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ENABLING TECHNOLOGIES FOR VERY 
LARGE-SCALE SYNAPTIC ELECTRONICS

Topic Editors: 
Themis Prodromakis, University of Southampton, United Kingdom
Alexantrou Serb, University of Southampton, United Kingdom

An important part of the colossal effort associated with the understanding of the 
brain involves using electronics hardware technology in order to reproduce biolog-
ical behavior in ‘silico’. The idea revolves around leveraging decades of experience 
in the electronics industry as well as new biological findings that are employed 
towards reproducing key behaviors of fundamental elements of the brain (notably 
neurons and synapses) at far greater speed-scale products than any software-only 
implementation can achieve for the given level of modelling detail. 

So far, the field of neuromorphic engineering has proven itself as a major source of 
innovation towards the ‘silicon brain’ goal, with the methods employed by its com-
munity largely focused on circuit design (analogue, digital and mixed signal) and 
standard, commercial, Complementary Metal-Oxide Silicon (CMOS) technology as 
the preferred ̀ tools of choice’ when trying to simulate or emulate biological behav-
ior. However, alongside the circuit-oriented sector of the community there exists 
another community developing new electronic technologies with the express aim 
of creating advanced devices, beyond the capabilities of CMOS, that can intrinsically 
simulate neuron- or synapse-like behavior. A notable example concerns nanoelec-
tronic devices responding to well-defined input signals by suitably changing their 
internal state (‘weight’), thereby exhibiting `synapse-like’ plasticity. This is in stark 
contrast to circuit-oriented approaches where the `synaptic weight’ variable has to 
be first stored, typically as charge on a capacitor or digitally, and then appropriately 
changed via complicated circuitry. 

The shift of very much complexity from circuitry to devices could potentially be a 
major enabling factor for very-large scale `synaptic electronics’, particularly if the 
new devices can be operated at much lower power budgets than their corresponding 
‘traditional’ circuit replacements. To bring this promise to fruition, synergy between 
the well-established practices of the circuit-oriented approach and the vastness of 
possibilities opened by the advent of novel nanoelectronic devices with rich internal 
dynamics is absolutely essential and will create the opportunity for radical innovation 
in both fields. The result of such synergy can be of potentially staggering impact to 
the progress of our efforts to both simulate the brain and ultimately understand it. 

In this Research Topic, we wish to provide an overview of what constitutes state-of-
the-art in terms of enabling technologies for very large scale synaptic electronics, 
with particular stress on innovative nanoelectronic devices and circuit/system design 
techniques that can facilitate the development of very large scale brain-inspired 
electronic systems
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Emerging brain-inspired architectures call for devices that can emulate the functionality

of biological synapses in order to implement new efficient computational schemes able

to solve ill-posed problems. Various devices and solutions are still under investigation

and, in this respect, a challenge is opened to the researchers in the field. Indeed,

the optimal candidate is a device able to reproduce the complete functionality of a

synapse, i.e., the typical synaptic process underlying learning in biological systems

(activity-dependent synaptic plasticity). This implies a device able to change its resistance

(synaptic strength, or weight) upon proper electrical stimuli (synaptic activity) and showing

several stable resistive states throughout its dynamic range (analog behavior). Moreover,

it should be able to perform spike timing dependent plasticity (STDP), an associative

homosynaptic plasticity learning rule based on the delay time between the two firing

neurons the synapse is connected to. This rule is a fundamental learning protocol in

state-of-art networks, because it allows unsupervised learning. Notwithstanding this fact,

STDP-based unsupervised learning has been proposed several times mainly for binary

synapses rather than multilevel synapses composed of many binary memristors. This

paper proposes an HfO2-based analog memristor as a synaptic element which performs

STDP within a small spiking neuromorphic network operating unsupervised learning for

character recognition. The trained network is able to recognize five characters even in

case incomplete or noisy images are displayed and it is robust to a device-to-device

variability of up to ±30%.

Keywords: memristor, resistive switching, HfO2, artificial synapse, synaptic plasticity, spike time dependent

plasticity, spiking neuromorphic network, unsupervised learning

1. INTRODUCTION

The human brain is a massively parallel, fault-tolerant, adaptive system integrating storage and
computation (Kuzum et al., 2013; Matveyev et al., 2015). Moreover, it is able to visually recognize
a large amount of living beings and objects and to process huge volumes of data in real-time
(Kuzum et al., 2013; Yu et al., 2013a; Wang et al., 2015). Therefore, biologically-inspired systems
are attracting a lot of interest as vehicles toward the implementation of real-time adaptive systems
for a variety of applications. In such applications, the system is required to continuously adapt to
time-varying external stimuli in an autonomous way, therefore an on-line learning without external
supervision is preferable (Serb et al., 2016). In neuromorphic hardware, learning is obtained

4

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2016.00482
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2016.00482&domain=pdf&date_stamp=2016-10-25
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:erika.covi@mdm.imm.cnr.it
mailto:sabina.spiga@mdm.imm.cnr.it
http://dx.doi.org/10.3389/fnins.2016.00482
http://journal.frontiersin.org/article/10.3389/fnins.2016.00482/abstract
http://loop.frontiersin.org/people/296395/overview
http://loop.frontiersin.org/people/360943/overview
http://loop.frontiersin.org/people/118994/overview
http://loop.frontiersin.org/people/70165/overview
http://loop.frontiersin.org/people/235910/overview


Covi et al. Analog Synapse Toward Unsupervised Learning

through reconfiguration of the connectivity of a network through
local modulation of synaptic weights. The adjustment of the
weight of a single synapse, i.e., plasticity, should follow simple
update rules that can be implemented uniformly across the entire
network and allow unsupervised learning. In this respect, spike
timing dependent plasticity (STDP) has been recognized as one
of most promising, because it establishes that the weight of a
synapse is adjusted according to the timing of the spikes fired
by connected neurons (Serrano-Gotarredona et al., 2013; Bill and
Legenstein, 2014; Ambrogio et al., 2016b).

Recently, the implementation of artificial synapses with
memristor devices has been proposed. Memristors (memory +

resistor) are compact two terminal devices that change their
resistance when subjected to voltage stimulation. The memristor
resistance state can be considered inversely proportional to the
synaptic weight. Various practical implementations have been
proposed, such as phase change (Kuzum et al., 2012; Ambrogio
et al., 2016b), ferroelectric (Du et al., 2015; Nishitani et al.,
2015), spin transfer torque (Querlioz et al., 2015) devices, and
oxide-based resistive switching memristors (Wang et al., 2015;
Ambrogio et al., 2016a). When memristors are employed in
neuromorphic networks, two main operational modes are used,
binary and analog. The former relies on memristors featuring
only two states, high resistance state (HRS) or low resistance state
(LRS), and it is proved to be effective in specific applications
(Suri et al., 2013; Wang et al., 2015; Ambrogio et al., 2016a).
On the other hand, analog evolution of device resistance is
desirable to improve the robustness of the network (Bill and
Legenstein, 2014; Garbin et al., 2015; Park et al., 2015), but the
difficulty of operating memristors in an analog fashion renders
hardware implementations of networks with analog synapses
still challenging (Garbin et al., 2015). Indeed, several memristors
show only a partial analog behavior, either when increasing the
resistance (synaptic depression), which is common in filamentary
devices as oxide-based memristors (Kuzum et al., 2013; Yu et al.,
2013a), or when decreasing the resistance (synaptic potentiation)
as in some kinds of phase change memristors (Eryilmaz et al.,
2014). Well established protocols to obtain analog behavior
require controlling of the current flow through the memristor
(Yu et al., 2011; Ambrogio et al., 2013), or the modulation of
either the time width (Park et al., 2013; Mandal et al., 2014)
or the voltage (Kuzum et al., 2012; Park et al., 2013) of the
spike. However, this device programming requires the use of
extra circuit elements for monitoring the state of the memristor
and shaping the spike accordingly. A second proposed approach
is to consider multi-memristor synapses (compound synapse
with stochastic programming) (Bill and Legenstein, 2014; Burr
et al., 2015; Garbin et al., 2015; Prezioso et al., 2015) at the
expense of increased area consumption. Only recently some
works demonstrated analog behavior in both potentiation and
depression without current or voltage control (Park et al., 2013;
Covi et al., 2015, 2016; Matveyev et al., 2015; Brivio et al., 2016;
Serb et al., 2016).

Within this class of devices, unsupervised learning based
on STDP has been successfully demonstrated and analyzed
in detail for binary synapses or compound synapses (with
binary memristors) (Suri et al., 2013; Bill and Legenstein, 2014;

Ambrogio et al., 2016a,b). Some works deal with networks
utilizing analog resistance transition in only one direction, either
in depression (Yu et al., 2013b) or in potentiation (Eryilmaz
et al., 2014). Only few works use analog synapses to simulate
neuromorphic networks, as an example Querlioz et al. (2013),
Yu et al. (2015), and Serb et al. (2016). The latter, in particular,
proposes a network realized in part with real hardware analog
memristors and in part with software simulation.

In this framework, we propose a fully analog oxide-
filamentary device as a memristive synapse for networks with
deterministic neurons implementing unsupervised learning. The
proposed memristor features an analog modulation of its
resistance in various long-term functional plasticity spiking
conditions and it emulates a type of homosynaptic STDP
learning rule. To prove its usefulness in deterministic STDP-
based networks, a simple fully-connected spiking neuromorphic
network (SNN) for pattern recognition is conceived and
simulated. The SNN consists of 30 neurons (25 pre-neurons
disposed in a 5× 5 layer and 5 post-neurons) and 125 synapses.
The network is trained with an associative unsupervised STDP-
based learning protocol. After training, the SNN is able to
recognize five characters displayed as 5× 5 black-and-white
pixels images even when incomplete characters or noisy ones
(intended as purely additive noise) are displayed. Moreover, the
SNN is proved to be robust against device-to-device variability.

2. MATERIALS AND METHODS

The device stack is made of 40 nm TiN/5 nm HfO2/10 nm
Ti/40 nm TiN layers and the area of the device is 40× 40 µm2.
Ti and TiN layers are deposited by magnetron sputtering and
the HfO2 layer is deposited by atomic layer deposition at 300 ◦C,
as described elsewhere (Brivio et al., 2015; Frascaroli et al.,
2015). The switching mechanism of the proposed memristor is
filamentary (Brivio et al., 2014), i.e., it is based on the disruption
and the restoration of a conductive filament formed inside the
oxide.

The electrical DC characterizations are performed using
Source Measuring Units (B1511B and B1517A) of a B1500A
Semiconductor Device Parameter Analyzer by Keysight. Figure 1
shows a typical I-V curve of the device. In its pristine state, the
device has a conductance of tens of nS (not shown). A forming
operation (DC current sweep up to 150 µA) at around 1.8 V
(data not shown) is needed to bring the device in its LRS for
the first time. To switch the device from LRS to HRS, and vice
versa, DC sweeps from 0 V to 1 V (LRS to HRS) and from
0 V to −0.7 V (HRS to LRS) are applied. The device maximum
resistance (read at 100 mV) ratio obtainable in DC is about one
order of magnitude, which is in agreement with the literature
(Garbin et al., 2015; Matveyev et al., 2015; Wang et al., 2015).

The device response to spike stimulation has been
characterized either by trains of pulses with increasing amplitude
and fixed time width or by repetition of the same spike. In the
former case, during depression spike amplitude ranges from 0.1
to 1.2 V, during potentiation, from −0.1 to −0.65 V. The same
spike is repeated 5 times before the amplitude is incremented
by 50 mV (decremented by −50 mV for negative voltages)
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FIGURE 1 | DC characterization of the device. Transition from LRS to HRS

is obtained with a DC sweep from 0V to 1V, transition from HRS to LRS is

obtained with a DC sweep from 0V to −0.7 V.

and the pulse duration is fixed at 100 µs. Measurements are
performed using the custom instrument described in Berdan
et al. (2015). In the second experiment, the trains of identical
pulses are constituted by 300 repetitions of −550 mV—high
and 25 µs—long pulses for potentiation and 300 repetitions
of 700 mV—high and 20 µs—long pulses for depression.
This second pulse scheme is implemented by a custom setup
interfacing High Voltage Semiconductor Pulse Generator Unit
(B1525A) and Source Measuring Units of a B1500A. The
motivation for the choice of the spike parameters will be given in
Section 3. In both experimental procedures, reading operation is
carried out using a voltage amplitude which induced no changes
in the device resistance.

STDP experiments are carried out placing the device between
two spiking channels, i.e., two Waveform Generator/Fast
Measurement Units (B1530A) of the already mentioned B1500A,
acting as spiking neurons. The relative timing between the two
overlapping spikes from the two neurons is mapped in a voltage
amplitude, as it will be described in Section 3.2.

The SNN is developed and simulated in MATLAB R©

environment. The network is a simple fully connected
winner-take-all SNN of 30 integrate-and-fire neurons, of
which 25 are pre-neurons and 5 post-neurons. The pre-neurons
are arranged in a 5× 5 layer and each pre-neuron is connected to
all the post-neurons through 125 artificial synapses. The learning
method is unsupervised and the experimental STDP data used
to update the synaptic weights during learning are collected in
a look up table. The operating principle of the network will be
described in detail in Section 3.3. Using the same MATLAB R©

software, a graphic user interface (GUI) is developed to enhance
the software usability (further details in the Supplementary
Figure 1).

3. RESULTS

The tests described in the following are carried out in order
to provide a thorough overview of the device behavior which

is finally exploited in a simple example of neuromorphic
computation. The present section is therefore divided in
three parts. In the first one, long-term functional plasticity is
investigated through two different spiking algorithms, which are
exploited to achieve a form of STDP learning rule, in the second
part. Finally, a SNN is presented.

3.1. Long-Term Functional Synaptic
Plasticity
The plasticity of the device is investigated through two different
spiking stimulations, which are fundamental to achieve the shape
of STDP required in learning.

Figure 2A shows the evolution of the device resistance during
some potentiation and depression cycles (top panel) using trains
of spikes of fixed time width and increasing amplitude (bottom
panel). The maximum voltages for potentiation (−650 mV)
and depression (1.2 V) are those leading to a maximum
resistance change of about one order of magnitude and are
close to the maximum voltages used in DC operation (Figure 1).
During depression (resistance increase, green circles), the first
spikes, corresponding to lower voltages (see bottom panel of
Figure 2A), do not induce any resistance change up to a
voltage threshold which can be identified at about 550 mV.
As the threshold is overcome, the resistance starts increasing
gradually. The device therefore presents several intermediate
resistive states throughout the programming window. Similarly,
during potentiation (resistance decrease, orange circles), several
intermediate states are reached between the maximum and
minimum resistances using spikes with increasing voltage
amplitude. It can be noted that, in this case, the resistance
change begins at different voltage levels from cycle to cycle,
but for voltages higher than −500 mV a resistance decrease
can always be observed. Therefore, −500 mV is considered the
voltage threshold for potentiation. It is worth noticing that time
widths, as well as voltages, influence the resistance evolution, as
already reported by Covi et al. (2015) for similar devices. On
the other hand, resistance changes are more sensitive to voltage
variations rather than to time widths variations, so that for time
widths in the range of 10 to 100 µs roughly the same voltages can
be applied for obtaining the same resistance evolution. It has to be
mentioned that a stair-case like algorithm, like the one used here,
is not practical to implement in real large-scale system, because
requires neurons to keep track of previous activity. On the other
hand, the testing procedure reported in Figure 2A is useful for
characterizing the device and to clarify the functioning principle
of the STDP implementation described below, which has actually
been proposed as a learning rule for practical implementation of
neuromorphic hardware (Saïghi et al., 2015).

In the set of measurements shown in Figure 2B, plasticity
is investigated as a function of trains of identical spikes.
Some depression/potentiation cycles are performed. During both
potentiation and depression, the resistance gradually changes,
featuring several intermediate states between the LRS and
the HRS. In all the cycles, the resistance rate change is not
constant with respect to the number of spikes. Indeed, for both
potentiation and depression the resistance change is faster for the
first spikes. In general, analog resistance variation due to trains
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FIGURE 2 | (A) Potentiation (orange) and depression (green) cycles using ramped trains of spikes. Spike time width 100 µs, 5 repetitions. Potentiation: ramps from

−0.1 V to −0.65 V. Depression: ramps from 0.1 V to 1.2 V. Upper graph: device resistance after spikes; lower graph: spike amplitude. (B) Potentiation (orange) and

depression (green) cycles using trains of 300 identical spikes. Potentiation: spike amplitude −0.55 V, time width 25 µs. Depression: spike amplitude 0.7 V, time width

20 µs. Upper graph: device resistance after spikes; lower graph: spike amplitude.

of identical spikes can be found for voltages values close to the
voltage thresholds, identified by the results of voltage staircase
stimulation for similar time widths (as that shown in Figure 2A).
Indeed, gradual resistance change is achievable as an intermediate
regime between a low voltage stimulation, which does not affect
the resistance, and a high voltage stimulation, which induces
a digital behavior (Covi et al., 2015). The resistance window
obtained through identical pulses is in the order of 2, which
has been considered sufficient when dealing with neuromorphic
systems (Kuzum et al., 2012; Prezioso et al., 2016).

3.2. Homosynaptic Input-Specific Plasticity
Toward Learning
Based on the plasticity results described in Section 3.1 as a
function of voltage modulation and spike repetition, STDP
experiments relying on engineering of pre- and post-spike
superimposition are carried out. Indeed the voltage drop on
the memristor is modulated according to the voltage difference
resulting from the superimposition of pre- and post-spike
waveforms, which depends on their relative timing. To this
aim, pre-spike is shaped as a triangular-like pulse (Figure 3A),
thus acting as a bias performing the voltage-to-time mapping.
The rectangular-like shape of the post-spike (Figure 3A)
determines the supra threshold spike width. Figure 3B reports
two examples of the superimposition of pre- and post-spikes
giving either potentiation or depression and Figure 3C reports
the quantitative voltage-to-delay-timemapping. In particular, the
resulting maximum voltage dropping on the device depends on
1t and varies between−650 mV for potentiation and 800 mV for
depression.

To emulate STDP with 1t > 0 (1t < 0), first the device
is brought in its HRS (LRS) with a DC sweep, then 250
identical pairs of pre- and post-spikes are applied to the
top and bottom electrodes of the device, respectively, keeping
1t constant. The experiment is repeated for different delay
times (1t) and each time the parameter 1t is varied, the

device is reinitialized accordingly. Figures 4A,B show the device
resistance evolution as a function of spike pair repetitions
for different delay times in both potentiation (Figure 4A) and
depression (Figure 4B). During potentiation and for every delay
time, resistance decreases quickly in the initial phase (about
~25 repetitions) before slowing down markedly in later phases
(please notice the vertical scale as going like R0/R with the
increase of the number of spikes, in qualitatively agreement with
Figure 2B). The same qualitative trend is respected also during
depression (Figure 4B): the first 10–20 spike pair repetitions
significantly change the resistance, whereas the following ones are
less effective, until a saturation level is reached after ∼150–200
spikes. In both potentiation and depression, the variation of
1t, i.e., the voltage drop, drives the amplitude of the resistance
change, i.e., the longer the delay time, the lower the change in
resistance. Moreover, 1t affects the resistance change rate in
the initial stage of the plasticity operation, i.e., the smaller the
delay time (i.e., the higher the voltage drop), the sharper the
resistance evolution (e.g., compare the blue and pink curves of
Figures 4A,B).

Figures 4C,D show the STDP curve represented as the
normalized resistance change as a function of the spike delay (and
consequently of the voltage amplitude, as shown in the top x-axis
of Figures 4C,D) for few representative fixed numbers of spike
pair repetitions (1, 10, 25, 50, 100, and 150). The plots, which
are derived from aforementioned results, qualitatively follow the
biological STDP curve shown in Bi and Poo (1998). In accordance
with Figures 4A,C shows that when 1t is positive and small, the
first spike pair induces a resistance variation equal to 75% of the
dynamic range. As a consequence, the following repetitions have
a reduced effect in further changing the device resistance. On
the contrary, when 1t is longer and the resulting spike voltage
amplitude is lower, the spike repetitions play an important role
in the evolution of the device resistance. Indeed, it becomes
progressively more pronounced with increasing 1t. This effect
is valid up to a point where 1t is so large that the voltage
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FIGURE 3 | (A) Setup for Spike Time Dependent Plasticity and waveforms used as pre-spike (left) and post-spike (right) in STDP experiments. (B) Overlapping of

pre-spike and post-spike to obtain a potentiation (left) and a depression (right). (C) Voltage-to-delay time mapping. Resulting voltage across the artificial synapse as a

function of 1t.

drop across the device does not exceed the device threshold and
no more changes in device resistance are induced, regardless of
the number of applied spikes. The same effect is shown also
in Figure 4D, where results for negative 1t are plotted, even
though here the effect is less pronounced. Indeed, a change in the
synaptic weight is present also for 1t=−400 µs. This result is
in agreement both with Figure 2A, where the effect of the voltage
amplitude on the device resistance is shown, and with Figure 2B,
where it is demonstrated that the weight change progressively
decreases with increasing spike repetition number.

It is worth mentioning that when the device behavior is tested

for 1t > 0 (1t < 0), the device is first brought in its HRS (LRS).
In case thememristor in the LRS (HRS) is subjected to pulses with
1t > 0 (1t < 0), no changes in its resistance would occur, since
the synapse is already completely potentiated (depressed). This is
explicitly shown in Figures 4C,D , where for negative (positive)
delay times no resistance changes are shown.

From Figures 4C,D, a behavioral difference between
potentiation and depression dynamics emerges. Despite in both
cases the final resistance is strongly influenced by the applied
voltage amplitude, during potentiation the applied voltage affects
the change in the device resistance starting from the very first

spike pair, whereas during depression the effect of the voltage
is more evident from the second spike pair on, rather than in
the first. Such asymmetry of the curve, even though in principle
improvable by optimizing the spike shapes, does not affect the
possibility of using the STDP rule for a neuromorphic network.

3.3. Associative Unsupervised Learning in
Spiking Neuromorphic Networks
The goal of the following Section is to demonstrate the operation
of a small unsupervised network which makes use of the plastic
response of the memristor described above to emulate the
functionality of a synapse. To this end, we concentrate just
on a network with fixed timings, i.e., restricting for simplicity
to a subset of the STDP data presented in Section 3.2. More
specifically, the curve with 1t = 300 µs of Figure 4A is
selected for potentiation and the one with 1t = −50 µs of
Figure 4B for depression. Of course, the shape of the STDP curve
provides additional degrees of freedom that can be exploited for
addressing more biologically plausible learning algorithms, e.g.,
for the treatment of gray-scale or color images. However, such
applications go beyond the scope of the present manuscript.
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FIGURE 4 | (A) Potentiation and (B) depression dynamics with 250 identical spikes. Different voltage amplitudes and delay times are explored. The values of both

voltage amplitude and 1t are written nearby each curve. Insets: detail of the first 12 spikes. (C,D) Spike Time Dependent Plasticity learning curve for different number

of pre- post-spikes pair repetitions (1t > 0 and 1t < 0). R0 is the initial HRS (C) and LRS (D).

Figure 5 shows the proposed SNN. For ease of visualization,
in Figure 5 only a limited number of the connections between
pre- and post-neurons is shown. Each of the 25 pixels composing
the images is associated to a different pre-neuron. Initially, the
network is untrained and a learning phase is executed. At the end,
the SNN is able to recognize 5, capital characters (A, E, I, O, and
U, Figure 5, inset) given as 5× 5 pixel black-and-white images.
The network learns through an unsupervised STDP protocol.
Once the training session is over, the network is able to recognize
incomplete or noisy images, representing any of the characters,
following a winner-take-all approach.

The plasticity of the memristor plays most of the role in
the learning session of the SNN. The training is performed one
character at a time. As an example, the procedure to make the
network learn letter A is described. The same procedure is then

used for all the other characters. The spiking diagram of the
neurons is shown in Figure 6A and it will be explained together
with the unsupervised learning protocol.

At first, character A is shown to the network. Black pixels
stimulate the associated pre-neurons (Figure 5), which fire
toward all the post-neurons (Figure 6A, top panel). Post-neurons
integrate the signals and the one which first reaches its threshold
voltage (e.g., post-neuron γ ), which is fixed and equal for all
the post-neurons, fires back to all the pre-neurons (Figure 6A,
middle panel). The fired spike has three effects: (i) the discharge
of all the other post-neurons, following the winner-take-all rule;
(ii) the potentiation of the synapses connecting pre-neurons
associated with black pixels and post-neuron γ (1t > 0); (iii)
the triggering of the firing of the pre-neurons associated with
white pixels (Figure 6A, bottom panel). Afterward, about 500 µs
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FIGURE 5 | Proposed fully connected SNN. 25 pre-neurons are connected

to 5 post-neurons through a layer of 125 artificial synapses. Each pixel of the

images shown to the network are associated with a pre-neuron. Inset: images

showed to the SNN during the training phase.

after the first spike, post-neuron γ fires again (Figure 6A, middle
panel), thus depressing the synapses connecting it with firing
pre-neurons (1t < 0). Pre-neurons associated with black pixels
are in their absolute refractory period, therefore the second spike
form post-neuron γ has no effect on them. This procedure
of neurons handshaking, lasting about 2.15 ms, is called epoch
and it occurs each time an image is presented to the SNN
during training session. To reach successful learning (i.e., each
post-neuron is specialized for a different character) with a
probability of 99%, the same character is shown to the network
up to 200 times (epochs).

Figure 6B shows an example of training session for letter A.
The Figure is an excerpt extracted from the video VideoS1.mp4,
which can be found in the Supplementary Material and it
summarizes the whole 200 epochs occurred to specialize the
SNN to recognize character A. In panel (i), the image shown
to the network is represented. In panel (ii), the synaptic weight
after 200 epochs of the subset of synapses contributing to the
firing of post-neuron γ is shown. The potentiated synapses are
the orange squares in the panel, whereas the depressed ones
are colored in black. A close correspondence of panels (i) and
(ii) is evident, which is at the basis of the relationship between
potentiated synapses and character learned. In panel (iii), the
weight evolution as a function of the number of epochs is shown.
The depressed synapses (black lines) tend to converge to the

lowest conductance value of about 800 µS. On the contrary, the
potentiated synapses (orange lines) show a very slight change in
the conductance, if any, due to the limit imposed by the initial
condition of the synaptic layer. Indeed, the initial conductance
of each synapse is set in the range from 1.8 to 2.5 mS. The
initial distribution is the result of a potentiation operation and
it simulates the device-to-device variability plausible in a real
network. Both the width and the average value of the initial
weight distribution are fundamental to allow the SNN to uniquely
specialize post-neurons during learning session. The variability
in the initial resistance, which is actually unavoidable for real
devices, allows one post-neuron to be favored with respect
to the others and therefore to fire first. The narrower the
distribution of initial synaptic weight toward high conductance
values, the higher the probability of success during learning. This
is true up to the unrealistic situation where all the synapses
have the same weight and, therefore, all post-neurons would
fire simultaneously, thus failing the learning task. Similarly, the
widening of the initial state range leads to a situation where two
similar characters, e.g., E and U, fall in the basin of attraction of
the same post-neuron, thus resulting in an unsuccessful learning
(i.e., the SNN forgetting the former character and specializing the
same post-neuron to recognize the latest character presented).
The same erroneous behavior is obtained if the average value of
the initial distribution is moved toward lower conductances.

An example of complete training session is illustrated in
Figure 6C (an animation of the first 50 epochs is shown in
Supplementary Material, VideoS2.mp4). Each 5× 5 matrix in
Figure 6C represents the group of 25 synapses contributing to
the firing of post-neurons α to ǫ. Initially, all the weights are
randomly distributed between 1.8 and 2.5 mS. Increasing the
number of epochs (in the Figure, initial state, 5th, 50th, and 200th
epochs are shown), the weight of each synapse gradually changes
until, at the 200th epoch, the SNN is trained and the characters
are recognizable also in the synaptic layer. In addition, Figure 6D
evidences the distribution of all the 125 synaptic weights in the
initial states and after 5, 50, and 200 epochs. It can be noted
that during the session the initial distribution, which is initially
grouped unimodally toward the highest conductive values, is split
in two, one group for depressed synapses and one for potentiated
ones, which is consistent with the results shown in Figure 6B,
panel (iii).

Similar to the training session, during recognition, when an
image is shown to the SNN, the stimulated pre-neurons fire
toward all the post-neurons. The post-neuron which is first
charged above its threshold fires, both recognizing the character
shown and discharging the other post-neurons.

The recognition tests are carried out on 100 networks
configurations resulting from the same number of learning
simulations with different initial synaptic weights. The test set
can be divided into two classes of images, one with missing pixels
and one with additive noise (Supplementary Figure 2). In the first
test, several images with missing black pixels are shown to the
SNN. The results demonstrate that in the worst case the network
is always (100% recognition rate) able to recognize the character
if the percentage of missing pixel is equal to or lower than 21%
for character A, 27% for character E, 20% for character I, 33% for
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FIGURE 6 | (A) Training session: spiking diagram of one epoch. The training character is shown at 0 s and the duration of an epoch is about 2.15 ms. (B) Image

shown to the network (top left panel), synaptic weights after 200 epochs (top right panel), and detailed synaptic weight evolution during training session of character A

(bottom panel). Black lines represent the synapses which are being depressed during the session and orange lines the ones potentiated. (C) Example of synaptic

weight changes during a learning session. Each 5 × 5 matrix represents the group of 25 synapses contributing to the firing of neurons α to ǫ. Color bar on the right

indicates the conductance range of the synapses. Increasing the number of epochs (from top to bottom), the SNN specializes each post-neuron to recognize a

different character. (D) Distribution of the synaptic weights during the training session.

character O, and 18% for character U. In the second test, noisy
images are shown to the network. The test images are chosen
among the ones considered mostly critical for the SNN to be
recognized, so that worst cases could be explored. Further details
about the images shown and the choice criterion can be found in
the Supplementary Figures 2, 3, and Supplementary Table 1. The
network recognition rate resulted 85.71% for images with up to 4
noise pixels. However, the recognition rate is correlated with the
number of epochs in the training session. As already mentioned,
a training session for a character consists of 200 epochs and it
almost always leads to a successful learning. If the number of
epochs during training is reduced, both the success rate of the
learning session and the recognition rate decrease. Simulations
of learning sessions with different number of epochs (200, 50,
10, 8, and 5) are carried out. With a number of epochs of 8, 2

learning sessions out of 3 failed, and with 5 epochs the SNN can
never perform a successful learning. After concluding a successful
learning session, the same test images (see Supplementary Figure
2) are shown to the SNN during recognition. The recognition
rate decreases from 88.22% (200 epochs) to 82.61% (50 epochs),
75.29% (10 epochs), and 72.03% (8 epochs). This means that,
when a limited number of epochs is performed, the synapses
may be insufficiently depressed and during recognition they may
conflict with the potentiated ones, thus resulting in incorrect
recognition.

4. DISCUSSION

In Section 3 a filamentary HfO2 memristor featuring analog
behavior is presented. The proposed device is able to emulate
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both long-term plasticity and STDP learning rule. Moreover,
a simple fully-connected SNN which takes advantage of the
memristor plastic behavior and which uses an associative
unsupervised STDP-based learning protocol is simulated. After
a training session the network is able to recognize five characters,
even when the images displayed are incomplete or noisy. It
should be mentioned that non-ideal elements, such as parasitic
or jitter, are deliberately not considered in the proposed network,
because the performed investigation focuses on the basic
principles of the network with analog memristor, where a study
at a high level of abstraction is mandatory before considering
practical implementations.

We demonstrate long-term functional plasticity with two
different spiking algorithms, which have been already used in
the literature (Park et al., 2013; Yu et al., 2013a; Li et al., 2014;
Zhao et al., 2014) to emulate plasticity. The two algorithms allow
an investigation on the device behavior as a function of the
voltage amplitude (Figure 2A) and on its integrative response
when stimulated by identical spikes (Figure 2B). An algorithm
that modulates the spike voltage applied to the device is not easy
to be implemented in a system. Indeed, dedicated read-out and
variable voltage biasing circuits are required. On the other hand,
the voltage on the memristor in a system could be modulated
through superimposition of long spikes, as proposed several
times in literature (Serrano-Gotarredona et al., 2013; Saïghi et al.,
2015). This method allows the neuron to always fire the same
spike and let the delay times between spike determine the actual
voltage on the device.

The combined results of the measurements shown in Figure 2

are used to engineer the shape of pre- and post-spikes used to
emulate homosynaptic plasticity and to conceive a biologically
plausible STDP curve (Figures 4C,D), which takes advantage of
both the relative timing between the two spikes (1t) and the
plasticity given by spike pair repetition. It should be noted that,
though analog changes can be obtained around the previously
found thresholds for potentiation and depression, the device
can be operated in an analog fashion in a range of voltage of

some hundreds of mV (Figure 4). From Figures 4A,B, it can
be observed that voltages from 580 to 800 mV for depression
and from −440 to −650 mV for potentiation allow a resistance
evolution as a function of the repetition of identical spikes. In
particular, Figures 4C,D show that the dynamic range decreases
with the decreasing of the applied voltage, but resistance still
gradually changes. In a network, it can be expected that different
devices show analog transitions for a range of voltages whose
end values (Vmin, Vmax) can be different from device to device,
but in general a sub-range of voltages allowing analog resistance
modulation is shared by many devices. A threshold difference
in the devices (provided it is within few tens to one hundred
mV) would not prevent analog behavior, as demonstrated in
Figure 7, which shows the behavior of 3 different devices
during potentiation (Figure 7A) and depression (Figure 7B)
when stimulated by trains of 300 identical spikes. In both
Figures 7A,B, the mean value of 10 repetitions of the same
train of spikes is represented by symbols and the shaded area
indicates the standard deviation of the measurements. It can
be noted that potentiation suffers of major variability with
respect to depression. Nevertheless, despite the device-to-device
variability, all the devices show an analog behavior in both
operations. In addition, different resistance evolutions due to
different device thresholds are compensated in SNNs by the
high parallelism of the architecture itself which enhances the
network tolerance to device variability (Yu et al., 2013a). In this
respect, the performance of the presented SNN against variability
is tested adding±10% (Figures 8A,B) and±30% (Figures 8C,D)
device-to-device variability in the artificial synapses behavior,
i.e., the look up table associated to each synapse has been
multiplied by a random factor extracted between 0.9/1.1 and
0.7/1.3 respectively. Figure 8A summarizes the synaptic weight
evolution during the training session of all the characters as
a function of the epoch number when a variability of ±10%
is set. Each graph shows the weight evolution of the group of
synapses contributing to the firing of a specific post-neuron.
During learning, depression (black) and potentiation (orange)

FIGURE 7 | Variability in the behavior of 3 different devices for (A) potentiation and (B) depression when stimulated by trains of 300 identical spikes.

Potentiation: voltage amplitude −0.55 V, time width 25 µs. Depression: voltage amplitude 0.75 V, time width 20 µs. Symbols indicate the mean value of 10

repetitions of the same train of spikes and the shaded area indicates the standard deviation.
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FIGURE 8 | Simulation of the training session including ±10% (A,B) and ±30% (C,D) of variability in synaptic behavior. (A,C) Detailed synaptic weight

evolution during training session of all characters. Black lines represent the synapses which are being depressed during the session and orange lines the ones

potentiated. Green lines indicate that the neuron did not fire in the corresponding epoch. (B,D) Distribution of the synaptic weights during the training session. (E)

Recognition rate as a function of the number of epochs in the learning session. The blue circles represent the average recognition rate from 100 simulations where

device-to-device variability is not taken into account. The red dotted line and the green dashed one indicate the best and worst results obtained in the simulations,

respectively, whereas the other results lie in the shaded gray area. (F) Average recognition rate of 100 simulations as a function of the number of epochs in the learning

session with device-to-device variability of 0% (blue circles), ±10% (red squares), and ±30% (green triangles). Error bars show the standard deviation of the results.

of synapses occur, but the weight evolution with and without
variability (as in Figure 6B) is different, because in the former
case for some presentation of the images to the network some
groups of synapses are not updated (green lines for synapses
connecting to post-neuron that is finally specialized to characters
A and O). This is explained as follows. In the examples reported
in Figure 8, first, O is presented and post-neuron O (meaning
post-neuron that finally specializes to recognize O) starts firing
and updating its associated synapses in the first epoch. On the
other hand, variability causes that the weight are adjusted in
such a way that from epoch 2 to 6, a different post-neuron fires
and synaptic weights associated to post-neuron O are frozen.
Then, specialization proceeds with one post-neuron specializing
for only one character. The success of the learning session

demonstrates the robustness of the network against device-to-
device variability, in accordance with Yu et al. (2015), provided
analog behavior holds in each device. Figure 8B shows the weight
distribution of the synaptic matrix during training. Increasing
the number of epochs, the initial synaptic weight distribution
tends to separate in two groups, one for depressed synapses and
one for potentiated synapses, as it happens also in Figure 6D.
However, in the case of Figure 8B, the two distribution are
wider than in the case where no variability factor is considered.
The same above observations are valid also when variability
is increased to ±30%, as shown in Figures 8C,D. Indeed, also
Figure 8C shows, in the bottom two graphs, some epochs where
the synaptic weight is not updated. Moreover, considering the
±30% variability test, the final distribution of the synaptic
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weights is larger than the one achieved for ±10% variability
(17% larger for depression and 136% larger for potentiation).
In this respect, it is worth analyzing the recognition rate of the
test set shown in Supplementary Figure 2, as a function of the
number of epochs carried out during learning. Figure 8E shows
the recognition rate (blue circles) as a function of the number of
epochs in a SNN neglecting device variability. Each circle is the
average recognition rate over 100 simulations (i.e., 100 learning
sessions each starting with a different initial configuration of
the synaptic weights) and the results of each simulation lie in
the gray shaded area delimited by the best simulation result
(dotted red line) and the worst one (dashed green line). The
increase of the number of epochs during learning improves the
average recognition rate and decreases the spread of the results.
Indeed, the recognition rate varies between 43.75 and 93.75%
at 8 learning epochs whereas it varies between 75 and 100%
at 200 learning epochs. As already mentioned in Section 3.3,
the recognition rate is closely related to the distribution of the
synaptic weights at the end of the training session. The nearer
the distributions of the potentiated and depressed synapses, the
lower the recognition rate. As a consequence, the increase of the
number of learning epochs contributes to enhance the separation
of the two above-mentioned distributions and, therefore, to
improve the recognition rate. It is interesting to note that in
this respect the impact of device-to-device variability is almost
negligible. Indeed, we performed the same recognition tests
with the same methodology also in case of SNNs with ±10
and ±30% device-to-device variability. Figure 8F shows the
average recognition rate as a function of the epochs during
learning in case of 0% (blue circles), ±10% (red squares),
and ±30% (green triangles) device-to-device variability. The
vertical bars indicate the standard deviation σ . The same
increasing trend can be noted for all the curves regardless of
the variability. In accordance with Figure 8E, in each curve also
σ decreases with increasing number of epochs, but the value
of σ for each number of epochs during learning increases with
increasing variability. On the other hand, the network proves
to be robust also for variability up to ±30%. The network
robustness lies in the gradual synaptic weight update. Indeed
for every post-neuron spike, the weight is adjusted by a small
amount. If an erroneous spiking (like the one of a post-neuron
responding to two different characters) occurs, the weight change
is small enough that the following epochs can recover the
error.

Given the observations above, we would like to stress that it is
fundamental in deterministic networks to have analog synapses
even though, as in the proposed SNN, the images shown are only
black and white. Indeed, in a system with deterministic neurons,
as in the proposed one, binary deterministic memristors would
lead to fast learning (only few epochs would be necessary to
complete the training session), but also to fast forgetting (Fusi
and Abbott, 2007). Indeed, if a noisy image were shown to a
trained SNN employing binary synapses, the network would
classify that image and, therefore, would adjust the synaptic
matrix also according to the pixel which is not representative for
that image, disrupting learning. In the case of analog synapses,
the same permanent and significant change leading to failure

would result only if the same noisy image were shown to the
network for several epochs, which is statistically improbable.

In the presented SNN, using two fixed delay times (one for
potentiation and one for depression) in the STDP is sufficient
as a proof-of-concept. In this respect, two values are selected
(1t= 300 µs and 1t=−50 µs) which are coherent with a post-
neuron firing as a consequence of the stimulation by the pre-
neuron (synapses potentiation for 1t= 300 µs) rather than with
a pre-neuron firing because of the stimulation by the activated
post-neurons in case of synaptic depression (1t=−50 µs). On
the other hand, a network exploiting also the possibility of
variable delay times between pre- and post-spikes, would allow
increasing the available resistance states, therefore, improving the
network robustness even further. As an example, in the case of
input-specific associative learning rules for pattern recognition,
the possibility to combine different parameters (1t and spike
pair repetition) to achieve various resistive states with different
evolution histories offers a further degree of freedom. Indeed,
a possible application could be in networks where images have
different colors o shades of gray, which can be linked to different
delay times. In this case, at the end of a learning session with a
certain number of epochs, the weight distribution of the synaptic
matrix would give an indication of the common features of
the various images presented to the network. More specifically,
the more a group of synapses is potentiated, the more they
are stimulated, i.e., the potentiated group identifies a common
feature in the set of displayed images.

