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Throughout the history of neuroscience, technological advances are the drivers behind many 
major advances in our understanding of the nervous system. Investigations of the structure 
and function of the brain take place on multiple scales, including macroscale at the level of 
brain regions, mesoscale at the level of neuronal populations, and microscale at the level of 
single neurons and neuron to neuron interactions. Integration of knowledge over these scales 
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requires novel techniques and interpretations. In this research topic, we highlight nine articles 
that integrate structural and functional approaches to study brain networks.
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Editorial on the Research Topic

Novel Tools for the Study of Structural and Functional Networks in the Brain

Throughout the history of neuroscience, technological advances are the drivers behind many
major advances in our understanding of the nervous system. Early optical investigations led to
the development of the microscope, and quantum mechanics led to nuclear magnetic resonance,
which is the foundation of magnetic resonance imaging (MRI). Recent progress in MRI technology
has allowed the elucidation of the complex organization and function of brain networks with
unprecedented spatial and temporal precision. It is not an exaggeration to say that characterizing
the intricate architecture and dynamics of the brain is one of the leading frontiers in modern
science. Neuroscience offers an exceptional opportunity for interdisciplinary research where
biology, physics, mathematics, and engineering come together to advance boundary of the frontier.

Investigations of the structure and function of the brain take place on multiple scales, including
macroscale at the level of brain regions, mesoscale at the level of neuronal populations, and
microscale at the level of single neurons and neuron-neuron interactions. Integration of knowledge
over these scales requires novel techniques and interpretations. In this research topic, we highlight
nine articles that integrate structural and functional approaches to study brain networks.

The research articles contained in this research topic can be divided along three separate
sub-topics. The first subtopic features novel parcellations to study connectomes (Figley et al.; Figley
et al.; Schiffler et al.). The second sub-topic introduces new methods to analyze functional data
(Cheng et al.; Peng et al.; Wu et al.). The third sub-topic applies in vivo methods to analyze brain
changes co-occurring with diseases (Huang et al.; James et al.; Liao et al.). The parcellation sub-
topic starts with a study that combines fMRI and tractography to create probabilistic white matter
atlases for each of the six commonly studied resting-state brain networks (Figley et al.). This work
introduces a comprehensive set of white matter maps for well-known resting state networks such
as dorsal default mode network, ventral default mode network, left executive control network, right
executive control network, anterior salience network, and posterior salience network (Figley et
al.). The second parcellation article combines fMRI with tractography to create probabilistic white
matter atlases for eight functional brain networks (Figley et al.), including auditory, basal ganglia,
language, precuneus, sensorimotor, primary visual, higher visual and visuospatial networks (Figley
et al.). These white matter atlases in stereotaxic coordinates could be used to associate white matter
changes to changes in particular functional brain networks selectively, or compliment resting state
fMRI by defining the underlying anatomical pathway that gives rise to functional connectivity. The
third parcellation study combines cortical parcellation and tractograms to create a subject-specific
white matter parcellation (Schiffler et al.). The parcellation scheme associating large white matter
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areas to specific cortical regions allows us to relate white matter
alterations to alterations to specific cortical regions (Schiffler
et al.).

The functional sub-topic starts with an article describing
a pseudo-bootstrap (PBS) analysis that can be used to avoid
using template-based parcellations schemes in studies of brain
network analysis (Cheng et al.). This pseudo-bootstrap method
can identify individuals across scan sessions based on the
mean functional connectivity with an accuracy rate of ∼90%
(Cheng et al.). It does so by finding the maximum correlation
of mean functional connectivity of pseudo-bootstrap samples
between two scan sessions. The second functional article
describes a novel measure for functional segregation of the
brain by employing a frequency clustering analysis method
based on Hilbert-Huang Transform (HHT) in conjunction with
a label-replacement procedure (Wu et al.). This HHT scheme
provides a novel measure for functional segregation of the brain
according to time-frequency characteristics of resting state BOLD
activities, and is robust, yielding almost identical clusters when
applied to different runs of a dataset or different datasets (Wu
et al.). The third functional article develops a rodent perfusion
autoradiograph toolbox to study connectivity in mesoscale data
(Peng et al.). This toolbox allows for sampling of standardized
data from images of brain slices, as well as provides a way
to analyze and display functional connectivity data in the rat
cerebral cortex (Peng et al.).

The application sub-topic starts with a study using positron
emission tomography (PET) to quantify selective serotonin
reuptake inhibitors (SSRI) to detect changes in interregional
correlations of the serotonin transporter binding potential. The
results of this study suggest that SSRIs induce interregional

changes (i.e., connectivity), rather than mere focal modifications
(James et al.).The second application study assessed abnormal
spontaneous brain activity and described the intricate neural
mechanism of premenstrual syndrome the results. The results
suggest that abnormal spontaneous brain activity is found in
PMS patients and the severity of symptom is related explicitly
to the left MFC and right ACC (Liao et al.). The last article of
the application sub-topic aimed to determine whether patients
with Primary blepharospasm exhibit altered functional brain
connectivity. This study found many differences in multiple
neural networks in primary BPS (Huang et al.).

In closing, this research topic includes nine excellent articles
on a wide array of methods and applications in both human
and animal neuroscience. The editors thank the authors for their
multifaceted contributions to advance our understanding of the
brain.
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Diffusion tensor imaging (DTI) is a powerful MRI technique that can be used to

estimate both the microstructural integrity and the trajectories of white matter pathways

throughout the central nervous system. This fiber tracking (aka, “tractography”) approach

is often carried out using anatomically-defined seed points to identify white matter

tracts that pass through one or more structures, but can also be performed using

functionally-defined regions of interest (ROIs) that have been determined using functional

MRI (fMRI) or other methods. In this study, we performed fMRI-guided DTI tractography

between all of the previously defined nodes within each of six common resting-state

brain networks, including the: dorsal Default Mode Network (dDMN), ventral Default

Mode Network (vDMN), left Executive Control Network (lECN), right Executive Control

Network (rECN), anterior Salience Network (aSN), and posterior Salience Network (pSN).

By normalizing the data from 32 healthy control subjects to a standard template—using

high-dimensional, non-linear warping methods—we were able to create probabilistic

white matter atlases for each tract in stereotaxic coordinates. By investigating all 198

ROI-to-ROI combinations within the aforementioned resting-state networks (for a total

of 6336 independent DTI tractography analyses), the resulting probabilistic atlases

represent a comprehensive cohort of functionally-defined white matter regions that can

be used in future brain imaging studies to: (1) ascribe DTI or other white matter changes

to particular functional brain networks, and (2) compliment resting state fMRI or other

functional connectivity analyses.

Keywords: brain atlas, connectivity, connectome, default mode network, executive control network, salience

network, white matter
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INTRODUCTION

Stereotaxic brain atlases play an important role in neuroscience
and neuroimaging research. Warping (or “normalizing”) images
to a standardized brain template provides an effective and
principled way to report anatomical regions of interest (ROIs),
perform quantitative analyses, and directly compare data
acquired from different subjects and/or patient populations.
The first widely-adopted template was based on the brain of a
single subject (Talairach and Tournoux, 1988). However, shortly
thereafter a group of researchers fromCanada, The United States,
and Germany formed the International Consortium for Brain
Mapping (ICBM), which set out to create standardized human
brain atlases that were based on high-resolution anatomical MRI
data from large populations of healthy control subjects (Evans
et al., 1992, 1993; Collins et al., 1994;Mazziotta et al., 1995). These
templates have since been adopted by neuroimaging researchers
around the world for normalizing individual data for group
analyses, and to this day are distributed with many popular
image processing and fMRI analysis software packages (c.f., Brett
et al., 2002; Lancaster et al., 2007). However, although these
anatomical atlases serve as convenient and effective templates
for linear normalization and cross-subject cortical alignment,
they provide somewhat limited information about subcortical
structures in general, and white matter in particular (Toga et al.,
2006). For this reason, focus has also been placed on generating
stereotaxic atlases that include anatomically-segmented cortical
and subcortical structures (Shattuck et al., 2008), as well as those
that are specific to white matter anatomy [e.g., the Johns Hopkins
“Adam” (Wakana et al., 2004) and “Eve” atlases (Mori et al.,
2008; Oishi et al., 2008, 2009), in which the cerebral white matter
has been parcellated into more than 175 distinct anatomical
regions]. Moreover, by examining white matter connectivity
between various anatomically-defined seed regions, diffusion
tensor imaging (DTI) and fiber tracking (or “tractography”)
methods have been used to generate both probabilistic (Hua
et al., 2008; Zhang et al., 2010) and non-probabilistic (Catani
and Thiebaut de Schotten, 2008; Catani et al., 2012) white matter
atlases.

In parallel to these advances, the burgeoning fields of resting
state fMRI (rs-fMRI) and functional connectivity analysis have
exploded in popularity—leading to the identification of intrinsic
correlations between distributed cortical regions that appear
to form functionally-connected brain networks [see Fox and
Raichle, 2007 and Smith et al., 2013 for detailed reviews]. The
earliest rs-fMRI reports astutely observed that low frequency
(<0.1Hz) correlations between cortical regions were likely
manifestations of intrinsic connections that could be used to
identify functional brain networks (Biswal et al., 1995). Based
on this premise, a large (and growing) number of resting
state networks have been identified, including: (1) task-negative
networks such as the so-called default mode network (DMN)
(Greicius et al., 2003; Fox et al., 2005; Buckner et al., 2008),
which are consistently suppressed during many cognitive and
perceptual tasks, and (2) networks that show positive activation
during these same tasks, such as the executive control network
(ECN) and the salience network (SN) (Seeley et al., 2007). Owing

to these and other advances, the prevailing views in systems and
cognitive neuroscience have undergone somewhat of a paradigm
shift (Friston, 2002). Where it was previously assumed that
neural processing for different tasks was carried out in isolated
brain regions, the preponderance of evidence now supports the
view that sensory, motor and cognitive processing all rely on
distributed, large-scale brain networks (Bressler and Menon,
2010).

Based on this network model, it stands to reason that
specific brain functions (e.g., cognitive processes) depend on
the structural and functional integrity of both the cortical
regions comprising the “nodes” of each network, and the
white matter pathways connecting these nodes (Sporns et al.,
2005). A number of studies have therefore sought to directly
examine the relationships between structural and functional
connectivity within the brain networks of healthy control subjects
(Greicius et al., 2009; Honey et al., 2009, 2010; Hermundstad
et al., 2013)—which have shown that white matter structural
properties, such as the number of white matter streamlines
between regions, are indicative of resting-state and task-based
functional correlations (see Wang et al., 2015 for a recent and
comprehensive review on structure-function relationships)—
while others have speculated about the associations between
white matter integrity and functional connectivity changes in
patient populations (Damoiseaux and Greicius, 2009; Hawellek
et al., 2011; Uddin, 2013). However, while the cortical nodes of
these networks can be readily identified and delineated using
fMRI (as evidenced by their relatively consistent positions across
individuals and studies) and their locations and extents have
been previously reported in stereotaxic coordinates (Shirer et al.,
2012), the corresponding white matter regions “belonging” to
each network have not yet been defined.

This disparity—in our ability to localize cortical regions,
but not the underlying white matter structures associated with
these functional brain networks—imposes several limitations on
the interpretation of DTI and other quantitative white matter
imaging data. In particular, it makes direct comparisons between
structural and functional connectivity extremely difficult, and
completely prevents group-wise (e.g., patients vs. healthy
controls) or regression (e.g., with age, gender, cognitive
performance, or any other independent variable) analyses from
ascribing region-of-interest (ROI) or voxel-wise white matter
changes to a particular brain network or group of networks
(i.e., similar to what is commonly done in contemporary fMRI
studies).

To address these fundamental issues with the analysis and
interpretation of diffusion and other quantitative white matter
imaging data, the goals of the current study were to perform
fMRI-guided DTI tractography on data acquired from a group
of healthy adults to: (1) identify the specific white matter
regions that are most likely to contain tracts between the
nodes of six previously established and functionally-connected
cortical networks—specifically the dorsal and ventral default
mode networks (dDMN and vDMN), the left and right executive
control networks (lECN and rECN), as well as the anterior and
posterior salience networks (aSN and pSN)—and; (2) generate
probabilistic white matter atlases based on these findings.
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MATERIALS AND METHODS

Study Participants
In order to achieve a sample size that was consistent with
previous DTI-based (albeit, anatomically-defined) probabilistic
white matter atlases (Hua et al., 2008; Oishi et al., 2009), 32
healthy volunteers (16 female) were recruited from the Baltimore
community. Verbal screening was conducted to ensure that
subjects had no history of neurological injury/disease, psychiatric
illness, or substance abuse (including alcohol or tobacco). Of
the 32 subjects, 19 were Caucasian, 9 were Asian, 2 were
African American, and 2 were Hispanic. Subject age (29.9 ±

10.7 years), height (170.4 ± 8.3 cm), and weight (72.5 ± 16.2 kg)
spanned a relatively broad range. In accordance with our study
protocol, which was approved by the Institutional Review Boards
of Johns Hopkins University and the Johns Hopkins Medical
Institutions, all subjects provided written informed consent prior
to study enrollment and were financially compensated for their
participation.

Data Acquisition
All MRI data were acquired using a whole-body 3T Philips
Achieva system and a 32-channel SENSE head coil (Philips
Healthcare, Best, The Netherlands). High-resolution T1-weighted
images were acquired using a 3D MP-RAGE pulse sequence
with the following parameters: TR = 7.93ms; TE = 3.66ms; Flip
Angle = 8.00◦; SENSE Factor (AP/RL/FH) = 2.4 (2.0/1.0/1.2);
FOV (AP × FH × RL) = 212 × 150 × 172mm; Spatial
Resolution = 1.00 × 1.00 × 1.00mm; Scan Duration = 4min
and 26 s. Purely T2-weighted (TR = 4162ms; TE = 80ms;
Flip Angle = 90◦; SENSE Factor = 2; FOV = 212 × 154 ×

212mm; Spatial Resolution = 1.10 × 1.10 × 2.20mm), as
well as fast T2-weighted Fluid Attenuated Inversion Recovery
(T2-FLAIR) images (TR = 11000ms; TI = 2800ms; TE =

120ms; Refocusing Angle = 120◦; SENSE Factor = 1.75; FOV =

230 × 149 × 184mm; Spatial Resolution = 1.00 × 1.20 ×

5.00mm) were also acquired and assessed by a board-certified
radiologist to rule out structural abnormalities or other incidental
findings.

Diffusion-weighted images were then acquired with a
previously reported spin-echo echo-planar imaging (SE-EPI)
pulse sequence (Farrell et al., 2007; Landman et al., 2007;Wakana
et al., 2007) and the following parameters: 30 diffusion-weighted
images (b = 700 s/mm2) with optimally oriented diffusion-
encoding gradients (Jones et al., 1999; Skare et al., 2000); five
reference images (b = 0 s/mm2); TR = 6904ms; TE = 69ms;
Flip Angle = 90◦; SENSE Factor = 2.5; FOV = 212 × 212mm;
Matrix Dimensions = 96 × 96 (zero-padded to 256 × 256);
Number of Transverse Slices = 70 (no inter-slice gap); Slice
Thickness = 2.2mm; Scan Duration = 4min and 16 s. Although
pulse sequences with additional diffusion-encoding directions
and higher b-values are able to use more sophisticated data
reconstruction approaches – and therefore more reliably resolve
complex fiber architectures (see Study Limitations for a more
detailed explanation) – the acquisition parameters employed here
are consistent with several previously published DTI-based white

matter atlases (e.g., Wakana et al., 2004; Hua et al., 2008; Oishi
et al., 2008, 2009; Zhang et al., 2010).

Data Analysis
Due to the complexity and number of image processing
steps necessary to generate normalized fiber tracts, our multi-
stage DTI analysis pipeline made use of several different
programs (Figure 1). Initial preprocessing and tensor fitting
were performed with CATNAP (Coregistration, Adjustment,
and Tensor-solving, a Nicely Automated Program; http://iacl.
ece.jhu.edu/~bennett/catnap/, Johns Hopkins University School
of Medicine, Baltimore, Maryland, USA), which applied a 12-
parameter affine registration to: (1) coregister the diffusion-
weighted and mean b = 0 s/mm2 images, (2) correct for
motion and eddy current distortions, and (3) reorient the
gradient direction for each diffusion-weighted image before
generating the six tensor images (Landman et al., 2007). Brain
extraction (or “skull stripping”) was then performed using a
two-step procedure, whereby subject-specific brain masks were
generated in SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/
spm8/, Wellcome Trust Centre for Neuroimaging, London, UK)
using the New Segment tool, and these were then manually
refined using the ROIEditor toolbox in MRIStudio (https://www.
mristudio.org/, Johns Hopkins University School of Medicine,
Baltimore, Maryland, USA). The coregistered and skull-stripped
mean b = 0 s/mm2 images for each subject were then
normalized to the “JHU_MNI_SS_b0_ss” template (Mori et al.,
2008) in Montreal Neurological Institute (MNI) coordinate
space (Mazziotta et al., 1995). This was implemented using the
DiffeoMap toolbox in MRIStudio to carry out a 12-parameter
affine (linear) transformation, followed by high-dimensional,
non-linear warping with the large deformation diffeomorphic
metric mapping (LDDMM) algorithm (Beg et al., 2005). The
LDDMM analysis was performed with cascading elasticity (i.e.,
alpha values of 0.01, 0.005, and 0.002) to allow increasingly
pliable deformations, as previously reported (Ceritoglu et al.,
2009).

Each subjects’ tensor images were warped to normalized
ICBM space (Mazziotta et al., 1995) by applying the overall
Kimap (linear affine + non-linear LDDMM) transformation,
as previously described (Ceritoglu et al., 2009). This approach
has previously been shown to compensate for susceptibility-
induced B0 distortions (Huang et al., 2008); and, importantly,
as long as the tensors are reoriented appropriately during
the normalization procedure—as described by Alexander et al.
(2001), Jones et al. (2002), and Xu et al. (2003)—fiber tracking
can be performed for each subject in standard space. In this
way, deterministic tractography was performed using a single-
tensor model via the DTIStudio toolbox (Jiang et al., 2006) within
MRIStudio, where white matter streamlines were identified
using the Fiber Association by Continuous Tracking (FACT)
algorithm and an exhaustive search approach (Mori et al.,
1999; Xue et al., 1999). Tracking was initiated from a single
seed located at the center of each voxel with a fractional
anisotropy (FA) value greater than 0.15 and continued until
FA fell below 0.15 or the deviation angle between adjacent
vectors exceeded 50◦, as previously reported (Yeatman et al.,
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FIGURE 1 | Illustration of our DTI processing pipeline for each subject, which included multiple steps (black arrows) and made use of several different

software packages (shown in red). After motion correcting and realigning the raw data, the mean b = 0 (s/mm2) and six tensor images were calculated,

skull-stripped, and normalized to a standard anatomical template (i.e., the “JHU_MNI_SS_b0_ss” template in MRIStudio). Whole-brain fiber tracking was then

performed to compute all of the streamlines in the brain—with fractional anisotropy (FA) >0.15 and deviation angle <50◦—before implementing a multi-ROI approach

(i.e., using the “Cut” operation in DTIStudio) to identify subsets of these entering or passing through pairs of nodes in each functionally-connected brain network

(Shirer et al., 2012).

2011). These values were chosen to be slightly more liberal
than the default DTIStudio thresholds (FA >0.2 and tract-
turning angle <40◦) in order to: (1) ensure that fiber tracking
would penetrate into cortical or sub-cortical gray matter regions,
and (2) include streamlines with slightly higher deviation
angles1.

A multi-ROI approach was then used to identify particular
tracts between nodes of interest from the normalized, whole-
brain tractography data. However, in order to first confirm
the sensitivity and reliability of our image processing and
tractography pipeline, we initially sought to examine a well-
established white matter connection. Two Brodmann areas—i.e.,
left BA22 and left BA44, as defined in the Talairach Daemon
(TD-ICBM Human Atlas) within the SPM8 WFU_PickAtlas
Toolbox (http://fmri.wfubmc.edu/software/pickatlas,Wake Forest
University, Winston-Salem, NC) (Lancaster et al., 2000; Maldjian
et al., 2003)—were used to validate our tractography approach

1It is perhaps worth noting that previous tract-based white matter atlases have

implemented FA >0.15 and deviation angle thresholds above 40◦ for similar

reasons (e.g., Wakana et al., 2004), while other deterministic tractography studies

have used FA thresholds as low as 0.10 and deviation angle thresholds of 45◦

(e.g., Van den Heuvel and Sporns, 2011; Marqués-Iturria et al., 2015). Therefore,

while the tractography parameters implemented in the current study are more

liberal than the default values in DTIStudio, they are within previously established

boundaries.

via the ability to measure streamlines along the putative left
arcuate fasciculus. Because the two BA masks were restricted
to the cortical sheet, and were not dilated to penetrate deeper
into adjacent white matter regions, it should be noted that this
constitutes a more rigorous test of our tractography method
than the subsequent functionally-defined ROIs (which were
generally larger and often descended further into the borders of
the white matter). Nevertheless, despite this apparent handicap:
(1) tractography streamlines were still observed between the
left BA22 and left BA44 in the vast majority (27 out of
32) of subjects, and (2) the resulting group probability map
demonstrated that (with rare exception) the topology of these
fibers corresponded to the left arcuate fasciculus, as expected
(Supplementary Figure 1).

After validating our preprocessing pipeline and deterministic
tractography parameters with a known anatomical connection,
we then employed the same methods in a more exploratory
manner. Specifically, ROIs for each of six networks—including
the dorsal and ventral Default Mode Networks (dDMN and
vDMN) (Supplementary Videos 1, 2); the left and right
Executive Control Networks (lECN and rECN) (Supplementary
Videos 3, 4); and the anterior and posterior Salience Networks
(aSN and pSN) (Supplementary Videos 5, 6)—were defined a
priori using pre-existing atlases of functionally-connected brain
networks (http://findlab.stanford.edu/functional_ROIs, Stanford
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University, Palo Alto, CA) (Shirer et al., 2012)2. ROI-to-ROI
contingencies were then generated for every pair of nodes within
each network, and these contingency maps were applied to each
subject’s whole-brain tractography data using the “Cut” operation
in DTIStudio to identify the FACT streamlines running between
both network nodes specified in the ROI-to-ROI contingencies3.
Therefore, while no minimum length threshold was specified in
the tractography analysis, the length of each streamline must
(by definition) have been greater than or equal to the distance
between each pair of nodes in the ROI-to-ROI analysis. In this
way, subsets of tracts were identified for each subject that: (1)
met the deterministic tractography criteria and (2) entered or
passed through both nodes for each possible ROI-to-ROI pair
(i.e., within each of the six networks investigated).

Since the dDMN consists of 9 nodes (36 ROI-to-ROI
combinations), the vDMN consists of 10 nodes (45 ROI-to-ROI
combinations), the lECN consists of 6 nodes (15 ROI-to-ROI
combinations), the rECN consists of 6 nodes (15 ROI-to-ROI
combinations), the aSN consists of 7 nodes (21 ROI-to-ROI
combinations), and the pSN consists of 12 nodes (66 ROI-to-ROI
combinations), 198 ROI-to-ROI contingencies were assessed for
each of the 32 subjects—for a total of 6336 tractography analyses.
For each of these analyses, the data were visually inspected to
identify subjects for whom continuous streamlines were present
for each ROI-to-ROI contingency and any/all streamlines were
saved as binary maps (in normalized space). Group probability
maps for each of the 198 functionally-defined tracts were then
computed by combining (i.e., adding together) the binary maps
for each of the subjects for a given ROI-to-ROI contingency and
then dividing by 32 (i.e., the number of subjects). Thus, image
intensities for each of the group probability maps have limits of
0 and 1 (i.e., for voxels in which no subjects or all 32 subjects
exhibited a streamline, respectively).

For visualization purposes, 3D projections of the network
nodes and white matter probability maps were constructed
using the Volume and Volume Rendering tools in 3D Slicer
(http://www.slicer.org, Brigham and Women’s Hospital, Boston,
MA) (Fedorov et al., 2012). To achieve this, the network nodes
and their corresponding functionally-defined, probabilistic white
matter tract(s) were first rendered using the NCI GPU Ray
Casting method, and the resulting 3D reconstruction was then
overlaid on an anatomical template image (which was either
the “JHU_MNI_SS_T1” image from MRIStudio for all of the

2These ROIs were originally identified by performing group independent

component analysis (ICA) on rs-fMRI data from 15 healthy, right-handed control

subjects between the ages of 18 and 30 years old (Shirer et al., 2012). They are

shown in 2D in Figures 3–5 and Figures 7–9, in 3D in Supplementary Videos 1–6,

and are included as Nifti images with the current white matter atlases (www.nitrc.

org/projects/uofm_jhu_atlas).
3While performing conventional multi-ROI tractography in DTIStudio (i.e., using

the more common “And” operation), the resulting streamlines may consist of

three distinct regions. These include: (1) any regions where the streamlines project

anterior to the anterior-most ROI; (2) the regions between the two ROIs; and (3)

any regions where the streamlines project posterior to the posterior-most ROI.

Alternatively, using the “Cut” operation only reconstructs the portion of these

streamlines that lies between the two ROIs, cutting off the portions which extend

in either direction beyond each ROI (for figures and a more detailed explanation

of the “Cut” operation, please see Wakana et al., 2007).

white matter tracts or the “avg152T1” image from SPM8 for the
network nodes).

Finally, in order to demonstrate how our atlases might be
used in future studies to infer relationships between white matter
structure within each of these networks and other variables
of interest (e.g., age, cognitive test scores, disease progression,
etc.), we created a toy example by taking age as an independent
variable and then performing two different types of analyses with
subjects’ normalized FA images. In the first type of analysis, the
FA images were smoothed with a 4mm FWHM 3D smoothing
kernel and a second-level (i.e., between subjects), voxel-wise
general linear model analysis was performed to identify regions
where FA was positively or negatively associated with age (FDR-
adjusted p < 0.05). White matter regions identified as having
significant correlations with age were then compared to each of
the functionally-defined white matter networks to determine the
amount of spatial overlap between the voxel-wise statistical maps
and each white matter network4. The second type of analysis was
more of a conventional ROI-based approach, where the mean FA
values were extracted from each white matter network across all
32 subjects and used to perform linear correlations between FA
and age for each network.

RESULTS

In order to evaluate the efficacy of the two-stage linear (12-
parameter affine) and non-linear (LDDMM) normalization
approach, we compared each subject’s warpedmean b = 0 s/mm2

image (i.e., the average of all five b = 0 s/mm2 images acquired
in the DTI pulse sequence) and calculated coefficient of variation

maps across all 32 subjects after each step (Figure 2). As expected,
the linear normalization step was effective for overall scaling and
cortical alignment, but large inter-subject differences remained
throughout subcortical regions (Figure 2; Top Row), most
notably in the deep, periventricular white matter. However, the
subsequent non-linear (LDDMM) normalization step corrected
these inter-subject variations, producing highly consistent
subcortical alignment across subjects (Figure 2; Bottom Row).
Although it required substantially more time and effort, the
efficacy of the high-dimensional, non-linear normalization
approach was significant for at least three reasons. By warping
each subject’s tensor images to normalized space, it: (1) enabled
us to make use of the previously published ROIs from each
network (to create all of the ROI-to-ROI contingencies); (2)
allowed us to combine tract information across subjects (to
create the probabilistic atlases for each tract); and (3) will
allow future studies to either extract quantitative measures of
white matter microstructure from these regions to make cross-
subject comparisons or assess the amount of overlap compared
to voxel-wise studies. However, as shown in Figure 2, future
studies aiming to use our normalized atlases for quantitative
analyses must implement similar high-dimensional, non-linear

4It is perhaps worth noting that the second type of voxel-wise “overlap analysis”

can be used with conventional, non-quantitative imaging methods as well (e.g.,

FLAIR images) to estimate the specific white matter lesion load within each

network, potentially providing clinical relevance for studying individual patients

or patient populations (e.g., Multiple Sclerosis, Traumatic Brain Injury, etc.).
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FIGURE 2 | Intermediate and final results of the two-stage, non-linear normalization procedure. Top Row: Mid-axial slices from three representative

subjects (i.e., the first three sorted by first initial) after the 12 parameter linear normalization (i.e., Automated Image Registration in DiffeoMap), as well as the coefficient

of variation (COV) image across all 32 subjects showing good alignment and overall scaling, but large subcortical differences between subjects. Bottom Row: Both

the individual images, as well as the COV image show marked improvement after the subsequent non-linear (LDDMM) normalization step with three phases of

cascading elasticity. This highlights the need for future investigators to use the same (or similar) non-linear normalization approaches when interpreting their

quantitative white matter imaging findings in the context of our group probability maps.

normalizations in their image processing pipelines, and not
simply rely on “standard” linear normalizations.

In our study, fiber tracking was used to search for all
white matter connections between the nodes within each of
six functionally-defined brain networks. Of the 198 separate
ROI-to-ROI contingencies, some had streamlines that were
commonly identified across subjects, while others did not. The
“connection counts” (Zhang et al., 2010)—i.e., the number of
subjects exhibiting at least one streamline—for each ROI-to-
ROI pair are depicted in Figure 3 (dDMN and vDMN), Figure 4
(lECN and rECN), and Figure 5 (aSN and pSN). Interestingly,
many of the ROIs with high connection counts to multiple other
regions have previously been noted to have the highest degrees
of white matter interconnectivity (Van den Heuvel and Sporns,
2011). These regions include: D1, D4, D8, and D7 in the dDMN
(corresponding to the anterior cingulate/medial prefrontal
cortex, posterior cingulate/precuneus, left parahippocampal
gyrus and thalamus, respectively); V1, V5, and V6 in the
vDMN (corresponding to the left posterior cingulate, right
posterior cingulate, and precuneus, respectively); R3 in the
rECN (corresponding to the inferior/superior parietal lobule);
A3 in the aSN (corresponding to the anterior cingulate);
and P7, P9, P10, and P12 in the pSN (corresponding to
the left thalamus, left insula/claustrum, right thalamus, and
right insula/claustrum, respectively). However, to rule out the
possibility that these connection counts were simply related to the
distance between ROIs (e.g., that proximal ROI pairs produced
systematically higher connection counts than distal ROI pairs),
the connection counts between network nodes were also depicted

after applying multidimensional scaling5 to separate nodes
according to the Euclidean distance between each node’s center of
mass (Supplementary Figure 2). The large number of tracts with
high connection counts, includingmany long-range connections,
suggests: (1) that each of these functionally-connected networks
has a highly organized set of underlying white matter structural
connections, and (2) that the tractography results are fairly robust
across subjects. Moreover, in order to minimize the number
of spurious fiber tracts included in the atlases, all subsequent
analyses (including group probability map calculations) were
limited to tracts with connection counts of at least 8/32 (i.e., tracts
in which one or more streamlines were identified in at least ¼ of
the subjects).

Our functionally-defined white matter tracts, along with
the corresponding nodes from each network, are shown as
binary masks in Figure 6 (dDMN and vDMN), Figure 7 (lECN
and rECN), and Figure 8 (aSN and pSN); however, the group
probability maps for each tract are depicted in Supplementary
Videos 7–59, and the combined group probability maps for
each overall network (i.e., a superposition of all individual tracts
within each network) are displayed in Supplementary Videos

5Classical multidimensional scaling (also called principal coordinates analysis,

Torgerson scaling or Torgerson–Gower scaling) is a well-established technique

that can be used to: (1) reduce the dimensionality of a dataset, and (2) place

each new data point into an N-dimensional matrix, while preserving the original

distances between data points in the original dataset by minimizing a loss function

(Borg and Groenen, 2005). Using this method, we were able to reduce the 3D

coordinates of each cortical node’s center of mass and represent them on a

2D figure (Supplementary Figure 2), while preserving the Euclidean distances

between each node.
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FIGURE 3 | The connection counts for each functionally-defined white matter tract in (A) the dorsal Default Mode Network (dDMN) and (B) the ventral

Default Mode Network (vDMN). The nodes within each network (Shirer et al., 2012) are shown on axial brain slices (at their center-of-mass) in red, and the

connection counts for each tract (i.e., the number of subjects with tractography streamlines identified between each ROI-to-ROI pair) are represented by the weight of

the lines connecting the respective nodes.

