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Visualization of the 3D cuboid environment of the agent-based model that corresponds to 1µl of the 
whole-blood infection assay, containing 5000 polymorphonuclear neutrophils, 500 monocytes, and 1000 
Candida albicans cells.
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A thorough understanding of pathogenic microorganisms and their interactions with host 
organisms is crucial to prevent infectious threats due to the fact that Pathogen-Host Interactions 
(PHIs) have critical roles in initiating and sustaining infections. Therefore, the analysis of 
infection mechanisms through PHIs is indispensable to identify diagnostic biomarkers and 
next-generation drug targets and then to develop strategic novel solutions against drug-resistance 
and for personalized therapy. Traditional approaches are limited in capturing mechanisms of 
infection since they investigate hosts or pathogens individually. On the other hand, the systems 
biology approach focuses on the whole PHI system, and is more promising in capturing infection 
mechanisms. Here, we bring together studies on the below listed sections to present the current 
picture of the research on Computational Systems Biology of Pathogen-Host Interactions: 

- Computational Inference of PHI Networks using Omics Data
- Computational Prediction of PHIs 
- Text Mining of PHI Data from the Literature 
- Mathematical Modeling and Bioinformatic Analysis of PHIs

Computational Inference of PHI Networks using Omics Data

Gene regulatory, metabolic and protein-protein networks of PHI systems are crucial for a thorough 
understanding of infection mechanisms. Great advances in molecular biology and biotechnology 
have allowed the production of related omics data experimentally. Many computational methods are 
emerging to infer molecular interaction networks of PHI systems from the corresponding omics data.

Computational Prediction of PHIs

Due to the lack of experimentally-found PHI data, many computational methods have been 
developed for the prediction of pathogen-host protein-protein interactions. Despite being 
emerging, currently available experimental PHI data are far from complete for a systems view 
of infection mechanisms through PHIs. Therefore, computational methods are the main tools to 
predict new PHIs. To this end, the development of new computational methods is of great interest. 

Text Mining of PHI Data from Literature 

Despite the recent development of many PHI-specific databases, most data relevant to PHIs are 
still buried in the biomedical literature, which demands for the use of text mining techniques to 
unravel PHIs hidden in the literature. Only some rare efforts have been performed to achieve this 
aim. Therefore, the development of novel text mining methods specific for PHI data retrieval 
is of key importance for efficient use of the available literature. 

Mathematical Modeling and Bioinformatic Analysis of PHIs

After the reconstruction of PHI networks experimentally and/or computationally, their 
mathematical modeling and detailed computational analysis is required using bioinformatics 
tools to get insights on infection mechanisms. Bioinformatics methods are increasingly applied to 
analyze the increasing amount of experimentally-found and computationally-predicted PHI data. 
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The Editorial on the Research Topic

Computational Systems Biology of Pathogen-Host Interactions

Pathogen-Host Interactions (PHIs) play a significant role in the mechanisms of infections.
Therefore, the investigation of infectionmechanisms through PHIs is a crucial step to develop novel
and more effective solutions against drug-resistance and for personalized therapy. To this aim,
systems biology approach considers the whole PHI system instead of focusing hosts or pathogens
individually. Computational modeling and analysis has a vital place within the whole systems
biology workflow (Cyclic operation of experimental and modeling work). Multi-scale modeling
provides the holistic view needed in the investigation of pathogen-host molecular interactions.
However, it is usually very difficult to identify the model structure and parameters for complex
multi-scale models. On the other hand, focused modeling types require more stringent and
advanced feature selection approaches.

This research topic aims to provide examples from the current picture of the research on
computational systems biology of PHIs. The papers included here review recent studies or present
original research on computational inference of PHI networks, computational prediction of PHIs,
text mining of PHI data from the literature, and mathematical modeling and computational
analysis of PHI networks. This research topic presents three review papers, 10 original research
articles, and one technology report.

Opening this research topic, we provide a comprehensive review of the studies on computational
systems biology of PHIs (Durmuş et al.). We focus on the computational methods for the inference
of molecular interaction networks of PHI systems, bioinformatic analysis of PHI networks, the
Web-based PHI databases, and text-mining efforts to extract PHI data hidden in the literature. In
this sense, this review provides a systems perspective on which the other articles covered in this
research topic are based.

PHI NETWORK INFERENCE USING OMICS DATA

Schulze et al. deal with the challenge of the inference of inter-species gene regulatory networks from
dual transcriptomic data. They use an extended version of NetGenerator, an ordinary differential
equations (ODEs)-based tool for network inference that predicts gene regulatory networks from
gene expression time series data (Guthke et al., 2005; Tierney et al., 2012).

6
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Budak et al. use a temporal phosphoproteomic dataset
of Salmonella-infected human cells (Rogers et al., 2011) to
reconstruct the temporal signaling network of the human
host by integrating protein-protein interaction (PPI) and the
phosphoproteomic data. The Prize-collecting Steiner Forest
approach and the Integer Linear Programming based edge
inference approach are employed. The complementary use
of both methods leads to a network which conserves the
information about temporality, direction of interactions, while
revealing the hidden entities in the signaling.

COMPUTATIONAL PREDICTION OF PHIs

Despite the recent advances, the experimentally-found PHI data
are still scarce and the computational prediction is a valuable
source of PHI data currently. The computational prediction
primarily exploits sequence information, protein structure and
known interactions. Machine learning techniques are used when
there are sufficient known interactions available to be used
as training data. On the opposite case, transfer and multitask
learning methods are preferred. Nourani et al. provide an
overview of these approaches for predicting PHIs.

Experimentally verified data on fungi-host interactions are
rare in the literature and in the PHI databases. Remmele et al.
reconstruct large-scale PHI networks for the fungal pathogens
Aspergillus fumigatus and Candida albicans and their human and
mouse hosts. A computational PHI prediction method based on
protein orthology, PPI data as well as data on gene functions and
cellular localization was developed and used.

TEXT MINING OF PHI DATA

The emergence of large-scale experimental PHI data has led
to the development of PHI databases such as VirusMentha
(Calderone et al., 2015), VirhostNet (Guirimand et al., 2015),
PATRIC (Wattam et al., 2014), HPIDB (Kumar and Nanduri,
2010), and PHISTO (Durmuş Tekir et al., 2013). Nevertheless,
most data regarding PHIs are still buried in the articles and they
have not been stored in databases. Karadeniz et al. extend text
mining tool SciMiner, originally developed for extracting intra-
species molecular interactions, for inter-species PHIs. They use
SciMiner to extract host-Brucella gene-gene interactions, which
are further analyzed by ontology modeling.

MATHEMATICAL MODELING AND

BIOINFORMATIC ANALYSIS OF PHIs

Few examples of constraint-based PHI models are currently
available in the literature. However, there is a lack of definite
description of the methodology required for the functional
integration of genome scale metabolic models in order to
generate PHI models. Jamshidi and Raghunathan outline
a systematic procedure to produce functional PHI models,
highlighting steps which require debugging and iterative
revisions in order to successfully build a functional model. The
construction of such models will enable the exploration of PHIs

by leveraging the growing wealth of omics data in order to
better understand mechanisms of infection and identify novel
therapeutic strategies.

Dühring et al. describe the cross-talk between the fungal
pathogen C. albicans and the human innate immune system.
They review computational systems biology approaches to model
and investigate these complex interactions with a special focus
on fungal immune evasion and game-theoretical and agent-based
models.

Nguyen et al. use ODEs to represent the basic interactions
between Ebola virus and wild-type Vero cells, i.e., epithelial cells
of green monkeys, in vitro. The parameters in viral kinetics are
estimated leading to a first mathematical model for Ebola virus
infection.

Dix et al. examine the transcriptional footprint of the host
in response to the bacterial pathogens Staphylococcus aureus
and Escherichia coli and the fungal pathogens C. albicans and
A. fumigatus in a human whole-blood model. Expression data are
exploited to build a random forest classifier to classify if a sample
contains a bacterial, fungal or mock-infection.

Sinclair et al. develop a method combining in silico
prediction of bacterial nucleomodulins, i.e., proteins targeted
to the host cell nucleus, and iTRAQ protein profiling (a
mass spectrometric technique where two protein expression
profiles are compared) to identify potential bacterial-derived
nuclear-translocated proteins that could impact transcriptional
programming in host cells. This approach was applied to
intracellular bacteria such as Anaplasma phagocytophilum,
Mycobacterium tuberculosis, and Chlamydia trachomatis.

Finally, the research topic includes articles focusing on
image-based systems biology of PHIs. While advances in omics
techniques drive the progress of system biology on molecular
level, there is also a significant progress on the cellular level
based spatio-temporal data, e.g., microscopy images. Lehnert
et al. apply non-spatial state-based modeling and agent-based
modeling approaches to simulate an experimental assay for
C. albicans infection of human blood. They predict cell migration
parameters in 3D space where monocytes, granulocytes, and
C. albicans cells are treated as migrating and interacting
agents. Pollmächer and Figge implement a hybrid agent-based
spatio-temporal modeling approach for A. fumigatus infection
in human alveoli to decipher chemokine properties. They found
by model simulations that the ratio of chemokine secretion
rate to the diffusion coefficient is the main indicator for
the success of pathogen detection by alveolar macrophages.
Kraibooj et al. suggest a novel image analysis algorithm for the
automated quantification of the phagocytosis of two wild type
A. fumigatus strains. The strains were compared in terms of
the phagocytosis process when the fungal conidia interact with
alveolar macrophages.

The computational modeling of PHI networks of interacting
genes, transcripts, proteins, and metabolites is crucial to
enlighten the molecular mechanisms of infection. The
experimental detection of levels of biomolecules via omics
approaches as well as the detection of PHIs via high-throughput
experiments started to generate comprehensive datasets. The
modeling of the large-scale data will not only elucidate the

Frontiers in Microbiology | www.frontiersin.org February 2016 | Volume 7 | Article 21 | 7

http://dx.doi.org/10.3389/fmicb.2015.00730
http://dx.doi.org/10.3389/fmicb.2015.00094
http://dx.doi.org/10.3389/fmicb.2015.00764
http://dx.doi.org/10.3389/fmicb.2015.01386
http://dx.doi.org/10.3389/fmicb.2015.01032
http://dx.doi.org/10.3389/fmicb.2015.00625
http://dx.doi.org/10.3389/fmicb.2015.00257
http://dx.doi.org/10.3389/fmicb.2015.00171
http://dx.doi.org/10.3389/fmicb.2015.00055
http://dx.doi.org/10.3389/fmicb.2015.00608
http://dx.doi.org/10.3389/fmicb.2015.00503
http://dx.doi.org/10.3389/fmicb.2015.00549
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive
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mechanisms of infection, but will help in the discovery of
biomarkers for novel diagnostic tools and of therapeutic drug
targets through identification of essential molecules for the
pathogen. Despite the recent efforts, the use of systems biology
approaches to investigate PHI systems is still in its infancy,
mostly because of data scarcity (Durmuş et al.). Ongoing
studies in the field will certainly produce more large-scale
PHI data in the near future. Heterogeneous data sets (clinical,
microbiological, chemical, molecular on different levels such
as SNPs, transcriptome, proteome, FACS, microscopic, mass
spectrometric, etc.) will be integrated. More complete PHI
models will allow the integration of omics-based and image-
based systems biology of infection and will pioneer more
complex multi-scale models with different scale in space (from
molecules/cells/tissues to organism/population) and time (from

seconds to month). These more complex models will improve
the PHI-based solutions to infectious diseases.
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Pathogens manipulate the cellular mechanisms of host organisms via pathogen–
host interactions (PHIs) in order to take advantage of the capabilities of host cells,
leading to infections. The crucial role of these interspecies molecular interactions
in initiating and sustaining infections necessitates a thorough understanding of the
corresponding mechanisms. Unlike the traditional approach of considering the host
or pathogen separately, a systems-level approach, considering the PHI system as
a whole is indispensable to elucidate the mechanisms of infection. Following the
technological advances in the post-genomic era, PHI data have been produced in
large-scale within the last decade. Systems biology-based methods for the inference
and analysis of PHI regulatory, metabolic, and protein–protein networks to shed light
on infection mechanisms are gaining increasing demand thanks to the availability
of omics data. The knowledge derived from the PHIs may largely contribute to the
identification of new and more efficient therapeutics to prevent or cure infections.
There are recent efforts for the detailed documentation of these experimentally
verified PHI data through Web-based databases. Despite these advances in data
archiving, there are still large amounts of PHI data in the biomedical literature yet
to be discovered, and novel text mining methods are in development to unearth
such hidden data. Here, we review a collection of recent studies on computational
systems biology of PHIs with a special focus on the methods for the inference and
analysis of PHI networks, covering also the Web-based databases and text-mining
efforts to unravel the data hidden in the literature.

Keywords: pathogen–host interaction, computational systems biology, bioinformatics, omics data, protein–
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Introduction

Infectious diseases are one of the preliminary causes of death worldwide each year. Emerging
and reemerging diseases and drug resistant pathogens have made the problem more serious
for human beings. Therefore, novel therapeutic strategies, called theranostics, are increasingly
investigated to fight the biological threats. These strategic solutions require a systems biolog-
ical approach with a thorough understanding of the underlying mechanisms of infections by
focusing on molecular interactions between pathogenic and host organisms (Morens et al., 2004;
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Murali et al., 2011; Guthke et al., 2012; Durmuş Tekir and Ülgen,
2013). Systems biology is an interdisciplinary research field in
life sciences focusing on the study of non-linear interactions
among biology entities through the integration and combina-
tion of biomolecular and medical sciences with mathematical,
computational, and engineering disciplines (Kitano, 2002). By
modeling biological phenomena, systems biology uses a more
holistic approach based on omics data instead of the traditional
reductionism focusing at only a few molecules and interactions.
The pathogen–host interactions (PHIs) may be between pro-
teins, nucleotide sequences, metabolites, and small ligands. The
protein–protein interactions (PPIs) have been identified as the
most important type in the functioning of PHI systems and there-
fore are the most studied type (Stebbins, 2005; Korkin et al.,
2011; Zoraghi and Reiner, 2013). However, non-coding RNAs
(ncRNAs) and metabolites have also been reported to have criti-
cal functional roles in virus–host and bacteria–host interactions,
respectively (Gottwein and Cullen, 2008; Skalsky and Cullen,
2010; Eisenreich et al., 2013; Saayman et al., 2014).

Different levels of omics data collected from pathogens and/or
infected cells are crucial components that drive bioinformatic
analyses facilitating the construction and analysis of infection-
specific gene-regulatory, metabolic, and protein–protein net-
works (Westermann et al., 2012; Schulze et al., 2015). Such
network-based computational systems biology analyses of PHI-
based omics data enable the elucidation of infection mechanisms
and their dynamics, the identification of potential drug targets
for the next-generation antimicrobial therapeutics, and the devel-
opment of novel and personalized strategies for the prevention
and treatment of infections. With an increasing amount of exper-
imental PHI data, Web-based databases were developed to derive
and provide pathogen–host interactome data, usually focusing on
specific pathogens or hosts (Wattam et al., 2014; Ako-Adjei et al.,
2015; Calderone et al., 2015; Guirimand et al., 2015). Although
the available databases are promising in data archiving, a huge
amount of PHI data is not stored in any of these databases,
since these data are buried in the literature. Therefore, there
is an urgent need for novel text mining methods specific for
PHI data retrieval. In this paper, the efforts on the collection of
PHI-based omics data are reviewed first. Next, a review of the
computational systems biology analyses of three major types of
PHI networks is provided. Then, the available PHI databases and
the current snapshot of the literature on text mining for PHI data
are presented.

Omics Data Reflecting PHI Networks

The systems biology approaches with genome-wide molecular
profiling using high-throughput techniques to generate omics
data are changing the face of infection biology together with the
computational methods for heterogeneous data management and
integrative analysis via mathematical modeling (Guthke et al.,
2012; Law et al., 2013). New insights in the microbial and viral
pathogenesis, in particular in the host’s immune response to con-
tact with pathogens, offer opportunities for better diagnostics,
therapeutics, and vaccines. Thus, systems biology of infection

allows to yield novel therapeutic targets (Sarker et al., 2013)
and to establish individualized or personalized medicine. The
integrative personal omics profile (iPOP) combines genomics,
transcriptomics, proteomics, metabolomics, and autoantibody
profiles from a single individual over a 14-month period (Chen
et al., 2012; Li-Pook-Than and Snyder, 2013).

There are various platforms for handling of measured data
from samples, data storage and exchange, data pre-processing
and data analysis. Powerful platforms for data management in
systems biology have recently become available and are stan-
dardized step by step by the Functional Genomics Data Society1
(FGED, founded in 1999 as MGED; Brazma et al., 2006). Several
systems biology projects in Europe including the ones dedicated
to PHI research use the SysMO-DB/SEEK system for sharing
data, knowledge (including Standard Operating Procedures –
SOPs) and mathematical models2 (Wolstencroft et al., 2011).
For the management of genomics, transcriptomics, and (2D-
gel) proteomics data in infection research, the data warehouse
‘OmniFung’ was established to support research on fungi–host
interactions3 (Albrecht et al., 2011, 2007).

The free, open source and open development software project
Bioconductor, which is primarily based on the statistical R pro-
gramming language, provides 934 software packages, 894 annota-
tion and 224 experimental data sets for the bioinformatic analysis
and comprehension of high-throughput genomic data4 (Version
3.0). These packages as well as other R packages not included in
the Bioconductor project are useful for the advanced, in particu-
lar integrative, analysis of omics data and modeling of PHIs. To
identify genes, proteins or metabolites of interest for biomarker
discovery or drug target prediction by supervised machine learn-
ing methods, there are many data mining tools available. For
instance, WEKA5 or RapidMiner6 is used to characterize the
response of the host immune system by decision tree analysis of
flow cytometric data (Simon et al., 2012). In addition, there are
platforms and software tools for the integrative and explorative
analysis and visualization of data from the different omics levels
of PHIs (Horn et al., 2014).

PHI-Based Genome and Transcriptome Data
The genomic information from the host and the pathogen rep-
resents the basis for all further molecular analyses and bioinfor-
matic investigations of PHI systems. Thus, genome sequencing is
fundamental. It helps to improve diagnosis, typing of pathogen,
virulence and antibiotic resistance detection, and development
of new vaccines and culture media. Single nucleotide poly-
morphism (SNP) typing is important for both identification
and characterization of variants of pathogens (strains, clinical
isolates) as well as to study the susceptibility of humans for
certain infections. In the last decade, there was, and in the
future there will be, an explosion of genome sequence data.

1http://fged.org
2www.sysmo-db.org
3www.omnifung.hki-jena.de
4http://bioconductor.org
5http://www.cs.waikato.ac.nz/ml/weka
6www.rapidminer.de
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The new sequencing technologies enable small research units
to create huge genome datasets at low cost in short time. As a
result, handling, comparing, and extracting useful information
from millions of sequences becomes more and more challeng-
ing, i.e., increased efforts in computational biology are urgently
needed. In particular, sequencing is used for genomic and tran-
scriptomic characterization of new emerging pathogens. Whole-
genome sequencing based phylogenetic studies have implications
for understanding the evolution of the PHIs as well as tracking
and possibly preventing infection diseases as performed for the
Enterotoxigenic Escherichia coli (ETEC), a major cause of infec-
tious diarrhea (vonMentzer et al., 2014).Metagenomic andmeta-
transcriptomic studies of pathogens revealed how pathogenic
microorganisms adapt to hosts, e.g., plants (Guttman et al.,
2014).

The first step of genome sequence analysis, the assembling
of genome sequence data into a single genomic contig, may be
difficult, in particular due to assembling repeated sequences if
reference genomes are not available. Then, additional informa-
tion may be required to resolve the remaining DNA regions.
The next step, the functional annotation of virulence-relevant
pathogens and focusing on host-interaction genes, is often dif-
ficult as the genes of interest for PHIs are frequently species-
specific and, thus, studies of gene homologies may not be helpful.
The situation would be improved by the databases of protein
families involved in host interactions, which incorporate the
currently used gene names, sequence motifs, gene functions,
and experimental results (see section “Web-Based Databases
for PHI Systems”). On the other hand, comparative genomics
can provide insights into molecular pathogenesis, host speci-
ficity, and evolution of pathogens. Next generation sequenc-
ing (NGS) has revolutionized the molecular investigation of
the diversity of pathogens on the genomic and transcriptomic
level. It enables an efficient analysis of complex human micro-
floras, both commensal and pathological, through metagenomic
methods. Genomic sequences and their annotations are pro-
vided through several portals, such as the Genomes Online
Database7.

In contrast to the static information from the genome,
the transcriptome reflects the dynamics of PHI systems that
results in temporal profiles of gene expression with changes in
the scale of minutes and hours. More and more, beside the
protein-coding mRNAs, also various non-conding small RNAs
are investigated. For instance, in Staphylococcus aureus, a lead-
ing pathogen for animals and humans, about 250 regulatory
RNAs were found (Guillet et al., 2013). Repositories for tran-
scriptome data, such as Gene Expression Omnibus8 (GEO)
and ArrayExpress9 freely distribute microarray and NGS (RNA-
Seq) data as well as other forms of high-throughput functional
genomics data. In GEO, data from more than 1600 organ-
isms, both pathogens and hosts, are accessible. For instance, for
the pathogens Mycobacterium tuberculosis, S. aureus, Candida
albicans, and Helicobacter pylori transcriptome data from 1,855,

7https://gold.jgi-psf.org
8http://www.ncbi.nlm.nih.gov/geo
9https://www.ebi.ac.uk/arrayexpress

1,777, 1,627, and 1,284 samples are available, respectively. Other
data sets monitor the transcriptome of the host’s response,
e.g., Homo sapiens and Mus musculus (GSE56091, GSE56093).
Some monitor data from host and pathogen simultaneously,
e.g., S. aureus and the zebrafish Danio rerio (GSE32119). NGS
has opened the door for simultaneous transcriptome analy-
sis by the so-called dual RNA-Seq (Tierney et al., 2012a,b;
Westermann et al., 2012; Camilios-Neto et al., 2014; Longo
et al., 2014; Pittman et al., 2014; Xu et al., 2014; Schulze et al.,
2015).

PHI-Based Proteome and Metabolome Data
Proteins are key players in PHIs, in particular in pathogen
recognition as well as innate and adaptive immune responses.
Pathogen-associated molecular patterns (PAMPs) are molecules
or small molecular motifs within a group of pathogens (e.g., the
protein flagellin, lipopeptides, lipopolysaccharide – LPS) that are
recognized by proteins, the so-called pattern recognition recep-
tors (PRRs), such as Toll-like receptors (TLRs; Qian and Cao,
2013). For instance, TLR4 recognizes bacterial LPS, and TLR5
recognizes bacterial flagellin. The PRRs stimulate signal transduc-
tion via pathways, e.g., the tumor necrosis factor alpha (TNFα)
signaling or the interferon-gamma (IFNγ)-receptor pathway
including the JAK-STAT-pathway. IFNγ is a cytokine that is a
key player in innate and adaptive immunity against viral, as well
as some microbial and protozoan infections. The nuclear factor
NF-κB is a protein, a transcription factor, that is activated by var-
ious intra- and extra-cellular stimuli such as bacterial or viral
products, for instance via the TLRs signaling and induces the
expression of pro-inflammatory cytokines (interleukines, TNFα,
Type I interferones). Thus, the application of proteomics is cru-
cial in the investigation of PHI systems and for the above men-
tioned iPOP, e.g., the immune profiling of patients (Chen et al.,
2012).

By dedicated bioinformatic pipelines, a description of
pathogen proteomes and their interactions within the context
of human host has a strong impact in both diagnostic and
clinical treatment of the patient. In the last few years, several
advanced proteomic techniques have been established provid-
ing individual proteome charts of both pathogens and hosts,
including antimicrobial or antimycotic resistance profiling and
immune profiling of the patient. Proteome analysis is hampered
by the extremely divergent biochemical properties of the indi-
vidual proteins, making an entire view of the proteome almost
impossible (Otto et al., 2014). The coupling of multidimensional
separations with mass spectrometry (MS) for protein and pep-
tide analyses via, for instance, the matrix-assisted laser desorption
ionization (MALDI) and electrospray ionization (ESI) techniques
resulted in powerful MS instrumentations. Many of these MS-
based techniques, e.g., MALDI-TOF, have been used in clinical
microbiology and research (Del Chierico et al., 2014; Otto et al.,
2014). For PHI analyses, the cell wall proteins and the secretomes
are of special interest to study the PAMPs and PRRs as well as
their interplay (Schmidt and Völker, 2011; Zheng et al., 2011;
Heilmann et al., 2012; Di Carli et al., 2012). PHI analysis stud-
ies that focus on the host side studying the immune response
(Hartlova et al., 2011; Heyl et al., 2014) or on the pathogen side

Frontiers in Microbiology | www.frontiersin.org April 2015 | Volume 6 | Article 235 | 11

https://gold.jgi-psf.org
http://www.ncbi.nlm.nih.gov/geo
https://www.ebi.ac.uk/arrayexpress
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive
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(Bröker and van Belkum, 2011; Cash, 2011; Ahmad et al., 2012)
have also been conducted. The integrative analysis of proteome
data with other omics data for both pathogens and hosts is a
very challenging task in bioinformatics (Albrecht et al., 2010,
2011).

Stanberry et al. (2013) demonstrated on the host side a strong
association between the metabolome profiles, i.e., the metabo-
lite expression levels of differentially expressed pathways, and
their temporal patterns at each time point with the disease
status of viral infection with a human rhinovirus and a respi-
ratory syncytial virus. For metabolic studies on the pathogen
side, there are in silico strategies to identify effective targets
for anti-infective drugs based on constraint-based modeling of
genome-scale metabolic networks (Chavali et al., 2012; see sec-
tion “PHI Metabolic Network Models”). A prominent type of
PHIs is the production of toxins by the pathogens that attack the
host. For instance, gliotoxin produced by the human-pathogen
fungus Aspergillus fumigatus modulates the immune response
and induces apoptosis in the host (Gardiner and Howlett, 2005;
Scharf et al., 2012). Another type of PHI is due to the pathogens
that frequently utilize substrates from the host (Rohmer et al.,
2011). The gene regulatory network (GRN) model-assisted stud-
ies of the uptake of essential substrates such as iron (Linde et al.,
2010, 2012) or nitrogen sources (Ramachandra et al., 2014) by
such pathogens address specific but important aspects of PHIs.

Computational Systems Biology of PHI
Networks

A systems biology approach is crucial to model and understand
PHIs, in particular interactions between the immune system of
humans or animals, and the pathogens (Berglund et al., 2009;
Guthke et al., 2012; Horn et al., 2012; Zhou et al., 2013). Systems
biology of PHIs aims at describing and analyzing the confronta-
tion of the host with viral, bacterial, and fungal pathogens and
parasites by the development of testable computational models of
PHIs. The predictive power of such models enables diagnosis and
therapy by the prediction of biomarkers and drug targets. Systems
biology of PHIs includes an integrative analysis and modeling
of genome-wide and/or spatio-temporal data from both the host
and the pathogen, or the response of the host or pathogenic
cells to defined perturbations that simulate conditions during
infection.

At the computational side, systems biology of PHIs comprises:

- Modeling of molecular mechanisms of infections,
- Modeling of non-protective and protective immune defenses
against pathogens to generate information for possible
immune therapy approaches,

- Modeling of PHI dynamics and identification of biomarkers
for diagnosis and for individualized therapy of infections,

- Identifying essential virulence determinants and host factors,
and thereby predicting potential drug targets

- Understanding of PHIs, in particular the immune system and
the immune evasion of the pathogens, as the result of evolu-
tionary long-term adaptation and selection.

Both the innate and the adaptive immune system comprise
cell-mediated and humoral components. Thus, systems biology
of immune defense has to handle multi-scale modeling from
molecular to systemic/organ level. The same is required for the
pathogen side. The interaction of cellular components is pref-
erentially the area of the agent-based modeling, whereas the
humoral immunity can be modeled by ordinary differential equa-
tions (ODEs). While the innate immune response is non-specific
and acts immediately, the adaptive immune response is pathogen
and antigen specific with time lag and immunological memory.
Thus, the temporal organization and population dynamics have
to be modeled in a different manner for the innate and adaptive
immune system in interaction with the pathogen (Perelson, 2002;
Gottschalk et al., 2013; Six et al., 2013; Panayidou et al., 2014).

The study of the interplay between pathogens and immune
cells remains a challenging task due to its complexity. While the
emerging image-systems biology of cellular interaction (Mech
et al., 2011; Hünniger et al., 2014; Kraibooj et al., 2014;
Pollmächer and Figge, 2014) is here out of the scope, the present
review focuses on the molecular, mainly omics data-based level.
Here, a difficulty arises to separate host’s transcripts, proteins,
and metabolites from that in the pathogen and to extract them
in a balanced amount for a simultaneous monitoring of these
molecules so that the network models of PHIs are inferred.
Therefore, most studies focus either on the pathogen or the
host side with a defined and controlled change of the respective
other side as an external perturbation, i.e., considering an input
from the outside of the investigated system. Thus, to simplify
the study, the PHIs have been studied mainly in one direction
either from pathogen to host or from host to pathogen. Only
very recently, the bi-directional interaction of pathogen and host
became observable simultaneously using the so-called dual RNA-
Seq data generated by NGS of the transcriptome of pathogen
and host (see section “PHI-Based Genome and Transcriptome
Data”).

Understanding the evolutionary dynamics of PHIs by math-
ematical modeling in terms of both molecular mechanisms and
selective forces is important in order to design drugs that will
be effective in the long term, i.e., to avoid or to overcome
resistance to antibiotics (Guo et al., 2011; Lima et al., 2013;
Palmer and Kishony, 2013). Finally, computational systems biol-
ogy approaches are and will be used to select pathogen-host
drug targets and to develop novel anti-infectives and vaccines
(Brown et al., 2011; Mooney et al., 2013; Sarker et al., 2013;
Rienksma et al., 2014).

PHI Regulatory Network Models
Biological network models are widely used to improve our under-
standing of infectious diseases (Mulder et al., 2014). There are
many small-scale models (mainly ODE-based), which describe
PHIs phenomenologically (Baccam et al., 2009; Saenz et al., 2010;
Manchanda et al., 2014). These models without molecular speci-
fication are out of the scope of this review, as they usually do not
predict PHIs on the molecular level. Here, omics data based PHI
models will be reviewed.

Computational modeling of GRNs reveals the molecular logic
of adaptation of pathogens to their hosts, the immune evasion of
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the pathogen as well as the immune response of the host to infec-
tion with pathogens. GRNs provide causal explanations for the
differentiation, the developmental and effector states, as well as
the fate dynamics of immune cells (Singh et al., 2014). Finally,
GRNs may also describe the interaction of the two networks,
one of the pathogen and the other of the host (see Figure 1

for example). The inference of GRN models from gene expres-
sion data is a problem of great importance for PHI studies.
Various reverse engineering methods have been proposed, which
include methods based on Boolean networks, Bayesian networks,
differential or difference equations, and graphical Gaussian mod-
els. In general, due to the high dimensionality (thousands of
genes and proteins in both host and pathogen organisms) ver-
sus the limited number of samples (not more than hundreds
in the case of steady state data from knock-out (KO) mutants;
only a few samples in in vivo studies of PHI monitored at,
e.g., 5–10 time points), the GRN inference is underdetermined
implying that there could be many equivalent (indistinguish-
able) solutions. Motivated by this fundamental limitation, there
are various approaches for GRN inference. Again, there are out-
standing review articles covering the long-standing problem of
gene expression data-driven GRN inference (De Jong, 2002; van
Someren et al., 2002; Gardner and Faith, 2005; Bansal et al.,
2007; Emmert-Streib et al., 2014; Linde et al., 2015). One of the
conclusions from the DREAM initiative10 (Dialog for Reverse
Engineering Assessment of Methods; Prill et al., 2010) that per-
formed a comprehensive blind assessment of over 30 network

10www.the-dream-project.org

inference methods was that no single inference method per-
forms optimally across all datasets. Integration of predictions
from multiple inference methods shows more robustness and
higher performance across diverse datasets (Marbach et al., 2012).
For instance, the algorithm TRaCE performs an ensemble infer-
ence of GRNs, which takes into account the inherent uncertainty
associated with discriminating direct and indirect gene regula-
tions from steady-state data of KO experiments (Ud-Dean and
Gunawan, 2014). Another group of GRN inference approaches
includes prior knowledge as reviewed by (Hecker et al., 2009; Isci
et al., 2014) or further experimental data (Greenfield et al., 2010).
A third group of GRN algorithms restricts the GRN to static net-
works inferred from steady state data (e.g., from KO mutants of
the pathogen) or to small-scale networks with a few nodes (genes,
proteins), where the pre-selection of them is the critical point
(Nakajima and Akutsu, 2014).

The genome-wide GRN model inference, when restricted to
the static network models of thousands of genes, requires large
gene expression data sets and prior-knowledge in high quality
and quantity, which is not the case for most of the pathogens
of interest as demonstrated for the human-pathogen C. albi-
cans (Altwasser et al., 2012). In contrast to the genome-wide
GRN models, the small-scale network models that take into
account 5–50 genes or proteins are often used for PHI stud-
ies. These models do not represent the holistic view as it is
claimed in systems biology, but they generate hypotheses of
PHIs that drive further experimental work in infection biology.
Afterward, the GRN-based in silico predictions have to be vali-
dated experimentally. This approach of focused small-scale GRN

FIGURE 1 | Network model describing pathogen-host interactions between C. albicans and murine dendritic cells based on dual RNA-Seq data
(modified from Tierney et al., 2012b).
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inference was reported particularly for human–pathogen fungal
infection (Linde et al., 2010, 2012; Ramachandra et al., 2014)
by using the ODE-based NetGenerator algorithm. The algo-
rithm was primarily introduced to model the immune response
to bacterial infection (Guthke et al., 2005; Weber et al., 2013).
This algorithm was also applied for the inference of the PHIs
of the human–pathogen fungus C. albicans with murine den-
dritic cells based on dual RNA-Seq data (Tierney et al., 2012b).
Here for instance, based on the inferred GRN model shown
in Figure 1, an inhibition of the expression of the protein
HAP3 in the fungus by the murine pentraxin (PTX3) was
computationally predicted and, afterward, experimentally vali-
dated.

PHI Metabolic Network Models
Pathogens are dependent on the host environment for the sub-
strates required to maintain a metabolically active state (Chavali
et al., 2012; Eisenreich et al., 2013). Therefore, the exchange
of several metabolites takes place between pathogens and their
host. Besides, the production of virulence factors by the pathogen
requires energy, and, hence, an active metabolism, making the
nutrients in the host environment crucial for the infection
to occur (Milenbachs et al., 1997). The direct functional link
between metabolism and virulence is also supported by the
finding that metabolic and virulence genes are located on the
same pathogenicity island for some pathogens (Rohmer et al.,
2011; Heroven and Dersch, 2014). In a different approach, the
authors used a network-based computational analysis to elucidate
common targeting strategies of bacteria and viruses on human
(Durmuş Tekir et al., 2012), based on pathogen–host PPIs stored
in the PHISTOdatabase (Durmuş Tekir et al., 2013). Their results
revealed metabolism as a common strategy of both pathogen
types to target human cells. The role of metabolism in the patho-
genesis was also emphasized by others (Kafsack and Llinás, 2010).
Therefore, metabolism is a candidate target for anti-microbial
therapies.

There are well-established bioinformatic methods for
metabolic network reconstruction, based on DNA genome
sequences and constraint based modeling covered by out-
standing review articles (Feist et al., 2008; Oberhardt et al.,
2009; Ruppin et al., 2010; Bordbar and Palsson, 2012). The in
silico methods for metabolic network reconstruction are highly
valuable for understanding the physiology of the pathogen, e.g.,
the biosynthesis of toxins that attack the host or the substrate
requirement that shows the dependency of the pathogen on
the environment within the host. At the host side, the human
metabolic network reconstruction may also have an impact for
drug discovery and development (Ma and Goryanin, 2008).
A systematic modeling of the metabolic trafficking between
pathogens and its hosts first started with the constraint-based
modeling of the Gram-negative bacterial pathogen, Salmonella
typhimurium (Raghunathan et al., 2009). The authors recon-
structed a genome-scale metabolic model for the pathogen
in question, and then simulated its survival capabilities with
the flux-balance approach (Kauffman et al., 2003; Orth et al.,
2010). When they used a media mimicking host-cell nutrient
environment (e.g., macrophage) rather than laboratory media,

their correct predictions considerably increased. They also
showed that the use of gene expression data can lead to a
better inference of active transport mechanisms, and hence
the host cell environment. In another study, the reconstructed
metabolic network of the malaria-causing protozoan parasite,
Plasmodium falciparum, was embedded into its host, erythrocyte,
and the combined pathogen-host network was simulated via
flux-balance analysis (FBA; Huthmacher et al., 2010). The
novelty here was to take also the host network into account to
predict metabolite exchanges between the parasite and the host,
rather than only considering the host environment to account
for pathogen–host metabolic interactions. Such a consideration
is important since a pathogen infection causes pathogen-
specific or common responses in the host metabolic pathways
from central carbon metabolism to fatty acid and amino acid
metabolisms (Eisenreich et al., 2013). Their analysis resulted in
the prediction of antimalarial drug targets (Huthmacher et al.,
2010).

In a more systematic study, genome scale metabolic networks
ofMycobacterium tuberculosis and its host, alveolar macrophage,
were reconstructed in an integrated fashion and the integrated
pathogen-host metabolic model was used to analyze infection
mechanisms and related different pathological states (Bordbar
et al., 2010). The reconstructed joint metabolic network covered
2071 genes (661 for the pathogen, 1410 for the macrophage),
controlling a total of 4489 reactions. Integrative analysis of
the network with the transcriptome data from the infected
macrophage cells enabled the inference of the induced changes
in the pathogen. One important issue in the network based drug-
target identification is the selectivity of the identified targets. The
candidate target must make no harm to the host. This was taken
into consideration by (Bazzani et al., 2012), where they used
the integrated pathogen-host metabolic model of Plasmodium
falciparum and hepatocyte, the first human infection site for
malaria parasites. The flux balance approach was combined with
48 experimental antimalarial drug targets to identify the targets
which are essential for the parasite but not essential for hepa-
tocyte metabolism. The in silico analysis led to the ranking of
the identified targets with respect to their reducing effect on the
cellular fitness.

One key point in the elucidation of metabolic mechanisms
both in the host and in the pathogen is to correctly characterize
the nutrient availability for the pathogen in the host environment.
This characterization is also important for successful modeling
attempts. The available nutrients shape the active parts of the
pathogen metabolism, and also the depletion of different metabo-
lites may trigger different responses in the host (Bumann, 2009;
Rohmer et al., 2011; Eisenreich et al., 2013; Sasikaran et al., 2014).
Therefore, nutritional environment has a crucial role to under-
stand the basis of infection mechanisms (Brown et al., 2008;
Gouzy et al., 2014). Systems-level experimental approaches such
as lipidomics and metabolomics are getting popular to deci-
pher the pathogen–host nutritional interactions (Wenk, 2006;
Olszewski et al., 2009; Antunes et al., 2011). A recent attempt
to identify active metabolic routes from the host environment to
pathogen inside by using 13C flux spectral analysis (Beste et al.,
2013) provided a quantitative measure of interactions between
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Mycobacterium tuberculosis and its host macrophage. The exper-
imental labeling data enabled the identification of substrates used
by the pathogen. Another elegant study used 13C-labeling based
fluxomics as well as metabolomics and proteomics to shed light
on the metabolic interplay between Shigella flexneri and HeLa
epithelial cells (Kentner et al., 2014). They were able to iden-
tify host metabolites that contribute to the growth of Shigella as
substrates.

Similar to the use of gene expression data to infer GRNs as
discussed in the previous section, metabolome data obtained
from the infected cells or PHI systems can be used to infer
infection-specific metabolic networks by using reverse engi-
neering approaches. Taking into account several bioinformat-
ics methods proposed for this type of inference as reviewed
recently (Cakir and Khatibipour, 2014), we believe the field
of infection will witness promising applications in the coming
years.

PHI Protein–Protein Network Models
In the post-genomic era, genes and the corresponding pro-
teins are studied thoroughly, allowing the identification of
intra- and interspecies protein interaction networks. Following
the development of experimental techniques to produce large-
scale molecular interaction data (Fields and Song, 1989; Fisher
et al., 2002; Gavin et al., 2002; Ho et al., 2002), the first large-
scale intraspecies PPIs were produced experimentally (Finley
and Brent, 1994; Bartel et al., 1996; Fromont-Racine et al.,
1997; Flajolet et al., 2000; Ito et al., 2000; McCraith et al.,
2000; Walhout et al., 2000; Rain et al., 2001). On the other
hand, the initial efforts to identify large scale interspecies pro-
tein interaction data for PHI systems have been performed
since 2007 (Table 1). The first large scale PHI examples

were for commonly observed and human-threatening viruses
and bacteria. These were firstly for viral pathogens; Epstein-
Barr virus (EBV; Calderwood et al., 2007; Forsman et al.,
2008), Hepatitis C virus (HCV; De Chassey et al., 2008;
Tripathi et al., 2010; Dolan et al., 2013; Ngo et al., 2013),
Human Immunodeficiency Virus (HIV; Gautier et al., 2009;
Jäger et al., 2012), Influenza A virus (Shapira et al., 2009),
Dengue virus (DENV; Khadka et al., 2011), Measles virus
(MV; Komarova et al., 2011), and Human Respiratory Syncytial
Virus (HRSV; Wu et al., 2012). On the other hand, the large
scale experimental detection of bacteria-human protein interac-
tion networks was performed for Bacillus anthracis, Francisella
tularensis, and Yersinia pestis (Dyer et al., 2010; Yang et al.,
2011).

As an initial large scale virus–human PHI network example,
protein interactions between the herpesvirus EBV and human
were mapped by the yeast two hybrid (Y2H) method, provid-
ing 173 PHIs between 40 EBV proteins and 112 human pro-
teins (Calderwood et al., 2007). EBV is the infectious cause of
several human diseases such as Burkitt’s lymphoma, Hodgkin’s
disease, and nasopharyngeal carcinoma. This EBV–human pro-
tein interaction network enabled the initial observations about
EBV strategies (i.e., targeting hub and bottleneck human pro-
teins) for replication and persistence within the host. For the
same viral system, 147 human protein interactors for EBV
nuclear antigen 5 (EBNA5) were identified with LC-MS/MS in
a following study (Forsman et al., 2008). Multifunctional viral
protein EBNA5 is already known to be critical in EBV patho-
genesis, and these PHI data provided further insights on its
molecular mechanisms during infection. The identified interac-
tions between EBNA5 and the human proteins functioning in
protein control systems that recognize proteins with abnormal

TABLE 1 | The large-scale pathogen–human PPI networks in chronological order.

Pathogen name Pathogen type Number of
PHIs

Number of interacting
pathogen proteins

Number of interacting
human proteins

Reference

EBV DNA virus 173 40 112 Calderwood et al. (2007)

HCV RNA virus 481 11 421 De Chassey et al. (2008)

EBV DNA virus 147 1 147 Forsman et al. (2008)

HIV-1 Retrovirus 183 1 183 Gautier et al. (2009)

Influenza A virus
(H1N1 A/PR/8/34)

RNA virus 135 10 87 Shapira et al. (2009)

Influenza A virus
(H3N2 A/Udorn/72)

RNA virus 81 10 66 Shapira et al. (2009)

Bacillus anthracis Gram-positive bacteria 3,073 943 1,748 Dyer et al. (2010)

Yersinia pestis Gram-positive bacteria 4,059 1,218 2,108 Dyer et al. (2010)

Francisella Tularensis Gram-negative bacteria 1,383 349 999 Dyer et al. (2010)

HCV RNA virus 56 2 56 Tripathi et al. (2010)

DENV RNA virus 139 10 105 Khadka et al. (2011)

MV RNA virus 245 1 245 Komarova et al. (2011)

Y. pestis Gram-positive bacteria 204 66 109 Yang et al. (2011)

HIV-1 Retrovirus 497 16 435 Jäger et al. (2012)

30 viral species DNA and RNA viruses 1681 70 579 Pichlmair et al. (2012)

HRSV RNA virus 221 1 221 Wu et al. (2012)

HCV RNA virus 112 7 94 Dolan et al. (2013)

HCV RNA virus 103 1 103 Ngo et al. (2013)
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structures may indicate the roles of the viral protein in this
system.

The first proteome-wide PHI map for the flavivirus HCV,
a major cause of chronic liver diseases, was deduced by Y2H
and then by literature mining of previously found interactions
between HCV and human, providing a large network for such a
small-genome organism. The resulting network consists of 481
interactions between 11 HCV proteins and 421 human proteins.
Pathway enrichment analysis of the targeted cellular proteins
indicated focal adhesion as a new function subverted by HCV
(De Chassey et al., 2008). Using the same experimental approach,
11 human proteins interacting with HCV Core protein and 45
interacting with NS4B (one of the six HCV non-structural pro-
teins) were found (Tripathi et al., 2010). To further understand
the mechanisms of the interactions between HCV and human
proteins, two extended PPI networks were constructed. These
networks are composed of the Y2H-derived interactions and the
secondary interactors of the human proteins that interact with
the Core and NS4B proteins. Functional analysis of these net-
works pointed to the human proteins ENO1, SLC25A5, and PXN
as potential antiviral targets. ENO1 and SLC25A5 are interac-
tion partners of HCV Core protein. PXN is the first neighbor
of both ENO1 and SLC25A5 within the human PPI network.
Observing the effects of small interfering RNA (siRNA) knock-
down of these host proteins on HCV propagation and replication
validated the computational network analysis results (Tripathi
et al., 2010). Another Y2H screen resulted in 112 unique inter-
actions between 7 HCV and 94 human proteins (Dolan et al.,
2013). DENV is another member of the flaviviruses family, caus-
ing the severe human disease dengue hemorrhagic fever. Using
the Y2Hmethod, 139 PHIs were detected between 10 DENV pro-
teins and 105 human proteins (Khadka et al., 2011). These two
PHI networks of HCV–human byDolan et al. (2013) and DENV–
human by Khadka et al. (2011) were analyzed comparatively and
a large overlap was observed between HCV and DENV targets.
To determine if the common cellular targets play crucial roles
in infections, siRNA experiments were performed and the results
revealed the required cellular proteins (CUL7, PCM1, RILPL2,
RNASET2, and TCF7L2) for HCV replication (Dolan et al., 2013).
Finally, using protein microarray assays, 103 human proteins
were identified as HCVCore-interacting partners. Through these
PHI data, the viral modulation of some cellular mechanisms was
studied in detail and the cellular MAPKAPK3 was proposed as a
potential therapeutic target for HCV infections (Ngo et al., 2013).
Prior to these studies, a number of small scale PHI data were
produced for the HCV–human interaction system (Matsumoto
et al., 1997; Hsieh et al., 1998; Lu et al., 1999; Owsianka and Patel,
1999).

Orthomyxovirus Influenza A virus is the source of all flu pan-
demics infecting multiple species. For H1N1 A/PR/8/34 strain
of influenza virus, 135 PHIs were identified between 10 viral
and 87 human proteins, most of which are expressed in primary
human bronchial cells. For another strain of influenza A virus,
H3N2 A/Udorn/72, a PHI network with 81 interactions between
10 viral and 66 human proteins was constructed. Both of the
PHI networks were detected by the Y2H method. Similarities
of these two PHI networks highlighted the conserved functions

of influenza virus proteins through strains. Observing the topo-
logical network properties of these Influenza A virus–human
PPI networks allowed to draw crucial conclusions on the multi-
functionality of the small number of proteins encoded by RNA
viruses, revealing that viral proteins can interact with a significant
number of human proteins (Shapira et al., 2009).

AIDS-causing retrovirus HIV, probably the most stud-
ied human pathogen, depends largely on human cellular
machinery to be replicated, like other RNA-carrying viruses.
One large-scale PHI dataset for HIV-1 was produced using
affinity chromatography coupled with MS, resulting in 183
human nuclear proteins as interacting partners of HIV-1 Tat
(nuclear regulatory protein) which is essential for viral repli-
cation within the host nucleus. The following in silico anal-
ysis of the experimentally verified PHI data provided fur-
ther insights on the mechanisms of Tat during HIV-1 infec-
tion. Firstly, motif composition analysis highlighted that Tat-
targeted cellular proteins are enriched for domains mediat-
ing protein, RNA and DNA interactions, and helicase and
ATPase activities. Secondly, functional analysis of Tat-targeted
human proteins showed that they are enriched for a wide
range of biological processes such as gene expression regula-
tion, RNA biogenesis, chromatin structure, chromosome orga-
nization, DNA replication, and nuclear architecture (Gautier
et al., 2009). Another large PHI network was constructed for
HIV–human protein complexes by affinity tagging and purifi-
cation MS, resulting in 497 PHIs between 16 HIV-1 proteins
and 435 human proteins. In that study, the functional cat-
egories of HIV-targeted human proteins were analyzed indi-
cating that the host factors in the found PHI network are
enriched for the transcription and the regulation of ubiquiti-
nation. Additionally, the domains of the interacting proteins
were also investigated, and the enriched domain types (14-
3-3 domains and β-propellers) in targeted human proteins
were identified to facilitate future structural modeling stud-
ies (Jäger et al., 2012). For HIV-1, several small scale experi-
ments were also carried out to find protein PHI data (Cujec
et al., 1997; Le Rouzic et al., 2002; BonHomme et al., 2003;
Lusic et al., 2003; Naji et al., 2012) establishing HIV-1 as the
pathogenic species having the largest experimentally verified
PHI data.

Using the approach of combining modified tandem affinity
chromatography and MS analysis, 245 cellular interacting pro-
teins were identified for the viral protein MV-V (one of the
virulence factors of paramyxovirus MV). MV-V was found to
target known key components of the host antiviral response
including STAT1, STAT2, IFIH1, and p53, and also essential
components of ribosome, reticulum, and mitochondria. The
topological and functional analysis of human proteins targeted
by MV-V shows that they have properties within the human
interactome similar to the well-known targets of other viruses
(Komarova et al., 2011).

As an example for another multi-functional viral protein,
HRSV (another member of paramyxoviruses) NS1 can act as an
antagonist of host type I and III interferon production and signal-
ing, inhibit apoptosis, suppress dendritic cell maturation, control
protein stability, and regulate transcription of host cell mRNAs,
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among its other functions. A total of 221 PHIs were determined
between only one viral protein NS1 and human proteins, reflect-
ing its multifunctional nature. This virus-human PHI network
was produced by quantitative proteomics in combination with
green fluorescent protein (GFP)-trap immunoprecipitation. It
was observed that many of the HRSV-targeted human proteins
have roles in transcriptional regulation and cell cycle regulation
(Wu et al., 2012).

A study covering several DNA and RNA viruses (Pichlmair
et al., 2012) found 1681 PHIs between 70 viral ORFs from 30
species and 579 human proteins. The interacting cellular pro-
teins were isolated by tandem affinity purification (TAP), and
the purified proteins were analyzed by one-dimensional gel-free
liquid chromatography tandem MS (LC–MS/MS). A compara-
tive interactomics analysis of the produced viral PHI networks
(DNA viruses versus RNA viruses) provided crucial insights on
the infection strategies of DNA and RNA viruses. It was con-
cluded that RNA viruses target the JAK–STAT and chemokine
signaling pathways, as well as pathways associated with intra-
cellular parasitism, whereas DNA viruses target cancer pathways
(Pichlmair et al., 2012).

The first extensive bacterial PHI networks were identified for
important human pathogens, B. anthracis, F. tularensis, and Y.
pestis (Dyer et al., 2010; Yang et al., 2011). Gram-positive bac-
teria B. anthracis and Y. pestis and Gram-negative bacterium
F. tularensis are respiratory pathogens causing anthrax, bubonic
plague, and acute pneumonic disease, respectively. Using the
Y2Hmethod, large-scale interaction data were generated between
these bacteria and human, leading to 3073 PHIs between 943
B. anthracis proteins and 1748 human proteins, 4059 PHIs
between 1218 Y. pestis proteins and 2108 human proteins, and
1383 PHIs between 349 F. tularensis proteins and 999 human
proteins. Bioinformatic analysis of these experimentally found
bacteria–human interaction data revealed that bacterial proteins
preferentially interact with human proteins that are hubs and
bottlenecks in the human PPI network, as previously observed
for viral PHIs. The modules of bacterial PHIs that are conserved
amongst the three networks were computed. The found con-
served modules may reveal commonalities among how different
bacterial pathogens interact with crucial host pathways involved
in inflammation and immunity (Dyer et al., 2010). A different
Y2H strategy was used for Y. pestis by choosing only poten-
tial virulence factors as bait proteins. 204 PHIs were identified
between 66 Y. pestis proteins and 109 human proteins, and then
23 previously reported PHIs were integrated to construct a com-
prehensive network between Y. pestis and human (Yang et al.,
2011).

The increase in the amount of experimentally verified
pathogen–human PPI data allowed a number of bioinformatic
studies to investigate infection mechanisms at the level of PHIs
for different pathogen types (Dyer et al., 2008; Singh et al., 2010;
Durmuş Tekir et al., 2012). The first global analysis of more
than 10,000 PHI data revealed important observations (Dyer
et al., 2008). Firstly, targeting hub and bottleneck proteins were
concluded as a common behavior for all pathogens. Targeting
human transcription factors and key proteins that control the
cell cycle and regulate apoptosis and transport of genetic material

across the nuclear membrane were found to be common infec-
tion strategies of viruses. On the other hand, targeting human
proteins that function in the immune response was observed as
a common bacterial infection strategy (Dyer et al., 2008). In a
following study, investigation of more than 20,000 experimental
PHI data revealed that the preference of interacting with hub and
bottleneck proteins is more pronounced in viruses than bacteria.
The analysis of the human proteins targeted by both bacteria and
viruses indicated that attacking human metabolic processes is a
common strategy used by both pathogens (Durmuş Tekir et al.,
2012). In addition to these comparative interactomics studies for
bacterial and viral PHI networks, a comparative analysis of virus
interactions with human signal transduction pathways revealed
that different viruses tend to target the same cellular pathways,
not necessarily via interacting with the same cellular proteins
(Singh et al., 2010).

Web-Based Databases for PHI
Systems

In parallel with the first large-scale experimentally verified PHI
data, the initial efforts on the development of PHI-specific
databases were performed toward the end of the first decade
of this century (Table 2). Currently, a number of Web-based
resources aim to integrate pathogen–host molecular interac-
tions and related data available in the literature. Some of them
store data on only one specific pathogen species as in the case
of HCVpro (Kwofie et al., 2011), HIV-1 Human Interaction
Database at NCBI (Ako-Adjei et al., 2015), HoPaCI-DB (Bleves
et al., 2014) for Pseudomonas aeruginosa and Coxiella burnetii,
and Proteopathogen (Vialás et al., 2009) for C. albicans. The
resources based on a wider range of specific pathogens are
VirHostNet (Guirimand et al., 2015), VirusMentha (Calderone
et al., 2015) and ViRBase (Li et al., 2015) for viruses, PATRIC
(Wattam et al., 2014) for bacteria and PHI-base (Urban et al.,
2015) for bacterial, fungal, and oomycete pathogens. Finally,
PHIDIAS (Xiang et al., 2007), HPIDB (Kumar and Nanduri,
2010), and PHISTO (Durmuş Tekir et al., 2013) are PHI
databases for all pathogen types with known interaction data.

HCVPro (HCV interaction database) is dedicated to only
HCV, cataloging the characterized protein interactions for
intraviral and virus–human systems. Additionally, it includes
information on the structure and functions of HCV proteins
(Kwofie et al., 2011). The HIV-1 Human Protein Interaction
Database at NCBI includes the interactions between HIV-1
and human proteins. In its content, the majority of the pro-
tein interaction data are indirect (e.g., upregulation, modifica-
tion) whereas the rest are direct (e.g., binding; Ako-Adjei et al.,
2015). HoPaCl-DB (Host–Pseudomonas and Coxiella interac-
tion database) provides information on interactions between
molecules, bioprocesses, and cellular structures for the bacte-
rial pathogens Pseudomonas aeruginosa and C. burnetti and their
host organisms. The graphical representation of these interac-
tion systems is also available in HoPaCl-DB (Bleves et al., 2014).
The other pathogen-specific data resource, Proteopathogen is
a protein database for studying C. albicans–host interactions.
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TABLE 2 | Contents of Web-based PHI databases.

Database Number of PHIs Pathogen Host Reference

HCVPro 524 Only HCV Only human Kwofie et al. (2011)

HIV-1 Human at NCBI 12,786 Only HIV-1 Only human Ako-Adjei et al. (2015)

HoPaCI-DB 4203 Pseudomonas aeruginosa and
Coxiella burnetii

Mammalia, Caenorhabditis elegans,
Drosophila Melanogaster, Danio rerio

Bleves et al. (2014)

HPIDB 40,611 Bacteria, fungi, viruses Animal, human, plant Kumar and Nanduri (2010)

PATRIC 8547 Only bacteria Actinopterygii, Arachnida, Chromadorea,
Insecta, Mammalia

Wattam et al. (2014)

PHI-base 4102 Bacteria, fungi, oomycete Animal, human, insect, fish, fungi, plant Urban et al. (2015)

PHIDIAS NA Bacteria, viruses, parasites All hosts Xiang et al. (2007)

PHISTO 39,166 Bacteria, fungi, Protozoa,
viruses

Only human Durmuş Tekir et al. (2013)

Proteopathogen NA Candida albicans Mammalia Vialás et al. (2009)

ViRBase NA Only viruses All hosts Li et al. (2015)

VirHostNet 16,000 Only viruses Animal, human, plant Guirimand et al. (2015)

VirusMentha 8084 Only viruses All hosts Calderone et al. (2015)

Although the focus of the database is on C. albicans and
its interactions with macrophages, the database also includes
data for different fungal pathogens and other mammalian cells.
Proteopathogen provides additional information about the inter-
acting proteins such as Gene Ontology (GO) and pathway anno-
tations, and protein structures (Vialás et al., 2009).

PATRIC (The PathoSytems Resource Integration Center) is a
dedicated resource for bacterial systems including comprehensive
data on genomics, transcriptomics, PPIs, 3D protein structures,
and sequence typing. However, its focus is on the genomic data,
currently covering more than 10,000 bacterial genome sequences.
PATRIC provides a private workspace for each user where they
can store their own data. In their workspaces, users can per-
form comparative genomics and transcriptomics via the corre-
sponding analysis tools. PATRIC provides bacteria–host PPI data
through its tool Pathogen Integration Gateway (PIG; Wattam
et al., 2014). PHI-base (Pathogen–Host Interactions Database)
is a Web-accessible PHI database specific for bacterial, fungal,
and oomycete pathogens, which are medically and agronomically
important. PHI-base serves options to facilitate the discovery of
genes that may be potential targets for chemical intervention,
containing information on the pathogenicity/virulence genes
functioning in the PHI systems. As a genomic data focused
resource, PHI-base has the functionalities allowing functional
annotations of the genes and comparative genomics analysis
(Urban et al., 2015). On the other hand, there are databases
developed specifically for viral PHI systems such as VirHostNet
(Guirimand et al., 2015), VirusMentha (Calderone et al., 2015)
and ViRBase (Li et al., 2015). VirHostNet (Virus–Host Network)
is one of the earliest PHI resources specialized in the management
and analysis of integrated virus–virus, virus–host, and host–host
protein interaction networks coupled to their functional annota-
tions. The host organism in the VirHostNet is only human. Its
Web interface provides both table-based and graph-based visu-
alizations of the PHI networks (Guirimand et al., 2015). The
recently developed tool, VirusMentha is another virus-virus and
virus–host protein interaction resource. VirusMentha is an exten-
sion of a previous tool VirusMINT (Chatr-Aryamontri et al.,

2009). VirusMentha is the most comprehensive viral PHI data
source without limitation with respect to virus species or host
organisms. The tool offers a graphical representation option
for viral PHI networks (Calderone et al., 2015). On the other
hand, ViRBase is a resource for virus–host ncRNA-associated
interactions. It provides browsing and visualization of viral and
cellular ncRNA-associated virus–virus, host–virus, and host–host
interactions (Li et al., 2015).

Finally, theWeb-based PHI databases comprising all pathogen
types with known interactions are PHIDIAS (Xiang et al., 2007),
HPIDB (Kumar and Nanduri, 2010), and PHISTO (Durmuş
Tekir et al., 2013). PHIDIAS (Pathogen–Host Interaction Data
Integration and Analysis System) stores data on genome
sequences, conserved domains, and gene expression data related
to PHIs. In addition to data storage, PHIDIAS offers the anal-
ysis of these data (Xiang et al., 2007). HPIDB (Host–Pathogen
Interaction Database) is not limited to any pathogen or host
regarding pathogen–host PPI data. HPIDB offers the BLASTP
search option that allows searching for homologous PHI data for
pathogens without experimental PHI data (Kumar and Nanduri,
2010). Currently, PHISTO (Pathogen-Host Interaction Search
Tool) is the most comprehensive PHI database on the Web
including data for all pathogenic microorganisms for which
experimental protein interactions with human are available.
Bioinformatic analysis tools in PHISTO allow users to visualize
and analyze PHI networks to get insights on infection mecha-
nisms (Durmuş Tekir et al., 2013). Using the tools in the current
version of PHISTO, users can access the functional and topolog-
ical properties of pathogen-targeted human proteins within the
human intranetwork. Furthermore, a comparative analysis tool
is provided to perform these analyses comparatively for differ-
ent pathogens to observe the similarities and differences in their
infection strategies.

Pathogen–host protein interaction data in the above PHI
databases are integrated mainly from other PPI databases using
automatic integration tools such as PSICQUIC (Aranda et al.,
2011) and by manual curation from the literature. For the PHI
tools, commonly used PPI databases including PHI data are
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APID (Prieto and De Las Rivas, 2006), BIND (Alfarano et al.,
2005), BioGrid (Chatr-aryamontri et al., 2013), DIP (Salwinski
et al., 2004), HPRD (Keshava Prasad et al., 2009), IntAct (Orchard
et al., 2013), iRefIndex (Razick et al., 2008), MINT (Licata et al.,
2012), NetworKIN (Horn et al., 2014), Reactome (Croft et al.,
2014), and STRING (Franceschini et al., 2013).

There are other informative databases for pathogens, provid-
ing useful information for studying infection mechanisms. For
instance, ARDB (Antibiotic Resistance Genes Database) unifies
most of the publicly available information on antibiotic resis-
tance. The information can be used as a compendium of antibi-
otic resistance genes of newly sequenced genomes (Liu and Pop,
2009). IVDB (Influenza Virus Database) is an integrated informa-
tion resource and analysis platform for influenza virus research
focusing on the genetic, genomic, and phylogenetic studies. IVDB
provides complete genome sequences of the virus to facilitate the
analysis of global viral transmission and evolution (Chang et al.,
2007). MPIDB (Microbial Protein Interaction Database) aims to
collect all known physical interactions among the bacterial pro-
teins (Goll et al., 2008). MvirDB is a microbial database of protein
toxins, virulence factors, and antibiotic resistance genes for bio-
defense applications (Zhou et al., 2007). VFDB (Virulence Factor
Database) is a comprehensive repository for bacterial virulence
factors (Chen et al., 2011). VIDA is a virus database system for
open reading frames (ORFs) of animal viruses (Albà et al., 2001).
Finally, ViPR (Virus Pathogen Database and Analysis Resource)
is an open bioinformatic resource for virology research. ViPR
captures various types of information, including sequence data,
gene, and protein annotations, 3D protein structures, clinical and
surveillance metadata, and novel data derived from comparative
genomics analyses (Pickett et al., 2012).

Text Mining of PHI Data from the
Literature

Scientific publications are the main media through which
researchers report their new findings. The huge amount and the
continuing rapid growth of the number of published articles in
biomedicine has made it particularly difficult for researchers to
access and utilize the knowledge contained in them. Currently,
there are over 24 million publications indexed in PubMed11,
which is the main system that provides access to the biomedical
literature.

To address the challenge of information overload in the
biomedical literature, a number of manually curated databases
have been developed to store biologically important information
such as protein interactions, gene–disease associations, or PHIs.
However, given the current amount and the continuing rapid
growth of the biomedical literature, it usually takes a lot of time
and effort before new discoveries are included in these databases.
Human database curation cannot keep up with literature pro-
duction (Baumgartner et al., 2007). As a consequence, most of
the knowledge remains hidden in the unstructured text of theh
publised articles. Therefore, developing text mining techniques to

11http://www.ncbi.nlm.nih.gov/pubmed

uncover this knowledge has become an important research area.
Several text mining approaches have been proposed for identi-
fying articles relevant to a particular topic, detecting biomedical
entities such as genes, proteins, and diseases in text, as well
as extracting the relations among them. A number of shared
tasks such as the BioCreative Challenges (Krallinger et al., 2008;
Arighi et al., 2011) and the BioNLP Shared Tasks (Kim et al.,
2009, 2011; Nédellec et al., 2013) have been conducted, which
have further boosted research in this area. However, text min-
ing for the pathogen-host interactions domain has not been well
studied yet, although it has its own peculiarities and challenges.
Only a handful of studies, which are discussed in the subsections
below, have been conducted so far in this domain. One thread
of research focuses on identifying the articles that contain PHI-
relevant information (Yin et al., 2010; Korkin et al., 2011; Thieu
et al., 2012) and another thread of research addresses performing
more detailed semantic analysis of the text and extracting more
fine-grained information such as the specific proteins that inter-
act and the associated pathogen and host organisms (Korkin et al.,
2011; Thieu et al., 2012).

PHI-Relevant Abstract Detection
Identifying and ranking articles that contain PHI-relevant infor-
mation can be used for selecting and prioritizing articles for man-
ual curation. It can also be an initial step for filtering the relevant
articles before performing more fine-grained semantic analysis
for identifying the biomedical entities and the relations among
them. The task for detecting articles describing PPI information
has been addressed in the BioCreative II, II.5, and III challenges
(Krallinger et al., 2008; Leitner et al., 2010; Arighi et al., 2011).
However, the focus has not been on PHI relevant articles. The
first study that focused on detecting PHI-relevant abstracts, i.e.,
abstracts that describe pathogen host PPI, was conducted by (Yin
et al., 2010). Similarly to most systems that participated in the
BioCreative Challenges Article Classification Task, the problem
was formulated as a supervised machine learning based classi-
fication task. Support Vector Machines (SVM) was used as the
classification algorithm (Cortes and Vapnik, 1995). Feature selec-
tion methods including Information Gain, Mutual Information,
and Chi-square were evaluated using a data set of 1360 manually
labeled abstracts. The results showed that Information Gain and
Chi-square perform better than Mutual Information as the num-
ber of features used decreases. Although the focus of the study
was on PHI-relevant abstract classification, no any PHI specific
features were used. Only the word unigrams and bigrams were
used as features.

Pathogen–host interaction-relevant abstract classification was
also tackled by (Thieu et al., 2012). Similarly to (Yin et al., 2010),
the task was addressed as a supervised machine learning classifi-
cation problem and SVMwas used as the classification algorithm.
However, unlike (Yin et al., 2010), the authors defined and used
PHI specific features including the identified host and pathogen
protein and gene names in the text, the host and pathogen
organism names, the interaction signaling keywords, the exper-
imental method keywords, and PHI-specific keywords such as
virulence and effector. In order to account for the abstracts that
report the absence of an interaction between a host and pathogen
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protein, features that make use of the negation signaling key-
words were also designed. The protein and gene names, as well
as the corresponding organisms were tagged by using the NLProt
software (Mika and Rost, 2004). A set of dictionaries for inter-
action keywords, experimental keywords, negation keywords,
PHI-keywords, host names, pathogen names, and uncertainty
keywords was manually compiled. A data set of 175 PHI-relevant
(positive set) and 175 PHI non-relevant (negative) abstracts was
manually annotated and used for evaluation. The results showed
that using PHI specific features is a promising approach for
identifying PHI-relevant articles. However, it is not possible to
compare the results with the results of (Yin et al., 2010), since a
different data set was used for evaluation.

In order to be able to assess the performances of the pro-
posed methods a larger and publicly available benchmark data
set should be created. Such a data set should in fact contain
three types of abstracts: (1) Abstracts that do not contain any
PPI information (negative class 1); (2) Abstracts that contain PPI
information which are not pathogen–host PPIs (negative class 2);
and (3) Abstracts that contain pathogen–host PPI information
(positive class). Distinguishing the positive class from negative
class 2 is probably more difficult, since they both contain PPI
information. The only difference is that the PPIs in negative class
2 are not PHIs. To distinguish these two classes from each other,
PHI specific features should be utilized. On the other hand, dis-
tinguishing the positive class from negative class 1 is probably
easier and generic PPI relevant features might be sufficient. It is
not clear whether the data sets annotated and used in Yin et al.
(2010) and Thieu et al. (2012) contain these three classes, or con-
tain only two of them (i.e., the positive class and negative class
1). Therefore, it is difficult to assess and compare the reported
results.

PHI-Relevant Relation Extraction
One of the most important opportunities for text mining in
biomedicine is the identification of the relations among the
biomolecules, which can help elucidate their roles in important
biological processes, as well as in diseases. In order to extract the
relations among biomedical entities from text, first the sequences
of characters that correspond to entities should be tagged in text.
This task is called Named Entity Recognition (NER) and has been
an active research topic in the biomedical text mining domain.

While the earliest systems for biomedical NER were usually
based on rule-based approaches (Fukuda et al., 1998), as anno-
tated corpora became available, machine-learning basedmethods
gained popularity (McDonald and Pereira, 2005; Tsai et al., 2006;
Hsu et al., 2008). State-of-the-art gene and protein NER sys-
tems achieve a practically applicable level of performance (e.g.,
87% F-score performance was obtained at the second BioCreative
shared task on gene mention tagging (Smith et al., 2008)).
Genia Tagger (Tsuruoka et al., 2005), ABNER (Settles, 2005), and
BANNER (Leaman and Gonzalez, 2008) are some of the publicly
available biomedical NER tools. LINNAEUS (Gerner et al., 2010)
and OrganismTagger (Naderi et al., 2011) are tools developed
for recognizing species names in biomedical text. Both achieve
F-score performances of over 94%. Although the usability of
these NER tools for the PHI domain has not been well addressed

yet, in principle they can also be used for PHI text mining to iden-
tify the entity names such as gene, protein, and species names in
text.

One of the first studies on using text mining for pathogen–
host relationship extraction was conducted by (Anthony et al.,
2010). As a case-study, the authors targeted the extraction of
genotype, pathogen, and syndrome relations. A corpus consisting
of 43 abstracts from PubMed was manually annotated. The avail-
able technologies for the automatic recognition of host–pathogen
named entities and the relations among them were discussed.
However, they have not been evaluated over the annotated cor-
pus, which makes it difficult to draw conclusions about their
usability for the PHI text mining domain.

Thieu et al. (2012) addressed the problem of extracting
pathogen–host PPIs from text. The authors proposed a linguis-
tically motivated approach that makes use of the link grammar
representations of the sentences (Sleator and Temperley, 1995).
Thieu et al. (2012) generated additional rules to map the pro-
tein names to the corresponding pathogen and host organism
names. For instance, if an organism name occurs before a pro-
tein name (e.g., Arabidopsis RIN4 protein) the protein is mapped
to the preceding organism. In addition, Thieu et al. (2012)
incorporated an anaphora resolution module that resolves the
pronouns such as “it,” “they,” etc. in the sentences with their
corresponding protein/gene or organism names, which makes
possible extracting relations that span multiple sentences. This
module is based on the RelEx anaphora resolution method that
uses the Hobbs’ pronoun resolution algorithm (Hobbs, 1978).
The proposed approach was evaluated by using the 350 anno-
tated abstracts described in the section “PHI-Relevant Abstract
Detection.” The results of (Thieu et al., 2012) showed that the
proposed approach significantly outperformed a naïve approach
based on using one of the state-of-the-art generic PPI extraction
tools Protein Interaction information Extraction (PIE) system
(Kim et al., 2008). This motivates the development of methods
that specifically address pathogen–host PPI extraction. The 24%
F-score obtained by the proposed system suggests that there is
room for improvement and further research in this domain is
necessary. An error analysis suggested that an important source
of error was the incorrect identification of protein names and
incorrect assignment of species to the corresponding proteins.
While the first one is a NER problem, which is an active research
topic in biomedical text mining, the second one has not been
tackled much by the researches. The results of the current studies
suggest that it is a crucial research direction for PHI text mining
studies.

Pathogen–host interaction-specific PPI extraction is a similar
problem to the general problem of mining PPI relevant infor-
mation from text (Ono et al., 2001; Blaschke and Valencia, 2002;
Temkin and Gilder, 2003; Daraselia et al., 2004; Jelier et al., 2005;
Erkan et al., 2007; Fundel et al., 2007; Airola et al., 2008; Tikk
et al., 2010). However, it has its own peculiarities that require
the development of methods specialized for PHI text mining.
In order for a PPI to qualify as a PHI, the interaction should
be intra-species. In other words, one of the proteins should be
a host protein and the other one should be a pathogen protein.
Therefore, besides tackling the problem of extracting the pair
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of proteins that interact, the problems of identifying the species
associated with them, as well as the classification of the species
as host or pathogen should also be addressed. These additional
requirements render the PHI text mining task more difficult than
the already challenging PPI text mining task. Most PPI extraction
systems operate on a sentence-level to extract the interactions.
The underlying assumption is that the majority of the relations
are contained within a single sentence. Analysis of the Genia
event corpus (Kim et al., 2009) supports this assumption, since
only 5% of the relations in the corpus span multiple sentences
(Björne et al., 2009). However, this assumption does not in gen-
eral hold for the PHI extraction task, since in many cases the
species of the associated entities do not occur in the same sen-
tence where the interaction is described (Thieu et al., 2012).
Therefore, in order to extract PHIs from text, wider scope than
a sentence should be considered and methods to merge infor-
mation contained in multiple sentences should be developed.
Nevertheless, the current findings from the generic PPI text min-
ing domain can be utilized. For instance, recent studies have
demonstrated the utility of integrating machine learningmethods
with similarity functions (or kernels) defined using the syntactic
and semantic analysis of text (Tikk et al., 2010). Some of these
approaches can be adapted to the PHI text mining domain by
performing anaphora resolution as a prior step and extending the
methods to operate on scopes wider than a sentence. In addition,
novel methods should be developed to address the problem of
assigning the species to their corresponding entities (e.g., proteins
and genes). Sentence-level processing will probably not be suffi-
cient to develop solutions to this problem, since species names
do not necessarily occur in the same sentences or even in the
same paragraphs as the entity names. Another challenge is that
a species can be a host in one context, while it is a pathogen
in another context. Therefore, methods for determining which
species are pathogens and which are host in the given context
should be designed.

The PHI information extracted using text mining can be uti-
lized in at least two ways. First, such information can be used to
populate PHI databases, either directly or indirectly by facilitating
manual curation. This will make the data buried in the literature
easily accessible to the researchers in this domain. Second, fur-
ther analysis of the uncovered information can be integrated into
a systems biology approach to generate new scientific hypoth-
esis such as predicting currently unknown interactions among
pathogen and host proteins.

Conclusion and Future Directions

Conventional therapeutics aim to kill pathogenic microorgan-
isms directly usually by targeting the pathogen only. However,
the drug resistance of pathogens demands alternative solu-
tions for infectious threats, i.e., targeting host proteins required
by pathogens for replication and persistence within the host
organism or targeting PHIs (Murali et al., 2011; Zoraghi and
Reiner, 2013). If these host proteins are indispensable for
pathogens during infections, but not essential for host cells,
they may serve as antimicrobial therapeutic targets to fight drug

resistance. In parallel with the increase in the amount of PHI data,
several genome-wide RNAi screening studies to identify cellu-
lar host factors were performed within the last decade (Ng et al.,
2007; Brass et al., 2008; Hao et al., 2008; König et al., 2008, 2010;
Krishnan et al., 2008; Zhou et al., 2008; Bushman et al., 2009; Li
et al., 2009; Sessions et al., 2009; Tai et al., 2009; Karlas et al., 2010;
Kumar et al., 2010;Murali et al., 2011;Moser et al., 2013; Lee et al.,
2014). The detailed knowledge about mechanisms of the relation-
ships between these host factors and their targeting pathogens is
required urgently to develop new and more effective antimicro-
bial therapeutics, necessitating a computational systems biology
approach to PHIs.

The computational modeling of networks of interacting genes,
transcripts, proteins, and metabolites is of great importance in
biomedical research to understand molecular mechanisms of
PHIs. The high-throughput experimental detection of levels of
biomolecules (gene transcripts, proteins, and metabolites) via
omics approaches as well as the detection of PHIs via high-
throughput experiments has generated comprehensive datasets.
The presented review has provided a snapshot of recent devel-
opments in this area and a survey about databases that store
such infection-specific data. Using text mining is necessary to
extract the PHI-relevant data that are only available in the text
of the huge amount of scientific literature. Although biomed-
ical text mining is an active research area, there are only a
limited number of studies focusing on extracting PHI infor-
mation. The lack of a publicly available data set (‘gold stan-
dard’) makes it difficult to evaluate and compare the current
approaches. Besides reviewing the current studies, we have also
provided future directions for research including analyzing the
usability of the already available biomedical text mining meth-
ods for the PHI text mining task, developing novel approaches
addressing the peculiarities and challenges of the PHI domain,
and creating publicly available benchmark data sets in order
to provide a better assessment of the different methods. We
have also covered studies on the bioinformatic analysis of three
types (protein-based, regulatory, and metabolic) of PHI net-
works. The integrative analysis of the high-throughput omics
experiments using modeling approaches will not only elucidate
the mechanisms of infection, but will help in the discovery of
potential therapeutic targets and drugs through selective iden-
tification of essential genes, proteins, and metabolites for the
pathogen. Despite the recent efforts reviewed above, the use of
systems biology approaches to investigate PHI systems is still
in its infancy, mostly because of data scarcity. Ongoing stud-
ies in the field will lead to more complete PHI networks in the
coming decade, improving the PHI-based solutions to infectious
diseases.
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Inference of inter-species gene regulatory networks based on gene expression data is an
important computational method to predict pathogen-host interactions (PHIs). Both the
experimental setup and the nature of PHIs exhibit certain characteristics. First, besides
an environmental change, the battle between pathogen and host leads to a constantly
changing environment and thus complex gene expression patterns. Second, there might
be a delay until one of the organisms reacts. Third, toward later time points only one
organism may survive leading to missing gene expression data of the other organism.
Here, we account for PHI characteristics by extending NetGenerator, a network inference
tool that predicts gene regulatory networks from gene expression time series data. We
tested multiple modeling scenarios regarding the stimuli functions of the interaction
network based on a benchmark example. We show that modeling perturbation of a
PHI network by multiple stimuli better represents the underlying biological phenomena.
Furthermore, we utilized the benchmark example to test the influence of missing data
points on the inference performance. Our results suggest that PHI network inference with
missing data is possible, but we recommend to provide complete time series data. Finally,
we extended the NetGenerator tool to incorporate gene- and time point specific variances,
because complex PHIs may lead to high variance in expression data. Sample variances are
directly considered in the objective function of NetGenerator and indirectly by testing the
robustness of interactions based on variance dependent disturbance of gene expression
values. We evaluated the method of variance incorporation on dual RNA sequencing
(RNA-Seq) data of Mus musculus dendritic cells incubated with Candida albicans and
proofed our method by predicting previously verified PHIs as robust interactions.

Keywords: network inference, NetGenerator, transcriptomics, dual RNA-Seq, microarrays, gene regulatory
networks, inter-species interactions

1. INTRODUCTION
Organisms need to constantly adapt to environmental changes.
On a molecular level, this is mediated by complex signaling cas-
cades, which transmit the signal to cell nuclei. Transcription
factors bind to their target genes, which consequently leads to a
change in gene expression. This way, biological systems adapt to
new environmental conditions.

In most cases underlying networks are unknown. This is espe-
cially interesting for interacting organisms, such as pathogens
and host. Both the experimental setup and the nature of PHIs
exhibit certain characteristics: (i) pathogen and host are in a bat-
tle leading to constantly changing conditions, (ii) a change in gene
expression is triggered by new environmental conditions and the
response of one organism might initiate faster or persist longer
than the response of the other organism and (iii) two different
organisms interact and eventually one survives which can lead to
missing data time points.

The immune system of the host is permanently active to rec-
ognize and eliminate infectious microorganisms. As a first line
of defense, components of the innate immune system such as

the complement system, immune cells, and antimicrobial pep-
tides recognize pathogen-associated molecular patterns (PAMPs).
In contrast, pathogens developed many strategies to evade these
mechanisms. They can shield microbe-associated cell surface pro-
teins, mimic host surfaces or secrete proteases degrading host
immune proteins (Zipfel et al., 2011). Nevertheless, the interac-
tion with host cells is also important for pathogens, e.g., to acquire
nutrients and to replicate (Casadevall and Pirofski, 2000).

The transcriptome of pathogen and host can be measured by
physical separation of pathogen and host cells before RNA extrac-
tion. This enables RNA extraction from pathogen and host at
different time points. For example, Oosthuizen et al. (2011) used
separate pathogen and host microarrays to measure the tran-
scriptome of Aspergillus fumigatus and human epithelial cells.
The advantage of microarrays is, that they are cheap, process-
ing of raw data is fast and well-established (Zhao et al., 2014).
On the other hand, the recently developed RNA-Seq technology
(Nagalakshmi et al., 2008) opened up the opportunity to study
transcriptomes at a high level of accuracy and depth, also of non-
model organisms. With the advent of dual RNA-Seq it became
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possible to measure transcriptomes of multiple species simulta-
neously without physical separation of cells. A promising research
field for application are infection processes of mammalian cells by
pathogens (Westermann et al., 2012).

Network inference is a systems biology approach which aims to
reverse engineer underlying interaction networks based on gene
expression data (Hecker et al., 2009). To account for dynamics in
the change of gene expression, some tools reconstruct gene regu-
latory networks (GRNs) based on gene expression time series data
(Gustafsson et al., 2005; Guthke et al., 2005; Gupta et al., 2011;
Vlaic et al., 2012). Predicted networks suggest interactions for
experimental validation, but can also put experimental findings
in a bigger context (Smet and Marchal, 2010). While numerous
tools are applied to predict single-species networks, e.g., (Bansal
et al., 2006; Bonneau et al., 2006; Linde et al., 2010; Altwasser
et al., 2012), few inter-species approaches have been published.

NetGenerator, a tool to infer small scale GRNs (Guthke et al.,
2005; Toepfer et al., 2007; Weber et al., 2013), has been success-
fully applied to predict single-species GRNs (Linde et al., 2012;
Ramachandra et al., 2014). NetGenerator infers gene-regulatory
networks from gene expression time series data. The interactions
and their strength are identified by a heuristic structure search
and parameter optimization. The resulting model is described by
ordinary differential equations and can be displayed as a directed
network graph as well as simulated. In a pioneering study, the
applicability of NetGenerator to predict PHI networks has been
demonstrated (Tierney et al., 2012). However, this publication
focused on the specific biological example while the requirements
for data processing and for the algorithm to a broader class of PHI
experiments are not discussed extensively.

Hereafter, we discuss a variety of aspects for dual RNA-Seq
data acquisition and processing. Furthermore, we describe the
application of the extended NetGenerator version to infer an
inter-species GRN based on dual RNA-Seq data. Even though
we focus on the novel technique RNA-Seq, most parts of the
described workflow can be applied to microarray data. We evalu-
ate the impact of multiple input stimuli on the inference accuracy
with NetGenerator based on a benchmark example. The extended
NetGenerator version handles missing data values, which we
demonstrate with the same benchmark example. We further
extended the algorithm and its application to consider variances
in replicated measurement data. This is directly embedded in the
inference process and indirectly through a robustness analysis. We
applied this method to a real dual RNA-Seq data set of murine
dendritic cells infected with C. albicans published by Tierney et al.
(2012).

2. RESULTS
2.1. DUAL RNA-SEQ DATA
2.1.1. Data acquisition
RNA-Seq requires a certain amount of input RNA often in
a microgram range, which is practically difficult to extract.
Furthermore, mRNA should be enriched to avoid sequencing
data being dominated by structural RNAs (Tariq et al., 2011).
Additionally, the experimental setup needs to ensure that enough
mRNA of both organisms can be extracted to obtain an appro-
priate sequencing depth (Figure 1A). Westermann et al. (2012)

discuss various important limitations for dual RNA-Seq. One
aspect is that different genome sizes of pathogen and host lead to
different amounts of cellular RNA. It is estimated that for instance
only 1.5% of the human genome encodes proteins (International
Human Genome Sequencing Consortium, 2001). For that rea-
son, we suggest to estimate an appropriate sequencing depth for
both organisms based on their transcriptome sizes and recom-
mend a genome coverage of at least 10. Tools like featureCounts
return transcriptome sizes based on given annotation files as side
products (Liao et al., 2014).

