterized across different dimensions

of hearing loss. Second, to gain insights from a diverse patient

population, data aggregation across databases is required, which,

however, is hindered by the heterogeneity in the applied

measures across clinical and research databases in the field of

audiology (11). Lastly, for the general applicability of the stored

information, it needs to be accessible via measures also applied

in clinical settings, such that physicians can be supported.

To tackle these challenges, different approaches toward

patient stratification exist that involve identifying subgroups in

patient populations based on measurement data from single

measures or from interrelations of measures. An example of

a data-driven stratification based on single measures is the

Bisgaard standard audiograms by (12). There, a set of 10

standard audiogram patterns occurring in clinical practice
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were defined. This has subsequently resulted in a variety of

studies investigating outcome measures such as aided SRTs

in relation to the 10 audiograms [(9, 13–15), to name a

few], aiming toward precision audiology, thus, demonstrating

the promising nature of finding sub-classes in the field

of audiology. In contrast, an expert-based approach, based

on single measures, was proposed by Dubno et al. (16)

that linked four audiometric phenotypes to knowledge about

possible etiologies from animal models of presbyacusis via

expert decisions. Schematic boundaries for the five phenotypes

“older-normal,” “pre-metabolic,” “metabolic,” “sensory,” and

“metabolic+sensory” are provided which allow for inferences of

etiologies, given patient presentations of presbyacusis.

In contrast to patient stratification based on single measures,

Sanchez-Lopez et al. (17) introduced a data-driven profiling

method based on multiple measures using a combination of

unsupervised and supervised machine learning. Based on the

hypothesis that two distortion types for the characterization

of hearing loss exist, four distinct profiles were generated by

means of principal component analysis and archetypal analysis.

Thereby, the most important variables for the characterization

of each distortion dimension were estimated and employed to

identify the most extreme data combinations (archetypes). All

patients of two existing research data sets (containing a certain

battery of tests) were labeled with the most similar archetype.

In a second step, decision trees were built to allow for the

classification of new patients into the four auditory profiles. The

obtained profiles are interpretable as they were defined based on

the hypothesis of two distortion components and the variables

used for classification are known. The meaning of the two

distortions, however, was different depending on the available

measures in the respective data set.

Sanchez-Lopez et al. (18) improved the profiling method

to be more robust (e.g., due to bootstrapping, a more flexible

number of allowed variables, and estimating the association of

a patient to a profile based on probability) and applied it to

the BEAR test battery (7), which was designed for the purpose

of including all relevant measures according to the literature

and previous work. As a result, a plausible interpretation of

the two distortion dimensions was obtained, namely being

associated with speech intelligibility and loudness perception,

respectively (18). However, by tailoring their analyses toward

four extreme distinct profiles and by using archetypal analysis, a

priori hypotheses were included in the derivation of the profiles.

Consequently, further distinctions between patient groups may

be lost.

A further example of summarizing audiological data

efficiently is provided by Buhl et al. (11, 19). The Common

Audiological Functional Parameters (CAFPAs) were derived

by experts and aim at representing audiological functions in

an abstract and measurement-independent way. The CAFPAs

further act as an interpretable intermediate layer in a

clinical decision-support system. Prediction models allow for

a data-driven prediction of CAFPAs (20) and a subsequent

classification into audiological findings (21). However, to relate

new measures from further data sets to the CAFPAs, experts

are currently required for labeling purposes, which consequently

does not allow for the automatic integration of new data sets

containing additional measures.

The aforementioned methods all contribute toward

enhancing patient characterization but are either restricted

to single measures or include prior assumptions regarding

the distinction of patient groups or audiological functions.

Consequently, not all existent differences between patient

groups may be detected. In this study, we aim at (1) providing

a method for a fully data-driven stratification of patients into

subgroups based on audiological measures, namely auditory

profiles. This patient stratification approach is not restricted

in terms of prior assumptions, the number of patient groups,

and contained measures. In that way, all differences between

patient groups can be summarized independently of outcome

measures. The auditory profiles aim to describe patient groups

with similar measurement ranges across audiological measures

and are defined based on the contained patient patterns,

instead of prior assumptions. In future, profiles could, hence,

be combined, added, or removed, depending on the provided

insights gained from applying the profiling approach to further

data sets, as well as based on the relevance of profile distinctions

in clinical routine. The applicability of defined profiles to

different settings (e.g., clinical settings) can, however, only

be obtained if the knowledge from within the profiles, in the

form of plausible ranges for the contained measures, can be

linked to patients, given their results on widely used measures

(e.g., pure-tone and speech audiometry). We, therefore,

further aim at (2) maintaining clinical applicability by building

classification models using random forests, based on measures

available in clinical routine. This allows for classifying new

patients into the auditory profiles. In clinics, it could support

physicians to associate a new patient to a profile and in that

way exploit statistical knowledge available for the respective

profile.

The current study, thus, aims at answering the following two

research questions:

RQ1: Does our proposed profiling approach result in a

meaningful and distinct grouping (auditory profiles) of patients

with respect to important hearing loss factors contained in the

employed data set?

RQ2: Which classification model can provide high precision

and sensitivity in classifying patients into the auditory profiles

using only a subset of the contained audiological measures?

Materials and methods

Data set

To define the first set of auditory profiles, we analyzed

an existing data set that was provided by Hörzentrum
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Oldenburg gGmbH and is described in detail in Gieseler

et al. (9). In contrast to Gieseler et al. (9), we did not

exclude any patients with, e.g., an air-bone gap >10 dB

HL but aimed for a diverse patient sample. Our patient

sample, consequently, consisted of all patients that completed

the full test battery, resulting in 595 patients (mean age =

67.6, SD = 11.9, female = 44%) with normal to impaired

hearing. For each patient, information with respect to a broad

range of measures, including audiogram data, loudness scaling,

speech tests, cognitive measures, and anamnesis questions

is contained.

The contained measures either are, or can easily be

integrated into clinical routine. The audiogram and the

Göttingen sentence test (GOESA) (22) are commonly used

for the assessment of individuals’ hearing status. The former

assesses an individual’s thresholds across frequencies; the latter

assesses the speech recognition threshold (SRT), here, in noise

for the collocated condition (S0N0). Both the audiogram

and the GOESA are used in hearing aid fitting, for gain

adjustments, and as an outcome measure, respectively. From

the contained measures, we used several features to generate

the auditory profiles (see Table 1 for an overview of the

features). For the audiogram, the pure-tone average (PTA,

threshold averaged across 0.5, 1, 2, and 4 kHz) for air-, and

bone conduction was used for the more severely affected ear.

Asymmetric hearing loss was accounted for via the inclusion

of an asymmetry score (absolute difference between PTA of

left and right ear). Additionally, the air–bone gap (ABG),

the PTA of the Uncomfortable Loudness Level (UCL), and

the Bisgaard standard audiograms (12) were derived from the

audiogram. The Bisgaard standard audiograms were included

to allow for a separation of different audiogram patterns (e.g.,

moderately and steeply sloping audiograms), while reducing

the dimensionality of the audiogram. A further speech test

[digit triplet test (DTT)] (23) was included to add information

to the auditory profiles from a measure mainly used for

screening purposes. The adaptive categorical loudness scaling

(ACALOS) (24) provides relevant information with respect to

an individual’s loudness perception and recruitment, and has

also shown its effectiveness in hearing aid fitting (25). To

characterize both the lower and upper part of the loudness

curves, both L15, L35, and the difference between L15 and

L35 were selected as features. As a relation between cognition

and hearing exists (26), the age-normed sum score from

a screening test for dementia (Demtect) (27) and the raw

score from a measure of verbal intelligence [Vocabulary test

(WST)] (28) were also included. Further, information regarding

the socio-economic status (sum score of education, income,

and occupation) (29), the presence of tinnitus [none (1),

unilateral (2), bilateral (3)], and the age of the patients

were available.

TABLE 1 Overview of audiological domains and features used for the

generation of the profiles.

Domain Number of

features

Features

Audiogram 6 AC PTA, BC PTA, Asymmetry

(left/right ear), ABG, UCL PTA,

Bisgaard standard audiograms

Loudness Scaling 6 ACALOS (L15,L35, L15-L35) for 1.5 &

4 kHz

Speech tests 3 GOESA (SRT, slope), DTT (SRT)

Cognitive measures 2 DemTect score, WST score

Anamnesis 3 Tinnitus, Socio-economic status, age

Features used for the classification into the profiles are shown in bold.

Generating auditory profiles using
model-based clustering

To generate auditory profiles that are capable of

separating patients with respect to ranges of audiological

tests, we applied clustering, as it has shown promising

for purposes of patient stratification. For the current

analyses, the clustering pipeline consists of two steps,

namely robust learning and profile generation (see Figure 1

for visualization).

Robust learning

Bootstrapping and imputation of missing data

As bootstrapping techniques have shown to improve

the robustness of clustering solutions (30, 31), we first

subsampled the data set 1,000 times containing 95% of the

original data set. We chose subsampling over resampling

with replacement, in order to avoid duplicate samples being

seen as a “mini”-cluster, hence, artificially increasing the

number of clusters. As missing values existed in the original

data set, each of the 1,000 subsamples also contained

missing values and needed to be imputed. Missing values

pose a common problem in clinical data sets, and a

loss of patient information, e.g., complete-case analysis, is

often undesirable, thus, requiring an adequate technique to

solve it.

Consequently, for audiogram data, prior to extracting pure-

tone averages and Bisgaard standard audiograms, missing

thresholds were interpolated if the thresholds prior to and after

missing values were available. For the remainder of missings

(on average 1.5% with a maximum of 2.5%), multivariate

imputations with chained equations (MICE) (32) was applied.

MICE results inmultiple completed data sets that account for the

uncertainty that stems from imputing missings. With MICE, the
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FIGURE 1

Analysis pipeline to generate auditory profiles. After selecting the optimal model parameters (robust learning, upper part), model-based

clustering is applied to the original data set (profile generation, lower part).

analyses of interest are subsequently performed on all completed

data sets and the results are combined (32). For the present

analyses, we generated 20 completed data sets. Accordingly,

clustering was performed on each of the 1,000× 20 data sets.

Model-based clustering

Before clustering, we transformed the features of Bisgaard

standard audiograms and tinnitus and treated them as

continuous for clustering purposes. Bisgaard standard

audiograms were ordered with respect to increasing PTA;

tinnitus with respect to its absence, unilateral, or bilateral

presence. All features (see Table 1) were then scaled using min–

max scaling, resulting in values between 0 and 1. As the number

of features (N = 20) can be considered small, we refrained

from further dimensionality reduction and instead aimed at

maintaining a balance of the number of features stemming

from the different measures. Depending on the clustering goal,

dimension reduction with, e.g., principal component analysis

can prove problematic as the reduction of dimensionality could

also lead to the removal of information that would have proved

to be discriminatory for the clustering goal (33).

On the scaled feature set, we applied model-based

clustering. Model-based clustering was especially suitable for

our purposes of uncovering patient groups existent in the

data set, as it assumes that the data stem from a mixture

of subgroups. The mixture of subgroups is further assumed

to be generated by an underlying model which model-

based clustering aims to recover (34, 35). For this purpose,

the number of clusters k and a parameterization of the

covariance matrices with respect to their shape, size, and

orientation [see (36) for possible covariance parameterizations]

need to be specified beforehand. Subsequently, each cluster’s

mean vector muk and covariance matrix Σk is learned

and a likelihood estimate for the given clustering solution

is computed.

In contrast to simpler clustering techniques such as k-

means clustering, model-based clustering is able to detect

more complex shapes in the data (37). It is, therefore,

more suitable for our purposes of detecting all plausible

differences in the data. At the same time, the parameterization

of the covariance matrices can constrain the complexity

of the clustering solution by enforcing stronger restrictions

and reducing the number of parameters that need to be

estimated (38). To select the most suitable model, all candidate

parameterizations (k and covariance matrix parameterization)

are computed and the model with the highest likelihood of

explaining the underlying data structure is selected using the

Bayesian Information Criterion (BIC) (39). More complex

clustering structures (i.e., less covariance matrix restrictions)

may suffice in explaining the dataset with fewer clusters

but require the estimation of a much larger number of

parameters and are, thus, not always feasible with smaller

datasets. Less complex clustering structures, in contrast, could

explain the same underlying data structure by increasing

the number of clusters (38). This also holds for increasing

the number of features used for clustering. Increasing the

number of features increases the number of parameters to

be estimated (i.e., the complexity), which, however, can be

reduced by restraining the covariance matrices. This may, in

turn, increase the number of estimated clusters required to

explain the data. To avoid increasing the number of clusters

beyond clusters that enhance the explanation of the data

structure, however, the BIC penalizes for the complexity of

the covariance parameterization and number of clusters k, and
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thus, results in a trade-off between model complexity and over-

parameterization (34).

Here, for each of the 1,000 × 20 data sets, we computed all

potential parameterizations for 2–30 clusters and then derived

the optimalmodel for each data set using the BIC, which resulted

in 1,000 × 20 candidate models. The dimensionality of the

candidate models was then reduced across the 20 completed

data sets of each of the 1,000 subsamples. The most frequently

occurring model parameterization was selected as a candidate

model, resulting in a reduced set of 1,000 candidate models. We

then defined the overall optimal model via its frequency across

the 1,000 candidate models, which resulted in an estimate for the

model parameters (i.e., the number of profiles and the model’s

covariance parameterization).

Profile generation

In the profile generation step, we generated the auditory

profiles using the original data set without prior subsampling.

First, we imputed missings using multivariate imputation with

chained equations (MICE) in the same manner as described in

Section Bootstrapping and imputation of missing data. Thus,

20 completed data sets were generated with differing estimates

for missings. Second, we applied model-based clustering

using the estimated optimal model structure from the robust

learning step for each completed data set, which resulted in

20 candidate clustering solutions. From these 20 candidate

clustering solutions, we aimed to select the solution showing the

highest overlap with the remaining solutions regarding patient

allocation into the clusters. The rationale behind this is that,

since model parameters are kept constant, differences between

clustering solutions stem from differences in the imputed values.

The solution showing the highest overlap can then be assumed

to be least influenced by imputed values, as patient allocations

into the clusters were agreed upon by most solutions.

Building classification models to classify
patients into auditory profiles

Features and labels

To allow for the usage of the auditory profiles for different

purposes (e.g., clinical applications), it is necessary to classify

patients into the profiles based on a subset of measures widely

available. Therefore, we built classification models using the

profiles as labels and a reduced set of measures as features.

From the aforementioned features used for clustering (see

Table 1), only the features from ACALOS, GOESA, and the

air-conduction audiogram (PTA, Asym PTA, Bisgaard) were

used next to the age of the patients (12 features), to simulate

the case that these measures were conducted for a to-be-

classified patient.

Model training

For model training, we split the reduced data set, containing

the above-mentioned 12 features, into a training (75% of

patients) and test data set (25% of patients). The training data set

was used for training themodel, which included cross-validation

(CV), model tuning, and the selection of the best model

tuning parameters containing different binarization strategies,

CV procedures, and evaluation metrics defining the prediction

error, and are described in more detail in the following. The best

model is defined as the model minimizing prediction error. We

then evaluated the training data set’s best model on the test data

set to estimate its predictive performance on patient cases not

used for model training, which indicates how the classification

model would generalize on unseen patient cases.

To build the classification models on the training data

set, we used random forests (40), as it has shown competitive

classification performance, while remaining interpretable. It is

also less prone to overfitting and handles relatively small sample

sizes well (41, 42). Random forests are an extension of simple

decision trees. Multiple decision trees are built, each segmenting

the predictor space into several smaller regions, based on derived

decision rules. Predictions are consequently derived from the

ensemble of trees. For classification purposes, the label predicted

most frequently among trees is selected. In other words, it

has the highest estimated probability among candidate labels.

To avoid building correlated trees, the tuning parameter mtry

defines the number of features considered at each split. At each

split, the specified number of features is then randomly sampled

from the feature set, thus, enforcing different tree structures,

which in turn reduce the variance of the predictions (41). For

the current analyses, we tunedmtry using cross-validation.

To provide optimal prediction models for each of

the profiles, we applied different binarization techniques.

Binarization strategies to tackle multi-class problems have

proved beneficial in enhancing predictive performance. They

involve building base learners for binary classification tasks

which are subsequently aggregated to provide a prediction

(43, 44).

Consequently, we compared multi-class classification to

three different binarization strategies. First, we built predictive

models for each auditory profile separately (k models), with the

one-vs.-all (OVA) technique, allowing the model to learn the

specific differences of a profile, as compared to all remaining

ones. Thus, for each profile, we built a classification model that

decides whether a patient belongs to a given profile, or not. If

more than one of the k OVA models predicted that a patient

belonged to its profile, the profile with the highest probability

among candidate profiles is selected, as defined by the frequency

of its prediction in the random forest. Second, we used a one-

vs.-one (OVO) technique to build predictive models for all

k(k-1)/2 profile combinations. Thus, differences between each

pair of profiles were learned. To provide a prediction, voting

aggregation was applied, which means that the most frequently
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predicted profile was selected. Lastly, we used a combination

of OVA and OVO (OVAOVO). Here, again, we used OVA to

predict profile classes. However, for uncertain cases, if more than

one profile was predicted, instead of selecting the profile with

the higher probability, we used OVO to decide upon the final

profile prediction.

Across profiles, a class imbalance exists, either due to

differing profile sizes or due to the applied binarization strategy.

Classifiers trained on imbalanced data sets tend to favor the

majority class over the minority class in order to reduce

the prediction error, which leads to undesirable results if the

minority class is of interest (e.g., in an OVA or OVO model).

Consequently, we upsampled all profiles to contain at least the

number of patients of the largest profile p in terms of sample

size (maxNp). Upsampled patients were selected randomly from

each profile and across features Gaussian noise was added to the

observations (+/- 1 SD). Upsampling with Gaussian noise was

shown to be especially suitable for clinical data sets (45). As a

result, no class imbalance was present for multi-class and OVO.

For OVA, the class imbalance was still present due to the OVA

design. As upsampling would require upsampling for several

magnitudes of the original profile size, and downsampling would

discard too much valuable information, a different technique

was applied. In addition to upsampling to maxNp,we used a

weighted random forest model using cost-sensitive learning.

Thus, weights were introduced, which more severely punished

for the misclassification of the minority class over the majority

class (46). The issue of the tendency toward majority predictions

was, therefore, addressed also for the OVA binarization strategy.

Further, we compared two different CV schemes for optimal

model tuning, namely, leave-one-out CV (LOOCV) and 10-fold

CV repeated 10 times (RepCV). LOOCV is a special case of CV,

in which the validation set consists of only one observation;

RepCV splits the training set randomly into 10-folds, which

is then repeated 10 times. LOOCV provides advantages for

small data sets, as models are trained on larger sample size as

compared to RepCV. However, in return, predictions may have

high variance, as the variation in training sets is small. RepCV,

in contrast, has lower variance due to differing training sets, but

may be biased due to smaller sample size (41).

Lastly, we compared different evaluation metrics

which optimize classifiers to different aspects of predictive

performance. The main measures to evaluate the performance

of a classifier are accuracy, sensitivity, specificity, and precision.

Accuracy defines the ratio between correctly classified instances

and the total sample size. Sensitivity (also called recall) and

specificity are evaluation metrics for binary classification

problems, but can be easily extended toward multi-class

classification problems by employing an OVA binarization of

the classification problem. This, however, again introduces an

imbalance in the data regarding the evaluation. Sensitivity refers

to correctly classifying all classes of interest as positive, whereas

specificity refers to the ability to correctly classify all remaining

classes as negative. The precision of a classifier, in contrast,

determines the preciseness of a classifier. That means precision

is high if no other class was misclassified as the class of interest

(47). The four evaluation metrics we compared in the current

study, namely, Cohen’s kappa, balanced accuracy, F1-score, and

the Area under the precision–recall curve (AUPRC) differently

weight aspects of accuracy, sensitivity, specificity, and precision.

Cohen’s kappa is inherently capable of evaluating multi-class

problems, by comparing the accuracy to the baseline accuracy

obtained by chance (48). Balanced accuracy weights sensitivity

with specificity, and is consequently less able to handle multi-

class problems, since specificity increases with imbalanced

data sets. The F1-score addresses this issue by calculating the

harmonic mean between sensitivity and precision, instead of

sensitivity and specificity. Likewise, the AUPRC has shown to be

especially suitable for imbalanced data (49). To determine the

optimal classifier, it is important to select an adequate evaluation

metric, suitable for the class distribution in the data set. Since we

have different class distributions across our four classification

strategies (multi-class, OVA, OVO, OVAOVO), we compared

different evaluation metrics.

Model selection and evaluation

To select the optimal classification model, we evaluated the

four different classification strategies (multi-class, OVA, OVO,

OVAOVO) on the training data set with respect to the different

metrics (Kappa, balanced accuracy, F1-score, and AUPRC)

and cross-validation procedures (repCV, LOOCV). To compare

the performance of the models that were optimized with the

different evaluation metrics, after training, a general post-hoc

performance measure is needed. Here, we chose the F1-score as

it summarizes both sensitivity and precision, and can adequately

describe the performance of a classifier in case of imbalance.

Accordingly, we determined themodel leading to the highest F1-

score by averaging the F1-scores across profiles and then selected

it as the best performing classification model. Lastly, to evaluate

the predictive performance of the selected classification model

and its generalizability to new data, we evaluated the model on

the test data set. Here, instead of the F1-score, we used both

sensitivity and precision to provide a more thorough assessment

of the classifiers’ performance for the distinct auditory profiles.

Results

Generation of profiles

Estimation of profile number and covariance
parameters

To generate auditory profiles which characterize a diverse

range of patient patterns across measures, the number of

separable patient groups and the covariance parameter were

determined. Figure 2 depicts the distribution of estimated
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cluster numbers across the 1,000 bootstrapped samples. Across

bootstrapped samples, 11–19 profiles were estimated as an

optimal model with a maximum of 13 clusters. Further, the

covariance parameterization “VEI” was selected across all 1,000

subsamples. VEI (variable volume, equal shape, coordinate axes

orientation) is a rather parsimonious model as it restricts both

the shape and axis alignment of the clusters and requires a

diagonal cluster distribution. The sizes of the clusters, however,

may vary. Hence, 13 clusters with the covariance parameter

“VEI” are estimated to represent the data structure best.

Subsequently, the above-defined parameterization (k = 13,

“VEI”) was used to generate profiles on all 20 completed data

sets of the original data set. The completed data set showing

the highest overlap with the remaining completed data sets

regarding patient allocation into the profiles (max_similarity

= 0.794) was selected to base the auditory profiles on. Mean

classification similarity across all 20 completed data sets was 0.75

(SD= 0.032).

Profile ranges across audiological measures

Figure 3 shows the profile ranges of the generated auditory

profiles and Table 2 contains the number of patients contained

in each profile. The profiles cover a large range across

audiological measures and show profile-based differences in

patient presentation of the contained measures. All profiles

can be distinguished from each other based on at least one

audiological feature. The speech test results (Figure 3, blue box)

regarding GOESA and the DTT are generally comparable. The

profiles cover different extents of impairments, ranging from

normal hearing (profile 1) to strong difficulties in understanding

speech in noise (profile 13), as indicated by the increasing SRT.

Likewise, the slope of the GOESA decreases with increasing SRT.

FIGURE 2

Distribution of optimal profile numbers across bootstrapped

samples.

Within the SRT range of −5 to 0 dB SNR, most of the profiles

are contained. Here, the different profiles show similarities

regarding SRT ranges, and the difference between the profiles

can be found via other measures. Audiogram results (Figure 3,

green box) indicate the existence of normal hearing (profile 1),

moderately (profiles 2, 3, 6, 7, 8, 9, 11, 13), and rather steeply

sloping (profiles 4, 5, 10, 12) patterns. Generally, we observe

a trend of increasing thresholds on the audiogram together

with increasing SRTs. There are, however, also exceptions.

Profile 11 displays the highest thresholds across frequencies

and profiles, but does not show the strongest impairment on

the GOESA. Instead, it includes patients with an air–bone gap

and asymmetric hearing loss, as indicated by the asymmetry

score. Profiles can also be distinguished based on the ACALOS

(Figure 3, loudness scaling—yellow box) and the UCL. With

increasing SRTs, we can observe an increase in the UCL, as well

as a decrease in the dynamic range, as shown by the difference

between L35 and L15 for both 1.5 and 4 kHz. In spite of this,

differences exist across profiles unrelated to the increasing SRT.

Profiles 4 and 5, for instance, show overlapping ranges regarding

the SRT, but differ with respect to the UCL. Across cognitive

measures (Figure 3, cognitive measures—orange box), no clear

distinctions across profiles were found. Likewise, ranges for

the age of patients and the socio-economic status (Figure 3,

anamnesis—gray box) overlap across profiles, with the exception

of profile 1 containing younger patients.

To summarize, similarities exist to varying extents between

profiles. Some profiles can be easily distinguished. For instance,

profiles 1 and 2 can be easily distinguished from profiles 11,

12, and 13 across audiogram, GOESA, and loudness scaling

data. In contrast, other profiles only differ on certain measures.

Profiles 2 and 3, for instance, show overlapping ranges on both

the audiogram and the GOESA, but different average loudness

curves and distinct distributions regarding the UCL.

Classification into profiles

Model selection

To allow for a classification of new patients into the

auditory profiles based on a reduced set of measures widely

available in clinical practice, classification models were built

using random forests. Different parameterizations (optimization

metrics, binarization strategies, and CV procedures) were

compared with the aim to provide the classification model

best suited for the auditory profiles. The mtry parameter was

inherently determined within each model.

Figure 4 displays the results of the comparative performance

with respect to the binarization strategies, optimization metric,

and cross-validation procedure on the training data set. Model

performances with respect to the F1-scores were averaged across

profiles to result in an overall F1-score. This allowed for a

selection of the best model parameterization. Profile 7 was not
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FIGURE 3

Profile ranges across measures. Plot backgrounds are colored according to underlying domains. Blue corresponds to the speech domain, green

to the audiogram, yellow to the loudness domain, orange to the cognitive domain, and gray to the anamnesis. Profiles are color-coded (yellow

to violet) and numbered (1-13) with respect to increasing SRT (impairment) on the GOESA.
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selected for averaging, as the number of patients contained in

the profile (N = 6) is not large enough to lead to reliable results

and interpretations.

All models perform well in predicting profile classes, as

indicated by the overall small and high range of mean F1-

scores. The highest F1-score was obtained by the OVAOVO

model using the kappa evaluation metric and repeated 10-fold

CV. Consequently, the OVAOVO (kappa, repCV) model is

selected as the classification model to allow for a prediction

of patients into profiles. Across models, the kappa metric

provided the best results, whereas optimal CV procedures

differed across binarization strategies, with the exception of the

OVAOVO model in which repCV provided the best results for

all evaluation metrics.

Model evaluation

The previously selected optimal model (OVAOVO, repCV)

was selected based on its performance on the training data

set (75% of the patients). To investigate the generalizability of

the classification model to new patients, its performance was

subsequently evaluated on the test data set (25% of the patients).

Figure 5 displays the performance results with respect to the

sensitivity and precision across all profiles.

Generally, the classifier’s performance is adequate regarding

achieved sensitivity and precision on the test data set. Across

profiles 1–6 and 8–13, average precision and sensitivity on the

test data set are 0.9 and 0.84, respectively. Results for profile

7 were plotted for completeness, however, are unreliable due

to the small sample size, since the test data set only consisted

of two patients. Overall test performance is only slightly lower

than training performance for most profiles, except for profiles

3, 6, and 7. For these profiles, the generalization of the learned

classification approach toward unseen data is limited. Profile 3

and profile 6 show low levels of sensitivity, but high levels of

precision. Thus, not all cases of the two profiles are detected,

however, if the two profiles are predicted one can be highly

certain that the patient does, indeed, belong to profile 3 or

profile 6.

Discussion

The aim of this study was to propose a flexible and data-

driven approach to patient stratification in the field of audiology

that allows for a detailed investigation into the combination

of hearing deficits across audiological measures. Our results

demonstrate the feasibility and efficiency of our proposed

profiling pipeline in characterizing hearing deficits in the form

of patient groups, namely, auditory profiles. The proposed 13

auditory profiles separate patients with respect to ranges on

audiological tests. Further, to ensure the applicability of the

auditory profiles in clinical practice with only a basic set of

audiological tests, classification models were built that allow for

an adequate classification of the auditory profiles given such a

reduced set of audiological measures.

Generation of profiles

The proposed profiles aim to represent the underlying

patterns of the current data set best. Hence, the profiles describe

the patterns across measures for the available patients and

etiologies, rather than aiming to cover all generally existent

patient groups with the current set of auditory profiles.

Additionally, the number of profiles that can be generated is

variable and dependent on the underlying data. This becomes

evident when inspecting the distribution of optimal profile

numbers in Figure 2. Across bootstrapped data sets different

profile numbers were suggested. This may in part be due to the

applied method. Different subsets of the bootstrapped data may

miss extreme patient patterns, and thus, lead to a reduction or

increase in suggested profile numbers. This, next to the added

FIGURE 4

Performance of di�erent models on the training data set. The

mean F1-score was calculated as the mean of F1-scores across

profiles 1–6 and 8–13. Metrics and cross-validation schemes

can be distinguished by color and shape, respectively. BA refers

to balanced accuracy. LOOCV refers to leave-one-out

cross-validation; repCV to repeated 10-fold cross-validation.

TABLE 2 Number of patients contained in each auditory profile.

Profile 1 2 3 4 5 6 7 8 9 10 11 12 13

N 27 76 19 24 77 33 6 44 68 51 42 79 39
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FIGURE 5

Train-test data set performance for the OVAOVO (kappa, repCV model) for both sensitivity and precision. The dashed lines indicate the mean

across profiles 1–6 and 8–13 for the respective condition.

uncertainty that stems from imputing missings, may explain

the variability in suggested profile numbers across bootstrapped

samples. By using a bootstrapping approach, where the optimal

number of profiles is defined as the most frequently proposed

profile number, it can be assumed, however, that the effects

of imputations and extreme patient patterns on the generated

profile number were minimized.

The number of profiles may further be influenced by

the employed model restrictions. Since the covariance

parameterization “VEI” restricts both the shape and axis

alignment and requires diagonal cluster distributions, a

parsimonious model was selected as describing the underlying

data structure best. The number of profiles, therefore, may

be large in order to characterize the data structure best with

the given restrictions (38). It would be of interest to apply the

modeling approach to a larger dataset that allows for a less

restrictive model in order to investigate if the resultant number

of profiles would decrease. A more parsimonious model that

leads to a larger number of profiles, however, is in line with our

aim of detecting all plausible differences between patient groups.

Interpretation of profiles

The profiles, generally, cover a large range of different

types and extents of hearing deficits and appear audiologically

plausible. All profiles can be distinguished from each other by

at least one audiological feature and can, thus, be considered as

distinct patient groups regarding audiological measures (RQ1).

The relevance of the distinction has to be evaluated with respect

to the outcome measure of interest. Certain distinctions are,

for instance, not necessarily relevant for diagnostic purposes.

It can be assumed that profiles 4 and 5 would be categorized

as bilateral sensorineural hearing loss (ICD code h90.3) (50)

and could, thus, for purposes of coarse diagnostic classification

be combined. Profile 5, however, shows a lower range of UCL

levels, indicating that loudness would need to be compensated

differently in a hearing aid for patients within profile 5 as

compared to profile 4. The distinctions regarding loudness

perception could influence the benefit that patients within

the separate profiles may experience from hearing aids, if

the same hearing aid parameters are applied to both groups.

This highlights our motivation for flexible profiles that can

be combined or separately considered given different outcome

measures. The exact number of profiles may, therefore, change

with the inclusion of further datasets and also depend on the

targeted outcome measure. The proposed auditory profiles,

however, enable a detailed investigation into differences that

exist between patient groups.

Most of the profiles can be assumed to be caused by

symmetrical sensorineural hearing loss. Profile 11, however, also

contains an asymmetric conductive hearing loss, as indicated by

the presence of both an asymmetry between the ears and an air–

bone gap in the group (51). For the remainder of the profiles,

however, we can interpret the profiles in the consideration of the

four-factor model for sensorineural hearing loss by Kollmeier

(52). The current profiles contain measures that allow for an

estimation of the first two factors (attenuation and compression

loss), but not binaural and central loss. The audiogram can

provide an indirect indication for the attenuation loss, which

is defined as the required amplification for each frequency

to obtain an intermediate loudness perception (L25), whereas

the ACALOS can indicate a compression loss via a reduced

dynamic range (52). Overall, we can observe differences in both
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the audiogram shapes and the dynamic ranges across profiles.

Most importantly, similar audiogram shapes (e.g., profiles 2

and 3) do not necessarily lead to a similar compression loss

and our profiles are able to detect these differences, which is

in line with the assumption of the four-factor model, that the

audiogram alone cannot explain all underlying characteristics

of sensorineural hearing loss. We, therefore, conclude that the

13 auditory profiles provide meaningful information regarding

two important factors of hearing deficits, i.e., attenuation and

compression loss (RQ1), and that the profiling pipeline has the

potential for the detection of patient group differences also for

further datasets, if suitable measures are included.

In general, the interrelation across speech tests, loudness

scaling, and audiogram data lead to a separation of patients

into profiles. For instance, profiles 2 and 3 contain patients

with both similar SRTs and audiogram thresholds. Profile 3,

however, shows a reduced dynamic range with its uncomfortable

loudness level (UCL) thresholds derived from the audiogram

and the range between soft (L15) and loud (L35) sounds on the

ACALOS reduced, which indicates recruitment. This, in turn,

has implications for hearing aid fitting. It can be assumed that

patients within the two profiles require different compression

settings, in spite of similar audiograms (53, 54). In contrast, the

main difference for profiles 8 and 9 lies within their thresholds

on the audiogram, with profile 9 showing about 10 dB higher

thresholds, while showing similar SRT and loudness curve

ranges. The relevance of a distinction between these two profiles,

for both diagnostics and hearing aid fitting, thus, needs to be

further investigated. For other profiles, differences are more

strongly pronounced and they can well be separated.