5. CONCLUSION

In summary, a thorough analysis of the synaptic features of
the proposed oxide-based memristor is carried out. Initially,
the device ability to emulate long-term functional potentiation
and depression is proved upon stimulation with spikes with
increasing amplitude (stair-case like) and trains of identical
spikes. These experiments show that the memristor has an analog
behavior in tuning its resistance and it can reach a dynamic
range up to one order of magnitude depending on the spiking
algorithm employed. Then, homosynaptic plasticity is tested
through STDP experiments, which demonstrates the device
biological-like behavior when subjected to synaptic activity.
Finally, the possibility of developing deterministic networks
using unsupervised learning is investigated. A subset of the
STDP collected data is used to simulate a simple fully-connected
SNN featuring an associative unsupervised STDP-based learning
protocol. The network is able, after a training session, to
recognize the five characters, also when partially incomplete or
noisy letters are displayed. Therefore, the SNN proves that the
proposed memristor can be used to emulate the functionality
of an artificial synapse in future neuromorphic architectures
with deterministic neurons, and analog memristive synapses, and
making use of unsupervised learning for real-time applications.
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We present a novel one-transistor/one-resistor (1T1R) synapse for neuromorphic

networks, based on phase change memory (PCM) technology. The synapse is capable

of spike-timing dependent plasticity (STDP), where gradual potentiation relies on set

transition, namely crystallization, in the PCM, while depression is achieved via reset or

amorphization of a chalcogenide active volume. STDP characteristics are demonstrated

by experiments under variable initial conditions and number of pulses. Finally, we support

the applicability of the 1T1R synapse for learning and recognition of visual patterns

by simulations of fully connected neuromorphic networks with 2 or 3 layers with high

recognition efficiency. The proposed scheme provides a feasible low-power solution for

on-line unsupervised machine learning in smart reconfigurable sensors.

Keywords: neuromorphic circuits, spike timing dependent plasticity, phase change memory, neural network,

memristor, pattern recognition, cognitive computing

INTRODUCTION

Neuromorphic engineering represents one of the most promising fields for developing new
computing paradigms complementing or even replacing current Von Neumann architecture
(Indiveri and Liu, 2015). Tasks such as learning and recognition of visual and auditory patterns
are naturally achieved in the human brain, whereas they require a comparably long time and
excessive power consumption in a digital central processor unit (CPU). To address the learning
task, one approach is to manipulate the synaptic weights in a multilayer neuron architecture called
perceptron, where neurons consist of CMOS analog circuits to perform spike integration and firing,
while synapses serve as interneuron connections with reconfigurable weights (Suri et al., 2011;
Kuzum et al., 2012; Indiveri et al., 2013; Wang et al., 2015). Recent advances in nanotechnology
have provided neuromorphic engineers with new devices which allow for synaptic plasticity, such
as resistive switching memory (RRAM; Waser and Aono, 2007; Jo et al., 2010; Ohno et al., 2011;
Ambrogio et al., 2013; Prezioso et al., 2015), spin-transfer-torque memory (STT-RAM; Locatelli
et al., 2014; Thomas et al., 2015; Vincent et al., 2015), or phase change memory (PCM; Suri et al.,
2011; Bichler et al., 2012; Burr et al., 2014; Eryilmaz et al., 2014). In particular, recent works have
shown the ability to train real networks for pattern learning, adopting backpropagation (Burr
et al., 2014) and recurrently-connected network (Eryilmaz et al., 2014). The advantage of these
devices over CMOS is the small area, enabling the high synaptic density which is required to
achieve the large connectivity (i.e., ratio between synapses and neurons) and highly parallelized
architecture of the human brain. In addition, nanoelectronic synapses allow for low-voltage
operation in hybrid CMOS-memristive circuits, and for augmented functionality with respect to
CMOS technology, thanks to the peculiar phenomena taking place in the memristive element.
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For instance, the CMOS-memristive synapse showed the ability
to perform spike-timing dependent plasticity (STDP; Yu et al.,
2011; Ambrogio et al., 2013), the transition from short-term
to long-term learning (Ohno et al., 2011), a multilevel cell
operation allowing for gradual weight update (Wang et al., 2015)
and a stochastic operation suitable to redundant neuromorphic
networks (Suri et al., 2012; Yu et al., 2013; Garbin et al., 2015;
Querlioz et al., 2015).

In this context, PCM technology is an attractive solution
for nanoelectronic synapse in high density neuromorphic
systems. PCM is currently under consideration for stand-alone
(Servalli, 2009) and embedded memories (Annunziata et al.,
2009; Zuliani et al., 2013). Generally, the device appears with
one-transistor/one-resistor (1T1R) architecture which allows for
strong immunity to voltage variations as well as relatively
compact structure. Either metal-oxide-semiconductor (MOS) or
bipolar junction transistor (BJT) have been used in the 1T1R
architecture. In some case, the one-diode/one-resistor (1D1R)
structure has been demonstrated, capable of extremely small
area and high density using the crosspoint architecture (Kau
et al., 2009). The PCM technology platform has been used for
computing applications for Boolean logic functions (Cassinerio
et al., 2013) and arithmetic computation (Wright et al., 2011),
including numerical addition, subtraction and factorization
(Hosseini et al., 2015). Neuromorphic synapses have also been
studied: Kuzum et al., have first demonstrated STDP in PCM
by use of an ad-hoc train of pulses at either terminal of the
device (Kuzum et al., 2012). Suri et al., have presented a 2-
PCM synapse, where the 2 PCM devices serve as complementary
potentiation and depression via gradual crystallization (Suri et al.,
2011; Bichler et al., 2012). Supervised training and learning
using back-propagation schemes were recently shown using
PCM arrays (Burr et al., 2014; Eryilmaz et al., 2014). Despite the
wealth of novel demonstrations of PCM technology, no STDP-
based unsupervised learning and recognition with PCM synapse
circuits has been presented so far.

Here we present a novel 1T1R synapse based on PCM
capable of STDP. Potentiation of the synapse is achieved via
partial crystallization enabling a gradual increase of synapse
conductance, while synapse depression occurs by amorphization
in the reset transition. STDP characteristics are demonstrated by
experiments as a function of the initial resistance state and of
the number of potentiating pulses. We demonstrate the ability to
learn and recognize patterns in a fully-connected neuromorphic
network and we propose for the first time the input noise as a
means to depress background synapses, thus enabling on-line
pattern learning, forgetting and updating. Training of the PCM
synapse network with alternating and multiple visual patterns
according to the MNIST data base is shown. Pattern recognition
with multiple layers is finally addressed for improved learning
efficiency.

MATERIALS AND METHODS

PCM Characteristics
Figure 1 shows the PCM device used in this work (a) and its
characteristics. The PCM was fabricated with 45 nm technology

FIGURE 1 | Cross sectional view of a PCM obtained by transmission

electron microscopy (TEM) (A), measured quasi-stationary I-V curves

for the PCM device in the crystalline and amorphous phase (B), reset

characteristic of R as a function of the write voltage for pulse-width 40

ns (C) and set characteristics of R as a function of the set pulse-width

tP and voltage Vset = 1.05V for variable initial PCM state (D). The PCM

device shows fast switching at low voltage, thus supporting PCM technology

for low-voltage, low-power synapses in neuromorphic systems.

and consists of an active Ge2Sb2Te5 (GST) layer between a
confined bottom electrode (or heater) and a top electrode
(Servalli, 2009). The PCM top electrode wasmade of a Cu/W/TiN
multilayer connecting all cells along a row in the array, while
the bottom electrode consisted of a tungsten plug and a sub-
lithographic TiN heater connected to the GST layer. The active
material GST is a well-known phase change material, which
remains stable in 2 phases, namely the crystalline phase and the
amorphous phase (Wong et al., 2010). The 2 phases differ by
their respective resistance, as displayed by the I-V characteristics
in Figure 1B: while the crystalline (set) state shows a relatively
low resistance, the amorphous (reset) state shows high resistance
and a typical threshold switching behavior at a characteristic
threshold voltage VT (Ielmini and Zhang, 2007). To change
the PCM state, positive voltage pulses are applied between the
top electrode and the heater. Figure 1C shows the resistance R
measured after the application of a rectangular write pulse as a
function of the pulse amplitude V. The PCM device was initially
prepared in the set state with R = 10 k� by application of a pulse
with amplitude 1.2V for 250 ns, before any applied pulse. Data
show that R remains constant, until the applied voltage exceeds
the voltage Vm for GST melting, causing amorphization, around
1.2V, which corresponds to the melting voltage of the device.
Above Vm, the applied pulse is able to induce melting, which
leaves the GST volume in an amorphous phase as the voltage
pulse is completed. The amorphous volume increases with V,
thus leading to the increase of R with V in the characteristic of
Figure 1C. To recover the initial crystalline phase, a rectangular
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pulse with voltage below Vm is applied. A voltage Vreset =

1.75V is sufficient to induce a resistance change to about 20
M�, corresponding to a full reset state. Figure 1D shows the
resistance R measured after a set pulse with voltage Vset =

1.05V as a function of the pulse-width tP and for increasing
initial R from 15 k� to 10 M� of the PCM (different colors
in Figure 1D). In general, R decreases with increase in tP as
a result of the increased crystalline fraction (Cassinerio et al.,
2013). A pulse width of about 250 ns is generally sufficient to
complete crystallization within the GST layer irrespective of the
initial value of R, thus supporting the good quality of PCM
in terms of fast memory, low write voltage and low power
consumption.

1T1R Architecture
Figure 2 schematically shows a neuron/synapse/neuron block of
the neuromorphic network. Here, the synapse consists in a 1T1R
structure where the PCM cell is connected in series with a MOS
transistor. The transistor width and length must be suitable to
drive a current around 300µA, which is needed for set and
reset transition in the PCM with 45 nm technology (Servalli,
2009). As a reference, an embedded PCM device with 1T1R
structure has an area (almost equal to the transistor area) of
36F2, where F is the minimum feature size of the technology,
for F = 90 nm and a write current of 400µA (Annunziata
et al., 2009). The 1T1R synapse has 3 terminals, namely the
gate electrode of the transistor, the top electrode (TE) of the
PCM and the bottom electrode consisting of the transistor
channel contact not connected to the PCM. The synapse gate
voltage VG is driven by the pre-synaptic neuron (PRE), which
applies a sequence of rectangular spikes. The positive gate voltage
activates a current spike in the synapse which is fed into the
post-synaptic neuron (POST). Each neuron in the neuromorphic
network consists of a leaky integrate and fire (LIF) circuit,
where the input current spike is integrated by the first stage,
thus raising the internal (or membrane) potential Vint. The
TE voltage VTE is controlled by the POST, and is normally
equal to a negative constant value, e.g., −30mV. Thanks to
the negative VTE, a negative current spike is generated in the
1T1R in correspondence of the PRE spike, hence causing a
positive increase of Vint in the inverting integrator of Figure 2.
The relatively low VTE ensures that the resistance state of
the PCM is not changed, thus avoiding unwanted synaptic
plasticity during the communication mode. The POST also
controls the gate voltage of the synapse in the connection
to the neuron in the next layer (not shown in Figure 2).
Therefore, the scheme in Figure 2 represents the building block
to be replicated to achieve a generic multilayer neuromorphic
array. Note finally that the 1T1R synapse in Figure 2 can be
considered a simplified version of the 2-transistor/1-resistor
(2T1R) synapse presented by Wang et al. where communication
and plasticity were achieved by 2 separate transistors (Wang
et al., 2015), instead of only one transistor in the present
solution.

As Vint exceeds a given threshold Vth of a comparator, the
fire stage delivers a pulse back to the TE to update the weight
of the synapse. The TE spike contains 2 rectangular pulses, the

FIGURE 2 | Schematic illustration of the neuromorphic network with a

1T1R synapse. The PRE drives the MOS transistor gate voltage VG, thus

activating a current spike due to the low negative TE voltage (VTE = −30mV)

set by the POST. The current spikes are fed into the POST, which eventually

delivers a VTE spike back to the synapse as the internal voltage Vint exceeds a

threshold Vth. The VTE spike includes a set and reset pulse to induce

potentiation/depression according to the STDP protocol.

second pulse having a higher amplitude than the first one. The
specific shape of the VTE spike results in a change in the PCM
resistance depending on the relative time delay between the
PRE and POST spikes, in agreement with the STDP protocol.
STDP in the PCM synapse is illustrated in Figure 3, showing
the applied pulses from the PRE and the POST. The PRE spike
is rectangular, with a 10ms pulse-width and amplitude VG =

0.87V, followed by a 10ms after-pulse at zero voltage. The POST
spike lasts 20ms overall, and includes two pulses of width tP at
the beginning of the first and the second halves of the total pulse.
The amplitudes of the first and second pulses are Vset = 1.05V
and Vreset = 1.75V, respectively, intercalated by wait times at
zero voltage. Amplitudes Vset and Vreset are tuned to induce set
transition (crystallization) and reset transition (amorphization),
respectively, according to the PCM characteristics in
Figure 1. These values should be suitably adjusted according
to the specific memory technology integrated in the
synapse.

We define the relative time delay 1t given by:

1t = tpost − tpre,

where tpost is the initial time of the POST spike and tpre is
the initial time of the PRE spike, as shown in Figure 3. If
the PRE spike appears before the POST spike (a), the relative
delay 1t is positive and the PRE spike overlaps with the POST
spike during the set pulse of voltage Vset, thus inducing set
transition in the PCM with a consequent decrease of resistance.
This corresponds to the so-called long-term potentiation (LTP)
in the STDP protocol. If the PRE spike appears after the
POST spike (b), the relative delay 1t is negative and the PRE
spike overlaps with the POST spike during the reset pulse
of voltage Vreset, thus inducing reset transition in the PCM
with a consequent increase of resistance. This corresponds
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FIGURE 3 | Scheme of the applied pulses from the PRE and POST neurons to the 1T1R synapse. In the case of small positive delay 1t (A), when the PRE

spike is applied just before the POST spike, the PCM receives a potentiating pulse with voltage Vset inducing set transition. On the other hand, for small negative delay

1t (B), when the PRE spike is applied just after the POST spike, the PCM receives a depressing pulse with voltage Vreset inducing reset transition. For

positive/negative delays larger than 10ms, there is no overlap between PRE and POST spikes, thus no potentiation/depression can take place.

FIGURE 4 | STDP characteristics, namely measured change of conductance R0/R as a function of delay 1t, for various PCM states, namely state A

(R0 = 15 k�), state B (R0 = 500 k�), and state C (R0 = 10 M�), also reported in Figure 1D. Depression and/or potentiation are shown depending on delay and

initial state, providing a confirmation of the STDP capability in our 1T1R synapse.

to the so-called long-term depression (LTD) in the STDP
protocol.

RESULTS

STDP Characteristics
We characterized STDP characteristics in a 1T1R synapse,
obtained by wire-bonding a MOS transistor and a PCM device
on 2 separate chips. The transistor size was L = 1µm and
W = 10µm and the device was able to deliver sufficient
current to switch the PCM device during set and reset. To
demonstrate STDP operation, voltage pulses as in Figure 3 were
applied to the transistor gate and to the TE terminal with variable
delay 1t and variable initial resistance R0 of the PCM device.
We used a pulse-width tP = 40 ns of set/reset pulses in the
POST spike, i.e., the same as in Figures 1C,D. Figure 4 shows
the measured change of conductance R0/R, where R0 and R
were measured before and after the applied gate/TE pulses, for
the 3 initial states of the PCM shown in Figure 1D, namely
state A close to the full set state (R0 = 15 k�), state B which
is intermediate between set and reset states (R0 = 500 k�),
and state C close to the full reset state (R0 = 10 M�). R was
measured after one spike event in all cases except for state C,
where 1, 3, and 5 spikes were used in the experiments. State A
(Figure 4A) displays strong depression for 1t < 0, indicating a

resistance increase by about 3 orders ofmagnitude corresponding
to the full resistance window of the PCM device between set
and reset states in Figure 1C. On the other hand, state A does
not show any potentiation, since the phase is already almost
completely crystallized in this state. State B (Figure 4B) shows
both depression (1t < 0) and potentiation (1t > 0), since both
set and reset transition are possible for this intermediate state.
Finally, state C (Figure 4C) shows no depression, since this state
is already fully amorphized. In the case of one spike, the PCM also
shows no potentiation, since a 40-ns pulse is not able to induce
significant crystallization in the fully-amorphized state according
to the set characteristics in Figure 1D. Potentiation however
arises after an increasing number of spikes, reaching about a
factor 103× in the case of 5 repeated spikes with the same delay.
These characteristics demonstrated STDPwith abrupt depression
and gradual potentiation due to cumulative crystallization in the
PCM device (Cassinerio et al., 2013). Note that tP = 40 ns was
chosen to be long enough to allow for full reset of the PCMdevice,
while providing a partial and additive crystallization according
to Figure 1D. A longer tP would result in slightly different
STDP characteristics, due to the larger crystallization similar
to the enhanced potentiation with larger number of spikes in
Figure 4C. On the other hand, depression would not be affected
by increasing tP, since the reset transition only depends on the
quenching time.
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FIGURE 5 | Result of a random spiking experiment, showing the

random delay 1t as a function of the epoch (A), corresponding synapse

resistance as a function of the epoch (B), and correlation between 1t

and R0/R (C). The correlation between delay and conductance change is

consistent with the STDP characteristics at variable resistance in Figure 4.

We also verified that continuous spiking with random relative
delay 1t leads to random potentiation and depression of a
single PCM synapse. Figure 5 shows the results of a random
1t spiking experiment over 1000 epochs (i.e., spike events),
reporting the 1t (a), the synapse resistance R as a function of
the number of epochs (b), and a correlation between R0/R and
1t (c), where R0 and R were measured before and after each
spike in the sequence. Due to the uniform distribution of 1t
adopted in our experiment, R in Figure 5B remains close to the
full reset state for most of the experiment. Only few obvious
resistance drops were obtained, since at least 3 pulses with 1t
> 0 are needed in Figure 4C to achieve potentiation from the
full reset state. The correlation between 1t and R0/R over 104

spikes in Figure 5C nicely agrees with the STDP characteristics
in Figure 4, thus further supporting the STDP capability in our
PCM–based synapse.

Note that potentiation/depression in Figures 4, 5 only take
place during the set/reset pulses of pulse-width 40 ns, which is
a negligible fraction of the spike timescale of 10ms. This ensures
that the energy consumption is negligible for synaptic plasticity
as required by low power applications of the neuromorphic
system.

Neuromorphic Network
Due to the simplicity of the POST spike shape including a set
pulse and a reset pulse, the STDP characteristics in Figures 4,
5 show constant depression and potentiation for 1t <0 and

1t >0, respectively, in contrast to the exponential-like decay
which was revealed by previous in-vivo experiments (Bi and
Poo, 1998). In addition, STDP characteristics in Figures 4, 5 are
affected by a large window which can reach 1000x in one single
spike, as opposed to the gradual change of only few percent
of biological synapses (Bi and Poo, 1998). To demonstrate that
the simplified features of our STDP do not prevent a proper
learning capability in our synapse, we performed simulations of
pattern learning in a fully-connected perceptron with 2 neuron
layers and 1T1R PCM-based synapses. Figure 6 schematically
illustrates the adopted architecture (a) and shows a practical
circuit implementation with 1T1R synapses (b). The input
pattern stimulates the first layer of neurons, consisting of a 28×28
retina in our simulations. Each of these 1st layer (PRE) neurons is
connected to each 2nd-layer (POST) neurons via a synapse. We
varied the number of POSTs in the 2nd layer and the intra-layer
synaptic interaction depending on the purpose of the simulation.
The 2-layer neuromorphic network can be arranged in the array-
type synaptic architecture in Figure 6B, where a synapse in row
i and column j, with i = 1, 2, 3, . . . , N and j = 1, 2, 3,
. . . , M, represents the connection between the i-th PRE and
the j-th POST. Therefore, the generic i-th PRE drives the gate
terminals of all 1T1R synapses within the corresponding row,
while the generic j-th POST receives the total current generated
in the j-th column of synapses and drives the TE terminals of
all synapses in the j-th column, according to the scheme in
Figure 2.

Simulation of Learning of a Single Pattern
Figure 7 shows the simulation results for the case of a 28x28 PRE
retina array (N = 784) with a single POST (M = 1). Simulations
were obtained with the software MATLAB and the model for
PCM crystallization dynamics was obtained by interpolating data
in Figure 1D. CMOS neuron circuitry was modeled with ideal
integrators, comparators and arbitrary waveform generators,
while the transistor in the 1T1Rwasmodeled as a series resistance
of 2.4 k� during communication and fire. The input pattern
in Figure 7A consists of a handwritten “1” chosen within the
MNIST database (LeCun et al., 1998). The pattern was randomly
alternated with random noise (Figure 7B) for the purpose of
inducing random spikes which uniformly depress all background
synapses not belonging to the pattern. PRE-synaptic neurons
were randomly activated during each noise event to allow for
uniform depression of the background. Pattern and noise were
presented with probability 50% each with clock time tck =

10ms. Noise consists in the excitation of an average of 51
neurons randomly selected within the 784 PREs, corresponding
to a fraction of 6.5% of neurons. During each noise epoch we
extracted a different instance of white 1/0 noise. PRE spikes led
to the excitation of synaptic currents that were integrated by the
single POST in the 2nd layer, causing fire events every time the
internal voltage exceeded Vth.

The evolution of the synaptic weights is shown by the color
maps of conductance 1/R at t = 0 s (Figure 7C), t = 3.5 s
(d) and t = 7 s (e), also corresponding to the total simulated
time. We assumed that the initial distribution of weights is
random between set and reset states, which can be obtained, for
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FIGURE 6 | Neuromorphic network adopted in our simulations: schematic illustration (A) and corresponding circuit (B). A first neuron layer with

N = 28× 28 neurons is fully connected to a second neuron layer withM neurons through 1T1R PCM-based synapses. The first layer delivers spikes in response to

presentation of one or more visual patterns. During training, STDP within the synapses leads to LTP/LTD update of the synapse weights eventually resulting in the

specialization of the output neurons in recognizing the submitted patterns.

FIGURE 7 | Simulation results for pattern learning. The input pattern “1” (A) is presented at the input together with noise (B). Synaptic weights are random at

t = 0 s (C), then they specialize at progressive times 3.5 s (D) and 7 s (E). The corresponding complete evolution of synapse weights for increasing time is shown in

(F), with positions A, B, and C related to (C–E). Red lines represent synapses for pattern, cyan lines are the background synapses, while the black and blue lines are

the mean pattern and background synapses, showing progressive learning and specialization.

instance, by initially resetting all cells, then applying relatively
short set pulse with voltage close to the PCM threshold voltage
VT. A random-set operation was shown to generate random bits
in RRAM, thus enabling true random number generation (Balatti
et al., 2015). Figure 7F shows the detailed time evolution of the
synaptic weights, including 25, out of a total of 76, representative
synapses within the pattern and other 236, from a total of
708, from the background, together with the corresponding
average weights. Starting from the initial random distribution,

the pattern weights (in red in Figure 7F) start to potentiate after
approximately 0.3 s, reaching a value of 10−4 �−1 around about
0.4 s. This is the result of cumulative crystallization in the PCM
as a result of multiple STDP events with 1t > 0, corresponding,
e.g., to the presentation of a pattern which induces a fire in the
POST. Background synapses (in cyan in Figure 7F) are instead
depressed over a longer scale of about 3.5 s, where they reach
a conductance of about 10−7 �−1 corresponding to the full
reset state. The depression mechanism takes advantage of the
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random noise appearing at the PRE neuron layer. Since noise is
uncorrelated, it only causes synapse depression when the noise
PRE spike comes soon after a previous fire (thus with 1t <

0) most probably induced by pattern spikes. Therefore, noise
plays a key role in depression, although it should be kept to a
moderate frequency and moderate density (6.5% in Figure 7)
during training to avoid interference with stable pattern learning.
Note the fast pattern learning relatively to the slow background
depression, as also evidenced by the evolution of synapse weights
in Figure 7D at 3.5 s, where depression is still not uniformly
achieved in the background. The rate of background depression
might be enhanced by increasing the noise density, however at
the expense of a disturbed potentiation of pattern synapses. In
fact, a high noise density might lead to an increased probability
of noise-induced fire, which, if followed by pattern presentation,
may result in the depression of pattern synapses according to
STDP. Therefore, the ideal noise density should be dictated by
the tradeoff between fast background depression and efficient
pattern learning. The real time evolution of synapse during
a representative simulation is reported in the movie M1 in
the Supplementary Material. We did not implement device-to-
device variability for simplicity. However, the impact should be
negligible, since the network relies on the bistable device behavior
rather than on the analog weight update of the synapse (Suri et al.,
2013).

Energy and Power Consumption
To assess the power consumption of our synaptic network,
we calculated the average dissipated energy Esyn and power
Psyn = Esyn/tck per synapse, which is shown in Figure 8A

as a function of time during learning. The most significant
contribution to energy dissipation is due to the PRE spike
(communication) which induces a current spike of tck = 10ms
due to the constant VTE = −30mV. The dissipated energy
Esyn,c due to communication (not including fire) in a synapse is
given by:

Esyn,c = tck
∑

i
V2
TE/(Ri + RMOS)/(NM),

where Ri is the resistance of the i-th synapse, RMOS is the
resistance of the MOS transistor in the on state, N andM are
the numbers of PRE (N = 784 in our simulation) and POST
(M = 1 in our simulation), respectively, and the summation is
extended over all synapses that were activated by a PRE spike. In
our calculations, we used a constant resistance RMOS = 2.4 k� for
simplicity. The red filled points in Figure 8A show the calculated
Esyn,c due to the communication mode, reaching a peak of about
80 pJ as the pattern is presented to potentiated synapses after
stable learning in the neuromorphic network. The corresponding
dissipated power Psyn,c = Esyn,c/tck is in the range of 8 nW. The
dissipated energy is lower in the initial stages when the pattern
is not yet learned, given the relatively low conductance of the
pattern synapses.

Figure 8B shows the distribution of Esyn,c due to spiking
communication after consolidation of weights between t =

4.2 s and 7 s in Figure 8A. Note that there are 3 sub-
distributions of Esyn,c, consisting of a high energy range (group
I) due to pattern spiking and a low energy range, including
a medium low sub-distribution (group II) and an extreme
low sub-distribution (group III). Group II can be attributed
to noise spikes exciting potentiated pattern synapses, which
have large weights but only few are activated by the noise
spikes. On the other hand, group III can be attributed to
noise spikes exciting the background depressed synapses, thus
corresponding to relatively few synapses with small weight on the
average.

Figure 8A also shows the calculated Esyn,f corresponding to
the fire event, when a POST spike overlaps with the PRE spike,
thus giving rise to LTP or LTD. These events generally involve a
much larger VTE and a larger corresponding current compared
to the communication spike, since updating the PCM resistance
requires set and reset transitions with significant Joule heating.
On the other hand, due to the short pulse-width tP = 40 ns, the

FIGURE 8 | Energy Esyn and mean power Psyn per synapse as a function of time during the learning process of Figure 7 (A) and corresponding

histogram distribution of energy consumption Esyn,c due to communication from 4.2 s to 7 s, namely after completing potentiation/depression (B).

Consumption due to communication (in red) is directly induced by PRE spikes, while fire energy (in blue) corresponds to set/reset events induced by POST spikes. The

energy histogram reveals 3 energy levels: Group I around 80 pJ reflects communication of pattern spikes at potentiated synapses. Group II around 5 pJ represents

communication of noise spikes at potentiated pattern synapses, while group III just below 100 fJ corresponds to noise spikes at depressed background synapses.
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energy dissipation is around 1 pJ, hence negligible compared to
the communication energy.

Multiple Pattern Learning in Sequence or
in Parallel
For on-line unsupervised pattern learning, it is important to
demonstrate not only learning of a specific pattern, but also
the capability to forget a previous pattern and learn a new one.
The ability to reconfigure synaptic weights by learning a new
pattern is in fact a key feature to rapidly interact with stimuli
from a continuously-changing environment as in the real world.
To verify the reconfiguration function in our neuromorphic
network, we presented an input pattern to the PRE neurons for
7 s, then we presented a different pattern, where both the first and
second patterns were chosen from the MNIST database. Figure 9
shows the simulation results, including the first pattern (a), the
second pattern (b), the color maps of the synaptic weights for
t = 7 s (c), t = 7.5 s (d), and t = 14 s (e), and the synaptic
conductance 1/R as a function of time (f). During the initial 7 s,
pattern “1” and noise were provided with equal probabilities of
50%: the average synaptic weights show a potentiation of pattern
synapse weights at 0.5 s, which is in line with Figure 7. At the
same time, the background synapses are gradually depressed
and the pattern is completely learnt after 1 s, as also shown by
the weights at 7 s in Figure 9C. After 7 s, the input pattern is
suddenly changed from “1” to “2,” which causes depression of
weights within pattern “1” and potentiation of weights in pattern
“2.” No conductance change is seen for synapses remaining in
the background or pattern area. Pattern “2” is fully learned
around 9 s, with depression taking slightly longer time. Sequential
learning of 2 patterns is further described by movie M2 in the
Supplementary Material.

We also verified the capability to learn multiple patterns in
parallel, rather than in sequence as in Figure 9. Since a neuron

can only specialize to one pattern at a time (see Figure 9), we
extended the simulation to a network of multipleM neurons in
the POST layer. Figure 10A shows a fully connected network
including N PRE neurons and 3 POST neurons in the 2nd
layer, where 3 different patterns were presented alternatively as
shown in Figure 10B. The purpose is that each of the 3 neurons
eventually specializes to a separate pattern, thus emulating
the capability to recognize different patterns, such as letters,
numbers, or words, by our brain. To avoid co-specialization to
the same pattern, the 3 neurons were connected by inhibitory
synapses, where a successful fire in any neuron leads to a
partial discharge of the internal potential in all other neurons, to
inhibit fire in correspondence of the same pattern and encourage
specialization to other patterns. The inhibitory synapses have
fixed weights, hence they can be implemented by simple resistors.
The 3 input patterns in Figure 10B were presented with 5%
probability each, with the remaining 85% consisting of noise
with an average number of PRE spikes of 4 per epoch, or 0.5%
of all PREs. Such low percentage of noise activity over PREs is
balanced by a relatively large frequency of noise equal to 85%.
After a simulated total time of 300 s, the 3 different patterns were
learnt each in a different neuron, as shown by the final synaptic
weights in Figure 10C. Decreasing the pattern presentation rate
below 5% in Figure 10would result in a lower learning rate, while
increasing the rate would cause learning instabilities. We have
observed, in fact, that high pattern presentation rates cause the
network to learn superposed patterns (e.g., a “1” plus a “2”) or
difference patterns (e.g., a “1” with the pixels of “2” excluded).
This results from interaction of distinct patterns in the STDP.
A low pattern rate helps reducing the probability of having
interaction between different patterns.

Figure 10D shows the synaptic weights as a function of time,
including the pattern weights and background weights (only
synapses belonging to the background in all 3 patterns were

FIGURE 9 | Simulation results for pattern learning and updating. Pattern “1” and noise (A) were presented for the first 7 s, followed by pattern “2”

(B) and noise for the last 7 s. After the first 7 s, in A, pattern “1” was learnt (C). After starting with “2,” synapses showed a mixed specialization at 7.5 s in B (D),

where “1” was being forgotten and “2” was being learned. Finally, at 14 s in C (E), “2” was learnt. (F) shows the temporal evolution of synapses, with initial learning of

“1,” followed by updating with “2.”
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FIGURE 10 | Simulation results for multiple pattern learning. A first layer with 28× 28 = 784 neurons is fully connected to three second layer neurons, each of

them connected with three inhibitory synapses (A). We provided three patterns “1,” “2,” and “3” (B) to the input. The three neurons specialize on different patterns (C).

(D) shows the evolution of the synapses connected to one of the post neurons, in particular the mean weight for synapses of pattern “1,” “2,” “3” and background.

While the background gradually decreases, the learnt pattern (the highest mean conductivity) changes during time due to interference between patterns.

shown). Learning takes place in a relatively short time at the
beginning of the simulation, while depression of background
weights requires about 200 s due to the low activity of noise. Note
also the significant oscillations of pattern weights, which are due
to the instability of pattern weights due to noise. In particular, the
neuron specializes on one single pattern at a time, corresponding
to the highest conductance of 10−4 �−1. However, the network is
unable to stabilize on a single pattern due to the interference with
different patterns. Nonetheless, the network is able to recognize
distinct patterns in distinct POST neurons, although sometimes
different POSTs learn the same input pattern. This is an unwanted
effect due to the low inhibitory effect we used in the simulations,
where we discharged only 20% of the capacitance of a neuron
during the inhibitory action. The increase of the inhibitory factor
would improve the selectivity to input patterns, although it
would also cause the blockade of some POST neurons due to
repeated fire in another successful POST neurons. In summary, a
careful trade-off must be searched to minimize blockade events,
maximize the learning efficiency and minimize the learning time.
Parallel learning of 3 patterns is further described by movie M3
in the Supplementary Material.

DISCUSSION

Reducing Power Consumption via Spiking
Communication
Our results support PCM devices as highly-functional synapses
with learning capability and low power consumption required

for the synaptic plasticity. A key limitation of the proposed
scheme is however the relatively large power consumed during
communication (Figure 8). Assuming a synapse density of 1011

cm−2 as in the human cortex, a power per synapse of 8 nW
would translate in a power density of almost 1 kWcm−2, which is
comparable to a multicore CPU in conventional Von Neumann
computing. The large power consumption is due to the relatively
long current spike lasting 10ms in response to the PRE spike
applied to the transistor gate, where the relatively long pulse
width is dictated by the STDP dynamics in the 10–100ms time
scale for real time learning and interaction (Bi and Poo, 1998).
However, a spiking VTE can be adopted to reduce the dissipated
energy during the spike. For instance, Figure 11 shows a spiking
waveform of VTE, consisting of pulses of tspike = 1µs width
and spiking period Tspike = 1ms, corresponding to a spiking

frequency of 1 kHz and a duty cycle of 10−3. The reduced duty
cycle results in a reduction of power consumption by a factor 103,
clearly bringing our neuromorphic solution in the territory of low
power chips.

An additional advantage of adopting a spiking VTE with low
duty cycle is the ability to reduce the capacitance in the neuron
integrator stage. In fact, the capacitance can be estimated by:

C ≈ 1Q/Vth,

where 1Q is the integrated charge contributed by the current,
equal to 1Q = I1t in the case of a constant VTE as in
Figure 2. Assuming an array of 784 PRE neurons with 10%
potentiated synapses after learning, a VTE of−30mV, a resistance
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FIGURE 11 | Scheme for implementing low energy consumption

communication. Instead of applying a constant VTE = −30mV, sequences

of spikes lasting tspike can allow for efficient communication (A), while

reducing energy and power consumption by a factor tspike/Tspike, where

Tspike is the time between adjacent pulses (B).

of potentiated synapse of 15 k�, and a comparator threshold
voltage Vth = 0.5V, we obtain a capacitance of about 3µF,
which is clearly unfeasible in an integrated circuit. A duty cycle
of 10−3 would result in a reduction of the capacitance by a
factor 103, hence in the range of few nF. Further reduction of
the power consumption and of the integrator capacitance can
be obtained by reducing the duty cycle, the value of VTE, and
the conductivity of the PCM in the potentiated state, e.g., by
adopting suitable low-conductivity phase change materials or by
reducing the size of the heater controlling the cross section of
the PCM device. Separation of communication and fire paths by
2T1R architecture of the synapse would allow to further reduce
the current consumption and capacitor area by adopting sub-
threshold bias and short pulse width of the communication gate
(Kim et al., 2015;Wang et al., 2015). Finally, adopting accelerated,
non-biological dynamics of tenths of ns instead of 10ms range
could allow for smaller values of integrated capacitances in the
range of hundreds of fF.

Another issue consists in the wire capacitance charging
energy, which is higher in the pulsing scheme. Synapses are
arranged in a relatively large array, hence wires would cause a
high parasitic capacitance, leading to an increase in capacitive
energy dissipation in the pulsing scheme. One way to reduce
the issue is to arrange synapses in a multiple smaller synapse
arrays, with shorter interconnects. This approach would reduce
the fan-in/fan-out of the neurons, however, with a proper design
of the neuromorphic network, the issue could be acceptable,
while preserving the reduction in the energy dissipation due to
synapses. The capacitive energy would also be reduced by suitable
voltage scaling via PCM engineering.

Multi-Layer Neuromorphic Network
To assess the learning efficiency of the neuromorphic network
with PCM synapses, we performed 100 simulations of pattern
learning with a total time of 2 s per each simulation.We evaluated

the recognition probability Plearn as the number np,f of fire events
in the POST neuron in correspondence of the presentation of
pattern “1,” divided by the total number np of appearances of
the same pattern, Plearn = np,f/np (see Figure 12A). Similarly, we
evaluated the error probability Perr as the number nn,f of POST
fire events taking place in correspondence of the presentation of
noise in the input (false recognitions) divided by the total number
nn of input noise appearances, Perr = nn,f/nn. Note that np + nn
= n, where n is the total number of PRE spikes within the 2 s
interval of simulation. With a 2-layer network with 28× 28 PREs
and 1 POST neuron, Plearn was equal to 33% and Perr was around
6%, thus quite unsatisfactory for the purpose of on-line learning
and recognition. We found that unsuccessful learning was due
most of the times to depression events of pattern synapses in the
case of noise causing a POST fire, followed by the presentation
of the pattern in the input. In fact, PCM is particularly prone to
complete depression for 1t < 0, since the reset pulse results in
a large resistance increase in just one shot. After this depression
event, potentiation of pattern synapses is quite difficult, since the
current flowing in the depressed pattern synapse is extremely low,
making a POST fire event in response to the presentation pattern
quite unlikely.

To solve this issue and improve the recognition probability,
we implemented a 3-layer network, as sketched in Figure 12B.
This was done by inserting an intermediate layer withM neurons
between a 28×28 input retina and an output layer consisting of a
single neuron. All neurons between the first and the second layer
were connected, and all second-layer neurons were connected
to the output neuron, making the network a fully-connected
architecture. The numberM of neurons in the second layer was
varied to study the recognition efficiency and error rates with
the same pattern and noise conditions as in the calculations in
Figure 7. Figure 12 shows the calculated recognition probability
(c) and the error probability (d) as a function of M. The
recognition probability increases withM from almost 36% up to
76%, while the error rate decreases from 6 to 3%, as shown by
the blue lines. The improvement is due to the compensation of
synapse blockade by the additional layer, thanks to the increased
number of parallel channels.

To further improve the network efficiency, we reduced the
input noise from 6.5 to 5.5%. The optimized results are shown
by the red curve in Figures 12C,D. The noise reduction leads to
a slight increase in the time needed for depression of background
synapses. On the other hand, the recognition efficiency increases
up to 95.5% for 256 neurons in the second layer, while the
error probability decreases to 0.35% in a 2 s simulation time.
These results strongly support PCM-based neuromorphic chip
for on-line unsupervised learning and recognition.

Impact of Noise Density on Learning
Efficiency
Noise presentation alternated to the pattern allows for proper
background depression and on-line unsupervised pattern
updating. The randomness and non-correlation of noise allow
for a general background depression and, in general, a forgetting
mechanism. Figure 13 explores more deeply the impact of
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FIGURE 12 | Multi-layer simulation results. The number n of PRE spikes is composed by np pattern and nn noise inputs. np is composed by np,f (pattern leading

to output spike) and np,0 (missing recognition). nn is composed by nn,f (false recognition) and nn,0 (absence of spike for input noise) (A). After an input layer with

28× 28 neurons, a second layer with variableM neurons and a third layer with one output neuron are implemented (B). The recognition rate Plearn = np,f/np increases

with respect to the two layers network and it increases for increasing numberM of second layer neurons (C), while the error rate Perr = nn,f/nn decreases (D). Plearn
further increases for optimized conditions (lower noise), reaching a 95.5% recognition, while Perr drops to 0.35%.

FIGURE 13 | Probability of recognizing an input pattern Plearn, solid

line, and probability of spurious fires Perr, dashed line, as a function of

input noise.

noise on learning efficiency. We performed pattern learning
simulations as in Figure 7, varying the input noise density,
namely the average percentage of PRE delivering a noise
spike. Plearn shows a decrease for increasing noise density
which is explained by the competition between pattern learning
caused by pattern input appearance and increasing pattern
forgetting induced by noise. At the same time, for increasing
noise, Perr increases due to the increasing noise current
contribution. However, note that zero noise, which seems to be
the best situation, is not applicable, since background depression
and pattern updating as in Figure 9 would not be possible.
Therefore, a careful trade-off between noise density and learning
performance must be considered.