Furthermore, the pathogen-host cell ratio of the experimental
setup, also known as multiplicity of infection (MOI), has to be
considered. A high MOI results in more pathogenic RNA, but may
also lead to a faster and stronger host response and less clinical
relevance.

The number of reads required to achieve a good genome cover-
age in both species has to be estimated in advance. The number of
reads needs to be calculated for the least abundant species based
on the intended fold coverage, transcriptome size and read length.
The total number of reads can be estimated through the ratio of
the amount of extracted pathogen and host RNA.

Furthermore, sequencing parameters need to be set taking
into account transcriptome sizes and how closely related studied
species are. Number of reads, read length, strand-specificity and
single / paired end sequencing have a great impact on the num-
ber of ambiguously mapped reads. For instance, Yazawa et al.
(2013) sequenced 100-base-pair single-end reads of the grass
Sorghum bicolor and the pathogenic fungus Bipolaris sorghicola.
Pittman et al. (2014) sequenced 100-base-pair paired-end reads
of M. musculus and the parasite Toxoplasma gondii.

Finally, data time points have to be determined. A change of
the transcriptional program triggered by a stimulus is usually
strong at the start of the response. Thus, in best case the organ-
ism adapts and the degree of transcriptional change decreases.
The temporal onset and duration of transcriptional response of
pathogen and host can be very different. To detect both responses,
RNA extraction time points need to be chosen carefully. Small-
scale experiments should be carried out in advance to determine
good data time points.

2.1.2. Dual RNA-Seq data processing
Preprocessing and analysis of sequencing data and the selection
of candidate genes is an important step in advance of network
inference (Figure 1B). The output of RNA-Seq are raw reads, of
which low quality bases need to be trimmed [e.g., with trimmo-
matic (Bolger et al., 2014), btrim (Kong, 2011)]. Pathogen and
host read data is separated in silico by aligning reads to the refer-
ence genomes (mapping). Engström et al. (2013) compare various
available mapping tools and evaluate the conservative MapSplice,
TopHat and STAR with comparatively low run time as favor-
able. From this point on, pathogen and host data are processed
separately.

Tools like featureCounts (Liao et al., 2014) and htseq-Counts
(Anders et al., 2014) calculate the number of reads mapped to
a feature, e.g., an exon or gene, to determine gene expression
levels. Subsequently, differential gene expression can be tested.
Various tools [e.g., edgeR (Robinson et al., 2010), DESeq2 (Love
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FIGURE 1 | From dual RNA-Seq data to inter-species GRNs. (A)
Dual RNA extraction results in one sample to be sequenced.
(B) Data preprocessing and analysis leads to separation of host

and pathogen RNA-Seq data. DEGs are identified and candidate
genes selected. (C) Prediction of an inter-species GRN with
NetGenerator.

et al., 2014)] are available for that purpose and were reviewed
recently (Soneson and Delorenzi, 2013; Zhang et al., 2014). The
SEQC/MAQC-III Consortium recommends to apply pipeline
dependent filters for p-value, fold change and expression-level
to decrease estimated false discovery rates. Thereby, the outputs
from different differential expression analysis pipelines yield a
greater agreement (SEQC/MAQC-III Consortium, 2014).

Typically, hundreds of DEGs are found, of which a subset of
candidate genes has to be selected. This number can be reduced,
for instance by clustering gene expression kinetics (Bezdek, 1992)
and choosing one representative for each cluster. This is advan-
tageous, because it results in a set of candidate genes represent-
ing the major expression kinetics of the system. Furthermore,

gene enrichment analysis can be carried out to select functional
relevant candidate genes. FungiFun2 is one of the few enrichment
tools for fungi and includes 298 strains from 240 species (Priebe
et al., 2015). On the other hand, many enrichment tools exist for
vertebrates. The underlying algorithms can be divided into three
classes of which each shows certain advantages and drawbacks. It
is also recommended to apply multiple tools (Huang et al., 2009;
Tipney and Hunter, 2010).

2.2. MODELING PHI DATA
We extended the heuristic network inference tool NetGenerator
(see Data and Methods) and its application to predict PHI net-
works. NetGenerator requires logarithmic fold changes (logFCs)
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of gene expression time series data that can be obtained by various
technologies, such as RNA-Seq or microarrays. Furthermore, the
user of NetGenerator has to provide at least one input stimulus
representing the external signal leading to a change in gene
expression. Also, prior knowledge can be provided by the user to
support the inference process (Figure 1C). It can be integrated in
a compulsory (“fix”) or soft (“flexible”) way.

We generated a benchmark example to evaluate the influence
of different stimuli and missing data on the inference perfor-
mance (see Data and Methods). The benchmark comprised six
data points of seven genes and two stimuli (Figure 2A). Prior
knowledge data sets of two, four, six or eight interactions were
randomly generated. We applied the extended NetGenerator ver-
sion to infer GRNs based on the benchmark data set and each
prior knowledge data set (soft integration). For small networks
as the benchmark example the number of possible solutions was
already very high. On sum, 63 edges (49 gene to gene interactions

and 14 stimulus to gene interactions) and 263 network topologies
were possible not even including the interaction sign.

2.2.1. Multiple stimuli improve network inference
Multiple stimuli trigger responses in both pathogen and host
during infection, such as the mutual stimulation of pathogen
and host. This can be translated into at least two stimuli—the
host stimulating the pathogen and vice versa. Weber et al. (2013)
published the previous NetGenerator version V2.0 which can
integrate multiple stimuli. We tested the influence of one or two
stimuli on the performance of NetGenerator based on the bench-
mark example and each prior knowledge data set (Figure 2B).

First, only one constant stimulus (Test-1) set to a value of 1
was given. In a second test, an additional stimulus set to 0 until
30 min and set to 1 afterwards (Test-2) was given (Supplementary
Table S1). We calculated mean values of F-measure (Figure 2C),
sensitivity and specificity for every prior knowledge data set to

FIGURE 2 | Testing PHI data characteristics. (A) Benchmark example of
an inter-species GRN with 3 pathogen candidate genes (orange nodes),
four host candidate genes (green nodes) and two stimuli (gray nodes).
Edges represent interactions. (B) Test setup. (C) F-measures calculated
from predicted network topologies and the known network topology

given different stimuli functions. Two stimuli increase F-measures
(Test-2). (D) F-measures calculated from predicted network topologies
and the known network topology based on missing data values.
Carefully selected time points covering both the host and pathogen
response increase F-measures (Test-3).
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determine the accuracy of predicted GRNs in comparison to
the known topology (Supplementary Table S2) (see Data and
Methods).

We always observed noticeable larger F-measures given two
stimuli in comparison to only one given stimulus. The difference
in F-measure of Test-1 and Test-2 was up to 1.36 fold (Figure 2C).
The less prior knowledge was given, the larger were the differ-
ences in F-measures between Test-1 and Test-2. We found the
biggest performance difference between Test-1 and Test-2 when
no or only two prior knowledge interactions were given. In
these cases, 15 of 21 possible true positive edges were predicted
when two stimuli were given, but only 11 true positive edges
given one stimulus (Supplementary Table S2). In general, we
observed increasing F-measures for more given prior knowledge
independent of the number of stimuli.

2.2.2. Avoid missing data values
It is conceivable that time series experiments of pathogen and host
were carried out independently under comparable experimen-
tal conditions. In this case, it is possible to utilize the pathogen
and host data sets to predict PHI networks. Thus, data time
points might differ which leads to missing values at interme-
diate time points or at the end of the time series. In case of
dual RNA-Seq, pathogen and host are collectively processed. This
may lead to a reduced amount of sample RNA of either of the
species resulting in missing gene expression data. This is a prob-
lem especially for later time points when one species may dye.
We extended the NetGenerator algorithm to handle missing data
values at intermediate time points (see Data and Methods). We
evaluated the influence of missing data on the performance based
on the benchmark example, prior knowledge data sets and two
given stimuli as in Test-2 (Figure 2B). Again, we calculated F-
measure (Figure 2D), sensitivity and specificity (Supplementary
Table S2).

We included data of one additional time point (165 min) for
host genes, but additional data for pathogen genes were not
given (Test-3). Thereby, we demonstrated the applicability of the
extended NetGenerator version to data with missing values. We
set the time point in such a way, that an additional data point cov-
ering the onset of the host response was provided and observed
a noticeable increase of F-measure (Figure 2D). The difference
in F-measure is greatest with 0.12 for eight given prior knowl-
edge interactions. In this case, a mean number of 16.7 (Test-2)
and 19.2 (Test-3) out of 21 possible true positive edges were pre-
dicted representing an improvement of 11.9%. This pointed out
the importance of good time point selection covering both the
pathogen and host response in a dual transcriptome data set.

NetGenerator requires complete data for the last time point.
In case of missing measurements at the end of the time range for
a subset of candidate genes, their values must be obtained in a
different way and provided by the user. Here, we set the last time
point to its preceding value (Test-4). We found slightly greater
F-measures for Test-2 in comparison to Test-4 independent of
the number of given prior knowledge. We observed a maximal
difference between the F-measures between Test-2 and Test-4
(0.02) given four, six and eight prior knowledge interactions
(Figure 2D).

2.3. INCORPORATION OF MEASUREMENT VARIANCES
Various differential expression analysis tools are available that
calculate fold changes from multiple replicates. However, fold
changes alone cannot reflect the degree of gene- and time point
specific variances. This variance might be high especially regard-
ing complex biological systems such as PHIs where cells from
two species constantly interact and change the environment.
However, biological variances can be considered in the network
inference process to obtain robust predictions. For this purpose,
we extended and applied NetGenerator to incorporate variances
within the algorithm and in an outer robustness analysis. The
extended NetGenerator algorithm was applied to one of the first
published dual RNA-Seq data sets (Tierney et al., 2012) (see Data
and Methods).

2.3.1. Extended NetGenerator algorithm incorporates measurement
variances

Variances from replicated measurements were incorporated in
the objective function of NetGenerator and need to be pro-
vided by the user. We calculated variances of the dual RNA-Seq
data set of Tierney et al. (2012) as described (see Data and
Methods).

We predicted a GRN (Supplementary Figure S1) with the
extended NetGenerator based on logFCs and prior knowledge
that were used as inputs for the previous NetGenerator in Tierney
et al. (2012). Calculated gene- and time point specific variances
were provided as input. Measured and simulated time courses
of the GRN were plotted showing the standard deviations of
measurements as shaded areas (Figure 3A). We observed that
simulated data reproduced the measured data very well and were
mostly within the shaded areas. Furthermore, simulated time
courses were closer to data points with smaller standard deviation
(e.g., Hap3 at 30 min) than to data points with higher standard
deviation (e.g., Mta2 at 30 min).

2.3.2. Variance incorporation by an outer robustness analysis
Furthermore, variances were considered in an outer robustness
analysis which we carried out based on the data of Tierney et al.
(2012). The mean standard deviation was 1.24 with a minimum
of 0.27 (Sod5 at 120 min) and a maximum of 3.49 (Mta2 at
30 min) (Supplementary Table S3). We scaled the standard devi-
ations to a value of σmax = 0.1 (Supplementary Table S4). We
calculated Gaussian distributed logFCs for every gene and time
point (mean = measured logFC, σ = scaled standard deviation of
replicates) (see Data and Methods). Thus, we generated 500 noisy
data sets and applied the extended NetGenerator (Figure 3B). The
robustness scores of the edges in the resulting 500 GRNs were
illustrated in the bubble map (Figure 3C).

Tierney et al. (2012) experimentally verified the predicted
inter-species interactions of Ptx3 inhibiting Hap3 and Hap3
inhibiting Mta2. We predicted these verified interactions again
as robust with the extended NetGenerator version (Figure 3C,
Supplementary Table S5). Inhibition of Hap3 by Ptx3 was present
in 71 % of predicted GRNs with a robustness score of 0.76.
Inhibition of Mta2 by Hap3 was present in 72 % of predicted
GRNs with a robustness score of 0.78. This also demonstrated the
applicability of the presented robustness test.
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FIGURE 3 | GRN robustness analysis and visualization. (A) Fitting plots for
each gene are generated showing measured time points (dots), simulated
time courses (solid lines), interpolated time courses (dashed lines), and
standard deviations from replicated measurements (shaded areas). (B) Outer
robustness analysis. Noise is added to time series data with variances

calculated from replicates of genes and time points. This is repeated n times
to predict n GRNs. (C) The bubble map visualizes the robustness of a
predicted edge from column gene to row gene. Bubble sizes illustrate the
robustness score assigned to an edge. Orange and blue pies illustrate the
fraction of activating and inhibiting edges, respectively.

3. DISCUSSION
In this study, we propose a workflow for dual RNA-Seq data
acquisition, data processing and inter-species network inference.
Furthermore, we describe how to handle a different tempo-
ral onset of transcriptional changes, missing data and how to
integrate variances from replicated measurements based on the
extended NetGenerator algorithm.

3.0.3. Delayed host response in PHI data
In a dual transcriptome data set we expect the onset of the
pathogen and host transcriptional response at different time
points. So far, several infection-related transcriptome studies of
fungi were carried out. Transcriptome data was generated already
at two to three time points within 60 min after infection (Linde
et al., 2012; Ramachandra et al., 2014) suggesting an early onset

of the pathogen’s transcriptional response. This is further sup-
ported by a mechanism called adaptive prediction, that some
pathogens have evolved. Based on cues from the current envi-
ronment, pathogens predict a coming change in conditions and
adapt their transcriptome in advance. An appropriate adaptation
of the pathogen increases its survival chances (Brunke and Hube,
2014).

On the other hand, it takes some time until the host recognizes
a pathogen. Moyes et al. (2010) showed that host epithelial cells
initiate a response when a certain amount of pathogens exceed-
ing a threshold is recognized. This is also a protective mechanism.
Furthermore, the assumption of a later onset of the host tran-
scriptional response is supported by various studies monitoring
the host transcriptome from 1 h onwards (Banchereau et al., 2014;
Favila et al., 2014).
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However, we do not see a delayed transcriptional response
of host DEGs in comparison to pathogen DEGs in the data
set of Tierney et al. (2012) possibly because of the high MOI.
Experimentalists keep improving their procedures to achieve real-
istic experimental setups, e.g., they decrease the MOI as much
as possible still allowing them to extract the required amount
of RNA for sequencing. Therefore, we expect to see a delayed
host response in upcoming dual RNA-Seq data sets. To test the
performance of the extended NetGenerator regarding different
stimuli functions and missing data values, we generated a bench-
mark example showing a delayed onset of the host transcriptional
response.

3.0.4. Gene expression time series data
NetGenerator requires time series gene expression data, at least
one stimulus function and optionally prior knowledge. LogFCs
are passed to NetGenerator in form of a data matrix, where
columns correspond to candidate genes and rows to measured
time points.

PHIs are very complex systems, but available data is lim-
ited regarding the number of time points and replicates.
Furthermore, transcriptome data do not provide any infor-
mation about processes taking place as for instance on pro-
tein level and in the extracellular space. Therefore, it has to
be considered that predicted PHIs are indirect, when they are
interpreted.

3.0.5. Modeling PHI stimuli
A GRN can be understood as a biological system that adapts to
external, environmental stimuli yielding changes in gene expres-
sion. NetGenerator can integrate multiple stimuli and requires
one function per stimulus representing it.

Many biological processes can be interpreted as external stim-
uli triggering responses in both pathogen and host cells during
infection. In a typical experimental setup the host is incubated
with the pathogen stimulating both organisms. The host recog-
nizes PAMPs on pathogen cell surfaces by pathogen recognition
receptors (PRRs). This initiates an information flow through sig-
naling cascades (Akira et al., 2006). Nevertheless, the process
of pathogen recognition resulting in a transcriptional response
requires some time. Besides the molecular interaction with the
host, the pathogen is also stimulated by different environmental
factors, e.g., a change of temperature, pH and ion concentrations
(Linde et al., 2010).

We found that multiple stimuli functions improve network
inference results significantly. Therefore, we recommended to
provide two or more stimuli functions for inter-species network
inference. One option to model the stimulus representing the
influence of the host on the pathogen is a constant function.
Therewith, the stimulus is active from time point zero onwards
and models an early pathogen transcriptional response. Vice
versa, a second stimulus can represent the stimulation of the host
by the pathogen. We predicted GRNs providing an additional
input signal as a delayed step function (Test-2) aiming to model a
later onset of the host transcriptional response. Another possible
scenario would be to provide a stimulus function representing a
slow increase of the influence.

More options for stimuli functions are possible when real
experiments are carried out. For example, the number of differ-
entially expressed host and pathogen genes can be determined
for every time point and translated into stimuli functions. This
can be done by scaling the number of DEGs to a range from
zero to one. Additional measurements, e.g., cytokine release or
cell contacts, can also be used as a basis for stimuli functions.
Of particular interest is the growth curve of the pathogen, which
we recommend to measure and integrate in the stimuli functions.
Nevertheless, many biological events trigger responses, of which
not all can be integrated in the network inference.

3.0.6. Prior knowledge sources
Optionally, the user of NetGenerator can provide prior knowl-
edge about interactions of candidate genes. This is strongly
recommended to reduce the search space resulting from the
large number of possible interactions (Hecker et al., 2009). Prior
knowledge can be softly integrated by assigning a score between
zero and one that reflects its reliability. A score smaller than one
allows prior knowledge to be rejected if it does not fit the data.

Prior knowledge about interactions in GRNs originates
from published results that were transferred to databases.
PHI databases like PHISTO (Tekir et al., 2013), PHI-base
(Winnenburg et al., 2006), and HPIDB (Kumar and Nanduri,
2010) have been established. Mukherjee et al. (2013) listed various
web sources of interaction data.

Host specific prior knowledge can be extracted manually from
literature or automatically with text mining tools. Pathway Studio
is a text mining tool specific for mammals (Nikitin et al., 2003).
Further gene information is provided by organism specific web-
sites, e.g., the human gene database GeneCards1.

As well, organism specific websites exist for pathogens, e.g.,
Aspergillus Genome Database (Cerqueira et al., 2014) and
Candida Genome Database (Inglis et al., 2012). To our knowl-
edge, no fungi specific text mining tool is available. More general
tools like GeneView—a semantic search engine for PubMed—
can be applied (Thomas et al., 2012). Little is known about some
pathogenic species. In this case, prior knowledge can be gener-
ated by searching orthologous genes in closely related and better
studied organisms.

For both host and pathogen transcription factor binding
motifs and binding sites can be obtained from databases, e.g.,
TRANSFAC (Matys et al., 2006), or predicted with bioinformatic
tools as SiTaR (Fazius et al., 2011).

3.0.7. Robustness analysis
We extended the NetGenerator algorithm and its application to
incorporate variances from replicated measurements in the infer-
ence method and in a robustness analysis. The output provides
guidance for experimental validation of predicted interactions.

Inference methods should take into account the variance
of replicates, because this additional information improves the
parameter estimation. Under the assumption of independent
Gaussian distributed noise the minimization of the objective
function (Equation 4) corresponds to a Maximum Likelihood

1www.genecards.org
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Estimator (MLE) (see e.g., Klipp et al., 2009, p. 155). Here,
we assume that the variances of each gene and time point
exhibit those statistical properties sufficiently. The extended
NetGenerator version incorporates available measurement vari-
ances thus providing more reliable inference results. Nevertheless,
the option to predict GRNs without providing variances is still
available.

In previous publications a similar robustness analysis was car-
ried out with the same standard deviation for each gene and time
point set to a fixed value (Linde et al., 2010, 2012). Biological
replicates can show high variance, that is gene- and time point
specific and has a great influence on the estimated fold changes
as well as their significance. Both the extended objective function
(Equation 4) and the robustness analysis incorporate variances.
They should be determined based on the available data to account
for differences between genes and time points. One possibility
is the rather simple approach to calculate the total variance of a
logFC from sample variances as proposed (Equation 6). Another
possibility is to derive the variances from software packages
that take into account the statistical nature of the measurement
method (including both biological and technical variances), per-
form processing steps, test for significant changes and determine
logFCs. For instance, the R-package DESeq2 calculates standard
errors for estimated logFCs (Love et al., 2014). Since those meth-
ods adjust the variances based on a statistical foundation, the
inference results can be expected to further improve.

We performed the robustness analysis for the data of Tierney
et al. (2012). In the data we observed very high variances for
the replicates of some genes and time points. Applying the outer
robustness analysis to noisy data sets based on unscaled standard
deviations led to the prediction of diverse GRNs without more
frequent edges. Therefore, we scaled the set of standard deviations
to a maximal value. It is preferable to decrease the variance of
expression mean by generating more biological replicates (Blainey
et al., 2014).

The application of the robustness analysis is beneficial in
many ways. It provides a ranking of predicted interactions based
on noise added to the data. This makes it easier to decide,
which predicted interactions should be experimentally verified.
Furthermore, NetGenerator is a heuristic algorithm, which means
that not all possible solutions are tested. It is likely, that not the
best solution is returned, but a good one. The robustness analysis
generates many good solutions resulting in a consensus network.
It also accounts for possible mutually contradictory predictions.

4. DATA AND METHODS
4.1. APPLICATION OF EXTENDED NETGENERATOR TO PHI DATA
Network inference was carried out by the NetGenerator algorithm
(see Guthke et al., 2005; Toepfer et al., 2007; Weber et al., 2013
for details). For this study, the previous NetGenerator V2.0 was
extended (recent version of the R package: 2.3-0) to account for
measurement variances and missing values.

4.1.1. Basic algorithm
The NetGenerator heuristics infers GRNs from time series gene
expression data of multiple experiments and multiple stimu-
lation. Expression data (logFCs), stimuli functions and prior

knowledge (optionally) have to be provided by the user. Stimuli
are factors that (directly or indirectly) cause changes in gene
expression. It is assumed, that stimuli are not influenced by genes
or their products, at least in the experimental setup. Nevertheless,
stimuli values may evolve over time.

The inferred network model is described by a system of first
order linear differential equations of the form

ẋ = A x + B u. (1)

The change of gene expression ẋ is influenced by other genes
and (external) stimuli u. While interactions between genes are
described by the system matrix A : N × N, the influence of stim-
uli is represented by the input matrix B : N × M, where N is
the number of genes and M is the number of inputs. The infer-
ence procedure determines the elements of these matrices, i.e.,
the parameters θ of the model, by an iterative heuristics includ-
ing structure and parameter optimization. In each iteration step,
the algorithm includes a submodel which matches the available
time series data best. The parameters of the ith submodel are
determined by minimizing an objective function

Ji = Ji,output + Ji,priorknowledge (2)

The second term evaluates the integration of prior knowledge, see
(Weber et al., 2013) for details. In previous NetGenerator versions
the first term

Ji,output =
E∑

e = 1

Te,i∑
k = 1

[
w(tk) × (

xe,i(tk) − x̂e,i(tk, θ i)
)2

]
(3)

described the error between measured data x and simulated
data x̂. The double sum was calculated for all experiments E
and all time points Te,i. Since the data contain both real and
interpolated artificial values, this was accounted for by weighting
factors w(tk).

4.1.2. Extension to account for missing values
NetGenerator was extended to account for missing data values.
Now, NetGenerator accepts missing values at intermediate time
points provided by the user as “NA.” Internally, the time vector
of the respective output is adjusted and interpolation is carried
out based on existing measurement data. During inference, both
simulation and objective function (Equation 4) can process that
information of missing and replaced values.

4.1.3. Extension to incorporate variances
The objective function Ji,output (Equation 3) was extended by
additional weighting factors, which are the reciprocal vari-
ances 1/σ 2 of the replicated data:

Ji,output =
E∑

e = 1

Te,i∑
k = 1

[
w(tk)

σ 2
e,i(tk)

× (
xe,i(tk) − x̂e,i(tk, θ i)

)2

]
(4)
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Therefore, the variances σ 2 of the logFCs became additional input
arguments to NetGenerator. Larger variances decrease the objec-
tive function value which effectively allows for a larger error
between associated measured and simulated values in comparison
to measurements of smaller variance.

4.1.4. Incorporation of variances in an outer robustness analysis
Moreover, variances are considered in an outer robustness anal-
ysis by predicting GRNs based on disturbed logFCs. To simulate
the measurement process, we sampled three replicates of Gaussian
distributed logFCs (mean = measured logFC , σ = standard devi-
ation of replicates) and determined their mean. This resulted in a
noisy logFC for each candidate gene and time point used as input
for extended NetGenerator. We repeated this process 500 times.

For better visualization of the robustness analysis results we
introduced the bubble map (Figure 3C) showing predicted inter-
actions between candidate genes. It does not only consider the
occurrence frequency of each edge, but also the sign and the
respective objective function values J = ∑

Ji that is the sum over
the values of each time series (Equation 2). The robustness score
Si,j evaluating the interaction of gene j and gene i is calculated as

Si,j =
∑

k

{
1

Ji,j,k
| ai,j,k �= 0

}
(5)

with Ji,j,k being the objective function value of the kth predicted
GRN and ai,j,k being the corresponding element of the interaction
matrix A. A robustness score Si,j of gene j interacting with gene i
is illustrated by the bubble size of column j and row i (Figure 3C).

A big circle represents a frequently predicted interaction.
Small or no circles represent rarely or no predicted interac-
tions. Pie charts show the ratio of inferred activating (orange)
and inhibiting (blue) interactions. Note, that the diagonal repre-
sents autoregulations. Exact robustness scores depending on how
frequently an edge was predicted and corresponding objective
function values of the predicted GRN are available as additional
output (Supplementary Table S5).

4.1.5. Calculation of variances from replicates
Both the extended version of the objective function and the
robustness analysis require variances derived from data. The
gene- and time point specific variance σ 2

tc of each logFC was cal-
culated as the variance of the difference μt − μc between means
of treatment (t) and control (c) samples (error propagation):

σ 2
tc = σ 2

c + σ 2
t (6)

The respective standard deviations σi,j of all genes and time points
can be obtained by taking the square root of the variances. Given
only few replicates, standard deviations can be high leading to the
prediction of diverse GRNs. In that case, the standard deviations
need to be scaled to a maximal value σmax:

σi,j,scaled = σi,j × σmax

max(σ )
(7)

4.2. DATA SETS AND EVALUATION CRITERIA
4.2.1. Benchmark model
We constructed a benchmark system composed of differen-
tial equations representing the logFC time series data of three
pathogen genes, four host genes and two stimuli. The network
topology included 21 directed, signed edges representing inter-
actions. Common biological motifs like feed forward loops and
feedback loops are integrated, too. Based on this topology we set
up a system of differential equations and simulated this model
with the R-package deSolve (Soetaert et al., 2010). We set the time
point 0 min to zero and extracted data values of every differential
equation at six time points on a logarithmic scale (15, 30, 60, 120,
250, 500 min). We added Gaussian distributed noise (mean = 0,
σ = 0.01) to generate the benchmark data set.

As mentioned before, an additional input to guide network
inference is prior knowledge. We generated a prior knowledge
data set for the benchmark data by randomly sampling two inter-
actions of the known network topology and repeated this 50
times. 50% of sampled prior knowledge is signed (activation or
inhibition) and 50% is unspecific. Likewise, we generated prior
knowledge data sets of four, six and eight interactions.

To evaluate predicted GRNs we computed statistical measures
that compare the known topology to the predicted topology.
Sensitivity (SE), specificity (SP), precision (PR) and F-measure
(FM) are calculated as:

SE = TP/(TP + FN + FPs)

SP = TN/(TN + FPn)

PR = TP/(TP + FPn + FPs)

FM = (2 × PR × SE)/(PR + SE) (8)

taking the number of true positives (TP), false positives not part
of the known topology (FPn), false positives with wrong sign
(FPs), true negatives (TN) and false negatives (FN) into account
(Weber et al., 2013). All of these statistical measures range from
zero to one with one evaluating a predicted network as identical
to the known topology.

4.2.2. Real dual RNA-Seq data
We utilized one of the first dual RNA-Seq data sets published by
Tierney et al. (2012) as a second data set for evaluation. Murine
dendritic cells were infected with C. albicans (MOI = 5). Three
biological replicates were generated at 0, 30, 60, 90, 120 min after
infection. Differential expression analysis was carried out with
DESeq (Tierney et al., 2012). Six murine DEGs and five fungal
DEGs were selected as candidate genes to predict an inter-species
GRN with NetGenerator V1.0 (Toepfer et al., 2007). 19 prior
knowledge edges were provided and softly integrated. We repro-
duced the result with NetGenerator V2.0 (Weber et al., 2013)
based on the logFCs, stimulus function and prior knowledge of
Tierney et al. (2012). Furthermore, we applied DESeq to deter-
mine logFCs and normalized count values to calculate gene- and
time point specific variances.

The predicted interactions of Ptx3 inhibiting Hap3 and
Hap3 inhibiting Mta2 were experimentally verified by
Tierney et al. (2012). Therefore, these two interactions should
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be again predicted by the extended NetGenerator and were thus
used for evaluation.

4.2.3. Availability
The extended NetGenerator 2.3.-0 tool is available at http://
www.biocontrol-jena.com/NetGenerator/NetGen
erator_2.3-0.tar.gz.
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Salmonella enterica is a bacterial pathogen that usually infects its host through food
sources. Translocation of the pathogen proteins into the host cells leads to changes in
the signaling mechanism either by activating or inhibiting the host proteins. Given that the
bacterial infection modifies the response network of the host, a more coherent view of
the underlying biological processes and the signaling networks can be obtained by using
a network modeling approach based on the reverse engineering principles. In this work,
we have used a published temporal phosphoproteomic dataset of Salmonella-infected
human cells and reconstructed the temporal signaling network of the human host by
integrating the interactome and the phosphoproteomic dataset. We have combined
two well-established network modeling frameworks, the Prize-collecting Steiner Forest
(PCSF) approach and the Integer Linear Programming (ILP) based edge inference
approach. The resulting network conserves the information on temporality, direction of
interactions, while revealing hidden entities in the signaling, such as the SNARE binding,
mTOR signaling, immune response, cytoskeleton organization, and apoptosis pathways.
Targets of the Salmonella effectors in the host cells such as CDC42, RHOA, 14-3-3δ,
Syntaxin family, Oxysterol-binding proteins were included in the reconstructed signaling
network although they were not present in the initial phosphoproteomic data. We believe
that integrated approaches, such as the one presented here, have a high potential for
the identification of clinical targets in infectious diseases, especially in the Salmonella
infections.

Keywords: phosphoproteomic, network reconstruction, Salmonella infection, temporal data integration, pathway
analysis

Introduction

Salmonella enterica is a gastrointestinal pathogen that infects the human cells by translocation
of its effector proteins with a vacuole called the Salmonella containing vacuole (SCV). The
SCV compartment allows the pathogen to replicate and proliferate within the host cells. The
secretion system transfers the pathogen proteins, which are called the effectors, directly into the
cytosol of the host cells (reviewed in Dandekar et al., 2012). Translocation is achieved by type
III secretion systems (T3SSs) where T3SS-1 is responsible for the regulation and replication of
the SCV. These effectors have interactions with the host proteins and can change cell functions
such as apoptosis, post-translational modifications, and intracellular signaling. Salmonella can
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adapt to a broad range of environmental conditions and process
many different metabolites (Dandekar et al., 2012). Although
many efforts have been invested to understand the adaptation
mechanism of Salmonella, functions of its effector proteins,
the affected metabolic regulatory pathways, details of the host-
pathogen communication and the changes in the host signaling
pathways are still unknown. A systems level modeling approach
has been performed on the effectors of Salmonella to understand
the adaptation process and 14 regulators have been identified to
play a critical role in the regulation of the genes responsible for
Salmonella infection (Yoon et al., 2009). Also, the Salmonella’s
metabolic network during its replication has been modeled
using flux balance analysis, which has led to the identification
of a set of metabolic pathways crucial during the intracellular
replication (Raghunathan et al., 2009). The invasion of the
pathogen is mainly transduced by the protein kinase signaling
cascades in the host cell. Salmonella infection promotes apoptosis
and adapts to the host cell’s ubiquitination process (Steele-
Mortimer, 2011). Regarding the regulome of Salmonella, the
context likelihood of relatedness (CLR) approach has been
used to infer the transcriptional regulatory connections by
using mutual information in gene expression data and several
regulatory networks have been identified (Taylor et al., 2009).

Understanding the communication and the signaling between
Salmonella and its host in detail is crucial to improve the
available treatment strategies for the Salmonella infection. The
recently released interactome of the Salmonella effectors and
human proteins, which has been curated from the literature,
again revealed the enrichment of the MAPK signaling and the
apoptotic pathways for the studied protein set (Schleker et al.,
2012). The advances in high-throughput omic technologies also
allow the systems-level identification of signaling components
within the host cell. The analysis of mRNA expression of
∼4300 genes after a Salmonella infection in the human epithelial
cells showed that NF-κB is a key transcription factor in the
regulation of a wide range of genes (Eckmann et al., 2000).
Also several cytokines, transcription factors and kinases are
shown to be over-expressed in the same study. In a temporal
gene expression analysis, where the Bayesian network analysis
is used, the immune response, Wnt, PI3K, mTOR, TGF-β,
and many other signaling pathways were found to be altered
during the Salmonella infection. The host signal response was
shown to be activated during the earlier time points rather
than later (Lawhon et al., 2011). In another study, different
gene expression datasets were integrated with protein–protein
interactions and compared to each other to find out the specific
subnetworks altered by Salmonella infection in the host (Dhal
et al., 2014). In a global temporal phosphoproteomic analysis of
Salmonella-infected human cells, 9500 phosphorylation events
were quantified during the first 20min of the infection and
regulated host pathways were identified. Clustering analysis
showed that the effector SopB was mainly responsible for the
alterations of the phosphorylation events in the host cell (Rogers
et al., 2011). Although omic technologies provide large amount
of high dimensional data, the complete map of the signaling
pathways cannot be retrieved by the direct connections of omic
hits, as there are many intermediates which are not represented

in the experimental data. Signaling networks can also be modeled
by optimization based approaches (Dittrich et al., 2008; Huang
and Fraenkel, 2009; Yeger-Lotem et al., 2009; Gosline et al.,
2012; Huang et al., 2012; Tuncbag et al., 2013) where omic hits
are defined as constraints. Previously, various network modeling
approaches have been applied for the integration of the multiple
omic sets of diseases and the disease networks of various cancer
types have been successfully reconstructed (Kim et al., 2011;
Huang et al., 2012). Regulatory networks can be reconstructed by
various approaches, utilizing the gene expression data, including
Boolean networks, Bayesian networks, and methods based on
information theory and differential equations (reviewed in detail
in De Jong, 2002; Hecker et al., 2009; Linde et al., 2015).
Analysis of the perturbation data have also been proposed for the
reconstruction networks (Markowetz et al., 2007; Frohlich et al.,
2009; Bender et al., 2010; Aijo et al., 2013; Kiani and Kaderali,
2014). For example Nested Effects Models (NEMs) (Markowetz
et al., 2007) use a set of knocked-down genes and their indirect
effect on a larger set of genes to reconstruct the network. Methods
that utilize observations of perturbed networks at a steady
state or at several time points include (Dynamic) Deterministic
Effects Propagation Networks [(D)DEPNs] (Frohlich et al., 2009;
Bender et al., 2010), Sorad (Aijo et al., 2013), and Dynamic
Probabilistic Boolean Threshold Networks (DPTBNs) (Kiani and
Kaderali, 2014). However, these network reconstruction methods
are computationally expensive and do not scale well for the
reconstruction of large networks. Recently, Linear Programming
(LP) based approaches have also been used to solve the network
reconstruction problem (Eren Ozsoy and Can, 2013; Knapp and
Kaderali, 2013; Matos et al., 2015). LP-based methods model the
reconstruction problem as an optimization problem and are able
to construct networks from both perturbation and time-series
assays. However, based on the optimization function and the
linear constraints, LP-based methods may be computationally
expensive, as well. For example, a very recent method, lpNet
(Matos et al., 2015), requires 3 days to reconstruct a 20 node
network in the in silico dataset of the HPN-DREAM breast
cancer network inference challenge. The DREAM (Dialogue on
Reverse-Engineering Assessment and Methods) challenge aims
to setup a joint effort between computational and experimental
biologists toward revealing the cellular networks from multiple
high-throughput data (Stolovitzky et al., 2007). An LP variant, the
Integer Linear Programming (ILP) approach, by Melas et al. uses
several optimization steps to find and remove the inconsistencies
between measurements and the input network topology (Melas
et al., 2013). Additionally, ILP is a known NP-hard problem,
and due to the large number of variables, this method may not
find solutions in a reasonable time, as it requires 64.000 s for
a 14 node network. We have previously proposed a divide and
conquer based ILP solution for the perturbation data analysis,
which scales well for larger networks by merging the solutions of
the smaller sub-networks (Eren Ozsoy and Can, 2013). The main
difference of our proposed ILP approach was the definition of
the optimization function as the minimization of the discrepancy
between a reference network and the inferred network. Recently
we have extended our ILP approach to work on time series data
(Eren Ozsoy et al., 2015) and here we have directly apply that
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method for the construction of the temporal signaling network
in Salmonella-infected human cells. Although network modeling
approaches are easily adaptable to identify signaling components
in various disease states, to our best knowledge, these approaches
have not yet been applied for the reconstruction of signaling
networks in the human host cell during the Salmonella infection.

In this work, the temporal phosphoproteomic data of the
Salmonella-infected human cells (Rogers et al., 2011) have
been used to model the altered signaling network in the
host cells. We have used a powerful combination of two
different networkmodeling approaches to construct the signaling
network of Salmonella-infected human cells. First, the temporal
phosphoprotemic data of Salmonella-infected human cells are
integrated with protein interaction data to construct the signaling
pathway at each time point. Then, all constructed networks were
merged together, and used as the input for the second part of the
network modeling step, in which directions are assigned to the
interactions based on the temporal data. Our approach allowed us
to identify host pathways altered during Salmonella infection. In
addition, by using network analysis techniques, we have provided
a ranking of the proteins according to their importance during
the infection.

Materials and Methods

Datasets
We have used the global temporal phoshoproteomic dataset
published in (Rogers et al., 2011), where four time points, 2,
5, 10, and 20min after Salmonella infection in human cell,
were selected. Another dimension of this dataset is the cellular
compartments where the phosphorylation site is identified as
membrane, cytosol, or nucleus. At each time point, if the change
in the phosphorylation status of a peptide is significantly altered
compared to the uninfected cells (p < 0.05) and the variance
across biological replicates are small (variance <15%) then that
peptide is selected for the next step of the analysis, so added to
the dataset. Then, each peptide selected, has beenmapped to their
HUGO Gene Nomenclature Committee (HGNC) identifiers
using the Database for Annotation, Visualization and Integrated
Discovery (DAVID) web server (Huang et al., 2009). If multiple
peptides map to a single protein, then the peptide with the
maximum value of fold change for phosphorylation level is
included for further analysis.

Besides the global phoshoproteomic data, the human protein
interactome is used for the data integration and modeling. The
interaction data from iRefWeb has been downloaded which has
113,248 confident weighted interactions between 15,684 proteins
(Turner et al., 2010). Also, a Salmonella effector to human
host protein interactome, which consists of 40 effectors and 50
host proteins connected with 62 interactions, has been retrieved
(Schleker et al., 2012).

Network Modeling
The network modeling procedure is composed of two stages; (i)
network construction using the Prize-collecting Steiner Forest
(PCSF) approach, and (ii) network reconstruction using the
ILP based edge inference approach. These two approaches

complement each other as the PCSF approach reveals the
hidden components in signaling by finding the high confidence
regions in the interactome, and the ILP-based edge inference
approach reconstructs interactions and their directionality by
using temporal data as constraints. In Figure 1, the flowchart of
our integrated approach is given.

Prize-collecting Steiner Forest Approach
PCSF is based on finding the high-confidence regions
within a protein interactome, which is used to recover the
phosphoproteomic hits (i.e., the terminal nodes) and hidden
proteins from the global temporal phoshoproteomic data (i.e.,
the Steiner nodes) in this study (Tuncbag et al., 2013). In the
optimization stage, two objectives are important; avoiding the
low-confidence protein-protein interactions in the final network
and including as many phosphoproteomic hits as possible. Each
protein identified with a significantly changed phosphorylation
status at a time point is assigned a weight equal to the absolute
value of the log fold change in phosphorylation, which is
called the “prize.” The cost of an interaction is calculated from its
confidence score where higher cost implies lower confidence. The
algorithm has to assign a cost for each interaction included in the
network, and pay a penalty for excluding a phosphoproteomic
hit equal to its prize. For a given, directed or undirected network
G(V, E, c(e), p(v)) with a node set V and edge set E, p(v) ≥ 0
assigns a prize to each node v ∈ V and c(e) > 0 assigns a cost
to each edge e ∈ E. The aim is to find a forest F(VF,EF) that
minimizes the objective function:

f (t) =
∑

v /∈ F

(
β · p(v)) + ∑

e∈ F

(
c(e)

) + ω · κ (1)

where κ is the number of trees in the forest and β is the scaling
factor. Another parameter that is used at the optimization stage
is the depth value (D) which represents the maximum allowed
number of edges from the root node to any terminal node. To
convert the PCSF problem into a Prize-collecting Steiner Tree
(PCST) problem we have introduced an extra root node v0 into
the network connected to each terminal node t ∈ T by an edge
(t,v0) with cost ω where T ⊂ V. This optimization problem has
been solved with a message passing algorithm, the msgsteiner
tool (Bailly-Bechet et al., 2010). The forest F is defined as a
disjoint collection of trees with all edges pointing to the roots.
In this work, depth is set to 10, ω is in the interval [1, 10] and
β is in the interval [1, 10]. Optimum forests obtained by each
parameter combination are merged together in order to consider
the suboptimal solutions. Finally, a PCSF is constructed for each
time point.

Integer Linear Programming (ILP) Based Edge
Inference Approach
For constructing signaling and regulatory networks using time
series expression data, we have used an extended version of our
previous ILP model that can handle both the time series and
steady state perturbation data (Eren Ozsoy and Can, 2013). The
extended ILP-based edge inference approach proposed in Eren
Ozsoy et al. (2015) is highly scalable when time series data is
available; therefore, in this paper, we directly apply that method
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FIGURE 1 | The flowchart of complete analysis. The dataset which
includes temporal fold changes of phosphopeptides at four different time
points (t1 = 2min, t2 = 5min, t3 = 10min, t4 = 20min) and at three different
locations (nucleus, cytoplasm, and membrane) was split and converted into
temporal fold changes datasets of the corresponding phosphoproteins by
taking the maximum fold change among phosphopeptides that were
observed at different locations and mapped to the same phosphoprotein.
Next, we applied PCSF approach for each fold changes dataset by

integrating human interactome in order to discover hidden intermediate
proteins. The resulting networks (F1, F2, F3, F4) are then used to form a
binary matrix where the rows are time points and columns are
phosphoproteins. Each corresponding cell of the binary matrix represents a
significant change (p < 0.05 and variance <15%) in the phosphoprotein at
the time point. Finally, we applied an ILP-based edge inference approach by
integrating human interactome in order to validate and determine edges and
edge directions.

for the construction of the whole Salmonella infection signaling
network using a single integer linear program. The details of the
ILP model are given below.

The integer linear programming model
Assuming that a reference signaling network is given as a directed
graph G(V, E), where V represents the node set (i.e., proteins) and
E represents the edge set (i.e., pairwise interactions), with several
source nodes si, and sink nodes tj, a reference regulatory network
can be curated from literature or obtained from a public database.
The steady state knock-down version of this problem has been
shown to be NP-complete (Hashemikhabir et al., 2012). When
the same problem is formulated as a linear optimization problem,
the solution of this optimization problem provides a network,
satisfying the experimental observations with minimum number
of changes (insertion or deletion) of the edges on the reference
network. The raw time-series expression data is assumed to be
processed, and the binary activity data is available for the proteins
in the network. We have used the cutoffs (p < 0.05 and variance
<15) as described in the Datasets. Steiner nodes are also assumed
to be active based on their presence in the reconstructed PCSF
networks.

As the objective function of the model is to minimize the edit
operations, i.e., insertions/deletions of edges, on the reference

network, the proposed model also works when there is no
reference network available. For such cases, the smallest network
satisfying the expression data is sought. Let xij be the binary
variable representing the presence of the edge from node i to
node j in the reference network. If the edge is present, then the
value of xij is 1, otherwise it is 0. Correspondingly, wij represents
the presence of the edge from node i to node j in the network
to be reconstructed from observations. For a graph G(V, E) with
n nodes, the objective function is given in Equation (2), which
basically quantifies the difference between the reference network
and the reconstructed network.

In the solution phase, the matrix of state variables is used for
the construction of the linear constraints. A protein is assumed
to be activated once the corresponding state variable becomes 1.
For the model, it does not matter what value the state variable is
assigned thereafter. For the construction of the constraints, the
kinematics of the system is taken into consideration. A protein is
assumed to be activated by any protein, which is already activated
at any previous time point and also a protein is able to activate
any protein at any of the following time points. The constraints
are based on the following assumptions: (1) sources are the
proteins which are activated at the first time point and sinks are
the proteins which are activated at the last time point, (2) each
source node and sink node has to be connected to the network,
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(3) at each time point, the proteins may only be activated by the
upstream proteins, which are active in preceding time points, (4)
no direct edges from sources to sinks are allowed, (5) no edges
between sources or sinks are allowed, and (6) no self-edges are
allowed. Note that these assumptions do not allow an upstream
edge. However, there may be such edges in the reference network
which are to be removed in the reconstructed network. Based
on these assumptions, the following graphical constraints are
derived.

1. There should be at least one edge going out of each source
protein to the proteins activated at the second time point.

2. There should be at least one edge going into each sink proteins
from the proteins activated at the last time point.

3. There should be at least one edge going into an intermediate
node from the upstream nodes activated at a previous time
point.

4. There should be at least one edge going out of an intermediate
node to one of the downstream nodes, including the sink
nodes.

Note that these constraints are derived only from the time series
expression data. It is also possible to add additional constraints, if
any perturbation experiment is available for the network. Let the
set Vi be the set of proteins active at time point i. Let Vs be the set
of source nodes and Vt be the set of target (i.e., sink) nodes. The
node set of the reconstructed network V is the union of all source
nodes, target nodes, and all the nodes active at some time point.
Let Vp be the set of nodes activated just before the sink nodes.
Let Vd be the set of downstream nodes that are activated after the
activation of node i. The overall Integer Liner Program is then
given as:

Minimize
n∑

i= 1

n∑
j= 1

∣∣xij − wij
∣∣ (2)

Subject to:
∑

j∈V1
xij ≥ 1 for all i ∈ Vs (3)∑

i∈Vp
xij ≥ 1 for all j ∈ Vt (4)∑

j∈Vd
xij ≥ 1 for all i ∈ Vx (5)∑

i∈ (V\Vs)
xij ≥ 1 for all j ∈ Vs+ 1 (6)

Assessment of the Improvement
In the first step, we only use the temporal phosphoproteomic
data and reconstruct the signaling network without a reference
network. Then, PCSFs for each time point are merged together
and a binary matrix has been created from the PCSF network in
order to validate the edges and to determine edge directions the
ILP based edge inference approach is used. The human protein
interactome described in Datasets is assigned as the reference
network for the ILP analysis. So, the PCSF and ILP based edge
inference analysis are combined to provide the intermediate
nodes (from the human interactome) based on the proteins
identified at different time points from the experimental data,

in addition to the direction information for the edges. The
resulting directed network is then used for visualization and
further analyses.

Network Analysis and Clustering
Restricted Neighborhood Search Cluster Algorithm (RNSC) in
the NeAT toolbox (Brohee et al., 2008) was used to cluster the
network where the maximum number of clusters was selected
to be 20 and other parameters were kept as the default values.
Critical nodes in the network were ranked by calculating four
attributes: the path frequency, in-degree, out-degree, the sum of
in-degree and out-degree, and the betweenness centralities. A
simple path is an ordered sequence of nodes in a graph such
that each node occurs at most once in this sequence and each
pair of consecutive nodes is connected by an edge. Given all the
possible simple paths between the terminal nodes at 2min and
the terminal nodes at 20min, the path frequency of a node p is
defined as the ratio of the simple paths that include p over all
paths. The network analysis has been performed by using the
Python NetworkX package (Schult and Swart, 2008).

Functional Enrichment Analysis
After clustering the network with RNSC algorithm, enrichment
of each cluster has been assessed with DAVID web server in
the following categories: biological process ontology, cellular
component ontology, molecular function ontology, BBID
pathways, BIOCARTA pathways, and KEGG pathways. Then,
we have collected the enrichment results for each cluster and
generated a matrix where rows are Gene Ontology (GO) terms
and columns are corresponding p-values for each cluster, for all
the data with p < 0.05, and enriched proteins >1%.

Results

Reconstruction of Temporal Signaling Networks
in Salmonella-infected Human Cells
Modeling signaling networks is a more challenging task when
the time dimension is taken into account. In a given temporal
omic data, one of the problems to be solved is how the omic
hits are connected and what are the upstream and downstream
regulators in the final signaling network. The ILP based edge
inference approach uses the temporal information as constraints
and reconstructs edges and their direction between the omic
hits toward solving this problem. But ILP-based edge inference
approach cannot identify the missing components in the omic
hits for the representation of the whole signaling system. The
PCSF approach solves this problem by searching for the most
confident region of the interactome that will include most of the
experimental hits and adds hidden components, called Steiner
nodes. As a limitation, if the initial interactome is undirected,
the PCSF approach cannot assign directions to the edges and
cannot use the temporal constraints, which can be solved by
the ILP-based edge inference approach. As the different aspects
of the ILP-based edge inference and PCSF network modeling
approaches are complementing each other, we have combined
these two approaches to reconstruct the temporal signaling
networks in Salmonella-infected human cells.
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In this work, we have used the phosphoproteomic data
published in (Rogers et al., 2011). This dataset has been
first divided into three parts at each time point based on
the cellular compartment (membrane, cytosol, and nucleus).
Additionally, the overlaps of the significantly phosphorylated
proteins across different time points and different cellular
compartments are compared. We have noted that the overlap
between compartments within the same time points were very
small, so the phosphoproteins at the same time point but in
different compartments are safely merged (see Table S1). Next,
for each time point, we have prepared a set of significantly
phosphorylated proteins along with their fold changes during
phosphorylation. To show the importance of revealing hidden
components that were not present in the phosphoproteomic hit
set, we first ran only the ILP-based edge inference approach
on the data. The result was a disconnected network with many
small sub-networks composed of three or four nodes which
were not a representation of any pathway (Figure S1). This
visual representation clearly showed that experimental hits alone
are not enough to represent the complete network as there
are missing components between these nodes. At this point,
we took advantage of the PCSF approach in revealing hidden
nodes and prepared a reference network to be used in the
ILP-based edge inference approach. For this purpose, multiple
PCSFs have been constructed for each time point and merged
together to form a single network. To pipe this output into
the ILP-based edge inference approach, we have prepared a
network matrix where rows are proteins, columns are time
points. When a node is present at a time point either as a
phosphoproteomic hit or as a hidden node revealed by the PCSF
approach, it is labeled as 1, otherwise it is 0. The ILP-based
edge inference approach reconstructed a network based on the
provided matrix as a reference network. The final network was
composed of 658 nodes and 869 edges. As shown in Figure 2,
the resulting network keeps the temporal information and
also reveals hidden proteins and directions of the interactions.
An interactive visualization and related source information is
available at http://mistral.ii.metu.edu.tr/salmonella/salmonella_
main.html. 547 out of 869 interactions were present in the
reference human interactome. Remaining 322 interactions were
novel, predicted interactions.

To check if this reconstructed network is specific to
Salmonella infection, we have searched for the known targets of
Salmonella effectors in the network. In this step, we have used the
interactome that has been curated and compiled from published
studies where 40 effectors interact with 50 human proteins
through 62 interactions (Schleker et al., 2012). We found that
13 proteins out of 50 were present in the reconstructed network,
which are known to be the targets of Salmonella effectors. The
enrichment of Salmonella effector targets in the reconstructed
network is statistically significant when compared to the overall
human interactome (p = 8.206 × 10−8, by hypergeometric test)
which implies the specificity of the reconstructed network to
Salmonella infection. In Table 1, targets of Salmonella effectors
present in the reconstructed network are listed with their
functions and whether they are phoshoproteomic hits or found
by our approach as intermediates. Additionally, we have checked

the Gene Ontology and KEGG pathway enrichments for the
overall reconstructed network. Regulation of transcription (p =
2.0× 10−3), apoptosis (p = 3.9× 10−10), intracellular transport
(p = 1.0 × 10−8), cell cycle (p = 2.1 × 10−10), cytoskeleton
organization (p = 2.3 × 10−17) are some of the processes
enriched in the reconstructed network. More specifically, SNARE
interaction in vesicular transport (p = 1.0 × 10−6), mTOR
signaling (p = 1.5 × 10−4), and MAPK signaling (p = 9.9 ×
10−6) pathways are among the enriched pathways. In several
studies, Salmonella infection was shown to down-regulate mTOR
pathway to induce apoptosis (Lee et al., 2014). The Salmonella
effector AvrA targets MAPK signaling, mTOR signaling, and NF-
κB pathways to manipulate the processes in the host cell (Liu
et al., 2010).

Next, the reconstructed network is divided into 20 clusters
using the RNSC algorithm, which searches highly connected
node sets within a given graph. Each cluster was found to
be enriched in few specific biological processes or pathways.
Top three most significant processes are listed in Table 2. For
example, the first cluster is enriched in the mTOR signaling
pathway, cytoskeleton organization, and other processes. Also
enrichments in the intracellular transport, apoptosis, RNA
processing, and transcription is observed in different clusters.
These clusters have also been analyzed based on the enrichment
of cellular components, and number of clusters observed in
three cellular compartments; nucleus, cytosol and cytoskeleton is
reported in Figure S2.

With the help of network analysis techniques, we were able
to rank the nodes present in the reconstructed network. The
most central nodes (based on different measures) are listed in
Table 3where 10 proteins that have known functions in apoptosis
are observed. 14-3-3ζ (YWHAZ) and p53 (TP53) are the most
frequently observed proteins on the simple paths passing through
the hits from 2min to 20min. MAPK1, CDC42, MAP3K3, and
14-3-3δ (YWHAG) behave like signal transducers where the
number of incoming edges are very low compared to other
nodes; while MAPK1 also behaves like a signal receiver when the
number of edges of each node were compared. These proteins
are critical for the structure of the network; in other words, these
proteins have the potential to reveal clinically important targets.

CDC42 is a Clinically Important Target in
Salmonella Infection
Two effectors of Salmonella, SopE, and SopB, stimulate CDC42
(cell division control protein 42) protein which induces
rearrangements in the cytoskeleton. CDC42 were not present
in the set of phosphoproteomic hits; however, it was located in
a central part of the reconstructed network, which is revealed
by the PCSF approach. Although CDC42 has a phosphorylation
site at tyrosine 64 (Tu et al., 2003) which is not present
in the initial phosphoproteomic data, our approach correctly
locates CDC42 in the final reconstructed network. Based on the
total degrees, CDC42 is among the top 10 ranking proteins.
In the reconstructed network, CDC42 has only one incoming
edge, but has 13 outgoing edges which is consistent with
the infection mechanism of Salmonella where stimulation of
CDC42 leads to activation of many downstream signaling
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TABLE 1 | Targets of Salmonella effectors in the reconstructed network.

Host protein Function Pathogen effectors Type of the node in the network*

CDC42 Actin filament bundle assembly SopB, SopE intermediate

MTOR Protein serine/threonine kinase activity AvrA intermediate

RHOA Actin cytoskeleton organization SifA, SseJ intermediate

YWHAG Negative regulation of protein serine/threonine kinase activity SspH2 intermediate

TP53 Apoptotic activity AvrA intermediate

TLN1 Structural constituent of cytoskeleton SseL intermediate

KLC1 Microtubule motor activity PipB2 pp-hit

FLNA Actin cytoskeleton reorganization SseI, SrfH, SspH2 pp-hit

CTNNB1 Cytoskeletal anchoring at plasma membrane AvrA pp-hit

VIM Intermediate filament organization SptP pp-hit

IQGAP1 Ras GTPase activator activity SseI, SrfH pp-hit

JUP Cytoskeletal anchoring at plasma membrane SseF pp-hit

KRT18 Intermediate filament cytoskeleton organization SipC or SspC pp-hit

MAPK1 Activation of MAPK activity AvrA, SpvC pp-hit

OSBPL9, OSBPL10, OSBPL11 Lipid transport SseL pp-hit (except OSBPL11)

STX1A, STX3, STX4, STX5,
STX7, STX12, STXBP5

Intracellular protein transport intermediate (except STX7, STX12)

*Intermediate, Steiner node; pp-hit, Phosphoproteomic hit.

components including p21-activated kinases (PAKs) and PBD
domain containing proteins (Galan and Zhou, 2000). PAK4
and PBD domain containing protein CDC42EP1 are among
the downstream partners in the reconstructed network. Also,
when we zoomed into the first degree neighbors of CDC42,
their downstream components in our network can be observed
(see Figure 3A). Some of these partners are active at 5min,
or at 10min, or at other time points. The CDC42 shows a
hub-like character in the reconstructed network. Hub proteins
cannot interact with all their partners at the same time. They
either adapt multiple binding sites or use a single binding site
repeatedly. This property of hubs has been well-established for
TP53 protein where four binding sites are repeatedly used to
interact with different partners (Tuncbag et al., 2009). We have
checked this property in CDC42 to understand its interactions
by searching for the available structural data in Protein Databank
(PDB) (Berman et al., 2000) and Interactome3D (Mosca et al.,
2013). We have found six interactions out of 13 in atomic detail
(see Figure 3B). Structural data provides information about
at which region two proteins are interacting. Analysis of the
binding site for each protein pair has shown that CDC42 is
using the same binding region completely or partially to interact
with its partners and this property is a characteristic of hub
proteins. Also, the downstream partners of CDC42 are active
at different time points as illustrated in Figure 3A, which also
shows the mutually exclusive character of the interactions. For
example, PAK4 is in the reconstructed network showing its
effect after infection at time points 10 and 20min. PARD6A
and ARHGAP32 effect at 10 and 20min, respectively. The
partner proteins are effective at different time points and CDC42
can bind to these proteins in a mutually exclusive manner.
IQGAP1 is another downstream component, which promotes
Salmonella invasion by binding to CDC42 and knockdown of

IQGAP1 was shown to be reducing the invasion (Brown et al.,
2007).

The Reconstructed Signaling Network Revealed
Many Other Potential Clinical Targets
Besides CDC42, some other targets of Salmonella effectors
were located correctly in the reconstructed network although
they were not present in the initial phosphoproteomic data;
such as 14-3-3δ, RHOA, TP53, TLN1 (Schleker et al., 2012).
Also pathogen targets such as β-catenin, MAPK1, IQGAP1 are
observed in the reconstructed network as phosphoproteomic hits
(Schleker et al., 2012).

In addition to these targets, mTOR pathway was found to
be enriched in the reconstructed network. mTOR signaling was
known to be altered after Salmonella infection and mTOR is
a phosphoproteomic hit having significant effect at 10min in
our data. When we have investigated the neighbors of the
mTOR protein (Figure 4A) RHEB, a direct regulator of mTOR
(Long et al., 2005), is observed as an interactor of mTOR in
the reconstructed network. Also, RPTOR binding to mTOR
and EIF4EBP1 was recovered in our network. The mTOR -
RHEB complex induces phosphorylation of EIF4EBP1 (Long
et al., 2005). Even though RHEB is an important player in
the activation of EIF4EBP1, it was not observed within the
initial phosphoproteomic hits. The proposed two-step modeling
approach was able to locate RHEB in the final network,
completing the missing interactions of the signaling pathway.
According to our network, signaling in the RPTOR-mTOR-Rheb-
EIF4EBP1 axis starts at 5min and continues until 10min.

RHOA, is a GTPase that functions in the actin cytoskeleton
organization (Hall, 1998). It was a Steiner node in final network
as a target of Salmonella effectors. It has 5 binding partners
in the reconstructed network of where four of them are
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TABLE 2 | Gene ontology (GO) biological process enrichments of each cluster located in the final network.

Cluster # GO Term p-values Percent

1 Cytoskeleton organization 0.00180 1.65

Regulation of cellular component size 0.00220 1.37

Regulation of cytoskeleton organization 0.00270 1.1

2 Cytoskeleton organization 0.00906 1.5

Regulation of phosphorylation 0.01138 1.5

3 Protein amino acid phosphorylation 0.01509 1.45

Phosphorylation 0.02753 1.45

4 RNA processing 0.0013 1.94

Intracellular signaling cascade 0.00152 2.77

Cell cycle process 0.00155 1.94

5 Not any significant GO enrichment

6 Intracellular transport 0.00233 1.65

Membrane organization 0.00842 1.18

Negative regulation of macromolecule metabolic process 0.0186 1.41

7 Response to organic cyclic substance 0.001745 1.03

Negative regulation of macromolecule metabolic process 0.002774 1.81

Regulation of cell cycle 0.00395 1.29

8 Positive regulation of specific transcription from RNA polymerase II promoter 0.00381 1.05

Cell death 0.005171 2.11

Death 0.005325 2.11

9 RNA processing 0.002175 1.72

Transmembrane receptor protein tyrosine kinase signaling pathway 0.0022984 1.23

Cytoskeleton organization 0.004371 1.47

10 Regulation of small GTPase mediated signal transduction 3.3120E-9 1.13

Small GTPase mediated signal transduction 3.52554E-7 1.01

Intracellular signaling cascade 5.2661E-4 1.13

11 Regulation of cellular protein metabolic process 0.00220 1.57

Response to organic substance 0.002536 1.83

Response to hormone stimulus 0.005706 1.31

12 Actin filament-based process 0.008572 1.1

Cell cycle phase 0.035767 1.1

Cytoskeleton organization 0.04074 1.1

13 Negative regulation of programmed cell Death 0.00105 1.73

Negative regulation of cell death 0.00106 1.73

Negative regulation of cell proliferation 0.007898 1.45

14 M phase 0.003363 1.12

Cell cycle phase 0.007577 1.12

Chromosome organization 0.013039 1.12

15 Protein import 0.001547 1.21

Protein localization in organelle 0.0021107 1.21

Intracellular transport 0.005237 1.82

(Continued)
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TABLE 2 | Continued

Cluster # GO Term p-values Percent

16 Macromolecular complex assembly 0.012584 1.04

Macromolecular complex subunit organization 0.0163 1.04

Regulation of apoptosis 0.02648 1.04

17 Tube development 0.005909 1.38

Tube morphogenesis 0.01944 1.04

Cellular component morphogenesis 0.0287436 1.38

18 Regulation of gene-specific transcription 0.00186 1.29

Positive regulation of macromolecule metabolic process 0.00397 2.26

Positive regulation of macromolecule biosynthetic process 0.00617 1.94

19 Positive regulation of molecular function 0.016011 1.69

Positive regulation of nucleobase, nucleoside, nucleotide, and nucleic acid metabolic process 0.019733 1.69

Positive regulation of nitrogen compound metabolic process 0.021893988499693085 1.69

20 Not any significant GO enrichment

The percent column has been calculated by dividing the number of involved proteins in that GO term to the total number of proteins in that cluster and converted into percentage.

upstream interactors and only one is a downstream interactor
(Figure 4B). Among the upstream interactors, RPS6KA4 is
effective at 2min and the remaining ones are active at 5min. The
downstream interactor INPPL1 is effective at 10min. So, the final
reconstructed network suggests that RHOA receives signals from
proteins active at min 2 and min 5 and transmits these signals
until min 10.

The 14-3-3δ protein (YWHAG) shows a pattern similar to
CDC42 where the incoming interactions are not present, but
there are many outgoing interactions from 14-3-3δwhich implies
that 14-3-3δ is a signal mediator for the downstream components
of the network. In Figure 4C, first neighbors of 14-3-3δ are
illustrated in the network. 14-3-3δ is a Steiner node, a known
target of Salmonella effectors, and it is effective atmin 2, 5, and 20.
Its 13 outgoing edges suggest a function like a signal transducer,
sending signals to many downstream proteins at different time
points.

Also, seven proteins from the Syntaxin family were present
in the reconstructed network and only three of them was a
phosphoproteomic hit, others were Steiner nodes found by
our approach. Syntaxins function in vesicle trafficking which is
an important process in Salmonella replication and transport.
Salmonella effectors hijack syntaxins by binding them (Ramos-
Morales, 2012).

Finally, oxysterol-binding proteins (OSBPs) are also present
in the reconstructed network, which are known to be enhancing
replication of Salmonella in the host cell by interacting with the
Salmonella effector SseL (Auweter et al., 2012). This interaction
can lead to the exploitation of OSBP dependent pathways altered
during the Salmonella infection.

Discussion

Improvements in the high-throughput technologies
revolutionized the systems biology era. Instead of comparing

lists of genes or proteins, finding the interactions, regulations,
and mechanisms within a set of significantly altered proteins
or genes have gained importance. In addition, integration of
multiple “omic” hits in a biologically meaningful way is now
crucial to better understand the functional pathways and cellular
mechanisms that are active during a disease or perturbation. For
this purpose, several network modeling approaches have been
developed, which successfully reveals clinically valuable targets
and important pathways, especially in several cancer types.
Another dimension of omic data is its temporality, which makes
the network modeling process more challenging, as instead of
simply connecting omic hits, the time related constraints have to
be considered during network reconstruction.

In this work, we have provided a proof-of-concept application
of an integrative approach which benefits from two different
network reconstruction methods, namely PCSF and ILP based
edge inference methods. Although both methods infer networks
from experimental omic hits, they perform better in different
parts of themodeling. The former reveals the hidden components
of the signaling, but cannot handle time as a dimension. The
latter can integrate temporal information to reconstruct directed
edges, but cannot add missing signaling components to complete
the lacking parts of the signaling. These complementary aspects
of the methods inspired us to combine both approaches to
model the signaling network of human cells after Salmonella
infection based on the temporal phosphoproteomic data. We
have selected Salmonella infection, because the signaling changes
in the host cells are still unknown despite the efforts to
understand the communication details between the pathogen
and the host. In addition, available approaches have not been yet
applied to model signaling changes in the host organism during
Salmonella infection. In the first stage, we have integrated the
temporal phosphoprotemic data of Salmonella-infected human
cells with confidence weighted protein–protein interactions to
reconstruct the signaling pathway for each time point with
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TABLE 3 | Top ranking proteins in the reconstructed network.

Name Function Subcellular location Path frequency In degree Out degree Betweenness

ACTG1 Structural constituent of cytoskeleton Actin cytoskeleton 7.3 2 5 0.0017

AIFM1 Apoptotic process Mitochondrion 6.8 1 1 0.0017

APBB2 Beta-amyloid binding Cytoplasm 0.0 1 24 0.0001

ATXN1 DNA binding Cytoplasm, nucleus 14.8 8 5 0.0021

CDC42 Actin cytoskeleton organization Cytoskeleton 4.2 1 13 0.0002

CFL1 Actin cytoskeleton organization Cytoskeleton 24.3 8 1 0.001

CIC DNA binding Nucleus 9.5 5 1 0.0008

CRTC3 cAMP response element binding protein binding Cytoplasm, nucleus 12.7 1 0 0.0

CTNNB1 Alpha-catenin binding Cytoskeleton 0.0 2 9 0.0008

EIF2AK2 Protein serine/threonine kinase activity Cytoplasm, nucleus 1.6 6 2 0.001

EIF3G Translation initiation factor activity Cytoplasm, nucleus 6.8 2 2 0.002

EIF4G1 Translation factor activity, nucleic acid binding Cytosol, membrane 37.6 8 6 0.004

HSPB1 Cellular component movement Cytoskeleton 22.0 3 2 0.0012

MAP3K3 Activation of MAPKK activity Cytosol 0.0 0 9 0.0

MAPK1 MAP kinase activity Cytoskeleton 11.1 12 1 0.0015

MPP6 Maturation of 5.8S rRNA Membrane 9.8 2 2 0.002

MPZL1 Cell-cell signaling Membrane 24.9 3 1 0.0005

RELA Sequence-specific DNA binding transcription factor activity Nucleus 0.0 3 11 0.0016

SRC Protein tyrosine kinase activity Membrane, cytoskeleton 2.1 3 13 0.0006

TOP2A Chromatin binding Cytoplasm, nucleus 0.0 6 1 0.0006

TP53 Tumor suppressor; induces growth arrest or apoptosis Cytoplasm, nucleus 32.8 15 14 0.011

UBE2I SUMO ligase activity Cytoplasm, nucleus 7.3 4 8 0.0016

YWHAG Protein kinase binding Cytoplasmic vesicle membrane 0.0 0 13 0.0

YWHAZ Protein kinase binding Cytoplasmic vesicle membrane 65.1 34 11 0.0093

ZC3HAV1 Cellular response to exogenous dsRNA Cytoplasm, nucleus 24.9 1 0 0.0

FIGURE 3 | CDC42 and its interactions in the reconstructed
network. (A) The region where CDC42 and its first neighbors are
located in the reconstructed network. The coloring scheme is the
same as in Figure 2 where CDC42, EIF2AK2, BCR, BAIAP2,
ARHGAP32, PARD6A, and PAK4 are Steiner nodes and others are

phosphoproteomic hits. (B) Structural details of CDC42 interactions
where CDC42 uses the same binding site completely or partially to
interact with its partners. Here, PAK6 is a structural homolog of
PAK4; therefore to show similar binding of PAK4, it is represented
with PAK6.

the PCSF approach. Then, all the components were labeled
with the corresponding time points based on their presence
in the reconstructed networks, and used as the input for the

ILP-based edge inference step, in which directions are assigned
to the interactions based on the temporal data. The final
network with 658 proteins and 869 interactions provided a rich
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FIGURE 4 | Visualization of the first degree neighbors of (A) mTOR, (B) RHOA, (C) YWHAG, and (D) Syntaxins in the reconstructed network in Figure 2 .
The coloring scheme is the same as in Figure 2.

source to analyze the signaling alterations and clinical target
identification. Our approach allowed us to identify host pathways
functioning during the Salmonella infection and to rank the
proteins according to their importance for the infection based on
their centrality in the network. The resulting network conserves
the information about temporality, direction of interactions,
while revealing the hidden entities in the signaling. Several
pathways such as SNARE binding, mTOR signaling, immune
response, cytoskeleton organization, and apoptosis, were found
to be effected, many of which were previously found to be
altered in the host cell after Salmonella infection. Additionally,
we have shown that the reconstructed network is enriched in
the protein targets of the Salmonella effectors. Clustering of the
resulting network showed that the multiple biological processes
are enriched in each cluster. The final network also involves
enrichments in the cytoskeletal organization and the regulation
of cellular component size. These findings are in parallel with
the known infection mechanism of the Salmonella where the
injected effector proteins trigger the epithelial cell membrane
by rearranging the cytoskeleton of the host cell that results in
invasion of the bacterium into the host cell.

Another benefit of the proposed two-step approach (Figure 1)
was that hidden components of signaling can be revealed with
network reconstruction. In this specific demonstration, several
known targets of Salmonella effectors have been accurately
included in the reconstructed network such as CDC42, RHOA,
14-3-3δ, Syntaxins although they were not present in the initial
phosphoproteomic data. These hidden signaling components

can be potential therapeutic targets. Among them CDC42 is
a target of the effector protein SopB and their interaction
helps in the adaptation of Salmonella to the intracellular
condition of the host. CDC42 is responsible of downstream
signaling and behaves as a signal transmitter. From a medical
point of view, targeting CDC42 is a good approach both for
blocking the adaptation of Salmonella in the host cell and
abnormal downstream signaling during infection (Figure 3).
RHOA functions in cytoskeleton organization and also it a
target of Salmonella effectors. The effector SifA activates RHOA
during infection. Activated RHOA promotes opening tubes
in the membrane (Srikanth et al., 2010). Therefore, RHOA
can be considered as a therapeutic target and controlling its
activation can be a good approach in Salmonella treatment
(Figure 4B). Also, besides revealing the hidden components, the
reconstructed edge directions nicely showed how the signals are
transmitted temporally from one layer to another. For example,
some host proteins behave like a signal receiver such as MAPK1
and some others behave like a signal transmitter such as, 14-3-3δ
(Figure 4C).

Understanding these communications and signaling details in
the host is crucial to improve the available treatment strategies
for Salmonella infection in the near future, especially as the
new antibiotic-resistance species are on the rise. We believe
that the integrated approaches, such as the one presented here,
have a high potential for understanding the key molecular
mechanisms in bacteria’s susceptibility or resistance to the
available antibiotics and for the identification of new clinical
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targets in infectious diseases, especially in the Salmonella
infection.
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Infectious diseases are still among the major and prevalent health problems, mostly
because of the drug resistance of novel variants of pathogens. Molecular interactions
between pathogens and their hosts are the key parts of the infection mechanisms. Novel
antimicrobial therapeutics to fight drug resistance is only possible in case of a thorough
understanding of pathogen-host interaction (PHI) systems. Existing databases, which
contain experimentally verified PHI data, suffer from scarcity of reported interactions
due to the technically challenging and time consuming process of experiments. These
have motivated many researchers to address the problem by proposing computational
approaches for analysis and prediction of PHIs. The computational methods primarily
utilize sequence information, protein structure and known interactions. Classic machine
learning techniques are used when there are sufficient known interactions to be used as
training data. On the opposite case, transfer and multitask learning methods are preferred.
Here, we present an overview of these computational approaches for predicting PHI
systems, discussing their weakness and abilities, with future directions.

Keywords: protein-protein interaction, pathogen-host interaction (PHI), computational PHI prediction, machine
learning, data mining

INTRODUCTION
Many studies concerning identification of protein interactions
and their associated networks were published (Aloy and Russell,
2003). Most of the previous studies were primarily focused on
determining protein-protein interactions (PPIs) within a sin-
gle organism (intra-species PPI prediction), while the prediction
of PPIs between different organisms (inter-species PPI predic-
tion) has recently emerged. Inter-species interactions may take
many forms; in this survey, however, we focus on PPIs between
pathogens and their hosts. Pathogen-host interaction (PHI) pre-
diction is worthwhile to enlighten the infection mechanisms
in the scarcity of experimentally-verified PHI data. Interactions
between pathogen and host proteins allow pathogenic microor-
ganisms to manipulate host mechanisms in order to use host
capabilities and to escape from host immune responses (Dyer
et al., 2010). Therefore, a complete understanding of infection
mechanisms through PHIs is crucial for the development of new
and more effective therapeutics.

Despite the critical need to improve the PHI knowledge, cur-
rent progress is not adequate, suffering from scarcity of available
experimental PHI data. Reliable experimental methods are time-
consuming and expensive, making it unjustifiable to evaluate all
possible PHIs. For instance, considering about 26,000 human
proteins paired with a few thousands of pathogen proteins lead
to millions of protein pairs to test experimentally. Scarce veri-
fied interactions are collected within a number of databases like
HPIDB (Kumar and Nanduri, 2010), PATRIC (Wattam et al.,
2014), PHISTO (Durmuş Tekir et al., 2013), VirHostNet (Navratil

et al., 2009), and VirusMentha (Calderone et al., 2014). At this
point, computational approaches come to help by predicting
putative PHIs. In this paper, we concentrate on these computa-
tional studies, which are mandatory for enriching the available
data and consequently increasing the pace of research in the
field. The methods which were successfully applied specifically
for PHI prediction in the literature are categorized based on
pathogen-host systems in Table 1.

Considering the relative availability of interaction data for
HIV-Human system, notable number of studies are dedicated to
this pathogen. Some other viral and bacterial pathogens are inves-
tigated and human is the main target as the host for investigation.
Computational methods for predicting PHIs exploit known pro-
tein and domain interactions, and information on sequence of
proteins. Network topology measures can complement these data.
For instance, targeting hubs and bottleneck proteins in human
PPI network by pathogen proteins is a well-accepted idea (Dyer
et al., 2008; Durmuş Tekir et al., 2012; Schleker and Trilling, 2013;
Zheng et al., 2014), though, they are not the sole targeted pro-
teins (Chen et al., 2012). Classic machine learning methods are
valuable remedy for cases where enough data for training are
available. However, valuable efforts have recently been performed
to apply these techniques for situations suffer from scarcity of
known interaction data using machine learning based methods as
transfer and multitask learning (Xu et al., 2010; Kshirsagar et al.,
2013a,b).

In PPI prediction studies, methods specific for intra-species
interactions are usually used. On the other hand, concentrating
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Table 1 | Computational studies for prediction of PHIs.

Pathogen-host system References

Plasmodium falciparum-Human Krishnadev and Srinivasan, 2008

Lee et al., 2008

Wuchty, 2011

Dyer et al., 2007

Helicobacter pylori-Human Kim et al., 2007; Tyagi et al., 2009

Hepatitis C virus (HCV)-Human Cui et al., 2012; Zheng et al., 2014

Phage T4-Escherichia coli Krishnadev and Srinivasan, 2011

Phage lambda-E. coli Krishnadev and Srinivasan, 2011

C. albicans-Zebrafish Wang et al., 2013

E. coli-Human Krishnadev and Srinivasan, 2011

Plasmodium berghei-Mouse Reid and Berriman, 2013

Plasmodium berghei-Insect
vector (Mosquito)

Reid and Berriman, 2013

Oral microbial-Human Coelho et al., 2014

Salmonella-Human Krishnadev and Srinivasan, 2011

Arnold et al., 2012

Kshirsagar et al., 2012

Kshirsagar et al., 2013b

Schleker et al., 2012a

Mei and Zhu, 2014
Schleker et al., 2014 (Review)

Mycobacterium Tuberculosis
H37Rv-Human

Zhou et al., 2014

Yersinia pestis-Human Krishnadev and Srinivasan, 2011
Kshirsagar et al., 2012
Kshirsagar et al., 2013b

Mycobacterium apicomplexa and
Mycobacterium
kinetoplastida-Human

Davis et al., 2007

Xanthomonas oryzae-Rice Kim et al., 2008

HTLV -Human Mei, 2014

HIV1-Human Evans et al., 2009
Tastan et al., 2009
Mei, 2013
Qi et al., 2010
Dyer et al., 2011
Ray et al., 2012
Doolittle and Gomez, 2010

Nouretdinov et al., 2012
Mukhopadhyay et al., 2010, 2012,
2014
Mondal et al., 2012

(Continued)

Table 1 | Continued

Pathogen-host system References

36 viral species-Human Franzosa and Xia, 2011

Influenza A NS1–Human De Chassey et al., 2013

HPV16–Human Dong et al., in press

Bacillus anthracis-Human Kshirsagar et al., 2013b

Francisella tularensis-Human Kshirsagar et al., 2013b

Dengue virus-Human Doolittle and Gomez, 2011

Segura-Cabrera et al., 2013

Insect vector A. aegypti-Human Doolittle and Gomez, 2011

Salmonella-Arabidopsis Schleker et al., 2012a

Schleker et al., 2014 (Review)

Human papilloma viruses
(HPV)-Human

Cui et al., 2012

R. solanacearum-Arabidopsis Li et al., 2012

Y. pestis, M. tuberculosis, C.
diphtheriae, C. ulcerans, E. coli,
and C.
pseudotuberculosis-Human, Goat,
Sheep, and Horse

Barh et al., 2013

on the interactions between different organisms is a young
branch of this field. The traditional methods cannot be applied
here, their adaptation or devising new approaches would be
mandatory.

MACHINE LEARNING AND DATA MINING BASED
APPROACHES
Applying machine learning techniques to bioinformatics is a
well-accepted idea (Baldi and Brunak, 2001), which includes
early efforts for PPI predictions (Bock and Gough, 2001). These
methods utilize available PPI data as features for training and
classifying interacting and non-interacting protein pairs. Both
semi-supervised and supervised learning are used for PHI pre-
diction. A Supervised method, which exploits exclusively labeled
data, is applied in Tastan et al. (2009) integrating 35 features
within eight groups using Random Forest (RF) classifier to deal
with noisy and redundant features. The semi-supervised exten-
sion of their work is presented in Qi et al. (2010) which discarded
17 attributes from the feature vector that is related to determining
17 HIV-1 proteins. However, they have gained better perfor-
mance through incorporating likely interactions (called “partially
labeled”), which do not have sufficient evidence to be categorized
as direct interaction. The same classifier is used as a quality con-
trol in Wuchty (2011), where a RF classifier assesses the quality of
candidate interactions, obtained by discovering homologous and
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FIGURE 1 | Machine learning and data mining based approaches for prediction of PHIs.

conserved interactions. The author filters the predicted results
based on expression and molecular properties.

Conformal prediction is used in Nouretdinov et al. (2012) and
the results are compared with those of Tastan et al. (2009) to
assess the predictions. This method evaluates the conformance
of new pairs with interacting pairs using a method called non-
conformity measure (NCM) which shows distinction measure of
an example regarding others. Their approach also allows the user
to determine confidence level for prediction.

SVM based approaches as a famous classifier are successfully
applied in PHI prediction studies (Kshirsagar et al., 2013a; Mei,
2013). Cui et al. (2012) presents a SVM based approach, which
uses a fixed length feature vector, indicating relative frequency
of consecutive amino acids in the protein sequence. We catego-
rize the machine learning and data mining based approaches in
Figure 1.

TRANSFER AND MULTITASK LEARNING APPROACHES
One of the promising remedies to tackle the problem of data
scarcity is eliciting and transferring data from related domains
to desired formulation. Multitask learning uses commonalities
among different domains and learn problem simultaneously
between them within a shared task formulation, which leads to
better performance rather conducting learning task on individ-
ual domain. A review paper, Xu and Yang (2011) presents some
of the studies utilizing this idea in bioinformatics. For PPI pre-
diction, a method was proposed in Xu et al. (2010) which uses
collective matrix factorization originally proposed by Singh and
Gordon (2008) to transfer knowledge from a relatively dense PPI
network called “source” for predicting new PPIs in a sparse target
PPI network. Their goal is to predict intra-species pathogen PPIs
as target with the aid of human PPIs as source network through
defining a similarity matrix to act as a bridge between them.
Another study conducts three different individual classifiers on
three GO features (molecular functions, cellular localization, and
biological processes) on available protein features and at the
same time three classifiers on alternative homolog features to

exploit transfer learning. An ensemble classifier produces final
result using weighting probability outputs of individual classi-
fiers (Mei, 2013). They applied relatively same idea using a multi
instance AdaBoost method to transfer homolog feature as the
second instance of proteins (Mei, 2014; Mei and Zhu, 2014).
A combination of supervised and semi-supervised approaches
is proposed by Qi et al. (2010) through multitask learning.
Semi-supervised task on partially positive labels is conducted
to improve the supervised classification which trains multi-layer
perceptron using labeled data. Another multitask formulation is
used in Kshirsagar et al. (2013b) to integrate knowledge from dif-
ferent pathogen-host systems to increase the prediction power
of the combined model. Each task is formulated as predicting
PHI data between each pathogen and its host. To define simi-
larity between tasks and transfer shared knowledge, they assume
that similar pathogens tend to target same biological process in
human. In other words, “commonality hypothesis” is introduced
that assumes pathway membership of human proteins in positive
PHIs should be similar between different tasks. To implement this
idea, optimization problem is conducted and dissimilarities are
penalized in the objective function. They use transfer learning in
Kshirsagar et al. (2013a) for the cases where no known interaction
is available by exploiting precisely chosen instances from a source
task.

DATA MINING BASED APPROACHES
Machine learning based methods which formulate PPI pre-
diction as a classification task use both interacting and non-
interacting protein pairs as positive and negative classes, respec-
tively. Constructing negative class is not straightforward due to
the fact that there is no experimentally verified non-interacting
pair. This has motivated some studies to overcome this problem
by removing the need for negative data through using alterna-
tive methods (Mukhopadhyay et al., 2010, 2012, 2014; Mondal
et al., 2012; Ray et al., 2012). They integrate bi-clustering with
association rule mining, utilizing only positive samples to predict
virus-human interactions.
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UTILIZED FEATURES
Various studies utilize different sets of biological information
through data integration to improve the prediction performance.
However, it should be noted that making use of a lot of fea-
tures without enriching training data may lead to over fitting in
the model (Mei, 2014). Table 2 summarizes the utilized features
within different studies on PHI prediction, providing all the cat-
aloged feature information is not always possible for all pathogen
systems. Furthermore, various features claimed to have different
predictive effects in PHI prediction. Outperforming other fea-
tures was the motivation for some studies to use GO features in
PHI prediction (Mei, 2013, 2014) while features extracted from
protein sequences, reported as not promising (Yu et al., 2010).