60–65. Each of these probabilistic maps reflects the common
and reproducible tract trajectories across subjects, and can be
thresholded according to the amount of desired between-subject
overlap (e.g., thresholding an image at 0.25 will show only those
regions where at least ¼ of the subjects’ streamlines spatially
overlap, etc.). Although it has been previously discussed (Aron
et al., 2007; Zhang et al., 2010), it is perhaps worth reiterating here

that the group probability maps are more conservative than the
raw connection counts. This stems from the fact that connection
counts only represent the number of subjects who had at least
one continuous streamline between two regions (regardless of
the spatial locations of the voxels comprising each streamline),
whereas the group probability maps represent the proportion of
subjects who have overlapping streamlines that are in exactly the
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FIGURE 4 | The connection counts for each functionally-defined white matter tract in (A) the left Executive Control Network (lECN) and (B) the right

Executive Control Network (rECN). The nodes within each network (Shirer et al., 2012) are shown on axial brain slices (at their center-of-mass) in green, and the

connection counts for each tract (i.e., the number of subjects with tractography streamlines identified between each ROI-to-ROI pair) are represented by the weight of

the lines connecting the respective nodes.

same spatial location. Therefore, owing to different streamline
trajectories across subjects, values below 0.25 are possible in
the group probability maps, despite the requirement for each of
them to have had a connection count greater than or equal to
8/32 (i.e., in order to eliminate biologically spurious or unlikely
tracts).

It is also important to note that while the JHU_MNI templates
distributed with the MRIStudio packages (i.e., DTIStudio,

ROIEditor, and DiffeoMap) are correctly normalized to the
MNI template, they are spatially offset compared to the SPM8
template. Therefore, we have coregistered and compiled all of
our group probability maps (i.e., for each individual tract, as
well as all of the tracts in each network) in both coordinate
systems so that they can be conveniently used with either SPM
or MRIStudio in future studies. A folder containing all group
probability maps (i.e., for each individual tract and each network
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FIGURE 5 | The connection counts for each functionally-defined white matter tract in (A) anterior Salience Network (aSN) and (B) the posterior

Salience Network (pSN). The nodes within each network (Shirer et al., 2012) are shown on axial brain slices (at their center-of-mass) in blue, and the connection

counts for each tract (i.e., the number of subjects with tractography streamlines identified between each ROI-to-ROI pair) are represented by the weight of the lines

connecting the respective nodes.

as a whole), as well as the Supplementary Videos showing their
3D trajectories, can be freely downloaded from the NITRC
website (www.nitrc.org/projects/uofm_jhu_atlas).

The total white matter volume of each network (in normalized
MNI space) is shown in Supplementary Figure 3. Of the six
networks, the largest white matter volume was occupied by
the dDMN, followed by the pSN, aSN, vDMN, and then the

lECN and rECN (which had almost identical volumes). Since
each dataset was resampled and interpolated during the two-
stage non-linear normalization procedure—which preceded all
of the subsequent analyses (including tractography)—the group
probability maps and volumetric analyses both have had the
benefit of being calculated with 1mm isotropic resolution.
Thus, the volume of each functionally-defined white matter
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FIGURE 6 | Binary masks of all of the nodes (red) and all of the functionally-defined group probability maps (yellow) in (A) the dorsal Default Mode

Network (dDMN) and (B) the ventral Default Mode Network (vDMN) to show their spatial extents and locations. See Supplementary Videos for 3D

renderings of the group probability maps of each individual tract (Supplementary Videos 7–25), as well as the overall networks (Supplementary Videos 60–61) in

greater detail.

Frontiers in Human Neuroscience | www.frontiersin.org November 2015 | Volume 9 | Article 585 | 16

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Figley et al. fMRI-guided DMN, ECN, and SN white matter atlases

FIGURE 7 | Binary masks of all of the nodes (green) and all of the functionally-defined group probability maps (yellow) in (A) the left Executive Control

Network (lECN) and (B) the right Executive Control Network (rECN) to show their spatial extents and locations. See Supplementary Videos for 3D

renderings of the group probability maps of each individual tract (Supplementary Videos 26–39), as well as the overall networks in greater detail (Supplementary

Videos 62–63).

Frontiers in Human Neuroscience | www.frontiersin.org November 2015 | Volume 9 | Article 585 | 17

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Figley et al. fMRI-guided DMN, ECN, and SN white matter atlases

FIGURE 8 | Binary masks of all of the nodes (blue) and all of the functionally-defined group probability maps (yellow) in (A) the anterior Salience

Network (aSN) and (B) the posterior Salience Network (pSN) to show their spatial extents and locations. See Supplementary Videos for 3D renderings of

the group probability maps of each individual tract (Supplementary Videos 40–59), as well as the overall networks in greater detail (Supplementary Videos 64–65).
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network was calculated by creating an overall mask of the tract-
level group probability maps within each network (shown in
Figures 6–8) and simply counting the number of voxels in the
mask without placing any additional constraints (other than
the deterministic thresholds, ROI-to-ROI contingencies and the
≥8/32 connection counts used to originally create the group
probability maps). Using these same overall network masks,
we were then able to calculate the amount of spatial overlap
between the white matter regions assigned to each network
and report these as actual volumes (Supplementary Figure 4A)
or normalized ratios, compared to the to the size of each
network (Supplementary Figure 4B). Perhaps not surprisingly,
the largest overlap in terms of absolute volume was observed
between the two largest network masks (i.e., the dDMN vs.
pSN), followed by the dDMN vs. aSN, dDMN vs. vDMN,
etc. However, in terms of relative overlap (proportional to the
size of each network), the largest overlaps were between the
vDMN vs. dDMN, followed by the pSN vs. dDMN, aSN vs.
dDMN, etc.

Examining the FA values for each white matter network
(Table 1) revealed that the dDMN and lECN were significantly
lower (p < 0.001) compared to the average across all networks;
the rECN displayed a trend toward lower FA values (p =

0.047, which is not significant after correcting for multiple
comparisons); and the aSN and pSN had significantly higher FA
values (p < 0.001). Moreover, the FA images were also used
to demonstrate both types of analyses that our white matter
atlases might help to address in future studies. After calculating
statistical parametric maps to examine regional FA changes
related to age (or any other hypothesis-driven independent
variable) and creating thresholded masks with an FDR-adjusted
p < 0.05 (Figure 9A; left panel), the amount of overlap can be
assessed with each white matter network. In our sample, age-
related FA differences were predominantly located in the white
matter regions nominally ascribed to the dDMN, lECN, and aSN,
as opposed to the other three networks, which exhibited very
little overlap (Figure 9A; right panel). The ROI-based analyses
(Figure 9B), where FA values were extracted from each white
matter network mask and then regressed with age for each
subject, showed similar (albeit arguably less powerful) results.
In this case, the two networks that exhibited trending negative
associations between overall network FA and age were the lECN
(p < 0.05) and the aSN (p < 0.02). Perhaps not surprisingly,
the voxel-wise and ROI-based analyses identified the same two
or three networks exhibiting the strongest negative associations

between age and FA; and neither approach found significant
positive associations (between FA and age) in any network.

DISCUSSION

General Discussion
Anatomically-defined white matter atlases and white matter
probability maps have been created in the past by other groups,
but to the best of our knowledge, this is perhaps the most
comprehensive set of functionally-defined probabilistic white

matter atlases reported to date. Given what we now know
about the architecture of the brain and its organization into
intrinsic, distributed networks, we anticipate that our atlases will
be a useful tool in future studies aiming to assess white matter
microstructure within the Default Mode, Executive Control and
Salience Networks and the ability to relate structural changes
within these networks to clinical deficits, cognitive performance,
functional connectivity, etc. As demonstrated, they can be used in
combination with: (1) voxel-wise analyses (e.g., linear regressions
between DTI or any other white matter imaging data and any set
of independent variables) to assess the amount of overlap with
each probabilistic atlas—i.e., allowing the voxel-wise changes to
be ascribed to the white matter regions underlying a particular
functional network or group of networks (e.g., Figure 9A); or (2)
ROI-based analyses to examine relationships between structural
measures throughout an entire functionally-defined tract or
network (e.g., Figure 9B). Moreover, the current atlases (or more
likely the individual group probability maps of the component
tracts) could theoretically be used in conjunction with other
novel analysis methods that extract diffusion metrics along white
matter pathways (c.f., Walsh et al., 2011; Colby et al., 2012;
Yeatman et al., 2012).

It should be noted that other groups have performed
somewhat similar fMRI-guided DTI analyses within portions of
the Executive Control and Default Mode Networks; however,
to the best of our knowledge, none have been as thorough in
their analysis nor as comprehensive in terms of the number
of nodes or subjects studied. For example, one earlier study
(Aron et al., 2007) created functionally-defined white matter
maps between three pre-determined executive regions—namely
the right inferior frontal cortex (IFC), subthalamic nucleus
(STN), and pre-supplementary motor area (preSMA)—and
showed that the tractography data were consistent with fMRI
responses elicited by a cognitive stop-signal task. However, due
to the specific hypotheses of this study, only the white matter

TABLE 1 | Mean and standard deviation of the FA values within each functionally-defined white matter network (i.e., across all 32 subjects), as well as the

statistical significance (p-value) of the difference (i.e., compared to the FA values obtained across all six networks in a two-tailed t-test).

dDMN vDMN lECN rECN aSN pSN All Networks

Mean FA 0.325 0.372 0.327 0.358 0.434 0.445 0.377

Std 0.018 0.019 0.016 0.018 0.016 0.014 0.050

p-value <0.001 0.59 <0.001 0.047 <0.001 <0.001 –

The dDMN, lECN and rECN appear to have significantly lower FA values compared to the average across all networks, while the aSN and pSN appear to have significantly higher FA

values.
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FIGURE 9 | Examples of potential voxel-wise and ROI-based analyses using the functionally-defined white matter atlases described above. (A) After

performing a standard voxel-wise analysis to identify any white matter regions where FA is positively (magenta) or negatively (cyan) correlated with age (FDR-adjusted

p < 0.05; left panel), the regions can be compared to each of the white matter network masks to determine the amount of spatial overlap (e.g., overlap volume in

mm3; right panel). In this way, the negative voxel-wise correlations between age and FA can be ascribed primarily to three functionally-defined white matter networks

(i.e., the dDMN, lECN, and aSN). (B) Alternatively, the relationships between FA and age can be investigated using a standard ROI-based approach (i.e., to calculate

the mean FA within each white matter network for each subject). When analyzed in this way, it appears that higher age in our sample population is associated with

decreased FA throughout the lECN (p = 0.05) and aSN (p = 0.02).
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connections between these select few ROIs were investigated
across 10 subjects. Similarly, another study (Greicius et al.,
2009) has examined a select number of structural connections
between three sets of nodes in the DMN—specifically the
bilateral connections between the medial prefrontal cortices
(mPFC), posterior cingulate/retrosplenial cortices (PCC/RSC),
and middle temporal lobes (MTL)—showing that two out of
their three contingencies yielded robust tractrography results
across 20 healthy subjects. However, due to the specific
hypotheses of the study and certain methodological limitations
at the time, tracts between more/other nodes were not
examined. Alternatively, another recent study has implemented
a sophisticated fiber-tracking technique to measure structural
connectivity throughout the entire cortex in an observer-
independent manner and compared these findings to whole-
brain, voxel-wise functional connectivity matrices (Horn et al.,
2014). Their analyses revealed that certain areas within the DMN
showed the highest agreement between structural and functional
connectivity, suggesting that this network may have the most
direct structural connections—an observation that appears to
be partially supported by the relatively high connection counts
and overall size of the dDMN and vDMN borne out in our
tractography data.

Since the inputs and outputs of any given brain region
determine both the information available to it and its ability
to influence other regions, a comprehensive description of
the structural connections within the human brain—generally
referred to as the “human connectome”—is central to systems
and cognitive neuroscience (Sporns et al., 2005; Van Essen
and Ugurbil, 2012). In this regard, the stereotaxic white matter
probability maps generated in the current study form a kind
of “functionally-defined connectome” and are expected to have
widespread utility. The recent trend within systems and cognitive
neuroscience regarding intrinsic brain networks has (at least to
date) been primarily dominated by studies focusing on functional
connectivity changes, with far fewer studies investigating white
matter connectivity. This disparity is almost certainly related
to the fact that functional connectivity capabilities (i.e., for
ROI- and/or ICA-based resting state fMRI analysis) are now
available in every major fMRI analysis package, and there are
a growing number of network-based atlases, like the ones
reported by Shirer et al. (http://findlab.stanford.edu/functional_
ROIs, Stanford University, Palo Alto, CA), to facilitate these
analyses. Therefore, it is our hope that the white matter atlases
reported here will act as a compliment to the Stanford group’s
functional connectivity atlases, and that they will be used
to facilitate future studies examining white matter structural
connectivity within these networks.

Finally, in addition to basic research applications, these
atlases could potentially have certain translational or clinical
applications. For example, the “clinico-radiological paradox”
(Barkhof, 2002) is a well-known phenomenon among patients
with white-matter disorders (including Multiple Sclerosis, etc.),
where the associations between clinical symptoms and common
radiological markers (e.g., lesion volume, number of lesions, etc.)
are typically quite poor. However, preliminary evidence suggests
that this phenomenon has to do with intersubject differences in

lesion locations (Hackmack et al., 2012)—where the degree of
damage to a particular functionally-defined network (including
its underlying white matter) would be expected to cause specific
clinical symptoms related to the role of that network. Therefore,
in future studies, lesion locations could be compared to our
functionally-defined white matter atlases to test this hypothesis;
and if confirmed, they could perhaps be used in a diagnostic
and prognostic capacity. Furthermore, given the central nature
of the networks investigated in the current study and their
role in high-level cognition and executive function, our atlases
could conceivably be inversely normalized into subject space
and used in concert with task-related and/or resting-state fMRI
(Lee et al., 2013) for the purpose of presurgical planning (e.g.,
prior to epileptic lobectomy or tumor resection) to minimize
postoperative functional deficits.

Structure-Function Relationships
The organization of neuronal connections throughout the CNS
is thought to be specific at multiple levels, such that: (1) each
brain region is connected to only a small subset of other regions,
and (2) within any given cortical region, the afferent and efferent
fibers are organized in precise, layer-specific patterns (Callaway,
2002). In the current work, we sought to study the long-range
white matter pathways between functionally-connected cortical
regions using DTI tractography, and to construct probabilistic
atlases of these connections within previously defined functional
networks. Although certain pairs of functional nodes were
consistently connected by white matter streamlines in our
analysis (Figures 3–5 and Supplementary Figure 2), there were
several node pairs for which direct white matter connections
were not commonly observed. This suggests that either there
were underlying white matter connections that our tractography
methods were unable to detect (see discussion of Type II errors
in the Study Limitations below), or that not all of the nodes
within each network are interconnected by direct white matter
pathways.

Regarding the latter, it is interesting to note that our
findings are consistent with a handful of previous reports.
For example, early studies of structure-function relationships
within single brain slices showed that regions with direct
white matter connections tended have high levels of functional
connectivity, but that the inverse was not necessarily true (Koch
et al., 2002); and later studies measuring whole-brain structure-
function correlations also concluded that robust structural
connectivity was predictive of functional connectivity, but
that strong functional connectivity did not reliably predict
structural connectivity (Honey et al., 2009). The present
findings therefore strengthen previous hypotheses that structural
connections are predictive of functional connectivity measures,
but that functional connectivity or network membership is not
strictly predicated on direct structural connections, since strong
functional connectivity may also exist between regions without
direct anatomical connections (c.f., Honey et al., 2010).

One explanation for robust functional connectivity despite
the absence of direct anatomical connections between every
pair of nodes likely has to do with the ways in which
constituent parts of these networks are interrelated or arranged
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(i.e., their “topology”). For example, a number of studies
have demonstrated that structural and functional networks
share many important topologic features, including: small-world
properties, modularity, hierarchy, and the existence of highly
connected hubs (for reviews, please see Bullmore and Sporns,
2009, 2012; Wang et al., 2015). In particular, small world
networks—i.e., a type of mathematical graph in which most
nodes in a network can be reached from every other through
only a small number of steps—have been adopted as an attractive
and parsimonious model for brain organization because they can
support both segregated and distributed information processing,
accommodate high dynamical complexity, and minimize wiring
and communication costs (Bassett and Bullmore, 2006). By
observing the connection counts between various ROIs in our
analysis (Figures 3–5), it is evident that certain nodes (e.g.,
D1 and D4 in the dDMN, V6 in the vDMN, etc.) are highly
structurally connected and are therefore well-positioned to serve
as network hubs; while, on the other hand, certain nodes appear
to be structurally disconnected or isolated from the rest of the
network (e.g., D6 in the dDMN, V2 in the vDMN, etc.). These
findings appear to correspond with previous studies of the DMN
which have shown that precuneus/posterior cingulate regions
(i.e., corresponding to nodes D4 in the dDMN and V6 in the
vDMN) exhibit consistently high levels of functional connectivity
with the rest of the nodes in the DMN, while nodes in the
medial temporal lobes (i.e., corresponding to nodes V3 and V8
in the vDMN) have consistently weaker interactions with the
rest of the nodes in the DMN (Fransson and Marrelec, 2008).
Taken together, this tends to suggest that functional hubs within
these networks are also structural hubs. However, it should be
kept in mind that we did not examine any of the structural
connections between nodes in different networks (e.g., between
dDMN and vDMN nodes), and it is possible that nodes with
little or no structural connectivity within each sub-network
could have direct white matter connections to other regions
within higher levels of the network (e.g., the larger DMN as a
whole).

Study Limitations
In general, diffusion imaging has several advantages compared
to alternative white matter staining, tracer and microscopy
methods. It is non-invasive, can provide whole-brain coverage
to allow 3D examination of intact networks, and is therefore
the only in vivo technique to estimate fiber trajectories
between distributed cortical regions in humans. Nonetheless,
this technique does have limitations and therefore warrants a
few caveats. Both our DTI data acquisition parameters and
analysis pipeline were optimized in an attempt to avoid well-
known pitfalls (c.f., Jones and Cercignani, 2010) that might
otherwise reduce data quality or lead to spurious interpretations.
However, even when DTI data are properly acquired and
analyzed, it is worth bearing in mind that these signals and
their subsequent interpretation are ultimately derived from the
diffusion characteristics of water molecules as they interact with
their local environment (Beaulieu, 2002; Mori and Zhang, 2006).
While previous studies have shown that DTI data can be highly
correlated with microscopic staining and tracer techniques,

correlations with these gold-standard methods depend on
both the analysis parameters and the regions investigated
(c.f., Johansen-Berg and Rushworth, 2009). Moreover, even
under ideal conditions, DTI streamlines: (1) cannot necessarily
differentiate myelinated vs. unmyelinated vs. demyelinated fibers
(Beaulieu, 2002), (2) do not distinguish the anterograde vs.
retrograde directionality of these fibers (Mori and Zhang,
2006), (3) may not discriminate between monosynaptic and
polysynaptic connections (Johansen-Berg and Rushworth, 2009),
and (4) should not be used in isolation (i.e., without supporting
data or hypotheses) to draw conclusions about the degree of
myelination, fiber/axon counts or “white matter integrity” (Jones
et al., 2013).

Although high angular resolution diffusion imaging (HARDI)
(Tuch et al., 2002), Q-ball imaging (Tuch, 2004), diffusion
spectrum imaging (DSI) (Wedeen et al., 2005) and other more
advanced diffusion MRI acquisition and analysis methods offer
certain advantages over the more conventional DTI approach
used here (e.g., their ability to deal, at least to some extent, with
crossing fibers, etc.), it is important to bear in mind that all
diffusion-based methods share many of the same fundamental
limitations, and are still only surrogate markers of white matter
microstructure and fiber orientation. The main difference is
that while acquisition schemes with relatively few diffusion-
encoding directions and low b-values have certain advantages
(i.e., short acquisition times, less subject motion, and high signal-
to-noise images), the analysis of such data are limited to relatively
simple tensor-based models that are unable to resolve fiber
crossings as well as more complex Q-space sampling approaches
and reconstruction techniques (Daducci et al., 2014). However,
one recent study comparing tractography outcomes resulting
from different techniques (i.e., DTI, HARDI, and DSI from
the same subjects) suggested: (1) that there is likely only a
15–20% difference between connectomes generated using the
different acquisition and image reconstruction schemes, and
(2) that while DTI acquisition and analysis techniques failed
to reconstruct complex crossing fibers and therefore had lower
sensitivity (i.e., higher Type II error), there were certain cases
(e.g., short U-fibers) where DTI may even outperform the higher
order HARDI and DSI models, which were more likely to
have Type I errors owing to the inclusion of aberrant fibers
(Rodrigues et al., 2013). However, although future tractography
studies could reconstruct fibers with complex crossings and
yield better sensitivity (i.e., lower Type II error)—e.g., by using
higher b-values, more diffusion-encoding directions and more
sophisticated reconstruction approaches than the single tensor
model employed in our analyses—all current diffusion-based
fiber tracking methods are inherently prone to both Type I
(false positive) and Type II (false negative) errors. Given these
limitations, emerging anatomical methods for mapping 3D
networks—e.g., CLARITY (Chung et al., 2013)—may eventually
be used to replace MRI-based atlases (including ours) altogether,
but for now it remains to be seen whether advances in these
techniques will overcome current barriers to studying intact
white matter networks in whole human brains. Therefore, until
arguably better diffusion imaging (e.g., HARDI, DSI, etc.) or
3D anatomical (e.g., CLARITY) white matter atlases supersede
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and replace them, the current atlases represent the first and best
principled attempt to identify white matter regions associated
with the functionally-defined Default Mode, Executive Control
and Salience Networks.

However, one point that we feel cannot be overemphasized is
that the limitations of the current atlases must be considered in
any of their future applications (and the resulting interpretations
and conclusions). Due to the fact that many real white matter
connections were probably not identified in our tractography
analyses (i.e., owing to Type II errors), the current atlases
cannot be used to make claims about which regions are not
part of a given tract or network. For example, based solely
on our connectivity analysis between left BA22 and left BA44
(Supplementary Figure 1 and Supplementary Video 66), we
cannot exclude the possibility that many voxels outside of
our group probability map are also part of the left arcuate
fasciculus (in fact, many other regions—particularly those in
close proximity to the group probability map—likely are).
However, using the same example, we suggest that the current
atlases can be used to predict (with at least some measure of
confidence) which whitematter regions are part of the left arcuate
fasciculus: and, by extension, the same goes for the DMN, ECN,
and SN white matter group probability maps. Although there
may be other appropriate applications within the confines of
these limitations, we propose that the primary utility of these
atlases will be for: (1) identifying whether white matter lesions
are likely to be located within one or more of these networks,
or (2) extracting quantitative white matter imaging metrics from
various tracts/networks to allow the types of analyses shown in
Figure 9.

It could be argued that one of the other limitations of the
current study in particular, is that we only performed within-
network tractography analyses for six functionally-connected
brain networks (out of dozens of possible networks). These
networks were chosen because the DMN, ECN, and SN are
three of the most well-established and most studied intrinsically
connected brain networks. Briefly, the DMN is comprised of
a set of brain regions—including the medial prefrontal, medial
temporal, and posterior cingulate cortices—that are both active
and intrinsically connected with one another at rest (Gusnard
and Raichle, 2001; Raichle et al., 2001; Raichle and Snyder,
2007) and anti-correlated with activity in several cortical regions
involved in attentional control or cognitive processing (Fox
et al., 2005; Fox and Raichle, 2007). The ECN, on the other
hand, is comprised of nodes—throughout the prefrontal and
parietal cortices, as well as the cerebellum—that are activated
and synchronized during planning, inhibition, working memory,
and other executive functions (Seeley et al., 2007; Bressler and
Menon, 2010; Niendam et al., 2012). Finally, the SN—which is
comprised of the dorsal anterior cingulate, orbitofrontal cortex,
insula, and several other subcortical and limbic structures—is
thought to play a significant role in emotional control (Seeley
et al., 2007), cognitive control (Menon and Uddin, 2010), and
error processing (Ham et al., 2013). Moreover, the SN is thought
to be critically involved in switching between exogenous and
endogenous attentional states and regulating the balance between
DMN and ECN activity (Bressler and Menon, 2010). Therefore,

in addition to being among the three most well-established
intrinsically connected brain networks, the DMN, ECN, and SN
appear to be inherently related to (and interconnected with) one
another.

One additional limitation in the current study is that we did
not examine any between-network connections (including the
dDMN-to-vDMN, lECN-to-rECN, or aSN-to-pSN connections),
and were therefore not able to generate probabilistic maps
for these or other between-network ROI-to-ROI contingencies.
While this would of course have been optimal (and may still
happen in the future), the fact is that the number of ROI-to-ROI
contingencies increases exponentially with the number of nodes,
rendering it impractical to include the additional tractography
analyses in the current study. For example, combining the dorsal
and ventral DMN would result in 19 nodes (171 ROI-to-ROI
contingencies), combining the left and right ECN would result
in 12 nodes (66 ROI-to-ROI contingencies), and combining the
anterior and posterior SN would result in 19 nodes (171 ROI-to-
ROI contingencies), for a total of 408 ROI-to-ROI combinations.
Across 32 subjects, this would require a staggering 13,056
tractography analyses (i.e., more than twice as many as the
6336 analyses performed in the current study). Perhaps this
can be done in a future study using more automated analysis
methods, but for now, this goes beyond the scope of the current
manuscript.

CONCLUSIONS

The landscape in systems and cognitive neuroscience has
increasingly shifted from mapping the function of individual
brain regions to investigating the functional connectivity
within and between distributed, large-scale networks. Until
now, however, there has been no principled method for
measuring white matter changes and ascribing them to a specific
network. By creating an extensive set of functionally-defined
probabilistic white matter atlases (in stereotaxic coordinates),
this study provides the first coherent framework for evaluating
the microstructural integrity and white matter connectivity
within the Default Mode, Executive Control and Salience
Networks. Based on these atlases, future studies will be able
to nominally attribute localized microstructural changes (either
between groups or among individual patients) to a particular
functional brain network, define specific tracts as a priori
regions of interest within one or more of these networks, or
investigate structure–function relationships that could provide
deeper insights into the underpinnings of complex neural
processes and/or disease.
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SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnhum.
2015.00585

Supplementary Figure 1 | Binary masks of left BA22 (yellow), left BA44

(orange) and the resulting group probability map of the tractography

streamlines identified across all subjects (purple). As expected, the topology

of the identified streamlines was highly consistent with the left arcuate fasciculus,

suggesting that our preprocessing pipeline and tractography parameters yielded

streamlines with reasonable specificity (i.e., owing to the paucity of “spurious”

streamlines). Moreover, the fact that streamlines were identified in 27 out of 32

(i.e., approximately 85% of) subjects—despite the fact that both of these BA

masks were smaller and more restricted to cortical grey matter than our

subsequent functionally-defined ROIs—suggests that the current approach also

afforded good sensitivity. Also see Supplementary Video 66 for a 3D rendering of

the group probability map in greater detail.

Supplementary Figure 2 | The connection counts (represented by line

weight) for all of the ROI-to-ROI contingencies within each

functionally-defined white matter network. The line weights are the same as

those shown in Figures 3–5. However, multidimensional scaling was used in this

depiction to separate the ROIs within each network based on the Euclidean

distances between their respective centers of mass. This shows that the white

matter connection counts are not simply related to the distance between nodes

(i.e., since some distal nodes have higher connection counts than certain proximal

nodes, and vice versa). Combined with the large number of ROI-to-ROI

contingencies showing high connection counts, this finding suggests that each of

these intrinsically connected functional networks also has a highly organized set of

underlying white matter structural connections.

Supplementary Figure 3 | Total white matter volume of each network,

determined by combining the functionally-defined group probability maps

for all tracts with a connection count greater than or equal to 8/32 (but

without any additional thresholding of the probability maps themselves).

Supplementary Figure 4 | The amount of overlap between each

functionally-defined white matter network (with the same masks used to

calculate white matter volume in Supplementary Figure 3). The amount of

overlap between each pair of white matter networks is expressed (A) as a raw

volume (in mm3), or (B) relative to the size of each network on the x-axis (e.g.,

approximately 26% of the overall vDMN mask overlaps with the overall dDMN

mask, etc.)

All of the functionally-defined white matter atlases described in this

article can be freely downloaded from the NITRC website (www.nitrc.org/

projects/uofm_jhu_atlas).
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Background: Despite the popularity of functional connectivity analyses and the
well-known topology of several intrinsic cortical networks, relatively little is known about
the white matter regions (i.e., structural connectivity) underlying these networks. In the
current study, we have therefore performed fMRI-guided diffusion tensor imaging (DTI)
tractography to create probabilistic white matter atlases for eight previously identified
functional brain networks, including the Auditory, Basal Ganglia, Language, Precuneus,
Sensorimotor, Primary Visual, Higher Visual and Visuospatial Networks.

Methods: Whole-brain diffusion imaging data were acquired from a cohort of
32 healthy volunteers, and were warped to the ICBM template using a two-stage, high-
dimensional, non-linear spatial normalization procedure. Deterministic tractography,
with fractional anisotropy (FA) ≥0.15 and deviation angle <50◦, was then performed
using the Fiber Association by Continuous Tracking (FACT) algorithm, and a multi-ROI
approach to identify tracts of interest. Regions-of-interest (ROIs) for each of the eight
networks were taken from a pre-existing atlas of functionally defined regions to explore
all ROI-to-ROI connections within each network, and all resulting streamlines were
saved as binary masks to create probabilistic atlases (across participants) for tracts
between each ROI-to-ROI pair.

Results: The resulting functionally-defined white matter atlases (i.e., for each tract and
each network as a whole) were saved as NIFTI images in stereotaxic ICBM coordinates,
and have been added to the UManitoba-JHU Functionally-Defined Human White Matter
Atlas (http://www.nitrc.org/projects/uofm_jhu_atlas/).

Conclusion: To the best of our knowledge, this work represents the first attempt
to comprehensively identify and map white matter connectomes for the Auditory,
Basal Ganglia, Language, Precuneus, Sensorimotor, Primary Visual, Higher Visual and
Visuospatial Networks. Therefore, the resulting probabilistic atlases represent a unique
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tool for future neuroimaging studies wishing to ascribe voxel-wise or ROI-based changes
(i.e., in DTI or other quantitative white matter imaging signals) to these functional
brain networks.

Keywords: atlas, brain, connectivity, connectome, diffusion, MRI, white matter

INTRODUCTION

Cerebral white matter is comprised of myelinated axons that
transmit signals between different brain regions, and the
importance of these connections is underscored by the severe
and wide-spread deficits that arise when they are compromised
(e.g., due to traumatic injury, stroke or disorders such as
Multiple Sclerosis; Filley, 1998; Schmahmann et al., 2008).
However, unlike the gray matter, which has been well mapped,
relatively little is known about white matter topology or how
particular white matter regions (or sets of regions) correspond
to specific brain functions. One approach to tackling this
problem is to parcellate and map the white matter using various
methods.

Historically, white matter region-of-interest (ROI) analyses
have relied on anatomical brain segmentations that are either
drawn manually (on an ad hoc basis), or imported from
an existing brain atlas. As a result, considerable effort has
been placed on developing detailed anatomical white matter
atlases, such as the well-known JHU ‘‘Adam’’ and ‘‘Eve’’
atlases (Oishi et al., 2008, 2009). Nevertheless, there are
several inherent limitations to defining white matter ROIs
anatomically. Even in highly-parcellated white matter atlases
(such as the aforementioned JHU Eve Atlas), many of the ROIs
are relatively large. Therefore, although subsequent analyses
may be sensitive to diffuse or global characteristics of the
underlying white matter within a given tract, they will not
likely be sensitive to small, localized changes (e.g., focal lesions
due to encephalitis, radiation necrosis, or Multiple Sclerosis;
Djamanakova et al., 2014). Moreover, investigators seeking to
examine the structural correlates of individual differences (e.g.,
within the cognitive, affective, or psychomotor domains) or
functional deficits (e.g., within or between populations with
particular symptoms) are faced with the dilemma of having
to choose a priori which white matter region (or set of
regions) might be related to the function/symptom/domain
of interest. Finally, and as a corollary of the aforementioned
limitations, there is a high likelihood that some of the
larger anatomically-defined ROIs will span white matter
regions underlying multiple neural functions—meaning that
even if white matter differences are observed, they may not
correspond to differences in specific behaviors, symptoms, or
deficits.