In conclusion, our work demonstrates PCM-based electronic
synapses based on 1T1R architecture. The synapses are
capable of STDP thanks to the time-dependent overlap among
PRE and POST spikes in the 1T1R circuit. On-line pattern
learning, recognition, forgetting and updating is demonstrated
by simulations assuming the alternation of pattern and noise
spikes from the PRE layer. Reduction of energy consumption
and improvement of recognition efficiency are discussed
with the help of simulation results. These results support
PCM as promising element for electronic synapses in future
neuromorphic hardware.
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In recent years, formidable effort has been devoted to exploring the potential of Resistive

RAM (RRAM) devices to model key features of biological synapses. This is done to

strengthen the link between neuro-computing architectures and neuroscience, bearing

in mind the extremely low power consumption and immense parallelism of biological

systems. Here we demonstrate the feasibility of using the RRAM cell to go further

and to model aspects of the electrical activity of the neuron. We focus on the specific

operational procedures required for the generation of controlled voltage transients, which

resemble spike-like responses. Further, we demonstrate that RRAM devices are capable

of integrating input current pulses over time to produce thresholded voltage transients.

We show that the frequency of the output transients can be controlled by the input signal,

and we relate recent models of the redox-based nanoionic resistive memory cell to two

common neuronal models, the Hodgkin-Huxley (HH) conductance model and the leaky

integrate-and-fire model. We employ a simplified circuit model to phenomenologically

describe voltage transient generation.

Keywords: resistive switching, neuronal dynamics, Hodgkin-Huxley, leaky integrate-and-fire, memristor

INTRODUCTION

Software models, supported by digital architecture, are convenient means to study the quantitative
behavior of biological neural networks in the field of computational neuroscience. However, they
cannot simulate large-scale neural systems in real time. Existing hardware, based on conventional
digital logic, cannot support software that mimics detailed brain activities at a realistic scale,
even with huge power consumption. Hence, artificial hardware neural systems, designed using the
principles of biological neural structures, are now being developed (Indiveri, 2000; LeMasson et al.,
2002; Vogelstein et al., 2008; Mitra et al., 2009). These systems are often called “neuromorphic”
(Mead, 1990; Indiveri et al., 2011).

Nanodevices in which an electrical stimulusmodifies electrical resistance hold great potential for
a wide range of applications, the most obvious being non-volatile memories. Of such technologies,
Resistive RandomAccess Memories (RRAMs;Waser and Aono, 2007), often classed as examples of
the two-terminal elements known as memristors (Chua, 1971), are being developed as alternatives
to existing memory technologies (Torrezan et al., 2011; Chen et al., 2012; Mehonic et al., 2012a).
However, these devices have potential applications beyond memory, as their resistance can in some
cases be semi-continuously varied, rather then being limited to binary or discrete multi-state values.
Such analog variation of resistance provides a useful model of key features of the biological synapse,
and RRAMs as synapses in neuromorphic circuits promise high density and efficient processing.
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There have been numerous recent reports of synaptic behavior
such as spike timing dependent plasticity in RRAMs (Jo et al.,
2010; Indiveri et al., 2013; Yu et al., 2013; Saïghi et al., 2015).
However, when it comes to modeling neuronal behavior, a
hybrid approach is employed in which a RRAM/memristor
models a biological synapse while CMOS circuits model neuronal
dynamics. By modeling both the synapse and the neuronal
electrophysiological conductance/voltage response in one device,
hardware neural networks can be much simpler than existing
hybrid analog/digital CMOS silicon neurons. This is the goal of
the work we report here.

Here we demonstrate the feasibility of using the RRAM
cell to model aspects of the electrical activity of the neuron;
more specifically, the generation of voltage transients that
may begin to model an action potential—neuronal spiking.
Further, we demonstrate the integration capability of the
device—a crucial aspect of neuronal dynamics. We discuss the
operational procedures required to generate spike-like responses;
we compare these spikes with those observed in biological
neurons, and we relate recent models of redox-based nanoionic
resistive memory cells to the conductance-based models of the
neural membrane [the leaky integrate-and-fire model and the
Hodgkin-Huxley (HH) model]. Although a detailed description
of the physical mechanism responsible for spiking is outside the
scope of this paper, we use a simple RC circuit model, similar
to the one used in the leaky integrate-and-fire model, to discuss
spike generation.

MATERIALS AND METHODS

Our test devices are SiOx MIM (metal-insulator-metal) RRAM
structures consisting of 37 nm-thick SiOx layers (x = 1.3)
sandwiched between 100 nm-thick TiN electrodes, defined by
standard photolithography. Individual device sizes range from
400 × 400 to 5 × 5 µm. More details of fabrication and
characterization are given elsewhere (Mehonic et al., 2015).
Electrical measurements employ a Keithley Instruments 4200-
SCS semiconductor parameter analyser and a Signatone probe
station with 10µm tip diameter tungsten probes. MATLAB
Simulink is used for the circuit analysis.

RESULTS

More details of the resistance switching of our devices can be
found in our previous study (Mehonic et al., 2015). Suffice it
to say that devices require an initial abrupt electroforming step
to move them from a highly insulating pristine state to a low
resistance state (LRS). Subsequent resetting steps put them into
a high resistance state intermediate between the LRS and pristine
states. The pristine state is never recovered. Switching occurs by
the formation of conductive filaments (Buckwell et al., 2015) of
oxygen vacancies bridging the oxide. Devices can be cycled any
times between the high and LRSs by applying the appropriate
voltage or current stimuli. Transitions between states are typically
fast—nanoseconds or shorter. Under unipolar operation, in
which transitions from HRS to LRS and from LRS to HRS occur

for the same polarity voltage stimulus, a current compliance limit
is used during the HRS to LRS transition to prevent destructive
breakdown of the conductive filament due to runaway Joule
heating. For the opposite transition the current compliance is
removed, and thermally-assisted diffusion of oxygen resets the
device to the HRS.

We define two distinct classes of resistance switching: memory
switching and threshold switching. The former is characterized
by its non-volatility—devices remain in a specific resistance state
until a stimulus causes a transition. Depending on the past history
of the device, a given read voltage can result in one of two ormore
different currents, with the device cycled between the different
states by voltage or current pulses. This is the switchingmode that
enables digital or multi-level operation. Threshold switching, on
the other hand, is the mode in which a device is in one resistance
state for low read voltages or currents, and in a different state for
higher. This is a volatile system in which the measured resistance
is a function of the read voltage or current.

First we examine the metastable device states that enable a
fast voltage response. We explore two ways to achieve this. The
first one considers typical memory switching. The second one
considers threshold switching.

Generation of Controlled Voltage
Transients (Voltage Spikes) Using Memory
Switching
First we examine typical unipolar memory (non-volatile)
switching. We obtain this type of switching by setting a higher
current compliance—typically around 3mA for our devices. The
zoomed-in current-voltage curves in Figures 1A,B demonstrate
regions of rich electrical dynamics, which are either around the
transitions between the two stable states (HRS and LRS)—or
regions shortly before these thresholds. Resetting (the transition
from LRS to HRS) is typically gradual (Figure 1A), in contrast
to the abrupt electroforming and setting processes. By stopping
the voltage sweep at different points along this process, multi-
level switching can be obtained. The end of the reset process is
typically a more abrupt transition to the HRS (Mehonic et al.,
2015). In the case shown, three distinct resistance states are
obtained by stopping the first sweep at 2V and the second at 3V.
Such multi-level switching is typically used to model a biological
synapse. Many current spikes typically follow the overall increase
of resistance.

Setting (the HRS to LRS transition) is typically an abrupt
single process, although more than one level can often be
observed and multi-level switching achieved (Mehonic et al.,
2012b). In many cases current spikes or instabilities are observed
shortly before the threshold voltage (Figure 1B).

We tested the generation of voltage transients (resembling
voltage spikes) by applying a constant current bias to our devices
and measuring the resultant voltage response. This is similar to
intracellular recording from neurons using the current clamp
method, tracking the generation of the action potentials. In the
following text we assume that a voltage spike is an abrupt voltage
increase followed by abrupt voltage decrease. More specifically,
whenever the voltage increase and subsequent decrease is greater
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FIGURE 1 | Regions of current instabilities in I/V sweeps of SiOx RRAM

cells during non-volatile memory switching. (A) A gradual reset process,

before an abrupt transition to the HRS. The zoomed region highlights the

region of instability. (B) Current instability before an abrupt set process. (C)

Voltage response with a constant current input, demonstrating the threshold

effect of the voltage transients (spikes). In this case, no voltage transients or

spikes are observed until a current of 5mA is applied to the device.

than the standard deviation of the whole signal, and is shorter
than 200ms (typically three data points), we consider that to be a
voltage spike. This is quite a relaxed definition of a voltage spike
and should not be confused with the more defined stereotypical
shape of the action potential generated in a biological neuron.
We examined the stable, typical memory switching shown in
Figures 1A,B, now applying a constant current and monitoring
device voltage. Figure 1C demonstrates the resulting threshold
voltage spiking/instability. Below a threshold current (here
5mA), the voltage response is constant with no spikes. However,
once the input current is above threshold significant spiking
is observed. This usually occurs after some time, indicating
integration of the input signal over time. Such behavior is
equivalent to the neuronal generation of action potentials above
a threshold input. Voltage spiking continues for a long period
of time (typically >5 s) and is sometimes followed by transition
to an intermediate metastable state, from which spiking resumes

either spontaneously or after further increasing the input current.
If current is reduced below threshold, spiking stops and a
constant voltage response is recovered. A subsequent increase
of input current above threshold triggers spiking again. The
threshold current is usually finely defined and is approximately
the same as the reset current. As the reset current is defined by
current compliance during electroforming/setting (Russo et al.,
2009), the threshold may be electrically tailored.

We explored the integration capability of our devices by
applying a train of current pulses instead of a constant current
bias. For the particular device reported here the threshold
current level was around 4mA (slightly over the 3mA current
compliance), thus we applied 4mA excitatory current pulses
(pulse width approximately 65ms) followed by a train of 1 uA
sensing pulses to track the voltage change across the device.
One microampere is well below the threshold level, and hence
these pulses are negligible compared to the much larger 4mA
excitatory pulses. Summing only the number of 4mA pulses can
approximate integration of the input current signal. We varied
the time separation between the excitatory pulses to examine the
capacity for current-time integration. Results are presented in
Figure 2. Figure 2A shows the main concept of integration in the
leaky integrate-and-fire model. A train of closely-spaced current
pulses builds up a potential across the neural membrane until,
at a specified threshold, theta, the neuron generates a voltage
transient. If the separation between input current pulses is large
there is a significant discharge of a membrane capacitor between
the two pulses thus it takes more pulses for a voltage spike to
be generated. Conversely, if pulses are more frequent the voltage
spike will be generated after a fewer input pulses.We use the same
analogy here, though the voltage across the device is now tracked
by 1 uA sensing current pulses. Figure 2C shows the voltage
across the device (sensed with a 1 uA current pulse) after every
4mA excitatory pulse. The time separation between excitatory
pulses is around 640ms. A gradual build up of the voltage across
the device is apparent before the voltage spike after around 35
excitatory pulses. The voltage spike is generated quicker (after
fewer excitatory pulses) if the pulse separation is decreased.
Figures 2D,E show the voltage after every excitatory pulse when
the pulses are separated by 215 and 65ms, respectively. This
clearly shows the relation between the time separation between
the pulses and generation of the voltage spike. This behavior
is phenomenologically similar to charging and discharging
of the membrane capacitor in the leaky integrate-and-fire
model.

Generation of Controlled Voltage
Transients (Voltage Spikes) Using
Threshold Switching
In some cases devices exhibit volatile, threshold-like resistance
switching, which can be initiated by using lower current
compliance during the electroforming and set process. It
is known that the diameter of the conductive filament
produced during the electroforming step is controlled by
current compliance (Ielmini, 2011; Ielmini et al., 2011). Thinner
filaments, produced with lower current compliance, are less
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FIGURE 2 | (A) Basic representation of leaky integrate-and-fire neuronal model. Upper: schematic of model. Theta defines the voltage threshold for spiking. Lower:

illustration of integration of input current pulses to generate voltage spike. X-axis is time, y axis is neuronal potential. (B) Time sequence of input to device: Train of

excitatory current pulses (4mA) separated by sensing current pulses (1 uA). Output of device: Voltage response measured only with the sensing 1 uA current pulses

immediately after the excitatory 4mA current pulse with the time separated of (C) 640ms (D) 215ms (E) 65ms. The number of pulses required to be integrated

decreases as the inter-pulse interval becomes shorter.

stable, and exhibit higher volatility, as seen in Figures 3A,B. Both
states (LRS and HRS) exhibit large current instabilities.

In the case of volatile/threshold resistance switching
(Figures 3A,B), fast spiking is observed even for lower current
inputs. Figures 3C,D show spiking for negative currents of −1
and −2 uA, respectively. Although not fully controllable, the
input current can affect the pattern of spikes. Figure 3C shows
a chattering-like firing pattern similar to that often seen in
biological neurons. Figure 3D shows a different firing pattern,
similar to fast spiking. Although the threshold current is
less finely defined than in the case of memory (non-volatile)
switching, a strong correlation with the input current is evident.

Figure 4 demonstrates the effect of increasing input current
from 1 to 13 uA. Less prominent firing is observed at lower

currents, while the firing frequency is increased by raising the
current. This is a signature of a neuronal response.

Firing events are not fully random. There is a clear pattern
of a fast firing sequence followed by a refractory period of no
firing. To further study this behavior we analyzed the dynamics
of the firing pattern. Figures 5A,C,E show the firing patterns
of three different input currents (1, 7, and 13 uA respectively).
Figures 5B,D,F show the corresponding Fourier transform of
the signals. It is apparent that for all three signals there are two
dominant frequencies (a first peak in region 4–5Hz and a second
peak in region of 40–50Hz). This behavior is similar for all signals
shown in Figure 4. Figure 5G demonstrates an increase in the
number of peaks (proportional to an average firing frequency)
with increased input current.
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FIGURE 3 | (A,B) threshold (volatile) switching in positive and negative bias,

respectively. (C) Short voltage spikes are observed even at lower current

inputs (negative current input). (D) Same as (C) under increased current input,

showing a higher count of voltage transients.

Regardless of the input current, the overall spiking pattern,
resembling a chattering pattern, stays unchanged.

Generation of voltage transients (spikes) using threshold
switching is less controlled than when using memory switching,
although some level of control (firing frequency) is still retained.
However, this approach has certain advantages. Voltage spikes
are typically more pronounced and the overall operational
energy is significantly lower then for the first approach using
memory switching (currents of a fewmicroAmps are sufficient to
generate voltage spikes). On the other hand, on-volatile operation
provides very good control of the threshold levels as well as
integration of the input signal.

DISCUSSION

Comparison of the Extended Memristor
Model of the ReRam System with the
Hudgkin-Huxley and Leaky-and-Integrate
Neuronal Models
A detailed description of the switching mechanism can be found
in our previous work, though we note here that it falls within

the description of redox-based nanoionic resistive memories
(Waser et al., 2012; Mehonic and Kenyon, 2015). Here we will
discuss the similarities and differences between the biological
system described by the HH model and leaky integrate-and-
fire model, the extended memristor model of ReRAM system,
and our device. Schematic representations of the two systems
are shown in Figures 6A,B. We first compare the latest redox-
based nanoionic model of resistance switching (Valov et al., 2013)
with the conduction-basedHodgkin-Huxleymodel of the neuron
(Hodgkin and Huxley, 1952). The easiest way to analyse the
similarities is to compare the two equivalent electric circuits.
The nanoionic model takes into account the non-equilibrium
states inside the memory cell and the generation of an internal
electromotive force (Vemf ) by the movement of ions during
electrical biasing. This requires an expansion ofmemristor theory
to include a nanobattery; the resultant equivalent circuit is shown
in Figure 6D. This is the extended memristance model.

The Hodgkin-Huxley model provides an electrical description
of the generation of the action potential. A set of differential
equations describes the conductance of the neuron membrane,
with the equivalent circuit shown in Figure 6C. It assumes
two ionic channels (usually sodium and potassium) and one
nonspecific leakage channel, as well as corresponding ion pumps.
Changes in the membrane potential and in the conductivity of
the ion channels generate the action potential. The model is
summarized by Equation (1). The ion currents on the right-hand
side are sodium, Na+, potassium, K+, and the leakage current.
When the ion channels are fully open they have maximum
conductances gNa, gK , respectively. The dynamics of the variable
conductivity are defined by the gating variables n, m and h,
which model ion channel opening. A generalized gating variable
x is defined by a differential equation (Equation 2), with both
steady state gating variable x0 and time constant τ x dependent on
voltage u. Since there is a build up of the Nernst potential across
the membrane for every ionic species, there are additional battery
elements. These are modeled by ENa, EK , and EL.

∑
k
Ik = gNam

3h (u− ENa)+ gKn
4 (u− EK)+ gL (u−EL) (1)

dx

dt
= −

x− x0 (u)

τx (u)
(2)

The circuit representation of the HH model is very similar to
that of the Extended Memristor Model (EMM; Figures 6C,D).
Both include a capacitance in parallel with one or more variable
resistors and internal emf sources. Unsurprisingly, the EMM can
be described by a similar set of equations to those of the HH
model, including contributions from ionic and electrical currents
and a built-in emf (Equation 3).

I = Iion
(
Vemf , u

)
+ Iel (x, u) = G (x, u) ×

(
u − tionVemf

)
(3)

With ionic current Iion and electronic current Iel. The former is
defined by the nanobattery,Vemf . The latter is controlled by state-
dependent x.G is the conductance, u is applied voltage, and tion is
the transference number (the total ionic transfer number). More
details and a derivation of the model can be found in Valov et al.
(2013).
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FIGURE 4 | (color online) Voltage response with a constant current input for threshold (volatile) switching. The frequency of spiking/firing is increased with

an increase of the input current.

FIGURE 5 | Voltage responses with a constant current input and the corresponding Fourier transforms. Spiking signal with an input current of (A) 1 uA

(C)7 uA (E) 13 uA, and Fourier transform signal with the input current of (B) 1 uA (D) 7 uA (F) 13 uA. (G) The increase in the number of peaks in an interval of 8.8 s

with increasing input current.
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FIGURE 6 | (color online) Schematics of (A) a neuron cell membrane and (B) a ReRAM unit cell. Equivalent circuits of (C) Hodgkin-Huxley

conductance-based model of neuron membrane and (D) extended memristive element. (E) Simplified RC model with variable resistance R.

Importantly for our discussion this Vemf is very small in the
case of Valence ChangeMemory systems such as our SiOx devices
(Valov et al., 2013). This contribution is further reduced when the
device is in the LRS. Similarly, the ionic resistance, Ri, is very large
compared to the electronic resistance R. We may therefore make
a useful simplification to the equivalent circuit model, shown in
Figure 6E, which includes a single variable resistance.

Phenomenological Modeling of the
Dynamics of a Non-Volatile SiOx RRAM
Device
To analyse the dynamics of our SiOx RRAM system, more
specifically to phenomenologically describe the generation of

voltage transients, and to make comparison with neuronal
dynamics, we consider the simplified model in Figure 6E. It
is worth noting that a simple RC circuit is used in the leaky
integrate-and-fire neuron models to integrate the input signal.
In these models, the RC circuit does not generate any voltage
spikes, but it provides a measure of voltage increase across
the membrane (membrane capacitor) and when the threshold
voltage is reached a separate external circuit is used to generate
a voltage spike. After this voltage spike is generated the voltage
across the RC circuit is reset. In contrast, in our model we do
not use additional circuit elements to generate spikes; instead
we examine the effect of the dynamically variable resistance R.
Resistance is a general function of both the applied voltage and
the passing current. This is similar to the HH model, in which
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FIGURE 7 | (A) Setting coefficient dependence on applied voltage. (B) Resetting coefficient dependence on current. In both cases, the functional forms

phenomenologically describe changes in resistance in response to applied voltages and currents. The resistance change is immediate; time evolution is not taken into

account in this model. (C) Demonstration of the instability/spiking threshold. Below threshold (i < 4mA), no spikes are seen. Above threshold, multiple transients result

from the competition between set and reset processes, governed by n(u) and m(i) acting in opposition. The spikes are of qualitative nature and do not describe timing.

ion channel conductance is dynamically controlled by the voltage
across the neural membrane. Consequently, to model voltage
spike generation in our device (using non-volatile memory
switching) we use some elements of both the HH model (voltage
controlled resistance R) and the leaky integrate-and-fire neuronal
model (RC equivalent circuit).

Although resistance transitions are controlled both by electric
field and associated Joule heating, in the case of unipolar
switches the set process is triggered predominantly by the electric
field (voltage), while Joule heating (current) triggers the reset.
To a good approximation this means that, above a certain
value, current breaks the filament and increases the overall
resistance, while the voltage restores the filament and reduces
the resistance. This is modeled phenomenologically by two
variable coefficients: the setting coefficient n(u), and the resetting
coefficient m(i), which are phenomenologically similar to the
gating coefficients in the HH model. R0 is the previous steady
state resistance. The two coefficients, n(u) and m(i), do not have
a deeper physical meaning, but they do qualitatively describe
the resistance increase with current increase and the resistance
decrease with voltage increase above the threshold.

R(i, u) = n(u)m(i)R0 (4)

We use this circuit model to probe the origin of voltage
spiking. The input current is kept constant, and the dynamics
of the device voltage are observed. For the sake of simplicity

and convenience we choose two continuous functions of the
following form to model the coefficients n(u) andm(i):

n(u) = k1
{
1− tanh

(
k2u− u0

)}
(5)

m(i) = p1
{
1+ tanh

(
p2i− i0

)}
(6)

where k1, k2, p1, p2 are unitless fitting parameters and u0, i0 are
fitting parameters related to the thresholds of voltage and current
governing setting and resetting, respectively. The functional
shapes of the two coefficients are shown in Figures 7A,B.

Results from the abovemodel are shown in Figure 7C. Voltage
transients are observed only when the input current reaches a
level of 4mA. In our previous work (Mehonic et al., 2012a) we
have discussed competition between the set and reset processes
during constant voltage bias. Similar dynamics occur under
current bias. If the initial state is the LRS and the input current
is high enough to trigger a reset, this will drive the device toward
the HRS. Consequently, device resistance will increase, as will the
voltage drop across the device. For a constant current, the voltage
will increase enough to trigger the set process, putting the device
back to LRS and the whole process starts again. This competition
between set and reset processes, generates voltage transients.

We note that in our model we do not assume any time
dependence of the two coefficients, n(u) and m(i). Equations
(5) and (6) do not include any time-dependent dynamics.
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Furthermore, the equations are of zero-order (changes of n(u)
and m(i), and resistance are assumed to be instantaneous).
This means that the model cannot provide frequency or shape
analysis of the voltage responses. Instead, the aim of the model
is to phenomenologically describe voltage transients and the
threshold effect. In most cases the generated transients resemble
a noise-like signal (a consequence of zero order dynamics)
and are likely a function of simulation step size. There is
therefore no correlation between the firing frequency of the
experimental result in Figure 1C and model results in Figure 7C.
To include shape and the frequency analysis, coefficients n(u)
and m(i) should be modeled by similar differential equations
to those used for the gating coefficients x(u) in the HH model
taking into account non-zero order dynamics and the time
dependency. However, the exact relation between the resistance
change and applied voltage/current in RRAM systems is not yet
fully established and is outside the scope of this manuscript.
Nevertheless, our model clearly demonstrates the threshold effect
and generation of voltage instability, without considering time
evolution.

The whole discussion above considers only memory
switching. Volatile/threshold, less-stable switching provides
rapid resistance variations without a finely defined threshold.
We suspect that rapid resistance variations are the effect of
trapping/detrapping processes or random telegraph noise (RTN)
affected by the redistribution of oxygen vacancies, as discussed
in Balatti et al. (2014), Choi et al. (2014). The rate of movement
of oxygen vacancies is increased by increasing the current input.
Consequently, we observe in volatile systems that the firing
frequency is also increased—a typical neuronal response.

CONCLUSION

To summarize, we have demonstrated the feasibility of using
the SiOx RRAM cell to model aspects of the voltage spiking
activity of a biological neuron. This is a different approach
from conventional synaptic modeling using RRAM devices.
We elaborate the specific metastable device states required for
the generation of voltage spiking, and demonstrate a dynamic
voltage response to a constant input current and to a current
pulse train. We discuss observation of threshold spiking as
well as an increase of firing frequency with increased input
current. We demonstrate the integration capability of our device.
We compare the model of redox-based nanoionic resistive
memory to the Hodgkin-Huxley neuron model and the leaky
integrate-and-fire model. We use circuit simulations to further
explain the voltage response. This study could provide a novel
way of using RRAM devices in neuromorphic systems beyond
the already-demonstrated capability to model a functional
synapse.
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The exponential increase in data over the last decade presents a significant challenge to

analytics efforts that seek to process and interpret such data for various applications.

Neural-inspired computing approaches are being developed in order to leverage

the computational properties of the analog, low-power data processing observed in

biological systems. Analog resistive memory crossbars can perform a parallel read

or a vector-matrix multiplication as well as a parallel write or a rank-1 update with

high computational efficiency. For an N × N crossbar, these two kernels can be O(N)

more energy efficient than a conventional digital memory-based architecture. If the read

operation is noise limited, the energy to read a column can be independent of the

crossbar size (O(1)). These two kernels form the basis of many neuromorphic algorithms

such as image, text, and speech recognition. For instance, these kernels can be applied

to a neural sparse coding algorithm to give an O(N) reduction in energy for the entire

algorithm when run with finite precision. Sparse coding is a rich problem with a host of

applications including computer vision, object tracking, and more generally unsupervised

learning.

Keywords: resistive memory, memristor, sparse coding, energy, neuromorphic computing

INTRODUCTION

As transistors start to approach fundamental physical limits and Moore’s law slows down,
new devices and architectures are needed to enable continued computing performance gains
(Theis and Solomon, 2010). The computational ability of current microprocessors is limited
by the power they consume. For data intensive applications, the computational energy is
dominated by moving data between the processor, SRAM (static random access memory),
and DRAM (dynamic random access memory). New approaches based on memristor or
resistive memory (Chua, 1971; Waser and Aono, 2007; Strukov et al., 2008; Kim et al., 2012)
crossbars can enable the processing of large amounts of data by significantly reducing data
movement. One of the most promising applications for resistive memory crossbars is brain-
inspired or neuromorphic computing (Jo et al., 2010; Ting et al., 2013; Hasan and Taha,
2014; Chen et al., 2015; Kim et al., 2015). The brain is perhaps the most energy-efficient
computational system known, requiring only 1–100 femtoJoules per synaptic event (Merkle,
1989; Laughlin et al., 1998), efficiently solving complex problems such as pattern recognition on
which conventional computers struggle. Consequently, there has been great interest in making
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neuromorphic hardware (Cruz-Albrecht et al., 2013; Merolla
et al., 2014). Resistive memories can effectively model some
properties of neural synapses and the crossbar structure allows
for high-density interconnectivity as found in the brain. For
example, individual neurons in the cerebral cortex can receive
roughly 10,000 input synapses from other neurons (Schüz and
Palm, 1989).

Resistive memories are essentially programmable two
terminal resistors. If a higher write voltage is applied to the
device, the resistance will increase or decrease based on the
sign of the voltage, allowing the resistance to be programmed.
Consequently, it can be used to model a synapse. Its resistance
acts like a weight that modulates the voltage applied to it. This
has resulted in a large interest in developing neuromorphic
systems based on it (Jo et al., 2010; Ting et al., 2013; Hasan and
Taha, 2014; Kim et al., 2015). Each cell also has a very small
area and the memory can be stacked in 3d when arranged in a
crossbar structure. Therefore, industry is developing resistive
memories to use as a digital replacement for flash memory (Jo
et al., 2009; Chen, 2013; Chen et al., 2014; Cong et al., 2015).

A pressing question is whether neural-inspired computing
systems are able to offer any resource advantage over more
conventional digital computing systems. Neural-inspired systems
are likely to take the form of a massively parallel collection
of neuromorphic computing elements or cores that are each
much simpler than conventional CPUs (Merolla et al., 2014).
Conventionally, each neuromorphic core is based on a local
SRAM memory array. This allows for data to be locally stored
where it is used, eliminating the need to move large amounts of
data. Simply organizing the computing system in this manner can
provide 4–5 orders of magnitude reduction in computing energy
(Cassidy et al., 2014). To get further benefits, the neuromorphic
core should be based on an analog resistive memory crossbar
array. Both digital and analog neuromorphic cores will have
an execution-time advantage as parallelism is easier to leverage
in a neuromorphic computational model where communication
latency is drastically decreased. Nevertheless, in this work we
avoid focusing on a new parallel architecture and instead focus
on demonstrating a more fundamental advantage in energy.

We will show that performing certain computations on an
analog resistive memory crossbar provides fundamental energy
scaling advantages over a digital memory based implementation
for finite precision computations. This is true for any architecture
that uses a conventional digital memory array, even a digital
resistive memory crossbar. In addition we give a concrete neural-
inspired application, sparse coding, which can be implemented
entirely in analog and reap the aforementioned energy advantage.
A rich neural-inspired problem is sparse coding (Olshausen,
1996; Lee et al., 2008; Arora et al., 2015), where one seeks to use
an overcomplete basis set to represent data with a sparse code. It
is used in many applications including computer vision, object
tracking, and more generally unsupervised learning. We will
show that analog neural-inspired architectures are ideally suited
for algorithms like sparse coding, and outline an implementation
of a specific sparse coding algorithm.

Specifically, there are two key computational kernels that are
more efficient on a crossbar. First, the crossbar can perform a

FIGURE 1 | Analog resistive memories can be used to reduce the

energy of a vector-matrix multiply. The conductance of each resistive

memory represents a weight. Analog input values are represented by the input

voltages or input pulse lengths, and outputs are represented by current values.

This allows all the read operations, multiplication operations, and sum

operations to occur in a single step. A conventional architecture must perform

these operations sequentially for each weight resulting in a higher energy and

delay.

parallel read or a vector-matrix multiplication as illustrated in
Figure 1. Second, the crossbar can perform a parallel write or a
rank-1 update where every weight is programmed based on the
outer product of the row and column inputs. These two kernels
form the basis of many neuromorphic algorithms.

In this paper we analyze the energy required to perform
a parallel read and show that for a fixed finite precision, the
noise limited energy to compute a vector dot product can
be independent of the size of the vector, O(1), giving the
analog resistive memory based dot product a significant scaling
advantage over a digital approach. In the more likely situation
of a capacitance limited energy, an N × N crossbar still has a
factor of N scaling advantage over a digital memory. Similarly,
writing a rank-1 update to a crossbar will also have a factor
of N scaling advantage over a digital memory. We also analyze
the energy cost of precision, energy scaling for communications,
energy for accessing one row of the crossbar at a time and energy
for accessing one element.

Next, we show that these computational kernels can be used
with a sparse coding algorithm to make executing the algorithm
O(N) times more energy efficient.

RESULTS

Noise-Limited Parallel Read
A resistive memory crossbar can be used to perform a parallel
analog vector-matrix multiplication as illustrated in Figure 1.
Each column of the crossbar performs a vector dot product:∑

i xiwij for column j. The inputs, xi, are represented by either an
analog voltage value or the length of a voltage pulse. The weights,
wij, are represented by the resistive memory conductances. The
multiplication is performed by leveraging I = G × V, and the
sum is performed by simply summing currents (or integrating the
total current if the input, xi, is encoded in the length of a pulse).
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The absolute minimum energy to read the crossbar will be
determined by the thermal noise in each resistor. For many
computations we only need to know the result with some finite
precision. Taking advantage of this allows the minimum energy
to compute the vector dot product to be independent of the size
of the vector, O(1), when all the inputs and weights are positive.

To understand the tradeoff between precision and energy
scaling, consider the minimum energy required to measure the
current through N resistors with some signal to noise ratio
(SNR). The signal strength we need to detect is dependent
on the problem. If we want to keep the full precision of a
digital computation, the minimum detectable signal must be
proportional to the current through one resistor, Io. On the
other hand, in many computations we only need to know the
final result to some precision. The minimum detectable signal
for positive inputs/weights will be proportional to N × Io. This
means that we are throwing away extra information and no
longer want to detect the change in a single input, Io. Effectively,
we have a signal loss, α, of N, relative to a digital signal.

In many situations we will want negative weights or negative
inputs. In this case the average signal might be zero. Nevertheless,
the strength of the signal we want to detect will be given by
the standard deviation of the signal. Consider inputs that have
some distribution centered on zero, such as a Gaussian, and that
have a variance proportional to I2o . The variance of N inputs will
be proportional to N × I2o . The strength of the signal we are
detecting will be given by

√
N×Io and the loss relative to digital is√

N. Overall, the signal strength we want to detect is α× Io where
α is between 1 and N.

The energy to read the resistors is given by:

Energy = Power per resistor × N resistors × time

= V2Go × N ×
1

1f
(1)

Go is the conductance of each resistor and V is the voltage used
to read the resistors. The operation speed, 1f , is determined by
the thermal noise and the signal strength. We need to integrate
the current for long enough to get the SNR we want. The thermal
noise in N resistors is:

Noise =
〈
1I2

〉
= N ×

(
4kbT × Go × 1f

)
(2)

The SNR is the signal strength divided by the noise:

SNR2 =
(αIo)

2

〈
1I2

〉 =
α2 × I2o

4kbT × N × Go × 1f
(3)

The current in a single resistor is given by Io = V × Go. Using
this and solving for time gives:

1

1f
= SNR2 ×

4kbT × N × Go

α2I2o
= SNR2 ×

N

α2

4kbT

V2Go
(4)

Plugging this back into Equation (1) gives:

Energy = V2Go × N × SNR2 ×
N

α2
×

4kbT

V2Go

= 4kbT ×
N2

α2
× SNR2 (5)

For digital accuracy, α = 1, and the vector dot product energy is
O(N2) and is O(N3) for the full crossbar.

For finite output precision with positive inputs/weights, α =

N and so the vector dot product energy isO(1) and isO(N) for the
full crossbar. Thus, the total noise limited dot product energy is the
same regardless of the crossbar size. As we increase the number
of resistors and therefore signal strength, we can measure each
device faster and with less precision and energy per device to get
the same precision on the output. This is summarized in Table 1.

Capacitance-Limited Read
The previous analysis is only valid when the read energy is
limited by the noise and not the capacitance. In particular, for
fixed output precision with positive inputs/weights (α = N), this
is when Equation (5) is greater than the energy to charge the
resistive memory and wire capacitance:

4kbT × SNR2 > N × Cper RRAMV
2 (6)

If we assume we have a 1000 × 1000 crossbar, want a SNR of
100, and a resistive memory dominated capacitance of 18 aF
(20×20 nm area, 5 nm thick capacitor with a relative permittivity,
εr, of 25) we would need to perform the read at 100mV or less to
be noise limited. If a higher voltage is needed due to access devices
or a larger crossbar is used, the energy will instead be capacitance
limited.

For a capacitance-limited read energy, the crossbar will still
be O(N) times more energy efficient than an SRAM memory.
The scaling advantage occurs because in a conventional SRAM
memory, each row or wordline must be read or written one
at a time. This means that the columns/bitlines and associated
circuitry will need to be charged N times for N rows. In an
analog crossbar, everything can be done in parallel and so the
columns/bitlines and associated circuitry are only charged once.
Thus, the crossbar is O(N) times more energy efficient.

The most energy efficient way to organize a digital memory
for performing vector-matrix multiplication is to have the matrix
stored in an SRAM (or even a digital resistive memory) array.
The energy increases by orders of magnitude if the weights are
stored off chip. A typical SRAM cache is illustrated in Figure 2.
To perform a vector-matrix multiply, at best we can read out one
row/wordline at a time. For an N × N array, there will be N
memory cells along each row/wordline. To read each memory
cell along a row, we need to charge each bitline/column and

TABLE 1 | Energy scaling for different precision requirements.

Minimum detectable

signal

Loss

relative to

digital (α)

Full crossbar noise

limited read energy

Digital Accuracy Io 1 N× 4kbT × N2 × SNR2

Fixed Output

Precision

√
N× Io

√
N N× 4kbT × N× SNR2

Fixed Output

Precision, only

positive

inputs/weights

N× Io N N× 4kbT × SNR2
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run the read electronics/sense amp for each cell. Thus, the total
energy is:

Energy = N rows × N cells per row× Edigital bitline

= N2 × Edigital bitline = O(N3) (7)

The energy to charge each bitline, Edigital bitline, is proportional
to the capacitance and therefore the length of the bitline:
Edigital bitline = NCcellV

2 where Ccell is the line capacitance
across a single resistive memory cell. Thus, the energy scales
as N3.

In an analog resistive memory crossbar, all of the rows are
charged in parallel and so the total energy is the sum of the energy
to drive N rows and N columns:

Energy = N rows × Eanalog row + N columns × Eanalog column

= N × (Eanalog row + Eanalog column) = O(N2) (8)

The energy to charge each line also scales as the length of each line
and therefore as N. Thus, the total energy for a crossbar scales as
N2 and is therefore is O(N) times more energy efficient than an
SRAMmemory.

When engineering memory systems, there are a number of
tricks that can be used to try to engineer around the scaling limits.
If on-chip optical communications become feasible, the entire
scaling tradeoff will be far better as the communication energy
will effectively become independent of energy. Unfortunately, the
energy and area overhead in converting from electrical to optical
is currently orders of magnitude too high (Miller, 2009). 3d
stacked memories will also scale better. In that case, this analysis
would apply to a single layer of a 3d stacked memory. Digital
memories can be broken into smaller subarrays with a processing
unit near each sub-array. This is the principle behind processing
inmemory architectures. Nevertheless, even aminimalmultiplier
and adder logic block takes up a significant amount of area,
limiting the minimum memory array size required to amortize
the logic cost. If logic blocks are not placed next to each subarray,
the bus capacitance to each sub array will cause the same scaling
limits. Adiabatic computing can be used to tradeoff speed for
the capacitance limited energy for both the digital and analog
approaches.

FIGURE 2 | A typical SRAM array. Each row/wordline must be accessed

sequentially.

Parallel Write Energy
The energy scaling to write a SRAM cell will be identical to the
energy to read the cell, Equation (7).N rows must each be written
one at a time, and each row has N cells. When writing each
cell, the energy to charge the bitline will be proportional to N.
Consequently, the energy to write the array will scale as O(N3).

On an analog crossbar, we can perform a “parallel write” or a
rank-1 update where every weight is programmed based on the
outer product of the row and column inputs. An example of a
parallel write is illustrated in Figure 3. The goal is to adjust the
weight, Wij, by the product of the inputs on the row, xi, and
column, yj, of the weight:

W′
ij = Wij + xi × yj (9)

An analog value for the row inputs, xi, can be encoded by the
length of the pulse. The longer the pulse the more the weight
will change. The analog column inputs, yj, can be encoded in
the height of the pulse in order to achieve a multiplicative effect.
The larger the voltage the more the weight will change for a given
pulse duration. The exact write voltages will need to be adjusted
to account for any non-linearities in the device. A parallel write
can be done entirely in time as well (Kadetotad et al., 2015).

If the write is energy limited by the capacitance for the lines,
the energy formula will be the same as in the read case and will
be given by Equation (8). It will scale as O(N2) and is therefore
is O(N) times more energy efficient than an SRAM memory.
However, each resistive memory will also typically require a fixed
amount of current to program. If the energy is limited by the
program current, the total energy will be given by number of
resistive memories times the energy to program one:

Ewrite = N2IwriteVwriteτwrite (10)

Iwrite andVwrite are the current and voltage, respectively, required
to write a resistive memory. τwrite is the time required to write

FIGURE 3 | A parallel write is illustrated. Weight Wij is updated by xi × yj .

In order to achieve a multiplicative effect the xi are encoded in time while the yi
are encoded in the height of a voltage pulse. The resistive memory will only

train when xi is non-zero. The height of yi determines the strength of training

when xi is non-zero.
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the resistive memory. In this case the energy still scales as O(N2)
and so it still is O(N) times more energy efficient than an SRAM
memory.

If the write current or time is too large, it is possible that
there will be a large constant factor that would make the energy
scaling irrelevant. Fortunately, energies to fully write a resistive
memory cell as low as 6 fJ have been demonstrated (Cheng et al.,
2010). Furthermore, since we are operating the resistive memory
as an analog memory with many levels, we do not want to
fully write the cell. Rather, we only want to change the state by
1% or less, resulting in a corresponding reduction in the write
energy per resistive memory. In this case the resistive memory
energy will be on the same order of magnitude as the energy to
charge the wires. (1% of 6 fJ is 60 aJ. The wire capacitance per
resistive memory in a scaled technology node is likely to be on the
order of 10’s of attofarads [International Technology Roadmap
for Semiconductors (ITRS, 2013)]. At 1V, that corresponds to 10’s
of attojoules as well).