Certain profiles also align well with the proposed phenotypes

by Dubno et al. (16). Profiles 6, 7, and 9 are consistent with

the metabolic phenotype, and profiles 2 and 3 appear to be

in between the pre-metabolic and metabolic phenotype with

respect to the ranges on the audiogram. Profile 4 can be

described in terms of the sensory phenotype and profiles 5

and 10 as the metabolic + sensory phenotype. However, the

auditory profiles also contain different patterns, with eithermore

severe presentations as described by the phenotypes (profiles

11 and 13), or different slopes in the lower frequency range

of the audiogram (profiles 8 and 12). Further, instead of an

older normal hearing profile to match the older normal hearing

phenotype, only a young normal hearing profile is included.

Regardless, certain probable etiologies can be inferred for the

respective profiles, exemplifying how alternate stratification

approaches could be connected to the auditory profiles proposed

in this study. Since more than one profile can be matched

to sensory and metabolic phenotypes, however, it can, again,

be assumed that further contributors regarding individual

presentations of hearing deficits exist, which are not assessed via

the pure-tone audiogram.

No distinctions across profiles regarding the cognitive

measures were found (WST, DemTect). Even though hearing

deficits and cognitive impairments have been widely associated

(55), the precise causal relationship remains unclear and

some studies did not find significant relations (26). With

the profiles, a slight trend toward increasing impairment on

the DemTect with increasing SRT can be observed; however,

the ranges across profiles overlap substantially. On the one

hand, this may indicate, that none of the present profiles

is significantly influenced by cognitive abilities and that the

observed patterns of hearing deficits may occur for both

cognitively impaired and non-impaired patients. This would

require further investigations and the inclusion of patients

with more severe cognitive impairments. On the other hand,

the DemTect, as a screening instrument, may not be sensitive

enough for detecting a further association between cognitive

impairment and hearing deficits. For the auditory profiles, this

indicates that cognitive differences are not well-represented,

such that patients’ cognitive abilities would need to be assessed

via further cognitive measures that are currently not included in

the database.

The currently available profiles naturally only provide a

picture of the contained measures. It can be assumed that the

inclusion of further measures will enhance the precision of

patient characterization. Of the specified eight domains relevant

for characterizing hearing deficits, defined by van Esch et al. (6),

currently, four are contained in the defined profiles (pure-tone

audiogram, loudness perception, speech perception in noise, and

cognitive abilities). Spatial contributors, i.e., the intelligibility

level difference (ILD) and binaural intelligibility level difference

(BILD) measures, were—unfortunately—not included in the

original database so no relation to the profiles given here

can be provided. However, it can be assumed that they could

provide an enhanced characterization of patients’ hearing status,

as well as prove valuable for hearing aid fitting. Similarly,

measures describing the central factor of hearing loss could be

incorporated if available in a data set, to comply with all four

factors as suggested by Kollmeier (52). Consequently, future

studies should work toward incorporating these measures into

the profiles.

Classification into profiles

By building classification models to match patients into the

auditory profiles using only features from the air-conduction

audiogram, loudness scaling, and GOESA, we aimed for the

applicability of the profiles in a variety of settings. First,

in clinical routine, both the audiogram and a speech test,

measuring the SRT, are the current standard in hearing aid fitting

(56), and in Germany, the GOESA is included in the German

guideline for hearing aid fitting (57). In addition, loudness

scaling has proved promising for hearing aid adjustments (58).

The three measures are, therefore, often available for hearing

professionals and do not extend the testing time of patients

and physicians. If fewer measures are available, e.g., only the

audiogram and the GOESA, or a different set of measures,
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the classification models would have to be retrained for this

purpose. We believe, however, that loudness scaling provides

valuable information for hearing aid fitting and should, thus,

be included in the fitting process. Second, to use the profiles in

further research and clinical data sets, it is important to include

measures that are frequently measured and available. Thus, even

though further measures may be contained in the data sets, it is

necessary to provide classification models containing measures

widely available across data sets.

The present results indicate the feasibility of classifying

patients into most of the profiles. The OVAOVO model with

the kappa loss function and 10-fold repeated CV reached the

highest F1-score and was, therefore, selected as the optimal

classification model for the analyzed dataset. With the model

test set, sensitivity was >75% for all profiles but profiles 3, 6,

and 7 (RQ2). For profile 7, this can be explained by the small

sample size of the profile as only six patients were classified

into the profile. Consequently, the training of a classifier for

profile 7 does not lead to reliable results, and its generalizability

is not assured. In spite of that, we included the results for profile

7 for completeness, since it may provide further separation

from the remaining profiles for the multi-class classifier, by

including counter-examples of patients. Profile 7, however,

cannot yet reliably be used to classify new patients into it.

Further information from databases is needed to investigate

whether this profile represents rare cases or whether this profile

was not represented enough in the present data set to provide

a large enough sample size for classification purposes. Profile

ranges for profile 6 are generally broader than for other profiles;

therefore, misclassifications may have occurredmore frequently,

thus, reducing the sensitivity for profile 6.

The current classification model naturally only covers

patient populations that were also contained in the analyzed

dataset. Given the adequate classification performance of the

classifier, it can be assumed that new patients with similar

characteristics to the patients within the dataset would also be

adequately predicted into the auditory profiles. At the same

time, random forests allow for an estimation of the classification

uncertainty when classifying patients into the profiles. This

uncertainty estimation refers to how often a patient was

predicted into a given profile across the decision trees of the

random forest as compared to the remainder of the profiles.

For certain predictions, there is a high amount of agreement

of the random forest, whereas for uncertain predictions there

is a lower amount of agreement of the random forest. New

patients are, therefore, classified into a given profile with an

estimate of uncertainty, which, in turn, could also indicate if

none of the profiles adequately represents the given patient. This

could then reveal a rare patient case or a patient belonging to

an additional profile that has not yet been defined. Generally,

patients would always be allocated to a profile based on all

measures that are contained in the classification model (i.e.,

audiogram, ACALOS, age, GOESA) and no single feature would

determine the classification. For instance, the analyzed dataset

contains mainly elderly hearing impaired patients and younger

normal hearing patients. Children and younger individuals may,

however, also experience hearing deficits. A classification based

solely on the feature age would lead to amisclassification into the

normal hearing profile 1. The generated classification model, in

contrast, would also consider information from the audiogram,

ACALOS, and GOESA and in that way avoid misclassification

into the normal hearing profile 1.

It can be argued that predictive performance would have

been improved by including all measures in the classification

models. However, we aimed at providing classification models

that can be readily used with measures available across clinics in

Germany, such that no additional testing is required and time

constraints of physicians are met. Consequently, we decided on

a reduced set of measures and aimed at predicting profiles with

widely available measures. In future, it may be of interest to

provide classification models for all combinations of measures,

such that if, e.g., bone-conduction thresholds or more specific

psychoacoustic tests are also available in clinical settings, they

can be used to increase predictive performance with regard to,

e.g., the “binaural” and “central noise” factor (52) involved in

characterizing the individual hearing problem.

One limitation of the present classification is the number

of patients contained in each profile. For further validation

larger and more balanced data sets that also contain more severe

patients are required, which can also be assumed to lead to

improvements in the predictive performance. An increase in

the size of the training set will support the training of the

classifier, whereas an increase in the test set will improve the

certainty of the predictions. Currently, test performance may

have been artificially high for some profiles due to the small

sample size in the test set. However, further reducing the training

size would also not be desirable, as it would increase the bias of

the classificationmodels. Thus, further evaluations on additional

data sets containing further patients are required.

Properties of the profiling approach and
comparison to existing approaches

The current data-driven approach toward generating

auditory profiles to characterize patient groups is not aimed at

being contradictory with hitherto available profiling approaches

but aims at providing a more detailed account of existing patient

groups and offers several advantages.

First, its flexibility in the definition of profiles derived via

purely data-driven clustering allows extending and refining

the profiles, if in further data sets more extreme patient

representations are contained. More specifically, it can be

assumed that applying the profiling approach to additional

data sets containing both similar and more extreme patient

presentations will result in a set of auditory profiles that show

overlap to herein proposed profiles, but also contain additional

profiles. The new set of profiles could then be used to update
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the current set of auditory profiles. As a result, the total

number of auditory profiles is not fixed and instead remains

flexible to include further profiles. Likewise, the presented

profiling pipeline can be applied to additional data sets with

varying measures. In case of differing measures across data

sets, measures not used for clustering purposes could serve as

descriptive features and allow for inference, if these features

occur more frequently in certain profiles. The flexibility in terms

of derived profiles and contained measures could, in future, aid

in comparing patients across data sets. Appropriate means to

combine profiles generated on different data sets, however, need

to be defined. For this purpose, a profile similarity index based

on, e.g., overlapping densities (59) could provide a cut-off score

on when to combine or extend profiles.

Second, profiles are not tailored toward a certain outcome

such as diagnostics or hearing aid fitting. This may, in part,

explain the rather large number of generated profiles, since

profiles may differ with respect to measurement ranges but not

with respect to audiological findings, diagnoses, or treatment

recommendations. By tailoring our analyses toward certain

outcomes, we could have possibly reduced the number of

generated profiles. Our aim, however, was to generate as many

profiles as plausibly contained within the data set such that

all differences between patient groups can be caught. More

specifically, by using Bisgaard standard audiograms also as a

feature for clustering, patients were already separated into 10

distinct audiogram ranges. Combining 10 separate audiogram

ranges with different loudness curves and SRT ranges already

leads to a larger amount of profiles, if these patterns across

measures and patients (i.e., profiles) occur frequently and are

well-distinguishable from other profiles. At the same time,

the flexibility of the profiles by their definition directly on

measurement ranges allows reducing the number of profiles if

only certain outcomes are of interest. For instance, if, in future,

profiles are connected to diagnostic information from further

data sets, profiles leading to a distinction with respect to a

diagnosis could be separated or merged. Similarly, if profiles

are used for hearing aid fitting, only those profiles leading

to separable groups with respect to aided parameters could

be retained.

Third, all patients can be grouped into auditory profiles.

In contrast, in Dubno et al. (16), around 80% of audiogram

shapes were categorized as non-exemplar and could not be

matched into one of the phenotypes, whereas in Sanchez-Lopez

et al. (18), an “uncategorizable” category in addition to the four

profiles exists.

A fourth advantage of the flexibility of our auditory profiles

pertains to its ability to provide complementary knowledge

compared to other profiling approaches, which allows analyzing

the same data sets from different perspectives and potentially

learning more about the inherent patterns. To exemplify, the

profiling approach by Sanchez-Lopez et al. (18) is applicable to

different audiological data sets as well and also comprises the two

steps of profile generation and classification. Both approaches

are data-driven; however, the approach by (18) is based on the

hypothesis of two distortion types which limits the number

of profiles to four. In contrast, our approach is purely data-

driven, that is, the obtained number of profiles directly depends

on the available combinations of measurement ranges in the

respective data set, in order to detect all existing differences

between patients. Each of our profiles (estimated by model-

based clustering) characterizes the group of included patients in

terms of underlying measurement data, while the profiles of (18)

are characterized by one respective extreme prototypical patient

(due to archetypal analysis) and all other patients classified into

a respective profile show less extreme results on the variables

identified by principal component analysis. The profiles of

(18) are interpretable due to the hypothesis of two distortion

types and the variables related to each distortion type; however,

the obtained interpretation depends on the available measures

in the dataset. That means that it needs to be ensured to

employ an appropriate database, as was achieved in Sanchez-

Lopez et al. (18) with the BEAR test battery (7), following the

findings of (17) where the choice of data led to different, not

completely plausible interpretations based on the two different

analyzed datasets. In contrast, our profiling approach does not

include explicit interpretability of every profile yet, but instead,

interpretability needs to be added as an additional step. This can

be done by relating the profiles to the literature as discussed

above, or by including expert knowledge to label the different

profiles. In addition, the type of interpretability required for

different outcome measures considered in future analyses may

be different, and can then be chosen appropriately.

For associating the profiles obtained by the two approaches,

in a first step, the distributions of patient data grouped to

profiles can be manually compared, for instance regarding

audiogram and SRT ranges in Figure 6 of (18) and in our

Figure 3. However, this comparison is limited as only a small

subset of measures is common in the BEAR test battery and

our dataset, as well as due to methodological differences as

discussed above. Instead, it would be interesting to apply the

two profiling approaches to the respective other datasets. As

we have GOESA and ACALOS available to characterize speech

intelligibility and loudness perception, it would be interesting if

the profiling approach of (18) also estimates speech intelligibility

and loudness as the two distortion dimensions based on our

data. Vice versa, the application of our approach to the BEAR

test battery would generate a certain number of profiles, which

could be compared to the profiles obtained in this study (and

thereby to a comparison and potential combination of datasets),

as well as reveal measurement combinations leading to sub-

classes of the four auditory profiles of (18).

Limitations of the profiling approach

Despite the advantages of our purely data-driven profiling

approach, certain limitations persist. At the current stage,
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the profiling approach can detect plausible patient subgroups

in data sets. This property generalizes also to further data

sets containing different sets of measures and a different

patient population. A restriction in the application of the

current profiling pipeline to additional databases is the current

requirement for continuous or at least ordinal features. Relevant

audiological measures may, however, also be categorical with

no inherent ordering. Thus, to also incorporate these measures,

the current pipeline would need to be adjusted to also allow for

categorical features.

The ability to detect differences in patient groups also

depends on the sample size, the contained measures, as well

as the presence of distinctive patient groups within the data

set. If sample sizes are small, a smaller number of patient

groups may be detected in the data sets, which in turn,

would be defined by broader ranges across measures. At the

same time, this could result in an increase in profiles, each

containing only a few patients. This, however, would indicate

that the underlying data set is not suitable for the herein

proposed profiling approach, as nearly no similarities between

patients could be detected. In such a case, it would not

be certain whether a profile corresponds to a patient group

that could also be identified in larger datasets, or whether

it corresponds to outliers in the analyzed data set. Likewise,

if only a few measures are contained in new data sets, not

all existent distinctions between patients may be detected.

Instead, only distinctions regarding the included measures

would be available. Combining profiles generated on further

data sets with the current profiles may, thus, prove difficult.

An estimate of profile “conciseness” could tackle this challenge.

This estimate could refer to the average similarity of patients

within a profile regarding relevant measures. The similarity

between patients with broader profiles will be smaller than

the similarity between profiles with smaller ranges across

audiological measures. As a result, the conciseness estimate

could indicate if the generated profiles on the new data set

only result in a coarse grouping of patients. It could then be

analyzed, whether the coarse grouping could be explained by

a mixture of already available auditory profiles. This would,

however, require an overlap between audiological measures

across the profiles. If the profiling pipeline is applied to a

data set with low overlap regarding measures, the generated

profiles would have to be interpreted separately from the current

set of profiles, until a relation between measures has been

established. This could either occur via available knowledge or

by analyzing a data set that contains an overlap between the

measures of interest. Regardless, newly generated profiles on

further data sets would first need to be analyzed in terms of

general audiological plausibility.

At the same time, the relevance of the distinctions between

patient groups, in general, and for clinical practice needs further

evaluation. This could either comprise asking experts to rate

the plausibility and clinical applicability of the distinctions

between the profiles or incorporating expert knowledge from

other approaches toward patient characterization. The Common

Audiological Functional Parameters (CAFPAs) by Buhl et al.

(21), for instance, provide an expert-based concept of describing

patient characteristics; and in Saak et al. (20), regression

models were built to predict CAFPAs based on features that

are also available for the current auditory profiles. Hence, the

predicted CAFPAs would be available as additional descriptive

information for the profiles generated in this study, and a

consistency check to previous CAFPA classification (60) could

be obtained by analyzing the same data set from different

perspectives (i.e., analysis tools). In that way, both approaches

provide complementary insights, and both contribute to future

combined analysis of different audiological databases. As

a result, physicians’ trust toward applications (e.g., clinical

decision-support systems) using the auditory profiles could be

enhanced, which has shown to be a relevant factor in the

adoption of such systems in clinical routine (61). Additionally, it

can be assumed that the inclusion of more severe patient cases,

e.g., with indications for a cochlear implant, could enhance the

current profiles toward more extreme profile representations.

Currently, profiles can be mostly assigned to mild to moderate

hearing loss. With the inclusion of further data sets, containing

a higher prevalence of severe patient cases, this aspect could

be addressed.

Application and outlook

The herein proposed profiling approach serves as a starting

point for uncovering patient groups and patient presentations

across audiological measures for the increasingly available

amount of larger data sets. Consequently, the proposed profiling

approach needs to be applied to additional data sets, which

include more severe and diverse patient populations, as well

as additional audiological measures to cover further important

factors of hearing loss (e.g., binaural and central components).

The set of auditory profiles would need to be updated after the

inclusion of every further data set by either merging similar

generated profiles or adding new profiles. In that way, it would

conclude in a final set of auditory profiles, if generated profiles

converge. This means that generated profiles on new datasets are

already contained in the set of defined auditory profiles and no

new information is added, thus, resulting in a final set of auditory

profiles describing the audiological patient population.

If the generated auditory profiles describe the audiological

patient population, they could be used in a variety of applications

due to their flexibility. The profiles could efficiently summarize

patient information for a clinical decision-support system.

Likewise, they could also support mobile assessments of patients,

in e.g., a “virtual hearing clinic.” If patients are tested on the

measures used for the classification models (or appropriate

mobile implementations of those measures, ensuring that
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measurements near the hearing threshold are feasible in realistic

environments) they could be classified into a profile. In a

clinical decision-support system, physicians could then be

provided with statistical insights into patients’ hearing statuses,

whereas in virtual hearing clinic patients themselves could

receive information regarding their hearing statuses. To also

provide diagnostic decision-support as well as aided benefit

predictions, however, data from additional data sets containing

these measures need to be incorporated into the current profiles.

A metric allowing for the combination or separation of profiles,

if new profiles are generated on additional data sets, hence, needs

to be defined.

After the final set of auditory profiles has been defined, it

would also be of interest to define a minimum set of tests that

allow for adequate classification of patients into the profiles

across data sets. This could highlight the audiological measures

that are most relevant across all profiles. Likewise, the profiles

could contribute to the selection of the next to-be-performed

measures for characterizing the patients. If classification models

are available for all measurement combinations, measures

leading to the best discriminatory performance across profiles

could be selected next. This, in turn, could reduce the testing

time of the patients, as well as support the derivation of test

batteries covering all relevant aspects of hearing deficits, as in

(5, 6), by highlighting the most important measures.

Conclusion

The proposed data-driven profiling approach resulted in

13 distinct and plausible auditory profiles and allows for

efficiently characterizing patients based on the interrelations

of audiological measures. All patients are characterized and

patient groups with certain characteristics, such as asymmetry,

are not excluded. Due to the profiles’ flexibility by being defined

on the contained patients’ measurement ranges, profiles could

be added or refined, given insights derived from applying the

profiling approach to additional data sets. The profiles concur

with other profiling approaches but are able to detect differences

in patient groups regarding measurement ranges in more detail

than hitherto available approaches.

New patients can be adequately classified into the auditory

profiles for 12 of the 13 auditory profiles. For 10 profiles, both

high precision and sensitivity were achieved (>0.75), and for

two profiles, low to medium sensitivity and high precision were

achieved, and for one profile no classification could be achieved

due to the profiles’ small sample size. Since the classification

model was based on a reduced set of measures often available in

clinical practice in Germany (GOESA, ACALOS, air-conduction

audiogram, and age), clinicians could use the auditory profiles

even without performing a complete audiological test battery,

if a quick classification with less clinical detail is required.

Likewise, all measures required for classifying patients into the

auditory profiles are potentially available also on mobile devices,

facilitating mobile assessments of the patient.

The proposed profiling approach depends on the underlying

data set in terms of the number of profiles or the covered range

of patients. Its properties such as flexibility, not being tailored

toward a specific outcome, or ability to handle incomplete

patient data, however, generalize to other data sets including

additional measures. Appropriate means to combine profiles

generated across data sets need to be defined.

Future research should extend the profiling toward

integrating different data sets with more severe and diverse

patient cases. In addition, binaural measures should be included,

as well as aided data to investigate hearing device benefits with

the profiles.
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Introduction: Acoustic radiation is one of the most important white matter

fiber bundles of the human auditory system. However, segmenting the

acoustic radiation is challenging due to its small size and proximity to several

larger fiber bundles. TractSeg is a method that uses a neural network to

segment some of the major fiber bundles in the brain. This study aims to

train TractSeg to segment the core of acoustic radiation.

Methods: We propose a methodology to automatically extract the acoustic

radiation from human connectome data, which is both of high quality and

high resolution. The segmentation masks generated by TractSeg of nearby

fiber bundles are used to steer the generation of valid streamlines through

tractography. Only streamlines connecting the Heschl’s gyrus and the medial

geniculate nucleus were considered. These streamlines are then used to create

masks of the core of the acoustic radiation that is used to train the neural

network of TractSeg. The trained network is used to automatically segment

the acoustic radiation from unseen images.

Results: The trained neural network successfully extracted anatomically

plausible masks of the core of the acoustic radiation in human connectome

data. We also applied the method to a dataset of 17 patients with unilateral

congenital ear canal atresia and 17 age- and gender-paired controls acquired

in a clinical setting. The method was able to extract 53/68 acoustic radiation

in the dataset acquired with clinical settings. In 14/68 cases, the method

generated fragments of the acoustic radiation and completely failed in a single

case. The performance of the method on patients and controls was similar.

Discussion: In most cases, it is possible to segment the core of the acoustic

radiations even in images acquired with clinical settings in a few seconds using

a pre-trained neural network.
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acoustic radiation, di�usion MRI, tractography, TractSeg, deep learning
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1. Introduction

The acoustic radiation (AR) is a white matter fiber bundle

that connects the Heschl’s gyrus (HG) in the cortex with the

medial geniculate nucleus (MGN) in the mid-brain (1, 2). The

AR is one of the most important fiber bundles of the auditory

system (3), and its analysis is relevant for understanding the

mechanisms of acoustic stimuli processing and how they are

affected by different diseases. For example, diseases such as

tinnitus (4, 5), schwannoma (6), and putaminal hemorrhage

(7, 8) have been associated with changes in the AR. Reliable

methods for extracting the AR are crucial for performing

such analyses.

Extracting the AR with tractography from diffusion MRI

(dMRI) is challenging (9). First, the AR is a relatively short

bundle of approximately 4–6 cm (2), making it especially

sensitive to the low resolution of standard imaging acquisitions

used in clinics. Second, the AR is very close to other bundles

such as the cortico-spinal tract (CST), arcuate fasciculus (AF),

the middle longitudinal fasciculus (MLF), the inferior fronto-

occipital fasciculus (IFOF), and the optic radiation (OR) (10–

12). We have also found that the AR is close to the inferior

longitudinal fasciculus (ILF) in some cases. This closeness to

other bundles can make it difficult for the tractography method

to extract streamlines only related to the AR. Low-resolution

dMRI might be unable to disentangle the crossing and kissing

fiber bundles from the intersection regions along the AR. This

has also been reported as a problem for segmenting neighboring

fiber bundles (12). Moreover, MGN, HG, and AR have a large

variability among subjects (2, 9, 11, 13).

The fiber bundle connecting the MGN with the HG can be

considered the core of the AR. In their review, Maffei et al. (9)

discussed that, in addition to the core of the AR, there is evidence

from ex vivo studies on macaque monkeys that the AR might

have extra layers of fibers that create a “belt” that can go beyond

the HG and reach the superior temporal gyrus (STG) (14, 15).

The core and this belt of the AR are thought to have different

functions. The core of the AR might be involved in basic tone

processing. In contrast, the belt might be involved in integrating

auditory information with other sensory information. Since

their purpose is different, neurological and auditory conditions

can affect the core and the belt of the AR differently. Thus,

having independent segmentation masks for the core and the

belt is relevant for further analyses. In this article, we focus on

generating segmentation masks of the core of AR.

Different atlases of AR have been proposed in the literature.

For example, Bürgel et al. (2) used histology to create a high-

resolution atlas of different fiber bundles of the white matter

from ten donors, including the AR. More recently, Maffei

et al. (16) created an atlas using dMRI acquisitions with ultra-

high b-values (up to 10,000 s/mm2) and high resolution (1.5

mm isotropic) from the MGH adult diffusion dataset of the

human connectome project (HCP) (17, 18). However, as already

mentioned, the use of atlases of AR is not ideal due to its

reported anatomical variability (1, 2, 9, 16, 19).

Two automatic tools include the segmentation of the AR:

XTRACT (20, 21) and TRACULA (22). XTRACT is a tool of

the FMRIB Software Library (FSL) (23) that can segment 42

fiber bundles, including the AR. In order to segment the AR,

XTRACT runs probabilistic tractography between the HG and

the MGN and defines exclusion masks to remove anatomically

implausible streamlines. In particular, it uses two coronal planes

and an axial plane around the thalamus, a region covering the

optic tract and the brainstem as exclusion masks. XTRACT also

provides an atlas of the AR based on the HCP young adult

dataset (24, 25) and the UK Biobank dataset (26). One potential

issue of XTRACT is that its exclusion criteria might be too liberal

with respect to knowledge from neuroanatomists (9, 10). Thus,

there is a risk that segmentation masks might cover areas that

should not be part of the AR.

TRACULA (27) is a tool of FreeSurfer (28) for fiber

bundle segmentation. This method uses prior anatomical

information of the fiber bundles to steer a Bayesian-based

global tractography. The original method included 18 main fiber

bundles and did not include the AR. Maffei et al. (22) extended

the number of fiber bundles to 42, including the AR. For this,

they manually segmented the 42 fiber bundles in 16 subjects of

the MGH adult diffusion dataset of the HCP (17, 18).The new

definitions weremade available in the latest version of FreeSurfer

(version 7.2, release date: July 2021).

Regarding the AR, Maffei et al. (22) used a subset of the

segmentation masks used by Maffei et al. (16) to create their

atlas of AR. One of the issues of TRACULA for segmenting

the AR is that the manual dissections in the 16 subjects include

too few streamlines. More specifically, the mean number of

streamlines extracted per subject in the MGH dataset was 26

(ranging between 2 and 91) for the left side and 32 (ranging

between 6 to 70) for the right side. As a comparison, TRACULA

uses an average of 1,250 streamlines per subject (ranging

between 333 and 2,726) for the left arcuate fascicle. This low

number of streamlines used for the AR has the risk of making

TRACULA less specific with respect to anatomical variations of

the AR. An additional issue of TRACULA is that it uses global

tractography, which makes it very time-consuming compared to

other methods. Moreover, TRACULA requires the parcellation

generated by FreeSurfer, which usually takes several hours.

Wasserthal et al. (29) proposed TractSeg, a method based

on artificial intelligence (AI) that is able to segment 72 main

fiber bundles from dMRI automatically. The advantages of this

method are that it works with standard dMRI acquisitions, even

with low b-values, is fast (takes a few seconds), does not require

a previous registration of images, and, unlike atlases, the results

are subject-specific. Due to the aforementioned difficulties in

segmenting the AR, the original method did not include the

AR. More recently, Wasserthal et al. (29) trained the original

neural network using the masks generated by XTRACT (20,
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21), including the AR. Thus, since version 2.2. of TractSeg,

it is possible to obtain these segmentations with the option

“–tract_definition xtract”.

Both XTRACT and TRACULA allow the streamlines to go

beyond the HG and reach the STG. This means that these

methods are not designed to extract the core of the AR. Thus,

the main goal of this paper is to assess the possibility of using

TractSeg for the segmentation of the core of the AR in datasets

acquired in clinical settings.

2. Methods

2.1. Datasets

We used two datasets in this study. The first one consists

of dMRI data from 125 subjects of the HCP young adult

dataset (24, 25). A total of 105 of these subjects are exactly

the same used by Wasserthal et al. (29) and were used for

training the TractSeg (29) models with masks generated using

the segmentation methodology proposed in this paper, while

the remaining 20 were used for independent testing. The dMRI

data of HCP consists of 90 directions for each of the three b-

values: 1,000, 2,000, and 3,000 s/mm2, and the spatial resolution

is 1.25 mm isotropic. These images were acquired in Siemens

3T scanners using a spin-echo EPI sequence with a multiband

factor of 3, TR/TE is 5,520/89.5 ms, a flip angle of 78 degrees,

and a refocusing flip angle of 160 degrees. The images were

acquired using a head coil with 32 channels. More details on

imaging parameters are available on the website of HCP1. The

second dataset consists of dMRI data of 34 subjects acquired

with the following parameters: isotropic resolution of 2.3 mm

and 60 directions at b = 1,000 s/mm2. The images were

acquired at the MRI facility of Karolinska Institute at Karolinska

University Hospital in Solna using a GE Discovery 3T MR750

scanner with a spin-echo EPI sequence with TR/TE of 7,000/80.9

ms and flip angle of 90 degrees. The images were acquired

using a head coil with 8 channels. The cohort of this dataset

consists of 17 patients with unilateral congenital ear canal

atresia and 17 age- and gender-paired controls. The patients

are adults with contralateral normal hearing, had no hearing

aid or successful ear canal surgery before age 12, and have

sufficient understanding of the Swedish language. Subjects with

a history of severe psychiatric illness or neurological disease, any

associated syndrome (Goldenhaar, CHARGE, etc.), or metallic

artifacts were excluded from the cohort. In twelve of the patients,

the right ear is affected. Eight of the patients are female and

nine are male. The patients were all recruited in the Stockholm

region. The ethical permit was granted by the Swedish ethical

board (Dnr 2012/1661-31/3). The clinical dataset was pre-

processed with the standard pre-processing pipeline of MRtrix3

1 https://www.humanconnectome.org/hcp-protocols

(30) to remove artifacts and geometric distortions, which in turn

uses methods from FSL (23).

2.2. TractSeg

TractSeg is a method that trains deep neural networks for

segmenting fiber bundles (29). Figure 1 shows the pipeline of

TractSeg. The steps of TractSeg are the following. First, the dMRI

data must be pre-processed to remove artifacts and geometric

distortions. Notice that this step is not required for HCP data

since this dataset is already pre-processed (25). The clinical

dataset was pre-processed with the tools provided in MRtrix3

(30). Second, fiber orientation distribution functions (fODF) are

estimated per voxel using constrained spherical deconvolution

(CSD) (31). The maxima (also known as peaks) of the fODFs

can be seen as estimations of the most likely orientation fiber

bundles in every voxel. Thus, the next step is to extract the largest

peaks of the fODFs per voxel. Every peak is a vector whose

direction and magnitude encode the most likely orientation of a

fiber bundle and its strength, respectively. This strength, among

many factors, is related to the density of fibers at the specific

orientation of the peak. TractSeg assumes that a maximum of

three fiber bundles can traverse a voxel. Thus, only the three

largest peaks are input to the neural network. Notice that the

magnitude of only one peak is not negligible in regions traversed

by a single fiber bundle and two for those with two crossing

fiber bundles. We used the option “–super_resolution” from

TractSeg, which upsamples the peaks to an isotropic resolution

of 1.25 mm.

Expert neuroanatomists manually segmented 72 different

fiber bundles in 105 HCP subjects. These segmentations were

used in TractSeg to train U-Net-like neural networks (32). As

shown in Figure 1, TractSeg uses 2D neural networks (one per

axis) in two stages. The first stage is used to generate masks

of the fiber bundles by only considering the 2D information

contained in the training slices. The second stage is used to

learn the best combination to generate the final segmentation

of the 72 fiber bundles. Notice that TractSeg uses a so-called

2.5D approach, that is, segmenting 3D structures with multiple

2D neural networks. Although it is possible to use 3D U-Nets

instead, the authors argue that a 2.5D approach is more efficient

and less prone to overfitting (29), which is in agreement with

studies dealing with other segmentation problems [e.g., (33)].

TractSeg can be seen as a powerful method that can be used

out-of-the-box to segment 72 fiber bundles (29). One of the

main advantages of TractSeg is that, although it was trained

on high-quality data [HCP young adult dataset (24, 25)], the

neural network is also able to segment these bundles in dMRI

data of clinical quality without any need for training. This is

because the 72 targeted fiber bundles are relatively big. It is

interesting to assess whether or not TractSeg can achieve the

same performance with smaller fiber bundles, specifically the AR
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FIGURE 1

Segmentation pipeline of TractSeg. Left: The dMRI data is pre-processed for extracting the peaks of the fiber orientation distribution functions

per voxel. These peaks are used as the input of the neural network. Middle: 2D U-Net-like fully convolutional neural networks (FCNNs) are

trained to segment fiber bundles. Three networks are trained per axis (coronal, axial, sagittal) in two stages. While the goal in the first stage is to

segment the fiber bundles using 2D information, the second stage aims at learning the best combination of the three intermediate results to

generate the final segmentation. Right: Segmentation masks of 72 fiber bundles are generated. Figure reproduced from Wasserthal et al. (29),

license CC BY 4.0.

in clinical data. Thus, we generated training data for the AR from

the same 105 HCP subjects used in TractSeg as described in the

following section.

Although TractSeg does not include the core of the AR, it can

be trained for that purpose (29). The training procedure requires

the segmentation of the new fiber bundles of interest, ideally

using the same dataset of the original article. Following the same

approach of TractSeg, we used five-fold cross-validation with

105 subjects: 63 training subjects, 21 validation subjects, and

21 test subjects per fold. An additional set of 20 subjects was

used for independent testing. As mentioned, newer versions

of TractSeg have the option of using segmentation masks from

XTRACT, including the AR. However, these segmentations

consider not only the core but also can contain fiber bundles

reaching the STG.

By design, TractSeg is able to segment fiber bundles beyond

the original 72. For this, it is crucial to use high-quality

segmentation masks of the new bundles during training. The

following subsection describes the proposed methodology for

generating such segmentation masks for AR.

2.3. Generation of training data

Probabilistic tractography (iFOD2) with anatomically-

constrained tractography (ACT) (34) from MRtrix3 (30) was

used for creating streamlines connecting the left HG to the

left MGN and the right HG to the right MGN targeting

the left and right AR, respectively. Masks of the HG and

MGN at both hemispheres extracted with FreeSurfer (28) are

available in the HCP database and were used as independent

seeds for tractography. Thus, two sets of streamlines were

obtained per side: one for streamlines starting at the HG

and ending at the MGN and the other reversing the roles of

two masks. We used the command “tckgen” in MRTrix3 (30)

with the default parameters of iFOD2. Moreover, we used the

options from ACT “- backtrack”, which tries to re-track partially

truncated streamlines, and “- crop_at_gmwmi”, which crops the

streamlines once they cross the boundary between gray and

white matter.

As mentioned, one of the challenges in obtaining the

AR is that it is very close to other fiber bundles, as shown

in Figure 2. Our approach to tackling this issue is to reject

any streamline reaching segmentation masks of nearby fiber

bundles. In particular, we used the masks of the CST, IFOF, and

ILF created by Wasserthal et al. (29) for training TractSeg to

reject implausible AR streamlines.