One way to address these limitations is to leverage our
knowledge about how the brain is organized into functionally-
connected networks that are known to be associated with
specific neural functions (e.g., sensory, motor, cognitive, etc.;
Bressler and Menon, 2010; van den Heuvel and Hulshoff

Pol, 2010; Rosazza and Minati, 2011; Smith et al., 2013).
Using this approach, our group has recently released a set of
functionally-defined white matter atlases for the dorsal and
ventral Default Mode, left and right Executive Control, and
anterior and posterior Salience Networks (Figley et al., 2015)1.
These atlases were created using similar methods to those
implemented in the creation of the JHU Eve atlas (Oishi
et al., 2009), but rather than performing tractography between
anatomically-defined gray matter structures, tractography was
instead performed between functionally-defined nodes within
well-known brain networks (Shirer et al., 2012)2. Since these
nodes have been defined and grouped using resting state
functional connectivity—as opposed to anatomically-defined
features or landmarks such as sulci or gyri—an important
difference compared to most previous atlases is that the resulting
white matter tracts represent structural connections within
functional brain networks, rather than traditional white matter
connections such as the ‘‘superior longitudinal fasciculus’’, etc.
that have been anatomically constrained. While there is not
necessarily a one-to-one correspondence between functional
connectivity and anatomical connections, delineating white
matter ‘‘tracts’’ based on functional connectivity may enable a
better understanding of structure-function relationships.

Using this approach, the goal of the work reported
in the current manuscript was to expand our existing
set of functionally-defined white matter atlases to include
several additional resting state brain networks, including the:
(1) Auditory Network (AN); (2) Basal Ganglia Network (BGN);
(3) Language Network (LN); (4) Precuneus Network (PN);
(5) Sensorimotor Network (SMN); (6) Primary Visual Network
(PVN); (7) Higher Visual Network (HVN); and (8) Visuospatial
Network (VSN) (Shirer et al., 2012). As a result, future research
will be able to examine the structural and functional integrity
of the cortical regions within each of these networks, as well
as the structural integrity of the white matter pathways that
connect them. In particular, it will allow direct comparisons
between structural and functional connectivity within these
networks, and facilitate both group-wise (e.g., patients vs. healthy
controls) and/or regression-based analyses (e.g., with behavioral
performance or any other independent variable) in a much
more hypothesis-driven manner, based on the known functions
of each identified network. Therefore, we hope that these
atlases will provide further insights into normal brain-behavior
relationships, as well as the functional consequences of brain
aging, injury and disease.

1http://www.nitrc.org/projects/uofm_jhu_atlas
2http://findlab.stanford.edu/functional_ROIs.html
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MATERIALS AND METHODS

Study Participants
The current analyses were conducted using the same dataset
reported in our previous article (Figley et al., 2015). Briefly,
the sample included 32 neurologically healthy volunteers
(16 males and 16 females; age = 29.9 ± 10.7 years),
with no self-reported history of neurological injury/disease,
psychiatric illness, or substance abuse. The Johns Hopkins
University Institutional Review Board approved the study;
and all participants, who were financially compensated for
their participation, provided written informed consent prior to
enrollment.

Data Acquisition and Analysis
All data acquisition and analysis methods have been thoroughly
described in our previous article (Figley et al., 2015), and thus
are only briefly outlined here. All MRI data were acquired on a
3T Philips Achieva system equipped with a 32-channel SENSE
head coil (Philips Healthcare, Best, Netherlands). T1-weighted
anatomical images were obtained using a 3D MP-RAGE pulse
sequence (TR = 7.93 ms; TE = 3.66 ms; Flip Angle = 8◦;
SENSE Factor = 2.4; FOV = 212 mm × 150 mm × 172 mm;
Spatial Resolution = 1.00 mm × 1.00 mm × 1.00 mm). Both
T2-weighted (TR = 4162 ms; TE = 80 ms; Flip Angle = 90◦;
SENSE Factor = 2; FOV = 212 mm × 154 mm × 212 mm;
Spatial Resolution = 1.10 mm × 1.10 mm × 2.20 mm) and T2-
weighted Fluid Attenuated Inversion Recovery (TR = 11,000 ms;
TI = 2800 ms; TE = 120 ms; Refocusing Angle = 120◦; SENSE
Factor = 1.75; FOV = 230 mm × 149 mm × 184 mm; Spatial
Resolution = 1.00 mm × 1.20 mm × 5.00 mm) images were also
acquired and assessed by a board-certified radiologist to confirm
that none of the participants had structural brain abnormalities
or pathologies. Finally, a spin-echo echo-planar imaging
sequence was used to acquire diffusion-weighted data (number
of diffusion-encoding gradients = 30; b-value = 700 s/mm2;
number of reference images without diffusion-weighting = 5
(b-value = 0 s/mm2); TR = 6904 ms; TE = 69 ms; Flip
Angle = 90◦; SENSE Factor = 2.5; FOV = 212 mm × 212 mm;
Acquired Matrix Dimensions = 96 × 96; Reconstructed Matrix
Dimensions = 256 × 256; Number of Transverse Slices = 70 (no
gap); Slice Thickness = 2.2 mm).

Images for each participant were processed using a multi-
stage analysis pipeline (see Figure 1 from Figley et al., 2015) to:
(1) coregister the diffusion-weighted and mean b = 0 s/mm2

images; (2) correct for motion and eddy current distortions;
(3) reorient the gradient direction for each diffusion-weighted
image; (4) generate the six tensor images (Landman et al.,
2007); (5) skull-strip the coregistered mean b = 0 s/mm2

image (and apply the mask to the six tensor images);
(6) resample all of the skull-stripped images to 1.0 mm3

resolution; (7) normalize the data to the ‘‘JHU_MNI_SS_b0_ss’’
template (Mori et al., 2008) in Montreal Neurological Institute
(MNI) space (Mazziotta et al., 1995) using high-dimensional,
nonlinear warping (Beg et al., 2005) with cascading degrees
of nonlinearity (Ceritoglu et al., 2009); and (8) perform
whole-brain deterministic tractography in DTIStudio

(Jiang et al., 2006) using the Fiber Association by Continuous
Tracking (FACT) algorithm (FA > 0.15 and Angle < 50◦) and
an exhaustive search approach (Mori et al., 1999; Xue et al.,
1999). Using a previously reported functional connectivity
atlas (Shirer et al., 2012)3, a multi-ROI approach was used to
constrain the whole-brain tractography data by isolating the
streamlines between each pair of functionally-defined nodes
(i.e., all possible connections) within the AN, BGN, LN, PN,
SMN, PVN, HVN and VSN (Figure 1 and Supplementary
Videos 1–8).

Since the AN consists of three nodes (3 ROI-to-
ROI combinations), the BGN consists of five nodes (10 ROI-
to-ROI combinations), the LN consists of seven nodes
(21 ROI-to-ROI combinations), the PN consists of four nodes
(6 ROI-to-ROI combinations), the SMN consists of
six nodes (15 ROI-to-ROI combinations), the PVN consists
of two nodes (1 ROI-to-ROI combination), the HVN consists
of two nodes (1 ROI-to-ROI combination) and the VSN
consists of 11 nodes (55 ROI-to-ROI combinations), a total of
112 ROI-to-ROI combinations were assessed for each of the
32 participants—yielding a total of 3584 tractography analyses.
For each of these, data were visually inspected to identify
participants for whom streamlines were present, and all resulting
streamlines were saved as binary maps in MNI space. Group
probability maps (aka, ‘‘probabilistic connectomes’’) were then
generated for each of the 112 functionally-defined tracts for
which streamlines were identified in at least 8/32 participants.
This was achieved by adding together the binary maps for
each participant (i.e., for a given ROI-to-ROI connection) and
dividing by the number of participants. Image intensities for
each of the probabilistic connectomes therefore range between
0 and 1 (i.e., where no participants or all 32 participants had
streamlines, respectively).

The volume of white matter associated with each resting
state network was then calculated by adding all of the
group probability maps together for each tract and then
multiplying the number of voxels with intensity >0 by the
voxel size (i.e., 1 mm3). After creating binary masks of each
overall connectome (i.e., a combination of all the functionally-
defined tracts within each network), we then calculated the
amount of spatial overlap between the white matter regions
assigned to each network and report these in terms of
both actual volumes and normalized ratios (relative to the
size of each network), as previously reported (Figley et al.,
2015). These results therefore indicate the amount of spatial
overlap between a given network and each of the other
networks.

Finally, 3D renderings of both the nodes within each network
and the resulting white matter group probability maps were
overlaid on the JHU_MNI_SS template (Mori et al., 2008)
using the Volume and Volume Rendering tools within 3D
Slicer (Brigham and Women’s Hospital, Boston, MA, USA;
Fedorov et al., 2012)4, as previously reported (Figley et al.,
2015).

3http://findlab.stanford.edu/functional_ROIs.html
4http://www.slicer.org
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FIGURE 1 | Locations of the functionally-defined nodes within each previously-reported brain network (Shirer et al., 2012).

RESULTS

Of all the 112 functionally-defined white matter connections
assessed in the current study (via deterministic tractography),
some repeatedly yielded DTI streamlines across participants,
while others did not. In order to quantify this, the connection
counts—i.e., the number of participants exhibiting at least one
streamline—for each connection (within each network) are
depicted in Figure 2. Interestingly, of the networks containing
corresponding bilateral regions, some showed a high degree of
symmetry in terms of the tracts with the highest connection
counts (i.e., BGN and SMN), while others exhibited a distinct left
hemisphere laterality (i.e., LN and VSN).Moreover, as previously
noted (Figley et al., 2015)—and as demonstrated by the number
of long-range tracts with high connection counts—Euclidean
distance between nodes was not the primary determinant of
connection count.

In an effort to minimize the number of spurious fiber tracts
(i.e., connections with low reproducibility) included in the final
probabilistic atlases, group probability maps were only generated

for tracts with connection counts of at least 8/32 (i.e., tracts
for which at least one streamline was identified in ≥ 1

4 of the
participants). Therefore, since no connections were found to
meet this threshold in the AN or PVN, no probabilistic atlases
were generated for these networks.

The resulting overall group probability maps—i.e., a
superposition of all the individual ROI-to-ROI connections—for
the remaining six networks are shown in Figure 2 (to the left of
the connection counts) and in Supplementary Videos 9–14, while
the individual tracts within each network (AN = 0, BGN = 3,
LN = 5, PN = 1, SMN = 14, PVN = 0, HVN = 1 and VSN = 6;
total = 30) are displayed in Supplementary Videos 15–44.
Each of these probabilistic maps reflects the tract trajectories
(i.e., locations) as a weighted average across participants, so
they can be thresholded according to the desired amount of
between-participant overlap (e.g., thresholding an image at
0.5 will show only those regions where at least 16/32 of the
participants’ streamlines spatially overlap, etc.). As a corollary,
the group probability maps are more conservative than the raw
connection counts, which represent the number of participants
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FIGURE 2 | A representative view of the white matter tracts (left) and the connection counts (right) for each functionally-defined white matter tract in (A) the Auditory
Network (AN), (B) the Basal Ganglia Network (BGN), (C) the Higher Visual Network (HVN), (D) the Language Network (LN), (E) the Precuneus Network (PN), (F) the
Sensorimotor Network (SMN), (G) the Visuospatial Network (VSN) and (H) the Primary Visual Network (PVN). The nodes within each (Shirer et al., 2012) are shown on
axial brain slices (at their center-of-mass), and the connection counts for each tract (i.e., the numbers of participants with tractography streamlines identified between
each ROI-to-ROI pair) are represented by the weight of lines between the respective nodes. Note that all axial slices are displayed in neurological convention.
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who had at least one continuous streamline between two regions
(in any location), while the group probability maps represent
the proportion of participants who have overlapping streamlines
at a particular spatial location. For this reason, values as low as
0 are possible (and indeed common) in the group probability
maps, despite the requirement for each of them to have had a
connection count greater than or equal to 8/32. Also, it should
be noted that intensity-thresholding the probabilistic atlases
will cause discontinuities to appear along tracts if, for example,
voxels in the middle of a tract fall below the threshold.

As with our previous atlases (Figley et al., 2015), the
current group probability maps have been coregistered to both
MRIStudio and SPM coordinate systems (in order to account for
spatial offsets between the JHU_MNI_SS and SPM8 templates)
and saved as NIFTI images with 1 mm isotropic resolution
for each individual tract and each network as a whole. These
images, as well as the supplementary videos showing their 3D
trajectories, can be freely downloaded from Version 2.0 of The
UManitoba-JHU Functionally-Defined Human White Matter
Atlas5.

The total white matter volumes of the overall group
probability maps (unthresholded and in normalized MNI space),
along with the total and average node (functional ROI) volumes
of each network, are shown in Figure 3. Although the overall
node volumes of the six new networks trended toward being
smaller (p = 0.06; two-tailed t-test), both the average node
volumes (p = 0.87) and the resulting functionally-defined white
matter connectomes (p = 0.50) of the BGN, LN, PN, SMN, HVN
and VSN were similar in size to those of the dDMN, vDMN,
lECN, rECN, aSN and pSN (Figley et al., 2015). Interestingly,
neither overall node volume (r = 0.29; p = 0.36) nor average node
volume (r =−0.25; p = 0.43) were correlated with the volumes of
the resulting white matter connectomes across networks.

We then calculated the amount of spatial overlap between
each of the six new white matter networks, as well as the
six networks already reported in the first version of the
UManitoba-JHU Functionally-Defined Human White Matter
Atlas, with respect to each of the other eleven networks. The
amount of overlap between each connectome was quantified
both in terms of the absolute overlap volumes (Figure 4A)
in mm3, and in terms of the relative overlap volume (Figure 4B)
proportional to each network’s total white matter volume. Based
on this, we observed that the largest overlaps in terms of
absolute volumes (≥20,000 mm3) were observed for BGN vs.
pSN (34,500mm3), BGN vs. SMN (30,000mm3), BGN vs. dDMN
(23,500 mm3), SMN vs. aSN (22,000 mm3) and PN vs. vDMN
(20,000 mm3). Based on the relative volumes (i.e., the proportion
of the first network that overlaps with the second network), the
largest overlaps (≥25% of the first network) were observed for
pSN vs. BGN (44%), PN vs. vDMN (43%), BGN vs. pSN (42%),
vDMN vs. PN (38%), BGN vs. SMN (37%), PN vs. dDMN (33%),
SMN vs. BGN (31%), rECN vs. BGN (31%), aSN vs. SMN (31%),
BGN vs. dDMN (28%), vDMN vs. dDMN (27%), aSN vs. BGN
(27%), LN vs. lECN (26%), lECN vs. VSN (26%), VSN vs. lECN
(25%) and pSN vs. dDMN (25%).

5http://www.nitrc.org/projects/uofm_jhu_atlas

DISCUSSION

General Discussion
Although several anatomically-defined white matter atlases,
such as the JHU ‘‘Adam’’ and ‘‘Eve’’ atlases (Oishi et al.,
2008, 2009), are already freely available, our group has taken
a different approach by creating functionally-defined white
matter atlases for various resting-state brain networks. Our
previous article (Figley et al., 2015) systematically mapped
white matter regions underlying the dorsal and ventral Default
Mode Networks (dDMN and vDMN), left and right Executive
Control Networks (lECN and rECN) and anterior and posterior
Salience Networks (aSN and pSN). The current study now
expands on that effort by including comprehensive white
matter maps of the Basal Ganglia Network (BGN), Language
Network (LN), Precuneus Network (PN), Sensorimotor Network
(SMN), Higher Visual Network (HVN) and Visuospatial
Network (VSN).

Based on our current understanding of the brain and
how it is organized into distributed functional networks,
we anticipate that these atlases will prove to be useful
tools—in concert with quantitative white matter imaging
methods like diffusion, magnetization transfer, and/or myelin
water imaging—for future studies examining how structural
connectivity differences between individuals or groups relate to
task performance, clinical outcomes, etc. Our previous article
(Figley et al., 2015) demonstrated how these functionally-
defined white matter atlases can be used for voxel-wise and/or
ROI-based analyses to examine relationships between structural
measures throughout functionally-defined tracts or networks,
and the initial white matter atlases have already proven useful
for examining network-specific structural differences related to
body composition (Figley et al., 2016) and Multiple Sclerosis
(Ma et al., 2017). However, it is our hope that the addition
of these new networks—related to different domains (e.g.,
language, vision, etc.)—will enhance the overall utility of the
UManitoba-JHU Functionally-Defined Human White Matter
Atlas.

Differences between Anatomically-Defined
and Functionally-Defined White Matter
Tracts
Although the functionally-defined tracts identified in the current
study will correspond to varying degrees with anatomically-
defined white matter structures, an exhaustive comparison
between anatomically- and functionally-defined tracts goes
beyond the scope of the current manuscript. However, in
order to illustrate how these functionally-defined atlases differ,
we compared the language network LN1_LN4 connection
(4068 mm3) from the current study to the left arcuate
fasciculus (13,997 mm3), which was previously identified using
the same data and analysis methods, but with anatomically-
defined cortical ROIs (Figley et al., 2015). In addition to
occupying only 29% of the total white matter volume of
the anatomically-defined tract, we found that only 52% of
voxels in the LN1_LN4 atlas overlapped with the arcuate
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FIGURE 3 | Total white matter volumes, total node volumes and average node volumes for each network. Total white matter volumes were determined by combining
the functionally-defined group probability maps for all tracts with a connection count greater than or equal to 8/32 (but without any additional thresholding of the
probability maps themselves). Note: total white matter volume did not appear to be correlated with total node volume (r = 0.29; p = 0.36) or average node volume
(r = −0.25; p = 0.43) across networks.

fasciculus. Therefore, while approximately half of the voxels
in the LN1_LN4 connection appear to be a subset of the
nominal arcuate fasciculus, the other half are anatomically
distinct.

Why Were Primary Visual and Auditory
Connectomes Not Identified?
Given that the PVN and AN represent two of the primary
physical senses, and might therefore be assumed to have robust
white matter connections, it seems surprising at first glance
that no reproducible connections were identified. However,
in the case of the PVN at least, the answer is actually quite
simple. It turned out that although the resting state functional
connectivity atlas for the PVN (Shirer et al., 2012)6 supposedly
contained two nodes, one of the masks was actually an empty
set (i.e., contained no voxels with a value >0), rendering it
impossible for any diffusion streamlines to run between the two
ROIs.

Unfortunately, there is not such a straightforward explanation
for the lack of reproducible connections identified within
the AN. Indeed, another recent study was able to identify
white matter connections between bilateral Heschl’s gyri
(Andoh et al., 2015) using slightly more sophisticated diffusion
imaging parameters and probabilistic tractography. Therefore,
the most likely explanation has to do with methodological
differences, and each method has certain advantages and
disadvantages regarding sensitivity vs. specificity tradeoffs
(please see Study Limitations below for a more detailed
discussion).

6http://findlab.stanford.edu/functional_ROIs.html

Laterality vs. Bilateral Symmetry in
Different Network Connectomes
Finding that the BGN and SMN show high degrees of
bilateral symmetry (Figure 2) is perhaps not surprising
given that the cortical nodes for both networks were
bilaterally distributed and both networks have prominent
roles in motor function and coordination—which include
balanced control of both hemispheres/sides of the body. Our
finding of a strongly left-lateralized language white matter
connectome is also not surprising given that language is
traditionally thought of as a left-lateralized function (Knecht
et al., 2000), along with the notion that left-hemisphere
regions tend to interact predominantly within the same
hemisphere (Gotts et al., 2013). On the other hand, the
predominantly left-lateralized VSN connectome is somewhat
surprising, given that visuospatial processing has previously
been thought to be mostly right-lateralized (Thiebaut de
Schotten et al., 2011), although this can perhaps be partially
explained by the theory that right-hemisphere regions and
functions tend to be less connected within hemisphere due
to strong interactions between hemispheres (Gotts et al.,
2013).

Overlap between White Matter Networks
One of the main observations from the network overlap analysis
(Figure 4) was that there was substantial overlap between
certain pairs of connectomes. Nonetheless, although certain
white matter regions have been ascribed to multiple networks,
many of these are consistent with their expected topologies.
For example, since the Precuneus is one of the central nodes
within the DMN, it is perhaps not surprising that the PN
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FIGURE 4 | The amount of overlap between each functionally-defined white matter network (with the same masks used to calculate white matter volume in
Figure 3). The amount of overlap between each pair of white matter networks is expressed (A) as a raw volume (in mm3), or (B) relative to the size of each network
on the x-axis.

Frontiers in Human Neuroscience | www.frontiersin.org June 2017 | Volume 11 | Article 306 | 34

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Figley et al. Human Language, Sensorimotor and Visual Connectomes

overlapped substantially (33% and 43%) with the dDMN and
vDMN, respectively. Given that both the LN and lECN were
highly left lateralized, it is also not surprising that a large
proportion (26%) of the LN overlapped with the lECN. Finally,
the BGN connectome—which overlapped with 44% of the pSN,
31% of the rECN, 31% of the SMN, 27% of the aSN, 22%
of the PN and 20% of the dDMN—turned out to be the
third largest by volume (Figure 3), and occupied substantial
portions of central white matter structures. Therefore, it is not
surprising that the BGN consistently overlapped with other
networks, since any long-range projections through the same
central white matter regions in those networks would quite
likely lead to overlap (especially when examined at relatively
poor spatial resolutions, such as those that are achievable
with diffusion-based MRI approaches). Moreover, the BGN
may have overlapping functional roles with many of the other
networks, as the basal ganglia are known to be involved in
motor function (SMN), executive function (lECN and rECN)
and emotional regulation (aSN and pSN; Lanciego et al.,
2012).

Need for High-Dimensional Non-Linear
Normalization and Accurate Coregistration
A point that was highlighted in our previous article (Figley
et al., 2015), and one that bears repeating here, is that any
future applications of these atlases for ROI or along-tract
analyses will require either: (1) participant data (i.e., individual
quantitative images such as FA maps, etc.) to be accurately
warped and coregistered to the same template as our atlases
(i.e., the SPM or MRIStudio MNI templates, which are
distributed with our atlases for convenience); or (2) our
functionally-defined white matter atlases to be accurately
warped and coregistered to each individual participant’s native
space. Importantly, previous analyses have shown that linear
normalization is not sufficient to accurately align subcortical
regions, including central white matter structures (Figley et al.,
2015); therefore, in order for images to be ‘‘accurately warped’’,
high-dimensional, non-linear spatial normalization—e.g.,
using Advanced Normalization Tools (ANTs)7, Diffeomorphic
Anatomical Registration Through Exponentiated Lie Algebra
(DARTEL)8, fMRIB’s Nonlinear Image Registration Tool
(FNIRT)9, Large Deformation Diffeomorphic Metric Mapping
(LDDMM)10, etc. (see Klein et al., 2009)—is absolutely
necessary.

Study Limitations
A very detailed discussion of the pros, cons and limitations
of the general methodology employed here was published
in our original article (Figley et al., 2015), which is freely
available (and in fact part of the same Frontiers Research
Topic). Therefore, because the current manuscript used the
same dataset and methods, we will not replicate that here in

7http://picsl.upenn.edu/software/ants/
8http://www.fil.ion.ucl.ac.uk/spm/
9https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT
10http://www.cis.jhu.edu/software/lddmm-volume/

full. Instead, we will briefly highlight some of the main study
limitations, and extrapolate on a few points based on new
literature.

Limitations in Scope
One of the major limitations of our previous study and
the existing functionally-defined white matter atlas is that
we initially only included six functionally-connected brain
networks (out of many such networks). These networks were
chosen as a starting point because the dDMN, vDMN, lECN,
rECN, aSN and pSN are among the most well-established
and most-studied resting state brain networks. However, by
creating similar atlases for the remaining networks in the
Stanford resting state fMRI atlas (Shirer et al., 2012)11, we
feel that the current study goes a long way to addressing this
limitation.

Nonetheless, although fMRI studies have started to examine
between-network connectivities (and it might very well be
of interest to supplement these analyses with corresponding
structural analyses), we have not yet generated any between-
network white matter connectivity maps. It might be particularly
interesting, for example, to create atlases for all of the
connections between the dDMN and vDMN, lECN and rECN,
aSN and pSN, and then between the combined DMN, ECN and
SNs. However, because this is a combinatorial problem, where
the total number of ROI-to-ROI connections (and therefore
analysis time) increases drastically with the number of nodes-
of-interest (either within or between networks), challenges like
this become prohibitively time-consuming and labor-intensive
using our current methods. Nonetheless, it should be noted
that there are automated tractography tools, such as Freesurfer’s
TRACULA (Yendiki et al., 2011) or AFNI’s FATCAT (Taylor
and Saad, 2013), that could make such challenges more feasible.
Alternatively, between-network investigations could be made
more feasible by mapping connections between sub-sets of
nodes that are likely to be involved in between-network
interactions.

Limitations of a Modest Sample Size
Although the sample size of our dataset was consistent with
previous DTI-based white matter atlases (Hua et al., 2008;
Oishi et al., 2009), there are much larger diffusion MRI
datasets, such as the Human Connectome Project (HCP)12,
that are now freely available. Of course, any white matter
connectome will depend on the individual(s) it was obtained
from; and although we presume that 32 participants (16 male;
16 female) will yield relatively stable and generalizable white
matter atlases, a larger sample size would allow a finer degree
of thresholding of the final probabilistic atlases, and could
enhance the apparent signal-to-noise in terms of true vs. spurious
regions that are included in each network. Moreover, our atlases
were created from a sample of healthy, middle-aged adults,
and using a larger sample, such as the HCP data, would allow
age-specific atlases to be generated (e.g., for pediatric and
geriatric populations).

11http://findlab.stanford.edu/functional_ROIs.html
12http://humanconnectome.org
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Limitations of Diffusion MRI
Diffusion-based MRI is non-invasive, provides 3D whole-
brain coverage, and is therefore the only currently-available
in vivo approach to estimate fiber trajectories between
distributed human brain regions. Nonetheless, this approach
has several limitations compared to histological staining
and tract-tracing methods. In particular, diffusion imaging:
(1) has orders of magnitude worse spatial resolution
(Scherrer et al., 2012); (2) relies on an indirect measure of
tissue microstructure (Mori and Zhang, 2006); (3) cannot
reliably differentiate between myelinated, unmyelinated, or
demyelinated fibers (Beaulieu, 2002); (4) cannot differentiate
the directionality of fiber projections (i.e., afferent vs.
efferent; Thomas et al., 2014); and (5) cannot, in many
cases, even discriminate between monosynaptic and
polysynaptic connections (Johansen-Berg and Rushworth,
2009).

Although the aforementioned limitations apply to all current
diffusion MRI approaches—including high angular resolution
diffusion imaging (HARDI; Tuch et al., 2002), Q-ball imaging
(Tuch, 2004), and diffusion spectrum imaging (DSI; Wedeen
et al., 2005)—we also note some additional limitations of DTI
in particular, since this is the approach that was used to
generate our atlases. For example, conventional tensor-based
methods are not able to resolve complex fiber geometries
(e.g., crossing, kissing, or turning fibers) nearly as well as
more advanced fiber tracking techniques (Daducci et al., 2014).
We therefore acknowledge that our deterministic, DTI-based
connectomes are inherently biased toward Type-II (false-
negative) errors, and that certain fibers and regions within
the networks are more likely to have been excluded—as
opposed to HARDI- and DSI-based methods, which tend to
be biased toward higher Type-I (false-positive) errors, where
aberrant fibers are sometimes included (Rodrigues et al.,
2013).

Direct comparisons between deterministic diffusion
tractography and gold-standard tract-tracing methods in
rhesus macaques have revealed that diffusion-based connectome
reconstructions generally produce reasonable estimates of
large white matter projections (Dauguet et al., 2007; van
den Heuvel et al., 2015). However, because tensor-based
deterministic tractography approaches yield sparse connectomes
(high specificity with comparatively low sensitivity) and
higher-order probabilistic tractography approaches yield
dense connectomes (high sensitivity with comparatively
low specificity), other groups have begun to study tradeoffs
between connectome sensitivity and specificity (Zalesky
et al., 2016). Initial studies in this regard suggest (both
empirically and theoretically) that ‘‘specificity is at least
twice as important as sensitivity when estimating key properties
of brain networks, including topological measures of network
clustering, network efficiency and network modularity’’ (Zalesky
et al., 2016). Therefore, although not perfect, the deterministic,
tensor-based tractography approach used to generate our
functionally-defined white matter atlases likely errs in the proper
direction when it comes to connectome sensitivity vs. specificity
tradeoffs.

Nonetheless, the fact remains that several real white matter
connections were probably not identified by our tensor-based
tractography analyses, so the current atlases cannot be used to
draw conclusions about which regions are not part of a given
tract or network. Rather, their intended use is to predict (with
at least some measure of confidence) which white matter regions
are part of a given tract or network, so that quantitative values
can be extracted and compared between individuals or patient
populations.

CONCLUSION

Functional connectivity analyses within large-scale brain
networks have become immensely popular, and are now
ubiquitous throughout the cognitive neuroscience and
neuroimaging literature. Yet, despite the fact that cerebral
white matter forms a critical element that is necessary for these
networks to ‘‘function’’ properly, comparable methods for
assessing structural connectivity within these same networks
have lagged far behind—in large part because the underlying
white matter scaffolds have not been previously identified.
To address this gap, we have used DTI and tractography to
create functionally-defined white matter atlases (in stereotaxic
coordinates) of the Basal Ganglia Network (BGN), Language
Network (LN), Precuneus Network (PN), Sensorimotor Network
(SMN), Higher Visual Network (HVN) and Visuospatial
Network (VSN). It is our hope that this work will enhance the
overall utility of our previously existing functionally-defined
white matter atlases of the Default Mode, Executive Control
and Salience Networks, and that it will provide a framework for
future studies to evaluate white matter connectivity within these
networks and attribute localized microstructural changes (either
between individuals or groups) to particular functional brain
networks, thereby providing deeper insights into the structural
correlates of neural processes and/or diseases.
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The investigation of specific white matter areas is a growing field in neurological

research and is typically achieved through the use of atlases. However, the definition of

anatomically based regions remains challenging for the white matter and thus hinders

region-specific analysis in individual subjects. In this article, we focus on creating a

whole white matter parcellation method for individual subjects where these areas can

be associated to cortex regions. This is done by combining cortex parcellation and

fiber tracking data. By tracking fibers out of each cortex region and labeling the fibers

according to their origin, we populate a candidate image. We then derive the white

matter parcellation by classifying each white matter voxel according to the distribution

of labels in the corresponding voxel from the candidate image. The parcellation of the

white matter with the presented method is highly reliable and is not as dependent on

registration as with white matter atlases. This method allows for the parcellation of

the whole white matter into individual cortex region associated areas and, therefore,

associates white matter alterations to cortex regions. In addition, we compare the results

from the presented method to existing atlases. The areas generated by the presented

method are not as sharply defined as the areas in most existing atlases; however, they

are computed directly in the DWI space of the subject and, therefore, do not suffer from

distortion caused by registration. The presented approach might be a promising tool for

clinical and basic research to investigate modalities or system specific micro structural

alterations of white matter areas in a quantitative manner.

Keywords: white matter parcellation, diffusion tensor imaging, diffusion weighted imaging, fiber tracking,

FreeSurfer, brain anatomy

1. INTRODUCTION

The analysis of micro structural white matter properties has become increasingly important,
especially in multiple sclerosis research (Deppe et al., 2007, 2014, 2016). There are several
techniques such as diffusion-weighted magnet resonance imaging (DWI) that are sensitive to white
matter alterations that cannot be assessed by conventional MRI.

Korbinian Brodmann introduced the first parcellation method for the cortex in 1909 by
classifying cortex areas by their cytoarchitecture (Brodmann, 1909). Through the rise of structural
MRI in brain imaging, in vivo cortex parcellation became possible (Rademacher et al., 1992) by
classifying the cortex on the basis of cortical gyri and sulci, thus providing a way to associate
cortex alterations to brain functions. Automatic parcellation of the cortex was then introduced
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(Fischl et al., 2002, 2004; Glasser et al., 2016) and is since a
heavily used tool in clinical and basic research for region specific
analysis of the cortex. Further cortex parcellations were created
which seek to provide a higher resolution through defining more
cortex labels (Desikan et al., 2006; Destrieux et al., 2010), or
to classify the cortex from functional networks derived from
functional MRI (Craddock et al., 2012; Blumensath et al., 2013;
Shen et al., 2013; Moreno-Dominguez et al., 2014; Thirion et al.,
2014; Parisot et al., 2016).