HANDLING MISSING DATA
Applying machine learning methods and specially supervised
learning for situations suffer from data scarcity is challenging.
Being limited to well-studied pathogen systems like HIV-1 is the
consequence of data dependency. Recently, some solutions are
proposed to overcome this limitation by offering substituted val-
ues for missing data. For instance, in Kshirsagar et al. (2012) two
different methods are proposed including information transfer
from other species and model-based imputation. First, they rely
on homologous proteins data to provide feature values like GO
annotations and gene expression data. This contributes a lot and
downgrades the missing data significantly. However, for proteins
with no available homolog, they have modeled gene expression
value distribution. They have compared the proposed “Cross
species imputation” with other imputation techniques. The first
method is called “RF” which initiates the missing data to mean
value and re-estimate it by choosing the nearest leaf node of the
created forest. Another intuitive method is choosing the average
of the feature values and the last compared method is discard-
ing any pair with missing value which leads to a reduced dataset.
Clear improvements are reported in comparison with the listed
imputation methods. It should be noted that using solely sta-
tistical methods for estimating features like GO values will be
hard due to high dimensionality. Mei (2013) uses homolog infor-
mation when the features of a protein is unavailable. They have
designed various experiments to show the performance of sub-
stituting homolog features. Pessimistic experiment, which uses
only homolog features to train and test without incorporating
any base proteins (called “target” in the article), has promising
results, indicating that using homolog information is an effective
substitute for the target information to tackle the problem of data
unavailability.

THE CHALLENGE OF NON-INTERACTING PPIs
Since there is no available verified non-interacting PPI to be used
for training the model, selecting negative data remains as a chal-
lenge for PPI prediction. Some studies try to circumvent the
obstacle by using methods which do not require negative samples
(Ray et al., 2012). However, ignoring non-interacting patterns
may increase the rate of false positives (Mei, 2013). The negative
set is not defined in Nouretdinov et al. (2012) and instead they use
unknown label for other pairs. Most of the studies which formu-
late the problem as a classification task, have to construct negative

class through randomly sampling the data. The rate of positive
to negative class is chosen in different manners to avoid biasing
classifier toward wrong predictions. A ratio of 1:100 is chosen in
Kshirsagar et al. (2012, 2013b) and Tastan et al. (2009) expecting
one interaction pair within 100 random pathogen-host pairs. Mei
(2013) chooses the same ratio for negative and positive classes,
however proposes different idea for choosing negative samples.
They put aside sub-cellular co-localized pairs from the negative
class and report better performance in comparison with random
sampling. The study in Dyer et al. (2011) conducted experiments
with different ratios and 10 randomly chosen sets for each ratio
and stated that beside clearly different results for different ratios,
variability of randomly selected negative samples for each ratio
does not have major effect on the result accuracy.

HOMOLOGY BASED APPROACHES
The rationale behind this type of methods is the expectation of
conserved interactions between a pair of proteins which have
interacting homologs in another species. The conserved interac-
tion is called as “Interolog.” The simple method of identifying
Interologs is as follows: Consider a template PPI pair (a, b)
in a source species, find the homolog a′ in the host and the
homolog b′ in the pathogen, conclude that (a′, b′) interact.
Simplicity and clear biological basis are the main advantages
of these methods. However, homology to known interactions
is not sufficient for evaluating the biological evidence of the
predicted results. Different filtering techniques should be con-
sidered for assessing the feasibility of the interactions under
an in vivo condition and consequently decreasing the false
positives.

A homology detection method using template PPI databases,
DIP (Salwinski et al., 2004) and iPfam (Finn et al., 2014), is pub-
lished in Krishnadev and Srinivasan (2008) to predict PHI pairs.
Searching the sequences of host and pathogen proteins within two
template databases are conducted to find a superset of all inter-
actions which are physically and structurally compatible. These
potential interactions are refined within two additional filtering
steps, to detect biologically feasible interactions including integra-
tion of expression and sub-cellular localization data. The authors
have applied the same procedure for different pathogens in their
subsequent works (Tyagi et al., 2009; Krishnadev and Srinivasan,
2011).

Another research uses the conceptually same approach by
exploiting sequence similarity augmented with domain-domain
interaction detection (Schleker et al., 2012a). They have two
compressive reviews of the computational approaches predict-
ing Salmonella-Host interactions (Schleker et al., 2012b, 2014),
which include comparing Salmonella-Human and Salmonella-
Plant interaction predictions.

Homolog knowledge can be used indirectly as a remedy for
data scarcity and data unavailability by homolog knowledge
transfer. Mei (2013) uses homolog information (features) when
the features of a protein is unavailable. They have designed differ-
ent experiments to show the performance of substituting homol-
ogy features. Pessimistic experiment, which uses only homology
features for train and test without incorporating any base proteins
(called as “target” in the article) has promising results, indicating
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Table 2 | Summary of the exploited features for prediction of PHIs.

Utilized feature Description References

Domain and motif information Set to be 1 every domain pair of each PPI in a binary feature vector of all
possible domain pairs

Dyer et al., 2011

Count possible interacting domains between pathogen and host proteins
using domain interactions database (3DID)

Kshirsagar et al., 2012,
2013b

Functional sequence motifs from ELM database checked in HIV-1 sequence Tastan et al., 2009; Qi
et al., 2010; Nouretdinov
et al., 2012

Suppose protein pairs as interacting when they have one or more interacting
domain

Coelho et al., 2014

Protein sequence n-mers
(n-gram)

For each pathogen-host protein pair concatenate their vectors. Each protein
vector count the number of times each distinct n-mer occurred in the
sequence

Dyer et al., 2011

Similar to Dyer et al. (2011) Kshirsagar et al., 2012,
2013b

Variant of the spectrum kernel based on sequence n-mers Kshirsagar et al., 2013a

Represent proteins by relative count of amino acid 3-mers Cui et al., 2012

Forming 7 amino acid classes and computing frequency difference through
343-dimensional vector

Wuchty, 2011

Forming 4 amino acid classes and computing standardized frequency
difference through 64 possible combination

Dong et al., in press

Observing each of different 20 amino acids within protein sequence Coelho et al., 2014

Network topology Two features for each pathogen-host protein pair including human protein’s
degree and its betweenness centrality

Dyer et al., 2011

Three features of human protein: degree, clustering coefficient, centrality Tastan et al., 2009; Qi
et al., 2010; Nouretdinov
et al., 2012

Similar to Tastan et al. (2009) Kshirsagar et al., 2012,
2013b

Degree and betweenness centrality in human PPI Dong et al., in press

Gene ontology Pairwise similarity between GO terms of host and pathogen and Neighbor
similarity for GO terms of pathogen and binding partners of human proteins

Kshirsagar et al., 2012,
2013b

Pairwise and neighbor GO similarity Tastan et al., 2009; Qi
et al., 2010; Nouretdinov
et al., 2012

Three aspects of Gen Ontology are the only used feature values and the
homolog GO features are used for missing data

Mei, 2013, 2014

Biological process similarity is computed for protein pairs Coelho et al., 2014

For every human protein within extracted biclusters find important GO terms Ray et al., 2012;
Mukhopadhyay and
Maulik, 2014

Using GO functional data for conducting two functional analysis Reid and Berriman, 2013

Gene expression Differential human gene expression infected by pathogen in seven control
conditions

Kshirsagar et al., 2012,
2013b

(Continued)
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Table 2 | Continued

Utilized feature Description References

Differential human gene expression across HIV-1 infected and uninfected samples Tastan et al., 2009; Qi et al., 2010;
Nouretdinov et al., 2012

Conserved pathways Find other known PHI, which pathogen is homolog and host proteins share a pathway Kshirsagar et al., 2012, 2013b

RNAi expression Utilizing human genes reported as “hits” by the RNAi screens

Homology
information

For each PHI count the number of interologs from other species

Forming orthologous groups through clustering host and pathogen proteins around
central orthlogous pairs

Wuchty, 2011

Use STRING to get clusters of orthologous groups and their scores Coelho et al., 2014

Pfam interactions Counts the possible interactions between Pfam families of host and pathogen
reported in the iPfam

Kshirsagar et al., 2012, 2013b

Use interacting pair of domains to predict gene interaction between malaria and its
hosts (mouse and mosquito)

Reid and Berriman, 2013

Protein sequence Sequence alignment between pathogen and host proteins computed using
PSI-BLAST

Kshirsagar et al., 2012, 2013b

Tissue feature Check infection susceptibility of tissues Tastan et al., 2009; Qi et al., 2010;
Nouretdinov et al., 2012

Virus protein type One feature for each HIV-1 protein to compute probability of interacting with human
protein

A feature vector formed by 11 types of HCV proteins and 9 types of HPV Cui et al., 2012

Pathways Pathway participation coefficient is calculated for each protein Wuchty, 2011

Use similarity of pathway memberships of human proteins to propose commonality
hypothesis across organisms

Kshirsagar et al., 2013b

For each human protein within extracted biclusters find important KEGG pathways Ray et al., 2012; Mukhopadhyay
and Maulik, 2014

Find other known PHI, which pathogen is homolog and host proteins share a pathway Kshirsagar et al., 2012, 2013b

that using homolog information is an effective substitute for the
target information to tackle the problem of data unavailability.

Another research uses high confidence intra-species PPIs to
detect Interologs using ortholog information (Lee et al., 2008).
The assumption is that when two orthologous groups are shared
between more than two species, there will be a potential Interolog
between those orthologous groups. The potential interactions are
filtered using gene ontology annotations followed by pathogen
sequence filtering based on the presence or absence of translo-
cational signals to refine the predictions. The notable point is
negligible intersection of the predicted interactions with those
of the reported predictions in Dyer et al. (2007) due to applying
different techniques and datasets for same pathogen-host system.

Zhou et al. (2014) introduces the “stringent homology” which
does not rely only on intra-species template PPIs to discover
interologs and make use of two different organisms as the source
of template PPIs to predict PHIs. They also claim that it is not
only for the targeted host proteins which tend to be hub in their
own PPI network and this is also true about targeting pathogen
proteins.

The most important obstacle for using homology based meth-
ods is scarcity of available homolog information. For instance,
the number of interologs within bacterial PPIs are not dignifi-
cant (Kshirsagar et al., 2013b) demonstrating that we cannot rely
only on homolog information for every situation without being
cautious about data availability. Clearly, it is reasonable to predict
more genomic and proteomic data will be available in the future
and consequently more accurate homologs are identified paving
the way of studying less-known pathogens. Table 3 summarizes
the published research for predicting PHIs based on homology
information.

STRUCTURE BASED APPROACHES
A number of studies are based on structural similarities and
use template PPIs to detect similar interacting pairs within host
and pathogen proteins. Preliminary ideas presented in Davis
et al. (2007) called comparative modeling and was based on
their prior work (Davis et al., 2006). Their method starts with a
set of host and pathogen proteins and then sequence matching
procedures are used to determine the similarities between the
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host or pathogen proteins with known structure or known inter-
action protein partners. Sequence similarity score is only used
when structure information is unavailable as a statistical poten-
tial assessment, to predict interacting partners. Filtering the set of
potential interactions is the last step which is performed using the
biological contexts of proteins and a network-level filter. The out-
come of this process is decreasing the potential PHIs by about five
orders of magnitude. The main drawback of this method is that
finding high similarity between pathogen proteins and proteins
with known structure is not guaranteed for all pathogen proteins.
Therefore, unavailability of the spatial structural information
would restrict the applicability of this method. Furthermore, they
have only the ability to collect limited number of benchmark PPIs
from literature to evaluate their prediction performance.

Authors in Franzosa and Xia (2011) claim to significantly
reduce the rate of false positives by presenting virus-human struc-
tural interaction network, in which, each PPI is associated with a
high confidence 3D structural model. Applicability of the method
is limited to human-human and virus-human PPIs for which 3D
structural models are available. The method starts with extract-
ing human interacting pairs from PDB and followed by mapping
virus proteins to them by sequence similarity. They emphasize the
importance of constructing a high-resolution, 3D structural view
of pathogen-host and within-host PPI networks to discover new
principles of PHIs through their review paper in Franzosa et al.
(2012).

Another research developed a map of interactions between
HIV-1 and human proteins based on protein structural similarity
(Doolittle and Gomez, 2010). A comparison of known crystal
structures is performed to measure structural similarity between

Table 3 | Homology based approaches for prediction of PHIs.

Method References

Homology detection method using template PPI
databases, DIP, and iPfam

Krishnadev and
Srinivasan, 2008

Interologs were inferred from ortholog
information obtained from high confidence
databases

Lee et al., 2008

Homology detection method using template PPI
databases, DIP, and iPfam

Tyagi et al., 2009

Homology detection method using template PPI
databases, DIP, and iPfam

Krishnadev and
Srinivasan, 2011

Introduce stringent homology which uses inter
species template PPI

Zhou et al., 2014

Conserved PHI network is generated using
interacting proteins of the common conserved
inter-species bacterial PPI

Barh et al., 2013

Obtain host-pathogen interactome using
sequence and interacting domain similarity to
known PPIs

Schleker et al., 2012a

Interolog and Domain based approaches are used
to predict PHIs

Li et al., 2012

The ortholog information for the four species are
integrated from different databases and
interspecies PPI network is constructed followed
by dynamic modeling of regulatory responses
leads to identifying interactions

Wang et al., 2013

host and pathogen proteins. Human proteins which have high
structural similarity to a HIV protein are identified and their
known interacting partners are determined as targets. The
assumption is that HIV proteins have the same interactions as
their human peers. These predicted results refined by two filter-
ing steps using data from the recent RNAi screens and cellular
co-localization information. They apply the same method for
developing an interaction network between Dengue virus and
its hosts (Doolittle and Gomez, 2011). Again, with a similar
idea those proteins with comparable structures share interac-
tion partners. The work suffers from the lack of assessment
data in a way that, very limited number of used benchmark
PPIs are specific to the viral pathogen. Table 4 summarizes
the conducted research for predicting PHIs based on structural
data.

DOMAIN AND MOTIF BASED APPROACHES
The idea of exploiting domains as building blocks of proteins
for predicting PPIs is well-studied for single organisms (Wojcik
and Schächter, 2001; Pagel et al., 2004) regarding the fact that
domains are the mediators of interactions. The approach pre-
sented in Dyer et al. (2007) is one of the pioneer published
research for predicting PHIs. However, small list of interactions
are presented and their biological relevance are not strongly eval-
uated. To predict interactions between host and pathogen pro-
teins, they present an algorithm that integrates protein domain
profiles with interactions between proteins from the same organ-
ism. For every pair of functional domains (d, e) which is present
in protein pair (g, h) respectively, the probability of interact-
ing (g, h) is assessed using Bayesian statistics. To apply this idea
to a pathogen-host system, they identify domains in every host
and pathogen proteins and compute the interaction probabil-
ity for each pair of host and pathogen proteins that contain
at least one domain. Assuming Mg as the set of domains con-
tained in protein g the interaction probability of proteins (g, h) is
computed as:

P
(
g, h

) = 1 −
∏

d ∈ Mg

∏
e ∈ Mh

(1 − P(g, h|d, e))

The authors have published another study which uses domain
profiles as features in supervised machine learning for predicting
interactions in HIV-Human system.

Table 4 | Structure based approaches for prediction of PHIs.

Method References

Comparative modeling of 3D structures Davis et al., 2007

Sharing interacting partners of structurally
similar human proteins to HIV proteins

Doolittle and Gomez,
2010

Structural similarity of Denv proteins to human
proteins having known interactions

Doolittle and Gomez,
2011

3D structural interaction network of
host-pathogen and within-host PPI networks

Franzosa and Xia, 2011

Assumes that structurally homologous
proteins have probably interactors in common

De Chassey et al., 2013
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A similar knowledge source is chosen in Kim et al. (2007)
which makes use of domain information from InterProScan
(Quevillon et al., 2005). They predict PPIs using PreDIN (Kim
et al., 2002) and PreSPI (Han et al., 2004) algorithms based
on domain information. A study for prediction of interacting
proteins of rice and Xanthomonas oryzae pathovar oryzae (Xoo)
also uses domain information (Kim et al., 2008). They presented
XooNET which provides about 3500 possible interaction pairs as
well as the graphical visualizations of the interaction networks.

The work in Arnold et al. (2012) presents a method to pre-
dict and rank bacteria-human PPIs based on domain-domain
interactions. They collect a list of Pfam domains and bacterial-
human proteins which contains one of the listed domains. Then
the data was searched for experimentally verified effectors or
their homologs in another bacteria. The result is the possible
interactions between Salmonella effectors and host proteins.

Not all pathogen systems are appropriate for applying the
mentioned domain based approaches, since domains and the
related information are not available for all pathogens. For
instance, information on domains and the related statistics are
not available for a considerable number of the HIV-1 pro-
teins. Regarding this limitation, the work in Evans et al. (2009)
concentrates on protein interactions based on short eukary-
otic linear motifs (ELMs) for HIV-1 proteins interacting with
human protein counter domains (CDs). They do not accept
the idea of having relatively weak link among motif/domain
bindings and the actual virus-host PPIs which is presented
in Tastan et al. (2009). They predict two kinds of interac-
tions for each virus protein, including direct human pro-
tein targets (called H1) which bind to virus via a human
CD and a virus ELM and the second type includes indirect
interactions in which, host proteins that their normal interac-
tions with H1 proteins are potentially disrupted by competi-
tion with an HIV-1 protein. Table 5 summarizes the conducted

Table 5 | Domain and motif based approaches for prediction of PHIs.

Method References

PreDIN and PreSPI algorithms based on domain
information

Kim et al., 2007

Estimating PPI probability using combining
interaction probability of domains

Dyer et al., 2007

XooNET uses Structural Interactome MAP
(PSIMAP), Protein

Kim et al., 2008

Experimental Interactome MAP (PEIMAP) and
Domain-Domain interactions from iPfam

Based on ELMs on HIV-1 proteins interacting
with human protein counter domains (CDs)

Evans et al., 2009

Predict and rank bacteria-human PPIs based on
domain-domain interaction

Arnold et al., 2012

Build the virus-host interactomes by identifying
domain interactions between virus and host PPIs
followed by topological and functional analysis of
the network

Zheng et al., 2014

The viral-human interaction network is modeled
based on motif-domain interactions

Segura-Cabrera et al.,
2013

research for predicting PHIs based on domain and motif
knowledge.

PERFORMANCE EVALUATION
The lack of gold standard PHI data and the complexity of PHI
mechanisms lead to a hard assessment phase, in a way that pre-
dicted interactions are rarely supported by a biological basis.
Some studies validate their results by measuring the shared inter-
actions with other published materials (Mukhopadhyay et al.,
2012, 2014; Segura-Cabrera et al., 2013). Here we focus on com-
putational metrics which are widely used in publications to
evaluate the accuracy of their results, which are shown in Table 6.

CONCLUSIONS
Inter-species PPI predictions have gained more popularity in
recent years. Computational methods may have important roles
in paving the way for experimental PHI verifications by highlight-
ing the high potential interactions and limiting the experimental
scope which lead to expense reduction and probably the rapid
knowledge development. In this paper, we reviewed the stud-
ies which directly focused on computationally PHI prediction.
Published approaches are categorized based on pathogen-host
and the method they utilize. Clearly some pathogen systems are
well studied and targeted in more research regarding the avail-
ability of the required data. HIV-1 is the most distinguished
pathogen which studied specifically using data-requiring machine
learning methods. Therefore, the most important challenge for
computationally prediction of PHIs, is the lack of available veri-
fied interactions and the relevant feature information in most of
the pathogens systems. Data unavailability and scarcity refer to
verified interacting PPIs, lack of verified non-interacting protein
pairs and missing feature information for proteins. Recent stud-
ies have found a new source of data to overcome these limitations.
Knowledge transfer from related pathogen systems has shown to
be an effective remedy, even for situations with no available inter-
actions. These methods enlighten a promising future direction for
establishing computational methods which are augmented with
additional transferred knowledge.

Table 6 | Popular evaluation metrics used for PHI prediction.

Metric Formula References

Accuracy
TP + TN

TP + FP + TN + FN
Cui et al., 2012

Specificity
TN

TN + FP
Cui et al., 2012

Sensitivity (Recall)
TP

TP + FN
Dyer et al., 2011; Cui
et al., 2012

Precision
TP

TP + FP
Dyer et al., 2011

F1 score
2 ∗ Precision ∗ Recall

Precision + Recall
Kshirsagar et al., 2012,
2013b; Mei, 2013; Coelho
et al., 2014

AUC The area under the
ROC curve

Davis et al., 2007; Mei,
2013; Coelho et al., 2014

TP, True Positive; TN, True Negative; FP, False Positive; FN, False Negative.
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Fungal microorganisms frequently lead to life-threatening infections. Within this group of
pathogens, the commensal Candida albicans and the filamentous fungus Aspergillus
fumigatus are by far the most important causes of invasive mycoses in Europe. A
key capability for host invasion and immune response evasion are specific molecular
interactions between the fungal pathogen and its human host. Experimentally validated
knowledge about these crucial interactions is rare in literature and even specialized host–
pathogen databases mainly focus on bacterial and viral interactions whereas information
on fungi is still sparse. To establish large-scale host–fungi interaction networks on
a systems biology scale, we develop an extended inference approach based on
protein orthology and data on gene functions. Using human and yeast intraspecies
networks as template, we derive a large network of pathogen–host interactions (PHI).
Rigorous filtering and refinement steps based on cellular localization and pathogenicity
information of predicted interactors yield a primary scaffold of fungi–human and
fungi–mouse interaction networks. Specific enrichment of known pathogenicity-relevant
genes indicates the biological relevance of the predicted PHI. A detailed inspection
of functionally relevant subnetworks reveals novel host–fungal interaction candidates
such as the Candida virulence factor PLB1 and the anti-fungal host protein APP. Our
results demonstrate the applicability of interolog-based prediction methods for host–
fungi interactions and underline the importance of filtering and refinement steps to attain
biologically more relevant interactions. This integrated network framework can serve as
a basis for future analyses of high-throughput host–fungi transcriptome and proteome
data.

Keywords: pathogen–host interaction (PHI), protein–protein interaction, interolog, Candida albicans, Aspergillus
fumigatus, network inference, pathogenicity, bioinformatics and computational biology

Introduction

Fungal pathogens infect hundreds of millions of people world-wide every year (Havlickova et al.,
2008). Although, the death toll of fungal diseases is comparable to that of malaria or tuberculosis
the global burden imposed by fungal pathogens still remains underestimated (Brown et al., 2012).
In general, infections caused by fungal pathogens can lead to a diverse range of diseases ranging
from superficial infections to invasivemycoses. The outcome of fungal infections is often associated
with the intactness of the patients’ immune system and therefore fungi pose an increasingly severe
threat to the growing numbers of immunocompromised patients in modern medicine, with high
mortality rates exceeding 50% for invasive fungal diseases (Brown et al., 2012).
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Among fungal pathogens the dimorphic yeast Candida
albicans and the filamentous fungus Aspergillus fumigatus are
the most important causes of life-threatening invasive mycoses
(Horn et al., 2012). C. albicans colonizes the skin and intestinal
mucosa of 30–70% of healthy individuals and invasive infection
almost exclusively begins endogenously starting from a usually
harmless surface colonization, frequently in the gastrointestinal
tract (Gow et al., 2012). In contrast to the endogenous pathway of
C. albicans, infections by A. fumigatus mainly occur exogenously
via the inhalation of fungal spores (conidia) causing chronic
pulmonary aspergillosis or invasive aspergillosis in patients with
a severely weakened immune system (Brown et al., 2012).
Despite these differences during the infection process, several
common strategies of pathogenesis are shared between both
fungi.

Host–fungi interactions have been described as
commensalism, symbiosis, or pathogenicity. Interestingly,
the mechanisms of symbiosis and pathogenicity share common
features and there is evidence for parallel trends in evolution
between host and pathogens (Ochman and Moran, 2001). The
transition from commensal to pathogen is often dependent
on small differences (Martin and Nehls, 2009) and the host–
pathogen relation can change by environmental conditions
(Hube, 2004). Strong adhesion of the fungi to the surface
forming a protective biofilm is important for invasive growth,
as invasion is driven by pressure on the solid substrate (de
Groot et al., 2013). In this sense host–fungal interaction can
be characterized by the formation of symbiotic or pathogenic
interfaces (Bonfante and Genre, 2010). This relates in particular
to processes of pathogen–host interaction (PHI) where both
fungi mainly need to overcome similar epithelial barriers and
develop skills for the evasion of the innate immune system,
capabilities which contribute to the aggressiveness of both
pathogens (Horn et al., 2012).

Therefore, a principal aim of systems biological research of
human–pathogenic fungi is to unravel the intricate network of
interactions between host and the fungal pathogen and elucidate
the complex pathogenesis processes of fungal infections. A major
quest in this field is the identification of physical or direct
interactions between fungus and host proteins during the
infection processes. Albeit the research of host–pathogen
interactions is becoming increasingly popular in experimental
as well as computational science, only a small number of
interactions between fungi and human have been reported
in literature so far. This leaves a large gap for novel
bioinformatical strategies for the prediction of PHI of pathogenic
fungi.

With the advent of large scale interaction detection methods
the experimental and computational analyses of protein–protein
interactions (PPIs) have established an important research field
in bioinformatics during the last decade. Still most efforts have
been dedicated to the investigation of intraspecies interactions
(i.e., interaction between proteins within one species). The
primary species in the focus of investigation so far have been
Homo sapiens and Saccharomyces cerevisiae. This is reflected
in the fact that the largest experimentally derived PPI datasets
available in databases primarily cover H. sapiens and S. cerevisiae

interactions. Currently, these two species constitute almost 74%
percent of all non-redundant physical interactions1 (H. sapiens:
50.7% and S. cerevisiae: 23.0%) in the BioGRID database
(Chatr-Aryamontri et al., 2013). The networks of most other
species are considerably smaller and for network analysis these
datasets are often extended by the inclusion of interolog based
predictions to obtain a larger search space, where interologs
are defined as PPIs that are conserved between orthologous
proteins in different species (Walhout et al., 2000). Nowadays the
interolog approach is commonly used for the classical prediction
intraspecies interactions and is particularly valuable for the
prediction of novel PPI in species where only a small number
of interactions have been experimentally detected. Conceptually,
the interactions are transferred from one species to another.
This means that if for a given pair of interacting proteins in
the source species, homologues for both interaction partners
exist in the target species an interaction between those two
homologs is inferred. The rational of this interaction transfer is
based on the assumption that if a pair of homologous proteins
originates from the same ancestral pair of interacting proteins,
it can be expected, that the inheritance of the amino acid
sequence translates into a related and similar protein structure,
and thereby the capability of mutual interaction is also inherited
from the ancestral interacting proteins (Walhout et al., 2000).
This approach has been extended to the prediction of interspecies
interactions and in particular to the prediction of PHIs (Zhou
et al., 2013a).

Recent studies investigated the interaction betweenH. sapiens
and Plasmodium falciparum (Dyer et al., 2007; Lee et al.,
2008; Wuchty, 2011), H. sapiens and Helicobacter pylori (Tyagi
et al., 2009), H. sapiens and E. coli (Krishnadev and Srinivasan,
2011), H. sapiens and Salmonella enterica (Krishnadev and
Srinivasan, 2011) and H. sapiens and Yersinia pestis (Krishnadev
and Srinivasan, 2011) as well as between H. sapiens and
Mycobacterium tuberculosis (Zhou et al., 2014). Apart from the
more frequently investigated protozoan P. falciparum, most of
these studies focus on the interaction with a bacterial pathogens.
Fungal infections have only rarely been researched. A recent
study examined the interaction between zebra fish and Candida
(Chen et al., 2013), however, a systemic investigation of direct
host–pathogen-PPI between the fungi either C. albicans or
A. fumigatus and the human host has to our knowledge not be
conducted so far.

Here we present an extended interolog-based method
for the prediction of fungal–host interactions. We focus
on the clinically most relevant fungi, the dimorphic yeast
C. albicans and the filamentous fungus A. fumigatus. In
addition to the human host, we also investigate interactions
between these fungi and Mus musculus, since it is the
most frequently used animal model in medical sciences. As
basic interolog prediction approaches for cross-species analysis
often produce large initial predictions sets, we develop and
establish an advanced filtering and selection strategy, to
reduce the initial set of raw predictions to a smaller refined
set of high quality predictions. To this end, we integrate

1wiki.thebiogrid.org/doku.php/statistics
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information on cellular localization of the predicted host
and pathogen interaction partners and focus on proteins
associated with cellular functions with relevance for the
infection process. The enrichment of established infection and
pathogenicity related genes during these subsequent refinement
steps emphasizes the biological relevance of the predicted
PHIs, from which we highlight and describe some promising
candidate interaction in more detail. By this, we demonstrate
the benefit of the interolog-based approach in combination with
advanced filtering and refinement steps for prediction fungal-
host interactions.

Materials and Methods

Template Intraspecies Interaction Networks
For the host–fungi interaction network inference, the intraspecies
interaction data of S. cerevisiae and H. sapiens were downloaded
from the following 14 active partners of the International
Molecular Exchange (IMEx) consortium (Orchard et al.,
2012):

DIP (Salwinski et al., 2004), IntAct (Orchard et al., 2014),
MBInfo2, MINT (Licata et al., 2012), MatrixDB (Chautard
et al., 2011), Molecular Connections3 , I2D (Brown and
Jurisica, 2007), InnateDB (Breuer et al., 2013), UCL-BHF
group, UCL London4, UniProt Swiss-Prot group, SIB (The
UniProt Consortium, 2014), BioGRID (Chatr-Aryamontri et al.,
2013), MPact (Pagel et al., 2005), BIND (Bader et al., 2001), and
MPIDB (Goll et al., 2008).

PSICQUIC queries (Aranda et al., 2011) were used to retrieve
human and yeast intraspecies interaction information from
this databases on 09/09/2014. Non-coding genes, interaction
loops of self-interacting proteins as well as interactions of the
interaction types “colocalization,” “additive genetic interaction
defined by inequality,” “suppressive genetic interaction defined
by inequality,” “synthetic genetic interaction defined by
inequality,” “genetic interaction,” “genetic inequality,” “genetic
interference,” and “self-interaction” were not used for the
template networks.

Orthology Information
Orthology information for C. albicans, S. cerevisiae, H. sapiens,
M. musculus, and A. fumigatus was downloaded from
InParanoid8 (Sonnhammer and Ostlund, 2014). Additionally,
orthology relations between A. fumigatus and S. cerevisiae were
retrieved from Aspergillus Genome Database (AspGD; Cerqueira
et al., 2014). Orthologies of the species pair A. fumigatus and
H. sapiens which was neither available from InParanoid8 nor
AspGD, were computed via the InParanoid version 4.15 using
parameters comparable to the parameters of similar species pairs
(H. sapiens – A. kawachii). Blast version 2.2.26 with the scoring
matrix Blosum62, a score-cutoff of 40 bits, a sequence overlap

2http://www.mechanobio.info/
3http://www.molecularconnections.com
4http://www.ucl.ac.uk/functional-gene-annotation/cardiovascular
5http://software.sbc.su.se/cgi-bin/request.cgi?project=inparanoid

of 0.5, a group merging cutoff 0.5 and a minimal score of 0.05
was used as InParanoid settings. The dataset for A. fumigatus
protein sequence was downloaded from AspGD, while the
protein sequences of H. sapiens originated from the InParanoid8
server.

Gene Ontology
Gene Ontology (GO) slim annotations, a subset of the GO
dataset (Ashburner et al., 2000) were used to categorize genes in
host–fungi interactions of the inferred networks regarding three
domains: biological process, molecular function and cellular
component. GO slim associations were retrieved from the
Candida Genome Database (CGD; Arnaud et al., 2005) and
the AspGD (Cerqueira et al., 2014) for both fungal pathogen
species. GO slim associations for the host species (H. sapiens and
M. musculus) were downloaded from EnsEmbl 76 (Flicek et al.,
2014).

Genes of the inferred fungi–host interaction networks were
categorized by GO slim cellular component annotation in likely
and unlikely host–fungal interactors under the assumption that
interacting host and fungal proteins have to be localized on
potential interface (e.g., cell surface or endosome membrane).
The GO slim cellular component terms for likely interspecies
interactions on the fungal and host side were listed in
Table 1.

Similar to the refinement step for protein localization, proteins
with pathogenicity-associated GO slim biological process terms
were selected to enrich for pathogenicity-relevant interaction
predictions (see Table 2). Only genes assigned to one of the
referenced cellular component and biological process GO terms
were used for further analyses.

Gene Ontology and Uniprot Tissue Enrichment
Interactors of subnetworks were tested for enriched GO
annotation level 2 terms of the domains “biological process,”
“cellular component,” “molecular function” (Ashburner et al.,
2000) versus the GO terms background frequencies of the
interactors in the full network. The functional enrichment
tests were performed via the DAVID Bioinformatics Resources
6.7 (Huang da et al., 2009a,b) using GO terms of all levels
and only reporting groups of the size of least two genes
and an EASE Score Threshold (for gene-enrichment analysis
modified Fisher Exact P-Value) of less than 0.1. The p-values
were adjusted for multiple testing (Hochberg and Benjamini,
1990). Similar to the GO enrichment, the tissue enrichment
analyses were performed on Uniprot tissue terms via the DAVID
Bioinformatics Resources 6.7.

Catalog of Pathogenicity-Relevant Genes
To get a set of genes of H. sapiens and M. musculus that
are known to be involved in host–pathogen interactions, the
PPI information were downloaded from the HPIDB version
5/22/2014 and the PATRIC database version Mar2013. Further,
all interspecies interactions that involved viral pathogens or the
interaction types which are not related to a direct PPI such
as annotated as “colocalization,” “additive genetic interaction
defined by inequality,” “suppressive genetic interaction defined by
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TABLE 1 | Numbers of genes in the primary predicted host–fungal PPI networks belonging to the cellular component GO filter terms.

(A) Filter terms for host side

GO slim cellular component terms Number of genes in Homo sapiens Number of genes in Mus musculus

Extracellular region 2,566 783

Plasma membrane 2,310 2,024

Extracellular space 631 419

Endosome 476 421

Lysosome 306 247

Cilium 138 202

Proteinaceous extracellular matrix 115 132

External encapsulating structure 3 5

Only other GO terms 6,531 7,645

No GO terms 902 361

(B) Filter terms for fungi side

GO slim cellular component terms Number of genes in Aspergillus fumigatus Number of genes in Candida albicans

Plasma membrane 270 236

Extracellular region 94 33

Cell wall 52 74

Only other GO terms 3214 3160

No GO terms 0 1114

(C) Sizes of host–fungi PPI networks after localization refinement

Host species Pathogen species Number of host–pathogen interactions Number of host interactors Number of pathogen interactors

H. sapiens A. fumigatus 17,853 (8.4%) 363 (10.2%) 2,393 (21.2%)

H. sapiens C. albicans 15,330 (4.3%) 301 (6.6%) 2,123 (19.2%)

M. musculus A. fumigatus 9,284 (4.5%) 337 (9.4%) 1,572 (14.9%)

M. musculus C. albicans 8,055 (2.4%) 282 (6.2%) 1,376 (13.3%)

inequality,” “synthetic genetic interaction defined by inequality,”
“genetic interaction,” or “genetic inequality” were removed from
the dataset.

Also, the Victors database of PHIDIAS (Xiang et al.,
2007), a database containing virulence factors originating from
literature curation and bioinformatics analyses and the PHI-
base (Winnenburg et al., 2008), a database containing expertly
curated molecular and biological information on pathogenic
genes experimentally verified to have an effect on the virulence
outcome were searched for genes of the fungal pathogens
A. fumigatus and C. albicans that are known as pathogenesis
associated.

Additionally the public available interaction databases mentha
(Calderone et al., 2013), HPIDB (Kumar and Nanduri, 2010),
APID (Prieto and De Las Rivas, 2006), PHISTO (Durmus
Tekir et al., 2013), PRIMOS (Rid et al., 2013), and the
databases of IMEx (Orchard et al., 2012) were scanned to
receive all already known interspecies interactions for human–
Candida, human–Aspergillus, mouse–Candida, and mouse–
Aspergillus.

To find already known human–Aspergillus, mouse–
Aspergillus, human–Candida, and mouse–Candida interactions
the public available interaction databases mentha, HPIDB, APID,
PHISTO, PRIMOS, and the databases of IMEx was searched.

Analysis of Dual RNA-Seq Data
For the comparison of predicted fungal–host interaction
networks, gene expression data of a previously published
time course of murine bone marrow derived dendritic cells
phagocytosing C. albicans SC5314 cells was used (Tierney et al.,
2012). The gene expression data constitutes of dual RNA-seq data
simultaneously measuring the transcripts of Candida and mouse
cells at 30, 60, 90, and 120 min post-infection. The sequenced
reads were downloaded from http://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-595/. Contamination of poly-T at the
read start and poly-A at the read end was removed via cutadapt
version 1.6 (Martin, 2011). The curated reads were mapped on
a combined reference of the C. albicans SC5314 version A22
(Arnaud et al., 2005) and the M. musculus version GRCm38.75
(Flicek et al., 2014) genome, using the short read mapping tool
STAR version 2.4 (Dobin et al., 2013). For each gene of the
C. albicans and the M. musculus, the uniquely mapped reads
were counted with featureCounts version 1.4.3 (Liao et al., 2014).
Fungal and host genes were tested for differential expression
in the infection time course with DESeq2 version 1.6.2 (Love
et al., 2014). Genes were identified as differentially expressed
when they showed a significant (p-value <0.05) change in
read counts after multiple testing correction (Hochberg and
Benjamini, 1990).
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TABLE 2 | Numbers of genes in the primary predicted host–fungal PPI networks belonging to the biological process GO filter terms.

(A) Filter terms for host side

GO slim biological process terms Number of genes in H. sapiens Number of genes in M. musculus

Signal transduction 951 602

Immune system process 491 255

Symbiosis, encompassing mutualism through parasitism 260 0

Cell adhesion 151 127

Circulatory system process 50 53

Only Other Slim BP annotations 1,246 878

No GOSlim BP annotation 0 0

(B) Filter terms for fungi side

GO slim biological process terms Number of genes in A. fumigatus Number of genes in C. albicans

Pathogenesis 30 33

Cell adhesion 10 24

Biofilm formation 0 32

Interspecies interaction between organisms 0 30

Growth of unicellular organism as a thread of attached cells 0 2

Only Other Slim BP annotations 330 244

No GOSlim BP annotation 0 0

(C) Sizes of host-fungi networks after functional refinement

Host species Pathogen species Number of host–pathogen interactions Number of host interactors Number of pathogen interactors

H. sapiens A. fumigatus 1,137 (6.4%) 607 (25.4%) 33 (9.1%)

H. sapiens C. albicans 3,025 (19.7%) 840 (39.6%) 57 (18.9%)

M. musculus A. fumigatus 590 (6.4%) 355 (22.6%) 26 (7.7%)

M. musculus C. albicans 1,462 (18.2%) 461 (33.5%) 41 (14.5%)

Network Visualization
The networks were visualized by Cytoscape (Shannon et al.,
2003). The top 10% of fungal high degree interactors were
removed from the visualized networks to improve the readability.
The GO slim interaction network was based on grouping
genes in GO slim groups that are annotated by the respective
GO slim biological process terms. Improved readability of GO
slim networks was achieved by merging GO slim groups fully
contained in larger groups. Node size represents the number of
genes contained in each GO slim term. Edge width and color
depict number of interactions between two GO slim terms.

Results

Host–Fungi Interaction Data in Literature and
Public Databases is Sparse
The primary objective of our work is to establish a comprehensive
catalog of host–fungal interactions. A first literature search
revealed that overall not much detailed data concerning PHIs
for fungi is available so far. However, as PHIs have become an
important topic in the last years, several databases for PHIs have
been established. Up to date most of the interactions deposited in
these databases still relate to viral and bacterial pathogens and
almost no information concerning fungi is available at all. For

example, the current HPIDB (Kumar and Nanduri, 2010) covers
predominantly viral (74%: 29,942) and bacterial (22%: 8,992)
pathogens and only 4% (1,628) of the interactions involve fungal
species out of which over 92% (1,499) relate to Saccharomyces
spp. To obtain a comprehensive overview of all host–fungi
interaction data available so far, we first searched the content
of the most prominent host–pathogen interaction databases
[HPIDB, PHISTO (Durmus Tekir et al., 2013), and PRIMOS
(Rid et al., 2013)] for established host–fungal interactions
between human–Candida, human–Aspergillus, mouse–Candida,
and mouse–Aspergillus. Nevertheless, the search returned only
two distinct interactions between C. albicans and H. sapiens
and one more for mouse–Candida: (i) Candida ORC1 (Origin
recognition complex subunit 1) and humanCDC23 (Cell division
cycle protein 23), (ii)CandidaQ00308 and humanCD2BP2 (CD2
antigen cytoplasmic tail-binding protein 2). For the interaction
between mouse and Candida only one interaction between
the Candida CDC28 (Cyclin-dependent kinase 1) and murine
Cdkn1b (Cyclin-dependent kinase inhibitor 1B) could be found.
We could not find any interspecies interaction between human
and A. fumigatus or between mouse and A. fumigatus from
the above host–pathogen-databases. Therefore, we subsequently
scanned APID (Prieto and De Las Rivas, 2006), mentha
(Calderone et al., 2013) and all the 14 curated PPI databases
of the IMEx consortium (Orchard et al., 2012) for cross-species
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interactions involving A. fumigatus and C. albicans (see Catalog
of Pathogenicity-Relevant Genes section). This extended search
revealed only one additional interspecies interaction that was not
included in the PHI databases: Candida CDC42 (Cell division
control protein 42 homolog) and the murine Scd2 (Acyl-CoA
desaturase 2). No interactions for A. fumigatus have been found
in above databases for human or mouse.

Since information in databases about PPIs between the fungal
pathogens C. albicans and A. fumigatus and their hosts is sparse,
we propose a framework to infer PHIs and thus create hypotheses
for experimental validation.

Dual Template Interolog-Based Host–Fungi PPI
Network Inference Approach
The general approach applied in this study aims on the
identification of novel potential PPIs between the selected host
species H sapiens and M. musculus and the fungal pathogen
species C. albicans and A. fumigatus. To derive these PHIs,
we established an interolog-based inference method exploiting
known intraspecies interactions in H. sapiens and S. cerevisiae as
template networks combined with gene homology information
between the template species and the host as well as the fungal
species. Our approach comprises three steps which involve (i)

the establishment of a comprehensive dual-species PPI template
network, (ii) homology based inference of PHIs, and (iii)
the application of an extended filtering strategy on the raw
predictions to attain a core set of refined interaction predictions
(see Figure 1).

Comprehensive Dual-Species PPI Template Network
To establish a comprehensive intraspecies template network
for interspecies PHI interaction prediction we screened the
BioGRID database (Chatr-Aryamontri et al., 2013) and 13 PPI
databases associated with the Imex consortium for intraspecies
PPIs in H. sapiens and S. cerevisiae resulting in 170,774
human interactions with 15,509 interactors and 272,167 yeast
interactions with 5,824 interactors. As we primarily focus in this
study on direct PPIs, the template networks were curated from
PPIs detected by methods which are rather based on functional
associations (e.g., “genetic interference”). Furthermore, all self-
interactions were removed from this network. The resulting
human and yeast intraspecies PPI networks consisted of 147,760
human interactions with 15,240 interactors and 130,665 yeast
interactions with 5,789 interactors. Although the numbers of
human interactions were reduced by almost 14%, the number of
interactors barely decreased (1.7%). Since a large number of yeast

FIGURE 1 | Basic concept of the host–fungi PPI inference and
refinement steps. (A) Information of direct PPI from multiple public databases
were integrated for the two template networks Homo sapiens and
Saccharomyces cerevisiae. (B) These combined with orthology information
allowed to identify host–fungi interologs. (C) Primary inferred networks were

filtered for interactions which showed protein localizations pointing to possible
interfaces between host and fungi. Additionally, the networks were refined for
pathogenicity-related processes. (D) Evidence information of several
independent sources (e.g., transcriptome data) were exploited to evaluate the
refined host–fungi PPI networks.
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interaction were identified by functional association methods, the
number of interaction decreased by almost 52%, while similar to
the human network the number of interactors was just reduced
by less than 1% (see Supplementary Table S2).

Interolog-Based Prediction Yields Large Host Fungal
Interaction Networks
Host–fungal interactions for each host–fungi pair were
predicted based on the two template interaction networks.
Thus, in a second step, we integrated the template interaction
data with orthology information of the host, pathogen,
and template species. Orthology information between the
two template PPI networks of H. sapiens and S. cerevisiae
and the host species H. sapiens and M. musculus as well
as the fungal pathogens C. albicans and A. fumigatus was
downloaded from the InParanoid 8 database (Sonnhammer
and Ostlund, 2014), the species-specific genome databases
(Binkley et al., 2014; Cerqueira et al., 2014; Costanzo et al.,
2014) and missing species pairs complemented by orthology
identification by the stand-alone program InParanoid 4.1
(Ostlund et al., 2010). For H. sapiens as template species, 16,582
mouse genes were identified as orthologs to 16,417 human
genes, while 2,687 Candida genes were orthologs to 3,770
H. sapiens genes (2,808 Aspergillus and 4,277 H. sapiens
genes, respectively). Interestingly, we found more than
twice the number of Candida proteins being orthologs to
yeast than orthologous A. fumigatus proteins, while the
number between both fungi and human was comparable to
S. cerevisiae – A. fumigatus orthologs (see Supplementary
Table S1)

We searched for orthologs for both interactors of each
template interaction to predict potential direct PPIs between the
host species H. sapiens or M. musculus with the fungal pathogen
species C. albicans or A. fumigatus. Interologs are PPIs inferred
from one species to another by using orthology information
(Walhout et al., 2000). In our approach, we simultaneously
identified orthologs of one interactor in the host species and
one interactor in the fungal species for each template interaction.
The resulting cross-species interologs between the hosts and the
pathogens should consequently have the potential to perform
a PPI, given both interactors share the same location at one
point in time. For the human-Aspergillus infection 213,518
interologs with 11,279 human and 3,576 Aspergillus interactors
could be superimposed. Similar results were obtained for the
three other infection setups human–Candida, mouse–Aspergillus,
and mouse–Candida (see Supplementary Table S2).

Improving Primary Inferred Host–Fungi PPI Networks
Potential false predictions were reduced via refinement of the
primary inferred host–fungi PPI networks based on functional
data. Therefore, GO slim annotations of the cellular component
and biological process (The Gene Ontology, 2014) were exploited
in this filtering step. To enrich for likely interactions, only
host and pathogen interactors which showed GO slim cellular
component annotations pointing at locations associated to the
cell surface and intracellular compartments which can be in direct
host–fungi contact, were selected for the refined host–fungi PPI

networks. The GO slim cellular compartment terms which were
selected for filtering interactors based on their localization were
summarized for the hosts (see Table 1A) and the fungi (see
Table 1B). Only 902 human and 361 mouse genes showed no
GO slim cellular component annotation at all. On the fungal
side, this was the case for 1114 Candida, but none of Aspergillus
genes. Altogether, only very few genes were lost in this filtering
step due to missing localization information. The distribution of
filtered GO slim cellular component terms clearly shows that the
“extracellular region” is less abundant in the murine compared to
the human interactor set (783 and 2566), while the other terms
are similarly present between mouse and human. Surprisingly,
the term “extracellular region” also shows a strong difference in
distribution on the fungal side (94 Aspergillus interactors and 33
Candida interactors).

This filtering step reduced the interolog networks, e.g.,
human–Aspergilluswith 213,518 interologs to 17,853 interactions
with 2,393 human and 363 Aspergillus interactors. For all four
interolog networks, the refinement step reduced the number of
interactions to less than 9%, while the host interactors were
reduced to less than 11% and the fungal interactors to less than
22%, respectively (see Table 1C).

In concordance with the localization filtering, a functional
refinement utilizing representative biological process terms was
applied. To improve the quality of the predicted network
and increase the fraction of PPIs potentially associated to
pathogenicity-relevant processes, we selected five GO slim
biological process terms for filtering the host interactors (see
Table 2A) and five GO slim biological process terms on the
pathogen side (see Table 2B). All genes of the hosts and fungal
pathogens showed an annotation of GO slim biological process.

In the localization-refined PPI networks, GO slim biological
process annotations were available for each host and fungi
interactor. Nonetheless, the number of human interactors
assigned to the selected GO slim biological process terms was
higher than for mouse. Especially, the GO slim term “Symbiosis,
encompassing mutualism through parasitism” yielded the
strongest difference with a coverage of 260 human interactors
and 0 mouse interactors. For the fungal pathogens, the
results were similar with fewer A. fumigatus interactors than
C. albicans interactors assigned to selected GO biological process
terms.

This filtering step reduced the localization-refined networks,
e.g., mouse–Candida 8055 interactions with 1,376 mouse and
282 Candida interactors to 1,462 interactions with 461 mouse
and 41 Candida interactors. For all four host–fungi networks,
the refinement step reduced the number of interactions to less
than 20%, while the host interactors were reduced to less than
40% and the fungal interactors to less than 19%, respectively (see
Table 2C).

The Dual Template Approach Substantially
Enhances the Prediction Space for Host
Fungal Network Inference
To investigate the benefits of our dual-template approach for
the interolog-based network inference, we examined for each
host and fungal interactors the template network from which
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they were inferred. For this, we grouped the interactors of the
primary inferred PHI networks based on their original template
network (see Figure 2). On the host side, the human template
exclusively makes up for 67.5% of the human interactors in
the PHI networks, while over 10.2% of the human interactors
originated only from the yeast template (see Supplementary
Figure S1). About 22.3% of the human interactors were inferred
from both the human and the yeast template. Similarly, for
the mouse interactors, the human template solely makes up
for over 66.0% of the murine interactors in the PHI networks,
while more than 11.5% of the interactors originated only from
the yeast template. About 22.4% of the murine interactors
were inferred from both the human and the yeast template.
Even though no orthology information was required for the
inference of human interactors, we see similar distribution of
template origin between human and murine interactors. On
the fungal side, a substantially larger fraction of the Aspergillus
interactors (24.4%) was inferred from yeast template, while
the human template makes up for 42.4% of the Aspergillus
interactors originating from the human template. Over 33.1% of
the Aspergillus interactors were inferred from both the human
and the yeast template. In contrast, only less than 8.5% of the
Candida interactors were inferred from the human template,
while more than 43.0% originated from yeast interologs. The
largest fraction with more than 48.4% of the Candida interactors

FIGURE 2 | Influence of the template networks on the predicted
(A) mouse–Candida network (B) mouse–Aspergillus network. The color
of the circle denotes the template network from which the interactors
originated.

resulted from both human and yeast template. These numbers
represent substantial differences in the distribution between
both fungal pathogens, as could be expected by the smaller
evolutionary distance from S. cerevisiae to C. albicans than from
S. cerevisiae to A. fumigatus.

A GO enrichment analysis was performed for each group
of interactors originating from human, yeast, or both template
interaction networks compared to the whole set of interactors
(see Supplementary Tables S3 and S4). The GO enrichment
analyses showed that multiple GO categories related to
PHI were significantly enriched in the human interactor
subsets originating from the human template network (e.g.,
extracellular region part, cell adhesion, signal transducer
activity) and yeast template network (e.g., membrane part,
transmembrane transport, ion binding). Surprisingly, the subset
of human interactors inferred by both template networks
was enriched for GO categories of basic biological processes
(e.g., intracellular part, ribonucleoprotein complex, nucleotide
binding). Even with the overlap of subsets showing only few
interesting enriched GO categories, the integration of both
template networks complemented a large amount of significantly
enriched pathogenicity-relevant categories (see Supplementary
Table S3).

Similar to the host side, the GO enrichment analysis of the
Aspergillus interactors predicted based on the human template
network yielded significantly enriched pathogenicity-associated
GO terms (e.g., oxidation reduction, ion binding). For the
interactors originating from the yeast template network, a
different set of pathogen-relevant GO terms (e.g., membrane,
transferase activity) were enriched, while the Aspergillus
interactors inferred by both template networks mainly basic
biological processes were enriched (e.g., ribonucleoprotein
complex, cellular metabolic process, structural constituent of
ribosome; see Supplementary Table S4).

Localization Filtering and Functional
Refinement Improve Predicted Host–Fungi
Networks
Since data on experimentally validated PHIs for fungal pathogens
are rare and there is no golden standard for PHI network
inference available, we created a dataset of pathogenicity-
associated genes for validation of the refinement step. We
extracted functional data encompassing (1) human and murine
genes which have been reported to directly interact with
pathogenic proteins (Kumar and Nanduri, 2010), (2) virulence
and pathogenicity phenotypes induced by knock outs of
fungal genes (Xiang et al., 2007; Winnenburg et al., 2008)
and (3) infection responsive genes identified by analysis of a
data set of an infection time course experiment of murine
innate immune cells infected by C. albicans (Tierney et al.,
2012).

Infection-Regulated Genes are Enriched in Resulting
Host–Fungi Networks
Under the assumption, that deregulated genes over an infection
time course are more likely to be involved in host–fungi
interactions, exploiting transcriptomic or proteomic gene
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expression data can be used for the validation of the refinement
step. The recently published simultaneous transcriptome
sequencing of C. albicans and murine innate immune cells 0,
30, 60, 90, and 120 min post-infection uncover the temporal
dynamics of infection-regulated genes (Tierney et al., 2012).
For 21,251 mouse genes and 6,274 Candida genes, we found
at least one RNA-seq read matched and performed statistical
analyses of all time points compared to 0 min post-infection.
This revealed 413 significantly deregulated genes in the mouse
transcriptome and 1,068 significantly deregulated genes in the
fungal transcriptome. The number of deregulated mouse genes
was increasing from time point to time point: 45 genes after
30 min, 169 genes after 60 min, 239 genes after 90 min, and
300 genes after 120 min). Similar to mouse, the number of
significant Candida genes was also increasing with 314 genes
after 30 min, 316 genes after 60 min, 432 genes after 90 min,
and 744 genes after 120 min post-infection (see Figures 3A,B).
Interestingly, significantly deregulated genes in mouse were
mainly upregulated genes, at a ratio 5:1. In contrast, the

significant genes in Candida showed almost the same number of
up- and downregulated genes.

With the identified deregulated genes in C. albicans and
M. musculus, we generated a set of infection-associated genes
each for the fungal pathogen and the mammalian host. With
these sets as a positive list, deregulated genes were significantly
enriched in the final refined network compared to the primary
inferred mouse–Candida PPI network (see Figures 3C,D). For
the predicted mouse interactors, the localization-based filtering
step did not show a significant enrichment in contrast to the
functional refinement. Due to the small number of interactors
(12 of 41) in the refined network, the functional refinement
step did not show a significant enrichment for the predicted
Candida interactors. While the deregulated mouse genes were
significantly enriched by the interolog-based inference step,
the significant Candida genes were significantly depleted. This
showed that for a vast number of pathogen-related genes in
Candida, there were no interologous interactions found in the
template networks.

FIGURE 3 | Infection-regulated genes in predicted host and fungi
interactors. (A) Differentially expressed genes in murine innate immune cells
30, 60, 90, and 120 min post-infection with Candida albicans cells. Bars
above the x-axis show the number of significantly upregulated genes, while
bars below show the significantly downregulated genes. (B) Differentially
expressed genes in C. albicans 30, 60, 90, and 120 min post-infection of
murine innate immune cells. (C) Fraction of significantly deregulated genes in

the sets of protein-coding genes, the primary inferred, the localization-filtered,
and the functionally refined interactors of mouse. (D) Fraction of significantly
deregulated genes in the sets of protein-coding genes, the primary inferred,
the localization-filtered, and the biological process refined interactors of
C. albicans. A test for enrichment of infection-regulated genes in the
interactor sets after the primary inference, localization, and functional
refinement step (Fisher exact test, ∗∗∗p< 0.001).
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Pathogenicity-Associated Genes are Enriched in
Resulting Host–Fungi Networks
Since databases even specialized on PHI contained very few
PPI between human and fungal (mainly S. cerevisiae) pathogens
[e.g., HPIDB comprised 126 host–fungal PPIs], we extracted
all human genes interacting with Archaean (0.03%), protozoan
(0.3%), fungal (3.6%), or bacterial (96.1%) pathogen genes. Viral
interactions were not included in our dataset as these interactions
are mainly intracellular. This yielded pathogenicity-associations
for 3,419 of the 20,688 protein-coding human genes which
translates to a fraction of 16.5%. In contrast to the large number
of human interactors, there were only 32 PHI mouse genes in the
database. Because of the small number of mouse genes interacting
with different pathogens, we focused on human as host.

The network inference step with A. fumigatus as fungal
pathogen enriched the pathogenicity-associated genes
significantly to a fraction of 24.4% (see Figure 4A). Further,

the localization filtering for potential host–fungal interfaces
also enriched the pathogenicity-relevant genes significantly to
a fraction of 32.2%. At last, the refinement step for interactors
associated to pathogenicity-relevant processes enriched the
fraction to 39.5% (see Figure 4A). For human interactors with
C. albicans as pathogen, we observed a similar enrichment of
pathogenicity-associated genes from the protein-coding genes
(16.5%) over the inferred (24.4%) and the localization-filtered
(33.3%) to the pathogenicity-associated process refined (39.3%)
interactors (see Figure 4C).

Due to the lack of knowledge about C. albicans and
A. fumigatus PHIs, we exploited information of the databases
PHI-base (Winnenburg et al., 2008) and PHIDIAS (Xiang et al.,
2007) about experimentally validated virulence-associated genes.
For the fungal pathogenA. fumigatus,we found 39 pathogenicity-
associated genes in PHI-base and 29 genes in PHIDIAS (with an
overlap of 14 genes), while for C. albicans 128 genes were found

FIGURE 4 | Pathogenicity-associated genes in predicted host and
fungi interactors. Fraction of pathogenicity-associated genes in the sets of
protein-coding genes, the primary inferred, the localization-filtered and the
biological process refined interactors of (A) H. sapiens (B) Aspergillus

fumigatus (C) H. sapiens (D) C. albicans. A test for enrichment of
pathogenicity-associated genes in the interactor sets after the primary
inference, localization and functional refinement step (Fisher exact
test,∗p < 0.05; ∗∗∗p < 0.001).
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in PHI-base and 100 genes in PHIDIAS (with an overlap of 35
genes).

For the fungal pathogen A. fumigatus, the fraction of
pathogenicity-relevant genes (0.7%) interacting with human
genes was not significant for the interolog-based inference
step (0.7%), weakly significant for the localization filtering
step (1.7%) and strongly significant for the infection-relevant
process refinement step (12.1%), (see Figure 4B). Similarly, the
fraction of pathogenicity-associated genes (1.6%) did not increase
significantly via the interolog-based inference step (1.6%), but
strongly significant for the localization filtering step (5.6%) and
strongly significant for the infection-relevant process refinement
step (26.3%), (see Figure 4D).

Cells Involved in Immune Response and Tissues
Typically Infected by Fungal Pathogens in the
Resulting Host–Fungi PPI Networks
The tissue enrichment of refined H. sapiens interactors with
either C. albicans or A. fumigatus and the primary H. sapiens
interactors yielded several fungal infection relevant tissues (see
Supplementary Tables S5 and S6). For both pathogens the cell
type “Platelet” was most significantly enriched. This correlates
with an investigation that attachment of platelets to fungal
surfaces induced morphological changes in Candida spp., such
as loosening of discoid shape, generation of pseudopodia, and
flattened structure (Robert et al., 2000). Similar findings were
described for A. fumigatus showing that hyphal growth is likely
to induce platelet activation (Rodland et al., 2010). More in
particular, certain cell wall components of A. fumigatus, e.g.,
melanin and galactosaminogalactan were involved in platelet
activation while hydrophobin prevented recognition from the
host immune system (Rambach et al., 2015). Besides platelets, the
immune system-associated terms “B-cell lymphoma,” “T-cell,” “B-
cell,” “Leukemic T-cell,” and “Peripheral blood lymphocyte” were
significantly enriched. Furthermore, we observed significantly
enriched tissue terms of typical environments of Aspergillus and
Candida infections in the human body (“Lung,” “Epithelium,”
“Blood,” “Brain,” and “Skin”). Interestingly, the tissues “Urinary
bladder” and “Cervix” but also “Bone” were significantly enriched
(see Supplementary Table S6).

Exploring the Refined Host–Fungi PPI
Networks
To obtain an overview of the resulting refined networks, we
visualized the interactors grouped by the functional GO slim
biological process classes. Hence, the nodes represent GO slim
terms and edges depict interactions between host and fungal
genes belonging to the particular GO slim terms. Since the refined
networks were dominated by few fungal interactors showing very
high numbers of interactions, the top 10% of high degree fungal
interactors (C. albicans: HSP90, UBI4, SSB1, SSA2, CaJ7_0234;
A. fumigatus: glyceraldehyde-3-phosphate dehydrogenase GpdA,
molecular chaperone and allergen Mod-E/Hsp90/Hsp1, 14-
3-3 family protein ArtA) were removed from the network
visualizations to improve clearness and readability of the figures
(see Figure 5 and Supplementary Figure S2).

In the M. musculus (330 interactors) and C. albicans (37
interactors) network, “signal transduction,” “anatomical structure
development,” “cell differentiation,” “response to stress,” and
“transport” represent the host GO slim terms consisting of the
largest numbers of genes. For Candida, the terms comprising
of the most interactors were “pathogenesis,” “interspecies
interaction between organisms,” “filamentous growth,” “response
to stress,” and “carbohydrate metabolic process.” As expected,
large murine GO slim terms frequently interact with large
fungal GO slim terms (e.g., 795 interactions between “signal
transduction” and “regulation of biological process” or 767
between “signal transduction” and “interspecies interaction
between organisms”; see Figure 5).

In the refined PPI network with H. sapiens (317 interactors)
and A. fumigatus (30 interactors), “signal transduction,”
“transport,” “cellular nitrogen compound metabolic process,”
“response to stress,” and “catabolic process” represent the host
GO slim terms consisting of the largest numbers of genes. For
Aspergillus, the terms comprising of the most interactors were
“pathogenesis,” “response to stress,” “carbohydrate metabolic
process,” “response to chemical stimulus,” and “cell cycle.” Like
for the mouse–Candida PPI network, large host GO slim terms
frequently interact with large AspergillusGO slim terms (e.g., 381
interactions between “signal transduction” and “pathogenesis” or
298 between “transport” and “pathogenesis”; see Supplementary
Figure S2).

Mouse–Candida Subnetworks Contain Infection
Related Interaction Candidates
To investigate these networks in more detail, we focused on
the subnetwork between the pathogenicity-relevant GO slim
terms “symbiosis, encompassing mutualism through parasitism”
and “interspecies interaction between organisms” (see Figure 6).
This subnetwork consists of 37 interactions with 23 murine
interactors out of which one was infection regulated, and 12
C. albicans interactors of which three were infection regulated
and eight supported by PHIDIAS/PHI-base evidence. For several
interaction candidates, we found additional evidence in a
literature research.

ENO1 and Cd4
One of those is the Candida ENO1 (2-phospho-D-glycerate-
hydrolyase) interacting with the mouse Cd4 (CD4 antigen). The
Cd4 molecule is an important co-receptor of T-lymphocytes that
interacts with MHC Class II antigens. It is expressed in several
immune cell types and initiates or augments the early phase
of T-cell activation (Gibbings and Befus, 2009). The predicted
interaction partner on the pathogen side, ENO1, is not only
a key component of glycolysis (Sundstrom and Aliaga, 1992),
but is also an immunodominant antigen circulating in the
bloodstream of patients with disseminated Candida infections
(Sundstrom and Aliaga, 1992) and a highly immunogenic protein
in Candida-infected mice (Pitarch et al., 2001). Moreover, ENO1
was identified as an antigen that induced protective IgG2a
antibody isotype in the sera from vaccinated animals and is
thus considered a potential candidate for a vaccine (Fernandez-
Arenas et al., 2004). Although ENO1 is primarily a cytoplasmic
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FIGURE 5 | Mus musculus–C. albicans network of functional GO terms.
Nodes represent GO slim terms and edges depict interactions between host
and fungal genes belonging to the particular GO slim terms. The node size
denotes the number of genes in each GO slim term. The edge width and edge
color correspond to the number of interactions between the connected nodes

from thin/yellow to thick/red representing low to high interaction degrees. Fungal
GO slim terms are visualized by green nodes and murine GO slim terms by blue
nodes. The top 10% fungal pathogen interactors with the most interactions
were removed from the network visualization to improve readability of the figure.
The box shows the subnetworks that are evaluated in more detail.

FIGURE 6 | Host–pathogen PPI subnetwork between M. musculus and
C. albicans. This subnetwork comprises host interactors annotated as
“symbiosis, encompassing mutualism through parasitism” and pathogen
interactors annotated as “interspecies interaction between organisms.” Blue
nodes represent host interactors and green nodes fungal interactors. Nodes
with a red border showed evidence for virulence contribution (PHIDIAS,
PHI-base, and CGD). A triangular shape depicts infection-regulated genes of
the analyzed mouse–Candida RNA-seq data. Interactions highlighted by red
edges are described in more detail.

protein, it has also been discovered to be an integral cell wall
protein (Angiolella et al., 1996). Interestingly, another infection-
associated interaction partner in the refined PHI network is
plasminogen, the inactive precursor of plasmin which has been
described to facilitate the invasion of the host tissues (Jong et al.,
2003).

PLB1 and Alb
A further interesting candidate is the interaction between the
murine Alb (Albumin) and Candida PLB1 (Phospholipase B). It
has been described that the extracellular part of PLB1 is required
for wild-type virulence of Candida in a mouse model of systemic
infection (Ghannoum, 1998), possibly related to its secretion
from the hyphal tip during the infection process (Ghannoum,
2000). PLB1 can penetrate wild-type host cells by lysing the
plasma membrane (Park et al., 2013). Its interaction partner
on the host side, Albumin, was shown to bind to germ-tubes
(Page and Odds, 1988) and to inhibit the binding of PLB1 to its
substrate (Reisfeld et al., 1994). In the transcriptome data set of
murine innate immune cells infected by C. albicans, PLB1 was
significantly deregulated.

HSP70 and Tlr2
Heat shock proteins have been described to play a role during
fungal infection (Lopez-Ribot et al., 1996). Our results predict an
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interaction between the Candida HSP70 (Heat shock protein 70)
and the murine Tlr2 (Toll-like receptor 2). The Candida HSP70
was detected on the surface of both yeast form and hyphal form
cells (Urban et al., 2003) and is a member of a protein family
which represents highly conserved immunodominant antigens
(La Valle et al., 1995). In vitro studies showed that a Candida
HSP70 mutant caused less damage to endothelial cells and oral
epithelial cell lines (Sun et al., 2010). On the host side Tlr2 plays
an important role in the activation of the innate immunity: It
belongs to the family of pattern recognition receptors (PRRs)
which are involved in the recognition of pathogen-associated
molecular patterns (PAMPs), (Oliveira-Nascimento et al., 2012).
Interestingly, the transcripts of both interaction partners were
differentially upregulated during the infection process in the
mouse–Candida dual RNA-seq experiment.

The mouse–Candida subnetwork of the host GO slim term
“cell adhesion” and the fungal GO slim term “interspecies
interaction between organisms” consisted of 98 interactions with
54 murine interactors (two significantly deregulated) and 16
C. albicans interacting partners (4 significantly deregulated, 11
supported by PHIDIAS/PHI-base evidence; see Supplementary
Figure S3).

PLB1 and App
For the fungal PLB1 (Phospholipase B), we discovered a further
potential interaction to the murine App [amyloid beta (A4)
precursor protein]. APP is a cell surface receptor that mediates
cell–cell and cell-matrix adhesion (Stahl et al., 2014) and is
cleaved by secretases to form a number of peptides. Although, the
humanAPP is primarily known for its role in Alzheimer’s Disease
(Gorevic et al., 1986), some of the App peptides have antibiotic
activity against at least eight common and clinically relevant

microorganisms, i.e., Gram-negative, Gram-positive bacteria,
and the yeast C. albicans with the latter being the most sensitive
(Soscia et al., 2010).

CDC19 and Egfr
We also found evidence for a very interesting interaction between
the fungal CDC19 protein (Pyruvate kinase CDC19) and the
murine Egfr protein (epidermal growth factor receptor). The
fungal interactor CDC19, usually, an enzyme of the glycolysis,
was found to be present on the yeast-form cell surface of
C. albicans (Pitarch et al., 2002) and differentially expressed after
3-h co-culture with murine macrophages (Fernandez-Arenas
et al., 2007). Furthermore, it is an immunogenic protein that
is specifically recognized by antibodies in sera of vaccinated
and of systemically Candida-infected mice (Pitarch et al., 2001;
Thomas et al., 2006; Martinez-Lopez et al., 2008). A homozygous
null mutant showed decreased virulence and filamentous growth
(Binkley et al., 2014). Egfr is a transmembrane glycoprotein and
receptor of the epidermal growth factor family. Egfr was shown
to induce endocytosis of C. albicans by epithelial cells (Zhu
et al., 2012). Furthermore, there is evidence for the secreted agrA
(Accessory gene regulator protein A) of Staphylococcus aureus to
bind to Egfr and activate a signal pathway in a pathogenicity-
associated process (Gomez et al., 2007).

Examples for Interesting Human–Aspergillus PPIs in
the Resulting Host–Fungi Network
Since very little is known about human–Aspergillus interactions
in available databases up to date, we selected the infection-
relevant subnetwork of interactions between the host GO slim
term “symbiosis, encompassing mutualism through parasitism”
and the fungal GO slim term “pathogenesis.” To get a transparent

FIGURE 7 | Host–pathogen PPI subnetwork between H. sapiens and
A. fumigatus. This subnetwork comprises pathogenicity-associated (HPIDB)
host interactors annotated as “symbiosis, encompassing mutualism through
parasitism” and pathogen interactors annotated as “pathogenesis.” Blue nodes

represent host interactors and green nodes fungal interactors. Nodes with a red
border showed evidence for virulence contribution (PHIDIAS, PHI-base, and
AspGD) or other host–pathogen interactions (HPIDB). Interactions highlighted
by red edges were described in more detail.
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size, we visualized only host nodes pathogenicity-associated
based on HPIDB and removed the human interactor UBC
(ubiquitin C) due to the high number of interactions. This
subnetwork consists of 38 interactions with 23 human interactors
and 18 A. fumigatus interacting partners (three supported by
PHIDIAS/PHI-base evidence; see Figure 7).

RBE1 and CAV
The interesting interaction between the human CAV1 (caveolin
1) and theAspergillusAFUA_1G02040 (Uncharacterized protein)
in that subnetwork was inferred from the human template
CAV1 – GLIPR2 (GLI pathogenesis-related 2) detected by
affinity chromatography technology (Eberle et al., 2002). The
C. albicans ortholog of AFUA_1G02040, RBE1 (Repressed by
EFG1 protein 1), is a Pry family cell wall protein (Sohn et al.,
2003) and belongs to a group of plant pathogenesis-related
proteins (PR-1; Rohm et al., 2013). A homozygote null mutant
of RBE1 in Candida showed a decreased virulence and increased
sensitivity to attack by polymorphonuclear leucocytes (Rohm
et al., 2013). The human CAV1 is the major structural protein
in the caveolae of endothelial cells (Smart et al., 1999). It is also
involved in the costimulatory signal essential for T-cell receptor
(TCR)-mediated T-cell activation (Ohnuma et al., 2007) and can
act as a functional receptor for CD26 in antigen representing cells
(Ohnuma et al., 2004) which implies a cell surface localization.

CNH1 and YWHAE
In addition, we discovered another promising interaction,
namely between the human YWHAE (tyrosine 3-
monooxygenase/tryptophan 5-monooxygenase activation
protein) – AFUA_2G17170 (Uncharacterized protein) which is
an ortholog of the fungal-specific C. albicans Na+/H+ antiporter
CNH1 (Inglis et al., 2012). Homozygous null mutants of Candida
ortholog showed decreased virulence (Soong et al., 2000). The
human YWHAE, member of the 14-3-3 protein family was co-
immunoprecipitated with MHC II in B-cell exosomes (Buschow
et al., 2010) and thus implying an immune response relevant
function.

HEX1 and FYN
In the human–Aspergillus subnetwork, we predicted an
interaction between the human FYN (FYN Proto-oncogene) and
the Aspergillus AFUA_8G05020 (Uncharacterized protein). FYN
is a membrane-associated tyrosine kinase (Morford et al., 2002)
and localized in the endosome (Puertollano, 2005). Further,
it plays an important role in T-cell activation (Lancki et al.,
1995). The Aspergillus AFUA_8G05020 is a putative secreted
N-acetylhexosaminidase (Bruns et al., 2010; Sharma et al.,
2011) which is highly expressed in biofilm (Bruns et al., 2010).
Furthermore, the C. albicans ortholog HEX1 is required for
full virulence and these proteins may have a role in carbon or
nitrogen scavenging (Niimi et al., 1997).

Discussion

Even though fungal infections are clinically highly relevant
and impose a substantial disease burden worldwide (Brown

et al., 2012), not much data about interactions between fungal
pathogens and the human host on a molecular level are
currently available. In our study, a comprehensive search of
publically available PHIs (Kumar and Nanduri, 2010) yielded
only a small number of reported host–fungi PPIs. Also,
thorough searches of all major PPI databases for cross-species
interaction revealed only a few fungal candidates. This obvious
sparseness of established experimental data on molecular host–
fungal interactions generates an important and valuable research
challenge for novel PHI prediction approaches. While in silico
methods for the prediction of molecular interactions between
host and pathogenic organisms have been receiving growing
attention in the last years, the main focus still lays on viral and
bacterial pathogens (Zhou et al., 2013a), and fungal species have
only been sparsely investigated. To our knowledge, a thorough
systematic prediction and analysis of A. fumigatus and C. albicans
interactions with the human and murine host has not been
performed so far.

In this study, we developed and examined an interolog-
based method for the prediction of fungal–host interactions. We
focused our investigation on two of the most clinically relevant
fungi C. albicans and A. fumigatus. Since murine mouse models
have become an invaluable tool in medical research, we also
investigated interactions between these fungi and M. musculus
in addition to the human host. As the primary objective of our
study was to attain a comprehensive catalog of high quality PHI
predictions, we used an extended dual species template approach
which is based on human and yeast, the two best studied species
for PPI network. By this we effectively made use of the majority of
all publically available PPI data. Compared to simple approaches
relying on the yeast template only, we created a considerably
enhanced prediction space, in particular on the host side, which
increases the set of interactors for human and mouse by over
200%.

A potential limitation of interspecies interolog approaches
is the fact that the prediction space is confined to interactions
between proteins with orthologs counterparts in the source
network on either side. Hence, basing a prediction approach
exclusively on the yeast network could lead to a bias toward
ancient well conserved proteins and exclude less conserved
‘newer’ genes and pathways. These could include also host-
specific genes such as those involved in novel adaptive immune
responses. The inclusion of the human template network partially
alleviates those effects as, at least on the host side, no basal
orthology relationship is required. Our results suggest that a
large and in particular human based template network is a key
prerequisite for the prediction of functionally more relevant
interactions.

Nevertheless, homology based approaches are known to
be prone to produce overpredictions, since, in the first
step, pairwise interactions are inferred between all homologs
regardless of their cellular function or localization. Indeed,
the predicted interaction partners on either side may in fact
have little opportunity to physically interact with each other.
This applies in particular to proteins which are expressed
exclusively in the intracellular compartment and might thus have
little opportunity to interact with the predicted host/pathogen
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counterpart. Although we applied a rigorous filtering cascade to
exclude many (99.4%) of these potentially spurious interaction
predictions, we noted that many proteins are expressed in various
subcellular compartments. In particular, numerous intracellular
proteins can shuttle to the membrane compartment or even
be secreted. To narrow down this set of ‘potentially physically
possible’ predictions, we focused on interactors involved in
pathways which play important roles during cellular infection
processes.

Enrichment analyses using independent data (Xiang
et al., 2007; Winnenburg et al., 2008; Kumar and Nanduri,
2010) revealed a clearly increasing fraction of virulence and
pathogenicity-associated genes during the refinement process,
suggesting a large set of functionally relevant interactions
among the predictions. Moreover, on the host side we found
an enrichment of genes which are expressed in tissues that
are specifically affected by fungal infections, e.g., activation of
platelets by A. fumigatus (Rodland et al., 2010) and C. albicans
(Robert et al., 2000).

Our extended interolog-based approach assembled a large
catalog of PHIs. As this homology based approach is tied to the
template interaction network, it is confined to the set of reported
physical PPIs and thus also inherits the set false positives from
the template network. Therefore, an interesting complementary
approach would be the investigation of an approach based on
domain–domain interactions (Zhou et al., 2013b). This would
eliminate the necessity of homology for the predicted interactors,
as it only requires the presence of the interacting domains. Thus,
it can be expected to yield a complementary dataset. Similarly,
inference methods based on the correlated gene expression in

host and pathogen (e.g., measured over an infection time course),
are an interesting approach which could be further explored, in
combination with and in comparison to the interolog approach
(Wang et al., 2013; Weber et al., 2013; Schulze et al., 2015).
Certainly, the assembly of large PHI networks establishes an
ample hypotheses space as a basis which can be exploited by
advanced methods of integrative network analysis (Dittrich et al.,
2008; Beisser et al., 2012), for which a large number of approaches
have been established in the last years. Here, further development
is needed to extend these approaches to the simultaneous analysis
of the complex connected host and pathogen networks. Albeit,
technically not trivial, it is unquestionably a worthwhile task
as it holds the potential to link subcellular response pathways
between host and pathogen during the dynamics of the infection
process.
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Brucella is an intracellular bacterium that causes chronic brucellosis in humans and
various mammals. The identification of host-Brucella interaction is crucial to understand
host immunity against Brucella infection and Brucella pathogenesis against host immune
responses. Most of the information about the inter-species interactions between
host and Brucella genes is only available in the text of the scientific publications.
Many text-mining systems for extracting gene and protein interactions have been
proposed. However, only a few of them have been designed by considering the
peculiarities of host–pathogen interactions. In this paper, we used a text mining
approach for extracting host-Brucella gene–gene interactions from the abstracts of
articles in PubMed. The gene–gene interactions here represent the interactions between
genes and/or gene products (e.g., proteins). The SciMiner tool, originally designed
for detecting mammalian gene/protein names in text, was extended to identify host
and Brucella gene/protein names in the abstracts. Next, sentence-level and abstract-
level co-occurrence based approaches, as well as sentence-level machine learning
based methods, originally designed for extracting intra-species gene interactions, were
utilized to extract the interactions among the identified host and Brucella genes.
The extracted interactions were manually evaluated. A total of 46 host-Brucella gene
interactions were identified and represented as an interaction network. Twenty four
of these interactions were identified from sentence-level processing. Twenty two
additional interactions were identified when abstract-level processing was performed.
The Interaction Network Ontology (INO) was used to represent the identified interaction
types at a hierarchical ontology structure. Ontological modeling of specific gene–
gene interactions demonstrates that host–pathogen gene–gene interactions occur at
experimental conditions which can be ontologically represented. Our results show that
the introduced literature mining and ontology-based modeling approach are effective in
retrieving and analyzing host–pathogen gene–gene interaction networks.

Keywords: host–pathogen interaction extraction, Brucella, text mining, host and pathogen gene name
recognition, SciMiner, support vector machines (SVM), Interaction Network Ontology (INO)
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INTRODUCTION

Brucella is a Gram-negative intracellular bacterium that causes
zoonotic brucellosis in humans and various animals. Brucellosis
is one of the most common zoonotic diseases worldwide, causing
approximately half a million new human brucellosis each year.
There are 10 species of Brucella based on the preferential
host specificity: Brucella melitensis (goats), B. abortus (cattle),
B. suis (swine), B. canis (dogs), B. ovis (sheep), B. neotomae
(desert mice), B. cetaceae (cetacean), B. pinnipediae (seal),
B. microti (voles), and B. inopinata (unknown) (O’Callaghan and
Whatmore, 2011). Among them, B. melitensis, B. abortus, B. suis,
and B. canis are pathogenic to human. The other Brucella species
are non-pathogenic to humans.

The genome sequences of all Brucella species are strikingly
similar with nearly identical genetic content and gene
organization (Halling et al., 2005). Humans can be infected
with Brucella by contact with infected animals, by inhalation
of an aerosol, or by ingestion of contaminated animal products
(e.g., infected milk and meat). Upon entry into animals,
the bacteria invade the blood stream and lymphatics where
they multiply inside phagocytic cells and eventually cause
septicemia. Symptoms include undulant fever, abortion,
asthenia, endocarditis and encephalitis. In spite of a long
documented history (Corbel, 1997), the treatment of human
brucellosis remains difficult and requires antibiotics that
penetrate macrophages and can act in an acidic intracellular
environment. While currently used live attenuated Brucella
animal vaccines (e.g., RB51, strain 19, and Rev. 1) have the ability
to protect animals, they are still pathogenic to humans. No safe
and effective Brucella vaccine is available for human use. To
develop safe and effective preventive and therapeutic measures
against Brucella infections, it is critical to understand the
host-Brucellamechanisms that lead to Brucella pathogenesis and
host immunity against Brucella infection. Although extensive
studies have been undertaken, the systematic understanding of
the host-Brucella interactions is still missing.

Currently, there is very limited information regarding host-
Brucella interactions in the host–pathogen interaction databases
such as PHIDIAS (Xiang et al., 2007), PHISTO (Tekir et al.,
2013), and HPIDB (Kumar and Nanduri, 2010). Most of the
relevant information is only available in a textual format in the
published scientific articles. In this study, our goal is to utilize
text mining methods to extract host-Brucella gene interactions
from the biomedical literature. In order to extract host–pathogen
gene interactions, first the pathogen and host gene names should
be identified in text, then the interactions among the host and
pathogen genes should be detected. For example, the sentence
shown in Figure 1 (Arenas-Gamboa et al., 2008) contains three
host genes (gamma interferon, interleukin-12, and interleukin-4)
and one pathogen gene (vjbR). This sentence states that there are
two pathogen–host gene interactions: (gamma interferon, vjbR)
and (interleukin-12, vjbR). On the other hand, there is no an
interaction between the host gene interleukin-4 and pathogen
gene vjbR.

Different methods have been proposed for literature mining
of gene–gene interactions. One of the simplest and widely used

methods is based on the co-occurrence statistics of the proteins in
text (Jelier et al., 2005). Another common approach is matching
pre-specified patterns and rules over the sequences of words
and/or their parts of speech in the sentences (Ono et al., 2001;
Blaschke and Valencia, 2002). More recently, machine learning
methods that integrate the linguistic, syntactic, and/or semantic
analysis of the sentences as kernel functions have been proposed
and shown to achieve state-of-the-art results for gene/protein
interaction extraction from text (Giuliano et al., 2006; Erkan et al.,
2007; Airola et al., 2008; Tikk et al., 2010). Similarly to previous
literature mining studies, in this paper we used the commonly
applied GENETAG-style named entity annotation (Tanabe et al.,
2005). In other words, a gene interaction can involve genes or
gene products such as proteins.

A number of rule-based and machine learning based methods
have been proposed for identifying gene/protein mentions in text
(Fukuda et al., 1998; McDonald and Pereira, 2005; Tsai et al.,
2006; Hsu et al., 2008). In our previous studies, we developed
dictionary- and rule-based named entity recognition tools,
SciMiner (Hur et al., 2009) and Vaccine Ontology (VO)-SciMiner
(Hur et al., 2011), which are designed to identify genes/proteins
and Vaccine Ontology (VO) terms in the biomedical literature.
Conventional Medical Subject Headings (MeSH) terminology
has been frequently used for literature mining, such as GenoMesh
studies (Xiang et al., 2013). The usage of ontologies enhances the
chances of retrieving gene–gene interactions. For example, in our
recent studies we have shown that the VO facilitates the retrieval
of vaccine-associated IFN-gamma interaction network (Özgür
et al., 2011), fever-related network (Hur et al., 2012), and Brucella
vaccine interaction network (Hur et al., 2012). Recently, we have
developed an Interaction Network Ontology (INO) which is
used to classify the interaction keywords such as up-regulation,
inhibition, association, and binding in an ontology structure (Hur
et al., 2015). The classified interaction hierarchy makes us not
only retrieve gene–gene interactions, but also the types of gene–
gene interactions (Hur et al., 2015). We hypothesize that such a
strategy can also be used in host–pathogen gene–gene interaction
literature retrieval.

Currently, the research in host–pathogen interactions
literature mining mostly focuses on the retrieval of host gene–
gene interaction under a particular pathogen infection (e.g.,
influenza) or pathogen gene–gene interactions [e.g., our Brucella
vaccine interaction network analysis (Hur et al., 2012)]. There
are only a few studies on the retrieval of both host and pathogen
genes and the inter-species interactions among them [reviewed
in (Durmus et al., 2015)]. Machine learning based methods were
proposed for classifying abstracts of scientific articles as being
relevant to host–pathogen interactions or not (Yin et al., 2010;
Thieu et al., 2012). In addition, Thieu et al. (2012) proposed
a rule-based approach that is based on the link-grammar
representations of the sentences for extracting host–pathogen
protein interactions from text.