As shown in Figure 2, the AF, OR, and MLF are too close

to the AR that even some voxels can contain streamlines of

different bundles. Thus, masks of AF, IR, and MLF cannot be

used to reject implausible AR streamlines. Instead, we removed

the voxels from these masks that are closer than 4 cm from

both the HG and the MGN and used them to reject implausible

AR streamlines. With this procedure, streamlines are allowed

to enter the voxels close to the MGN and HG, which are also

covered by the AF, OR, and MLF segmentation masks.

An additional problem is that the HG and the superior

temporal gyrus (STG) are very close to each other, as shown in

Figure 3. Due to the closeness between the HG and the STG,

some streamlines can leak to the latter, especially when theMGN

is used as the origin of the streamlines. In order to avoid this

from happening, we used the mask of the STG extracted with

FreeSurfer, which is available in the HCP database, to reject

streamlines not ending in the HG. This step is crucial to remove

possible streamlines not belonging to the core of the AR.

Notice that the described restrictions for generating

streamlines are stringent and make the generation of training

data computationally expensive. Actually, around 150,000

generated streamlines were discarded per every single accepted

one. Thus, as stopping criteria, we set a maximum of 1,000
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FIGURE 2

The relative position of the left acoustic radiation with six nearby fiber bundles for a subject of the human connectome project. The Heschl’s

gyrus, medial geniculate nucleus, and acoustic radiation of the left side of the brain are depicted in red, magenta, and blue, respectively. Each of

the nearby fiber bundles is depicted in green, one per subfigure. A and P indicate the anterior and posterior sides of the brain, and T1w is used as

a reference. The depicted acoustic radiation was computed using the methodology of Section 2.3.
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FIGURE 3

The acoustic radiation (in blue) from the medial geniculate

nucleus (in magenta) and the Heschl’s gyrus (in red) is also very

close to the superior temporal gyrus (in yellow). A and P indicate

the anterior and posterior sides of the brain, and T1w is used as

a reference.

accepted streamlines, or 150 million generated streamlines in

total per seedmask. Themaximum length of each streamline was

set to 60mm. The two sets of streamlines per side were combined

into a single tractogram. This procedure resulted in tractograms

of at least 1,000 streamlines per side of the brain. Finally, a

mask of the AR per side was created with the voxels traversed

by at least ten streamlines. This procedure was successful in all

HCP subjects.

It is important to emphasize that the original article of

TractSeg (29) used whole-brain tractograms, each with 10

million streamlines with lengths between 40 and 250 mm. From

these streamlines, only a few were part of the AR (fewer than

20 in all cases), which are not enough to generate reliable

segmentation masks. The proposed procedure for generating

streamlines of the core of the AR is expensive but effective for

generating the masks that were used for training TractSeg.

3. Results

This section shows the results of the proposed methodology

for segmenting the core of the AR applied to HCP data and

the diffusion data acquired in a clinical setting on 17 patients

with unilateral congenital ear canal atresia and 17 age- and

gender-paired controls.

3.1. High-quality di�usion data

Figure 4 shows the curves of the F1 score during validation

and testing on HCP data. The best performing network attained

an F1 score of 0.73 during testing. The F1 score is equivalent to

the Dice score for segmentation purposes.

We tested the trained network in 20 additional HCP

subjects not used for training. As shown in Figures 5, 6 for

one of these subjects, the segmentation results of the core

of the AR at both sides are anatomically plausible. From the

figure, it can be seen that there are differences between atlases.

The segmentation generated from our methodology is more

conservative than the atlases and XTRACT. For example, the

generated segmentation masks always stop at the boundary

between white matter and the HG, while, e.g., (2) usually

overlaps with the HG and is more likely to reach the STG. Most

of the generated masks of AR overlap with the two atlases and

XTRACT.

As shown in Figure 6, the atlases and XTRACT tend to reach

regions of the STG (see yellow arrows), sometimes in regions

not adjacent to the HG. It can also be seen that the segmentation

masks differ from each other, especially in the region close to the

HG.

Using visual inspection, we found that the proposed

methodology was able to extract anatomically plausible AR in

all 20 subjects used for independent testing.

3.2. Di�usion data acquired in a clinical
setting

We applied the trained network on dMRI data of 17

subjects with unilateral ear canal atresia and 17 controls. As

mentioned, these images were acquired in a clinical setting

(b = 1,000s/mm2, 60 directions, spatial resolution = 2.3 mm

isotropic). This case is more challenging than the segmentation

of the HCP data due to the low spatial and angular resolution

and the relatively low b-value used in the acquisition. Table 1

shows the number of cores of the ARs that were completely

reconstructed, were reconstructed in fragments, or where the

method failed. As shown, the method was able to completely

reconstruct the core of the AR in most cases (53/68 = 77.9%)

with a similar performance between patients and controls (24 vs.

29). The method yielded fragmented cores of the ARs in 14 cases

(20.5%) andmore often in patients than in controls (9 vs. 5). The

fragments were visually inspected. In most cases, the core of the

AR was fragmented into two pieces, each of them closer to either

the MGN or the HG. In a few cases, the core of the AR appeared

as a blob in the middle between the MGN and the HG. In the 14

cases, the fragments were always located at the region where the

AR is expected to be. The method only failed to reconstruct the

left AR of a single patient. The trained network was also more

consistent in yielding uncut segmentations on the left side (2

cases on the left vs. 12 on the right).

In the cases where TractSeg was not able to extract the

complete core of the AR, it is possible to use the masks to guide
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FIGURE 4

Evolution of the training of the neural network with the training epochs. The loss function and the F1 score are shown in red and green,

respectively. Dotted, continuous, and dashed lines correspond to performance during training, validation, and testing.

FIGURE 5

Visualization of the extracted acoustic radiation for one subject from the human connectome project in blue. The Heschl’s gyrus and medial

geniculate nucleus are depicted in red and magenta, respectively. Left: The atlas from Bürgel et al. (2) is shown as a reference in yellow. Middle:

The atlas from Ma�ei et al. (16) is shown as a reference in yellow. Right: The segmentation obtained with XTRACT (20) is shown in yellow as a

reference. A and P indicate the anterior and posterior sides of the brain, and T1w is used as a reference.

tractography. For this, not only the MGN and the HG are used

as seed regions, but also the results of the segmentation with

TractSeg. This makes it more likely for tractography to compute

streamlines that comply with the strict restrictions described in

Section 2.3. Figure 7 shows the results obtained for some of the

subjects.

Figure 8 shows a visual comparison of the segmentation

masks obtained with the proposed methodology, the atlases by

Bürgel et al. (2) and Maffei et al. (16), and XTRACT for one

subject from the clinical dataset where the methodology was able

to extract the core of the AR. As shown, the atlases and XTRACT

tend to reach more the STG. Except for the atlas by Bürgel et al.

(2), the other methods have problems entering the cavity of the

HG in this specific subject.

The extracted segmentation masks can be used for different

group analyses. Among many other options, one can use the

masks to restrict tractography and perform bundle analytics

(35). To showcase this application, we used the implementation

of TractSeg for bundle analytics. In brief, the method runs

tractography, but unlike the procedure described in Section 2.3,

the generated streamlines are only restricted to traversing the

segmentation mask of the AR. Using the AR masks is much

less restrictive than using the neighboring fiber bundle masks

and, thus, is much less time-consuming (ca. 10–20 min. per

subject). Then, the generated streamlines are used to sample the

maps of fractional anisotropy (FA) or any other measurement

along the path of the streamlines. This way, it is possible to

assess differences between the groups along the trajectory of

the AR. Figure 9 shows a bundle analysis of the FA applied to

the AR for the clinical dataset. As shown, the FA starts at a

very low value at the MGN, goes up in the middle, and down

again to the end close to the Heschl’s gyrus. It can be seen that

the 95% CIs (shown with colored bands) are relatively large.

In fact, these CI were 2–3 times larger than for the cortical
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FIGURE 6

Visual comparison of the segmentation masks in one subject of the human connectome project. First column: Segmentation mask of the

proposed methodology (in cyan) and the atlas by Ma�ei et al. (16) (in blue). Second column: Segmentation mask of the proposed methodology

(in cyan) and the atlas by Bürgel et al. (2) (in blue). Third column: Segmentation mask of the proposed methodology (in cyan) vs. the result from

XTRACT (in blue). Every row corresponds to a di�erent axial slice. The superior temporal gyrus (STG), medial geniculate nucleus, and Heschl’s

gyrus are depicted in green, magenta, and brown, respectively. Yellow arrows indicate where the segmentation masks reach the STG.
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TABLE 1 The number of subjects in which the proposed methodology was able to reconstruct the complete acoustic radiation (AR) (Uncut), split

the AR into fragments (Fragm.), or completely failed (Fail) per side in the clinical dataset of unilateral ear canal atresia.

Left AR Right AR ARs of both sides

Uncut Fragm. Fail Uncut Fragm. Fail Uncut Fragm. Fail

Patients R (N = 12) 10 1 1 8 4 0 29 5 1

Patients L (N = 5) 4 1 0 2 3 0 6 4 0

All Patients (N = 17) 14 2 1 10 7 0 24 9 1

Controls (N = 17) 17 0 0 12 5 0 29 5 0

All subjects (N = 34) 31 2 1 22 12 0 53 14 1

Patients R and Patients L indicate the side of the affected ear.

FIGURE 7

Results for three images acquired in a clinical setting. The core of the acoustic radiations (ARs) are depicted in blue, the Heschl’s gyrus (HG) in

red, and the medial geniculate nucleus (MGN) in magenta. Left: The core of the ARs are completely extracted. Middle: The core of the ARs are

fragmented into two pieces. Right: The method gave a blob in between the MGN and the HG for the right side and was unable to segment the

core of the AR of the left side. A and P indicate the anterior and posterior sides of the brain, and T1w is used as a reference.

spinal tract (CST) and other large tracts. This could mean that

the intersubject variability is higher for the AR than for large

fiber bundles. We performed t-tests along the tract that were

corrected for multiple comparisons to account for family-wise

errors. With this procedure, we did not find any statistically

significant difference between the two groups at any point along

the tract.

4. Discussion

Previous studies have shown that extracting the AR is

possible in vivo on data from the MGH adult diffusion dataset

of HCP with ultra-high b-values up to 10,000 s/mm2 (16).

In this study, we showed that extracting the core of the AR in

high-quality dMRI data with lower b-values (b = 1,000, 2,000,

and 3,000 s/mm2) from the HCP young adult dataset by using

masks of neighboring fiber bundles is also possible. One issue

of our approach is that our strategy is very restrictive and

time-consuming.

Thus, in order to reduce the computation time, we trained

the neural network of TractSeg (29) with the segmentation

masks of the core of the AR created from HCP data. There

are two main advantages of using TractSeg for segmenting the

AR compared to using atlases: (a) that the resulting masks are

subject-specific, and (b) it is not necessary to do registration

to a template. Regarding the former, subject-specific masks can

tackle the anatomical variability of the AR, HG, and MGN.

As for the latter, misregistrations can generate errors that are

not a problem for TractSeg. An alternative to using TractSeg

is to generate the core of the AR as proposed in Section 2.3.

The main gain of using TractSeg is that the segmentation mask

is obtained in a few seconds instead of several hours of the

proposed methodology from Section 2.3.

The trained neural network of TractSeg was able to segment

the core of the AR in HCP data in a few seconds instead of

several hours. We used a workstation equipped with an Intel

Xeon CPU E5-2630 v3 with 8 cores at 2.40 GHz, and a GPU

NVIDIAGeForce GTX 1070. The processing of oneHCP subject

using the methodology described in Section 2.3 was 8–10 h

in this workstation. Computing the peaks of the fODFs took
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FIGURE 8

Visual comparison of the segmentation masks on one subject of the clinical dataset. First column: segmentation mask of the proposed

methodology (in cyan) and the atlas by Ma�ei et al. (16) (in blue). Second column. segmentation mask of the proposed methodology (in cyan)

and the atlas by Bürgel et al. (2) (in blue). Third column: segmentation mask of the proposed methodology (in cyan) vs. the result from XTRACT

(in blue). Every row corresponds to a di�erent axial slice. The superior temporal gyrus (STG), medial geniculate nucleus, and Heschl’s gyrus are

depicted in green, magenta, and brown, respectively. Yellow arrows indicate where the segmentation masks reach the STG.
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FIGURE 9

Bundle analysis of the fractional anisotropy (FA) applied to the left and right acoustic radiations (AR) for the clinical dataset used in this paper.

The mean FA of patients and controls along the tracts are shown with lines in blue and orange, respectively. The 95% CIs are shown in light blue

and light orange bands, respectively for the two groups. Position 0 and 1 along the tract are located at the medial geniculate nucleus and the

Heschl’s gyrus, respectively.

approximately 1 min and applying the trained neural network

took around 40 s for both the HCP data and the clinical data.

The segmentations generated by the trained neural network

were anatomically plausible when applied to an independent set

of subjects fromHCP. The methodology proposed in Section 2.3

is conservative. Thus, the segmentation masks obtained with the

neural network are also conservative compared to the publicly

available atlases of the AR. We argue that it is important to have

a conservative approach to extracting the core of AR. This way,

the downstream conclusions drawn from group analyses of the

AR will become more meaningful.

The trained neural network had more problems with data

acquired in a clinical setting. Still, it was able to completely

segment the core of the ARs in 77.9% of the cases, yielded

fragmented masks in 20.6% of the cases, and only failed in a

single subject. The performance was very similar in patients and

controls. The neural network tended to reconstruct the core of

the left AR better than the core of the right AR.

As shown in some cases, the neural network yields a

fragmented segmentation. Such fragments can be used as seeds

for tractography, which has the advantage of reducing the high

cost of running tractography to extract the core of the AR.

We compared the proposed methodology with the

segmentation generated by TractSeg (29) trained with masks

created with XTRACT (20, 21). From the results, an important

difference between our methodology and XTRACT is that the

latter included tracts that reached the STG in the segmentation

masks. It is important to differentiate the fibers connecting

only the MGN and the HG from those that can get the STG, as

they can have different purposes in the human brain (9). For

example, Ito et al. (36) reported that the STG might be involved

in the joint processing of visual and auditory stimuli. Unlike

XTRACT, the proposed methodology actively removes the fibers

reaching the STG to target the core of the AR. At this stage, it

is not possible to know if the fibers covered by XTRACT and

not covered by our methodology belong to the belt of the AR.

The STG is a structure that is larger compared to the HG. Thus,

it is not clear which substructures of the STG might be part of

the AR. Such information is crucial to assess whether the voxels

reaching the STG by the masks of XTRACT belong to the AR or

are artifacts.

Unlike our methodology, XTRACT was able to generate

the AR in all cases. Since XTRACT uses less restrictive rules

for generating the masks, they cover more voxels, which

makes TractSeg increase its robustness at the cost of being

less specific. In some cases, the XTRACT masks covered

parts of the ventricles and the most posterior parts of the

STG, almost reaching the medial temporal gyrus. Thus, we
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recommend a manual review of these masks before any

further analysis.

Previously, Bertó et al. (37) added prior information for

improving the segmentation of fiber bundles. Our results are in

line with that study since we show that adding the segmentation

masks of other bundles is needed for the segmentation of small

fiber bundles like the AR.

We showcased the use of segmentationmasks by performing

a bundle analysis on the clinical dataset to assess differences in

FA between patients and control in the AR. We did not find any

statistically significant difference between the groups. The 95%

CI was larger than other bundles (e.g., the CST). This suggests

that the intersubject variability is higher for the AR.

The results of this study are encouraging but also show that

more research is needed toward a fully automatic segmentation

of the AR from images acquired in clinical settings. For example,

as mentioned, TractSeg uses three peaks of the fODFs (29).

Recently, it has been argued that up to seven fiber bundles might

appear in certain brain regions (38). Thus, it is possible that

more peaks could be helpful for extracting the AR. However,

enlarging the number of inputs to the neural network has

the disadvantage of needing more training data or changing

the neural network architecture, which is beyond the scope

of this article. Although TractSeg (29) can still be considered

state-of-the-art for fiber bundle segmentation, new AI-based

segmentation methods have recently been proposed [e.g., (39–

42)]. It is interesting to assess if adapting these methods can

yield better results for segmenting the AR. Plans for the future

also include the analysis of the AR for other diseases affecting

the auditory system and datasets acquired in different clinical

settings.

This study has many limitations. One of the main issues is

that there is not possible to have a personalized ground truth that

can be used to assess the accuracy. This is a general limitation

of any method based on tractography. The atlas by Bürgel et

al. (2) was created from histology and is expected to depict

the anatomy of AR better. However, the variability of the HG,

MGN, and the AR among subjects, makes it less appropriate for

group analyses. A second limitation is that although FreeSurfer

is relatively accurate for segmenting the HG [Desikan et al.

(43) reported intraclass correlations between automatic and

manual segmentations of 0.712 and 0.719 for the left and right

HG, respectively], it can be inaccurate in cases where the HG

has duplications. Marie et al. (44) found in a cohort with 430

participants that 36.6 and 48.8% of the right-handed subjects and

30.8 and 39.4% of the left-handed subjects had duplications on

the left and right side, respectively. Considering duplications of

the HG in the pipeline is clinically relevant since they have been

associated with neurological conditions (45). In order to account

for this anatomical variability of the HG, it would be necessary

not only to use during training more accurate segmentation

tools tailored explicitly for the HG [e.g., TASH (46)] but also

to train independent TractSeg models for subjects with and

without duplications in the HG. The most appropriate TractSeg

model for a specific subject could be chosen once the type of HG

is detected. Still, it is uncertain whether such an approach could

lead to differences in AR.

5. Conclusion

In this study, we proposed a methodology to extract the core

of the AR in subjects from the HCP young adult dataset by using

masks of neighboring fiber bundles obtained with TractSeg.

Since the procedure is expensive, we trained TractSeg to extract

the AR automatically. For this, we used the masks of the AR

extracted from a set of subjects from the HCP young adult

dataset. The trained neural network was applied both to unseen

subjects of the HCP young adult dataset and a clinical dataset.

The main conclusion of this study is that it is possible to

segment the core of the AR in most cases, even in images

acquired in clinical settings in a few seconds with the trained

network. In case it is not possible to reconstruct the core of the

AR, the results can be used as masks for tractography.
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A data-driven approach to
clinical decision support in
tinnitus retraining therapy

Katarzyna A. Tarnowska1*, Zbigniew W. Ras2,3 and

Pawel J. Jastrebo�4

1School of Computing, University of North Florida, Jacksonville, FL, United States, 2Computer

Science Department, University of North Carolina, Charlotte, NC, United States, 3Polish-Japanese

Academy of Information Technology, Warsaw, Poland, 4Department of Otolaryngology—Head &

Neck Surgery, School of Medicine Emory University, Atlanta, GA, United States

Background: Tinnitus, known as “ringing in the ears”, is a widespread and

frequently disabling hearing disorder. No pharmacological treatment exists,

but clinical management techniques, such as tinnitus retraining therapy (TRT),

prove e�ective in helping patients. Although e�ective, TRT is not widely

o�ered, due to scarcity of expertise and complexity because of a high level of

personalization. Within this study, a data-driven clinical decision support tool

is proposed to guide clinicians in the delivery of TRT.

Methods: This research proposes the formulation of data analytics models,

based on supervised machine learning (ML) techniques, such as classification

models and decision rules for diagnosis, and action rules for treatment

to support the delivery of TRT. A knowledge-based framework for clinical

decision support system (CDSS) is proposed as a UI-based Java application

with embedded WEKA predictive models and Java Expert System Shell (JESS)

rule engine with a pattern-matching algorithm for inference (Rete). The

knowledge base is evaluated by the accuracy, coverage, and explainability of

diagnostics predictions and treatment recommendations.

Results: The ML methods were applied to a clinical dataset of tinnitus

patients from the Tinnitus and Hyperacusis Center at Emory University School

of Medicine, which describes 555 patients and 3,000 visits. The validated

ML classification models for diagnosis and rules: association and actionable

treatment patterns were embedded into the knowledge base of CDSS. The

CDSS prototype was tested for accuracy and explainability of the decision

support, with preliminary testing resulting in an average of 80% accuracy,

satisfactory coverage, and explainability.

Conclusions: The outcome is a validated prototype CDS system that is

expected to facilitate the TRT practice.

KEYWORDS

clinical decision support systems, tinnitus, knowledge-based systems, knowledge

discovery, action rules, tinnitus retraining therapy
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1. Introduction

1.1. Tinnitus

Tinnitus is a highly prevalent and frequently severely

impairing hearing disorder with a worldwide impact. Often

described as “ringing in the ears”, tinnitus is the sensation of

sound perception without an external sound source—“phantom

auditory perception” (Jastreboff, 1990). The U.S. Centers for

Disease Control estimates that nearly 15% of the general

public—over 50 million Americans—experience a form of

tinnitus. In addition, close to 90% have experienced at least

temporary tinnitus, making it one of the most common health

conditions in the United States. While about 20 million people

struggle with burdensome chronic tinnitus, 2 million have

extreme and debilitating cases (American Tinnitus Association,

2018). There are millions of general practice consultations every

year where the primary complaint is tinnitus, equating to a

major burden on healthcare services. Tinnitus has been the

#1 claimed service-related disability for the American Veteran

Administration for more than a decade (US Department

of Veterans Affairs, 2019). Chronic disabling tinnitus has a

devastating impact on the quality of life and psychosocial aspects

of those affected (Makar et al., 2017). The disorder has a

considerable heterogeneity and no single mechanism is likely to

explain the presence of tinnitus in all those affected. Tinnitus can

be associated with head and neck injuries, hearing loss, acoustic

neuromas, drug toxicity, ear disease, and depression (Savage and

Waddell, 2014).

1.2. Treatment of tinnitus

The heterogeneity and current limited knowledge about the

pathophysiology of the different forms of tinnitus are reasons

that hamper the identification of good candidates for an effective

pharmacological treatment for tinnitus. Despite its growing

prevalence and often-devastating effects, tinnitus remains a

severely underfunded condition. There are no Food and Drug

Administration (FDA) approved drugs available, and the quest

for a new treatment option for tinnitus focuses on important

challenges in tinnitus management (Swain et al., 2016). Clinical

management strategies include counseling (education and

advice), sound enrichment using ear-level sound generators or

hearing aids, tinnitus masking, relaxation therapy, cognitive

behavior therapy (CBT), and tinnitus retraining therapy (TRT)

(Makar et al., 2017). Although a variety of therapeutic

interventions are available, the complexity of tinnitus makes the

management of the condition challenging. Evaluating results in

the field of tinnitus is a difficult task, as no objective tinnitus

measurement exists. It means there is no objective method for

detecting the presence and the extent of tinnitus.

1.3. Tinnitus retraining therapy

During the last decades, advances in neuroimaging methods

and the development of an animal model of tinnitus have

contributed to an increasing understanding of the neuronal

correlates of tinnitus (Langguth, 2015). TRT is a clinical

implementation of the neurophysiological model of tinnitus

(Jastreboff and Hazell, 2004). It is the habituation therapy used

for the management of chronic subjective tinnitus. It includes

counseling (TC) during structured sessions in combination

with sound therapy (ST) to reduce the patient’s tinnitus-

evoked negative reaction to, and awareness of, tinnitus. ST

sound stimulation is performed with low-level broadband sound

generators and aims to mask tinnitus at the sound perception

level. By reducing the tinnitus perception, TRT successfully helps

patients to achieve control over their tinnitus, live a normal

life, and participate in everyday activities (Reddy et al., 2019).

Clinical studies confirm that TRT is an effective and robust

treatment for chronic decompensated tinnitus (Zhao and Jiang,

2018; Nemade and Shinde, 2019). The majority of published

clinical studies indicate TRT offers notable help for about 80%

of patients and the severity of tinnitus decreases in a clinically

significant and persistent manner. Furthermore, TRT offers an

approach to treat other hearing disorders: hyperacusis, which is

reduced tolerance to sounds, phonophobia, which is the fear of

sound, and misophonia, increased sound sensitivity (Jastreboff

and Jastreboff, 2000). TRT, although effective, is a complex

treatment and must be highly individualized. Counseling and

teaching are tailored to the needs of the patient, and therefore,

they cannot be performed as group therapy (Jastreboff and

Jastreboff, 2006). Sound therapy involves different types/models

of instruments, and they must be fitted optimally at the “mixing

point” to achieve habituation in the most effective manner

(Jastreboff and Jastreboff, 2006). Because TRT has to focus on

the individual needs and profile of a patient, it consequently

requires significant time involvement of the personnel. Although

promising, it is expensive and spans from several months to a

couple of years. Despite its high effectiveness and international

recognition, the therapy is not widely offered, mainly due to a

lack of expertise and experience in its delivery. Themain obstacle

to the widespread adoption of this technique is a lack of trained

and experienced audiologists.

1.4. Tinnitus data analytics

Data-driven approaches have the potential to reveal

novel insights into tinnitus heterogeneity. However, there are

limitations in data-driven studies for tinnitus management

proposed so far. Most efforts involve applying traditional

statistical methods, such as correlation and regression (Langguth

et al., 2017). New forms of discovery via machine learning

and big data methods have not been widely investigated.
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Data mining/machine learning methods proposed on tinnitus

data were mostly confined to association analysis, predictive

modeling, and clustering analysis. However, these studies were

limited in terms of analyzed variables or provided inconclusive

results (Anwar, 2013; van den Berge et al., 2017). The status

quo of tinnitus data analytics lacks the application of discovery

methods for actionable and personalized knowledge needed

by medical practitioners. The outcomes are not analyzed with

regard to treatment methods in order to seek actions leading to

improvement. Also, the temporality of data is not considered.

So far, data analytics efforts focus on variables describing

psychoacoustic measures of tinnitus. These measures, although

routinely obtained in many clinics and as part of research

studies, have not been validated for being diagnostic, prognostic,

discriminative, or responsive (Henry, 2016; Watts et al.,

2018). Medical history and evaluation, review of the patient’s

medications, and assessment of an individual’s distress or

handicaps are also crucial for effective diagnosis and treatment

(Kari et al., 2010). Finally, most research efforts conclude by

presenting analytics without any further developments in the

decision support tool. No integration into health IT systems nor

plans on how to utilize the findings in clinical decision-making

is currently being proposed. To date, this research is the first to

propose a decision support system for TRT.

1.5. Technological perspectives on
tinnitus

The postal survey of general practitioners (GPs) concluded

that there was a substantial discrepancy between the scientific

and technological perspectives on the management of tinnitus

and the actual day-to-day practice in the primary care setting

(Hall et al., 2011). Many GPs expressed an unmet need for

a specific and concise training on tinnitus management. Low

satisfaction with available treatment options was unequivocally

mentioned by both GPs and ENTs (ear-nose-throat specialists)

from all developed countries investigated by Hall et al. (2011).

The results of that survey highlight the need for an effective

therapy option, particularly for chronic subjective tinnitus.

Despite a variety of options, the low success of the available

tinnitus treatment options leads to the frustration of physicians

and patients alike. Effective therapeutic options with guidelines

about key diagnostic criteria are urgently needed.

2. Materials and methods

Clinical decision support (CDS) is a process for enhancing

health-related decisions and actions with pertinent, organized,

clinical knowledge, and patient information to improve

health and healthcare delivery. Systems, known as clinical

decision support systems (CDSS), offer intelligent support for

human-oriented diagnosis and treatment of patients. “CDS

provides clinicians, staff, patients, or other individuals with

knowledge and person-specific information, intelligently filtered

or presented at appropriate times, to enhance health and

healthcare” (Osheroff et al., 2007). They were proposed for

various diseases, including traumatic brain injury, diabetes,

Parkinson’s disease, and other health-related decisions such as

drug dosing (Ciecierski, 2013; Nielsen et al., 2014; Fartoumi

et al., 2016; Torrent-Fontbona and López, 2019). Yet, nobody

developed a clinical decision support system for tinnitus

management. It was hypothesized that DSS can improve the

accuracy and time efficiency of tinnitus management, but a

design or implementation of such a system was not attempted

(Thompson et al., 2007; Anwar, 2013). Within this research, we

proposed a knowledge-based clinical decision support system

(refer to Figure 1). The knowledge base is developed with

validated models extracted from data mining experiments.

2.1. Knowledge discovery methods

The proposed knowledge discovery from tinnitus data,

as opposed to previous research in this area, provides

multidimensional evaluation beyond the psychoacoustic

characteristics of tinnitus. Since the clinical data available

describes temporal changes in tinnitus score and particular

areas of a patient’s life affected, it is possible to perform an

analysis of changes and increased involvement in life activities

that were previously prevented or interfered with by tinnitus (or

hyperacusis). This approach will help in a better understanding

of complex auditory, psychological, and medical conditions and

aid in selecting the most significant variables to consider in TRT.

We propose a variety of data mining methods to extract novel

knowledge about TRT diagnosis and treatment. This includes

predictive and descriptive models, which are extracted from the

pre-processed and transformed data. The following software

was used for knowledge discovery:

• WEKA—Open-source data mining software which offers

a wide choice of algorithms for feature selection and for

prediction as well as a user-friendly interface and feature to

build a complete “knowledge flow” (Bouckaert et al., 2014).

It also allows using Java API to embed machine learning

models into a Java program.

• LISp-Miner—An academic system that offers exploratory

data analysis, including modules for association rule

discovery (4ft-Miner) and action rule discovery (Ac4ft-

Miner) (Simunek, 2014).

2.1.1. Dataset

To evaluate our data-driven approach to building CDSS,

we use clinical data collected at the Tinnitus and Hyperacusis
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FIGURE 1

The architecture of the proposed data-driven clinical decision support system for tinnitus diagnosis and treatment.

Center of Emory University School of Medicine. The dataset

contains records of tinnitus patients and the records for

their sequential visits to the clinic. The dataset was collected

over a period of several years and describes 555 unique

patients and 3,000 visits in total. The raw data resides in 11

separate tables describing demographics, interview response,

audiological measurements, pharmacology, additional medical

evaluation, and visits. The visit data contains treatment methods

applied by the physician at the visit (sound therapy with

instruments/counseling, real ear measurements to help fit the

instruments) along with the measure of the treatment progress

using the Tinnitus Handicap Inventory (THI). The raw data

were exported to the relational database system to ensure

the structure, consistency, and integrity of the data (refer to

Figure 2).

2.1.2. Data pre-processing and feature
selection

Various data-preprocessing techniques were applied to

cleanse the data and handle real-life data issues, such

as inconsistencies, incompleteness, duplication, and other

problems. Data cleansing removed all inconsistencies, such

as missing values, outliers, and duplicate data (e.g., duplicate

visit numbers for the same patient). To handle missing

data in the total score of the tinnitus handicap inventory

(THI), an algorithm for data imputation was developed and

validated. Additional transformations were applied, such as

alphanumeric to numeric encoding, aggregation, and handling

data temporality. Feature selection was proposed to reduce the

data to a manageable and relevant size. Only the most relevant

variables were involved in developing an analytical model. A

more detailed description of the challenges with the real-world

data and applied data-preprocessing methods to mitigate those

can be found in our previous publication (Tarnowska et al.,

2017).

2.1.3. Feature extraction

Additional features describing the patient and characteristics

of tinnitus were developed from the text attributes to make the

dataset more suitable for machine learning:

• Tinnitus background: STI (stress-induced), NTI (noise-

induced), HLTI (hearing-loss-induced), DETI (depression-

related), AATI (auto accident-related), OTI (surgery-

related), and OMTI (induced as a symptom of another

medical condition).

• Temporal features: DTI (date tinnitus induced), AgeInd

(the patient’s age when tinnitus induced), AgeBeg (the

patient’s age when treatment began), binary features

denoting how many days/weeks/months/years ago the

hearing problem started.

• Binary attributes that represent the intake of medication.

• Attributes that keep track of a patient’s improvement over

time: ChTsc (change in the THI’s total score from the

previous visit) and PerChTsc (relative change measuring

the percentage change in the THI’s total score from the

previous visit).

A comprehensive list of the attributes from the clinical database,

as well as extracted features, can be found in our previous

publication by Tarnowska et al. (2017).
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FIGURE 2

The relational database structure to store tinnitus-related data.

2.1.4. Predictive models

The first type of machine learning applied is supervised

machine learning to build predictive models. The goal is to

build an analytical model predicting a target measure of interest.

In our domain, it is the category of the hearing problem,

which determines the TRT treatment protocol. TRT protocol

differentiates the following five categories, which differ in further

treatment protocol: C0 (tinnitus minimal problem), C1 (tinnitus

significant problem), C2 (tinnitus significant and hearing loss

present), C3 (tinnitus irrelevant, hyperacusis significant), and

C4 (prolonged tinnitus/prolonged exacerbation of hyperacusis).

The proposed classification model, built using supervised

machine learning methods, is used to predict the category

of an unseen patient under consideration. The following ML

algorithms in WEKA are used for classification models: tree-

based J48, random forest, and probabilistic-based Naive Bayes.

2.1.5. Descriptive models

The goal is to extract valid and useful medical patterns

in tinnitus diagnosis and treatment. The patterns describe

patients’ diagnosis/treatment and are used to develop the

domain knowledge for TRT. The descriptive methods

used in this research include association rules and action
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FIGURE 3

Mining associations between questionnaire and interview answers, audiology variables, medications, and category of a hearing problem for

decision support in diagnosis in TRT.

rules. Rules are characterized by statistical measures

quantifying their strength. Support and confidence are

two key measures to quantify the strength and relevance

of a rule. The support reflects the usefulness of a rule and

confidence—its certainty. To find the significant associations,

support and confidence must be set at a certain minimum

threshold value (usually 1% for support, and 80% for

confidence).

2.1.5.1. Association rules for diagnosis in TRT

The TRT diagnosis is to be supported by the descriptive

models based on the association (decision) rule discovery, as

supplemental to predictive models.

A decision rule is a rule r in the form (φ ⇒ δ), where φ is

called antecedent (or assumption), and δ is called descendant

(or thesis). Each rule is characterized by support and confidence.

Support(r) is defined as the number of objects matching

the rule’s antecedent. Confidence(r) is the relative number of

objects matching both the rule’s antecedent and descendant

of the rule. The data mining experiments for decision rule

discovery were modeled after the TRT diagnosis process, which

involves an initial interview, audiology and medical evaluation

(refer to Figure 3). Association rules mining aims at detecting

frequently occurring associations between variables in TRT.