While the parcellation of the human cortex into functionally
differentiable areas can be easily performed on the basis of
cortical gyri and sulci, there are no macro-anatomical landmarks
that permit direct classification of the white matter. Several white
matter atlases were created to overcome this problem bymapping
regions directly onto images under investigation (Wakana et al.,
2004, 2007; Mori et al., 2005; Hua et al., 2008; Mori et al., 2008;
Oishi et al., 2008). However, the registration of these atlases relies
on mapping to gray matter landmarks, as the structure of the
white matter alone is insufficient.

The parcellation of white matter is usually performed by
mapping a white matter atlas onto the image under investigation.
These atlases are typically created by parcellating the white
matter manually or semi-automatically in a group of subjects
by investigating diffusion-weighted images, structural images,
or fiber tracking results. For example, specialists map the fiber
tracking results onto diffusion-weighted or structural images and
label each white matter voxel (Mori et al., 2005). The created
parcellations are then mapped into the same space where an atlas
is derived from these overlaying parcellations. Generally, there
are two types of atlases. Deterministic atlases like the ICBM-
DTI-81 (Mori et al., 2005; Wakana et al., 2007) assign a label
to each white matter voxel that indicates the white matter area.
Probabilistic atlases on the other hand, like the JHU white-matter
tractography atlas (Hua et al., 2008) assign each white matter
voxel a probability that indicates how likely a voxel belongs to
a certain white matter area. These atlases are typically applied
in two steps. A template, which is either a single subject or a
group average, is mapped onto the image under investigation.
The resulting mapping is then applied to the white matter atlas,
which is in the same space as the template, tomap the parcellation
onto the image under investigation. However, as Bloy et al. (2012)
already pointed out and Rohlfing (2013) demonstrated as an
example, mapping a white matter atlas into the desired image can
be error-prone since the accuracy of the white mater parcellation
heavily relies on the registration to the template. Our approach
aims to overcome this strong dependency on registration by
parcellating the whitematter directly in the space of the diffusion-
weighted image. There are already approaches such as FreeSurfer
white matter parcellation (Salat et al., 2009) that do not describe
a white matter atlas, but a method that is applied in every
individual subject to parcellate the white matter. However, this
is a rather basic approach since it just classifies the white matter
according to the nearest cortex region.

Diffusion tensor imaging (DTI) provides a base for the
reconstruction of fiber tracts in the human brain. Here, we
present an approach called cortex associated individual white
matter parcellation that combines parcellation of the gray matter

and fiber tracking in DTI images to permit cortex parcellation-
associated whole white matter parcellation in individual subjects.
The general idea of combining fiber tracking and gray matter
parcellation was already outlined previously (Park et al., 2004).
However, the focus of our article lies on the classification of
each white matter voxel and thus the differentiation between the
generated white matter areas.

2. METHODS

This paper presents an automatic method for parcellating
the whole white matter into cortex region associated areas.
Therefore, cortex parcellation and deterministic fiber tracking in
DTI are combined.

2.1. Diffusion-Weighted Imaging
Diffusion-weighted imaging measures the diffusion of water
molecules inside the tissue in a specific direction. This is achieved
through a certain parametrization of the MRI sequence. By
performing multiple measurements of the diffusion in multiple
directions, the general diffusion can be estimated. A detailed
explanation of DWI can be found in Mori (2007).

In equally constituted tissue such as gray matter, the diffusion
of water molecules is nearly isotropic. However, in the white
matter, this diffusion is partially inhibited perpendicular to
the fiber tracts, which leads to anisotropic diffusion. This
characteristic allows for conclusions to be drawn about the
orientation of the nerve fibers.

Published for the first time in 1994 (Basser et al., 1994), DTI
relies on a mathematical model that describes the measured
diffusion in every voxel and has been established as a common
standard in neurological research. The model regards diffusion
as a second order tensor that can be visualized as an ellipsoid.
For undirected diffusion, this tensor consists of six parameters
that can be derived from the DWI images. The linearized
diffusion tensor is described by three orthogonal eigenvectors
that determine the ellipsoids location and circumference. The
longest of these vectors is usually called the main diffusion
direction. If the diffusion tensor mainly describes isotropic
diffusion, it takes the shape of a sphere, whereas for anisotropic
diffusion, the tensor can take the shape of a cigar or a coin. A
detailed explanation of DTI can be found in Mori (2007).

In DTI images of the human brain, spherically-shaped tensors
are mainly located in the gray matter or the cerebrospinal fluid
(CSF), whereas cigar-shaped tensors occur mainly in the white
matter.

2.2. Cortex parcellation
There are several different strategies for parcellations of the
cortex. Two of the parcellations commonly used in the FreeSurfer
software package (Dale et al., 1999; Fischl et al., 1999, 2004)
are the Desikan-Killiany Atlas (Desikan et al., 2006) and
the Destrieux Atlas (Destrieux et al., 2010). Both atlases are
developed for automated cortex labeling based on the gyri of
the cortex and they are both anatomically valid and reliable
(Desikan et al., 2006; Destrieux et al., 2010). Desikan et al.
published the Desikan-Killiany Atlas in 2006 and Destrieux et
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al. published the Destrieux Atlas in 2010. Through employing
the Desikan-Killiany Atlas, the cortex of each hemisphere is
parcellated into 34 regions of interest. The Destrieux Atlas
provides a finer granulated parcellation as it parcellates each
hemisphere into 74 regions of interest. To use these parcellations,
the recon-all script from the FreeSurfer software collection
(Dale et al., 1999; Fischl et al., 1999, 2004) is employed on the
structural (T1) MRI image. Its output includes the parcellation
with the Desikan-Killiany Atlas, with the Destrieux Atlas, as
well as a segmentation of the subcortical areas (nuclei). This
procedure as well as the pre-processing of the structural images
was already performed in the provided datasets. Both atlases
were chosen for testing the presented method because they are
widely used as part of FreeSurfer and were already included in
the provided datasets. Furthermore, in the provided datasets,
both the Desikan-Killiany Atlas as well as the Destrieux Atlas
were already mapped into the space of the diffusion-weighted
images.

2.3. Fiber Tractography
One field of application for DWI is the reconstruction of nerve
fibers in the human brain. These fibers are located in the white
matter and cannot be assessed through structural MRI images.
It can be assumed that the cigar shape of the tensor inside
the white matter is caused by the inhibition of water molecule
diffusion by the myelinated axons (Assaf and Pasternak, 2008).
As a result, the fibers in the human brain can be reconstructed
by following the main diffusion direction of the tensors (Conturo
et al., 1999).

To overcome noise and artifacts in the DTI images, several
more complex fiber tracking approaches were developed (see
Feigl et al., 2014 for review) like the class of probabilistic fiber
tracking algorithms (Parker et al., 2002; Behrens et al., 2003,
2007). These algorithms choose the propagation direction for the
fibers with a probability derived from the underlying diffusion
model, which makes them robust against noise. Through their
probabilistic nature, the results of these fiber tracking algorithms
are not exactly reproducible and therefore can include a degree
of uncertainty into the test of the presented method. Hence,
for the purpose of white matter parcellation, we use the Fiber
Assignment Continuous Tracking (FACT) method (Mori et al.,
1999) that is included in the Diffusion Toolkit (Wang et al.,
2007) and is established as a common standard for deterministic
fiber tracking. FACT was employed on the datasets with the
default parametrization of the Diffusion Toolkit, which is an
automatic mask threshold and an angle threshold of 35◦ as
stopping criteria.

2.4. White Matter Parcellation
For achieving a parcellation of the whole white matter into cortex
region associated areas, cortex parcellation and fiber tracking are
combined. An example for the registered cortex parcellation into
the tract space is shown in Figure 1. Due to the fact that the fiber
tracts are mainly symmetrical, it is possible to imagine how the
reconstructed fibers connect the different gray matter regions,
especially the cortex areas.

FIGURE 1 | Example visualization of the cortex parcellation mapped onto the

fiber tracking results. Only the main fibers are shown. These data are the input

for the actual white matter parcellation.

For the actual white matter parcellation, the fibers are tracked
out of every cortex region and labeled. Each part of the fiber
that lies in the white matter is labeled with the same label that
the cortex parcellation assigned to the start voxel. After the
fiber labeling is done, a list is generated that contains the label
count for every voxel of the white matter. In the next step,
every fiber is tracked a second time. While a fiber is tracked,
the label it received in the previous step is written into a list
that is associated to the voxel where the fiber section is present.
A single voxel usually contains numerous fibers and, therefore,
these lists contain a count for every possible cortex label that
can be written into this voxels associated list. A probability is
then assigned to every label a list contains. The label with the
highest probability then determines the chosen label for a specific
voxel.

In detail, let L be the list of labels and Li the quantity of the
label at position i of the list. Since the probability is computed
for every cortex label, all lists have the same length |L| and
additionally a label has the same position in every list. The local
probability pLi for a specific label is then

pLi =

Li

|L|
∑

j=0
Lj

(1)

In addition to this local label probability, the label probabilities
of the neighboring voxels are also taken into account for
determining which label is assigned to the specific voxel. To
cover this, Equation 1 is extended as follows. Let N =

{

(

x y z
)T
}\

(

0 0 0
)T

with−1 ≤ x, y, z ≤ 1 the set of the relative
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positions to the neighboring voxels and therefore L
N the label

list for these voxels. The probabilities of the neighboring voxels
for a given list element at index i are weightily taken into account
with:

pNi =

∑

n∈N

‖n‖−1
2

L
n
i

|L|
∑

j=0
L
n
j

(2)

The overall probability for a label to get assigned to a specific
voxel is therefore:

pi = wL
∗ pLi + wN

∗ pNi (3)

with 0 ≤ wL,wN
≤ 1 and wL

+ wN
= 1.

To explain this equation, the local probability for a specific
label to be chosen is the number of occurrences of the label

divided by the aggregated number of label occurrences in the
current voxel. For the neighboring voxels that are also considered
for the label assignment, the probability is computed in the
same way. However, these probabilities are not evenly taken into
account since the neighboring voxels have different distances to
the local voxel. Therefore, the neighboring voxels are weighted
through their distance to the local voxel. Finally the two parts,
the local probability and the aggregated probability of the
neighboring voxels, are weighted with two parameters (wL and
wN) to adjust the influence of the two parts.

Therefore, the expansion of pi yields the computation in every
voxel as:

pi = wL
∗

Li

|L|
∑

j=0
Lj

+ wN
∗

∑

n∈N

L
n
i

‖n‖2
|L|
∑

j=0
L
n
j

(4)

FIGURE 2 | Flow chart that shows the population of the candidate image as well as the selection of the white matter labels.
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FIGURE 3 | Comparison of cortex parcellation with the Desikan-Killiany Atlas, gray matter segmentation, and the resulting individual white matter parcellation shown

in an axial and a coronal slice of a single subject. Column one: Cortex parcellation and gray matter segmentation mapped into the structural image which was used to

generate the parcellation and segmentation. Column two: Resulting white matter parcellation of the developed method mapped into the same structural image as in

column one. Column three: Images of column one and two mapped into one image. The black lines indicate the boundaries between the cortex areas and the white

matter areas.

FIGURE 4 | Comparison of cortex parcellation with the Destrieux Atlas, gray matter segmentation, and the resulting individual white matter parcellation shown in an

axial and a coronal slice of a single subject. Column one: Cortex parcellation and gray matter segmentation mapped into the structural image which was used to

generate the parcellation and segmentation. Column two: Resulting white matter parcellation of the developed method mapped into the same structural image as in

column one. Column three: Images of column one and two mapped into one image. The black lines indicate the boundaries between the cortex areas and the white

matter areas.
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The label with the highest probability in a specific voxel is then
assigned to this voxel. By performing this procedure for every
white matter voxel, the cortex associated individual white matter
parcellation is generated. Figure 2 demonstrates the method
schematically as a flow chart. The actual implementation of the
algorithm is written in Rust (www.rust-lang.org) (Schiffler et al.,
2016) and is freely available for download on our GitHub page
(neuro.github.io).

2.5. Data
We employed the method on 78 datasets from the freely available
WU-Minn Human Connectome Project (HCP) collective
(Van Essen et al., 2013). The HCP data release includes high-
resolution 3T MR scans from young healthy adult twins and
non-twin siblings (ages 22–35) as structural images (T1w and
T2w) (Milchenko andMarcus, 2013) and high angular resolution
diffusion images (dMRI) (Sotiropoulos et al., 2013). The diffusion
data were already preprocessed with the HCP diffusion pipeline
(Jenkinson et al., 2002, 2012; Andersson et al., 2003; Fischl,
2012; Glasser et al., 2013; Andersson and Sotiropoulos, 2015,
2016) (updated with EDDY 5.0.10). The datasets further include
structural preprocessed data with the HCP structural pipeline
(Jenkinson et al., 2002, 2012; Fischl, 2012; Glasser et al., 2013),
including FreeSurfer and PostFreeSurfer pipeline outputs.

All used diffusion data have a voxel size of 1.25mm ×

1.25mm × 1.25mm and a FOV of 210mm. Diffusion weighting
consisted of 3 shells of b = 1000 s

mm2 , b = 2000 s
mm2 , and

b = 3000 s
mm2 with approximately 90 diffusion directions plus

6 b = 0 images on each shell. Additionally, an inverted phase
encoding direction for each shell was acquired.

3. RESULTS

Figures 3, 4 show the results of the cortex parcellation, the gray
matter segmentation, as well as the results for the developed
individual white matter parcellation method. An axial slice and
a coronal slice are shown in both figures. The images in the first
column show the resulting cortex parcellation as well as the gray
matter segmentation overlaid over the structural MRI image; the
white matter is faded out. The images in the second column
show the actual result of the developed white matter parcellation
method. Notice that the images in the second column look
similar to the images in column one, but here with colored
regions contained within the white matter. These regions are
distinguished through the same colors as the cortex regions and
are, furthermore, associated to the cortex regions through these
colors. However, the resulting white matter regions are partially
not as sharply defined as the cortex regions. The third column
of Figures 3, 4 shows how the resulting white matter regions
are associated to the cortex regions. Column three shows the
overlay of the structural image, the cortex parcellation, the gray
matter segmentation, and the resulting individual white matter
parcellation. It can be seen that a white matter area next to a

FIGURE 5 | Comparison of the presented white matter parcellation method with the Desikan-Killiany Atlas for cortex parcellation, the Destrieux Atlas for cortex

parcellation, and the white matter parcellation of FreeSurfer in a single subject. All parcellations are mapped into the structural image which was used to generate the

parcellation. Column one: Parcellation with Desikan-Killiany Atlas for cortex parcellation. Column two: Parcellation with Destrieux Atlas for cortex parcellation. Column

three: White matter parcellation of FreeSurfer.
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specific cortex area has the same color as the cortex area. This
means the white matter area is associated to this cortex area.

Figure 5 shows a comparison of the results of the white
matter parcellation with both cortex parcellations to the white
matter parcellation produced by FreeSurfer. The FreeSurfer white
matter parcellation is already included in the provided data
and classifies each white matter voxel according to its nearest
cortex area. Therefore, it is not a white matter atlas, but like
our presented method, it describes a white matter parcellation
that is computed in every individual subject. Since FreeSurfer’s
white matter parcellation uses the Desikan-Killiany Atlas for
determining the white matter labels, it does look similar to the
parcellation from our presented method, which also uses the
Desikan-Killiany Atlas. However, the developedmethod does not
classify the white matter based on the distance to cortex regions,
but on the originating cortex region of the fiber tracking results.

Figure 6 shows an averaged white matter parcellation with
both cortex parcellations compared to the ICBM-DTI-81 white
matter atlas. Therefore, all 78 subjects were mapped into the
space of the atlas. The averaging was done over all 78 subjects
through majority voting which simply counts for every voxel
the appearance of every label and choses the label with most
appearances. The ICBM-DTI-81 atlas was produced by hand
segmentation of a standard-space average of diffusionMRI tensor
maps from 81 subjects and contains 48 white matter tract labels.
The comparison shows that the parcellations of the presented

method and the ICBM-DTI-81 atlas divide the white matter in
partially congruent areas. The parcellation using the Desikan-
Killiany Atlas for cortex parcellation looks similar to the ICBM-
DTI-81 atlas although the white matter regions the presented
method produces are not as sharply defined as the regions in
the ICBM-DTI-81 atlas. The parcellation with the Destrieux Atlas
contains more different regions (74) in comparison to the ICBM-
DTI-81 atlas and therefore offers a finer granulated parcellation.
The ICBM-DTI-81 atlas only parcellates the main white matter
tract, whereas the presented method generates a whole white
matter parcellation.

4. DISCUSSION

The developed method can be used to parcellate the whole white
matter into individual cortex region associated areas. This allows
for the association of white matter alterations to the originating
cortex regions.

The method tends to label voxels close to the cortex with the
same label as the closest cortex region. Since the fibers protrude
out of the cortex, it is clear that a large number pass through the
voxels that are closer to the cortical region of origin. Additionally,
the greater the distance from the cortex, the more unsharp the
resulting parcellation becomes. This is due to the fact that more
distant areas are typically crisscrossed by a lot of fibers with
different origins, and that all of these fibers have to be taken

FIGURE 6 | Average white matter parcellation derived from all 78 subjects with the Desikan-Killiany Atlas for cortex parcellation and the Destrieux Atlas for cortex

parcellation compared to the ICBM-DTI-81 white matter atlas. Column one: Average parcellation with Desikan-Killiany Atlas for cortex parcellation. Column two:

Average parcellation with Destrieux Atlas for cortex parcellation. Column three: ICBM-DTI-81 white matter atlas.
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FIGURE 7 | Cortex parcellation, gray matter segmentation and resulting white

matter parcellation mapped into one image. The region that outlines the

pre-central cortex associated white matter is highlighted. This region connects

the pre-central cortex (dark blue) and the thalamus (dark green) which is

known as an actual fiber pathway (Sommer, 2003; Drenckhahn, 2004).

into account for choosing the resulting label. Hence, it could be
useful to adapt the presented method in the future to generate a
probabilistic parcellation.

Compared to the FreeSurfer white matter parcellation,
the results of the presented method look similar in areas
that are close to the cortex. This is because FreeSurfer’s
parcellation classifies each white matter voxel based on the
closest cortex region. Furthermore, the FreeSurfer parcellation
uses the Desikan-Killiany Atlas for determining the white
matter labels that we, among other atlases, also included for
generating the white matter parcellation. However, in deeper
white matter areas, the presented method shows a much higher
resolution of parcellation compared to the FreeSurfer white
matter parcellation. This is because it labels the white matter
according to the origins of the fiber tracts that are not necessarily
the closest cortex regions, especially in the deeper white
matter.

The presented method can be applied even in diffusion-
weighted images with larger voxel size. However, an increase
in voxel size can lead to an increased number of fibers
with different origins per voxel and, therefore, to a higher
number of candidate labels in a single voxel. A high
number of candidate labels in a voxel in turn can bring
uncertainty to the label voting since the method choses
the label with the highest probability, even if there are
multiple candidate labels with a probability close to the
highest.

Since diffusion tensor imaging is a rather basic approach
to model diffusion, especially in areas with crossing fibers,
it could be useful to implement other diffusion models like

HARDI (high angular resolution diffusion-weighted imaging)
or higher-order tractography models like CSD (constrained
spherical deconvolution) into the method that can model
crossing fibers more accurately than DTI. As the presented
method relies heavily on fiber tracking, which in turn relies
on the underlying diffusion model, it is expected that using
better diffusion models can lead to a more accurate white matter
parcellation.

Validation of the presented method remains difficult, but one
approach could be a MRI scan of an ex vivo brain followed
by a histological analysis of the white matter fiber tracts to
compare the results of the presented method to those obtained
by histological investigation. However, the presented results
show several properties that match with published data. For
example, it is known that specific fiber pathways connect the
pre-central gyrus (blue in Figure 3) with the thalamus (dark
green in Figure 3) (Sommer, 2003; Drenckhahn, 2004). Using
the presented method, we show in Figure 3 that these fiber
pathways lead to a specific region (blue in Figure 3). This finding
is also highlighted in Figure 4. Thus, the generated white matter
parcellation permits a region specific analysis in structural or
diffusion-weighted MRI within the white matter.

The presented method shows significant less dependency on
registration than white matter atlases. Since the method uses
registration just for defining seed regions in the cortex and
parcellates the white matter directly in the DWI space, the
resulting white matter regions do not suffer from distortion
through registration.

Recent studies on patients with multiple sclerosis
demonstrated thalamic atrophy even in the earliest stage of
the disease (Krämer et al., 2015; Deppe et al., 2016). However,
until now it remained unclear to which degree the thalamic
volume loss is associated with modality specific white matter
alterations. The presented approach might be a promising tool
for clinical and basic research to investigate modalities or system
specific micro structural alterations of white matter areas in a
quantitative manner.
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Brain parcellation divides the brain’s spatial domain into small regions, which are
represented by nodes within the network analysis framework. While template-based
parcellations are widely used, the parcels on the template do not necessarily match
individual’s functional nodes. A new method is developed to overcome the inconsistent
network analysis results by by-passing the difficulties of parcellating the brain into
functionally meaningful areas. First, roughly equal-sized parcellations are obtained.
Second, these random parcellations are applied to individual subjects multiple times
and a pseudo-bootstrap (PBS) of the network is obtained for statistical inferences. It
was found that the variation of mean global network metrics from PBS sampling is
smaller compared with inter-subject variation or within-subject variation between two
diffusion MRI scans. Using the mean global network metrics from PBS sampling, the
intra-class correlation is always higher than the average obtained from using a single
random parcellation. As one application, the PBS method was tested on the Human
Connectome Project resting state dataset to identify individuals across scan sessions
based on the mean functional connectivity (FC)—a trivial network property that has
little information about the connectivity between nodes. An accuracy rate of ∼90%
was achieved by simply finding the maximum correlation of mean FC of PBS samples
between two scan sessions.

Keywords: random parcellation, pseudo-bootstrap, network analysis, functional connectivity fingerprint,
connectomes, intra-class correlation coefficient

INTRODUCTION

Network analysis provides a complete new avenue in exploring the function and structure of the
brain from a network perspective (Brodmann, 1909). A network comprises nodes and edges. One
of the biggest challenge of network analysis in neuroimaging is defining the nodes (de Reus and
van den Heuvel, 2013; Stanley et al., 2013). The most natural way to define nodes would be to
represent individual neurons as nodes. However, even a single voxel in the brain image contains
millions of neurons. A parcellation in the microscopic level is unrealistic for MRI-based whole
brain imaging. Historically, people have attempted to divide the brain into different regions with
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similar anatomical or functional features (Brodmann, 1909;
Tzourio-Mazoyer et al., 2002; Fischl et al., 2004). Lately, the
Human Connectome Project (HCP) has become a driving force
for brain parcellation (Craddock et al., 2012; Shen et al., 2013;
Glasser et al., 2016; Gordon et al., 2016). Brain parcellation
divides the brain’s spatial domain into small regions, which serve
as nodes for network analysis. In general, a brain parcel is a
region that has greater commonality of features within the parcel
than with neighboring parcels. Many parcellation schemes have
been developed in the last decades using anatomical landmarks,
functional connectivity (FC), and multimodal approaches. For
instance, Freesurfer generates a cortical atlas based on the
curvature values of gyral and sulcal regions derived from a
T1-weighted image (Fischl et al., 2004; Desikan et al., 2006); the
AAL parcellation draws 116 regions based on the brain sulci
of a MNI MRI Single-Subject (Tzourio-Mazoyer et al., 2002).
Craddock et al. (2012) developed an algorithm to parcellate the
whole brain into spatially coherent regions of homogeneous FC.
A similar idea was further developed by incorporating graph
theory and groupwise clustering of a group of subjects (Shen
et al., 2013). Lately, multi-modal MRI images from the HCP have
been used for parcellation (Glasser et al., 2016). The images from
210 healthy young adults were precisely aligned. One hundred
and eighty areas per hemisphere were obtained from group
averaging of multi-modal information in cortical architecture,
task activation, resting state FC, and/or topography. Although
more sophisticated algorithms and novel approaches have been
incorporated into brain parcellation (Glasser et al., 2016; Gordon
et al., 2016), there is no consensus as to what is the “perfect
parcellation” and limitations set by the data make the problem
even more challenging.

An alternative to feature-based parcellation is random
parcellation (Fornito et al., 2010; Zalesky et al., 2010; Echtermeyer
et al., 2011; de Reus and van den Heuvel, 2013). Instead
of parcellation based on structural or functional features of
the brain, random parcellation generates parcels with little
constraint other than contiguity in space and similar size. The
fewer constraints have the advantage of enabling the creation
of parcellations with an arbitrary number of nodes, which is
desirable to carry out multi-scale network analysis (Fornito et al.,
2010). Another advantage of random parcellation is that given a
certain number of nodes, there are many ways to parcellate the
brain, a feature that allows us to study robustness of network-
based analysis.

When comparing networks between subjects, a widely used
approach is to obtain a parcellation template and apply it
to all subjects. The parcellation template can be derived with
any of the above schemes including random parcellation.
The widely used parcellation templates include AAL (Tzourio-
Mazoyer et al., 2002), Shen atlas (Shen et al., 2013), Craddock
atlas (Craddock et al., 2012), etc. Template-based parcellation
provides a common framework in comparing networks from
different subjects as it offers a one-to-one map between node-
level measures and, it allows direct comparison of global-network
measures, given that the magnitude of most network metrics
are highly dependent on network size (van Wijk et al., 2010;
Zalesky et al., 2010). However, challenges remain in comparing

networks between subjects because of the variability across
individuals and internal heterogeneity in multiple levels such
as columnar organization and subcellular/cellular structures
(Glasser et al., 2016). For template-based parcellations, the
parcels on the template do not necessarily match individual’s
functional nodes, which are supposed to be homogeneous in
performing functional tasks. In addition, different functional task
might evoke different brain regions. In other words, the nodes
should not be considered fixed at the macroscopic level (Gordon
et al., 2016). The majority of the parcellation scheme can be
regarded as a coarse sampling of the nodes with some constraints
such as that the voxels are contiguous and coherent in time
course.

Taking a slightly different view, parcellation is a sampling of
millions of neurons with some constraints. Then we need to take
into account the ambiguity of this sampling at the microscopic
level. We propose to use multiple random parcellation as a
pseudo-bootstrap (PBS) sampling scheme. For each subject, a set
of networks can be obtained from multiple random parcellations,
which is essentially a resample of the same data, a technique
often used in statistics (Efron and Tibshirani, 1994). Of course,
there must be some constraints on the set of randomly generated
parcellations that conform the sampling set, such as number
of nodes, node size, etc. These constraints are implemented
through the appropriate choice of algorithm that generates
the parcellations. Therefore, this method is considered a PBS
approach. An important benefit of this method is that it gives the
probability of parcellation-related distribution of global network
metrics. A striking difference of this method from conventional
bootstrap method is that the number of samples is much smaller
than the actual data points. Given that there is no golden standard
for brain parcellation at the macroscopic level, PBS sampling can
be an appealing approach.

A requirement of the PBS network analysis method is to
consider random parcellations with roughly equal parcel size
(de Reus and van den Heuvel, 2013). The roughly equal parcel
size ensures the consistency of the multiple sampling so that the
variation of network properties comes solely from resampling
rather than size differences. It is challenging to generate equal-
sized parcels because of the irregularity of the cortical surface.
Previous random parcellation algorithms achieved the inter-
quartile range to median ratio of 0.77 (Fornito et al., 2010) and
0.52 (Echtermeyer et al., 2011), which is not satisfactory for this
purpose. We have developed a new algorithm to improve the
homogeneity of parcel size by taking account of the geodesic
distance between voxels and variation of voxel density across the
cortical area.

PBS network analysis using 400 random parcellation
generated from our new algorithm was exerted on the structural
network derived from diffusion MRI (dMRI). Basic statistical
properties were evaluated on some global network metrics.
The intra-class correlation coefficients (ICCs) were computed
accordingly and compared with template-based parcellations.
As one application, the PBS network analysis was employed
on the HCP resting state dataset to identify individuals
across scan sessions based on the mean FC (Finn et al.,
2015).
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MATERIALS AND METHODS

Random Parcellation
Segmentation was performed on a T1-weighted anatomical image
from the HCP with the FSL tool FAST (Zhang et al., 2001;
Smith et al., 2004). The gray matter mask was obtained by
setting the threshold of 0.5 on the probabilistic gray matter map.
Then random parcellation was performed on the gray matter
mask based on the algorithm described in (Zalesky et al., 2010).
The algorithm produces random parcellations by growing voxel
neighborhoods around a set of randomly selected voxel-seeds.
After randomly placing the first voxel-seed, all subsequent seeds
are placed in a deterministic manner by the distance measure
before growing neighborhoods iteratively. However, the distance
of the seeds in the original algorithm was computed based on
Euclidean distance. Because the cortical surface is very irregular,
using Euclidean distance as a measure to ensure that seeds are
evenly placed throughout the cortical surface results in large
parcel-size variation.

Here, we introduce a geodesic distance G(i,j), which is the
topological shortest path between voxels i and j, where such path
is restricted to traversing voxels within the gray matter surface.
The computation of geodesic distance can be converted to a
problem of calculating the path length of a weighted network, of
which each node is represented by a gray matter voxel and is only
connected to its spatially contiguous neighbors. The connection
weights between adjacent voxels are defined as follows: wij = 1
if voxels i and j share a face; wij =

√
2 if i and j share one side;

wij =
√

3 if i and j share a vertex. Hence, it is straightforward to
obtain the geodesic distance G(i,j) between any voxels by simply
calculating the corresponding path lengths between all node pairs
(voxels) of the network.

To minimize the variation in parcel size, we further weighted
the geodesic distance by local density of the voxels because higher
local density means less hindrance in growing the volume. Thus,
the distance in D(i,j) is finally defined as

D(i, j) =
2G(i, j)

L(i)+ L(j)
(1)

where L(i) is the sum of shortest-path lengths between voxel
i and its M nearest neighbors, and M is the expected
number of voxels within a parcel, given a specified number of
parcels N.

The parcellation algorithm was implemented in Matlab (The
Mathworks, Inc., Natick, MA, United States). To evaluate
the homogeneity of parcel size and compare with previous
random parcellation results, the algorithm was tested a
large range of number of nodes N = 125, 250, 500, and
1000. Two hundred repetitions were run for each value
of N, except for N = 250 nodes, where 600 repetitions
were run.

In addition, 400 random parcellation with 278 ROIs on
the MNI template were obtained for the network analysis in
Sections “Structural Network” and “Finger Printing of Functional
Network.” The parcellations were obtained from the same
cortical region of the Shen atlas fconn_atlas_150_2mm.

Structural Network
Forty-six subjects received two dMRI scans with one week apart.
The dMRI data were acquired on a 3.0 T TIM Trio scanner
using a 12-channel head coil. The imaging parameters were
as following: TR/TE = 8300/77 ms; 68 transversal slices with
isotropic 2 mm resolution; 48 diffusion directions with gradients
b= 1000 s/mm2, and eight samplings at b= 0. A high resolution
T1-weighted image was acquired with the MP-RAGE pulse
sequence (1 mm isotropic resolution, TR/TE = 2300/2.91 ms,
TI= 900 ms, FA= 9).

The dMRI data were processed with FSL and tractography was
computed using the FACT algorithm (Mori et al., 1999) using
Diffusion Toolkit1 as described previously in more detail (Cheng
et al., 2012).

The parcellation on the MNI template was warped to the
diffusion space with the help of the T1-weighted anatomical
image. As a result, the parcellation and the tractography were
coregistered. The structural network was constructed by defining
the weight of edges as the number the fibers connecting a pair of
nodes normalized by the mean volume of the two ROIs and the
mean fiber length between the two ROIs (Hagmann et al., 2007),
as described in Eq. 2:

wij =
2

ni + nj

∑
m

1
Lmij

(2)

where ni denotes the number of voxels in ROIi, Lmij denotes
the length of the mth fiber between ROIi and ROIj. To reduce
the effect of spurious fibers, a threshold of 10 fibers is set that
two nodes are not connected if the number of fibers between
them is smaller than 10. Four hundred networks were obtained
from random parcellation along with one network constructed
using the template-based parcellation. Six global network metrics
were computed including the average degree, mean strength,
mean clustering coefficient, global efficiency, modularity, and
mean diversity. We computed the variation of global network
metrics associated with the set of random parcellations, dMRI
scans, and subjects. The variation of global network metrics
from parcellation was simply the standard deviation of the
global metrics across 400 networks generated from the random
parcellations. The between scan variation was computed as

σBS =

√√√√ 1
M

M∑
i=1

(G1i − G2i)2 (3)

where M is the number of subjects, and
−

G
1i

is the mean global

metric of subject i from scan 1. The variation from inter-subject
difference was calculated as the standard deviation of the mean
global metrics across all subjects at scan 1.