Energy Cost of Precision
So far we have ignored the energy cost of computing at high
precision. Analog crossbars are best at low to moderate precision
as seen below. There are three values that can each have a
different level of precision. Let the inputs, xi, have a precisions
in bits of bin, the outputs have a precision of bout, and the weights
have a precision of bw. Consider the noise-limited parallel read
energy. The energy per column is given by Equation (5) and is
proportional to the SNR2 of the output. If we want 2bout levels on
the output, the SNR must increase by 2bout . This means that to
create N outputs, at a precision of bout bits, the crossbar energy
will be on the order of the O(N ×22bout ). If the crossbar is limited
by the capacitance, the computation will already have sufficient
precision and so the read/write energy will still be O(N2).

The thermal noise limited energy to process the output of the
crossbar in analog at a certain precision will also scale as the
voltage signal to noise ratio squared and therefore the number of
output levels squared: 22bout (Enz and Vittoz, 1996). If the output
is converted from analog to digital, the D/A energy typically
scales as the number of levels, 2bout (Murmann and Boser, 2007).
Similarly, to convert a digital input to analog will scale as the
number of input levels: 2bin . Thus, we see that in the capacitance
limited regime the total energy to read the crossbar is on the order
of:

AnalogCapacitance Limited Energy = O(N× (N+22bout +2bin ))
(11)

or in the noise limited regime with positive inputs and weights it
is:

AnalogNoise Limited Energy = O(N× (22bout + 22bout + 2bin ))

= O(N× (22bout + 2bin )) (12)

If we use a digital memory, we will need to store bw bits for each
weight. Consequently, we will need to multiply the energy by bw:
E ∼ O(N3bw). We will also need to multiply each weight by its
input and then sum the result. Assuming bw > bin, A single
multiplication scales worse than O(bw × log(bw)) (Fürer, 2009)

and so an entire crossbar with N2 weights is at least O(N2 × bw
× log(bw)). The sum operation will scale slower. Assuming bout
< bw × log(bw) any neuron operations will also scale slower than
the multiply operations. Thus, the digital energy is:

Digital Energy = O(N2 × bw × (N + log(bw))) (13)

We see that for finite precision, analog is better, but if high
floating point precision is required, digital is likely to be better.

Communications Energy
So far we have considered the energy of performing individual
operations on a resistive memory crossbar. If we consider making
a full system of multiple crossbars, the energy to communicate
between crossbars can also be a significant component of the
total energy. Consider the system shown in Figure 4. Each
crossbar (or SRAM memory Merolla et al., 2014) is part of a
neural core and each core communicates with the others over a
communications bus. The energy to communicate between cores
will be determined by the energy to charge the capacitance of
the wire connecting two cores. Consequently the energy will be
proportional to the capacitance and therefore the length of the
wires. Assume that each core will communicate on average to a
core that is fixed number of cores away. The size of each core will
be determined by the size of the crossbar and so for an N × N
crossbar, the length of an edge of a core will be ofO(N). Similarly,
the length of wire to go a fixed number of cores away is of O(N)
and thus the energy is O(N).

The key kernels discussed so far assume that a single operation
drives an N × N matrix with N inputs and has N outputs. That
means that each operation will haveO(N) communication events
called spikes. Thus, we have O(N) spikes and O(N) energy cost
per spike giving a total energy cost of O(N2). The energy to drive
an SRAM based memory is ofO(N3) and so the communications
costs will be irrelevant for a large array. Indeed this is exactly the
case in the IBM TrueNorth Architecture (Merolla et al., 2014).
IBM projects that for an SRAM based system with a 256 × 256
core in a 10 nm technology the energy to communicate five

FIGURE 4 | A system would consist of individual crossbar based cores

that communicate with each other through a communications bus and

routing system.
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cores away is 30 times lower than the energy to write the array.
On the other hand, if we take advantage of an analog resistive
memory crossbar, both the energy to read or write it and the
energy to communicate will scale with O(N2). In this case, either
the crossbar energy or the communication energy can dominate
depending on the system architecture.

For algorithms that require cores that are far apart to
communicate, the constant factor in the communication energy
(the average communication distance) can be quite large and
cause the communications energy to dominate. In this case,
resistive memories can still provide a large constant factor
reduction in the communication energy. Resistive memory
potentially allows for terabytes of memory to be integrated onto
a chip, while a chip using SRAM cannot hold more than 100 MB.
This means that resistive memory can be >10,000X denser than
SRAM. Consequently, the edge length of a core can be reduced
by

√
10,000 = 100X. This would reduce the wire length and

therefore communications energy by 100X or more. This is true
regardless of whether the resistive memory is used as a digital or
an analog memory.

Sparse Communications Algorithms
So far we have only considered kernels that operate on the entire
N × N core at once. Some algorithms only operate on 1 row or
even 1 element at a time. In these cases the energy scaling is very
different.

First, consider an algorithm that operates on a single row at a
time. Assume that in a given step a core receives an input, reads
and writes one row and then sends out one communication spike
to another core. We assume that on average the number of input
spikes is the same as the number of output spikes so that the
system remains stable (the spikes don’t die off over time or blow
up so that everything is spiking all the time). In this case, both
the digital and the analog energy to read/write the crossbar scale
as O(N2). This is because N bitlines need to be charged for one
row and the energy per bitline scales as O(N). Whether a digital
or analog implementation is better will depend to the constant
factors and exact system design. In both cases, using resistive
memory for the memory reduces the wire lengths and therefore
the power. The communications energy will scale as O(N) for a
single spike in/out since the core edge length scales as O(N). This
means the read/write energy will dominate as it scales as O(N2)
and the communication scales as O(N).

Next, consider an algorithm that operates on only a single
element. In a given step, a core receives an input, reads a
single memory element and sends a single output. In both
the analog and digital cases we will charge one bitline and
one wordline and so the energy will be proportional to the
length of the line and will be O(N). The communication energy
for a single spike will also scale as O(N), proportional to the
core edge length. Both the communications energy and core
energy need to be simultaneously optimized as they both scale
as O(N).

Rectangular Vs. Square Memory Arrays
So far we have assumed all our memory arrays are square N ×

N arrays. Let’s consider an N × M array with N rows and

M columns. For an analog resistive memory, the capacitance-
limited read/write energy will still scale as the length of each
column times the number of columns, O(N ×M).

For a digital memory each row must be accessed sequentially
and so the energy will scale as the number of rows times the
length of each column times the number of columns: O(N2×

M). If N<<M, a digital rectangular array can be more efficient
than a digital square array. Nevertheless, this is only true for
a read if we only want output data along the M columns; i.e.,
we only perform the following multiplication,

∑
i xiwij, where i

represents the rows. If we also need to output data along the rows,
i.e., perform the transpose operation:

∑
j wijxj, the energy for that

operation will scale as O(N ×M2), which would be worse than a
square matrix.

In both cases, we have assumed that the data has the same
shape, N × M, as the memory. This allows us to perform the
sum operation at the edge of each array and minimize the data
movement. If the data is not the same shape as the array, the
energy will be worse. Consider the situation shown in Figure 5.
When the data is not the same shape as the array, we will need
to move the data to a computational unit at a single location. The
average wire length going to that unit (including both the wires in
the array and outside of it) will be O[max(N,M)]. Consequently,
the energy will scale as the number of bits (N ×M) times the total
wire lengthO[max(N,M)] which is:O[(N ×M)×max(N,M)]. In
this case a square array with an edge length of sqrt(N ×M) would
be the most efficient with an efficiency of O(N3/2× M3/2). The
same energy scaling applies to a write operation: the value to be
written to the array depends on both row and column inputs and
so it must be computed in one location and then communicated
to the bitlines/columns in the array.

Sparse Coding Using a Resistive Memory
Array
The energy efficiency of a resistive memory array can directly
translate to making an algorithm more energy efficient. Consider

FIGURE 5 | If the data is not the same shape as the array, the input

data will come from a single router, and the output data will need to go

to a single computation unit. At best, the extra wire length to go to the

input/output units plus the row/column wire length will be O[max(N,M)].
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the problem of sparse coding. Sparse coding finds a set of basis
vectors such that the linear combination of a few of these vectors
is sufficient to explain each observation. Specifically, sparse
coding finds matrix A that minimizes the following objective
function (Olshausen, 1996; Lee et al., 2008):

p∑

k=1

∥∥yk − Axk
∥∥2 +

p∑

k=1

S(xk) (14)

where A is an M by N matrix, M<<N, of basis vectors, p is the
number of observations, yk, (of size M) is observation k, xk (of
size N) is the sparse representation of yk, and S is a sparsity cost
such as the L1 norm.

This problem is non-convex, but an approximate solution
with guaranteed error bounds can be efficiently obtained via a
recent algorithm by Arora et al. (2015) that extends the seminal
gradient descent approach of Olshausen and Field (1997). In
particular, we run t iterations or batches where we draw p samples
and solve the following for each sample k:

xk = thresholdC

(
A(t)Tyk

)
(15)

where A(t) is the sparse coding matrix at iteration t. thresholdC(.)
is a thresholding function that keeps coordinates whose
magnitude is at least C and zeros out the rest ensuring the code
x is sparse. Next we compute a matrix update, 1gk, which is the
outer-product of two vectors:

1gk =
(
yk − A(t)xk

)
× sgn(xk)

T (16)

where sgn(.) is the sign function. All p updates need to be
summed over a batch:

g(t) =

p∑

k=1

1gk (17)

At the end of each batch, t, we update the sparse coding matrix:

A(t + 1) = A(t)−
η

p
g(t) (18)

where η is the learning rate.
This sparse coding algorithm can be implemented efficiently

with two resistive memory arrays. One array stores the sparse
coding matrix A(t) while the second one stores the updates 1gk
during each batch. (Separate arrays should be used to minimize
the wire length in each array) The arrays should be arranged
to limit the wire length of the most frequent communication,
sgn(xk), to be ofO(M). This ensures that communications are not
the limiting energy factor.

To analyze the energy efficiency, let’s first consider all the
operations performed for each sample k: For Equation (15), there
are two operations being performed, the vector-matrix multiply,
A(t)Tyk, and the threshold function. In Equation (16), the
resulting vector, xk, is multiplied by the matrix again, but without
the transpose: A(t)xk. Then a vector subtraction is performed:

yk − A(t)xk. Next, a sign operation sgn(xk) is performed.
Finally, we have two vectors that need to be multiplied in
an outer product and added to second matrix that stores the
weight update. Moving data to the second matrix will incur a
communications cost. After p samples, the summed updates in
the second matrix, g(t), need to be copied, multiplied by η/p
and written back to the original matrix, A(t). This operation
can only operate a single row at a time as each weight needs to
be read, communicated and written independently. This means
analog will not have benefit over digital for this operation.
Fortunately, it is only performed once every p samples. All the
operations and their energy scaling are summarized in Table 2.
In analog all the matrix operations will cost O(N × M). To
maximize the digital energy efficiency, we assume we arrange
a digital memory to be a square giving and energy cost of
O(N3/2×M3/2).

Let the inputs and outputs, have a precision in bits of b,
and the weights have a precision of bw. We consider finite
precision such that 2b < M. This allows us to simplify Equation
(11), the analog square matrix energy to be E ∼ O(N2) and
Equation (13) the digital energy to be E ∼ O(N3). Here we are
assuming that sparse coding algorithm will converge with a finite
precision on the inputs and outputs. Neural-inspired algorithms
like sparse coding tend to tolerate large amounts of noise, but
the exact precision requirements should be studied for a practical
implementation.

We can sum the energy scaling over all the operations listed
in Table 2. Using the fact that 2b<M<N<p (Arora et al., 2015)
gives an overall analog energy scaling of: O(N × M × p) and an
overall digital energy scaling of O(N3/2×M3/2× p). Thus, we see
that analog has an overall energy advantage of O[(N ×M)1/2] or
O(N) if N =M.

TABLE 2 | The energy scaling for all the operations is given.

Operation Analog energy

scaling

Digital energy

scaling

Repetitions

per batch

MATRIX OPERATIONS

Multiplication: A(t)T× yk O(N × M) O(N3/2× M3/2) p

Multiplication: A(t)×xk O(N × M) O(N3/2× M3/2) p

Multiplication/Training:(
yk − A(t)xk

)
× sgn(xk )

T

O(N × M) O(N3/2× M3/2) p

VECTOR OPERATIONS

Threshold: thresholdC(
A(t)Tyk

) O(N × 2b) O(N × b) p

Subtraction: yk − A(t)xk O(M × 2b) O(M × b) p

Sign function: sgn(xk ) O(N × 2b) O(N × b) P

COMMUNICATION

Vector:
(
yk − A(t)xk

)
O(N × M) O(N1/2× M3/2) P

Vector: sgn(xk )
T O(M × N) O(N3/2× M1/2) P

Matrix: g(t) O(N2× M) O(N3/2× M3/2) 1

SERIAL OPERATIONS

Read: g(t) O(N2× M) O(N3/2× M3/2) 1

Write: A(t+ 1) = A(t)− η

pg(t) O(N2× M) O(N3/2× M3/2) 1

We consider the finite precision case such that 2b < M.
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DISCUSSION

In this analysis we have deliberately avoided specifying constant
factors as they can vary by orders of magnitude depending on
the technology and design tradeoffs. Particular multiplicative
constants apply only to today’s hardware, but the big O remains
whether new devices change these constants. For instance, the
energy to write a resistive memory can be as low as 6 fJ (Cheng
et al., 2010) or higher than 100 nJ (Mahalanabis et al., 2014). The
energy for analog driving circuitry around a crossbar can also
vary by orders of magnitude depending on the speed and circuit
area tradeoffs. Depending on the algorithm, new semiconductor
devices such as a spin based neuron (Sharad et al., 2014) could
also drastically change the energy tradeoff.

Nevertheless, it is still useful to consider some specific
numbers to understand what is plausible. In running an
algorithm on a resistive memory array there are three key
components to the energy, the parallel read energy, the parallel
write energy and the energy for the driving circuitry. To find the
capacitance limited read or write energy we need the capacitance
per resistive memory element. The capacitance per element (wire
+ resistive memory) in an array for a 14 nm process as specified
by ITRS will be around 50 aF. If we need to charge the wires to
1V, that corresponds to 50 aJ per element. For an N × N array
the total capacitance limited read or write energy would be 50
× N2 aJ. As discussed at the end of the Parallel Write Energy
section, the current limited write energy could plausibly be on
the same order of magnitude. The energy of the driving circuitry
depends greatly on what computations are performed, but we can
get an order of magnitude estimate by considering one of the
most expensive analog operations, an analog to digital converter
(ADC). ADCs that require only 0.85 fJ/level (or conversion
step) have been demonstrated at 200 kHz (Tai et al., 2014). This
means that for a 1000 × 1000 crossbar, the energy to run a
six bit ADC is roughly the same as the energy to read/write a
column of the crossbar. For higher precision ADCs, the ADC
will dominate the energy, while for lower precision ADCs the
crossbar will dominate the energy. In general, we see that the
potential constant factors are on the same order of magnitude
and consequently will be very technology dependent.

In order to understand the theoretical benefits of a crossbar,
we have assumed ideal linear resistive memories. In practice there
are many effects that can limit the performance of a resistive
memory crossbar in a real algorithm. Access devices are required
to be able to individually write a given resistive memory. This
limits how low of a voltage can be used. Non-linearities in the
resistive memories as well as those introduced by the access
device mean that the amount a resistive memory writes will
be dependent on its current state. Read and write noise limit
the accuracy with which the resistive memories can be read or
written. Parasitic voltage drops mean that devices far away from
the drivers see a smaller voltage. Despite all of these effects,
recent studies are indicating that iterative learning algorithms
can tolerate and learn around moderate non-idealities (Burr
et al., 2015; Chen et al., 2015; Cong et al., 2015). Given the
potential energy scaling benefits of resistive memory crossbars,

more work is need to design devices with fewer non-idealities and
to better understand how various algorithms can perform given
the non-idealities.

Overall, we have shown that the energy to perform a
parallel read or parallel rank-1 write on an analog N ×

N resistive memory crossbar typically scales as O(N2) while
a digital implementation scales as O(N3). Consequently, the
analog crossbar has a scaling advantage of O(N) in energy. The
communications energy between neighboring crossbars scales as
O(N2). Thus, communications are not as important for digital
approaches, but once we take advantage of an analog approach
the communication energy and computation energy are equally
important. For algorithms that operate on only one row of a
matrix at a time, both the digital and analog energy scales as
O(N2) per row. Therefore, the better approach will depend on
the specifics of a given system. Algorithms such as sparse coding
can directly take advantage of the parallel write and parallel read
to get an O(N) energy savings.

Thus, we have shown that performing certain computations
on an analog resistive memory crossbar provides fundamental
energy scaling advantages over a conventional digital memory
based implementation for low precision computations. This is
true for any architecture that uses a conventional digital memory
array, even a digital resistive memory crossbar. Fundamentally, a
digital memory array must be accessed sequentially, one row at
a time, while an entire analog memory crossbar can be accessed
in parallel. Analog crossbars perform a multiply and accumulate
at each crosspoint, while digital memories need to move the data
to the edge of the array before it can be processed. In principle, a
digital system could be organized to process data at every cell, but
the area cost would become prohibitive. Alternatively, optimized
digital neural systems will have a processing in memory (PIM;
Gokhale et al., 1995) type architecture where simple operations
are performed near a moderately sized memory array (Merolla
et al., 2014).While this will give orders of magnitude reduction in
energy compared to a CPU (Cassidy et al., 2014), the fundamental
scaling advantages of an analog crossbar array can further reduce
the energy by a few orders of magnitude.
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The purpose of this work was to demonstrate the feasibility of building recurrent

artificial neural networks with hybrid complementary metal oxide semiconductor

(CMOS)/memristor circuits. To do so, we modeled a Hopfield network implementing

an analog-to-digital converter (ADC) with up to 8 bits of precision. Major shortcomings

affecting the ADC’s precision, such as the non-ideal behavior of CMOS circuitry and

the specific limitations of memristors, were investigated and an effective solution was

proposed, capitalizing on the in-field programmability of memristors. The theoretical work

was validated experimentally by demonstrating the successful operation of a 4-bit ADC

circuit implemented with discrete Pt/TiO2−x/Pt memristors and CMOS integrated circuit

components.

Keywords: Hopfield network, recurrent neural network, hybrid circuits, memristor, resistive switching,

analog-to-digital conversion

INTRODUCTION

Recurrent artificial neural networks are an important computational paradigm capable of solving a
number of optimization problems (Hopfield, 1984; Tank and Hopfield, 1986). One classic example
of such networks is a Hopfield analog-to-digital converter (Tank and Hopfield, 1986; Lee and Sheu,
1989; Smith and Portmann, 1989). Although such a circuit may be of little practical use, and inferior,
for example, to similar-style feed forward-type ADC implementations (Chigusa and Tanaka, 1990),
it belongs to a broader constrained optimization class of networks which minimize certain pre-
programmed energy functions and have several applications in control and signal processing (Tank
and Hopfield, 1986). The Hopfield network ADC circuit also represents an important bridge
between computational neuroscience and circuit design, and an understanding of the potential
shortcomings of such a relatively simple circuit is therefore important for implementing more
complex recurrent neural networks.

An example of a 4-bit Hopfield network ADC is shown in Figure 1 (Tank and Hopfield, 1986).
The originally proposed network consists of an array of linear resistors (also called weights or
synapses) and four peripheral inverting amplifiers (neurons). Each neuron receives currents from
the input and reference lines and from all other neurons via corresponding synapses. The analog
input voltage VS is converted to the digital code V3V2V1V0, i.e.,

48
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FIGURE 1 | (A) Conventional Hopfield network implementation of a 4-bit ADC

and (B) specific implementation of a neuron as considered in this paper.

VS =

3∑

i= 0

2iVi (1)

by first forcing all neuron outputs to zero (Lee and Sheu, 1989)
and then letting the system evolve to the appropriate stationary
state.

To understand how the Hopfield network performs the
ADC operation, let us first describe its electrical behavior.
Assuming leakage-free neurons with infinite input and zero
output impedances, the dynamic equation governing the system
evolution of the input voltage Uj of the j-th neuron is
described as:

CU̇j = −
∑

i

TijVi − TjUj + Ij (2a)

Vi = g(Ui), (2b)

where g(·) is a neuron activation function, C is the neuron’s input
capacitance, Tij is a conductance of the synapse connecting the
output of the i-th neuron with the input of the j-th neuron, while

Ij = TSjVS − TRjVR, (3)

Tj = TSj + TRj + 6iTij (4)

are the corresponding effective offset input current and effective
input conductance for the j-th neuron. HereVR is a reference
voltage, while TR and TS are conductances of reference and input
weights, respectively (Figure 1A). Note that neuron input Ui can
be either positive or negative, but the output of the neuron is
either zero or positive. The inverted outputs of the neurons,
which are fed back to the network, are therefore either negative
or zero. One activation function suitable for such mapping is

the sigmoid function 1/(1+exp[-U]). Neuron output needs to be
inverted to keep the feedback weights positive and thus to allow
physical implementation with passive devices, such as resistors1.

Alternatively, the Hopfield network operation can be
described by an energy function. The evolution of the dynamic
system described by Equation (2) is equivalent to a minimization
of the energy function:

E =
1

2

∑

ij

TijViVj −
∑

j

VjIj −
∑

j

Tj

∫ Vj

0
g−1 (V) dV (5)

where the last term can be neglected for very steep transfer
functions (Hopfield, 1984). In Tank and Hopfield (1986), showed
that a 4-bit ADC task (Equation 1) can be described by the
following energy function:

E =
1

2
(VS −

3∑

i= 0

2iVi)
2 −

1

2

3∑

i= 0

22iVi(Vi − 1) (6)

Here the first term tends to satisfy Equation (1), while the second
tends to force each digital output Vi to be either “0” or “1.” After
rearranging the terms in Equation (6) and comparing the result
with Equation(5), the appropriate weights for performing the
ADC task are:

Tij = 2(i+ j),TSj=2j,TRj = 2(2j− 1). (7)

In the Hopfield ADC network, the number of synapses
grows quadratically with the number of neurons. Compact
implementation of the synapses is therefore required if such
circuits are to be practical. This is certainly challenging to
achieve with conventional CMOS technology, because, according
to Equation (7), it requires analog weights with a relatively
large dynamic range, i.e., in the order of 22N , where N is
the bit precision. Weights can be stored digitally, but this
approach comes with a large overhead (Moopenn et al.,
1990). On the other hand, analog CMOS implementations
of the synapses have to cope with the mismatch issues
often encountered in CMOS circuits (Indeveri et al., 2011).
Consequently, several attempts have been made to implement
synapses with alternative, nonconventional technologies. In some
of the early implementations of Hopfield networks, weights
were realized as corresponding thin film (Jackel et al., 1987) or
metal line (Graf et al., 1986; Schwartz et al., 1987) conductance
values, patterned using e-beam lithography and reactive-ion-
etching. The main limitation of these approaches was that the
weights were essentially one-time programmable, with rather
crude accuracy. A much more attractive solution was very
recently demonstrated in Eryilmaz et al. (2014), which describes a
Hopfield network implementation with synapses based on phase
change memory paired with conventional field-effect transistors.
That work, together with other recent advances in device

1The sign of the first term on the left in Equation (2a), and of all right hand terms

in Equation (5), is different from that of the original paper (Hopfield, 1984). In this

work we assume that all weights are strictly positive, making it necessary explicitly

to flip the neuron feedback signal sign.
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technologies (Wu et al., 2012; Zhang et al., 2012) revived interest
in the theoretical modeling of recurrent neural networks based
on hybrid circuits (Waser et al., 2009; Strukov and Kohlstedt,
2012; Lehtonen et al., 2014; Rakkiyappan et al., 2014; Walls and
Likharev, 2014).

This paper explores the implementation of synapses with
an emerging, very promising type of memory devices, namely
metal-oxide resistive switching devices (“memristor”) (Wu et al.,
2012; Zhang et al., 2012). In the next section we discuss
the general implementation details of the Hopfield network
ADC, including the memristor devices which were utilized
in the experimental setup. This is followed by a theoretical
analysis of the considered hybrid circuits’ sensitivity to certain
representative sources of non-ideal behavior and discussion of a
possible solution to such problems. The theoretical results were
validated with SPICE simulations (Section Simulation Results)
and experimental work (Section Experimental Results). The
paper concludes with a Discussion section. It should be noted
that preliminary experimental results, without any theoretical
analysis, were reported earlier in Gao et al. (2013a), where we
first presented a Hopfield network implementation with metal-
oxide memristors. The only other relevant experimental work on
memristor-based Hopfield networks that we are aware of was
published recently in Hu et al. (2015). However, the network
demonstrated in Hu et al. (2015) was based on 9 memristors
whereas the circuit presented in this work involves 16.

MATERIALS AND METHODS FOR
HOPFIELD NETWORK IMPLEMENTATION
WITH HYBRID CIRCUITS

Following on from our earlier works (Alibart et al., 2013;
Gao et al., 2013b; Merrikh-Bayat et al., 2014), we here
consider the implementation of a hybrid CMOS/memristive
circuit (Figure 1). In this circuit, density-critical synapses are
implemented with Pt/TiO2−x/Pt memristive devices, while
neurons are implemented by CMOS circuits.

In their simplest form, memristors are two-terminal passive
elements, the conductance of which can be modulated reversibly
by applying electrical stress. Due to the simple structure and ionic
nature of their memory mechanism, metal-oxide memristors
have excellent scaling prospects, often combined with fast, low
energy switching and high retention (Strukov and Kohlstedt,
2012). Many metal oxide based memristors can also be switched
continuously, i.e., in analog manner, by applying electrical bias
(current or voltage pulses) with gradually increasing amplitude
and/or duration.

Figure 2A shows typical continuous switching I-Vs for the
considered Pt/TiO2−x/Pt devices (Alibart et al., 2012). The
devices were implemented in “bone-structure” geometry with
an active area of ∼1µm2 using the atomic layer deposition
technique. An evaporated Ti/Pt bottom electrode (5 nm/25 nm)
was patterned by conventional optical lithography on a
Si/SiO2 substrate (500µm/200 nm, respectively). A 30 nm TiO2

switching layer was then realized by atomic layer deposition at
200◦C using Titanium Isopropoxide (C12H28O4Ti) and water

FIGURE 2 | (A) Typical I-V curves with current-controlled set and

voltage-controlled reset switching for the considered Pt/TiO2−x/Pt

memristors. (B) Modeling of static I-V curves at small disturb-free voltages for

several different states. The fitting parameters are β = 1, α1 = 14.7V−3,

α2 = −5.9× 104 �V−3,α3 = 1.5× 108 �2V−3 for V > 0, and α1 = 34.6V−3,

α2 = −1.9× 105 �V−3, α3 = 3.65× 108 �2V−3 for V < 0.

as precursor and reactant, respectively. A Pt/Au electrode
(15 nm/25 nm) was evaporated on top of the TiO2 blanket layer,
and the device was finally rapidly annealed at 500◦C in an N2 and
N2+O2 atmosphere for 5min to improve the crystallinity of the
TiO2 material. Details of the fabrication and characterization of
the considered memristors are given in Alibart et al. (2012).

After programming the memristors to the desired resistance,
it was important for their state to remain unchanged during
operation of the Hopfield network, so to prevent any disturbance
the voltage drop across them was always kept within the |V|≤
0.2V “disturb-free” range (Alibart et al., 2012).

The static I-V characteristics (i.e., those within disturb-
free regime) for several different memory states are shown in
Figure 2B. To assist SPICE simulation, the experimental I-V
curves at small biases were fitted by the following static equation
with a single memory state G:

I = GV + β(α1G+ α2G
2 + α3G

3)V4. (8)

The need to keep the voltage drop across memristive devices
small also affects neuron design. A simple leaky operational
amplifier (op-amp) integrator could be sufficient to implement
neuron functionality, but ensuring disturb-free operation with
such a design is not easy. This issue was resolved by implementing
neurons with three op-amps connected in series (Figure 1B). The
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first op-ampwas an inverting amplifier which held virtual ground
even if the neuron’s output was saturated. The second op-amp
was an open loop amplifier implementing a sign-like activation
function. The field effect transistor in the negative feedback
of this op-amp was initially turned on to force the neuron’s
outputs to zero (i.e., to set into initial state before computing
output) and then turned off during network convergence. The
last op-amp inverted the signal and ensured that the neuron
output was within the −0.2V ≤ V ≤ 0 voltage range. Note
that since the neuron bandwidth was mainly determined by the
input capacitance of the second amplifier, and the other sources
of parasitic capacitance could be neglected for simplicity, the
capacitive load of the second amplifier (Figure 1B) was effectively
a neuron input capacitance (Figure 1A).

Assuming ideal op-amps and no possibility of saturation by
the first and last amplifiers, the dynamic equation for this neuron
design can be written as:

CU̇j = −
∑

i

TijVi − TN1Uj + Ij (9a)

Vj = −TN2/TN3g(Uj

)
, (9b)

where g() is a transfer function of the second op-amp (see
Appendix for more details on derivation).

For a very steep transfer function, the second term in the right
hand part of Equation (9a) can be neglected (Hopfield, 1984).
The network is then described by the original energy function
(Equation 5) and the weights are proportional to those defined in
Equation (7), i.e.,

Tij’ = 5Tij,TSj’ = TSj,TRj’ = 5TRj, (10)

where the additional coefficient 5 is due to the reduced, i.e., 0.2 V,
output voltage corresponding to digital “1” in the considered
circuit [as opposed to output voltage 1V assumed in the original
ADC energy function in Equation (6) for ADC and the weights
in Equation (7) derived from that energy function].

The physical implementation of this Hopfield network ADC
posed a number of additional challenges. However, it should
first be mentioned that variations in neuron delay and input
capacitances, which may result in oscillatory behavior and
the settling in of false energy minima (Lee and Sheu, 1989;
Smith and Portmann, 1989), were not a problem in our case
thanks to the slow operating speed, which was enforced to
reduce capacitive coupling. The specific problems regarding
the considered implementation were offsets in virtual ground,
resulting from the voltage offsets (uo) and limited gain (A)
of the op-amps (Figure 1B). Another, somewhat less severe,
problem was the nonlinear conductance of the memristive
devices (defined via parameter β–, see Equation 8). In the
Appendix it is shown how limited gain and non-zero offset
result in an additional constant term I0 in dynamical equation
(Equation A7), which can be factored into the reference weights
as follows:

TRj” = TRj’+ I0j/VR. (11)

The Hopfield network with practical, non-ideal neurons can still
therefore be approximated by the original energy equation and it
should be possible to circumvent the effects of limited gain and
voltage offset by fine-tuning the reference weights. This idea was
verified via SPICEmodeling and experimental work, as described
in the next section.

RESULTS

Simulation Results
Using Equation (8) for the memristors and SPICE models for
the IC components, in the next series of simulations we studied
how particular non-ideal behavior affects differential (DNL) and
integral (INL) nonlinearities in ADC circuits (van de Plassche,
2003). Figure 3A shows INL and DNL as a function of the
open loop DC gain, which was varied simultaneously for all
three op-amps, assuming ideal memristors with β = 0 and no
voltage offset. Note that in this simulation, the gain-bandwidth
product (GBP) was increased proportionally to the open loop
DC gain, and was equal to 3 MHz at ADC = 2 × 105. Because
the circuit operated at about 1.5 KHz, the effective gain A ≈

ADC/100 for all simulations (and also for the experimental
work discussed below). Figure 3B shows the impact of the

FIGURE 3 | Theoretical analysis of the performance sensitivity of a

4-bit Hopfield network ADC with respect to (A) open-loop DC gain, (B)

voltage offsets in the operational amplifiers, and (C) the nonlinearity of

memristive devices.
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FIGURE 4 | Simulation results for (A) the original and (B) the optimized

4-bit Hopfield network ADC with β = 1, ADC = 2 × 105, and uo = 3mV

voltage offset, which are representative parameters for the

experimental setup. For the optimized network, TR” = 0.97 TR1, TR2” =

0.86 TR2, TR3” = 0.95 TR3, TR4” = 0.97 TR4.

voltage offset on DNL and INL (simulated as an offset on the
ground nodes), which was varied simultaneously for all three op-
amps. Finally, Figure 3C shows the effect of I-V nonlinearity,
which was varied by changing constant β in Equation (8),
assuming all other parameters of the network to be close to
ideal, i.e., that the voltage offset uo = 0 and the open loop
DC gain ADC = 106. Note that for β > 0, the memristor
weights were chosen in such a way that the conductance of the
device at−0.2V matched the corresponding values prescribed by
Equation (10).

The results shown in Figure 3 confirm the significant
individual contribution of the considered sources of non-ideal
behavior on the ADC’s performance. Figure 4A shows the
simulation results considering all these factors together for
the specific values uo = 3mV, β = 1, ADC = 2 ×

105, and GBP = 3 MHz, which are representative of the
experimental setup. The gain and voltage offset values were
taken from the specifications of the discrete IC op-amps used
in the experiment. Clearly, the ADC output is distorted and
contains numerous errors, with the largest contribution to INL
being due to finite gain (Figure 3). Figures 4B, 5 show the
simulation results with new values for the reference weights
calculated according to Equation (11) for the 4-bit and 8-bit
ADCs, respectively. The results shown in these figures confirm
that non-ideal behavior in op-amps, such as limited gain and
voltage offsets, can be efficiently compensated by fine-tuning
memristors.

FIGURE 5 | Simulation results for the optimized 8-bit Hopfield network

ADC with TR1” = 0.8 TR1, TR2” = 0.81 TR2, TR3” = 0.89 TR3, TR4” =

0.83 TR4, TR5” = 0.55 TR5, TR6” = 0.74 TR6, TR7” = 0.71 TR7, TR8” =

0.75 TR8. All other parameters are equal to those used for Figure 4.

Experimental Results
The simulation results were also validated experimentally by
implementing a 4-bit Hopfield network ADC in a breadboard
setup consisting of Pt/TiO2−x/Pt memristive devices and discrete
IC CMOS components (Figure 6A). The memristor chips were
assembled in standard 40-pin DIP packages by wire-bonding 20
standalone memristive devices. Because input voltage range is 0
≤ VS ≤ Vmax

S = 3.0V, the weights TS were realized with regular
resistors2. The discrete memristors and other IC components
were then connected as shown in Figure 1 with external wires.

The memristors implementing feedback and reference
weights were first tuned ex-situ using a previously developed
algorithm (Alibart et al., 2012) to the values defined by Equation
(10). The ex-situ tuning for each memristor was performed
individually before the devices were connected in a circuit. This
was done to simplify the experiment and it is worth mentioning
that in general, it should be possible to tune memristors after they
are connected in the crossbar circuit, as it was experimentally
demonstrated by our group for standalone devices connected
in crossbar circuits (Alibart et al., 2013; Gao et al., 2013c) and
integrated passive crossbar circuits (Prezioso et al., 2015a,b).

As was discussed in Sections Materials and Methods for
Hopfield Network Implementation with Hybrid Circuits and
Results, limited gain and voltage offsets of operational amplifiers
can be compensated by adjusting reference weights according
to Equations (11, A12). To demonstrate in-field configurability
of memristors, the reference weights were fine-tuned in-situ.
In particular, reference weights were adjusted to ensure correct
outputs at four particular input voltages, whenVS is equal to 1/16,
1/8, 1/4, and 1/2 of its maximum value. The tuning is performed
first forVS = 1/16Vmax

S , for which the correct operation of ADC
assumes that the least significant output bit V0 flips from 0 to 1
(corresponding to voltage 0.2 V in our case), which is ensured

2In principal, input voltage range could be decreased by increasing input weights

correspondingly. However, such rescaling would require larger a dynamic range

of conductances to implement (Equation 6), and this was not possible with the

considered memristive devices.
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FIGURE 6 | Experimental results for the optimized 4-bit Hopfield ADC:

(A) experimental setup, (B) measured outputs for every output channel,

and (C) measured transfer characteristics.

by fine-tuning reference weight TR0. Similarly, the output bit V1

should flip from 0 to 1 when VS = 1/8 Vmax
S , which is ensured by

fine-tuning reference weight TR1 and so on. Because we started
fine-tuning from the least significant output, it is sufficient to
fine-tune only one corresponding reference weight at a time
for a particular input voltage, which greatly simplified in-situ
tuning procedure. Also, the direction of adjustment was always
straightforward to determine due to monotonic dependence of
the input voltage at which a particular output bit flips from 0 to
1, on the corresponding reference weight (Equation 11).

DISCUSSION

The network parameters for the experimental work are
summarized in Table 1. Although there were a few A/D
conversion errors in the experimental work (Figure 6), the results
are comparable with the simulations of the optimized network,
and much better than those obtained for the unoptimized

TABLE 1 | Parameters for the experimentally demonstrated Hopfield

network ADC.

Feed-back Conductance (S@0.2V) Reference Conductance (S@0.2V)

T2,1 2e-5 T1R 4.75e-6

T3,1 4e-5 T2R 2.19e-5

T4,1 7.9e-5 T3R 9.33e-5

T1,2 2e-5 T4R 41.85e-5

T3,2 7.9e-5 Input Conductance (S)

T4,2 15e-5 T1S 8.33e-6

T1,3 4e-5 T2S 1.67e-5

T2,3 7.9e-5 T3S 3.33e-5

T4,3 30.9e-5 T4S 6.67e-5

T1,4 7.9e-5 Neuron Conductance (S)

T2,4 15e-5 TN1 1e-3

T3,4 30.9e-5 TN2 1e-5

TN3 5e-4

network. The experimental results for the unoptimized network
were significantly worse in comparison with the simulation, and
are not shown in this paper.

It is worth mentioning that for the considered memristors
drift of conductive state over time was negligible due to highly
nonlinear switching kinetics specific to these devices (Alibart
et al., 2012, 2013; Prezioso et al., 2015a). In principle, for other
types of memristors with inferior retention properties it should
be possible to occasionally fine-tune memristor state to cope
with conductance drift. A related issue might be measurement
noise upon reading the state of the memristor, e.g., due to
the fluctuations in the device conductance over time, which is
sometimes observed as random telegraph noise (Gao et al., 2012,
2013b; Prezioso et al., 2015b). Such noise can be tolerated by
performing quasi DC readmeasurements, however, the downside
would be potentially much slower tuning process.

To conclude, in this work we investigated hybrid
CMOS/metal-oxide-memristor circuit implementation of a
Hopfield recurrent neural network performing analog-to-digital
conversion tasks. We showed that naïve implementation of
such networks, with weights prescribed by the original theory,
produces many conversion errors, mainly due to the non-
ideal behavior of the CMOS components in the integrated
circuit. We then proposed a method of adjusting weights in the
Hopfield network to overcome the non-ideal behavior of the
network components and successfully validated this technique
experimentally on a 4-bit ADC circuit. The ability to fine-tune
the conductances of memristors in a circuit was essential for
implementing the proposed technique. In our opinion, the
work carried out proved to be an important milestone and
its results will be valuable for implementing more practical
large-scale recurrent neural networks with CMOS/memristor
circuits. Experimental research into CMOS/memristor neural
networks is still very scarce and, to the best of our knowledge,
the demonstrated Hopfield network is the most complex
network of its type reported to date. From a broader perspective,
this paper demonstrates one of the main advantages of
utilizing memristors in analog circuits, namely the feasibility of
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fine-tuning memristors after fabrication to overcome variations
in analog circuits.
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APPENDIX

Assuming negligible op-amp input currents and output
impedances, the Hopfield network is described by the following
equations, which also account for limited gain and voltage
offsets:

Vxj = A1j

(
uo1j − Vinj

)
, (A1)

Vzj = g(uo2j + Uj), (A2)

−Vj = A3j

(
uo3j − Vwj

)
, (A3)

TN1

(
Vinj − Vxj

)
= TRj

(
−VR − Vinj

)
+ TSj

(
VS − Vinj

)

+
∑

i

Tij(−V i − Vinj) (A4)

−CU̇j = TN1(Vxj + Uj), (A5)

TN2

(
Vzj − Vwj

)
= TN3

(
Vwj + Vj

)
. (A6)

Solving these equations results in the following dynamic equation

ajCU̇ ′
j = −

∑

i

TijV
′
i − ajTN1U

′
j + Ij + Ioj (A7a)

bjV
′
j
= g

(
U ′
j

)
, (A7b)

where g() is a transfer function of the
saturating amplifier implemented with the second
op-amp, and

U ′
j = uo2j + U, (A8)

V ′
i = uo3j(1+ TN3j/TN2j)/bj + Vi, (A9)

aj = 1+ (1+ Tj/TN1j)/A1j, (A10)

bj = TN3j/TN2j + (1+ TN3j/TN2j)/A3j, (A11)

Ioj = −
(
TN1j + Tj

)
uo1j + ajTN1juo2j

+
1+

TN3j
TN2j

bj

∑

i

Tijuo3j (A12)
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Synaptic plasticity plays a crucial role in allowing neural networks to learn and adapt to

various input environments. Neuromorphic systems need to implement plastic synapses

to obtain basic “cognitive” capabilities such as learning. One promising and scalable

approach for implementing neuromorphic synapses is to use nano-scale memristors

as synaptic elements. In this paper we propose a hybrid CMOS-memristor system

comprising CMOS neurons interconnected through TiO2−x memristors, and spike-based

learning circuits that modulate the conductance of the memristive synapse elements

according to a spike-based Perceptron plasticity rule. We highlight a number of

advantages for using this spike-based plasticity rule as compared to other forms of spike

timing dependent plasticity (STDP) rules. We provide experimental proof-of-concept

results with two silicon neurons connected through a memristive synapse that show

how the CMOS plasticity circuits can induce stable changes in memristor conductances,

giving rise to increased synaptic strength after a potentiation episode and to decreased

strength after a depression episode.