Accordingly, associations between audiological measurements,

demographics, questionnaire responses, pharmacology, and the

category of tinnitus were extracted using LISP-Miner software

for data mining (Simunek, 2014).

2.1.5.2. Action rules for treatment in TRT

The concept of an action rule was first proposed by Ras

and Wieczorkowska in 2000 (Ras and Wieczorkowska,

2000), and since then, its application was proposed,

among others, for business, medicine, and music indexing

(Ras and Wieczorkowska, 2000, 2010; Wasyluk et al.,

2008; Tarnowska et al., 2020). Action rules are especially

promising in the field of medical data, as a doctor can

examine the effect of treatment decisions on a patient’s

improved state. This technique is also particularly

useful for building knowledge-based decision support

systems.

Action rule r is a term [(ω)∧ (α → β) ⇒ (θ → ψ)], where

(ω ∧ α) ⇒ θ and (ω ∧ β) ⇒ ψ are classification rules, ω is a

conjunction of stable attribute values, (α → β) shows changes

in flexible attribute values, and (θ → ψ) shows the desired effect

of the action. In this domain, it is proposed to apply action rules

to recommend effective methods of treatment in TRT (refer to

Figure 4). Such rules, extracted from large sets of data, represent

actions to undertake (e.g., treatment methods) to improve the

defined state (e.g., tinnitus awareness) when specified conditions

hold (e.g., the current patient’s state and profile). Action is

understood as changing certain (“flexible”) variables to achieve

the desired results. The purpose is to analyze data to seek specific

actions to enhance the decision-making process. Action rules

applied for TRT will suggest, with a certain confidence, the

most effective treatment method for an individualized profile

of a patient (defined by “stable” attributes), at a particular time

(considering temporal variables).

2.2. Knowledge base

Within this research, we propose a knowledge-based

clinical decision support system. The knowledge is developed

with models extracted from knowledge discovery experiments.

These experiments yield a vast number of diagnostic and

treatment patterns. These are general clinical rules already

known by experts, or they represent novel and unknown

patterns useful for future diagnosis/treatment. We propose

interpreting and validating the results from analytical modeling

with clinical expertise and including only validated patterns
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FIGURE 4

Mining action rules for changes in the type of counseling and tuning sound generators for decision support in TRT treatment.

with the highest confidence in the framework of the built

system.

2.2.1. Knowledge translator (encoder)

The goal of the Knowledge Translator (“Encoder” in

Figure 1) component is to automatically encode the rule-based

knowledge from the output files of data mining software into

the CDSS knowledge base. The knowledge translating procedure

reads rules one by one, parses, interprets them, adds the

explanation in natural language, and encodes them into the

syntax used in the knowledge base of CDSS. The rules encoded

in KB are “if-then” like statements and each rule encodes a small

piece of the expert’s knowledge available through the dataset.

The pseudocode for the knowledge translating procedure is

depicted in Table 1.

2.2.2. Inference engine

With knowledge encoded in the form of “if-then” rules,

an automatic inference component is used to control the

application of the rules. Each rule has a left-hand side (“if ”

statement—the antecedent of a rule) and a right-hand side

(“then” statement—consequent of a rule). The left-hand side

contains information about certain facts about the patient.

If the left-hand side of the rule (antecedent) is matched, its

right-hand side (consequent) is executed. Once a new patient’s

characteristics are entered into the system, the inference module

will fire the matching rules from its knowledge base. Consequent

clauses decide on the diagnosis/treatment decision suggested to

the physician. The JESS library for Java-based programs was

used to implement an inference engine based on the efficient

pattern-matching algorithm, called Rete (Forgy, 1982).

2.3. Graphical user interface

The user interface (UI) of the system constitutes the mode

of interaction between the physician and the underlying CDS

model. The prototype GUI was developed in Java Swing, with

customary component extensions for screen development. The

developed UI supports clinical processes in

• Storing and managing the data related to

– Tinnitus patients—demographics, medical history,

audiology evaluations, and structured interviews

(Jastreboff and Jastreboff, 1999);

– TRT visits—diagnoses, treatment applied (sound

therapy and counseling), and the outcome evaluation

with standardized forms, such as Tinnitus Handicap
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TABLE 1 Steps in the Knowledge Translator procedure.

Step # Step description

1 Read a rule.

2 Extract confidence, category, and other components from the rule.

3 Split the rule’s hypothesis into partial cedents.

4 Parse each partial cedent and create an object representing the cedent.

5 Develop an explanation for each partial cedent.

6 Create a rule object containing the cedent objects and explanations.

7 Encode that rule object to a file in KB.

Inventory (THI) (Newman et al., 1995) and Tinnitus

Functional Index (TFI) (Meikle et al., 2011).

• Providing evidence-based diagnostic and treatment

decision support with explanations and quantifiable

predictive outcomes.

Prior to designing the appearance of the user interface,

several factors were taken into account. For this process, several

ideas explored in Carroll et al. (2002) were considered. The

article proposes the following guidelines for designing a user

interface for clinical decision support systems, which provided

a basis for research methods for effective GUI design for CDSS

for tinnitus:

• “All clinical data should be represented clearly in a format

familiar to clinicians and easily understood by patients.”

• “The system should be easy to learn and navigate around.”

• “All information processing should be ‘invisible’ to the

user.”

• Consider both the physician and the patient as primary

stakeholders.

• Use visual aids to describe data such as sliding bars and

color codes, where applicable.

3. Results

Within this section, results on feature selection, machine

learning experiments, and the evaluation of KB and CDSS

are described.

3.1. Feature selection

The feature selector used in WEKA was used based on

a chi-square measure to identify a subset of most predictive

attributes. Table 2 shows the results of feature selection, from

around 603 attributes that describe the TRT visits dataset

(questionnaires, interviews, audiology, and pharmacology).

TABLE 2 Feature selection results for categorizing patients based on

chi-squared ranking in WEKA.

Feature Feature description Ranking score

LR4 LDL (RE) at 4 kHz 725.1

Th L Hearing threshold (LE) 712.7

LR3 LDL (RE) at 3 kHz 688.0

LR2 LDL (RE) at 2 kHz 683.4

LR1 LDL (RE) at 1 kHz 683.1

T LR Tinnitus Loudness Match (RE) 672.6

LR8 LDL (RE) at 8 kHz 670.57

LL3 LDL (LE) at 3 kHz 667.47

Th R Hearing threshold (RE) 618.94

LL2 LDL (LE) at 2 kHz 617.06

Audiological measurements were indicated as the most relevant

factors in the TRT categorization process. The results point out

various audiological measurements, such as loudness discomfort

level (LDL), the threshold of hearing (Th), and loudness

match as primary in relation to classifying (diagnosing) patients

into categories.

3.2. Machine learning models

WEKA was used to test different classification algorithms

and determine the classification model with the highest

accuracy. The evaluation was carried out by splitting the dataset

into training and test subsets using cross-validation with 10

folds. Performance measures for predictive models include

classification accuracy (the percentage of correctly classified

patients) and precision (how many of the predicted categories

are actually in that category). Preliminary results of predictive

models with different algorithms are presented in Table 3.

The tests were performed on different types of datasets and

using different feature selection methods. Pat-vis is a dataset

with each visit of a patient as a separate instance. Pat-vis-

med dataset additionally includes binary attributes for all types

of medications, that is, each visit instance is repeated for a

medication that a patient is taking. Pat-vis0 includes only initial

visits (Visits with ordering number 0 or 1), that is when the

diagnosis and categorization of a patient are decided by a

clinician. Depending on the feature selectionmethod chosen, the

dimensionality of datasets (# features) was reduced accordingly.

ML algorithms tested included tree-based (J48), random forests,

and Naive Bayes. The most reliable results were obtained using

the dataset with the initial visit only, but due to the reduction in

the number of data instances, the best accuracy was 57.4% with

the Naive Bayes. It is expected that once more data on initial

visits is collected, the more precise the trained models become.
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TABLE 3 Results on patient classification using WEKA using di�erent data pre-processing, feature selection, and algorithms.

Dataset # instances # features J48 (%) Naive Bayes (%) Random forest (%)

Pat-vis-med 6,991 80 88.5 75.2 89.3

Pat-vis-med 6,991 20 87.5 81.5 87.1

Pat-vis 3,125 603 70.2 55.4 71

Pat-vis 3,125 488 69.7

Pat-vis01 1,090 603 52.1 46 49.2

Pat-vis0 599 603 43.2 52 53.4

Pat-vis0 599 100 41.0 57.4 49.2

The best results are in bold.

3.3. Rule mining

The results described in this section include results from

rule mining with LISp-Miner 4ft-Miner (association rules) and

Act4ft-Miner (action rules) (Simunek, 2014).

3.3.1. Association rules for diagnosis

Experiments on decision rule discovery were carried out

to complement results on predictive models for diagnostic

decision-making. The variables investigated included 593

variables describing the patient and their tinnitus. Audiology

variables include a pure-tone audiogram (up to 12kHz) and the

determination of pure tone loudness discomfort levels (LDL)

measured for all frequencies in the audiogram. For example, R6

describes the right ear (R) pure-tone threshold for 6kHz. LDL is

the audiological measure crucial for TRT diagnosis. For example,

LR1/LL1 describes LDL for the right ear/the left ear tests with

1 kHz. Patients’ responses to initial/follow-up questionnaires

are another important source of information for determining

the category in TRT. The questions provide a structure for

the interview with a patient and allow physicians to track

the progress of the treatment. Variables describing subjective

tinnitus are measured on a Likert scale (0–10) and patients are

asked to assess them “on average over the last month”.

Table 4 shows examples of extracted associations between

audiological measurements, questionnaire responses, and a

category of a hearing problem.

These rules are interpreted as follows:

• If an audiometric value of R3 (audiogram at 3 kHz for the

right ear) is in the range < 15; 20) and annoyance over

tinnitus TAn is greater than or equal to 8, then a patient falls

under Category 1 with 94% confidence.

• If hyperacusis Hpr and hearing loss HLpr are not indicated

as problems, but tinnitus Tpr indicated a problem—then a

patient falls under Category 1 with 85% confidence.

• If an audiometric value of L2 (audiogram at 2kHz for the

left ear) is greater or equal to 50 and R6 (audiogram at 6kHz

for the right ear) is less or equal to 75, then a patient falls

under Category 2 with 87% confidence.

• If a patient was taking Norvasc and tinnitus was its side

effect, then a patient falls under Category 2 with 67%

confidence.

• If the score for tinnitus as a problem Tpr was in the

range < 0, 2.5), annoyance over hyperacusis HAn in range

< 1.5; 3.5) and severity of hyperacusis HSv in range <

1.5; 3.5), then a patient is categorized into Category 3 with

83% confidence.

In general, many such rules are generated and each rule

represents a small chunk of knowledge available through a

clinical dataset. For example, patients in Category 1 have a

significant tinnitus problem (TPr—Tinnitus as a Problem) but

without hyperacusis (H) and there is no significant hearing

loss (HL). Category 2 is characterized by a significant hearing

loss, as indicated by lower values of the pure-tone audiogram

(L2 and R6). Patients in Category 3 are on the other hand

characterized by a significant hyperacusis problem (HAn—

Hyperacusis annoyance and HSv—Hyperacusis severity). The

experiments also yield novel and unknown patterns such

as dependencies between certain medications and their side

effects (T side) being tinnitus symptoms. Experiments between

demographics of patients and a TRT category indicated, that

tinnitus in elderly patients was frequently related to hearing

loss and was affected by many other medical conditions, such

as hypertension and age-related afflictions, and associated with

Category 2. Patients in Category 1 (C1) were middle-aged, and

their tinnitus was associated with psychological disorders, such

as depression, anxiety, and panic. Category 3 was frequent in the

younger group (30–38 years) and association rules indicate, for

men: background in noise exposure, occupation, type of work;

and for women: background in stress and hormonal therapy.

These findings lead to a hypothesis that a personalized approach

to tinnitus treatment based on a patient’s profile could be

effective. For example, for C1-patients personalized counseling

is expected to bemore effective, as it is frequently associated with

psychological disorders. C2 would be most effectively treated
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TABLE 4 Examples of discovered decision rules for the category of a hearing problem determined based on the interview and audiometric values.

Sample association rule for diagnostics in TRT Confidence (%)

R3(< 15; 20)) ∧ TAn ≥ 8 ⇒ Category(1) 94

Hpr(< 0; 0.5)) ∧HLpr(< 0; 0.5)) ∧ Tpr(< 6; 8)) ⇒ Category(1) 85

L2 ≥ 50 ∧ R6 ≤ 75 ⇒ Category(2) 87

Norvasc(yes) ∧ Tside(yes) ⇒ Category(2) 67

Tpr(< 0; 2.5)) ∧ HAn(< 1.5; 3.5)) ∧ HSv(< 1.5; 3.5)) ⇒ Category(3) 83

TABLE 5 Results on actionable knowledge discovery for recommending treatment in TRT.

A sample treatment action rule Conf. (%)

G(m) ∧ NTI(yes) :(Insvis(01)(GHH) → Instvi(01)(GHS)) => Ch(better) 80

Tside(yes) ∧ OMTI(yes) :(Insvis(01)GHH → V) ∧ FU(0 → T) ⇒ Ch(better) 82

Ins(SG) :(MixRSL(< 11; 12) →< 9; 10)) ⇒ Ch(better) 100

FU(A) ∧ Insvis(01)(GHI) ∧ FreqLE(< 3000; 3150)) :(treat(< 5; 6) →< 6; 8))⇒ Ch(better) 88

with hearing aids and instrument fitting, as it is frequently

associated with hearing loss.

3.3.2. Action rules for recommending treatment

Action rules are methods proposed within this research to

support treatment within TRT protocols. The attribute used

as a decision attribute is THI’s total score (T sc), which keeps

track of the treatment progress. In case the total score is

missing in the data, the tinnitus awareness score (Taw) was used

instead. The action rule mining was set up to extract patterns

that bring changes in THI’s total score/tinnitus awareness for

the better (ChTsc/ChTaw-change in the total score/awareness

from the previous visit and PerChTsc/PerChTaw—percentage

change of the previous). The action rule mining experiments

involved checking variables related to changeable (“flexible”)

treatment methods within TRT and setting other attributes as

“stable” (patient demographics, tinnitus characteristics), with

the goal to improve metrics measuring the severity of tinnitus.

Sound therapy with instruments involves choosing the right

instrument and fitting the instrument with the optimal setting

over time at subsequent visits. There are different types of

instruments, as described by the category variable (Ins): hearing

aid (HA), sound generator (SG), and combination instrument.

There are different SGmodels, e.g., General Hearing Instrument

(GHI): soft/hard, Viennatone (V), and many others. A specific

fitting of instruments is a significant aspect and real-ear

measurements (REM) assist in instrument fitting. Sound therapy

is accompanied by counseling. The variable FU describes the

types of follow-up contact: audiology and counseling (A),

counseling (C), telephone-based (T), and e-mail based (E). The

results of the sample extracted patterns are presented in Table 5.

The rules present different actions in treatment

leading to a change in patients for the better,

as measured by the total score of THI and

tinnitus awareness. These rules are interpreted as

follows:

• If a patient is a male and tinnitus is noise-induced then

changing sound therapy from the instrument model of GH

hard (GHH) to GH soft (GHS) at the first visit improves a

patient with 80% confidence.

• If tinnitus was induced by another medical condition

(OMTI) and as a side effect of taking medications (Tside),

then changing the sound generator model GH hard (GHH)

to the Viennatone model (V) at the first visit and changing

the follow-up contact to the telephone-based (T) improves

patient with 82% confidence.

• If the current treatment involves sound generator SG, then

changing the mixing point for the right ear MixRSL from

< 11; 12) to < 9; 10) improves a patient’s state with 100%

confidence.

• If the current treatment involves audiology (FU(A))

with the GHI instrument and frequency in the left

ear measured by REM -FreqLE—in the range of

< 3000; 3150) then prolonging that treatment from

5–6 weeks to 6–8 weeks brings improvement with

88% confidence.

The extracted rules offer high precision, e.g., how to

fit a particular model of a particular type of instrument

(Ins(SG) :(MixRSL(< 11; 12) →< 9; 10))) or how to

change the length of treatment with a specific method [e.g.,

treat(< 5; 6) →< 6; 8]: change the length of treatment

from 5–6 to 6–8 weeks. This approach also offers high

personalization: the treatment actions leading to improvement

are extracted for the individual patients’ profiles, as described

by demographics [e.g., G(m) - gender: male] and the tinnitus
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TABLE 6 Runtimes for encoding and parsing diagnosis (total of 2,192

rules) and action rules (total of 1,348).

Rule type Total encoding

time (s)

Total parsing

time (s)

Time to parse

a rule (ms)

Diagnosis rule 0.29 0.22 0.098

Treatment rule 0.24 0.13 0.094

background (e.g., NTI - noise-induced tinnitus, OMTI - other

medical-induced tinnitus, Tside - tinnitus as a side effect of

pharmacology).

3.4. Knowledge translator

The Knowledge Translator was tested within CDSS for

efficiency and scalability. The runtimes of various steps of the

Knowledge Translator are depicted in Table 6. The encoding

step encompasses all operations from reading the files with rules

to writing the rules into KB. Parsing, in this case, only refers

to parsing the rule and creating an object in memory, but it

does not include any I/O operations. The tests were run using

2,192 diagnosis rules and 1,348 treatment rules. An average from

running one test 5 times is presented in Table 6.

As one can see from the results in Table 6, the developed

Knowledge Translator encodes and parses a massive amount

of extracted rules in a relatively very short time. This provides

an important step in the future scalability of the CDS system.

When comparing the time to parse a single rule by the

Knowledge Translator (less than 0.1 ms) vs. the same task

performedmanually (manual encoding by a human, which takes

approximately 2 min at least to read, interpret and encode a rule

in a correct syntax), the time gain is enormous. Additionally,

the developed Knowledge Translator encodes the human-

understandable explanations, which are critical for clinical use

and support in the accurate diagnosis of the category of a

hearing problem and treatment actions recommendations (refer

to Figure 5).

3.5. CDSS evaluation

The evaluation study was to determine whether the built

CDS system does what it was intended to and at an adequate

level of accuracy. The expectation from the proposed CDSS is

to generate accurate, patient-specific, and interpretable clinical

suggestions. This will encourage efficient and effective use of

tinnitus retraining therapy for the management of hearing

disorders. The evaluation study involved:

1. Developing a user-friendly interface to input the patient’s

data.

2. Identifying a set of representative test cases of patients from

the dataset not used for building the model.
3. Running inference on the chosen test cases entered into the

system (refer to Figures 5–7).
4. Performing quantitative and qualitative evaluation of the

system based on the results from the above.

The metrics used for this evaluation of the system include:

• Accuracy—The number of correct predictions vs. the

total number of predictions. To compute the accuracy we

compare the system’s recommendations with the actual

diagnosis/treatment decision made by a physician.

• Coverage—The number of test cases matched against the

knowledge base.

• Interpretability—If the recommendations are explainable

and understandable by humans.

3.5.1. Test cases

The representative cases from each of the 5 categories, were

identified. Future testing will involve identifying more cases

per category. The chosen test cases reflect the heterogeneity of

the hearing problem and patient profile; a test patient for each

etiology and each category of the hearing problem was identified

from the tinnitus patient database (refer to Table 7).

Tables 8, 9 provide the diagnostic and treatment inference

results for all test cases.

3.5.2. Diagnostic decision support

The diagnosis prediction was 80% accurate and covered

100% of cases (refer to Table 8). The average confidence in the

primary diagnosis inference was 83.51%. The only incorrect

prediction was for test case 5. After closer investigation, this

case was annotated by the physician as a “discrepancy in

information” in interview data, and “inconsistent results” in

audiological evaluation, which are the reasons that misled the

predictive model (as an “outlier” data point). Moreover, the

actual protocol followed was the same as for the category

predicted by the system.

3.5.3. Treatment decision support

The treatment recommendations were generated for 3 out

of 5 patient test cases (refer to Table 9). The other two cases were

not covered, that is, no action rule was matched with the patient

profile, due to a limited number of rules encoded manually in

KB at the time of testing.

For all the tested cases, both the diagnostic and

the treatment recommendations were explained with a

human-comprehensible message/reason. The explanations

were provided by means of the premises of the rules

in KB that were matched against the current patient’s

Frontiers inNeuroinformatics 11 frontiersin.org

158

https://doi.org/10.3389/fninf.2022.934433
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Tarnowska et al. 10.3389/fninf.2022.934433

FIGURE 5

The diagnostic/treatment inference results for test case 1 (noise-based, middle-aged male) based on audiometry: (1) primary diagnosis of

category 4 with 66.7%, and (2) treatment recommendation for changing the instrument type with the expected decrease in tinnitus severity by

41% points.

profile/visit data. The predictions’ probabilities were

quantified by means of the matched rules’ confidence

metric.

4. Discussion

Data mining is an active field and helps uncover

links between variables, with the goal to develop optimal

strategies for tinnitus management. This will open new

horizons for TRT, which does not have a stagnant protocol

but continues to evolve based on information gathered

from treatments of patients (Jastreboff, 2015). TRT has

successfully been used in a clinical setting to help patients

with tinnitus and decreased sound tolerance since 1988, but

the method of TRT underwent many modifications since its

first description.

4.1. Strengths

The proposed analytical models applied to a clinical dataset

detected both trivial and known patterns in TRT, but also

unexpected, unknown, and potentially interesting patterns. The

extracted knowledge utilizes clinical knowledge available from
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FIGURE 6

The diagnostic inference for test case 2 based on audiometry/initial interview. The explanation for Category 3 with 100% confidence included a

high score for hyperacusis as a problem.

FIGURE 7

The diagnostic/treatment inference results for test case 4: (1) category 1 was inferred based on the audiometry results and initial interview

(annoyance over tinnitus high); (2) recommendation included the change of the sound instrument from GH soft and shorten its application time

to 9–14 weeks with an expected gain of 34.4% points.

the TRT expert through the dataset. The prime characteristic

of the approach is its capability of expressing knowledge in

a linguistic way allowing a system to be described by simple

“human-friendly” rules. Knowledge represented in form of rules

is closely related to human thinking and can be explained

natively. It also offers an approach for modeling the uncertainty

and the imprecision typical of human reasoning. As knowledge

is created based on feedback from an expert, users can also rely

on it. It can be used for educational purposes as a training tool

to spread expertise in TRT. The knowledge once encoded will

be preserved permanently and utilized on any hardware. New

patient data can be analyzed by inferring from rules with the goal

of providing a prediction of optimal diagnosis and treatment.

This computer-based approach will help clinicians reveal the
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TABLE 7 Patient test cases—patient profile, etiology of their hearing

problem, the diagnosed category, and the treatment protocol

determined by the physician.

Test

case

Patient profile Etiology Diagnosis Treatment

protocol

1 Male, age 38, KY Noise exposure Category 4 Category 4

2 Male, age 49, GA Ear surgery Category 3 Category 3

3 Female, age 77, FL Hearing loss Category 2 Category 2

4 Male, age 53, GA Stress-related Category 1 Category 1

5 Male, age 36, GA Car accident Category 0 Category 1

mysteries of tinnitus heterogeneity and decrease the impact of

this major health problem on the patient and society.

4.2. Limitations

The currently identified limitations include limited access

to clinical TRT datasets and a lack of standardization in data

management techniques among clinics offering TRT. The more

data, including from many providers, and the more recent

the data (since TRT is still evolving) the more accurate and

useful the CDSS tool. The key to the successful adoption of

the system is a collaboration between the system’s developers

and clinicians/clinics. At the current stage, mostly the prototype

version was designed and developed, which nevertheless has to

be tested for usability in real-world environments and undergo

rigorous testing.

The main so-far identified problem is the quality of the

data, and particularly its sparsity. Data is available from only

one expert, which provides consistency of knowledge, but also

limited records of data. Generally, the more data, the more

accurate the results. Missing values and a limited amount of data

results in extracting rules characterized by relatively low support

and confidence. Additional strategies will be investigated to

develop algorithms for the reliable imputation of missing values.

Another potential problem is the computational complexity of

learning analytical models. The strategy to handle this issue

is to investigate alternative efficient algorithms for mining

that make use of multiple cores and distributed processing.

Additionally, the hardware platform will be scaled adding RAM

and CPU power.

The validation of CDSS accuracy is a challenge. System

reliability and trustworthiness depend on the quality of the

rules. In the current testing design, retrospective patient data

will be used to design and test the system. CDS logic may

not precisely fit the patient. Therefore, if coverage results

prove to be unsatisfactory, more rules will be extracted/added.

Another potential problem is that the user interface proves to

be unsatisfactory. In that case additional, alternative UI designs

will be proposed, evaluated, and compared. If the attractiveness

of the interface will be insufficient, alternative technologies for

UI development will be investigated, e.g., Java FX.

4.3. Future study

In the future, the system is to be used as a TRT assistant by

medical professionals to support both the efficient and effective

management of tinnitus.

The tasks to be performed in the longer term, related to the

development of the CDS system include:

• Expanding the knowledge base with new clinics and

new/updated treatment methods. Adding new data sources

to the system, such as patient and treatment datasets

from other clinics, to expand the knowledge base of

the system. Both clinics in TRT as well as other

tinnitus treatment methods should be included. The

goal central repository should be made available to

participating TRT clinicians and researchers (Landgrebe

et al., 2010). Additional approaches for tinnitus treatment

will be investigated, such as music therapy, brain

stimulation, or cognitive therapy. It is expected more

data available from more than one TRT expert will

improve the accuracy and coverage of the knowledge

base in TRT.

• Applying machine learning methods to investigate

additional factors and variables that may help understand

and treat tinnitus. Some of the considered factors

include magnetic resonance imaging (MRI) data, e.g., to

understand how sound therapy changes neuronal activity

and modulates the brain network (Han et al., 2019); or

associations between gene variants and tinnitus states

(Pulley et al., 2012).

• Expanding AI-based methods to provide decision support,

i.e., natural language processing from the clinical text

data, i.e., doctor’s comments (Tarnowska and Ras., 2019,

2021). Another potential is to utilize natural language

understanding to develop conversational agents, that

can help in delivering counseling to tinnitus patients.

Additionally, machine learning methods based on

clustering techniques to develop new models for more

personalized treatment can be investigated.

• Integration with other software used in audiology

(Rajkumar et al., 2017), i.e., software for sound

generators’ tuning; investigating computer methods

to generate personalized sound used in tinnitus

habituation (Barozzi et al., 2017); integrating music

therapy and music recommendation into the system

(Tarnowska, 2021).

• Expanding modes for the system—i.e., publicly-available

touch-screen stations or developing mobile applications
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TABLE 8 Results on predicting diagnosis by the system on the chosen patient test cases—actual category vs. category predicted by the system,

characterized by confidence, and explanation.

Test

case

Actual Prediction Conf. Explanation

1 Cat 4 Cat 4 66.7% LSD<= 100, L4< 10, and LL3< 75

2 Cat 3 Cat 3 100 LL3 in< 85; 91), Hyper. Annoy ≥8,

H Eff on Lif ≥8, and H Sev ≥7.5

3 Cat 2 Cat 2 96.2 LR8 ≥ 999, R6 ≥ 75, and Tsv ≥ 8

4 Cat 1 Cat 1 94.4 LL3 in< 15; 20) and Tin. annoy. ≥ 8

5 Cat 0 Cat 1 60.3 A patient often irritable by tinnitus (E14)

and tinnitus makes him anxious (E22)

TABLE 9 Results on recommending treatment actions, characterized by an expected improvement gain in percentage points and explanation(s) for

the patients’ test cases.

Test

case

Recommended action(s) Gain Explanation

1 Change instrument from GHH to GHS 41 pp A male whose tinnitus was induced by noise

4 Change instrument from GHS to GHI, 34.8 pp Cat1, instr. duration

use it for 9–14 weeks greater than 22 weeks

5 Change Freq LE from<2,800; 3,000) to<2,670; 2,800) in REM 8.4 pp Instrument used GHS

to improve personalization and streamline data collection

from the patients (Blome, 2015).

The long-term goal of this research is to deploy such

a system in a clinical setting to enhance health-related

decisions in TRT delivery. This step will be preceded by

testing the system in the clinical environment and testing

its usability within real physician-patient consultation. More

extensive testing involving more test cases and new patients

will be conducted in the future. Usability evaluation with

actual clinical users should be performed to determine its

acceptability. In the future, the system should be integrated

with health IT systems and electronic health records (EHR)

to fit into the workflow of clinical decision-making. The

electronic health record (EHR) with embedded clinical decision

support is recognized as an important component in providing

improvement in patient safety, healthcare quality, and efficiency,

as promised by HITECH (Health Information Technology for

Economic and Clinical Health) policy initiatives (Blumenthal

and Glaser, 2007). The project is intended to connect primary

care providers and TRT specialists using a knowledge-driven

computational engine that aids in diagnosing and planning

treatment for tinnitus patients. Decision support, delivered

using an information system with the electronic medical

record as the platform, will provide decision-makers with tools

making it possible to achieve large gains in performance,

narrow gaps between knowledge and practice, and improve

tinnitus habituation rates. The proposed novel and efficient

approach to developing a data-driven CDSS can be applied

to various other medical domains. The results are replicable

by others, and useful to tinnitus researchers and other

medical practitioners.

5. Conclusion

The main contribution of this study is proposing and

evaluating a data-driven clinical decision support system to

assist audiologists in the diagnosis and treatment of hearing

disorders, such as tinnitus, hyperacusis, and misophonia. Up

to date, no CDSS specialized in tinnitus diagnosis and therapy

has been designed and implemented. Collaboration between

experts in the fields of both data analysis and tinnitus is

of utmost importance to prepare and validate optimal CDSS

that will be reliable and efficient. Such decision support will

bring advantages such as speed, accuracy, and long-term

storage of information. Medical users will receive rapid and

synchronous advice. With the user-friendly interface, non-

computer professionals will be able to easily operate the

system and interpret its results. Documented knowledge can

be used for future training and educational purposes. This

type of research is expected to provide an important step

toward the widespread and effective use of TRT knowledge

in clinical practice. This is significant because the diagnosis

and treatment of TRT is a complex task. It requires a very

high level of expertise to operate accurately and efficiently.

Data and information being used in tinnitus management are

becoming heterogeneous and large in volume, and therefore,
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they are overwhelming. A CDSS needs to be developed once and

customized locally to the clinic’s needs. It can be used frequently

in many places by many people without location restrictions.

The system offers a scalable architecture that can be extended

by new knowledge.
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Due to its high temporal resolution and non-invasive nature,

electroencephalography (EEG) is considered a method of great value for

the field of auditory cognitive neuroscience. In performing source space

analyses, localization accuracy poses a bottleneck, which precise forward

models based on individualized attributes such as subject anatomy or

electrode locations aim to overcome. Yet acquiring anatomical images or

localizing EEG electrodes requires significant additional funds and processing

time, making it an oftentimes inaccessible asset. Neuroscientific software

o�ers template solutions, on which analyses can be based. For localizing

the source of auditory evoked responses, we here compared the results

of employing such template anatomies and electrode positions versus the

subject-specific ones, as well as combinations of the two. All considered cases

represented approaches commonly used in electrophysiological studies. We

considered di�erences between two commonly used inverse solutions (dSPM,

sLORETA) and targeted the primary auditory cortex; a notoriously small

cortical region that is located within the lateral sulcus, thus particularly prone

to errors in localization. Through systematical comparison of early evoked

component metrics and spatial leakage, we assessed how the individualization

steps impacted the analyses outcomes. Both electrode locations as well as

subject anatomies were found to have an e�ect, which though varied based

on the configuration considered. When comparing the inverse solutions, we

moreover found that dSPM more consistently benefited from individualization

of subject morphologies compared to sLORETA, suggesting it to be the better

choice for auditory cortex localization.

KEYWORDS

electroencephalography, template anatomy, individual anatomical data, electrode

locations, inverse problem, human, hearing
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1. Introduction

Being inexpensive and non-invasive,

electroencephalography (EEG) is a widely used neuroimaging

method. Due to its high temporal resolution it can reflect

fast processes, which is especially advantageous in hearing

research as well as objective audiometry (Somers et al.,

2021). Its spatial resolution is limited by the number of

electrodes that can be positioned on the scalp and the indirect

measurement of neural activity through electric fields. If

the goal is to postulate about the function of specific brain

regions, inferring the sought activity requires knowledge

about the underlying brain structures and the exact electrode

locations. However, subject brain and general anatomical

characteristics present a significant variability (Bartley et al.,

1997; Yang et al., 2019; Haładaj, 2020). Individual head shapes

also cause differences in the relative placement and studies

show that the considered electrode locations can greatly affect

analyses results (Schwartz et al., 1996; Van Hoey et al., 2000;

Wang and Gotman, 2001; Dalal et al., 2014; Hirth et al.,

2020).

While individualization of those measures is possible,

every step comes at a further cost: recording the individual

electrode locations after an experiment requires the appropriate

hardware and additional processing time, as, depending

on the method used, laborious manual processing might

be necessary (Koessler et al., 2007; Taberna et al., 2019).

Acquiring individual brain anatomies can come in expensive for

research institutions, as neither the facilities nor the necessary

resources might be available. Moreover, it is oftentimes the

case that prior medical procedures or implantations prevent

individuals from procedures such as magnetic resonance

imaging. For hearing research specifically, cochlear implants

frequently fall under the latter category (Leinung et al.,

2020; Holtmann et al., 2021). In either case, a better

understanding of the effects of the individualization steps

may help the planning and uncertainty assessment of EEG

studies.

Activity recorded by scalp-EEG sensors comprises a

superposition of various brain sources, making it non-

trivial to uncover underlying mechanisms. To expose specific

information about the auditory functions in the brain, it

is often relevant to move from the sensor- to the source

space, spatially separating the signals and attributing them to

their original generators. Source estimation is a complex task,

involving several modeling steps. Localizing where the recorded

activity actually originated from requires in the first place a

representation of the elements of the subject’s head (Vorwerk

et al., 2014). The scalp, skull, gray, and white matter and

cerebrospinal fluid have different conductivity characteristics,

requiring an appropriate model accounting for them. This

information is incorporated in the forward model, which

describes how the electric field generated by a cortical source

is picked up as an electric potential by a sensor. Source

estimation based on EEG is especially subject to errors in

the forward modeling; as it is based on electric fields and

the sensors are positioned directly on the skin, it is heavily

influenced by the differences in conductivity estimates (Leahy

et al., 1998; von Ellenrieder et al., 2009). Various solutions

have been developed, and the forward-model choice mainly

relies on the available computational resources and chosen

measurement modality (Baillet et al., 2001; Hallez et al.,

2007). For EEG research, using the boundary element method

is considered an appropriate solution, offering a realistic

representation of the head model (Wang and Gotman, 2001;

Adde et al., 2003; Akalin-Acar and Gençer, 2004; Kybic et al.,

2005). For the cases where individualization steps cannot

be included, relevant software offers the option for template

anatomies and electrode locations. Those can be used on

the acquired experimental data, to approximate actual head

characteristics.