We also used the ICC (Shrout and Fleiss, 1979) as an index
to compare PBS parcellation and template-based parcellation.
The ICC is a measure of how much between-subject variation
contributes to the total variance. For PBS analysis, there are two
ways to compute the ICC. The first method uses the mean value

1http://trackvis.org/
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of the global metrics for each subject/measurement; the second
method computes the ICC of each parcellation and then calculate
the mean ICC value. A tailed t-test was performed to compare
PBS using the mean and template-based parcellation using one
random parcellation. The ICC was also computed for the Shen
atlas.

Finger Printing of Functional Network
Resting state functional data from 87 subjects were downloaded
from the data release of the HCP (Q1 through Q3). Each
subject has two sessions of resting state fMRI scans: REST1
and REST2, which are one day apart. The dataset have been
preprocessed and normalized to the MNI template via non-
linear transformation. Using the random parcellation obtained
in Section “Random Parcellation” that shared the same cortical
space as the Shen atlas, FC was computed as the Pearson
pair-wise correlation between the time series of the nodes
after regressing motion parameters as well as signal from the
white matter and CSF, resulting a 278 × 278 matrix for each
parcellation. A template-based FC network constructed from
the Shen atlas was also obtained. The functional finger print
predicts a subject i in REST1 with ID 1i to be one of the
subjects in REST2 with ID 2k if the similarity between the
FC of ID1i and ID2j was maximized among all subjects in
REST2,

ID1i = ID2k, where k = arg max
k

similarity (ID1i, ID2k) (4)

The accuracy for the subject i in REST1 was calculated as
1 if ID1i = ID2i and 0 otherwise. Identifying individuals of
REST2 from REST1 is vice versa. In the work by Finn et al.
(2015), a correlation of the template-based FC matrices was
used as the measure of similarity. We propose a new measure
of similarity to take advantage of the PBS parcellation. Each
subject has 400 such FC matrices per session, and the mean
of the FC forms a vector of 400 elements. This vector was
named as the mean FC vector (mFCV). To use the FC as
a fingerprint to identify subjects across resting state fMRI
scans, we define the similarity as the cross-correlation of
the mFCV between subjects. As a comparison, we also used
the cross-correlation as similarity to calculate fingerprinting
accuracy with Shen atlas and single parcellation of PBS
sampling.

RESULTS

Random Parcellation
An example of a 250-node random parcellation generated with
our algorithm and the corresponding parcel-size distribution are
shown in Figure 1. The ratio of standard deviation to the mean
parcel size is 8.4%. Across all 600 trials, 95% of the parcel-sizes
are between 291 voxels and 413 voxels, and 99% of the parcel-
sizes are between 257 voxels and 434 voxels. If we define the
normalized maximum variation (NMV) as the biggest difference
in size of a parcellation, divided by the smallest parcel size, the

FIGURE 1 | An example of a random parcellation of 250 nodes generated
with our algorithm (inset) and the corresponding parcel-size distribution.

mean value is 79.3% across 600 repetitions, with the smallest
NMV of 38.8 and 87.7% of the trials resulting in NMV < 100%.
Table 1 summarizes some features of the distributions obtained
for different values of N. The inter-quartile range to median ratio
is 10% for 500 parcels and 12% for 1000 parcels, much smaller
compared to previous reported values of random parcellation
with 0.77 for 890 parcels (Fornito et al., 2010) and 0.52 for 813
parcels (Echtermeyer et al., 2011).

Structural Network
Statistical Distribution of the Global Metrics
The distributions of some network metrics from 400 trials of
the random parcellations with N = 278 are shown in Figure 2.
A Lilliefors test showed that the distributions are not significantly
different from a normal distribution. Table 2 listed variations
of six global network metrics associated with parcellation, along
with those between MRI scans, and those induced by inter-
subject variability. The parcellation-related variations are much
smaller for five of the six global metrics compared with within
subject differences and between subject differences.

Intra-Class Correlation Coefficient
The computed ICC results and statistics are listed in Table 3,
comparing different methods for six global network metrics.
For all global metrics, the ICC of the mean of global network

TABLE 1 | Characteristics of the random parcellation generated with our
algorithm.

Number of Parcel size Standard deviation Inter-quartile range

nodes (voxels) to mean ratio (%) to median ratio

125 725.7 ± 65.1 8.97 0.11

250 362.9 ± 30.6 8.43 0.10

500 181.4 ± 15.7 8.68 0.10

1000 90.7 ± 8.4 9.28 0.12
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FIGURE 2 | Example of the distribution of six global metrics from the PBS network analysis of one subject. The results were from 400 random parcellation networks.

TABLE 2 | Variation of six global network metrics associated with parcellation,
between MRI scans, and between subjects.

Parcellation Between scans Between subjects

Degree 0.274 0.934 0.975

Strength 9.12e-3 36.7e-3 42.3e-3

Clustering coefficient 0.328e-3 0.899e-3 1.07e-3

Global efficiency 0.451e-3 1.20e-3 1.38e-3

Diversity 18.2e-3 57.2e-3 55.5e-3

Modularity 10.5e-3 11.4e-3 9.78e-3

TABLE 3 | Comparison of ICC of different methods for six global network metrics.

ICC of mean Mean ICC p-Value ICC template

Degree 0.533 0.508 1.3e-23 0.322

Strength 0.657 0.639 1.8e-30 0.656

Clustering coefficient 0.630 0.585 1.2e-58 0.571

Global efficiency 0.639 0.594 6.6e-59 0.630

Diversity 0.383 0.360 1.0e-29 0.464

Modularity 0.175 0.094 1.1e-30 −0.049

ICC of mean is the ICC value when taking the mean value of global network metrics
from PBS for each subject. Mean ICC is the average ICC values of the network
metrics from individual parcellation. The p-value of the hypothesis that ICC of mean
is greater than the ICC with a template of random parcellation was calculated from
400 trials. ICC template is the ICC value from the Shen atlas.

metrics from PBS is always higher than the mean ICC computed
when taking each PBS sampling as one template. Five of the six
global metrics show higher ICC from PBS than using the Shen
atlas.

Fingerprint of Functional Network
Samples of 400 PBS were obtained for each subject per resting
session. Each PBS random parcellation generates a FC matrix
and the corresponding mean FC, an example of the distribution
of the mean FC from 400 PBS samples is shown in Figure 3A.
The standard deviation of this distribution for all subjects is
(2.05 ± 0.67) × 10−3 for REST1 and (1.89 ± 0.58) × 10−3

for REST2. The mean FC values of all subjects in REST1 and
REST2 along with their differences are plotted in Figure 3B.
Figure 3B shows that for some subjects, the mean FC value can
be dramatically different between REST1 and REST2, compared
with the mean standard deviation. Figure 4 displays the
correlation matrix of the inter-subject mFCV. This correlation
matrix represents the likelihood between subjects in terms of the
coherence of change of mean FC with parcellation. By searching
for the maximum value corresponding to row index or column
index, prediction accuracy is 0.885 from 1 to 2 and 0.897 from
2 to 1. The prediction accuracy is a function of the sampling
number as shown in Figure 5. As the number of samples is
decreased from 400 to 110, the accuracy drops to around 0.8.
This accuracy is comparable to the method directly comparing
network matrix from a single parcellation, as shown in Figure 6.
Using the Shen atlas, the prediction rate is 82.6% from REST2 to
REST1 and 83.7% from REST1 to REST2.

DISCUSSION

A new framework for network analysis is proposed based
on PBS sampling, implemented as the generation of multiple
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FIGURE 3 | Each pseudo-bootstrap random parcellation gives rise to a FC
matrix and a mean FC, an example of the distribution of the mean FC from
400 samples is shown in (A). The mean FC values of all subjects in REST1
and REST2 along with their differences are plot in (B).

FIGURE 4 | Correlation matrix of the inter-subject mean FC derived from the
Pearson pair-wise cross-correlation between the vectors of 400 mean FC
from Pseudo-Bootstrap samples. This correlation matrix represents the
likelihood between subjects in terms of the coherence of change of mean FC
with parcellation.

random parcellations on a single MRI volume. Because small
parcel-size variation across different samples (instances of a
random parcellation) is critical to ensure comparable network

FIGURE 5 | The prediction accuracy rate as a function of number of
pseudo-bootstrap samples.

FIGURE 6 | FC fingerprinting prediction accuracy rate based on the
correlation of FC from template-based parcellation. The template was drawn
from the PBS samples.

metrics across several parcellation trials, we propose a random
parcellation algorithm that can produce sets of random
parcellations with a given number of parcels with a small parcel-
size variability. The inter-quartile range to median ratio is around
0.10, significantly smaller than previous results: 0.77 (Smith et al.,
2004) and 0.52 (Echtermeyer et al., 2011). Another advantage of
this algorithm is that it generates the number of nodes exactly as
specified.

The impact of PBS on structural network highlights a lot of
information about the effect of parcellation on network metrics.
The PBS sampling resulted in a Gaussian-like distribution of the
global metrics, indicating that different parcellation can lead to
similar global metric values. Nonetheless, it is worth noting that
such values do vary. On the other hand, while the global network
properties of the structural brain network vary across different
repetitions of the equally sized random parcellations, we find
that the variability is small and comparable with inter-subject
variability and within-subject variations between dMRI scans.
Our results show that parcellation is only one source to variation
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of network properties. It is more critical to reduce variances
from measurements, fiber tracking, etc. The ICC shows that the
mean value of global metrics from PBS tests is larger than the
mean value of template-based parcellation. Although it does not
give the best ICC in general, it is better than a template-based
parcellation overall. Given the lack of a standard parcellation
scheme, the PBS sampling with random parcellation may be a
plausible method to perform network analysis.

Our results show that a higher prediction accuracy rate was
achieved for FC fingerprint with pseudo bootstrap parcellation
compared to template-based parcellation. The prediction rate, as
expected, is dependent on the number of samples. The results
suggest that random parcellation analysis opens a new window to
examine functional networks, which preserve some features that
are insensitive to resampling at certain scale. Each resampling can
be considered a coarse snapshot of the true FC network from
different angles. The coherences between snapshots is a unique
feature of FC fingerprinting that has never been explored before.
Only the mean FC strength was tested in this article, it does
not exclude other global network properties that are preserved
as well.

The PBS sampling with random parcellations is different from
the template-based parcellation. In fact, the parcels have neither
functional nor anatomical meanings but this lack of meaning
can be an advantage in that there is no risk of introducing false
assumptions or biases into the network model. On the other
hand, a template-based parcellation does not belong to the set
of PBS samples in general because the criteria to generate the
parcellation is completely different. An advantage of the PBS
approach is bringing rich statistical analysis on the networks
that addresses the variation of global network properties related
to parcellation. For instance, the distribution of global metrics
might be different for different subjects but similar for the same
subject. Unfortunately, the sample size was not high enough to
run any of the statistics effectively. Another advantage of PBS
over template-based parcellation is reducing the inter-subject
variability due to parcellation when comparing different subjects.
This can be clearly revealed by the fact that ICC of the mean is
higher than the mean ICC for all global networks and the p-values
of the tailed t-test that ICC from PBS using the mean is higher
than that from template-based parcellation using one random
parcellation are extremely low (Table 3).

Like most parcellation schemes, the random parcellation
algorithm proposed in this paper works in the 3D volume
space. A surface-based random parcellation has been proposed
previously in an attempt to build an atlas-free framework
for constructing and comparing connectomes (Tymofiyeva
et al., 2014). While that framework shares the same goal as
ours, a challenge of that method is the mandatory network
alignment prior to comparing connectomes. Network alignment
is a procedure to minimize the “distance” between networks
by reordering nodes. For small networks the alignment can
be achieved by simply permuting the nodes. However, this
approach is not practical when the size of network gets large
because the number of permutations is the factorial of the
number of nodes. The quality of alignment is subject to the
algorithm and computation time. In fact, the PBS concept can

be readily combined with the surface-based random parcellation
on individual level and there is no need to align the network for
comparing global network metrics.

One undesirable feature of the PBS methods is that
the computation time can be long. For individual subjects,
the computation time is a multiplication of the time to
generate each random parcellation and subsequent network
construction/analysis by the number of PBS samples. For group
analysis, one can use predefined random parcellations and the
multiple sampling only adds time in subsequent calculations. In
any case, the computation time is much longer than template-
based methods. However, with advancements in high-throughput
computing clusters and high-performance parallel computing, it
becomes less a problem in real application. In addition, more
work is needed for the optimization of PBS method. For instance,
what is he optimal parcel size? Because this method completely
ignores functional and anatomical information of the image data,
big parcels are usually not good representatives of network nodes;
but very small parcel size leads to less variability (an extreme case
is voxel-wise parcellation (Power et al., 2011)) of the network.
Moreover, the PBS sampling only varies in brain parcellation. As
shown from our data, the variation of the network metrics could
be affected more by other factors than random parcellations.
Hence, more sophisticated statistical methods are desired to
extract insights of intrinsic brain network properties from the
variation of the network metrics. The fingerprinting using the
PBS and correlation of mean FC is one example of making use
of the variations.

CONCLUSION

In summary, a new algorithm was proposed to obtain roughly
equal-sized random parcellations by considering the geodesic
distance between voxels and voxel density. By applying these
random parcellations to individual subjects multiple times, a
PBS of the network was obtained. One benefit of PBS network
analysis over conventional approaches based on template-based
parcellations is the higher ICC of global network metrics. An
application of PBS sampling on FC fingerprinting showed higher
accuracy than previous method using the correlation of the
FC matrices. While a golden rule for choosing brain network
nodes remains lacking, the results from our preliminary work
encourages a more thorough understanding of the statistical
nature of this method.
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Current rodent connectome projects are revealing brain structural connectivity with
unprecedented resolution and completeness. How subregional structural connectivity
relates to subregional functional interactions is an emerging research topic. We describe
a method for standardized, mesoscopic-level data sampling from autoradiographic
coronal sections of the rat brain, and for correlation-based analysis and intuitive display
of cortico-cortical functional connectivity (FC) on a flattened cortical map. A graphic
user interface “Cx-2D” allows for the display of significant correlations of individual
regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was
tested on an autoradiographic data set of cerebral blood flow (CBF) of rats that had
undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or
no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during
a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed
a rich functional reorganization of the brain in response to lesioning and exercise that was
not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned
rats showed diminished degree centrality of lateral primary motor cortex, as well as
neighboring somatosensory cortex—changes that were substantially reversed in lesioned
rats following exercise training. Seed analysis revealed that exercise increased positive
correlations in motor and somatosensory cortex, with little effect in non-sensorimotor
regions such as visual, auditory, and piriform cortex. The current analysis revealed that
exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation.
Cx-2D allows for standardized data sampling from images of brain slices, as well as
analysis and display of cortico-cortical FC in the rat cerebral cortex with potential
applications in a variety of autoradiographic and histologic studies.

Keywords: cerebral cortex, functional connectivity, brain mapping, exercise, motor training, Parkinson’s Disease,

dopamine, software

INTRODUCTION
Rodents are primary animal models for studying the mam-
malian brain. Recent rodent connectome projects have begun
to delineate anatomic connectivities of the rat and mouse brain
with unprecedented resolution and completeness [1–3]. These
connectome data clearly reveal rich and complex connectivity
architectures at the subregional/mesoscopic level. How subre-
gional structural connectivity relates to subregional functional
interaction is an emerging research topic. The importance
of subregional-level functional connectivity (FC) analysis is

highlighted by recent reports of FC-based functional segregation
within brain structures [4–6].

Correlation-based FC analysis quantifies the symmetrical
statistical association between individual brain regions [7].
Two methods have been broadly used for FC analysis: inter-
regional, cross-correlation analysis of time series data such
as blood oxygen-level dependent signals measured with func-
tional magnetic resonance imaging (fMRI), and inter-regional
correlation analysis of cross-sectional data such as regional
cerebral blood flow (rCBF) measured with positron emission
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tomorgraphy (PET). The latter has been applied to rodent func-
tional brain mapping data acquired with microPET, and autora-
diographic measurement of deoxyglucose uptake [8–10] and
rCBF [6, 11, 12].

Study of subregional FC requires data processing of large num-
bers of regions-of-interest (ROIs). Animal researchers working
with whole brain data sets reconstructed from tens to hundreds
of serial histologic sections often face the challenge of how best to
summarize data and allow for rapid exploration. We describe here
a simple approach for high-density, standardized ROI definition
and data extraction from autoradiographic coronal brain slices of
the rat. The method allows for correlational FC and graph theo-
retical analysis, between-group comparison, and intuitive display
of results in a flattened cortical map. Our software implementa-
tion “Cortex 2-Dimensional” (Cx-2D) was tested on a cerebral
autoradiographic perfusion data set of rats that had undergone
bilateral lesioning of the striatum, followed by 4 weeks of daily
aerobic exercise training or no exercise. Functional brain map-
ping was performed in animals walking on a treadmill. Effects of
lesioning and exercise on subregional FC were examined across
the cortical surface.

MATERIALS AND METHODS
We previously developed a software for the measurement, analysis
and display of rCBF data obtained from autoradiographic coronal
brain sections of the rat [13]. The earlier work focused on the ROI
selection, measurement and statistical analysis of between-group
differences in rCBF, while the current study adapted this software
for the analysis of FC between brain regions.

REGION OF INTEREST SELECTION
Details on the method of ROI selection can be found in our
prior publication [13]. In brief, using software written in Matlab
(The MathWorks, Inc., Natick, MA, USA), ROIs were sampled
on 8-bit digitized brain autoradiograms using two radial, hemi-
grid overlays, with rays spaced in 15◦ intervals from the midline
(Figure 1), sufficient to resolve multiple subregions within the
major cortical structures. Overlay of this template on each dig-
itized brain slice image allowed for measurement of the optical
density at locations in the cortical mantle in a standardized
manner across animals. Along each grid line that intersects the
cortical surface, the point of intersection was identified with an
algorithm that detects the edge on a binary “mask” based on
a threshold gray level in the original image [13, 14]. A square
ROI (default size 358 × 358 µm2) was placed along the ray
with its center 358 µm from the intersection point. After all
ROIs had been placed, the user was able to manually reposi-
tion the ROIs to avoid any artifacts that may have appeared
in any given brain slice. Mean optical density was measured
for each ROI in each slice (current dataset: 806 ROIs selected
in 34 coronal slices in each animal, 300-µm interslice distance,
beginning at 4.8 mm anterior to the bregma). For each corti-
cal ROI, a background ROI was automatically selected in close
proximity along the same radial grid line. The subtraction of the
mean optical density of each ROI from that of its corresponding
background ROI allowed for correction of potential inhomo-
geneities in the background. In the autoradiographs, a region

FIGURE 1 | Schematic of region-of-interest and background selections

in a single coronal brain autoradiographic slice as reported previously

[13].

with greater rCBF showed greater darkness but lower optical
density.

Data analysis and topographic mapping of results were per-
formed using a custom software program written in LabVIEW
(National Instruments Co., Austin, TX, USA). Required user
inputs included (a) the text file containing ROI optical density
data, (b) a file defining for each brain a reference slice with a dis-
tinct landmark (e.g., fusion of the anterior commissures across
the midline), based on which brain slices were aligned along the
anterior-posterior axis across all brains, and (c) a table identi-
fying for each bregma level the number of ROIs to be analyzed
(7–10 ROIs per hemisphere). The program also used a list of
brain-structure identifiers for each cell of the data matrices. These
identifiers were manually derived from the overlay of the radial
grids on the digitized images of the coronal brain sections from a
rat brain atlas [15].

For every brain, the global mean and standard deviation (SD)
were calculated for all ROIs in the data matrix. A Z-score trans-
formation [16] was performed to convert optical density data into
“normalized” representation of rCBF for each brain. This trans-
formation removed variations in the global mean between brains
of all groups created by global effects and systematic experimen-
tal errors. Therefore, the analysis did not account for any global
differences in tracer levels that could have been present between
experimental groups.

PAIRWISE INTER-REGIONAL CORRELATION AND DEGREE CENTRALITY
ANALYSIS
We applied inter-regional correlation analysis to investigate func-
tional connectivity in the LabVIEW program. This is a well-
established method, which has been applied to analyze rodent
brain mapping data of multiple modalities [6, 8–12, 17–20].
Correlations were calculated across subjects within a group, and
different from the within subject cross correlation analysis often
used on fMRI time series data [21–24]. Pearson’s correlation
coefficients between each pair of ROIs were calculated across
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FIGURE 2 | Degree of cortico-cortical functional connectivity.

Cortico-cortical functional connectivity degrees in animals receiving
(Continued)

FIGURE 2 | Continued

(A) sham treatment, (B) lesion without exercise, and (C) lesion with
exercise are color-coded and shown on a flattened map of the cortical
surface. The rows denote coronal sections, with ROIs represented by cells
and numbered starting from the midline. Right (R) and left (L) hemispheric
ROIs are shown on the left and right side of the figure, respectively.
Abbreviations [15]: A, amygdala; Au, auditory; Fr3, frontal cortex area 3; I,
insular; LEnt, lateral entorhinal; M1, primary motor; M2, secondary motor;
O, olfactory; P, parietal; Pir, piriform; RS, retrosplenial; S1BF, primary
somatosensory for the barrel fields; S1FL, forelimbs; S1HL, hindlimbs; S1J,
jaw; S1ULp, upper lip region; S2, secondary somatosensory; TeA, temporal
association; V1, primary visual; V2, secondary visual. Unlabel regions
represent transitional areas between two regions.

subjects within a group for all cortical ROIs. Significant corre-
lations (P < 0.05 without correction for multiple comparisons)
were interpreted as functional connections. For each ROI, we then
calculated degree centrality, which was defined as the number
of significant correlations (positive or negative) linking it to the
other ROIs. For each group, a flattened, topographic map for the
cortical surface was plotted with each cell representing an ROI
and the color of the cell coding the ROI’s degree. This allowed for
intuitive visualization of the degree metrics for all ROIs across the
cortical surface. Group differences in degree were interpreted in a
qualitative manner.

SEED ANALYSIS
To evaluate and compare the pattern of functional connectivity
of individual cortical ROIs over the cortical surface, correlations
of user-selected ROI seeds with all other ROIs were calculated
within each group and visualized on the flattened cortical map
with color-coded correlation coefficients. The threshold for sig-
nificance was set at P < 0.05.

TEST DATA SET
The software was tested on an autoradiographic perfusion data set
that mapped brain activation during a locomotor challenge in a
rat model of Parkinsonism with a 4-week aerobic exercise as inter-
vention. A whole-brain, voxel-based analysis of changes in rCBF
in this dataset has been previously reported by our group, and the
reader is referred to our publication for additional details [25].

Animal model
The protocol was approved by the Institutional Animal Care and
Use Committee (IACUC) of the University of Southern California
(Protocol #11121). The animal facility at this Institution is
accredited by the Association for Assessment and Accreditation
of Laboratory Animal Care (AAALAC). In brief, 3-month old,
male Sprague-Dawley rats were randomized into the following
groups: Lesion/Exercise (n = 12), Lesion/No-Exercise (n = 10),
and Sham/No-Exercise (n = 9). The number of animals reflects
data loss due to technical issues such as cryosectioning arti-
fact, freezer malfunction, and catheter occlusion in 3 animals.
Rats received stereotaxic injection of the dopaminergic toxin 6-
hydroxydopamine (10 µg 6-OHDA in 2 µL of 1% L-ascorbic
acid/saline, Sigma-Aldrich Co., St. Louis, MO, USA) at four
injection sites targeting the dorsal caudate putamen (striatum)
bilaterally (AP: +0.6, ML: ±2.7, DV: −5.1 mm, and AP: −0.4,

www.frontiersin.org December 2014 | Volume 2 | Article 72 | 59

http://www.frontiersin.org
http://www.frontiersin.org/Interdisciplinary_Physics/archive


Peng et al. Rodent subregional cortical functional connectivity

FIGURE 3 | Between-group differences in functional connectivity degree.

Differences in cortico-cortical functional connectivity degree between (A)

animals with bilateral striatal lesions and sham animals (Lesion/No

Exercise—Sham/No Exercise) and (B) lesioned animals with and without
exercise intervention (Lesion/Exercise—Lesion/No Exercise) are color-coded
and shown on a flattened cortical map. Abbreviations are as in Figure 2.

ML: ±3.5, DV: −5.5 mm), which resulted in ∼40% of bilateral
striatal volume affected, as well as a ∼30 and ∼38% loss in tyro-
sine hydroxylase optical density at the level of the striatum and
substantia nigra compacta, respectively, measured by immuno-
histochemical staining 7 weeks after the lesion. Sham-lesioned
rats received 4 injections of an equal volume of vehicle. To pre-
vent noradrenergic effects of the toxin, rats received desipramine
(25 mg/kg in 2 mL/kg bodyweight saline, i.p., Sigma-Aldrich Co.)
before the start of surgery [26].

Exercise training
Two weeks after the lesioning, animals assigned to the exercise
group were trained in a running wheel (36 rungs of 14.6 mm
diameter, 4.4◦ angular spacing, Lafayette Instrument, Lafayette,
IN, USA) for 20 min/day (4 sessions, 5 min each with 2-min
inter-session intervals), 5 consecutive days/week. No-exercise ani-
mals were handled and left in a stationary running wheel for
30 min/day. Animals were trained for 4 weeks using an individ-
ually adjusted, performance-based speed adaptation paradigm as
described [25]. Thereafter, rats received implantation of the right
external jugular vein cannula that was externalized dorsally in
the suprascapular region. Brain mapping studies occurred 4 days
postoperatively.

All animals were habituated to a horizontal treadmill for 4 days
prior to cerebral perfusion experiments. Each day, they were indi-
vidually placed on the stationary treadmill (single lane, L = 50,
W = 7, H = 30 cm) for 10 min followed by 3 min of walking at
8 m/min.

Functional brain mapping
On the day of the perfusion experiment, rats during treadmill
walking at 8 m/min received a bolus intravenous administration

of [14C]-iodoantipyrine (125 µCi/kg in 300 µL of 0.9% saline,
American Radiolabeled Chemicals, St. Louis, MO, USA), fol-
lowed immediately by the euthanasia agent (pentobarbital
50 mg/mL, 3 M potassium chloride). This resulted in cardiac
arrest within ∼10 s, a precipitous fall of arterial blood pres-
sure, termination of brain perfusion, and death. This approach
uniquely allowed a 3-dimensional (3-D) assessment of functional
activation in the awake, non-restrained animal, with a tempo-
ral resolution of ∼10 s and an in-plane spatial resolution of
100 µm2 [27, 28]. Wiping the treadmill with a 1% ammonia
solution between animals minimized olfactory cues. Brains were
removed, flash frozen at approximately −55◦C in methylbutane
on dry ice and serially sectioned for autoradiography (57 coro-
nal 20-µm thick slices, including the cerebellum with a 300-µm
interslice distance of which 34 slices were used for current anal-
ysis of the flattened cortex). Sections were exposed for 3 days at
room temperature to Kodak Biomax MR film in spring-loaded x-
ray cassettes along with 16 radioactive 14C standards (Amersham
Biosciences, Piscataway, NJ). Autoradiographs were digitized on
an 8-bit gray scale. CBF related tissue radioactivity was mea-
sured by the classic [14C]-iodoantipyrine method [29, 30]. In
this method, there is a strict linear proportionality between tissue
radioactivity and rCBF when the radioactivity data is captured
within a brief interval (∼10 s) after the radiotracer injection
[31, 32].

RESULTS
EFFECTS OF 6-OHDA LESIONING AND AEROBIC EXERCISE ON
CORTICO-CORTICAL FUNCTIONAL CONNECTIVITY NETWORK DEGREES
Sham animals during walking showed the highest FC degrees in
the anterior part of the primary motor cortex (M1) and in the
neighboring primary somatosensory cortex, particularly in the
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FIGURE 4 | Cortical functional connectivity of the M1 seed. Shown are
animals receiving (A) sham treatment, (B) lesion without exercise, and
(C) lesion with exercise. The seed is placed in the left anterior,

(Continued)

FIGURE 4 | Continued

primary motor cortical area (M1) at bregma AP + 3.6 mm (black cell on the
right side of each map). Each ROI is represented by a cell with its Pearson’s
correlation coefficient with the M1 seed color-coded. Positive and negative
correlations are denoted by red and blue colors, respectively. The critical
value of the correlation coefficient (R) for statistical significance (P < 0.05)
is denoted by a dot (•) placed on the R-value color scale. Abbreviations are
as in Figure 2.

jaw area (S1J, Figure 2A). Lesioned/no-exercise animals showed a
decrease in FC degrees in these motor and somatosensory regions
(Figure 2B). A map showing differences in FC degree between
the sham and lesioned/no-exercise rats (Figure 3A) revealed
widespread decreases in FC degree throughout M1, S1J, and the
upper lip region of primary somatosensory cortex (S1ULp), as
well as to a lesser extent in secondary somatosensory cortex (S2).
Increases in FC degrees were observed in the anterior and ventral
areas of the piriform (Pir) and olfactory/piriform transition cor-
tex, as well as in the auditory (Au), temporal association (TeA),
and posterior aspect of primary and secondary visual cortices
(V1, V2, Figure 3A). Exercise training of the lesioned animals
compared to lesioned/no-exercise rats resulted in an increase in
FC degree in the anterior M1 and secondary motor cortex (M2).
FC degree was also increased by exercise training in somatosen-
sory areas (S1J, S1ULp, S2), while decreases were apparent in
broad regions of V1, V2, and in the posterior-most aspect of M1
and M2 (Figure 3B).

SEED CORRELATION
Intra-structural correlation
We used seed correlation analysis to explore alterations in
the spatial pattern of FC of the regions showing the greatest
changes in FC degree following 6-OHDA lesioning and exercise
(Figures 4–6). In sham animals, a seed placed in the left M1
showed significant, bilateral, positive correlations with a large
number of other M1 ROIs (Figure 4), and similar intra-structural
(correlations between subregions within a brain structure) FC
patterns were found when a seed was placed in M2, S1ULp, V1,
V2, Pir or Au (Figures 5, 6, Table 1). Lesioned/no-exercise rats
showed a significant loss of these intra-structural positive cor-
relations, particularly in motor and somatosensory structures.
Exercise training in lesioned animals re-established many of the
intra-structural positive correlations that were lost after lesioning
in areas such as M1, M2, which in fact showed greater num-
bers of positive intra-structural correlations than those noted in
sham animals (Table 1). Similar observations were made when
seeds were placed at alternate subregions within the same brain
structure (data not shown).

Inter-structural correlation
Inter-structural correlation (i.e., correlations between subregions
of different brain structures) also showed disruption following
lesioning and recovery following exercise. For an M1 seed, lesions
resulted in a decrease in the number of significant positive corre-
lations with M2, frontal area 3 (Fr3), S1J, primary somatosensory
cortex of the forelimb (S1FL), S1ULp, and S2, whereas exercise in
lesioned animals increased the number of significant correlations
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FIGURE 5 | Cortical functional connectivity of the S1ULp seed. Shown
are animals receiving (A) sham treatment, (B) lesion without exercise,
and (C) lesion with exercise. The seed is placed in the left anterior part of the

(Continued)

FIGURE 5 | Continued

upper lip region of the primary somatosensory cortex (S1ULp) at bregma
AP +1.2 mm (black cell on the right side of each map). Each ROI is
represented by a cell with its Pearson’s correlation coefficient with the
S1ULp seed color-coded. Positive and negative correlations are denoted by
red and blue colors, respectively. The critical value of the correlation
coefficient (R) for statistical significance (P < 0.05) is denoted by a dot (•)
placed on the R-value color scale. Abbreviations are as in Figure 2.

with these structures. Importantly, the number of significant pos-
itive correlations for the M1 seed with M2, S1ULp and S2 was
equal or slightly greater than those noted in the sham animals
(Table 1). A similar picture was observed for the M2 seed in which
lesions decreased the number of significant positive correlations
with M1, Fr3, S1J, S1FL, S1ULp, and S2, and exercise increased the
number of significant correlations with these structures. For the
S1ULp seed, lesions decreased the number of positive correlations
with M1, Fr3, S1J, S1FL, and S2, which were increased following
exercise training (Figure 5, Table 1). Similar observations were
made when seeds were placed at alternate ROI locations within
the same brain structure (data not shown).