In this study, we use kernel-based methods for extracting
host–pathogen gene interactions, which have been shown to
achieve promising results for extracting intra-species protein
interactions (Erkan et al., 2007; Tikk et al., 2010). One main issue
in host–pathogen interaction literature mining is the confusion
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FIGURE 1 | Sample host–pathogen interaction describing sentence (Arenas-Gamboa et al., 2008). The pathogen gene is shown in red and the host genes
are shown in green.

of a gene being a host gene or pathogen gene, since many
gene names are shared in both hosts and pathogens. This is
one main research topic in our current study. We extended the
SciMiner mammalian gene name identification tool to recognize
and distinguish between host and Brucella genes. In addition,
we used an INO-based method to model various gene–gene
interactions under different experimental conditions. Our results
show that our combinatory strategy is able to successfully retrieve
and analyze host–pathogen gene–gene interaction networks.

MATERIALS AND METHODS

The main focus of this study is to identify the interactions
between host and Brucella genes. Many eukaryotic organisms act
as the host of Brucella infections, including human, cattle, goat,
sheep, pig, etc. As a laboratory animal model, mice can also be
infected with Brucella. Our literature mining study covers these
different host species. Meanwhile, there are 10 different Brucella
species.

The overall design and workflow of our approach is shown
in Figure 2. All PubMed papers are used as our data sources.
They are filtered based on their relevance to Brucella. The selected
abstracts are processed by splitting into sentences and identifying
the host and Brucella gene name mentions using SciMiner.
Next, co-occurrence and machine learning based methods are
used to extract the interactions among the host and Brucella
genes. A literature-mined and manually verified host-Brucella
gene–gene interaction network is created. Finally, ontology based
modeling of host–pathogen gene–gene interactions is performed
by utilizing the INO. The details of the methods are presented in
the following subsections.

Data Set Collection
The 2015 MEDLINE R©/PubMed R© Baseline Distribution database
consisting of 23,343,329 records was downloaded from the US
National Library of Medicine and processed using our established
literature mining pipeline. Briefly, the title, abstract, and MeSH
terms of each record were parsed out from the downloaded XML
files. The collected abstracts were split into sentence level using
Java’s LBJ2.nlp.SentenceSplitter module. Then, enhanced version
of our named entity recognition tools, SciMiner (Hur et al., 2009)
and VO-SciMiner (Hur et al., 2011), were used to identify host
genes and pathogen genes, and the results were populated into a

FIGURE 2 | Project design pipeline and workflow.

local MySQL database. To define the Brucella-specific context, we
used a PubMed query, “Brucella OR Brucellosis,” which resulted
in a list of 16,699 PubMed IDs as of 2/1/2015.

Identifying Gene Names
To identify the mentioned host genes and Brucella genes in
the abstracts of articles, we used our in-house named entity
recognizers, SciMiner1 (Hur et al., 2009) and VO-SciMiner2 (Hur
et al., 2011). SciMiner and VO-SciMiner are both dictionary-
and rule-based literature mining tools. SciMiner focuses on
identification of mammalian genes, reported in terms of the
official human genes based on the HUGO Gene Nomenclature
Committee (HGNC) database3, while VO-SciMiner identifies VO
terms and Brucella genes.

In the present study, to improve identification accuracy of
host and pathogen genes, we enhanced the mining rules in

1http://jdrf.neurology.med.umich.edu/SciMiner/
2http://www.violinet.org/vo-sciminer/
3http://www.genenames.org/
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both SciMiner and VO-SciMiner. First, the enhanced version of
SciMiner uses a stringent case-match of gene symbols. In the
original version of SciMiner, which included dictionary of only
human genes names and symbols, a relaxed matching of symbols
was employed to maximize the gene identification (high recall).
This relaxed case matching resulted in misidentifications such
as recA, recombinase A gene, being identified as the human
RAD51 recombinase (RAD51), whose aliases include RECA.
Since the majority of the Brucella gene symbols start with a lower-
case character and usually end with an upper-case or numeric
character, SciMiner excluded symbols with this pattern. In case
of the genes identified by both SciMiner as a host gene and
VO-SciMiner as a pathogen gene, the priority is given to the
VO-SciMiner identification considering the current context of
Brucella-related literature.

Mapping Genes to Pathogen and Host
Species
In order to further improve the overall accuracy of host
gene identification, we used potential host species-related
MeSH terms, including ‘humans,’ ‘rats,’ ‘mice,’ ‘cattle,’ ‘guinea
pigs,’ ‘swine,’ ‘goats,’ and ‘sheep’ to filter the genes identified
by SciMiner. Only the host genes identified from PubMed
documents whose MeSH terms included at least one of these
selected terms were included for further analysis.

Gene–gene Interaction Extraction
In this study, co-occurrence based and machine-learning
based approaches are used for extracting host–pathogen gene–
gene interactions. Both sentence-level and abstract-level co-
occurrence approaches, as well as a machine learning-based
approach are investigated for this task. These approaches are
described in the following subsections.

Co-occurrence Based Host–pathogen Interaction
Extraction
We used two different contexts to extract the interactions based
on the co-occurrences of the host and pathogen genes: sentence-
based context and abstract-based context. In the sentence-based
co-occurrence approach, if one pathogen and one host gene occur
in the same sentence, an interaction pair is extracted consisting
of the corresponding pathogen and host genes. For example, in
the sentence shown in Figure 1 (Arenas-Gamboa et al., 2008),
the SciMiner tool identifies two host genes (interleukin-12 and
interleukin-4) and one pathogen gene (vjbR). The sentence-level
co-occurrence approach extracts the interactions (interleukin-
12, vjbR) and (interleukin-4, vjbR) from the sample sentence,
where (interleukin-12, vjbR) is a true interaction and (interleukin-
4, vjbR) is an incorrectly extracted interaction. In the sample
sentence, gamma interferon is also a host gene. However, since
this gene is not detected by SciMiner, it is not considered in the
interaction extraction step. In the abstract-based co-occurrence
approach, an abstract is taken into consideration as the context
window instead of a single sentence. In other words, all pairs
of host and pathogen genes that occur in the same abstract
are extracted as interacting pairs regardless of the sentence
boundaries.

Machine Learning Based Host–pathogen Interaction
Extraction
We utilized a machine learning based approach to classify
whether a host and pathogen gene pair occurring in the same
sentence is described as interacting in the sentence or not. We
used support vector machines (SVM) [specifically the SVMlight

package (Joachims, 1999)] as our classification algorithm with the
cosine and edit kernels introduced in (Erkan et al., 2007). These
kernels make use of the dependency parse trees of the sentences
that represent the syntactic and semantic relations among the
words. We used the Stanford Parser (de Marneffe et al., 2006) to
obtain the dependency parse trees of the sentences in our Brucella
specific data set.We only processed sentences for which SciMiner
identified at least one host and one pathogen gene. The cosine and
edit kernels are defined over the path between the host gene and
pathogen gene in the dependency parse tree of the corresponding
sentence.

The underlying assumption is that the dependency path
between a host and a pathogen gene is a good description for
the relation between them. For example, the dependency parse
tree obtained using the Stanford parser (de Marneffe et al.,
2006) for the sample sentence “Furthermore, gap associated
with murine IL-12 gene in a DNA vaccine formulation partially
protected mice against experimental infection.” (Rosinha et al.,
2002), is shown in Figure 3. The dependency path between
the host gene IL-12 and the pathogen gene gap, which are
described as interacting in the given sentence, is “nn gene
prep_with associated vmod.” On this path we have the word
associated as well as the dependency relation type preposition
with (prep_with), which provide clues for the interaction between
gap and IL-12. Using the cosine similarity and edit distance
kernel functions within SVM (Erkan et al., 2007), our program
is able to infer whether or not these two genes interact with
each other. Note that this sentence also includes the gene
symbol “gap” which is a common English word. SciMiner has
a confidence scoring system for each identified gene symbol in
the text, based on weighted co-occurrences of the gene symbol
and their descriptions (e.g., gene or protein names) in the
same text. In this case, since the protein name of the gap gene
“glyceraldehyde-3-phosphate dehydrogenase” is described in the
paper abstract, the SciMiner scoring systemwas able to assign gap
as a gene.

To the best of our knowledge, there are no publicly available
manually labeled host–pathogen gene–gene interaction corpora.
Therefore, we trained the SVM classifier with edit and cosine
kernels by using corpora labeled for intra-species protein–protein
interactions. Specifically, we used the Christina Brun (CB) corpus
provided as a resource at the BioCreAtIve II challenge4 and
the AIMED corpus (Bunescu et al., 2005), which is a standard
corpus for evaluating intra-species protein–protein interactions.
The learned cosine and edit kernel based SVM models are
used to classify each sentence as an interaction-describing
sentence (positive class) or not (negative class) for each host and
pathogen gene pair identified by SciMiner in the corresponding
sentence.

4http://biocreative.sourceforge.net/biocreative_2.html
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FIGURE 3 | The dependency parse tree of a sample sentence. The tree is generated for the sentence “Furthermore, gap associated with murine IL-12 gene in
a DNA vaccine formulation partially protected mice against experimental infection.” from the abstract of (Rosinha et al., 2002). Host and pathogen genes identified by
SciMiner are shown in green and red, respectively. The Stanford parser was used to generate the parse tree. advmod, adverb modifier; amod, adjectival modifier;
det, determiner; dobj, direct object; nn, noun compound modifier; nsubj, nominal subject; prep_against, preposition against; prep_in, preposition in; prep_with,
preposition with; vmod, reduced non-finite verbal modifier.

Evaluation
The results obtained by the co-occurrence and machine
learning based interaction classification methods (i.e., classifiers)
are manually evaluated by using the number of TP (True
Positives), FP (False Positives), TN (True Negatives), and FN
(False Negatives), as well as the precision, recall, and F-score
metrics.

True Positives is the number of host–pathogen interactions
correctly classified as positive; FP (False Positives) is the number
of negative host–pathogen interactions that are incorrectly
classified as positive by the classifier; TN (True Negatives) is
the number of host pathogen interactions classified correctly as
negative (no interaction); and FN (False Negatives) is the number
of positive host–pathogen interactions that are incorrectly
classified as negative by the classifier.

Precision is the ratio of correctly identified positive host–
pathogen interactions over all interactions classified as positive
by the classifier [i.e., TP/(TP + FP)]. Recall is the ratio of
correctly classified positive host–pathogen interactions over
all positive host–pathogen interactions [i.e., TP/(TP + FN)].
F-score is the harmonic mean of these two measures [i.e.,
2 . precision . recall/(precision + recall)].

Ontology Modeling
The INO focuses on the ontological representations of
hierarchical biological interaction types and networks (Hur
et al., 2015). INO has been proven to enhance the literature
mining of gene–gene interaction types (Hur et al., 2015). In
this study, we applied INO to analyze different interaction types
between host and Brucella at different experimental conditions.
Furthermore, different conditions of host-Brucella interactions
were represented and analyzed through ontology-based
modeling.

RESULTS

Identification of Host and Brucella Gene
Names
Two of our in-house named entity recognizers, SciMiner and
VO-SciMiner, were enhanced in our study to identify host and
pathogen genes, respectively. First, SciMiner has been modified
to use stringent case-match. In the context of Brucella, consisting
of 16,699 PubMed abstracts, the enhanced versions of SciMiner
and VO-SciMiner identified 47 unique pairs of potential host
gene and Brucella gene interactions using the improved symbol-
based identification method and confliction resolution between
host and Brucella gene. Out of these 47 pairs, manual examination
confirmed that 24 unique pairs were true interactions, indicating
an overall accuracy of 51%.

Identification of Host-Brucella
Gene–gene Interactions
After identifying the host and Brucella gene names in sentences
co-occurrence and machine learning based methods are used to
classify each pair in a sentence as an interaction (positive class)
or not (negative class). We performed manual evaluation for
the classification decisions of the methods for each host-Brucella
gene pair in each sentence. For the abstract-level co-occurrence
approach, manual evaluation is performed for each host-Brucella
gene pair in each abstract.

The results obtained are summarized in Table 1. Co-
occurrence based methods classify all pairs of host–pathogen
genes as positive, if they occur in the same sentence or
abstract. Therefore, they obtain the maximum level of recall,
i.e., 100%. Not all co-occurring gene pairs are true interaction
pairs. For example, in the sample sentence shown in Figure 1,
there is no an interaction between the pathogen gene vjbR
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TABLE 1 | Co-occurrence and machine learning based host-Brucella gene–gene interaction results.

TP TN FP FN Precision Recall F-score

Co-occurrence (sentence-based) 29 0 25 0 0.54 1.0 0.70

Co-occurrence (abstract-based) 55 0 61 0 0.47 1.0 0.64

Support vector machines (SVM; edit kernel) 15 12 12 14 0.56 0.52 0.54

SVM (cosine kernel) 12 19 5 17 0.71 0.41 0.52

TP, True Positive; TN, True Negative; FP, False Positive; FN, False Negative.

FIGURE 4 | Literature-mined host-Brucella gene–gene interaction results. (A) Venn diagram showing the number of unique host-Brucella interaction gene
pairs retrieved and manually verified from sentence-level and abstract-level processing. (B) The literature-mined and manually verified host-Brucella gene–gene
interaction network. Host genes are shown in green and Brucella genes are shown in red. Red edges correspond to interactions retrieved from sentence-level
processing. Black edges correspond to interactions retrieved from abstract level processing. The more sentences/abstracts describe an interaction between gene
pairs the thicker the edge connecting them.

and the host gene interleukin-4. However, the co-occurrence
methods incorrectly classified this pair as interacting, since
these genes occur in the same sentence. This leads to drop in
precision.

Support vector machines with edit and cosine kernel obtained
a higher precision compared to the co-occurrence based
approach. The precision obtained by the cosine kernel (71%) was
significantly higher than the precision values of the co-occurrence
and edit kernel approaches. Edit kernel, on the other hand,
obtained more balanced precision and recall levels compared to
the other methods.

Both edit kernel and cosine kernel operate on sentence-
level. Therefore, they are not able to identify interactions whose
descriptions cross sentence boundaries. The significantly higher
number of true positive interactions retrieved by the abstract-
level co-occurrence approach indicates the importance of the use
of abstracts (or scopes wider than sentences) as context.

Figure 4 shows the literature mined and manually verified
unique host-Brucella gene–gene interactions. A total of 46
unique interaction pairs are retrieved. 24 of these were
identified using sentence-level processing. Abstract-level analysis
enabled the retrieval of 22 additional unique interaction pairs
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FIGURE 5 | The ontology hierarchy of literature mined INO interaction
types. In total, six different INO interaction types were identified from this
literature mining study. The number of interactions of a specific type is shown
in red next to the interaction type. The ‘induction of production’ type is the
most common type identified.

(Figure 4A). The identified host-Brucella gene–gene interactions
are represented as a network, which consists of 20 Brucella genes
and 25 host genes (Figure 4B). The interactions between host
and Brucella gene pairs are represented as edges. The edges are
weighed based on the number of sentences/abstracts that state
the corresponding interaction. BLS and L7/L12 are the most
connected Brucella genes, whereas IFNG and IRF1 are the most
connected host genes.

Ontology Modeling of Host-Brucella
Gene–gene Interactions
We used INO to analyze the types of interactions between the
extracted host and Brucella genes. The results of this analysis
are shown in Figure 5. In total, six different INO interaction
types, all of which are sub-types of regulation, are identified from
this literature mining study. The ‘induction of production’ type
is the most common type identified. For instance, the sentence
“The P39 and the bacterioferrin (BFR) antigens of B. melitensis
16M were previously identified as T dominant antigens able to
induce both delayed-type hypersensitivity in sensitized guinea
pigs and in vitro gamma interferon (IFN-gamma) production
by peripheral blood mononuclear cells from infected cattle” (Al-
Mariri et al., 2001) is an example sentence that describes an
interaction of type ‘induction of production’ between pathogen
and host genes. The sentence states that Brucella gene P39 is able
to induce in vitro host IFN-gamma production.

While Figure 4 provides concrete summary of the host-
Brucella gene–gene interaction network, it is typical that
each gene–gene interaction occurs under specific experimental
condition(s). Without a specific condition, any host–pathogen
interaction will not happen. Ontology provides an ideal platform
to model and represent these gene–gene interactions under
specific conditions. Below we provide two examples to illustrate
how ontology-based gene–gene interactions work. These two
examples include one retrieved from sentence level literature

mining and another from abstract level literature mining.
The ontology modeling uses the framework of the INO (Hur
et al., 2015), the Ontology for Biomedical Investigations (OBI;
Brinkman et al., 2010), and the Brucellosis Ontology (IDOBRU;
Lin et al., 2011, 2015).

A host-Brucella gene–gene interaction based on literature
mined sentence (Velikovsky et al., 2003) was modeled using
ontology (Figure 6A). In this example, the mice were
immunized with recombinant Brucella lumazine synthase (rBLS)
administered with different adjuvants including incomplete
Freund’s adjuvant (IFA), monophosphoryl lipid A (MPA), and
aluminumhydroxide gel (Al). The splenocytes were isolated from
immunized mice and then re-stimulated with rBLS. Different
cytokines (IFN-gamma, IL-2, IL-4, and IL-10) were produced by
the splenocytes, indicating a mix of Th1 and Th2 response. This
model represents the detail of the interactions between Brucella
BLS and mouse IFN-gamma, IL-2, IL-4, and IL-10. This example
is classified as another ‘induction of production’ interaction
type (Figure 5), i.e., recombinant BLS induces the production
of different proteins in splenocytes isolated from immunized
mice.

Figure 6B provides another example of ontology modeling
of the interaction between Brucella gene wboA and mouse
protein Caspase-2, encoded by mouse gene Casp2, using the
abstract content from the paper (Chen and He, 2009). Brucella
mutant RA1, a mutant of wild type, virulent B. abortus strain
2308, lacks the Brucella gene wboA. RA1-infected RAW 264.7
mouse macrophage cell line cells had activated Caspase-2,
which mediated apoptotic and necrotic cell death of RAW
264.7 cells (Chen and He, 2009). This example represents
how Brucella gene wboA interacts with mouse Caspase-2. This
example demonstrates the interaction type of ‘protein activation
by mutant’ (Figure 5), i.e., a mutant of a gene infects mouse
macrophages and activates the production of a mouse protein
Caspase-2.

DISCUSSION

Using Brucella as an example pathogen, this study utilized
literature mining and ontology analysis approaches to examine
the interactions between host genes/proteins and Brucella
genes/proteins. Since genes encode for proteins, our host-
Brucella gene–gene interactions also include protein–protein
interactions. Our approach identified 46 pairs of host-Brucella
gene–gene interactions from the literature, and the ontology
modeling analysis identified different types of interactions
and provided deeper insights on how the host and Brucella
genes/proteins interact at different experimental conditions.

One challenge in host–pathogen interaction literature mining
is the difficulty in differentiating host genes and pathogen genes.
In the current version of SciMiner and VO-SciMiner we did not
use any of the name (longer description)-based identification
results in the analysis. This is due to our manual evaluation
of the preliminary results suggesting it is far more difficult
to distinguish between host and pathogen genes using longer
description protein names as they are more redundant than gene
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FIGURE 6 | Ontology modeling of literature-mined host-Brucella interaction types. (A) Ontology modeling of the gene interaction from the sentence “In
addition, after in vitro stimulation with rBLS, spleen cells from BLS-IFA-, BLS-Al-, or BLS-MPA-immunized mice proliferated and produced interleukin-2 (IL-2),
gamma interferon (IFN-gamma), IL-10, and IL-4, suggesting the induction of a mixed Th1-Th2 response” (Velikovsky et al., 2003). (B) Ontology modeling of the
Casp2-wboA gene interaction using the abstract content from the paper (Chen and He, 2009).

symbols. For example, the protein name “Superoxide dismutase
[Cu-Zn]” may represent a human/host gene name (SOD1 or
SODC) or a Brucella/pathogen protein (SodC). In general, the
gene names are more unique than the gene symbols; therefore,
use of only short gene symbols resulted in decreased numbers
of identified genes by the current versions of SciMiner and
VO-SciMiner. We will examine these missed genes and further
improve the sensitivity and accuracy of the gene name-based
identification.

We investigated using co-occurrence and machine learning
based methods for extracting host–pathogen gene–gene
interactions. The co-occurrence based methods classify each
pair of host and pathogen genes as interacting, if they occur in
the same sentence/abstract. Therefore, they obtain high recall
by retrieving all interacting pairs of genes. However, they also
classify many gene pairs incorrectly as interacting, since not
all co-occurring gene pairs are true interactions. This leads to
drop in performance in terms of precision. The SVM classifiers
with the dependency tree based edit and cosine kernels make
use of the syntactic analysis of the sentences. These methods
achieved higher precision compared to the co-occurrence
based methods. To the best of our knowledge, there does
not exist a large manually labeled host–pathogen gene–gene
interaction data set. Therefore, the edit and cosine kernel based
SVM classifiers were trained by using generic (intra-species)
protein–protein interaction data sets. Training these classifiers
with host–pathogen gene–gene interaction data might improve
their performances. A drawback of most (if not all) currently
available machine learning based interaction extraction methods
is that they operate on sentence-level and therefore, are not able
to identify interactions that cross sentence boundaries. As our
sentence-level and abstract-level co-occurrence analysis revealed,
many host-Brucella interactions span multiple sentences. These
results suggest that developing text mining methods that operate

on scopes wider than a sentence would be useful for extracting
host–pathogen gene–gene interactions.

Our ontology modeling studies demonstrate its value in
further identifying the nature and insights of host–pathogen
gene–gene interactions. A simple gene–gene interaction may
miss many details, especially in the setting of a host–pathogen
interaction. A gene–(interaction type)-gene would provide more
details since the interaction type could indicate how the two
genes interact. The INO provides a way to classify hundreds
of interaction keywords into logically defined interaction types
under a hierarchical ontology setting (Hur et al., 2015). The
usage of INO interaction types and its hierarchy allows us
to detect the distribution of the interaction types from our
literature mining study (Figure 5). INO-based modeling also
provides a novel way to identify interaction types that are
represented by multiple keywords in sentences (Özgür et al.,
2015). Furthermore, ontology modeling of the mined sentences
or abstracts provides a way to deeply identify the experimental
setting where a host gene and a pathogen gene interact. Without
such settings, detected host–pathogen interactions may not
occur. Therefore, the ontology modeling is critical for our better
detection and representation of the details of host–pathogen
interaction mechanisms.

A promising future work is to use ontology modeling to
identify possible types of patterns of how host and pathogen genes
interact and apply such design patterns to guide our literature
mining. For example, based on the ontology model of the ‘protein
activation bymutant’ interaction type (Figure 6B), wemay design
a pattern-specific literature mining study. Specifically, a mutant
represents a recombinant organism with the mutation of an
internal gene. After a mutant is generated, a name is usually
assigned to the mutant. As shown in Figure 6B, a pathogen
mutant is often used in different experimental settings to infect
a host and activate a host protein. Such a complex pattern is
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difficult to retrieve using current literature mining strategies.
For instance, a sentence often describes the relation between a
mutant (instead of a pathogen gene) and a host gene. Based on
the ontology-modeled pattern, we can first design a literature
mining approach to identify all mutants and their corresponding
pathogen genes; and based on the mutant-gene interaction, we
can then infer the gene–gene interaction. Specific experimental
conditions (e.g., host cell types) can also be mined using the
ontology modeling. Literature mined and experimentally verified
results can further be ontologically represented in an ontology
such as the Brucellosis Ontology (IDOBRU; Lin et al., 2011,
2015).

Compared to model pathogens such as Escherichia coli and
Salmonella, Brucella is a less studied pathogen. However, the

results obtained from this study provide the first example of
opportunities and challenges in the literature mining of the
host–pathogen gene–gene interactions.
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Constraint-based models have become popular methods for systems biology as

they enable the integration of complex, disparate datasets in a biologically cohesive

framework that also supports the description of biological processes in terms of basic

physicochemical constraints and relationships. The scope, scale, and application of

genome scale models have grown from single cell bacteria to multi-cellular interaction

modeling; host-pathogen modeling represents one of these examples at the current

horizon of constraint-based methods. There are now a small number of examples of

host-pathogen constraint-based models in the literature, however there has not yet

been a definitive description of the methodology required for the functional integration

of genome scale models in order to generate simulation capable host-pathogen models.

Herein we outline a systematic procedure to produce functional host-pathogen models,

highlighting steps which require debugging and iterative revisions in order to successfully

build a functional model. The construction of such models will enable the exploration of

host-pathogen interactions by leveraging the growing wealth of omic data in order to

better understand mechanism of infection and identify novel therapeutic strategies.

Keywords: constraint-based model, host-pathogen, optimization methods, mathematical models,

omics-technologies, tuberculosis, salmonella typhimurium, flux balance analysis

Why Constraint-based Modeling for Host-pathogen Interactions?

Rudolph Virchow, a nineteenth century co-founder of pathology is credited with describing
pathology as “physiology with obstacles” and specifying a “diseased state” as a quantitative
deviation from normal function as a result of internal and external (i.e., environmental) influences
(Virchow, 1958). Infections of a host by a pathogen can lead to acute and chronic pathological
conditions. The process of infection by a pathogen can be viewed as a pathological process resulting
from environmental stresses. These causal influences by the pathogen, onto the host, define the

Notations/Abbreviations: h, a host model; p, a pathogen model; hp, a host-pathogen model; BM,h, host biomass pseudo-
reaction; BM,p, pathogen biomass pseudo-reaction; S, the stoichiometric matrix for a metabolic network; v, flux vector in a
metabolic network; x, metabolite vector in a metabolic network; m, the number of unique, compartment specific metabolites
in a stoichiometric matrix, i.e., |x|; n, the number of unique, compartment specific reaction fluxes in a metabolic network, i.e.,
|v|; R, rank of the stoichiometric matrix; Nr, size of the right null space; Nl, size of the right null space; α, biomass optimum
of host model; β, biomass optimum of pathogen model; ǫ, simulation constant for setting lower bound minimum of biomass
production.
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capabilities of the host and its pathogen can be expressed as
constraints on themetabolic capabilities of the host and pathogen
(Figure 1).

The continued development of high-throughput technologies
are enabling profiling of multi-cellular and multi-organism
environments (Gawronski et al., 2009; Han et al., 2010;
Pacchiarotta et al., 2012; McAdam et al., 2014). Such advances
enable the detailed measurement of molecular changes occurring
in host-pathogen interactions (Kim and Weiss, 2008; Stavrinides
et al., 2008; Beste et al., 2013; Le Chevalier et al., 2014; Schoen
et al., 2014; Chang et al., 2015; Henningham et al., 2015; Yao
and Rock, 2015). Generation of these large datasets, in the
context of the complexity of pathogenesis, highlight the need
for systems based approaches for integration into a cohesive
biologically interpretable framework (Durmus et al., 2015).
Constraint-based modeling is an ideal approach for a systematic,
integrated analysis of these data. The approach is based
on well-defined stoichiometric biochemical transformations
(including mass balance, reaction capacity, and directionality)
and gene-protein-reaction (GPR) relationships allow mapping
and integration of multiple, disparate data types. These methods
can incorporate heterogeneous data-types that represent all

hierarchies in the reductionist causal chain of an organism,
thus enabling prediction of emergent properties (Figure 1).
Additionally, constraint-based models circumvent the problem
of over fitting data, which often plagues strictly statistical based
methods. There exist a number of freely available tutorials
and implementation tools and packages enabling the use of
reconstructions for modeling, analysis, and simulation in the
literature (Schellenberger et al., 2011; Liao et al., 2012; Ebrahim
et al., 2013; Sadhukhan and Raghunathan, 2014; Palsson, 2015).

Where in the Tree Do Host-pathogen

Models Lie?

Constraint-based modeling in metabolism has its roots in
microbial organisms, but has progressively grown in the past
decades to describe complex multi-cellular organisms and
various processes (Reed and Palsson, 2003; Mo et al., 2007;
Feist et al., 2009; Karlsson et al., 2011; Osterlund et al.,
2012). There has been a continual, systematic growth and
progression of constraint-based models which initially began
as the formulation of a core biochemical network as a linear

FIGURE 1 | A conceptual representation of integrating constraint-based modeling and omic data. The heterogeneity of omic data (biological constraints) and

their integration is represented in parallel with the phenotypic solution space of the high dimensional host-pathogen model derived from physicochemical constraints.

The degree of constraints represented will depend on the measurement capability and also define a reference set of behaviors that are feasible. (A) enumerates the

heterogeneity of constraints for both host and pathogen and the resultant mathematically feasible and the potential biologically relevant solution space. In (B)

pathogenesis and infection are shown from the perspective of 3 dimensions (i) omics constraints (also determined by experimental constraints) (ii) Annotation detail

(based on existing legacy data) and (iii) the measurement dimensionality (also defining dimensionality of data). (C) shows that understanding host-pathogen interaction

would be possible at multiple scales by integrating heterogeneous data/measurements and constraint-based modeling algorithms. The opportunity afforded by the

legacies of high throughput omics experimentation and systems-level mathematical models would help understand the emergent host-pathogen interaction.
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optimization problem (Papoutsakis, 1984; Fell and Small,
1986; Varma et al., 1993). Further incorporation of additional
layers of biological information through GPRs, thermodynamic
constraints, and various high throughput data have increased
the scope of the models beyond small species metabolism, to
multi-cellular, multi-compartmental organisms (Duarte et al.,
2007; Mo et al., 2007; Herrgård et al., 2008; Lewis et al., 2010;
Ahn et al., 2011; Bordbar et al., 2011; Chang et al., 2011;
Saha et al., 2011; Mintz-Oron et al., 2012; Seaver et al., 2012;
Wang et al., 2012; Pornputtapong et al., 2015). This evolution
in the field has been accompanied by a growth in associated
methodologies (Lewis et al., 2012) and new discoveries (Ellis
et al., 2009; Ahn et al., 2011; Frezza et al., 2011; Thomas et al.,
2014; Väremo et al., 2015). The importance of metabolism
in understanding the process of infections and host pathogen
relationships is increasingly being recognized (Han et al., 2010;
Kafsack and Llinás, 2010; Pacchiarotta et al., 2012; Beste et al.,
2013; Mcconville, 2014; Schoen et al., 2014; Yao and Rock,
2015). The cellular environment and repertoire of available
metabolites is critical in characterizing and understanding how
a pathogen interacts with and infects the host and constraint-
based approaches can provide value insight into mechanisms of
resistance and potentially new drug treatment targets (Chavali
et al., 2008; Huthmacher et al., 2010; Bazzani et al., 2012; Kim
et al., 2013; Shoaie and Nielsen, 2014; Tymoshenko et al., 2015).

In the “evolutionary tree” of constraint-based models, host-
pathogen models lie between multi-cellular models, pathogen
modeling, and new constraints/data integration approaches.
There are now numerous exciting frontiers in the growth of these
models, including the scope, incorporation of physicochemical
constraints, multi-tissue, and multi-organism models (Cakir
et al., 2006; Kümmel et al., 2006a,b; Beg et al., 2007; Duarte
et al., 2007; Mo et al., 2007; Herrgård et al., 2008; Lewis et al.,
2010; Ahn et al., 2011; Bordbar et al., 2011; Chang et al.,
2011; Saha et al., 2011; Metris et al., 2012; Mintz-Oron et al.,
2012; Seaver et al., 2012; Wang et al., 2012; Pornputtapong
et al., 2015). Some of the challenges regarding model integration
will be shared with related areas of multi-cellular constraint-
based modeling, such as modeling microbial communities
(Stolyar et al., 2007; Karlsson et al., 2011; Shoaie and Nielsen,
2014) and the development of new methods characterizing
the interaction between cellular interactions between different
species (Harcombe et al., 2014). Notable differences between
host pathogen modeling and microbial community modeling
include the specification of cellular objectives and constraints
as well as differences in spatial compartmentalization (microbial
community modeling will generally involve interaction through
a shared extracellular space, whereas host pathogen models
may interact through additional compartments; see below). We
confine the scope of this work to focus on host-pathogen
constraint-based modeling that entails the explicit integration of
two genome-scale (or cell scale) constraint-based models. The
purpose of this article is to describe a systematic methodology
leading to successful integration of constraint-based host-
pathogen models. Although there have been a relatively small
number of actual host-pathogen (hp) models reconstructed to
date, the existing studies have produced interesting results and

have taken steps toward elucidating the pathway forward for
future investigations (Raghunathan et al., 2009, 2010; Bordbar
et al., 2010; Sadhukhan and Raghunathan, 2014).

The extracellular environment has an influential effect on
the phenotype state and behavior of cells, thus pathogens
have different biochemical phenotypes when inside the host
versus outside the host and that the host cells will be
affected in some manner by the pathogen and vice-versa.
Many current experimental techniques enable characterization
of these different states (Deatherage Kaiser et al., 2013). The
generation of such data results in the technical challenge of
simultaneous interpretation and analysis of genomic, proteomic,
and/or metabolomics data of two independent, yet interacting
organisms. The ability to derive meaningful interpretations
of such data requires a computational setting which enables
mapping and integrating data in a coherent format that further
allows the data to be analyzed simultaneously, beyond simply
looking at correlations or fitting presumed associations to an
expected model. The constraint-based modeling framework
affords a means to do so.

While there are a seemingly innumerable number of ways that
pathogens have evolved to infect and reside their chosen host
tissues and organs, in general terms there are few places these
organisms can localize: intracellular, extracellular—interstitial,
extracellular—intravascular, extracellular—transcellular, and
“semi-open” spaces (e.g., the respiratory or alimentary tracts,
etc.). In the constraint-based framework, there are three types of
compartment based interactions between the host and pathogen
(defined by the interaction boundary as defined by the pathogen’s
cell wall): extracellular, intracellular:cytosolic, intracellular:intra-
organelle (Figure 2). Within the intracellular environment, there
are multiple compartments that a pathogen may localize and
life cycles of pathogens in some organisms reside in different
compartments, depending on the stage of infection. These details
are organism specific and are addressed on a case-by-case basis.

Reconstructing a Host-pathogen

Constraint-based Model

Formulation of a Description of a Biochemical

Network as a Constraint-based Optimization

Problem
The formulation of metabolic network descriptions in terms of
constraint-based modeling and relation optimization methods
is rooted in applying the principle of mass conservation and
thermodynamic constraints to these networks and has previously
been described in detail (Fell and Small, 1986; Varma et al., 1993;
Orth et al., 2010; Palsson, 2015). Integration of host-pathogen
models requires two curated stoichiometric representations of
metabolic networks, for which the minimum requirements are
a stoichiometric matrix and a flux vector with upper and lower
bounds,

Sh · vh = 0 (1a)

vlbh ≤ vh ≤ vubh (1b)

for the host and,
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FIGURE 2 | Cartoon based schematic representation of different types of interactions between a host and pathogen model, with special attention to

system boundaries. The system boundary is clearly delineated with a solid black line, whereas organism boundaries are dashed lines (the organelle boundary is

represented with a thinner black line. Note that with this formulation, individual models will be required to have exchange reactions for every metabolite that has a

trans-membrane transporter.

Sp · vp = 0 (2a)

vlbp ≤ vp ≤ vubp (2b)

for the pathogen, with Sh∈ Rmh x nh, Sp∈ Rmp x np, vh∈ Rnh, and
vp∈ Rnp (see Notations/Abbreviations).

For host-pathogen modeling, Equations (1) and (2) are not
applied under the strict steady state assumption, but rather along
the lines of a quasi-homeostatic state for which we enforce mass
conservation over a time scale of interest. With this consideration
in mind, the calculation of interest is rarely a specific flux point,
but rather a group of points reflecting a particular flux state (or a
region within the right null space) corresponding to a particular
phenotype that can be differentiated from other qualitatively
different flux states. Identification of such regions often may not
require the specification of a metabolic objective function, in
which case non-objective based methods, such as sampling, may
be appropriate (Savinell and Palsson, 1992; Barrett et al., 2006;
Schellenberger and Palsson, 2009; Bordel et al., 2010).

Pre-existing curated, functional models are a necessary but
not sufficient requirement for building an hp model. Even if

two models are well posed, integration of the two may result in
discrepancies as a result of multiple factors including,

• Error ranges in experimentally derived values (such as biomass
components).

• Incorporation of data from different experimental conditions
that may not be consistent with one another from a mass
balance or thermodynamic perspective.

• Limitations in biological scope of each respective model.
• Lack of knowledge about the true or underlying biological

objectives.

Additional, important considerations to be made when
transitioning from the analysis of an isolated pathogen
to a host-pathogen model include, simulating different
conditions with different data sets, simulating the same
species under different states versus different species under
similar conditions, and specification of the conditions in
which gene lethality knockout/knockdown studies or drug
sensitivity screens are performed and their applicability to host-
pathogen infectious states. These issues highlight the need for a
systematic methodology for integrating host-pathogen models.
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Constraint-based host-pathogen modeling can be viewed as
a generalizable, systematic, multi-tiered process with iterative
sub-steps (Figure 3). Each step includes multiple sub-steps that
require simulations or calculations to be performed, often in
an iterative fashion. A systematic approach for building and
testing the models during the integration process will help make
the debugging process more transparent and the more directed
identification of potential problems.

Step 1. Pre-integration Model Check
This initial step serves as a “sanity check” to avoid problems
during the subsequent integration components of the study.
Although current standards for building curated network
reconstructions generally require critical quality control/quality
assurance steps to avoid spurious behavior from ill-posedmodels,
prior to integration, there are a number of tests that must be
completed for each model to confirm the models have been
constructed and formulated appropriately.

1.i Check mass balances (“No free lunch”). Well curated
models should be free of errors that may lead to violation
of mass conservations constraints. However prior to
integration, each model should be tested to confirm this,
i.e., all uptake exchange reactions should be closed and flux
variability analysis (FVA) (Mahadevan and Schilling, 2003)
should be performed on the entire model, in order to confirm
that there is no net production of any metabolite, when
no substrates are available for uptake. In the toy model

FIGURE 3 | A systematic procedure for successful, functional

integration of a constraint-based host-pathogen model. Details are

described in the main text. The asterisks identify steps that require iterative

revisions if the models fail the corresponding test (see *Iteration/revision

checkpoints in the main text).

depicted in Figure 4, it is clear that if the substrates for the
host and pathogen are not available (Fe, Ae, and De), then
none of the secreted compounds (Be, Xe, Ee, Qe) can be
produced.
1.ii Identify boundary points. The simplest approach for
identification of the boundary points for a model is through
FVA. Although this step can technically be included in
the Functionality Test Suite, FVA is such a useful tool
for debugging and initial assessment of models, that it is
judicious to include this as a mandatory step in the model
integration protocol. Under general uptake conditions (that
are still biologically and thermodynamically feasible), FVA
is performed with subsequent calculation of the flux spans.
This assessment will enable the determination of the ranges
of all reactions and the potential identification of “closed”
reactions, any unbounded reactions, etc.
1.iii Functionality test suite. Prior to integration there
should be a pre-defined set of simulation condition(s) and
reaction optimizations in order to test and confirm desired
functionality of the model (Duarte et al., 2007); this set
of reactions comprise the Functionality Test Suite (FTS).
The FTS can contain any number of desired tests and
simulations to ensure appropriate physiologic behavior of
the model, examples include biomass production under
different growth conditions, specific gene knockout lethality
experiments, inability to growth under specified conditions,
or any other appropriate test that would evaluate the
physiological/biological characterization of the model or the
underlying mathematical definition.

Step 2. Model Integration
Although stoichiometric matrix integration of two models is
trivial from a technical standpoint, the functional integration of a
simulation-capable host and pathogen network reconstruction is
a non-trivial process. The panels in Figure 4 provide a concrete
illustration of the integration of two toy models.

2.i S matrix merge. The stoichiometric matrices are
joined through a compartment specific, row wise-merge
(Figure 4). Generally compartment specific reactions (i.e.,
the compartment in which nutrients are directly exchanged
between the host and pathogen) will not be shared between
the host and pathogen model, however it is important
to confirm this when constructing the new stoichiometric
matrix.

mhp < mh +mp (3)

nhp ≈ nh + np (4)

Note that Equation 3 is defined by an inequality, whereas
Equation (4) is an approximation. The degree of integration
and subsequent complexity of the interactions between the
models is dependent on the number of metabolites that
overlap between the two organisms. If the organisms do not
share any metabolites (mhp = mh + mp), then integration
of the two models will not result in any novel predictions.
On the other hand, the number of reactions in the combined
network may be equal to, less than, or greater than the sum of
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the two individual models. In toy model integration depicted
in Figure 4, mp = 9, mh = 11, and mhp = 18, satisfying the
Equation (3) inequality. For the toy model, Equation (4) is
an equality, since the number of reactions in the combined
model is equal to the sum of the individual models.
2.ii New constraints. Integration of two models includes
the introduction of additional constraints that will make
the simulation environment context specific and more
representative of the actual biological environment.

• Nutrient availability and demand. These constraints are
the most simple to implement and should provide strong
coupling between the host and pathogen. In addition to
biomass (growth and non-growth associated constraints),
additional condition dependent constraints can be
incorporated, for example demands on micronutrients,
sequestration of metabolites, etc. (Rodriguez et al., 2002;
Pan et al., 2010; Weiss and Schaible, 2015). For example
in the toy model (Figure 4), further curation may be

FIGURE 4 | Continued
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FIGURE 4 | Continued
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FIGURE 4 | Integration of toy a host cell model with an intracellular pathogen model. (A) depicts a cartoon schematic of a pathogen model, host model, and

integrated host-pathogen model with the corresponding stoichiometric matrices for each of the models (B corresponds to Ai, C corresponds to Aii, and D depicts the

stoichiometric matrix for the hp network in Aiii). Note that when the pathogen “infects” the host the transporters for metabolites B and Q enable usurpation of host

resources and will consequently limit the biomass construction capabilities of the host (potentially the pathogen as well, depending on the size of the demand). In the

provided example, metabolites F and X are not within the intracellular environment of the host, thus R10, R15, and R16 will not be able to carry a flux. In spite of this

however, since there is a transporter for metabolite B, the pathogen biomass can still be produced even though R10 will not be able to carry a flux. It is also possible

that metabolite F and/or X actually are available in the host, but that the particular metabolites were outside the scope of the reconstruction at that time. In this case,

the host model can be updated to include the relevant reactions that would make the metabolites available within the intracellular environment. The multiple points

within the protocol that would allow for evaluation of the appropriateness of including additional reactions during the iterative revisions, particularly Steps 3.iii, 3.iv, and

4.i. Intracellular organelles are not described in this toy example, however if the pathogen infects the host and resides within a particular organelle within the host cell,

the procedure would be the same. Note that the exchange reactions are not explicitly illustrated within the figures, but the columns are present in the stoichiometric

matrices.

needed in order to identify the appropriate bounds for the
intracellular pathogen uptake conditions as well as any
potential new demands on available host nutrients (not
depicted in this example).

• Coupling constraints. The host and pathogen networks
will interact by virtue of the compartment specific shared
metabolites. However, physiologically, the infection of
a host by the pathogen frequently results in additional
interdependencies between the two species, such as
competition for a shared resource. Coupling constraints
are the mathematical relationships formalizing the
explicitly link between the host and pathogen models
together as a constraint. This relationship may take the
form as an interaction between two molecules, concordant
activity between two enzymes, or some other biological
process. For example,

vhi + / − v
p
j = αk (5)

in which αk is a physiologic constant or data dependent
variable (e.g., protein production rates, mRNA expression,
etc.). Non-unity coefficients can be added to the reactions,
if there is known to be a fixed, stoichiometric balance
between the two (or more) reactions. Depending on the
type of relationship represented, this relationship can
be expressed as a continuous flux based problem, or a
discontinuous/discrete problem; the latter would require
formulation as a Mixed Integer Linear Programming
(MILP) problem (Burgard et al., 2001; Phalakornkule et al.,
2001; Pharkya et al., 2004; Kumar and Maranas, 2009).
In the case of hp models, MILP constraints may be used
to express conditionally active reaction constraints. For
example in the toy model depicted in Figure 4, if pathogen
growth (i.e., biomass production, Figure 4Aiii, R12) were
to only occur if the host cell would take up a particular
metabolite (e.g., metabolite D, Figure 4Aiii, R7).

• State changes. To date methodologies for representing
changes in infectious states during an infectious cycle or
a pathogens life cycle have been represented as discrete,
independent simulations. Depending on the type of data
that is available, context specificmodels can be constructed
for each different state or alternatively, conditional, state
dependent constraints MILP constraints can be defined.

2.iii New objectives. Flux balance analysis is an optimization
problem and while there are formulations of the constraint-
based modeling problem that do not require the definition
of a metabolic objective to be optimized (Lewis et al., 2012),
the incorporation of an objective function to be maximized
or minimized is often of great utility, since it enables more
specific predictions to be made by reducing the size of the
steady state solution space (right null space). The definition
and identification of objective functions is an area of great
importance in these models (particularly mammalian cell
models) that is a very rich area for exploration and in need
of further development in the current literature (Khannapho
et al., 2008; Schuetz et al., 2012; Shoval et al., 2012; Szekely
et al., 2013). The flexibility in designing cellular objectives
to tailor hp specific responses is critical for achieving success
with this approach. The biomass objective function has been
discussed in great detail and is generally considered in terms
of two general components: a growth associated component
(accounting for biomass constituent components) and a
non-growth associated component (Feist and Palsson, 2010).
The biomass reaction can be treated as a constraint on
the system or as a prediction to be made by the model
as a means to validate a network reconstruction (Price
et al., 2004). Since the growth of the solution space can
increase dramatically when two models are merged, defining
lower bound constraints on growth associated and non-
growth associated biomass functions for the host or pathogen
is a practical necessity in order to calculate meaningful
results. Organism specific objectives may be developed
from the new constraints that are defined or identified
experimentally.

The specification of appropriate objective functions
requires detailed understanding of pathogen physiology
and host pathogen interactions. These can be separated
into two general categories, single objective and multi-
objective problems (Figure 5). Examples of potential
objective functions include but are not restricted to, the
(pathogen) biomass pseudo-reaction, iron acquisition
(Ratledge and Dover, 2000; Nairz et al., 2015), lactate
dehydrogenase levels as a indicator level of cytotoxicity
(Korzeniewski and Callewaert, 1983; Decker and Lohmann-
Matthes, 1988), enterotoxin production, pathogen specific
metabolite production (Glickman et al., 2000; Takayama
et al., 2005), reactive oxygen species minimization
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FIGURE 5 | Categories and classifications of objective functions in host-pathogen models. The host-pathogen interaction pyramid is shown that integrates

host, pathogen and environment to result in the diseased state phenotype. The diseased state can be queried with the correct formulation of objective functions as

discussed for the three components delineated here. The two sides of the triangle represent the host and the pathogen and the connecting side represents the

environment or niche. The sides converge on the vertex of the prism reflecting the lethal disease state. The space outside the host pathogen interaction prism lists

objectives and their classification. Single objectives help define pathogen or host state, while multi-objectives or weighted objective functions allow definition of

complex phenotypes.

(Brynildsen et al., 2013), and other critical minerals and
metabolites.

Multi-objective functions are more complex, but may
reflect a more accurate representation of the biology
(Gianchandani et al., 2008; Schuetz et al., 2012; Zakrzewski
et al., 2012). The practical challenge is knowledge of the
adequate data to specify these objectives.

• Weighted objectives. New objective functions can be
constructed from the linear combination of reactions
representing cellular demands and requirements. By
combining different reactions together to generate
“compound” or weighted objectives, more complex
behavior can be captured. The obvious weakness of this
approach is that the stoichiometric coefficients are fixed
for the different components, thus this approach is only
applicable in situations in which fluxes (or metabolite
production/consumption) occur in fixed ratios with one
another (as in biomass).

• Bi-level optimizations across host-pathogen boundaries.
Bi-level optimization algorithms designed for
bioengineering and evolutionary objectives (Burgard
et al., 2003; Zomorrodi and Maranas, 2012) can be
extended and applied to understand the dynamics across
host and pathogen during an interaction. Depending
on the experimental conditions, this may include
optimization of pathogen biomass within the host. For
example there may be competing objective functions, as
in the case of maximization of pathogen biomass and
host biomass concurrently or in diametric opposition, i.e.,
maximization of pathogen biomass with minimization of

host substrate availability (either through minimization of
pathogen transport uptake or host transport uptake).

• Multi-level optimization. Although, computationally
intensive, multi-objective optimization (Zakrzewski et al.,
2012; Zomorrodi et al., 2014) can enable a more accurate
representation and in turn more accurate mathematical
simulation of the host-pathogen interaction.

• Step wise algorithmic multi-objectives i.e., sequential
optimizations that apply additional constraints at each
iteration. Iterative optimizations are approach for
including multilayered omic or physiological constraints
allow to be added in order to asses hp behavior in varying
environments or host niche’s (D’Huys et al., 2012). Such
approaches also support the integration of heterogeneous
data types. A limitation of this approach is that the
optimization is order dependent, and thus may be a
more valuable tool for assessing the effects of different
constraints as opposed to a more physiological objective.

2.iv Dimensionality assessment. Dimensionality assessment of
the network includes determining the size of the network,
including the number of metabolites and reactions, as well as
the size of the “functional” space of the network, such as the
right and left null spaces. These components can be directly
calculated from m, n, and the rank of the new stoichiometric
matrix Shp. These quantities can be used to calculate the
size of the right and left null spaces (Nr = n–R and Nl

= m–R). These simple calculations allow assessment of the
dimensionality of the new model (in terms of number of
components and reactions, as well as the steady state solution
space), which will assist in debugging and interpretation of
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TABLE 1 | Descriptive summary of the toy models.

Pathogen Host Host-pathogen

Number of metabolites 9 11 18

Number of reactions 11 13 20

Right null space dimension 2 2 3

Left null space dimension 0 0 1

Rank 9 11 17

Mean betweenness centrality 0.11 2.64 4.33

The sizes of the stoichiometric matrices and the respective right and left null spaces.

The steady state flux states reside in the right null space (calculated from applying mass

conservation constraints). The left null space size describes the number of “conserved”

metabolic moieties. In the case of the toy model, the left null space compound is the

metabolite that cannot be imported into the pathogen, because the host model does not

import or metabolize it.

calculated results and simulations (notably Steps 3 and 4).
Table 1 summarizes these results for the toymodels described
in Figure 4. Knowledge of the right null space in particular is
useful when debugging potential problems and interpreting
simulation results. Integration of the two models results in an
increase in the steady state solution space (i.e., at least 1 new
independent metabolic pathway) as a result of the integration
from the host and pathogen. The left null space contains
the conserved chemical moieties within a network (Famili
and Palsson, 2003; Sauro and Ingalls, 2004). The size and
contents of the left null space can be used to understand how
metabolites may pool together based on network structure
and often provides functional insights (Famili and Palsson,
2003; Thomas et al., 2014).

Additional graph theoretic measures can be calculated
(Girvan and Newman, 2002; Estrada and Rodríguez-
Velázquez, 2005; Fatumo et al., 2011), although their utility in
assessment of functional characteristics and trouble-shooting
in the context of hp model construction is currently limited.

Step 3. Integrated Host-pathogen Testing
On the surface, integration of two models is a trivial step given
the general simplicity of the basic formulation of constraint-
based models. The initial technical challenge is to identify the
overlapping set of metabolites and corresponding abbreviation
mappings between the host and pathogen metabolites.

Although there are laudable efforts to use standardized
nomenclature (Radrich et al., 2010; Dräger and Palsson, 2014),
a persistent challenge in the field is the use of different
abbreviations and nomenclature, which has often required
dedicated efforts to reconcile multiple versions of network
reconstructions (Herrgård et al., 2008; Thiele and Palsson,
2010). Fortunately, however, for host pathogen models, every
metabolite within the two models does not need to be compared,
but rather just the boundary metabolites, which are generally
a fraction of the total number of metabolites in a model.
This is relatively straightforward through the comparison of
abbreviations, if the reconstruction has been appropriately
annotated [e.g., molecular formula, SMILES (Weininger, 1988),
ChEBI (Degtyarenko et al., 2008), etc.]. Once the shared

metabolite complement is identified, the stoichiometric matrices
can be merged (Figure 4). However, “blind” integration without
proper quality control/quality assurance and test conditions in
place, the results will be difficult and quickly overwhelming to
interpret.

The first three sub-steps for Step 3 are similar to Step 1.
Depending on the type and complexity of new constraints
that are applied to the integrated host-pathogen model, there
are situations that may introduce behavior that violates mass
conservation, thus it is necessary to confirm that no “free
metabolites” are produced. For situations in which the pathogen
is an intracellular organism, the test needs to be applied to the
host-pathogen model, as well as the isolated pathogen, within
the host.

3.i Check mass balances. See Step 2. Model Integration, 2.i and
Figure 3, 2.i.
3.ii Identify boundary points. Identification of the right null
space boundary points through FVA of the host-pathogen
draft model will permit a detailed, yet global view of
the capabilities of the combined host-pathogen and enable
comparisons to the individual organisms (Step 1.ii). This
comparison may identify reactions or constraints that may
require revisions to be made. For example, upper bounds
constraints may need to be increased if the combined model
enables the pathogen to exceed the upper limit of some
reactions in comparison to the isolated organism. In the
case of the toy model illustrated in Figure 4 (integrated host
pathogen model), if host’s intracellular environment is much
richer than the “open” environment for the pathogen and in
the infected state, R4 >> R12 (Figure 4Aiii), then the upper
bound of R12 may need be increased in order to permit a
larger potential rate of biomass accumulation.
3.iii The functionality test suite. The functionality test suite
of the combined host-pathogen model will also enable a
basis for comparison with 1.iii and assist subsequent analyses
(Step 4). Note that the FTS for the individual host and
pathogen models may not be identical to the hp set of test
reactions, since the metabolic network capabilities of the host
and pathogen will not be identical in the infected versus
uninfected states.
3.iv Interdependence test This test requires identifying
objective functions that are expected to influence or be
influenced by the coupling between the host and pathogen.
The biomass function is a very good candidate for such
tests, as it is connected to many different pathways within
each respective organism, and subsequently more likely to be
directly connected to the host (or pathogen). The biomass
pseudo-reaction, however, is not the only possible objective
to test and other cellular/metabolic functions may be of
utility, such as ATP production, oxidative phosphorylation,
or constraints on secretion/uptake of particular metabolites
(Schuetz et al., 2007, 2012; Khannapho et al., 2008; García
Saánchez and Torres Sáez, 2014).

The interdependence test involves two steps,

a. Calculate the optimal host biomass production in the
host-pathogen model, then fix the lower bound of the
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host biomass reaction to a specified value (1-ε1) and then
optimize for the biomass of the pathogen:

For α1 = max(vBM,h
hp ),

set : lower bound(vBM,h
hp ) ≥ (1− ε1)α1

max (v
BM,p
hp ) = β2

b. Calculate the optimal pathogen biomass production in
the host-pathogen model, then fix the lower bound of the
pathogen biomass reaction to a specified value (1-ε2) and
then optimize for the biomass of the host:

For β1 = max(v
BM,p
hp ),

set : lower bound(vBM,h
hp ) ≥ (1− ε2)β1

max (vBM,h
hp ) = α2

Comparison of α1 to α2 as well as β1 to β2 provides an
indication of the degree of coupling between the two models.
If α1 ≈ α2 and β1 ≈ β2, then there is no significant coupling
between the two models. Conversely, if these values are
significantly different from one another then there is evidence
of interaction between the models on a metabolic level. It is
more common to have uni-directional coupling between the
models, often in favor of the pathogen, i.e., β1 ≈ β2 and α1
> α2 due to usurpation of host resources by the pathogen.
The ε coefficients are empiric, simulation based parameter
whose value will vary depending on the specific organism,
the biomass composition, and the media growth conditions.
The “ideal” ε will be large enough to force the consumption
of metabolites and resources required to produce biomass,
but small enough not to introduce a significant bias in the
flux state. When the coefficient ε is equal to 0, then the
interdependence test is equivalent to a stepwise optimization
comparison. Generally the coefficient ε is small, typically
0.01–0.1, when the biomass function is used. A phase portrait
analysis (Edwards et al., 2002) may be useful in assessing
and determining an appropriate ε value. Since ε is a specified
value, the degree of coupling between the host and pathogen
can be titrated to a certain degree. Note that since the growth
rates of the host and pathogenmay be very different from one
another, then ε1 and ε2 may be different from one another.

Since the corners of the right null space generally become
increasingly acute as the size of the model increases, when
the biomass is fixed at the optimum level there is a dramatic
decrease in the available alternative solutions. However when
this constraint is relaxed even by a small amount, the number
of alternative solution points dramatically expands; thus
in order to assess robust coupling between the host and
pathogen, generally a non-zero ε should be chosen.

For example in the toy model depicted in Figure 4,
the pathogen biomass function is dependent on substrates
provided by the host. If the uptake of metabolite A
(Figure 4Aiii, R6) is unbounded (or not known to have
any constraint), then the intra-cellular reproduction of the

pathogen is not significantly constrained and independent
of the host. However, if the host’s uptake of metabolite A
is limited, then the pathogen’s growth rate will be limited.
A common source of error and potential difficulty during
the integration of a host and pathogen model is for the
pathogen biomass production rate lower bound to be set
above the availability of the particular metabolite (i.e., either
the host uptake constraints or the host to pathogen transport
reactions), which results in a non-functional model. In these
cases, the data used for defining the constraints must be
re-evaluated and either the constraints would need to be
revised or there additional reactions would need to be added
to provide alternative routes for availability of the requisite
metabolite(s).

Step 4. Simulation
The type of simulation of interest is principally dependent on (1)
the type of data available, (2) the biological organism of interest,
and (3) the data available to validate or test the simulations.
Due to the broad scope and scale of the realm of possible
simulations, it is not practical to specify a list of calculations that
can be applied for every condition. The purpose of this step is to
assist in bridging the construction of the model to a meaningful
use of the model in the subsequent analysis steps. A common
characteristic of the simulation stage however involves evaluation
steps and the question of how to reconcile inconsistent results
between the model simulations and experimental observations.
Suffice it to say that the use of integrated omic data is one of
the most successful aspects of constraint-based modeling and
there are a number of growing methods being developed for
incorporating genomic sequence, transcriptomic, proteomic, and
metabolomic data; interested readers are referred to available
review articles outlining some of these methods (Blazier and
Papin, 2012; Lewis et al., 2012; Wang et al., 2012; Machado and
Herrgård, 2014; Robaina Estévez and Nikoloski, 2014). For the
purpose of organization and simplifying the debugging process,
the simulation tests can be classified into two general areas,

4.i Physiological constraints. Simulations validating (or
invalidating) predictions of the model using available
physiologic data sets.
4.ii Omic constraints. Simulations validating (or invalidating)
predictions of the hp model through omic data sets.

∗Iteration/revision checkpoints
“Failure” of specific steps in the protocol (Figure 3) requires an
iterative adjustment to be made through revision of the original
models, the integration step, or in some cases further literature
curation and updating of model content or constraints.
1.i Check mass balances (individual models). Failure: Return to
Step 1 (or before). If either the host or the pathogen model result
in violation of mass conservation constraints, then the respective
model needs to be critically evaluated and debugged, so that the
offending reaction(s) is/are identified and removed or adjusted
appropriately. The appropriate definition and representation of
system boundaries is a simple, yet critical step. Consequences
of undefined or inappropriately defined system boundaries will

Frontiers in Microbiology | www.frontiersin.org October 2015 | Volume 6 | Article 1032 | 101

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Jamshidi and Raghunathan Systematic methodology for constructing host-pathogen models

lead to an ill-formulated model that will likely result in mass
balance errors. The cartoon illustration in Figure 2 highlights
the appropriate definition of system boundaries when before
and after integration of a host with a pathogen reconstruction.
The most direct and common consequence of poorly defined
boundaries is an ill-formulated description of the optimization
problem with subsequent errors in mass balance, resulting in
irrelevant and even non-sensical results.

Dimensionality assessment
Failure: Return to Step 2.i. “Failure” of this step constitutes
violation of Equation (3). When merging two (or more
reconstructions) there must be a mapping between metabolites
that are shared by each of the two models. At minimum
there must be at least 1 metabolite that is shared between
each model, although in practice there are generally at least
30–40 metabolites that are shared. Once compartment specific
identification of shared metabolites has been performed, then
the two sets of models can be merged through merging the
stoichiometric matrices “row-wise.” If mh + mp = mhp, then
there has likely been an error in integration [either through
formulation of the problem (Step 1) or implementation of the
matrix merge (Step 2.i)]. As noted above, in general, nhp ≈

nh + np, with the approximation being dependent on whether
additional constraints or new objective reactions are added in the
integrated network.

Check mass balances (host-pathogen model)
Failure: Return to 2.i. If the integrated host-pathogen model
results in violation of mass conservation, but the individual
models did not, then there was an error in the model integration
(Steps 2.i-2.iii). Evaluation of the boundary exchanges of the
pathogen should be the first area of critical evaluation.

Functionality test suite
Failure: Return to 1.iii. Depending on the type of error and
the type of functional test, this may be “real” or it may reflect
incomplete knowledge (such as an incompletely defined biomass
function). Failures in the FTS should be analyzed to determine
the source of the limited constraint (the FVA calculations 3.ii can
be helpful in tracking this within the network). Once the cause
of the failure is identified, it needs to be determined if this is the
result of erroneous reaction constraints or a real prediction (i.e.,
a reaction that is active in the “uninfected” state but is inactive in
the infected state). Referral to the primary literature is frequently
needed to resolve these issues.

Interdependence test
Failure: Return to Step 1 and 2.ii. The lack of interdependence
may require revision of the model(s) (through additional
curation and scope expansion) and/or re-assessment of the new
constraints and objective functions that were added. For example,
in the toy model depicted in Figure 4Aiii, further evaluation
of the literature may suggest that R15 and/or R16 are active
in the pathogen during infections, which would require further
evaluation as to how metabolites F and/or X, respectively are
made available to the pathogen inside the host cell.

Simulation
Inconsistencies between model predictions and observed
experimental results or invalidating predictions should first be
assessed in terms of the model and how the specific prediction
was made, i.e., identification of the specific pathways leading to
the calculated results. If there is no evidence to suggest a model
related or numerical error, then there will need to be further
perusal of the literature. For example in Figure 4Aiii, if there is
biochemical or physiologic evidence in the literature suggesting
that biochemical transformation carried out by R10 should be
active (and able to carry a flux) in the infected state, then there
needs to be further evaluation of the literature to determine how
metabolite F is taken into the cell, or if there exists an alternative
pathway for production of metabolite F within the pathogen
(or host). This example also highlights the need for multiple
iterative steps that often necessitate re-evaluation of the primary
literature. In this case, the pathogen is still able to grow within
the host, so there were no errors in Steps 3.i, 3.ii, 3.iii, or 3.iv
(assuming that R10 was not contained in the FTS). This example
is also illustrative of the need for the multiple checkpoints in
the protocol (Figure 3) and the necessity of re-evaluating results
and possibly revising the model(s) at each step of the integration
process.

Current State of the Art and Future Outlook

The systematic procedure described above enables construction
of host-pathogen constraint-based models that is applicable
to organisms ranging from obligate parasites to multi-cellular
pathogens, including viruses, bacteria, and fungi. The methods
described above are most directly relevant and applicable to
bacterial and fungal organisms. Viruses and parasitic organisms
each demonstrate characteristics that may require further
considerations, particularly with respect to conditional (e.g.,
transcription) dependent constraints. Some parasites are multi-
cellular organisms that are capable of residing in multiple
tissues within a host, thus the challenge by some of these
organisms will require the integration of multiple, multi-cellular
models. This process will be more involved, but will include the
same systematic process. One should recognize the importance
of “buffering” compartments and should include them, as
they may play an important role in balancing protons, water,
phosphate, etc.

Achievement of the steps outlined in Figure 3 will result
in a functional host-pathogen model that should represent a
more biologically accurate, quantitative, simulatable description
of the interaction between a host and pathogen (Figure 5),
in turn enabling a more objective, quantitative assessment of
the interactions between these cells. Interrogation of these hp
models would allow probing pathogen adaptation and carbon
source utilization in vivo and host manipulation by pathogen.
Such models should then be used to answer questions regarding
causality during the infection process, condition dependent (or
context specific) differences, and ultimately advance diagnosis
and treatment related challenges by providing an environment to
evaluate and generate hypothesis as well as interpret and analyze
data.
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The ability to measure and represent data on a genome-scale
and the development of constraints based modeling strategies
can help explore the complex host-pathogen interaction space
(Figure 5). While the methods have reached a degree of maturity
that enable the application to a wide range of conditions,
there still remain many areas that deserve further exploration,
including more elegant representation of changes in the
environment (e.g., pH changes between different compartments
and the associated charge changes that may occur with
certain species) as well as more fluid descriptions in the
transitions between different growth stages (e.g., rather than
static representations for each stage, developing the analog of
kinetic models, in which the change from one state to another
can be simulated).

The process of host infection is complex and future
developments will build upon studies that have, for example,
investigated immune responsive signaling pathways such as
the Toll-like receptor (Li et al., 2009) as well as the
dynamics of pathogen metabolism (Penkler et al., 2015). With
continual developments in approaches to expand the scope
of reconstructions (Thiele et al., 2009; Lerman et al., 2012)
and the development of new methods and approaches for

generating genome scale network reconstructions (Overbeek
et al., 2005; Henry et al., 2010; Monk et al., 2013), it is
anticipated that there will be a dramatic rise in the development
of hp models. Ultimately the objective of integrative constraint-
based methods is to develop new strategies for treatment of
pathogenic infections through novel target identification and
new combination therapies for treatment (Trawick and Schilling,
2006; Jamshidi and Palsson, 2007; Karlsson et al., 2011; Chavali
et al., 2012).

Constraint-based modeling allows meeting the challenge of
complex omic data integration across time and space at multiple
levels of hierarchy in the reductionist causal chain to shrink
and explore the solution space of host-pathogen interaction.
On a genome-scale, multi-cellular level, constraint-based hp
modeling has great potential for the prediction of resultant
physiologically perturbed cellular states. Implementation across
these hierarchical levels of resolution (individual metabolites
to mulit-cellular inter-species interactions) at several levels of
abstraction will hopefully lead to further elucidation of the
metabolic underpinnings of the acute and chronic process
of infection, emergent mechanisms of pathogenesis, and
therapeutic strategies to counteract such changes.

References

Ahn, S. Y., Jamshidi, N., Mo, M. L., Wu, W., Eraly, S. A., Dnyanmote, A., et al.
(2011). Linkage of organic anion transporter-1 to metabolic pathways through
integrated “omics”-driven network and functional analysis. J. Biol. Chem. 286,
31522–31531. doi: 10.1074/jbc.M111.272534

Barrett, C. L., Price, N. D., and Palsson, B. O. (2006). Network-level analysis of
metabolic regulation in the human red blood cell using random sampling and
singular value decomposition. BMC Bioinformatics 7:132. doi: 10.1186/1471-
2105-7-132

Bazzani, S., Hoppe, A., and Holzhütter, H. G. (2012). Network-based assessment of
the selectivity of metabolic drug targets in Plasmodium falciparum with respect
to human liver metabolism. BMC Syst. Biol. 6:118. doi: 10.1186/1752-0509-
6-118

Beg, Q. K., Vazquez, A., Ernst, J., deMenezes, M. A., Bar-Joseph, Z., Barabási, A. L.,
et al. (2007). Intracellular crowding defines the mode and sequence of substrate
uptake by Escherichia coli and constrains its metabolic activity. Proc. Natl. Acad.
Sci. U.S.A. 104, 12663–12668. doi: 10.1073/pnas.0609845104

Beste, D. J., Nöh, K., Niedenführ, S., Mendum, T. A., Hawkins, N. D., Ward, J. L.,
et al. (2013). 13C-flux spectral analysis of host-pathogen metabolism reveals
a mixed diet for intracellular Mycobacterium tuberculosis. Chem. Biol. 20,
1012–1021. doi: 10.1016/j.chembiol.2013.06.012

Blazier, A. S., and Papin, J. A. (2012). Integration of expression data in
genome-scale metabolic network reconstructions. Front. Physiol. 3:299. doi:
10.3389/fphys.2012.00299

Bordbar, A., Feist, A. M., Usaite-Black, R., Woodcock, J., Palsson, B. O., and Famili,
I. (2011). A multi-tissue type genome-scale metabolic network for analysis of
whole-body systems physiology. BMC Syst. Biol. 5:180. doi: 10.1186/1752-0509-
5-180

Bordbar, A., Lewis, N. E., Schellenberger, J., Palsson, B. Ø., and Jamshidi, N. (2010).
Insight into human alveolar macrophage and M. tuberculosis interactions via
metabolic reconstructions.Mol. Syst. Biol. 6:422. doi: 10.1038/msb.2010.68

Bordel, S., Agren, R., and Nielsen, J. (2010). Sampling the solution space
in genome-scale metabolic networks reveals transcriptional regulation in
key enzymes. PLoS Comput. Biol. 6:e1000859. doi: 10.1371/journal.pcbi.10
00859

Brynildsen, M. P., Winkler, J. A., Spina, C. S., MacDonald, I. C., and Collins, J. J.
(2013). Potentiating antibacterial activity by predictably enhancing endogenous
microbial ROS production. Nat. Biotechnol. 31, 160–165. doi: 10.1038/nbt.2458

Burgard, A. P., Pharkya, P., and Maranas, C. D. (2003). Optknock: a bilevel
programming framework for identifying gene knockout strategies for microbial
strain optimization. Biotechnol. Bioeng. 84, 647–657. doi: 10.1002/bit.10803

Burgard, A. P., Vaidyaraman, S., and Maranas, C. D. (2001). Minimal reaction
sets for Escherichia coli metabolism under different growth requirements and
uptake environments. Biotechnol. Prog. 17, 791–797. doi: 10.1021/bp0100880

Cakir, T., Patil, K. R., Onsan, Z., Ulgen, K. O., Kirdar, B., and Nielsen, J. (2006).
Integration of metabolome data with metabolic networks reveals reporter
reactions.Mol. Syst. Biol. 2, 50. doi: 10.1038/msb4100085

Chang, H. H., Cohen, T., Grad, Y. H., Hanage, W. P., O’Brien, T. F., and Lipsitch,
M. (2015). Origin and proliferation of multiple-drug resistance in bacterial
pathogens. Microbiol. Mol. Biol. Rev. 79, 101–116. doi: 10.1128/MMBR.
00039-14

Chang, R. L., Ghamsari, L., Manichaikul, A., Hom, E. F., Balaji, S., Fu, W.,
et al. (2011). Metabolic network reconstruction of Chlamydomonas offers
insight into light-driven algal metabolism. Mol. Syst. Biol. 7, 518. doi:
10.1038/msb.2011.52

Chavali, A. K., D’Auria, K. M., Hewlett, E. L., Pearson, R. D., and Papin,
J. A. (2012). A metabolic network approach for the identification and
prioritization of antimicrobial drug targets. Trends Microbiol. 20, 113–123. doi:
10.1016/j.tim.2011.12.004

Chavali, A. K., Whittemore, J. D., Eddy, J. A., Williams, K. T., and Papin, J.
A. (2008). Systems analysis of metabolism in the pathogenic trypanosomatid
Leishmania major.Mol. Syst. Biol. 4, 177. doi: 10.1038/msb.2008.15

Deatherage Kaiser, B. L., Li, J., Sanford, J. A., Kim, Y. M., Kronewitter,
S. R., Jones, M. B., et al. (2013). A multi-omic view of host-pathogen-
commensal interplay in -mediated intestinal infection. PLoS ONE 8:e67155.
doi: 10.1371/journal.pone.0067155

Decker, T., and Lohmann-Matthes, M. L. (1988). A quick and simple method for
the quantitation of lactate dehydrogenase release in measurements of cellular
cytotoxicity and tumor necrosis factor (TNF) activity. J. Immunol. Methods 115,
61–69. doi: 10.1016/0022-1759(88)90310-9

Degtyarenko, K., de Matos, P., Ennis, M., Hastings, J., Zbinden, M., McNaught, A.,
et al. (2008). ChEBI: a database and ontology for chemical entities of biological
interest. Nucleic Acids Res. 36, D344–D350. doi: 10.1093/nar/gkm791

D’Huys, P. J., Lule, I., Vercammen, D., Anné, J., Van Impe, J. F., and
Bernaerts, K. (2012). Genome-scale metabolic flux analysis of Streptomyces
lividans growing on a complex medium. J. Biotechnol. 161, 1–13. doi:
10.1016/j.jbiotec.2012.04.010

Frontiers in Microbiology | www.frontiersin.org October 2015 | Volume 6 | Article 1032 | 103

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Jamshidi and Raghunathan Systematic methodology for constructing host-pathogen models

Dräger, A., and Palsson, B. Ø. (2014). Improving collaboration by
standardization efforts in systems biology. Front. Bioeng. Biotechnol. 2:61.
doi: 10.3389/fbioe.2014.00061

Duarte, N. C., Becker, S. A., Jamshidi, N., Thiele, I., Mo, M. L., Vo, T. D.,
et al. (2007). Global reconstruction of the human metabolic network based on
genomic and bibliomic data. Proc. Natl. Acad. Sci. U.S.A. 104, 1777–1782. doi:
10.1073/pnas.0610772104

Durmuş, S., Çakir, T., Özgür, A., andGuthke, R. (2015). A review on computational
systems biology of pathogen-host interactions. Front. Microbiol. 6:235. doi:
10.3389/fmicb.2015.00235

Ebrahim, A., Lerman, J. A., Palsson, B. O., and Hyduke, D. R. (2013). COBRApy:
COnstraints-Based Reconstruction and Analysis for Python. BMC Syst. Biol.

7:74. doi: 10.1186/1752-0509-7-74
Edwards, J. S., Ramakrishna, R., and Palsson, B. Ø. (2002). Characterizing the

metabolic phenotype: a phenotype phase plane analysis. Biotechnol. Bioeng. 77,
27–36. doi: 10.1002/bit.10047

Ellis, T., Wang, X., and Collins, J. J. (2009). Diversity-based, model-guided
construction of synthetic gene networks with predicted functions. Nat.

Biotechnol. 27, 465–471. doi: 10.1038/nbt.1536
Estrada, E., and Rodríguez-Velázquez, J. A. (2005). Subgraph centrality in

complex networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71:056103. doi:
10.1103/PhysRevE.71.056103

Famili, I., and Palsson, B. O. (2003). The convex basis of the left null space of the
stoichiometric matrix leads to the definition of metabolically meaningful pools.
Biophys. J. 85, 16–26. doi: 10.1016/S0006-3495(03)74450-6

Fatumo, S., Plaimas, K., Adebiyi, E., and Konig, R. (2011). Comparing metabolic
network models based on genomic and automatically inferred enzyme
information from Plasmodium and its human host to define drug targets in
silico. Infect. Genet. Evol. 11, 708–715. doi: 10.1016/j.meegid.2011.04.013

Feist, A. M., Herrgård, M. J., Thiele, I., Reed, J. L., and Palsson, B. Ø.
(2009). Reconstruction of biochemical networks in microorganisms. Nat. Rev.
Microbiol. 7, 129–143. doi: 10.1038/nrmicro1949

Feist, A. M., and Palsson, B. O. (2010). The biomass objective function. Curr. Opin.
Microbiol. 13, 344–349. doi: 10.1016/j.mib.2010.03.003

Fell, D. A., and Small, J. R. (1986). Fat synthesis in adipose tissue. An examination
of stoichiometric constraints. Biochem. J. 238, 781–786. doi: 10.1042/bj2380781

Frezza, C., Zheng, L., Folger, O., Rajagopalan, K. N., MacKenzie, E. D., Jerby, L.,
et al. (2011). Haem oxygenase is synthetically lethal with the tumour suppressor
fumarate hydratase. Nature 477, 225–228. doi: 10.1038/nature10363

García Saánchez, C. E., and Torres Sáez, R. G. (2014). Comparison and analysis of
objective functions in flux balance analysis. Biotechnol. Prog. 30, 985–991. doi:
10.1002/btpr.1949

Gawronski, J. D., Wong, S. M., Giannoukos, G., Ward, D. V., and Akerley, B. J.
(2009). Tracking insertion mutants within libraries by deep sequencing and a
genome-wide screen for Haemophilus genes required in the lung. Proc. Natl.
Acad. Sci. U.S.A. 106, 16422–16427. doi: 10.1073/pnas.0906627106

Gianchandani, E. P., Oberhardt, M. A., Burgard, A. P., Maranas, C. D., and Papin,
J. A. (2008). Predicting biological system objectives de novo from internal state
measurements. BMC Bioinformatics 9:43. doi: 10.1186/1471-2105-9-43

Girvan, M., and Newman, M. E. (2002). Community structure in social
and biological networks. Proc. Natl. Acad. Sci. U.S.A. 99, 7821–7826. doi:
10.1073/pnas.122653799

Glickman, M. S., Cox, J. S., and Jacobs, W. R. Jr. (2000). A novel mycolic acid
cyclopropane synthetase is required for cording, persistence, and virulence
of Mycobacterium tuberculosis. Mol. Cell 5, 717–727. doi: 10.1016/S1097-
2765(00)80250-6

Han, J., Antunes, L. C., Finlay, B. B., and Borchers, C. H. (2010). Metabolomics:
towards understanding host-microbe interactions. Future Microbiol. 5,
153–161. doi: 10.2217/fmb.09.132

Harcombe, W. R., Riehl, W. J., Dukovski, I., Granger, B. R., Betts, A., Lang, A. H.,
et al. (2014). Metabolic resource allocation in individual microbes determines
ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115. doi:
10.1016/j.celrep.2014.03.070

Henningham, A., Döhrmann, S., Nizet, V., and Cole, J. N. (2015). Mechanisms of
group A Streptococcus resistance to reactive oxygen species. FEMS Microbiol.

Rev. 39, 488–508. doi: 10.1093/femsre/fuu009
Henry, C. S., DeJongh, M., Best, A. A., Frybarger, P. M., Linsay, B., and

Stevens, R. L. (2010). High-throughput generation, optimization and analysis

of genome-scale metabolic models. Nat. Biotechnol. 28, 977–982. doi: 10.1038/
nbt.1672

Herrgård, M. J., Swainston, N., Dobson, P., Dunn, W. B., Arga, K. Y., Arvas,
M., et al. (2008). A consensus yeast metabolic network reconstruction
obtained from a community approach to systems biology. Nat. Biotechnol. 26,
1155–1160. doi: 10.1038/nbt1492

Huthmacher, C., Hoppe, A., Bulik, S., and Holzhutter, H. G. (2010).
Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific
metabolic network analysis. BMC Syst. Biol. 4:120. doi: 10.1186/1752-0509-
4-120

Jamshidi, N., and Palsson, B. Ø. (2007). Investigating the metabolic capabilities
of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and
proposing alternative drug targets. BMC Syst. Biol. 1:26. doi: 10.1186/1752-
0509-1-26

Kafsack, B. F., and Llinás, M. (2010). Eating at the table of another:
metabolomics of host-parasite interactions. Cell Host Microbe 7, 90–99. doi:
10.1016/j.chom.2010.01.008

Karlsson, F. H., Nookaew, I., Petranovic, D., and Nielsen, J. (2011). Prospects for
systems biology and modeling of the gut microbiome. Trends Biotechnol. 29,
251–258. doi: 10.1016/j.tibtech.2011.01.009

Khannapho, C., Zhao, H., Bonde, B. K., Kierzek, A. M., Avignone-Rossa, C. A.,
and Bushell, M. E. (2008). Selection of objective function in genome scale flux
balance analysis for process feed development in antibiotic production.Metab.

Eng. 10, 227–233. doi: 10.1016/j.ymben.2008.06.003
Kim, K., and Weiss, L. M. (2008). Toxoplasma: the next 100years.Microbes Infect.

10, 978–984. doi: 10.1016/j.micinf.2008.07.015
Kim, Y. M., Schmidt, B. J., Kidwai, A. S., Jones, M. B., Deatherage Kaiser, B. L.,

Brewer, H. M., et al. (2013). Salmonella modulates metabolism during growth
under conditions that induce expression of virulence genes. Mol. Biosyst. 9,
1522–1534. doi: 10.1039/c3mb25598k

Korzeniewski, C., and Callewaert, D. M. (1983). An enzyme-release assay for
natural cytotoxicity. J. Immunol. Methods 64, 313–320. doi: 10.1016/0022-
1759(83)90438-6

Kumar, V. S., and Maranas, C. D. (2009). GrowMatch: an automated method for
reconciling in silico/in vivo growth predictions. PLoS Comput. Biol. 5:e1000308.
doi: 10.1371/journal.pcbi.1000308

Kümmel, A., Panke, S., and Heinemann, M. (2006a). Putative regulatory sites
unraveled by network-embedded thermodynamic analysis of metabolome data.
Mol. Syst. Biol. 2, 0034. doi: 10.1038/msb4100074

Kümmel, A., Panke, S., and Heinemann, M. (2006b). Systematic assignment of
thermodynamic constraints in metabolic network models. BMC Bioinformatics

7:512. doi: 10.1186/1471-2105-7-512
Le Chevalier, F., Cascioferro, A., Majlessi, L., Herrmann, J. L., and Brosch,

R. (2014). Mycobacterium tuberculosis evolutionary pathogenesis and its
putative impact on drug development. Future Microbiol. 9, 969–985. doi:
10.2217/fmb.14.70

Lerman, J. A., Hyduke, D. R., Latif, H., Portnoy, V. A., Lewis, N. E., Orth, J. D., et al.
(2012). In silicomethod formodellingmetabolism and gene product expression
at genome scale. Nat. Commun. 3, 929. doi: 10.1038/ncomms1928

Lewis, N. E., Nagarajan, H., and Palsson, B. O. (2012). Constraining the metabolic
genotype-phenotype relationship using a phylogeny of in silico methods. Nat.
Rev. Microbiol. 10, 291–305. doi: 10.1038/nrmicro2737

Lewis, N. E., Schramm, G., Bordbar, A., Schellenberger, J., Andersen, M. P., Cheng,
J. K., et al. (2010). Large-scale in silico modeling of metabolic interactions
between cell types in the human brain. Nat. Biotechnol. 28, 1279–1285. doi:
10.1038/nbt.1711

Li, F., Thiele, I., Jamshidi, N., and Palsson, B. Ø. (2009). Identification of
potential pathway mediation targets in Toll-like receptor signaling. PLoS

Comput. Biol. 5:e1000292. doi: 10.1371/annotation/5cc0d918-83b8-44e4-9778-
b96a249d4099

Liao, Y. C., Tsai, M. H., Chen, F. C., and Hsiung, C. A. (2012). GEMSiRV:
a software platform for GEnome-scale metabolic model simulation,
reconstruction and visualization. Bioinformatics 28, 1752–1758. doi:
10.1093/bioinformatics/bts267

Machado, D., and Herrgård, M. (2014). Systematic evaluation of methods
for integration of transcriptomic data into constraint-based models of
metabolism. PLoS Comput. Biol. 10, e1003580. doi: 10.1371/journal.pcbi.10
03580

Frontiers in Microbiology | www.frontiersin.org October 2015 | Volume 6 | Article 1032 | 104

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Jamshidi and Raghunathan Systematic methodology for constructing host-pathogen models

Mahadevan, R., and Schilling, C. H. (2003). The effects of alternate optimal
solutions in constraint-based genome-scale metabolic models. Metab. Eng. 5,
264–276. doi: 10.1016/j.ymben.2003.09.002

McAdam, P. R., Richardson, E. J., and Fitzgerald, J. R. (2014). High-throughput
sequencing for the study of bacterial pathogen biology. Curr. Opin. Microbiol.