Given the forward model, the activity of the brain

regions can be estimated via the inverse solution; the

sensor data is combined to create an estimate of the

activity at the various brain locations. This constitutes

an ill-posed problem because the number of sources is

typically much larger than the number of sensors. Hence,

the inverse solution is not unique and requires additional

assumptions or constraints to become so (Baillet et al., 2001).

Various approaches have been developed toward tackling

this problem (Grech et al., 2008); among those, minimum-

norm solutions fall under the category of distributed inverse

solvers (Ou et al., 2009). They rely on minimal prior

assumptions, and are therefore well-suited in data driven

approaches, where data is too noisy or no prior knowledge

about source activity can be reliable (Hauk, 2004). Each

grid point is considered to be the location of one or a set

of equivalent current dipoles, subject to specific constraints

regarding their degrees of freedom. Those algorithms look

for a fitting solution to the data at each grid location

simultaneously, under the restriction of a minimum overall

activity amplitude. As most cognitive processing relies on

distributed sources rather than isolated sources, such approaches

offer an ecologically plausible solution, suited for mapping

complex function in the perceptual field (Komssi et al.,

2004). In the implementations of dynamic statistical parametric

mapping (dSPM; Dale et al., 2000) and standardized low-

resolution electromagnetic tomography (sLORETA; Pascual-

Marqui, 2002), noise statistics information derived either from

data or separate recordings is used to standardize the source

maps, in order to compensate for depth current-orientation

inhomogeneity (Hauk et al., 2011). Generally, the choice of

the inverse method relies on parameters such as the sensory

modality or experimental paradigm; there are, though, no
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precise guidelines on selecting a method, rendering the option

to frequently depend on common practice and preference.

Meanwhile, toolboxes offer direct implementations of multiple

inverse solutions, thereby facilitating comparative studies on

the same dataset, an oftentimes suggested approach (Nawel

et al., 2019). In auditory research, dSPM and sLORETA

are frequently applied algorithms toward solving the inverse

problem (e.g., Jaworska et al., 2012; Raghavan et al., 2017;

Justen and Herbert, 2018; Stropahl et al., 2018; Hsu et al., 2020;

Mohan et al., 2020). Based on anecdotal evidence, dSPM has

been deemed to be specifically good for modeling auditory

cortex sources (Stropahl et al., 2018). Instead, various method

comparisons demonstrated how sLORETA can return most

satisfactory results for single source localization (Grech et al.,

2008).

As the first relay of auditory information, the primary

auditory cortex (PAC) is essential in auditory research. It

is the main generator of early evoked activities denoted

as the excitatory, more exogenic P1 component and the

inhibitory, more endogenic N1 component (Picton et al.,

1999; Kudela et al., 2018), typically assessed by their peak

amplitudes and latencies. Yet, with its small size and intricate

placement on the superior temporal lobe (i.e., within the

lateral sulcus and its non-orthogonal orientation to the scalp),

the correct extraction of its activity constitutes a difficult

matter (Hari and Puce, 2017). Our aim in the current study

was to examine the effect of those individualization steps

on inferred PAC activity. For that reason we considered two

main factors that play a crucial role in the source localization

process: the electrode positions and the subject anatomy. We

combined those in pairs of two, yielding four different and

commonly used approaches in EEG experiments (template

anatomy with template electrode positions, template anatomy

with individual electrode positions, individual anatomy with

template electrode positions, individual anatomywith individual

electrode positions). Our basic assumption was that a fully

individualized configuration should lead to the most likely

precise and valid source localization (Akhtari et al., 1994;

Buchner et al., 1995; Van Hoey et al., 2000; Darvas et al., 2006;

Dalal et al., 2014) and more focal activity to elicit larger P1

and N1 component amplitudes (Picton et al., 2000). Effects

on component latencies may also occur but we had no prior

expectations on those. In addition, to more directly assess

how much the evoked activity is restricted to the PAC, we

defined a metric sensitive to spatial leakage by evaluating the

power ratio between the PAC and the surrounding region for

each component. Because the two components reflect different

postsynaptic activities with known hemispheric asymmetries

(e.g., Hine and Debener, 2007), we analyzed all metrics in

a within-subject manner and for each hemisphere separately.

To control for robustness or interaction with regard to the

specific inverse solutions used, we studied and compared each

combination of electrode and anatomical configurations with

the two inverse solutions dSPM and sLORETA.

2. Materials and equipment

For the current study we analyzed data originally collected

for an auditory spatial perception experiment (Baier et al.,

2022). The auditory stimuli used were complex harmonic tones

(Schroeder, 1970; F0 = 100 Hz, bandwidth 1–16 kHz). They

were presented through earphones (Etymotic Research, ER-

2) and were filtered with listener-specific head-related transfer

functions to sound as coming from either the right or left

direction on the interaural axis. The duration of every stimulus

was 1.2 s with an inter-stimulus interval of 500 ms. Onset and

offset ramps with raised-cosine shape had a duration of 10

ms. The stimuli were presented at a sound pressure level of

about 70 dB (all three intensity offsets of 2.5, 0, and −2.5 dB

from the original study were pooled together). The experiment

consisted of an initial passive listening part, during which

subjects were watching a silent subtitled movie while being

exposed to the 600 trials. In a second part, subjects performed

a spatial discrimination task on those stimuli. For our current

study we only considered the EEG data during passive listening,

in order to avoid any task-related effects of attention and arousal.

Our dataset was recorded with a 128-channel EEG

system (actiCAP with actiCHamp; Brain Products GmbH,

Gilching, Germany) at a sampling rate of 1 kHz. We initially

measured participants’ hearing thresholds using pure tone

audiometry between 1 and 12.5 kHz (Sennheiser HDA200,

AGRA Expsuite application, https://www.oeaw.ac.at/isf/das-

institut/software/expsuite) to ensure that they deviated not more

than 20 dB from their age mean. Further exclusion criteria

included neurological disorders. For 23 participants we acquired

individual anatomical structures and electrode positions. Our

later event-related component analyses yielded missing values

for three of our subjects with template attributes, hence we

restricted our set to the remaining 20 subjects (9 female:

meanage = 25.4; SDage = 2.51; 11 male: meanage = 25.4;

SDage = 3.04). For those three subjects, comparisons of the

evoked PAC activity time courses for the fully individualized vs.

fully default conditions are provided as Supplementary material.

3. Methods

3.1. EEG data preprocessing

EEG data were manually inspected to detect potential noisy

channels, which were then spherically interpolated. The data

were subsequently bandpass-filtered between 0.5 and 100 Hz

(Kaiser window, β = 7.2, n = 462) and epoched ([−200, 1500]

ms) relative to stimulus onset. We applied hard thresholds at
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−200 and 800 µV to remove extremely noisy trials. Undetected

bad channels were further identified through an automatic

channel rejection step; if found, they would be visually inspected

and interpolated. No additional noisy channels were detected

for any of the subjects. We performed independent component

analysis (ICA) and followed up with a manual artifact inspection

and rejection of oculomotor artifacts (removal of up to three

components per subject). The data were thereafter re-referenced

to their average. Trials were equalized within each subject by

pseudo-selection, in order to match the minimum amount

within the subject after trial rejection and maintain an equal

distribution across the recordings. On average, this resulted in

569 clean trials (SD = 27.7) per subject. All preprocessing steps

were undertaken on the EEGLAB free software (Delorme and

Makeig, 2004; RRID:SCR_007292).

3.2. Source estimation

We investigated the effects of subject anatomy, electrode

locations and inverse solution on the estimated source activity,

as detailed below. These analyses were implemented in the

Brainstorm free software (Tadel et al., 2011; RRID:SCR_001761).

3.2.1. Subject anatomy

For subject anatomy we considered two conditions, namely

a template anatomy and an individual anatomy. The template

anatomy used was the standard ICBM152 brain template

as implemented in Brainstorm. For the individual subject

anatomies, a structural T1-weighted magnetic resonance (MR)

scan for each subject was recorded at the MR center of the

SCAN-Unit (Faculty of Psychology, University of Vienna) with

a Siemens MAGNETOM Skyra 3 Tesla MR scanner (32-

channel head coil; Siemens-Healthinieers, Erlangen, Germany).

Anatomical MR scans for all subjects were subsequently

segmented via Freesurfer (Fischl, 2012; RRID:SCR_001847), and

loaded in Brainstorm. Fifteen thousand vertices were calculated

for the generated surfaces, in line with the segmentation of

the template anatomies used. They were then used as the

basis for each subject’s head model in the corresponding

cases comprising individual subject anatomies. We created

the anatomical models using the boundary element method

in OpenMEEG (Gramfort et al., 2010; RRID:SCR_002510).

Boundary surfaces were constructed by Brainstorm with 1922

vertices per layer for scalp, outer skull and inner skull, and a

skull thickness of 4 mm was considered. In line with the default

settings, the relative conductivity of the outer skull was set to

0.0125 and to 1 for the remaining layers. We kept the adaptive

integration selected, to increase accuracy of our results.

Overall, obtaining the individual structural MRIs required

about 30 min from the participant and an additional hour

from the experimenter in order to schedule the session and

post-process the data.

3.2.2. Electrode locations

Regarding electrode locations, we compared template-based

against individually tagged ones. As template electrode locations

we used the ICBM 152 BrainProducts Acticap 128 default

EEG cap as implemented in Brainstorm, thereby matching our

experimental setup. Individual electrode positions were acquired

through the following scanning process:

An optical 3D scan (Structure Sensor with Skanect Pro,

Occipital Inc., Boulder, Colorado) of each subject’s head was

made, after data collection and while still wearing the EEG cap.

The scanner was placed on a nearby surface at the level of their

ears. The seat was then being steadily rotated counter-clockwise

until a 360◦ full turn was completed. After returning to the

initial position, another quarter of a turn was done with the

scanner upwards, to record the information of the upper surface

of the head. The scans were visually checked immediately after

their recording; if their resolution or overall quality was deemed

inadequate the process was repeated. Two experimenters were

present during scanning the electrode cap and thereby assessing

the quality or need for repeating the measurement. Each

electrode scan of the subjects’ heads required at least 15 min,

including setting up the system and correctly positioning the

participant. Depending on each individual case, scans had to

be retaken until satisfactory 3D models could be created. The

individual electrodes were subsequently manually tagged on the

3D scans while we additionally added the three fiducial points

(LPA/RPA/NAS). This manual procedure lasted ∼25 min per

participant. Two experimenters were involved in the process of

electrode tagging and MRI co-registration.

An electrode file was created as an input for the upcoming

head model creation steps (Fieldtrip; Oostenveld et al., 2010;

RRID:SCR_004849). The electrode order in the channel file was

modified to match the corresponding order of the channels

in our collected data. The default channel positions were

overwritten by the individual ones in the cases comprising

individual electrode positions.

3.2.3. Co-registration

For each subject and condition (combination of subject

anatomy and electrode locations) we performed a manual co-

registration between the head models and the channel locations

using the fiducial points as an initial reference. In this process,

the electrode cap was manually adjusted on either the template

or the individual anatomy, using the translation, rotation,

or resizing options through the graphical user interface. To

minimize individual intervention and therefore inconsistencies

in reproducibility, the cap was always adjusted as a whole;

no channels were fine-tuned individually. After concluding the
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FIGURE 1

Average electrode distance between template and individual

electrode locations. The distances have been averaged between

anatomies, as the values show minimal deviation from each

other.

realignment and in cases of offsets between electrodes and head

surface, the “project to surface” functionality was used, to make

sure no electrodes were placed inappropriately. This projection

process was being monitored to make sure the projections

did not significantly deviate from the initial tagged position.

In none of the subjects were any electrodes greatly deviating

from the head surface, such that a projection would alter the

tagged position. The entirely non-individualized condition with

templates used for both the electrode locations and subject

anatomies needed no manual co-registration, as it was already

accounted for by the template models.

After co-registration, the default cap locations differed from

the individually tagged locations by a Euclidean distance of 17±

3.3 mm (mean ± SD), after adjustment to the default anatomy.

Similarly, after adjustment to the individual anatomy, the

locations of the default cap differed from the individually tagged

locations by 16 ± 3.5 mm. Given this high similarity between

the two variants of subject anatomy, we pooled the distances

to further investigate their topographic distribution (Figure 1).

Distances are largest at occipital channels and smallest at frontal

channels. There is also a slight asymmetric bias in frontal

distances that may have been caused by our scanning routine.

The counter-clockwise rotation starting with the subject facing

the scanner may have led to an accumulation of errors toward

the end of the scanning procedure.

3.2.4. Inverse solution

With dSPM and sLORETA we selected two distributed

source solutions widely used and implemented in Brainstorm.

Both aim for a minimum norm estimate with implicit depth

weighting to improve localization accuracy of deep sources (Lin

et al., 2006), but differ in the normalization approach (Hauk

et al., 2011; Nawel et al., 2019). In dSPM (Dale et al., 2000),

the current density normalization is done based on the noise

covariance information. In sLORETA (Pascual-Marqui, 2002;

RRID:SCR_013829), the current density normalization is based

on the data covariance, which is a combination of the noise

covariance and a modeled brain signal covariance estimate.

For the calculation of the covariances, we here considered

a single-trial pre-stimulus baseline interval of [−200, 0] ms.

For both solutions, the source orientations were considered

constrained; in that case, a dipole, that is assumed to be

placed perpendicular to the cortical surface, is considered for

each vertex location (Tadel et al., 2011). Noise covariance

regularization was done with a factor of λ
2 = 0.1. Depth

weighting and regularization parameters were selected as

motivated and recommended by Brainstorm (depth weighting

order = 0.5, SNR= 3 dB). Generator signals were reconstructed

at 15,000 vertices describing the pial surface, representing the

interface between gray matter and cerebrospinal fluid, for all

configurations.

3.3. Evaluation

We focused our study on the evoked activity of the right and

left PAC, defined as trasverse temporal regions by the Desikan-

Killiany parcellation scheme (Desikan et al., 2006). There, we

evaluated the effects of the considered individualization factors

with respect to both spatial and temporal aspects.

3.3.1. Metrics

For each subject we extracted the evoked PAC activity for

each hemisphere. These time series of current source densities

were then low-pass filtered at 20 Hz (Hamming-based FIR,

n = 150) with ERPLAB (Lopez-Calderon and Luck, 2014;

RRID:SCR_009574) and baseline-corrected by a 100-ms-pre-

event interval; the average across trials for each subject was

subsequently calculated. Based on literature (Hari and Puce,

2017) as well as the grand average profiles, we defined a

time interval for each of the signature components P1 and

N1: [10 − 90] ms was defined for P1 and [50 − 150] ms

for N1. In those windows, the peak amplitude (maximum

for P1 and minimum for N1) and peak latency values were

extracted for each component from the individual subject trial-

averages, based on the findpeaks function as implemented

in MATLAB 2018b. The single-subject data were plotted and

inspected for accuracy. They were then analyzed and statistically

compared based on the factors electrode location (template

or individual) and subject anatomy (template or individual),

individually for each hemisphere (left or right) and inverse

solution (dSPM and sLORETA).

In the present study we assumed that the generating sources

of P1 and N1 components are linked to focal activity in the

PAC yielding maximal current source density values within

it; yet localization errors likely arise, especially at neighboring

vertices, due to the probability-based approach of the minimum

norm estimate methods. The considered inverse solutions weigh
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spatially neighboring vertices higher in order to yield a smooth

distribution of current source densities (Michel and Brunet,

2019). This artifact is often referred to as spatial leakage. In order

to assess the leakage of localized source activity from within

the PAC toward the neighboring regions, we specified a region

on the cortical surface, spatially surrounding the atlas-defined

PAC for each hemisphere. In order to aid reproducibility, we

decided to expand the region by recruiting additional atlas-

defined surrounding regions, which the PAC activity might have

leaked into. As the Desikan-Killiany parcellation was deemed

too coarse, we based our new region selection on the finer

Destrieux atlas (Destrieux et al., 2010). We hence constructed

an extended region of interest (ROI) by merging the regions

of the planum temporale, fissure, transverse temporal sulcus,

circular sulcus as well as our initially defined PAC region. On

the right hemisphere, the area covered by the extended ROI

spanned 24.67 cm2 vs. the 4.56 cm2 of the initially defined PAC

region (factor of 5.4). On the left side, the original PAC surface of

6.16 cm2 was expanded to 28.03 cm2 (factor of 4.6). For each of

the two components (P1 and N1) we considered the previously

extracted peak latency found for each subject average; for the

exact same time points we extracted the activity of the extended

ROI. We then calculated the squared amplitude ratio between

the two (squared sum over PAC vertices divided by squared sum

over extended ROI vertices), denoted as “ROI power ratio”. This

metric quantifies the proportion of evoked power contained in

the PAC relative to that occurring in the extended ROI and is

thus assumed to reflect the leakage to the neighboring regions in

the sense that higher ratios indicate less leakage.

All aforementioned analysis procedures were implemented

in MATLAB 2018b (RRID:SCR_001622).

3.3.2. Statistical analysis

Statistical analyses on the source localized time series and

the extracted data relied on a mixed-model design with a multi-

way ANOVA, considering a within-subject design. In particular,

the analysis of the peak amplitude, peak latency, and ROI power

ratio included two factors with two levels each: subject anatomy

(template or individual) and electrode positions (template or

individual). All ANOVAs were performed separately for each

inverse solution and hemisphere.

Before each test, data were z-scored within

subject and transformed according to the Box-Cox

transformation (Hawkins and Weisberg, 2017). Furthermore,

we ran Levene’s test assessing violations in the homogeneity

of variance and inspected the ANOVA residuals verifying the

normality assumption. Post-hoc analyses of interactions/contrast

have been done with Bonferroni correction. Finally, for the

metrics that violated these assumptions, non-parametric aligned

ranks transformation ANOVA (Wobbrock et al., 2011) was

performed and the Wilcoxon test was used in the post-hoc

analysis. Effect sizes are only reported if the parametric ANOVA

was applied.

All statistical analyses were performed in R Project for

Statistical Computing (RRID:SCR_001905). In addition

to the standard environment, we relied on the following

packages for the analysis: afex for the ANOVA tests (Barr

et al., 2013), emmeans for the post-hoc comparison

(RRID:SCR_018734), ARTool for the non-parametric

ANOVA (Wobbrock et al., 2011), and ggplot2 for data

visualization (RRID:SCR_014601).

4. Results

4.1. Evoked PAC activity

We compared average event-related PAC responses to

sounds locked to the stimulus onset. Figure 2 shows time courses

comparing the different individualization levels for the two

hemispheres and inverse solutions. For all source localization

conditions we reconstructed stereotypical auditory-evoked

responses in the PAC with a prominent positive deflection

between 10 and 90 ms, denoted as the P1 component, followed

by a negative deflection between 50 and 150 ms, denoting the

N1 component. The left hemisphere (Figures 2A,C) was more

clearly affected by the different configurations than the right

hemisphere (Figures 2B,D). Later components were moreover

more susceptible to latency differences than earlier components.

Additionally, time series profiles differed depending on the

inverse solution used; dSPM curves (Figures 2A,B) appeared

more pronounced for the fully individualized configurations,

while template peaks were rather more salient among the

sLORETA curves (Figures 2C,D). We statistically analyzed the

extracted source activation profiles for each hemisphere and

inverse solution separately. Detailed information regarding the

extracted values can be found in Figure 3.

Based on dSPM, the left PAC (Figure 2A) shows a

differentiation depending on the degree of individualization. At

P1, peak latencies were shorter for individual- than template

electrode locations (F = 6.59, p = 0.01) and peak

amplitudes increased with individual electrodes locations only

within template anatomies (F = 12.16, p < 0.001). At later time

points, the characteristics appear to be driven by the inclusion

or not of a template or individual brain anatomy. Concordantly,

only the use of individual anatomy yielded a significant increase

of the N1 amplitude [F(1, 19) = 5.31, p = 0.03, η
2 = 0.22].

N1 latencies were significantly longer for individual anatomies

[F(1, 19) = 16.17, p < 0.001, η
2 = 0.46] and individual

electrode locations [F(1, 19) = 17.19, p < 0.001, η
2 = 0.47].

In the right PAC (Figure 2B) the curves of all four

individualization conditions are highly overlapping, suggesting

no strong impact of any of the individualization steps.
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A B

C D

FIGURE 2

Evoked PAC activity inferred via dSPM (top) and sLORETA (bottom) for the left (A,C) and right (B,D) PAC. Shaded areas denote the standard error

of the mean (SEM) values.

Nevertheless, individual electrode locations resulted consistently

in slightly larger P1 amplitudes (F = 16.69, p < 0.001).

For the N1 component, electrode locations were again a

significant factor (F = 6.99, p < 0.01), yielding more

pronounced peaks with individualization. No significant effect

was found on either the P1 or N1 latencies.

sLORETA applied to the left hemisphere (Figure 2C)

revealed a significant interaction between anatomy and electrode

locations on the P1 amplitude (F = 11.62, p < 0.001);

individual electrode locations generated highest values in

particular when combined with template anatomies. Significant

differences were neither found on P1 latencies nor on N1

amplitudes. The N1 latency, though, was affected by both

anatomy [F(1, 18) = 15.45, p < 0.001, η
2 = 0.46] and

electrode locations [F(1, 18) = 11.86, p < 0.01, η
2 = 0.40];

overall individual anatomies produced later N1 peaks than the

corresponding template configurations and individual electrode

locations yielded later peaks.

On the right hemisphere (Figure 2D), anatomy [F(1, 19) =

10.31, p < 0.001, η
2 = 0.35] and electrode locations

[F(1, 19) = 20.38, p < 0.001, η
2 = 0.52] showed significant

main effects on P1 amplitude for sLORETA. Template anatomies

produced higher peak values, more so in combination with

individual electrode locations. The interaction between anatomy

and electrode locations was found significant for P1 latency

[F(1, 19) = 5.22, p < 0.05, η
2 = 0.22]; the combination of

individual electrode locations and template anatomies yielded

the shortest values. Anatomy caused a differentiation on the N1

peak values (F = 7.05, p < 0.01), where template anatomies led

to slightly more pronounced peaks. No significant effects were

found on N1 latency.

4.2. Spatial leakage

We inferred the brain activity not only to the PAC but to the

entire cortical surface. The corresponding brainmaps are shown

in Figure 4 for dSPM and Figure 5 for sLORETA. There was a

clear evoked activation in the temporal region, yet that activation

differed in its precise location and spread, depending on the

particular configuration considered. Generally, the activation

was attributed to regions extending rather more superior

and posterior than the atlas-defined PAC (cyan outline) and

the overall pattern seemed to be dominated by the subject

anatomies. The configurations comprising individual subject

anatomies exhibited more constrained activation patterns

within the atlas-defined PAC, whereas those with the template

anatomies showed a higher spread of activation. This was most

pronounced within the extended ROI area surrounding and

including the PAC but also reached further to other parts of

the temporal and parietal lobes. When regarding the general

brain profiles, electrode locations appeared to play a secondary
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FIGURE 3

Peak amplitudes and latencies for P1 and N1 components inferred via dSPM (top) and sLORETA (bottom) for the left and the right hemisphere.

Values correspond to the average over subjects after z-scoring per condition and within subject. Error bars denote the SEM. Statistically

significant main e�ects are reported as gray bars—horizontal bars for electrode position and vertical bars for brain anatomy—and from one to

three asterisks indicating the significance levels (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001). Significant interactions are reported in Table 1.

role; individual electrode locations did not consistently seem

to constrain the activation further. Between the two inverse

solutions, the spread was noticeably more distributed in the use

of sLORETA, compared to dSPM.

Complementary to the brainmaps, we evaluated the P1

and N1 power ratios between the PAC and the extended ROI

(Figure 6).When considering the dSPM inverse solution and the

left hemisphere, individualization of the electrode locations led

to higher P1 ratio [F(1, 19) = 5.27, p < 0.05, η
2 = 0.22]. No

significant effects were found on the corresponding ratio for the

N1 component.

In the right hemisphere under the dSPM inverse solution,

anatomy had a significant main effect on both the P1 (F =

71.14, p < 0.001) and N1 [F(1, 19) = 21.84, p < 0.001, η
2 =

0.53] power ratios. Individual anatomies generated higher power

ratios at the peak of both components.

When considering the sLORETA inverse solution in the left

hemisphere, anatomy [F(1, 19) = 7.05, p < 0.05, η
2 = 0.27]

and electrode locations [F(1, 19) = 9.51, p < 0.01, η
2 = 0.33]

were main effects for the P1 power ratio. Individual subject

anatomies led to lower power ratio values, while individual

electrode locations ameliorated the result. The corresponding

N1 power ratios were significantly affected only by anatomy

(F = 4.94, p < 0.05), with individualized subject anatomies

leading to a deterioration of the value, hence denoting higher

leakage.

In the corresponding right hemisphere, anatomy was a

significant main effect for both P1 (F = 69.92, p < 0.001) and

N1 [F(1, 19) = 17.64, p < 0.001, η
2 = 0.48]. In both cases

individualization benefited the localization accuracy.

5. Discussion

In the present study our aim was to single out the effects

of different individualization steps on the accuracy of inferring

PAC activity from EEG data. We compared combinations of

template or individualized electrode locations and subject

anatomies while using two different inverse solutions

(dSPM and sLORETA). Through that we reconstructed

and characterized the evoked PAC time series and assessed the

spatial leakage around the PAC in each hemisphere. Table 1

summarizes the significant effects for all configurations and

their consistency with individualization benefit. As evident,

both the factors of electrode location as well as subject anatomy

were found to have an impact on the defined current source
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FIGURE 4

dSPM brainmaps depicting the PAC activation at the P1 (∼55 ms, top) and N1 (∼100 ms, bottom) timing for both hemispheres and all considered

configurations. For display, no minimal cluster size was set and the minimum amplitude was set at 20% of the maximum activation across all

four configurations of the inverse solution. Cyan: atlas-defined PAC; Green: extended ROI.

density metrics; yet their effect varied depending on the target

brain area (PAC in the left or right hemisphere), the evoked

component characteristic (amplitude or latency of P1 or N1),

and also the type of inverse solution (dSPM or sLORETA)

considered.

5.1. Individualization factors

The considered individualization factors influenced the two

hemispheres quite differently. In the right hemisphere, anatomy

affected mainly the power ratio indicating spatial leakage, while

electrode positions had an impact on peak amplitudes. Contrary

to that, we found a more complex pattern of effects in the

left hemisphere: individualized solutions gave earlier peaks

for P1 and later ones for N1, individual electrode locations

increased both the P1 amplitude and power ratio, and individual

anatomies interacted with that effect on P1 amplitude and

independently enlarged N1 amplitudes.

We speculate that such a regional variance in source

reconstruction could be resulting from either state or trait

effects. On the one hand, source localization estimates

could show higher variance across subjects because of

brain morphology (i.e., cerebral size, Bartley et al., 1997;

handedness, Good et al., 2001) that, on a group level, may result

in higher or lower uncertainty for different regions, especially

for template solutions. Higher inter-individual variability

is also generally found in the left auditory cortex (Ren

et al., 2021). On the other hand, the observed asymmetry

might be related to stimulus features; auditory stimulation
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FIGURE 5

sLORETA brainmaps depicting the PAC activation at the P1 (∼55 ms, top) and N1 (∼100 ms, bottom) timing for both hemispheres and all

considered configurations. For display, no minimal cluster size was set and the minimum amplitude was set at 20% of the maximum activation

across all four configurations of the inverse solution. Cyan: atlas-defined PAC; Green: extended ROI.

characteristics preferentially processed on either hemisphere,

such as unattended automatic change detection of spectral or

temporal features, may influence the variance of the source

reconstruction estimates (Schönwiesner et al., 2007; Okamoto

et al., 2009). Our stimuli moreover carry spatial characteristics,

as they are presented from either the left or right side of- and

at different distances from the listener. Spatial processing has

been shown to exhibit right-hemispheric dominance, possibly

explaining the differences we observe (Kaiser et al., 2000;

Middlebrooks, 2015; Deng et al., 2020). From a more technical

perspective, it could also be that the slight asymmetry we

observed in distances between default and individual electrode

positions may have contributed to hemispheric asymmetries

in inferred source activity, but only when using individual

electrode locations.

Individual anatomies and electrode locations allow for

a more precise attribution of the recorded activity to the

corresponding regions, thereby likely accounting for the

various inter-individual variability characteristics. Acquiring

individual electrode locations, though, usually comes with

considerable measurement uncertainty; to some degree

this also depends on the acquisition strategy. With our

procedure, a considerable amount of the experimenter’s

individual intervention is necessary in obtaining the 3D

scan as well as tagging the electrodes. The extent of it

might differ, when more automatized—and therefore also

more reproducible—methods are used (Koessler et al.,

2011; Hirth et al., 2020), potentially yielding different

effects regarding the choice between template or individual

electrode locations.
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FIGURE 6

ROI power ratios for P1 and N1 components inferred via dSPM (top) and sLORETA (bottom) for the left and right hemisphere. Higher ratios are

interpreted as indication for lower spatial leakage of inferred PAC source activity. Values correspond to the average over subjects after z-scoring

per hemisphere, inverse solution, and subject. Error bars denote the SEM. Statistically significant di�erences between main e�ects are reported

as gray bars—horizontal bars for electrode positions and vertical bars for brain anatomies—and from one to three asterisks indicating the

significance levels (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001). Significant interactions are reported in Table 1.

TABLE 1 Summary of the e�ects of anatomy (A) and electrode locations (E) as well as their interaction (A:E) resulting from the statistical tests.

Only significant results are reported (p < 0.05). Arrows indicate the direction of change from the template factor level to the individual factor level. Dashes indicate opposing interactions.

Color coding denotes the assessment of every such change as individualization benefit (green) or degradation (red). If this interpretation on the direction of change seemed ambiguous, as

is the case for latency changes and opposing interactions, the cell has not been colored.

As we were interested in localizing the PAC we restricted

our search on the cortical surface and this is where our

results apply. Our choice of constrained sources in the brain

might be an essential contributor to our outcomes: when

individual anatomies are unavailable, selecting fixed sources

might be too restricting and introduce errors in the considered

orientations (Hillebrand and Barnes, 2003; Westner et al., 2022);

therefore a different setting might be more suited for the case of

template anatomies.

In order to extract the targeted cortical activity, we focused

on the PAC region as defined by the Desikan-Killiany atlas.

Yet, as seen on Figures 4, 5, none of the configurations seem

to perfectly capture the core of the PAC activation. Different

atlases vary in their parcellation; as a result, using a different

parcellation scheme for such an investigation might capture

the activation differently and hence lead to deviating results

regarding the accuracy of localization. Another possibility could

be to move away from an atlas-based- and toward a functional
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ROI definition. Extending the study by manually defining

the PAC based on the observed, and therefore actual source

activation, could increase the effect sizes and give further insight

into the localization precision offered by the individualization

steps.

Given the aforementioned limitations and despite the clear

loss in spatial acuity obtained without individualization, we

found the stereotypical auditory evoked response elicited within

the PAC in all configurations (Figure 2). In that regard the

EEG based source localization of early evoked activity may be

considered satisfactory in all cases. This is important especially

in occasions where no individualization steps can be taken, as

could happen with infants, implantees, or situations where the

corresponding resources (time, personnel, or funds) are not

available. Contrarily, there are cases where individualization

is indispensable. Such can be investigations with known

underlying structural differences, as could be in the case of

hearing loss (Alfandari et al., 2018; Chen et al., 2021; Manno

et al., 2021). In a general setting, though, where no such

restrictions apply, our results can aid in the direction of

designing the aspects of an experimental study: depending on

the effect examined and available resources, decisions can be

made about whether template configurations would be sufficient

or a further individualization, whether electrode locations or

subject anatomy, would be in order.

5.2. Di�erences between inverse
solutions

Regarding the choice of an inverse solution itself, different

algorithms are based on different prior assumptions (Grech

et al., 2008). We here restricted our study to two widely

used methods falling under the same algorithmic category

(minimum-norm solutions); an informative and oftentimes

suggested way is to compare different algorithms before drawing

conclusions on the plausibility of the results (Nawel et al., 2019).

When comparing the analyses outcomes of our considered

source localization configurations as shown in Table 1, the

differences between inverse solutions become noticeable. With

sLORETA individualization steps yielded rather inconsistent

main effects: we found some benefit of individual electrode

positions, yet anatomy seemed to work in the opposite

direction than what was expected. Inclusion of individual

subject anatomies had incongruent effects on our metrics,

oftentimes leading to a deterioration of the accuracy with higher

individualization (Table 1, red cells). Contrary to that, dSPM

showed consistent results: all main effects contributed toward an

amelioration of the considered values with individualization of

either the subject anatomy or the electrode positions.

Though not reflected in the metrics of Table 1, there is a

considerable difference in the overall activity spread between

dSPM and sLORETA. The activity is largely distributed over the

temporal and parietal lobes using sLORETA, while with dSPM

it remains rather spatially focused. As such, dSPM seems to

be more suitable for capturing more focal auditory processes

targeting specific regions implicated in them.

In sum, our findings demonstrate the benefit of using

additional individualized information regarding brain anatomy

and electrode positioning; they further support previous

notions toward using dSPM for investigating auditory

processes (Stropahl et al., 2018). A restricted activation profile

can be especially beneficial, for instance, when considering a

differentiation between the ventral and dorsal auditory stream,

both of which also comprise relatively small areas (Bizley and

Cohen, 2013).
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Toward learning robust
contrastive embeddings for
binaural sound source
localization

Duowei Tang*, Maja Taseska† and Toon van Waterschoot

Department of Electrical Engineering (ESAT-STADIUS), KU Leuven, Leuven, Belgium

Recent deep neural network based methods provide accurate binaural

source localization performance. These data-driven models map measured

binaural cues directly to source locations hence their performance highly

depend on the training data distribution. In this paper, we propose a

parametric embedding that maps the binaural cues to a low-dimensional

space where localization can be done with a nearest-neighbor regression.