For the V1 seed, sham animals showed significant negative
correlations to M1, S1ULp, and S1J (Figure 6A). These connec-
tions were lost in lesioned/no-exercise animals (Figure 6B) and
remained absent in the lesioned/exercise animals (Figure 6C).
Similar observations were made for the Au and for the Pir seeds
such that lesions decreased FC with M1 and S1, which exercise did
not restore (data not shown).

DISCUSSION
While advances in the fields of human functional brain mapping
have rapidly been adopted in animal imaging, several limita-
tions remain in the application of fMRI and microPET for the
functional brain mapping of rodents. Limitations center around
spatial resolution, animal sedation [33–35] and animal restraint.
Classic autoradiographic and histologic methods retain an impor-
tant role as a means of examing whole brain functional activation
with high spatial resolution in the awake, non-restrained, behav-
ing rodent.

A dilemma faced by animal researchers working with autora-
diographic or histologic datasets is how best to present whole
brain data obtained from large numbers of consecutive brain sec-
tions. In the past, such data has been presented, either in table
format, as individual representative slices or as summary repre-
sentations on hand-drawn sketches. The current method and our
prior publication described a means for the compact display of
significant group differences of regional signal intensity (rCBF in
the current study) and their interregional correlation. Although
our method was described in relation to autoradiographic brain
slice images measuring cerebral blood flow, in principle, a corre-
lational analysis would be applicable to a wide range of modalities
that use quantitative brain slice images, such as autoradiographic
measurement of glucose uptake, immunohistochemical analysis
of protein expression, and analysis of gene expression with in
situ hybridization. In principle, the method for evaluating cortical
FC could also be applied to the reanalysis of a vast store of data
obtained from cryosections of the brain and published over the
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FIGURE 6 | Cortical functional connectivity of the V1 seed. Shown are
animals receiving (A) sham treatment, (B) lesion without exercise, and (C)

lesion with exercise. The seed is placed in the left primary visual cortex at
(Continued)

FIGURE 6 | Continued

bregma AP −6.6 mm (black cell on the right side of each map). Each ROI is
represented by a cell with its Pearson’s correlation coefficient with the V1
seed color-coded. Positive and negative correlations are denoted by red and
blue colors, respectively. The critical value of the correlation coefficient (R)
for statistical significance (P < 0.05) is denoted by a dot (•) placed on the
R-value color scale. Abbreviations are as in Figure 2.

past three decades. Most of this data has not examined functional
correlations between brain regions.

METHODOLOGIC ISSUES
We described a subregional, cortico-cortical functional connec-
tivity analysis toolbox for mapping data of the rat brain. The
advantage of the current approach to FC analysis was its unbiased,
semi-automated selection of large numbers of ROIs sufficient
to allow detailed mapping of subregional, functional segrega-
tion. The flatmap approach to result display provided an intuitive
interface to summarize FC findings across hundreds of ROIs.
The representation of a brain structure by multiple subregional
ROIs allowed for detection of FC differences that involve only a
portion of the structure. A future improvement of this method
might entail a whole-brain, voxel-based FC analysis, as has been
done in human neuroimaging studies [36]. Another improve-
ment might be to enable ROI definition and data extraction in
deep midline cortical structures, including the prelimbic, infra-
limbic, part of cingulate, and part of retrosplenial cortices. The
current framework of software allowed implementation of addi-
tional functionalities to address important functional connectiv-
ity issues. For example, flatmap display of FC could be restricted
to only crosshemispheric or intrahemispheric FC, to only positive
or negative correlations. More graph theoretical metrics of the
cortico-cortical FC network could be calculated besides degree.
The Cx-2D software could also be adapted for use in the mouse
brain.

Given the large number of ROIs, we did not attempt a cor-
rection for multiple comparisons. Interpretation of our data,
however, was not based on individual ROIs, but rather on patterns
of change across multiple ROIs across the topographic flatmap
display. Additional measures may contribute to the confidence
of effects detected in a data set. Such effects may be the pres-
ence of left–right symmetry for paradigms that are intrinsically
symmetrical (e.g., quadrupedal locomotion in a rat) and the cor-
respondence of clusters of significant ROIs within the boundaries
of known anatomical structures—both of which were the case for
our data. These cannot be easily quantified but increase the sig-
nificance of the current findings. Nevertheless, given the ongoing
spirited discussion of the need for corrections for multiple com-
parisons in neuroimaging data, our results should be considered
exploratory rather than definitive [37–39].

In our study, we applied autoradiographic perfusion mapping,
with FC calculated using cross-sectional data across subjects in
a group. As such, our analysis precluded evaluation of the tem-
poral dynamics of functional brain activation. Furthermore, it
is important to remember that while correlation-based analyses
provide information about functional connectivity, they do not
directly address causal relationships. It is possible that functional
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Table 1 | Total number of significant positive correlations of select cortical seeds with other cortical regions.

M1 SEED M2 SEED S1ULp SEED
Region Sham Lesion Lesion/Ex Sham Lesion Lesion/Ex Sham Lesion Lesion/Ex

M1 21 (39%) 5 (9%) 20 (37%) 10 (19%) 2 (4%) 19 (35%) 16 (30%) 1 (2%) 15 (28%)
M2 4 (7%) 15 (27%) 3 (5%) 3 (5%) 29 (52%) 1 (2%) 11 (20%)
M1/M2 1 (6%) 2 (12%) 1 (6%)
Fr3 8 (100%) 6 (75%) 4 (50%) 1 (12%) 6 (75%) 6 (75%) 1 (12%) 5 (62%)
S1J 15 (75%) 1 (5%) 6 (30%) 10 (50%) 1 (5%) 4 (20%) 12 (60%) 3 (15%) 12 (60%)
S1FL 11 (29%) 1 (3%) 8 (21%) 3 (8%) 9 (24%) 8 (21%) 1 (3%) 6 (16%)
S1ULp 10 (33%) 1 (3%) 12 (40%) 4 (13%) 1 (3%) 9 (30%) 11 (37%) 2 (7%) 3 (10%)
S2 1 (5%) 5 (23%) 6 (27%) 7 (32%) 7 (32%) 2 (9%) 3 (14%)
V1 1 (3%) 2 (5%) 1 (3%) 3 (8%) 1 (3%)
V2 2 (7%) 2 (7%) 6 (20%) 1 (3%)
Au
Pir 6 (10%) 1 (2%)

V 1 SEED Pir SEED Au SEED
Region Sham Lesion Lesion/Ex Sham Lesion Lesion/Ex Sham Lesion Lesion/Ex

M1 1 (2%) 2 (4%)
M2 1 (2%) 2 (4%)
M1/M2 3 (19%) 2 (12%) 1 (6%) 1 (6%)
Fr3 1 (12%)
S1J 1 (5%) 1 (5%)
S1FL 1 (3%) 4 (11%)
S1ULp 1 (3%) 1 (3%)
S2 4 (18%) 2 (9%) 1 (5%)
V1 4 (11%) 5 (13%) 4 (11%) 9 (24%) 3 (8%) 1 (3%)
V2 3 (10%) 1 (3%) 7 (23%) 4 (13%) 3 (10%)
Au 1 (2%) 1 (2%) 1 (2%) 2 (5%) 13 (30%) 20 (45%) 21 (48%)
Pir 11 (18%) 1 (2%) 20(32%) 6 (10%) 10 (16%) 6 (10%) 2 (3%) 3 (5%)

Left hemispheric seeds were chosen in primary motor cortex (AP +3.6 mm), secondary motor cortex (AP +4.5 mm), primary somatosensory cortex (upper lip region,

AP +1.2 mm), primary visual cortex (AP −6.6 mm), piriform cortex (AP −1.8 mm) and auditory cortex (AP −4.8 mm). Shown are the number of positive correlations

and their representation as a percentage of the total number of brain regions with the same region identifier (% rounded to nearest integer), with empty cells

indicating absence of significant correlation. Gray shaded cells show an increase in positive correlations of 11–20%, whereas black shaded regions show an increase

greater than 20%. Abbreviations are as in Figure 2.

connectivity may arise in the absence of a direct structural con-
nection, through indirect pathways or due to the influence of a
common factor. Finally, although positive and negative correla-
tions are generally interpreted as functional, neural interactions,
their exact neurophysiologic substrates are not completely under-
stood and may vary [6, 40, 41].

EFFECTS OF DOPAMINERGIC DEAFFERENTATION AND EXERCISE
TRAINING
The 6-OHDA basal ganglia injury rat model is a widely accepted
model of dopaminergic deafferentation, and while not captur-
ing all aspects of human Parkinson’s Disease (PD), parallels the
human disorder remarkably well [42]. Parkinson’s patients show
alterations in basal ganglia thalamocortical networks primarily
due to loss of nigrostriatal dopaminergic neurons. These changes
in subcortical networks lead to neuroplastic changes in motor cor-
tex, which mediates cortical motor output. Cortical functional
connectivity is impaired in PD subjects during the execution of
motor tasks [43–47] and may reflect underlying abnormalities in
cortical excitability [48]. The current cortico-cortical FC analysis
revealed findings not initially apparent from the standard analysis

of rCBF [25]. Lesions diminished much of the intra- and inter-
structural FC of anterior M1 and its neighboring anterior S1 that
was present in sham animals during treadmill walking. Decreases
in FC were also noted in M2, however, these were more patchy.
These changes were observed in the degree maps, and were con-
firmed using seed correlation of individual ROIs placed in M1
and S1ULp. The loss of FC across S1J, S1FL, S1ULp, and S2
was particularly apparent when only positive correlations were
examined (Table 1). Lesions resulted in an increase in FC degree
in dorsal areas of Au, TeA, Pir, and broadly across V1 and V2
(Figure 3B).

Exercise training in lesioned animals partially restored lesion-
induced loss in FC in M1 and its neighboring somatosensory
cortex, as well as in M2. This was noted both in FC degree and
in seed correlation, especially with regard to positive correlations.
These findings were consistent with recent reports in human
subjects demonstrating increases in FC of the motor cortex fol-
lowing several minutes [49, 50] or 4 weeks of motor training [51].
Exercise-induced restoration of FC of the sensorimotor struc-
tures may be mediated by neuroplastic changes in motor circuits
[52, 53], or normalization of corticomotor excitability [54].
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CONCLUSION
In summary, dopaminergic deafferentation of the striatum in the
rat lead to diminished intra- and inter-structural positive corre-
lations in motor and somatosensory cortex. Such abnormal sen-
sorimotor integration has been well documented in Parkinson’s
disease patients [55–57]. The altered FC in the sensorimotor
structures may underlie such abnormality in our Parkinsonian
rats. The disruption of cortical FC of the motor and sensory
structures was partially normalized by 4 weeks of aerobic exer-
cise training. The software Cx-2D enabled standardized, subre-
gional ROI data extraction, functional connectivity and simple
graph theoretical analysis, as well as intuitive display of FC find-
ings. The subregional-level FC analysis and visualization in a
flattened cortical map facilitated between-group comparison, as
well as comparison of cortico-cortical FC with cortico-cortical
anatomic connectivity as has been previously revealed by oth-
ers [3]. Organizational principles learned from animal models at
the macro- and mesoscopic level (brain regions/subregions and
pathways) will not only inform future work at the microscopic
level (single neurons and synapses), but will have translational
value to advance our understanding of human brain structure and
function in health and disease.
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Objective: Exploring resting-state functional networks using functional magnetic

resonance imaging (fMRI) is a hot topic in the field of brain functions. Previous studies

suggested that the frequency dependence between blood oxygen level dependent

(BOLD) signals may convey meaningful information regarding interactions between brain

regions.

Methods: In this article, we introduced a novel frequency clustering analysis method

based on Hilbert-Huang Transform (HHT) and a label-replacement procedure. First, the

time series from multiple predefined regions of interest (ROIs) were extracted. Second,

each time series was decomposed into several intrinsic mode functions (IMFs) by using

HHT. Third, the improved k-means clustering method using a label-replacement method

was applied to the data of each subject to classify the ROIs into different classes.

Results: Two independent resting-state fMRI dataset of healthy subjects were analyzed

to test the efficacy of method. The results show almost identical clusters when applied

to different runs of a dataset or to different datasets, indicating a stable performance of

our framework.

Conclusions and Significance: Our framework provided a novel measure for

functional segregation of the brain according to time-frequency characteristics of resting

state BOLD activities.

Keywords: fMRI, HHT, frequency, clustering, IMF

INTRODUCTION

Exploring resting-state functional networks using functional magnetic resonance imaging (fMRI)
is a persistent topic in the research field of brain functions (Raichle et al., 2001; Damoiseaux
et al., 2006; De Luca et al., 2006). From a perspective of examining the features of the signal, the
conventional functional network analysis methods may fall into two categories: (1) the time-based
methods, such as temporal correlation (Fox et al., 2005; Fransson and Marrelec, 2008; Lowe, 2010;
Van Den Heuvel and Pol, 2010), regional homogeneity (ReHo) (Zang et al., 2004), independent
analysis method (ICA) (De Luca et al., 2006; Calhoun et al., 2009), and Bayesian network analysis
(Li et al., 2011; Wu et al., 2011), and (2) the frequency-based methods, such as low-frequency
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fluctuation (ALFF) analysis (Yang et al., 2007), coherence analysis
(Salvador et al., 2005), total interdependence analysis (Wen et al.,
2012), and phase relationship analysis (Sun et al., 2005).

The time-based methods are usually convenient and effective
in examining the point-to-point relationship between regional
blood oxygen level dependent (BOLD) signals. Recent studies
suggested that the frequency dependence between BOLD signals
may also convey meaningful information regarding interactions
between brain regions (Wen et al., 2012; Yu et al., 2013; Wei
et al., 2014). In a recent fMRI study (Song et al., 2014), a ReHo
based frequency clustering analysis framework was introduced
for resting-state fMRI analysis. The BOLD time series of each
voxel was decomposed into several frequency components using
empirical mode decomposition (EMD), and the ReHo values of
the components were used as features for clustering the voxels
based on similar frequency-specific ReHo signature. The forging
studies indicated that analyzing time-frequency characteristics is
equally important for comprehensively exploring how different
brain systems/sub-systems coordinate.

One challenge of further extracting the time-frequency
characteristic in frequency clustering analysis is time-frequency
representation of fMRI signals. In many previous studies, the
time-frequency characteristics of fMRI time series were usually
measured using short-time Fourier transform (Mezer et al.,
2009) or wavelet transform (Bullmore et al., 2001; Shimizu
et al., 2004) which always assume the linearity or stationarity
of input signals (Huang and Shen, 2005). However, BOLD
time series may not conform to these assumptions (Lange
and Zeger, 1997). Furthermore, constrained by the Uncertainty
Principle (Robertson, 1929), most of the traditional time-
frequency methods are limited in providing both high temporal
resolution and high frequency resolution at the same time.

HHT is a novel time-frequency method suitable for both
non-linear and non-stationary signals. Its application to
electrophysiological studies has demonstrated its efficay in
providing fine expressions of instantaneous frequency (Huang
and Shen, 2005; Peng et al., 2005; Donnelly, 2006; Huang and
Wu, 2008; Huang et al., 2008). For example, HHT has been
successfully applied in EEG-based seizure classification (Oweis
and Abdulhay, 2011), detection of spindles in sleep EEGs (Yang
et al., 2006), and ECG de-noising (Tang et al., 2007). However, its
application in fMRI studies is rare.

Other challenges in time-frequency analysis based frequency
clustering analysis voxel-wised analysis at different frequency
bands may demand great amount of calculation. Furthermore,
in the stage of clustering analysis, the labels of the clusters change
randomly across analyses (Mezer et al., 2009), causing difficulty
in cross-condition/datasets comparisons.

In this article, we introduced a novel frequency clustering
analysis method based on HHT and an improved k-mean
clustering method using label-replacement procedure. In our
framework, first, the time series from multiple predefined
regions of interest (ROIs) [i.e., 90 ROIs defined by the
Automated Anatomical Labeling (AAL) template Tzourio-
Mazoyer et al., 2002] were extracted. Second, each time
series was decomposed into several intrinsic mode functions
(IMFs) of which the instantaneous frequency characteristics
were subsequently calculated using HHT. Third, the improved

k-means clustering method using a label-replacement method
was applied to the data of each subject to classify the ROIs into
different classes. To test the efficacy of our frequency clustering
analysis method, two independent resting-state fMRI data sets of
healthy subjects (198 subjects in Dataset I; 88 subjects in Dataset
II) were analyzed. The results demonstrated that for different
dataset, our method generated stable clusters of the brain regions
according to time-frequency characteristics of their resting state
BOLD activities.

MATERIALS AND METHODS

fMRI Data Acquisition
In this study, we used a resting-state fMRI dataset (Dataset I)
provided by the open source website of “1,000 Functional
Connectomes’ Project” (http://www.nitrc.org/projects/fcon_
1000/). The dataset included functional and structural MR
images recorded from 198 healthy subjects (18–26 years
old, 122 females) by Yu-Feng Zang (Song et al., 2014). No
subject had a history of neurological, psychiatric or medical
conditions. Written informed consents were given to all subjects
in accordance with Institutional Review Board guidelines and in
compliance with the Declaration of Helsinki.

The scanning was performed using a 3.0-Tesla scanner
(Siemens TRIO TIM, Munich, Germany). The subjects were
instructed to rest with their eyes closed, keep their heads still, and
not to fall asleep. A gradient echo T2∗-weighted EPI sequence
was used for acquiring resting state functional images with the
following parameters: TR = 2,000 ms; TE = 30 ms; 33 slices;
matrix size= 64× 64; FOV= 240× 240 mm2 acquisition voxel
size= 3.75× 3.75× 3.50 mm3; 225 volumes.

In order to verify the stability of the results, an independent
resting-state data set (Dataset II) was also analyzed. Dataset
II was collected from 88 healthy young right-handed college
students (19–26 years old, 44 females) performing eyes-closed
resting state task. The scanning was performed using a 3.0-Tesla
Siemens whole-body MRI system in Brain Imaging Center of
Beijing Normal University. All subjects were given the written
informed consents before scanning. No subject had a history
of neurological, psychiatric, or medical conditions. The scan
was performed during a resting-state condition. The detailed
parameters used were as follows: TR = 2,000 ms; TE = 30
ms; 33 slices; matrix size = 64 × 64; FOV = 240 × 240 mm2

acquisition voxel size = 3.13 × 3.13 × 3.60 mm3; 145 volumes.
The experiment was approved by the Institutional Review Board
of the Beijing Normal University.

Image Preprocessing
In current research, the images were analyzed using SPM8
(http://www.fil.ion.ucl.ac.uk/spm). For each subject, the original
first five functional volumes were removed to avoid the possible
disturbance caused by non-equilibrium effects of magnetization.
The remaining functional images (220 in Dataset I; 140 in
Dataset II) were corrected for slice timing, motion corrected,
and spatially normalized into a Montreal Neurological Institute
(MNI) space using the standard EPI template (Evans et al., 1993).
The normalized image had 61 slices, a matrix size of 61× 73, and
a voxel size of 3 mm× 3 mm× 3 mm. No translation or rotation
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movement in any data set exceeded ±2 mm or ±2 degree. The
data had originally been “cleaned” through the use of confound
regressors derived from CSF and white matter masks, as well as
head motion parameters. The linear trend was regressed out for
each voxel’s time course to remove signal drifts caused by scanner
instability or other factors. The time course of each voxel was
normalized by subtracting the temporal mean and dividing by
the temporal standard deviation. After preprocessing, for each
subject and for each of the 90 regions of interest (ROIs) defined
using the AAL template (Tzourio-Mazoyer et al., 2002), an ROI
time course was extracted by averaging the time courses of all
voxels in the ROI.

Using Hilbert-Huang Transform (HHT) to
Acquire Instantaneous Frequency and
Hilbert Weighted Frequency (HWF)
The forgoing ROI time courses were fed into HHT to acquire
instantaneous frequency and HWF feature. The HHT consists
of three main processes. First, major IMFs are extracted from
the input signal based on empirical mode decomposition (EMD).
Second, Hilbert transform is applied to each IMF to obtain the
analytic transform of the original signal. Last, the instantaneous
frequency is calculated according to the analytical transform of
each IMF (Huang and Shen, 2005; Huang and Pan, 2006; Ding
et al., 2007) and the Hilbert weighted frequency (Xie and Wang,
2006) of each IMF is calculated according to the instantaneous
frequency of the IMF. The detailed descriptions of each step are
as follows:

(1) Empirical mode decomposition

The EMDmethod (Huang and Shen, 2005) decomposes an input
signal into a finite set of intrinsic oscillatory components, namely,
the IMFs. Mathematically, for fMRI time series, EMD generates
a set of IMFs and a monotonic residue signal r(t):

x(t) =

N
∑

i= 1

IMFi(t) + r(t), (1)

where N is the number of the IMFs.
Each IMF must satisfy two conditions:

(i) Along the time course of the IMF, the number of the local
extrema and the number of zero crossings are either equal or
differ by one;

(ii) The sum of the envelope defined by the local maxima and
the envelope defined by the local minima is constantly zero.

To extract IMFs using EMD, an iterative method known as the
sifting algorithm is used as follows:

Step 1: Find the local extrema of the input signal;
Step 2: Use interpolation to generate the lower envelope elow(t)

and the upper envelope eup(t) of the current signal
according to the local minima and local maxima
respectively;

Step 3: Calculate the local mean time course emean(t):

emean (t) =

eup(t) + elower(t)

2
, (2)

Step 4: Obtain the “oscillatory-mode” r(t) = x(t)− emean(t);
Step 5: If r(t) satisfies the stopping criteria (the two conditions

of IMF), IMFi = r(t) becomes an IMF, otherwise set
x(t) = r(t) and repeat the process from Step 1.

To obtain remaining IMFs, the same procedure is applied
iteratively to the residual r(t) = x(t) − IMFi(t) until r(t) is
monotonic.

(2) Extracting instantaneous frequency using Hilbert transform.

Hilbert transform was used to extract the instantaneous
frequency of each IMF. For signal x(t), its Hilbert transform y(t)
is defined as:

y(t) =
P

π

+∞
∫

−∞

x(τ )

t − τ
dτ , (3)

where P is the Cauchy principal value (Surhone et al., 2013).
Hilbert transform is capable of describe the local properties of
x(t) (Peng et al., 2005). The analytic transform of z(t) x(t) is
defined as:

z(t) = x(t) + iy(t) = a(t)eiϕ(t), (4)

a(t) =

√

[x2(t) + y2(t)], (5)

ϕ (t) = arctan

(

y(t)

x(t)

)

, (6)

where a(t) is the instantaneous amplitude, and ϕ (t) is the
instantaneous phase. The instantaneous frequencyω(t) is defined
as the time derivative of ϕ (t):

ω(t) =
dϕ(t)

dt
. (7)

(3) Hilbert weighted frequency (HWF) based on instantaneous
frequency

The Hilbert weighted frequency (Xie and Wang, 2006) of each
IMF is also calculated based on the instantaneous amplitude and
phase to reflect the mean oscillation frequency of the IMF. The
HWF(j) of the jth IMF is defined as:

HWF(j) =

m
∑

i=1
ωj(i)a

2
j (i)

m
∑

i=1
a2j (i)

, (8)

where ωj(i) is the instantaneous frequency, aj(t) is the
instantaneous amplitude, andm is the number of time point.

Identify the Brain Networks Using k-means
Clustering Analysis Based on HWF
Characteristics
In order to identify the brain regions sharing common
instantaneous frequency characteristics, we employed k-means
clustering analysis to the two resting-state datasets respectively.
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In each analysis, the 90 ROIs were classified into different clusters
based on the HWF feature vectors each of which comprised the
first five HWFs. For each feature vector, each HWF form all
subjects was concatenated to yield a group feature vector for
the following analysis. The clustering analysis was performed for
different k from 1 to 90. The squared Euclidean distance index
(Mezer et al., 2009) for different k values was plotted as a function
to determine the appropriate k.

Label-Replacement Method to Improve
k-means Clustering Analysis
In conventional k-means clustering analysis, the labels of each
cluster are unordered due to random initialization of the
algorithm which hinders the compare between conditions and
datasets. The first impede caused by the randomization is that
the label of a cluster, of which the spatial structure changes little,
may change dramatically from run to run even for the same
condition in the same dataset. For example, some brain regions
are classified into a cluster labeled as “1” in one run, and into the
same cluster but labeled as “2” in another run. In this study, we
proposed a method for sorting the label of clusters. The method
composed of two steps: (1) label-sorting and (2) label-matching.
In label-sorting, a hash table (Maurer and Lewis, 1975) was used
to improve the computing efficiency. The detailed process was as
follows:

Step 1: Obtain an unordered label table (ULT(i)) according to
the raw results of k-means clustering.

Step 2: A hash table (Hash(i)) is constructed to record the labels
in turn.

Step 3: If the label is not found in Hash(i); add the label to
Hash(i) and record the order by Lab If the label already
exists in Hash(i); replace the label of ULT(i) by Lab;
update Lab and return to Step2.

A sorted label table (SLT(n)) is constructed by the follow process
(shown in Figure 1):

In this part, the hash table is used to record a new label of
each ULT(n). In each repetition, the algorithm searches the hash
table to decide whether the unordered label needs to be replaced.
After label-sorting, the ULT(i) was sorted in the order of brain
regions (AAL).

The second impede caused by the randomization is that label
may change across different conditions/datasets. That is, for
the same cluster, its label within one condition/dataset could
be different from that in another condition/dataset, making it
hard to compare between different groups or between different
conditions. This could be even worse when the cluster changes
slightly across conditions/dataset. Therefore, we developed
a label-matching method besides the forgoing label sorting
method. The basic idea is that use the label setting of one of
the condition/dataset as a reference, then go through the target
clusters of another condition/dataset, when a target cluster share
a similar spatial pattern with a reference cluster, the label of this
reference cluster is assigned to the target cluster.

The detail of matching the target and the reference cluster is
as below (shown in Figure 2).

FIGURE 1 | The process of label-sorting algorithm.

RESULTS

For each dataset, BOLD time series from the 90 ROIs defined
by AAL template were extracted. First, EMD was applied
to decompose the BOLD time series into different frequency
components. The EMD outcome of both datasets showed that the
BOLD signals could be decomposed into five major IMFs (please
see examples in Figure 3).

In order to determine the number of IMFs which were self-
adaptive decomposed from fMRI signal, the EMD of each vowel
in each subjects were calculated.

According to the results (Figure 3), most of the voxels have
at least 5 IMFs. Therefore, in our study, the first 5 IMFs were
selected for the following analysis (an example of EMD was
shown in Figure 4, left panel).

Second, the instantaneous frequency of each major IMF
was calculated using Hilbert transform and its corresponding
power spectrum was calculated. The results demonstrate that
the instantaneous frequency of the IMFs varies across frequency
bands centered by different dominant frequency from low
(around 0.01 Hz) to high (around 0.12 Hz) (please see the
example in Figure 4).

Third, the HWF of each major IMF was calculated. The
histograms of HWF distributions in the whole brain across
all subjects showed that the major IMFs occupy certain
frequency bands: IMF1, 0–0.01Hz; IMF2, 0.005–0.015Hz; IMF3
0.01–0.03Hz; IMF4, 0.03–0.07 Hz; and IMF5, 0.08–0.18Hz
(Figure 5).
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FIGURE 2 | The process of label-matching algorithm.

FIGURE 3 | Histogram of the number of IMF.

The first five HWF of each ROI were selected as the features
for k-means clustering analysis. For selecting the appropriate
parameter (k), k-means clustering analysis was repeated for
different k from 1 to 90 (shown in Figure 6). Then the clusters
were evaluated using a squared Euclidean distance index (Mezer
et al., 2009) and the appropriate parameter, k = 20, was selected
for each subject.

A comparison of the stability of before and after label-sorting
method was shown in Figure 7. After label-sorting, the results of
cluster were sorted in the order of brain regions.

The results of the two datasets show almost identical clusters
of the ROIs and a comparison of the results of before and after
label-replacement (shown in Figure 8).

DISCUSSION

In this study, we presented a new frame work for brain region
clustering based on HHT method and an improved k-mean
clustering method adopting cluster label sorting, and applied the
frame work to analyzing two independent resting-state fMRI data
sets of healthy subjects (198 subjects in Dataset I; 88 subjects in
Dataset II). The results showed that our method is efficacy in
functional segregation based on time-frequency characteristics of
resting state BOLD activities.

Applying Hilbert-Huang Transform to
BOLD Signal Analysis
In our study, HHT was introduced to frequency clustering
analysis of resting-state fMRI. The advantage of using HHT is
mainly based on two features of the fMRI data. First, previous
studies have shown that the fMRI data may not strictly conform
to the assumptions of linearity and stationarity (Lange and
Zeger, 1997). Compared with traditional time-frequency analysis
method such as wavelet transform, short-time Fourier transform,
HHT can be directly applied to the non-linear or non-stationary
signals. Second, the fMRI signals mainly record the slow BOLD
change in low sampling intervals around 1–3 s. Traditional time-
frequency methods constrained by the Uncertainty Principle
(Robertson, 1929) are limited in providing both high temporal
resolution and high frequency resolution at the same time. While
many previous studies have shown that HHT does not suffer
from the trade-off between frequency resolution and temporal
resolution (Peng et al., 2005; Donnelly, 2006; Huang and Wu,
2008) and thus may be a suitable candidate for time-frequency
representation of the fMRI signals. Our results show that HHT
can represent the fMRI signals in both high temporal resolution
and high frequency resolution.

Number of IMFs in Empirical Mode
Decomposition
EMD method, as an important part of HHT, is a local, fully
data driven and self-adaptive analysis approach. The results
of EMD show that different brain voxel/regions may contain
multiple IMFs, the number of IMF voxels may affect the efficacy
of clustering in the features space. On one hand, too small
number of IMFs may quicken the processing but provides
inadequate information to describe the functional significance
of the clusters. On the other hand, too larger number of IMFs
may impede the clustering progress. In our method, the number
of IMFs was determined by picking up the number that present
in most of the brain voxels (Figure 3). The HWF of each
IMF was determined using instantaneous amplitude and phase
information to reflect the mean oscillation frequency of the
IMF. Previous research has shown that HWF has clear physical
meaning and has low variability in terms of robustness (Xie
and Wang, 2006). Therefore, the HWF of the first five IMFs
were calculated to construct the feature vector. And then, the
histogram of HWF was also calculated (shown in Figure 5) to
show the mean frequency distribution of the five IMFs. Each
of the five histograms is a statistic of the whole-brain voxels.
Since the frequency content of different voxels at different sites
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FIGURE 4 | The example of IMFs (blue), instantaneous frequency (green) and corresponding power spectrum (red).

FIGURE 5 | The histograms of HWF.

of the brain (and subjects) are roughly similar, the same IMF
(IMF(j), j = 1, 2, 3, 4, 5) from any voxel will roughly fall into
the same frequency band. These results suggest that EMD works
well in adaptively decomposing the fMRI signals into different
IMFs that fall into distinctive frequency bands and is a promising
method for non-stationary and non-linear neurological signal
processing.

Label-Sorting for k-means Clustering
In previous frequency clustering analysis, k-means clustering
method has been applied to resting-state fMRI network analysis
(Song et al., 2014) and generates meaningful results. However,
in the previous work, the labels of the clusters were randomly
assigned and changed from analysis to analysis, making it hard
to compare between conditions/datasets. Our study presents
a label-sorting method which uses Hash table to obtain an
ordered and stable clustering result across different runs of
analysis within a condition/dataset, and further a cluster-label
matching method to deal with cluster matching and label

FIGURE 6 | Selection of cluster number (k).

assignment across conditions/datasets. The verification results
showed almost identical clusters no matter when the method
was applied to different runs of a dataset or to different datasets,
indicating a stable performance of our framework (Figures 7, 8).
It is worth noting that when condition or dataset changes,
the spatial representation of an underlying brain cluster may
also change in some extends according to the real scenario.
A careful visual inspection for potential unmatched cluster and
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FIGURE 7 | A comparison of the stability of before and after

label-sorting method in each run.

FIGURE 8 | The k-means frequency clustering analysis of two

independent fMRI data sets and a comparison of clusters of before

and after label-replacement.

label caused by dramatic brain change between conditions or
subject groups is recommended besides our frame work. The
change itself, if significant, could deliver meaningful clinical,
neurological and psychophysiological information.