19, 106–113. doi: 10.1016/j.mib.2014.06.002
Mcconville, M. (2014). Open questions: microbes, metabolism and host-pathogen

interactions. BMC Biol. 12:18. doi: 10.1186/1741-7007-12-18
Metris, A., George, S., and Baranyi, J. (2012). Modelling osmotic stress by Flux

Balance Analysis at the genomic scale. Int. J. Food Microbiol. 152, 123–128. doi:
10.1016/j.ijfoodmicro.2011.06.016

Mintz-Oron, S., Meir, S., Malitsky, S., Ruppin, E., Aharoni, A., and Shlomi, T.
(2012). Reconstruction of Arabidopsis metabolic network models accounting
for subcellular compartmentalization and tissue-specificity. Proc. Natl. Acad.
Sci. U.S.A. 109, 339–344. doi: 10.1073/pnas.1100358109

Mo, M. L., Jamshidi, N., and Palsson, B. Ø. (2007). A genome-scale, constraint-
based approach to systems biology of human metabolism. Mol. Biosyst. 3,
598–603. doi: 10.1039/b705597h

Monk, J. M., Charusanti, P., Aziz, R. K., Lerman, J. A., Premyodhin, N., Orth, J. D.,
et al. (2013). Genome-scale metabolic reconstructions of multiple Escherichia
coli strains highlight strain-specific adaptations to nutritional environments.
Proc. Natl. Acad. Sci. U.S.A. 110, 20338–20343. doi: 10.1073/pnas.1307797110

Nairz, M., Ferring-Appel, D., Casarrubea, D., Sonnweber, T., Viatte, L., Schroll,
A., et al. (2015). Iron regulatory proteins mediate host resistance to salmonella
infection. Cell Host Microbe 18, 254–261. doi: 10.1016/j.chom.2015.06.017

Orth, J. D., Thiele, I., and Palsson, B. Ø. (2010). What is flux balance analysis? Nat.
Biotechnol. 28, 245–248. doi: 10.1038/nbt.1614

Osterlund, T., Nookaew, I., and Nielsen, J. (2012). Fifteen years of large scale
metabolic modeling of yeast: developments and impacts. Biotechnol. Adv. 30,
979–988. doi: 10.1016/j.biotechadv.2011.07.021

Overbeek, R., Begley, T., Butler, R. M., Choudhuri, J. V., Chuang, H. Y., Cohoon,
M., et al. (2005). The subsystems approach to genome annotation and its use
in the project to annotate 1000 genomes. Nucleic Acids Res. 33, 5691–5702. doi:
10.1093/nar/gki866

Pacchiarotta, T., Deelder, A. M., and Mayboroda, O. A. (2012). Metabolomic
investigations of human infections. Bioanalysis 4, 919–925. doi:
10.4155/bio.12.61

Palsson, B. (2015). Systems Biology: Constraint-based Reconstruction and Analysis.
Cambridge: Cambridge University Press.

Pan, X., Tamilselvam, B., Hansen, E. J., and Daefler, S. (2010). Modulation of
iron homeostasis in macrophages by bacterial intracellular pathogens. BMC

Microbiol. 10:64. doi: 10.1186/1471-2180-10-64
Papoutsakis, E. T. (1984). Equations and calculations for fermentations of butyric

acid bacteria. Biotechnol. Bioeng. 26, 174–187. doi: 10.1002/bit.260260210
Penkler, G., Du Toit, F., Adams, W., Rautenbach, M., Palm, D. C., Van

Niekerk, D. D., et al. (2015). Construction and validation of a detailed kinetic
model of glycolysis in Plasmodium falciparum. FEBS J. 282, 1481–1511. doi:
10.1111/febs.13237

Phalakornkule, C., Lee, S., Zhu, T., Koepsel, R., Ataai, M. M., Grossmann, I. E.,
et al. (2001). A MILP-based flux alternative generation and NMR experimental
design strategy for metabolic engineering. Metab. Eng. 3, 124–137. doi:
10.1006/mben.2000.0165

Pharkya, P., Burgard, A. P., andMaranas, C. D. (2004). OptStrain: a computational
framework for redesign of microbial production systems. Genome Res. 14,
2367–2376. doi: 10.1101/gr.2872004

Pornputtapong, N., Nookaew, I., and Nielsen, J. (2015). Humanmetabolic atlas: an
online resource for human metabolism. Database (Oxford) 2015, bav068. doi:
10.1093/database/bav068

Price, N. D., Reed, J. L., and Palsson, B. Ø. (2004). Genome-scale models of
microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol.

2, 886–897. doi: 10.1038/nrmicro1023
Radrich, K., Tsuruoka, Y., Dobson, P., Gevorgyan, A., Swainston, N., Baart, G.,

et al. (2010). Integration of metabolic databases for the reconstruction of
genome-scale metabolic networks. BMC Syst. Biol. 4:114. doi: 10.1186/1752-
0509-4-114

Raghunathan, A., Reed, J., Shin, S., Palsson, B., and Daefler, S. (2009). Constraint-
based analysis of metabolic capacity of Salmonella typhimurium during host-
pathogen interaction. BMC Syst. Biol. 3:38. doi: 10.1186/1752-0509-3-38

Raghunathan, A., Shin, S., andDaefler, S. (2010). Systems approach to investigating
host-pathogen interactions in infections with the biothreat agent Francisella.
Constraints-based model of Francisella tularensis. BMC Syst Biol 4:118. doi:
10.1186/1752-0509-4-118

Ratledge, C., and Dover, L. G. (2000). Iron metabolism in pathogenic
bacteria. Annu. Rev. Microbiol. 54, 881–941. doi: 10.1146/annurev.micro.54.
1.881

Reed, J. L., and Palsson, B. Ø. (2003). Thirteen years of building constraint-
based in silico models of Escherichia coli. J. Bacteriol. 185, 2692–2699. doi:
10.1128/JB.185.9.2692-2699.2003

Robaina Estévez, S., and Nikoloski, Z. (2014). Generalized framework for context-
specific metabolic model extraction methods. Front. Plant Sci. 5:491. doi:
10.3389/fpls.2014.00491

Rodriguez, G. M., Voskuil, M. I., Gold, B., Schoolnik, G. K., and Smith, I. (2002).
ideR, An essential gene in mycobacterium tuberculosis: role of IdeR in iron-
dependent gene expression, iron metabolism, and oxidative stress response.
Infect. Immun. 70, 3371–3381. doi: 10.1128/IAI.70.7.3371-3381.2002

Sadhukhan, P. P., and Raghunathan, A. (2014). Investigating host-pathogen
behavior and their interaction using genome-scale metabolic network models.
Methods Mol. Biol. 1184, 523–562. doi: 10.1007/978-1-4939-1115-8_29

Saha, R., Suthers, P. F., and Maranas, C. D. (2011). Zea mays iRS1563: a
comprehensive genome-scale metabolic reconstruction of maize metabolism.
PLoS ONE 6:e21784. doi: 10.1371/journal.pone.0021784

Sauro, H. M., and Ingalls, B. (2004). Conservation analysis in biochemical
networks: computational issues for software writers. Biophys. Chem. 109, 1–15.
doi: 10.1016/j.bpc.2003.08.009

Savinell, J. M., and Palsson, B. O. (1992). Optimal selection of metabolic fluxes for
in vivo measurement. I. Development of mathematical methods. J. Theor. Biol.
155, 201–214. doi: 10.1016/S0022-5193(05)80595-8

Schellenberger, J., and Palsson, B. Ø. (2009). Use of randomized sampling
for analysis of metabolic networks. J. Biol. Chem. 284, 5457–5461. doi:
10.1074/jbc.R800048200

Schellenberger, J., Que, R., Fleming, R. M., Thiele, I., Orth, J. D., Feist, A. M.,
et al. (2011). Quantitative prediction of cellular metabolism with constraint-
based models: the COBRA Toolbox v2.0. Nat. Protoc. 6, 1290–1307. doi:
10.1038/nprot.2011.308

Schoen, C., Kischkies, L., Elias, J., and Ampattu, B. J. (2014). Metabolism and
virulence in Neisseria meningitidis. Front. Cell. Infect. Microbiol. 4:114. doi:
10.3389/fcimb.2014.00114

Schuetz, R., Kuepfer, L., and Sauer, U. (2007). Systematic evaluation of objective
functions for predicting intracellular fluxes in Escherichia coli.Mol. Syst. Biol. 3,
119. doi: 10.1038/msb4100162

Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M., and Sauer, U. (2012).
Multidimensional optimality of microbial metabolism. Science 336, 601–604.
doi: 10.1126/science.1216882

Seaver, S. M., Henry, C. S., and Hanson, A. D. (2012). Frontiers in metabolic
reconstruction and modeling of plant genomes. J. Exp. Bot. 63, 2247–2258. doi:
10.1093/jxb/err371

Shoaie, S., and Nielsen, J. (2014). Elucidating the interactions between the human
gut microbiota and its host through metabolic modeling. Front. Genet. 5:86.
doi: 10.3389/fgene.2014.00086

Shoval, O., Sheftel, H., Shinar, G., Hart, Y., Ramote, O., Mayo, A., et al. (2012).
Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype
space. Science 336, 1157–1160. doi: 10.1126/science.1217405

Stavrinides, J., McCann, H. C., andGuttman, D. S. (2008). Host-pathogen interplay
and the evolution of bacterial effectors. Cell. Microbiol. 10, 285–292. doi:
10.1111/j.1462-5822.2007.01078.x

Stolyar, S., Van Dien, S., Hillesland, K. L., Pinel, N., Lie, T. J., Leigh, J. A., et al.
(2007). Metabolic modeling of a mutualistic microbial community. Mol. Syst.

Biol. 3, 92. doi: 10.1038/msb4100131
Szekely, P., Sheftel, H., Mayo, A., and Alon, U. (2013). Evolutionary tradeoffs

between economy and effectiveness in biological homeostasis systems. PLoS
Comput. Biol. 9:e1003163. doi: 10.1371/journal.pcbi.1003163

Takayama, K., Wang, C., and Besra, G. S. (2005). Pathway to synthesis and
processing of mycolic acids in Mycobacterium tuberculosis. Clin. Microbiol.

Rev. 18, 81–101. doi: 10.1128/CMR.18.1.81-101.2005
Thiele, I., Jamshidi, N., Fleming, R. M., and Palsson, B. Ø. (2009). Genome-

scale reconstruction of Escherichia coli’s transcriptional and translational

Frontiers in Microbiology | www.frontiersin.org October 2015 | Volume 6 | Article 1032 | 105

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Jamshidi and Raghunathan Systematic methodology for constructing host-pathogen models

machinery: a knowledge base, its mathematical formulation, and
its functional characterization. PLoS Comput. Biol. 5:e1000312. doi:
10.1371/journal.pcbi.1000312

Thiele, I., and Palsson, B. Ø. (2010). Reconstruction annotation jamborees:
a community approach to systems biology. Mol. Syst. Biol. 6, 361. doi:
10.1038/msb.2010.15

Thomas, A., Rahmanian, S., Bordbar, A., Palsson, B. Ø., and Jamshidi, N. (2014).
Network reconstruction of platelet metabolism identifies metabolic signature
for aspirin resistance. Sci. Rep. 4, 3925. doi: 10.1038/srep03925

Trawick, J. D., and Schilling, C. H. (2006). Use of constraint-based modeling for
the prediction and validation of antimicrobial targets. Biochem. Pharmacol. 71,
1026–1035. doi: 10.1016/j.bcp.2005.10.049

Tymoshenko, S., Oppenheim, R. D., Agren, R., Nielsen, J., Soldati-Favre, D., and
Hatzimanikatis, V. (2015). Metabolic needs and capabilities of toxoplasma
gondii through combined computational and experimental analysis. PLoS
Comput. Biol. 11:e1004261. doi: 10.1371/journal.pcbi.1004261

Väremo, L., Scheele, C., Broholm, C., Mardinoglu, A., Kampf, C., Asplund, A.,
et al. (2015). Proteome- and transcriptome-driven reconstruction of the human
myocyte metabolic network and its use for identification of markers for
diabetes. Cell Rep. 11, 921–933. doi: 10.1016/j.celrep.2015.04.010

Varma, A., Boesch, B. W., and Palsson, B. Ø. (1993). Stoichiometric interpretation
of Escherichia coli glucose catabolism under various oxygenation rates. Appl.
Environ. Microbiol. 59, 2465–2473.

Virchow, R. (1958). Cellular Pathology. Stanford, CA: Stanford Univesity Press.
Wang, Y., Eddy, J. A., and Price, N. D. (2012). Reconstruction of genome-scale

metabolic models for 126 human tissues usingmCADRE. BMC Syst. Biol. 6:153.
doi: 10.1186/1752-0509-6-153

Weininger, D. (1988). SMILES, a chemical language and information system. 1.
Introduction to methodology and encoding rules. J. Chem. Inform. Model. 28,
31–36. doi: 10.1021/ci00057a005

Weiss, G., and Schaible, U. E. (2015). Macrophage defense mechanisms
against intracellular bacteria. Immunol. Rev. 264, 182–203. doi: 10.1111/imr.
12266

Yao, J., and Rock, C. O. (2015). How bacterial pathogens eat host
lipids: implications for the development of fatty acid synthesis
therapeutics. J. Biol. Chem. 290, 5940–5946. doi: 10.1074/jbc.R114.
636241

Zakrzewski, P., Medema, M. H., Gevorgyan, A., Kierzek, A. M., Breitling,
R., and Takano, E. (2012). MultiMetEval: comparative and multi-objective
analysis of genome-scale metabolic models. PLoS ONE 7:e51511. doi:
10.1371/journal.pone.0051511

Zomorrodi, A. R., Islam, M. M., and Maranas, C. D. (2014). d-OptCom:
Dynamic multi-level and multi-objective metabolic modeling of
microbial communities. ACS Synth. Biol. 3, 247–257. doi: 10.1021/
sb4001307

Zomorrodi, A. R., and Maranas, C. D. (2012). OptCom: a multi-level
optimization framework for the metabolic modeling and analysis of microbial
communities. PLoS Comput. Biol. 8:e1002363. doi: 10.1371/journal.pcbi.10
02363

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Jamshidi and Raghunathan. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org October 2015 | Volume 6 | Article 1032 | 106

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


REVIEW
published: 30 June 2015

doi: 10.3389/fmicb.2015.00625

Frontiers in Microbiology | www.frontiersin.org June 2015 | Volume 6 | Article 625 |

Edited by:

Saliha Durmus,

Gebze Technical University, Turkey

Reviewed by:

Mihai Netea,

Radboud University Nijmegen Medical

Center, Netherlands

Mehmet Mete Altintas,

Rush University, USA

*Correspondence:

Stefan Schuster,

Department of Bioinformatics,

Friedrich-Schiller-University Jena,

Ernst-Abbe-Platz 2, D-07743 Jena,

Germany

stefan.schu@uni-jena.de

Specialty section:

This article was submitted to

Infectious Diseases,

a section of the journal

Frontiers in Microbiology

Received: 16 March 2015

Accepted: 08 June 2015

Published: 30 June 2015

Citation:

Dühring S, Germerodt S, Skerka C,

Zipfel PF, Dandekar T and Schuster S

(2015) Host-pathogen interactions

between the human innate immune

system and Candida albicans—

understanding and modeling defense

and evasion strategies.

Front. Microbiol. 6:625.

doi: 10.3389/fmicb.2015.00625

Host-pathogen interactions between
the human innate immune
system and Candida albicans—
understanding and modeling defense
and evasion strategies

Sybille Dühring 1, Sebastian Germerodt 1, Christine Skerka 2, Peter F. Zipfel 2, 3,

Thomas Dandekar 4 and Stefan Schuster 1*

1Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany, 2Department of Infection Biology, Leibniz

Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany,
3 Friedrich-Schiller-University Jena, Jena, Germany, 4Department of Bioinformatics, Biozentrum, Universitaet Wuerzburg,

Wuerzburg, Germany

The diploid, polymorphic yeast Candida albicans is one of the most important human

pathogenic fungi. C. albicans can grow, proliferate and coexist as a commensal on or

within the human host for a long time. However, alterations in the host environment

can render C. albicans virulent. In this review, we describe the immunological cross-talk

between C. albicans and the human innate immune system. We give an overview in

form of pairs of human defense strategies including immunological mechanisms as well

as general stressors such as nutrient limitation, pH, fever etc. and the corresponding

fungal response and evasionmechanisms. Furthermore, Computational Systems Biology

approaches to model and investigate these complex interactions are highlighted with

a special focus on game-theoretical methods and agent-based models. An outlook on

interesting questions to be tackled by Systems Biology regarding entangled defense and

evasion mechanisms is given.

Keywords: Candida albicans, human immune system, host-pathogen interaction, computational systems biology,

defense and evasion strategies, immunological cross-talk

1. Introduction

The diploid, polymorphic yeast Candida albicans (Wilson et al., 2009; Kwak et al., 2014; Mech
et al., 2014) is one of the most important human pathogenic fungi (Lu et al., 2014; Vylkova and
Lorenz, 2014; Whittington et al., 2014). This opportunistic ubiquitous fungus (Faro-Trindade and
Brown, 2009; Zipfel et al., 2011; Bain et al., 2012) usually resides as a commensal on the skin and
mucosal surfaces of 30 to 70 % of the human population (Cheng et al., 2012; Jacobsen et al., 2012;
Quintin et al., 2014). As part of the normal humanmicrobiota in the gastrointestinal, oropharyngeal
or urogenital tract (Moyes and Naglik, 2011; Luo et al., 2013; Wellington et al., 2014) C. albicans
can grow, proliferate and coexist within the human host for a long time (Yan et al., 2013) without
causing any symptoms of disease (Moyes and Naglik, 2011; Gow et al., 2012; Mayer et al., 2013).
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C. albicans is highly specialized for the life on or within the
human host (Wilson et al., 2009). The homeostasis between C.
albicans and the human host is kept by the human immune
system (Luo et al., 2013; Yan et al., 2013; Vylkova and Lorenz,
2014) and the normal bacterial flora on mucosal surfaces and
epithelial layers (Mayer et al., 2013; Yan et al., 2013; Mech et al.,
2014). However, alterations in the host environment can render
commensal factors into virulence attributes once the conditions
favor pathogenicity (Moyes and Naglik, 2011; Bain et al., 2012;
Whittington et al., 2014). Thus, there is a subtle balance between
the commensal- and the pathogenic state of C. albicans. This is
testified by a large number of defense mechanisms of the immune
system and evasion mechanisms of C. albicans. Furthermore,
there is evidence for probiotic action of C. albicans, for instance
regarding protection of the vaginal flora (Martin et al., 1999). To
understand this complex interplay, Systems Biology approaches
have shown to be very instrumental (Hummert et al., 2010; Mech
et al., 2014; Tierney et al., 2014). Here we provide a systematic
overview of the host-pathogen interactions to promote this
endeavor.

There are two major types of C. albicans infections in humans
(Filler, 2013; Luo et al., 2013; Mayer et al., 2013). Superficial
mucosal diseases like vaginal or oral candidiasis are extremely
common (Cheng et al., 2012; Filler, 2013; Wellington et al.,
2014). It is estimated that 75 % of all women worldwide suffer
from vulvovaginal candidiasis at least once in their life and 40
to 50 % experience recurrent infections (Wilson et al., 2009;
Mayer et al., 2013). Startlingly vaginal infections often occur
without any sign of immune defect (Jacobsen et al., 2012). While
Candida-associated denture stomatitis is caused in elderly and
edentulous individuals (Moyes and Naglik, 2011; Mayer et al.,
2013) oral and oesophageal candidiasis is particularly common in
HIV-positive individuals (Wilson et al., 2009; Moyes and Naglik,
2011; Jacobsen et al., 2012). Severe mucosal diseases and life-
threatening systemic infections arise in immunocompromised
individuals (Yan et al., 2013; Mech et al., 2014; Wellington et al.,
2014). These invasive infections of the bloodstream and virtually
every organ of the human body (Wilson et al., 2009; Mayer
et al., 2013; Vylkova and Lorenz, 2014) are associated with a
severe morbidity (Faro-Trindade and Brown, 2009; Zipfel et al.,
2011; Cheng et al., 2012; Luo et al., 2013), an unexeptably high
mortality (Zipfel et al., 2011; Filler, 2013; Yan et al., 2013) and
high healthcare costs (Yan et al., 2013; Vialas et al., 2014). As
disseminated hematogenous candidiasis is the 3rd to 4th most
common nosocomial bloodstream infection (Faro-Trindade and
Brown, 2009; Wilson et al., 2009; Vylkova and Lorenz, 2014)
C. albicans is medically as important as many mainstream
bacterial infections including Enterococci like Escherichia coli and
Pseudomonas spp. (Moyes and Naglik, 2011; Zipfel et al., 2011).

It is of particular significance that the human immune system
is able to discriminate between the commensal colonization
and the pathogenic invasion phase of C. albicans (Cheng et al.,
2012; Gow et al., 2012). A robust immune response is therefore
required to protect the host against Candida infection (d’Enfert,
2009; Jacobsen et al., 2012). This immune response can be divided
into physical barriers and immune-barriers of the mucosa (Luo
et al., 2013; Yan et al., 2013). The complexity of possible

host-pathogen-interactions is high, as C. albicans is likely to
encounter different components of the human immune system
(Jacobsen et al., 2012). C. albicans has developed a large number
of strategies to evade or undermine the antimicrobial defense
responses of the host immune system (Collette and Lorenz,
2011; Zipfel et al., 2011; Lopez, 2013; Luo et al., 2013). These
strategies may allow the fungus to control the host immune
attack, to cross tissue barriers and to disseminate in the human
body (Zipfel et al., 2011; Jacobsen et al., 2012; Luo et al.,
2013).

In this review, we describe the immunological cross-talk
between C. albicans and the human immune system. We follow
the trail of infection: starting from phenotypic adaptations and
morphogenesis, Candida encounters stress by the host and
its infected tissue environment including nutrient limitation,
temperature and pH stress. Furthermore, the host immune
system responds with the innate immune attack as the
immediately acting primary line of defense against systemic
fungal infections (Cheng et al., 2012; Lopez, 2013). That line
of host defense mainly relies on humoral complement actions,
antimicrobial peptides and the cellular response mediated by
phagocytes, especially by neutrophils and macrophages (Bain
et al., 2012; Cheng et al., 2012; Jiménez-López and Lorenz, 2013).

Because of the complex immune response we here focus
on the innate immune system. The adaptive immune system
contributes with many additional mechanisms (Curtis and Way,
2009; Korn et al., 2009; Hamad, 2012) which are beyond the
scope of this review. For a review on the crosstalk between innate
and adaptive immune-response and the role of dendritic cells see
Hamad (2012). Here, we start to give an overview of the crosstalk
of human defense mechanisms and the corresponding fungal
evasion mechanisms. As the total amount of such mechanisms
is enormous, the list cannot be exhaustive.

A number of different Systems Biology approaches exist to
model and simulate host pathogen interactions, e.g., Boolean
modeling (Naseem et al., 2012; Schlatter et al., 2012) and reverse
engineering (Tierney et al., 2012). However, no matter which
strategy is chosen, there is always a game of life and death
involved and hence game theoretical approaches and agent-based
modeling are particularly powerful and thus reviewed here. These
approaches are useful to depict the highly complex and dynamic
host-pathogen interactions and can help to gain further insights
into the underlying processes of C. albicans infections.

2. Host Defense and Corresponding Fungal

Evasion Strategies

As a commensal as well as an invading pathogen C. albicans faces
stressors of the host environment. Those stress sources include
changes in nutrient availability, pH, osmolarity, temperature, or
attack by the cells of the immune system (Wilson et al., 2009).
C. albicans has a robust stress response mediated by humoral
components as well as rapid alterations in gene expression of
stress-responsive regulatory pathways which allow C. albicans to
respond to changes of environmental stimuli (Wilson et al., 2009;
Mayer et al., 2013).
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2.1. Stress Induced by the Human Host and its

Environment
As a commensal C. albicans competes with all the probiotic
microorganisms of the host’s microflora for nutrients (Brunke
and Hube, 2013; Whittington et al., 2014). Even though the gut is
relatively rich in nutrients, those nutrients are quickly absorbed
by the microbial flora and the epithelial cells (Whittington et al.,
2014). In other host niches nutrients are limited by the host
and usually not available to pathogens (see Table 1). However,
C. albicans is metabolically flexible and uses nutrient acquisition
mechanisms such as sequestration of iron and zinc to survive and
grow in the many different and changing host niches such as the
gastrointestinal, oropharyngeal or urogenital tract (Brunke and
Hube, 2013; Whittington et al., 2014).

One of those mechanisms is the release of secreted aspartic
proteases (Saps) by C. albicans. Saps can destroy host tissue and
liberate oligopeptides and amino acids. These liberated carbon
sources are then taken up by C. albicans via oligopeptide and
amino acid transporters (Brunke and Hube, 2013). Adding to
the metabolic flexibility C. albicans has no known auxotrophies
and can metabolize a broad range of sugars and all amino acids
(Brunke and Hube, 2013; Lopez, 2013).

When facing nutrient starvation or phagocytosis C. albicans
shows responses that are similar in the two cases, switching
from the glycolytic pathway to the glyoxylate cycle and
gluconeogenesis (Faro-Trindade and Brown, 2009; Lopez, 2013;
Vylkova and Lorenz, 2014) which is absent from humans. This
metabolic shift enables C. albicans to metabolize alternative,
less favored carbon sources (De Figueiredo et al., 2008; Faro-
Trindade and Brown, 2009). Next to amino acids and lipids,
lactate produced by tissues and bacteria in the gut serves as one
potential carbon source (Lopez, 2013). The growth on alternative
carbon sources can cause substantial changes in the cell wall of
C. albicans even when the morphology of the cell is otherwise
unaltered (Gow et al., 2012). This influences the recognition
by phagocytes as well as drug- and stress-resistance of the cell
(Vylkova and Lorenz, 2014). C. albicans cells grown on lactate

have been shown to be more resistant to osmotic, envelope and
antifungal stresses and to be more adherent. They even elicit
lower levels of proinflammatory cytokines from monocytic cells
and once phagocytosed aremore harmful tomacrophages thanC.
albicans cells grown on glucose. The exposure to non-preferred
carbon sources therefore benefits C. albicans, especially in their
interactions with macrophages (Lopez, 2013). This fact may be
helpful for metabolic therapy strategies, as supplementing certain
nutrients in the infection locus may render C. albicans more
vulnerable to the host defense.

Another important defense mechanism in the host’s
“nutritional immunity” is the active sequestration of metals
(Brunke and Hube, 2013). The most important micro nutrients
that are prerequisite for C. albicans infection are iron, zinc,
manganese and copper (Brunke and Hube, 2013; Mayer et al.,
2013). Both the pathogenic fungus and its host have evolved
mechanisms to acquire and restrict access to these metals (Mayer
et al., 2013).

The human host is severely restricting the availability of
iron to pathogens by keeping the iron levels of the blood and
the tissue environment low (Brunke and Hube, 2013). This is
achieved by storing iron in iron-binding proteins like ferritin,
lactoferrin, hemoglobin and transferrin which are usually not
accessible to pathogenic microbes (Faro-Trindade and Brown,
2009; Jacobsen et al., 2012). C. albicans on the other side has
developed a plethora of iron acquisition systems (Brunke and
Hube, 2013) including a reductive system, a siderophore uptake
system and a heme-iron uptake system (Mayer et al., 2013). C.
albicans can utilize its siderophore uptake system via Sit1/Arn1
(siderophore iron transport 1) to steal iron from siderophores
produced by other microorganisms without producing its own
siderophores (Brunke and Hube, 2013; Mayer et al., 2013). C.
albicans can further bind host ferritin with the hyphae-associated
adhesion and invasion protein Als3 (agglutinin-like sequence 3)
(Jacobsen et al., 2012; Brunke andHube, 2013;Mayer et al., 2013).
The reductive system, with its large gene families of reductases,
oxidases and iron permeases (Brunke and Hube, 2013), then

TABLE 1 | Pairs of defense and evasion strategies—adapting to the host environment.

Human host C. albicans

Limiting nutrient availability to pathogens Release of secreted aspartic proteases (Saps) to liberate oligopeptides and amino acids from tissues

Nutrient starvation e.g., in phagocytes Switching from the glycolytic pathway to the glyoxylate cycle and gluconeogenesis to metabolize alternative carbon sources

Active sequestration of iron Iron acquisition through: a reductive system, a siderophore uptake system and a heme-iron uptake system

Active sequestration of zinc Zinc acquisition via a zincophore system

Inducing pH-stress Sense and adapt to environmental pH (Pra1); modulate extracellular pH by actively alkalizing the surrounding environment

Inducing thermal stress like fever Heat shock response mediated by heat shock proteins and trehalose accumulation

Inducing osmotic stress Outer cell wall structure as protection from osmotic pressure; intracellular accumulation of glycerol to counteract the loss of

water
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mediates the iron acquisition from host ferritin, transferrin or if
available free iron from the environment. C. albicans can also use
iron from host hemoglobin and hemoproteins by first expressing
haemolysins that disrupt red blood cells (Brunke andHube, 2013;
Mayer et al., 2013). Subsequently the iron acquisition is mediated
by the heme-receptor gene family members RBT5, RBT51, CSA1,
CSA2, and PGA7 (RBT6) (Mayer et al., 2013).

Zinc as a central cofactor for many proteins is an abundant
metal in most living organisms (Brunke and Hube, 2013).
The sequestration of zinc is therefore a potent antifungal
mechanism of the host during infections and is mediated by
calprotectin (Faro-Trindade and Brown, 2009; Brunke and Hube,
2013). C. albicans can acquire zinc via a “zincophore” system
using pH-regulated antigen 1 (Pra1) (Brunke and Hube, 2013).
Secreted Pra1 acts as a zincophor, similar to iron-carrying
siderophores (Brunke and Hube, 2013), binds extracellular zinc
and reassociates with the fungal cell (Mayer et al., 2013). This
reassociation is mediated by the zinc transporter Zrt1 (Mayer
et al., 2013).

Though copper and manganese are essential for fungal
growth, the mechanisms by which C. albicans acquires them are
less well understood. There is a putative manganese transporter,
Ccc1, and a putative copper transporter, Ctr1, but their roles in
C. albicans virulence have not yet been determined (Mayer et al.,
2013).

Next to nutritional stress, pH-stress is of fundamental
importance to C. albicans. Depending on the host niche C.
albicans encounters many different pH levels. While the pH
of human blood and tissues is slightly alkaline, the pH of the
digestive tract ranges from very acidic to more alkaline. pH-
stress can also occur in the urogenital tract as well as in the
phagolysosome, where pH is very acidic, once C. albicans is
phagocytosed by cells of the innate immune system. However, C.
albicans is able to adapt to significant changes in its surrounding
pH. The two C. albicans cell wall proteins Phr1 (pH responsive 1)
(required for systemic infections) and Phr2 (essential for
infections of the vagina) are important for adaptation to changing
pH. Astonishingly C. albicans is not only able to sense and
adapt to environmental pH but also to modulate extracellular
pH by actively alkalizing its surrounding environment (Mayer
et al., 2013). C. albicans can release ammonia derived from
amino acid degradation to raise extracellular pH (Lopez, 2013).
This is of special importance after phagocytosis as it promotes
the neutralization of the phagosomal pH, inducing hyphal
morphogenesis and thereby fosters the escape of the pathogen
from macrophages (Vylkova and Lorenz, 2014).

Thermal stress like fever and cold leads to a heat shock
response mediated by heat shock proteins and trehalose
accumulation in C. albicans. These heat shock proteins and
trehalose act as “molecular- and chemical- chaperons” by
preventing deleterious protein unfolding and aggregation (Mayer
et al., 2013).

The outer layer of C. albicans’ cell wall not only defines
the cell shape and provides an efficient barrier against immune
reactions but also protects the fungus from osmotic pressure (Luo
et al., 2013). A further osmotic stress response is the intracellular
accumulation of glycerol to counteract the loss of water due to an

outward-directed chemical gradient. The glycerol biosynthesis is
mediated by the glycerol 3-phosphatase (Gpp1) and the glycerol
3-phosphate dehydrogenase 2 (Gpd2) (Mayer et al., 2013).

2.2. The Human Innate Immun System
Zipfel et al. (2011) started a list of immune evasion and tissue
invasion mechanisms including complement evasion, evasion of
cellular response and tissue invasion mechanisms by C. albicans
which we include and further augment in Table 2. Several of
the mechanisms listed in Table 2 have been modeled by Systems
Biology approaches (see Section 3).

C. albicans can switch readily between yeast, hyphal and
pseudohyphal growth and back (Brunke and Hube, 2013; Kwak
et al., 2014; Lu et al., 2014). Both the yeast and hyphal forms
of the fungus are required for biofilm formation as well as full
virulence (Lopez, 2013; Yan et al., 2013). Mutants locked in
one morphology are avirulent and show a significantly reduced
growth performance in biofilm formation (Baillie and Douglas,
1999; Lopez, 2013; Yan et al., 2013).

Biofilms are three-dimensional microbial communities in an
extracellular matrix adhering to mucosal or artificial surfaces
(Ganguly and Mitchell, 2011) for example biomaterials used
for implants like stents and catheters. While the C. albicans
biofilms on abiotic surfaces consist of yeast and filamentous cells
of the fungus (Baillie and Douglas, 1999; Ramage et al., 2006;
Ganguly and Mitchell, 2011) the in vivo C. albicans biofilms are
polymicrobial with an extracellular matrix layer that contains
host immune cells (Ganguly and Mitchell, 2011). C. albicans
biofilms protect the pathogen from host immune attacks and
antifungal drugs (Baillie and Douglas, 1998; Seneviratne et al.,
2008; Yan et al., 2013). Especially C. albicans abiotic surface
biofilms are associated with increased drug resistance (Baillie
and Douglas, 1998; Ganguly and Mitchell, 2011). This antifungal
resistance increases with biofilm maturation (Chandra et al.,
2001). There are indications that C. albicans biofilms are even
resistant to killing by neutrophils (Ganguly and Mitchell, 2011;
Mayer et al., 2013) and do not trigger the production of reactive
oxygen species (ROS) (Mayer et al., 2013). Reviews on the
regulatory control of C. albicans within biofilms can be found in
Nobile and Mitchell (2006) and Finkel and Mitchell (2011). For a
review on C. albicans biofilms on mucosal surfaces see Ganguly
and Mitchell (2011).

After invading host tissues C. albicans encounters an
early defense line: the innate immune system. The innate
immune system maintains host homeostasis by recognizing and
cleaning modified or damaged host cells. It directly attacks and
limits the growth of invading microbes without inflammatory
reactions. This defense is mediated through three major effector
mechanisms: antimicrobial peptides, the complement system and
immune cells that recognize and respond to foreign microbes
(Zipfel et al., 2011).

The initial interaction of C. albicans with the human immune
system is with epithelial cells of the mucosa (Moyes and Naglik,
2011; Luo et al., 2013) that act as physical barriers. The fungus
is able to invade the human host tissues via two routes: induced
endocytosis and active penetration (Mech et al., 2014). The
passive uptake is a host driven process, mediated by C. albicans
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TABLE 2 | Pairs of defense and evasion strategies—C. albicans and the human innate immune system.

Human host C. albicans

EPITHELIAL RESPONSE

Physical barrier Active penetration by thigmotropism, elongating hyphae and production of lytic enzymes;

induction of endocytosis; degradation of extracellular matrix component by recruiting

human plasminogen to the yeast surface and secretion of lytic enzymes

Chemical barrier in form of secreted antimicrobial peptides and

degradative enzymes

Respond to β-defensin activity via the high-osmolarity glycerol (HOG) pathway; secretion

of Sap9 and a Msb2 fragment

The host uses C. albicans’ pumps to get antimicrobial peptides into the

pathogen

Uses multi-drug resistance pumps such as Flu1 to transport antimicrobial peptides out of

the pathogen

COMPLEMENT RESPONSE

Complement systems barrier Acquiring human complement regulators to the cell surface; secretion of complement

inhibitors to block C3 complement activation; production of proteases (Saps) to degrade

host complement proteins

CELLULAR RESPONSE

PRRs recognition barrier via dectin-1, dectin-2, etc. Surface mannans shield β-glucan from recognition by dectin-1 to avoiding phagocytosis;

release of soluble decoys to evade host immune responses

Barrier in form of pro- and anti-inflammatory cytokines and chemokines

production

Inhibition of proinflammatory IL-17 production by altering the host tryptophan metabolism;

induction of anti-inflammatory cytokine release

Inhibition of C. albicans yeast-to-hyphal transition by neutrophils No known evasion mechanism

Cellular ET formation by neutrophils and macrophages No known evasion mechanism

Phagocytosis Biofilm formation; inhibition of phagolysosome formation; neutralization of phagosomal pH

inside macrophages; induction of hyphal morphogenesis and escape from the immune

cell in macrophages and natural killer cells; pyroptosis / macrophage cell death

Oxidative and nitrosative stress induced by neutrophils and macrophages Inhibition of ROS generation by macrophages through an unknown mechanism; secretion

of Sod enzymes, catalases, glutathione peroxidases and thioredoxin to detoxify

extracellular ROS; accumulation of trehalose against oxidative stress; production of

intracellular flavohemoglobin enzymes against nitrosative stress; biofilm formation

surface proteins Als3 and Hgc1 (hypha-specific expression and
relatedness to G1 cyclins 1) which bind to epithelial cell E-
cadherin (Wilson et al., 2009). Active penetration on the other
hand does not rely on the host but exclusively on fungal attributes
including physical pressure applied by the advancing hyphal
tip, thigmotropism and the secretion of extracellular hydrolases
like Saps, class B phospholipase (Plb) and lipase (Lip) families
(Wilson et al., 2009; Mayer et al., 2013).

Epithelial cells not only provide a physical barrier but also
have an active, integral role in mucosal protection against
C. albicans by discriminating between the commensal and
pathogenic form of the fungus. Next to the NF-κB pathway,
Moyes and Naglik (2011) identified the MAPK signaling as
an important mechanism in the epithelial cell responses to
Candida infections. The presence of C. albicans yeast or
hyphae triggers the NF-κB signaling and an early response
of the MAPK activation through ERK1/2 and JNK signaling
which induces the c-Jun activity. When a sufficient fungal
hyphal burden is present and the threshold level of activation
is reached, a second prolonged, late response is induced,
activating MAPK regulation via the MAPK phosphatase MKP1
through ERK1/2 and p38 signaling. This in turn induces c-
Fos activity resulting in the production of cytokines with a
proinflammatory profile like interleukin 1α/β (IL-1α/β), IL-
6, G-CSF, GM-CSF, and TNF-α as well as the chemokines
RANTES, IL-8, and CCL20 (Steele and Fidel, 2002; Moyes and
Naglik, 2011; Cheng et al., 2012). Chin et al. (2014) showed
that the post-infection regulation of cytokines for IL-2, IL-6,

TNF-α, TNF-β are organ-specific (i.e., kidney, spleen, brain).
The secretion of proinflammatory molecules results in the
recruitment, differentiation, and activation of various immune
cells (Moyes and Naglik, 2011; Cheng et al., 2012). Especially
important for an early immune response of mucosal surfaces
to C. albicans infection is IL-22. This cytokine is produced
by innate and adaptive immune cells (De Luca et al., 2010;
Zenewicz and Flavell, 2011). A heterodimeric receptor consisting
of IL-22R and IL-10Rb recognizes IL-22 (Eyerich et al., 2011;
Sonnenberg et al., 2011; Zenewicz and Flavell, 2011). As the
expression of IL-22R is mainly confined to epithelial cells, the
signaling is specific to tissues (Eyerich et al., 2011; Zenewicz
and Flavell, 2011). IL-22 has both pro- and anti-inflammatory
functions (De Luca et al., 2010) and stimulates the proliferation
(Kagami et al., 2010; Zenewicz and Flavell, 2011) and together
with IL-17 the production of antimicrobial peptides by epithelial
cells (De Luca et al., 2010; Kagami et al., 2010; Eyerich et al.,
2011). The IL-23/IL-22 axis controls the initial fungal growth
and tissue homeostasis (De Luca et al., 2010; Zelante et al.,
2011). The combinatorial secretion of IL-22 and TNF-α by Th22
cells increases the induction and secretion of the complement
factors C1r and C1s, antimicrobial chemokines and antimicrobial
peptides (Eyerich et al., 2011).

2.2.1. Antimicrobial Peptides
Two important groups of antimicrobial peptides are α- and
β-defensins. The α-defensins group consists of four cationic
peptides, HNP1 to HNP4, that are found in the azurophilic
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granules of human neutrophils. The group of β-defensins is
primarily expressed by epithelial cells and includes human β-
defensins 2 and 3 (hBD-2 and hBD-3), that have significant
antifungal activity. They can be induced by a variety of agents,
including TLR agonists, as well as monocyte- and macrophage-
derived factors, such as IL-1 (Faro-Trindade and Brown, 2009).
The two groups of α- and β-defensins can be distinguished based
on their arrangement of disulfide linkages (Faro-Trindade and
Brown, 2009; Yan et al., 2013). Both defensin groups target C.
albicans cell membranes and cause nonlytic permeabilization and
release of cellular ATP (Faro-Trindade and Brown, 2009). The
damage imposed on C. albicans by hBD-2 and hBD-3 shares
similarities with that caused by osmotic and oxidative stress. C.
albicans in turn can respond to these hBD-2 and hBD-3 injuries
via the high-osmolarity glycerol (HOG) pathway and rescue cells
from β-defensin activity (Yan et al., 2013). Defensins can also act
as chemoattractants for monocytes, dendritic cells, and selected
lymphocytes (Faro-Trindade and Brown, 2009).

Another important antimicrobial peptide is LL-37, that kills
C. albicans by fragmenting the cellular membrane of the
fungus, leading to efflux of molecules like ATP and proteins
(Den Hertog et al., 2005; Faro-Trindade and Brown, 2009). LL-37
can further act as a chemoattractant for neutrophils, monocytes
and lymphocytes, induce histamine release from mast cells, alter
the transcriptional response in macrophages and play a role in
wound repair (Faro-Trindade and Brown, 2009). The peptide
is produced by the proteolytic cleavage of cathelicidin (hCAP-
18) (Den Hertog et al., 2005; Faro-Trindade and Brown, 2009).
The hCAP-18 produced in neutrophils, and other cells including
monocytes, natural killer cells, lymphocytes and a variety of
epithelial cells, has antimicrobial activity itself (Faro-Trindade
and Brown, 2009).

A family of cationic serine proteases called serprocidins also
possess antimicrobial activity. Members of this family are stored
within neutrophil granules and include protease-3, cathepsin
G, and elastase. Those proteins are involved in many cellular
processes including the cleavage of hCAP-18, cellular activation,
as well as chemotaxis (Faro-Trindade and Brown, 2009).

Another example of an antimicrobial enzyme is lysozyme
which targets the cell membrane of C. albicans. Lysozyme is
expressed by a variety of phagocytes, including granulocytes,
monocytes as well as macrophages and can be found at high levels
in various tissues and secretions such as saliva. Its fungicidal
activity is thought to occur through enzymatic hydrolysis of N-
glycosidic bonds within the fungal cell wall and injury to the cell
membrane (Faro-Trindade and Brown, 2009).

It is worth noting that the host makes use of C. albicans’
polyamine influx transporters to get some antimicrobial peptides
like histatin 5 into the pathogen. C. albicans in turn, uses multi-
drug resistance pumps such as the fungal polyamine efflux
transporter Flu1 to transport those antimicrobial peptides out
again and thus reduce their toxicity (Li et al., 2013). C. albicans
is also able to cleave histatin 5 with its protease Sap9 (Szafranski-
Schneider et al., 2012).

Another mechanism by which C. albicans deals with
antimicrobial peptides is the shedding of a large glycosylated
fragment of Msb2. C. albicans’Msb2 stabilizes the fungal cell wall

and inactivates histatin 5 and LL-37 (Szafranski-Schneider et al.,
2012; Swidergall et al., 2013) as well as human α- and β-defensins
(Swidergall et al., 2013).

2.2.2. Complement System
The complement system is highly efficient in recognizing and
eliminating infectious pathogens while its activation is tightly
regulated in time and space. For reviews about the interactions of
C. albicans with the human complement system see Zipfel et al.
(2011); Cheng et al. (2012); Zipfel et al. (2013); Luo et al. (2013).

For complement evasion C. albicans acquires several human
complement regulators, e.g., C4BP (complement component 4b-
binding protein), factor H, FHL-1 (four and a half LIM domains
protein 1), plasminogen and vitronectin, to its cell surface to
inhibit the actions of the complement system (Luo et al., 2013).
Factor H is bound by four C. albicans proteins: phosphoglycerate
mutase (Gpm1), Pra1, the high-affinity glucose transporter 1
(Hgt1p) andGpd2 (Luo et al., 2013; Zipfel et al., 2013).C. albicans
Pra1 and Hgt1p also bind C4BP. There are eleven C. albicans
proteins that bind host plasminogen: Gpm1, enolase, Tsa1, Cta1
(catalase 1), Tdh3 (triose phosphate dehydrogenase 3), Tef1
(translation elongation factor 1-alpha), Pgk1 (phosphoglycerate
kinase 1), Adh1 (alcohol dehydrogenase 1), Fba1 (fructose-
bisphosphate aldolase), Pra1 and Gpd2 (Zipfel et al., 2013) and
three C. albicans proteins which bind human FHL-1: Gpm1,
Pra1 and Gpd2 (Luo et al., 2013). Human plasminogen bound
on C. albicans’ cells, can be activated to proteolytically active
plasmin that cleaves host fibrinogen thereby contributing to
the tissue invasion of C. albicans cells into epithelia cell layers
(Zipfel et al., 2011). C. albicans further expresses ανβ3 integrin-
like protein that acquires host vitronectin to the fungal cell
surface. This in turn inhibits the formation of the terminal
complement complex (Luo et al., 2013). C. albicans can
furthermore secrete aspartyl proteases Sap1, Sap2, and Sap3 that
degrade the host complement proteins C3b, C4b and C5 (Gropp
et al., 2009; Luo et al., 2013). The expression of endogenous
complement inhibitors like secreted Pra1 which binds the central
complement component C3 in solution is another mechanism
by C. albicans to block C3 and complement activation (Zipfel
et al., 2011). Secreted Pra1 also blocks the human integrin
receptors CR3 and CR4, expressed by human leukocytes,
granulocytes, macrophage and natural killer cells thereby
inhibiting recognition, phagocytosis and cell-mediated killing
(Luo et al., 2013).

Phagocytes respond to pathogens by recognizing opsonins
and pathogen-associated molecular pattern (PAMPs) using
surface expressed pattern recognition receptors (PRRs) (Jacobsen
et al., 2012; Lopez, 2013; Luo et al., 2013). As the cell wall
of C. albicans contains carbohydrates and cell wall proteins
that are not present in the human body, it represents an ideal
immunological target (Gow et al., 2012). Exhaustive reviews on
C. albicans’ cell wall architecture and its recognition have been
published by Netea et al. (2008); Netea and Maródi (2010);
Moyes and Naglik (2011); Gow et al. (2012). The most important
C. albicans PAMPs are its cell wall carbohydrates: mannan (as
mannosylated proteins), β-glucan, and chitin (Lopez, 2013).
One mechanism used by C. albicans to evade the cellular
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response by phagocytes is to shield these β-glucans with surface
mannans upon hyphal growth to avoid phagocytosis (Luo et al.,
2013). The receptor ligation of PRRs with PAMPs activates
resident phagocytes and leads to synthesis and secretion of
cytokines and lipid mediators. One evasion mechanism by
C. albicans is the induction of an anti-inflammatory cytokine
release by favoring toll-like receptor (TLR) 2 instead of TLR4
recognition (Zipfel et al., 2011). C. albicans is further able
to inhibit the proinflammatory IL-17 production by altering
the host tryptophan metabolism. This metabolism is regulated
by two distinct enzymes: Indoleamine 2,3- dioxygenase (IDO)
and tryptophan hydroxylase. By inhibiting IDO expression, C.
albicans can shift the tryptophan metabolism, leading to fewer
kynurenines and more 5-hydroxytryptophan metabolites. The
increased 5-hydroxytryptophan levels subsequently inhibit the
host IL-17 production (Cheng et al., 2010, 2012). A similar
mechanism is used by cancer cells (Uyttenhove et al., 2003)
and has been described by a mathematical model (Stavrum
et al., 2013). For a detailed explanation of the recognition of
C. albicans PAMPs and the C. albicans evasion strategies from
epithelial cell defense see Netea et al. (2008); Netea and Maródi
(2010); Moyes and Naglik (2011); Gow et al. (2012); Mech et al.
(2014).

2.2.3. Phagocytes
While viral infections are primarily fought by T-cells in particular
T-killer-cells, defense against fungi resembles bacteria defense in
mobilizing neutrophils and macrophages.

Invading and disseminating C. albicans cells are faced with
phagocytic cells (Kumar and Sharma, 2010; Zipfel et al., 2011;
Jacobsen et al., 2012). Phagocytes, especially neutrophils and
macrophages are of major importance for the host defense
against mucosal and disseminated candidiasis (Cheng et al.,
2012; Krysan et al., 2014; Quintin et al., 2014). These immune
cells most effectively control and clear C. albicans infections
by killing C. albicans cells intracellularly and extracellularly
(Cheng et al., 2012). C. albicans on the other hand has evolved
several mechanisms to control and evade the antimicrobial
activity of local and newly attracted phagocytic cells by inhibiting
recognition, trafficking, and effector release, thus overcoming
several important stresses (Lopez, 2013; Luo et al., 2013).

Neutrophils are the prevalent immune cell type in anti-
Candida immunity (Moyes and Naglik, 2011; Luo et al., 2013).
During C. albicans infection, neutrophils migrate to sites of
infection and release one or more chemotactic factors (Luo et al.,
2013). After recognition of C. albicans cells through dectin-
1 (recognizes β-1,3 glucan), dectin-2 (recognizes mannan),
TLR2 (recognizes phospholipomannan), TLR4 (recognizes O-
mannan), andmannose receptor (recognizes N-mannan) (Moyes
and Naglik, 2011) neutrophils induce epithelial cell mediated
protection against C. albicans infections and can directly kill
Candida cells (Moyes and Naglik, 2011). The presence of
neutrophils further inhibits C. albicans growth, including the
yeast-to-hyphal transition (Jacobsen et al., 2012). These immune
cells preferentially target C. albicans hyphae but kill yeast and
hyphal forms of C. albicans at the same rate (Jacobsen et al., 2012;
Tyc et al., 2014). Neutrophils rely on a range of antimicrobial

effector mechanisms including oxidative burst, cytokine release,
phagocytosis, neutrophil extracellular traps (NETs), release of
granule enzymes as well as antimicrobial peptides to kill the
fungus (Luo et al., 2013). Additionally they may differentiate into
discrete subsets defined by distinct phenotypic and functional
profiles (Scapini and Cassatella, 2014).

Another important immune cell type in anti-Candida
immunity are macrophages (Jiménez-López and Lorenz, 2013;
Krysan et al., 2014; Liu et al., 2014). These dynamic cells are
distributed in various tissues and are part of the first line of
host defense (Brunke and Hube, 2013; De Lima et al., 2014;
Liu et al., 2014). Macrophages are of particular importance
as they can both limit C. albicans burden early in infection
and recruit and activate other immune effector cells (Krysan
et al., 2014). Macrophages produce a variety of pro- and anti-
inflammatory cytokines and chemokines in response to C.
albicans (Jacobsen et al., 2012; Krysan et al., 2014). Particularly,C.
albicans hyphae formation is a strong trigger for the production
of IL-1β (Krysan et al., 2014) thereby helping to orchestrate the
immune responses of the host (Jacobsen et al., 2012; Brunke and
Hube, 2013). Cheng et al. (2011) showed that the development
of hyphae during tissue invasion triggers the recognition by
macrophages via the dectin-1/inflammasome pathway, leading
to IL-1β production and thus T helper cell 17 (Th17 cell)
activation. For a review on inflammasome activation see van de
Veerdonk et al. (2015). Macrophages damage or directly kill
C. albicans (Krysan et al., 2014) utilizing a combination of
oxidative and nonoxidative microbicidal mechanisms including
the production of antimicrobial peptides and degradative
enzymes, the generation of ROS and nitric oxide synthase
(iNOS), phagocytosis andmacrophage extracellular traps (METs)
(Liu et al., 2014). During phagocytosis macrophages readily
ingest the round yeast form of C. albicans as well as relatively
short filaments (Jacobsen et al., 2012; Brunke and Hube, 2013;
Krysan et al., 2014). The fungus on the other side has developed
several defense strategies to escape from macrophages with a
significant cytotoxic effect on the immune cell, e.g., pyroptosis
(Krysan et al., 2014).

Natural killer cells are innate lymphocytes with a potent
cytotoxic activity. They usually are of major importance
in viral infections and anti-tumor immunity (Voigt, 2013).
The role of natural killer cells in host defense against C.
albicans infection strongly differs depending on the state of
host defense. While natural killer cells are an essential and
non-redundant component of anti-C. albicans host defense in
immunosuppressed hosts with defective T- and B-lymphocyte
immunity they can contribute to hyperinflammation in
immunocompetent hosts (Quintin et al., 2014). Natural
killer cells modulate the immune responses by secreting
cytokines which in turn recruit and activate other innate
immune cells. Natural killer cells are also able to phagocytose
C. albicans cells. However, in contrast to the professional
phagocytic activity of neutrophils, this does not inhibit the
further elongation of C. albicans filaments and leads to
the destruction of the natural killer cell (Voigt, 2013). It
was therefore proposed by Voigt (2013) that these immune
cells contribute to the protective immunity against C.
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albicans by recruiting other immune cells and enhancing
proinflammatory activities without efficiently restricting the
fungus.

Another important innate immune cell type for the C.
albicans defense are dendritic cells. They are professional
antigen-presenting cells which coordinate the immune response
and link innate and adaptive immunity (Cheng et al., 2012;
Ramirez-Ortiz and Means, 2012). Dendritic cells reside and
patrol in the skin and mucosal surface and ingest Candida
once tissues are invaded (d’Ostiani et al., 2000; Cheng et al.,
2012). These immune cells use C-type lectin pattern recognition
receptors like Dectin-1, Dectin-2 and DC-Sign to recognize
the fungus. Dendritic cells phagocytose both yeast and hyphal
C. albicans cells but kill yeast cells more efficiently (Jacobsen
et al., 2012). After processing C. albicans they present Candida-
specific antigens via major histocompatibility complex class II
molecules (Cheng et al., 2012). Dendritic cells therefore have
a bridging effect between the innate and adaptive antifungal
responses. They are able to discriminate between yeast- and
hyphal- forms of C. albicans (d’Ostiani et al., 2000; Cheng
et al., 2012) and induce different T helper cell differentiation
depending on the morphology of phagocytosed C. albicans
cells (d’Ostiani et al., 2000; Cheng et al., 2012; Jacobsen et al.,
2012). While yeast cells stimulate the priming of Th1 cells,
the ingestion of hyphae inhibits IL-12 and Th1 differentiation,
favoring Th2 cell differentiation (Cheng et al., 2012). The Th1
and Th17 cell responses are thought to be beneficial for the host
(Jacobsen et al., 2012). The different responses of dendritic cells
to yeast and hyphae morphologies may thus strongly influence
the clinical course of infection (Hamad, 2012; Jacobsen et al.,
2012).

2.2.4. Inside the Phagosome
Phagocytosis is depending on the glycosylation status of the C.
albicans cell wall, the morphology of the fungus, the hyphal
length, orientation and contact of the hyphae relative to the
phagocyte as well as the immune cell types and their state of
activation (Whittington et al., 2014). C. albicans in turn has
developed mechanisms to resist phagocytic killing by escaping
and even killing some phagocytic cell types (Faro-Trindade
and Brown, 2009; Dementhon et al., 2012; Luo et al., 2013;
Vylkova and Lorenz, 2014; Wellington et al., 2014). Several
phagocytes can efficiently ingest C. albicans yeast cells and short
hyphae (Jacobsen et al., 2012; Smith and May, 2013; Whittington
et al., 2014). Accordingly, a natural evasion strategy is to form
long hyphae because they can not be phagocytosed for simple
geometrical reasons. This is analogous to needle-shaped micro-
particles which can not be engulfed either. Without intervention
by the phagocytosed fungus, the phagosome matures via a
series of fusion and fission events with the lysosome into
the phagolysosome (Cheng et al., 2012; Brunke and Hube,
2013). However, early upon phagocytosis C. albicans is able to
alter intracellular membrane trafficking within the phagosome
by inhibiting phagosome maturation (Cheng et al., 2012;
Dementhon et al., 2012; Vylkova and Lorenz, 2014). Inside
the hostile environment of the phagolysosome C. albicans cells

are killed and degraded by nutrient starvation, low pH levels,
hydrolytic enzymes, antimicrobial peptides, ROS and reactive
nitrogen species (NOS) (Faro-Trindade and Brown, 2009; Zipfel
et al., 2011; Cheng et al., 2012; Luo et al., 2013; Mayer et al.,
2013).

While neutrophils can block hyphal development (Faro-
Trindade and Brown, 2009), C. albicans cells are able to
generate hyphae within the phagolysosome of dendritic cells and
macrophages allowing the fungus in some cases to kill and escape
from those phagocytes (Faro-Trindade and Brown, 2009; Luo
et al., 2013). Hyphal formation is depending on the pH-level
(Faro-Trindade and Brown, 2009). While the acidic pH inside
the phagosome should inhibit germination C. albicans is able to
modulate the phagosomal milieu (Vylkova and Lorenz, 2014). C.
albicans can rapidly alkalize the phagosomal environment via the
arginine biosynthetic pathway (Lopez, 2013; Vylkova and Lorenz,
2014). Neutralization of the pH via the extrusion of ammonia
presumably derived from the amino acid, results in the auto-
induction of hyphal formation (Bain et al., 2012; Vylkova and
Lorenz, 2014).

Some macrophages are able to withstand the stress of
elongating C. albicans filaments without apparent loss
of integrity (Krysan et al., 2014). In other macrophages,
however, the C. albicans hyphal formation can provoke
pyroptosis by activating the NLRP3 (NOD-like receptor
family, pyrin domain containing 3) inflammasome and
caspase-1. This proinflammatory, inflammasome-mediated
programmed cell death pathway leads to the macrophage
lysis and production of IL-1β and IL-18, allowing C. albicans
to escape the hostile environment of the phagocyte. Early
upon phagocytosis the majority of macrophage lysis is
mediated by pyroptosis (Uwamahoro et al., 2014; Wellington
et al., 2014). Later, a second macrophage killing phase,
independent and distinct from pyroptosis, is initiated by
C. albicans which depends on robust hyphal formation. As
pyroptosis has a protective role in infections with bacterial
pathogens by increasing inflammatory responses this might
also be the case in C. albicans infections (Uwamahoro et al.,
2014).

In a minority of cases phagocytosed C. albicans cells can
escape from macrophages through non-lytic expulsion (Brunke
and Hube, 2013; Lopez, 2013), also called exocytosis (Bain
et al., 2012) or vomitosis (Whittington et al., 2014). This rare
event is reported to occur at a low frequency but repeatedly in
various experimental conditions (Bain et al., 2012). Although
the underlying mechanisms are unknown (Lopez, 2013) it is
observed that both, the macrophage as well as the C. albicans
cell, remain intact and viable during phagocytosis and subsequent
expulsion. This means the macrophage cell retains its phagocytic
ability and is able to undergo mitosis as shown in Bain et al.
(2012) while the C. albicans cell can perform hyphae elongation
at normal rates. As non-lytic expulsion avoids lysis of the
macrophage but also of the C. albicans cell this process may
benefit both cell types (Bain et al., 2012). It is therefore not trivial
to account the process as strategy to either macrophages or C.
albicans.
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2.2.5. Oxidative and Nitrosative Stress and its

Detoxification
Phagocytes can produce oxidative and nitrosative stresses to
kill C. albicans (Wilson et al., 2009; Cheng et al., 2012;
Mayer et al., 2013) (see Figure 1). The respiratory burst as
summarized by Faro-Trindade and Brown (2009) is mediated
via the phagocyte NADPH oxidase (Phox). This membrane-
associated protein complex generates superoxide through the
transfer of electrons from NADPH to O2. The generated
superoxide (O−

2 ) has little, if any, toxicity but can be converted
to hydrogen peroxide (H2O2) and hydroxyl radicals (HO−)
with candidacidal activity. Myeloperoxidase (MPO), an enzyme
located in granules of neutrophils and in lysosomes of monocytes
(and even macrophages when they scavenge it through their
mannose receptors), catalyzes the further conversion of hydrogen
peroxide to hypochlorous acid (HClO). The hypochlorous acid
in turn is an extremely toxic and effective candidacidal oxidant.
The production of nitric oxide (NO) is induced by the inducible
nitric oxide synthase (iNOS or NOS2) through the oxidative
deamination of L-arginine. The NO itself has poor candidacidal
activity but can further react with the superoxide (O−

2 ), generated
by the respiratory burst (Vazquez-Torres et al., 1996; Faro-
Trindade and Brown, 2009). The so produced peroxynitrite
(ONOO−), an unstable structural isomer of nitrate (NO−

3 ), is
very effective at killing C. albicans (Vazquez-Torres et al., 1996;
Faro-Trindade and Brown, 2009; Cheng et al., 2012). As the
production of ROS and nitrosative stress are major antifungal
mechanisms in phagocytes, C. albicans possesses several defense

strategies to counteract the oxidative and nitrosative stresses
(Cheng et al., 2012; Mayer et al., 2013).

The response of C. albicans to ROS is regulated by Cap1
(adenylate cyclase-associated protein 1) and the MAP (mitogen-
activated protein) kinase Hog1. Both proteins regulate the
catalase expression in C. albicans (Lopez, 2013). The fungus
can produce antioxidant enzymes like the catalase Cta1 and
intracellular as well as extracellular superoxide dismutases (Sods)
to counteract the respiratory burst (Faro-Trindade and Brown,
2009; Frohner et al., 2009; Cheng et al., 2012; Mayer et al.,
2013; Miramón et al., 2013). Of the intracellular Sods, Sod1
is required for interaction with macrophages and Sod2 is
necessary to resist neutrophil attack (Miramón et al., 2013).
Next to the catalase Cta1, the superoxide dismutases Sod5,
Sod4 (Frohner et al., 2009) and Sod6 detoxify extracellular ROS
produced by macrophages (Lopez, 2013). The expression of
Sods is depending on the fungal morphology. While Sod4 is
expressed by C. albicans yeast cells, the hyphal forms express
Sod5 (Miramón et al., 2013). Neutrophils also induce the
expression of Sod5 even though they inhibit the yeast-to-hyphal
formation in C. albicans (Frohner et al., 2009; Miramón et al.,
2013). Furthermore, in response to incubation with neutrophils
Sods, catalase, glutathione peroxidase, glutathione reductase,
glutathione S-transferase and thioredoxin are strongly induced
in C. albicans cells (Wilson et al., 2009). The superoxide
detoxification generates H2O2 which is still highly toxic but
subsequently eliminated by Cat1. The glutathione peroxidases
(Gpxs) also detoxify H2O2 via oxidation of the thiolgroups in

FIGURE 1 | Depiction of oxidative and nitrosative stress imposed

on phagocytosed C. albicans and its detoxification by the fungus.

The Curved lines indicate cell membranes of the phagocyte, the

phagolysosome and, most inside, the C. albicans cell. Abbreviations:

iNOS, inducible nitric oxide synthase; Cta1, catalase 1; Sod1-6,

superoxide dismutases 1–6; Gpxs, glutathione peroxidases; GRX2 and

GRL1 encode glutathione reductases; Yhb1, Yhb4, and Yhb5,

flavohemoglobin 1, 4, and 5; Hog1, mitogen-activated protein kinase;

Cap1, adenylate cyclase-associated protein; Cta4, transcription factor;

Cwt1, cell wall transcription factor.
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two glutathione molecules, which are subsequently reduced by
glutathione reductases (Grxs), encoded by GRX2 and GRL1
(Miramón et al., 2013). In addition C. albicans up-regulates DNA
damage repair systems and heat shock proteins to counteract
oxidative damage to nucleic acids and proteins (Faro-Trindade
and Brown, 2009). The exposure to moderate concentrations of
ROS induces the entire arginine biosynthetic pathway but no
other amino acid synthetic genes in phagocytosed C. albicans
cells (Lopez, 2013).

The nitrosative stress response of C. albicans is mediated by
the three intracellular flavohemoglobin enzymes Yhb1, Yhb4,
and Yhb5 (Lopez, 2013; Mayer et al., 2013) which convert
NO to less toxic NO−

3 molecules (Luo et al., 2013). The
nitrosative stress response is regulated by the two transcription
factors Cta4 and Cwt1. While Cta4 positively regulates the
transcriptional nitrosative stress response, Cwt1 negatively
regulates it (Miramón et al., 2013).

2.2.6. Extracellular Traps
The production of extracellular traps (ETs) is a phagocytosis
independent antimicrobial mechanism observed inmany effector
cells including neutrophils and macrophages (Pruchniak et al.,
2012; Branzk and Papayannopoulos, 2013; Hahn et al., 2013; Liu
et al., 2014). These fiber-like extracellular structures are induced
by many different microbes including C. albicans (Faro-Trindade
and Brown, 2009), chemicals and cytokines (Liu et al., 2014).
As being significantly associated with the microbial surface ETs
are thought to act as a physical barrier that prevents invading
pathogens from further progressing. The formation of ETs was
therefore proposed as supplementary strategy by the host defense
when phagocytosis failed to eliminate the invading pathogen (Liu
et al., 2014).

Neutrophil extracellular traps (NETs) occur as specialized
form of neutrophils cell death and consist of DNA scaffolds
with antimicrobial proteins like histones and granule proteins
including myeloperoxidase, elastase, cathelicidins, cathepsin G,
calprotectins and gelatinase B (Faro-Trindade and Brown, 2009;
Urban et al., 2009; Moyes and Naglik, 2011; Liu et al., 2014).
Releasing these effector molecules into the extracellular space
allows neutrophils to efficiently trap and kill the yeast and hyphal
forms of C. albicans (Faro-Trindade and Brown, 2009; Liu et al.,
2014). While this is beneficial for the host defense, NETs also
participate in propagating some autoimmune diseases such as
systemic lupus erythematosus and small vessel vasculitis (Liu
et al., 2014).

C. albicans cells also induce the formation of METs like
structures (METs-LS). TheseMETs-LS can be released by dying as
well as viable macrophages and thus show more than one type of
composition. While some METs-LS consist of a DNA backbone
and microbicidal proteins including histone, myeloperoxidase
and lysozyme, other METs-LS did not contain histone. As
histones are associated with nuclear DNA it was proposed that
the DNA backbone in those METs-LS without histone originates
from mitochondrial DNA. In contrast to NETs, METs-LS are
not capable to efficiently kill C. albicans cells. Instead METs-LS
rather contain the invading pathogen at the infection site, thereby
preventing the systemic diffusion of C. albicans and providing

time to recruit other effector cells like neutrophils (Liu et al.,
2014).

While the formation of ETs usually depends on the generation
of ROS via the activation of the NADPH oxidase, C. albicans
induces NETs andMETs-LS in an ROS independent manner (Liu
et al., 2014).

3. Computational Systems Biology

Approaches

In many fields of biology, Computational Systems Biology
approaches have turned out to be very useful (Heinrich and
Schuster, 1996; Klipp et al., 2011). Various Systems Biology
methods for understanding and predicting fungal virulence have
been reviewed by Tierney et al. (2014). For other organisms, it
has been shown that network analyses are useful to describe and
understand the manifold interactions between a pathogen and its
host (Naseem et al., 2012).

The basis for many Systems Biology approaches is provided
by high throughput data. There are several studies regarding the
omics of Candida. For instance, eight Candida genomes were
compared by Butler et al. (2009). They found large families and
genome expansions regarding the cell wall, secreted proteins
and transporters, in particular in pathogenic species. These
adaptations seemed thus to be associated with virulence.

Comprehensive transcriptome data were collected by Bruno
et al. (2010). Measuring gene expression they identified 602
novel transcriptionally active regions. Conditions included
hyphae-induction, tissue culture, high and low oxidative stress,
nitrosative stress as well as cell wall damage-inducing conditions.

Regarding the omics of infection, there are in principle
also dual sequencing approaches feasible but this is not really
explored yet. Instead, Liu et al. (2015) investigated the host
response to C. albicans infection in various niches and derived
exciting results. Network analysis, siRNA knock down and
RNAseq data identified new host signaling pathways under
infection such as platelet-derived growth factor BB (PDGF
BB) and neural precursor-cell-expressed developmentally down-
regulated protein 9 (NEDD9). Both proteins regulate the uptake
of C. albicans by host cells.

Regarding metabolite data, there is a lipidomics study by
Singh et al. (2013) studying changes in C. albicans caused by
fluconazole, a drug against candidiasis. Under this treatment,
C. albicans shows an increased sterol content and depleted
sphingolipid levels in case of azole resistance.

As evidenced by omics data many mechanisms and
phenomena in biology (e.g., entangled positive and negative
feedback loops) are so complex that they cannot be understood
by intuition. This is one reason for the ever increasing
importance of computer simulations. A first and important step
is to explain known phenomena on theoretical grounds, thus
helping us to understand them. The usefulness of this aspect of
Computational Systems Biology should not be underestimated.
A famous early example is the Michaelis-Menten kinetics.
This formal approach helps us to understand the role of the
association and dissociation of the enzyme-substrate complex.
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It has a predictive aspect because it allows one to calculate the
reaction velocity even for substrate concentrations for which no
measurement has been performed for a specific enzyme so far.

The most ambitious goal is to predict hitherto unknown
properties, interactions and behaviors. Several studies show that
Computational Systems Biology approaches can generate clear
testable predictions that could later be confirmed in experiments
(Schuster et al., 2006) or highlight new working hypotheses
for in vitro experiments (Siegismund et al., 2014a,b). The latter
study investigates the early colonization of bacteria on different
biomaterials typically used for implants. Automated images
analysis of CLSM images and point-pattern analysis were applied
to show material-induced switches from bacterial adhesion to
colony growth on biomaterials. By two- or three-dimensional
modeling, e.g., using cellular automata or agent-based models,
the adhesion of pathogens and/or epithelial cells of the host
on implant surfaces can be simulated. For the case of bacteria,
see Siegismund et al. (2014b). This helps us to understand the
onset of disease in the case where the pathogens win this “race
for the surface” (Subbiahdoss et al., 2009) and the avoidance
of disease in the case where the host cells win. This will also
help to devise novel therapeutic strategies, as an appropriate
surface structure of the implants can diminish adhesion by
pathogens. A model for the thermal adaptation of Candida based
on a differential equation system was proposed by Leach et al.
(2012). That model appropriately describes the defense-evasion
pair “fever—heat shock response.” Moreover, other modeling
techniques have been used to study Candida infections, such as
Bayesian modeling (Shankar et al., 2015) and dynamic interactive
infectious networks (Chen and Wu, 2014).

Several defense and evasion mechanism have been described
by mathematical modeling. For example, the action of
degradative enzymes can be simulated by kinetic models of
metabolic networks (Heinrich and Schuster, 1996). Kinetic
models of tryptophan metabolism (Stavrum et al., 2013) and of
multi-drug resistance pumps have been published (Westerhoff
et al., 2000). A large body of literature on the modeling of
biofilm formation is available (Audretsch et al., 2013), though
mostly on bacterial rather than fungal biofilms, for a review
see Horn and Lackner (2014). Moreover, a gene regulatory
network was inferred (Tierney et al., 2012). All of those modeling
techniques could in principle be applied to investigateC. albicans’
interactions with the host.

In the present chapter, we outline themodelingmethods based
on game theory and agent-based models in more detail.

3.1. Game theory
Metaphorically, the struggle between pathogens and the human
immune system can be considered as a game in which each player
attempts to win (Renaud and De Meeus, 1991; Hummert et al.,
2014). This metaphor is quite useful because it allows one to
understand that struggle as an extended optimization process.
The extension is that the two counterparts (players) cannot
always reach the optimal state because they may hinder each
other in reaching it. Thus, suboptimal states can result (Hofbauer
and Sigmund, 1998). A considerable number of game-theoretical
models of bacterial and viral infections have been proposed, for a

review see Hummert et al. (2014), while fungal infections are the
subject of such studies to a lesser extent so far. To our knowledge,
Hummert et al. (2010) were the first to present a game-theoretical
model of the interaction of C. albicans with the human immune
system, in particular, with human macrophages. The simplifying
assumption used was that C. albicans has two strategies when
engulfed bymacrophages: avoiding lysis transiently (silencing) or
undergoing a morphological switch to form hyphae and escaping
(piercing). The latter situation corresponds to the defense-
evasion pair “phagocytosis—pyroptosis.” In the approach by
Hummert and coworkers, different Candida cells are considered
as players while the macrophage was considered as a constant
environment. Thus, a symmetric game results and the fitness
matrix can be written as follows:

p s

p l− c l− c

s
(
1− e−λ

)
l 0

where s and p stand for the silencing and piercing strategies,
respectively, l stands for the benefit of surviving, c for having
payed the costs for piercing and λ denotes the average number of
engulfed cells. A Poisson distribution for the number of ingested
C. albicans yeast cells was assumed.

Every entry in the fitness matrix gives the payoff of an
individual playing a row strategy against a pure population
playing the column strategy. Under certain parameter conditions,
a pure piercing population can exist. For other parameter
values, a mixed evolutionary stable strategy (ESS) results, which
corresponds to coexistence of silencing and piercing cells. The
silencing cells then benefit from the efforts made by the piercing
cells. In game-theoretical terms, this is a hawk-dove game
(Hofbauer and Sigmund, 1998; Stark, 2010). Both of the above-
mentioned outcomes are in good agreement with experimental
observations, because two different karyotypes had been found
(Tavanti et al., 2006).

A related model was established to describe the switch from
yeast to hyphae upon invasion of human tissues (rather than
inside macrophages) (Tyc et al., 2014). These authors extended
the model by differential equations, allowing them to describe
the dynamic behavior. Two situations are compared: cooperation
between yeast and hyphae forms, meaning that the yeast form
will also benefit when some cells switch to become hyphae, and
competition, in which coexistence of yeast and hyphal cells pays
off only to the hyphae. The model predicts that cooperation
among fungal cells occurs in mild infections and an enhanced
tendency to invade the host is associated with the competitive
behavior (Tyc et al., 2014).

Recent progress investigated the iterative Prisoners’ Dilemma.
Interestingly, there is an incentive for cooperativity under
these circumstances. It is worthwhile to use these mathematical
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insights in the context of recurrent Candida infections (an often
happening medical condition). As known for different bacterial
strains such as Pseudomonas in Mucoviscidosis there should be
some signs for selection for mitigated strains in such repeated
Candida infections. Furthermore, dictator strategies force a
certain win or loss on the opponent, no matter which strategy
is chosen (Axelrod and Hamilton, 1981). Such a way of action
should be the typical strategy of the immune system in the healthy
person but has not yet been extensively investigated, in particular
as such healthy persons rarely undergo clinical investigation.

In contrast to the game between different Candida cells,
the “game” between the immune system and pathogens is
an asymmetric game. A pioneering paper on that type of
description was published by Renaud and De Meeus (1991) for
the general case of any pathogen. The two players can choose
between an aggressive strategy (called the “killer” strategy) that
seeks to eliminate the adversary and a less aggressive strategy
(“diplomat”).

Renaud and De Meeus (1991) wrote down a rather general
payoff matrix involving several parameters. To illustrate the idea,
we here give a more specific matrix. However, the concrete
numbers do not matter as long as they fulfill certain order
relations. The entries in the matrix can be explained as follows.
If both sides adopt the “killer” strategy, they win with a certain
probability and have to afford the costs for that aggressive
behavior. This is here quantified by 1 for either side. If both adopt
the “diplomat” strategy, they can coexist and need not afford the
costs for aggression. Thus, they can gain, say, 5 points each. If the
host and parasite play “killer” and “diplomat,” respectively, the
latter will be eliminated (payoff of 0). The host survives but has
to afford some costs, so that its payoff is between 1 and 5 (here
assumed to be 3). In the converse situation, the host will die (or
at least become very sick), here quantified by 0. The parasite has
a benefit b and some cost c.

Parasite: Killer Diplomat
Host:

Killer 1, 1 3, 0

Diplomat 0, b− c 5, 5

The type of game depends on the difference b − c. If it is less
than 5, there are two stable Nash equilibria on the main diagonal:
“killer, killer” and “diplomat, diplomat.” Loosely speaking, we
can denote them by “war” and “peace.” The game is then related
to the coordination game, in which the two players have to
coordinate with each other to select among two symmetric Nash
equilibria (Stark, 2010). Although the peaceful situation is better
for both of them, they can get stuck in the war because neither
side can leave it unilaterally without decreasing its payoff even
more. It is worth noting that the non-lytic expulsion of C.
albicans cells from macrophages mentioned in Section 2.2.4 can
be considered as a peaceful situation as well.

If b − c > 5 (that is, high benefit or low cost of “killer”
strategy for the parasite), peace is no longer stable because there
is an incentive for the parasite to switch to the “killer” strategy.
The state “diplomat, killer” is not, however, stable either because
the host will then switch to “killer” as well. Thus, only war is
stable. This change of Nash equilibria is a suitable model for the
change from immunocompetent to susceptible hosts (e.g., after
antibiotics treatment due to change in bacterial flora). The cost c
for the parasite to invade the host then decreases, so that b − c
can exceed the critical threshold.

The situation where only war is stable in the killer-diplomat
game is quite paradoxical because both sides would be better off
if they were in peace with each other. This is reminiscent of the
famous Prisoners’ Dilemma, which is a symmetric game (Stark,
2010). In fact, the cause for instability is similar in both games:
it is the temptation (incentive) to leave the mutually beneficial
state. The difference between the two games is that, in the
Prisoners’ Dilemma, both players are tempted in this way while
in the killer-diplomat game, there is a temptation for the parasite
only.

3.2. Agent-based modeling
Agent-based models (ABMs) have become a powerful tool for
tackling complex systems, where the individuality, temporal state
and spatial distribution of its players may be of importance.
They are typically characterized by numerous interacting entities,
often called agents or individuals (depending on the discipline
so that the term individual-based model (IBM) is used as well).
They pursue certain objectives (e.g., increasing fitness, yield,
status) by following, more or less, simple structured rules. These
agents can be mobile or stationary units within a continuous
or discrete environment defined by three, two, one or even no
spatial dimension. In silico environments without any dimension
simply imply that the modeled system behavior is presumably
independent of any spatial scale. Including more dimensions
assumes that this may be of importance for the behavior of
the system: A model investigating the hunting strategies of
a terrestrial predator may be sufficiently described by a two-
dimensional environment. Whereas a third dimension has to be
considered simulating the movement of immune-cells through
different tissues or in the blood.

The philosophy of ABMs is to slice problems on the macro-
level down to simple interaction- and reaction-rules of players on
a micro-level. For example, patterns occurring on the population
level are transferred to properties and the behavior of single
individuals. Diseases of an individual can be explained by the
malfunction or disorder of organs and tissues. Often the macro-
level behavior of a system cannot be foreseen by only summing up
the rules of players. Instead, patterns may arise from the complex
interdigitation of state-dependent behavior of its entities, an
effect called emergence.

Resolving a macro-level pattern (emergence of a certain
behavior) to a lower complexity level comes at the price of a
detailed knowledge of the individuals properties and behavioral
strategies, which have to be precisely formulated. Especially
models representing a biological system frequently deal with
several involved types of agents (e.g., food-webs, stability of
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ecosystems) and numerous interactions often require a bottom-
up modeling approach with a deep knowledge of individual
properties. Thus, ABMs are typically hungry for data (e.g.,
thresholds for reaction to signals, kinetic parameters) and
computationally expensive due to, e.g., a frequent use of random
number generators to induce local and individual stochasticity.
Beside classical experimental approaches (e.g., for determining
growth-rates), image- and video-derived data offer a valuable
complementary solution to fill this gap of knowledge (Mech et al.,
2011, 2014).

Deviating from an equation-based modeling approach typical
ABMs show a considerable set of non-redundant rules. This often
poses difficulties to communicate ABMs. Grimm and colleagues
addressed this obstructive problem by proposing a standardized-
and later updated protocol to formalize the descriptions of ABMs
(Grimm et al., 2006, 2010).

Tokarski et al. (2012) investigated several hunting strategies of
alveolar macrophages for fungal spores of Aspergillus fumigatus.
The clearing efficiency of the immune system represented
the emergent property of this system. Different scenarios of
interactions between both players were tested, e.g., random walk
of macrophages; detection and guidance of macrophages along
local gradients of degradation products, indicating sporulation
of spores and positive feedback activation of macrophages which
already detected fungal spores. This approach exemplarily shows
that biological systems above a certain degree of complexity,
would be hard, if not impossible, to handle with an equation-
based model. System properties may only arise at such a high
complexity, e.g., by the local, state-dependent interactions of
several agents (see Figure 2).

Due to its strengths in representing complex systems, ABMs
show a broad field of scientific applications incorporating
ecological (DeAngelis andGrimm, 2014) andmicrobial questions
(Kreft et al., 2013).

ABM approaches helped to understand the epidemic spread
of diseases, e.g., influenza (Milne et al., 2008; Laskowski et al.,
2011) and Ebola (Merler et al., 2015) or, the microbial resistance
to antibiotics in Staphylococcus aureus (Macal et al., 2014). But
were also utilized to test the efficiency of counter-strategies for
disease control (Borkowski et al., 2009; Tian et al., 2013; Havas
et al., 2014).

Ideally ABMs can predict biological mechanisms or strategies
which were unknown from wet-lab experiments, showing
that both approaches are not competitive but complementary.
Pollmächer and Figge (2014) investigated migration modes
of macrophages and predicted that their efficiency of finding
conidia could only be explained by the release of chemotactic
signals from epithelial cells associated with Aspergillus fumigatus.

The human immune defense system consists of a dense
mesh of state-dependent interactions between numerous types of
players (e.g., pathogens, neutrophils or dendritic cells). Cascades
of signal molecules are steering the induction and inhibition of
cell responses and locally trigger the mobilization of different
defense levels (e.g., passive, innate and acquired).

Folcik et al. (2007) examined the complex interplay between
the innate and adaptive parts of the immune system. The focus
was on the qualitative response to a viral infection. That work

FIGURE 2 | Screenshot of a typical ABM simulation (taken from

Tokarski et al., 2012), displaying the hunt of free-moving neutrophil

agents (black circles) for immobile spore agents of Aspergillus

fumigatus in human lung tissue. Spores can be free (orange), temporarily

dragged (yellow) or caught (red) by a neutrophil agent. Dragged spores may be

released with a certain probability or caught and phagocytosed (gray).

Neutrophil agents are able to detect chemokines (blue), released by spores

during sporulation, and may adjust their movement accordingly.

showed that all parts of the immune system are non-redundant
and deficiency in any components increased the probability of
failure to clear the simulated viral infection.

Baldazzi et al. (2006) investigated anti-HIV therapy with a
immune-system model of multiple immune-cell types. ABMs
typically show a high degree of specificity, thus representing one
specific issue of a complex system in detail. Thus, ABMs are often
less general and hard to transfer to similar questions. Examples
addressing specific pathogens are: Clostridium (Peer and An,
2014), Pseudomonas aeruginosa (Seal et al., 2011), Leishmania
(Dancik et al., 2010), Helicobacter pylori (Carbo et al., 2013),
and Aspergillus fumigatus (Tokarski et al., 2012; Pollmächer and
Figge, 2014). Tyc and Klipp (2011) suggested how to combine the
complex behaviors of both, the host and the pathogen. Extensive
reviews regarding ABMs of the immune system can be found in
Chavali et al. (2008); Bauer et al. (2009); Li et al. (2008); Forrest
and Beauchemin (2007).

4. Discussion

In this review, we have given an overview of the immune
defense mechanisms of the human host against C. albicans and
the evasion mechanisms of the fungus to escape, circumvent
or counteract the immune response. Both the terms defense
and evasion are here used in a wide sense and may include
attack mechanisms. While earlier reviews have given an overview
of experimental observations on C. albicans defense and
evasion strategies, we present here an integrative synthesis of
experimental observation and theoretical modeling of infection
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strategies of C. albicans. Our review extends previous efforts on
this topic (Zipfel et al., 2013).

On the basis of the list of mechanisms and strategies,
given in Tables 1, 2, it is of interest to search for even
higher levels of interaction, that is, whether there are cascades
including counter-counter defenses. For example Streptomyces
clavuligerus produces both penicillin and clavulanic acid, a β-
lactamases inhibitor (Reading and Cole, 1977; Knowles, 1985).
Clavulanic acid and other β-lactamase inhibitors like sulbactam
and tazobactam, limit the destructive action of β-lactamases
from bacteria against β-lactam compounds such as penicillins
and cephalosporins (Williams, 1997). Thus, there are three
levels in the case of Streptomyces clavuligerus: penicillin as a
defense chemical, β-lactamases as an evasion (counter-defense)
mechanism by bacteria and clavulanic acid as a counter-counter
defense. To our knowledge, no counter-counter defense is known
in the case of C. albicans so far. However, Qiao et al. (2013)
showed that other eukaryotic pathogens, i.e., oomycetes, are able
to suppress RNA silencing, for a review see Pumplin and Voinnet
(2013). Examples for counter-counter defense strategies are
also known from plant-virus interactions, i.e., by antagonizing
the virus-induced downregulation of RNA silencing by the
plant (Sansregret et al., 2013). An intriguing question in the
microbiology of pathogens is: How deep such an arms race of a
host-pathogen interaction may evolve? Or, in other words: Are
organisms rather selected for a counter-counter defense or an
evolutionary novel mechanism of direct defense. The efficiency
of multiple and complex layers of defense and counter-defense
can be described mathematically by methods from Operations
Research (Abt, 1987).