We implement the embedding using a neural network, optimized to map

points that are close to each other in the latent space (the space of source

azimuths or elevations) to nearby points in the embedding space, thus the

Euclidean distances between the embeddings reflect their source proximities,

and the structure of the embeddings forms a manifold, which provides

interpretability to the embeddings. We show that the proposed embedding

generalizes well in various acoustic conditions (with reverberation) di�erent

from those encountered during training, and provides better performance than

unsupervised embeddings previously used for binaural localization. In addition,

the proposed method performs better than or equally well as a feed-forward

neural network based model that directly estimates the source locations from

the binaural cues, and it has better results than the feed-forwardmodel when a

small amount of training data is used.Moreover, we also compare the proposed

embedding using both supervised and weakly supervised learning, and show

that in both conditions, the resulting embeddings perform similarly well, but

the weakly supervised embedding allows to estimate source azimuth and

elevation simultaneously.

KEYWORDS

manifold learning, non-linear dimension reduction, siamese neural network, binaural

sound source localization, deep learning

1. Introduction

Sound source localization is aiming to estimate a sound source position

in terms of azimuth, elevation, and distance. A large part of the source

localization literature focuses on the azimuth and elevation estimation

only, hence this is also the scope we adopt in this paper. The human

auditory system is capable of localizing acoustic signals using binaural cues
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such as the Interaural Phase Differences (IPDs) and Interaural

Level Differences (ILDs) (Blauert, 1997). Computational

localization algorithms in robot audition (Argentieri et al.,

2015), hearing aid (Farmani et al., 2018), virtual reality (Keyrouz

and Diepold, 2007), etc., aim at mimicking this process and

therefore estimate the binaural cues from binaural microphone

signals. The binaural microphones are typically two identical

microphones that are mounted at the entries of two ear canals

of an artificial head. In a sound source localization scenario,

the human/artificial head together with the pinna and the

torso act as filters that modify the incident sound waves. This

filter effect is crucial for sound source localization, especially

vertical sound source localization (i.e., elevation estimation),

and can be characterized by the Head-related Transfer Function

(HRTF) (Risoud et al., 2018).

Acoustic artifacts such as noise and reverberation, introduce

uncertainties in the binaural cues. Although the existence

of reverberation can aid distance localization (Risoud et al.,

2018), the resulting noisy and reverberant binaural cues make

sound source localization challenging. Traditionally, robustness

to reverberation has been tackled with statistical model-

based approaches (Mandel et al., 2010; May et al., 2011;

Woodruff and Wang, 2012), which outperform lookup tables

and template matching methods that rely on an anechoic

assumption (Raspaud et al., 2010; Karthik and Ghosh, 2018).

Some works propose to estimate the direct-path relative transfer

function, which encodes the source azimuth information, in

order to avoid the contamination of audio from reverberation

noise, however, this type of methods highly rely on the onset of

the source acoustic events (Li et al., 2016).

In contrast, data-driven approaches are able to learn

the non-linear functions that map binaural cues to source

locations (Datum et al., 1996). Recently, Deep Neural Networks

(DNNs) has been used to learn the relationship between azimuth

and binaural cues, by exploiting head movements to resolve

the front-back ambiguity (Ma et al., 2017), and by combining

spectral source models to robustly localize the target source in a

multiple sources scenario (Ma et al., 2018). Additionally, a few

works use DNNs to enhance the binaural features so that they

can eliminate reverberation and additive noise (Pak and Shin,

2019; Yang et al., 2021). In Yalta et al. (2017) and Vecchiotti

et al. (2019), the authors utilize DNNs to directly map the audio

spectrogram or its raw waveform to the source azimuth in an

end-to-end manner, which is also applicable to reverberant and

noisy environments. However, those works only consider source

azimuth estimation and the localization is done by classification

(i.e., the predictions can only be in a pre-defined grid).

A different data-driven approach was used in Deleforge

and Horaud (2012) and Deleforge et al. (2015), where the

relationship between source locations and binaural cues was

modeled with a probabilistic piecewise linear function. By

learning the function parameters, sources can be localized

by probabilistic inversion. An implicit assumption of the

piecewise linear model in Deleforge and Horaud (2012) and

Deleforge et al. (2015) is that similar source locations result

in similar binaural cues. The same assumption is also used

in non-parametric source localization algorithms based on

manifold learning in Laufer et al. (2013) and Laufer-Goldshtein

et al. (2015). In this paper, we focus on data-driven source

localization approaches, inspired by low-dimensional manifold

learning (Laufer et al., 2013; Laufer-Goldshtein et al., 2015).

Manifold learning in sound source localization is aiming

to find a non-linear transformation that transforms acoustic

measurements to a low-dimensional representation that

preserves the source locality information. Manifold learning

methods in Laufer et al. (2013) and Laufer-Goldshtein et al.

(2015) rely on smoothness in the measurement space with

respect to the underlying source locations, an assumption that

might generalize poorly to varying acoustic conditions. The

uncertainties in the binaural cue measurements introduced by

reverberation, introduce variations in the measurement space

neighborhoods that might not be consistent with their source

locations. To preserve neighborhoods in term of the source

location, we are inspired by the “siamese” neural network in

the machine learning community that is optimized with a

contrastive loss function (Hadsell et al., 2006). This particular

model learns a similarity metric defined in the latent space

(i.e., written digit classes and orientation of air plane pictures

in Hadsell et al., 2006). This paradigm, which doesn’t rely

on an explicit neighborhoods definition in the measurement

space, is suitable for problems that have a large amount of

classes and in each class there are only a few training examples,

such as face verification (Chopra et al., 2005; Taigman et al.,

2014) and signature verification (Bromley et al., 1993), and can

also be used in sound source localization. We have proposed

and published earlier a regression method for binaural sound

source localization based on the “siamese” neural network and

contrastive loss in Tang et al. (2019). This method converts

binaural cues into a low-dimensional embedding, and there is

a small Euclidean distance between the embeddings obtained

from binaural cues of similar source locations. A similar work

using triplet loss somewhat resembles our idea (Opochinsky

et al., 2019), but in their work, a model directly maps the

binaural cues to source location predictions, and pre-defined

proximity for both positive and negative cases (i.e., points with

similar and dissimilar source locations) have to be present at the

same time for the triplet loss.

In this paper, we first propose an update on the model

architecture introduced in Tang et al. (2019), and then validate

its robustness with respect to three aspects:

1. mismatched audio content between the training and testing

sets,

2. the presence of unknown reverberation and noise,

3. and the availability of only a small amount of annotated

training data,

Frontiers inNeuroinformatics 02 frontiersin.org

180

https://doi.org/10.3389/fninf.2022.942978
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Tang et al. 10.3389/fninf.2022.942978

through abundant experiments in fixed and varying acoustic

scenarios, respectively. Afterwards, we extend our method to

a weakly supervised learning scheme, where the annotation

of source directions (i.e., azimuth and elevation) is no longer

required for training the embeddings, but only the relative

source position proximity is needed for any pair of training

examples. Unlike the supervised approach proposed in Tang

et al. (2019), which treats azimuth and elevation estimation in

two separate tasks, this weakly supervised embedding can be

used to estimate both the source azimuth and elevation at the

same time, and providing a good visualization of the manifold.

The proposed methods have potential in a number of

practical applications where the location of a sound source is

to be identified, for example in signal processing front-ends for

hearing aids, and in an intelligent interactive dialogue systems,

to localize the speaker for denoizing beamformers, or for a

synthesizer to render stereo sounds. Note that the proposed

methods start from binaural signal features, which implies that

binaural rather than bilateral hearing aids are required when

using these methods for sound source localization in hearing

aid systems, and the issue of binaural hearing aids that need to

transmit and synchronize the binaural features needed for this

model is beyond the scope of this paper. Yet there is a large body

of research literature that addresses this issue, and the reader is

referred to Kreisman et al. (2010), Ibrahim et al. (2013),Wei et al.

(2014), and Geetha et al. (2017).

The paper is organized as follows. In Section 2, we first revise

the binaural cue extraction and formulate the source localization

problem. Then, in Section 3, we provide a brief overview of

the related manifold learning work that has been applied in

binaural sound source localization. Next, the proposed method

is presented in Section 4 and finally, experimental results are

shown in Section 5.

2. Data model and problem
formulation

2.1. Binaural cue extraction

Let s1(τ ) and s2(τ ) denote the signals captured at the left and

right microphones in a binaural recording setup in a noisy and

reverberant environment. In this work, we extract the binaural

cues in the Short-time Fourier transform (STFT) domain, as

in Raspaud et al. (2010) and Deleforge et al. (2015).

Let S1(t, k) and S2(t, k) denote the STFT coefficients of s1(τ )

and s2(τ ), where t and k are the time frame and frequency index,

respectively. At a time-frequency bin (t, k) an ILD αtk and an

IPD φtk are defined as

αtk = 20 log10
|S1(t, k)|

|S2(t, k)|
, φtk =

6
S1(t, k)

S2(t, k)
. (1)

Assuming that a single sound source is active, we follow

the binaural feature extraction approach from Deleforge et al.

(2015), and compute time-averaged ILDs and IPDs across T

frames as follows

ak = T−1
T
∑

t=1

αtk, pk = T−1
T
∑

t=1

exp(jφtk). (2)

By concatenating the ILDs, and the real and imaginary parts

of the IPDs in selected frequency ranges [k1, k2] and [k3, k4], the

binaural information is summarized in a measurement vector

x ∈ X ⊂ R
D,

x = [ak1 , . . . , ak2 , R{pk3},I{pk3}, . . . ,R{pk4 },I{pk4 }]
T (3)

with dimensionality D = k2 − k1 + 2(k4 − k3).

It is known that IPDs carry reliable location cues below

2 kHz (Blauert, 1997), while ILDs contribute to localization at

higher frequencies as well (Deleforge et al., 2015). Hence, we

used the ranges
fs
K [k̃1, k̃2] = [200; 7, 000] Hz for ILDs and

fs
K [k̃3, k̃4] = [200; 2, 500] Hz for IPDs, where fs denotes the

sampling frequency and K is the Discrete Fourier transform

(DFT) size used in the STFT, and ki = round(k̃i), i = 1, 2, 3, 4,

where the round() operation rounds k̃i to the closest integer. For

a typical audio recording with sampling rate fs = 16 kHz, and

the DFT size K = 1, 024, the dimensionality D is equal to 729

(i.e., a 729-dimensional feature vector x).

2.2. Measurement to embedding
transformation

From the above binaural cue extraction process, a pair of

signals s1(τ ) and s2(τ ) is associated to a vector x ∈ X . We refer

toX as themeasurement space. Let the unknown source location

be denoted by u ∈ U . We refer to U as the latent space. U is one-

dimensional if one considers azimuth or elevation separately,

or two-dimensional if the localization angles are considered

simultaneously. Given a training set ofN pairs T = {(xi, ui)}
N
i=1,

the localization problem consists of finding a function h

û = h(x), h :X → U . (4)

that accurately maps measurements to latent variables.

Although, one can implement h with a powerful non-

linear model (e.g., a DNN), the proposed approach of first

transforming the measurement space to an embedding space

and then performing the localization in the embedding space

comes with several advantages:

1. Learning the transformation from measurement space to

embedding space does not necessarily require the latent space

annotation information, thus enables the possibility of semi-

supervised learning and weakly supervised learning.

Frontiers inNeuroinformatics 03 frontiersin.org

181

https://doi.org/10.3389/fninf.2022.942978
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Tang et al. 10.3389/fninf.2022.942978

2. The low-dimensional embedding can preserve the latent

space neighborhood relationships (in which the Euclidean

distance in the embedding space roughly corresponds to

the latent space “semantic” relationship) and the embedding

eliminates useless information, which can be used to study or

visualize the latent space structure. A vanilla example of this

is the Principal Component Analysis (PCA).

3. By learning the structure of the latent space, the training of

the model will be less dependent on the distribution of the

training data. In contrast, if the mapping from measurement

space to latent space is learned directly, the model is more

likely to over-fit to the dense part of the training data and its

generalization capability decreases when there is not enough

annotated training data.

Therefore, our main objective in this work is to learn

an embedding function f that maps the vectors x to a low-

dimensional space which preserves latent space neighborhoods,

i.e.,

z = f (x), f :X → Z ⊂ R
d, d << D. (5)

We propose a neural network framework to learn a

parametric function f that satisfies these properties both in a

supervised and weakly supervised manner. A nearest-neighbor

regression function h :Z → U is then used for localization.

3. Baseline manifold learning
method

If the microphone location in a given room is fixed, the

authors in Laufer-Goldshtein et al. (2015) showed that features

extracted from binaural signals can be embedded in a low-

dimensional space Z , in a way that recovers source locations.

The framework in Laufer-Goldshtein et al. (2015) is based

on unsupervised manifold learning, in particular, Laplacian

eigenmaps (LEM) (Belkin and Niyogi, 2003).

The Laplacian Eigenmaps (LEM) method defines the

neighborhood relationships of the data using a similarity matrix

K ∈ R
N×N , with entries K[i, j] related to the Euclidean

distances ‖xi− xj‖2 between feature vectors xi and xj, with i, j ∈

[1,N]. One way to compute K is using nearest-neighbors, i.e.,

K[i, j] = K[j, i] = 1 if xi is among theM nearest neighbors of xj,

or if xj is among the M nearest neighbors of xi (in Euclidean

distance). A second way is using an exponentially decaying

kernel function, such as the Gaussian kernel

K[i, j] = exp

(

−
‖xi − xj‖

2
2

ε

)

, (6)

where ε is the kernel bandwidth. Such kernel is used for

source localization in Laufer-Goldshtein et al. (2015).

Given the similarity matrix K , the neighborhood-preserving

optimization problem of LEM to find the embeddings

z1, z2, . . . , zN is given by (Belkin and Niyogi, 2003)

arg min
z1,...,zN

N
∑

i,j=1

‖zi − zj‖
2
2 K[i, j],

subject to ZTDZ = I

(7)

which enforces that points xi, xj with large similarity K[i, j],

are to be mapped to points zi, zj with a small Euclidean distance

‖zi − zj‖2 where D is a diagonal matrix with entries D[i, i] =
∑N

j=1 K[i, j].

The optimization problem (7) has a closed-form solution,

given by the eigenvectors of P = D−1K corresponding to the

largest eigenvectors. If {ψ i}
N
i=1 denote the eigenvectors of P,

with eigenvalues 1 = λ1 > λ2 ≥ . . . ,≥ λN , the d-dimensional

LEM embedding is given by (Belkin and Niyogi, 2003)

zi = f (xi) =
[

ψ2[i], ψ3[i], . . . , ψd+1[i]
]T

, (8)

where the constant eigenvector ψ1 is not included (Chung,

1997; Belkin and Niyogi, 2003) and [i] denotes the vector

element index. The LEM embedding f is non-parametric, and

the low-dimensional representation z of a new measurement

x is obtained as a linear combination of the training points

{zi}
N
i=1 (Bengio et al., 2003). However, this procedure is often

insufficiently accurate and represents a disadvantage of LEM and

of spectral embeddings in general. One can include every new

testing data and re-run the unsupervised training to get a more

accurate representation for the new testing data, however, this

may prolong the training time, especially for large datasets, and

due to the fact that the kernel matrixK isN×N, the computation

of eigenvectors will dramatically increase for a large N.

Besides the promising performance of spectral embeddings

for localization (Laufer et al., 2013; Laufer-Goldshtein et al.,

2015; Taseska and vanWaterschoot, 2019), theirmajor drawback

is the assumption that the neighborhoods in the measurement

space are consistent with the source locations. Although the

assumption is shown to hold when all signals are recorded

in one room for fixed microphone locations (Deleforge and

Horaud, 2012; Laufer-Goldshtein et al., 2015; Taseska and van

Waterschoot, 2019), this is not the case when the signals are

filtered by various acoustic channels in different enclosures.

4. Contrastive embedding for
localization

We propose a parametric embedding, designed to preserve

neighborhoods in terms of sound source locations. Such

embeddings are robust to unseen room reverberation and small

training set size (e.g., when the training set does not contain the

complete latent space annotations). The proposed framework
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firstly includes the definition of the neighborhoods, which can

be supervised (Section 4.1) or weakly supervised (Section 4.2)

depending on whether one uses the azimuth/elevation label

or the source relative proximity. Secondly it includes the

transformation from the measurement space to the embedding

space by training a DNN which is optimized on a contrastive

loss function (Sections 4.3 and 4.4). Finally the sound source

localization will be performed in the embedding space using

nearest-neighbor regression (Section 4.5).

4.1. Supervised neighborhoods definition

Consider two labeled measurements (xi, ui) and (xj, uj)

where ui and uj are denoted as scalars since we estimate

azimuth and elevation separately. To avoid the phase wrapping

ambiguity, we define du(ui, uj) = min(|ui−uj|, 360
◦−|ui−uj|)

denote the shortest possible distance in the latent space U , where

ui, uj corresponds to the source azimuth or elevation angles in

degree. A neighborhood indicator yij ∈ {0, 1} is defined as

yij =







0, if du(ui, uj) > ǫu

1, if du(ui, uj) ≤ ǫu,
(9)

for a user-defined threshold angle ǫu.

4.2. Weakly supervised neighborhoods
definition

As an alternative to directly using the latent space label

information to define the neighborhoods, we can also use

the relative proximity between sound sources. Here, we only

consider the sound sources at the ball with radius8 and centered

at the receiver, or sources whose relative position to the receiver

can be found (then the source locations can be firstly projected

onto a ball with radius 8 around the receiver by distance

normalization).

In order to define the weakly supervised neighborhoods,

we can use the physical distance ds(Si, Sj) between two sound

sources Si and Sj which corresponds to the Euclidean distance

between the Cartesian coordinate vectors of Si and Sj. Similarly,

y′ij =







0, if ds(Si, Sj) > ǫs

1, if ds(Si, Sj) ≤ ǫs,
(10)

for a user-defined threshold distance ǫs. The threshold ǫs and

ǫu are related as ǫs represents the arc length of the angle ǫu on a

circle with radius 8 and hence,

ǫs ≈ ǫu · 8 · π/180◦ (11)

In particular, in our proposed method, one can also

implicitly define the similarity indicator y′ij by using it as a

training data label. For example, consider a scenario when

multiple recordings are acquired from excitations at each of

the pre-defined sound source locations, then y′ij equals to 1 for

recordings acquired at the same or at close source locations, and

y′ij equals to 0 for recordings acquired at different or far source

locations.

4.3. Contrastive loss

We seek to learn a parametric function fW :X → Z ⊂ R
d,

with parametersW, that maps xi and xj to their low-dimensional

embeddings zi and zj. If yij = 1, the Euclidean distance ‖zi−zj‖2

should be small, and if yij = 0, then ‖zi − zj‖2 should be large.

For a given embedding function fW , we have

‖zi − zj‖2 = ‖fW (xi)− fW (xj)‖2. (12)

A contrastive loss function over the parameters W, tailored

for neighborhood preservation has been proposed in Hadsell

et al. (2006) for non-linear dimensionality reduction, and is

given by

L(W) =

N
∑

i=1

N
∑

j=1

(

yij ‖fW (xi)− fW (xj)‖
2
2

+ (1− yij)max(0,µij − ‖fW (xi)− fW (xj)‖2)
2
)

. (13)

The parameter µij is a positive real-valued margin, such that

µij/2 can be interpreted as the same radius of circles centered

on zi and zj. If the circles intersect and yij = 0, the two

dissimilar pairs are too close in the embedding space, thus

increasing the contrastive loss in (13). On the other hand, if

yij = 1, large distances are penalized, enforcing fW to preserve

neighborhoods.

Intuitively speaking, during the training, each example

in a mini-batch is subjected to two “forces.” One force is

between the similar pairs, pulls them closer to each other in

the embedding space. The other force between dissimilar pairs

is repulsive and it pushes the dissimilar pair away from each

other in the embedding space (if they are too close when

‖fW (xi) − fW (xj)‖2 < µij). During training, the embeddings

are moving according to the forces they encounter, and thus will

eventually lead to an equilibrium (i.e., convergence). Globally,

the embedding space convergences to a manifold. Since the

forces are subjected to latent space similarities, this will result

in meaningful distances between each pair of embeddings (i.e.,

the distance between a pair of embeddings somewhat indicates

the proximity of their corresponding sound sources).

It is important to note that in Hadsell et al. (2006), where

the contrastive loss was first proposed for classification, µij ≡ µ
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is a constant margin. In our application, the latent space of

azimuths and elevations is continuous. To accurately preserve

its geometry, we propose an adaptive margin as follows,

µij =
exp

(

dij
)

exp
(

dij
)

+ 1
. (14)

As dij decreases, the margin µij decreases as well. One

can compute dij either in a supervised manner using the

azimuth/elevation, thus dij = du(ui, uj), or in a weakly

supervised manner, where dij = ds(Si, Sj). In the case that there

is no quantitative measure in the latent space, a constant margin

can be used (e.g., µ = 1).

4.4. Learning the embedding

We implement fW with a DNN as shown in Figure 1A.

The DNN architecture consists of two fully-connected hidden

layers withD neurons in each layer. Between the fully connected

layers, we add batch-normalization layers (Ioffe and Szegedy,

2015) to speed up the convergence and dropout layers to

prevent the model from over-fitting (Srivastava et al., 2014).

The output layer has three neurons, corresponding to a three-

dimensional embedding space, i.e., d = 3. The hidden neurons

have Sigmoid non-linear activations, and the output neurons

have linear activations. In order to train the DNN model

to minimize the cost function in (13), we use the siamese

architecture that was proposed in Bromley et al. (1993) and

used for various tasks in Chopra et al. (2005) and Hadsell

et al. (2006). This special DNN architecture consists of two

identical branches that are sharing the same model parameters.

Taking a pair (xi, xj) as an input, the measurements xi and

xj are passed through the branches (one per branch) and

hence produce their corresponding embeddings zi and zj.

Then the cost is evaluated in (13) using the neighborhood

indicator yij and the outputs zi and zj of the branches.

Finally, the gradient per model parameter is calculated and

back-propagated to update the model parameters. Depending

on which definition for the neighborhood indicator is used,

we call the corresponding embedding Supervised Contrastive

Embedding (SCE) if the supervised neighborhoods definition is

used, or Weakly-supervised Contrastive Embedding (WSCE) if

the weakly supervised neighborhoods definition is used.

A key aspect of the proposed framework is the selection

of pairs (xi, xj) for training. For small datasets, one could

consider all pairs and proceed with training on all training data

pairs. However the polynomial growth of the number of pairs

results in memory problems even for moderately large datasets.

To solve this problem, we use mini-batches and calculate the

neighborhood indicator yij for every pair of examples in each

mini-batch. To be noted, we suggest to choose a large enough

batch size so that there are both similar pairs and dissimilar pairs

in one batch. Because a randomly selected mini-batch generally

contains examples from sources of different locations (i.e., those

examples will be defined as dissimilar pairs), if the batch size is

too small, the probability of having similar pairs in a batch will be

very low, so that the loss will be inaccurately evaluated and thus

slow down the convergence rate. Intuitively, if there is no similar

pair in a batch, the embeddings will not be subjected to a pulling

force to their similar points. This would lead to the embeddings

that just randomly reside in the embedding space and form local

clusters.

4.5. Nearest-neighbor localization

Once the weights of fW are optimized, we compute the

embedding of a new x by a forward-pass through the DNN

model. Let z1, . . . ,zK denote the K nearest-neighbors of z in the

training set. The latent variable (azimuth or elevation) is then

estimated as

û =

K
∑

i=1

wiui, with wi =

exp

(

−
‖z−zi‖

2
2

ε

)

∑K
j=1 exp

(

−
‖z−zj‖

2
2

ε

) . (15)

The bandwidth ε of the exponential kernel is obtained as the

median of the squared distances from the K neighbors, i.e.,

ε = median
(

‖z − z1‖
2
2, . . . , ‖z − zK‖

2
2

)

. (16)

Note that if the embedding is accurately preserving

neighborhoods, the choice of regression weights is not critical.

For instance wi can be inversely proportional to ‖z − zi‖
2
2.

However, in our experiments, the latter generally leads to less

accurate location estimates than exponentially decaying weights.

5. Experiments

5.1. Experimental settings

To evaluate the proposed SCE in terms of the localization

error and robustness, we compare the SCE with two baseline

methods:

1. The LEM embeddings (Laufer et al., 2013; Laufer-Goldshtein

et al., 2015) with nearest neighbor localization.

2. A feed-forward neural network which is optimized with the

Mean Squared Error (MSE) loss. This feed-forward neural

network has the same structure as one of the branches in the

proposed siamese structure except for an additional output

layer with tanh activation functions that outputs the source

location predictions, shown in Figure 1B. Since the tanh

activation function has a range of (−1, 1), we normalize the

training labels also to the same range by ûi = ui/180
◦,
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FIGURE 1

Model architecture. The proposed contrastive embedding model in (A), and the feed-forward model in (B).

and i = 1 . . .N. Note that, the original labels have a range

[−180, 180◦]. During testing, the feed-forward predictions

are firstly converted back to degree before calculating the

localization errors.

As the neighborhoods for LEM are defined in the input

space, a single embedding is used to estimate both azimuth and

elevation. Similarly, our proposed method can be trained to

estimate azimuth and elevation simultaneously as well by using

the weakly supervised neighborhoods definition introduced in

Section 4.2. However, a system with two separately trained

embeddings might provide better results for the same amount

of data, which we will compare for SCE and WSCE in the later

experiments.

For the nearest neighbor regression in (15),K = 5 neighbors

are used in all localization experiments. A few threshold values

ǫu in (9) and (11) are tested for both azimuth and elevation.

We choose ǫu in {5, 15, 30◦} to have a big span so that we can

evaluate its impact on the localization results. Essentially, ǫu

is a hyper-parameter that can be tuned with a validation set.

We implemented the LEM using a nearest neighbor kernel K

with M = 10 nearest neighbors, which in our experiments,

provided better results than the Gaussian kernel used in Laufer-

Goldshtein et al. (2015) and Taseska and van Waterschoot

(2019).

For DNN training, we use the Adam optimizer (Kingma and

Ba, 2015) with a learning rate equal to 10−3 that is automatically

halved if the validation performance does not improve after 20

epochs. The mini-batch size is set to 128, and this will result

8,128 pairs of measurements per mini-batch for training. We

select the model based on the best validation performance,

and then the selected model is used to calculate the testing set

predictions.
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All audio files are sampled at 16 kHz. To extract the ILD and

IPD features, we use the STFT with a cosine window of 1,024

samples at 16 kHz, 75% overlapping.

5.2. Datasets

5.2.1. Fixed acoustic conditions

With the first dataset, we want to verify the effectiveness of

our proposed methods for preserving the locality information

of the audio source when the training and the testing set have

different audio content (and different spectral distribution).

We employ the CAMIL dataset which consists of binaural

recordings and was gathered using a Sennheiser MKE 2002

dummy head in a real-life reverberant room (i.e., a room

with a few furnitures and background noise; Deleforge et al.,

2015). To generate recordings that have different azimuth

and elevation angles, a loudspeaker (i.e., the source) is placed

at a fixed position, 2.7m from the dummy head (i.e., the

receiver). The dummy head is mounted on a step-motor which

generates 10,800 pan-tilt states. This results in source azimuth

and elevation angle in the range [−180, 180◦] and [−60, 60◦],

respectively (with 2 ◦resolution). To only evaluate the methods

in localizing frontal sources, we select the recordings that have

source azimuth and elevation angle in the range [−90, 90◦]

and [−45, 45◦], respectively. The CAMIL dataset consists of a

training set made using white noise (1 s per recording), and a

testing set made using 1–5 s speech samples from the TIMIT

corpus (Garofolo et al., 1993). We further randomly divide the

whole training set into a smaller training set (consisting of 70%

samples from the original training set), and a validation set

(consisting of the remaining 30% samples from the original

training set). Finally, spatially uncorrelated white noise with a

Signal to Noise Ratio (SNR) of 15 dB is added to the testing set.

5.2.2. Varying acoustic conditions

With the second dataset, we want to verify the robustness of

the proposed methods for varying acoustic conditions. We use

the VAST dataset (Gaultier et al., 2017) of simulated binaural

room impulse responses of a KEMAR dummy head (Gardner

and Martin, 1995; Schimmel et al., 2009). The training set

consists of 16 different rooms with reverberation time 0.1–0.4 s.

For each room we select spherical grids of source positions

with radii 1, 1.5, and 2m, centered at nine predefined receiver

positions (inside each room). Similarly to the fixed acoustic

conditions in Section 5.2.1, we use 70% of randomly selected

data as the training set, and the remaining 30% as the validation

set. The receiver’s height is fixed at 1.7m. Then two testing sets

are provided:

• Testing-set-1: The source and receiver are placed at random

positions in the same 16 rooms as the training set.

• Testing-set-2: The source and receiver are placed in shoebox

rooms of randomwidth and length between 3× 2 and 10×

4m, with absorption profiles randomly picked from those

of the training rooms. Those rooms have reverberation time

0.1–0.4 s.

All the training set’s and testing sets’ Head-related impulse

responss (HRTFs) are simulated using the image source

method (Allen and Berkley, 1979) and provided by the VAST

dataset (Gaultier et al., 2017).

As in Section 5.2.1, we have only selected recordings

that have frontal angles. To focus on the influence of

the varying room acoustics while exciting all frequencies,

2 s white noise source signals were considered in

this experiment.

5.3. SCE for unidimensional source
localization

5.3.1. Tuning the dropout rate

We first determine an optimal dropout rate for both the

SCE method and the feed-forward model by line search. We test

dropout rate values in {0.0, 0.2, 0.5, 0.8}, and similarity threshold

values ǫu for SCE equals to 5 and 15◦ (denoted by “_sim5” and

“_sim15,” respectively). The azimuth/elevation localization error

of the validation sets for both the CAMIL dataset and the VAST

dataset are plotted in Figure 2.

In Figures 2A,B, the azimuth and elevation estimation

results for the CAMIL dataset are illustrated, respectively. We

can observe that the SCE has better validation performance than

the feed-forward model for all testing dropout rates, and its

localization error is essentially equal to zero when using either

similarity threshold value, i.e., 5 or 15◦. The feed-forwardmodel

exhibits a clear concave curve in median localization error and

has the lowest localization error at the dropout rate value of 0.2,

thus indicating that a dropout rate equal to 0.2 is an optimal

value for the feed-forward method.

In Figures 2C,D, the median azimuth and elevation

localization error for the VAST dataset are illustrated

respectively. Both the SCE and the feed-forward model in

this case exhibit a concave curve in median localization

error and they both exhibit an optimal dropout rate of

0.2. We also observe that, in the VAST azimuth validation

performance, the SCE_sim5 performs equally well as the

feed-forward model when dropout rate is 0.2, which is

slightly better than SCE_sim15. In the elevation estimation,

SCE_sim5 performs the best over the feed-forward model

and SCE_sim15.

Based on the validation results, we choose the dropout rate

equal to 0.2 for both the SCE and the feed-forward methods for

the next experiments.
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FIGURE 2

Validation performance across di�erent dropout rates for CAMIL validation set (A,B), and VAST validation set (C,D). The dropout rate is tested for

both the proposed SCE with similarity threshold angle ǫ u equal to 5 and 15 (denoted by_sim5 and _sim15, respectively), and the baseline

feed-forward method. Both methods are tested for source azimuth (denoted by _az) and elevation (denoted by _el) estimation. Localization

errors are in degrees.

5.3.2. Comparison with the baseline

In this experiment, we compare the localization

performance of the proposed SCE with the baseline LEM

embedding and the feed-forward model. For the proposed

SCE, we evaluate a small threshold angle (i.e., ǫu = 5 ◦) and a

large threshold angle (i.e., ǫu = 15 ◦), denoted by “_sim5” and

“_sim15,” respectively.

The testing set results are illustrated in Figure 3. It can be

seen that in the fixed acoustic condition with the CAMIL dataset,

the proposed SCE performs better than the LEM embedding

and the feed-forward model in terms of median error and

maximum error. Especially when using the small similarity

threshold, the SCE performs excellent, as the SCE_sim5 has

almost zero median error in azimuth and elevation estimations.

It can also be noted that the feed-forward model performs

slightly better than the LEM embedding, with a median

error equal to 0.61 and 0.29◦ for azimuth and elevation

respectively, whereas the LEM model has median errors equal

to 0.72 and 0.49◦ for azimuth and elevation, respectively. In

summary, in the fixed acoustic condition, the proposed SCE

can almost perfectly preserve the source location information

even when reverberation and additive white noise are present,

while the feed-forward model performs better than the LEM

embedding, but both exhibit some estimation error. This

could be due to the fact that the feed-forward model highly

depends on the training data, and due to the presence of

audio content mismatch between the training and testing

sets, the feed-forward model has some difficulty to generalize

to unseen audio contents, thus negatively influencing the

localization performance.

In the varying acoustic conditions with the VAST testing

sets, the proposed SCE_sim5 performs slightly better than the

SCE_sim15 and equally well as the feed-forward model. The

SCE_sim5 and feed-forward model achieve VAST testing-set-

1 azimuth median errors equal to 1.96 and 1.95◦, VAST

testing-set-1 elevation median errors equal to 3.32 and 3.24◦,

VAST testing-set-2 azimuth median errors equal to 2.1 and

2.01◦, and VAST testing-set-2 elevation median errors equal

to 3.94 and 3.99◦, respectively. Since in the various acoustic

conditions, the source excitations are white noise in both the

training and testing set, the SCE and the feed-forwardmodel can

both generalize well to unseen acoustic environments, and show

robustness toward reverberation and noise.

The LEM embedding performs the worst in the presence

of various reverberations. It achieves median errors equal to

3.3 and 11.7 for azimuth and elevation in VAST test-set-1,

respectively, and 3.1 and 13.3 for azimuth and elevation in VAST

test-set-2, respectively. This may indicate that the LEM, which is

easily affected by geometric distortion in the measurements, is

not robust to reverberation.