Keywords: synaptic plasticity, silicon neurons, memristors, neuromorphic architectures, learning, perceptron

1. Introduction

Biological networks provide a tantalizing proof of the existence of a physically implementable
computing architecture that is distributed, fault-tolerant, adaptive, and that outperforms
conventional architectures in many important problems such as visual processing and motor
control. This has motivated the development of various neuromorphic computing systems whose
architectures reflect the general organizational principles of nervous systems in an effort to
partially reproduce the immense efficiency advantage that biological computation exhibits in some
problems. These neuromorphic systems are organized as populations of excitatory and inhibitory
spiking neurons with configurable synaptic connections (FACETS, 2005–2009; Navaridas et al.,
2013; Benjamin et al., 2014; Merolla et al., 2014; Ning et al., 2015).

Synapses outnumber neurons by several orders of magnitude in biological neural
networks (Binzegger et al., 2004). Reproducing these biological features in neuromorphic
electronic circuits presents a scaling problem, as integrating thousands of dedicated synapse
circuits per neuron can quickly become infeasible for systems that require a large number of
neurons (Schemmel et al., 2007). This scaling problem has traditionally been solved by either
treating synapses as simple linear elements and time-multiplexing spikes from many pre-synaptic
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sources onto the same linear circuit (Benjamin et al., 2014),
or by treating them as basic binary elements that can be
set either ′on′ or ′off ′ externally, without learning abilities
(Merolla et al., 2014).

Real synapses, however, exhibit non-linear phenomena like
spike timing dependent plasticity (STDP) that modulate the
weight of an individual synapse based on the activity of the pre-
and post-synaptic neurons (Bi and Poo, 1998). The modulation
of synaptic weights through plasticity has been shown to greatly
increase the range of computations that neural networks can
perform (Abbott and Regehr, 2004). Capturing the plasticity
properties of real synapses in analog neuromorphic hardware
requires the use of distinct physical circuits/elements for each
synapse. In conventional CMOS, this can lead to restrictions on
scalability. Some potential solutions to the scalability issues in
pure CMOS technology involve the use of very large integrated
structures (e.g., up to a full wafer, Schemmel et al., 2012) or the
adoption of deep submicron technologies (Noack et al., 2015).
Scalability restrictions however can be greatly relaxed if one
resorts to compact nano-scale circuit elements that can reproduce
the plasticity properties of real synapses.

One potential candidate for these elements is the “memristor.”
Chua (1971) described the memristor as an element which
behaves somewhat like a non-linear resistor with memory. Since
HP first linked resistively switching devices with the concept of
a memristor (Strukov et al., 2008), work on memristive devices
has mostly focused on digital storage and logic functions (Linn
et al., 2012; You et al., 2014), but there are also applications
as analog/multi-level storage (Moreno et al., 2010; Shuai et al.,
2013) and even memristive encryption (Lin and Wang, 2010;
Du et al., 2014). In the neuromorphic community, memristors
are seen as ideal devices for synapse implementations, as
they combine three key functions in one device. Memristors
can implement biologically realistic synaptic weight updates,
i.e., learning (Jo et al., 2010), they can carry out long term
multi-valued weight storage, and they can also communicate
weighted pre-synaptic activity to the postsynaptic side (Saighi
et al., 2015), significantly relaxing scalability restrictions
(Indiveri et al., 2013).

Typically, plasticity in these memristive synapses is evoked
by applying specific waveforms to the two terminals of the
memristor, with the waveforms aligned to pre- respectively
postsynaptic pulses (Jo et al., 2010). The correlation of the
waveforms across the memristor in turn implements STDP-like
plasticity (Mayr et al., 2012), with the form of the STDP curve
defined by the applied wave shape (Serrano-Gotarredona et al.,
2013). Both hardware and software models of plasticity based
on the basic STDP mechanism are typically chosen primarily for
their simplicity (Mayr and Partzsch, 2010). It has been argued
however that more elaborate models of plasticity are required
to reproduce the experimental evidence obtained from more
complex synaptic plasticity experiments in real neural systems,
and to implement algorithms that can learn to store and classify
correlated patterns (Senn and Fusi, 2005; Sjöström et al., 2008;
Lisman and Spruston, 2010).

In this work we present a neuromorphic implementation
of one of these extended plasticity models that implements

a spike-based Perceptron learning algorithm (Brader et al.,
2007), which makes use of both analog CMOS circuits
and TiO2−x memristive devices. Compared to the more
widely used STDP paradigm, the implementation of this
learning algorithm on memristors does not employ the
postsynaptic spike timing. Instead, it relies on the correlation of
presynaptic spikes with signals derived from the postsynaptic
neuron, such as its membrane potential and a measurement
of its recent spiking activity. These requirements lead
to a novel and quite different approach to the CMOS
driver circuits which does not require the generation of
temporally long waveforms on the pre- or postsynaptic
sides.

In addition to spike timing, plasticity in biological
synapses also depends on the firing rate of the post-synaptic
neuron (Sjöström et al., 2001), a phenomenon that can not be
captured by pair-wise STDP mechanisms (Pfister et al., 2006).
The spike-based perceptron learning rule explicitly contains a
term that reflects the recent firing rate of the neuron and is thus
able to realize the rate-dependence of synaptic weight updates.
The rule is also able to realize weight updates that depend
on pre-post spike timing even though it does not explicitly
depend on the post-synaptic spike times. Instead, it uses the
membrane potential of the post-synaptic neuron as an indirect
estimator of post-synaptic firing times. The rule is thus able
to reasonably match the behavior of biological synapses while
having a functional form that can be implemented efficiently
on pure CMOS or on hybrid CMOS-memristor neuromorphic
systems.

We introduce the spike-based Perceptron learning model in
Section 2.1 and the TiO2−x memristive devices employed in this
implementation in Section 2.2. The adaptation of the learning
model to memristors is described in Section 2.3. Considerations
for crossbar operation of this paradigm are given in Section 2.4.
Section 3.1 shows basic results characterizing operation of
the memristors. Characterization of the learning CMOS driver
circuits implemented in VLSI are detailed in Section 3.2. Finally,
results from implementing the spike-based Perceptron learning
with the CMOS driver circuits on the memristors are presented
in Section 3.3.

2. Materials and Methods

2.1. The Plasticity Model
The spike-based Perceptron learning model of long-term
plasticity has been introduced in Brader et al. (2007) based on
earlier work in Fusi et al. (2000). The model represents a synapse
with two stable weights, potentiated and depressed, whereby the
transition between the two stable weights is done in an analog
or graded manner. The synaptic weight X(t) is influenced by
a combination of pre- and post-synaptic activity, namely the
pre-synaptic spike time tpre and the value of the post-synaptic
neuron membrane voltage Vmem(t) and intra-cellular calcium
concentration C(t). A pre-synaptic spike arriving at tpre reads
the instantaneous post-synaptic values Vmem(tpre) and C(tpre).
The change in X(t) depends on these instantaneous values in the
following way:
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X → X+ a if {Vmem(tpre) > θV and (1)

θ lup <C(tpre) < θhup}

X → X− b if {Vmem(tpre) ≤ θV and (2)

θ ldown <C(tpre) < θhdown} ,

where a and b are jump sizes and θV is a voltage threshold. In
other words, X(t) is increased if Vmem(t) is elevated (above θV )
when the pre-synaptic spike arrives and decreased when Vmem(t)
is low at time tpre provided that the calcium variable C(t) is in

the correct range. θ lup, θhup, θ l
down

, and θh
down

are thresholds on
the calcium variable. The calcium variable C(t) is an auxiliary
variable that is a low-pass filtered version of the post-synaptic
spikes (see Brader et al., 2007, for details). The variable C(t) is
incremented by JC at each post-synaptic spike time ti, where JC
reflects the magnitude of spike-triggered calcium influx into the
cell. C(t) decays with a time constant τC:

dC(t)

dt
= −

1

τC
C(t)+ JC

∑

i

δ(t − ti) (3)

The dependence of the weight updates onC(t) allows the learning
rule to enable/disable the weight updates based on the long-term
average of post-synaptic activity. X(t) continuously drifts toward
one of two stable values based on whether it is above or below the
threshold θX :

dX

dt
= α if X > θX (4)

dX

dt
= −β if X ≤ θX (5)

The weight X(t) is bounded above and below by the two stable
states Xhigh and Xlow which are not shown in the equations to
simplify the notation. Figure 1 illustrates the relevant waveforms
and parameters of the spike-based Perceptron learning rule.

The dynamics of the membrane potential variable, Vmem,
which is used in Equations (1) and (2), depend on the
neuron model used. The original neuron model used with the
perceptron-learning rule is the simple constant leak integrate and
fire neuron model (Brader et al., 2007). The neuron circuit we
have in our neuromorphic chip, however, implements the more
realistic adaptive exponential integrate and fire neuron model.
This neuron circuit and the underlying model are described
in detail in Indiveri et al. (2011) and Ning et al. (2015). The
interaction between this adaptive exponential integrate and fire
silicon neuron and the spike-based perceptron-learning rule is
described in Indiveri et al. (2010).

Although the spike-based plasticity rule described above
has been shown to reproduce, on average, the classical STDP
phenomenology (Brader et al., 2007), it differs from the vast
majority of spike-timing plasticity rules in that it does not
explicitly depend on the precise timing of both pre- and post-
synaptic neuron spikes. The compatibility with the classical STDP
learning rule comes about through the rule’s dependence on
the post-synaptic neuron’s membrane potential: a pre-synaptic
spike that occurs when the post-synaptic membrane potential

FIGURE 1 | Illustration waveforms of the spike-based perceptron

learning rule showing key parameters from Equations (1–5). The

Calcium variable plot shows the ranges defined by θ lup, θhup, θ l
down

, θh
down

within which synaptic plasticity is active according to Equations (1) and (2). The

post-synaptic neuron membrane potential plot shows the threshold θV .

Incoming synapses can be depressed (potentiated) if Vmem (t) is below (above)

θV . The bottom plot showing the synaptic state X (t) illustrates the jump and

drift mechanism. On each pre-synaptic spike, the mutually exclusive

conditions in Equations (1) and (2) are evaluated. If the condition in

Equations (1) and (2) is fulfilled, the synaptic state jumps up (down) by a step a

(b). The synaptic state is continuously drifting to a high or low state depending

on whether it is above or below the threshold θX , respectively.

is high will potentiate the synapse and will likely produce a
post-synaptic spike shortly after. Thus, the synapse tends to
get potentiated in pre-before-post scenarios. The synapse also
tends to get depressed in post-before-pre scenarios because the
membrane potential is usually low for a few milliseconds after a
post-synaptic spike is emitted, and a pre-synaptic spike arriving
in this interval will depress the synapse.

The spike-based Perceptron plasticity rule also has access
to post-synaptic neuron’s rate information through the C(t)
signal. This allows it to reproduce effects beyond classical
pair-wise STDP such as increased potentiation at high post-
synaptic firing rates and increased depression at low post-
synaptic firing rates (Sjöström et al., 2001). These effects arise
in more complicated STDP models such as triplet STDP (Pfister
et al., 2006; Mayr and Partzsch, 2010). The absence of explicit
dependence on the post-synaptic neuron’s firing times thus does
not diminish the biological plausibility or the computational
power of the spike-based Perceptron learning rule.

For the purpose of pure CMOS VLSI implementation (Chicca
et al., 2014), this plasticity model is interesting because it can
learn a graded response to an input pattern but on long time
scales, the weight X(t) drifts to one of two stable states and is
thus easy to store long-term. In the hybrid CMOS-memristor
architecture that we propose in this paper, however, the weight
drift (Equations 4 and 5) is not implemented. The memristor
conductance (weight) only changes on pre-synaptic spikes.
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Weight drift or the bi-stable synaptic dynamics of the perceptron
learning rule can be useful in consolidating the synaptic changes
and making the synaptic weight more robust against spurious
spikes (Brader et al., 2007). However, this comes at the cost of
the sensitivity of the plasticity rule to the temporal spike patterns
as multiple spike patterns might lead to the same binary synaptic
weights. In the absence of weight drift as in the proposed hybrid
CMOS-memristor architecture, the analog synaptic weights are
able to maintain a synaptic trace that better reflects the identity
of past spiking patterns (Maass and Markram, 2002).

2.2. Memristive Devices
The memristors that we use as synaptic elements are TiO2−x-
based memristors which were fabricated as follows: thermal
oxidation was used to grow a 200 nm film of insulating SiO2 on
a 6′′ Silicon wafer. Then, bottom electrodes (BEs) were patterned
and obtained by conventional optical photolithography, electron
beam evaporation and lift-off process. BEs consisted of
evaporation of 5 nm adhesive Titanium (Ti) and 10 nm Platinum
(Pt) layers. After that, a similar patterning process was used for
the 25 nm TiO2−x active layer that was deposited in a Leybold
Helios Pro XL Sputterer to achieve high quality film. The film
was sputtered from a Titanium metal target with 8 sccm flow of
O2, 35 sccm Ar, 2 kW at the cathode, and 15 sccm O2, 2 kW at an
additional plasma source. Then, again optical photolithography,
electron beam evaporation and lift off process were used to
pattern and deposit the 10 nm Pt top electrodes (TEs). Figure 2
shows a cross-section and microphotograph of Ti/Pt/TiO2−x/Pt
memristor prototype (device area: 60× 60µm).

2.3. Circuits for Memristive Learning
The basic building block of the CMOS circuits is a neuron tile
which is shown schematically in Figure 3A. The tile contains
an analog subthreshold leaky integrate and fire neuron which
is fully described in Qiao et al. (2015). The neuron integrates
synaptic current (with an adjustable leak) on a capacitor. When
the capacitor voltage crosses the firing threshold, the neuron
generates a digital spike and the capacitor voltage is reset to
ground. The plasticity circuit monitors the membrane potential,
Vmem, and the spike output of the neuron and uses them to
evaluate the conditions in Equations (1) and (2). The plasticity
circuit internally generates the C(t) signal by low-pass filtering
the neuron spikes. The plasticity circuit then generates two
digital signals: ′up′ and ′dn′ that determine whether incoming

FIGURE 2 | (A) Cross-section and (B) microphotograph of the memristive

device prototype employed in this work.

synapses/memristors should be potentiated, depressed, or left
unchanged when a pre-synaptic spike occurs according to
Equations (1) and (2). The plasticity circuit is described in more
detail in Qiao et al. (2015).

A neuron tile has a pre-synaptic and a post-synaptic
memristor terminal. These terminals are monitored and driven
by the high voltage post- and pre- interfaces which run at a supply
voltage of 5 V. All other circuits operate using a 1.8 V supply.
The 5 V operation allows thememristor interface circuits to apply
higher voltage pulses to the memristor terminals. The memristor
conductance changes if pulses above a certain magnitude (the
write threshold) are applied across it. The direction of the change
depends on the polarity of the pulse. We designed the interface
circuits so that they can interface to memristors having resistance
values as low as 1 KOhm and deliver write pulses of either polarity
with an amplitude of up to 2 V. The write voltage threshold for
the memristor devices we use in this paper is much lower than
2 V. The height of the write pulses are programmable, however,
so we can control their amplitudes up to 2 V. The width of the
programming pulse is also configurable and can be as wide as 1
ms. The read pulse amplitude (which needs to be below the write
threshold) is adjustable in the 0–2 V range and its width is also
adjustable. The memristor is inserted between the pre-synaptic
terminal of one tile and the post-synaptic terminal of another
(or the same) tile. Spikes generated in the neuron circuit of the
pre-synaptic tile will then cause a current proportional to the
memristor conductance to be injected into the post-synaptic tile
neuron. Moreover, based on the output of the plasticity circuit in
the post-synaptic tile, a voltage pulse of the appropriate polarity is
applied across the memristor terminals to increase/potentiate or
decrease/depress its conductance when the pre-synaptic neuron
tile generates a spike. In the rest of this section, we describe how
this behavior is realized.

The pre- and post-synaptic memristor interfaces are shown
in more detail in Figure 3B where they are linked by a
memristive element. We retain the ability to disconnect the
post-synaptic circuit from the memristor post-synaptic terminal
using switch S1. The pre-synaptic memristor terminal is kept
floating by default so no current can flow through the memristor
and its value remains constant. The post-synaptic terminal is
monitoring the current flowing through the memristor and
injecting a proportional current into the neuron. By keeping
the pre-synaptic terminal floating, no current flows through the
memristor, and no current is injected into the post-synaptic
neuron. When the pre-synaptic tile neuron spikes, or when
the tile receives an AER event from off-chip, the pre-synaptic
terminal is strongly clamped at 2.5 V for a short duration that
is controlled by an analog bias. By clamping the pre-synaptic
terminal to the middle of the supply voltage, we are able to apply
pulses of either polarity with an amplitude of up to 2.5 V by
setting the appropriate voltage on the post-synaptic terminal.
If the post-synaptic terminal is clamped to Vpost , then on pre-
synaptic spike, a pulse of amplitude Vpost − 2.5 is applied across
the memristor. Assume switch S1 is closed. The post-synaptic
terminal can be clamped to one of three possible values: 4.5, 0.5,
or 3 V. These clamping voltages can be adjusted through analog
biases. The clamping is done by the strong transistors M1 and
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A

B

FIGURE 3 | (A) High-level schematic of a neuron tile. (B) More detailed schematics of the high voltage pre- and post-synaptic interfaces in the neuron tile.

M2 which are each part of a negative feedback loop that controls
their gate potentials so as to maintain their drain potentials at one
of the three voltage clamp values. A number of switches which
are controlled by the ′up′ and ′dn′ signals from the plasticity
circuit determine which clamping voltage is selected according
to Table 1. For example, if switches S5 and S8 are closed and
switches S4, S6, and S7 are open, the post-synaptic terminal is
clamped by a PFET at 4.5 V. Switches S4–S8 are implemented as
single transistors as each switch has to pass a bias voltages that
is always either above 2.5 (PFET is used) or below 2.5 (NFET is
used). Switch S1 is implemented as a transmission gate.

At a pre-synaptic spike which causes the pre-synaptic terminal
to be clamped to 2.5 V, the memristor experiences a voltage pulse
of either 2.0, −2.0, or 0.5 V depending on whether the post-
synaptic terminal is at 4.5, 0.5, or 3V respectively. These three
cases can either potentiate/increase the memristor conductance,
depress/decrease it, or leave it unchanged respectively. It is
the plasticity circuit, which through the ′up′ and ′dn′ signals
controls switches S4–S8, which chooses between these three cases
(Table 1).

The post-synaptic side indirectly senses the memristor
conductance from the gate voltages V1 and V2. When the pre-
synaptic side is floating, the two feedback loops push V1 and V2
to 5V and 0V, respectively. The current generation circuit will
then generate very little current. At a pre-synaptic event, either
V1 or V2 abruptly changes so that the actively clamping transistor
has increased effective gate-source voltage so as to be able to
source/sink the memristor current while maintaining the drain
terminal at the clamp voltage. Larger memristor conductance
translates to a larger change in V1 or V2 and based on this
change, a proportional current Isyn is generated and injected
into the post-synaptic neuron. The current generation circuit

TABLE 1 | Effect of ′up′ and ′dn′ signals on the post-synaptic terminal

potential which in turn determines the type of plasticity event induced on

pre-synaptic spikes.

Plasticity signal Vpost Plasticity Open Closed

event switches switches

′up′ = 0 and ′dn′ = 0 3.0 No change S4, S5, S7 S6, S8

′up′ = 1 and ′dn′ = 0 4.5 Potentiate S4, S6, S7 S5, S8

′up′ = 0 and ′dn′ = 1 0.5 Depress S8, S5, S6 S4, S7

Shown are the open and closed switches in each case. The switches are controlled by

the ′up′ and ′dn′ signals.

approximately implements the equation:

Isyn = A ∗ V2− B ∗ V1 (6)

Where A and B are constants adjusted through biases. This linear
equation is, however, valid in a limited regime of V1 and V2.
This regime can be adjusted through biases. Note that Isyn is
proportional to the absolute value of the memristor current,
regardless of whether the current is sourced by transistor M1 or
sunk by transistor M2. The ′up′ and ′dn′ signals can not both be
high at the same time. For the three possible configurations of the
′up′ and ′dn′ signals in Table 1, M1 and M2 can not be supplying
current at the same time. For the possible configuration of
switches shown in Table 1, the feedback loops controlling V1 and
V2 ensure that the gate-source voltage of M1 and M2 can not
be simultaneously non-zero. This guarantees that the current in
either M1 or M2 is the current flowing through the memristor.

This active clamp technique allows maximum voltage
headroom for transistorsM1 andM2which allows them to clamp
the post-synaptic terminal at voltages near the supply rails. It
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also enables precise control over the magnitude of the voltage
pulses applied across the memristor. In Section 3.2, we present
experimental results to illustrate the behavior of the circuit in
Figure 3A.

The synaptic weight in the original spike-based Perceptron
learning rule has only two stable states due to the weight
drift (Equations 4 and 5) which pushes the weight to either
a high or a low value. This mechanism is not present in
our architecture; the synaptic weight (memristor conductance)
is an analog quantity that only changes in response to pre-
synaptic spikes and is stable otherwise. Realizing analog synaptic
weights that are long-term stable is difficult in pure CMOS as
analog weights that are encoded using charge on a capacitor are
easily corruptible through leakage paths and capacitive coupling
to nearby nodes. Therefore, in pure CMOS, a multi-stability
mechanism is required to push the weights to well-defined and
stable discrete states. Hybrid CMOS-memristor architectures
like ours can realize naturally stable analog weights (memristor
conductances) and thus do not require such a mechanism.

An 8 * 8 array of the neuron tile shown in Figure 3 was
fabricated on a standard 6 M 180 nm CMOS process as part of
a larger multi-purpose neuromorphic chip shown in Figure 4A.
The chip contains a bias generator based on the design in
Delbruck and Lichtsteiner (2006). The bias generator has a low
pin-count (5 pins) digital programming interface that can be used
to set the values of the analog biases used in the neuron tile
array. The other components of themulti-purpose neuromorphic
chip are described in detail in Qiao et al. (2015) but they are
not relevant for the current paper. Address event representation
(AER) interfaces carry spikes to/from the neuron tile array. The
pre- and post-synaptic terminals of the 64 neuron tiles were
routed to the top-metal level to make it possible to directly
deposit a cross-bar array of TiO2−x memristors on top that
connects a memristor between each pre-synaptic terminal and
each post-synaptic terminal. This post-processing step was not
carried out. In the chip, the pre- and post-synaptic memristor
terminals of two neuron tiles were directly connected to pads.
An off-chip memristor was then connected between the pre-
synaptic terminal of one of these neuron tiles and the post-
synaptic terminal of the other tile as shown in Figure 4B. This
setup was used to obtain the measurements presented in the rest
of this paper.

2.4. Crossbar Operation
In a crossbar configuration, N neuron tiles are interconnected by
an array ofN2 memristors where there is a memristor connecting
each pre-synaptic terminal to each post-synaptic terminal. To
achieve high synaptic/memristor integration densities, it is
important to avoid memristor specific CMOS circuits and only
access the memristors through the N pre-synaptic terminals and
N postsynaptic terminals which form the row lines and column
lines of the N ∗ N memristor array. Consider the simple case
of N = 2 neuron tiles connected using N2 = 4 memristors. If
the post-interfaces in tile 1 and 2 are clamping the post-synaptic
terminals to different voltages (which would be the case if one of
them is in the ′up′ state and the other is in the ′dn′ state) then
current would flow between the post-synaptic terminals through

A

B

FIGURE 4 | (A) Micrograph of the multi-purpose neuromorphic chip die

showing the neuron tile array and the bias generator. (B) Illustration of the

hardware setup used to obtain measurements for this paper. The pre-synaptic

terminal of one neuron tile is connected to the post-synaptic terminal of

another neuron tile through an off-chip TiO2−x memristor. A PC controls the

digital settings of the on-chip bias generator.

two memristors connected in series. This would lead to changes
in the conductances of these memristors in the absence of pre-
synaptic spikes and to synaptic current being mistakenly injected
into the neurons. Crossbar operation is thus only possible if
plasticity is switched off through the analog biases so that all
post-synaptic terminals are clamped at the same potential.

One benefit of using a crossbar array to implement synaptic
matrices is that a post-synaptic neuron only needs to know the
aggregate input it receives from all synapses rather than the
individual contributions. This considerably relaxes the design
of the driver circuits as these circuits do not need to isolate
the contribution of single devices. Moreover, it has been shown
that small selector-less arrays can perform quite well even as
analog memory, where good isolation of the contribution of each
individual element is required, provided certain assumptions
about the switching characteristics of the memristors (e.g.,
concerning maximum and minimum resistive states) hold (Serb
et al., 2015). Thus, even though the current implementation does
not take the additional complications of crossbar configurations
into account, there is evidence that extension of our work to
first small, selector-less arrays and then potentially to larger
selector-based arrays is possible.

3. Results

3.1. Initial Memristor Programming Results
Before the memristors could be used as artificial synapses
they were electrically prepared for operation. The preparation
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procedure consisted of an electroforming step, a stabilization
period and a characterization stage. During all stages the devices
are biased by a series of square-wave pulses of fixed duration (100
µ s) and variable amplitude.

Initially, the measured resistive state (RS) of all our devices
was above the 10 M� mark. During electroforming devices were
subjected to voltage pulse ramps beginning at 1 V and increasing
in steps of 0.5 V until the RS dropped to below 500 k� or the
maximum limit of 8 V was reached. Typically, electroforming
was achieved after applying a 6 V pulse. During electroforming,
voltage was applied to our devices through a 100 k� series
resistor as a measure to protect them against unduly high power
dissipation and consequent damage.

In the stabilization period devices are subjected to pulse
trains whose amplitudes and polarities are determined by
trial and error. During this phase the devices are forced to
oscillate between more resistive and more conductive states.
This is achieved through use of a bipolar stimulation protocol,
that is pulses of opposite polarities drive the RS in opposite
directions. During the stabilization period no stable limits for the
operational RS ceiling and floor can be reliably determined, nor
can appropriate voltages be found at which the memristor will
reliably switch between floor and ceiling.

The characterization stage follows seamlessly from the
stabilization period as the device settles to an operational RS
range. In this phase voltage pulse amplitudes are trimmed until
a set of amplitudes for normal operation biasing is selected.
Figure 5 shows a typical characterization stage series of read-
outs obtained from a well-behaved device. Notably different
voltage values are tested for both SET-type (toward lower RS) and
RESET-type pulse polarities within a relatively narrow range (≈
200mV). Typically devices can operate comfortably within such
narrow ranges although their operational range and the number
of pulses it takes to transition between floor and ceiling (and vice
versa) will be affected by the exact choice of pulse voltage. See
Figure 5 for an example.

Once pulsing voltages have been determined, the memristor
may be connected to the appropriately configured neuromorphic
circuitry, ready for bipolar-mode operation.

3.2. Characterization of CMOS Plasticity Circuits
On each pre-synaptic spike, the pre- and post-synaptic interface
circuits in the neuron tile shown in Figure 3 apply a voltage
pulse to update the memristor value according to the spike-based
perceptron learning rule. This behavior is illustrated in Figure 6A
where a fixed resistor was inserted between the pre-synaptic
terminal of one tile and the post-synaptic terminal of another
(as in Figure 4B but using a resistor instead of a memristor).
Constant current is injected into the neurons to maintain a
constant firing rate. The calcium signal, C(t), jumps up after each
spike and enters the plasticity range, then it decays back out of
the plasticity range. The bottom two plots in Figure 6A show
the ′up′ and ′dn′ signals and the neuron membrane potential
in the post-synaptic tile. The ′up′ and ′dn′ signals are generated
by the plasticity circuit in the post-synaptic tile (see Figure 3A).
This plasticity circuit calculates the calcium variable, C(t), from
the post-synaptic neuron spikes according to Equation (3). It

FIGURE 5 | Memristor switching characteristics during SET-type and

RESET-type (RST) pulsing. (A) Evolution of device under test (DUT) resistive

state in reaction to pulsed input stimulation. (B) Corresponding pulsing

sequence. Pulse width fixed at 100µs.

evaluates the conditions in Equations (1) and (2) to decide
whether to potentiate, depress, or leave unchanged incoming
synapses when the pre-synaptic neuron spikes. This decision
is communicated to the post-synaptic interface circuit which
clamps the post-synaptic terminal voltage vpost at 4.1V (when
the ′up′ signal is high), 0.1 V (when the ′dn′ signal is high), or 3 V
(when both the ′dn′ and ′up′ are low) as shown in Figure 6A. The
pre-synaptic terminal is floating by default and is clamped at 2.5
V for a short duration on each pre-synaptic spike. For each pre-
synaptic spike, this causes vpost − vpre to be approximately 2 V
when the ′up′ signal is high which would increase the memristor
conductance (potentiation), –2 V when the ′dn′ signal is high
which would decrease the memristor conductance (depression),
and 0.5 V otherwise as shown in Figure 6A which would leave
the memristor conductance unchanged and simply read out
its value. In Figure 6A, at the first pre-synaptic spike, C(t) is
outside the plasticity range and a small read pulse is applied. The
subsequent pre-synaptic spikes arrive first in the depression, then
in the potentiation intervals of the post-synaptic tile and large
amplitude pulses with the appropriate polarity are applied.

Figure 6B shows how the firing frequency of the post-synaptic
neuron varies as a function of the value of the resistor connecting
it to the pre-synaptic tile. The pre-synaptic tile generates spikes
at a constant frequency. The firing frequency of the post-synaptic
neuron steadily decreases with the decreasing conductance of
the resistor. The bias conditions were chosen to obtain a linear
region in the 1–4 KOhm resistance range beyond which the post-
synaptic neuron firing frequency saturates at a lower bound.
The neuron is biased to have a spontaneous baseline firing rate
which is about 290 Hz. The transfer function from the synaptic
resistance to the synaptic current injected into the neuron is
linear in the 1–4 KOhm region in Figure 6B but beyond that, it is
highly non-linear causing a small increase in synaptic resistance
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A

B

FIGURE 6 | (A) Membrane potential and the ′up′ and ′dn′ signals of a

post-synaptic tile receiving spikes at a constant rate from a pre-synaptic tile.

The plasticity circuit controls the post-synaptic terminal potential so as to

generate an appropriate programming/read pulse across the vpost− vpre

terminals on each pre-synaptic spike. (B) Decrease of post-synaptic neuron

firing frequency as the conductance of the afferent synaptic element

decreases while the pre-synaptic neuron firing rate is kept constant.

to lead to a greatly reduced synaptic current which becomes
negligible compared to the constant injection current used to
maintain the baseline firing rate. The neuron then saturates at
the baseline firing rate.

3.3. Memristive Plasticity Experiments
In the fabricated chip, the pre- and post-synaptic terminals of
two neuron tiles were available on the chip pads. The pre-
synaptic terminal of one tile was connected to the post-synaptic
terminal of the other tile through a TiO2−x memristor as shown
in Figure 4B. The pre-synaptic neuron was biased to fire at 47Hz.
The spike-based perceptron learning circuit was then successively
cycled between the potentiation and depression regimes (using
the analog biases) and the resulting post-synaptic firing rate
was observed. The post-synaptic firing rate was taken as an
indication of the synaptic weight or the conductance of the
memristive element. The system showed correct operation with
the postsynaptic firing rate increasing after a potentiation episode
and decreasing after a depression episode as shown in Figure 7.

A potentiation episode involves setting the biases of the
plasticity circuit in Figure 3A so that its ′up′ output signal is
constantly high which will cause the memristor post-synaptic

A

B

FIGURE 7 | (A) The post-synaptic membrane potential in response to a

pre-synaptic pulse train of 47 Hz. Vertical lines indicate the times of two

pre-synaptic spikes. (B) Frequency of the post-synaptic neuron after a number

of plasticity episodes. Plasticity episodes were applied in succession by

adjusting the analog biases to put the post-synaptic neuron tile in the

potentiation and depression regimes.

terminal to be clamped at approximately 4.1 V as shown in
Figure 6A. On each pre-synaptic spike, a pulse of approximately
2 V is thus applied across the memristor terminals which will act
to increase its conductance. Similarly, in a depression episode,
the ′dn′ output signal is constantly high which will cause a
pulse of approximately –2 V to be applied across the memristor
terminals on each pre-synaptic spike which will act to decrease its
conductance. After each plasticity episode, plasticity was disabled
and the post-synaptic neuron firing rate measured, then the next
plasticity episode is applied.

4. Discussion

4.1. Memristive Device Characteristics
Figure 5 shows the typical operation of a “well-behaved”
memristor in response to trains of input voltage pulses. A number
of key features are noteworthy:

• Bipolar operation: Pulses of opposite polarity precipitate
resistive state changes in opposite directions. In the case of our
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devices, a positive voltage applied to the top electrode (bottom
electrode grounded) causes potentiation.

• Bidirectionally gradual switching: Transitions between resistive
state floor and ceiling occur over many pulses, not just one.
This allows the device to work as a multi-level weight artificial
synapse (as opposed to binary).

• Bidirectionally saturating switching: When a device is
bombarded by trains of identical voltage pulses it approaches
its operational resistive state floor and ceiling in progressively
smaller steps. This implies that the middle of the resistive state
range is expected to be most often unoccupied in operando, as
it is traversed quickly in either direction under pulsing. The
resistive state will be therefore multi-level in nature, but most
of the time distinctly high or low.

• Biasing parameter variation tolerance: The device can remain
functional under a relatively wide range of bias voltages.
We obtain good switching behavior for voltage pulses in the
0.75–1.2 V range. The device can safely operate with voltage
pulses of up to 2 V. This bodes well for operation in tandem
with practical electronic systems and for resistive switching
behavior tuning.

These features allow the memristive devices to exhibit the correct
behavior when coupled to the neuromorphic circuits described
in Section 2.3, both as binary and as multi-level synapses.
Only binary synaptic operation was investigated in the plasticity
experiments.

4.2. The Spike-based Perceptron Learning Rule
in CMOS-memristor Architectures
The spike-based Perceptron plasticity rule has been implemented
in CMOS neuromorphic systems using various types of
circuits such as subthreshold circuits (Mitra et al., 2009)
and switched capacitor circuits (Noack et al., 2015). In this
paper, we have presented a physical implementation of the
first hybrid CMOS-memristor architecture that implements a
spike-based Perceptron learning plasticity rule. The physical
CMOS-memristor system we presented is a standalone system
in which the custom CMOS chip connects directly to the
memristive devices. The CMOS chip implements the neuron
elements together with dedicated per-neuron circuits that
can program (potentiate or depress) the memristive synaptic
elements as well as sense their conductances/weights to generate
proportional Excitatory Post-Synaptic Currents (EPSCs) in the
post-synaptic neuron in response to pre-synaptic spikes.We have
presented direct measurements that illustrate the behavior of this
physical CMOS-memristor system. This is the first standalone
neuromorphic system that combines custom neuron circuits with
memristor programming and sensing circuits acting on physical
memristive devices.

Many highly accurate and biologically grounded, i.e., non-
empirical, synaptic plasticity rules make use of several auxiliary
variables beyond spike times in the pre- and post-synaptic
neurons to control synaptic weight updates (Pfister et al., 2006;
Brader et al., 2007; Clopath and Gerstner, 2010; Mayr and

Partzsch, 2010; Graupner and Brunel, 2012). These auxiliary
variables may include low-pass filtered versions of the membrane
potential (Clopath and Gerstner, 2010) or a low-pass filtered
version of the neuron’s spike train (Brader et al., 2007).
Interestingly, the time difference between pre- and post-synaptic
spikes does not figure explicitly in these models. This presents
a problem for current neuromorphic memristive architectures
that mainly depend on this time difference (through the overlap
between pre- and post-synaptic spike-triggered waveforms) to
induce weight updates. These architectures will not be able to
handle weight updates that are triggered on single pre- or post-
synaptic spikes.

The architecture we presented triggers weight updates on
single pre-synaptic spikes. This has a significant advantage: at the
time of a pre-synaptic spike, the neuromorphic synapse can be
immediately potentiated or depressed based on the current state
of the post-synaptic neuron; the neuromorphic system does not
have to wait for a post-synaptic spike to know the outcome of
the plasticity event. Implementations of classical pair-wise STDP
rules using memristors typically trigger long waveforms on the
pre- and post-synaptic sides of the memristor in response to pre-
and post-synaptic spikes respectively. When these waveforms
overlap, the potential difference across the memristor exceeds
a threshold and changes in memristor conductance occur. The
duration of these waveforms dictate the STDP window. The
overlapping waveforms paradigm is problematic in the high
spike rate regime as multiple spikes can occur within the STDP
window, thereby corrupting the synaptic weight update. By
contrast this problem is completely avoided in the case of the
spike-based Perceptron learning rule.

In the original learning rule (Brader et al., 2007) the weights
were bistable, i.e., they gradually drifted to one of two stable
states. This had the effect of consolidating synaptic changes and
making it more difficult for a synaptic pattern to be corrupted
by spurious spikes. Our architecture does not implement such
continuous (non event-driven) weight drift. This indicates that
synaptic rule features that simplify pure CMOS implementations
like bistable weights do not necessarily translate to simpler
CMOS-memristor implementations.

4.3. Outlook
The architecture we describe represents a first step toward hybrid
CMOS-memristor implementations of more elaborate plasticity
rules that go beyond standard STDP. Further developments will
have to address the problem of plastic crossbar operation as well
as mechanisms that allow continuous or non event-driven weight
updates.
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Memristive devices are popular among neuromorphic engineers for their ability to

emulate forms of spike-driven synaptic plasticity by applying specific voltage and

current waveforms at their two terminals. In this paper, we investigate spike-timing

dependent plasticity (STDP) with a single pairing of one presynaptic voltage spike and one

post-synaptic voltage spike in a BiFeO3 memristive device. In most memristive materials

the learning window is primarily a function of the material characteristics and not of

the applied waveform. In contrast, we show that the analog resistive switching of the

developed artificial synapses allows to adjust the learning time constant of the STDP

function from 25ms to 125µs via the duration of applied voltage spikes. Also, as the

induced weight change may degrade, we investigate the remanence of the resistance

change for several hours after analog resistive switching, thus emulating the processes

expected in biological synapses. As the power consumption is a major constraint in

neuromorphic circuits, we show methods to reduce the consumed energy per setting

pulse to only 4.5 pJ in the developed artificial synapses.

Keywords: BiFeO3 memristor, artificial synapse, single pairing STDP, memory consolidation, learning window,

low-power device

Introduction

Since the discovery of spike-timing dependent plasticity (STDP) in biological synapses (Bi and Poo,
1998; Snider, 2008; Di Lorenzo and Victor, 2013), scientists have been captivated by the idea of
changing the synaptic weight, i.e., the strength between the pre- and post-neuron, in bioinspired
electronic systems in a fashion similar to biology (Indiveri et al., 2006). However, the circuit-
oriented approach is complicated because the “synaptic weight” variable has to be stored typically
either as charge in a capacitor (Koickal et al., 2006) or even digitally in neuromorphic IC (Schemmel
et al., 2012; Mayr et al., 2013). This adds circuit complexity and increases energy consumption
(Indiveri et al., 2006; Adee, 2009; Ananthanarayanan et al., 2009). Therefore, nonvolatile analog
resistive switches, namely resistive random-access memory (RRAM) or memristors (Chua, 1971;
Du et al., 2013), responding to well-defined input signals by suitably changing their internal state
(“weight”) are currently developed. For example, the emulation of STDP with 60–80 pairings of

67
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pre- and post-synaptic spikes has been shown for artificial
synapses based onmemristive TiOx (Seo et al., 2011; Thomas and
Kaltschmidt, 2014), WOx (Chang et al., 2011), HfOx (Yu et al.,
2011), GST (Kuzum et al., 2012), and on the memristive BiFeO3

(Mayr et al., 2012; Cederström et al., 2013).
Figure 1A shows a memristor between the electrical

Integrate & Fire (I&F) neurons. The synaptic weight of the
memristor can be controlled by the time delay 1t between
pre- and post-spike from the 1st layer I&F neuron (Figure 1A)
(Zamarreño-Ramos et al., 2011). The 2nd layer I&F neuron
sums up the signals from all incoming neurons and generates
voltage spikes transmitted to other neurons (not shown)
through memristor-based artificial synapses. The memristive
BiFeO3(BFO) can serve as an analog resistive switch (Shuai et al.,
2011) with multiple distinguishable low resistance states (LRSs)
(Shuai et al., 2013; Jin et al., 2014) and with a single detectable
high resistance state (HRS). Due to the thermal diffusion of Ti
atoms and their substitutional incorporation into the lower part
of the BiFeO3 (BFO) layer during BFO thin film growth on a Pt/Ti
bottom electrode, the barrier at the Pt/Ti bottom electrode is
flexible.