As the examples given above like macrophage phagocytosis
and pyroptosis show, it can be hard to predict the outcome
of the struggle between the human immune system and
C. albicans. A special focus of our review therefore lies
on the discussion of various Systems Biology approaches.
Those are undoubtedly a promising tool to represent complex
host-pathogen interactions and allow for the emergence of
observed in vivo outcomes and for extensive testing scenarios
(e.g., medication, drug testing, cross-effects). For example the
acquisition of human complement regulators to the cell surface
can be considered as a molecular mimicry. Mathematical models
of mimicry in higher organisms can be adapted to describe
this phenomenon. Systems Biology approaches are instrumental
for questions which are hard to conduct solely in laboratory
experiments. Nevertheless, theoretical approaches have to be
substantially supported and completed by in vivo and in vitro
approaches.

In Tables 1, 2, both specialist and generalist effector
mechanisms can be seen. One example for a generalist effector
is the C. albicans protein Pra1 as it exerts several effects. In the
terminology of networks analysis, Pra1 is a hub. Accordingly,
it is of interest in future studies to analyze how complex and
entangled the network of interactions is, whether it is scale-
free or has small-world properties etc. (Yook et al., 2004). These

properties are relevant in view of robustness against errors and
mutations (Albert et al., 2000).

Another interesting question is how the host protects itself
from its own “attack” mechanisms such as oxidative and
nitrosative stress. Obviously, the levels of these substances should
not exceed upper limits. This, in turn, might give a chance for
C. albicans in its evasion strategies. Moreover, an optimal trade-
off between immunity and autoimmunity as in the case of NETs
must be found which also implies upper limits on the degree
of defense. In this context, the camouflage by C. albicans using
factor H is worth mentioning.

On or within the human host C. albicans not only interacts
with the host but also with all the probiotic microorganisms
of the host’s microflora. It is therefore worthwhile to further
look into these interactions, e.g., C. albicans’ theft of iron from
siderophores produced by other microorganisms via its own
siderophore uptake system. Kleptoparasitism can be investigated
using game theoretic models, considering individuals as well as
groups (Broom and Rychtář, 2011). To our knowledge this has
not been done for C. albicans so far.

All these topics are prone to be analyzed by mathematical
modeling and computer simulations. Some of the computational
methods such as agent-based models allow one to describe both
temporal and spatial aspects. Ideally, in-silico modeling makes it
possible to reduce the number of experiments with animals and
ethically questionable or prohibited experiments with humans.
This helps to gain further insight and make medically important
predictions, for instance regarding onset of fungal sepsis
and novel intervention strategies in the immunocompromised
patient.
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The recent outbreaks of Ebola virus (EBOV) infections have underlined the impact of the

virus as a major threat for human health. Due to the high biosafety classification of EBOV

(level 4), basic research is very limited. Therefore, the development of new avenues of

thinking to advance quantitative comprehension of the virus and its interaction with the

host cells is urgently needed to tackle this lethal disease. Mathematical modeling of the

EBOV dynamics can be instrumental to interpret Ebola infection kinetics on quantitative

grounds. To the best of our knowledge, a mathematical modeling approach to unravel the

interaction between EBOV and the host cells is still missing. In this paper, a mathematical

model based on differential equations is used to represent the basic interactions between

EBOV and wild-type Vero cells in vitro. Parameter sets that represent infectivity of

pathogens are estimated for EBOV infection and compared with influenza virus infection

kinetics. The average infecting time of wild-type Vero cells by EBOV is slower than

in influenza infection. Simulation results suggest that the slow infecting time of EBOV

could be compensated by its efficient replication. This study reveals several identifiability

problems and what kind of experiments are necessary to advance the quantification of

EBOV infection. A first mathematical approach of EBOV dynamics and the estimation of

standard parameters in viral infections kinetics is the key contribution of this work, paving

the way for future modeling works on EBOV infection.

Keywords: Ebola, mathematical modeling, kinetics, viral dynamics, identifiability, EBOV

1. Introduction

Ebola was characterized for the first time in 1976 close to the Ebola River located in the Demo-
cratic Republic of the Congo (WHO, 1978). Since then, outbreaks of EBOV among humans have
appeared sporadically causing lethal diseases in several African countries, mainly in Gabon, South
Sudan, Ivory Coast, Uganda, and South Africa (CDC, 2014). Among the most severe symptoms of
the EBOV disease are fever, muscle pain, diarrhea, vomiting, abdominal pain and the unexplained
hemorrhagic fever (Calain et al., 1999). Fatalities are predominantly associated with uncontrolled
viremia and lack of an effective immune response. However, the pathogenesis of the disease is still
poorly understood (Peters and Peters, 1999; Feldmann et al., 2003).

Ebola virus belongs to the family of Filoviridae, from Latin filum which means thread (Carter
and Saunders, 2013). Ebola virus is classified in Tai Forest, Sudan, Zaire, Reston, and Bundibugyo.
The human Ebola epidemics have been mainly related to infection by the Zaire and Sudan strains.
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Filovirus virions possess several shapes, a property called pleo-
morphism (Feldmann et al., 2003). These shapes are appearing as
either U-shaped, 6-shaped, or other configurations, e.g., Figure 1.

The natural hosts of EBOV still remain unsettled, but it is
tenable that EBOV persists in animals which transmit the virus
to non-human primates and humans (Knipe et al., 2001). It has
been reported that fruit bats are capable of supporting EBOV
replication without becoming ill and may serve as a major reser-
voir (Swanepoel et al., 1996; Knipe et al., 2001; Leroy et al.,
2009; Formenty, 2014). EBOV can spread from an infected per-
son to others through direct contact with blood or body flu-
ids (e.g., saliva, sweat, feces, breast milk, and semen), objects
(i.e., needles) that have been contaminated with the virus and
infected fruit bats or primates (Peters and Peters, 1999; Feld-
mann et al., 2003; CDC, 2014). The 2014 Ebola epidemic is the
largest ever reported in history, affecting multiple countries in
West Africa and being imported to other countries: one infec-
tion case was reported in Spain while in the United States one
death and two locally acquired cases in healthcare were reported
(CDC, 2014).

EBOV can infect a wide variety of cell types including mono-
cytes, macrophages, dendritic cells, endothelial cells, fibroblasts,
hepatocytes, adrenal cortical cells, and several types of epithelial
cells, all supporting EBOV replication. Monocytes, macrophages,
and dendritic cells are early and preferred replication sites of
the virus (Knipe et al., 2001). Furthermore, murine studies have
revealed that EBOV can infect cells in different compartments,
showing high viral titers in liver, spleen, kidney and serum
(Mahanty et al., 2003).

Due to its high infectivity and fatality, the virus is classified as a
biosafety level-4 agent, restricting basic research for Ebola disease
(Halfmann et al., 2008). Infection parameters and quantification
of the interactions between the virus and its target cells remain
largely unknown. Therefore, the development of new avenues

FIGURE 1 | Ebola virus molecular structure. The Ebola genome is composed of 3 leader, nucleoprotein (NP), virion protein 35 (VP35), VP40, glycoprotein (GP),

VP30, VP24, polymerase (L) protein and 5 trailer (adapted from SIB SWISS Institute of Bioinformatics, 2014).

of thinking to bring forward quantitative comprehension of the
relationship between the virus and the host is urgently needed. To
this end, mathematical models can help to interpret experimen-
tal results on quantitative grounds. Model simulations can infer
predictions to initiate further and conclusive experiments that
may solve relevant scientific questions and advance knowledge
of EBOV infection.

Recently, mathematical models have played a central role
to capture the dynamics of different virus infections (Nowak
and May, 2000). Among the most popular are HIV (Kirschner,
1996; Wu et al., 1998; Duffin and Tullis, 2002; Perelson, 2002;
Hernandez-Vargas et al., 2010; Hernandez-Vargas and Middle-
ton, 2013; Jaafoura et al., 2014), hepatitis virus (Ribeiro et al.,
2002; Reluga et al., 2009; Guedj et al., 2013) and influenza virus
infection models (Baccam et al., 2006; Handel et al., 2010; Smith
and Perelson, 2011; Pawelek et al., 2012; Hernandez-Vargas et al.,
2014). These models have been instrumental to study the mech-
anisms that control viral kinetics in order to provide a quan-
titative understanding and to formulate recommendations for
treatments. Similarities of parameter values for EBOV infection
to other viral infections that promote outbreaks, e.g., influenza
virus infection, could be expected. Nevertheless, to the best of
our knowledge, there has not been any mathematical approach
until now to describe EBOV dynamics. This and the interaction
of EBOV virus with non-human primate epithelial cells is the key
contribution of this work.

2. Materials and Methods

2.1. Mathematical Model
The mathematical model proposed here to represent EBOV
dynamics is based on the well established target cell-limited
model (Nowak and May, 2000), see Figure 2. This has served
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FIGURE 2 | Schematic representation of the model for EBOV infection.

Target cells (U) are replenished with rate λ and die with rate ρ. Virus (V) infects

target cells (U) with rate β. Infected cells are cleared with rate δ. Once cells are

productively infected (I), they release virus at rate p and virus particles are

cleared with rate c.

to model several viral diseases, among them HIV infection (Wu
et al., 1998; Perelson, 2002), hepatitis virus infection (Ribeiro
et al., 2002) and influenza virus infection (Baccam et al., 2006;
Hernandez-Vargas et al., 2014). A detailed reference for modeling
of viral dynamics can be found in Nowak and May (2000).

Using ordinary differential equations (ODEs), the EBOV
infection model is considered as follows:

dU

dt
= λ − ρU − βUV (1)

dI

dt
= βUV − δI (2)

dV

dt
= pI − cV (3)

EBOV target cells can be either in a susceptible (U) or an infected
state (I). Cells are replenished with a constant rate λ and die with
rate ρ. Note that the condition λ = U0ρ should be satisfied to
guarantee homeostasis in the absence of viral infection, such that
only ρ is a parameter to be determined. Virus (V) infects suscep-
tible cells with rate constant β . Infected cells are cleared with rate
δ. Once cells are productively infected, they release virus at rate p
and virus particles are cleared with rate c.

The initial number of susceptible cells (U0) can be taken from
the experiment in Halfmann et al. (2008) as 5 × 105. The initial
value for infected cells (I0) is set to zero. The viral titer in Half-
mann et al. (2008) is measured in foci forming units per milliliter
(ffu/ml). The initial viral load (V0) is estimated from the data
using the fractional polynomial model of second order (Royston
and Altman, 1994). The best model based on the Akaike Infor-
mation Criterion (AIC) is presented in Figure 3, providing an
estimate of 9 ffu/ml for V0. The parameter ρ is fixed from liter-
ature as 0.001 day−1 (Moehler et al., 2005). The effect of fixing
this value on the model output is evaluated with a sensitivity
analysis.

2.2. Experimental Data
As described in the previous section, this paper is mainly focused
on the interaction between the virus and the target cells. A safe
way to study the virus life cycle was proposed in Halfmann

FIGURE 3 | Data preparation. Fitted statistical model for the wild-type Vero

cells infected with EBOV at a low multiplicity of infection (MOI) (Halfmann et al.,

2008)

et al. (2008). The disease pathogenesis of EBOV in non-human
primates is known to be more faithful in portraying the human
condition than in rodents (Knipe et al., 2001). Replication kinet-
ics of EBOV are studied in Vero cells, a cell line derived from
kidney epithelial cells of African green monkeys (Halfmann et al.,
2008). This non-human primate is a known source of Filoviri-
dae virus infection, e.g., the European Marburg outbreak from
1967 (Knipe et al., 2001). Wild-type Vero cells and a Vero cell
line expressing VP30 were tested to reveal their ability to con-
fine EBOV to its complete replication cycle. In this study, viral
kinetics for wild-type Vero cells infected with EBOV at differ-
ent multiplicities of infection (MOI) were considered (Halfmann
et al., 2008). The viral growth data is presented in Figure 3. Fur-
ther details on the data, methods and experiments can be found
in Halfmann et al. (2008).

2.3. Parameter Estimation
Parameter fitting is performed minimizing the root mean square
(RMS) difference on log scale between the model output, ŷi, and
the experimental measurement, yi:

RMS =

√√√√ 1

n

n∑
i= 1

(log10 yi − log10 ŷi)
2 (4)

where n = 5 (Halfmann et al., 2008) is the number of measure-
ments. Differential equations are solved by R 3.1.2 (R Core Team,
2014) using the deSolve package (Soetaert et al., 2010). The min-
imization of RMS is performed using the Differential Evolution
(DE) algorithm employing the DEoptim package (Storn, 1997;
Mullen et al., 2011). The DE global optimization algorithm does
not rely on initial parameter guesses and converged faster than
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the other tested methods, including genetic algorithms and the
quasi-Newton (BFGS, L-BFGS-B) algorithms.

2.4. Parameter Uncertainty
Viral load variability is very large for several viral infectious dis-
eases (Mahanty et al., 2003; Baccam et al., 2006; Toapanta and
Ross, 2009; Groseth et al., 2012). In order to consider the large
variability of biological problems, a bootstrap method is applied
to the data series presented in Halfmann et al. (2008). Bootstrap-
ping is a statistic method for assigning measures of accuracy to
estimates (Davison and Hinkley, 1997; Xue et al., 2010). The
nonparametric bootstrap requires data to be independent and
identically distributed while the parametric bootstrap requires to
impose on the data a distribution assumption which is usually
unknown. For the data in Halfmann et al. (2008), three bootstrap
approaches were considered: (i) the conventional parametric
approach assumes a log-normal distribution of the measurement,
(ii) the nonparametric approach assumes uniform distribution in
the measurement range, and (iii) the weighted bootstrap assigns
to the cost function a vector of random weights from exponential
distribution with mean one and variance one (Ma and Kosorok,
2005; Xue et al., 2010).

For each repetition, the model parameters are refitted to
obtain the corresponding parameter distribution. The 95% con-
fidence interval of parameter estimates is computed using the
outcome of the bootstrap method (Xue et al., 2010). For each
parameter, the 2.5 and 97.5% quantiles of the estimates are used
to form the 95% confidence interval.

2.5. Parameter Identifiability and Sensitivity
A critical obstacle to overcome in mathematical modeling is
how to verify whether model parameters are identifiable based
on the measurements of output variables (Xia, 2003; Xia and
Moog, 2003; Wu et al., 2008; Miao et al., 2011). A system that is
algebraically identifiable may still be practically non-identifiable
if the amount and quality of the measurements is insufficient
and the data shows large deviations. The novel approach pro-
posed in Raue et al. (2009) exploits the profile likelihood to
determine identifiability and is considered here. This method is
able to detect both structurally and practically non-identifiable
parameters.

Identifiability properties are studied for the model Equations
(1–3) and the data set in Halfmann et al. (2008). The idea behind
this approach is to explore the parameter space for each parame-
ter θi by re-optimizing the RMS with respect to all other param-
eters θj 6= i. In particular, for each parameter θi, a wide range of
values centered at the optimized value is generated in an adap-
tive manner. Re-optimization of RMS with respect to the other
parameters is done for each value of parameter θi. The main task
is to detect directions where the likelihood flattens out (Raue
et al., 2009). The resulting profiles are plotted vs. each parameter
range to assess the parameter identifiability visually.

In model fitting, some parameters may have little effect on
the model outcome, while other parameters are so closely related
that simultaneous fitting could be a difficult task. For this
aspect, the scatter plots using pairs of parameters over different
bootstrap replicates will be reported. Furthermore, sensitivity

analysis of the estimated parameters is performed (Brun et al.,
2001; Soetaert, 2014). For each data point the derivative of the
correspondingmodeled variable value with respect to the selected
parameter is computed. The normalized sensitivity function
reads as

∂yi

∂2j
·
w2j

wyi

(5)

where yi denotes themodel variables,2j is the parameter of inter-
est, and the ratio w2j/wyi is the normalized factor correspond-
ing to its nominal value (Soetaert and Petzoldt, 2010). Summary
statistics of the sensitivity functions can be used to qualify the
impact of the parameter on the output variables, i.e., the higher
the absolute value of the sensitivity summary statistics, the more
important the parameter (Brun et al., 2001). For the model in
Equations (1–3), the sensitivity functions will be plotted vs. time
to illustrate the parameters’ role on themodel output. The param-
eters that have little effect do not need to be fine-tuned extensively
in model fitting.

2.6. Cross-Validation
It is important to prove how themodel predictions will generalize
to an independent data set, revealing how accurately the predic-
tive value of a model is in practice. In this paper, the parameter
set obtained from the data of wild-type Vero cells infected at low
MOI is used to predict the replication kinetics of the data at high
MOI presented in Halfmann et al. (2008).

3. Results

Although significant progress has been made to the identification
and characterization of EBOV, human data is very limited due to
the long asymptomatic periods of the virus and its highmortality.
Animal models are pivotal to shed light on this lethal disease. Due
to the very close similarities with the human immune system,
non-human primates are the preferred animal model for several
viral infections e.g., HIV). Moreover, EBOV infection has been
adapted to guinea pigs and mice (Feldmann et al., 2003), serv-
ing as a flexible model in comparison to human and non-human
primates. In this work, we focus on the interaction between the
virus and the host cells. In vitro data can be very convenient due
to the important simplification of the in vivo complexity of bio-
logical problems. Thus, for parameter fitting procedures, we con-
sider the experimental data from Halfmann et al. (2008), which
investigates EBOV kinetics in a Vero cell line.

Before rigorous optimization methods can be applied to esti-
mate the model parameters using experimental data, the ver-
ification of parameter identifiability is required. The omission
of identifiability analyses may result in incorrect fits and con-
sequently incorrect interpretations. The identifiability analysis
in the model Equations (1–3) has been broadly studied (Xia,
2003; Xia and Moog, 2003; Wu et al., 2008; Miao et al., 2011;
Hernandez-Vargas et al., 2014). All parameters in the model
Equations (1–3) were shown to be algebraically identifiable given
measurements of viral load and initial conditions (U0, I0, and
V0) (Wu et al., 2008). However, the difference between struc-
tural identifiability and practical identifiability in the presence
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of measurement error requires further identifiability studies. To
address practical identifiability, the approach proposed by Raue
et al. (2009) is considered here for the data presented in Figure 3.

The resulting RMS profiles in Figure 4 for β , p and c show a
convex shape of which the optimization routine can reach their
minimum. Note that the profile of δ is flat in one tail, suggesting
that parameter δ can be chosen arbitrarily small without affecting
the fit quality (Raue et al., 2009). In spite of this, the lower bound
of this parameter has a clear biological constraint. To be precise,
the half-life of an infected cell cannot be longer than that of an
uninfected cell. There is experimental evidence that the half-life
of epithelium cells in lung is 17–18 months in average (Rawlins
and Hogan, 2008). In view of this, the infected cell death rate (δ)
is fixed at 10−3.

Bootstrapping can provide more insights into the distribu-
tion of parameter values based on experimental data in Halfmann
et al. (2008). For the sake of clarity, we present only the weighted
bootstrap (Xue et al., 2010) in the results, the other two meth-
ods can be found in the supplementary material. Distributions of
the model parameters are shown in Figure 5. Bootstrap estimates
for the viral clearance (median c = 1.05 day−1) is slightly below
other viral infection results (Table 1). For example, clearance of

influenza virus varied from 2.6 to 15 day−1 in (Baccam et al.,
2006; Miao et al., 2011; Pawelek et al., 2012; Hernandez-Vargas
et al., 2014). This may be attributed to the fact that the viral
clearance is computed for in vitro experiments.

EBOV is known to replicate at an unusually high rate that
overwhelms the protein synthesis of infected cells (Sanchez,
2001). Consistent with this observation, bootstrap estimates
revealed a very high rate of viral replication, p = 62 (95%CI :

31 − 580) (Table 1). Although the scatter plot in Figure 5 shows
that the estimate of p can be decreased given a higher effective
infection rate (β), a replication rate of at least 31.8 ffu/ml cell−1

day−1 is still needed to achieve a good fit of the viral replication
kinetics in Figure 3.

Scatter plots are a graphical sensitivity analysis method, and
a simple but useful tool to test the robustness of the results.
The estimated parameters are plotted against each other. Scatter
plots for the parameters in Figure 5 provide visual evidence that
these parameters strongly depend on one another such that their
individual values can not be independently determined. That is,
increasing the values of p increases the estimations of c. Decreas-
ing the estimations of β increases the estimation of both c and
p. However, the green curves in Figure 5 provide the most likely

FIGURE 4 | Parameter Identifiability. RMS profile of model parameters.

Each parameter is varied in a wide range around the optimized value.

Subsequently, the DE algorithm is used to refit the remaining

parameters to the data set of Halfmann et al. (2008). The vertical

dashed lines indicate the value obtained from the optimization for all

four parameters collectively.
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FIGURE 5 | Weighted bootstrap results. Top row: Distributions from

1000 sample estimates are presented for the three parameters: β, p

and c. Bottom row: Scatter plot between bootstrap parameters. The

parameter ρ is fixed during the bootstrapping at 0.001 (Moehler et al.,

2005). Numerical values for the model Equations (1–3) are presented in

the Table 1.

TABLE 1 | Estimates of infection parameters*.

Parameters (units) Best fit** Bootstrap estimates

2.5% Median 97.5%

quantile quantile

β

[
day−1(ffu/ml)−110−7

]
1.91 1.78 4.06 261.95

p
(
ffu/ml day−1cell−1

)
378 31.80 62.91 580.69

c
(
day−1

)
8.02 0.18 1.05 18.76

tinf (hours) 5.64 1.68 9.49 10.79

*Note that these parameter should be interpreted with the discussed identifiability

problems.
**Values obtained from optimization procedure to the low MOI viral titer presented in

Halfmann et al. (2008).

region where the parameters values can be found. In order to ver-
ify this intuition, we fix the viral clearance rate (c) at 4.2 (Miao
et al., 2010) and then estimate the others two parameters (β
and p). The results of 1000 bootstrap replicates reveal that fixing
the parameter c improves the fitting with a narrow confidence
interval (see Supplementary Materials 1.3).

The sensitivity study for the mathematical model Equations
(1–3) is performed in a similar fashion to Brun et al. (2001);
Soetaert (2014). Figures 6A–E show the effect on the viral load
when varying the respective parameter by 10, 20 and 50% around
its nominal value. It can be seen that the healthy cell death
rate (ρ), which in the virus-free steady state represents the cell
turnover, has little effect on the viral load kinetics. This can be
attributed to the fact that the experiment was performed in vitro
and within a short period. Similarly, the effect of the infected cell
death rate (δ) can also be neglected. This could be explained by
the fact that the observed Ebola viral load was not decreasing
(Figure 3), contrary to observations in other viral infections, e.g.,
influenza virus (Baccam et al., 2006). The remaining three param-
eters (β, p, and c) are sensitive, in the sense that a small change
in parameter value can lead to a large difference in viral kinetics.
Figure 6F summarizes in detail the parameter sensitivity func-
tions. It is clear that the three parameters β, p, and c govern the
infection kinetics while the effect of the two parameters ρ and δ

can be neglected for this data set. Therefore, fixing both ρ and δ

is adequate for the presented problem.
Moreover, both β and p can be seen as consistently increasing

the viral load because their respective sensitivity functions are
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B CA

E FD

FIGURE 6 | Sensitivity of parameters. (A–E) Plotting of viral titer variation

vs. time. The dashed line is the viral kinetics obtain from nominal parameter

values. Three color shades in each figure represent the viral load variation

range when varying the corresponding parameter by a percentage denoted

in the legend. (F) Parameters sensitivity function over time, the values in

y-axis are calculated using Equation (5).

always positive, in contrast to the parameter c. Note that the abso-
lute magnitude of change in the sensitivity functions of these
three parameters is approximately equal over time (Figure 6F).
The strong similarity in the sensitivity functions indicates that
the corresponding parameters have equivalent effect on the viral
titer. For instance, the sensitivity functions of β and p are very
similar so that almost the same output of viral titer will be gen-
erated by increasing β if p is decreased correspondingly. A simi-
lar statement can also be made about the relationship between c
and β .

Computational simulations for the best fitting of the proposed
mathematical model Equations (1–3) plotted in Figure 7B show
that the virus grows exponentially from day 1 to 5 post infection.
This is consistent with the mathematical analysis developed in
Nowak et al. (1996), which deduced that the virus initially grows
exponentially and can be better modeled as exp(r0t) while the
susceptible cell population remains relatively constant, where r0
is the leading eigenvalue which solves the equation r20 + (c +

δ)r0 − (βpU0 − cδ) = 0.
Viral titer peaks at high levels, more than 107 ffu/ml, which in

general is 10 fold higher than those reported in influenza virus
infection (Toapanta and Ross, 2009; Hernandez-Vargas et al.,
2014). In addition, the viral titer reaches a plateau at day 6 and

may remain at those levels (Figure 7B). No depletion of infected
cells is observed in the period of observation. This could be a
combined effect attributed to either high infection rate or high
replication rate, and to the slow clearance of infected cells. To
achieve virus titer levels as reported in Halfmann et al. (2008),
either a high infection rate (β) of susceptible cells, or a high repli-
cation rate is required (Figure 5). Note that even though these
estimations were performed in vitro, in vivo murine studies for
EBOV infection (Mahanty et al., 2003) showed similar kinetics
and time scales as those presented in Figure 7B.

3.1. Transmission Measures
Infectivity is a critical parameter to assess the ability of a pathogen
to establish an infection (Diekmann et al., 1990). To determine
infectivity, we compute the reproductive number (R0), which is
defined as the expected number of secondary infections produced
by an infected cell in its lifetime (Diekmann et al., 1990; Heffer-
nan et al., 2005). On the one hand, if R0 is less than one, each
infected individual produces on average less than one infected
individual, and therefore the infection will be cleared from the
population. On the other hand, if R0 is greater than one, the
pathogen is able to invade the susceptible population. This epi-
demiological concept can be applied to the model Equations
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A B

FIGURE 7 | Model fitting for EBOV kinetics. Viral titer data with low MOI from Halfmann et al. (2008) and simulations from the best fit shown in Table 1 are in panel

(A) for the host cells and (B) for the viral titer.

(1–3) and computed as follows (Nowak et al., 1996):

R0 =
λpβ

cρδ
(6)

As expected, the estimated reproductive number in EBOV infec-
tion is very high, see Figure 8A and numerical results in Table 1.
These results can be attributed to the fact that no depletion of
virus was observed and to a slow clearance of infected cells.
Thus, both parameters δ and c increase the value of R0. Note that
very high estimates of the reproductive number in highly viremic
influenza virus strains from in vitro experiments have also been
reported, with an average of 1.7 × 103 (Pinilla et al., 2012). It
is worth to mention that fitting the model to in vitro data in
Halfmann et al. (2008) could lead to small estimates for c and
δ in comparison to an in vivo situation. Nevertheless, estimates
of the epithelial cell half-life were 6 months in the trachea and
17 months in the lungs in average (Bowden, 1983; Rawlins and
Hogan, 2008), which corresponds to a δ equal to 0.003 and 0.001,
respectively. As mentioned previously, the δ was fixed at 0.001
in the computation of R0. Therefore, the estimated values of R0
interval are very likely to be positioned in a biologically plausible
range, especially the upper bound. Notwithstanding, the estimate
of R0 presented here should be interpreted with care within the
limits of the data used.

Recent viral modeling works (Holder et al., 2011; Pinilla et al.,
2012) have also introduced the term infecting time, which repre-
sents the amount of time required for a single infectious cell to
cause the infection of one more cell within a completely suscepti-
ble population. Strains with a shorter infecting time have a higher
infectivity (Holder et al., 2011; Pinilla et al., 2012). From model
Equations (1–3), this measure can be computed as follows:

tinf =

√
2

pβU0
(7)

Bootstrap results showed that EBOV possesses an average infect-
ing times of 9.49 h (Table 1) which is approximately 7 times

A B

FIGURE 8 | Transmission measures. Bootstrap estimate of (A) reproductive

number and (B) infecting time in hours. Numerical values can be found in

Table 1.

slower than the infecting time of influenza virus (Holder et al.,
2011). This number provides a reasonable explanation for the
kinetics of susceptible cells which slowly decrease from day 1 to
day 4 (Figure 7A), and quickly deplete within the last 2 days.
This number could also explain the absence of viral replication
within the first 5.6 h after infection. This period corresponds to
the short decreasing period observed in Figure 7B. The initial
decrease of viral load thus can be attributed to self-clearance of
the virus when some viruses have infected cells but are not yet
able to replicate.

The infectivity parameters in Figure 8 characterize the EBOV
infection kinetics in the data in Halfmann et al. (2008). The slow
infection time of EBOV is compensated by its efficient replica-
tion. As a result, a short delay is followed by a massive amount
of virus. The above infectivity parameters contributed an expla-
nation for the high levels of viral load even when the susceptible
cells were already depleted at the end of the experiment.

The best set of estimated parameters is challenged to validate
the data at high multiplicities of infection (MOI) in Halfmann
et al. (2008). The initial viral load is estimated using the fractional
polynomial model of second order providing V0 at 460 ffu/ml.
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Figure 9 shows that the parameters derived from data at lowmul-
tiplicity of infection are still consistent with data generated at
high multiplicity of infection. The predicted kinetics follows the
experimental data closely when changing the initial condition of
the viral titer to 50 folds higher.

4. Discussion

Ebola virus (EBOV) is highly pathogenic for humans, being
nowadays one of the most lethal pathogens worldwide. Ebola
fatalities are predominantly associated with uncontrolled viremia
and lack of an effective immune response (i.e., low levels of anti-
bodies and no cellular infiltrates at sites of infection) (Feldmann
et al., 2003).

The work presented here focused on the interaction between
EBOV and the host cells, i.e., epithelial cells of green monkey.
Experimental data on the Vero cell line from non-human pri-
mates could help to better understand the virus infection dynam-
ics in humans (Knipe et al., 2001). However, the in vitro studies
must be translated carefully to avoid over-interpretation to the in
vivo context, which can sometimes lead to erroneous conclusions.
Especially, the EBOV infection has been known to have abnormal
behavior in vivo where different cells types and the immune sys-
tem are involved (Knipe et al., 2001). Additionally, given the fact
that EBOV exhibits an asymptomatic period in humans (Leroy
et al., 2000), the viral dynamics model in vivo should take the
eclipse phase into consideration. This feature can be modeled by
adding an appropriate eclipse phase term as has been done previ-
ously (Moehler et al., 2005; Baccam et al., 2006). Nevertheless,

FIGURE 9 | Cross-validation. Test of estimated parameters on an

independent set of data. The viral replication kinetics in wild-type Vero cells

infected with EBOV at a high multiplicities of infection (MOI) in Halfmann et al.

(2008) are modeled starting from a higher initial viral load of V0 = 460 ffu/ml.

The (Mean) indicates the predicted kinetics using parameters obtained from

bootstrap while (Best) refers to the predicted kinetics using the parameters

resulting from the optimization.

given the problem of parameter identifiability exposed in the
results, a complex model would not bring any better understand-
ing. Once more data would become available, future work could
attempt to address this issue, especially in the in vivo context.

The exposed identifiability issues in the results reveal the prob-
lematic of parameter estimation using solemnly the viral load
measurements. Here, our efforts to cope thoroughly with the
identifiability issues spotted the current restrictions on the esti-
mated parameters. These restrictions cannot be resolved without
the progress of new experiments, more measurements are neces-
sary to sort out the identifiability problems presented here, e.g.,
measurements of infected and non-infected cells. Another pos-
sible experiment is to determine the EBOV clearance rate in the
absence of target cells. For instance, Pinilla et al. (2012) employed
an experiment in a similar fashion to determine the viral infectiv-
ity loss (c). Known influenza virus titers were incubated without
target cells and followed up to determine the remaining infectious
titers (Pinilla et al., 2012). In this way the approximate values of
the viral clearance rate could be determined and provide a more
accurate estimates for the whole set of kinetics parameters, as
shown in the Supplemental Material 1.3.

The high EBOV replication reported here is in agreement with
recent findings by Misasi and Sullivan (2014) as well as docu-
mented in Knipe et al. (2001), reporting that early and coor-
dinated disruptions by Ebola genes and proteins (VP24, VP30,
and VP35) lead to elevated levels of virus replication. The boot-
strap results suggested that the EBOV average infecting time
is approximately 9.5 h, at least 5 fold slower than estimations
from influenza virus infection (Pinilla et al., 2012). These sim-
ulations outline the EBOV kinetics in the data from Halfmann
et al. (2008), suggesting that a slow infecting time of EBOV is
compensated by its efficient replication.

Themodel results suggested that the saturation of viral growth
as observed in the data is induced by the loss of susceptible cells.
This result has to be re-evaluated with a more complete data set,
as the present data set would also be appropriately described by
a logistic-growth model (data not shown) with an unspecific lim-
itation of resources. However, a logistic model can explain only
the growth behavior of the virus. As pointed out before (Wu et al.,
2008), a higher resolution of the data and later time points which
exhibit the long-term behavior of the viral load are required for a
full determination of the mechanisms at work.

EBOV infection from in vitro and even murine systems may
differ considerably from humans. The latency phase in human is
much longer than in animals and EBOV symptoms in humans
may appear from 2 to 21 days after exposure to the virus, having
an average time of 8–10 days (Peters and Peters, 1999). Remark-
ably, mice infected by intra-peritoneal injection develop symp-
tomatic infection where EBOV will increase rapidly at day 4 and
continue to increase until day 6, with death occurring at day
6–7 post-infection (Mahanty et al., 2003). These experimental
observations are compatible with our simulation results, suggest-
ing that the growth of infected cells starts at day 3 post infec-
tion (Figure 7) while almost the whole susceptible cell pool is
depleted at day 6 post infection. It is worth tomention that EBOV
kinetics were similar in different tissue compartments (Mahanty
et al., 2003): liver, spleen, kidney and serum. Consequently,
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further modeling approaches should address the EBOV kinetics
in different compartments of the infected host.

The in vitro system may mimick a human context where
the immune response against EBOV is not working adequately.
The onset of a CD8+ T cell response as well as of the anti-
body response (Gupta et al., 2003) rely on early regulation of
cytokines in the asymptomatic phase of the disease (Mahanty
et al., 2003; Ebihara et al., 2006; García-Sastre and Biron,
2006). Human EBOV infection revealed that patients infected
by the Sudan strain had lower levels of tumor necrosis fac-
tor TNF-α and interferon IFN-γ compared to those found in
patients with fatal Zaire strain infection (Hutchinson and Rollin,
2007). Additionally, the levels of IFN-α were found signifi-
cantly higher in surviving patients with Sudan strain infection
(Hutchinson and Rollin, 2007), whereas the levels of IL-6, IL-
8, IL-10, and macrophage inflammatory proteins were higher
in patients with fatal infections (Hutchinson and Rollin, 2007).
Therefore, modeling the effects of IFN-I would limit the num-
ber of infected cells by the introduction of a resistant state
with a possible impact on the value of the viral replication
rate (p). Future modeling studies need to quantify the situation
in vivo where the effect of the immune system is taken into
account.

The modeling work developed in this paper paves the way
for future mathematical models and experiments to shed light
on the reasons for less efficient control of Ebola virus infections.
Determining empirically the EBOV clearance rate in the absence
of target cells would fulfill the picture of EBOV kinetics in

vitro. In addition, due to the critical relevance of the cytokine
effects in EBOV pathogenesis, future modeling attempts should
be directed to establish a more detailed model of interactions
between the relevant cytokines and EBOV. Further insights into
immunology and pathogenesis of EBOV will help to improve the
outcome of this lethal disease.
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Sepsis is a clinical syndrome that can be caused by bacteria or fungi. Early knowledge

on the nature of the causative agent is a prerequisite for targeted anti-microbial

therapy. Besides currently used detection methods like blood culture and PCR-based

assays, the analysis of the transcriptional response of the host to infecting organisms

holds great promise. In this study, we aim to examine the transcriptional footprint of

infections caused by the bacterial pathogens Staphylococcus aureus and Escherichia

coli and the fungal pathogens Candida albicans and Aspergillus fumigatus in a human

whole-blood model. Moreover, we use the expression information to build a random

forest classifier to classify if a sample contains a bacterial, fungal, or mock-infection.

After normalizing the transcription intensities using stably expressed reference genes,

we filtered the gene set for biomarkers of bacterial or fungal blood infections.

This selection is based on differential expression and an additional gene relevance

measure. In this way, we identified 38 biomarker genes, including IL6, SOCS3, and

IRG1 which were already associated to sepsis by other studies. Using these genes,

we trained the classifier and assessed its performance. It yielded a 96% accuracy

(sensitivities>93%, specificities>97%) for a 10-fold stratified cross-validation and a 92%

accuracy (sensitivities and specificities >83%) for an additional test dataset comprising

Cryptococcus neoformans infections. Furthermore, the classifier is robust to Gaussian

noise, indicating correct class predictions on datasets of new species. In conclusion,

this genome-wide approach demonstrates an effective feature selection process in

combination with the construction of a well-performing classification model. Further

analyses of genes with pathogen-dependent expression patterns can provide insights

into the systemic host responses, which may lead to new anti-microbial therapeutic

advances.

Keywords: immune response, microarray, feature selection, systems biology, decision tree basedmethods, fungal

pathogens
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1. Introduction

Sepsis is a critical medical condition with high mortality rates. It
is characterized by a dysregulation of the inflammatory response
of the host due to a microbial infection. The uncontrolled inflam-
mation can lead to tissue and organ damage, eventually resulting
in death of the patient (Rittirsch et al., 2008). The incidence of
sepsis has been increasing worldwide (Engel et al., 2007; Martin,
2012). In fact, sepsis is the 10thmost common cause of death with
a mortality rate of 20–50% in the US (Martin et al., 2003). The
most frequent causative pathogens are bacteria, most commonly
staphylococci and Enterobacteriaceae like E. coli (Martin, 2012).
While the overall incidence of sepsis is increasing about 5–10%
every year, the cases of sepsis caused by fungi have increased by
more than 200% in the US between 1979 and 2000 (Martin et al.,
2003). Since both types of pathogens, bacteria and fungi, require
fundamentally different anti-microbial therapies, the early classi-
fication is crucial. Furthermore, it has been shown that prompt
treatment is a prerequisite for successful therapy, as each hour of
delay reduces the chances of survival on average by 8% (Kumar
et al., 2006). This direct relation emphasizes the necessity for
quick and reliable classification methods.

Blood cultures (BCs) and PCR-based assays are currently
the standard diagnosis techniques to detect causative pathogens.
While BCs aim for the isolation, identification, and suscepti-
bility tests of microorganisms (Westh et al., 2009), molecular
pathogen detection by PCR solely enables identification of the
pathogen (Schreiber et al., 2013). Numerous studies comparing
both methods conclude that the time BCs require to provide pos-
itive results is too slow for guiding therapy (Westh et al., 2009;
Bloos et al., 2010; Lehmann et al., 2010; Schreiber et al., 2013).
Thus, PCR-based assays, which exhibit a turnaround time of sev-
eral hours may be an important additive tool (Lehmann et al.,
2010).

Both methods, BC and PCR, identify the microorganisms
directly in the blood. However, at the time of diagnosis, the
pathogen may have left the bloodstream, while it still triggers
the dysregulated response of the immune system of the host.
Thus, another promising approach is to analyze the immuno-
logical imprint of the pathogen and infer the pathogen type
based on the transcriptional response to the infection. Previ-
ous studies have shown that genome-wide transcriptome anal-
ysis facilitates the identification of genes with specific expres-
sion signatures in sepsis data (Prucha et al., 2004; Shanley et al.,
2007). As these genes quantify the state of acute sepsis, they can
be considered as biomarkers for this condition. Other research
groups used biomarkers to distinguish the microorganisms caus-
ing the infection, or to predict the survival chances of infected
patients (Pachot et al., 2006; Pankla et al., 2009). Furthermore,
septic shock patients have been successfully classified into sub-
groups using whole-blood gene expression data frommicroarrays
(Wong et al., 2010). Therefore, incorporation of host response
transcription data holds great potential to get insights into the
systemic host reaction, thus leading to an improved pathogen
detection and differentiation. Especially with respect to the rapid
increase in incidence of fungal induced sepsis cases, an early
detection of fungal sepsis would be of great value.

The genome-wide approach of this study provides an unbi-
ased screening. This strategy facilitates the identification of tran-
scriptional biomarkers featuring distinct expression signatures
depending on whether the infectious pathogen is of bacterial
or fungal origin. A classifier based on these biomarkers enables
the classification of causative microorganisms in new samples.
Here, we apply a whole-genome approach for screening the tran-
scriptional response to blood infections and to identify biomark-
ers. For clinical application, however, a technology like west-
ern blot or PCR, which is faster and more accurate or relevant
would be advantageous for measuring expression intensities of
the biomarker genes. Nevertheless, the present study gives a start-
ing point for the development of a classification device such as
a biochip. We based this work on a whole-blood model, as this
model takes the in vivo complexity of immune responses into
account and, compared to other model organisms, the blood
components are similar to the human organism with respect to
their abundance and functioning (Maccallum, 2012; Hünniger
et al., 2014).

2. Materials and Methods

2.1. Microarray Data Generation and

Preprocessing
A human whole-blood model was used as described previously
(Hünniger et al., 2014). Briefly, HBSS (for mock-infected con-
trol) or the human pathogenic fungi Candida albicans SC5314
(Gillum et al., 1984) and Aspergillus fumigatus ATCC46645 (each
1× 106/ml), the Gram-positive bacterium Staphylococcus aureus
ATCC25923 (1 × 106/ml) and the Gram-negative bacterium
Escherichia coli ATCC25922 (4 × 103/ml) were added to anti-
coagulated blood of healthy human donors (male, ≤40 years
of age) and incubated at 37◦C with gentle rotation for 4 or
8 h. The samples of all pathogens cover three or four different
donors with one or two samples each. Infected blood was col-
lected and stored in PAXgene Blood RNA Tubes (PreAnalytiX)
to stabilize intracellular RNA until further use. RNA isolation
was performed using the PAXgene Blood RNA Kit (PreAnalytiX)
corresponding to the manufacturer’s instruction. The Illuminar

TotalPrep™RNA Amplification Kit (Ambion) was used for RNA
amplification and cRNA transcription. RNA concentrations and
quality were assessed by NanoDrop 1000 (Thermo Scientific)
and Agilent 2100 Bioanalyzer (Agilent Technologies). Expres-
sion levels of RNA samples were analyzed with Illuminar

HumanHT-12 v4 Expression BeadChip Kit (Illumina) follow-
ing manufacturer’s protocol. The chip data was background cor-
rected and log-transformed by applying the functions “lumiR”
and “lumiT” of the R package “lumi” (Du et al., 2008). Genes
with a detection p < 0.01 in at least one sample were consid-
ered as expressed. Putative and/or not well-characterized genes
(i.e., gene symbols starting with ENSG, NT_, LOC, MGC, HS.,
FLJ, KIAA, or CxORF) were removed, leaving 10449 genes for
analysis. The microarray data have been deposited in NCBI’s
Gene Expression Omnibus (Edgar et al., 2002), accession num-
ber GSE65088 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE65088).
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2.2. Reference Genes Based Normalization
The normalization followed the approach of Vandesompele et al.
(2002) which is based on non-normalized expression values
of all samples. From a list of putative control genes covering
housekeeping genes and reference genes suggested previously
by Stamova et al. (2009) and Kwon et al. (2009), genes with
most stable expression were selected. First, the gene stability
measure M as introduced by Vandesompele et al. was calcu-
lated for each control gene as the average pairwise variation
of a gene, i.e., the pairwise standard deviation of the ratios of
the control gene to all other control genes. Thus, genes with
lower M values are associated with a more stable expression.
Iteratively, the gene with the largest M value was removed
and the calculation was repeated. In this way, a ranking of
genes was obtained, representing their stability. The geomet-
ric mean of the expression values of the n best ranked genes
was then used as normalization factor (NFn)—as a vector for all
samples.

Initially, the three most stable genes (NF3) were used to deter-
mine the optimal number of genes for NF calculation. Then,
more genes were successively included (NF4, NF5, . . . ) as long
as the inclusion leads to significant changes on the normaliza-
tion factor. To quantify these changes, the pairwise variations of
each two consecutive NFs were computed. As threshold, 0.15 was
used as recommended by Vandesompele et al. A value surpass-
ing this threshold indicate that the inclusion of another gene into
calculation is necessary.

2.3. Selection of Differentially Expressed Genes
Differentially expressed genes were determined using the Bio-
conductor package “limma” (Gentleman et al., 2004; Smyth,
2005) of the statistical programming language R. Limma fits
linear models to the expression values of each gene and deter-
mines differential expression using moderated t-statistics. P-
values were adjusted according to the method of Benjamini
and Hochberg (1995). Genes with an adjusted p < 0.05 and a
log2-fold change of at least ±1 were regarded as differentially
expressed.

2.4. The Random Forest Classifier
The random forest classifier was built using the “randomFor-
est” package (Liaw and Wiener, 2002) for the R programming
language. There are two main parameters which may influence
the performance of the classifier: ntree and mtry. While ntree
describes the number of trees that are built by the random forest
algorithm,mtry represents the number of genes used at each split
when building a tree. Svetnik et al. (2004) and Díaz-Uriarte and
Alvarez de Andrés (2006) showed that the random forest algo-
rithm features high predictive performance, even without param-
eter adjustment. Only the number of trees needs to be sufficiently
large to get stable results. Therefore, the random forest classifier
was built growing 100,000 trees. A cross-validation examining the
effect of changingmtry and ntree showed that altering the param-
eters has no effect on the classification accuracy (Supplementary
Material). Thus, we kept the parameter mtry on its default value,
which is ⌊

√
g⌋, where g is the number of genes of the input

dataset.

For the selection of biomarker genes, the measure “mean
decrease in accuracy” was used for determining the variable
importance values for each gene. The importance values were
computed for each class (fungal, bacterial, and mock-infected
class) by building random forests with 100,000 trees. The nor-
malized dataset, which was reduced to the data of differentially
expressed genes, was used as input.

We scaled the certainty score to a range from 0 to 1. Before
scaling, the score represents the proportion of class predictions
from all trees of the random forest, which yield the same class as
the final classification by the classifier. Let p be this proportion
and let N be the number of possible classes (in this study, N = 3,
as we consider a fungal, a bacterial, and a mock-infected class),
then the certainty score is calculated as

certainty score =
p−

1

N

1−
1

N

. (1)

2.5. Performance Assessment
The C. neoformans (strain H99, provided by Robin May, Uni-
versity of Birmingham) dataset was generated identical to the
other fungi data and quantified using the same chip technol-
ogy. Expression levels were measured 4 h (3 donors) and 8 h
(3 donors) post infection. Mock-infected control samples were
simultaneously produced. Before classification, the expression
intensities were normalized based on the reference genes which
were determined previously without the C. neoformans data
(Figure 1).

Multidimensional scaling (MDS) was performed using the
“cmdscale” function of R. After determining the Spearman corre-
lation of the samples of the normalizedC. neoformans dataset, the
Euclidean distances between these samples were calculated based
on the correlation matrix and used as input for the MDS com-
putation. In this way, samples with high correlations are close to
each other in the MDS plot.

3. Results

3.1. Reference Genes Based Normalization
Our first step in building a classifier which discriminates between
bacterial and fungal infection is to normalize gene expression val-
ues with help of reference genes (Figure 1). The motivation of
using reference genes instead of the control samples for normal-
ization is that our classifier should be able to be applied in clinical
settings, i.e., for patients, where no control samples exist. To iden-
tify reference genes, we used a knowledge driven and data driven
approach. First, we considered 10 known housekeeping genes as
well as 17 reference genes which were previously suggested by
Kwon et al. (2009) and Stamova et al. (2009) (Table 1). Next,
we checked which of those genes have a stable expression profile
within our dataset. Therefore, we followed the method proposed
by Vandesompele et al. (2002), where the stability of a gene is
determined on the basis of ratios of raw gene expression values
(Materials and Methods). The normalization factor (NF) is then
calculated as the geometric mean of the most stably expressed
reference genes.
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FIGURE 1 | The workflow for biomarker identification, classifier construction and performance assessment.

From the 27 considered genes, we determined CTBP1, TBP,
and CRY2 as the most stable ones. When comparing the pair-
wise variations of all successive NFs, we found that using only the
three most stably expressed genes is sufficient for producing an
accurate NF (Supplementary Figure 2). Including a fourth refer-
ence gene leads to no significant changes of the NF, indicated by a
low pairwise variation of 0.0496. This value is below the threshold
of 0.15 that was recommended by Vandesompele et al. for includ-
ing more genes. Furthermore, the Spearman correlation between
NF3 and NF4 is >0.99, which also demonstrates that considering
a fourth gene is not necessary.

3.2. Selection of Biomarker Genes
The identification of biomarkers, i.e., genes with a specific expres-
sion pattern in case of a whole-blood infection, requires the
reduction of the gene set by so called feature selection. As gene
expression data is high-dimensional by nature, feature selection
is one of themost important tasks when building a classifier based
on genome wide transcription data. The aim of feature selection
is to pick the most informative genes and to remove irrelevant
predictors, thus resulting in a dimension reduction. In this way,
we can reduce the complexity of the classification while at the
same time the predictive performance can be increased. In gen-
eral, we can distinguish three types of feature selection: filter

methods, wrapper methods, and embeddedmethods (Saeys et al.,
2007).

We performed feature selection using the filter and the
embedded approach by first determining differentially expressed
genes (DEGs) and then selecting genes which are most important
for accurate classification (Figure 1). To identify genes showing
different expression patterns between the pathogen types rather
than between the species, we grouped data into three classes. The
fungal species C. albicans and A. fumigatus form the class “fun-
gal,” while the bacterial species S. aureus and E. coli were assem-
bled to the “bacterial” class. The samples of the control group are
represented by the class “mock-infected.”

3.2.1. Selection of Differentially Expressed Genes
To identify transcriptional responses related to blood infection
by fungi or bacteria we determined DEGs for the three classes.
A gene is regarded as a DEG for one class, if its expression
levels are significantly different to both other classes merged
together (Materials and Methods). In this way, we found 204
DEGs for the fungal class, 184 for the bacterial class, and 150
for the mock-infected class. Of these genes, 68 were identi-
fied as differentially expressed in all 3 classes simultaneously.
The union of the three sets of DEGs comprises a total of 402
genes.
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TABLE 1 | Housekeeping genes and putative reference genes suggested

by other studies were used as input for determining stably expressed

reference genes.

Housekeeping genes

listed at

Vandesompele et al.

Reference genes

suggested by

Stamova et al.

Reference genes

suggested by

Kwon et al.

ACTB TRAP1 ZNF207

B2M DECR1 OAZ1

GAPDH FPGS LUC7L2

HMBS FARP1 CTBP1

HPRT1 MAPRE2 TRIM27

RPL13A PEX16 GPBP1

SDHA GINS2 ARL8B

TBP CRY2 UBQLN1

UBC CSNK1G2 PAPOLA

YWHAZ A4GALT CUL1

DIMT1L

FBXW2

SPG21

The symbols in the genes FPGS, FARP1, PEX16, GINS2, A4GALT, and SPG21 could not

be found in our dataset and thus were not considered. The genes exhibiting the most

stable expression are bolded.

3.2.2. Selection by Importance Value
We further reduced the set of DEGs to genes being most impor-
tant for accurate classification. To identify these genes, we used
the variable importance measure integrated in the random for-
est algorithm (Materials and Methods). We selected the top 11,
6, and 21 genes for the classes fungal, bacterial, and mock-
infected, respectively, as these genes form groups covering the
highest importance values (Figure 2). They are biomarkers for
their respective group of pathogens.

3.2.3. Functional Annotation of Selected Biomarker

Genes
To get insights into the function of the biomarker genes, we per-
formed a Gene Ontology (GO) (Ashburner et al., 2000) enrich-
ment analysis. We employed the tool “GOrilla” (Eden et al., 2009)
to identify over-represented GO categories. This web-based tool
uses an hypergeometric model to test for enrichment and per-
forms p-value adjustment for multiple testing according to the
false discovery rate.

At a significance level of 0.05 we found 32 enriched
GO terms connected to the identified biomarker genes
(Supplementary Table 2). The list comprises terms from the areas
of signal transduction, activation of the immune system, response
to cytokine stimuli, and down-regulation of phosphorylation.
Besides that, GOrilla also identified the category “regulation of
sequence-specific DNA binding transcription factor activity” as
over-represented. Although numerous of the enriched GO terms
are connected to the immune response, we found that multiple
biomarkers are related to other processes. For example, genes
are involved in cellular growth (TBC1D7, GADD45B), vesicle
transport (VPS18), cell proliferation (PIM1, PIM3), cell adhesion
(VCAN), ion transport (FXYD6), or iron uptake (TFRC).

Many genes of our biomarkers are already linked to sepsis by
other studies. While IL6 was previously identified as biomarker
for sepsis (Pierrakos and Vincent, 2010), GADD45B, SOCS3, and
IRG1 were shown to be up-regulated in septic patients (John-
son et al., 2007; Li et al., 2013). Moreover, it has been shown
that IL1F9 is up-regulated by S. aureus cell wall proteins in
human peripheral blood mononuclear cells (Kang et al., 2012).
Furthermore, RGS1, CCL3, and SOCS1 were connected to sep-
sis in animal studies (Panetta et al., 1999; Takahashi et al., 2002;
Grutkoski et al., 2003), while for CTSD increased expression lev-
els were observed in mice with induced septic shock (Yoo et al.,
2013). MAP3K8 is linked to sepsis in mice, with being crucial
for the TNF production (Mielke et al., 2009). Furthermore, the
gene MIR155HG showed significantly higher expression values
in samples with bacterial or fungal infection than in the mock-
infected controls. This gene encodes for the microRNAmiR-155,
which is known to be involved in the regulation of antimicrobial
immune response (O’Connell et al., 2007; Rodriguez et al., 2007;
Das Gupta et al., 2014).

Examining the expression signatures of the selected genes
(Figure 3, Supplementary Figure 1), we discovered that for the
fungal and bacterial class, most genes are up-regulated, com-
pared to the respective other two classes. Of the six biomarkers
for bacterial blood infection, only one gene (CXXC5) was down-
regulated, while the other five genes showed up-regulation. For
the fungal class, all 11 selected genes were up-regulated. We
observed different patterns for the genes of the mock-infected
class. Twenty of the 21 genes were down-regulated in the control
samples and one gene (VCAN) was up-regulated.

Taken together, our feature selection approach was able
to identify biomarker genes, which have been shown to be
involved in sepsis and also cover a broad range of biological
processes.

3.3. Building the Classifier
To determine if an infecting pathogen of an unknown whole-
blood sample is of fungal or bacterial origin, the sample is clas-
sified using the expression data of the selected biomarkers. We
accomplish the classification by a random forest (Breiman, 2001)
classifier (the classifier can be found as R object as supplementary
file). Random forest is based on an ensemble of decision trees,
where each tree is built on a different random subset of the input
data. The output of the classifier is determined by the majority
vote of the class predictions of all trees. As we used 100,000 trees,
the algorithm provides us with 100,000 single classifications. We
utilized the votes of the trees to introduce a certainty score for
the final classification. This score represents the fraction of class
predictions identical with the final classification and was scaled
to a range from 0 to 1 (Materials and Methods). In case of a
certainty score of 1, all trees have predicted the same class for
a given sample and consequently this class was then output by
the classifier. On the other hand, the certainty score is 0, if all
tree votes are equally distributed across all possible classes. Thus,
the score indicates, how sure the classifier is about its decision.
Calculating the certainty score for the training data, we achieved
average values of 0.941, 0.966, and 0.99 for fungal, bacterial, and
mock-infected class, respectively.
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FIGURE 2 | The variable importance values were computed by the

random forest algorithm. A gene with larger values exhibits a higher

influence on the correct class predictions. The 50 highest importance

values of the measure “mean decrease in accuracy” are shown. Genes

above the dashed lines were selected as biomarkers for the

corresponding classes.

3.4. Performance Assessment
Having built our classifier, we next studied its performance in
distinguishing between fungal or bacterial blood infection. Our
aim was to accurately classify new samples by the given classifi-
cation model. Therefore, the performance assessment methods
have to yield unbiased accuracy rates. To get unbiased esti-
mates of accuracy, the samples for testing the classifier should
be independent from the samples for training the classifier. We
fulfilled this requirement with additionally independently cre-
ated data comprising RNA expression measurements of human
whole-blood samples infected with C. neoformans. An additional
approach to assess a classifiers performance is cross-validation.
Cross-validation emulates independent test sets in an iterative
technique and in this way resolves the need for true test data.
Furthermore, we evaluate the ability of the classifier to handle
fluctuations in the expression values by classifying samples after
adding random noise to the data (Supplementary Material).

3.4.1. Test Data of C. neoformans
To assess the performance of the classifier on an independent test
set, we created a new dataset of RNA expressionmeasurements of
human whole-blood infected with C. neoformans. The data com-
prises 6 samples of fungal infection and 6 mock-infected controls
(Materials andMethods). Being part of the phylum of Basidiomy-
cota, C. neoformans is a phylogenetically and morphologically
very different fungus compared to C. albicans and A. fumigatus,
both belonging to the phylum of Ascomycota (James et al., 2006).

When assessing the classification performance using the new
data, our model correctly classified 5 of the 6 fungal samples
(83.3%). One sample was wrongly classified as mock-infected. All
classifications of the mock-infected samples were performed cor-
rectly. In this way, we achieved an overall accuracy rate of 91.7%.
The sensitivities are 83.3 and 100%, while the specificities are
100 and 83.3% for fungal and mock-infected class, respectively
(Table 2). We examined the misclassification in more detail by
a correlation analysis using a multidimensional scaling (MDS)
plot (Figure 4). MDS is a dimension reduction technique, pro-
ducing an easy-to-visualize output showing relationships within
the data. The plot revealed that the misclassified sample shows
more similarity to the data of mock-infected class than the other
C. neoformans samples.

The difference in the accuracy values between the two classes
is also reflected in the certainty scores. We obtained an average
certainty of 0.475 (± 0.190) for all fungal samples, whereas for
the mock-infected samples we achieved an average score of 0.810
(± 0.165). When splitting the fungal specimen into falsely and
correctly classified ones, the observed certainty value for the mis-
classified sample is higher, 0.654, than for the right classifications,
0.439.

3.4.2. Cross-Validation
When the sample size of a study is relatively small, it is pre-
ferred to use all available samples in feature selection and train-
ing. However, this leads to a lack of test data. Cross-validation
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FIGURE 3 | Visualization of the expression patterns of the biomarker

genes. The samples are clustered according to their corresponding classes.

The heatmap colors correlate with the normalized expression intensities (see

key on right side). The colors of the gene symbols indicate the class for

which the gene was selected as biomarker (brown = fungal class, blue =

bacterial class, gray = mock-infected class).

TABLE 2 | Sensitivities and specificities for the performance assessments.

Sensitivity Specificity

Bacterial Fungal Mock- Bacterial Fungal Mock-

infected infected

C. neoformans

predictions

– 0.833 1.000 – 1.000 0.833

Cross-validation 0.950 0.938 1.000 0.973 0.976 1.000

The C. neoformans dataset does not comprise samples of the bacterial class. Thus, no

sensitivity and specificity could be calculated for this condition.

is a widely used method to overcome this problem by emulating
independent test sets without using additional datasets. It works
by iteratively setting aside samples for testing, while the remain-
ing samples are used to train the model. The split is performed in
the way that each sample of the data is exactly once in the test set.
In this way, cross-validation guards against overfitting.

To estimate how accurate the classifier will perform on inde-
pendent data, we carried out a stratified 10-fold cross-validation
(CV). It is important that CV encompasses all feature selec-
tion steps, as otherwise a selection bias is induced (Ambroise
and McLachlan, 2002). Therefore, we conducted the follow-
ing procedures on the training set in each CV iteration: deter-
mine DEGs, rank the DEGs according to their importance
value, select the top-scoring genes, and train a random forest
classifier.

In compliance with the CV procedure, the class of each sample
of our dataset was predicted and the accuracy of the classification
model was estimated. Of the 57 samples, only two were mis-
classified, while 55 classifications were correct. The two wrong
classifications appeared for one bacterial and one fungal sample.
All data of the mock-infected class was classified correctly. Thus,
the average accuracy of the CV is 96.49% (sensitivities: 93.8, 95,
100% for fungal, bacterial, and mock-infected class; specificities:
97.6, 97.3, 100% for fungal, bacterial, and mock-infected class;
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FIGURE 4 | The MDS plot based on the C. neoformans dataset, where

the relative positions in the plot represent the Euclidean distances of

the Spearman correlations of the samples. Small distances correspond to

high correlation coefficiens. Brown and gray circles indicate samples of the

fungal and the mock-infected class, respectively. The arrow marks the fungal

sample that was misclassified as mock-infected control.

Table 2). The average certainties of the classifications were 0.795
(± 0.169), 0.855 (± 0.18), and 0.937 (± 0.085) for the classes
fungal, bacterial, and mock-infected, respectively.

4. Discussion

Here we present an transcriptome analysis of human whole-
blood data comparing bacterial and fungal infections with mock-
infected control samples. Based on the regulatory differences, we
identified biomarker genes, which show characteristic expression
patterns according to their respective causative pathogen type.
The selection was not only based on statistical significance. It
also took into account to what extent the random forest classifi-
cation algorithm assesses these genes as important for separating
the given classes. In this way, we applied two different methods of
feature selection: the filter approach and the embedded approach.
With the detection of differentially expressed genes we are able to
remove most of the irrelevant genes and extract a set of poten-
tial transcriptional marker genes. The selection by differential
expression is a widely used method for identifying sepsis related
marker genes (Prucha et al., 2004; Pachot et al., 2006; Shanley
et al., 2007; Pankla et al., 2009). The subsequent calculation of
gene importance values using the random forest algorithm allows
us to identify the genes showing the strongest and most constant
up- or down-regulation as a consequence of the blood infection
by the particular type of microorganisms. In this way, we were
able to remarkably reduce a set of whole-genome expressionmea-
surements to significant signatures distinguishing bacterial from
fungal infections and mock-infected controls. The genes iden-
tified as biomarkers for the mock-infected class exhibit similar
signatures for both infection types, fungal and bacterial. Most of
these genes show down-regulation in the mock-infected samples.
However, at the same time they were up-regulated in the infected
samples, irrespective of the infecting pathogen type. Therefore,

they possibly reflect cellular regulations to respond microbial
infections in general. Thus, they can be considered as pathogen-
independent markers for whole-blood infections. Studies inves-
tigating a broader range of pathogens should be carried out to
confirm this hypothesis.

Using a human whole-blood model in this work is sup-
ported by several advantages. First, as opposed to purified human
immune cells, it also considers the in vivo complexity of the
immune response in blood (Hünniger et al., 2014). Next, there
are no differences in proportions and functioning of the periph-
eral blood components between this model and the target organ-
ism, the human, in contrast to other model organisms like mice
(Maccallum, 2012). Furthermore, human whole-blood infection
models have been successfully used previously to identify factors
of virulence (Echenique-Rivera et al., 2011) and to analyze human
immune responses (Tena et al., 2003).

Following a genome-wide approach allows us to consider all
genes as potential biomarkers for pathogen type recognition,
even if they are not related to immune response. Therefore, with
respect to the screening for biomarkers, using a whole-genome
method is more promising than techniques which are limited
to a small number of candidates, like serum cytokine analysis.
Indeed, the selected biomarker genes cover a broad range of
functions. In this way, these genes may facilitate the recogni-
tion of bloodstream infections even when the immune system
of the patient is affected by additional diseases. Besides that,
we found the gene MIR155HG as up-regulated in the samples
with infections. Recently, Das Gupta et al. (2014) have shown
that miR-155 up-regulation is not specific to host response on
bacterial pathogens. They also detected increased expression lev-
els as reaction to A. fumigatus infections. As we observed up-
regulations for all considered species, fungi as well as bacteria, our
results confirm the findings that miR-155 is involved in a general
host response to infections, covering a wide range of pathogens.
Besides, numerous of the selected biomarkers were previously
associated to sepsis in either human or animal studies. This find-
ing indicates, that although our results are based on an exper-
imental model instead of patient data, we could identify char-
acteristic gene regulations in response to microbial bloodstream
infections.

Preceding the feature selection steps, we successfully identified
the three most stable genes from a set of published control genes
and used them as reference for normalizing the dataset. In this
way, we do not use absolute gene expression values to train our
classifier. Instead, we use expression values relative to the geomet-
ric mean of the reference genes. Regarding the application case,
a user of the classifier aims to identify the pathogen type using
only a single blood sample without mock-infected controls for
comparison. It is well known that the intensity values onmicroar-
rays are influenced by technical variations and errors connected
with wet lab hand handling of samples as well as hybridization
and scanning of the chip. These differences can not be detected
on a single sample, but they do affect the absolute intensity val-
ues. With normalizing relative to reference genes, we control for
this effect, as all genes on the chip are influenced in the same
way. Furthermore, this method can easily be adapted to other
quantification methods like PCR.
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Using the biomarker genes, we trained a random forest clas-
sifier to classify the pathogen type in whole-blood samples. Ran-
dom forest provides several advantages making it suitable for this
study. It is fast in training and testing, supports multiclass clas-
sifications and provides the variable importance for evaluating
the input features. With this embedded measure, we were able
to select the best class-separating genes leading to a small set of
biomarkers. There are further classification methods like support
vector machines or naïve Bayes classifiers, which were success-
fully applied on microarray data in other studies (Kelemen et al.,
2003; Howrylak et al., 2009). For comparison, we tested the clas-
sification performance of these two techniques on both the C.
neoformans dataset and the cross-validation, using the previously
selected biomarkers (Supplementary Material). The support vec-
tor machine as well as the naïve Bayes method yielded the same
classifications of all samples as the random forest model. The
fact that the three classification methods are very different in
their functional principles and the results are unaffected by the
choice of the model indicates that the selected biomarker genes
are robust.

The certainty score based on the votes of the trees provides
an easy-to-compare measure for assessing the classification qual-
ity. It directly reflects the ability of the classification model to
properly classify the input data. This means, a class prediction
with a high certainty score is more likely to be correct, than one
with a low score. One possible application case for this measure
is the introduction of a threshold, followed by the removal of
low-scoring classifications.

We tested the classifier with an additional dataset compris-
ing whole-blood samples of fungal infection and mock-infected
controls. The medically important fungus used for these addi-
tional samples, C. neoformans, is phylogenetically very different
from C. albicans and A. fumigatus. These differences can lead
to varieties in the transcriptional response of the host. How-
ever, the accuracy value of about 92% indicate that the selected
biomarker genes are largely unaffected. Therefore, these genes
are general indicators for whole-blood infections caused by fungi.
The MDS analysis revealed that the misclassified fungal sample
shows a greater similarity to the specimen of the mock-infected
class than to the fungal cases. Although the divergence with
the other fungal samples is only small, the differences are suf-
ficient for wrong classification. Consequently, the correct clas-
sifications of the C. neoformans samples are possibly unsure.
Indeed, the certainty values are much lower for the fungal class,
compared to the mock-infected controls. Furthermore, we were
surprised to find the certainty score of the misclassified sam-
ple being higher than the average score of the remaining fun-
gal specimen. This observation confirms the assumption that the
prediction of C. neoformans as fungal infected blood sample is
a difficult task for the classifier, but still leads to mostly correct
results.

High accuracy values were not only achieved when validat-
ing the classifier with the additional C. neoformans dataset, but
also when testing it with stratified 10-fold CV. This broadly
used performance assessment technique iteratively estimates the
accuracy of a prediction model without an independent dataset.
The two misclassifications in this test appeared for fungal and

bacterial class. The predictions of the fungal and the bacte-
rial class also exhibit the lowest values and the largest fluc-
tuations of the certainty scores. However, it should be noted
that the average scores are still high, as 0.795 is the smallest of
them.

In summary, the results of the assessments by using an addi-
tional dataset of fungal infection, i.e., the external validation,
as well as by performing a CV, i.e., the internal validation, are
promising. Most of the tested samples were correctly classified,
although in some cases right classifications were accompanied by
low certainty scores.

We also performed a noise-robustness test to examine
whether the classifier can compansate fluctuations in the expres-
sion data. The high accuracy rates indicate that the indentified
biomarkers are robust with respect to changes in their expression
intensities. This robustness is important for a potential clinical
application, where patients are of different age, sex, medication,
and health condition and thus expression intensities of the same
genes will vary between these patients.

The experimental model of this work comprises the infec-
tion of blood from healthy human donors with typical sepsis
causing microorganisms. Although we gained important insights
into the transcriptional response on the pathogens, our find-
ings possibly can not be directly utilized for clinical applica-
tion. To achieve that, further analyses on gene expression data
from septic patients as well as functional follow-up studies have
to be performed. Unfortunately, whole-genome expression data
from septic patients where the causing pathogen is known is rare
in publicly accessible databases. Especially, datasets comprising
the transcriptional response to fungal induced sepsis are scarce.
Thus, we lack the basis for more clinical relevant investigations,
which is why it remains an open task for future research. Fur-
thermore, it should be noted that the presented classifier can not
be used to identify the infecting species. Rather it is supposed to
answer the question if the pathogen is of bacterial or fungal ori-
gin and whether or not it is necessary to administer antimycotics
instead of antibiotics. To initiate a species dependent therapy,
more requirements have to be fulfilled, e.g., in case of a bacte-
rial infection, the appropriate antibiotic has to be determined by
an antibiogram.

In this study we present an effective selection of genes
showing characteristic expression patterns depending on the
type of the infectious organism. The resulting small gene set
was used to train a fast and accurate random forest classifier,
which performs well in predicting the class of the pathogen.
Examining the transcriptional footprint of the sepsis caus-
ing microorganism in the blood of the host is a promis-
ing approach for quick pathogen identification. With the pre-
sented classification model we meet the increasing challenge
of fungal induced septic infections requiring novel detection
methods.
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Obligate intracellular bacteria have an arsenal of proteins that alter host cells to establish
and maintain a hospitable environment for replication. Anaplasma phagocytophilum
secrets Ankyrin A (AnkA), via a type IV secretion system, which translocates
to the nucleus of its host cell, human neutrophils. A. phagocytophilum-infected
neutrophils have dramatically altered phenotypes in part explained by AnkA-induced
transcriptional alterations. However, it is unlikely that AnkA is the sole effector to
account for infection-induced transcriptional changes. We developed a simple method
combining bioinformatics and iTRAQ protein profiling to identify potential bacterial-derived
nuclear-translocated proteins that could impact transcriptional programming in host
cells. This approach identified 50 A. phagocytophilum candidate genes or proteins. The
encoding genes were cloned to create GFP fusion protein-expressing clones that were
transfected into HEK-293T cells. We confirmed nuclear translocation of six proteins:
APH_0062, RplE, Hup, APH_0382, APH_0385, and APH_0455. Of the six, APH_0455 was
identified as a type IV secretion substrate and is now under investigation as a potential
nucleomodulin. Additionally, application of this approach to other intracellular bacteria such
as Mycobacterium tuberculosis, Chlamydia trachomatis and other intracellular bacteria
identified multiple candidate genes to be investigated.

Keywords: Anaplasma phagocytophilum, nucleomodulin, nuclear translocation, oxidative burst, iTRAQ

INTRODUCTION
Anaplasma phagocytophilum is an obligate intracellular bacterium
of human neutrophils. The neutrophil is an unlikely host as it
creates an intracellular milieu that is a highly inhospitable envi-
ronment for bacterial survival. Yet, A. phagocytophilum requires
the neutrophil for propagation and survives by altering the cellu-
lar antimicrobial properties while paradoxically increasing pro-
inflammatory functions (Banerjee et al., 2000; Carlyon et al.,
2002; Borjesson et al., 2005; Choi et al., 2005; Carlyon and Fikrig,
2006). The fitness advantage gained with suppression of microbial
killing while enhancing recruitment of new host cells for pop-
ulation expansion is the benefit of this paradoxical dichotomy
of functional reprogramming. There is increasing evidence to
suggest that the bacterium accomplishes this with coordinated
reprogramming of neutrophil gene transcription by reorganizing
large regions of host cell chromatin (Sinclair et al., 2014).

Importantly, A. phagocytophilum produces a protein, Ankyrin
A (AnkA) that is exported from the bacterium and eventu-
ally localizes to the nucleus of the infected host cell (Caturegli
et al., 2000; Park et al., 2004). Previously, our laboratory inves-
tigated the effect of infection on the transcriptional repression
of CYBB, encoding gp91phox (Garcia-Garcia et al., 2009a,b).

AnkA is capable of directly binding host cell DNA, and in the
case of CYBB, transcription is dampened when AnkA binds to
its proximal promoter (Park et al., 2004; Garcia-Garcia et al.,
2009a,b). Furthermore, increased histone deacetylase (HDAC)
activity enhances A. phagocytophilum infection in part because
AnkA recruits HDAC1 to the CYBB promoter to close the
chromatin and exclude RNA polymerase binding (Garcia-Garcia
et al., 2009a; Rennoll-Bankert and Dumler, 2012). Owing to
their capacity to enter the nucleus and modulate host cell tran-
scription, microbial factors such as AnkA have been called
“nucleomodulins.”

It is currently unclear as to whether HDAC recruitment is
the predominant mechanism by which AnkA exerts its chro-
matin modulating effects, whether there are other host factors
(e.g., polycomb repressive or hematopoietic associated factor-1
[HAF1] complexes), or additional bacterial-derived nucleomod-
ulins that further contribute to reprogramming. The A. phagocy-
tophilum genome encodes a type 4 secretion system (T4SS) that
allows the bacteria to translocate effector proteins into the host
cytosol (Dunning Hotopp et al., 2006; Lin et al., 2007; Rikihisa
et al., 2010). AnkA was the first T4SS substrate identified among
Rickettsiales, and it plays a critical and potentially dominant role
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in the course of establishing and sustaining neutrophil infection
(IJdo et al., 2007; Garcia-Garcia et al., 2009a,b; Al-Khedery et al.,
2012; Rennoll-Bankert and Dumler, 2012). In contrast to other
gram-negative T4SSs, the vir genes encoding the secretion sys-
tem of the Rickettsiales family are organized differently in that
they are clustered in three different genomic locations (Ohashi
et al., 2002; Rikihisa et al., 2010). Between individual A. phago-
cytophilum strains, variations of the T4SS appear to contribute to
host specificity and strain virulence (Al-Khedery et al., 2012).

We hypothesize that A. phagocytophilum expresses additional
nuclear effector proteins secreted by its type IV secretion sys-
tem (T4SS) and that these also play a role in pathogenicity. It is
likely that some will be nucleomodulins which could contribute
to transcriptional reprogramming of infected neutrophils. Pilot
studies using bioinformatics tools, and iTRAQ protein profiling
among infected and uninfected cells were used to identify can-
didate proteins that potentially localize to the host cell nucleus.
The profiling identified 50 A. phagocytophilum proteins, one of
which was AnkA, and at least 7 of these were predicted to enter
the nucleus based on the presence of both a nuclear localization
sequence and a bacterial secretion signal sequence. Ultimately, 3
of the 7 proteins identified in the bioinformatic screen and 3 of 37
identified by iTRAQ profiling of nuclei from infected cells translo-
cated into HEK-293T human embryonic kidney and PLB-985
granulocytic cell nuclei.

METHODS
IN SILICO PREDICTION OF A. PHAGOCYTOPHILUM PROTEINS
TARGETED TO THE HOST CELL NUCLEUS
Our initial focus was on proteins involved in regulation of host
gene expression. Since these events occur chiefly in the nucleus,
we developed an unbiased computational approach to iden-
tify potential nucleomodulins encoded in intracellular bacterial
genomes based on their likelihood for translocation into the
host cell nucleus and applied this to the A. phagocytophilum
HZ strain genome (Supplemental Figure 1). Annotated pro-
tein tables for bacteria, focusing on the A. phagocytophilum HZ
strain genome, were obtained from the National Center for
Biotechnology Information (NCBI) database (ftp://ftp.ncbi.nih.

gov/genomes/Bacteria). The A. phagocytophilum protein table
was used as the database for eukaryotic subcellular localiza-
tion search algorithms. Although we used a database with 1264
annotated A. phagocytophilum proteins, including hypothetical
proteins, multiple programs were implemented to obtain high
prediction accuracy and processing capacity. Since we needed
only to predict nuclear proteins, localization coverage was not
taken into account. Since hybrid methods are preferable when lit-
tle is known about the protein of interest (Donnes and Hoglund,
2004) we used ProtComp Version 6 (Softberry, Inc.), a computa-
tional algorithm for the identification of sub-cellular localization
of eukaryotic proteins.

We next applied PSORTb v.2.0 to exclude potential membrane
proteins that are unlikely to be secreted into the host cell (Gardy
et al., 2005). Finally, we used computational algorithms to predict
the presence of eukaryotic nuclear localization signals (NLS).
NLSs often possess sequences with a high basic amino-acid
content (Hicks and Raikhel, 1995) and are generally classified

into three categories: classical or monopartite (NLSm), bipartite
(NLSb), and a type of N-terminal signal found in yeast protein,
Mat alpha2, a poorly studied signal that is not incorporated in
most NLS prediction algorithms. To screen broadly for potential
NLSs, we selected MultiLoc (Hoglund et al., 2006). MultiLoc
also identifies matches in NLSdb, a database of experimentally
known NLSs (Nair et al., 2003) and is also useful to predict
NLSm and NLSb in addition to the NLSdb attribute, since
NLSdb recognizes only 43% of the nuclear proteins. MultiLoc
calculates a probability estimate for each subcellular location
and the protein is assigned to the compartment with the highest
score. The MultiLoc output was recorded and used to calculate a
Nuclear Score that better reflects the purpose of the search:

Nuclear Score = MultiLoc Nuc + NLSdb

+ (0.5 × NLSm + 0.5 × NLSb)

where: (i) 0 ≤ MultiLoc Nuc <1 is the probability estimate of the
protein being nuclear as calculated by MultiLoc; (ii) NLSdb is 1 if
the protein contains a known NLS, 0 if not; (iii) NLSm is 1 if the
protein contains a predicted NLSm, 0 if not; and (iv) NLSb is 1
if the protein contains a predicted NLSb, 0 if not. Weighting was
applied since the presence of a predicted NLS suggests, but is not
conclusive; therefore the NLSm or NLSb prediction contributes
only half to the final nuclear score. The addition of the continu-
ous MultiLoc Nuc score provides a better ranking of the proteins,
given that the other indicators contribute discretely to the Nuclear
Score. However, no proteins without a known or predicted NLS
will produce a Nuclear Score >1 since MultiLoc Nuc <1.

iTRAQ FOR IDENTIFICATION OF POTENTIAL NUCLEAR-TRANSLOCATED
PROTEIN PROFILING
A. phagocytophilum-infected and uninfected HL-60 cells, a
promyelocytic cell line commonly used for A. phagocytophilum
propagation as previously described (Goodman et al., 1996; Park
et al., 2004), were fractionated to obtain nuclei and nuclear
proteins. iTRAQ (isobaric tag for relative and absolute quan-
titation protein profiling technology [Applied Biosystems]), a
mass spectrometric technique where 2 protein expression profiles
are compared, was used to identify candidate bacterial proteins
present in the nucleus of infected cells. One hundred μg in
replicate samples from nuclear fractions of infected and unin-
fected HL-60 cells were acetone-precipitated and checked for
protein integrity and sample quality. The samples were reduced
and cysteines blocked following the iTRAQ kit protocol (Applied
Biosystems). Samples were digested with trypsin overnight at
37◦C and then labeled with iTRAQ tags in replicates, pooled
and fractionated using a strong cation exchange (SCX) column
on an Ultimate HPLC system (LC Packings). Approximately 20
fractions were collected and analyzed on Qstar Pulsar™ (Applied
Biosystems-MDS Sciex) interfaced with an Agilent 1100 HPLC
system. Peptides were separated on a reverse-phase column, and
MS/MS analysis was performed. The MS/MS spectral data were
extracted and searched against Uniprot-sprot database (entries
for Homo sapiens and A. phagocytophilum) using ProteinPilot™
software (Applied Biosystems). For each protein, two types of
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scores were reported: unused ProtScore and total ProtScore. The
total ProtScore is a measurement of all the peptide evidence for
a protein and is analogous to protein scores reported by other
protein identification software programs. However, the unused
ProtScore is a measurement of all the peptide evidence for a pro-
tein that is not better explained by a higher ranking protein and
was the method of choice. The protein confidence threshold cut-
off for this study was set at an unused score of 2.0 with at least
one peptide with 99% confidence. A ratio of infected to unin-
fected (Aph:HL-60) score was used to identify A. phagocytophilum
proteins in nuclear lysates. To do this, we averaged the ratios of
uninfected HL-60 nuclear lysate replicates (isobaric isotope labels
115:114) and ratios of nuclear lysate replicates from A. phagocy-
tophilum-infected HL-60 cells (116:114 and 117:114) to create the
composite Aph:HL-60 mean ratio. Proteins identified with mean
ratios (infected/uninfected) >1.2 were selected for further study.

GFP-FUSION PROTEIN PLASMID CLONES AND TRANSFECTIONS
Forty one GFP C-terminal fusion proteins were prepared
using pMAXFP-Green-C (Lonza, cat# AMA-VDF1011) and
the Infusion HD Liquid cloning kit (Clontech). Briefly, tar-
get genes were amplified using PlatinumTaq (Life Technologies)
and PCR purified using Qiagen PCR purification kits (Qiagen).
Primers were designed using Clontech’s Online Infusion tools,
Primer Design. Amplicons were created to be fused with the
pMAXFP-Green-C vector after digestion with XhoI. Primers
were approximately 40–45 bp in length and had the sequence
GAAGAAAGATCTCGAGCT added to the 5′ end of the forward
gene-specific primer (20–25 bp), and GAAGCTTGAGCTCGAGT
added 5′ to the reverse primer (Supplemental Table 1). The
Infusion-HD kit instructions were followed as per the manufac-
turer’s recommendations. Clones were transformed into E. coli
JM109 (Promega) and after antibiotic selection, were sequenced
to ensure they were in the correct orientation and in frame.
HEK-293T cells were transfected with GFP-fusion vectors using
Lipofectamine 2000 (Life Technologies) and PLB-985 cells were
transfected with the Amaxa Nucleofector shuttle and the SF
kit reagents (Lonza) as per manufacturer’s recommendations.
PLB-985 cells are human myelomonoblast leukemia cells that
easily differentiate into neutrophil-like cells and are readily trans-
fected as opposed to HL-60 cells, a common host cell model for
A. phagocytophilum infection (Pedruzzi et al., 2002; Ellison et al.,
2012; Rennoll-Bankert et al., 2014). Cells were stained with DAPI
24 h later and imaged by fluorescence microscopy, gathering both
superimposed green fluorescent protein and DAPI images.

DETERMINATION OF T4SS SUBSTRATES
A. phagocytophilum proteins that localized to the nucleus of
HEK-293T and PLB-985 cells were tested for their ability to be
secreted by the T4SS Dot/Icm system of Coxiella burnetii RSA439
avirulent phase II nine-mile strain using adenylate cyclase translo-
cation assays (Larson et al., 2013). Fusion proteins were cre-
ated by cloning full-length coding regions or C-terminal 100
aa truncations to the Bordetella pertussis adenylate cyclase gene
(cyaA). To achieve this, C. burnetii was transiently propagated in
ACCM-2 axenic culture medium and transformed with the con-
structs (performed at the NIAID Rocky Mountain Laboratories

[Hamilton, MT] by Paul Beare, Ph.D. and Charles L. Larson).
Axenic C. burnetii was transformed by electroporation and cul-
tured in ACCM-2 medium for 24 h followed by chloramphenicol
selection (Beare et al., 2009; Voth et al., 2011). The ability of the
constructs to be secreted by the Dot/Icm system was determined
by measuring changes in intracellular cAMP levels. CyaA fusion
proteins that contain a T4SS signal are capable of being secreted
and mediate a measurable increase in cAMP. C. burnetii transfor-
mants containing the cyaA constructs were used to infect THP-1
cells (a human myelomonocytic cell line) at an MOI of 100:1,
and included both A. phagocytophilum AnkA (APH_0740) and
Coxiella vacuolar protein A (CvpA), both known T4SS substrates
as positive controls. After 3 days, the cells were harvested, lysed
and examined for cAMP production by enzyme immunoassay.
Results were expressed as fold change in intracellular cAMP con-
centration compared to empty vector control (CyaA only) that
lacked a T4SS signal; values >2 were considered positive for type
4 secretion; values between 1 and 2 were considered marginal.

ASSAY FOR DETECTION OF REACTIVE OXYGEN SPECIES
Superoxide production was detected as described previously
(Rennoll-Bankert et al., 2014). Briefly, HL-60 cells were incubated
with 0.25 mM 2′,7′-dichlorofluoresein diacetate (DCFH-DA) in
PBS for 30 min at room temperature. 105 cells were stimu-
lated in triplicate with 1 μg/mL phorbol 12-myristate 12-acetate
(PMA) and fluorescence was measured every 2 min. The rela-
tive fluorescence units at 180 min were averaged and compared to
unstimulated controls using a two-sided Student’s t-test, α 0.05.