5.3.3. Reduced training-set

A common problem related to data-driven methods is

the model generalizability, or in other words, how can a

trained model generalize to unseen data. In the source

localization scenario, the training set may not include training

recordings from every pair of azimuth/elevation angles, hence

it is desirable that the model can somehow interpolate the

predictions that lie in-between the training points. In this

experiment, we are aiming to evaluate the robustness of

the proposed SCE toward the training size. With a smaller

training size, there will be more source locations that are

not included in the training. We use a similarity threshold

angle ǫu = 5 ◦ for SCE in this experiment and all

methods are conducted with 10, 25, 50, and 70% randomly

selected training sets. The median localization errors are

illustrated in Figure 4.

As illustrated by these results, all methods show a decreasing

trend in localization error when a larger training set is used,
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FIGURE 3

Testing set localization performance for the baseline LEM, the baseline feed-forward and the proposed SCE methods. Localization errors in (A)

the fixed acoustic condition using the CAMIL testing set, and (B,C) the localization performance in the varying acoustic condition using the VAST

testing sets. “_sim5” and “_sim15” denote the use of similarity threshold angles ǫu equal to 5 and 15◦ , respectively.

FIGURE 4

Localization performance on the CAMIL testing set (A), the VAST testing-set-1 (B), and the VAST testing-set-2 (C). 10p, 25p, 50p, and 70p

denote the cases when 10, 25, 50, and 70% of the original training data is used, respectively.

however, themedian localization error of the proposed SCE does

not vary much with the changing size of the training set, and

shows a flatter pattern. Although in the fixed acoustic condition,

SCE results a in a higher median error when 10% of the training

set is used (median azimuth error equal to 0.81◦) than when a

larger training set is used, the error is still lower than for the

other two methods (as feed-forward and LEM achieve median

azimuth errors equal to 1.08◦ and 2.56◦respectively when 10%

of the training data is used). This allows to conclude that the

SCE is more robust to the use of training data that not cover the

entire latent space.

The results allow us to hypothesize that the proposed SCE,

leveraged by the contrastive loss and the adaptive margin (see

Section 4.3), is aiming to learn a similarity metric between

input binaural cues from the latent space. This similarity

metric implies that the underlining structure in the latent space

is robust to unseen source locations. In contrast, the feed-

forward model tends to transform the measurement space to

an abstract high-level space in which the Euclidean distance

between embeddings is not necessarily a similarity metric, and

thus it is difficult to infer the unseen source locations from this

embedding space.
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5.4. WSCE for multidimensional source
localization

The LEM embedding as well as the proposed WSCE are

capable of estimating the sound source azimuth and elevation

simultaneously. It should be noted that both the proposed

WSCE and the LEM need source annotations in order to

localize new examples under the nearest-neighbor localization

framework, thus the localization phase is still a supervised

learning task for both methods.

To explore the learned latent space structure, we test

several similarity threshold angles ǫu ∈ {5◦, 15◦, 30◦}, indicated

as “_sim5,” “_sim15,” and “_sim30,” respectively. Since when

calculating the similarity labels, we first normalize the relative

source location coordinates to have unit norm (i.e., source

coordinates are relocated to have unit distance to the receiver),

chosen the similarity threshold angles yield the following

similarity threshold for the physical source distance: ǫs ∈

{0.09, 0.26, 0.52m}. Figure 5 shows the training set embeddings

and the testing set embeddings for the CAMIL testing set

and the VAST testing-set-1. Firstly, it can be observed that

the proposed WSCE method learns a manifold from the

binaural cues that can reflect the sound source location without

any azimuth/elevation annotations. This manifold has a clear

structure and a similar structure is obtained in both the CAMIL

dataset (with reverberant speech) and the VAST dataset (with

varying reverberation). Secondly, when using smaller similarity

threshold angles (i.e., ǫu = 5◦), the structure of the manifold

tends to become irregular and folded, and when using larger

threshold angles (i.e., ǫu = 15◦ and ǫu = 30◦), the structure of

themanifold tends to become smooth and unfolded. Elaborating

the intuition introduced in Section 4.3, this may be due to

the fact that when the similarity threshold angle is small, the

contrastive loss has a small range of action on penalizing

mislocated dissimilar pairs, resulting in many dissimilar pairs

not being subject to repulsive forces, and instead, similar pairs

are attracted and clustered in local areas. When a large similarity

threshold angle is used, each embedding is subject to both

attractive and repulsive forces from a large number of other

embeddings, thus maintaining an overall uniformly equilibrium

state in the global perspective.

In addition to the above mentioned qualitative experiments,

we also conduct quantitative experiments to use the WSCE

for source localization and compare the results to the

LEM embeddings and the SCE_sim5. The localization results

are shown in Figure 6. In the fixed acoustic condition

with the CAMIL dataset, the SCE_sim5 still performs the

best but it trains separate embeddings for azimuth and

elevation. In contrast, both the proposed WSCE and the

LEM embedding train one embedding for both azimuth and

elevation estimation and show a strong source localization

ability as well. In azimuth estimation, the WSCE_sim15

performs slightly better than the WSCE_sim5, then followed

by LEM and WSCE_sim30 (achieving median errors equal to

0.64, 0.69, 0.72, and 1.16◦, respectively). In elevation estimation,

LEM exhibits a median error equal to 0.49◦ and performs

slightly better than the WSCE_sim15 and WSCE_sim5, which

have the same median error equal to 0.58◦. WSCE_sim30

performs worst in elevation estimation and achieves a median

error equal to 0.82◦. Nevertheless, the WSCE shows a

comparable localization ability to the LEM in the fixed acoustic

condition.

In varying acoustic conditions with the VAST dataset,

instead, the WSCE shows a much lower localization error

than the LEM embeddings and it is even approaching the

SCE_sim5 performance. Firstly, with the VAST testing-set-1,

the WSCE_sim5, WSCE_sim15, and WSCE_sim30 perform

equally well (azimuth median errors equal to 1.96, 1.94,

and 1.98◦, respectively, and elevation median errors equal to

3.69, 3.64, and 3.69◦, respectively), and the SCE_sim5 has

slightly better elevation estimation than either WSCE method

(achieving azimuth and elevation median errors equal to 1.96

and 3.32◦, respectively). For the VAST testing-set-2, similarly,

the WSCE_sim5, WSCE_sim15, WSCE_sim30, and SCE_sim5

perform somewhat equally well (achieving azimuth median

errors equal to 1.93, 2.1, 2.1, and 2.1◦, respectively, and elevation

median errors equal to 3.99, 4.34, 4.44, and 3.94◦, respectively).

Although the unidimensional SCE_sim5 and the WSCE with

a small similarity threshold show narrower interquartile range

than other methods, we do suggest to use a similarity threshold

angle ǫu = 15 ◦forWSCE to achieve both good visualization and

localization performance.

Secondly, the WSCE largely outperforms the LEM

embeddings in varying acoustic conditions where LEM only

obtains an azimuth median error of 3.28◦and an elevation

median error of 11.7◦ for VAST testing-set-1, and an azimuth

median error of 3.09◦and an elevation median error of 13.27◦

for VAST testing-set-2, respectively. Also, theWSCE has a much

narrower interquartile range than the LEM, which may indicate

that the proposed WSCE is more robust to reverberation than

the LEM embeddings.

5.5. WSCE with unseen HRTFs

To further verify the generalization capability of the

proposed WSCE, we test the WSCE with different HRTFs that

are not seen during the training. To create simulated binaural

recordings, we use the CIPIC dataset (Algazi et al., 2001), which

consists of 45 real-life measured HRTFs. There are in total 45

subjects (43 human subjects and 2 dummy head subjects), and

for each subject, 1250 HRTFs are measured for each ear and

from different azimuth and elevation angles. We select azimuth

and elevation angles in range the [−90, 90◦] and [−45, 45◦],

respectively, corresponding to the other datasets mentioned

in the former sections. The HRTFs are then convoluted with
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FIGURE 5

Visualizations of the WSCE embeddings. Column 1 and 2 are azimuth training and testing embeddings. Column 3 and 4 are elevation training

and testing embeddings.
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FIGURE 6

Localization performance on the CAMIL testing set (A), the VAST testing-set-1 (B), and the VAST testing-set-2 (C) for the LEM, the SCE and the

WSCE methods.

FIGURE 7

Testing set localization performance for the WSCE_sim15 and

WSCE_sim15 retrained with 33 di�erent HRTFs other than the

once used in generating test recordings.

simulated reverberant recordings (excited by 2 s white noise).

Those recordings are generated using the image method (Allen

and Berkley, 1979), in a shoebox room that has dimension 3.5×

5× 2.8m, and reverberation time equal to 0.3 s.

We randomly select recordings from 10 subjects for testing,

and use WSCE_sim15 for estimating their source locations.

The localization results are plotted in Figure 7. Since we train

the WSCE_sim15 only using one HRTF, the model could

not generalize well to recordings made with unseen HRTFs.

Therefore, we observe a dramatic performance degradation, in

which the median errors of azimuth and elevation localization

are 24.3 and 20.1◦, respectively.

To overcome the performance degradation, we propose two

approaches:

1. Personalized training (user-dependent): this approach is

especially interesting for hearing-aid applications since the

hearing-aid is designed for a specific user, and it is not shared

with different people. Therefore, the HRTF of the designated

user can be measured and be used in the model training or

fine-tuning process to create a user-dependent model.

2. Increase training data variety (user-independent): another

solution consists in using more HRTFs to create the training

data for training the WSCE. Then, the trained model can

generalize to people with different HRTF than the ones

in training data. A rule of thumb is that the higher the

variety of the training data (with annotation), the better the

generalization capability of the model.

We adopt the second approach to retrain the WSCE_sim15

and use the rest of the HRTFs from the CIPIC dataset,

which are different from the data used in the testing (i.e.,

user-independent). This results in 33 HRTFs that are used

for training, 2 for validation and 10 for testing. We also

simulate random shoebox rooms that have reverberation time

between 0.1 and 0.4 s. The localization error of the retrained

model is shown in Figure 7 with name “WSCE_sim15_retrain.”

The azimuth and elevation median errors of the retrained

model have been largely reduced from 24.3 to 1.1◦and

20.1 to 3.6◦, respectively, showing the effectiveness of this

approach.

We further analyse the relationship between the CIPIC

testing set embeddings and their respective nearest training set

neighbors and illustrate the results in Figure 8. The X-axis is

the true azimuth or elevation angle of the testing embedding,

and the Y-axis is the location of the corresponding nearest

training set neighbor predicted by the WSCE_sim15 which is
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FIGURE 8

True locations of sources in the testing set versus the locations of their respective nearest neighbor in the training set for WSCE_sim15 and

WSCE_sim15 retrained with 33 di�erent HRTFs other than the once used in generating test recordings (i.e., WSCE_sim15_retrain).

summarized using box plots. For the original WSCE_sim15, the

median nearest neighbor location angles are shifted compared

to the true testing location in the case of both azimuth and

elevation angles, and the interquartile ranges of the nearest

neighbor location angles are large, indicating that the neighbors

of the original WSCE_sim15 are poorly preserved, which also

suggests that the original WSCE_sim15 trained with only one

HRTF cannot be generalized to the unseen HRTFs. In contrast,

WSCE_sim15_retrain preserves the neighborhoods much better

because the median of the location angles of the nearest

neighbors predicted by the WSCE_sim15_retrain is close to the

true location angle of the test embedding. In addition, compared

to the original WSCE_sim15 model, the location angle of the

nearest neighbor predicted by the WSCE_sim15_retrain has a

smaller interquartile range. In summary, the generalization to

unseenHRTFs ismuch better after retrainingWSCE_sim15with

33 real-life HRTFs.

However, a limitation of our simulations is that we use

synthetic rooms with slightly different acoustic properties than

real-life rooms. In addition, we always excite the sound source

with white noise, which has a broadband spectrum, while real-

life soundsmay not have the same characteristics.We propose to

increase the variety of training data covering real-life conditions,

using more HRTFs recorded at finer azimuth/elevation angles,

and using Room Impulse Responses (RIRs) from more complex

rooms, which we believe will further improve the generalization

capability of the proposed WSCE model.

6. Conclusions

We proposed a DNN framework for supervised

dimensionality reduction of binaural cue measurements,

followed by a nearest-neighbor regression method for source

localization. Our manifold-learning-based method has better

binaural sound source localization performance than the

baseline manifold learning method in both know and unknown

reverberant conditions and in a small training set condition. In

comparison with a feed-forward learning method, our proposed

method not only provides a better visualization ability, but

also achieves a similar or better performance in binaural

sound source localization. Moreover, our proposed method

can capture a smooth manifold structure for low data density

regions and outperforms the baseline manifold learning method

and the feed-forward method in case of a small amount of

training data.

In addition to the supervised dimensionality reduction

method, we also proposed a weakly supervised embedding,

i.e., WSCE, that only requires implicit latent space proximity

labels for training. This WSCE can simultaneously estimate the
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azimuth and elevation of the sound source, and is also robust

to unknown reverberation. Quantitative experimental results

demonstrate that this WSCE has almost similar localization

performance as the supervised method, and it performs much

better than the traditional unsupervised embedding in varying

acoustic conditions.

To further increase the generalization capability of the

proposed model, we hope to learn the SCE and WSCE

embeddings with big variety of training data covering more real-

life conditions, such as using more HRTFs recorded at finer

azimuth/elevation angles and using RIRs from more complex

rooms. In addition, we also aim to further investigate how to

apply the proposed SCE and WSCE in data synthesis. When

combining these methods with a generative model, we speculate

that the embeddings can be used to synthesize binaural features

or even audio waveforms to aid data-driven binaural source

localization models.

Since potentially applicable systems for the proposed model

(e.g., hearing aids) often have limited computational resources,

reducing the model complexity and the number of model

parameters is therefore a relevant direction for future research.

Possible approaches to achieve this include model pruning (i.e.,

removing the DNN neurons that are associated with very small

weights), model information distillation (Hinton et al., 2015)

and model parameter quantization.
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Speech understanding in cochlear implant (CI) users presents large intersubject

variability that may be related to di�erent aspects of the peripheral auditory

system, such as the electrode–nerve interface and neural health conditions. This

variability makes it more challenging to proof di�erences in performance between

di�erent CI sound coding strategies in regular clinical studies, nevertheless,

computational models can be helpful to assess the speech performance of

CI users in an environment where all these physiological aspects can be

controlled. In this study, di�erences in performance between three variants

of the HiRes Fidelity 120 (F120) sound coding strategy are studied with a

computational model. The computational model consists of (i) a processing

stage with the sound coding strategy, (ii) a three-dimensional electrode-

nerve interface that accounts for auditory nerve fiber (ANF) degeneration, (iii)

a population of phenomenological ANF models, and (iv) a feature extractor

algorithm to obtain the internal representation (IR) of the neural activity. As

the back-end, the simulation framework for auditory discrimination experiments

(FADE) was chosen. Two experiments relevant to speech understanding were

performed: one related to spectral modulation threshold (SMT), and the other one

related to speech reception threshold (SRT). These experiments included three

di�erent neural health conditions (healthy ANFs, and moderate and severe ANF

degeneration). The F120 was configured to use sequential stimulation (F120-S),

and simultaneous stimulationwith two (F120-P) and three (F120-T) simultaneously

active channels. Simultaneous stimulation causes electric interaction that smears

the spectrotemporal information transmitted to the ANFs, and it has been

hypothesized to lead to evenworse information transmission in poor neural health

conditions. In general, worse neural health conditions led to worse predicted

performance; nevertheless, the detriment was small compared to clinical data.

Results in SRT experiments indicated that performance with simultaneous

stimulation, especially F120-T, were more a�ected by neural degeneration than

with sequential stimulation. Results in SMT experiments showed no significant

di�erence in performance. Although the proposed model in its current state is

able to perform SMT and SRT experiments, it is not reliable to predict real CI users’

performance yet. Nevertheless, improvements related to the ANF model, feature

extraction, and predictor algorithm are discussed.

KEYWORDS

computational model, cochlear implant, neural health, sound coding strategies, speech-

in-noise recognition, spectral modulation detection, speech understanding prediction
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1. Introduction

People diagnosed with severe or profound sensorineural

hearing loss that keep some healthy auditory nerve fibers (ANFs)

are good candidates to receive a cochlear implant (CI) and recover

to some extent their sense of hearing. A CI consists of an

electrode array implanted in the cochlea, and a wearable sound

processor usually located behind the ear. The sound processor is

responsible for converting acoustic signals into electric stimulation

patterns that are delivered to the ANFs via the intracochlear

electrodes (Wouters et al., 2015). In many auditory tasks, there

is a big gap in performance between normal hearing (NH) and

CI listeners (Nelson et al., 2003; Nelson and Jin, 2004). Electric

stimulation has its limitations to convey the necessary information

for the proper coding of sounds in the auditory system (Moore,

2003). To reduce this gap, researchers are dedicated to find better CI

sound coding strategies (Nogueira et al., 2005, 2009; Landsberger

and Srinivasan, 2009; Dillon et al., 2016; Langner et al., 2020a;

Gajecki and Nogueira, 2021), but the evaluation of the potential

benefits of new ideas usually requires extensive testing procedures

with implanted volunteers. In addition, there is high variability

in the performance among CI users (Moberly et al., 2016), which

makes it more difficult to generalize from the results.

CI sound coding strategies using current steering aim at

providing an increased number of stimulation places in the

implanted cochlea (Landsberger and Srinivasan, 2009; Nogueira

et al., 2009). The general idea is to create virtual channels by

“steering” the electrical field between two adjacent electrodes,

balancing their output current at different ratios. The commercial

sound coding strategy HiRes with Fidelity120 (F120), from

Advanced Bionics, offers up to 120 virtual channels using 16

electrodes because every electrode pair is able to steer the electrical

field to eight different locations. Furthermore, power savings can

be achieved by stimulating various virtual channels simultaneously.

Simultaneous stimulation allows to increase the pulse duration

and consequently decrease the maximum current needed (Langner

et al., 2017). The drawback is that simultaneous stimulation

produces electric interaction that causes spectral smearing across

channels, which also causes temporal smearing since temporal

modulations may be reduced (Nogueira et al., 2021). The balance

between power savings and CI users’ performance was investigated

by Langner et al. (2017) using three variations of the F120.

Sequential stimulation (F120-S), where one virtual channel was

active at a time, was compared to paired (F120-P) and triplet

(F120-T) stimulation, where two and three virtual channels were

active at the same time, respectively. They found out that the

channel interaction that occurs with the simultaneous stimulation

in F120-P and F120-T has a negative impact on performance,

with F120-T obtaining the worst score. Nevertheless, high inter-

subject variability was found in speech intelligibility and spectral

modulation detection threshold.

It has been shown that peripheral aspects such as neural

health condition (Nadol, 1997), insertion depth and position of

the electrode array (Dorman et al., 1997), along with more central

aspects such as neural plasticity (Han et al., 2019) may account

for an important part of the inter-subject variability observed in

CI users. However, it is not possible to estimate the degree of

ANF degeneration without invasive methods unless the individual

is already implanted with a CI (Prado-Gutierrez et al., 2006;

Ramekers et al., 2014; Imsiecke et al., 2021; Langner et al., 2021).

Langner et al. (2021) investigated the hypothesis that individuals

with good neural health and electrode positioning will show a lower

difference in performance when using simultaneous stimulation

strategies (F120-P and F120-T) compared to sequential stimulation

(F120-S). Healthy conditions lead to lower focused thresholds and

less channel interaction between virtual channels; therefore, healthy

neural conditions could lead to less detriment in performance

when comparing sequential and simultaneous stimulation. The

performance was evaluated using the Hochmair–Schulz–Moser

(HSM) sentence test (Hochmair-Desoyer et al., 1997) at a signal-

to-noise ratio (SNR) where participants roughly understood 50%

of the words with F120-S. The results showed no correlation

between any measure intended to estimate the neural health

and difference in performance, arguably, because of the small

number of individuals measured. On the contrary, computational

models that simulate the electrode–nerve interface in CI users can

assess the relation between neural health and performance. These

computational models can isolate the parameter of study to remove

the inter-subject variability, i.e., nerve count, nerve degeneration,

electrode position, or insertion depth.

Computational models of the electrode–nerve interface for CIs

have been proposed at different levels of complexity. Fredelake

andHohmann (2012) presented a one-dimensional interfacemodel

where the ANFs are equally distributed along a cochlear axis with

the electrode array positioned in the center of this ANF population

with equidistant electrodes. The spatial spread of stimulation was

calculated depending on the distance between electrodes and ANFs

with an exponential decay function. Neural health conditions with

this model were assessed by changing the ANF density while

maintaining the total neural activity constant. Lower ANF density

requires higher current levels; therefore, the excitation from a single

electrode reaches further ANFs in the cochlear axis causing channel

interaction and spectral smearing. However, this electrode–nerve

interface is very limited when representing physical aspects that

occur in real implantation. From clinical imaging data, a patient-

specific three-dimensional model of the implanted cochlea can

be constructed (Rattay et al., 2001; Stadler and Leijon, 2009;

Kalkman et al., 2014; Malherbe et al., 2016; Nogueira et al., 2016;

Heshmat et al., 2020, 2021; Croner et al., 2022). These models

fit a population of ANFs (type 1 spiral ganglion neurons) that

extend from the organ of Corti to the central axons. Also, it is

possible to control the positioning of the electrode array inside

the scala tympani. The voltage spread produced by the electric

stimulation from the electrode array can be calculated using a

homogeneous model of the extracellular medium (Rattay et al.,

2001; Litvak et al., 2007a; Nogueira et al., 2016), or using a finite

element method (FEM) to account for the different electrical

properties of all structures between the stimulating electrode and

the ANF population (Nogueira et al., 2016). Such an electrode–

nerve interface can be coupled with an ANF model capable of

simulating action potentials (also called spikes) from the electrical

stimulation (Ashida and Nogueira, 2018).

Regarding the ANF models, there are two different approaches.

The “physiological” approach aims to simulate processes on
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a microscopic level. An example is the multi-compartment

Hodgkin–Huxley model (Rattay, 1999; Rattay et al., 2001; Smit

et al., 2008) that offers a very precise electrical behavior of the ANF

segments when transmitting the action potentials throughout the

peripheral axon, the soma, and the central axon. The drawback

of this approach is the high demand for computational resources.

The “phenomenological” approach tries to reproduce the effective

outcome without detailed simulation of the involved intermediate

processes. The spike generation algorithm does not consider

how the spike travels through the nervous system, hence there

is no geometric information involved. Some models depend

completely on a probabilistic function (Bruce et al., 1999), while

others are based on a leaky integrate-and-fire electrical circuit

where the membrane voltage is calculated for every time step,

and when it reaches a threshold, the ANF produces an action

potential (Hamacher, 2004; Joshi et al., 2017). The membrane

voltage depends on many other parameters like feedback currents,

refractory periods, and membrane noise to introduce stochasticity.

These parameters can be adjusted to fit data measured in humans

or animal models to account for physiological aspects. The output

of an ANF model is the “spike train”, which consists of a binary

array indicating the time frames where an action potential (spike)

is produced. With a population of ANFs, it is possible to integrate

the spike trains, in time and cochlear place, to obtain features that

are representations of sound at higher levels in the auditory system.

Integration allows to reduce the amount of data while preserving

the information that reaches, for example, a speech recognition

algorithm (Fredelake and Hohmann, 2012; Jürgens et al., 2018).

The simulation framework for auditory discrimination

experiments (FADE) (Schädler et al., 2016) is a computational tool

capable of performing speech recognition tasks and psychoacoustic

experiments simulating human performance. Originally, FADE

was used to simulate the performance of NH and hearing aided

people (Kollmeier et al., 2016; Schädler et al., 2018). Then, a CI

sound coding strategy and a CI auditory model were incorporated

into FADE to perform simulations of speech reception thresholds

(SRTs) using data from different CI users (Jürgens et al., 2018).

The SRT is defined as the signal-to-noise ratio (SNR) where 50%

of the words in a sentence are correctly identified (Wagener et al.,

1999) and it is a direct indicator of the CI user performance in

speech understanding. However, Jürgens et al. (2018) used the

same peripheral auditory model as Fredelake and Hohmann

(2012), which is a simplified one-dimensional representation of the

electrode–nerve interface. The incorporation of a more complex

peripheral auditory model with a three-dimensional representation

of the electrode–nerve interface should turn FADE into a powerful

framework to assess studies related to neural health conditions in

CI users. It can also be useful to assess the benefits of novel sound

coding strategies. Objective instrumental measures commonly

used for this purpose rely on vocoders to simulate the degraded

sound delivered by the CI (Chen and Loizou, 2011; Santos et al.,

2013; El Boghdady et al., 2016), not accounting for physiological

aspects of the implantation.

Performance with a CI may be also predicted using simpler

behavioral measurements than the SRT. The spectral modulation

threshold (SMT) is defined as the ripple depth in dBs at which

79.4% of spectral rippled noise is differentiated from flat noise. SMT

has been used alongside speech recognition experiments because

it is a good indicator of how well the spectral cues in speech

signals were perceived (Litvak et al., 2007b; Langner et al., 2017).

It was used by Langner et al. (2017) as an indicator of how these

spectral cues are affected by the channel interaction occurring

in simultaneous stimulation (F120-P and F120-T), compared

to sequential stimulation (F120-S). Their results showed similar

performance between F120-S and F120-P but a clear lowering of

performance with F120-T.

In this study, a computational model that simulates the

performance of real CI users in SRT and SMT experiments is

presented. The goal is to show the effects of parallel stimulation

and neural degeneration in CI outcome performance. This model

was tested with the three sound coding strategies used by Langner

et al. (2021) (F120-S, F120-P and F120-T), and the hypothesis

that channel interaction affects individuals with poorer neural

health conditions to a larger extent is assessed. In the next section,

the different parts composing this computational model and how

the SRT and SMT experiments were implemented with FADE

are described. A further section presents the results obtained,

and the last section contains the discussion and conclusions of

this study.

2. Materials and methods

2.1. The computational model

The proposed computational model consists of (i) a “front-end”

containing the CI sound coding strategy, the peripheral auditory

model with a three-dimensional electrode–nerve interface, and

a feature extraction algorithm; (ii) a “back-end” with a hidden

Markov model (HMM) already incorporated in the framework

FADE.

2.1.1. Front-end
2.1.1.1. Cochlear implant sound coding strategy

The software BEPS+ from Advanced Bionics was used to create

the pulse tables for the F120-S, F120-P, and F120-T sound coding

strategies. The pulse tables are defined as the sequence of electrical

pulses to create one cycle of stimulation. Figure 1 shows partial

pulse tables corresponding to these strategies. A pulse consists of

a cathodic-leading biphasic pulse. The electrodes are enumerated

from the most apical to the most basal and each virtual channel

composed of two simultaneously stimulated electrodes are depicted

with a color code. The pulse phase duration was set to 18µs and the

pulse rate across virtual channels was kept constant at 1,852 pps by

adding a gap between subsequent pairs, or triplets, of stimulating

virtual channels for F120-P and F120-T, respectively.

The HiRes implantable cochlear stimulator (ICS) from

Advanced Bionics was used to transform audio signals into

electrodograms. The audio signal was calibrated to−49 dB full scale

[dBFS], corresponding with an audio signal at 65 dB sound pressure

level [dBSPL] captured by the microphone of the CI device. At this

value, the signal level was close to the knee point of the adaptive

gain control of the CI sound processor.
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FIGURE 1

Pulse tables for the sequential, paired, and triplet stimulation versions of the HiRes Fidelity120 sound coding strategy. Horizontal axis is the temporal

axis. Electrodes are enumerated from e1 (most apical) to e16 (most basal). The virtual channels composed of two simultaneously stimulated

electrodes are enumerated from channel 1 (Ch 1; stimulation with e1 and e2) to channel 15 (Ch 15; stimulation with e15 and e16). (A) Sequential

stimulation, where the virtual channels are activated one after another. (B) Paired stimulation, where two virtual channels are activated at the same

time followed by a zero-phase gap with an equivalent duration of one biphasic pulse. (C) Triplet stimulation, where three virtual channels are

activated at the same time followed by a zero-phase gap with an equivalent duration of two biphasic pulses.

Biphasic pulses of the electrodograms were resampled to 1MHz

to guarantee equal anodic and cathodic phases. This sample

rate was also needed in the implementation of the peripheral

auditory model.

2.1.1.2. Peripheral auditory model

Figure 2 shows the composition of the proposed peripheral

auditory model. The electrodograms obtained from the sound

coding strategy were transformed to obtain the voltage spread

based on a three-dimensional electrode–nerve interface model

embedded in a homogeneous medium. The amount of stimulation

at every ANF was obtained from this voltage spread and the

times when action potentials are elicited in every ANF (spike

trains) were simulated with an active nerve fiber model. The spike

activity is defined as the collection of spike trains produced in an

ANF population.

The electrode–nerve interface used in the proposed model was

based on the cochlea model presented in Nogueira et al. (2016).

Cochlear geometry, electrode location, and position of the ANF

population were taken from a generic version of their model. The

number of ANFs was increased from 7,000 to 9,001 and distributed

along 900◦ of insertion angle from base to apex (two turns and a

half) with a separation of 0.1◦. The ANFs were indexed in order

from the base of the cochlea (high frequencies) to the apex of the

cochlea (low frequencies). Another adjustment was done to the

electrode array. Nogueira et al. (2016) modeled an electrode array

of 22 electrodes; therefore, the electrodes 21, 19, 17, 15, 13, and

11 were removed to obtain the 16 electrodes present in advanced

bionics CIs. The resulting electrode–nerve interface is shown in

Figure 3.

The morphology of the ANFs was modeled after the myelinated

fibers presented in Ashida and Nogueira (2018), which is a

simplified representation consisting of segments with a constant

internodal length (Li) equal to 200 µm that extends from the

location of the peripheral terminal toward the cochlear nerve.

In this morphological model, there is no differentiation between

the peripheral axon, central axon, or the soma. As in Ashida

and Nogueira (2018), the electric stimulation in the myelinated

model was calculated at the nodes that join together two adjacent

segments. The voltage produced by the stimulation current In
coming out of the electrode n was calculated for every node a of

every fiber f as shown in Equation (1).

Unfa =
ρextIn

4πdnfa
. (1)

The extracellular resistivity of the homogeneous medium (ρext)

was set to 3.0 �m as in Ashida and Nogueira (2018). The variable

dnfa is the distance between the electrode n and the node a. This

approach results in a voltage spread inversely proportional to the

distance dnfa (Litvak et al., 2007a; Nogueira et al., 2016).

The activation function has been proposed by Rattay (1999) to

approximate the amount of functional electrical stimulation over

an ANF. In this model, it was calculated as shown in Equation (2).

The activation function in a node a depends on its external voltage

(Unfa ), and the external voltage on its adjacent nodes (a-1 toward

the periphery and a+1 toward the central neural system). The axon

internal resistance (Ri) was obtained as “Ri = 4Lir/πD
2”. The

axon diameter (D) was set to 2.0 µm, and the axial resistivity (r)

to 1.0 �m, as mentioned by Ashida and Nogueira (2018). Notice

that the activation function in this study has units in Amperes [A]
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FIGURE 2

Peripheral auditory model for cochlear implants consisting of a population of auditory nerve fibers and an electrode array. The input is the

electrodogram generated by the cochlear implant sound coding strategy, and the output is the spike activity produced by the auditory nerve fiber

population.

instead of volts per second [V/s] as originally defined by Rattay

(1999). This is because the membrane capacitance is not included

in Equation (2); however, this membrane capacitance is taken into

account in a further stage of the model.

Anfa =
Unfa−1

− Unfa

Ri
+

Unfa+1
− Unfa

Ri
. (2)

To simulate the spikes generated by each ANF, the neuron

model of Joshi et al. (2017) was implemented. This is a

“phenomenological” model that represents the peripheral and

central axons as two independent adaptative integrate-and-fire

circuits that are coupled together by a logical “OR” gate (see Figure

1 in Joshi et al., 2017). This phenomenological model does not

convey any geometric information such as the distance between

the stimulating electrode and the ANF. Therefore, the induced

current I (called stimulation current in Joshi et al., 2017) was

adjusted according to the activation function obtained from the

electrode–nerve interface model as shown in Equation (3).

I = MC

N
∑

n=1

Anfamax
. (3)

Notice that the activation function in Equation (2) has a value

for every node in an ANF. To simplify the implementation, only

the node (amax) with the maximum absolute value of the activation

function was taken into account to compute the induced current

I. This is based on the fact that this is the node with the highest

probability to produce a spike. In addition, a modeling factor

(MC) that allowed to calibrate the peripheral auditory model was

added. It was adjusted to reproduce approximately the same spike

count reported by Joshi et al. (2017) given different stimulation

current levels.

The model of Joshi et al. (2017) assumes that the peripheral and

central circuits share the same induced current (I), but they respond

differently to the positive (anodic; I+) and negative (cathodic;

I−) phases of the biphasic pulses. Therefore, in this study, the

peripheral axon circuit is referred to as cathodic-excitatory while

the central axon circuit as anodic-excitatory. The circuit specific

induced current (IStim) was obtained with Equation (4), where the

inhibitory compression (β) was set to 0.75.

IStim =

{

−(I− + βI+) Cathodic-excitatory circuit.

I+ + βI− Anodic-excitatory circuit.
(4)

The membrane voltage (V) for both circuits is calculated with

Equation (5), where the membrane capacitance (C) takes different

values for the cathodic-excitatory (856.96 nF) and the anodic-

excitatory (1772.4 nF) circuit, h(V), is a passive filter dependent

on membrane voltage, ISub and ISupra are internal subthreshold and

suprathreshold adaptation currents, and INoise is a noise current

source with a Gaussian spectral shape that introduces stochastic

behavior into the spike trains. The passive filtering, the evolution

of the adaption currents and the noise have their own function and

can be found in the publication of Joshi et al. (2017). Whenever

the membrane voltage of the cathodic-excitatory or the anodic-

excitatory circuit reached a threshold, a spike was generated and

the ANF entered in an absolute refractory period (ARP) of 500 µs.

During the ARP, neither the cathodic- nor anodic-excitatory circuit

could produce a spike.

C
dV

dt
= h(V)− ISub − ISupra + INoise + IStim. (5)

Another important feature of the proposed peripheral auditory

model is the representation of different neural health conditions.

A degeneration index (αf ) was assigned to every ANF, which was

a natural number from 0 to 20, indicating how many segments

were removed from its modeled morphology. The segments were

always removed from the most peripheral part resembling the

dendritic degeneration that occurs when the inner hair cells in

the basilar membrane are damaged (Spoendlin and Schrott, 1988;
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FIGURE 3

Electrode–nerve interface. It is a three-dimensional representation of the auditory nerve fibers (ANFs) (red) arranged in a spiral shape along the

basilar membrane (continuous black line) and centered in the spiral ganglion axis (dashed black line). The electrodes (blue) are inserted almost one

complete turn into the scala tympani. Some ANFs present a mild degeneration (dotted green).