Earlier we have shown that STDP and triplet plasticity
with learning windows on the millisecond time scale can be
faithfully emulated on BFO-based artificial synapses by applying
60–80 pairings of pre- and post-synaptic spikes (Mayr et al.,
2012; Cederström et al., 2013). In this work we investigate a
significantly wider range of timescale configurability, ranging

FIGURE 1 | (A) Schematic illustration of the memristor-based synaptic

electronics. The artificial synapses are placed between Integrate & Fire

neurons (I&F neuron). With a well-defined time delay 1t between the pre- and

post-spikes the internal state (“weight”) of the memristor is suitably changed.

(B) Hysteretic current-voltage (IV) characteristics of a Au/BiFeO3/Pt memristor

in LRS and HRS with a top electrode area of 4.5E4µm2 under source

voltages with maximum sweeping pulse amplitude of 8.5 V and a pulse width

of 100ms. The current in high resistance state IHRS and in low resistance state

ILRS is read out at +2.0 V, after having switched the memristor into HRS and

LRS, respectively. The long term potentiation current ILTP and the long term

depression current ILTD lie below the reading current in LRS (ILRS) and HRS

(IHRS). Inset shows the structure of a BFO memristor. (C) Schematic

demonstration of the distribution of fixed Ti4+, fixed Fe3+ and mobile V+o .

from 25ms to 125µs. To the best of our knowledge, this kind
of timescale configurability has not been shown in memristive
synapses before. We also examine the evolution of the induced
memristive weight change over time and provide several power
consumption figures. By increasing the programming voltage
(HRS/LRS writing pulse amplitude), it is possible to decrease
the switching pulse width as well as the power consumption
during a single STDP writing process on BFO-based artificial
synapses. Furthermore, the increased programming voltage also
shortens the total pairing spike time, and enables to move from
the standard biology-like 60–80 spike pairing STDP experiment
to a single pairing STDP experiment that results in the same
weight/memristance change.

Our work is structured as follows: In Section Materials and
Methods, we describe the non-volatile resistive switching of
BFO–based artificial synapses and introduce the single pairing
STDP pulse sequence. In Section Results, we present the
measured learning window, memory consolidation, and energy
consumption of the single pairing STDP in BFO-based artificial
synapses and discuss configurability, energy consumption, and
retention of weight change in Section Discussion. The paper is
summarized and an outlook is given in Section Summary and
Outlook.

Materials and Methods

Nonvolatile, Analog Resistive Switching in BiFeO3
Polycrystalline, 600 nm thick BiFeO3 (BFO) thin films with
a flexible bottom barrier have been grown by pulsed laser
deposition on Pt/Ti/SiO2/Si substrates. Circular Au top contacts
have been magnetron sputtered on the BFO thin films using
a shadow mask (Shuai et al., 2011, 2013; Jin et al., 2014).
The Pt/Ti bottom electrode and the Au top contacts posses a
flexible and a fixed barrier height, respectively. As illustrated in
Figure 1B, by applying the sweeping source voltage from 0V
→ −8.5V → +8.5V → 0V between the Au top electrode
and the bottom electrode, the current-voltage characteristics,
which were recorded using a Keithley source meter 2400, reveal
reproducible nonvolatile hysteretic bipolar resistive switching in
BFO memristors with mobile donors (oxygen vacancies) and
fixed donors (Ti donors). As illustrated in Figure 1C which
has been adapted from Ref. (You et al., 2014), the physical
mechanism underlying resistive switching in BFO memristors
is related with the nonvolatile change of flexible barriers in Ti-
containing BFO memristors. Due to voltage application of a LRS
writing pulse, fixed Ti donors close to the bottom electrode can
effectively trap mobile oxygen vacancies in BFO. The bottom
electrode becomes non-rectifying and the BFO memristor is in
LRS. On the other hand, when applying the HRS switching pulse,
the mobile donors in BFO memristors are redistributed between
the top and the bottom electrode. The bottom electrode becomes
rectifying and the BFO memristor is in HRS. Note that for both
writing pulses the Au top electrode remains rectifying.

A single writing pulse with an amplitude Vw = +8.0V and
−8.0 V can be used to switch the BFO memristor into LRS and
HRS, respectively. The maximum possible amplitude increases
with the thickness of the BFO memristor and decreases with
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the length of the writing pulse. For a BFO layer thickness of
600 nm and a writing pulse length of 100ms, the barrier height
of the bottom electrode typically starts to change at a writing
pulse of amplitude Vw = +3.0V. Applying a dc voltage below
+2.0V to the BFO memristor does not change the barrier height
of the bottom electrode, and the state of the BFO memristor
does not change. Therefore, the +2.0V dc voltage is defined
as the reading bias for the 600 nm thick BFO memristor. The
ratio between the resistance RHRS in HRS and the resistance
RLRS in LRS amounts to RHRS/RLRS = 2770 (Figure 1B). For
changing the synaptic weight the absolute value of the amplitude
Vp of the pre-synaptic and post-synaptic spike has to be larger
than the reading bias amplitude +2.0V (Smerieri et al., 2008;
Borghetti et al., 2009; Lai et al., 2009). In our previous work,
we used a 500 nm thick BFO layer and an amplitude of 2.3 and
2.0V for STDP with 60–80 pairings of pre- and post-synaptic
spikes. In this work, we use a 600 nm thick BFO layer and an
amplitude Vp of 3.0 V for STDP with single pairing of pre-
and post-synaptic spikes. For the potentiating (depressing) spike
sequence, the long term potentiation current ILTP (long-term
depression current ILTD) decreases exponentially with decreased
pulse amplitude in positive (negative) voltage range: ILRS > ILTP
(IHRS < ILTD).

The nonvolatile resistive switching of BFO was examined by a
retention test (Figure 2A). A single writing pulse ofVw = +8.0V
and −8.0V and a pulse width of tp = 100ms was used to switch
the BFO memristor into LRS and HRS, respectively. The reading
currents have been read out with a reading bias of Vr = +2.0V
and are defined as the current of HRS (IHRS) and LRS (ILRS).
As shown in Figure 2A the BFO memristor exhibits degradation
of the LRS within the testing time of 2 h. No significant change
has been observed for HRS during the retention time of 5 h.
This non-ideal retention motivated us to investigate memory
consolidation (Clopath et al., 2008) in BFO with the shortened
pulse sequence of single pairing STDP.

A BFO memristor with multilevel resistive switching can
be considered as an analog resistive switch and used as an
artificial synapses. The retention of multilevel resistive switching
is illustrated in Figure 2B. Positive writing pulses ranging from
2.0 to 8.0V are applied to the BFO-based artificial synapse. As
expected from the current-voltage characteristics (Figure 1B),
the reading current at 2.0 V increases with increasing amplitude
of the writing bias. After applying the positive writing pulses
Vw (as switched, tw = 2 s), the reading current was largest
and slightly decreased (30mins, tw = 30min) with increasing
waiting time tw (Figure 2B). However, due to the degradation
(Figure 2B) different LRSs will become indistinguishable. E.g.,
the reading current for a writing bias of Vw = 5.5V and a
waiting time of tw= 2 s is the same as the reading current for
Vw = 6.0V and tw = 30min. We have already shown that the
retention of BFOmemristors can be significantly improved by an
additional BFO surface modification using low energy Ar+ ion
irradiation before depositing the Au top electrode (Shuai et al.,
2011). Optimized parameters for the Ar+ irradiation process are
discussed in Ref. (Ou et al., 2013). The Ar+ irradiation helps to
homogenize the average crystallite size in the polycrystalline BFO
memristors.

Pulse Sequence for Single Pairing Spike-timing
Dependent Plasticity
In our previous work, we have used a bias amplitude of Vp =

2.3V for STDP with 60–80 pairings of pre- and post-synaptic
spikes (Mayr et al., 2012; Cederström et al., 2013). Especially,
Mayr et al. illustrates how the pre- and post-synaptic waveforms
of a specific biology-derived synaptic plasticity rule (Mayr and
Partzsch, 2010) can be adjusted to operate the BFO memristors.
The resulting waveforms are comparable to the waveforms
proposed by Zamarreño-Ramos et al. (2011). In order to shorten
the total pairing spike time, in this work we slightly increased
the bias amplitude to Vp = 3.0V and applied a single pre- and

FIGURE 2 | (A) Retention test with a reading bias of Vr = +2.0V after

setting the BFO memristor to LRS (red symbols) and to HRS (blue

symbols). The reading current has been recorded every 30 s. (B) Retention

of multilevel resistive switching in a BFO memristor, which has been initially

set to HRS by a writing voltage of Vw = −8.0V. The reading current has

been measured at a small reading bias of Vr = +2.0V directly after

switching BFO into one of the multiple LRSs with a positive writing bias of

Vw ranging from +2.0 to +8.0 V (top edge of the rectangles, tw = 2 s) and

30min later (bottom edge of the rectangles, tw = 30min). Note that the

reading current starts to increase for a writing voltage of ca. +3.0 V, i.e.,

the state of the BFO starts to change. All states in (B) are read with a

pulsed reading bias amplitude of Vr = +2.0V and length 100ms. Because

the reading current changes from Ir = 1.1E-2µA in HRS with R = 1.8E8 �

to Ir = 2µA in LRS with R = 1E6 �, the power (P = R · I2) will change from

2.2E-8 W in HRS to 4.0E-6 W in LRS. The resolution of a pulsed power

meter amounts to 0.01 dB. So theoretically more than 2000 power levels

would be achievable, and we expect that at least 32/64 levels are possible

in a power efficient manner.
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post-synaptic spike. In comparison to what is discussed in Mayr
et al. (2012), the single spike pairing instead of multiple (60–80)
pairings allows us to shorten the total spike time and to adjust
the learning time constant of the STDP function from 25ms to
125µs. The detailed signal scheme of Memristor initialization,
single pairing STDP, and memory consolidation for long-term

potentiation (LTP) and long-term depression (LTD) are shown
in Figure 3. In order to facilitate reproducing this signal scheme,
the parameters used in every step in the pulse sequence are
listed in Table 1. As illustrated in Figure 6A the signal scheme
for resistive switching from HRS into a single LRS (Figure 6B)
can be simplified and reduced to Memristor initialization for

FIGURE 3 | Signal scheme of Memristor initialization, Single pairing

STDP, and Memory consolidation. (A) A pre-post spike order is used for

long term potentiation (LTP). (B) A post-pre spike order is used for long term

depression (LTD). The potentiation current ILTP (depression current ILTD)and

the initial HRS current IHRS (and the initial LRS current ILRS) are used to

normalize the long term potentiation current 1ILTP (the long term depression

current 1ILTD) as defined in Equations (2) and (3). tp is the pulse width and

tw is the measurement waiting time before applying the reading pulse Vr .

TABLE 1 | Parameters for the potentiating spike sequence (1t > 0) and for the depressing spike sequence (1t < 0) during Memristor initialization,

Memory consolidation, and Single pairing STDP.

Step in pulse sequence Memristor

initialization

Memory

consolidation

Single pairing

STDP

Memory

consolidation

Memory

consolidation

Potentiating spike sequence -Vw & tp tw -Vp & tp/+Vp & τ

1t > 0

+Vp & tp/-Vp & τ

tw +Vr & tr

Depressing spike sequence +Vw & tp tw +Vp & tp/−Vp & τ

1t < 0

−Vp & tp/+Vp & τ

tw +Vr & tr

The amplitude |Vw |and the length tp of the writing bias pulse determine the Memristor initialization. The waiting time tw after Memristor initialization, the waiting time tw after Single pairing

STDP and the amplitude |Vr | and the length tr of the reading bias pulse determine Memory consolidation. The amplitude −Vp, the length tp, the amplitude +Vp and exponential decay τ

determine the presynaptic spike and the amplitude +Vp, the length tp, the amplitude −Vp, and the exponential decay τ determine the post-synaptic spike. The time delay between the

pre- and the post-spike is defined by 1t.
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LTP and to Memory consolidation for LTD (Figure 6A). The
step labeled Memristor initialization refers to the application of
a writing pulse to set the BFO memristor in HRS and LRS. In
the HRS the BFO memristor has both rectifying top and bottom
electrodes whereas in the LRS the BFOmemristor has a rectifying
top electrode and a non-rectifying bottom electrode (You et al.,
2014). For the pulse order leading to potentiation (Figure 3A),
a single negative pulse, i.e., the HRS writing pulse, is applied to
switch the memristive device into HRS. After the waiting time
tw a single pre- and a single post-spike is applied to the top
electrode of device. The pre- and post-spikes superimpose at
the BFO memristor as potentiating spike, and the spike timing
difference 1t determines the waveform of the potentiating spike
(1t = tp > 0 for the potentiating inputs). Each pre- and post-
spike consists of one rectangular pulse with pulse amplitude Vp

and one exponentially decaying pulse Vexp

Vexp = |Vp| • exp

(
−t

τ

)
, (1)

with the decay time τ = τpre = τpost, where τpre and τpost are
the exponential decay times of pre- and post-spikes, respectively.
In order to reduce the influence of the exponential decay on the
single pairing STDP function, we choose τ = 2.5 · tp. For the
potentiating (depressing) spike order, the spike timing difference
1t between the pre- and post-spike is positive (negative) and
lies in the range: tp = |1t| = 10 · tp. In both pre- and post-
spikes, the rectangular pulse is short compared to the decay
time of the exponential waveform, and the amplitude of the
overlapped spike pulses depends on the spike time difference
1t between both waveforms. After the measurement waiting
time tw the synaptic weight of BFO-based artificial synapses
has been checked by applying a reading bias of Vr = +2.0V
with a pulse width of tr = 100ms. The reading current is
defined as the potentiation current ILTP anddepression current
ILTD after sourcing potentiating spike and depressing spike,
respectively.

Finally, the reading current IHRS (ILRS) of BFO in HRS (LRS)
is measured at a reading bias of Vr = +2.0V after recording
ILTP (ILTD). For biological reasons it is desirable to keep STDP
bounded. Therefore, we have normalized the LTP and LTD
current values. After a potentiating spike sequence the synaptic
weight scales with the normalized potentiation current 1ILTP

1ILTP (%) =
ILTP − IHRS

ILTP
∗ 100%, (2)

and after a depressing spike sequence the synaptic weight scales
with the normalized depression current 1ILTD

1ILTD (%) =
ILTD − ILRS

ILRS
∗ 100%. (3)

After normalization using Equations (2) and (3) LTP lies in
the range from 0 to +100% and LTD lies in the range from 0
to −100%, respectively. As we have shown in Mayr et al. (2012),
the specific STDP characteristics can be configured through the

waveform. Specifically, τ pre directly translates to the STDP pre-
post time window, while τpost translates to the post-pre time
window. The Vp of the pre- and post-pulses translate to the
respective scaling of the STDP amplitudes.

Results

In the following single pairing STDP in BFO-based artificial
synapses (Section Nonvolatile, Analog Resistive Switching in
BiFeO3) is demonstrated by using different pulse widths tp and
measurement waiting times tw. The potentiating and depressing
input signals (Section Pulse Sequence for Single Pairing Spike-
timingDependent Plasticity) have been generated with anAgilent
pulse function arbitrary generator 81150A. The reading current
has been measured with a Keithley 2400 source meter.

Learning Window
According to the input signal scheme (Figure 3) the BFO
memristor is set in the HRS and in the LRS with a writing pulse
amplitude of Vw = −8.0 and +8.0V, respectively. For the single
pairing STDP measurements on a BFO-based artificial synapse
pre- and post-spikes of different pulse widths tp = 10ms, 1ms,
500µs, and 50µs, and with a pulse amplitude of |± Vp|= 3.0V,
and a waiting time tw 10 s have been chosen (Figure 4). The
exponential decay time constant (τ = 2.5 · tp) amounts to
τ = 25ms (Figure 4A), 2.5ms (Figure 4B), 1.25ms (Figure 4C),
and 125µs (Figure 4D). After recording ILTP (ILTD) the reading
current IHRS (ILRS) of BFO in HRS (LRS) has been measured at a
reading bias of Vr = +2.0V and the normalized potentiation
current 1ILTP Equation (2) and the normalized depression
current 1ILTD Equation (3) are calculated. The synaptic weight
of the BFO memristor scales with the normalized potentiation
current 1ILTP and the normalized depression current 1ILTD. If
the prespike precedes the post-spike (1t > 0) biological synapses
(Bi and Poo, 1998) undergo long term potentiation LTP, i.e.,
the connection between two neurons becomes stronger. On the
other hand, if the post-spike precedes the prespike (1t < 0),
biological synapses undergo long term depression LTD, i.e., the
connection between two neurons becomes weaker. We have
measured the LTD current ILTD and the LTP current ILTP in
a BFO-based artificial synapse and can show that the BFO
memristor emulates the STDP function of biological synapses.
The normalized current 1I decreases with increasing delay time
|1t|. The normalized current curve for positive and negative
1t is the LTP and LTD curve (Figure 4), respectively. As an
example, in the following we discuss the LTP curve in Figure 4

for 1t = tp > 0. Initially the BFO-based artificial synapse is set
into HRS. The maximum amplitude of the potentiating spike
amounts to 2Vp = +6.0V. For this potentiating spike the BFO-
based artificial synapse is fully switched to LRS. The normalized
potentiation current 1ILTP at 1t = tp amounts to ca. 100%.
In the time delay range 0 < tp < 1t ≤ 10 · tp, the maximum
amplitude of potentiating spikes is reduced from 6.0 to 3.2V.
Therefore, the exponential-like decay of the normalized current
dominates STDP with increasing 1t and the synapse cannot be
fully switched to LRS by applying these potentiating spikes. For
both positive and negative time delays |1t |= 10 · tp,1I decreases
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FIGURE 4 | Long term depression current 1ILTD (negative range of

y-axis) and long term potentiation current 1ILTP (positive range of

y-axis) of a ca. 600nm thick BFO memristor with a contact area of

4.5E4 µm2 for single pairing STDP with pulse width (A) tp = 10ms, (B)

tp = 1ms, (C) tp = 500 µs and (D) tp = 50 µs, measurement waiting

time tw = 10000ms, pulse amplitude Vp = 3.0V, reading pulse

amplitude Vr = +2.0V and reading pulse width tr = 100ms. 1ILTD and

1ILTP have been normalized using Equations (2) and (3), respectively. The

memristor was preset in HRS and LRS (Memristor initialization in Table 1)

with a writing pulse amplitude of Vw = −8.0V and Vw = +8.0V, respectively.

with decreasing pulse width tp. At tp = 500µs and 50µs, 1ILTP
amounts to 0% at |1t | = 10 · tp. It is also noticed that 1ILTP
decreases more strongly than 1ILTD in the larger time delay
range. That is because the threshold voltage for LRS is higher
than the threshold voltage for HRS. For example in Ref. (Mayr
et al., 2012) a voltage of 2.3 V and of 2.0V has been used as the
threshold voltage to switch a BFO-based artificial synapse to LRS
and HRS, respectively. The shaded regions in Figure 4 show the
ranges of the delay time1t where the normalized current is larger
than 50% for four different pulse widths tp. This range is also
called learning window and decreases from 25ms to 125µs with
decreasing pulse width tp from 10ms to 50µs.

As can be seen from Figure 4, the STDP time windows can
be finely controlled. Specifically, making 1t longer results in
a monotonous decrease in both potentiation and depression
with increasing 1t, i.e., the memristance change directly and
fine grainedly follows the applied waveform resulting from the
overlay of pre- and post-pulse. This is in contrast to most
other reported memristive synapses, where the time difference
between pre- and post-pulse only translates to a stochastic,
average change of memristance (Jo et al., 2010; Alibart et al.,
2012).

Memory Consolidation
Memory consolidation has been investigated inmodels of biology
in order to improve the understanding of the translation of an
initially induced weight change to long term weight stabilization

(Anokhin, 2005; Clopath et al., 2008). This motivated us to
investigate the memristance weight, i.e., memory consolidation,
in BFO-based artificial synapses in more details by performing
single pairing STDP measurements with different waiting times
tw (2 s = tw = 5 h). In biological systems, the waiting
time corresponds to the time which elapses before something
learned is retrieved. On the other hand, for the memory
consolidation measurements, we have again used the ca. 600 nm
thick BFO-based artificial synapses and applied a writing voltage
of Vw = +6.0V. In Figure 5A the corresponding STDP
data are plotted for tw = 2, 60, and 300 s. We have chosen
single pre- and post-synaptic spikes with the same absolute
value of the pulse amplitude Vp = 3.0V, pulse width tp =

10ms and exponential decay time τ = 25ms. As shown in
Figure 5A, the LTP and LTD curves shift toward low normalized
current values with increasing waiting time in both positive
and negative spike timing ranges. Therefore, the dependence
of LTP and LTD on the writing pulse amplitude can be used
to trace differences in the LTP and LTD curves of single
pairing STDP. For BFO-based artificial synapses with a smaller
writing voltage Vw, the optimized STDP curve with more
significant exponential-like function (as shown in Figure 4) is
reproducible by choosing a smaller pulse amplitude Vp, e.g.,
Vp = 2.5V.

Furthermore, memory consolidation measurements
(Figure 5B) reveal that for a waiting time tw shorter than
1 h there is a visible change of reading current (degradation)
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FIGURE 5 | (A) STDP of a BFO-based artificial synapses with

different waiting times tw = 2 s (circles), 1min (quadrangles), and

5min (triangles) for tp = 1t = 10tp. Pulse amplitude Vp = 3.0V, pulse

width tp = 10ms, and exponential decay time τ = 25ms. (B)

Memristance weight consolidation for a fixed 1t = tp = 10ms and

for a waiting time of tw = 2 s (circles), 60 s (quadrangles), and 300 s

(triangles) from (A) and tw = 0.5, 1, 2, 3, 4, 5 h (squares). The

pulse amplitude Vp amounts to 3.0 V. The exponential decay

amounts to τ = 25ms. The writing voltage for Memristor initialization

amounts to |± VW | = 6.0V.

both in positive and negative spike timing ranges after applying
a single pre-synaptic and post-synaptic pulse sequence, whereas
for a waiting time tw longer than 2 h the current is stabilized. This
is in agreement with the results from retention measurements
(Figure 2A).

Energy Consumption
Low energy efficiency, large chip size, and complex STDP synapse
circuits aremajor bottlenecks of today’s bio-inspired systems, e.g.,
neural networks where synapses typically outnumber neurons by
more than 500:1. In order to reliably observe STDP functionality
the corresponding current changes should lie in the nA current
range and above. In addition to the stabilization of multilevel
resistive switching, we can also increase the current level in
a controlled manner by low-energy Ar+ ion irradiation (Ou
et al., 2013). This will allow for integrating BFO-based artificial
synapses with smaller contact area A (Table 2), e.g., in neural
networks, without adding another device for amplifying current
changes. The estimated energy consumption of each synapse
in human brain amounts to only 1–10 fJ (Table 2). In order
to approach the high energy efficiency of biological synapses,
we applied single pairing (not 60–80 pairing) STDP pulses to
BFO-based artificial synapses. For single pairing STDP most of
the energy is consumed during SET operation, e.g., Memristor
initialization into LRS (Table 1, Figure 3). For example, in
TiN/Ge2Sb2Te5/TiN/W artificial synapses the energy for SET
operation is 50 pJ while the energy for RESET operation is 0.675
pJ Ref. (Kuzum et al., 2012).

The energy consumed during SET operation is

E = V ′
w • Iavg • t′p, (4)

with Iavg = Ipeak/2. The writing voltage amplitude Vw, the
setting current Ipeak, and writing pulse width tp are the crucial
parameters for evaluating the energy consumption. Note that
for the polycrystalline BFO memristors with different sizes of

BFO crystallites, larger BFO crystallites below the top electrode
are possibly not switchable. Therefore, the effective area of the
top electrode might be smaller than the nominal area of the top
electrode. Using BFO-based artificial synapses we can downscale
the size of the top electrodes (Jin et al., 2014), increase the pulse
amplitude V ′

w and also reduce the pulse width t′p Equation (4)
to further decrease the energy consumption per setting process
(Figure 6).

In order to optimize the energy efficiency of BFO-based
artificial synapses, we have applied a large writing pulse
amplitude of 23.0V to compensate the short pulse width of
50 ns. The corresponding energy consumption amounts to 4.7
pJ. The LRS reading current and HRS reading current at 2.0 V
amount to 980 and 64 nA, respectively. The theoretical maximum
normalized current ranges from 93.5 to 0% and from 0 to 93.5%
in both curves Equation (2) and (3).

In Table 2 (Kandel and Schwartz, 1985; Jo et al., 2010; Chang
et al., 2011; Yu et al., 2011; Kuzum et al., 2012; Wu et al.,
2012) different memristor-based artificial synapses are listed
and compared with respect to their energy consumption per
(re)setting process. The TiN/Ti/AlOx/TiN/Ti memristor (Wu
et al., 2012) shows the smallest energy consumption of 1.5 pJ
per SET pulse. It is expected that to a certain extent the energy
consumption can be further reduced by further reducing the
electrode area size A. However, one has to consider that BFO is
a polycrystalline thin film and that only 1–0.1% of the crystallites
below the top electrode of the polycrystalline BFO are switched
in single pairing STDP.

Discussion

Configurability
In this work single pairing STDP in BFO-based artificial synapses
has been demonstrated for emulating the functionality and the
plasticity of biological synapses. The waveform-defined plasticity
of BFO memristors in addition to their multilevel memristive
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TABLE 2 | Energy consumption E, setting potential amplitude Vw , average setting current Iavg, pulse width tp and top electrode area size A of resistive

switching during SET operation of different memristor-based artificial synapses (Kandel and Schwartz, 1985; Jo et al., 2010; Chang et al., 2011; Yu et al.,

2011; Kuzum et al., 2012; Wu et al., 2012).

Single synapse E (pJ) Vw (V) Iavg (µA) tp (ns) A (µm2)

Human brain (total number of synapses

N = 1015, Ptotal = 10 W) (Kandel and

Schwartz, 1985; Da Costa, 2013)

(1–10) *1E–3 - - - 0.12

TiN/Ti/AlOx/TiN/Ti (Wu et al., 2012) 1.5 +1.5 +100 10 0.72

Au/BFO/Pt/Ti (this paper) 4.7 +23.0 +4.1 50 4.5E+4

TiN/HfOx/AlOx/Pt (Yu et al., 2011) 6.0 −2.5 −240 10 0.0079

TiN/Ge2Sb2Te5/TiN/W (Kuzum et al., 2012) 50 −5.5 −900 10 0.018

CMOS-electrode/Ag + Si/CMOS-electrode

(Jo and Lu, 2008)

430 +3.2 +0.45 3.0E+5 0.031

Pd/WOx/W/SiO2/Si (Chang et al., 2011) 520 +1.3 +0.40 1.0E+6 0.053

FIGURE 6 | (A) Signal scheme for resistive switching a BFO memristor in

HRS into LRS. The memristor is initialized into the HRS by applying a writing

voltage Vw = −6.0V with a pulse width tp = 100ms, and is then switched

back to different LRSs with different pulse amplitudes V ′w and pulse widths

t′p. (B) Reading current of the BFO memristor with a contact area of

4.5E4µm2 in LRS in dependence on the writing voltage V ′w in the range

from 6.0 to 23.0 V and with different constant pulse widths of t′p = 50ms,

1ms, 50µs, 1µs, 500 ns, and 50 ns. The reading voltage amounts to +2.0 V.

For a given pulse width at least one writing voltage (red bar) is large enough

to set the BFO memristor in the LRS. In that case the reading currents is

even larger than the current ILRS read out after applying a writing voltage of

Vw = +6.0V with a pulse width of t′p = 100ms (first red bar).

programming capability enables easy control of the STDP
time windows, as evidenced by the three orders of magnitude
timescale configurability shown in this paper. While there has
been a lot of simulation work on this topic, the number of devices
where STDP or variations have actually been implemented and
measured is still fairly small (Jo et al., 2010; Alibart et al., 2012).
Among those, our highly-configurable, finely grained learning
curves are unique, other implementations exhibit statistical
variations (Jo et al., 2010), can only assume a few discrete levels
(Alibart et al., 2012) or the learning windows are device-inherent,
i.e., cannot be adjusted (Ohno et al., 2011). We expect that for
BFO-based artificial synapses at least 32/64 levels are possible in a
power efficient manner. In addition, the wide range of timescales
possible in BFO-based synapses enables e.g., a timebase-tunable
system that could learn a classification offline in an accelerated
manner, while still able to interact with real-time sensors before
or after this learning.

As mentioned in the introduction, BFO-based artificial
synapses can be used for conventional STDP experiments, where
only multiple spike pairings exhibit significant weight change,

as well as in the mode used in this paper, where a single
pairing already induces a significant weight change. By changing
the voltage of the pre- and post-synaptic pulses, any point in
between these two extremes can also be chosen, again showing
the excellent configurability of BFO-based artificial synapses.
However, the versatility of BFO memristors comes at the price
that in contrast to e.g., phase-change materials, BFO is not easily
integrated on top of CMOS (Shuai et al., 2013).

Energy Consumption
In Table 2, we have shown an energy consumption of E =

4.7 pJ in a BFO-based artificial synapse with electrode size of
4.52E4µm2. While this is still three orders of magnitude above
the energy consumption of biological synapses, it is one of the
lowest reported so far for other artificial synapses. Compared to
neuromorphic approaches, all memristive approaches are several
orders of magnitude better (Azghadi et al., 2014). In terms
of absolute area, the BFO memristor is comparable to some
neuromorphic implementations (Hasler and Marr, 2013; Noack
et al., 2015), but not competitive withmemristor crossbar devices,
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as we are employing a single device test structure that has a large
contact size for reasons of convenience. However, BFO device
scaling is well established, thus we can aggressively scale the size
of the top electrode to 10µm2 and the thickness of the BFO to
100 nm (Jin et al., 2014). For BFO with larger electrode area size,
the current scales linearly with area size. For smaller electrode
area size we would expect that the current scales with the number
of BFO crystallites below the electrode. And in the limit case of
nanoscale electrodes, the smallest possible current should be the
current through single BFO crystallites.

Retention of Weight Change
We have investigated the retention of memristance weight
change across time. As Figure 5A shows, the basic shape of the
STDP curves is preserved across time. Figure 5B illustrates that
even after memory consolidation, we retain a graded weight, i.e.,
a unimodal weight distribution. Our synapse does not collapse
in either a potentiated or depressed (bimodal) distribution as
predicted in some synaptic models (Fusi et al., 2000; Clopath
et al., 2008). In memristive literature, there is usually no
investigation of these phenomena, the weight change is taken at
some unspecified time after induction and then assumed to be
non-volatile. Only very few articles have investigated the actual
non-volatility/weight retention across time and shown that the
assumption of a non-volatile change is not necessarily valid
(Chang et al., 2011). Thus, compared to other reports, this article
gives a neuromorphic designer a clear guide on how to utilize the
memristive synapses for long-term storage.

Interestingly, this investigation of memory consolidation is
also somewhat missing in the original biological measurements.
Usually, data on the weight evolution ca. 30–60min after
induction is provided, but only on single example pairing
experiments. These data points show various behaviors, from
unchanged weights after initial weight induction (Froemke and
Dan, 2002) to increases of weight change across time (Bi and
Poo, 1998), decreases across time (Markram et al., 1997) or
slow oscillations around the initial potentiated/depressed weight
value (Sjöström et al., 2001). However, it is unclear how the
overall STDP window consolidates over time. Thus, measuring
the evolution of an STDP curve across time after induction at
biological synapses similar to our investigation on memristive
synapses may actually be a quite interesting scientific question.

Summary and outlook

In this work we have investigated a wide range of timescale
configurability, ranging from 25ms to 125µs. Also, we have
investigated power consumption figures and have shown that it
is possible to decrease the switching pulse width and to reduce
the power consumption during a single STDP writing process on
BFO-based artificial synapses to only 4.5 pJ. Furthermore, the
increased programming voltage also shortens the total pairing
spike time, and enables to move from the standard biology-like
60–80 spike pairing STDP experiment to a single pairing STDP
experiment with the same weight/memristance change.

One important advantage of single STDP in comparison to
60–80 spike STDP is that both pre- and post-synaptic waveform

are causal, i.e., they start only at the pre- respectively post-
synaptic pulse. This is in contrast to most currently proposed
waveforms for memristive learning, where the waveforms have
to start well in advance of the actual pulse (Zamarreño-Ramos
et al., 2011), which requires pre-knowledge of a pulse occurrence.
Especially, in an unsupervised learning context with self-driven
neuron spiking, this pre-knowledge is simply not existent.

In a wider neuroscience context, waveform defined plasticity
as shown here could be seen as a general computational principle,
i.e., synapses are not likely to measure time differences as in
native forms of STDP rules, they are more likely to react to local
static (Ngezahayo et al., 2000) and dynamic (Dudek and Bear,
1992) state variables. In the future some interesting predictions
could be derived from that, e.g., STDP time constants that are
linked to synaptic conductance changes or to the membrane time
constant (Pfister et al., 2006; Mayr and Partzsch, 2010). These
predictions could be easily verified experimentally.
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Efficient Analog-Digital Converters (ADC) are one of the mainstays of mixed-signal
integrated circuit design. Besides the conventional ADCs used in mainstream ICs, there
have been various attempts in the past to utilize neuromorphic networks to accomplish
an efficient crossing between analog and digital domains, i.e., to build neurally inspired
ADCs. Generally, these have suffered from the same problems as conventional ADCs,
that is they require high-precision, handcrafted analog circuits and are thus not technology
portable. In this paper, we present an ADC based on the Neural Engineering Framework
(NEF). It carries out a large fraction of the overall ADC process in the digital domain, i.e.,
it is easily portable across technologies. The analog-digital conversion takes full advantage
of the high degree of parallelism inherent in neuromorphic networks, making for a very
scalable ADC. In addition, it has a number of features not commonly found in conventional
ADCs, such as a runtime reconfigurability of the ADC sampling rate, resolution and transfer
characteristic.

Keywords: neural network analog digital converter, neural engineering framework, ADC with signal processing,

multiple input ADC

1. INTRODUCTION
Circuits for analog-digital-conversion (ADC) are at the heart of
every integrated circuit (IC) that deals with sensory or other ana-
log input signals. Their performance and characteristics have a
large repercussion on the signal processing carried out in the later
(usual digital) stages of the IC, as distortions of the signal intro-
duced in the ADC cannot usually be recovered. In general, ADCs
because of their analog nature are handcrafted to achieve opti-
mum characteristics for a given application. They usually require
a wide range of custom analog circuit components, such as
amplifiers, voltage/charge/current converters, integrators, addi-
tion/subtraction circuits, threshold switches, etc (van de Plassche,
2003).

However, this handcrafted, analog nature of ADCs is not in
keeping with todays mostly digital Systems-on-Chip (SoC). SoCs
due to their digital nature can be rapidly prototyped and trans-
ferred across technology nodes, something not possible with a
handcrafted analog circuit. In addition, state-of-the-art deep-
submicron technology nodes have become increasingly worse in
their analog performance.

ADCs have started to partially follow this trend, offering
architectures such as Delta-Sigma-Modulators (DSM) that only
need low-performance analog components and move a large
part of their functionality into the digital domain (Marijan and
Ignjatovic, 2010; Mayr et al., 2010b). However, to really com-
ply with the demands placed on modern ADCs, inspiration may
be taken from a completely different domain, that of neural
information processing and neuromorphic design. Neural net-
works rely for their overall function on multiple replication of a

single, simple base element, the neuron. Thus, scaling and tech-
nology transfer of a neuromorphic ADC would be simplified. A
neural network represents data across a population, thus inher-
ently smoothing out variations and noise and making the signal
representation more robust. Neurons take analog data as input,
transferring it immediately into a pseudo-digital, timing based
pulse representation. Thus, all subsequent processing would be
digital directly after this first stage. Neural networks can repli-
cate non-linear transfer functions of one or several input variables
(Lovelace et al., 2010). Thus, sensor fusion and analog prepro-
cessing could be achieved, which in conventional ADCs requires
separate analog blocks (Chen et al., 2013).

This paper proposes using the Neural Engineering Framework
(NEF) (Eliasmith and Anderson, 2004) as a method to build an
ADC that incorporates most of the above advantages of neu-
ral networks. In the NEF, a signal is encoded across a neuron
population by a set of encoder weights and the transfer func-
tions of the neurons. A set of decoder weights can be computed
that extracts the signal itself or a transformation of it from the
postsynaptic current (PSC) traces of the neurons. By building
the encoder step and the neurons in analog circuitry while hav-
ing the decoding and signal reconstruction done in the digital
domain, a straightforward conversion from analog to digital can
be established.

Specifically, we show in this paper the usage of NEF as a lin-
ear, single input ADC comparable to conventional ADCs. The
theoretical and simulative analysis is supported by an example
design in a 180 nm CMOS technology, proving feasibility of the
approach. The remainder of the paper is structured as follows:
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section 2.1 introduces the NEF framework. In section 2.2, its gen-
eral application to analog-digital-conversion is given. Section 2.4
details the analog and digital circuit design. Results are given in
section 3.1 for an ADC based on idealized neurons in a neural
network simulator. Results for the actual hardware implementa-
tion of neurons, encoder and decoder network are given in section
3.2. Section 4 discusses the significance of the results.

2. MATERIALS AND METHODS
2.1. REPRESENTATION OF ANALOG VARIABLES IN THE NEURAL

ENGINEERING FRAMEWORK (NEF)
At its most basic, the NEF describes the transmission of an analog
value or a set of values across a neuron population and its sub-
sequent reconstruction from the neuron responses (see the upper
part of Figure 2). In an abridged form, the theory is the follow-
ing (Eliasmith and Anderson, 2004). A neuron population with a
transfer function G is instantiated:

ai = G
(
αi · isyn,i + bi

)
, (1)

with isyn,i as input current, αi as gain factor and bi as offset. The
transfer function can be e.g., that of a Leaky-Integrate-and-Fire
neuron (LIAF), building a spike rate response ai from isyn,i. A
vector variable �x is then encoded in this synaptic current:

isyn,i = �ei · �x. (2)

The encoding vector �ei can be thought of as the preferred direc-
tion vector for that neuron: the vector for which that neuron will
fire most strongly. To project the input vector into a sufficiently
high-dimensional representation, αi and bi are varied between
individual neurons. At the same time, allowing this variance in the
neuron parameters enables a simple encoding vector composed
of only discrete values. Usually, a binary vector consisting of +1
and -1 is chosen (Eliasmith and Anderson, 2004). Example tuning
curves of neurons (G

(
αi · isyn,i + bi

)
) are shown schematically in

Figure 1.

FIGURE 1 | Sample tuning curves for neurons in the NEF framework,

normalized input signal �x and normalized output frequency ai .

While Equations 1 and 2 allow us to convert a vector �x into
neural activity ai, it is also important to go the other way around.
That is, given some neural activity, what value is represented? The
simplest method is to find a linear decoder with decoder vector �di.
This is a set of weights that maps the activity back into an estimate
of �x, as follows:

�̂x = �ai �di. (3)

For this, the neuron tuning curves are characterized across the
input space �x. This is usually done in a regular raster. Specifically,
for the scalar input x of the NEF ADC, 50 sample points spaced
linearily across the normalized input range are applied as DC lev-
els of 1 s duration and the neuron output rate measured. Given
these characterized tuning curves, the optimal decoder weights
for reconstructing �x can be computed (Eliasmith and Anderson,
2004):

�d = �−1ϒ �ij = �xaiaj ϒj = �xaj�x (4)

The sum over x denotes the sum over the single characterization
points of the tuning curves. The above matrix operation arrives at
the least mean squared error fit for the decoder weights for a given
transformation, as was also demonstrated in Mayr et al. (2008)
for spectral reconstruction of a pixel sensor array (Henker et al.,
2007). Please note that the decoder weight computation is given
in Equation 4 for a linear reconstruction, but various non-linear
transformations of �x are also possible (Eliasmith and Anderson,
2004). The decoder weights �d and an exponential postsynaptic
current (PSC) kernel are then applied to each spike n of neuron i

to arrive at the decoded signal �̂x:

�̂x =
∑

i

{
∑

n

[hi(t − tn)] �di

}

with h(t) = 1

τpsc
· �(t) · e

− t
τpsc , (5)

where �(t) is the step function. This theory can be extended to
multiple networks and to symbol manipulation (Eliasmith and
Anderson, 2004), but for our purposes, encoding a signal and
decoding a transformation of that signal are sufficient.