RESULTS
IN SILICO PREDICTION OF A. PHAGOCYTOPHILUM PROTEINS
TARGETED TO THE HOST CELL NUCLEUS
Of 1264 proteins and hypothetical proteins examined by the
bioinformatics algorithm, 123 were identified by ProtComp as
nuclear-localized; 3 of these were classified in PSORTb as poten-
tially nuclear membrane-associated; after analysis of NLSdb and
screening for NLSm and NLSb, 7 candidate proteins had a
total Nuclear score >1 (Table 1). One candidate with a high
ProtComp score for nuclear localization but that lacked a pre-
dicted NLS (APH_0805) was selected as a control. The known
nuclear-translocated AnkA was not identified in this screen.

iTRAQ IDENTIFICATION OF A. PHAGOCYTOPHILUM
NUCLEAR-TRANSLOCATED PROTEINS
We detected 43 A. phagocytophilum proteins with an Aph:HL-60
ratio >1.2 in the nucleus of infected cells (Table 2), including the
top hit, AnkA that is established to translocate into the nucleus.
This approach allowed the identification of A. phagocytophilum
proteins most likely to have been translocated into the nucleus
and provided a more complete list of candidates to investigate out
of the 1264 A. phagocytophilum ORFs available for study. Of these
43 candidates, only AnkA was excluded from subsequent cloning
and expression for in vitro nuclear localization studies.

IN VITRO NUCLEAR LOCALIZATION
As an inclusive screen, and because contamination of nuclear
preparations could not be entirely excluded in iTRAQ stud-
ies, nuclear localization of proteins identified by bioinformatic
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Table 1 | Bioinformatic prediction of A. phagocytophilum nuclear-translocated proteins, by likelihood based on Final Score rank.

Locus name Acc. No. Protein Gene Ranking ProtComp MultiLoc NLS NLS1 NLS2 Final score

APH_0820a YP_505397.1 Hypothetical protein 10 2.1 0.94 1 1 0 2.44

APH_0847 YP_505424.1 Hypothetical protein 22 2.1 0.97 0 1 1 1.97

APH_0382 YP_504988.1 HGE-14 protein 56 1.7 0.97 0 1 0 1.47

APH_0385 YP_504990.1 HGE-14 protein 75 2.1 0.94 0 1 0 1.44

APH_0455 YP_505057.1 HGE-14 protein 76 2.2 0.94 0 1 0 1.44

APH_0485 YP_505084.1 Hypothetical protein 77 2.2 0.94 0 1 0 1.44

APH_0576 YP_505167.1 RNA polymerase sigma factor RpoD rpoD 114 2.1 0.89 0 1 0 1.39

APH_0805b YP_505382.1 Hypothetical protein 1891 2.1 0.96 0 0 0 0.96

aNot cloned.
bSelected as negative control.

methods or by iTRAQ mass spectrometry were confirmed by
cloning the corresponding genes into a mammalian expression
vector for expression as GFP fusion proteins. APH_0805 that
was predicted to have nuclear localization yet lacked a pre-
dicted NLS and had a below-threshold Nuclear score was used
as a non-translocating control. HEK-293T cells and PLB-985,
a promyelocytic cell line, were transfected and examined for
nuclear localization of the GFP-fusion proteins with Hoescht
33342 nuclear counterstaining. Six of the 42 proteins tested (36
from iTRAQ profiling, 7 from the bioinformatic screen), translo-
cated to the nucleus: APH_0062 (hypothetical protein), RplE
(50S ribosomal protein L5 [APH_0292]), Hup (DNA-binding
protein HU [APH_0783]), and APH_0455, APH_0382, and
APH_0385 (all HGE-14) (Figure 1 and Supplemental Figure 2).
APH_0278 (tuf-1; elongation factor Tu) was not cloned, but
instead the identical APH_1032 (tuf-2; elongation factor Tu)
was used but did not enter the nucleus. Nine proteins were
either unable to be cloned or cloning was not attempted, includ-
ing: APH_0160 (putative thymidylate synthase, flavin-dependent,
truncation, partial); APH_0196 (nitrogen assimilation regu-
latory protein); APH_0289 (ribosomal protein S17 [rpsQ]);
APH_0820 (hypothetical protein); APH_0906 (hypothetical pro-
tein); APH_1023 (DNA-directed RNA polymerase, beta subunit
[rpoC]); APH_1024 (DNA-directed RNA polymerase, beta sub-
unit [rpoB]); APH_1034 (ribosomal protein S7 [rpsG]) and
APH_1333 (transcription elongation factor GreA).

DETERMINATION OF TYPE 4 SECRETION SUBSTRATES
Proteins identified to localize to the nucleus were further inves-
tigated to determine if they could be secreted by the T4SS of
Coxiella burnetii, which is similar to that of A. phagocytophilum.
T4SS substrate status was determined by the ability of the CyaA-
fusion to exit C. burnetii and produce a measurable increase in
cAMP concentrations with infection of THP-1 cells. Of the 6
genes tested only APH_0455 was identified to be a type 4 secretion
substrate (Figure 2).

DETERMINATION OF OXIDATIVE BURST AFTER TRANSFECTION AND
NUCLEAR TRANSLOCATION
GFP-fusion constructs were transfected into HL-60 cells to
determine their ability to alter the oxidative burst response.
Unfortunately, the methods (electroporation, lipofectamine, viral

transduction) used to transfect the HL-60 cells (differentiated or
undifferentiated), abrogated oxidative burst as compared with
non-transfected cells. Thus, we compared results to PMA-
stimulated oxidative burst in HL-60 cells transfected with the
empty GFP plasmid as control. When RFU values of each
unstimulated transfected control cell culture were compared
to PMA-stimulated, significant oxidative burst, as seen with
the GFP plasmid control, was observed only with Hup and
APH_0382 (Figure 3A). When normalized to GFP plasmid trans-
fection alone, APH_0062, RplE, APH_0455, Hup, and APH_0385
significantly repressed respiratory burst (Figure 3B). However,
responses varied in intensity over several repeated experiments,
likely in part due to the variable transfection efficiency obtained
with HL-60 cells. These data suggest that one or more of these
effectors could contribute to dampened production of reactive
oxygen species.

DISCUSSION
While considerable focus has been placed on AnkA as the pri-
mary nucleomodulin of A. phagocytophilum, it does not seem
plausible that a single protein can account for the widespread
transcriptional and phenotypic changes induced with infection.
Using current bioinformatics tools and mass spectrometry, a
number of other proteins encoded in the A. phagocytophilum
genome were identified that could potentially localize to the host
cell nucleus. To validate the candidate genes, GFP-fusion proteins
were created and screened for nuclear localization within HEK-
293T cells. This approach narrowed the list of target genes for
further investigation to six.

No candidate proteins were identified in both the bioinfor-
matic screen and in the iTRAQ mass spectrometry analysis. If one
assumes that the mass spectrometry data is accurate, the bioinfor-
matic approach was ineffective at identifying features to predict
nuclear localization for 3 of the six proteins shown capable of
entering the nucleus; as a result, APH_0062 (cytoplasmic), hup,
and rplE (both mitochondrial) were excluded from the bioin-
formatic identification because they were not assigned a nuclear
localization. In contrast, no bioinformatic-predicted candidate
appeared in the iTRAQ mass spectrometry analyses, suggest-
ing limitations in sensitivity and/or contamination of nuclear
preparations by non-nuclear localized proteins. Thus, the com-
bination of both approaches increased the ability to identify
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Table 2 | Anaplasma phagocytophilum proteins identified in the nuclear lysates of infected HL-60 cells by iTRAQ with ratios compared with

uninfected cells of >1.2 and ranked by Unused ProtScore to identify high likelihood candidates for nuclear translocation.

Locus Accession Protein Gene Ratios of labeled peptidesa Mean Mean Ratio Unused

name HL-60 Aph Aph:HL-60 ProtScore
115:114 116:114 117:114

APH_0740 gi|88607707 Ankyrin A ankA 1.06 1.42 1.43 1.03 1.43 1.38 40.10

APH_1023 gi|88607105 DNA-directed RNA polymerase
subunit beta; RNAP subunit beta

rpoC 1.04 1.50 1.39 1.02 1.45 1.42 32.10

APH_0240 gi|88606723 60 kDa chaperonin GroEL groEL 1.00 1.88 1.93 1.00 1.90 1.90 30.60

APH_10242 gi|88606872 DNA-directed RNA polymerase
subunit beta; RNAP subunit beta

rpoB 1.02 1.33 1.27 1.01 1.30 1.28 23.40

APH_0906 gi|88606911 Hypothetical protein APH_0906 1.05 1.25 1.22 1.02 1.24 1.21 20.70

APH_02782 gi|88607578 Translation elongation factor Tu; EF-Tu tuf1 1.18 1.93 1.83 1.09 1.88 1.73 20.20

APH_1099 gi|88607685 DNA-binding response regulator CtrA ctrA 1.05 2.65 2.71 1.03 2.68 2.62 19.90

APH_0303 gi|88606699 DNA-directed RNA polymerase
subunit alpha; RNAP subunit alpha

rpoA 1.16 1.91 1.84 1.08 1.88 1.74 15.90

APH_0784 gi|88606926 DNA-binding protein HU hup 1.00 2.38 2.03 1.00 2.21 2.21 15.40

APH_0968 gi|88606840 ATP-dependent protease La lon 1.01 1.62 1.44 1.01 1.53 1.52 15.10

APH_1100 gi|88606714 DNA-binding protein 0.99 2.82 2.44 0.99 2.63 2.64 13.80

APH_0469 gi|88607025 Putative malonyl-CoA decarboxylase 1.04 1.27 1.28 1.02 1.27 1.24 12.60

APH_0445 gi|88607683 Transcription elongation factor NusA nusA 1.00 1.53 1.50 1.00 1.52 1.52 12.20

APH_0339 gi|88607311 Putative thermostable
metallocarboxypeptidase

1.11 1.59 1.58 1.05 1.58 1.50 9.60

APH_1239 gi|88607921 P44–15b outer membrane protein;
major surface protein-2C

p44–15b 1.05 3.60 3.63 1.03 3.62 3.53 9.10

APH_0062 gi|88606901 Hypothetical protein APH_0062 1.06 1.91 1.77 1.03 1.84 1.79 8.70

APH_1097 gi|88607712 DNA polymerase III, beta subunit dnaN 1.14 1.33 1.30 1.07 1.32 1.23 6.60

APH_0135 gi|88606701 Cold shock protein, CSD family 0.97 1.79 1.78 0.99 1.79 1.81 6.30

APH_0397 gi|88606909 30S ribosomal protein S2 rpsB 1.07 1.53 1.45 1.04 1.49 1.44 6.20

APH_1263 gi|88607227 Translation initiation factor IF-3 infC 0.94 2.12 1.97 0.97 2.05 2.11 5.00

APH_0398 gi|88607503 Elongation factor Ts; EF-Ts tsf 1.03 1.24 1.28 1.01 1.26 1.24 4.40

APH_1151 gi|88607101 Hypothetical protein APH_1151 1.20 2.16 2.11 1.10 2.13 1.94 4.10

APH_0288 gi|88607038 50S ribosomal protein L29 rpmC 1.03 1.77 1.66 1.01 1.72 1.69 4.10

APH_1029 gi|88607731 Transcription
termination/antitermination factor
NusG

nusG 0.94 1.65 1.72 0.97 1.69 1.74 4.00

APH_1027 gi|88607420 50S ribosomal protein L1 rplA 1.15 1.37 1.26 1.08 1.31 1.22 3.30

APH_0515 gi|88606905 Expression regulator ApxR apxR 0.99 2.02 1.94 0.99 1.98 2.00 3.20

APH_0097 gi|88606982 Protein-export protein SecB secB 1.11 1.81 1.67 1.06 1.74 1.64 3.00

APH_0292 gi|88606711 50S ribosomal protein L5 rplE 1.26 1.52 1.57 1.13 1.54 1.36 2.40

APH_0106 gi|88607568 Riboflavin synthase, alpha subunit ribE 0.98 2.04 2.00 0.99 2.02 2.04 2.30

APH_0280 gi|88607449 50S ribosomal protein L3 rplC 1.07 1.60 1.64 1.04 1.62 1.56 2.30

APH_0629 gi|88607793 Malate dehydrogenase mdh 0.98 1.25 1.21 0.99 1.23 1.24 2.30

APH_01602 gi|88606875 Putative thymidylate synthase,
flavin-dependent, truncation

1.14 1.50 1.37 1.07 1.44 1.34 2.20

APH_0154 gi|88607134 Serine hydroxymethyltransferase
SHMT

glyA 1.06 1.29 1.26 1.03 1.27 1.24 2.10

APH_0971 gi|88607838 Trigger factor; TF tig 1.04 1.37 1.28 1.02 1.32 1.30 2.00

APH_0659 gi|88607183 Antioxidant, AhpC/Tsa family 0.99 1.26 1.23 1.00 1.24 1.25 2.00

APH_1349 gi|88606948 Glyceraldehyde-3-phosphate
dehydrogenase, type I

gap 0.86 1.13 1.19 0.93 1.16 1.24 2.00

APH_1198 gi|88606994 2-oxoglutarate dehydrogenase, E2
component, dihydrolipoamide
succinyltransferase

sucB 0.98 1.24 1.16 0.99 1.20 1.21 2.00

APH_1025 gi|88607605 50S ribosomal protein L7/L12 rplL 1.01 1.85 1.79 1.01 1.82 1.81 1.90

(Continued)
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Table 2 | Continued

Locus Accession Protein Gene Ratios of labeled peptidesa Mean Mean Ratio Unused

name HL-60 Aph Aph:HL-60 ProtScore
115:114 116:114 117:114

APH_02892 gi|88607574 30S ribosomal protein S17 rpsQ 0.90 1.57 1.46 0.95 1.52 1.60 1.70

APH_10342 gi|88607212 30S ribosomal protein S7 rpsG 1.16 1.42 1.41 1.08 1.41 1.31 1.50

APH_01962 gi|88607673 Response Regulator NtrX, putative
nitrogen assimilation regulatory
protein

ntrx 0.93 1.70 1.50 0.97 1.60 1.66 1.40

APH_13332 gi|88607617 Transcription elongation factor GreA greA 0.95 1.29 1.27 0.98 1.28 1.31 1.30

APH_1098 gi|88607131 3′–5′ exonuclease family protein 1.12 1.30 1.29 1.06 1.30 1.22 1.30

aIsobaric ion labels of nuclear lysates from: 114 and 115, uninfected HL-60 cells; 116 and 117, A. phagocytophilum-infected HL-60 cells.
bNot cloned.

and exclude candidates for further analysis. It is important to
note that the screen will only identify those genes capable of
entering the nucleus on their own accord via an identified or
unidentified nuclear localization signal. Some proteins identi-
fied as present in the nucleus in the iTRAQ screen could indeed
localize to the nucleus but might not be confirmed by transfec-
tion screens. A bacterial-derived protein shuttled into the nucleus
as a component of a protein complex, or one that possesses an
uncharacterized NLS, as is the case with AnkA, would not be
identified. Furthermore, HEK-293T cells are not a model cell line
for A. phagocytophilum infection and transfection of these pro-
teins does not mimic infection, a much more complex process;
therefore, confirmation of nuclear translocation in PLB-985 was
performed.

Additionally, A. phagocytophilum is largely refractory to gene
delivery by genetic transformation. Previous reports demonstrate
A. phagocytophilum transformation using the Himar1 transposase
system that introduces small GFP proteins or disrupts bacte-
rial genes and consequently protein expression (Felsheim et al.,
2006; Chen et al., 2012). This process does not result in gene
entry, but results in a library of mutant bacteria that can facil-
itate complex functional studies and insight into the impor-
tance of mutated genes for establishing or maintaining infection.
However, directed mutation by homologous recombination has
not yet been described for A. phagocytophilum. None-the-less, this
relatively simple experiment yielded multiple candidate genes of
interest for further investigation.

After narrowing the initial bioinformatic and iTRAQ list of
candidate genes to six, we investigated the ability of these pro-
teins to be secreted by the bacterium. For A. phagocytophilum,
the most well characterized secretion mechanism is that of the
T4SS. Because of this, we focused on whether or not these proteins
could be secreted by a T4SS. As an obligate intracellular bacterium
that resides solely in membrane-bound vacuoles of its host cells,
A. phagocytophilum-secreted proteins very likely first enter the
cytosol before translocation to the nucleus, but are unlikely to be
detected outside of the host cell owing to the intracellular vacuo-
lar membranes accessible to the bacterium. Thus, the C. burnetii
Dot/Icm T4SS was used as a surrogate delivery system because
C. burnetii is capable of being transfected easily when cultivated
in axenic medium but resides within host cell vacuoles when

cultivated in mammalian cells. The Dot/Icm secretion system is
compatible with that of A. phagocytophilum and, unless cultivated
in specific axenic medium, C. burnetii is also an obligate intra-
cellular bacterium residing within membrane-bound vacuoles.
Using fusions with B. pertussis CyaA, one of six A. phagocy-
tophilum candidate nuclear-localizing proteins was identified as
a T4SS substrate. The remaining 5 did not appear to be secreted
by the Dot/Icm system. Using SignalP 4.1 (http://www.cbs.dtu.dk/
services/SignalP/), we determined the presence of putative Sec1
secretion signals in the genes encoding APH_0382, APH_0385,
and APH_0455 (all HGE-14-like); experimental confirmation of
this secretion mechanism was not further attempted.

Interestingly, APH_0382, APH_0385, and APH_0455 were
shown to be differentially expressed between mammalian and tick
cells. The transcription of each of these proteins was approxi-
mately 2.9–3.3-fold greater in HL-60 cells than ISE6 (tick) cells
(Nelson et al., 2008). This suggests that these HGE-14-like pro-
teins likely play a role in establishing or maintaining infection in
mammalian cells. In fact, differential transcription of A. phago-
cytophilum genes plays a role in the life cycle of the bacterium
in mammalian and tick cells (Wang et al., 2007; Nelson et al.,
2008; Troese et al., 2011; Mastronunzio et al., 2012). APH_0784
(DNA binding protein HU), and APH_0292 (50S ribosomal pro-
tein L5) are among the 20 most abundant proteins expressed
in infected I. scapularis salivary glands (Mastronunzio et al.,
2012), and both were found in nuclear lysates of infected HL-60
cells, yet predicted to localize to the mitochondrion and cytosol,
respectively. We also identified the transcriptional regulator of
p44/msp2 genes, ApxR (APH_0515; Wang et al., 2007) in nuclear
lysates from A. phagocytophilum infected HL-60 cells, but at a
low unused ProtScore. As ApxR was unable to translocate to
the nuclei of HEK293 cells, its presence indicates the potential
for low level cytoplasmic contamination in the nuclear prepara-
tions. However, the overall level of cytoplasmic contamination is
likely to be low since the most abundant A. phagocytophilum pro-
teins in the P44/Msp2 family (Wang et al., 2007; Nelson et al.,
2008; Mastronunzio et al., 2012) were not abundant in nuclear
lysates. Finally, APH_1235 is characterized as a specific marker of
dense core infectious A. phagocytophilum (Troese et al., 2011). It is
among the 20 most abundantly-expressed proteins in tick salivary
glands (Mastronunzio et al., 2012), is significantly upregulated in
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FIGURE 1 | Six A. phagocytophilum candidate genes were found to
localize to the nucleus of HEK-293T cells. Candidate genes were fused to
GFP and transfected into HEK-293T cells. Twenty four hours

post-transfection, cells were stained with DAPI and imaged. Of the 42
GFP-fusion proteins created, six localized to the nucleus. APH_0805 is shown
here as an example of a protein that did not localize to the nucleus.
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FIGURE 2 | APH_0455 is secreted by the Dot/Icm T4SS of C. burnetii.
Candidate genes were fused to B. pertussis adenylate cyclase (cyaA),
transfected into C. burnetii and selected by chloramphenicol resistance.
Transformed C. burnetii clones were then used to infect THP-1 cells. Three
days post-transfection, THP-1 cells were assayed for cAMP production.
Only those constructs that contain a T4SS signal sequence have
measurable changes in cAMP production. The results represent the
average of two separate experiments each with replicate tests. The
p-values were calculated based on comparisons with fold change of C.
burnetii transformed by empty plasmid (CyaA only) using two-sided
Student’s t-tests, α = 0.05. CBU_0655 is CvpA, a known T4SS substrate of
C. burnetii.

dense core cells with HL-60 cell infection (Troese et al., 2011), and
is believed to facilitate tick to mammal transmission. While pre-
dicted to localize to the nucleus by ProtComp v.6 and identified
in infected HL-60 cell nuclear lysates, published data demonstrate
the lack of nuclear localization (Troese et al., 2011). Moreover, it
lacked a recognized NLS and the iTRAQ unused score was low,
suggesting low-level contamination from the host cytosol.

APH_0455, a HGE-14 protein, is of particular interest owing
to its utilization of the T4SS to enter the cell and its translocation
into the nucleus where it forms small aggregates and clusters dis-
persed unevenly throughout the nucleoplasm. APH-0455 is one
of several HGE-14 proteins predicted to enter the nucleus, and
APH-0455 has been described to have transmembrane domains
that would predict it to be a type II membrane protein, and
possesses 4 conserved 41 amino acid repeats followed by 2 sim-
ilar truncated repeats (Lodes et al., 2001). This repeat region
overlaps a region with a conserved Med15/ARC15 (pfam09606)
domain. Med15/ARC105 domains are found as part of a family
of sterol regulatory element binding proteins (SREBPs), tran-
scription activators that regulate genes involved in cholesterol
and fatty acid homeostasis. In humans, SREBPs bind CREB-
binding protein (CBP)/p300 acetyltransferase that in turn affect
chromatin structure and gene transcription (Yang et al., 2006).
Whether APH_0455 plays a role in these critical pathways for

FIGURE 3 | Expression of putative nuclear effectors APH_0062, RplE
and APH_0455 dampen PMA-stimulated reactive oxygen species
production by HL-60 cells. HL-60 cells were transfected with 2 μg plasmid
and assayed for respiratory burst 48 h later. (A) The average of three
replicates is displayed ±SEM at 180 min. (B) The fold change was
calculated by dividing the ratio of PMA stimulation of each transfectant to
the GFP control. P-values were calculated using Students t-tests.

A. phagocytophilum survival needs to be determined (Lin and
Rikihisa, 2003).

Because of the candidate proteins’ abilities to act as T4SS or
Sec1 substrates and to localize to the nucleus, we sought to deter-
mine if they played a role in altering the phenotype of HL-60
cells, a commonly used cell model for A. phagocytophilum infec-
tion. Unfortunately, transfection of HL-60 cells with a variety of
methods inconsistently altered oxidative burst capacity, and often
the vehicle controls and transfection reagents were enough to
abrogate responses. Despite the variable responses, we observed
trends toward reduction of oxidative burst (Figure 3). Despite
these trends, we cannot currently conclude with certainty that
these effectors play a role in limiting oxidative burst as shown for
AnkA (Banerjee et al., 2000).

For each of the A. phagocytophilum proteins that localized to
the nucleus of HEK-293T and PLB-985 cells, it would be impor-
tant confirm their presence in the nuclei of A. phagocytophilum-
infected cells visually or biochemically, and to potentially assess
the effects of their absence in A. phagocytophilum among
Himar1 transposase libraries (Nelson et al., 2008; Troese et al.,
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2011). Additionally, future studies will examine their role in
transcriptional and functional changes in differentiated HL-60
cells, the preferred model for A. phagocytophilum-directed neu-
trophil reprogramming. Such studies will focus on transcriptional
responses, functional assays and, given the role that AnkA plays
during the course of infection, studies of nuclear protein-protein,
DNA-protein, and RNA-protein interactions. The screening tech-
niques modeled here using A. phagocytophilum will allow for a
more focused approach to identify potential nucleomodulins and
could facilitate studies of microbial nucleomodulin manipulation
of host cell transcriptional programs.

These techniques are not limited to the A. phagocytophilum
genome but can also be applied to other intracellular bacte-
ria. Using the same bioinformatics approaches (Supplemental
Methods, Supplemental Figure 1, Supplemental Tables 1, 2),
candidate genes were identified for other pathogens including,
but not limited to: Chlamydia trachomatis, Coxiella burnetii,
Ehrlichia chaffeensis, Mycobacterium tuberculosis, Yersinia pestis,
Legionella pneumophila, Francisella tularensis, and Listeria mono-
cytogenes. Identification of new nucleomodulins in any one of
these pathogens could add further insight as to how bacte-
ria modulate their host cells and cause aberrant transcriptional
reprogramming.

CONCLUSION
We used a combination of bioinformatic screens and iTRAQ
in vitro identification of potential nuclear-translocated proteins
to stratify and rapidly identify candidate nucleomodulins in
A. phagocytophilum, an approach easily applied to other intracel-
lular pathogens. By combining data gathered from bioinformatics
prediction tools and iTRAQ, 50 A. phagocytophilum proteins were
identified as potential nucleomodulins. Of the 50, we confirmed
that six proteins were capable of localizing to the nucleus on
their own, including APH_0455 that is also a T4SS substrate.
The identification of novel nuclear translocated proteins provides
additional support for the concept of nucleomodulin-mediated
reprogramming of cellular functions that improve microbial fit-
ness by promoting extended intracellular survival and more
opportunities for transmission.
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Opportunistic fungal pathogens can cause bloodstream infection and severe sepsis upon

entering the blood stream of the host. The early immune response in human blood

comprises the elimination of pathogens by antimicrobial peptides and innate immune

cells, such as neutrophils or monocytes. Mathematical modeling is a predictive method

to examine these complex processes and to quantify the dynamics of pathogen-host

interactions. Since model parameters are often not directly accessible from experiment,

their estimation is required by calibrating model predictions with experimental data.

Depending on the complexity of the mathematical model, parameter estimation can

be associated with excessively high computational costs in terms of run time and

memory. We apply a strategy for reliable parameter estimation where different modeling

approaches with increasing complexity are used that build on one another. This

bottom-up modeling approach is applied to an experimental human whole-blood

infection assay for Candida albicans. Aiming for the quantification of the relative impact

of different routes of the immune response against this human-pathogenic fungus, we

start from a non-spatial state-basedmodel (SBM), because this level of model complexity

allows estimating a priori unknown transition rates between various system states by the

global optimization method simulated annealing. Building on the non-spatial SBM, an

agent-based model (ABM) is implemented that incorporates the migration of interacting

cells in three-dimensional space. The ABM takes advantage of estimated parameters

from the non-spatial SBM, leading to a decreased dimensionality of the parameter space.

This space can be scanned using a local optimization approach, i.e., least-squares error

estimation based on an adaptive regular grid search, to predict cell migration parameters

that are not accessible in experiment. In the future, spatio-temporal simulations of

whole-blood samples may enable timely stratification of sepsis patients by distinguishing

hyper-inflammatory from paralytic phases in immune dysregulation.

Keywords: state-based model, agent-based model, pathogen-host interaction, parameter estimation,

whole-blood infection assay, Candida albicans
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1. Introduction

The human fungal pathogen Candida albicans is part of the
normal microbial flora inmore than half of the global population.
In immunocompromised patients it can become invasive and
may enter the blood stream via medical devices, e.g., catheters,
or translocation in the gut and can cause severe systemic
infections. The immune response against C. albicans in human
blood comprises the interplay of various complex biological
processes involving different immune mechanisms (Duggan
et al., 2015b). Most importantly, the whole-blood infection assay
allows multiple immune effector mechanisms to occur at the
same time and thus modulate the overall outcome (Luo et al.,
2013; Cunha et al., 2014; Hünniger et al., 2015). Applying a
systems biology approach, we quantified individual processes and
in this way revealed the main route of the immune response
against C. albicans in human blood (Hünniger et al., 2014). This
was achieved by an iterative systems biology cycle involving
experiment, mathematical modeling, hypothesis generation and
further experimental investigation.

The choice of an appropriate mathematical modeling
approach strongly depends on the questions to be answered
and the hypothesis, as well as the characteristics of the
underlying experimental data with regard to temporal and spatial
information. A wide range of modeling approaches exists that
differ by their computational complexity and can be classified
depending on the degree of spatial representation as well as
the internal degrees of freedom attributed to the model entities.
The computationally cheapest modeling approach for dynamic
systems is represented by ordinary differential equations (ODE),
where biological entities are assumed to be present in high
numbers and spatial information is not required such that they
can be collectively represented by a homogeneously distributed
concentration variable. State-based models (SBM) resolve the
biological entities as individuals that occupy states and are
able to perform transitions between states representing dynamic
processes. In contrast to ODE, this approach allows modeling
discrete events for any entity number in a biological system.
However, SBM are in turn limited in that they do not represent
spatial aspects. Individual-based models (IBM) such as cellular
automata (CA) and agent-based models (ABM) do simulate
discrete entities in space and time (Medyukhina et al., 2015).
In a CA simulation, these entities can undergo state changes
associated with their internal degrees of freedom as well as
positional changes on a pre-defined spatial grid of computational
cells (Von Neumann, 1951; Bittig and Uhrmacher, 2010).
The discrete number of individual entities as well as the
spatial representation of the environment result in increasing
computational costs in terms of run-time and memory. Even
more computationally expensive but biologically more realistic
simulations can be performed by the ABM approach. Here,
biological objects are represented as individual entities, so-called
agents, that are able to move in space and can act as well as
interact with other agents according to individual properties.
Examples of ABM for the pathogen-host interaction between the
human-pathogenic fungus Aspergillus fumigatus and phagocytes
were presented by Tokarski et al. (2012) and Pollmächer and

Figge (2014). In particular, the ABM developed by Pollmächer
and Figge (2014) simulates the detection of A. fumigatus conidia
by macrophages in a to-scale representation of human alveoli
and predicts the requirement of a chemotactic signal guiding the
phagocytes to the spatial positions of conidia.

In general, parameters of bio-mathematical models
characterize the components by their morphology and
their dynamic behavior. For example, cells may be defined
by parameters for size and shape as well as by parameters for
interactions in the spatial environment that are associated with
the typical frequency of interaction processes. Model parameters
associated with dynamical, functional and morphological aspects
of biological processesmay be extracted frommicroscopic images
by applying an image-based systems biology approach (Horn
et al., 2012; Mech et al., 2014; Medyukhina et al., 2015). However,
in many cases microscopy experiments cannot be performed for
technical reasons, as is also the case for whole-blood infection
assays where the majority of cells are erythrocytes blocking the
view on leukocytes, let alone fungal pathogens that are present
in even lower numbers. In situations like these, numerical
estimation of a priori unknown parameter values by comparison
with experimental time-series data becomes a highly relevant
issue. Parameter estimation algorithms are applied to find the
optimal match between the experimental data and simulated
model data. These optimization algorithms can be characterized
by their search technique within the parameter space, i.e., as
global or local approaches, and their mathematical procedures,
i.e., as stochastic or deterministic approaches (Moles et al.,
2003; Ashyraliyev et al., 2009). Local optimization techniques
search for better parameter values within a locally restricted
parameter space, where the direct search method and gradient
based methods are widely used (Ashyraliyev et al., 2009). They
show fast convergence to the optimal parameter values, but since
local optimization algorithms will get stuck in a nearby local
optimum, an educated guess of the initial parameter values is
absolutely required. In contrast, global optimization strategies
search a wide range of the parameter space with possibly various
local optima and the subclass of deterministic optimization
strategies can find the global optimum with pre-defined accuracy
(Ashyraliyev et al., 2009). High-dimensional parameter spaces
may be searched by stochastic optimization algorithms that
make use of probabilistic elements to avoid getting trapped in
local optima in order to find the global optimum. Common
stochastic search algorithms of this type are Metropolis Monte
Carlo (MMC) (Metropolis et al., 1953), adaptive random search
and evolutionary computation techniques such as differential
evolution (DE) (Storn and Price, 1997). Additionally, heuristics
can be applied in support of a fast convergence rate of global
or local optimization strategies, e.g., simulated annealing (SA)
(Kirkpatrick et al., 1983; Gonzalez et al., 2007), great deluge
(Dueck, 1993), or performing multiple searches from random
start parameters. The selection of the most suitable optimization
algorithm depends on specific model properties, such as the
dimension of the parameter space and the computational costs
for the model simulations that have to be repeatedly performed.
For computationally cheap ODE models, the computationally
expensive stochastic global optimization algorithms may be used,
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such as DE applied by Hernandez-Vargas et al. (2014) and SA
based on MMC applied by Hünniger et al. (2014) and Mech et al.
(2014).

The non-spatial virtual infection model of the immune
response against C. albicans in human blood was formulated
as a SBM and its parameters were fitted to the experimentally
determined time-evolution of concentrations for C. albicans
cells that are alive or killed and that can either reside in
extracellular space or inside immune cells of different types,
i.e., monocytes or granulocytes (polymorphonuclear neutrophils,
PMN) (Hünniger et al., 2014). Furthermore, we observed a
cell population of C. albicans that remained alive or killed
in extracellular space, i.e., these fungal cells are resistant
against phagocytosis and/or killing. The different C. albicans
cell populations were assigned states and individual cells could
perform transitions between states, such as phagocytosis by
immune cells, subsequent intracellular killing, extracellular
killing by antimicrobial peptides or acquiring resistance against
phagocytosis and/or killing. Resistant C. albicans cells are a
population of cells that were found to be protected against
phagocytosis and/or killing and that remained in the extracellular
space of the whole-blood infection assay (Hünniger et al., 2014).
Since the model is restricted to the dynamics of states occupied
by pathogenic cells we refer to the model by Hünniger et al.
(2014) as P-SBM. In the present study, motivated by newly
measured experimental data regarding the immune cell number
of monocytes and PMN in the whole-blood assays, we take the
next step and modify the P-SBM to drop its implicit assumption
that the number of immune cells for samples from different
individuals would be the same. Since in the modified SBM states
are assigned to the pathogenic cells as well as to the two types
of immune cells, which have been found to actively participate
in C. albicans elimination, we will refer to this model as PI-
SBM. Taking individual immune cells explicitly into account
obviously makes the simulations of the whole-blood infection
assaymore realistic, albeit at the expense of higher computational
costs for global parameter optimization that will be performed
using SA based on the MMC scheme as was the case for the
P-SBM.

A timely stratification of sepsis patients in different phases of
immune dysregulation requires spatio-temporal simulations of
whole-blood samples. To achieve this goal, an ABM of the whole-
blood infection assay was established that builds on the PI-SBM
and incorporates spatial properties of the blood sample in a three-
dimensional continuous representation. In particular, in the
ABM C. albicans cells as well as monocytes and PMN are agents
that canmigrate in the environment and interact with each other.
Apart from the model parameters associated with the migration
of cells, the ABMwas based on the transition rates of the PI-SBM
after appropriate conversion. This procedure strongly reduces
the number of a priori unknown parameters of agents to the
subset of migration parameters. The latter can be estimated
using the computationally cheap grid search algorithm and
enables the prediction of the migration behavior for the different
immune cell types that are otherwise not directly accessible in
experiment. The interrelations between the different modeling
approaches are schematically shown in Figure 1 demonstrating

that results are re-used across different modeling approaches to
simultaneously facilitate an increase in model complexity and
a decrease in computational expense for parameter estimation.
Our step-wise computational biology approach avoids typical
limitations of realistic models by focusing parameter estimation
on those parameters that arise at the next level of model
complexity.

2. Materials and Methods

2.1. Non-spatial State-based Model
The initial version of the non-spatial SBM describes the dynamics
of state transitions for the human-pathogenic fungus C. albicans
in whole-blood samples of healthy donors (Hünniger et al.,
2014). In agreement with experimental data, the time-evolution
of different C. albicans cells that are alive or killed and in
extracellular space or phagocytosed by either monocytes or PMN
can be simulated in this way. Since this SBM assumes the number
of immune cells to be constant across blood samples of different
donors and does only simulate the dynamics of the pathogenic
(P) cells, it is hereafter referred to as P-SBM. However, it is known
that the number of immune cells may strongly vary across human
individuals and in particular for patients. Therefore, we increase
the model complexity by advancing the P-SBM to a model that
does explicitly account for the number of immune cells being
present in a hemogram. Data including immune cell counts can
easily be obtained both in an experimental as well as in a clinical
setting. This model is hereafter referred to as PI-SBM to indicate
that state transitions are computed for pathogenic (P) as well as
immune (I) cells.

For comparison between the model predictions and the
experimentally determined kinetics in the whole-blood infection
assay, we introduce specific combinations of states, referred
to as combined units, that are measurable and useable for the
parameter estimation. These comprise all extracellularC. albicans
cells CE,

CE ≡ CAE + CKE + CAR + CKR , (1)

that are either alive (CAE) or killed (CKE) cells in extracellular
space as well as cells resistant against killing and/or phagocytosis
that are either alive (CAR) or killed (CKR). Next, the combined
units CM and CG refer to C. albicans cells that are phagocytosed,
respectively, by monocytes

CM ≡

∑
i≥0

∑
j≥0

Mi,j (i+ j) , (2)

or by granulocytes

CG ≡

∑
i≥0

∑
j≥0

Gi,j (i+ j) . (3)

Here, Mi,j and Gi,j refer to the number of monocytes and
granulocytes (PMN), respectively, with i alive and j killed
phagocytosed C. albicans cells. We limit the maximal number
of C. albicans cells that can be phagocytosed by an immune
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FIGURE 1 | Schematic representation of the bottom-up modeling

approach as a strategy for parameter estimation where different

mathematical models with increasing levels of complexity build

on one another. Using model outputs at one level for calibration of

models at a higher level is by way of example demonstrated for

Candida albicans infection in a human whole-blood assay (Hünniger

et al., 2014). The state-based model P-SBM, which focuses on the

viewpoint of pathogens, was modified into the state-based model

PI-SBM by accounting for actions of individual immune cells. After

calibration of transition rates in the non-spatial state-based model, these

were used to simulate the infection process in an agent-based model

(ABM) that accounts for the spatial representation of the whole-blood

infection assay. In the future, the calibration of migration parameters

may for example serve as input for a hybrid ABM that captures the

time-evolution of chemotactic signaling by solving reaction-diffusion

equations.

cell to 18, i.e., i, j < 10, being much larger than observed
in experiment (Hünniger et al., 2014). Furthermore, all killed
C. albicans cells are given by the combined unit

CK ≡ CKE + CKR +

∑
i≥0

∑
j≥1

(Mi,j + Gi,j) j , (4)

and all alive C. albicans cells by the combined unit

CA ≡ CAE + CAR +

∑
i≥1

∑
j≥0

(Mi,j + Gi,j) i . (5)

It should be noted that only three of the five combined units
are independent of each other, due to the conservation relations
C = CE + CG + CM and C = CK + CA for the total number of
C. albicans cells C.

The simulation algorithm for the time-evolution of the PI-
SBM is implemented in C++ that is available upon request. In
Figure 2A, the simulation algorithm is schematically depicted
and can be compared to the simulation algorithm of the P-SBM
in Supplementary Figure 1. We simulate a blood sample of 1

ml containing 5 × 105 monocytes, 5 × 106 PMN and 1 × 106

C. albicans cells that are initially extracellular and alive. In each
time-step, which we set to 1tPI−SBM = 1 min, the algorithm
tests for each individual cell in the system whether or not it does
undergo a state transition. To this end, a cell is first randomly
selected by sampling its relative frequency of occurrence among
all cell types in the system. Next, the state of this cell is updated
using a random selection procedure for the one transition in this
time-step that the cell can possibly make among all currently
enabled transitions. Once the type of transition between states
s and s′ with rate rs→s′ is selected, it will be executed with
probability Ps→s′ = rs→s′ 1tPI−SBM and the system is updated
accordingly. Table 1 provides an overview of the transition rates
for all possible state transitions of the model. After testing all
individuals in the system for performing a state transition, the
simulation time is advanced by one time-step and the whole
procedure is repeated until the total simulation time is reached.
Note that, since the ratio of the number of immune cells over the
number of pathogenic cells is larger than five, the simulation run
time of the PI-SBM is significantly increased compared with the
P-SBM.
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FIGURE 2 | Simulation algorithms of virtual infection models for

whole-blood assays. (A) Flow-chart of the non-spatial PI-SBM simulation

algorithm. In each time-step 1tPI−SBM, all individuals are tested for possible

state transitions. Individuals of extracellular alive and killed C. albicans states,

i.e., CAE and CKE , respectively, are tested for becoming resistant and for

extracellular killing. Individuals of immune cell states (Mi,j or Gi,j ) are tested

for phagocytosis of C. albicans and for intracellular killing. (B) Flow chart of

the spatial ABM simulation algorithm. In each time-step 1tABM, the migration

and interaction handling is performed in random order for every randomly

chosen agent.

2.2. Spatial Agent-based Model
The spatial virtual infection model for C. albicans in human
blood is realized using an ABM approach. This model
is implemented in C++ based on a previously established
framework of Pollmächer and Figge (2014) and is the spatial
counterpart of the non-spatial PI-SBM introduced in Section 2.1.
The C++ source code of the ABM simulation algorithm
is available upon request. In the ABM, the two types of
immune cells—monocytes and PMN—as well as the pathogenic
C. albicans cells are incorporated as virtual objects. These
virtual objects are agents that are characterized by a spherical
morphology with the physiological diameters of dM = 16µm
for monocytes, dG = 13.5µm for PMN (Mak and Saunders,
2011) and dC = 7µm for C. albicans (Mendling, 2006) (see
Figure 3A) and that can migrate and interact with each other
on encounter in the three-dimensional spatial environment (see
Figure 3B). We impose a cuboid environment with an edge
length of 1000µm representing 1µl blood and use random
periodic boundary conditions for the cuboid, i.e., an agent
which leaves the environment at some boundary point is deleted
from the system and a new agent with identical properties
re-enters the environment at some other randomly chosen
boundary point. The cuboid environment is represented as a
continuous space, i.e., allowing agents to move in a manner
that is more realistic than could be captured by a lattice-based
approach. This advantage is accompanied by the drawback

that well-defined neighborhood relations as naturally existing
between neighboring sites on a lattice are not present in
continuous space representations. However, in order to efficiently
determine cell–cell encounters, we use a neighborhood list
method, which reduces the computational complexity to a close-
to linear dependency on the number of agents in the system
(Rapaport, 1996). At time point t = 0, agents are initialized with
all C. albicans cells being in the state alive-and-extracellular. The
time-evolution of the system is simulated by the random selection
method (Skvoretz, 2002; Figge, 2005) that handles the migration
and interaction of agents per time-step 1t in a random fashion
(see Figure 2B).

We use ratios in cell numbers that are equivalent to those in
the PI-SBM, where 1µl of blood contains 5×103 PMN, 5×102

monocytes and 1×103 C. albicans cells, i.e., in total 6.5×103 cells.
Viewing cells as interacting point particles, an average volume of
v ≈

1
6.5×106 µm3 can be attributed to each cell, implying an

average distance of l ≈ v1/3 ≈ 55µm between immune cells
and C. albicans cells. Even though this distance is clearly larger
than the diameters of these cells, l≫ dM, dG, dC, we assume that
the migration behavior of immune cells and C. albicans cells in
blood resembles a random walk of agents without directional
persistence. This assumption is based on the fact that the total
number of erythrocytes in human blood ranges from 4×106−6×
106 cells/µl (McClatchey, 2003). Estimating the total number of
cells in 1µl of blood to be about six millions, an average volume
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TABLE 1 | Rates of state transitions in the non-spatial PI-SBM.

Transition rate Description State transition

φM Phagocytosis by monocytes Mi,j + CAE → Mi+1,j

Mi,j + CKE → Mi,j+1

κM Intracellular killing by monocytes Mi,j → Mi−1,j+1

φG Phagocytosis by PMN for first-time

phagocytosis event

G0,0 + CAE → G1,0
G0,0 + CKE → G0,1

φG⋆ Phagocytosis by PMN for repeated

phagocytosis events

Gi,j + CAE → Gi+1,j
Gi,j + CKE → Gi,j+1

κG Intracellular killing by PMN Gi,j → Gi−1,j+1

κEK (t) Extracellular killing by antimicrobial

peptides released by first-time PMN

phagocytosis with decreasing activity

CAE → CKE

Rate depends on the activity of

antimicrobial peptides (κ̄EK ) and the

decay of their antimicrobial activity (γ )

as defined in Hünniger et al. (2014)

ρ Resistance against phagocytosis

and/or killing

CAE → CAR,
CKE → CKR

For details see (Hünniger et al., 2014).

of vc ≈
1
6×103 µm3 can be attributed to each cell, implying a

mean free path of lfp ≈ v
1/3
c ≈ 5µm between point particles.

This distance is not only clearly smaller than the distance between
immune cells and C. albicans cells, lfp ≪ l, but also smaller
than the diameters of erythrocytes, C. albicans cells as well as
of the immune cells under consideration. It can be concluded
that cells are not migrating with directional persistence in blood,
because frequent collisions with the overwhelming number of
erythrocytes will induce diffusivemigration of cells with diffusion
coefficients in whole-blood that can be very different for the
different cell types. This is a consequence of the fact that
monocytes and PMN perform active migration, whereas C.
albicans cells are immotile due to the complete lack of cellular
organelles for motility (Margulies and Schwartz, 1998) and its
movement in whole blood is only passive.

Even though blood is a non-Newtonian fluid, i.e., showing
pseudoplastic properties with variable viscosity depending on
the exerted shear stress in capillaries of different sizes (Fahraus
and Lindqvist, 1931), the experimental setup of the whole-
blood infection assay is such that the viscosity as well
as the temperature in the mildly stirred test tube remain
constant (Hünniger et al., 2014). Therefore, the Stokes-
Einstein equation (Einstein, 1905) can be applied to infer
the diffusion coefficient DC for the passive movement
of C. albicans cells. Based on a whole-blood viscosity of
about η ≈ 4mPa s (Rosenson et al., 1996), Boltzmann
constant kB and temperature T = 37◦C (Hünniger et al.,
2014), this yields the relatively small diffusion coefficient
DC = kBT/(3πηdC) ≈ 1µm2/min. In contrast, the active
migration of monocytes and PMN requires to estimate their
diffusion coefficients numerically.

The time-step 1tABM for simulations in the ABM has to be
chosen such that a smooth migration of cells is sampled in time.
In order to ensure this, we require that during one time-step

1tABM cells do not migrate further than a certain distance, which
we set to equal the mean free path lfp = 5µm:

1tABM =

l2
fp

6Dmax
. (6)

Here, Dmax ≡ max{DC,DM,DG} denotes the largest out of the
three diffusion coefficients for C. albicans cells (DC), monocytes
(DM), and PMN (DG). Since it can be expected that the active
migration of immune cells is associated with diffusion coefficients
DM and DG with DM,DG ≫ 1µm2/min in the whole-blood
infection assay, it follows from Equation (6) that the time-step
in the ABM will be much smaller than in the state-based model
PI-SBM: 1tABM ≪ 1tPI−SBM = 1min. Moreover, stochasticity
in the ABM requires that each simulation has to be repeated
multiple times, resulting into relatively high computational costs
compared with the PI-SBM, in particular, if we would have
envisaged to estimate each model parameter instead of following
the strategy of a bottom-up modeling approach.

Computational costs associated with parameter estimation in
the ABM can be significantly reduced by making use of the
previously estimated rates of state transitions in the state-based
model PI-SBM (see Section 2.1 and Table 1). In the course of a
simulation, migrating cells in the ABMmay either spontaneously
undergo state transitions or interact with each other upon spatial
contact. In Figure 3C, we present a schematic overview of
processes that occur according to defined rules associated with
certain probabilities. It is important to note that, due to the spatial
aspects that are captured by the ABM but not the PI-SBM, we
have to distinguish between processes that are contact-dependent
and contact-independent.

For contact-independent processes—such as intracellular and
extracellular killing as well as the occurrence of C. albicans
resistance against phagocytosis and/or killing—the conversion
of rates from the PI-SBM to the ABM is straightforward.
Since these processes are not determined by any spatial
requirements, a simple re-scaling is performed. For example, C.
albicans cells become resistant in the PI-SBM with probability
PPI−SBM(ρ) = ρ 1tPI−SBM . In the ABM, where the resolution of
time is set by the time-step 1tABM≪1tPI−SBM , we check in each
time-step with probability

PABM(ρ) = PPI−SBM(ρ)
1tABM

1tPI−SBM
(7)

whether this process occurs.
In contrast, contact-dependent processes in the ABM are

characterized by the requirement that two cells have to get
into spatial contact first, before such a process—for example,
a phagocytosis event of a C. albicans cell by a monocyte with
transition rate φM—can take place. In the PI-SBM, spatial contact
is not explicitly modeled; rather, the interaction partner for each
monocyte is randomly chosen once per time-step 1tPI−SBM .
The associated probability is determined by the time-dependent
ratio of non-resistant fungal cells over the sum of extracellular
fungal cells and immune cells. Once an interaction partner was
chosen, the phagocytosis event itself occurs with probability
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FIGURE 3 | Agent-based model (ABM) of the human whole-blood

infection assay. (A) Agents used in the ABM are Candida albicans cells in

the four states (i) alive and non-resistant (green), (ii) dead and non-resistant

(red), (iii) alive and resistant (yellow), and (iv) dead and resistant (gray).

Furthermore, granulocytes (polymorphonuclear neutrophils, PMN) and

monocytes are shown in blue and orange, respectively. (B) Schematic

overview of examples for interactions in the ABM. Each arrow indicates the

execution of an interaction event, either depending on spatial contact

between different cells or by a contact-independent process. C. albicans

cells that are in extracellular space and alive (CAE ) or killed (CKE ) can become

resistant with probability P(ρ). After spatial contact, alive or killed C. albicans

cells can be phagocytosed by PMN or monocytes with probabilities

P(φG|φG* ) or P(φM ), respectively. Intracellular alive C. albicans cells are killed

with probabilities P(κG ) or P(κM ) depending on the type of phagocyte. (C)

Visualization of the three-dimensional cuboid environment of the ABM that

corresponds to 1µl of the whole-blood infection assay, containing 5000

PMN, 500 monocytes, and 1000 C. albicans cells. The time-evolution of the

simulated infection scenario can be viewed in Supplementary Video 1.

PPI−SBM(φM) = φM 1tPI−SBM in the PI-SBM. Correspondingly,
in the ABM, we request that this process takes place with the same
probability,

PABM(φM) = PPI−SBM(φM) , (8)

on every encounter between a monocyte and a C. albicans cell.
This correspondence of event probabilities for the two modeling
approaches imposes a condition on the spatial dynamics of
cells, i.e., on the values of the diffusion coefficients in the ABM
and by that on the time-step 1tABM (see Equation 6). For
optimal migration parameters, i.e., parameters that result in
good agreement with the experimental data, it is expected that
measurement of the associated phagocytosis rate in the ABM
coincides with the corresponding rate from the PI-SBM.

2.3. Parameter Estimation
2.3.1. Simulated Annealing
The a priori unknown transition rates of the PI-SBM are
determined by the method of Simulated Annealing based on
the Metropolis Monte Carlo scheme (SA-MMC) that is depicted
in Figure 4A. This optimization method randomly explores the
parameter space of transition rates to find the global minimum of
the fitting error, i.e., themost suitable parameter set that produces

the best fit of the simulation to the experimental data obtained
from the whole-blood infection assay.

The parameter estimation algorithm starts with a randomly
chosen set of parameter values within the interval of [0, 1]
per minute, represented by the vector Ep, and calculates the
resulting time-evolution of state occupations from the simulation
algorithm of the PI-SBM (see Section 2.1). To score the
simulation result for a particular set of parameters, we combined
different kinetics of the PI-SBM, referred to as combined units,
which are identical with the experimental kinetics measured in
the whole-blood infection assay (see Section 2.1). In this way,

the experimental kinetics can be directly compared with the
combined units c obtained from the model simulation, which
is then scored by calculating the least-squares error (LSE) at
experimental data points k as the weighted sum over c:

E[Ep] =
∑
c

ǫc
1

2

∑
k

(xdatk,c − xsimk,c [Ep])
2 . (9)

Here, ǫc is adjusted as to fit each combined unit comparably
well to the experimental data. The same values for ǫc were used
in the PI-SBM and the ABM and are given in Supplementary
Table 1. Next, the parameter set Ep is randomly varied within a
pre-defined neighborhood of 10% variation, leading to a new
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FIGURE 4 | Concepts of parameter estimation algorithms for

non-spatial state-based models (SBM) and spatial agent-based

models (ABM). (A) Flow chart of parameter estimation by the global

optimization method Simulated Annealing based on the Metropolis Monte

Carlo (SA-MMC). Light gray boxes describe Steps 1–4 of the algorithm;

equations and pseudo code applied in these steps are provided in the dark

gray boxes. (B) Schematic overview of the local optimization method

adaptive grid search algorithm used for estimation of ABM migration

parameters. Simulations are performed for sets of parameters on a regular

grid in a predefined area of the search space and are evaluated by the least

squares error (LSE). The initial grid (upper panel) contains sets of parameters

with smallest LSE (light gray area) and this area is refined for a more accurate

identification of the optimal parameter set (lower panel). Here, light gray dots

represent parameter configurations from the first refinement level and dark

gray squares represent parameter configurations of the subsequent

refinement level.

set of parameter values, Ep ′, as indicated in Figure 4A, Step 2.
Subsequently, the simulation of the PI-SBM is performed again
for parameter values Ep ′ and the corresponding score E[Ep ′] is
calculated. Whether the new simulated data will be accepted
or rejected is decided by applying the MMC scheme that is
depicted in Figure 4A, Step 3. The probability to accept worse
parameter values is influenced by τ (f ), representing the “inverse
system temperature” in a SA process. The simulation of the
annealing process involves a gradual decrease of the system
temperature with progressed fitting, i.e., τ (f ) is increased with
the number of performed fitting steps f (see Supplementary
Information 2.1).

After performing a total number of fitting steps, the fitting
algorithm is repeated starting from a newly chosen random
parameter set. This is done for a certain number of runs and
the set of parameters with the minimal fitting error (Epmin) is
saved from each fitting process. Themean values of the parameter
values and their standard deviations are computed over all runs
to determine the robustness of the estimated parameters.

We repeatedly perform the parameter estimation procedure
for different system sizes in terms of the total number of
individual cells. In doing so, the system size is stepwise increased
by factors of ten, which is associated with increasing computing
time for the model simulation but is partly compensated by a
decrease in the number of fitting steps to avoid computational
overload (see Supplementary Table 2). We start the estimation
algorithm with a low number of individuals and a large

number of fitting steps. The resulting parameter values are
subsequently used as start parameter values for the system
with next-higher number of individuals, i.e., for a 10-fold
larger system. This procedure is repeated until a system size
is reached where the number of individuals correspond to the
measured numbers of PMN (about 5 × 106) and monocytes
(about 5× 105).

2.3.2. Adaptive Regular Grid Search
As described in Section 2.2, probabilities for state transitions in
the ABM of the whole-blood infection assay can be derived from
the interaction rates of the PI-SBM. This reduces the space of
parameters that has to be searched in the process of parameter
estimation, leaving only two migration parameters—i.e., the
diffusion coefficients DM and DG, respectively, for monocytes
and PMN—to be calibrated. However, even for a reduced
parameter search space, there still is need for a calibration
strategy that keeps the number of ABM simulations within
limits, because simulating stochastic processes requires sufficient
numbers of repetitions in order to obtain numerical results that
are statistically sound.

We apply the adaptive regular grid search algorithm (Powell,
1998) to search iteratively for a local optimum in the parameter
space (see Figure 4B). Motivated by biological constraints this
is done for a pre-defined region of the parameter space. This
region is represented on a regular grid and for each grid point
the ABM is simulated with the corresponding set of parameter
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values. Afterwards, simulations are evaluated with the least-
squares error (LSE), scoring deviations between the simulation
results and the experimental data for all combined units
c = {CK,CA,CE,CM,CG} (see Section 2.1 and Equation 9). The
values for the LSE are used to determine the adaptive refinement
of the grid before the next iteration step, where intermediate grid
points are calculated by bisection of the grid constant for the sets
of parameters with lowest LSE. This imposes a grid refinement
that ensures a more detailed scanning of the parameter space in
relevant regions and defines the refinement level. The initial grid
constant and the number of refinement steps determine how fine-
grained the parameter space is represented by grid points and
their values have to be chosen depending on the LSE landscape.

We further decrease computational costs associated with
parameter estimation in the ABM by system scaling. Thus,
similar to the procedure applied for the state-based model PI-
SBM, we first scan the parameter space with a small system of
1/5 µl blood and subsequently re-scan the relevant parameter
region with the system of 1µl blood as defined in Section 2.2.

3. Results

3.1. Quantification of the Immune Response by

the State-based Model
We quantified innate immune mechanisms in human whole-
blood assays of infection with the pathogenic fungus C. albicans
using a SBM. To this end, we modified a previously introduced
SBM, referred to as P-SBM. This model was derived with the
focus on state transitions of the pathogen (P) that may be
induced by immune cells. However, immune cells in the P-
SBM were only effectively modeled and not explicitly account
for as individual cells (Hünniger et al., 2014). In the present
work, we modified the P-SBM to model the interaction with
individual immune cells—monocytes and granulocytes (PMN)—
in detail. Since the focus of this model is on state transitions
of both pathogen (P) and immune cells (I), we term this model
PI-SBM. For reasons of comparison with the P-SBM, we used
the same experimental data as in Hünniger et al. (2014) to
quantify innate immunemechanisms by estimating the transition
rates that yield the best fit to the data. Specific combinations of
C. albicans states, referred to as combined units, were introduced
that are directly related to different C. albicans populations
measured over 4 h post-infection in experiment. As explained in
detail in the Materials and Methods Section, the combined units
include all extracellular C. albicans cells (CE), C. albicans cells
that are phagocytosed, respectively, by monocytes (CM) or by
granulocytes (CG). Furthermore, all killed and alive C. albicans
cells are given by the combined units CK and CA, respectively.
The manually adjusted scores ǫc of combined units c are given
in Supplementary Table 1. We simulate a blood sample of 1ml
containing 5 × 105 monocytes, 5 × 106 PMN and 1 × 106

C. albicans cells that are initially extracellular and alive.
To estimate the values of transition rates in the PI-SBM

that yield the best fit to experimental data, i.e., the fit with the
smallest least squares error (LSE), we applied the method of
SA-MMC scheme (for details see Section 2.3.1). In Figure 5,

the resulting transition rates of the PI-SBM are compared with
those previously obtained within the P-SBM (for a quantitative
comparison see also Supplementary Tables 3, 4). The direct
comparison between the P-SBM and PI-SBM revealed that most
transition rates are quantitatively similar in the two models.

The largest deviations in the values of transition rates between
the two models were observed for the phagocytosis rate of
monocytes (φM) and the killing rate of monocytes (κM). This
was further investigated by performing the parameter estimation
for the PI-SBM again, where only φM and κM were randomly
varied while all other rates were kept fixed. We performed 50
runs and obtained very different standard deviations for these
transition rates: while the standard deviation of φM was only
4%, this was 16% in the case of κM . We conclude that the PI-
SBM is generally robust in all transition rates, except for κM
that is also not directly determined by the data, because alive
and killed C. albicans cells in phagocytes were not distinguished
in these experiments. Similar observations were made for the
P-SBM, where it was shown that variations in κM did not lead to
significant differences in the fitting error (Hünniger et al., 2014).

To determine the impact of variations in the transition
rates on the kinetics of the combined units in the PI-SBM,
we performed 50 simulations with transition rates that were
randomly sampled within their respective standard deviations.
The kinetics of individual sub-populations are plotted in
Supplementary Figure 2 while the results for the combined units
are given in Figure 6. It can be seen that the simulated combined
units agree well with the corresponding experimental data. In

FIGURE 5 | Transition rates obtained from the model calibration to

experimental data of the whole-blood infection assay. The results for the

modified state-based model PI-SBM are compared to the P-SBM (Hünniger

et al., 2014). The values are compared for the rate of phagocytosis by

monocytes (φM ), and by PMN on initial and subsequent events (φG,φG*), rate

of killing by monocytes (κM ) and PMN (κG), rate of acquiring resistance against

phagocytsis and/or killing (ρ) as well as the values of parameters for

extracellular killing (γ , κ̄EK ). Error bars correspond to standard deviations.
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particular, the resulting kinetics of the PI-SBM revealed that
4 h post-infection 82% C. albicans cells were phagocytosed by
PMN, whereas only 4% C. albicans cells were phagocytosed
by monocytes. Furthermore, PMN play a major role in the
immune response, because these phagocytes are associated with
97% of all killed C. albicans cells (see Supplementary Figure
2A). This is achieved either directly, via phagocytosis and
intracellular killing (66.5%) of the pathogen, or indirectly by
the release of antimicrobial peptides on a pathogen’s first event
of phagocytosis (30.5%) (see Supplementary Figure 2H). Four
hours post-infection, most C. albicans cells were killed (89%)
while a minority of 11% cells were extracellular and became
resistant against killing and phagocytosis. These results are in
quantitative agreement with those obtained previously for the
P-SBM (Hünniger et al., 2014).

3.2. Predictions on Monocytopenia and

Neutropenia from PI-SBM
The state-based model PI-SBM opens the possibility to study the
dependence of the immune response against C. albicans on the
number of PMN and monocytes in blood. Simulating the virtual
infection scenario with the previously estimated parameters (see
Supplementary Table 3), we considered various cases of immune
cell deficiencies. The model predictions at 4 h post-infection and
for gradual decreases in the immune cell numbers are presented
in Figure 7 for the cases of monocytopenia and neutropenia
separately.

We found, as expected from the above quantification of the
immune response, that monocytopenia is not a critical condition
with regard to C. albicans infections: deficiency of monocytes
and even their complete absence was fully compensated by
PMN-mediated killing. In fact, patients with monocytopenia
have not been reported to develop systemic candidiasis to
date (Lionakis, 2014). The situation is extremely different in the
case of neutropenia. In the absence of PMN, the number of killed
C. albicans cells is predicted to decrease from about 89% under
physiological conditions down to 45%, i.e., CK = 89% for 5×106

PMN and CK = 45% for ≤ 5 × 103 PMN (see Figure 7B).
Monocytes compensated PMN deficiency by phagocytosis of
C. albicans cells only partly, where the fraction increased from
3% under physiological conditions up to 48%. However, 42% of
the C. albicans cells acquired resistance against killing and/or
phagocytosis, resulting from the combined effect of absent PMN
phagocytosis and extracellular killing that is normally mediated
by PMN release of antimicrobial peptides.

For a decrease in PMN number by one order of magnitude
from physiological conditions, we found that monocytes can
sustain the immune response fairly well. In this case, the fraction
of killed C. albicans cells was still 79% and the phagocytosis
by monocytes and PMN reached, respectively, 20% and 55%
of C. albicans cells. A significant deterioration of the immune
response was observed for PMN concentrations below 5 ×

105 cells/ml (see Figure 7). Interestingly, this concentration
was reported to mark the transition from moderate to severe
neutropenia (Munshi and Montgomery, 2000), which is a

FIGURE 6 | Comparison of the time-evolution for the combined

units from the experimental whole-blood infection assay (dotted

lines as a guide for the eye) with the PI-SBM in (A,B), and the

ABM in (C,D). In (A,B), the thickness of the solid lines represents the

standard deviation of the PI-SBM simulation results as obtained from 50

simulations for normally distributed transition rates as given in

Supplementary Table 3. The thickness of the solid lines in (C,D)

represents the standard deviation obtained by 30 simulations of the

stochastic ABM. Time-evolution of killed (CK ) and alive (CA) C. albicans

cells are depicted in (A,C), and the dynamics of C. albicans cells that

are in extracellular space (CE ), phagocytosed by monocytes (CM ) and

PMN (CG) are shown in (B,D).

Frontiers in Microbiology | www.frontiersin.org June 2015 | Volume 6 | Article 608 | 166

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Lehnert et al. Bottom-up modeling for pathogen-host interactions

condition that is known to be associated with high risks for
candidemia in cancer patients (Lunel et al., 1999; Alangaden,
2011).

3.3. Agent-based Model Captures Immune

Response in Time and Space
State-based models (SBM) do not account for any spatial aspects.
For example, cells in the PI-SBM do not actually migrate during
the immune response and, therefore, do not have to get into
contact before a phagocytosis event can take place. In contrast,
agent-basedmodels (ABM) do capture spatial aspects in a defined
environment. Applying a bottom-up modeling approach, we
implemented an ABM that is—apart from its spatial aspects—
the exact analog of the non-spatial PI-SBM. As depicted in
Figure 1, all transition rates that were previously estimated for
the PI-SBM were fed into the ABM (see Section 2.2 for details).
The only parameters left to estimate were those related to
cell migration, which in the dense cell system of the whole-
blood assay resembles a random walk. In particular, while the
diffusion coefficient associated with the passive movement of
C. albicans cells could be inferred from the Stokes-Einstein
equation to be DC ≈ 1µm2/min, the active migration behavior
of immune cells requires a rigorous parameter estimation of
the diffusion coefficients DM and DG for monocytes and PMN,
respectively.

It should be noted that, even in the case of low-
dimensional parameter spaces, the estimation of parameters
for ABM generally turn out to be computationally intensive.
This is a consequence of the fact that ABM simulate the
interactions between thousands of agents in continuous space
as stochastic processes. To simultaneously facilitate an increase
in model complexity and a decrease in computational expense
for parameter estimation, we applied the local optimization
algorithm adaptive regular grid search. This algorithm compares
ABM simulations by evaluating the least squares error (LSE)
regarding the experimental data of the whole-blood infection
assay. Stochastic effects of the ABM were investigated by

comparing simulation results for a fixed set of parameter values
with varying number of in silico replicates. Using 100 in silico
replicates as a reference for the mean value of the LSE, we
generally observed for relevant parameter sets, i.e., parameter sets
that yield reasonable agreement with the experimental data, that
relative variations in the mean LSE were already well below 10%
for 30 in silico replicates. Therefore, we set the number of in silico
replicates to 30 throughout the whole parameter space.

The adaptive regular grid search algorithm searches the
space of DM and DG on a pre-defined grid of diffusion
coefficients, 0 < DM,DG < 800µm2/min. This range for the
diffusion coefficients implies that the time step 1tABM varies
between 5.2× 10−3min ≤ 1tABM ≤ 4.2min (see Equation 6).
As described in Section 2.3.2, we started with a relatively
coarse grid of step size 100µm2/min and computed at each
grid point the LSE by comparing the experimental data with
a small ABM system, i.e., representing 1/5µl of blood (see
Supplementary Figure 3). These results were used to determine
the regime of parameters in which the parameter estimation was
continued for the large ABM system simulating 1µl of blood. The
parameter regime was determined by the rectangle that contains
all pairs of diffusion coefficients (DG,DM) for which the LSE
values were found to be minimal from separately varying each
parameter. The corner points of this rectangle were (DG,DM) =
(100, 0)µm2/min and (DG,DM) = (600, 800)µm2/min (see
gray region in Supplementary Figure 3). Subsequently, the
grid was refined based on simulations of the large ABM by
determining the path of minimal LSE values and adding grid
points around this path by adaptive bisection. After simulation
of the ABM for parameter sets corresponding to the added grid
points, the procedure of grid refinement was repeated. This can
be seen in Figure 8, where we plot a map of the LSE landscape
together with the paths of minimal LSE values for each level of
refinement. It was observed that the course of these paths covers
a relatively broad range of diffusion coefficients for monocytes,
DM , whereas this is a fairly narrow range of DG-values for
PMN.

FIGURE 7 | Simulation results of the PI-SBM with different immune

cell numbers at 4 h post-infection for the conditions (A)

monocytopenia and (B) neutropenia. The relative numbers of

C. albicans cells of killed cells (CK ), phagocytosed cells in monocytes

(CM ) and in PMN (CG) as well as cells that became resistant (CR)

against killing and/or phagocytosis are depicted for different numbers of

monocytes and PMN. The number of (A) monocytes and (B) PMN in

the simulations are reduced separately, starting from physiological

concentrations of 5×105 /ml monocytes and 5×106 /ml PMN down to

vanishing concentrations. In (B), the light gray region represents the

range of light neutropenia (< 1.5× 106 PMN per ml), medium gray

region represents the range of moderate neutropenia (< 1× 106 PMN

per ml) and dark gray region represents the range of severe neutropenia

(< 5× 105 PMN per ml).
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FIGURE 8 | Result of ABM parameter estimation by adaptive regular

grid search. The diffusion coefficients for monocytes, DM, and PMN, DG,

were scanned within the regime that was determined by parameter scanning

for the small ABM (1/5µl blood). At each grid point, 30 ABM simulations were

performed for the large system (1µl blood) and the mean least squares error

(LSE) is depicted. By determining the path of minimal LSE values and adding

grid points around this path by adaptive bisection, three refinement levels are

considered. Dots represent grid points of the first refinement level, squares

represent grid points of the second refinement level, and triangles represent

grid points of the third refinement level. The paths of minimal LSE values for

the first, second and third refinement level are traced by light gray, medium

gray, and dark gray lines, respectively.

In Figure 9, we present the LSE values as a function of
DM(DG) along the paths of minimal LSE values for the three
levels of refinement. From the third level of refinement we
inferred the point of absolute LSE minimum to be located
at (Dmin

G ,Dmin
M ) = (425, 275)µm2/min. However, since the

landscape of DM(DG) resembled an extended valley across
neighboring data points, we performed a statistical analysis by
applying the Wilcoxon rank sum test between the absolute LSE
minimum and its neighboring points to check for significant
differences between them. Imposing a p-value of p < 0.05 for
significant difference, we obtained points with similar values
of the LSE ranging in the interval DM = 100µm2/min to
DM = 350µm2/min for monocytes and DG = 400µm2/min
to DG = 425µm2/min for PMN (see Figure 8). These
findings imply that the immune response in the whole-blood
infection assay was much more sensitive to variations in the
diffusion coefficients of PMN than of monocytes, emphasizing
the dominant role of PMN over monocytes from the viewpoint
of cell migration.

Our results are consistent with the absolute LSE minima
of refinement level one and two, which were both at
(Dmin

G ,Dmin
M ) = (400, 200)µm2/min and that also belong

to this interval (see Figure 9). Interestingly, while we expected
that monocytes are less migratory active than PMN, i.e.,
restricting the relevant parameter regime in Figure 8 to

FIGURE 9 | The least squares error (LSE) of the paths of grid points

along the diffusion coefficients for monocytes (DM) as a function of the

minimal diffusion coefficient for PMN (DG): DM(DG). Mean values and

standard deviations were obtained from averaging over 30 ABM simulations.

The paths of the first, second, and third refinement level are shown,

respectively, as red, green, and blue lines (guide for the eyes). The horizontal

bars indicate regions of diffusion coefficients with values comparable to the

absolute LSE minimum of each refinement level. All values outside these

regions are significantly different from the absolute LSE minimum (Wilcoxon

rank sum test with p < 0.05).

the region below the dashed line, we also found that the
interval around the absolute LSE minimum contains the
parameter set (DG,DM) = (425, 350)µm2/min. The ratio of
these diffusion coefficients, DM/DG ≈ 0.82, resembles the
value expected from the Stokes-Einstein equation (Einstein,
1905) implying DM/DG = dG/dM (dotted line in Figure 8).
Taken together, we consider the diffusion coefficients
(Dmin

G ,Dmin
M ) = (425, 275)µm2/min to represent the immune

cell dynamics reasonably well and use these values in our further
analyses below.

Next, we compared the ABM simulation results for the
absolute LSE minimum with those of the PI-SBM. These are
plotted together with the experimental data of the whole-blood
infection assay in Figure 6 and in Supplementary Figure 4 for the
time evolution of C. albicans sub-populations. Thus, we found
that both modeling approaches, the non-spatial SBM and the
spatial ABM, yielded excellent agreement with the experimental
data. Furthermore, we found that our simulation results obtained
from the stochastic ABM were robust, which can be seen from
the line thicknesses in Figures 6C,D representing the standard
deviations obtained from 30 ABM simulations.

3.4. Predictions on Hyper- and

Hypo-inflammation from ABM
To investigate the impact of hyper- and hypo-inflammation
associated with the dynamics of immune cells, we varied the
diffusion coefficients of monocytes and PMN separately around
the absolute LSEminimum (Dmin

G ,Dmin
M ) = (425, 275)µm2/min.

Keeping the diffusion coefficient DG fixed and varying the DM

for monocytes between 100µm2/min and 600µm2/min, we
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observed at 4 h post-infection no substantial changes in the
populations of killed, resistant and phagocytosed C. albicans cells
(see Figure 10A). At extreme values DM > DG, a slight increase
(decrease) in the number of killed (resistant) C. albicans cells was
observed accompanied by a slight increase in the phagocytosis by
both monocytes and PMN. This may be attributed to a stronger
mixing of the cell system for high diffusion coefficients DM . In
general, however, the immune response does not appear to be
sensitive to this parameter, which is in agreement with the finding
for monocytopenia that did not have a substantial impact on
infection clearance (see Figure 7A).

In the opposite case, where DM was fixed and DG was varied
between 100µm2/min and 600µm2/min, it was again observed
that for increased values DG > 425µm2/min the impact on the
immune response against C. albicans is only weak. In contrast,
for decreased values DG < 400µm2/min the immune response
was strongly affected by the reduced migratory activity of PMN.
This could be observed by a substantial increase (decrease) in the
number of resistant (killed) C. albicans cells (see Figure 10B).
In particular, for DG = 100µm2/min the phagocytosis of
C. albicans cells by PMN was reduced by more than 20% and the
relative number of resistant C. albicans cells reached the value
of 28%. Comparing this scenario with the condition of PMN
deficiency (see Figure 7B), we found that this PMN paralysis
resembles moderate to severe neutropenia associated with a
relative number of about 20% and 30% of resistant C. albicans
cells, respectively.

4. Discussion

In this study, we applied a bottom-up modeling approach to
simulate an experimental infection assay for C. albicans in
human blood. As illustrated in Figure 1, this approach combines
different mathematical models with increasing complexity that
build on one another. We started from a previously developed
state based model (SBM), here referred to as P-SBM (Hünniger
et al., 2014), that neglects all spatial aspects and describes
the time-evolution of pathogens in different states—e.g., alive,
phagocytosed and killed—during the early response of the innate

immune system. To include the immune response mediated by
monocytes and granulocytes (PMN), in this work we modified
the P-SBM into a SBM that does as well-explicitly account for
the immune cell states and is therefore referred to as PI-SBM.
The rates of state transitions in the PI-SBM were estimated by
comparison with experimental data (Hünniger et al., 2014) using
the global optimizationmethod simulated annealing based on the
Metropolis Monte Carlo scheme (SA-MMC).

The resulting model kinetics of both SBM were found to be
in quantitative agreement with experimental data and confirmed
that PMN play the major role in the immune defense against
C. albicans in human blood. This is indicative for the general
validity of both models, despite the structural difference of the
simulation algorithms regarding the level of detail at which
immune cells are modeled. Furthermore, the PI-SBM allows
making predictions on infection scenarios in patients with
immune cell deficiencies, i.e., neutropenia and monocytopenia.
Performing in silico experiments with varying numbers of either
monocytes or PMN, revealed that loss of monocytes was mainly
compensated by PMN. In contrast, decreasing PMNnumber lead
to a strongly reduced immune response against C. albicans for
PMNnumbers below 5×105 /ml (see Figure 7). Our quantitative
prediction is substantiated by published data that account
this PMN concentration as severe neutropenia (Munshi and
Montgomery, 2000). It is also reported that neutropenia impairs
the outcome of candidemia and is a risk factor, in particular, for
cancer patients developing candidemia (Guiot et al., 1994; Bow
et al., 1995; Lunel et al., 1999). From the quantitative agreement
between predictions of the PI-SBM and reported findings for C.
albicans infection, we attribute a high predictive potential to this
virtual infection model that may be exploited in future studies,
e.g., focusing on conditions of immune dysregulation and/or
comparing the impact of different pathogens. The possibility
to quantify functional alteration of immune cells rather than
pure numerical aberrations is of particular interest in this
regard.

In order to account for spatial aspects of the immune response,

we extended the SBM to an agent-based model (ABM), where
cells are simulated as agents that can migrate in continuous

FIGURE 10 | Simulation results of the ABM at 4h post-infection for

varied diffusion coefficients around the absolute least squares

error (LSE) minimum with (Dmin
G

,Dmin
M

) = (425,275)µm2/min

for (A) monocytes keeping DG fixed and (B) PMN keeping DM

fixed. The relative numbers of C. ablicans cells of killed cells (CK ),

phagocytosed cells in monocytes (CM ) and in PMN (CG) as well as cells

that became resistant (CR) against killing and/or phagocytosis are

depicted.
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three-dimensional space and can interact with each other on
encounter in space. Applying the bottom-up modeling approach,
we made use of the rates that were determined by fitting the
PI-SBM to the experimental data and estimated the diffusion
coefficients of immune cells in blood (see Figure 1). Due to
high computational costs of ABM simulations, applying the
global optimization method SA-MMC was no realistic option
and we chose the computationally affordable local optimization
method adaptive regular grid search. This method searches for
the optimum within a pre-defined parameter space, which in
the present case was a two-dimensional space spanned by the
diffusion coefficients for monocytes and PMN. In contrast,
applying SA-MMC was beneficial in the case of PI-SBM for
three reasons: (i) the parameter space was eight-dimensional,
(ii) limitations of the parameter space would have been difficult to
motivate biologically, and (iii) computational costs for repeated
simulations were still acceptable due to the neglect of spatial
aspects.

As live cell imaging in whole-blood assays cannot yet
be performed today, computer simulations are the only tool
to predict diffusion coefficients of immune cells. Parameter
estimation of the ABM predicted intervals for the diffusion
coefficients that yielded quantitatively comparable results.
For monocytes this interval, DM = 100µm2/min to
DM = 350µm2/min, was substantially broader than for PMN
with DG = 400µm2/min to DG = 425µm2/min, indicating the
importance of fine-tuned PMNmotility.

Furthermore, by varying the diffusion coefficients of the
immune cells, we demonstrated the impact of hyper- and hypo-
inflammation in immune dysregulation. In general, reducing
(increasing) immune cell motilities around optimal values
reduced (increased) the number of interaction events between
cells and by that the phagocytosis of C. albicans cells. In the
case of PMN, reduction of cell motility and phagocytosis events
was additionally associated with a decrease in the release of
antimicrobial peptides contributing to the decrease in killing
of C. albicans cells. This in turn lead to an increase in
the number of resistant C. albicans cells reaching levels that
were well-beyond those observed for paralytic monocytes (see
Figure 10). Comparing the hypo-inflammatory condition with
PMN deficiency, we found that diffusion coefficients around
DG = 100µm2/min resembled the outcome of moderate to
severe neutropenia.

The bottom-up modeling approach presented here may be
extended in various ways. For example, the implementation of
a hybrid ABM could be envisaged where molecular interactions,
e.g., as mediated by antimicrobial peptides, are not simulated
in a rule-based fashion but in an explicit way by a molecular
diffusion solver. Other directions of future research include (i)
focusing on conditions of immune dysregulation, (ii) comparing

the impact of different pathogens, and (iii) including other
types of innate immune cells. Furthermore, it is conceivable
to combine modeling approaches with microscopy experiments
of infection scenarios in vitro in an image-based systems
biology approach (Mech et al., 2014; Figge and Murphy, 2015;
Medyukhina et al., 2015). First steps into this direction have
recently been made, e.g., by establishing algorithms for the
automated image analysis of phagocytosis assays (Mech et al.,
2011; Kraibooj et al., 2014) and for the automated tracking and
classification of PMN from time-lapse microscopy (Mokhtari
et al., 2013; Brandes et al., 2015) that was applied in the context
of comparing C. albicans and C. glabrata infection (Duggan
et al., 2015a). In the future, we expect that a systems medicine
approach exploiting the predictive power of virtual infection
models will play an important role in the context of infectious
disease diagnosis.
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The ubiquitous airborne fungal pathogen Aspergillus fumigatus is inhaled by humans

every day. In the lung, it is able to quickly adapt to the humid environment and,

if not removed within a time frame of 4–8 h, the pathogen may cause damage by

germination and invasive growth. Applying a to-scale agent-based model of human

alveoli to simulate early A. fumigatus infection under physiological conditions, we recently

demonstrated that alveolar macrophages require chemotactic cues to accomplish the

task of pathogen detection within the aforementioned time frame. The objective of this

study is to specify our general prediction on the as yet unidentified chemokine by a

quantitative analysis of its expected properties, such as the diffusion coefficient and

the rates of secretion and degradation. To this end, the rule-based implementation of

chemokine diffusion in the initial agent-based model is revised by numerically solving

the spatio-temporal reaction-diffusion equation in the complex structure of the alveolus.

In this hybrid agent-based model, alveolar macrophages are represented as migrating

agents that are coupled to the interactive layer of diffusing molecule concentrations by

the kinetics of chemokine receptor binding, internalization and re-expression. Performing

simulations for more than a million virtual infection scenarios, we find that the ratio of

secretion rate to the diffusion coefficient is the main indicator for the success of pathogen

detection. Moreover, a subdivision of the parameter space into regimes of successful and

unsuccessful parameter combination by this ratio is specific for values of the migration

speed and the directional persistence time of alveolar macrophages, but depends only

weakly on chemokine degradation rates.

Keywords: Aspergillus fumigatus, fungal infection, agent-based modeling, reaction-diffusion equation,

chemotaxis, human alveolus, alveolar macrophage, alveolar epithelial cell

1. Introduction

Aspergillus fumigatus is the most dangerous airborne fungal pathogen in humans leading to high
mortality rates (Heinekamp et al., 2014). Immunocompetent individuals are able to prevail over
inhaled conidia of the fungus in an everyday challenge. In contrast, patients with an altered immune
system, e.g., as a consequence of organ transplantation or an underlying disease like HIV, are at
high risk to die from invasive aspergillosis (Horn et al., 2012), where the lung is the site of infection
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in 70% of the cases (Lin et al., 2001). A. fumigatus is able to
adapt within hours to the humid and nutrient rich milieu of
the lung (Hohl, 2008; Hasenberg et al., 2011), by this setting a
tight time scale for phagocytes to find, detect and remove the
pathogenic fungus before the onset of germination and hyphal
invasion of alveolar epithelium.

Alveolar macrophages (AM) reside on the inner surface of
lung alveoli and are the first professional motile phagocytes that
get in contact with inhaled conidia of A. fumigatus (Hasenberg
et al., 2013). AM are capable of clearing the lower respiratory
tract from all kinds of inhaled particles and microbes in order to
maintain a pathogen-free alveolar surface and to ensure optimal
exchange of oxygen and carbon-dioxide (Fels and Cohn, 1986).
The migration of AM takes place within the alveolar lining
layer, which is a viscous fluid—referred to as surfactant—that
coats the alveolar surface with an average thickness of about
200 nm (Bastacky and Lee, 1995). Apart from the stabilizing
effect of the surfactant avoiding alveolus collapse, it also provides
the environment for diffusive transport of molecules, such as
lipids and immunoregulatory proteins SP-A and SP-D, that
are continuously produced, secreted and recycled by alveolar
epithelial cells (AEC) (Herzog et al., 2008).

For over one decade computational approaches have proven
to successfully complement wet-lab studies in the frame of
systems biology (Kitano, 2002; Horn et al., 2012). Computer
modeling and simulation are nowadays important tools to
verify hypotheses in advance of cost- and time intensive
experimental investigations to narrow down the range of
possible wet-lab experiments to the most promising ones.
Furthermore, predictions may be derived from virtual models,
which subsequently can be tested in experiment. The present
study aims at predicting AM chemokine properties from an
existing agent-based virtual infection model of human alveoli
under physiological conditions (Pollmächer and Figge, 2014).
Due to the peculiar physiology of the human lung, investigations
in vivo, including live-cell imaging, are hard to realize. Thus,
quantitative measures like AM motility, chemokine secretion
rates of AEC or the diffusion coefficient of molecules within
the surfactant are not directly accessible. AEC type II cell
lines have been studied intensively in the past, but as they do
account for only five percent of the alveolar surface, experimental
investigations of type I AEC would be highly appreciated.
However, isolation and cultivation of type I AEC with current
methods are demanding tasks due to their thin and delicate
morphology. The present computational modeling approach
enables us studying A. fumigatus infection in alveoli for varying
parameter sets of AM motility and of chemokine properties in
order to reveal the relative importance of each of the parameters
and their potential regimes in healthy individuals.