Nadol, 1997). The nerve degeneration was limited to 20 segments

because, beyond this point, the amount of stimulation current

required to elicit a spike was excessive compared to real CI users.

Figure 4 shows how nerve degeneration was implemented in the

proposed electrode–nerve interface.

It is worth mentioning that removing segments may result

in situations where the degenerated part surpasses the physical

location of the soma, which in real spiral ganglion neurons would

be somewhere between the seventh and the twelfth segment.

Nevertheless, degeneration of the peripheral axon could also

be modeled as the loss of myelin sheets, or by reducing its

diameter (Heshmat et al., 2020, 2021; Croner et al., 2022). The

effects of this type of degeneration would be that nodes in the

central axon will be the ones that produce a spike. Therefore,

removing segments in our model was used to investigate excitation

at most central locations, rather than to represent the real

physical degeneration.

Because it is unknown how the current flows in the most

peripheral nodes after degeneration, it was decided to discard

them from the activation function calculation. In this regard,

Rattay (1999) proposed to remove the first term in Equation (2);

nevertheless, in degenerated ANFs, following this proposal could

result in a rise of the activation function despite the worst neural

health condition and this effect was undesired in our model.

2.1.1.3. Internal representation as features

The feature extraction algorithm was based on the internal

representation (IR) presented by Fredelake and Hohmann (2012),

which accounts for more central processes in the auditory pathway.

The IR consists of a spatial and a temporal integration of the spike

activity produced by the ANF population. The first step was to

downsample the spike activity to a sample rate of 10 kHz.

To perform the spatial integration, the ANFs were grouped

resembling the auditory filters described in Moore (2003). It is
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FIGURE 4

Electrode–nerve interface geometrical model with auditory fibers degenerated (dotted green). Mean degeneration (αf ) equal to 20 segments.

mentioned that a maximum of 39 independent auditory filters can

be formed at the same time to code sound in NH people, but it

is also mentioned that the effective number of channels for CI

users could be reduced depending on the number of electrodes

implanted. Therefore, in the computational model, the number of

auditory filters used was limited between 16 (number of electrodes)

and 39. Lengths of the auditory filters ranged between 1.1 and

2.6 mm in the 42 mm basilar membrane of the modeled cochlea.

To obtain the number and distribution of these auditory filters

along the basilar membrane, adjacent ANFs were grouped by their

most likely stimulating electrode (highest absolute value of the

activation function) to form auditory filters. If an auditory filter

was below the minimum size (1.1 mm), its fibers were merged with

the adjacent auditory filter toward the apex. In case an auditory

filter size exceeded the maximum value (2.6 mm), its most basal

ANFs were used to form a new auditory filter of maximum size

while the remaining ANFs were used to form a different auditory

filter. Once the auditory filters were formed, the spike trains of their

corresponding ANFs were added together to obtain the spike group

activity (Sg), where g was the auditory filter index.

The next step was to integrate this spike group activity across

time. For each group, the signal was low pass filtered as shown in

Equation (6), where Fg(k) is the filtered spike group activity, k is the

time frame index, fs is the sample frequency equal to 10.0 kHz, τLP
is the time constant of the filter set to 1 ms, and the operator “∗”

denotes a convolution.

Fg(k) = Sg(k) ∗ exp

(

−

(

k
√
2fsτLP

)2
)

. (6)

From this point, a forward masking effect is implemented. A

masker signal Zg was derived from the filtered spike group activity

using a recursive low pass filter (see Section 2.3 in Fredelake and

Hohmann, 2012). This masker signal increases exponentially with

onsets in the spike group activity and decreases exponentially with
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the offsets. The IR is finally themaximum value between themasker

signal and the filtered spike group activity. The whole forward

masking effect is taken from Fredelake and Hohmann (2012) and

it is not detailed in this study. A visual representation is found in

Figure 4 of Fredelake and Hohmann (2012).

To meet the requirements of the back-end, the IR was further

downsampled to a sample rate of 100 Hz using a moving average

low pass filter to diminish the effects of aliasing.

2.1.2. Back-end
The computational model used the framework FADE as the

back-end. As a predictor algorithm, FADE uses an HMM that

represents the target stimulus with an eight-state Markov chain

and a one-component Gaussian mixture model (GMM) to learn,

and subsequently predict, the features (each auditory filter in

the IR) (Schädler et al., 2016). FADE counts with different

“ready-to-use” experiment templates, processing algorithms, and

feature extraction algorithms that are intended to predict NH and

hearing aid performances (Kollmeier et al., 2016; Schädler et al.,

2016, 2018). Hence, two new experiment templates (described

in detail in Section 2.4) were developed to perform SRT and

SMT experiments. The tasks handled by these new templates are

as follows:

1. The generation of the stimulus audio files composing the

training and testing corpus.

2. The generation of the electrodograms from these audio files

using the respective CI sound coding strategy as the processing

algorithm.

3. The generation of the stimuli’ IRs using the proposed peripheral

auditory model as the feature extraction algorithm.

4. The training of the HMM with the IRs obtained from the

training corpus.

5. The predictions over the IRs of the testing corpus with the

trained HMM.

6. The evaluation of the performance of the HMM.

In the evaluation stage, FADE generated a file with the

score obtained at different training conditions (dBSNR in SRT

experiments and dBcontrast in SMT experiments). Scores were

represented as data points in a scatter plot and a non-linear

regression to a psychometric function was performed. This

psychometric function is defined in Equation (7), where pchance is

the lower horizontal asymptote of the function representing the

probability of getting a correct answer with random predictions,

pmax is the upper asymptote of the function representing the

predicted performance in ideal conditions, prange is the difference

between the upper and lower asymptotes, s is the slope, or growth

rate, at the inflection point of the psychometric function, and

xo is the offset of the inflection point in the x-axis (dBSNR
or dBcontrast). The regression was performed with the MATLAB

function “fitnlm”. The coefficient of determination R2 was obtained

in every experiment, which is a reference of how well the scattered

data was represented by the regressed psychometric function.

Ps(x) = pchance +
prange

1+ e−s(x−xo)
. (7)

2.2. Fitting and calibration

The fitting procedure in CI users consists of the adjustment

of the stimulation levels of each electrode in the array, or virtual

channels in the case of current steering strategies such as F120. Each

electrode, or virtual channel, stimulates at levels between threshold

(T) andmost comfortable loudness (MCL) that are unique for every

CI user. By default, the advanced bionics device sets T to 10% of

the MCL level resulting in a 20 dB dynamic range. Stimulation

levels with the advanced bionics device are given in clinical units

(CU), which are integer values from 1 to 471. The equivalent output

current (In) [µA] was obtained with Equation (8), where Tp is the

pulse duration in µs (18 µs in this study), Imax is the maximum

output current equal to 2,040 µA, and Tmax is the maximum pulse

duration equal to 229 µs (Advanced Bionics, 2020).

In =
CU

6000

ImaxTmax

Tp
. (8)

The process of fitting requires a closed feedback loop, where

the CI user indicates the loudness perceived to an audiologist. This

loop is virtually closed in the computational model by measuring

the spike activity produced by electric pulse trains at different levels

of stimulation (from 1 to 471 CU in steps of 30 CU) based on the

assumption that the loudness perception is closely related to the

neural activity produced by the ANFs (McKay and McDermott,

1998; McKay et al., 2001).

The fitting stimulus used was a cathodic-leading biphasic pulse

train with a pulse duration of 18 µs and a periodicity of 540 µs

(resulting approximately in 1,852 pps) was consistent with the

experimental parameters. The pulse train had a duration of 200 ms

with 10ms of leading and preceding silence. Because the periodicity

of this fitting stimulus is just above the ARP, it was expected that

ANFs close to the electrodes “fired” with every biphasic pulse of the

pulse train.

For each virtual channel, a group of 858 ANFs with the highest

absolute activation function was selected. This number corresponds

to the number of fibers found in approximately 4 mm section

of the modeled basilar membrane, although the selected ANFs

were not constrained to be adjacent to each other. The MCL was

defined as the CU value where each biphasic pulse elicited a spike

in the selected ANF group with a probability of 75%. A similar

assumption was used by Kalkman et al. (2014). T level was set to

the 10% of the MCL level.

The calibration of the peripheral auditory model refers to

the adjustment of the modeling factor (MC) shown in Equation

(3). This process was closely related to the fitting procedure

described earlier. It was selected a MC equal to 89.525 × 106,

which guaranteed that MCL levels did not exceed the maximum

of 250 cu in any neural health condition used in the experiments.

Stimulation above this limit would produce undesired out of

compliance stimulation.

2.3. Neural health conditions

In preliminary experiments (not shown in this study) it was

found that 9001 fibers introduced a considerable amount of

Frontiers inNeuroinformatics 08 frontiersin.org202

https://doi.org/10.3389/fninf.2023.934472
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Alvarez et al. 10.3389/fninf.2023.934472

redundant information, and also, in the majority of the ANFs the

node with the highest activation function for any electrode was

beyond the fifth node. Therefore, it was decided to use different

αf for every ANF, but defining a mean degeneration value with a

standard deviation of three nodes. This diminished the redundant

information and was a more realistic representation of how the

degeneration gradually occurs (Nadol, 1997).

The peripheral models with a mean ANF degeneration of 5, 10,

and 15 nodes were considered to have a “healthy” neural health

condition, a “moderate” loss, and a “severe” loss, respectively. Those

three cases were assessed in this study and are shown in Figure 5.

2.4. Experiments

A total of nine SMT experiments and nine SRT experiments

were performed using the three variants of the F120 sound coding

strategies (F120-S, F120-P, and F120-T) and three aforementioned

neural health conditions. Each neural health condition in the

peripheral auditory model can be considered as an “individual” in

experiments with real CI users.

2.4.1. Spectral modulation threshold experiments
The spectral modulation threshold (SMT) experiment was

defined by Litvak et al. (2007b). It consists of measuring the smallest

detectable spectral contrast in spectral rippled noise. The spectral

shape of spectral rippled noise is sinusoidal and it is generated using

Equation (9), where |F(fr)| is the magnitude at the frequency bin

fr , Ct is the spectral contrast in dB, fRPO is the ripple-per-octave,

and θ0 is the ripple phase in the spectrum. Notice that the signal is

hard-filtered at values below 350 Hz and above 5,600 Hz.

|F(fr)| =

{

10
Ct
2 sin (2π(log2(fr/350))fRPO+θ0)/20 350 < fr < 5600

0 otherwise
(9)

With human participants, the SMT is obtained with a three

intervals two alternative forced choice procedure consisting of two

reference intervals with no ripple (Ct equals to 0), and one target

interval with a defined Ct . The first interval is always a reference

noise, hence the participant has to indicate if the target interval is

presented in the second or third position. This adaptive procedure

is detailed by Litvak et al. (2007b), and has an equilibrium point of

79.4% correct answers. Because FADE uses a “training and testing”

approach, the adaptive procedure could not be implemented;

however, the equilibrium point is kept as the detection threshold.

The corpus was generated using Equation (9) with MATLAB.

The ripple phase (θ0) was randomly selected for every stimulus

signal. A ripple per octave (fRPO) equal to 0.5 was selected as in the

experiments from Litvak et al. (2007b) and Langner et al. (2017).

The training corpus consisted of 1,000 samples of the spectral

ripple noise with random integer values between 2 and 20 dB for

contrast depth, and 1,000 samples of reference noise (Ct equals to

0). The testing corpus consisted of 10 sets, each one with 50 samples

of reference noise and 50 samples of spectral ripple noise at a target

Ct of 2, 3, 4, 5, 7, 9, 11, 14, 17, and 20 dB, respectively. In total 1,000

samples were predicted at 10 different contrast levels.

The sampling frequency of every sample was 17.4 kHz and the

stimulus duration was limited to 0.4 s. In all cases, loudness roving

was implemented keeping a mean value of−49 dBFS, a roving peak

of 5 dBFS, and a roving resolution of 0.5 dBFS.

The spectral modulation detection performance was described

by the psychometric function in Equation (7), where pchance was set

to 50% because it was a binary decision. The SMT was the x value,

where Ps(x) was equal to 79.4%.

2.4.2. Speech reception threshold experiments
The SRT experiments were performed using the Oldenburg

sentence test (OLSA). OLSA consists of a matrix sentence test

of 50 words that belong to five different categories of 10 words

each: name, verb, number, adjective, and noun. The sentences

were constructed with one word from each category, following

the previously mentioned order, giving a total of 105 possible

combinations (Wagener et al., 1999). In a closed test procedure,

the participants have previous knowledge of the words that may

appear. Several sentences, mixed with noise at a specific SNR, are

presented to the subject and the subject is asked to repeat them.

A score based on the percentage of correctly recognized words is

obtained. This is repeated at different SNR conditions and then

a psychometric function is fitted to the obtained data points. The

SNR value where this psychometric function crosses the 50% mark

of correctly recognized words is the SRT result.

For SRT experiments, Schädler et al. (2016) and Jürgens et al.

(2018) used a subset of 120 OLSA sentences to generate the training

and testing corpus, but in this study, only a subset of 100 OLSA

sentences was used to reduce computational resources. In this

subset, each of the 50 words in the matrix appears exactly 10 times.

A random excerpt of the noise provided by OLSA was added to the

sentences at the required level to obtain the different SNRs, while

the speech was kept at−49 dBFS.

FADE uses a closed training/testing approach, meaning that the

same sentences used in the training are used in the prediction stage.

Therefore, the training corpus was generated with all the sentences

in the subset mixed with noise at seven different SNR levels, from

0 to 18 dB in steps of 3 dB, and without noise, giving a total of 80

unique instances for each word. The testing corpus was generated

with all the sentences mixed at 10 different SNR values, from−9 to

18 dB in steps of 3 dB, giving a total of 5,000 words to be predicted.

Regarding the psychometric function described in Equation (7),

pchance was set to 10% because it was a one word out of 10 decisions.

The SRT was the x value where Ps(x) was equal to 50%.

3. Results

3.1. Fitting

Figure 6 shows the MCL levels obtained for the computational

model with the healthy, moderate degeneration, and severe

degeneration condition. It also shows as a reference an ideal case

(no degeneration in the ANFs), and the worst case (20 degenerated

segments in the ANFs).

TheMCL level difference across the 15 virtual channels between

ideal and healthy conditions was only on average 2.87 CU.
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FIGURE 5

Three neural health condition representations. (A) Healthy conditions (mean degeneration of 5 nodes). (B) Moderate auditory nerve fiber (ANF)

degeneration (mean degeneration of 10 nodes). (C) Severe ANF degeneration (mean degeneration of 15 nodes).
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FIGURE 6

Most comfortable levels at di�erent neural health conditions of the auditory peripheral model. Ideal conditions is equivalent to no degeneration in

the auditory nerve fibers (ANFs). Healthy conditions, moderate degeneration, and severe degeneration are equivalent to a mean of 5, 10, and 15

segments degenerated in the ANFs, respectively. Total degeneration is equivalent to 20 segments degenerated in almost all the ANFs.

This difference increased with worse neural health conditions.

Between healthy conditions and moderate degeneration, the

difference was on average 23.47 CU, between moderate and

severe degeneration, the difference was 51.27 CU, and between

moderate and total degeneration, the difference was 80.53 CU.

With total degeneration in the ANFs, the MCL levels of the

four most basal electrodes (high frequencies) were above the

desired 250 CU.

3.2. Electrical interaction

Figure 7 shows the effects of electrical interaction with

simultaneous stimulation after fitting. For this figure, paired

biphasic pulses were generated for the 1st, 6th, 11th, and

14th virtual channels to obtain a peak of induced current I

across the ANF population of 0.8 mA. The black continuous

lines correspond to the induced current with simultaneous

stimulation, while the induced currents resulting from each channel

individually (sequential stimulation) are shown with different

colors. The induced current with simultaneous stimulation in

healthy conditions (Figures 7A, B), and with paired stimulation in

severe degeneration (Figure 7C), follows the peaks corresponding

to the induced current of each individual virtual channel. This

is not the case with triplet stimulation in severe degeneration

(Figure 7D), where the peaks corresponding to virtual channels 6

and 14 are almost merged together while the peak corresponding

to the virtual channel 1 is attenuated. Attenuation occurs

when different virtual channels have opposite activation function

signs; therefore, they cancel each other in Equation (3). Note
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FIGURE 7

E�ects of electrical interaction in simultaneous stimulation with F120-P and F120-T sound coding strategies. Panels (A, B) show electrical interaction

in healthy condition while panels (C, D) show electrical interaction in severe degeneration. For this example, the stimulation pulses in every virtual

channel were adjusted until they reached a peak of the induced current across the auditory nerve fibers of 0.8 mA. F120-P uses the virtual channels 6

(Ch 6) and 14 (Ch 14) simultaneously as shown in (A, C). F120-T uses the virtual channels 1 (Ch 1), 6 (Ch 6), and 11 (Ch 11) as shown in (B, D). The

induced current with simultaneous stimulation is shown with black continuous lines. The y-axis corresponds to the magnitude of the induced

current and the x-axis to the insertion angle of the electrode array from base (high frequencies) to apex (low frequencies). The figure was smoothed

to provide a better visualization.

that the induced current toward the apex of the cochlea

(insertion angles around 540◦ and 720◦) also increases with

worse neural health conditions as a consequence of higher

stimulation levels.

3.3. Spectral modulation threshold
experiments

Figure 8 shows the psychometric functions obtained

from the SMT experiments. The upper left box indicates

the corresponding SMT, the expected performance with

an infinite modulation depth (Ct), and the coefficient of

determination (R2). In general, the psychometric regression

obtained an R2 coefficient ranging from 0.97 to 0.99, which

means that the psychometric function represents a good fit for the

results obtained.

Nevertheless, Figure 9 shows that there was no significant

effect on the performance regarding the sound coding strategy

(Figure 9A) or the neural health condition (Figure 9B). As shown

in Figure 9B, a small trend toward poorer performance with worse

neural health conditions (8.57 dB for healthy conditions, 8.76 dB

for moderate degeneration, and 9.63 dB for severe degeneration)

is not significant compared to the clinical data obtained by

Litvak et al. (2007a) and Langner et al. (2017). Also, as shown

in Figure 9A, the expected effect of sound coding strategy on

performance is not obtained (e.g., with severe degeneration the

SMT is better using F120-P than using F120-S). The pmax seems

to not be affected either by the neural degeneration or sound

coding strategy since it varies from 91.2% (F120-T at healthy

conditions) and 93.1% (F120-P at moderate degeneration of

the ANFs).

Data from Litvak et al. (2007b) were collected from 25

CI users (Saoji et al., 2005) and are shown in Figure 9,

part A, with blue boxes. The CI users were using F120-

S (14 participants) and F120-P (11 participants) sound

coding strategies. The results from Langner et al. (2017),

shown in the same graph with green boxes, included 14
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FIGURE 8

Psychometric functions (red) obtained from the computational model results (crosses). The legend in every chart indicates the spectral modulation

threshold (SMT), which is the modulation depth where the psychometric function crosses the 79.4% target line (black). pmax is the expected

performance when the modulation depth tends to infinity. R2 is the coe�cient of determination between the results and the psychometric curve.

The shaded area shows 95% confidence interval. Charts are arranged in columns by neural health (left to right: healthy conditions, moderate

degeneration, and severe degeneration), and in rows by sound coding strategy (top to bottom: F120-S, F120-P, and F120-T).

experiments. Half of them showed the SMT comparison

between F120-S and F120-P sound coding strategies, while

the other half was between F120-S and F120-T. Their

performance showed a large variability but the trend is

to get worse with simultaneous stimulation, especially

with F120-T.

The performance of the computational model ranged from 8.48

to 10.34 dB, which can be considered as a “good” to “average”

performance for CI users, but it does not account for the variability.

The difference between the worst and the best performance of the

model was only 1.90 dB, while in real CI users, it can be more than

18 dB.
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FIGURE 9

Predicted spectral modulation threshold (SMT) obtained in the experiments compared with measurements obtained with real CI users from Litvak

et al. (2007a) and Langner et al. (2017). (A) Performance of the proposed computational model and the performance from literature grouped by

sound coding strategy. (B) Performance of the proposed computational model grouped by neural health conditions and the combined performance

from Litvak et al. (2007a) and Langner et al. (2017) as a comparison. Predicted values are shown with crosses.

3.4. Speech reception threshold
experiments

Figure 10 shows the psychometric functions obtained from

the SRT experiments. The upper left box in every chart

indicates the corresponding SRT, the expected performance “in

quiet” with pmax, and the coefficient of determination (R2)

obtained with the regression. In general, the psychometric

function represented quite well the data resulted from the

experiments, obtaining an R2 coefficient always equal or greater

than 0.99.

The effect of neural health is visible in the overall performance,

affecting not only the SRT, but also the predicted performance

in quiet. Figure 11 shows the SRT grouped by sound coding

strategy (Figure 11A) and neural health condition (Figure 11B). In

general, worse neural health conditions led to poorer performance

(higher SRTs). The differences in SRT between healthy and severe

degeneration conditions for F120-S, F120-P, and F120-T were 1.53,

1.63, and 2.77 dBSNR, respectively. This indicates that simultaneous

stimulation with F120-T was more sensitive to the effects of neural

health degeneration than the F120-P.

On the contrary, the sound coding strategy that stimulated with

two virtual channels simultaneously (F120-P) showed better overall

performance, as shown in Figure 11, part A. With better neural

health conditions, F120-T obtained better performance than F120-

S, but with severe degeneration, the performance with F120-T felt

below F120-S performance.

In addition, Figure 11 shows the results obtained by

Jürgens et al. (2018). They measured the SRT in a group

of 14 CI users using the advanced combinational encoder

(ACE) sound coding strategy, which does not use current

steering but it is comparable to F120-S because it uses

sequential stimulation of biphasic pulses. In addition, they

used a computational model to predict the performance

of the CI users based on their individualized electrical

field spread. Their measured SRTs ranged between −0.1

and 6.2 dBSNR. In contrast, the performance of their

computational model ranged between 4.67 and 7.56 dBSNR,

which is considered a poor performance according to

Jürgens et al. (2018).

4. Discussion

In this study, a novel computational model to simulate the

performance of CI users in psychoacoustic experiments was

proposed. The proposed model consists of two main parts:

(i) a front-end that includes a peripheral auditory model; (ii)

a back-end based on the framework FADE. The peripheral

auditory model combined a three-dimensional representation

of the electrode-nerve interface taken from Nogueira et al.

(2016), with a population of “phenomenologically” modeled

ANFs taken from Joshi et al. (2017). This combination

allowed to overcome the geometric limitations of the
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FIGURE 10

Psychometric functions (red) obtained from the computational model results (crosses). The legend in every chart indicates the speech reception

threshold (SRT), which is the signal-to-noise ratio (SNR) where the psychometric function crosses the 50% target line (black). pmax is the expected

performance in quiet. R2 is the coe�cient of determination between the results and the psychometric curve. The shaded area shows 95% confidence

interval. Charts are arranged in columns by neural health (left to right: healthy conditions, moderate degeneration, and severe degeneration), and in

rows by sound coding strategy (top to bottom: F120-S, F120-P, and F120-T).

phenomenological model by making the induced current

dependent on the activation function, which was obtained using

the “morphological” model of Ashida and Nogueira (2018).

In that sense, the proposed peripheral auditory model takes

advantage of the benefits of both “phenomenological” and

“physiological” approaches.

This study assessed different neural health conditions by

gradually removing segments of the ANFs from the periphery

toward the spiral ganglion, which is an approximation to the

real physiological degeneration (Nadol, 1988; Spoendlin and

Schrott, 1988; Nogueira and Ashida, 2018). The activation

function decreases and widens with worse neural health
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FIGURE 11

Predicted speech reception threshold (SRT) obtained in the experiments. (A) Performance of the proposed computational grouped by sound coding

strategy. (B) Performance of the computational model grouped by neural health conditions. Predicted values are shown with crosses. Results from

Jürgens et al. (2018) are shown as a reference in both panels as a reference. The red boxes show their predicted SRTs using an individualized model

using the electrical field spread of real CI users and the yellow boxes show their measured SRTs. The symbol “*” denotes a statistical significance with

a p-value less than 0.05 between healthy condition and severe degeneration.

conditions having an impact in the MCL levels, as shown in

Figure 6. Worst neural health conditions resulted in higher MCL

levels, which is consistent with the findings of Langner et al.

(2021).

Predictions of the proposed computational model were

obtained for two psychoacoustic experiments: SRT and SMT.

The results of the SRT experiment show that worse neural

health conditions result in poorer speech reception performance.

Although this degeneration affected more the performance with

simultaneous stimulation sound coding strategies, especially

with F120-T, the detriment compared to sequential stimulation

(F120-S) was rather small and not as relevant, as shown

by Langner et al. (2017, 2021). A more detailed discussion

regarding SMT and SRT experiments is presented in the following

subsections.

4.1. Spectral modulation threshold
experiments

As shown in Figure 9, the computational model performed

similarly in SMT despite having different neural health conditions

or sound coding strategies. This is because IR is a highly

correlated feature along its dimensions (they are not orthogonal)

and they cannot convey any relative spectral information

that can be used by the HMM to differentiate between

spectral rippled noise and flat noise, especially when the

phase θ0 (see Equation 9) of the spectral rippled noise is

randomized.

When the phase of the spectral ripple noise is randomized,

the spectral peaks and valleys are always located in different

auditory filters of the IR. With every realization of spectral ripple

noise, the mean value of the IR gets closer to the mean value

of the flat noise in every auditory filter. Only the standard

deviation of the IR is always greater in spectral ripple noise

than in flat noise. Therefore, whenever the neural activity in any

auditory filter was greater, or lower, than the activity expected

from the flat noise, the HMM classified it as spectral rippled

noise. This may also explain why it consistently predicts an

SMT around 9 dB since the loudness roving used to generate

the training and testing corpus had a dynamic range of 10

dB.

Prediction algorithms based on HMMs work better with

decorrelated features such as Mel frequency cepstral coefficients

(MFCCs), Garbor filter bank (GFBs), or separable Garbor filter

bank (SGFB) that are obtained from the spectral representation of

the signal as shown by Kollmeier et al. (2016) and Schädler et al.

(2016). On the contrary, IR is somehow equivalent to the bare

spectrum of the audio signal, and it is highly correlation to work

with HMMs.
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4.2. Speech reception threshold
experiments

Speech understanding relies on two principal aspects: temporal

cues and spectral cues (Xu et al., 2005). Depending on the

frequency, the temporal cues can be classified into envelopes

(2–50 Hz), periodicity (50–500 Hz), and fine structure (500–

10,000 Hz), the envelopes being specially important for speech

understanding (Rosen, 1992). In the proposed computational

model, the HMM was able to capture these envelopes along the

auditory filters using Markov chains of eight states (Schädler

et al., 2016); however, periodicity and fine structure is lost. The

spectral cues, commonly related to the formants produced by

the pronunciation of vowels and some consonants, were not

properly captured by the HMM because of the before mentioned

limitations of the IR when representing spectral shapes. Thus,

words with relatively low SNR resulted in an IR much more

similar to a word with a flat spectral shape. This may be the

reason why, compared to real CI users, the performance of the

computational model was worse than expected (higher SRTs) and

did not account for the expected variability of around 6 dB as

measured by Jürgens et al. (2018). Figure 11 also shows that this

problem can be traced back to their computational model. Jürgens

et al. (2018) also used the combination of IR as a feature and FADE

as the back-end with an individualized electrical field spread that

accounted for differences in the electrode–nerve interface between

participants. However, the overall simulated performance resulted

in higher SRTs than the one measured in real CI users as in

our simulations.

In addition, there is a discrepancy between the effects of

channel interaction in simultaneous stimulation (F120-P and F120-

T) compared to sequential stimulation (F120-S). According to

Langner et al. (2017, 2021), the performance with F120-S is

similar to the performance with F120-P, but better than the

performance with F120-T. This is not the case in the results

shown in Figure 11, part A. This may be caused by the sharp

decay of the voltage spread that is inversely proportional to the

distance dnfa (see Equation 1). A sharp decay diminishes the effect

of electrical interaction between virtual channels in simultaneous

stimulation; therefore, the performance may be more affected by

the refractory period of ANFs. Notice in Figure 1 that with F120-

S the electrical stimulation is continuous, while with F120-P and

F120-T, there are stimulation gaps that may help ANFs to recover

from refractoriness.

However, Figure 7 shows that the presented computational

model is capable of reproducing the effects of electrical

interaction between virtual channels. This effect is larger

with the F120-T sound coding strategy because the virtual

channels are closer together. Electrical interaction obtained

with F120-P is much lower compared to F120-T. This may

explain why in real CI users the performance with F120-P

is similar to the performance with F120-S, but considerably

worse with F120-T (Langner et al., 2017, 2020b). Figures 7,

11, part B, also support the hypothesis assessed in this

study since the performance with triplet stimulation was

significantly affected by severe degeneration compared to

healthy conditions.

4.3. Future improvements

4.3.1. Feature extraction and back-end
As discussed earlier, the IR proposed by Fredelake and

Hohmann (2012) may not be the best set of features to use

with the HMM already implemented in FADE because IR is

highly correlated within its own dimensions. Therefore, it does

not carry any spectral shape information that indicates the relative

neural activity between the auditory filters. A solution could be

to incorporate other decorrelated features that have been shown

to improve the performance of automatic speech recognition

(ASR) algorithms and that also worked with neural activity

(Holmberg et al., 2005, 2007; Nogueira et al., 2007). But, although

these algorithms may provide benefits in performance for the

computational model, these may not represent any particular

physiological aspect of the auditory system, which was the idea

behind the proposed computational model.

The central processes that occur in the auditory pathway

beyond the peripheral auditory system are not completely

understood. The IR is a simple model that makes many

assumptions about how spikes are processed centrally to interpret

sounds. However, the IR was necessary to accommodate the neural

activity to the temporal resolution and number of features adequate

for an HMM back-end. Another way to approach this problem

would be to substitute FADE as the back-end for an algorithm that

can perform predictions directly from the spike activity coming

from the peripheral auditory model (Alvarez and Nogueira, 2022),

but this is a challenging task due to the amount of ANFs modeled

and the sample rate of the spike activity. Artificial neural networks

(ANNs) seem to suit well with this approach (Kell et al., 2018;

Santana et al., 2018; Wang et al., 2018) since ANNs can manage

a large amount of data and there is no intrinsic assumption of

any central auditory process. Neural networks could function as a

“black box” while the detailedmodeling is focused on the peripheral

auditory system (Brochier et al., 2022).

4.3.2. Peripheral auditory model
Although the proposed peripheral auditory model can account

for many physiological aspects, there is room for improvement.

The voltage spread obtained in this study presents a decay

inversely proportional to the distance. This results in a sharper

decay compared to the exponential decay measured in laboratories

with saline solutions (O’leary et al., 1985; Kral et al., 1998).

The sharper the decay, the less electrical interaction between

channels in simultaneous stimulation; therefore, the model is less

sensitive to the differences between the F120 variants studied.

Nevertheless, a more realistic voltage spread could be obtained

by using finite element method (FEM) or a boundary element

method (BEM) in the three-dimensional electrode–nerve instead

of assuming a homogeneous medium (Kalkman et al., 2014, 2022;

Nogueira et al., 2016; Croner et al., 2022). This improvement of the

peripheral auditory model would take into account the electrical

characteristics of the bones, tissue, and other media present in

the cochlea.

Regarding the ANF model, the morphological model used

in this study considers the ANF as a cable with homogeneously
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distributed segments that do not differentiate between peripheral

axon, central axon, or the soma. This approach worked because

it allowed us to adjust the induced current I for the physiological

model of Joshi et al. (2017) depending on different aspects such as

electrode and nerve position, the direction of the ANF with respect

to the electrode, and the effects of degeneration. A more realistic

multi-compartment cable model that represents its morphology

and physiology more accurately (Rattay et al., 2013; Bachmaier

et al., 2019; Kalkman et al., 2022) could be implemented; however,

one must be careful when coupling it with the model of Joshi et al.

(2017). If the morphology already takes into account differences

between the axons and the soma, the original parameters used in

Equation (5) are not validated anymore.

Another improvement could be a new degeneration method

that takes into account, not only the progressive inhibition of

nodes, but the diameter reduction in the axons (Heshmat et al.,

2020; Croner et al., 2022). In the current degeneration method,

the number of degenerated nodes is not equal across the ANF

population, instead, the number of nodes degenerated in each ANF

is governed by a mean value and a standard deviation that is

arbitrarily set to three nodes. This is an assumption made since

there is no available information on how it is in real implanted

cochleas. In fact, it is probable that the fibers degenerate in

different patterns, for example, more degeneration in the basal

turn than in the apical turns. Therefore, in further studies related

to degeneration, different patterns should be taken into account

including dead regions in the cochlea, which are relevant in

electrical stimulation (Moore et al., 2010).

5. Conclusion

The computational model presented in this study was capable

of executing simulations of SRT and SMT experiments. It consisted

of a peripheral auditory model with a three-dimensional electrode–

nerve interface that allows to represent different neural health

conditions by applying a systematic degeneration to the modeled

ANFs. The neural health condition affected the fitting procedure

and speech reception in the expected manner, augmenting the

current needed to reach MCLs and obtaining worst (higher) SRTs,

respectively.

The computational model could not reproduce quantitatively

the expected results in SRT experiments from real CI users where

simultaneous stimulation sound coding strategies (F120-P and

F120-T) consistently performed worse than sequential stimulation

sound coding strategies (F120-S). Nevertheless, the results showed

that the qualitative performance detriment due to neural health

conditions with simultaneous stimulation (especially with F120-T)

was higher than with sequential stimulation.

SMT experiments with the computational model were

inconclusive since the results showed no relevant impact neither

from neural health conditions nor channel interaction caused

by the simultaneous stimulation. This is arguably caused by the

selected IR resulting in features that did not convey spectral shape

information, together with an HMM-based recognizer.

Future developments of the computational model could offer

a reliable tool to assess the effects of different sound coding

strategies and different neural health conditions in psychoacoustic

experiments without the need for testing in implanted volunteers,

especially, in the early development stages of new CI technologies.

The improvements should be focused on the physiological model

of the ANFs and the feature extraction from the neural activity.
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