2.2. AN ANALOG-DIGITAL-CONVERTER BASED ON THE NEF
The basic concept of using NEF as a single-channel ADC is shown
in the lower part of Figure 2. The input vector �x of Equation 2
is collapsed to a single scalar value Vin(t). The initial step is to
build a set of analog neurons that have varying tuning curves
in both encoding directions (Equation 1). Then, these tuning
curves are characterized and a set of decoding weights for a lin-
ear representation is computed (Equation 4). In operation, the
analog input signal is applied to all neurons in parallel. The
neurons feed their spikes into a synchronizer and a subsequent
clocked digital decoder that operates on digitized versions of the
decoder weights. An accumulator tree summarizes all spike con-
tributions for a given clock cycle. Please note: Since the single PSC
trains employed in Equation 5 are superimposed linearly and the
exponential function is self-similar, the order of this computation
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FIGURE 2 | Basic principle of NEF (upper diagram): encoding of an

analog value, neuronal representation, decoding and signal

reconstruction through an overlay of PSCs; Using NEF as an ADC (lower

diagram): analog encoder and neuron representation, neuron pulse

synchronization and digital decoder and lastly signal reconstruction via

the PSC kernel.

can be commuted. Thus, in the NEF ADC, the exponential ker-
nel is applied on the weighted spike summation as computed
for each time step, thus simplifying the digital processing. This
also eliminates the need for dedicated analog PSC circuits (Noack
et al., 2011). The output k(t) of this exponentially decaying sum
is the digital transformation of the analog value, i.e., the ADC
output.

In essence, the transfer characteristic of the ADC is built up
from the single neuron tuning curves via the decoder weights.
Thus, the decoder parametrization gives the transfer character-
istic of the ADC. Afterwards, a low-pass filter is applied through
the PSCs to suppress the high-frequency components caused by
the neuron pulses.

2.3. PERFORMANCE MEASURES FOR ADCs
To characterize the performance of the NEF ADC, comparison
measures with conventional ADCs are required. The main char-
acteristics of an ADC are its resolution (number of bits in each
digital output word corresponding to an analog input sample), its
sample rate (number of digital words representing analog values
per second), its response to a DC step at the input and its conver-
sion latency (i.e., time from analog input to digital conversion).
As the NEF ADC does not follow a conventional ADC process-
ing chain, these are not obvious in the current context. In section
3.1, we will derive analytical and empirical couterparts for these
characteristics for the NEF ADC.

Besides these baseline characteristics, there are a number of
performance figures that are usually employed to estimate the
performance of an ADC. The effective number of bits (ENOB)
is a measure where an analog DC signal is applied to the input
and the sigma of the resulting histogram of output codes is com-
puted (Baker, 2008). In essence, the ENOB computes the limit of
the ADC resolution, that is the level where the output code moves
from being correlated with the input signal toward noise. As the
ENOB is a single DC level measure, it provides no information
about the linearity of the transfer curve.

The transfer curve can be characterized by the integral nonlin-
earity (INL). For the INL, a ramp is applied to the input and the
deviation of the overall transfer characteristic from the ideal one is
computed (Provost and Sanchez-Sinencio, 2003). The maximum
INL as a scalar measure provides information about the linearity
limit of the ADC. As we will show later, a plot of the INL across
the input DC level is also informative, as it shows the causes of the
INL limits in terms of the NEF ADC design parameters.

The signal to noise-plus-distortion (SINAD) ratio uses a sine
signal at the input, to measure the amplitude of the signal in the
digital output minus the harmonics and noise (Baker, 2008). In
this work, we have chosen INL and ENOB as the main perfor-
mance indicators, as they capture a large part of the overall ADC
characteristics and are easiest to simulate and extract.

2.4. OVERALL CIRCUIT DESIGN OF THE NEF ADC
The circuit design for the NEF ADC was carried out in a digital
180nm CMOS process, with a VDD of 1.8 V (digital and analog).
The main goal of the circuit design is to transfer as much func-
tionality into the digital domain as possible. Therefore, only the
neurons are designed in analog circuitry, while decoder, adder and
exponential decay are done digitally. The second goal is to incor-
porate a significant amount of runtime configurability. Therefore,
the decoder weights, the PSC time constant and the sample rate
are configurable. The size of the neuron population employed can
also be adjusted by disabling some of the decoder weights.

2.5. THE NEURON CIRCUIT
The overall goal of the neuron circuit development is actually
quite non-intutive: The transfer curves and therefore all analog
parameters have to vary as much as possible to achieve a good
coverage of the input dynamic range (Eliasmith and Anderson,
2004). The parameter variance introduced by manufacturing the
IC in silicon, which is generally a detrimental effect, can be
employed advantageously there. Since the NEF does not place
specific demands on the qualitative neuron characteristic, basic
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Integrate-and-Fire (IAF) neurons were chosen. The voltage input
signal (see Figure 2) is applied to all neurons in parallel. The
binary encoder of Equation 1 is realized by having two different
types of neurons, one with a positive tuning curve and one with a
negative curve (see Figure 1). Figure 3 shows the schematic of the
negative neuron, i.e., the neuron type where an increase in input
voltage results in a lowering of the output frequency.

The neuron operates in asynchronous mode, with its pulse fre-
quency determined solely by the input signal. At the left of the
circuit, the signal enters at the gate of a source follower N1 and
its current source N2. Both N1 and N2 are high threshold voltage
types to reduce cross current. Through the Vth shift, the source
follower extends the dynamic range of the subsequent voltage-
current converter. The input range at N1 is rail to rail, i.e., GND to
1.8 V. Transistor P1 converts the offset input voltage to a current,
with the source degeneration of P2 acting as a virtual increase of
the gate length of P1. Again, P1 and P2 are high threshold voltage
types. Thus, P1 and P2 can both be minimum sized for increased
variation and still not draw excessive cross current. N4 through
N6 and P3 (all minimum sized) generate a biasing current that
is subtracted from itself via P4 and N7. This generates a bidi-
rectional mismatch current which at N8 is added to the current
caused by the input signal. The resulting current is mirrored via
the (minimum sized) current mirror P5/P6 on the neuron mem-
brane capacitance N9. N11, N12 and P7 form the inverter that
defines the voltage threshold for neuron firing. As with P1, N12
is source degenerated to achieve a large virtual gate length which
sets the threshold high and thus extends the dynamic range of the
neuron membrane. Beneficially, this also decreases the cross cur-
rent despite using minimum sized transistors. P8 and N13 delay
and buffer the resulting pulse signal. A subsequent custom buffer
stage further increases delay before the pulse resets the neuron
membrane via N10.

A standard cell buffer shapes the pulse edges for output to the
synchronuous digital part. In contrast to the variation-optimized
analog part of the circuit, this pulse generation is designed in a
more conventional way with minimized deviations. This stems
from the fact that the pulse output signal has to conform to the
timing specifications of the synchronous digital part (especially, a
minimum low time between pulses and a minimum pulse length).

In terms of cross current and power, voltage biasing may have
been the better choice for e.g., N2, P2 or N11. However, a design
choice was to make the cell self-biased in preparation for inclusion
in a digital cell library flow. Thus, the only analog input is the
voltage to be digitized.

In terms of the tuning curve, mismatch at the current offset
gives variation along the y-axis (compare Figure 1), while Vth

deviation in the source follower results in x offset. The multiple
current mirrors the signal is copied across and the gain deviation
of P1 result in variation of the tuning curve slope.

Although all parts of the neuron operate above threshold
of the CMOS transistors, subthreshold operation as in more
conventional neuromorphic circuits (Bartolozzi and Indiveri,
2007) would actually be beneficial in this application, as varia-
tions are significantly higher than in above-threshold operation
(Pineda de Gyvez and Tuinhout, 2004; Giulioni et al., 2012).
However, only very slow ADCs would be possible this way (Yang
and Sarpeshkar, 2006).

Figure 4 shows the layout of the neuron of Figure 3. The sig-
nal flow from left to right is similar to the schematic. No attention
was given to matched layouting or similar, as variation should be
maximized. The layout has been optimized for an eventual inte-
gration in a digital standard cell flow. Only one metal layer is used
and the cell is compatible with the 5 μm Faraday digital standard
cell raster.

2.6. THE DECODER AND PSC SUMMATION
The digital part of the NEF ADC is shown in Figure 5. It con-
sists of synchronizer circuits for the input pulses of the analog
neurons, decoder weight registers, an adder tree for summing all
active decoder weights, and a low-pass filter.

The asynchronous pulses of the analog neurons have to be
synchronized to the digital clock. Furthermore, the synchronized
output should be independent of the neuron’s pulse length. For
this, a rising edge detector is used, which generates an output
signal that is high for exactly one clock per pulse. For achiev-
ing full throughput, i.e., being able to detect one spike per clock
cycle, the asynchronous pulse signal is sampled at both positive
and negative clock edge via two standard two-stage synchroniz-
ers. An additional register stores the signal level at the previous

FIGURE 3 | Schematic of the analog neuron, type negative. For clarity, powerdown switching transistors have been omitted
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FIGURE 4 | Layout of the negative type neuron in UMC 180 nm CMOS technology, with signal flow from left to right similar to the schematic in

Figure 3.

FIGURE 5 | Digital synchronous pulse registration, adder tree and low-pass filter.

negative clock edge. With this structure, a sequence negedge-
posedge-negedge is available at the synchronizer output. An edge
detection logic detects low-to-high changes in the input signal
from this sequence.

The above edge detector captures all pulses in the asyn-
chronous input signal, as long as the pulse length and the time
the input is low between spikes is each higher than half a clock
period. If the pulse length is shorter than this, only a fraction of
the spikes is detected, attenuating the neuron’s transfer function
by a factor. In principle, the same happens if the input signal is low
for a too short time between spikes. As this low time is decreas-
ing with the pulse rate, the neuron’s transfer function would start
decreasing at high rates. While not intended, both effects would
still be covered by the calibration of the NEF ADC.

As shown in Figure 5, each synchronized spike output acti-
vates its individual decoder weight register. The values of these
registers are written via a separate configuration interface. The
decoder weights effectively allow for setting up the transfer func-
tion of the AD conversion. The bit width of the decoder weights
is a crucial parameter. The weight registers consume a signifi-
cant part of the whole circuit area, so the bit width should be
as small as possible. However, a certain minimum bit width is
needed to not limit resolution of the AD conversion. In the cur-
rent design, 8 bit signed values were used for achieving sufficient
flexibility.

An adder tree calculates the sum over all active decoder
weights. It was designed as a pipelined structure to achieve a
throughput of one adder tree result per clock cycle. Computing
across all spikes in a parallel manner as in the adder tree also
obviates the need for any spike sorting or arbitration that would
otherwise be required (Scholze et al., 2010)

The adder tree results are fed into the low-pass filter, resem-
bling the PSC signal reconstruction. The low-pass filter result
constitutes the output of the AD conversion. In each clock cycle,
the current output of the adder tree is added to the low-pass
filter’s PSC register. At the same time, the current PSC register
content is shifted right and subtracted, resulting in the desired
first-order low-pass characteristic. The shift width b is config-
urable. The resulting PSC time constant τpsc can be derived from
the clock frequency fclk and b by equating the result of the shift
operation with an exponential decay:

PSC(t) · e
− 1

fclk · τpsc = PSC(t) · (1 − 2−b). (6)

Applying the first order Taylor series approximation for small
exponents to the left hand side of Equation 6, the following
expression is derived

τpsc = 2b

fclk
. (7)
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As can be seen from Equation 7, realizing the PSCs in digital
allows setting arbitrarily long time constants, which are necessary
for a high-resolution ADC. Achieving the same in analog circuits
would be difficult, especially in deep-submicron technologies
(Noack et al., 2012).

The digital part of the NEF ADC was described in Verilog
to be completely compliant with the standard digital design and
synthesis flow. Thus, it can be easily ported between technologies.

3. RESULTS
The following two sections contain results of the NEF ADC based
on neuron models simulated in Nengo and Spice simulations of
the actual transistor-level neuron circuits. For quick reference, we
give in Table 1 the baseline ADC characteristics we use in both
cases.

The baseline characteristics of the Nengo simulations are:
τPSC = 128 ms (i.e., a shift of 7 bit, compare Equation 7),
decoder weight resolution Wres = 8 bit (compare section 2.6),
maximum rate of the IAF neurons fneuron,max = 400 Hz, and a
population of Nneuron = 512. The spike times from the Nengo
simulation are synchronized to the clock of the digital system
model fclk = 1 kHz, i.e., the resolution of the pulse registration
in the baseline is Tsynch = 1 ms.

The baseline for the transistor-level simulations is the same
as for the Nengo neurons, with the following modifications: The
VDD of the neurons is 1.8 V, i.e., the normalized input signal
Vin(t) of Figure 6 is mapped to a voltage swing of 0..1.8 V. The sys-
tem model of the digital building blocks is sped up from the 1 kHz
clock to 150 MHz, i.e., Tsynch = 6.67 ns, to be compatible with the
hardware neuron speed. The PSC time constant is adjusted by the
same factor, i.e., a τpsc,biol = 128 ms in the Nengo simulations is
equivalent to τpsc,tech = 853 ns in the transistor-level simulations.
However, for comparison of the results of section 3.2 with sec-
tion 3.1, the timebase is converted back to 1 kHz for all data plots
except Figure 10.

A note on simulated time vs. execution time: The simulated
time is the reference time of the simulation, which is biological
real time in Nengo, i.e., if the PSC time constant is set to 30 ms,
the PSC decays 63% in 30 ms simulated time. On the other hand,
as CMOS circuit frequencies are inherently much higher, simu-
lated time and all time constants can be chosen much shorter
for these simulations. In actual hardware, this has the beneficial

Table 1 | Baseline characteristic of NEF ADC for Nengo and circuit

level hardware simulations.

ADC Baseline

characteristic Nengo Hardware

τPSC 128 ms 853 ns
Nneuron 512 512
Wres 8 bit 8 bit
fneuron,max 400 Hz 45 MHz
Tsynch 1 ms 6.67 ns
Input range idealized 0..1 GND to 1.8 V
Tuning curve set by intrinsic through
spread parameters transistor mismatch

effect of increasing the conversion speed of the NEF ADC. On
the other hand, execution time means the time it takes to run a
certain input waveform on the network in either Nengo or Spice.
The execution time is significantly less in Nengo as the simulator
is optimized for neuron models and the neurons are abstracted to
a set of equations. In contrast, the spice simulations deal with the
transistor-level neurons and incorporate parasitic capacitances
and resistors, which makes them significantly slower to execute.

A system model of the digital building blocks outlined in sec-
tion 2.6 is used for the processing of the neuron output spikes of
both the Nengo as well as the transistor level simulations. The sys-
tem model has been verified against the synthesized Verilog code.
The decoder weights are computed for a linear ADC characteristic
for easy comparison with conventional ADCs.

3.1. RESULTS OF AN IDEAL IMPLEMENTATION
To evaluate the efficacy of using the NEF framework as an ADC
without carrying out analog hardware design, the initial imple-
mentation was done in the Nengo simulator (Stewart et al., 2009)
with idealized neurons, having controlled tuning curve spread.
IAF neurons are employed for compatibility to the hardware neu-
rons, but there are negligible differences in results to e.g., LIAF
neurons. Apart from allowing large parameter sweeps due to the
reduced simulation time, using ideal simulated neurons also helps
to establish a baseline performance that can be compared to the
hardware neurons.

As can be seen in Figure 6, the waveform entered in the NEF
ADC consist of an initial DC level for ENOB computation (0 to
4 s), DC level at 0 for ADC settling a the lower input limit (4
to 6 s) and a subsequent ramp for INL computation (6 to 10 s).
The ramp is deliberately slow so that sections of it can be used as
collection of quasi-DC levels at different input voltages to char-
acterize the tuning curves of the neurons. The decoder weight
vector is computed according to Equation 4 based on 50 input
level sample points. Two important characteristics can already be

FIGURE 6 | Input waveform Vin(t) (black). The Nengo simulator takes this
normalized waveform as input. The digitized output k(t) (blue, circles), i.e., the
state of the low-pass filter, is also normalized to 0..1. For comparison to the
output, Vin(t) shifted by τPSC is also displayed (black, dashed). Also shown is
the ideal transfer characteristic (green, dashed, squares) as computed from
the decoder weights and tuning curves in Equation 3. Baseline taken from
Table 1, with τPSC of 256 ms for enhanced delay visibility.
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observed: The digitized output has an exponential step response
settling with τPSC . Also, the digitized output lags the input by τPSC

at the input ramp, constituting the ADC latency.
Figure 7 shows a sample ENOB plot. The digitized output k(t)

in the timespan from 2.9 to 3.4 s is subtracted from Vin(t) and the
difference plotted in a histogram. The ENOB is given by the stan-
dard deviation of this distribution (Baker, 2008). As can be seen,
the NEF ADC output is similar to a conventional ADC, i.e., a DC
level is replicated in the form of a narrow distribution of output
codes around it. Despite the pulsing nature of the overall net-
work and the high spread in decoder weight values (>20 max/min
weight, i.e., a high amplification of some spike trains compared to
others), there are no corresponding large transients in k(t).

Figure 8 shows a sample INL curve based on the ramp por-
tion of the input waveform. For the low input voltages, the initial
INL exhibits a residue from the settling to the ramp at t = 6 s.
This is discounted for in the INL computation. The INL given
in the following is the ±max deviation from the ideal curve
(Provost and Sanchez-Sinencio, 2003), with respect to the nor-
malized input range. The INL curve is not as characteristic as
that of a more conventional ADC (Chae et al., 2013), as the
transfer curve of the NEF ADC is built in a random fashion by
the decoder weight computation based on the individual neuron
deviations. The curve shown is representative for the NEF ADC,
i.e., the INL curves are smooth but exhibit no characteristic shape.
The ideal INL curve based on the transfer curve as computed
from the decoder weights and tuning curves (compare Figure 6)
is also shown. It can be observed that they match reasonably well,
with the dynamic, ramp-based INL exhibiting additional high-
frequency noise due to the network pulse activity. Increasing τPSC

dampens the noise on the dynamic INL, reducing it to the level
exhibited by the ideal INL. However, the ideal INL constitutes the
lower bound, as it is determined largely by the number of neurons
and thus is static and not amenable to further filtering.

The maximum INL for each datapoint shows a very steady
2 bit difference to the ENOB, e.g., the baseline example with
ENOB 10.98 bit has a maximum INL of 8.91 bit. Unless otherwise

FIGURE 7 | Histogram of the digitized NEF output minus ideal analog

input (both normalized to a dynamic range 0..1) during the time slice

2.9 to 3.4 s of the output wave in Figure 6 (i.e., the settled portion of

the first DC input).

noted, we will thus employ mainly ENOB as ADC performance
characteristic, as it is more easily computed. Table 2 details the
behavior of the ENOB for a sweep of every variable given in the
baseline description above. While some of these scaling charac-
teristics of signal representation with network parameters have
been explored for NEF (Choudhary et al., 2012), a full sweep of
all relevant parameters has not been shown so far.

The scaling behavior of the ENOB can be extracted from three
data points for each variable (baseline, example 1 and 2). Not sur-
prisingly, there is linear scaling of ENOB with τPSC , fneuron,max,
and Tsynch. All three variables affect the number of neuron pulses
that are taken into account for a single output code to average
over. This can be thought of as similar to scaling of resolution with
the oversampling ratio (OSR) in a conventional first- order DSM
(Perez et al., 2011). There is a saturation of ENOB with fneuron,max

at about half the frequency given by Tsynch (data not shown). This
could be due to a saturation of the pulses per timestep, i.e., if there
is on average more than one pulse per two timesteps, not much
additional information is conveyed.

The ENOB scaling with Nneuron is worse than the scaling above
for τPSC , as shown in Figure 9. So the naive assumption, that an
increase in Nneuron results in a proportional increase of pulses for
a given output code and thus gives linear scaling, does not hold.
At the same time, it is slightly better than the expected 2

√ factor
resulting from applying a signal to independent ADCs (King et al.,
1998). The likely cause is that the neurons cannot be thought of
as independent, as the ADC transfer characteristic is built from
them and thus the decoder extracts the best fit transfer based on
a combination of all of them.

The scaling of Wres also relates to the construction of the
transfer characteristic: Surprisingly, there is almost no depen-
dence between Wres and ENOB, i.e., the decoder weight can be
quantized quite severly after computation and still result in a
high-fidelity k(t). Intuitively, if the decoder weights have access
to a widely varying neuron population, their own variation can

FIGURE 8 | INL of ramp portion of the waveform in Figure 6 (relative to

the normalized full swing). The ideal INL based on the transfer curve of
Equation 3 is also displayed (black, dashed).
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Table 2 | Scaling of ENOB with design characteristic/variable.

ADC Example ENOB scaling Remark

characteristic with characteristic
1 2

τPSC 8.98 bit|τPSC =32 ms 9.99 bit|τPSC =64 ms linear

Nneuron 8.16 bit|Nneuron=32 9.65 bit|Nneuron=128 ca. 1.5
√

Wres 11.00 bit|Wres=5 bit 10.92 bit|Wres=3 bit no dependence See hardware discussion, has to be above a lower bound

fneuron,max 7.69 bit|fneuron,max =50 Hz 9.73 bit|fneuron,max =200 Hz linear Scaling saturates at approx. 0.5 · Tsynch

Tsynch 6.81 bit|Tsynch=2 ms 5.90 bit|Tsynch=4 ms linear Please note: For this sweep, fneuron,max = 50 Hz to avoid
saturation

Baseline characteristic as in Table 1, with resulting ENOB 10.98 bit.

FIGURE 9 | Scaling of ENOB with the number of neurons. Baseline
characteristic as in Table 1.

be very limited. There is only an empirical lower bound of Wres

that has to be fulfilled to achieve reconstruction of Vin(t) at all.
This detail will be revisited in section 3.2.

The equivalent sample rate and Nyquist frequency are still
missing from this characterization of the NEF ADC. The Nyquist
signal frequency can be derived from the slew rate of a sine input
signal, based on the assumption that it is reconstructed via τPSC

with an exponentially decaying kernel. The sine has a maximum
downward slew rate (at t = 1/(2f )), which can be equated to
an exponentially decaying PSC starting at t = 1/(2f ) with an
amplitude of 0.5:

d
{

0.5 · sin(2π ft)
}

dt
|t = 1

2f
=

d

{
0.5 · e

t− 1
2f

τPSC

}

dt
|t = 1

2f
. (8)

Solving this, we receive the maximum frequency fsig,max that a
full-swing sine wave is supported by a given τPSC :

fsig,max = 1

2πτPSC
. (9)

Table 3 | Characteristics of NEF used as a linear ADC.

Conversion rate
1

τPSC · π

Max. input frequency
1

2 · τPSC · π
Empirical ENOB formula ENOB(Bit) = ld(τPSC · 1.5√Nneuron ·

fneuron,max · 1
Treg,Pulse

· Tnorm)

Conversion latency τPSC

Settling time to a step response Tset = τPSC · ENOB · ln2

Dynamic range rail-rail

With a corresponding Nyquist rate of fsample = 2 · fsig,max, i.e., the
frequency at which the state of the decaying accumulator is read
out. Not entirely surprising, this constitutes a first order low-pass
with cutoff at 1/τPSC .

The first-order low-pass characteristic also explains the con-
version latency of the NEF ADC from a linear input ramp. The
equations for the low-pass output y and input x(t) are:

τPSC
dy

dt
= −y + x(t) with x(t) = a · t (10)

The corresponding solution for the low-pass output is:

y(t) = a · (t − τPSC). (11)

Thus, the low-pass output lags the input by τPSC . As can be seen
from Figure 6, the other parts of the ADC processing chain do
not add significantly to the conversion latency.

Table 3 sums up the results of this section, with an empirical
ENOB formula based on Table 2. The ENOB formula is valid for
fsynch ≥ 2 · fneuron,max, i.e., for the neurons firing below saturation
of the pulse registration. The scaling factor Tnorm is approximately
0.6 ms. The dynamic range is a function of the neuron tuning
curve variation, i.e., if the neurons have positive and negative
responses that vary significantly even near the rails, the input can
be rail-to-rail (compare Figure 1 and Figure 6).

3.2. RESULTS OF THE CIRCUIT IMPLEMENTATION
This section expands the results obtained with the Nengo neu-
rons to the neurons described in section 2.5. We use a neuron
population that is based on Monte carlo variations of a parasitic
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extraction of the layout in Figure 4 and its counterpart for the
positive neuron.

Figure 10 shows the time course of the decaying accumulator
at its hardware timescale. From the zoom plot in the Figure, the
single code values can clearly be seen. The small time constant
configured in this example allows a clear view of the fine struc-
ture of the NEF ADC output. Due to the overlay of multiple single
neuron transfer curves and the dynamic nature of the neurons,
this output is quite stochastic, with the τPSC decay not readily
evident. The code transitions cannot be identified, making more
conventional INL measurement difficult (Baker, 2008).

In Figure 11, sample tuning curves of both types of neurons
are overlaid for the Nengo generated neurons and the hardware
neurons. When adjusting for the time base, the hardware neu-
rons are somewhat slower than in Nengo, but the difference is
not significant, as the ENOB starts to saturate at these frequencies

FIGURE 10 | Sample time course of the low-pass filter, with zoom of

the ramp part of the waveform. The NEF ADC is configured to the
hardware baseline characteristic, but with only 128 neurons and
τPSC = 107 ns (equiv. 16 ms) to reduce resolution and thus enhance the
visibility of the curve progression from output code to output code.

in any case. It can be seen that in general, the circuit measures
taken in section 2.5 for the hardware neurons generate a satis-
factory range of offsets in x and y direction. The complete input
range is converted with sufficiently varying neuron tuning curves,
with the possible exception of a range close to the two rails, as the
tuning curves there tend to correlate significantly and thus reso-
lution would drop in these areas. The Monte Carlo models were
set only to mismatch (i.e., not mismatch and process) to gen-
erate this curves, so this level of spread can be expected from a
large part of manufactured IC instances. However, as the spread
of the curves is determined by random effects of the manufactur-
ing process, individual instances of the ADC have to be checked
for sufficient spread, thus defining a yield in terms of ADC res-
olution. When comparing the two families of tuning curves, the
main observation is that the Nengo generated neurons tend to
vary more, especially in their gain.

As can be seen from the ENOB comparison in Table 4, this has
a significant impact on the overall computation. If the neurons do
not encode for sufficiently different features of the input signal,
the representation of the input signal degrades. Table 4 illustrates
that the ENOB scaling with design characteristic is in general the
same as in the Nengo simulations. However, the ENOB consis-
tently is 1.6 bit less in the hardware. Consequently, the scaling
factor Tnorm in the empirical formula in Table 6 is adjusted to
approximately 0.2 ms.

The reduction in tuning curve variation also has an impact on
the decoder weights. Due to the lower variation in tuning curves,

Table 4 | ENOB-comparison for two examples Nengo and HW: τPSC

sweep and Nneuron sweep.

NEF ADC parameters Resulting ENOB

τPSC Nneuron Nengo Hardware

32 ms 128 7.64 bit 6.01 bit

64 ms 128 8.65 bit 6.99 bit

64 ms 512 9.99 bit 8.29 bit

128 ms 512 11.00 bit 9.29 bit

FIGURE 11 | Variation of neuron tuning curves; (A) Nengo; (B) hardware.

For the hardware Monte Carlo variations, only mismatch is activated, as
expected on a single die, i.e., no process deviations. Please note: the maximum

rates of the hardware neurons are actually at ca. 45 MHz, which converts to
300 Hz when the timescale is converted to the Nengo one. The normalized
input range of the hardware neurons corresponds to rail-rail, i.e., GND to 1.8 V.
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the network needs a higher decoder weight precision in order to
replicate a given transfer characteristic (as the transfer character-
istic is built out of a combination of tuning curves and weight, see
Equation 5). This can be seen from Figure 12, which shows the
input waveform reproduction for Nengo and hardware neurons
at 4 and 6 bit decoder weight resolution. At 4 bit, severe scaling
errors exist for the hardware case in the wave output compared to
the input.

Table 5 illustrates the quantitative INL and ENOB repercus-
sions. The INL trend from the lower row of the plots in Figure 12
is visible in the INL entries for 3 and 4 bit, where the hardware
starts to worsen before the Nengo simulation. The INL as a mea-
sure based on a waveform better reflects this effect, the ENOB
as a steady-state measure does not capture such dynamic errors
sufficiently. Thus, there seems to exist a lower resolution limit
for the decoder weights that is a function of the variation of the
tuning curves. At 8 bit, the resolution chosen for the hardware
implementation is well above this limit.

In order to test the robustness of the analog value representa-
tion to errors in the processing chain (neurons and decoder tree),
we evaluate the failure or degradation of neurons:

• Random failure of one third of overall neurons, modeled
through first computing a full decoder weight set, then set-
ting one third of decoder weights to zero. For INL and ENOB,
the output signal is adjusted for the corresponding amplitude
decrease.

• Random perturbation of one third of positive neurons and
one third of negative neurons, modeled by first computing a
full decoder weight set, then randomly permuting the decoder
weights of one third of the positive and negative neurons.

The ENOB shows interesting behavior: For the perturbation case,
having the neuron in the network at all, even if with a different

decoder weight, leaves the ENOB at its baseline level. That is,
the spikes of this neuron still contribute to a less noisy DC level
because they are added and low-pass filtered. However, the ENOB
is degraded (with the amount expected from the formula in
Table 6) if the neurons are lost, i.e., their spikes are not counted
for the digitized output value.

As for the weight resolution, the INL is the more descrip-
tive measure. Figure 13 gives a representative example of the INL
degradation due to neuron perturbation. The INL degradation
for failure is similar both qualitatively and quantitatively. Table 6
shows that the INL is degraded by about 1.2 bit for both neuron

Table 5 | Scaling of ENOB and INL with decoder weight resolution for

Nengo simulation and hardware implementation.

Decoder resolution

6 bit 4 bit 3 bit

ENOB Nengo 9.65 bit 9.60 bit 9.61 bit
INL Nengo 7.61 bit 7.63 bit 6.93 bit
ENOB Hardware 7.97 bit 7.95 bit 7.96 bit
INL Hardware 6.07 bit 5.69 bit 5.21 bit

Baseline hardware characteristic, but with 128 neurons.

Table 6 | Consequences of neuron failures in hardware: INL and ENOB

for a random failure or perturbation of one third of the neurons.

Baseline Neuron failure Neuron perturbation

ENOB 7.97 bit 7.64 bit 7.98 bit

INL 6.07 bit 4.83 bit 4.75 bit

Baseline hardware characteristic, neurons reduced to 128. ENOB and INL

represent the average of 10 runs with different perturbations/failures.

FIGURE 12 | Reproduction of the input waveform in the digitized output

(top), and ideal INL (bottom), from left to right. (A) with hardware neurons
and 4 bit decoder weight; (B) with Nengo neurons and 4 bit decoder weight;

(C) with hardware neurons and 6 bit decoder weight; (D) with Nengo
neurons and 6 bit decoder weight. Baseline hardware characteristic, but only
128 neurons.
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failure and perturbation. Thus, not surprisingly, the transfer char-
acteristic strongly depends on all neurons being present in the
overall signal with the specific decoder weight that corresponds
to their distinct manufacturing-given deviation in the tuning
curve.

The INL degradation is actually more severe than evident
from Table 6. As can be seen from Figure 14, the INL for the
baseline is still dominated by pulse noise, while in Figure 13,
static deviations clearly dominate. That is, for the baseline, a
stronger low-pass-filtering could still decrease the INL, whereas
for the perturbation case, further filtering does not diminish
the INL.

However, judging from either Table 6 or Figure 13, the INL
degradation for this quite faulty network with one third disturbed
neurons/weights is still only somewhere between 1.2 and 2.5 bit.
Thus, this illustrates the soft degradation properties of the overall
characteristic, which is due to the distributed analog value repre-
sentation across the neurons. That is, there is not a single analog
block that is crucial to the overall function, in contrast to e.g.,

FIGURE 13 | Ideal and ramp-based INL of the neuron perturbation of

Table 6.

FIGURE 14 | Ideal and ramp-based INL of the baseline of Table 6.

the first amplifier in a pipeline converter. In case of neuron loss
as simulated above, optimized rerouting could also be used to
alleviate some of the loss (Mayr et al., 2007).

In Tables 7–9, the characteristics of the NEF ADC hardware
design are summed up and compared to the state of the art. The
final NEF ADC design contains 1280 neurons (640 of each encod-
ing/type), operates at fclk = 150 MHz and a VDD of 1.8 V. The
area occupied by the digital building blocks is 2.69 mm2, the area
of the analog blocks (i.e., neurons) is 0.23 mm2. Its analog power
draw is 40 mW, digital 120 mW. As the digital blocks are designed
to be runtime configurable, three different configurations are
chosen for the comparison:

Table 7 | High sample rate, low resolution comparison.

This work Weaver et al., 2011 Jain et al., 2012

Technology 180 nm 90 nm 130 nm
VDD 1.8 V 0.7 V 1.3 V
Power 160 mW 1.11 mW 4.0 mW
Area 2.92 mm2 0.18 mm2 0.38 mm2

fsample 12 MHz 21 MHz 15.625 MHz
ENOB/SNR 7.5 bit 5.8 bit 11.1 bit
FOM 74 pJ/ 0.95 pJ/ 0.11 pJ/

conv-step conv-step conv-step
Architecture Neuromorphic Synthesized flash high-speed DSM

parallel

Table 8 | Medium sample rate, medium resolution comparison.

This work Han et al., 2013 Perez et al., 2011

Technology 180 nm 180 nm 180 nm

VDD 1.8 V 0.45 V 1.5 V

Power 160 mW 1.35 μW 0.14 mW

Area 2.92 mm2 – 0.48 mm2

fsample 750 kHz 200 kHz 200 kHz

ENOB/SFDR 11.5 bit 8.3 bit 13.6 bit

FOM 74 pJ/ 0.022 pJ/ 0.056 pJ/

conv-step conv-step conv-step

Architecture Neuromorphic SAR CT-DSM

parallel

Table 9 | Low sample rate, high resolution comparison.

This work Chae et al., 2013 Liu et al., 2013

Technology 180 nm 160 nm mixed 500 and 180 nm

VDD 1.8 V 1.8 V 3.3 V

Power 160 mW 6.3 μW 0.28 mW

Area 2.92 mm2 0.38 mm2 1.14 mm2

fsample 730 Hz 25 Hz 10 kHz

ENOB/SFDR 21.5 bit 19.8 bit 17.4 bit

FOM 74 pJ/ 0.28 pJ/ 0.16 pJ/

conv-step conv-step conv-step

Architecture Neuromorphic Zoom (SAR+DSM) Incremental DSM

parallel
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• Configuration for high sample rate: 12 MSamples/s, 7.5 bit
ENOB (with a shift of 2 bit, i.e., equivalent τpsc,biol = 4 ms,
actual τpsc,tech = 26.7 ns, compare Equation 7).

• Configuration for medium sample rate: 750 kSamples/s,
11.4 bit (shift of 6 bit, τpsc,biol = 64 ms,τpsc,tech = 427 ns).

• Configuration for low sample rate: 730 Samples/s, 21.4 bit
(shift of 16 bit, τpsc,biol = 65.5 s,τpsc,tech=437 μs).

A common figure of merit (FOM) is used in the comparison that
normalizes resolution, sampling rate and power (Walden, 1994).
The state-of-the-art is chosen from the continuously updated sur-
vey in Murmann (2013). There is some debate whether power
and area of the digital blocks of an ADC should be counted, as
DSM comparisons usually leave out the decimation filter and
other ADCs do not count their anti-aliasing filter (Murmann,
2013). However, our opinion is that since the digital components
are an integral part of regular DSM ADCs and also of the pre-
sented NEF ADC, they should be included for a fair comparison,
i.e., our comparison is based on 160 mW. This should be taken
into account when viewing the FOM comparison with Jain et al.
(2012) in Table 7 and with Perez et al. (2011) in Table 8.

4. DISCUSSION
4.1. NEF IN A GENERAL NEUROMORPHIC VLSI CONTEXT
NEF has recently attracted significant interest from the neuro-
morphic community, with e.g., an implementation on Neurogrid
(Choudhary et al., 2012). It exhibits several features of interest
to engineers. Using it, one can engineer a neural system with a
target reliable behavior based on unreliable elements. The target
behavior can range from building blocks familiar to an engineer,
such as control systems or filters (Dethier et al., 2013), up to
abstract cognitive functions (Eliasmith, 2007). This paper has
highlighted another useful aspect: NEF makes it easy to cross tim-
ing domains from asynchronous to synchronous and from analog
to digital value representation. Traditionally, this has been one of
the major bottlenecks when interfacing neuromorphic systems to
more conventional processing units.

The other main challenge of neuromorphic engineering, i.e.,
achieving biological real time operation (Giulioni et al., 2012),
could also be alleviated by NEF. By not representing the system
variables directly as spikes, but rather abstracting the single pulses
to a time-varying system state vector or scalar variable (Equation
5), the underlying neurons can be dictated by CMOS constraints
(i.e., can be operated faster), while the state vector changes could
be slower, i.e., able to interact with the outside world in bio-
logical real time. By adding this layer of abstraction on top of
the neuromorphic network, the CMOS speed advantage can be
utilized for e.g., a higher fidelty computation and/or represen-
tation of the system state variables, as shown in this paper. This
layer of abstraction can also be used to transmit computational
variables between neuromorphic units in a more CMOS-friendly
fashion. Traditionally, states of neural networks are communi-
cated by the single underlying spikes, requiring large bandwidths
in FPGA-based spike routers (Hartmann et al., 2010) or even ded-
icated IC solutions (Scholze et al., 2011). By abstracting the single
pulses to a time-varying digital state, bandwidth can be reduced
significantly.

4.2. OTHER NEUROMORPHIC ADCs
There are a number of groups that have built ADCs based on neu-
ral networks. Table 10 gives an overview of the salient features of
these ADCs.

Some of those use time-invariant threshold neurons in
architectures derived from conventional flash or pipeline ADCs
(Chande and Poonacha, 1995). Neuromorphic principles have
also been used to convert conventional architectures into the
time domain. For example, Yang and Sarpeshkar (2006) show
a pipeline ADC composed of Integrate-and-Fire (IAF) neurons
that transfers the AD conversion into the time domain. While
the use of subthreshold operation in Yang and Sarpeshkar (2006)
makes for a very power efficient pipeline design, the entire design
is targeted at a single application, without the wide configuration
ability of the NEF ADC. For example, a higher resolution can
only be achieved in the design of Yang and Sarpeshkar (2006)
by increasing the complexity and power draw of the compara-
tor. Also, a higher sample rate is only achievable through a
non-subthreshold-operation of the neurons, loosing the energy
advantage.

In both Chande and Poonacha (1995) and Yang and
Sarpeshkar (2006) the performance of the design is ultimately
limited by the precision of its handcrafted building blocks. Thus,
no significant advantage is gained compared to conventional
ADCs. In particular, both the above ADCs do not use the high
parallelism of neural networks to increase robustness and/or
conversion speed or precision. In contrast, another family of
devices uses the noise shaping effect that a group of neurons
achieves when recurrently inhibitory connected (Watson et al.,
2004; Tapson and van Schaik, 2012). Here, the signal is rep-
resented robustly across a neuron population, i.e., the overall
network activity is modulated by the signal (Mayr et al., 2009).
The distribution across a neuron population even allows rep-
resentation of signals above the intrinsic frequency of single
neurons (Spiridon and Gerstner, 1999). One main drawback is
that some of these architectures are unstable. There is also no fully
established method to extract the digital output signal from such
a network (Mayr and Schüffny, 2005).

4.3. NEF AS AN ANALOG-DIGITAL CONVERTER
The NEF ADC shares some characteristics with different conven-
tional ADCs. For instance, time-domain ADCs also integrate the
input signal to arrive at analog to time conversion that can then
be digitized (Yang and Sarpeshkar, 2006). ADCs that oversample
the input signal, such as the DSM mentioned in the introduction,
also digitize an input signal with high frequency and low initial
resolution. Similar to the NEF ADC, they build up resolution by
removing high-frequency components with a filter. Also similar
to a DSM, for most applications the NEF ADC does not require
an analog Nyquist filter due to the low pass filter characteristic of
the neurons and the PSC filter. The NEF ADC also shares some
characteristics with flash ADCs, as both use a large parallelism
of elements to arrive at a coarse fast quantization. Similar to the
NEF ADC, some flash ADCs also rely on statistical deviation of
elements for their quatization curve Weaver et al., 2011).

The comparison across Tables 7–9 shows that in terms of
absolute figures of sample rate and bit resolution achieved,
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the NEF ADC is competitive. However, it underperforms
quite severly with regard to area and power, see the FOM
comparison.

The major part of the area of the NEF ADC is spent on the
digital building blocks, letting it benefit significantly from tech-
nology scaling. Conventional ADCs do not shrink well due to
their usually significantly larger portion of analog circuitry. Thus,
the area comparison would look decidedly different in e.g., a
28 nm technology, where the digital blocks would only occupy
approx. 0.080 mm2. Also, a large fraction of the digital area is
spent on the conservative choice of the decoder weight resolution,
the large width of the decaying accumulator and the reconfigu-
ration options. Thus, a more dedicated, less configurable design
would realize additional area savings. The analog neurons can also
be shrunk with the technology node, as this increases their speed
and amplifies their mismatch, both desirable properties for the
NEF ADC.