Recently, we established an agent-based model (ABM) of
A. fumigatus infection in the human alveolus to study the early
immune response under physiological conditions (Pollmächer
and Figge, 2014). In this three-dimensional to-scale model, we
represented the human alveolus by a three-quarter spherical
structure consisting of type I and type II AEC as well as pores
of Kohn. Our computations of the first-passage-time, i.e., the
time it takes until the conidium is detected by an AM for

the first time, clearly showed that pathogen detection by AM
resembles the problem of finding the needle in the haystack
within a time limit that is set by the germination time for
A. fumigatus conidia of about 6 h. Statistical analyses based on
hundreds of thousands of computer simulations revealed that for
AM to successfully accomplish finding the conidium within 6 h
time, chemotactic cues are required that guide AM to the AEC
associated with a conidium. Chemotaxis was implemented in the
ABM based on a probabilistic rule, i.e., AM were directed toward
the AEC associated with the fungus with a probability that was
defined by the distance-dependent strength of the chemokine
gradient (Pollmächer and Figge, 2014). The gradient of the
chemokine concentration in the alveolus was approximated
by the analytical steady state solution of the two-dimensional
diffusion equation for a point source on a planar surface. We
demonstrated that this level of detail was sufficient to arrive at
the conclusion that chemotactic cues are required for directing
AM migration in the alveolus to the site of the pathogen.
However, the specific chemokine remains as of yet unknown,
including its characteristic parameters such as the secretion rate,
diffusion coefficient and rate of degradation. In order to arrive
at quantitative predictions of characteristic parameters that may
narrow down the regime of candidate chemokines, the ABM
has to be revised to describe the spatio-temporal dynamics of
chemokine diffusion in the alveolus and the receptor binding on
AM at a higher level of detail.

Mathematical models of chemotaxis typically set focus on one
of the three key aspects that are associated with the directed
migration of cells: gradient-sensing, polarization and motility.
While integrative models combining all three aspects are still
rare today (Iglesias and Devreotes, 2008), a chemotaxis model
including the processes of gradient-sensing and motility was
developed by Guo and Tay (2008). In this approach, a hybrid
ABM (hABM) was used to simulate the migration behavior of
leucocytes and to compare with experimental results of under-
agarose assays. A hABM is a multi-scale model where cells are
represented as migrating and interacting agents that are coupled
to the interactive layer of diffusing molecule concentrations by
the kinetics of chemokine receptor binding, internalization and
re-expression (see Figure 1). From a technical point of view,
this requires the implementation of a solver for the spatio-
temporal reaction-diffusion equation of molecule concentrations
in the complex alveolar structure with spherical symmetry and
peculiar boundary conditions as imposed by the pores of Kohn
and the alveolar entrance ring. This is achieved by generating
a Delaunay triangulation of the alveolar surface for close-to-
equidistant surface points. The geometric quantities of the
corresponding Voronoi tesselation, i.e., the dual graph of the
Delaunay triangulation, can then be used to solve the reaction-
diffusion equation by a finite difference method on unstructured
grids (Sukumar, 2003). We perform a numerical study of the
steady state behavior of molecules for typical values of the
diffusion coefficient, chemokine secretion rate and the rate
of molecular degradation. Furthermore, performing statistical
analyses of first-passage-time distributions we narrow down the
regime of characteristic parameters required for the time-limited
detection of A. fumigatus conidia by AM.
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FIGURE 1 | Schematic overview and structural relations between

different components of the hybrid agent-based model. (A)

Close-to-equidistant discretization of the three-quarter alveolus with 10,000

grid points. Grid points with label alveolar surface point (orange spheres) are

connected with their neighboring grid points (orange lines) and those with label

boundary point (blue spheres) correspond to either pores of Kohn or the

alveolar entrance ring. (B) To-scale reconstruction of the human three-quarter

alveolus from Pollmächer and Figge (2014) including alveolar epithelial cells

(AEC) of type I (yellow) and type II (blue) as well as the pores of Kohn (black).

(C) Receptor kinetics model that drives the chemotaxis of alveolar

macrophages (AM). Free chemokine receptors [R] bind to chemokine ligands

[L] located at grid points associated with the AM. Bound receptors [LR] are

processed into internalized receptors [R*] and are re-expressed subsequently.

(D) Snapshot of a virtual infection scenario where AM (green) aim to find a

conidium of A. fumigatus (red). The information contained in the molecule layer

is integrated using chemokine concentration isolines (white), which are plotted

proportional to their respective values with different sizes.

2. Materials and Methods

2.1. Hybrid Agent-Based Model
In this study, we revised our agent-based model (ABM) of
the human alveolus to explicitly account for the dynamics
of molecular diffusion and reactions with cells, which were
previously modeled in a simple rule-based fashion using
a steady-state approximation (Pollmächer and Figge, 2014).
We refer to the revised model as hybrid agent-based model
(hABM), because single cells are represented as individual
agents that migrate and interact in continuous space, whereas
chemokine concentrations are represented as spatio-temporal
distributions on a discrete grid. In this multi-scale approach,
interactions between cellular agents and the layer of diffusing
molecular concentrations are realized via modeling the kinetics
of chemokine receptor binding, internalization and re-expression
on alveolar macrophages (AM) as shown in Figure 1. The present

agent-based simulation algorithm has linear time complexity
in the number of agents and in the number of timesteps.
Thus, treating single molecules as single virtual agents would
render the simulations computationally intractable. Scalability in
terms of constituent quantities is one of the strengths of partial
differential equations (Horn et al., 2012) as the time complexity
of our numerical method is linear in the number of grid points,
molecule species and timesteps. In summary, treating cells at
the microscopic level of discrete agents and molecules at the
macroscopic level of continuous distributions ensures keeping
the balance between computational tractability and detailed
modeling across interwoven time- and length-scales (Guo et al.,
2008). The source code of the hABM is available from the authors
upon request.

2.2. Numerical Solution of the Reaction-Diffusion

Equation in the Alveolus
2.2.1. Reaction-diffusion equation
The spatio-temporal distribution of chemokines on the inner
surface of the alveolus is described by the following reaction-
diffusion equation:

∂c(Er, t)

∂t
= D1c(Er, t)− λ c(Er, t)+ S(Er, t)− Q(Er, t). (1)

Here c(Er, t) denotes the molecular concentration of chemokines
at position Er and time t and 1 is the Laplace operator. The
chemokine’s isotropic diffusion coefficient is given by D and
its degradation rate is given by λ. The spatio-temporal source
of molecular concentration is represented by the term S(Er, t)
associated with chemokine producing alveolar epithelial cells
(AEC) of type I and type II. The term Q(Er, t) represents the
uptake of chemokines by AM and is explained in detail below.
Numerical integration of the reaction-diffusion Equation (1)
within the surfactant on the inner alveolar surface requires a
discretization of the thin fluidic lining layer by a grid with
close-to-equidistant grid points.

2.2.2. Discretization of the Surfactant
Generating a grid with an arbitrary number of close-to-
equidistant grid points on the surface of a spherical geometry is
related to the Thomson problem (Thomson, 1904). This problem
was raised more than a century ago in the context of finding the
minimal electrostatic potential energy configuration for n equally
charged particles that repel each other by Coulomb forces on the
surface of a unit sphere. An equidistant distribution of points
is beneficial for the numerical solution of the reaction-diffusion
equation with regard to computing time and numerical stability.
We take advantage of a crowd-based numerical approximation
platform that determines the global minima using a variety
of different optimization algorithms (MacWilliam and Cecka,
2013). Next, in order to obtain the neighborhood relationship
between the grid points, we use the close-to regular distribution
of points as inputs and compute the convex hull, where each of
its edges corresponds to a pair of neighboring grid points. Note
that the triangulation of discrete points on a sphere surface using
the convex hull is equivalent to the Delaunay triangulation of
these points in three dimensions (Brown, 1979). Finally, the dual
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graph of the Delaunay triangulation, i.e., the Voronoi tesselation
(De Berg et al., 2008), was computed in order to obtain the
surface-area associated with each grid point, i.e., the area of
the corresponding Voronoi cell. As will be shown below, this
measure together with the length of the Voronoi edge between
neighboring Voronoi cells are required for solving the reaction-
diffusion Equation (1) numerically.

It should be noted that, since the human alveolus does not
correspond to a full sphere, not each grid point belongs to the
alveolar surface. In fact, each point of the grid can be labeled
as one of the three categories: (i) alveolar surface point, (ii)
boundary point, (iii) outside point. A point is considered to
be an alveolar surface point if it is part of the alveolar three-
quarter sphere and does not cover a pore of Kohn. All other
points are outside points, except for boundary points which
have at least one neighboring point being an alveolar surface
point (see Supplementary Figure S1A and Video S1). We use
absorbing boundary conditions in each simulation scenario, i.e.,
the concentration at each boundary point is kept fixed at zero
for all times. The representation of the surfactant with an average
thickness of only 200 nm (Bastacky and Lee, 1995) is based on
104 close-to-equidistant grid points of the spherical surface at an
average distance of 4.45 ± 0.16µm (see Video S1). This allows
resolving AEC of type I and type II that are, respectively, 60µm
and 9.3µm in diameter, as well as the pores of Kohn that are
6µm in diameter as estimated from literature data in Pollmächer
and Figge (2014).

2.2.3. Numerical integration of the reaction-diffusion

equation
The reaction-diffusion Equation (1) is numerically integrated
in time using a finite difference method for unstructured
grids as described by Sukumar (2003). Here, Voronoi cells are
the placeholders of the chemokine concentrations, where each
Voronoi cell may contain several molecular species. The kth
Voronoi cell is associated with grid point Erk of the Delaunay
triangulation and has area Ak and a finite set of neighbors N (k).
The relation with neighboring Voronoi cells ℓ ∈ N (k) is defined
by the length of the Voronoi edge hkℓ and the Euclidean distance
between the two Voronoi cells dkℓ, as depicted in Supplementary
Figure S1B. The numerical integration is then performed in a
straightforward fashion over eachVoronoi cell k that is associated
with a grid point of the category alveolar surface point:

c̃(Erk, t + 1t) = c̃(Erk, t)+ 1t
( ∑

ℓ∈N (k)

D
hkℓ

dkℓAk

[
c̃(Erℓ, t)− c̃(Erk, t)

]

−λ c̃(Erk, t)+ S(Erk, t)− Q(Erk, t)
)

. (2)

Here and in what follows the discretized concentration values are
indicated by the symbol c̃. In our model, both AEC of type I and
type II may secrete chemokines, which is appropriately captured
by a non-vanishing source term S(Erk, t) at all grid points of the
AEC associated with the conidium.

2.2.4. Validation of the numerical solution
In order to validate the implementation of the close-to-
equidistant grid for the spherical system and the algorithm for
the numerical solution of the reaction-diffusion Equation (1),
we performed simulations of scenarios for which the analytical
solutions are known. These scenarios were based on the analytical
solution of the isotropic diffusion equation in terms of spherical
harmonics (Sbalzarini et al., 2006). For a sphere with radius r
and molecular diffusion coefficient D on its surface an analytical
solution of the reaction-diffusion Equation (1) for vanishing
molecule degradation and absent source- and reaction-term is
given by

c(Er = (r, ϑ, ϕ), t) =

√
3

4π
cos(ϑ) exp

(
−
2D

r2
t

)
. (3)

Here, surface positions Er are represented using spherical
coordinates with polar angle ϑ and azimuthal angle
ϕ. Simulations were started from the initial condition
c(Er, t = 0) =

√
3/(4π) cos(ϑ). The accuracy of the numerical

solution was evaluated by comparing with the analytical solution
on the spherical surface using biquadratic interpolation at 2×104

pre-defined close-to-equidistant points.

2.3. Chemotaxis Model of Alveolar Macrophages
The previously established agent-based model of the human
alveolus (Pollmächer and Figge, 2014) is extended by modeling
the interactions between molecule concentrations and
chemokine receptors of AM, including the internalization
of bound receptors and their subsequent re-expression on the
AM surface. This enables AM to sense chemokine gradients that
ultimately drive the migratory response of the phagocytes. Here,
we essentially follow the receptor kinetics model as previously
presented in Guo and Tay (2008) and Guo et al. (2008), apart
from modifications required in the present context of modeling
the dynamics of infection in the curved environment of a human
three-quarter alveolus.

Since the average distance between neighboring grid points
is four to five times smaller than the AM diameter of
rAM = 10.6 µm (Krombach and Münzing, 1997), each AM is an
agent associated with on average 20 grid points on the interactive
molecule layer. In the reaction-diffusion Equation (1), the
interaction between chemokines andAM receptors is represented
by the term

Q(Er, t) =
∑

m∈M(t)

Qm(Er, t) , (4)

where M(t) is the set of AM present in the alveolus at time
t. Qm(Er, t) denotes the reaction term of the mth AM with the
chemokines in the surfactant, which is defined at each grid point
q as follows:

Qm(Erq, t) =

{
kb

AAM
c̃(Erq, t) [R]m(t) , if q ∈ covm(t)

0 otherwise,
(5)

where covm(t) represents the set of covered grid points by the
mth AM (see Supplementary Figure S2), [R]m(t) is the current
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number of free receptors on the AM and kb is the binding
rate between AM receptors and the chemotactic cytokines in
the surfactant. The interaction surface for the reaction between
the receptors of the AM cell wall and the chemokines in the
surfactant is denoted by AAM = πr2AM. Beside the number
of free receptors, each AM m is an agent keeping track of its
current number of bound ([LR]m) and internalized receptors
([R∗]m). The kinetics of ligand-binding, receptor internalization
and re-expression is described by a system of ordinary differential
equations:

d[R]m(t)

dt
= kr [R

∗]m(t)− AAM

∑
q

Qm(Erq, t) , (6)

d[RL]m(t)

dt
= AAM

∑
q

Qm(Erq, t)− ki [LR]m(t) , (7)

d[R∗]m(t)

dt
= ki [LR]m(t)− kr [R

∗]m(t) . (8)

Here, ki is the internalization rate of bound receptors and
kr is the recycling rate associated with the re-expression of
internalized receptors. All model parameters together with their
experimentally relevant regimes of values are listed in Table 1.
The parameters related to the receptor-kinetics model of AM, kb,
ki and kr , are fixed to the geometric means of their corresponding
experimental range.

In our model, the kinetics of bound receptor differences along
the current chemokine gradient is coupled to the directional
persistence time of migrating AM (Farrell et al., 1990). Thus, as
shown in Supplementary Figure S2, we consider that themth AM
weights the direction of the average chemokine concentration
gradient Egm(t) in each timestep by the difference in newly bound
receptors at the front and rear of the cell along the gradient.

The difference in the chemokine concentration across the
interaction surface of the mth AM between its front and
rear, 1cm,diff, is computed using the distance between the
respective barycenters of the front und rear of this AM and its
corresponding concentration gradient:

1cm,diff(t) =
8 rAM
3π

||Egm(t)|| , (9)

where the chemokine concentration gradient Egm(t) over the mth
AM is obtained from averaging over the local gradients of all grid

points covered by the mth AM (covm(t)). Then, the difference
in newly bound receptors between the front and rear of the AM
along the current gradient per timestep 1t is

1[LR]m,diff(t) = kb 1cm,diff(t)
[R]m(t)

2
1t . (10)

The most favorable direction of migrating AM is determined by
computing the sum of weighted gradients over one period of
directional persistence:

Egm,cum(t
∗

begin, t
∗

end) =

t∗end∑
t=t∗begin

1[LR]m,diff(t)
Egm(t)

||Egm(t)||
, (11)

where t∗begin and t∗end denote the start and the end time for the

period of directional persistence.
Finally, after each period of directional persistence, the

respective AM migrates in the direction of the weighted
cumulative gradient Egm,cum(t∗begin, t

∗

end) with probability

pdirected = min(||Egm,cum(t
∗

begin, t
∗

end)||σAM , 1) . (12)

This probability is proportional to the bound receptor differences
along the cumulative gradient (Devreotes and Zigmond, 1988)
and the constant of proportionality is the AM sensitivity σAM that
was determined by Tranquillo et al. (1988) (see Table 1).

2.4. System Setup for Simulation Studies
2.4.1. Steady state analysis
Initially, all grid points were set to zero molecular concentration
and one permanently and homogenously secreting AEC of
type I at the bottom of an otherwise empty three-quarter
alveolus was placed. Keeping track of the time-dependent relative
concentration change,

1c̃rel(Erk, t) ≡
c̃(Erk, t + 1t)− c̃(Erk, t)

c̃(Erk, t)
, (13)

at grid points k, the steady state of the molecular distribution
was considered to be reached when the maximum value of
1c̃rel over all grid points fell below a threshold value of one
permille. Measurements were repeated 50 times per parameter
configuration and the results were averaged, keeping the number
of randomly positioned pores of Kohn in the alveolus constant.

TABLE 1 | Parameters used for the chemotaxis model of alveolar macrophages.

Symbol Description Unit Value Experimental range References

D Chemokine diffusion coefficient (in water) µm2
×min−1 Varied 6× 102 – 3.5× 104 Francis and Palsson (1997); Randolph et al. (2005)

sAEC Chemokine secretion rate of AEC min−1 Varied Unknown

λ Chemokine degradation rate min−1 Varied 3× 10−3 – 4.2× 10−2 Beyer and Meyer-Hermann (2008)

kb Ligand-receptor binding rate µm2
×min−1 1× 10−2 7× 10−4 – 0.3 Sklar (1984); Pelletier (2000); Guo et al. (2008)

ki Receptor internalisation rate min−1 7× 10−2 3× 10−3 – 1.8 Beyer and Meyer-Hermann (2008); Guo et al. (2008)

kr Receptor recycling rate min−1 5× 10−2 6× 10−3 – 0.5 Beyer and Meyer-Hermann (2008); Guo et al. (2008)

R0 Initial number of chemokine receptors 5× 104 2× 104 – 2× 105 Beyer and Meyer-Hermann (2008); Guo et al. (2008)

σAM Sensitivity to bound-receptor differences 1.2× 10−3 1.2× 10−3 Devreotes and Zigmond (1988); Farrell et al. (1990)
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2.4.2. Virtual infection scenario
For studying A. fumigatus infection in a three-quarter alveolus
with constant radius, the virtual infection scenario from
Pollmächer and Figge (2014) was followed. At t = 0 a
binomially distributed number of AM and the conidium were
placed randomly over the surface of the three-quarter alveolus
and all grid points were set to zero molecular concentration.
AM migrated according to a biased persistent random walk with
constant speed v and constant directional persistence time tp
and were able to leave or enter the alveolus at either a pore
of Kohn or the alveolar entrance ring. The position of the
conidium was fixed over the whole simulation and migration
of AM followed the chemotaxis model that was here previously
introduced. In each virtual infection scenario the AEC of type I
or II that was associated with the randomly positioned conidium
released the chemoattractant permanently and homogenously
with a constant secretion rate sAEC. The simulation ended at
the first physical contact between an arbitrary AM and the
conidium. The diffusion coefficient D of the chemokine was
varied over a wide range in order to account for the viscosity of
the surfactant that is expected to be higher than that of water and
to which experimental ranges are typically referring. In Table 1,
the parameter regimes of the chemotaxis model are summarized
and the values that were varied in the simulations are indicated.

2.4.3. Virtual infection scenario including

gradient-based recruitment of alveolar macrophages
In Pollmächer and Figge (2014), AM insertion into the three-
quarter alveolus followed a uniform distribution over the length
of the boundary line elements. Numerical values of chemokine
concentrations allow for recruitment of AM from neighboring
alveoli based on the strength of the gradient. Realization of
gradient-based recruitment was implemented in the following
way. First, on AM entrance into the alveolus the maximum
gradient was computed, max{||Egb(t)||}, over the finite set of edges

of the triangulated grid that cross the boundary. The pairs of
vertices corresponding to these edges each held one vertex labeled
as boundary point and the other one labeled as alveolar surface
point. Secondly, a uniformly distributed random boundary point
Erb,random was drawn from all possible boundary points and the
corresponding probability of AM insertion was calculated as
follows:

pin(Erb,random, t) =
||Eg(Erb,random, t)||

max{||Egb(t)||}
. (14)

This probability was used for stochastic AM insertion at position
Erb,random and was realized by a Monte Carlo acceptance-rejection
method to sample the gradient-based probability distribution
of AM insertion over the boundary points. On rejection of
a boundary point a new one was drawn with probability
pin(Erb,random, t) followed by another Monte Carlo decision
until a boundary point was accepted. As before, first-passage-
time simulations were performed over 103 repetitions for each
parameter configuration.

3. Results

3.1. Hybrid Agent-Based Model Reproduces

Analytical Solutions
We evaluated and validated the numerical solution of our
PDE solver by comparison with an analytical solution over the
surface of a full sphere (see Section 2.2.4 for details). The
mean of the absolute and relative errors per timestep were
computed for both varying timesteps and varying numbers of
grid points in order to demonstrate the accuracy of the numerical
method (see Figure 2). The method shows first-order accuracy
in the timestep as the absolute and relative mean errors per
timestep scale quadratically. Furthermore, it is observed that
numerical instability occurs for too large values of 1t, as is
expected for an explicit forward-Euler approach. To guarantee

FIGURE 2 | Numerical error analysis of the PDE solver for Equation (2)

on the spherical surface with λ = 0, S(Erk, t) = 0, and Q(Erk, t) = 0 at

each grid point k. Simulations were carried out in an alveolus with a radius

r = 116.5µm from time t = 0min to a final time t = 1min with an isotropic

diffusion coefficient of D = 2000µm2/min. The mean absolute error (A) and

mean relative error (B) per timestep of our PDE solver for different numbers

of grid points N and timesteps 1t are compared to the theoretically expected

quadratic scaling (solid line).
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numerical stability in our simulations, we determined the limits
of numerical stability for different diffusion coefficients D over
the set of grid points G using the condition

1t ≤ min
k∈G





D

∑
l∈N (k)

hkl

dklAk




−1
 (15)

and adjusted the global simulation timestep 1t one order of
magnitude lower than the respective limits.

3.2. Steady State of Alveolar Chemokine

Distribution Reached within Hours
We performed a numerical study to characterize the steady
state of the alveolar chemokine distribution in terms of the

concentration profile and the time required to reach the steady
state (see Video S2 for the transition from the onset of AEC
secretion into steady state). Simulations were carried out using
one permanently and homogenously secreting AEC of type I in
the bottom of an empty alveolus (see Section 2.4.1 for details) In
Figure 3, we summarize the results of the steady state analysis for
varied diffusion coefficients, degradation rates and secretion rates
of the chemokine. Interestingly, we found that the time required
to reach the steady state depends on the values for the diffusion
coefficientD and the degradation rate λ but not on the amount of
chemokine secretion sAEC per time (Figure 3A). In the absence
of degradation, the time required to reach the steady state ranges
from 4min for a diffusion coefficient of D = 6000µm2/min
to 8.5 h for a diffusion coefficient of D = 20µm2/min. In the
presence of degradation, the times required to reach the steady

FIGURE 3 | Steady state analysis of the concentration profile in the

alveolus for varied diffusion coefficients D, secretion rates sAEC and

degradation rate λ. One permanently and homogenously secreting

source with radius rAEC = 30 µm was placed in the bottom of the

three-quarter alveolus and tthe relative concentration changes 1c̃rel (see

Equation 13) were tracked over time at each grid point k. The steady state

of the molecular distribution was considered to be reached when the

maximum value of 1c̃rel over all grid points fell below a threshold value of

0.001. (A) Comparison of the mean values of the time when steady state

was reached for different degradation rates and diffusion coefficients

averaging over the secretion rates {1.5× 103, 5× 103, 1.5× 104, 5× 104,

1.5× 105, 5× 105}min−1. Each mean value has a relative standard

deviation less than five percent. (B) Average concentration over all grid

points labeled as alveolar surface point at steady state. (C) Concentration

profile at steady state as a function of the geodesic distance from the

center of the source. In each simulation concentration values were

averaged over points of the three-quarter sphere with equivalent geodesic

distance from the center of the source. Here biquadratic interpolation was

used to obtain the concentration value at arbitrary points on the alveolar

surface. Afterwards the means over simulation runs with identical

parameter configuration were computed. We applied exponential fits to

each concentration profile using least squares to optimize the parameters a

and b in the function c(x) = a exp(bx) over concentration values at geodesic

distances above the AEC radius rAEC = 30µm.

Frontiers in Microbiology | www.frontiersin.org May 2015 | Volume 6 | Article 503 | 178

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Deciphering chemokine properties in human alveoli Pollmächer et al.

state were systematically decreasing with increasing degradation
rates in a diffusion-dependent fashion (Figure 3A).

In Figure 3B it can be seen that the parameter variation
lead to average concentration values that span a range of
five orders of magnitude from 10−2 µm−2 to 102 µm−2. The
mean concentration was observed to increase linearly with
increasing secretion rate sAEC. We found that different parameter
combinations showed similar mean concentration values and
almost identical concentration profiles over the geodesic distance
from the secreting AEC (see Figure 3C). Irrespective of the
secretion rate, diffusion coefficient and degradation rate the
profile of concentration over the surface of the alveolus showed
an exponential distance-dependence from the secreting AEC for
geodesic distances larger than the radius of the secreting AEC.

We generally observed that the impact of chemokine
degradation on the time to reach the steady state and on the
amount and profile of the chemokine concentration is largest
for small diffusion coefficients (see Figures 3A–C). This is a
direct consequence of reduced molecule motion, because on
average molecules remain in the alveolus for a longer time
period before leaving through a pore of Kohn or through the
alveolar entrance ring. In particular, the time required to reach
the steady state, the average chemokine concentration as well as
the level of the concentration profile were lowered for elevated
degradation rates. These effects were depending on the diffusion
coefficient: While for diffusion coefficents D ≥ 2000µm2/min
all three observables were reduced by less than 5% relative
to the case with absent degradation, for D ≤ 60µm2/min
this reduction was observed to increase up to 85%. For
example, in the extreme case of the small diffusion coefficient
D = 20µm2/min and at a secretion rate of 1.5 × 104 molecules
per minute, the average concentration ranges between 2.3 and
14.7 molecules per µm2 and the time required to reach the
steady state varied in a degradation-dependent fashion between
3.5 and 8.5 h.

3.3. Virtual Infection Model Reveals Relevant

Parameter Regimes
We performed computer simulations on the early immune
response against A. fumigatus infection mediated by chemokines
that are released from the AEC associated with the conidium. In
contrast to our previous study, where chemotaxis was modeled
in a simplified fashion by a probabilistic rule (Pollmächer and
Figge, 2014), we here implemented a numerical solver for the
reaction-diffusion equation extending over the inner surface of
the alveolus. Thus, in the present implementation AM performed
a biased persistent random walk and the directional bias was
derived from local sensing of the current chemokine gradient by
AM. The relative impact of directional over random migration
was inferred from the difference in newly bound AM receptors
along the gradient. Computer simulations with the refined AM
chemotaxis model, which is described in the Section 2 and
depicted in Supplementary Figure S2, enabled us to narrow
down the regime of relevant parameters in terms of the diffusion
coefficient, the degradation rate and the secretion rate of the
postulated chemokine.

3.3.1. First-passage-times are mainly determined by

diffusion coefficients and secretion rates
We measured first-passage-times in the alveolus, i.e., the
time of first contact between AM and the conidium (see
Video S3), in order to determine the requirements on the
chemokine properties for a successful discovery of the fungal
pathogen before the onset of germination (see Section 2.4.2
for details). First-passage-times were computed for 864
different parameter combinations (see Supplementary data
in Supplementary Material) and for each combination 103

simulations of the A. fumigatus infection scenario were
performed to obtain statistically firm results. From the
distributions of first-passage-times, we computed the fraction
of first-passage-times above 6 h, p(FPT > 6 h), where
6 h were chosen based on the typical time period required
for A. fumigatus germination. The results are presented in
Figure 4 and demonstrate, in agreement with our previous
study (Pollmächer and Figge, 2014), that AM with migration
speed v = 2µm/min exceeded the first-passage-time of 6 h in
more than 5% of the simulations for all parameter combinations
(see short-dashed lines in Figures 4A,D,G). A comparison of
Figures 4A,D shows that an increase in the persistence time
from tp = 1min to tp = 2min was always associated with a
decrease of p(FPT > 6 h). Next, we found that taking molecular
degradation into account did not have a strong impact on
p(FPT > 6 h), as can be observed by comparing Figures 4D,G

for tp = 2min. These observations remain qualitatively the
same for higher migration speeds of AM, see Figures 4B,E,H for
v = 4µm/min and Figures 4C,F,I for v = 6µm/min. However,
higher migration speeds of AM do have a quantitative impact on
p(FPT > 6 h).

The dashed-dotted and long-dashed lines in Figure 4 indicate
the values of p(FPT > 6 h) for AM performing, respectively,
a persistent random walk and a biased persistent random walk,
as previously simulated in Pollmächer and Figge (2014). The
persistent random walk of AM always marks an upper limit for
p(FPT > 6 h), i.e., first-passage-times are on average always
decreased in the presence of chemotaxis, as could be expected
for a low concentration of chemokines in the alveolus. On the
other hand, compared to the biased persistent random walk
model the performance of the chemotaxis model could yield
lower values for p(FPT > 6 h), depending on the combination
of parameters. In particular, we found that this is the case for
combinations of a relatively high secretion rate and a relatively
low diffusion constant. Note that the probabilistic rule for biased
persistent random walk as previously simulated in Pollmächer
and Figge (2014) was coupled to the direction of the shortest
path from the AM to the AEC associated with the conidium.
Occasionally, AM could leave the alveolus through a pore of
Kohn if one of them was along the respective path of migration.
In the present approach the frequency of this event was reduced,
due to preferred AMmigration in the direction of the chemokine
gradient, which generally pointed away from pores of Kohn (see
Videos S2 and S3). In summary, the diffusion coefficient and
the secretion rate were again found to be the most important
parameters, whereas the value of the degradation rate had only
minor impact on p(FPT > 6 h) (see Figures 4G–I).
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FIGURE 4 | Analysis of first-passage-time distributions varying the

macrophage related parameters migration speed and persistence

time and varying the chemokine related parameters diffusion

coefficient, secretion rate and degradation rate. In each subfigure

(A–I) the fraction of first-passage-times above 6 h, p(FPT > 6 h), is

plotted against the secretion rate of the AEC associated with the

fungal conidi. The calculation of this fraction is based on the

first-passage-time distribution which was derived performing 1000

first-passage-time simulations per parameter configuration. The results

of the present study are compared to the biased persistent random

walk (long-dashed black line) and the persistent random walk

(dashed-dotted black line) by Pollmächer and Figge (2014). The

short-dashed black line denotes the threshold p(FPT > 6 h) = 0.05. In

(A–C) the focus is on the variation of diffusion coefficients,

(D–F) show the results for different persistence times tp and

(G–I) demonstrate the influence of the degradation rate λ.

Interestingly, we observed a minimum of p(FPT > 6 h) as a
function of the secretion rate for various diffusion coefficients in
the case of AM migration speed v = 2µm/min and persistence
time tp = 1min (see Figure 4A). This system behavior reflects
the fact that an optimal concentration of chemokines exists
for an efficient guidance of AM. The value of the optimal
concentration is determined by the interplay of several factors,
e.g., the secretion rate, diffusion coefficient and degradation rate
of the chemokine as well as the number of AM receptors and
their dynamics of binding, internalization and re-expression. For
example, a too high chemokine concentration is associated with
a low number of unbound AM receptors limiting the adaptation
of AM migration along the chemokine gradient. We further

analyzed this situation by computing the probability of directed
AMmigration for different secretion rates and for AMmigration
speeds v = 2µm/min and v = 4µm/min. The resulting
probability distributions are shown in Figure 5 as a function of
the geodesic distance of AM from the AEC associated with the
conidium. We found that optimal values of p(FPT > 6 h) in
Figure 4A correspond to probability distributions with a narrow
and peakedmaximum (see red curves in Figure 5). For a constant
diffusion coefficient, lower secretion rates were associated with
less prominent maxima in the probability distribution (see blue
curves in Figure 5), which in turn increased p(FPT > 6 h).
On the other hand, higher secretion rates were associated with
extended and flat maxima at relatively large geodesic distances
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FIGURE 5 | Probabilities of directed AM migration over the geodesic

distance from the AEC associated with the conidium. The mean and

standard deviation of the probability pdirected are shown in the absence of

chemokine degradation for the diffusion coefficient D = 60µm2/min with AM

directional persistence time tp = 1min. In (A) AM migrate with speed

v = 2µm/min and in (B) with speed v = 4µm/min. Averages and standard

deviations were determined using the probabilities of directed AM migration

that were drawn over the whole simulation time in all simulation runs. The

present results are compared to the probabilistic rule for directed migration

(solid black line) used in Pollmächer and Figge (2014).

from the boundary of the secreting AEC (see green curves in
Figure 5). It should be noted that the profiles of the determined
probability distributions are the results of various factors, such
as the chemokine concentration and the receptor dynamics of
AM. For example, in the case of high secretion rates, many AM
receptors were already bound to the chemokine at early time
points due to its relatively high concentration in the alveolus.
As a result, AM were guided to the AEC associated with the
conidium relatively early in time. However, the relatively high
concentration of chemokines also had the adverse effect that the
number of free AM receptors was decreased at distances close
to the secreting AEC. Consequently, fewer events of receptor-
ligand binding lead to relatively low probabilities for directed AM
migration and ultimately increased p(FPT > 6 h).

An overview of the relevant combinations of model
parameters for successful detection of the A. fumigatus
conidium by AM is given in Figure 6 for AM migration speed
v = 4µm/min (A) and v = 6µm/min (B). As in Pollmächer
and Figge (2014), we considered a parameter combination
to be successful, if the value of p(FPT > 6 h) was below five
percent. Interestingly, the ratio between the secretion rate and
the diffusion coefficient, sAEC/D, was found to subdivide the

parameter space into regimes of successful and unsuccessful
parameter combinations. For v = 4µm/min and tp = 1min,
successful detection occurred for sAEC/D ≥ 250µm−2 (see
Figure 6A). Moreover, with increasing directional persistence
time and/or migration speed of AM this threshold was
found to be systematically reduced. While the combinations
(v, tp) = (4µm/min, 2min) and (v, tp) = (6µm/min, 1min)
both shared the condition sAEC/D ≥ 75µm−2, for
(v, tp) = (6µm/min, 2min) this threshold sAEC/D was lowered
to the value 25µm−2. To summarize, we found that the
successful detection of the conidium by AM required the ratio
between the secretion rate and the diffusion coefficient to be
above a specific threshold, whereas the degradation rate had only
minor impact on the first-passage-time (see Figures 4, 6).

3.3.2. Gradient-based recruitment of AM increases

relevant parameter regimes
Next, we studied a modification of AM insertion into the
system at the boundaries, i.e., the alveolar entrance ring and
the pores of Kohn. Previously, AM entered the three-quarter
alveolus following a uniform random distribution over the length
of the line elements belonging to all boundaries (Pollmächer
and Figge, 2014). In the modified setup, we accounted for the
time-evolution of the chemokine gradients at the boundaries
by specifying probabilities for AM insertion according to the
respective gradient strengths. In other words, AM insertion is
more likely at boundaries with higher chemokine gradients (see
Section 2.4.3 for details).

In Figures 6C–E it can be seen that gradient-based
recruitment of AM generally increased the regime of parameter
combinations for successful detection. At AM speeds of
4µm/min and 6µm/min the ratio of secretion rate to diffusion
coefficient was systematically reduced (see Figures 6D,E). In
contrast to the case where AM insertion was not gradient-based,
in the present case a successful detection was also achieved
at the migration speed of 2µm/min for specific parameter
combinations (see Figure 6C). Interestingly, for the AM
parameters (v, tp) = (2µm/min, 1min) the subdivision of the
parameter space into regimes of successful and unsuccessful
parameter combinations was not only determined by the ratio
sAEC/D. We checked that p(FPT > 6 h) has a dependence on
the secretion rate similar to the simulations in the absence of
gradient-based AM insertion (see Figure 4A). However, in the
present case the minimum of p(FPT > 6 h) reached values below
the five percent threshold for a limited range of the secretion rates
that gave rise to the triangular region (see Figure 6C, blue area).
The virtual infection model with gradient-based recruitment
underlines the importance of chemokine-induced AM insertion
points relative to the conidium position, as the results display a
beneficial effect for the immune response of the host.

4. Discussion

In this study, we implemented a hybrid agent-based model
(hABM) for A. fumigatus infection in human alveoli under
physiological conditions to decipher the properties of a
chemoattractant responsible for guiding alveolar macrophages
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FIGURE 6 | Evaluation of parameters related to the AM

chemoattractant based on the fraction of first-passage-times above

6h. (A,B) summarize the results from Figure 4, where AM insertion followed

a uniform random distribution over the length of the boundaries of the

three-quarter alveolus. The case v = 2µm/min was left out as all parameter

combinations lead to p(FPT > 6 h) ≥ 0.05. In (C–E) AM were inserted into the

alveolus following a gradient-based probability distribution over the line

elements belonging to the boundaries. The highlighted areas denote the

regimes of parameters leading to timely detection of the conidium for the

directional persistence times tp = 1min (blue area) and tp = 2min (yellow

area) of AM under different migration speeds v. The variable

#λ (p(FPT > 6 h) < 0.05) denotes the fraction of simulated degradation rates

that lead to p(FPT > 6 h) < 0.05 for a specific combination of parameters D

and sAEC.

(AM). The multi-scale simulations account for the dynamics at
the cellular and molecular level, as well as the kinetics of binding,
internalization and re-expression of chemokine receptors onAM.
To scan the parameter space for combinations of parameters that
ensure the timely detection of a conidium in the alveolus, we
performed more than a million simulations of virtual infection
scenarios in the experimentally relevant regimes. We were able to
show that successful detection of the pathogen by AM is governed
by the choice of five experimentally undetermined parameters:
migration speed v and directional persistence time tp of AM as
well as the secretion rate sAEC, diffusion coefficient D and the
degradation rate λ of the chemokine.

Simulations of the chemokine dynamics on the inner surface
of the alveolus with its peculiar boundary conditions were
performed using an efficient and accurate finite difference
method on Voronoi cells (Sukumar, 2003) to solve the reaction-
diffusion equation on an unstructured triangular Delaunay
grid with close-to-equidistant grid points. We first studied the
chemokine profile in steady state under varying conditions in
an empty three-quarter spherical alveolus. Our results show that,
depending on the diffusion coefficient of the chemokine, the time
until a steady state is reached can vary from several minutes for
D ≥ 2000 µm2/min to several hours for D ≤ 60 µm2/min. This
revealed that our previous study, where the chemokine dynamics
was simplified by a probabilistic rule, is limited to infection

scenarios in the limit of high diffusion coefficients (Pollmächer
and Figge, 2014). In contrast, using the present approach we are
in the position to study A. fumigatus infection from the onset of
chemokine secretion by alveolar epithelial cells (AEC) induced by
the conidium and extending over the time period of establishing
a concentration profile until the conidium is successfully found
by one of the AM.

Since it was shown that AM require chemotactic cues
in order to timely detect the conidium before the start of
germination (Pollmächer and Figge, 2014), we here developed
the hABM to account for the spatio-temporal concentration
of chemokines in the alveolus. We implemented the receptor-
kinetics chemotaxis model of Guo et al. (2008) for AMmigration
on a grid with high spatial resolution to capture the spherical
alveolar surface with the pores of Kohn. The chemotaxis model
accounts for the binding of G protein-coupled receptors on
the surface of AM to the AEC-derived chemoattracting ligands
in the alveolar lining layer (surfactant). In general, eukaryotic
cells are able to sense spatial differences in receptor occupation
along the chemokine gradient by their relatively large size of
at least 10µm (van Haastert and Postma, 2007). In order to
sense shallow gradients in the chemokine concentration of 1–
5%, chemotactic cells are in addition able to sense temporal
differences in receptor occupation, which increases the signal-
to-noise ratio and implies higher probabilities of polarization
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directed along the gradient (van Haastert and Postma, 2007).
We extended the chemotaxis model of Guo et al. (2008)
by implementing AM sensing of the cumulated number of
newly bound receptors over directional persistence times. This
approach advances our previously applied phenomenological
chemotaxis model, which was based on a constant function
for the distance-dependent gradient strength (Pollmächer and
Figge, 2014). In the present study, AM were enabled to
sense dynamically changing local chemokine gradient strengths,
which implicitly contained morphological information, e.g.,
concentration gradients pointing away from boundary elements.
Simulations of the virtual infection scenario indicated that the
present AM chemotaxis model unifies the random migration
and chemotactic migration modes of our previous study in one
model. In particular, we showed that persistent random walk was
resembled for relatively low chemokine concentrations in the
alveolus.

The computation of the first-passage-time, i.e., the duration
until the conidium is detected by an AM for the first time,
revealed the relative importance of the parameters associated
with the chemokine distribution: the diffusion coefficient and
the rate of chemokine secretion by the AEC associated with
the conidium turned out to have a major impact, whereas
chemokine degradation played a minor role. In particular, we
found that the AEC secretion rate and the diffusion coefficient
had counteractive effects regarding the average concentration
of chemokines in the surfactant, i.e., decreasing the secretion
rate lowered the average concentration whereas decreasing the
diffusion coefficient increased it. Chemokines are diffusing in
the alveolar lining layer (surfactant), which shields AM from
the alveolar airspace, reduces surface tension and provides
immunoregulatory proteins (Herzog et al., 2008; Hasenberg
et al., 2013). In comparison with chemokine diffusion in
water, the relatively high viscosity of the surfactant (Alonso
et al., 2005) has the crucial effect to reduce the diffusivity
of chemokines and by that to lower the AEC secretion rate
required for the timely detection of the pathogen. We found
the ratio of the AEC secretion rate to the diffusion coefficient,
sAEC/D, to be the main indicator for the outcome of the
infection scenario. For specific values of the AM migration
speed and directional persistence time, this ratio subdivided the
parameter space into regimes of successful and unsuccessful
parameter combinations, whereas this separation was only
weakly depending on relevant degradation rates. The degradation
rate showed to have some impact in virtual infection scenarios
with relatively low diffusion coefficients, which was also the case
in the simulations associated with the steady state analysis. Thus,
decisive reduction of the chemokine amount available to AM
due to molecular degradation is only of importance for a highly
viscous surfactant. The specific morphology of human alveoli
plays an important role in this regard as chemokine reduction
was also a consequence of chemokine absorption at the pores
of Kohn and the alveolar entrance ring. A relative dominance of
chemokine decrease due to alveolar boundaries was determined
for relatively high diffusion coefficients, whereas relatively low
diffusion coefficients were accompanied with relatively high
chemokine degradation. This was attributed to reduced molecule

motion for reduced diffusion coefficients, thus, on average
molecules remained in the alveolus for a longer time period
before leaving through the alveolar boundaries. As observed in
our previous study (Pollmächer and Figge, 2014), AM required
a minimal migration speed of at least 4µm/min to discover
the fungal conidium before the onset of germination. However,
as shown in the present study, assuming a recruitment of AM
from neighboring alveoli that was based on the local chemokine
gradient, an average speed of 2µm/min was as well successful
for a specific subset of parameter combinations. This finding is
particularly interesting, because the actual AM migration speed
in the alveolus is not known today, but is typically expected to be
low (Hasenberg et al., 2013). Generally, our results show that the
communication between different types of host immune cells and
their reaction to threatening invaders needs to be finely tuned in
order to mount and orchestrate a fast and adequate response.

The specific chemokine and AM receptor that are involved
in the directed migration are not known today. It is well-
known that AM express, for example, the chemokine receptor
CXCR2 (Miller et al., 2003) that binds to the cytokine IL-8.
Moreover, the presence of complement proteins in the surfactant
yields the cleavage product C5a, and this anaphylatoxin is
a potential candidate for which AM chemoattraction was
observed (Farrell et al., 1990; Zipfel and Skerka, 2009). Resting
conidia of A. fumigatus activate the complement system entirely
by the alternative pathway (Kozel et al., 1989). Upon activation,
C3 is cleaved into C3b and C3a, with C3b opsonizing the
fungal surface and increasing uptake rates by macrophages (van
Lookeren Campagne et al., 2007). Furthermore, C3b induces
cleavage of C5 which leads to the production of the prominent
proinflammatory and chemoattracting cytokine C5a (Brakhage
et al., 2010). However, it is also known that resting A. fumigatus
conidia reduce the impact of the complement cascade by binding
complement regulatory proteins—such as factor H, FHL-1,
CFHR-1, C4BP and plasminogon—and by that reducing the
deposition of C3b molecules on their surface (Behnsen and
Hartmann, 2008). These data suggest that single conidia do
both trigger and counteract the complement cascade, such that
the mediated stimulus of chemoattraction and inflammation
is relatively weak and spatially confined. Nevertheless, it is
conceivable that these signals can be detected by the AEC
associated with the conidium and that this cell responds with
the secretion of the chemokines for AM recruitment. Supporting
evidence for this hypothesis is provided by a study of rat AEC of
type II: binding of C5a to these cells lead to increased expression
of the C5a receptor on the AEC surface and to the production
of macrophage inflammatory protein-2 as well as neutrophil-
chemoattractant-1 (Riedemann et al., 2002).

Our computational approach to investigate A. fumigatus
infection complements wet lab experiments. In vivo
measurements suffer from the circumstance that they can
only be carried out with high doses of conidia that do not reflect
the physiological condition of daily inhalation rates of a few
thousand conidia (O’Gorman and Fuller, 2008; Pollmächer
and Figge, 2014). The agent-based modeling approach allows
studying the early immune response, i.e., we modeled a setting
with those immune cells that are resident in alveoli and
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performed virtual infection simulations to low numbers of
conidia in a physiologically reasonable host-setting. Simulations
enabled narrowing down the experimentally relevant regime of
parameters to a subset of potential parameter combinations for
healthy individuals. These predictions may initiate further wet
lab investigations that should focus on quantitative aspects of
the early immune response, e.g., the relative contributions of
the complement system and the alveolar epithelial cells to the
daily challenge with A. fumigatus or the identification of the
specific chemokine for AM and the rate at which it is secreted
by AEC. Furthermore, if possible by sophisticated imaging
techniques in the future, it will be highly interesting to determine
values of AM migration speed and migration mode in their
natural environment to clarify their general role in the immune
response, e.g., as compared to neutrophil migration in the
alveolus (Mircescu et al., 2009).

In the context of studying fungal infections, image-based
systems biology is able to serve as a well-founded framework with
iterative cycles of exchange between experiment and theory and
involves imaging, quantitative characterization and modeling
of infection processes (Medyukhina et al., 2015). Methods for
image-analysis of fungal-host interactions (Mech et al., 2011;
Kraibooj et al., 2014; Brandes et al., 2015) and parameter-
free classification of cell-tracks (Mokhtari et al., 2013) have
been developed over the recent years and have paved the
way for the quantification and extraction of the information
contained in image- and video data. Furthermore, different
individual-based modeling approaches were successfully carried
out in combination with automated image-analysis to test
hypotheses and to draw predictions that might be tested in
future experimental research (Tokarski et al., 2012; Mech et al.,

2013; Hünniger et al., 2014). Experimental studies including
live-cell imaging in alveolar ducts would give the opportunity
to refine, to review and to extend the present virtual infection
model.
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Studying the pathobiology of the fungus Aspergillus fumigatus has gained a lot

of attention in recent years. This is due to the fact that this fungus is a human

pathogen that can cause severe diseases, like invasive pulmonary aspergillosis in

immunocompromised patients. Because alveolar macrophages belong to the first

line of defense against the fungus, here, we conduct an image-based study on the

host-pathogen interaction between murine alveolar macrophages and A. fumigatus.

This is achieved by an automated image analysis approach that uses a combination

of thresholding, watershed segmentation and feature-based object classification. In

contrast to previous approaches, our algorithm allows for the segmentation of individual

macrophages in the images and this enables us to compute the distribution of

phagocytosed and macrophage-adherent conidia over all macrophages. The novel

automated image-based analysis provides access to all cell-cell interactions in the assay

and thereby represents a framework that enables comprehensive computation of diverse

characteristic parameters and comparative investigation for different strains. We here

apply automated image analysis to confocal laser scanning microscopy images of the

two wild-type strains ATCC 46645 and CEA10 of A. fumigatus and investigate the ability

of macrophages to phagocytose the respective conidia. It is found that the CEA10 strain

triggers a stronger response of the macrophages as revealed by a higher phagocytosis

ratio and a larger portion of the macrophages being active in the phagocytosis process.

Keywords: Aspergillus fumigatus, alveolar macrophages, host-pathogen interaction, phagocytosis assay,

automated image analysis

Introduction

The use of sophisticatedmicroscopy techniques and the ease of producing and storing large amount
of image data has in the last decade led to an increasing need for automated image analysis tools
that reveal and quantify biological processes on a systems biology level (Rittscher, 2010). We will
here present an automated image analysis algorithm that is able to fully evaluate the data from a
phagocytosis assay between murine alveolar macrophages and the fungus Aspergillus fumigatus.
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This is a biologically relevant experiment as the ubiquitous
saprophytic mold A. fumigatus is the most prevalent airborne
fungal pathogen (Brakhage et al., 1999; Brakhage and Langfelder,
2002; O’Gorman et al., 2008). During its asexual reproduction
cycle the fungus produces conidia that are inhaled by humans at a
rate of hundreds to thousands per day, without any consequences
for healthy humans (Latgé, 1999). In immunocompromised
subjects, by contrast, A. fumigatus can cause invasive pulmonary
aspergillosis (IPA) which has mortality rates in the order of
30–95% (Brakhage, 2005; Dagenais and Keller, 2009). From the
host side, macrophage phagocytosis is part of the early response
of the innate immune system and the igniting process of the
adaptive immune system at a later stage (Aderem and Underhill,
1999). Therefore, in vitro phagocytosis assays where A. fumigatus
conidia are confronted with mammalian macrophage cells are a
suitable experiment to examine the interaction between pathogen
and host, thereby gaining deeper insight into mechanisms of
pathogenicity and phagocytosis.

The evaluation of phagocytosis assays based on images is
often carried out by visual inspection and is therefore time
consuming, subjective and expensive, accentuating the need for
a more efficient analysis method (Zhou and Wong, 2006). The
automated image analysis performed in this work was realized
within the Definiens Developer XD framework (Schönmeyer
et al., 2011) that allows creating customized algorithms tailored
for the life sciences (Carpenter et al., 2006) and facilitates
automated analysis of big sets of image data by batch processing.
Additionally, this platform enables to conveniently combine
predefined features of image objects by mathematical and logical
combinations. Studying biological phenomena often requires
analyzing microscopy images with a high degree of variation in
object features, both across the images and even across objects
in the same image. A clear example in the present context is
the variation in shape of clusters formed by different numbers
of conidia whose relative positions in the clusters are different
for virtually all clusters. Another example is the change of the
mean intensity of objects depending on how deep a cell lies
in the experimental well. Validation of our algorithm ensures
its applicability to a wide spectrum of image data required for
high-throughput screening of mutants in comparative studies.

Here, we performed confocal laser scanning microscopy
(CLSM) experiments to study two clinical isolates of A.
fumigatus: ATCC 46645 (American Type Culture Collection,
Manassas, VA) and CEA10. These two strains, among others,
were examined for virulence in an embryonated egg model and
CEA10 displayed an increased virulence compared with ATCC
(Jacobsen et al., 2010). It should be noted that in this study
older embryos had an increased survival chance and this was
hypothesized to be caused by a more mature immune system. By
performing the confrontation assay carried out here, we wanted
to elucidate the infection process of the two strains and shed
light on the mechanisms of CEA10’s virulence, especially its
interaction with a mature immune system. In our experiment
we compared the phagocytosis ratio, macrophage-adherence and
aggregation of the two strains.

In the microscopy experiments performed for the present
study, different fluorescent dyes for macrophages and conidia

were used and, in addition, the technique of differential staining
was applied to distinguish phagocytosed from non-phagocytosed
conidia (Thywißen et al., 2011). In the standard red-blue-green
(RGB) formulation of a color image, each color layer displays
a specific class of cells, i.e., all macrophages in the red layer,
all conidia in the green layer and all non-phagocytosed conidia
in the blue layer. Hence, the staining protocol enabled us to
conveniently work on single layers for object segmentation and
to ultimately combine layers in the classification of objects
and in the analysis of their spatial colocalizations. While
some progress has been made in previous developments of
algorithms for the automated image analysis of this type of
experiments (Mech et al., 2011, 2014; Kraibooj et al., 2014;
Schäfer et al., 2014), we are here presenting a novel algorithm
that differs from previous approaches with regard to the crucial
step of segmenting all different types of cells in the assay.
This was not achieved in previous approaches regarding the
segmentation of macrophages, which is complicated by the
occasionally interrupted staining of their cell surface. Since
reliable segmentation of all cells in the assay is a necessary
prerequisite for its comprehensive quantification, we could
go beyond previous work and computed various biological
quantities, such as the phagocytic index (Sano et al., 2003) and
other measures involving the quantification of macrophages,
which was not possible in previous studies.

Materials and Methods

A. fumigatus Strains and Growth Condition
Cultivation of the A. fumigatus wild-type ATCC 46645 and
CEA10 was performed on Aspergillus minimal medium (AMM)
agar plates with 1% (w/v) glucose at 37◦C for 5 days. AMM
consisted of 70mM NaNO3, 11.2mM KH2PO4, 7mM KCl,
2mM MgSO4 and 1µl/ml trace element solution (pH 6.5). The
trace element solution consisted of 1 g FeSO4 ∗ 7 H2O, 8.8 g
ZnSO4 ∗ 7 H2O, 0.4 g CuSO4 ∗ 5 H2O, 0.15 g MnSO4 ∗ H2O,
0.1 g NaB4O7 ∗ 10 H2O, 0.05 g (NH4)6Mo7O24 ∗ 4 H2O, and
double-distilled water (ddH2O) to 1000ml (Brakhage and Van
den Brulle, 1995; Maerker et al., 2005). Conidia were harvested in
sterile, double-distilled water.

Phagocytosis Assays and Cell Staining
For the phagocytosis assays murine alveolar macrophages
(ATCC CRL-2019™) were cultivated in RPMI1640 medium
supplemented with 10% (v/v) FCS (Thermo Fisher Scientific,
Dreieich, Germany), 1% (w/v) sodium bicarbonate (Lonza,
Köln, Germany) and 0.05mM beta-mercaptoethanol (Life
Technologies, Darmstadt, Germany). The cells were seeded on
glass cover slips in Nunc 24 well plates (Thermo Scientific)
at a density of 3 × 105 cells per well and allowed to grow
adherently overnight. The conidia were stained with Fluorescein
isothiocyanate (FITC, Sigma, Taufkirchen, Germany) for 30min
at 37◦C while shaking. After washing them 3 times with
PBS, 0.01% (v/v) Tween20 (AppliChem, Darmstadt, Germany)
conidia concentration was determined using a CASY cell counter
model TT (Roche-Innovatis, Penzberg, Germany). Conidia
were added to the macrophages at a multiplicity of infection
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(MOI) of 7. Synchronization of the experiment was realized
by centrifugation for 5min at 100 g and 37◦C. To initiate the
experiment the co-incubation was shifted to a humidified CO2

incubator for 1 h at 37◦C. The cells were fixed for 15min
at room temperature by adding 16% (v/v) paraformaldehyde
(Electron Microscopy Sciences, München, Germany) directly to
the medium to a concentration of 3.7% (v/v). Wells were washed
two times with PBS followed by the step of differential staining,
i.e., non-phagocytosed conidia were stained with 0.1mg/ml
calcofluor white (Sigma) for 30min at room temperature. The
cells were washed again twice with PBS. Prior to antibody
labeling, binding sites were blocked with PBS, 3% (w/v) BSA
Fraktion V (AppliChem) for 30min. Next, macrophages were
labeled with a monoclonal rat anti-CD9 antibody (1:200; Santa
Cruz Biotechnology, Heidelberg, Germany) over night at 4◦C and
an Alexa Fluor R© 647 Goat Anti-Rat IgG antibody (1:200; Life
Technologies) for 1.5 h at room temperature.

Imaging
Microscopy images were taken by a Zeiss LSM 780 Live confocal
laser scanning microscope with a 20x Zeiss plan-apochromat dry
objective (0.8 NA). The resulting images are 8-bit RGB color
images with 1024 × 1024 pixels and a pixel distance of 0.2µm.
The total number of images for each strain is 60, equally divided
into two biological replicates (i.e., 30 images each) with two
technical replicates per biological replicate (i.e., 15 images each).
These image data are publicly available at http://www.leibniz-hki.
de/en/asb-downloads.html. Based on the differential staining, all
macrophages appeared in the red layer, all conidia in the green
layer and all non-phagocytosed conidia were visible in the blue
layer (see Figure 1). The separation of objects into different layers
allowed for more effective segmentation and classification of the
different image objects.

Automated Image Analysis
The algorithm for automated image analysis was developed using
the software Definiens Developer XD and was executed by the
Grid XD Server (Definiens AG, Munich, Germany). The server
ran on one core of a SUN Fire X4600 Server M2 (8 CPUs with
4 cores each, 2.3 GHz AMD Opteron, 64 GB memory). Image
processing consisted of three subsequent steps—preprocessing,
segmentation and classification—and a schematic overview of the
algorithm is presented in Figure 2. The rule set of the algorithm
is provided as Supplementary Material (see Supplementary Data
1) and the code is available by the authors upon request.

Preprocessing
As shown in Figure 2 (see split point 1) the green and red
layer were separated and smoothed by a Gaussian filter, i.e., a
low-pass filter that reduces high-frequency components in the
image (Blinchikoff and Krause, 2001). The degree of smoothing
by the Gaussian filter was adjusted through the parameter σ,
which controls the standard deviation. This was chosen as
to optimize the subsequent image segmentation: in the green
layer σ = 1 px was applied and in the red layer σ = 5
px was used. For the green layer a relatively small σ was
sufficient as the conidia were intensity-wise homogeneous and

FIGURE 1 | Example of image data from the phagocytosis assay. (A)

Green layer (FITC staining) with all conidia. (B) Blue layer (Calcoflour white

staining) overlaid with the FITC layer revealing the difference between

phagocytosed and non-phagocytoced conidia as only the latter were stained

with Calcoflour white (differential staining). (C) Red layer (anti-CD9 antibody)

with macrophages and (D) overlay of all layers.

well separated from the background (see Figure 1A). In contrast,
the higher value of σ applied on the red layer alleviated
conspicuous discontinuities stemming from the staining of
macrophages. Blurring helped bridging these discontinuities
in macrophage boundaries and consequently improved the
subsequent segmentation. Preprocessing of the blue layer,
which exclusively indicated non-phagocytosed conidia, was not
required, because segmentation was not applied to this layer. The
calcofluor white signal, represented by the pixel intensities in this
layer, was used for classification of conidia as phagocytosed or
not. Figures 3A,B, 4A,B show the smoothing effects on the green
and red layers, respectively; this effect was very prominent for
macrophages in the red layer.

Segmentation

Segmentation of conidia
Segmenting conidia on the green layer comprised two
consecutive phases. In the first phase, indicated by split
point 2 in Figure 2, the image was segmented into background
and foreground (conidia candidates) using clustering-based
thresholding (Sezgin and Sankur, 2004). The threshold, Tc,

was automatically computed by a combination of intensity
histogram-based measures and homogeneity measurements
of segmented objects (Pal and Pal, 1993). An example of this
thresholding procedure is shown in Figures 3B,C. Note that the
resulting foreground objects are either single conidia, cluster
of conidia or debris, which were further distinguished in the
second phase of conidia segmentation. After thresholding, a
morphological closing operation was performed (Gonzalez
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FIGURE 2 | Schematic representation of the automated image

analysis algorithm with boxes showing input and output of image

analysis processes. Circled numbers indicate split points where the

different processes were performed, e.g., thresholding or object

classification. For the details of each split point we refer the reader to

the text.

and Woods, 2006) to avoid having background enclosed in
conidia as this is not a biologically realistic scenario. At the heart
of identifying individual foreground objects is the watershed
segmentation, which is a standard method for segmenting objects
based on seed points that lie inside the desired objects. Starting
from these seed points, it can be imagined that the intensity
landscape is flooded with water filling up each object until it
meets water from another object. At locations where water from
different basins meets, a dam is placed that separates individual
objects from each other and by that yields their segmentation
(Roerdink and Meijster, 2001). In our case, seed points for each
foreground object were obtained by first applying a distance
transform (Fabbri et al., 2008) to the local maxima in the
intensity landscape.

In the second phase, a foreground object was considered to
be a cluster if its area, Acl ≥ Amin

cl
= 275 px, otherwise it was

considered to be a single conidium. To split a cluster into single
conidia, we iteratively applied the distance transform (Fabbri
et al., 2008) on the cluster to obtain seed points that were then
used in the subsequent watershed (see Figure 3E). The seed
points were chosen to be the local maxima obtained from the
distance transform. Each time before watershed segmentation
was carried out, the considered cluster was shrunk to facilitate
segmentation of individual conidia. The shrinking procedure
was realized by discarding pixels from the old border that have
intensity below a given threshold. Before watershed segmentation

was applied, all clusters were shrunk with threshold T
global

shrink
= 40

and after that, individual clusters were handled by initializing
Tcl
shrink

as the minimal intensity of a specific cluster under
consideration. The individual threshold was iteratively updated
by Tcl

shrink
←− Tcl

shrink
+ Iinc, where Iinc = 10 was set

during the engineering process. The iteration for splitting clusters
into single conidia stopped when all segments in the original
cluster had area Acl < Amin

cl
. The shrinking procedure was

required to enhance the performance of watershed segmentation
with regard to (i) identifying single conidia in clusters and (ii)
correcting for a single conidium that was previously erroneously
identified as a cluster. In the first case, the shrinking supported
the determination of the borders of single conidia, which was
necessary to identify suitable seeds for watershed segmentation.
The shrinking excluded halos and reflections, which were
especially strong for large clusters, and yielded seeds located on
the actual conidia. Without shrinking, some seeds would have
been placed with high likelihood on halos and reflections, which
would lead to over-segmentation of a cluster. In the second
case, the object was reduced in area below the threshold Amin

cl
.

This procedure corrected for single conidia with areas above
Amin
cl

that can occur due to a halo caused by reflections or due

to another out-of-focus conidium in its close proximity. The
iteration automatically stopped when no objects were classified
as clusters.

Image objects with area Ac ≤ Amin
c = 100 px, or roundness

ρ ≥ ρmax
c = 1.2 were discarded, because the engineering process

revealed that these were most likely artifacts. Here, roundness
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FIGURE 3 | Pre-processing and segmentation of conidia. (A)

Original scene showing a cluster of conidia and an isolated conidium.

(B) Scene after pre-processing with a Gaussian filter. (C) Scene after

thresholding into background and foreground indicated by magenta

borders. (D) Distinguishing the foreground between clusters (cyan) and

single conidia (magenta). Segmentation of the cluster into smaller

clusters and finally single conidia after (E) the first and (F) the third

iteration.

was measured as ρ = εmax
v −εmin

v ,where εmax
v is the major radius

of the smallest enclosing ellipse of image object v and εmin
v is the

minor radius of the largest ellipse enclosed by v. Accordingly,
ρ ∈ [0,∞) and for ρ = 0 the object has a perfectly circular
shape. Additionally, image objects of mean green intensity Ic ≤
Imin
c = 20 were also discarded, because they were in fact out
of focus. Moreover, image objects were discarded if the ratio of
the long over the short main axis was bigger than 2. The iterative
segmentation and exclusion of debris were the processes of split
point 3 in Figure 2. An example for the segmentation of conidia
in a cluster is shown in Figures 3D–F.

Segmentation of macrophages
The antibody-stained macrophages in the red layer were
segmented in a way similar to the segmentation of conidia
although three distinct phases had to be distinguished in
this case: (i) thresholding, (ii) watershed segmentation and
(iii) morphology-based macrophage identification. Firstly,
the preprocessed layer of macrophages was segmented into
background and foreground (split point 4 in Figure 2) using
an automatic threshold applied to the preprocessed layer. This
threshold was multiplied by a factor f = 0.3 in order not
to lose any macrophage signal, as shown in Figures 4B,C.
The resulting background with intensity below threshold
consisted of regions in-between and outside macrophages,
as well as areas inside the macrophages. The thresholded
foreground consisted of macrophages and possibly adjacent
background with pixels of high intensities due to halo effects
and smoothing. Next, background segments enclosed by
foreground segments were merged into the foreground.

This ensured that the application of watershed segmentation
performed well, because the intensity minima in these enclosed
segments were used as seeds for watershed segmentation (see
Figures 4C,D).

Secondly, the foreground had to be divided into regions
corresponding to individual macrophages or unwanted
background. To achieve this we applied an edge detection
filter and then smoothed the foreground with a Gaussian filter
of width σ = 9 px and applied watershed segmentation (see
Figures 4E,F). Finally we identified the segments given by
watershed segmentation as either macrophages or background.
We could distinguish between two types of background segments
according to their positions: macrophage-adjacent background
segments that are bordering the background determined
in the thresholding phase of segmentation and background
segments that were completely enclosed by macrophages and
had no contact with the background of the first phase. All
macrophage-adjacent background segments were merged
with the background from the thresholding, see Figure 4F.
However, the enclosed background segments could not be
classified in this way, because they had no contact with the
background of the thresholding and determining whether these
were macrophages or background required morphology-based
macrophage identification using a rule-based classifier. The
macrophage identification rules were based on the object’s shape
and brightness. The brightness β is the average intensity over the
object’s pixels and we consider the shape properties roundness ρ

and shape index ς . The shape index describes the smoothness of
an object border and is defined as ς = bv/(4

√
Pv), where bv is

the border length of image object v and Pv is the number of all
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FIGURE 4 | Preprocessing and segmentation of macrophages. (A)

Original scene showing macrophages. (B) Scene after pre-processing with a

Gaussian filter. (C) Scene after thresholding into background and foreground

indicated by yellow borders. (D) Scene after merging the background enclosed

by foreground into foreground. (E) Scene after edge detection and application

of a Gaussian filter. Scene after (F) application of watershed segmentation and

(G) merging of surrounding border foreground into background. (H) Scene

after region growing enabling classification into individual macrophages.

pixels forming this object. This implies ς ∈ [1,∞) and ς = 1
indicates perfectly smooth borders. Together with the roundness
ρ, these three macrophage features are considered separately as
well as in various combinations to achieve optimal segmentation
results. Note that we are considering two separate populations of
segments when applying this ruleset, namely segments that are
in contact with the image border and those which are not. For
segments in contact with the border the measures have different
thresholds when deciding whether they are macrophages or
background.

The borders of the resulting macrophage segments are mostly
located at the inner borders of macrophages in the image (see
Figure 4G). To obtain the outer border we apply a region
growing algorithm that first is expanding the border a fixed
number of pixels in the radial direction. The engineering process
revealed that two pixels was a suitable value for this growing
process. Subsequently the region was grown pixel-wise in the
radial direction until a step was made with an intensity drop
by more than 30%. The growing process was restricted by a
roundness condition preventing the macrophage segment to be
extended into neighboring macrophages. This condition was

expressed by the roundness ρ∗m ≤ ρm + 0.01, where ρm is the
initial roundness and ρ∗m is the roundness after growing. Finally,
macrophage segments with area Am below the threshold value
Amin
m = 2400 px were discarded because these did most likely

represent artifacts (see split point 5 in Figure 2). Examples of final
segmentation results are shown in Figure 4H.

Classification
The segmentation of image objects was followed by their
classification. In particular, for each conidium we had to
determine whether or not it was phagocytosed, and if not
phagocytosed whether or not it was adherent to a macrophage.
To distinguish between phagocytosed and non-phagocytosed
conidia, we exploited the information provided from the
differential staining of conidia. For each conidium, the number
of calcofluor white signal was measured by computing the
average blue intensity, Ibluec , where a lower (higher) value than
the threshold intensity Tblue

c indicated that the conidium was
phagocytosed (non-phagocytosed) (split point 6 in Figure 2). By
validation of the automated image analysis in comparison with
a manual analysis, we inferred that Tblue

c = 37 is a suitable
threshold value.

Next, for non-phagocytosed conidia, we differentiated
between adherent and non-adherent conidia based on the
relative position of conidia and macrophages (see split point 7 in
Figure 2). To this end we computed the relative common border,

Ψ =

∑
m∈Nc

b(c,m)

bc
,

with b(c,m) the length of the common border for objects
c (conidium) and m (macrophages). Nc denotes the set of
neighboring macrophages m relative to the conidium c and
bc denotes the border length of this conidium. It follows that
Ψ ∈ [0, 1], where Ψ = 0 implies that no common border
exists between the conidum and a macrophage. In this case
the conidium was not adherent to macrophages, whereas for
Ψ >0 the conidium had some common border with at least one
macrophage and was therefore considered as being adherent.
Moreover, we could use this equation to associate a specific
conidium with a specific macrophage. A typical example of an
image after performing classification is shown in Figure 5.

In close analogy to the above procedure, we could distinguish
between an isolated conidium and conidia that occurred in
aggregates. In this case, Ψ was computed among conidia and it
was checked for common boundaries among them.

Statistical Analysis
We performed statistical tests to evaluate the statistical
significance of our results using the Wilcoxon rank-sum test
(Wilcoxon, 1945) and indicated the range of the p-value by
n.s. for non-significant (p ≥ 0.05), ∗ for p < 0.05, ∗∗ for
p < 0.01, and ∗∗∗ for p < 0.001. Distributions of data
points were represented by notched box plots (Krzywinski and
Altman, 2014) representing the mean value (star), the median
(horizontal line), boxes containing 25% of data points above
and beyond the median, whiskers excluding 2% of data points
above and beyond as possible outliers. Notches represent the
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FIGURE 5 | Final image analysis result of the scene in Figure 1. (A) All

conidia and (B) conidia after classification as being phagocytosed (green

border) or non-phagocytosed (magenta border). (C) Segmented

macrophages. (D) Overlay of all image layers showing the final result of image

analysis.

95% confidence interval for their respective medians (Chambers,
1983).

Results

In this section, we first present results on the validation
of the algorithm for the automated image analysis, which
was done separately for macrophage segmentation and
conidia identification, i.e., involving their segmentation
and classification. Next, we provide the results from the
quantification of the images in terms of the distribution of
conidia over macrophages. Finally, the phagocytosis of conidia
as well as their aggregation were quantitatively evaluated.

Automated Image Analysis Algorithm Reaches

High Performance Measures
We validated our algorithm for the automated image analysis
by comparison with an analysis that was carried out manually.
To this end, a set of 24 images—i.e., 20% of the total number
of images—were chosen randomly, such that each technical
replicate was represented by three images. The visual inspection
by experts was considered to be the ground truth, and the
notions true positives (TP), false positives (FP) and false negatives
(FN) were used accordingly to compute standard performance
measures for binary classifications. The sensitivity is defined by

S =
TP

TP + FN
,

whereas the precision is associated with the ratio

P =
TP

TP + FP

and the accuracy is given by

A =
TP

TP + FP + FN
,

where we set true negatives (TN) equal to zero, because these
cannot occur in the current setting. All three performance
measures can take values between 0 and 1, where high values
indicate high performance with regard to the respective measure.
The validation of macrophage segmentation as well as the
identification of conidia revealed high performance measures
and the results are summarized in Table 1.

In the case of macrophages, TP are the number of correctly
segmented macrophages, FN are those that were erroneously
considered to be background, whereas regions of background
that were identified as macrophages are FP. FP arise from
background regions in-between macrophages that happened to
have shapes with roundness and shape index similar to actual
macrophages. On the other hand, FN arise from macrophages
that were not detected by the algorithm because of highly uneven
staining and/or low integrity of the macrophage boundary,
or because the roundness and shape index were similar to
background segments, which can occur when a macrophage is
partially covered by another macrophage.

The identification of conidia refers to the combined process of
conidia segmentation and classification. In particular, we focused
on the classification of phagocytosed vs. non-phagocytosed
conidia. Thus, TP are the number of conidia which were
correctly segmented and classified as either phagocytosed or
non-phagocytosed. The conidia that were falsely identified—i.e.,
either erroneously segmented as conidia or falsely classified—
were counted as FP, whereas FN are conidia that were missed at
the level of segmentation.

In passing we note that we checked the technical and
biological replicates of images for the MOI. In the experimental
protocol, where the MOI was initially set to 7, several washing
steps were required that affect the number of conidia relative to
the number of macrophages. This loss of non-phagocytosed and
mostly non-adherent conidia could not be avoided, however, we
checked that the ultimateMOI was comparable in the images and
found 2.42± 0.64 for the wild-type ATCC strain and 2.26± 0.76
for the CEA10 strain.

Distribution of Conidia Over Macrophages Yields

Full Quantification of Image Data
We exploited the segmentation of macrophages to study
the distribution of phagocytosed and adherent conidia over
macrophages and the correlation between them. In Figure 6

the probability distribution of macrophages as function of the
number of adherent and the number of phagocytosed conidia
is shown. This distribution contains the full information about
the phagocytosis seen in the images. Already at this stage,
qualitative differences between the strains when confronted
with macrophages were detected. For example, comparing
adherence of conidia to macrophages, it was observed this
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occurred less frequently for the strain CEA10 than for ATCC.
Approximately 25% of the macrophages had three or more
adherent CEA10 conidia while more than 35% had three
or more adherent ATCC conidia. Conversely, about 80% of
the macrophages confronted with the ATCC strain did not
phagocytose, whereas approximately 60% of the macrophages
did not phagocytose when confronted with the CEA10 strain.
This tendency yielded the qualitative information that immune
cells responded more vigorously to CEA10 than to the ATCC
strain. By summing the two-dimensional distribution along its
individual axes we obtained the distribution of phagocytosed
conidia and the distribution of adherent conidia (see Figure 7).
These distributions confirmed the impression from Figure 6 as
the distribution of adherent conidia for ATCC was clearly shifted
to higher conidia numbers compared to CAE10 (see Figure 7A),
while the opposite was found in the case of phagocytosis (see
Figure 7B).

Quantification of Phagocytosis Events Can Be

Studied from Different Viewpoints
In previous studies, different scalar measures were used
to quantify the phagocytosis process, which was partly a
consequence of the fact that not all cells and interactions could

TABLE 1 | Validation of conidia identification and macrophage

segmentation.

Process Number TP FP FN S [%] P [%] A [%]

Macrophage segmentation 1130 1091 39 58 94.9 96.5 91.8

Conidia identification 2745 2697 48 76 97.2 98.2 95.6

Macrophage segmentation: true positives, TP, denote correctly segmented macrophages;

false positives, FP, denote objects erroneously segmented as macrophages; false

negatives, FN, denote macrophages missed in the segmentation. Conidia identification:

true positives, TP, denote correctly segmented and classified conidia; false positives, FP,

denote conidia that were falsely identified; false negatives, FN, denote conidia missed at

the level of segmentation.

be resolved (Sano et al., 2003; Mech et al., 2011; Kraibooj et al.,
2014). We here present a comprehensive collection of various
measures and compute them for comparison, i.e., from either the
viewpoint of conidia or macrophages or from a combination of
both viewpoints.

The conidia point of view is represented by the phagocytosis
ratio that compares all phagocytosed conidia to all macrophage-
associated conidia,

ϕc =
N

phag
c

N
phag
c + Nadh

c

.

Here, N
phag
c denotes the number of phagocytosed conidia and

Nadh
c is the number of adherent conidia. It should be noted

that this viewpoint intentionally neglects conidia that were not
phagocytosed and not adherent to macrophages, because those
conidia may have never been in contact withmacrophages during
the experiment. The phagocytosis ratio for the two strains is
compared in Figure 8A, where the difference in phagocytosis,
which was qualitatively discussed based on the distributions in
Figures 6, 7, was tested for statistical significance.

The macrophage point of view is expressed by the uptake
ratio (Sano et al., 2003), which is the ratio of phagocytosing
macrophages to all macrophages,

ϕm =
N

phag
m

Nm
,

where N
phag
m denotes the number of phagocytosing macrophages

and Nm the total number of macrophages. Figure 8B shows the
uptake ratio for both strains. Although the phagocytosis ratio and
the uptake ratio give a good idea about phagocytosis events in
experiments, the picture is more complete when studying the
mutual effect of both points of view. For this, the phagocytic
index,

FIGURE 6 | Two-dimensional probability distributions of adherent and phagocytosed conidia over macrophages for the two A. fumiatus strains ATCC

and CEA10.
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FIGURE 7 | One-dimensional probability distributions for a macrophage to have a certain number of (A) adherent and (B) phagocytosed conidia.

ϕi =
N

phag
c

Nm
· ϕm,

corresponds to the product of the number of phagocytosed
conidia per macrophage and the uptake ratio (Sano et al., 2003).
Figure 8C shows the phagocytic index of both strains. Similarly,
it could be argued for combining the uptake ratio with the
phagocytosis ratio,

ϕ
sym
i = ϕc · ϕm,

where the number of macrophage-associated conidia and the
number of macrophages entercontribute in a more symmetric
fashion and which is therefore referred to as symmetrized
phagocytic index. This measure is presented in Figure 8D

for comparison with the other measures. All measures and
distributions point toward a higher degree of phagocytosis for the
CEA10 strain compared to ATCC.

Aggregation Observed for Adherent But Not for

Non-adherent Conidia
Rather than occurring as isolated cells, conidia were often
observed to cluster in aggregates. We consider image objects to
be aggregated if they have common borders. As explained in
subsection Classification of the Materials and Methods section
in the context of macrophage-adherence by a conidium, we
computed common borders between conidia to identify such
clusters. The aggregation ratio is defined by,

γr =
N

agg
c

N
non−phag
c

,

where N
agg
c denotes all non-phagocytosed conidia which are

aggregated and N
non−phag
c is the number of all conidia

which are non-phagocytosed. Thus, we did not account for
phagocytosed conidia, because their visual aggregation might
solely be appearing due to spatial constraints in the macrophage.

Since non-phagocytosed conidia could be adherent or non-
adherent, we distinguished between the aggregation ratio for
non-adherent conidia and for adherent conidia. For this purpose,
we distinguished between adherent clusters and non-adherent
clusters and we applied the same formula. In Figure 9A we
observe a higher aggregation ratio for ATCC compared to CAE10
when considering all non-phagocytosed conidia. However, when
we divided this population into adherent and non-adherent
conidia (see Figures 9B,C) it was revealed that the difference
in aggregation between the two strains was only present in the
adherent conidia. As we have already demonstrated that ATCC
conidia were adherent to macrophages to a higher degree than
CEA10, whereas the latter is more likely to be phagocytosed, it
may be argued that the difference in aggregation was merely the
consequence of spatial limitation on the surface of macrophages.
For the population of conidia that are neither phagocytosed
nor adherent to a macrophage, both strains showed a very low
aggregation ratios with no significant difference between them.

Discussion

Confrontation assays are commonly used today to quantify host-
pathogen interactions between immune cells and pathogenic
cells. In contrast to techniques based on flow cytometry,
approaches based on microscopy images do provide a richer
amount of information, e.g., on spatial correlations and
morphological properties of cells. However, the information
gained by image-based approaches is typically foiled by a tedious
and error-prone manual analysis of the data. In this work, we
addressed this drawback and developed a computer algorithm
that performs the image analysis automatically and that opens up
the possibility for high-throughput screening while retaining the
full information content of the images. In fact, for themicroscopy
images analyzed in the present study, we achieved computation
times per image of about 1min, which was more than one order
of magnitude lower than was required for a manual analysis.
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FIGURE 8 | Comparison of phagocytosis measures between the two A. fumiatus strains ATCC and CEA10. (A) Phagocytosis ratio ϕc. (B) Uptake ratio ϕm.

(C) Phagocytic index ϕi . (D) Symmetrized phagocytic index ϕ
sym
i

. See the text for details.

We performed a rigorous validation of the algorithm and
obtained high performance measures for the overall sensitivity
(96.6%), precision (97.8%), and accuracy (94.5%), which are
reasonable values in the light of the high variation of image
objects. We identified the main source of errors to be the
similarity in shape and intensity properties between image
objects and background regions. For example, this concerned
background regions that were completely surrounded by
macrophages or conidia, or macrophages that were of too low
signal as a result of insufficient staining, or clusters with slightly
superimposed conidia that could not be correctly identified
because of their effectively smaller cluster size.

Algorithms for the automated image analysis of confrontation
assays, especially in the context of fungal pathogens interacting
with immune cells, have been developed before (Mech et al.,
2011, 2014; Kraibooj et al., 2014; Schäfer et al., 2014). The
most important progress of the novel algorithm presented here
concerns the successful segmentation of macrophages. This was
not achieved previously, because it was complicated by the
occasionally interrupted staining of the macrophage surface, but
is a necessary prerequisite for the comprehensive quantification

of these phagocytosis assays. Thus, having achieved this crucial
progress in the present work, the task of quantifying this type
of phagocytosis assays was now comprehensively solved, because
spatial and functional information on the interaction between all
cells in the assay is now accessible. For example, we demonstrated
that macrophages involved in the phagocytosis process can be
detected and whether macrophage-associated conidia were really
phagocytosed or just adherent. This enables building up a two-
dimensional distribution of conidia over the macrophages from
which other measures describing the immune response can be
derived.

Interestingly, different measures have been proposed for the
quantification of biological processes such as phagocytosis events.
Taking either the viewpoint of the pathogens or the immune
cells, we here computed the phagocytosis ratio ϕc (Mech et al.,
2011; Kraibooj et al., 2014) and the uptake ratio ϕm (Sano et al.,
2003), respectively. A quantity that combines both viewpoints is
commonly referred to as phagocytic index ϕi (Sano et al., 2003),
for which a symmetrized measure ϕ

sym
i = ϕc · ϕm was proposed

here. Obviously, all these measures will provide different absolute
numbers and can be used in the comparison of different strains.
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FIGURE 9 | Comparison of aggregation ratio, γr , of non-phagocytosed conidia between the two A. fumiatus strains ATCC and CEA10. Aggregation ratio

relative to (A) all non-phagocytosed conidia, (B) adherent conidia, and (C) non-adherent conidia.

More importantly, they have to be interpreted with some care,
which is in particular true for the measures with the combined
viewpoint. This is a consequence of the fact that these measures
involve a multiplication of two factors. For example, as can be
easily demonstrated for the symmetrized phagocytic index, a
high value of the phagocytosis ratio ϕc and a low value of the
uptake ratio ϕm yield a value for ϕ

sym
i that can be identical for

low ϕc and high ϕm and by that masks important differences in
the underlying biology. Therefore, we conclude that, rather than
representing the immune response by a single scalar measure,
interpretation of the confrontation assay should be inferred from
a comparison of the distribution of pathogens over immune cells.
If the confrontation assays contain more than two different cell
types, the distribution can be extended to higher dimensions as
long as sufficient data are available.

In the present study, conidia of strain CEA10 showed a
significantly higher phagocytosis ratio than ATCC. This was not
only confirmed for the viewpoint of conidia by the phagocytosis
ratio and of macrophages by the uptake ratio, but also by the
combined viewpoint of conidia and macrophages in terms of

the phagocytic index and the symmetrized phagocytic index.
From the quantities of these measures, it can be concluded
that the experiments were neither limited by the saturation of
macrophages with phagocytosed conidia nor by the depletion of
non-phagocytosed conidia. Thus, the significant differences in
all measures indicated that the process of conidia recognition
and uptake was generally more effective for CEA10 than for
ATCC. In particular, this could be concluded from the fact
that not only the percentage of phagocytosed conidia was
higher for CEA10 than for ATCC, but also the percentage of
phagocytosing macrophages. The conclusion that the initiation
of phagocytosis was less effective for ATCC was also in line
with the observation that the number of ATCC conidia that
were adherent to macrophages were higher compared to CEA10
conidia. Furthermore, we could exclude that differences in the
phagocytosis of conidia were due to the aggregation of conidia,
because no significant differences in the aggregation ratio were
observed for the non-adherent conidia of the two strains.

Previous studies on an embryonated egg model and in mice
showed that CEA10 was more virulent than ATCC (Jacobsen
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et al., 2010; Heinekamp and Brakhage, 2012). The question
remains if the difference in virulence is directly correlated to
the observed difference in phagocytosis ratio. In a similar study
on Lichtheimia corymbifera it was also shown that a more
virulent strain was more effectively phagocytosed (Kraibooj et al.,
2014). In case the spores are able to inhibit killing after being
phagocytosed they could use macrophages as a survival niche and
escape from the phagocyte by germination (Amin et al., 2014).
However, further experiments would have to be performed to
prove this hypothesis.

We expect that our novel algorithm for fully automated
image analysis will be of importance in future research for
several reasons. Firstly, it paves the way for comparative
high-throughput screening of mutant collections and their
comprehensive quantification. Secondly, the algorithm is
generally applicable to assays of cells with close-to circular
morphology and can be straightforwardly extended to assays
for more than two different cell types. Thirdly, the results
achieved here form a quantitative data base for the development
of mathematical models that enable realistic simulations of
biological processes on the computer. Image-based systems
biology is a modern field of research (Medyukhina et al., 2015)
and has a plethora of applications, for example, providing
image-derived techniques for differentiating between cell
colocalization and random positioning of cells (Mokhtari
et al., 2015) or simulating virtual infection models for A.
fumigatus infection (Tokarski et al., 2012; Pollmächer and Figge,
2014).
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