Selecting the Regions of Interest
It is worth noting that using AAL template or for ROI selection
is not part of the major line but an alternative module of our
frame work. In the current study we used the classical AAL
template for ROI selection to demonstrate the performance of
our method. However, AAL template is defined anatomically.
The current work only clustered the known anatomical structures
function similarly on frequency domain. Indeed, the AAL ROI
template can be replaced by other ROIs or voxels according
to the interest of the researchers. The ROIs can be a set of

task-activated sites with their intrinsic relationship to be clarified,
or a set of anatomically defined structures. The analysis can
also be performed in a whole-brain or partial-brain voxel-wise
fashion.

Limitation of the Current Work
In the current work, the data driven process introduce five
IMFs referring to different frequency bands. The IMF 5 was
corresponding to a frequency band of 0.08∼0.18 Hz which
had been excluded in most of the previous resting state
functional connectivity analysis. It is a nontrivial question that
what information the higher frequency bands of BOLD change
provide. Although, faster neural electrophysiological activities
have been found in higher order regions such as the frontal lobe
and were proposed to carry important cognitive meanings (Lang
et al., 1986), the neurocognitive meaning of the higher frequency
components of BOLD which were usually considered as noise in
many previous functional connectivity studies is under debate
(Michels et al., 2010; Boubela et al., 2013). Understanding the
neurocognitivemeanings of the clustering results requires further
careful works in the future.

CONCLUSION

In this study, a novel frequency clustering analysis method based
on HHT and a label-replacement procedure was introduced.
First, the ROI time series were extracted. Second, each time
series was decomposed into several intrinsic mode functions
(IMFs) by using HHT. Third, the improved k-means clustering
method using a label-replacement method was applied to the
data of each subject to classify the ROIs into different classes.
Two independent resting-state fMRI dataset of healthy subjects
were analyzed to test the efficacy of method. The results showed
that for different dataset, our method can stably cluster the brain
regions according to the time-frequency characteristics of their
resting state BOLD activities.
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Primary blepharospasm (BPS) is a focal dystonia characterized by involuntary blinking
and eyelid spasms. The pathophysiology of BPS remains unclear. Several neuroimaging
studies have suggested dysfunction of sensory processing and sensorimotor integration,
but the results have been inconsistent. This study aimed to determine whether patients
with BPS exhibit altered functional brain connectivity and to explore possible correlations
between these networks and clinical variables. Twenty-five patients with BPS and
25 healthy controls were enrolled. We found that the patient group exhibited decreased
connectivity within the sensory-motor network (SMN), which involved regions of the
bilateral primary sensorimotor cortex, supplementary motor area (SMA), right premotor
cortex, bilateral precuneus and left superior parietal cortex. Within the right fronto-
parietal network, decreased connections were observed in the middle frontal gyrus,
dorsal lateral prefrontal cortex and inferior frontal gyrus. Regarding the salience network
(SN), increased connectivity was observed in the left superior frontal gyrus and middle
frontal gyrus. These findings suggest the involvement of multiple neural networks in
primary BPS.

Keywords: blepharospasm, focal dystonia, resting-state fMRI, independent component analysis, sensorimotor
integration, right fronto-parietal network, salience network

INTRODUCTION

Primary blepharospasm (BPS) is a type of focal dystonia that is characterized by persistent or
intermittent excessive involuntary blinking and eyelid spasms and has a disabling effect on work
and everyday activities and may cause social embarrassment and catastrophic traffic accidents.
While the symptomatology of BPS is well defined, its pathophysiology remains unknown. Current
theories about the pathophysiology of dystonia are largely based on studies of focal hand dystonia
(FHD). Despite some clinical overlap and electrophysiological similarities, the pathophysiology of
BPS is likely to be different (Battistella et al., 2017).

Although BPS is classified as a movement disorder, various non-motor symptoms have been
reported, including sensory deficits (such as dry eyes, photophobia and eye pain), emotional deficits
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(such as depression and anxiety) and cognitive deficits (Hall
et al., 2006; Alemán et al., 2009; Emoto et al., 2010; Fontenelle
et al., 2011; Peckham et al., 2011; Hwang, 2012; Huang et al.,
2015). In a previous study, we found that 73% of the patients
had emotional incentives (such as high pressure at work, life
stress and death of relatives) before onset (Huang et al., 2015),
and 86% of them experienced ‘‘sensory tricks’’. Sensory tricks
are a characteristic sensory phenomenon of BPS, and this
term refers to the use of tactile stimuli to relax the involved
muscles. The mechanism of sensory tricks is speculated to
modulate abnormal sensory-motor processing. Recent magnetic
resonance imaging (MRI) and electroneurophysiology studies
have mapped selected components of neural networks in patients
with BPS, with the cumulative evidence suggesting that BPS
may represent a network disorder (Dresel et al., 2011; Suzuki
et al., 2011; Battistella et al., 2017). Task-related network changes
in BPS were related to the sensorimotor network (SMN),
including the primary and secondary somatosensory regions
(Dresel et al., 2011). A structural neuroimaging study has
reported the involvement of the bilateral sensorimotor cortex and
anterior cingulated cortex (Suzuki et al., 2011). Another study
examining resting state networks in patients with BPS suggested
decreased functional connection within the sensorimotor and
frontoparietal networks (Battistella et al., 2017).

In recent years, functional magnetic resonance imaging
(fMRI) has been accepted as an effective tool to investigate
changes in brain function in BPS. Resting-state networks, which
are based on measuring intrinsic low frequency physiological
fluctuations of the blood oxygen level-dependent (BOLD) signal,
reflect the organization of both structural and task-related
functional brain networks (Biswal et al., 1995; Damoiseaux and
Greicius, 2009; Smith et al., 2009). In contrast to task-related
fMRI, for resting-state fMRI, BOLD signals are collected
during resting wakefulness without any task-related confounder.
Because the explanation of functional changes in BPS may
sometimes be ambiguous due to the combination of motor
and sensory components, examination of the resting-state
functional networks is believed to provide a more uniform
and coherent understanding of network alterations. Several
resting-state fMRI studies have been conducted on patients
with BPS, but the results have differed (Schmidt et al., 2003;
Yang et al., 2013; Zhou et al., 2013). Furthermore, these studies
only focused on focal brain regions and thus could not reveal
abnormal connectivity within whole functional networks of
the brain. To clarify changes in functional connectivity, one
can apply network analysis based on independent component
analysis (ICA) on BOLD time series obtained with resting
state fMRI. ICA extracts spatiotemporal patterns of underlying
signal components, assuming the components are statistically
independent (Beckmann et al., 2005). It has been shown that
several important resting state networks, such as the SMN,
default mode network (DMN) and executive control network
(ECN), can be obtained with high reliability across individuals
and groups (Beckmann et al., 2005; Damoiseaux et al., 2006;
Smith et al., 2009). In this study, we used ICA to investigate
the alterations in functional connectivity in patients with BPS.
Based on previous studies (Dresel et al., 2011; Huang et al., 2015;

Battistella et al., 2017), we hypothesized that functional brain
networks in BPS undergo widespread re-organization.

SUBJECTS AND METHODS

Patients and Controls
A total of 50 participants were recruited for this study, including
25 patients with BPS and 25 age- and gender-matched healthy
controls (HCs), from the Neurology Department of the First
Affiliated Hospital of Dalian Medical University. All subjects
were right-handed according to the Edinburgh Inventory. The
diagnoses of BPS were established based on published criteria by
a neurologist with long-term experience in movement disorders
(Hallett et al., 2008). Known causes of secondary dystonia were
excluded based on medical and drug histories, neurological
examination, laboratory investigation and conventional MRI.
All patients were free of other neurological abnormalities and
family history of movement disorders. The severity of BPS
in all patients was assessed according to the Jankovic Rating
Scale (JRS) immediately before MRI. Disease durations were
calculated from the time of symptom onset to the scan date in
months. None of the patients used any medications for 24 h
prior to MRI. This study was carried out in accordance with
the recommendations of Declaration of Helsinki, First Affiliated
Hospital of Dalian Medical University with written informed
consent from all subjects. All subjects gave written informed
consent in accordance with the Declaration of Helsinki. The
protocol was approved by the First Affiliated Hospital of Dalian
Medical University. None of the patients had received botulinum
neurotoxin (BoNT) treatment within 3 months prior to the first
MRI scan. Four of the patients got a second MRI scan at about
50 days after BoNT treatment, when the spasm was suppressed
(total JRS score ≤ 1).

MRI Acquisition Protocol
All images were acquired with a GE Signa HDxt America
3.0 T scanner using a 32-channel head coil. Earplugs were used,
and movement was minimized by stabilizing the head with
cushions. High-resolution T1-weighted images were acquired via
a volumetric three-dimensional spoiled gradient recall sequence
(TR = 3.7 ms, TE = 1 ms, slice thickness = 6.0 mm). Functional
images (gradient-echo EPI, TR = 3000 ms, TE = 30 ms,
flip angle = 90◦, FOV: 64 × 64 mm, 32 axial slices, slice
thickness = 4 mm, gap = 0 mm, 105 scans, 5 dummy scans, total
acquisition time: 5 min 15 s) were acquired with the participants’
eyes closed. The participants were instructed to ‘‘relax with eyes
closed and not think about anything in particular’’. Adherence to
this instruction was confirmed in a post-scanning debriefing.

MRI Analysis
All fMRI data preprocessing and statistical analyses were
performed with the Data Processing Assistant for Resting-
State fMRI (DPARSF; Chao-Gan and Yu-Feng, 2010)1 which
is based on Statistical Parametric Mapping (SPM8)2 on the

1http://www.restfmri.net
2http://www.fil.ion.ucl.ac.uk/spm
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Matlab platform. The first five volumes of the functional images
were removed for signal equilibration and the adaptation of
the participants to the scanning environment. The remaining
EPI images were preprocessed using the following steps:
slice timing, motion correction, spatial normalization to the
standard Montreal Neurological Institute (MNI) EPI template in
SPM8 with resampling to 3 × 3 × 3 mm3, and spatial smoothing
with a 6-mm full-width at half-maximum (FWHM) Gaussian
kernel. Based on the head motion records within each fMRI
run, no participant exhibited greater than 1.5 mm of maximum
displacement in the x, y or z direction or greater than 1◦ of
angular rotation about any axis.

Group ICA was performed with the GIFT toolbox (GIFT
v2.03) using the Infomax algorithm (Bell and Sejnowski, 1995)
and standard PCA and back-reconstruction using the GICA
method. For each subject, 36 independent components were
extracted. All single-subject component maps from all subjects
were then ‘‘clustered’’ at the group level, which resulted in
36 single-group average maps that were visually inspected
to determine the main physiological resting-state networks.
The selection of clusters of interest implied the presence of
anatomically relevant areas in each group component map that
reproduced the layouts of the main physiological RSN jointly and
consistently across subjects. Network co-activation differences
between patients with BPS and HCs were examined using REST
(v1.8; Song et al., 2011) with two-sample t-tests performed on the
spatial distributions of the components. Statistical images were
AlphaSim corrected (p < 0.05).

RESULTS

Clinical Data
The clinical and demographic characteristics of the samples
and levels of significance of the clinical variables are provided
in Table 1. There were no significant differences in the
demographic variables between the patients with BPS and the
HCs.

Sensory-Motor Network
By visually inspecting the ICA-derived components of the
RS-fMRI data from the two groups, we identified several RSN

3http://mialab.mrn.org/software/gift

TABLE 1 | Demographic and clinical characteristics of patient group and
control group.

P C P-Value

Age (years) 56.28 ± 1.89 55.17 ± 1.69 0.67
Gender (M:F) 25 (8:17) 25 (8:17) >0.99
Education (years) 9.70 ± 1.37 8.00 ± 1.39 0.41
Disease duration (months) 56.36 ± 10.67 None –
JRS 6.36 ± 0.33 None –
HAMA 9.42 ± 1.86 2.00 ± 0.37 <0.001
Familly history None None –

C, controls; P, patients; M, male; F, female; JRS, Janckovic Rating Scale; HAMA,

Hamilton Anxiety Scale.

components using similar methodology to previous studies
(Delnooz et al., 2013; Battistella et al., 2017). Between-
group ICA revealed significant distinct functional connectivity
abnormalities of the SMN and right frontoparietal network
(rFPN) in the patients compared with those in the HCs
(Figure 1). Generally, the SMN includes the sensorimotor cortex,
supplementary motor area (SMA) and secondary somatosensory
cortex and closely corresponds to the brain activation that
occurs during action execution and perception (Beckmann et al.,
2005; Smith et al., 2009). Compared with those in healthy
participants, patients with BPS showed decreased functional
connectivities in the bilateral primary sensorimotor cortex,
SMA, right superior frontal gyrus (premotor cortex), bilateral
precuneus and left superior parietal cortex (Alphasim corrected
P < 0.05, cluster size >85 voxels, cluster edge connected;
Figure 2A; Table 2).

Right Frontoparietal Network
The rFPN has been found to play important roles in cognitive,
emotional and pain information processing (Smith et al.,
2009). The rFPN showed significant group differences in the
middle frontal gyrus, dorsolateral prefrontal cortex (DLPFC)
and inferior frontal gyrus (Alphasim corrected P < 0.05, cluster
size >85 voxels, cluster edge connected; Figure 2B; Table 3).
No significant differences were found for the CN. The control
vs. patient analysis at t = 2 confirmed the patterns of altered
connectivity (data not shown).

Salience Network
We explored four other RSNs that were derived from Smith
et al. (2009), i.e., the SN, the left frontoparietal network (LFPN),
the auditory network (AN) and the primary visual network
(PVN) and applied an AlphaSim corrected p < 0.05. Only the
SN exhibited differential connectivity. Between-group analysis
showed increased connectivity in patients with BPS in the left
superior frontal gyrus and middle frontal gyrus (including the
DLPFC; Table 4; Figure 2C).

Correlation Analysis
We analyzed the correlations of the abnormal regions within
the SMN (Table 2) with disease characteristics. Among the
25 subjects, 12 were sensory tricks-positive (ST+), 9 did not
perform sensory tricks (ST−) and the other 4 were uncertain.
ST+ patients exhibited significant higher connectivity in the right
premotor cortex compared to ST− patients (superior frontal
gyrus and middle frontal gyrus BA 6; Figure 3; Table 5). The
results also showed a significant negative correlation between the
rSFG and disease duration (Pearson’s correlation r = −0.414,
p = 0.038; Figure 4). In addition, we observed a positive
correlation between the left superior frontal gyrus and HAMA
scores, but this result was not significant (Pearson’s correlation
r = 0.508, p = 0.092).

Treatment-Related Connectivity
We compared the connectivity maps from before and after
treatment, evaluating BoNT-driven connectivity changes. There
were changes in the SMN and rFPN, but neither persisted
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FIGURE 1 | Group maps of the networks showing statistically significant differences between patients and controls: (A) sensorimotor network (SMN),
(B) right frontoparietal network (rFPN), (C) salience network (SN).

FIGURE 2 | Between-group effects in the SMN, rFPN and primary visual network (PVN). The between-group effects for three networks are shown. The
between-group effects were AlphaSim corrected (p < 0.05). (A) Precentral regions, postcentral regions, frontal regions, supplementary motor area (SMA), precuneus
and parietal regions that were abnormally connected within the SMN, indicating decreased connectivity within the blepharospasm (BPS) group. (B) The brain regions
linked to the rFPN and exhibiting decreased connectivity in the BPS group. (C) The SN exhibited a BPS-related increase in the connectivity of several regions,
including the left superior frontal area, middle frontal area (including dorsolateral prefrontal cortex (DLPFC)).
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TABLE 2 | Local maxima of regions with altered connectivity within the sensorimotor network (SMN).

Network Contrast Region Area X Y Z T-Score

Sensorimotor network P < C Precentral cortex_R 4 36 −27 66 −3.22
Premotor cortex_R 6 33 54 16 −3.16
SMA_R 6 7 −15 63 −2.47
Precuneus_R 5 6 −47 68 −2.52
Superior parietal_L 2/5/7 −22 −45 69 −3.70
Precentral cortex_L 4/6 −27 −21 72 −4.28
Precuneus_L 5 −15 −47 68 −2.53
Postcentral cortex_L 2/3 −18 −44 69 −3.29
Paracentral Lobule_L 4/6 −2 −25 72 −3.80

C, controls; P, patients; R, right; L, left; SMA, supplementary motor area. Between-group effects are corrected for Alphasim (P < 0.05, cluster size >85 voxels, cluster

edge connected).

TABLE 3 | Local maxima of regions with altered connectivity within the right frontoparietal network (rFPN).

Network Contrast Region Area X Y Z T-Score

Right fronto-parietal network P < C Middle frontal gyrus_R 46/48 30 27 31 −4.13
DLPFC_R 9 20 27 34 −3.28
Inferior frontal gyrus_R 48/44 30 27 29 −3.62

C, controls; P, patients; R, right; DLPFC, dorsolateral prefrontal cortex. Between-group effects are corrected for Alphasim (p < 0.05, cluster size >85 voxels, cluster edge

connected).

TABLE 4 | Local maxima of regions with altered connectivity within the salience network (SN).

Network Contrast Region Area X Y Z T-Score

Salience network P > C Superior frontal gyrus_L 10 −18 54 18 4.128
Middle frontal gyrus_L/ DLPFC 10/46 −33 54 16 3.04

C, controls; P, patients; L, left; DLPFC, dorsolateral prefrontal cortex. Between-group effects are corrected for Alphasim (p < 0.05, cluster size >85 voxels, cluster edge

connected).

FIGURE 3 | T-map of group-level sensory-motor network connectivity in ST(+) and ST(−) patients (p < 0.01, AlphaSim corrected). ST(+) patients
demonstrated higher connectivity in right premotor cortex (superior frontal gyrus and middle frontal gyrus BA 6).

through AlphaSim correction. Regarding the SMN, increased
connectivity was found after treatment in the left SMA and
right premotor cortex, and decreased connectivity was found
in the right SMA and right precentral gyrus. The right inferior
parietal cortex (BA 48), middle frontal gyrus (BA 46), superior
frontal gurus (BA 8) and middle temporal gurus (BA 20)
demonstrated increased connectivity within rFPN after BoNT
injections.

DISCUSSION

In this study, the patient group showed decreased functional
connectivity in the SMA and premotor cortex within the SMN.
The functions of the SMN are primarily related to sensory
processing, motor planning and motor execution. Specifically,
the SMA and premotor cortex seems to play critical roles in
motor preparation and execution during the construction of a
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TABLE 5 | Different regions within the SMN between ST(+) and ST(−) patients.

Network Contrast Region Area X Y Z T-Score

Sensori-motor network ST(+) > ST(−) Superior frontal gyrus_R 6 27 −3 57 4.998
Middle frontal gyrus_R - - - - -

ST, sensory tricks; R, right. Between-group effects are corrected for Alphasim (p < 0.01, cluster size >19 voxels, cluster edge connected).

FIGURE 4 | Correlation with the mean z-value of the right superior
frontal gyrus (rSFG). The results revealed a negative correlation of the mean
z-value of the rSFG with disease duration (r = −0.414, p = 0.038).

motor representation and is important in the control of the
engagement in motor inhibition and halting or overriding of
motor responses(Carbonnell et al., 2004; Gross et al., 2005;
Tanji and Hoshi, 2008). Decreased connectivity of the SMA
has been previously been linked to abnormal inhibition in
patients with focal dystonia (Naumann et al., 2000; Jin et al.,
2011). The premotor cortex showed abnormal connectivity with
the primary motor cortex, parietal cortex and basal ganglia
and improved deficits in reciprocal inhibition and mitigation
of spasms following stimulation of this region (Kranz et al.,
2009; Pirio Richardson, 2015). In this study, patients that
were sensory tricks-positive exhibited higher connectivity in the
premotor cortex, which suggested a relative reserved function
for this area and a central role for the premotor cortex in
the mechanism of sensory tricks. Our finding of a significant
relationship between the decreased connectivity in the rSFG
and the duration of disease suggests that impairment of this
region may be a secondary manifestation of dystonic symptoms,
whereas deficiencies in other regions (e.g., the SMA and sensory
cortex) may represent primary deficiencies.

Decreased connectivity in the sensory cortex suggests deficits
in sensory processing play a role in abnormal sensorimotor
integration. Previous studies showing electrophysiology and
structural changes in the primary somatosensory cortex support
the concept of abnormal sensory-motor integration in BPS
(Martino et al., 2011; Suzuki et al., 2011; Yang et al., 2013). The
findings of our study extend current knowledge by providing
functional neuroimaging evidence for the presence of sensory

alterations at the network level. In the present study, the
superior parietal cortex within the SMN also exhibited decreased
functional connectivity. The parietal cortex, particularly the
posterior parietal cortex, serves as an important sensory-
associative area that integrates somatosensory, visual and spatial
information to create a body scheme prior to the execution of
voluntary movements (Sereno and Huang, 2014). Decreases in
gray and white matter integrity in the parietal lobes of patients
with BPS have been observed via voxel-based morphometry
(VBM) and diffusion tensor imaging (DTI) analyses (Etgen et al.,
2006; Yang et al., 2014), respectively. Additionally, infarction
lesions in the parietal cortex can induce BPS (Jacob and Chand,
1995). These findings may be representative of impairment in the
integration of sensory information with movement processing.
These results suggest that faulty processing of motor programs
in patients with BPS is possibly related to a larger planning
defect that results in difficulty focusing a motor command on the
appropriate muscles.

In this study, the rFPN showed significant group differences
in the middle frontal gyrus, DLPFC and inferior frontal gyrus.
The fronto-parietal (or ‘‘executive-attention’’) network seems
to be critical for cognitive control and complex attention
control, and it includes regions such as the dorsal frontal
and parietal cortices, which are known to mediate cognitive
and executive control processing. Moreover, rFPN dysfunction
may be involved in abnormal processing of harmful external
stimuli (Tan et al., 2015). Numerous studies have demonstrated
that patients with BPS exhibit relatively poor performance on
non-motor tasks related to cognition functional domains, for
example, complex movement planning, visuo-spatial working
memory, tactile recognition and sustained attention (Scott
et al., 2003; Alemán et al., 2009). If BPS disrupts normal
pain processing by the rFPN, this dysfunction may be a
strong contributor to central nervous system-mediated sensory
dysfunction. Delnooz et al. (2013) explored rFPN connections
in cervical dystonia patients and normal controls but found no
significant difference. Whether decreased connectivity within
the rFPN may be at least partially related to the cognitive and
executive aspects or pain processing of BPS requires further
exploration.

As to our knowledge, the SN has not been reported to
play a role in other types of focal dystonia, such as cervical
dystonia and hand dystonia, which may indicate a distinctive
pathophysiology mechanism in BPS. Abnormal connections
within the SN or between the SN and other regions may
involve the middle temporal gyrus and the DLPFC, and these
regions participate in prefrontal associational integration. The
SN typically consists of the fronto-insular cortex, the dorsal
ACC, the amygdala and the temporal poles. This network
is believed to reflect emotional processing and to play a
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central role in emotional control. Recently, SN has been
found to be involved in non-motor symptoms of movement
disorders, e.g., mood disorders, pain, cognitive dysfunction and
working memory (Metzler-Baddeley et al., 2016). Increased
functional connections within the SN may be related to
anxiety disorders (Pannekoek et al., 2013). Several studies
have demonstrated that neuropsychiatric symptoms, particularly
anxiety and obsessive-compulsive disorders, are frequent in
patients with BPS (Hall et al., 2006; Fontenelle et al., 2011).
Whether increased connections in the SN may be related to
concomitant neuropsychiatric symptoms in patients with BPS
requires further research.

In this study, we did not measure the potential dystonic
activity of the orbicularis oculi musculature during scanning.
However, it is known that in most patients with BPS,
dystonic symptoms are absent or minimal in closed-eye
states. Additionally, none of the subjects reported spasms
during scanning in the post-scanning debriefings. However,
this limitation must be taken into account when interpreting
the results. Despite these limitations, our data provide further
insights into the mechanisms underlying BPS.

In conclusion, this study demonstrated differences inmultiple
neural networks in primary BPS. In BPS, regions in the SMA,
premotor cortex, SPL and precuneus, i.e., regions related to
motor planning and execution, exhibited reduced connectivity
with regard to the SMN. Selected regions in the middle frontal
gyrus, DLPFC and inferior frontal gyrus areas, i.e., regions

related to spatial cognition, demonstrated reduced connectivity
in the right fronto-parietal network. The observation of increased
connectivity of regions in the left superior frontal gyrus
and middle frontal gyrus (including DLPFC) with regard to
the SN is supposedly explained by the disrupted motion
control.
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Selective serotonin reuptake inhibitors (SSRIs) modulate serotonergic neurotransmission
by blocking reuptake of serotonin from the extracellular space. Up to now, it remains
unclear how SSRIs achieve their antidepressant effect. However, task-based and resting
state functional magnetic resonance imaging studies, have demonstrated connectivity
changes between brain regions. Here, we use positron emission tomography (PET) to
quantify SSRI’s main target, the serotonin transporter (SERT), and assess treatment-
induced molecular changes in the interregional relation of SERT binding potential (BPND).
Nineteen out-patients with major depressive disorder (MDD) and 19 healthy controls
(HC) were included in this study. Patients underwent three PET measurements with the
radioligand [11C]DASB: (1) at baseline, (2) after a first SSRI dose; and (3) following at least
3 weeks of daily intake. Controls were measured once with PET. Correlation analyses
were restricted to brain regions repeatedly implicated in MDD pathophysiology. After
3 weeks of daily SSRI administration a significant increase in SERT BPND correlations
of anterior cingulate cortex and insula with the amygdala, midbrain, hippocampus,
pallidum and putamen (p < 0.05; false discovery rate, FDR corrected) was revealed. No
significant differences were found when comparing MDD patients and HC at baseline.
These findings are in line with the clinical observation that treatment response to SSRIs
is often achieved only after a latency of several weeks. The elevated associations in
interregional SERT associations may be more closely connected to clinical outcomes
than regional SERT occupancy measures and could reflect a change in the regional
interaction of serotonergic neurotransmission during antidepressant treatment.

Keywords: positron emission tomography, serotonin transporter, depression, SSRI, antidepressants,
connectivity, network analysis

INTRODUCTION

The world health organization has estimated some 350 million people of all ages to suffer
from major depressive disorder (MDD), which is associated with general disability and
increased mortality (World Health Organization, 2015). For the treatment of MDD, selective
serotonin reuptake inhibitors (SSRIs) have become the most commonly prescribed substance class
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(Kraft et al., 2007; Farnia et al., 2015). Their mechanism of action
is based on their ability to bind the serotonin transporter (SERT),
hereby inhibiting serotonin (5-HT) reuptake, thus causing an
elevation in 5-HT levels in the extracellular space. However,
beyond this neurochemical effect, it remains unclear how SSRIs
lead to an improvement of depressive symptoms, in particular as
symptom improvement occurs after a latency period of several
weeks and because not all patients respond to initial treatment
(Esposito and Goodnick, 2003; Kraft et al., 2007; Holsboer, 2008;
Lynch et al., 2011). In addition, the SERT is involved in the
pathophysiology of depression, as demonstrated by molecular
imaging studies showing reduced brain SERT binding in MDD
(Gryglewski et al., 2014).

In recent years, brain network analyses using magnetic
resonance imaging (MRI) have evolved as an innovative
approach for the characterization of complex structural and
functional connections between brain areas (Bassett et al., 2008;
Bullmore and Sporns, 2009; Murphy et al., 2009; Weissenbacher
et al., 2009; Rubinov and Sporns, 2010). Noteworthy is
also the impressive increase of resting-state fMRI (rs-fMRI)
studies in the last decade, i.e., the evaluation of spontaneous
low-frequency brain activations in absence of a specific task
(Biswal et al., 1995, 2010). These approaches have already
proven to be valuable contributions in the investigation of
psychiatric disorders, as previous studies investigating MDD
and SSRI treatment were able to show alterations in structural
and functional brain networks between the pregenual anterior
cingulate cortex and the amygdala, thalamus and striatum
(Greicius et al., 2007; Anand et al., 2009; Lui et al., 2011;
Zhu et al., 2012; Connolly et al., 2013; Wang et al., 2014,
2015).

Positron emission tomography (PET) studies commonly
directly quantify differences in binding of molecular targets in
certain brain regions, e.g., by comparing patients and healthy
control subjects. Hence, the in vivo quantification of selected
proteins may enable the identification of biological correlates
underlying psychiatric disorders.

However, even if conditions or groups of subjects may differ
in certain characteristics, conducting comparisons of a molecular
target solely on a regional level may in some cases not be the
appropriate method to capture significant differences (Vanicek
et al., 2014) as it does not detect systemic or interregional changes
to neurotransmitter networks. The assessment of variations
within one neurotransmitter system, reflected for example
by interregional changes in protein concentration, seems a
promising approach. With this in mind, the acquisition of
interregional associations has recently been extended to the
field of molecular imaging with PET. For instance, studies
of the serotonin-1A (5-HT1A) receptor and SERT evaluated
relationships between brain regions (Hahn et al., 2010; Bose et al.,
2011; Hahn et al., 2014). Moreover, these associations of 5-HT1A
and SERTwere markedly different in patients (Hahn et al., 2014),
changed after SSRI treatment (Hahn et al., 2010) and predicted
SSRI treatment response (Lanzenberger et al., 2012).

The mentioned studies focused on specific interactions of the
raphe nuclei in the midbrain with serotonergic projection areas.
Therefore, we aimed to establish a method for the detection

of molecular interregional relationships. These relationships
may underline the aforementioned dysregulations proposed in
connectivity, reflected by an altered SERT distribution across
brain regions in MDD. Thus, unlike the comparison of protein
densities in regions of interest (ROIs) and between different
conditions or subject groups, we expect general interregional
changes that may be associated with the reported alterations
in neural circuits in psychiatric disorders, as well as the
impact of treatment procedures. Similar approaches analyzing
interregional metabolic relations already have been realized
previously using PET and [18F]-fluorodeoxyglucose ([18F] FDG;
Horwitz et al., 1984; Metter et al., 1984; McIntosh and Gonzalez-
Lima, 1993; Schreckenberger et al., 1998). It could be shown
that correlations of glucose metabolism between anatomically
delineated areas may reflect brain functions associated with
a variety of cognitive processes. Here we aim to adapt this
analysis to investigate associations between regions relating to
neurotransmitter properties.

Previous studies have already reported the considerable
reduction of SERT availability during SSRI treatment, expectedly
caused by the antidepressant’s occupation of the SERT
(Lanzenberger et al., 2012; Baldinger et al., 2014). In the
present study we have investigated the serotonergic circuits of
patients suffering from MDD at baseline and during treatment
with SSRIs. We compared correlations in SERT availability
between brain regions relevant in depression. That is, despite
the absolute decrease of SERT availability during SSRI treatment,
we are merely interested in the relative changes between brain
regions. We hypothesized that healthy subjects and patients
suffering from MDD differ in the interregional relation of SERT
availability between regions relevant to MDD pathophysiology.
Secondly, we expected a significant change in the interregional
relation of SERT availability after SSRI treatment in the MDD
group.

MATERIALS AND METHODS

Subjects
Data from 19 subjects (13 female, age range 27–54 years of age,
42.26 ± 7.84) suffering from MDD which has been included in
previous publications was analyzed (Lanzenberger et al., 2012;
Baldinger et al., 2014; Hahn et al., 2014). In addition, data of
19 healthy controls (HC; 6 female, age range 27–54, 37.58± 8.28,
mean ± SD) were analyzed for comparison. The groups differ
in gender distribution (p = 0.023), but not in age (p = 0.082).
However, since the latter result is marginal significant, we
controlled for both, age and gender in the analyses to exclude
any possible influence of these variables on the overall outcome.
Psychiatric disorders were assessed using a Structured Clinical
Interview (SCID) for DSM-IV diagnose and a 17-item Hamilton
Depression Rating Scale (HAM-D). Prior to PET measurements
the patients underwent neurological and physical examinations,
consisting of an electrocardiogram, a routine blood examination,
a urine drug test and, in women, a urine pregnancy test.
Exclusion criteria were drug abuse, medication intake preceding
the PET measurements within a period of 3 months (4 months
for fluoxetine) and a HAM-D score of <16 in MDD patients.
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All subjects provided written informed consent after briefing and
complete description of the study. The study was approved by
the Ethics Committee of the Medical University of Vienna and
performed according to the Declaration of Helsinki.