Pushing the power consumption of the NEF ADC into a com-
petitive range is harder than for the area. However, as the design
of the NEF ADC is intended as a proof-of-principle, no effort
has been spent on power optimization. Especially the neuron
power draw is quite excessive, with its multiple current paths
from VDD to ground. More that 80% of its power draw is not
spent on charging the membrane or for switching, but in the off-
set and gain error stages. Due to downscaling, future neurons in
smaller technologies may offer the same variation with signifi-
cantly less involved circuits, i.e., less power budget. The digital
circuitry has also not been optimized for low power draw. Since
the NEF is robust to small timing variations in its pulses, the ini-
tial digital building blocks such as the decoder weight readout
and adder tree could be run asynchronously, only synchroniz-
ing directly before the decay register. This would save significant
power in the clock tree. For overall clocking, energy-efficient vari-
able clock generators (Eisenreich et al., 2009) could be used to
adjust the operating frequency of the system, making a system
possible that offers the same resolution at different sample rates,
similar to (Yip and Chandrakasan, 2011). Also, the multiple con-
figuration options and corresponding bit widths at all stages add
to the power draw. Here, gating techniques that shut off parts
of the circuitry not needed for a given configuration have to be
explored.

In terms of absolute performance figures, Table 9 shows that
the NEF ADC may be especially competitive when it comes to
achieving very high resolution digitization, as resolution can be
achieved cheaply by digitally averaging over a longer time span.
This aspect will be preferentially evaluated once the hardware is
available.

However, while a one-to-one comparison of the NEF ADC
with conventional ADC is informative, it was not the single design
target. The main advantages of the NEF used as an ADC are the
following:

• In the NEF ADC, the signal is represented in a robust way
across a neuron population (see Table 6). Since the network is
purely feed-forward, stability is not an issue.

• NEF makes little demand on the specific transfer charac-
teristics of the analog neurons, and the encoder network T
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uses binary weights. Accordingly, no high-fidelity, complex
analog circuits are required anywhere in the system. The
handcrafted analog circuits usually needed for an ADC are
reduced to two simple neuron circuits, that are multiply
instantiated.

• A large part of the processing is carried out in digital, making
technology scaling very attractive and enabling design transfer
across technologies with minimum effort.

• The possibility of adjusting the transfer characteristic, resolu-
tion and sample rate at runtime make for a very flexible system.
In addition, the NEF framework incorporates a simple method
to input several signals into this network and do computation
with them for e.g., sensor fusion.

In addition, NEF represents a theoretically well-explored
paradigm, coming complete with a mathematically rigorous
method for high-fidelity extraction of the original signal
(Eliasmith and Anderson, 2004). Scaling and signal representa-
tion behavior necessary to achieve a given target ADC character-
istic has been partially established in Choudhary et al. (2012) and
treated in depth in this manuscript.

4.4. LIMITS OF THE NEF ADC RESOLUTION
The INL plots of section 3.2 illustrate how insufficient decoder
weight resolution, insufficient neuron number or tuning curve
variation (represented by setting decoder weights zero) or
insufficient tuning curve characterization (represented by per-
turbed decoder weights) can negatively influence the static INL.
Especially for the case of perturbed decoder weights, the ENOB
does not provide sufficient characterization of the ADC character-
istic, as it stays virtually constant. The INL plots on the other hand
provide a clear indication that static INL dominates dynamic
INL (i.e., the INL caused by incomplete filtering as seen in the
waveform-based INL in Figure 8). As can be seen from Table 2,
increasing the number of neurons increases resolution only sub-
linear, while power draw increases linearily. Thus, an ideal NEF
ADC should be operated at the border between the dynamic INL
and the static INL (also Figure 8). In other words, tuning curve
variation, decoder weight resolution and especially neuron num-
ber should just be sufficient for the target INL, with τPSC chosen
such that the remaining pulse noise is on the same order as the
static INL.

The above is valid if the NEF ADC is built for a single conver-
sion characteristic. In contrast, when using the NEF ADC over a
wide range of possible τPSC , there are two different options. Either
the number of neurons is chosen very large so that even for the
high resolution at large τPSC , a sufficiently linear overall transfer
characteristic can be constructed from the neuron tuning curves.
However, this implies that at small τPSC , the number of neurons
is far in excess of those needed and the NEF ADC is dominated
by pulse noise. The second option would be to choose the num-
ber of neurons only sufficient for linearity at small τPSC , i.e., at
low resolutions. At high resolutions (large τPSC), the static INL
would intentionally dominate. To still achieve linearity, the digi-
tal output codes of the low pass filter would be passed through a
look-up-table containing the inverse of the static INL curve.

4.5. OUTLOOK
In the current version, the NEF ADC still has a number of draw-
backs. It is very susceptible to temperature and VDD variation.
The transfer characteristic must thus ideally be measured for all
these operating conditions and stored, or a constant on-line char-
acterization has to be carried out. Built-in self-tests (BIST) such as
Flores et al. (2004) look promising, as they would allow enhanc-
ing the NEF ADC with a constant self-monitoring at very little
reduction of usable sample rate. Especially digital-heavy versions
of BIST could be incorporated with little detriment in design
time, as most of the functionality would be synthesizable. The
area overhead would also be minimal if the NEF ADC is used as
part of a larger digital system where existing compute resources
could be reused for BIST (Flores et al., 2004).

A second, more experimental approach might be to adjust the
decoder weights online via neuromorphic means, such as synaptic
plasticity. NEF has been shown to be amenable to supervised bio-
logically plausible plasticity rules which have as supervisory input
the overall transfer characteristic (Bekolay et al., 2013). This plas-
ticity could act either in the analog domain as adjustable factor
in the single neuron processing chains, or it could act directly on
the digital decoder weights. A candidate plasticity rule that can be
configured for a wide range of behavior, i.e., for different compen-
sation or decoder characteristics, has recently been demonstrated
(Mayr and Partzsch, 2010) and implemented efficiently in analog
CMOS hardware (Mayr et al., 2010a). Digital plasticity rules have
been shown e.g., on the Spinnaker system (Jin et al., 2010).

The main point for future work, however, will be to take
advantage of the computational capability inherent in NEF. In
this paper, NEF has been reduced to a linear representation of a
single variable. We will explore various non-linear ADC charac-
teristics and joint conversion of multiple inputs, offering complex
sensor fusion and feature extraction (König et al., 2002; Mayr
and Schüffny, 2007). Beyond the usage as ADC, the NEF could
pave the way toward a future mixed-signal, mixed neuromor-
phic/conventional system on chip. The NEF could take various
elements (regular CMOS, memristors (Jo et al., 2010; Ou et al.,
2013), other nanoscale elements) and engineer a system with a
set of target computations based on these elements. As demon-
strated, such a framework can easily cross the barrier between
asynchronous and synchronous systems as well as between ana-
log and digital domains, doing the signal reconstruction either
digitally as demonstrated here or via compact, configurable ana-
log PSC circuits (Noack et al., 2010). Signal reconstruction could
be via a decoder learned in memristors (Mayr et al., 2012). Thus,
one could employ each type of system/device where it is most
beneficial and arrive at an amalgan of the state of the art in the
neuromorphic discipline, the digital/analog CMOS discipline and
in nanodevice systems.
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Recent advances in neuroscience together with nanoscale electronic device technology
have resulted in huge interests in realizing brain-like computing hardwares using emerging
nanoscale memory devices as synaptic elements. Although there has been experimental
work that demonstrated the operation of nanoscale synaptic element at the single
device level, network level studies have been limited to simulations. In this work, we
demonstrate, using experiments, array level associative learning using phase change
synaptic devices connected in a grid like configuration similar to the organization of the
biological brain. Implementing Hebbian learning with phase change memory cells, the
synaptic grid was able to store presented patterns and recall missing patterns in an
associative brain-like fashion. We found that the system is robust to device variations, and
large variations in cell resistance states can be accommodated by increasing the number
of training epochs. We illustrated the tradeoff between variation tolerance of the network
and the overall energy consumption, and found that energy consumption is decreased
significantly for lower variation tolerance.

Keywords: phase change memory, synaptic device, neuromorphic computing, cognitive computing, device

variation, associative learning, neural network, spike-timing-dependent-plasticity

INTRODUCTION
Historical improvements in cost and performance of CMOS tech-
nology have relied on transistor scaling for decades. However,
CMOS transistor scaling has started reaching its physical as well as
economic limits (Radack and Zolper, 2008). Further scaling may
prevent reliable binary operation of CMOS devices. As devices are
scaled down, device to device as well as cycle to cycle variations
increase (Frank et al., 2001). Conventional digital logic based
architectures cannot handle large variations as they are based on
deterministic operation of devices; and extra circuitry aimed at
mitigating these variations results in a huge overhead, increas-
ing the cost significantly. In addition, increase in leakage current
and hence the energy consumption as a result of further scaling
imply that unabated scaling of transistor size is not the optimal
solution for further performance increases (Frank et al., 2001).
Furthermore, conventional information processing systems based
on the von Neumann architecture have a performance bottleneck
due to memory and processor being separated by a data chan-
nel. The increasing performance gap in the memory hierarchy
between the cache and nonvolatile storage devices limits the sys-
tem performance in Von Neumann architectures (Hennessy et al.,
2012). Hence, in order to continue the historical performance
improvements in information processing technology, different
concepts and architectures need to be explored. New architec-
tures are highly desired especially for specific applications that
involve computation with a large amount of data and variables,

such as large-scale sensor networks, image reconstruction tools,
molecular dynamics simulations or large scale brain simulations
(Borwein and Borwein, 1987).

Massive parallelism, robustness, error-tolerant nature, and
energy efficiency of the human brain suggest a great source
of inspiration for a non-conventional information processing
paradigm which can potentially enable significant gains beyond
scaling in CMOS technology and break the von Neumann bottle-
neck in conventional architectures (Mead, 1990; Poon and Zhou,
2011; Le et al., 2012). Synaptic electronics is an emerging field
of research aiming to realize electronic systems that emulate the
computational energy-efficiency and fault tolerance of the bio-
logical brain in a compact space (Kuzum et al., 2013). Since
brain-inspired systems are inherently fault tolerant and based on
information processing in a probabilistic fashion, they are well-
suited for applications such as pattern recognition which operates
on large amounts of imprecise input from the environment (Le
et al., 2012). One approach to brain-like computation has been
the development of software algorithms executed by supercom-
puters. However, since these have been executed on conventional
architectures, they have not come close to the human brain in
terms of performance and efficiency. For instance, IBM team has
used the Blue Gene supercomputer for cortical simulations at the
complexity of a cat brain (Preissl et al., 2012). Although this is
a multi-core architecture, it is still nowhere close to the human
brain in terms of parallelism, even though it already requires large
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amount of resources: 144 TB of memory and 147,456 micropro-
cessors, and consumes 1.4 mW of power overall (as opposed to
approximately 20 W consumed in biological brain in humans)
(Preissl et al., 2012). Another approach is to realize brain-like
parallelism in hardware instead of programming conventional
systems by software. Typically, the number of synapses (con-
nection nodes between neurons) are much larger than number
of neurons in a neural network, making synaptic device the
most crucial element of the system in terms of area footprint
and energy consumption to realize brain-like computing sys-
tems on hardware (Drachman, 2005). CMOS implementations
of smaller scale physical neural networks on a specialized hard-
ware have been previously demonstrated (Indiveri et al., 2006).
The large area occupied by CMOS synapses limits the scale of the
brain-like system that can be realized with these approaches. For
instance, the synaptic element in Merolla et al. (2011) is an 8-
transistor SRAM cell, with an area of 3.2 × 3.2 µm using a 45 nm
CMOS technology. This area-inefficient synaptic element makes
it impractical to scale up the system. Implementing synaptic func-
tionality in a much more compact space, such as on the order of
few tens of nanometers, would be useful to build a more com-
pact intelligent architecture, besides potentially being more power
efficient. Such a compact synaptic device is especially required
when the goal is to upscale the system to the scale of human
brain. In recent years, different types of emerging nanoscale non-
volatile memory devices, including phase change memory (PCM)
(Kuzum et al., 2011; Bichler et al., 2012; Suri et al., 2012), resis-
tive switching memory (RRAM) (Xia et al., 2009; Chang et al.,
2011; Seo et al., 2011; Yu et al., 2011, 2013; Yang et al., 2012)
and conductive bridge memory (CBRAM) (Jo et al., 2010; Ohno
et al., 2011), have been proposed for implementing the synaptic
element in a compact space. Such devices, which can be scaled
to nanometer dimensions, would enable realization of highly
dense synaptic arrays approaching human scale implementation
of brain emulators or intelligent systems on hardware, owing to
their small feature sizes. Among these different types of emerg-
ing memory devices, phase change memory has the advantage of
being a more mature technology. In addition, phase change mem-
ory has excellent scalability. In fact, phase change material has
shown switching behavior down to 2 nm size (Liang et al., 2012).
Phase change memory arrays fabricated in 3-dimension have been
demonstrated as an alternative approach for high density mem-
ory (Kinoshita et al., 2012). Functional arrays of phase change
memory cells have already been demonstrated in 20 nm and other
technology nodes (Servalli, 2009; Kang et al., 2011). Hence, it
is possible to build a hybrid brain-like system using nanoscale
synaptic devices using phase change memory integrated with
CMOS neurons.

The main characteristic of PCM that makes it a good candi-
date as a synaptic device is its capability for being programmed
to intermediate resistance states between high and low resistance
values, or gradual programming (Kuzum et al., 2011). As illus-
trated by Kuzum et al., the ability to program a PCM in 1%
gray-scale conductance levels enables the PCM to emulate the
spike-timing-dependent plasticity (STDP) in synaptic strength
in hippocampal synapses. Furthermore, the crossbar architecture
used in most memory array configurations is actually analogous

to grid-like connectivity of brain fibers in human brain (Wedeen
et al., 2012).

The low resistance state of PCM is called the SET state and
transition from the high resistance state to the low resistance state
is called SET. High resistance state of PCM is called the RESET
state and transition from low resistance state to the high resis-
tance state is called RESET. Applying appropriate voltage pulses
create intermediate resistance states between the fully SET state
and the fully RESET state in a phase change memory device
(Kuzum et al., 2011). This is similar to gradual weight change
in biological synapses, where the synaptic weight is modified in
accordance with relative arrival timing of the spikes from pre
and post-neurons. This is called spike timing dependent plasticity
(STDP), and is thought to be one of the fundamental learning
rules in hippocampal synapses (Bi and Poo, 1998). Using this
property of phase change devices as well as similar characteristics
of other emerging memory devices mentioned above, network
level learning studies have been done (Pershin and Di Ventra,
2010, 2011; Bichler et al., 2012; Alibart et al., 2013; Kaneko et al.,
2013; Yu et al., 2013). However, many of these works studying
nanoscale synaptic devices on network level have been limited to
simulations, and experimental works either have used few num-
ber of synapses or lack a thorough analysis of important network
parameters (Pershin and Di Ventra, 2010; Alibart et al., 2013;
Kaneko et al., 2013). Recently, we presented preliminary findings
of hardware demonstration of a synaptic grid using phase change
memory devices as synaptic connections (Eryilmaz et al., 2013).
In this work, we present a detailed description of the algorithm
and signaling scheme used, and additionally present a thorough
analysis of the tradeoff between the power consumption, the
number of iterations required, and the device resistance varia-
tion. We experimentally study the effects of resistance variation
on learning performance in the system level. We find that larger
variations can be tolerated by increasing the number of learning
epochs, but this comes with increased overall energy consump-
tion, resulting in a trade-off between variation tolerance, energy
consumption, and speed of the network.

PHASE CHANGE MEMORY CELL ARRAY FOR SYNAPTIC
OPERATION
Phase Change Memory (PCM) cells used in the experiment are
mushroom type cells, which means the heater material, bottom
electrode (BE), phase change material, and the top electrode (TE)
are stacked on top of each other, respectively (Wong et al., 2010).
The 10-by-10 memory array used in the experiments consists of
100 memory cells. These cells are connected in a crossbar fashion
as illustrated in Figure 1A. Each memory cell consist of a PCM
element in series with a selection transistor. The circuit schematic
of a memory cell is shown in Figure 1A, and a cross section of
a memory cell is shown in Figure 1B, together with the optical
microscope image of the memory chip used. The cells can be
accessed through bitline (BL) and wordline (WL) nodes. Each
wordline is connected to the gates of selection transistors of 10
memory cells, and each bitline is connected to the top electrode
of the PCM element of 10 memory cells. Overall, there are 10 WL
and 10 BL nodes in the array. Note that the bottom electrode of a
PCM element within a cell is connected to the selection transistor
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FIGURE 1 | (A) Schematic of 10 × 10 phase change memory (PCM) cell
array is shown on the left. Resistances connected in series with the
selection transistors represent PCM element. The figure on the right shows
the complete schematic of a single memory cell. This particular cell can be
accessed by applying appropriate biases at WL #2 and BL #10. Substrate
and common source terminals are grounded during the experiment. (B)

Optical microscope image of memory cell array located on the memory
chip is shown on the left. TEM image of a single memory cell is appended
to the right hand side. Mushroom type cell structure can be seen by
observing the bitline (BL), top electrode (TE), phase change material (PCM)
and bottom electrode (BE) stack (BE) stack. TEM image is reprinted with
permission from Close et al. (2010) Copyright 2010 IEEE. TEM image is a
representative figure for 90 nm node mushroom PCM cell, and PCM cells in
the array in this paper are 180 nm node with the same device structure.

of that cell. Each cell is associated with a unique (WL, BL) pair,
hence each cell can be accessed by applying bias to the corre-
sponding BL and WL nodes, as shown in Figure 1A. The device
fabrication as well as retention and endurance characteristics of
memory cells in the array are given in detail elsewhere (Close
et al., 2010).

SET programming of a memory cell is achieved by applying
a long (from a few hundred ns to few µs) current pulse through
the PCM element to crystallize the phase change material in the
PCM via Joule heating. In a gradual SET programming, depend-
ing on the amplitude of the current pulse, resistance of the PCM
reduces for a certain amount, rather than going directly into the
lowest resistance (fully SET) state (see Figure 2D). RESET (high
resistance) programming is achieved by amorphizing the phase
change material of the memory cell by applying a larger current
pulse with a very sharp (2–10 ns fall time) falling edge. A large
amplitude of current pulse results in melting of PCM material
through Joule heating, the sharp falling edge quenches the cell,
without allowing time for the phase change material to go into

FIGURE 2 | Electrical characterization of memory cells. (A) shows the
DC switching characteristics of a single memory cell arbitrarily selected
from the array. Switching behavior can be observed when there is 2 µA of
current through the memory cell. Binary switching cycles are shown in (B).
SET pulse is applied at odd numbers of measurement (pulse #1, 3, . . . ) and
RESET pulse is applied at even numbers of measurement. The plot shows
the measured resistance of the memory cell right after the programming
pulse is applied. Array level binary resistance distribution is shown in (C).
Resistance window for binary operation is larger than 10 k. Gradual
resistance change in a single cell is shown in (D). This plot is obtained by
applying gradual SET pulses right after the cell is abruptly programmed to
RESET state. The plot shows 3 cycles of this measurement.

the more stable crystalline state, leaving it in the amorphous state.
The amount of resistance increase for gradual RESET can be con-
trolled either by changing the falling edge width of the current
pulse or by changing the current pulse amplitude (Kang et al.,
2008; Mantegazza et al., 2010). Typical DC switching characteris-
tics of a single device arbitrarily chosen from an array are shown
in Figure 2A. For DC switching characterization, 3.3 V is applied
at WL of a single cell and BL node is swept from 0 V up to the
switching threshold. The measurement result in Figure 2A shows
that switching threshold for one of the cells in a fully RESET state
is around 0.8 V, and the current when switching occurs is 2 µA.
Note that these values can vary across the memory array due to
device to device variation. Set and reset pulses with amplitudes of
1 V and 1.5 V and with (50 ns/300 ns/1 µs) and (20 ns/50 ns/5 ns)
rise/width/fall time is applied at WL node, while BL node is held
at 3.3 V during characterization of pulse switching in the memory
cells. Pulse switching characteristics are shown in Figure 2B. This
data is obtained by applying SET pulses for pulse #1,3,5. . . and
RESET pulses for pulse #2,4,6. . . The same SET and RESET pulses
are used for array level binary resistance characterization shown
in Figure 2C. RESET resistance is distributed around 3 M ohms
and SET resistance is distributed around 10 k ohms. For synaptic
operation, gradual resistance change characteristics of memory
cells are utilized. Specifically, our system utilizes gradual SET pro-
grammability of memory cells. To characterize gradual resistance
change from the RESET state to the partially SET state, we apply
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once a 1.1 V RESET pulse and then 9 SET pulses with 0.85 V
amplitude. Gradual resistance change characteristics from RESET
to SET for a single cell is shown in Figure 2D for a few cycles of
gradual SET characterization. This gives us around 9 resistance
levels between low and high resistance state. Although the energy
consumption for gradual SET is lower than gradual RESET, vari-
ability is larger for gradual SET since gradual SET is probabilistic
in nature (Braga et al., 2011). The reason behind this is the
intrinsic stochasticity of the nucleation of crystalline clusters dur-
ing gradual SET operation. The cycle-to-cycle variability is also
observed in Figure 2D The same resistance levels are not accu-
rately repeatable from cycle to cycle. Due to variability in gradual
resistance change, multi-level-cell (MLC) memory applications
use a write-and-verify technique since the data storage applica-
tions require deterministic binary resistance levels (Kang et al.,
2008). However, massively-parallel brain-like architectures can
tolerate such variations and do not require the use of write-and-
verify that is needed to achieve an accurate resistance level. Hence,
the variations observed in Figure 2D do not pose a problem for
our purposes.

ARRAY LEVEL LEARNING
A fully-connected recurrent Hopfield network is employed for
the learning experiments (Figure 3A) (Hertz et al., 1991). The
Hopfield network consists of 100 synaptic devices and 10 recur-
rently connected neurons, as shown in Figure 3A. It is worth
noting that in this architecture, all neurons are both input and
output neurons. Integrate-and-fire neurons are implemented by
computer control and memory cells serve as synaptic devices
between neurons. Figure 3A illustrates how the network is con-
structed using the memory cell array. The input terminal of the
i-th neuron is connected to BL #i, and output terminal of the
i-th neuron is connected to WL #i, where i = 1, 2, . . . , 10, i.e.,
neuron #1 input and output is connected to BL #1 and WL #1,
respectively, and neuron #2 input and output is connected to BL
#2 and WL #2, respectively, etc. (Figure 3A). Before the experi-
ment, all synapses are programmed to the RESET state. A learning
experiment consists of epochs during which synaptic weights are
updated depending on firing neurons. After training, the pat-
tern is presented again but with an incorrect pixel this time, and
the incorrect pixel is expected to be recalled in the recall phase

FIGURE 3 | Neural network realized and how it is implemented with the

memory array is explained. (A) Shows the recurrently connected Hopfield
network implemented in the learning experiment. Pulsing scheme during
training as well as recall is shown in (B). We train the network with two
patterns as shown in (C), where red pixels correspond to ON and blue pixels
correspond to OFF. Numbers in pixels correspond to the neuron number
associated with that pixel. During update phase shown in (D), the resistance
of synaptic elements connected to non-firing neurons do not change, since
no pulse is applied at the WL node of non-firing neurons during update
phase. The synaptic connections between firing neurons, however, are

programmed by the pulses applied at the BL and WL of the corresponding
memory cell. The pulse characteristics are predetermined for gradual SET
programming of the memory cell, hence the resistance is reduced with an
amount and the connection gets stronger. (E) During the read phase, a small
amplitude voltage applied at the BL node of non-firing neurons sense the
total current due to the synapses of that neuron connected to firing neurons,
since a pulse applied at the output of the firing neurons turns the selection
transistor on simultaneously. (F) In this example, during the recall phase,
N1–N4 are presented with N6 OFF (not firing), but N6 is recalled since the
input current of N6 is larger than the threshold.
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after training is performed (Figure 3B). A complete pattern is
presented during the training phase of an epoch, and an incom-
plete pattern with an incorrectly OFF pixel is presented during
the recall phase. All patterns consist of 10 pixels, and each neuron
is associated with a pixel. This mapping between pixels and neu-
rons is shown in Figure 3C for two different patterns considered
in this work. Figure 3B shows the pulsing scheme for firing and
non-firing neurons in both update and recall phases. When a
pattern is presented during a training phase, the neurons asso-
ciated with ON (red pixels in Figure 3C) pixels are externally
stimulated, hence they fire. As can be seen in Figure 3D, when
a neuron spikes during the training phase, it applies program-
ming pulses at its input (corresponding BL) and output (WL).
This results in gradual SET programming of the synaptic device
between those two firing neurons. For instance, when neuron 1
and neuron 2 fire, programming pulses are applied at WL1, WL2,
BL1, and BL2, as defined in the pulsing scheme in Figure 3B.
These pulses will result in a current going through PCM ele-
ments and hence gradual SET programming of memory cells that
connect neuron 1 and neuron 1 (see Figure 3D). After train-
ing, the recall phase begins. During the recall phase, a pattern
with an incorrectly OFF pixel is presented (Figure 3E). Again,
the neurons associated with ON pixels during recall phase fire,
and appropriate pulses are applied at the input and output of
neurons as shown in the pulsing scheme in Figure 3B). Neurons
associated with OFF pixels during recall phase do not fire. Note
that there is a low amplitude pulse applied at the input of non-
firing neurons during recall phase. This voltage pulse, together
with the large amplitude voltage pulse applied at the firing neu-
rons’ output during recall phase, create an input current feeding
into non-firing neurons. The amplitude of this current through a
non-firing neuron is determined by the resistance values of synap-
tic connections between that neuron and the firing neurons. This
input current of non-firing neurons during recall phase is analo-
gous to membrane potential of biological neurons. In biological
neurons, the postsynaptic current feeding into a neuron accu-
mulates charge on capacitive membrane, forming a membrane
potential. Typically, this is modeled by a time constant that is
determined by membrane capacitance. In this experiment, neu-
rons fire simultaneously during the recall phase, while at the same
time the input current through the non-firing neurons is mea-
sured. Since the delays and timing properties of the neurons are
not included in the neuron model, the membrane capacitance is
not included in neurons. Hence, input current through a neuron
is actually equivalent to membrane potential in our experiments.
Note that in this paper, we will use the terms input current and
membrane voltage interchangeably, due to the reasons explained
above. The input current into a non-firing neuron during recall
phase can be written as follows:

Ii = Vread

∑

j ∈ F

1

Rij
(1)

In Equation (1), Ii is the input current into the ith neuron where
it is a non-firing neuron, F is the set of indices of firing neu-
rons, Rij is the resistance of synaptic element between bitline i and
wordline j, and Vread is the read voltage at the input of non-firing

neurons during recall phase (see Figure 3B), which is 0.1 V in our
experiments. As Figure 3B shows, if a neuron is not associated
with an OFF pixel at the beginning of the recall phase, it fires, and
the reading voltage Vread at its input is 0, making its input 0.

If the input current through a non-firing neuron exceeds a
threshold during the recall phase, then the neuron associated with
the pixel fires, the complete pattern is recalled (Figure 3F). The
membrane potential of neurons is set to 0 at the beginning of
each epoch, hence it does not transfer to the next epoch. We
define “missing pixel” as the pixel that is ON in the correct pat-
tern used for training, but OFF in the input pattern during recall
phase. Note that the pixel missing from the pattern in recall phase
still fires in update phase during training, SET programming the
corresponding memory cells between this neuron and other fir-
ing neurons. This results in a decrease in the resistance values
between this missing pixel’s neuron and other firing neurons (ON
pixels) as shown in Figure 3D), increasing the input current of
the missing pixel’s neuron during the recall phase (Figure 3F).
Hence, recall is expected to occur after a few epochs, at which
point the membrane potential exceeds a pre-determined thresh-
old. This learning scheme is a form of Hebbian learning, since the
weights of synaptic connections between coactive neurons during
training phase get stronger, due to reduced resistances of these
synaptic connections. The time window that defines the firing
of two neurons as being coactive is determined by the width of
the pulse applied at the input of firing neurons during update
phase, shown in Figure 3B. This time window is 100 µs in our
experiments. As an illustration of the aforementioned learning
process, two simple 10-pixel patterns are chosen to be learned.
The two patterns of 10 pixels are shown in Figure 3C. The net-
work is first trained with pattern 1 (on the left in Figure 3C),
and then pattern 2 (on the right in Figure 3C). During training
with pattern 1, until the pattern is recalled, the complete pattern
is presented in training phase and the pattern with pixel 6 miss-
ing is presented during recall phase. After pattern 1 is recalled,
the same procedure is performed for pattern 2, this time with
pixel 5 missing in the recall phases of epochs. This experiment
is performed for 4 cases, each corresponding to different ini-
tial resistance variations across the array. Initial variation here
refers to the variation after all cells are programmed to RESET
before learning experiment begins. Different initial variation val-
ues are obtained by individually programming the memory cells
in different arrays. The evolution of synaptic weights is shown in
Figure 4 during the experiment for the case where the initial vari-
ation is 60%. Note that the synaptic weight map in Figure 4 shows
the normalized synaptic weights of each synaptic device. Each
data point in this map shows the resistance of the synaptic device
after the corresponding epoch divided by the initial RESET resis-
tance (right before the experiment when all devices are RESET
programmed as explained above) of that device. Hence the map
does not include the variations of initial RESET state resistances
across the array. The variation study is explained in the next sec-
tion. As can be seen in Figure 4, after feeding each input pattern
into the network, synapses between the ON neurons gradually
get stronger (resistance decreases); after 11 epochs, patterns are
recalled. The overall energy consumed in synaptic devices dur-
ing this experiment is 52.8 nJ. This energy does not include the
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FIGURE 4 | Evolution of normalized resistance of synaptic devices is

shown, for the 60% initial variation case. All normalized resistances
are 1 initially since the normalized resistance map shows the current
resistance of a synaptic device divided by its initial resistance. Note that
the row and column numbers corresponds to BL and WL that connect
the synaptic devices. For instance, the data shown in row #3 and
column #6 is the normalized resistance of the memory cell that can be
accessed by BL #6 and WL #3. First, pattern 1 is presented to the
network. For pattern 1, ON neurons for the complete pattern during

update phase are N1, N2, N3, N4, N6, and, and for the recall phase
N6 is OFF and expected to be recalled (i.e., expected to fire) after
training with a certain number of epochs. The gradual decrease in the
normalized resistance of synaptic connections between firing neurons
during the update phase can be observed. After 11 epochs, when recall
phase is performed, OFF pixel #6 (neuron #6) is recalled (meaning
neuron #6 fires in recall phase) , and then pattern 2 is presented for
training. For pattern 2, the complete pattern is represented by N5, N7,
N8, N9, N10; and N5 is missing in the recall phase.

energy consumed in the neurons and the wires, and is the energy
consumed by the synaptic devices during training and recalling
of pattern 1. Our measurements indicate that roughly 10% of this
energy is consumed in phase change material, while around 90%
is consumed in selection devices in our experiment. Note that
the number of epochs and the overall energy consumed strongly
depends on the choice for the threshold membrane potential of
neurons. If threshold membrane potential is kept low, the number
of epochs would be reduced, but a wrong pixel might fire (hence
turn on) in the output of recall phase due to variations, hence
recalling a wrong pattern. This is explained in detail in the next
section.

EFFECT OF VARIATION ON LEARNING PERFORMANCE
Figure 5A shows the actual resistance map of synaptic connec-
tions after 11 epochs for the experiment above, along with the
resistance distribution (on the left in Figure 5) when all the cells
are in the RESET state before the experiment. As the synaptic
connections evolve during training for two patterns, synapses
between coactive neurons get stronger. Actual resistance maps
in Figure 5 also illustrate the resistance variation across the
array when all cells are in RESET state before training. In our
experiment, the neuron firing threshold is the important param-
eter that can be tuned to tolerate the variation. This threshold
value has to be large enough so that a wrong pixel will not
turn on in recall phase, but low enough to guarantee that the
overall energy consumed is minimal and the missing pixel will
actually turn on in recall phase, hence recalling the original

pattern. To this end, the firing threshold of neurons is selected as
follows:

Ithr = C · max
N,i

⎛

⎝Vread

∑

j ∈ N

1

Rij

⎞

⎠ (2)

In Equation (2), N is constrained to be a 4-element subset of
the set {1,2,3,. . . 9,10}, and Rij is the initial RESET resistance
of the memory cell defined by bitline i and wordline j, and
Vread is defined as in Equation (1). This equation means that
the threshold current is a constant C times the largest input
current that a neuron can possibly have in the recall phase,
given the resistance values for each cell. The reason for con-
sidering 4-element subsets is because we are assuming 4 pixels
are ON in the input during recall phase, and we want to make
sure that the threshold is large enough to avoid firing of a neu-
ron during recall phase when it is actually not ON in the true
pattern. In its current form, this scheme might not be success-
ful when different number of pixels are missing, for example,
when three pixels are ON in recall phase while 5 pixels are
ON in the actual pattern. This generalization can be made by
allowing negative weights; equivalently using 2-PCM synapse sug-
gested in Bichler et al. (2012), or adaptive threshold method
suggested in Hertz et al. (1991). The requirement that C > 1
guarantees that during the training, the wrong pixel will not be
recalled at any epoch. This is because the resistance of the synap-
tic connections between an arbitrary OFF pixel in the original
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FIGURE 5 | Evolution of actual resistance of synaptic devices is

shown for four different initial resistance variation cases: (A) 60%,

(B) 40%, (C) 24% and (D) 9%. The representation of synaptic devices
in these resistance maps are the same as in Figure 4, but this time
the resistance values are not normalized. The variations across the

memory cell arrays are apparent here. Synaptic devices between firing
neurons during training get stronger (i.e., are driven to lower resistance
values). As the initial variation reduces, the difference in resistance
values between potentiated synapses and the synapses that remain
unchanged becomes more pronounced.

pattern and other neurons do not decrease, as the OFF pixels
do not fire during training. We choose C = 2 for our experi-
ments. Choosing C = 2 also allows us, without requiring negative
synaptic weights, to generalize recall to some extent for inputs
with incorrectly ON pixels, in addition to incorrectly OFF pix-
els as given in our example. This idea is similar to adaptive
threshold method in Hertz et al. (1991), where instead of using
negative weights, neuron threshold is increased while keeping

the weights positive. Observe that as the variation increases,
the low-resistance tail of the initial RESET resistance distribu-
tion (leftmost histograms in Figures 5A–D) extends toward lower
resistance values. This results in a decrease in minimum resistance
values, as can be seen in histograms in Figures 5A–D). Hence,
maximum neuron input current with 4 neurons firing increases.
This increases the max term in Equation (2), hence a higher
number of epochs is needed to recall the missing pixel for larger
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FIGURE 6 | Recall of the missing pixel for training with pattern 1 for four

different initial variation cases, (A) 60%, (B) 40%, (C) 24%, and (D) 9%,

are shown. For each case, top figures show what the input current of
neurons that do not fire would be if the recall is performed after the
corresponding number of epochs, and bottom figures show the neurons that
fires if the recall was performed after the corresponding number of epochs

for C = 2 (see the text for details about parameter C). Different threshold
levels for C = 1.5 and C = 2 cases are shown in the top figures. When the
input current exceeds the threshold after a certain number of epochs, the
missing pixel N6 fires. For C = 2, the number of epochs after which N6 fires
in each case is 11 (60% variation), 9 (40% variation), 5 (24% variation) and 1
(9% variation).
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variation. The resistance maps for other variation cases are shown
in Figures 5B–D. We can see that as initial variation reduces, the
same number of epochs yields a more pronounced overall dif-
ference between the weights that get stronger versus the weights
that do not change, as illustrated in Figure 5. The evolution of
the membrane potential with the number of epochs for different
variation cases are shown in Figure 6. While it takes 11 epochs
to recall a pattern when there is 60% initial variation, only one
epoch is sufficient in our case when the initial resistance variation
is 9%. It is worth mentioning that we have negligible variation
in read voltage during our experiment, since the reading of mem-
ory cell resistances is performed with electronic equipment. When
this synaptic grid is integrated with actual CMOS neurons, how-
ever, it is expected to have some variation in read voltage, which
results in variation in the input current of neurons. This variation
in input current might cause variations in the number of epochs
needed for training. We can observe from Figure 6 that while it
takes 3% input current variation (hence read voltage variation)
to change the number of epochs needed for 60% variation case
(Figure 6A), it takes 40% variation in read voltage to change the
number of training epochs required for 9% initial variation case
(Figure 6D). This is because as the number of epochs increases,
resistances of programmed synapses begin to converge to low
resistance values. To minimize the effect of read voltage variation,
properties of synaptic device as well as pulsing scheme during
training should be carefully chosen, considering the read voltage
variation of CMOS neuron circuit. The increase in the required
number of epochs to recall the pattern results in a higher overall
energy consumption. Overall energy consumption for 9% initial
resistance variation case is 4.8 nJ, whereas it is 52.8 nJ for 60% ini-
tial variation case. Figure 7 illustrates the dependence of energy
consumption and number of epochs needed on initial resistance
variation. As can be seen in Figure 7, there is a clear reduction in

FIGURE 7 | The same experiment is repeated for different initial

variation cases. In order to guide the eye, dashed arrows and circles
indicate which curves correspond to which axis. For four different initial
variation cases, the plot shows the total number of epochs required for
training as well as overall energy consumed in the synaptic devices during
training and recall phases for pattern 1. As the variation increases, larger
firing threshold is required for neurons. This increases the number of
epochs and energy consumption required for training.

the overall energy consumption as initial resistance variation goes
down. Note that these energy values represent only the energy
consumed in the synaptic devices for training and recall phases
for pattern 1. They do not include the energy consumed in the
wires or the neurons. Energy consumption in the wires can be
a substantial part of the overall energy consumption for a large
array (Kuzum et al., 2012). It is also worth noting that since the
time scale between the epochs in these experiments is on the order
of seconds, we did not observe any effects of drift in our measure-
ments, which would require a timescale of µs or ms to observe
(Karpov et al., 2007).

CONCLUSION
We report brain-like learning in hardware using a crossbar array
of phase change synaptic devices. We demonstrated in hardware
experiments that synaptic network can implement robust pat-
tern recognition through brain-like learning. Test patterns were
shown to be stored and recalled associatively via Hebbian plas-
ticity in a manner similar to the biological brain. Increasing the
number of training epochs provides a better tolerance for initial
resistance variations, at the cost of increased energy consumption.
Demonstration of robust brain-inspired learning in a small-
scale synaptic array is a significant milestone toward building
large-scale computation systems with brain-level computational
efficiency.

METHODS
The memory cell array was probed using a 25 × 1 probe card
which is connected to a switch matrix consisting of two cards,
each providing a 4 × 12 matrix (see Supplementary Figure 1).
The probe card contacts 25 pads on the wafer that has the mem-
ory arrays. These 25 pads consist of 10 bitlines, 10 wordlines,
1 common source terminal, 1 substrate terminal, and 3 floating
terminals. Switch matrix is connected to Agilent 4156C semicon-
ductor analyzer to perform DC measurements and Agilent 81110
pulse generator for pulse measurements. All these equipment is
controlled by a Labview program on a separate computer. This
program allows us to switch between cells on the array automati-
cally and applying custom signals from semiconductor analyzer
or the pulse generator to the desired cell. In all the measure-
ments, resistance of the memory cell is measured by applying
0.1 V read voltage at the bitline and 3.3 V at the wordline. The cur-
rent (I) through the cell is measured and resistance is obtained by
R = 0.1 V/I. DC switching measurement in Figure 2A is obtained
from an arbitrarily selected cell on the array. For this particu-
lar measurement, current through the device is swept. For binary
switching measurement in Figure 2B, alternating SET pulses (1 V
amplitude, 50 ns/300 ns/1 µs rise/width/fall time) and RESET
pulses (1.5 V amplitude, 5 ns/50 ns/5 ns rise/width/fall time) are
applied by pulse generator. For the measurement in Figure 2C,
the same SET and RESET pulses are applied at each 100 cells in
an array. The gradual SET characteristics in Figure 2D is obtained
by applying 1.1 V RESET pulse once and then 0.85 V gradual SET
pulse 9 times. This cycle is repeated for a few times to obtain
the result in Figure 2D. During learning experiment, the ini-
tial RESET programming of the cells before learning experiment
starts was done by applying a RESET pulse (1.5 V amplitude,
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5 ns/50 ns/5 ns rise/width/fall time) at every cell within the array.
The energy consumed during gradual SET programming of
synaptic connections in update phases is extracted by measuring
the current through the devices during programming. Fraction
of energy consumed in phase change material and in selection
transistor is extracted by measuring individual transistor charac-
teristics separately, as well as by current sweep measurements in
PCM cells.
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card that directly probes pads on memory chip are connected to switch
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