Study Design and Treatment
In this longitudinal study design, patients underwent three PET
measurements: first at baseline, second within 6 h after the
administration of an oral SSRI dose, and the third measurement
after a minimum of 3 weeks (mean time ± SD, 24.73 ± 3.3 days)
of daily oral SSRI treatment. The study medication was
citalopram (R, S-citalopram, 20 mg/day, nine subjects; Lundbeck
A/S, Denmark) or escitalopram (S-citalopram, 10 mg/day,
10 subjects), which constitute frequently prescribed SSRIs that
are administered to millions of patients. SERT binding potential
(BPND) at baseline, after first and after at least 3 weeks of daily
SSRI intake in patients is shown in Figure 1. HC were measured
once at baseline (Figure 1).

Positron Emission Tomography
PET measurements were performed using a GE Advance
full-ring scanner (General Electric Medical Systems, Milwaukee,
WI, USA) in 3D mode at the Department of Biomedical Imaging
and Image-guided Therapy, Division of Nuclear Medicine of the
Medical University of Vienna. For tissue attenuation correction
a transmission scan of 5 min was carried out with 68GE rod
sources. PET scans started as [11C]DASB was administered as a
bolus injection and total acquisition time was 90 min, split into
15× 1 min and 15× 5 min time frames (30 time frames in total).
Images were measured in kBq/ccm. Reconstruction occurred
in 35 transaxial section volumes (128 × 128) with an iterative
filtered backprojection algorithm (FORE-ITER) with a spatial
resolution of 4.36mm full-width at half maximum (FWHM) next
to the center of the field of view (Lanzenberger et al., 2012).

Serotonin Transporter Quantification
PET images were between-frame motion-corrected and summed
images were spatially normalized to a [11C]DASB specific
template in stereotactic Montreal Institute (MNI) space using
SPM8 (Wellcome Trust Centre for Neuroimaging, London,
UK1). The multilinear reference tissue model (MRTM2; Ichise
et al., 2003) implemented in PMOD image analysis software,
version 3.509 (PMOD Technologies Ltd., Zurich, Switzerland2)
was used for the SERT BPND quantification, with cerebellar gray
matter as the reference region and thalamus as the receptor-rich
region. SERT availability is quantified by the BPND. This
binding potential compared to the nondisplaceable uptake, is
defined as (VT−VND)/VND (unitless). VT and VND denote the
volume of distribution in the tissue and in the nondisplaceable
compartment, respectively (Innis et al., 2007).

Regions of Interest
ROIs highly relevant in depression and SSRI treatment were
selected based on both, published literature and acceptable signal

1http://www.fil.ion.ucl.ac.uk/spm
2http://www.pmod.com

to noise ratio (SNR) for SERT quantification. These ROIs mainly
comprised subcortical regions, i.e., thalamus (Anand et al.,
2005; Lui et al., 2011), putamen (Tao et al., 2013; Meng et al.,
2014), caudate nucleus (Kim et al., 2008; Pizzagalli et al., 2009),
globus pallidum (Anand et al., 2005), midbrain including dorsal
and median raphe nuclei (Lanzenberger et al., 2012; Pandya
et al., 2012), hippocampus (Lui et al., 2011; Sheline, 2011), and
amygdala (Drevets et al., 2002; Veer et al., 2010; Lui et al., 2011;
Gong and He, 2015), as well as cortical regions, i.e., the anterior
cingulate cortex (ACC; Anand et al., 2005; Sheline et al., 2010;
Lui et al., 2011; Pizzagalli, 2011; Gong and He, 2015) and the
insula (Veer et al., 2010; Jin et al., 2011; Lui et al., 2011; Connolly
et al., 2013; Tao et al., 2013). Except the midbrain, all regions
were delineated using the Harvard-Oxford probabilistic atlas and
averaged for both hemispheres.

Statistical Analysis
To test for normality of the BPND values, a Shapiro-Wilk-Test
was conducted, which was significant for two variables (data not
shown) and due to a sample size of <20, all correlations were
calculated using Spearman’s rank correlation.

Molecular relation is here defined as correlation of the
SERT density between brain regions, similar to ‘‘functional
connectivity’’ in fMRI. However, functional connectivity refers
to the temporal coupling of brain regions, whereas for
neurotransmitter PET no time sequences are correlated,
but molecular density quantities per region pair over the
entire group/condition. Correlation matrices were created by
calculating Spearman’s rank correlation coefficient (rho; ρ) for
each ROI pair over all subjects. To exclude the influence of
potentially confounders, the variables age and gender were
included as covariables into the partial correlation. This was done
separately for each group and time point, i.e., PET 1 (at baseline),
PET 2 (6 h after first treatment) and PET 3 (after at least 3 weeks
of treatment), respectively. 3D volume images were generated
using the Brain Net Viewer3 (Xia et al., 2013).

For the assessment of statistically significant differences in
correlations, a 10,000-fold permutation test was performed. For
the longitudinal analysis we assured that the measurements from
every subject were separated into different conditions (i.e., time
points) for each permutation, hence each subject was only
assigned once to each condition. For overall comparison the
resulting correlation matrices were transformed with Fisher’s
r-to-z-transformation. A false discovery rate (FDR) correction
with p < 0.05 was conducted, based on the number of
correlations, using the Benjamini-Hochberg method for multiple
comparison.

RESULTS

Changes in Interregional Molecular
Relation with Treatment in MDD Patients
Interregional SERT correlation matrices for each group and
time point can be seen in Figure 2. Derived from the
permutation tests, differences in interregional correlations of

3www.nitrc.org/projects/bnv
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FIGURE 1 | Serotonin transporter (SERT) availability in healthy controls (HC; N = 19) and in patients with major depressive disorder (MDD; N = 19)
during treatment with selective serotonin reuptake inhibitor (SSRI). Positron emission tomography (PET) 1 shows the condition at baseline, PET 2 6 h after a
single oral intake of SSRI and PET 3 after at least 3 weeks of daily SSRI treatment. The decrease in SERT availability indicates SERT occupancy by SSRIs during
therapy, which is especially visible in brain stem, subcortical regions and the cingulate cortex. The color table indicates SERT availability from low (blue) to high (red)
measured in binding potential (BPND). Crosshair marks the corresponding location in sagittal, coronal and axial view (from left to right).

Frontiers in Human Neuroscience | www.frontiersin.org February 2017 | Volume 11 | Article 48 | 86

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


James et al. SSRI Effects on Interregional SERT Relation

FIGURE 2 | Interregional SERT correlation matrices between nine regions of interest (ROIs). The upper left map shows the correlation (Spearman’s ρ) of
SERT binding in HC. The upper right map displays the condition of depressive patients at baseline (PET 1; unmedicated), the lower left and lower right maps show
the SERT availability after 6 h (PET 2) and after 3 weeks of oral SSRI treatment (PET 3), respectively. ACC, anterior cingulate cortex; the color table indicates the
molecular interregional relation between regions, given in Spearman’s rho (ρ).

SERT BPND were observed in several region pairs between
PET 1 and PET 2 only at p < 0.05 uncorrected. Here,
an increase was present in the molecular association of the
pallidum, putamen, insula, ACC, midbrain, hippocampus and
amygdala (see Table 1, Figure 3), however, without reaching
significance after correcting for multiple comparison. For
all of the ROI pairs associated with the ACC and insula
at PET 1 vs. PET 2, except for amygdala-pallidum, the
strength of correlations further increased at PET 1 vs. PET
3, such that changes seen in this comparison were significant
after correction for multiple comparisons (p < 0.05; FDR
corrected). Furthermore, additional significant and corrected
correlations emerged. A significant increase in molecular
relation was predominantly observed for correlations involving
the ACC and insula in conjunction with the amygdala,
midbrain, hippocampus, pallidum and putamen (see Table 2,
Figures 3, 4).

Differences in Interregional Molecular
Relations between Healthy Controls and
Patients at Baseline
The comparison ofMDD at baseline and HC revealed differences
in relations only at p < 0.05 uncorrected. Involved regions are
the hippocampus, insula, thalamus, midbrain and pallidum (see
Table 3). After correction for multiple comparison, there was no
significant interregional correlation left.

DISCUSSION

Patients with Major Depressive Disorder
during Treatment
In the current study we compared correlations in SERT
availability between brain regions relevant in depression.
Correlations of the ACC and insula with amygdala, midbrain,
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TABLE 1 | Treatment-induced changes in the interregional molecular
relation of serotonin transporter (SERT) availability in patients with major
depressive disorder (MDD).

Before treatment compared to first treatment (PET 1–PET 2)

ACC Midbrain (+0.45), pallidum (+0.61), putamen (+0.34)
Hippocampus Amygdala (+0.20), insula (+0.37), pallidum (+0.47)
Insula Pallidum (+0.56)

Changes are based on baseline Positron emission tomography (PET 1) compared

to SERT availability after a single oral dose of a selective serotonin reuptake inhibitor

(SSRI; PET 2) (values in parenthesis are differences in Spearman’s ρ; p < 0.05,

uncorrected).

hippocampus, pallidum and putamen increased significantly
after 3 weeks of SSRI treatment. These results suggest that an
interregional rearrangement of SERT availability may contribute
to SSRI treatment effects in MDD patients. The fact that a
portion of these elevations tend to be present already after
6 h of treatment, may reflect a stabilization of these relations
after continuation of SSRI treatment. These results parallel the
chronological pattern seen in clinical improvement of MDD
symptoms, which often requires several weeks of treatment,
whereas only subtle changes can be detected in the initial phase
(Taylor et al., 2006).

A number of fMRI studies investigated the influence of
SSRIs on activity and functional connectivity. Reduced neural
activation in the amygdala was found with fMRI when MDD
patients were exposed to emotional, i.e., fearful and sad faces,
following 8 weeks of antidepressant treatment (Sheline et al.,

FIGURE 3 | Treatment-induced changes in the relation of SERT
availability in depressive patients after administration of SSRI in two
different treatment conditions (PET 2, PET 3) compared to baseline
(PET 1). The lower triangle denotes significant increases in relations after a
single oral SSRI dose in depressive patients (p < 0.05; uncorrected). The
upper triangle shows significant increases after 3 weeks of treatment
(p < 0.05; uncorrected). Framed squares indicate changes which remain
significant after FDR correction for multiple comparison at p < 0.05. ACC,
anterior cingulate cortex; the color table indicates changes in correlation
coefficients (∆ρ).

TABLE 2 | Treatment-induced changes in the interregional molecular
relation of SERT in patients with MDD, based on the comparison of
baseline (PET 1) to the SERT availability after 3 weeks of daily
administered selective serotonin reuptake inhibitor (SSRI) treatment
(PET 3).

Before treatment compared to ongoing treatment (PET 1–PET 3)

ACC Amygdala (+0.49)∗, hippocampus (+0.24)∗, midbrain (+0.67)∗,
pallidum (+0.71)∗, putamen (+0.49)∗

Insula Amygdala (+0.47)∗, hippocampus (+0.43)∗, midbrain (+0.51)∗,
pallidum (+0.61)∗, putamen (+0.36)∗

Hippocampus Amygdala (+0.24), putamen (+0.23)

Putamen Amygdala (+0.36)

Differences marked with an asterisk are significant after FDR correction (values in

parenthesis are differences in Spearman’s rho; p < 0.05, uncorrected).

2001; Fu et al., 2004; Harmer and Cowen, 2013). Further
effect of SSRI treatment could also be seen in the striatum
and cortical regions, such as the pregenual anterior cingulate
cortex (Fu et al., 2004). Furthermore, when investigating
the functional connectivity in response to affective facial
expressions, Chen et al. (2008) found a significantly increased
coupling between the amygdala and the cingulate cortex,
thalamus and striatum, in association with SSRI treatment.
Using a similar paradigm with affective stimuli, treatment with
venlafaxine (5-HT–norepinephrine reuptake inhibitor) affected
the activation of the left insula already after 2 weeks of
treatment (Davidson et al., 2003). To explore the presence of
biomarkers to predict treatment outcomes with SSRIs, Miller
et al. (2013) exposed unmedicatedMDD patients to an emotional
word processing fMRI task, following an 8 weeks treatment
with escitalopram. They reported an association between lower
activation prior to treatment in response to negative words in
midbrain, dorsolateral prefrontal cortex (PFC), insula, middle
frontal cortex, premotor cortex, ACC, thalamus as well as
caudate, and preferable treatment outcomes.

Although the present study could not reveal significant
correlations in all of the aforementioned regions, at least a
tendency for the most of these was also found in SERT
associations. Of those, the ACC and insula were involved in all
of the significant correlations. Interestingly, a number of these
correlations appear already after 6 h, although not significant at
this point. Using rs-fMRI and seed based connectivity analysis,
McCabe and Mishor (2011) investigated the effect of citalopram
on human brain circuits and selected several seed regions,
including the right amygdala and the subgenual cingulate cortex.
Although they were not able to show any differences in mood
compared to a placebo group, they revealed a reduced functional
connectivity between the amygdala and the ventral medial PFC,
when using the amygdala as seed region (McCabe and Mishor,
2011). Due to the low SNR in the cortical areas in our study
using this PET radioligand, the PFC had to be excluded from
the analysis. Further, it was also demonstrated that the resting
state functional connectivity between the left dorsal nexus (dorsal
medial PFC) and the left hippocampus was reduced after SSRI
treatment (McCabe et al., 2011).

Moreover, not only the functional connectivity, but also
changes in the regional glucose consumption are of interest. In a

Frontiers in Human Neuroscience | www.frontiersin.org February 2017 | Volume 11 | Article 48 | 88

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


James et al. SSRI Effects on Interregional SERT Relation

FIGURE 4 | Brain network indicating an increase in SERT relations of
depressive patients after 3 weeks of SSRI treatment compared to
baseline (FDR corrected). The brain image was created with the BrainNet
Viewer (http://www.nitrc.org/projects/bnv).

PET study assessing the total glucosemetabolismwith [18F] FDG,
a general shift in glucose metabolism was observed with SSRI
treatment, namely, an increased glucose metabolism in cortical
areas, such as the dorsolateral, ventrolateral, medial prefrontal
and parietal cortex, as well as in the dorsal ACC. On the other
hand, the left insular cortex, hippocampus and parahippocampal
regions showed a decreased consumption after an SSRI treatment
period of 6 weeks (Kennedy et al., 2001). These shifts underline
the possibility of a ‘‘normalization’’ effect in brain regions due to
SSRI treatment that may also be driven by the alterations in SERT
densities across regions.

Our current findings suggest that the therapeutic effect
of SSRI treatment is mediated by rebalancing SERT in
cortical and subcortical areas. In this study interregional
changes occurred among the insula and ACC, in association
with the midbrain, amygdala, hippocampus, pallidum and
putamen. In the light of the present results, we propose that
the changes in SERT relations may contribute to a better
understanding of the delayed antidepressant effects during SSRI
treatment, which may be reflected and influenced by a delayed
adjustment of the relationship between interregional SERT
densities.

TABLE 3 | Differences in interregional molecular relation of SERT
availability between healthy subjects and patient suffering from MDD
(values in parenthesis are differences in Spearman’s rho; p < 0.05,
uncorrected).

Healthy subjects compared to patients with major depressive disorder
at baseline (PET 1)

Hippocampus Thalamus (−0.23)
Pallidum Insula (−0.59), midbrain (0.34)

Patients with Depression vs. Healthy
Control
We compared the SERT interregional relations in depressed
patients at baseline with those of HC. A recent meta-analysis
revealed reduced SERT availability in MDD and highlighted
the impact of symptom heterogeneity, which might provide
an explanation for contradictory results, when investigating
the SERT in MDD patients (Gryglewski et al., 2014; Spies
et al., 2015). In our comparison a tendency towards decreased
SERT correlations in MDD was observed mainly for pallidum,
insula and ACC. Although these are not significant after FDR
correction, they contribute to our insight on differences in
SERT binding in depression on a network level. Interestingly,
the relations pallidum-insula and pallidum-ACC are among
those elevations occurring after 3 weeks of SSRI treatment.
Veer et al. (2010) reported a decreased functional connectivity
of the amygdala and left insula with other regions in a
whole brain network in depressed subjects. This finding may
reflect the impaired ability of depressed patients to regulate
negative emotions, a process in which the amygdala has shown
substantial involvement (Johnstone et al., 2007; Veer et al., 2010).
Further fMRI studies reported the involvement of the amygdala,
pallidostriatum, medial thalamus and insula during the exposure
of negative vs. neutral stimuli in patients with depressed subjects
compared to HC (Anand et al., 2005), as well as frontal gyri, ACC
and thalamus (Teasdale et al., 1999). It is known that the insula,
ACC, temporal pole and amygdala comprise regions which are
involved in emotional perception and regulation (Pessoa, 2008),
as well as the medial thalamus and hypothalamus (Alexander
et al., 1990; Phillips et al., 2003).

Limitations
One limitation of this study is that we did not differentiate
between first and recurrent depressive episodes in the MDD
patient group. It has been previously proposed that repeated
occurrences of episodes may impact on functional connectivity
patterns (Veer et al., 2010) and thus deteriorate the clinical
picture. However, a recent study investigating the antidepressant
efficacy of pre-adult onset compared to adult-onset MDD
also did not find differences regarding response, remission or
tolerability of antidepressant drugs (Sung et al., 2013). The
consideration of the overall treatment response or differentiation
of SSRI medication type (R,S-citalopram vs. S-citalopram) might
also affect the present findings. Another concern worthy to
be mentioned is the relatively low number of subjects. As a
consequence, the limited sample size may cause increases in false
negative results, which should be improved in future studies.
Nevertheless, the reported results withstood correction for
multiple comparisons using the Benjamini-Hochberg method,
which adequately controls for false positive findings.

Therefore, a sample size with a minimum of subjects per
group is required to maintain statistical power in the application
of the permutation test procedure. Thus, the results presented
here were not further differentiated by treatment response
outcomes, leading to even smaller group sizes. However, a less
heterogenic but more extensive patient group could contribute
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to highlight these differences even more clearly. Further, the
consideration of all brain regions, including cortical regions, in
this analysis would have allowed to form more global statement
in terms of interregional effects on SERT binding. The low SNR
due to the sparse SERT density in the most cortical regions
although, urge to focus on those regions that show a high
binding. However, according to the design of the present study,
no evidence can be provided if the elevated correlation of BPND
between regions results from an overall decrease of interregional
differences due to SERT occupancy. The observation of elevated
correlations of BPND between regions may be attributed to
this effect, given preserved inter-individual differences in BPND.
Finally, the outcomes on interregional relations presented here
were determined on group level. Future studies investigating
changes in interregional relations based on dynamic PET will
enlighten if changes occur also in single subjects.

Conclusion
In the present study we were able to detect changes in
interregional correlations of SERT BPND with SSRI treatment
in MDD patients, towards a significant increased rearrangement
of SERT availability. This finding underlines the concept of
interregional changes, rather than mere focal modifications,
induced by SSRIs. Our results hereby contribute to a better
understanding of SSRI treatment effects.

AUTHOR CONTRIBUTIONS

GMJ designed the methods, analyzed and interpreted the
data and wrote main parts of the article. PB-M assisted
the measurements and contributed to the study design.
CP synthetized the radioligand and edited the manuscript.
Support for the statistical implementation was given by GSK.
TV assisted the measurements and contributed to the methods
of the manuscript. AH gave major technical support, conceptual
advice for the methodology and edited the manuscript. GG
helped to develop the methodology and edited the manuscript.
Advice in all medical concerns and contribution to the discussion
and limitations was given by MHi. MS performed the literature

search and wrote parts of the discussion. TT-W administered
the radioligand and designed the measurements. MM gave
technical support and developed the radioligand together with
WW, which also planned the production. MHa provided the
facilities for the radioligand synthesis and gave conceptual
advice. SK supervised the entire experiment and patient care.
RL developed the concept of the research question, provided
funding and revised the manuscript. All authors discussed the
results and implications and commented on the manuscript at
all stages.

ACKNOWLEDGMENTS

This scientific project and reevaluation of data were performed
with the support of the Medical Imaging Cluster of the
Medical University of Vienna. Personal costs were partly
funded by the Austrian Science Fund (FWF) Grant 27141,
the Austrian National Bank (OeNB Anniversary Fund No.
11468) to RL, PET measurements and treatment were supported
by an investigator-initiated and unrestricted research grant
(11821) from H. Lundbeck A/S, Denmark to SK. H. Lundbeck
A/S, FWF and OeNB had no further role in study design;
in the collection, analysis and interpretation of data; in the
writing of the report and in the decision to submit the article
for publication. GG is recipient of a DOC Fellowship of the
Austrian Academy of Sciences at the Institute of Psychiatry
and Psychotherapy, Medical University of Vienna. The authors
thank the medical and technical teams of the PET Center
at the Medical University of the Vienna (D. Haeusler, G.
Karanikas, K. Kletter, G. Wagner, B. Reiterits, I. Leitinger, R.
Bartosch), the psychiatrists of the Department of Psychiatry
and Psychotherapy of the Medical University of Vienna (A.S.
Höflich, C. Kraus, D. Winkler, E. Akimova, C. Spindelegger,
M. Fink, U. Moser, M. Willert) and H. Sitte from the center
for physiology and pharmacology of the Medical University of
Vienna. Parts of this study have been presented by G.M. James at
the 28th European College of Neuropsychopharmacology
(ECNP), August 29–September 1, 2015, Amsterdam,
Netherlands.

REFERENCES

Alexander, G. E., Crutcher, M. D., and Delong, M. R. (1990). Basal ganglia-
thalamocortical circuits: parallel substrates formotor, oculomotor, ‘‘prefrontal’’
and ‘‘limbic’’ functions. Prog. Brain Res. 85, 119–146. doi: 10.1016/s0079-
6123(08)62678-3

Anand, A., Li, Y., Wang, Y., Lowe, M. J., and Dzemidzic, M. (2009). Resting state
corticolimbic connectivity abnormalities in unmedicated bipolar disorder and
unipolar depression. Psychiatry Res. 171, 189–198. doi: 10.1016/j.pscychresns.
2008.03.012

Anand, A., Li, Y., Wang, Y., Wu, J., Gao, S., Bukhari, L., et al. (2005). Activity
and connectivity of brain mood regulating circuit in depression: a functional
magnetic resonance study. Biol. Psychiatry 57, 1079–1088. doi: 10.1016/j.
biopsych.2005.02.021

Baldinger, P., Kranz, G. S., Haeusler, D., Savli, M., Spies, M., Philippe, C., et al.
(2014). Regional differences in SERT occupancy after acute and prolonged
SSRI intake investigated by brain PET.Neuroimage 88, 252–262. doi: 10.1016/j.
neuroimage.2013.10.002

Bassett, D. S., Bullmore, E., Verchinski, B. A., Mattay, V. S., Weinberger, D. R.,
and Meyer-Lindenberg, A. (2008). Hierarchical organization of human
cortical networks in health and schizophrenia. J. Neurosci. 28, 9239–9248.
doi: 10.1523/JNEUROSCI.1929-08.2008

Biswal, B., Yetkin, F. Z., Haughton, V. M., and Hyde, J. S. (1995). Functional
connectivity in the motor cortex of resting human brain using echo-planar
MRI.Magn. Reson. Med. 34, 537–541. doi: 10.1002/mrm.1910340409

Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., et al. (2010).
Toward discovery science of human brain function. Proc. Natl. Acad. Sci. U S A
107, 4734–4739. doi: 10.1073/pnas.0911855107

Bose, S. K., Mehta, M. A., Selvaraj, S., Howes, O. D., Hinz, R., Rabiner, E. A., et al.
(2011). Presynaptic 5-HT1A is related to 5-HTT receptor density in the human
brain. Neuropsychopharmacology 36, 2258–2265. doi: 10.1038/npp.2011.113

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical
analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.
doi: 10.1038/nrn2575

Chen, C. H., Suckling, J., Ooi, C., Fu, C. H., Williams, S. C., Walsh, N. D., et al.
(2008). Functional coupling of the amygdala in depressed patients treated

Frontiers in Human Neuroscience | www.frontiersin.org February 2017 | Volume 11 | Article 48 | 90

https://doi.org/10.1016/s0079-6123(08)62678-3
https://doi.org/10.1016/s0079-6123(08)62678-3
https://doi.org/10.1016/j.pscychresns.2008.03.012
https://doi.org/10.1016/j.pscychresns.2008.03.012
https://doi.org/10.1016/j.biopsych.2005.02.021
https://doi.org/10.1016/j.biopsych.2005.02.021
https://doi.org/10.1016/j.neuroimage.2013.10.002
https://doi.org/10.1016/j.neuroimage.2013.10.002
https://doi.org/10.1523/JNEUROSCI.1929-08.2008
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1073/pnas.0911855107
https://doi.org/10.1038/npp.2011.113
https://doi.org/10.1038/nrn2575
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


James et al. SSRI Effects on Interregional SERT Relation

with antidepressant medication. Neuropsychopharmacology 33, 1909–1918.
doi: 10.1038/sj.npp.1301593

Connolly, C. G., Wu, J., Ho, T. C., Hoeft, F., Wolkowitz, O., Eisendrath, S., et al.
(2013). Resting-state functional connectivity of subgenual anterior cingulate
cortex in depressed adolescents. Biol. Psychiatry 74, 898–907. doi: 10.1016/j.
biopsych.2013.05.036

Davidson, R. J., Irwin, W., Anderle, M. J., and Kalin, N. H. (2003). The neural
substrates of affective processing in depressed patients treated with venlafaxine.
Am. J. Psychiatry 160, 64–75. doi: 10.1176/appi.ajp.160.1.64

Drevets, W. C., Bogers, W., and Raichle, M. E. (2002). Functional anatomical
correlates of antidepressant drug treatment assessed using PET measures
of regional glucose metabolism. Eur. Neuropsychopharmacol. 12, 527–544.
doi: 10.1016/s0924-977x(02)00102-5

Esposito, K., and Goodnick, P. (2003). Predictors of response in depression.
Psychiatr. Clin. North Am. 26, 353–365. doi: 10.1016/s0193-953x(02)00104-1

Farnia, V., Hojatitabar, S., Shakeri, J., Rezaei, M., Yazdchi, K., Bajoghli, H., et al.
(2015). Adjuvant rosa damascena has a small effect on SSRI-induced sexual
dysfunction in female patients suffering from MDD. Pharmacopsychiatry 48,
156–163. doi: 10.1055/s-0035-1554712

Fu, C. H., Williams, S. C., Cleare, A. J., Brammer, M. J., Walsh, N. D.,
Kim, J., et al. (2004). Attenuation of the neural response to sad faces in
major depression by antidepressant treatment: a prospective, event-related
functional magnetic resonance imaging study. Arch. Gen. Psychiatry 61,
877–889. doi: 10.1001/archpsyc.61.9.877

Gong, Q., and He, Y. (2015). Depression, neuroimaging and connectomics: a
selective overview. Biol. Psychiatry 77, 223–235. doi: 10.1016/j.biopsych.2014.
08.009

Greicius, M. D., Flores, B. H., Menon, V., Glover, G. H., Solvason, H. B., Kenna, H.,
et al. (2007). Resting-state functional connectivity in major depression:
abnormally increased contributions from subgenual cingulate cortex and
thalamus. Biol. Psychiatry 62, 429–437. doi: 10.1016/j.biopsych.2006.09.020

Gryglewski, G., Lanzenberger, R., Kranz, G. S., and Cumming, P. (2014). Meta-
analysis of molecular imaging of serotonin transporters in major depression.
J. Cereb. Blood Flow Metab. 34, 1096–1103. doi: 10.1038/jcbfm.2014.82

Hahn, A., Haeusler, D., Kraus, C., Höflich, A. S., Kranz, G. S., Baldinger, P.,
et al. (2014). Attenuated serotonin transporter association between dorsal raphe
and ventral striatum in major depression. Hum. Brain Mapp. 35, 3857–3866.
doi: 10.1002/hbm.22442

Hahn, A., Lanzenberger, R., Wadsak, W., Spindelegger, C., Moser, U., Mien, L. K.,
et al. (2010). Escitalopram enhances the association of serotonin-1A
autoreceptors to heteroreceptors in anxiety disorders. J. Neurosci. 30,
14482–14489. doi: 10.1523/JNEUROSCI.2409-10.2010

Harmer, C. J., and Cowen, P. J. (2013). ‘It’s the way that you look at it’—a cognitive
neuropsychological account of SSRI action in depression. Philos. Trans. R. Soc.
Lond. B. Biol. Sci. 368:20120407. doi: 10.1098/rstb.2012.0407

Holsboer, F. (2008). How can we realize the promise of personalized
antidepressant. Nat. Rev. Neurosci. 9, 638–646. doi: 10.1038/nrn2453

Horwitz, B., Duara, R., and Rapoport, S. I. (1984). Intercorrelations of glucose
metabolic rates between brain regions: application to healthy males in a
state of reduced sensory input. J. Cereb. Blood Flow Metab. 4, 484–499.
doi: 10.1038/jcbfm.1984.73

Ichise, M., Liow, J. S., Lu, J. Q., Takano, A., Model, K., Toyama, H., et al.
(2003). Linearized reference tissue parametric imaging methods: application to
[11C]DASB positron emission tomography studies of the serotonin transporter
in human brain. J. Cereb. Blood Flow Metab. 23, 1096–1112. doi: 10.1097/01.
WCB.0000085441.37552.CA

Innis, R. B., Cunningham, V. J., Delforge, J., Fujita, M., Gjedde, A., Gunn, R. N.,
et al. (2007). Consensus nomenclature for in vivo imaging of reversibly binding
radioligands. J. Cereb. Blood Flow Metab. 27, 1533–1539. doi: 10.1038/sj.jcbfm.
9600493

Jin, C., Gao, C., Chen, C., Ma, S., Netra, R., Wang, Y., et al. (2011). A preliminary
study of the dysregulation of the resting networks in first-episode medication-
naive adolescent depression.Neurosci. Lett. 503, 105–109. doi: 10.1016/j.neulet.
2011.08.017

Johnstone, T., van Reekum, C. M., Urry, H. L., Kalin, N. H., and Davidson, R. J.
(2007). Failure to regulate: counterproductive recruitment of top-down
prefrontal-subcortical circuitry inmajor depression. J. Neurosci. 27, 8877–8884.
doi: 10.1523/JNEUROSCI.2063-07.2007

Kennedy, S. H., Evans, K. R., Krüger, S., Mayberg, H. S., Meyer, J. H., Mccann, S.,
et al. (2001). Changes in regional brain glucose metabolism measured with
positron emission tomography after paroxetine treatment of major depression.
Am. J. Psychiatry 158, 899–905. doi: 10.1176/appi.ajp.158.987.899

Kim, M. J., Hamilton, J. P., and Gotlib, I. H. (2008). Reduced caudate gray matter
volume in womenwithmajor depressive disorder. Psychiatry Res. 164, 114–122.
doi: 10.1016/j.pscychresns.2007.12.020

Kraft, J. B., Peters, E. J., Slager, S. L., Jenkins, G. D., Reinalda, M. S., Mcgrath, P. J.,
et al. (2007). Analysis of association between the serotonin transporter and
antidepressant response in a large clinical sample. Biol. Psychiatry 61, 734–742.
doi: 10.1016/j.biopsych.2006.07.017

Lanzenberger, R., Kranz, G. S., Haeusler, D., Akimova, E., Savli, M., Hahn, A., et al.
(2012). Prediction of SSRI treatment response in major depression based on
serotonin transporter interplay between median raphe nucleus and projection
areas. Neuroimage 63, 874–881. doi: 10.1016/j.neuroimage.2012.07.023

Lui, S., Wu, Q., Qiu, L., Yang, X., Kuang, W., Chan, R. C., et al. (2011).
Resting-state functional connectivity in treatment-resistant depression. Am.
J. Psychiatry 168, 642–648. doi: 10.1176/appi.ajp.2010.10101419

Lynch, F. L., Dickerson, J. F., Clarke, G., Vitiello, B., Porta, G., Wagner, K. D.,
et al. (2011). Incremental cost-effectiveness of combined therapy vs medication
only for youth with selective serotonin reuptake inhibitor-resistant depression:
treatment of SSRI-resistant depression in adolescents trial findings. Arch. Gen.
Psychiatry 68, 253–262. doi: 10.1001/archgenpsychiatry.2011.9

McCabe, C., and Mishor, Z. (2011). Antidepressant medications reduce
subcortical-cortical resting-state functional connectivity in healthy volunteers.
Neuroimage 57, 1317–1323. doi: 10.1016/j.neuroimage.2011.05.051

McCabe, C., Mishor, Z., Filippini, N., Cowen, P. J., Taylor, M. J., and Harmer, C. J.
(2011). SSRI administration reduces resting state functional connectivity in
dorso-medial prefrontal cortex. Mol. Psychiatry 16, 592–594. doi: 10.1038/mp.
2010.138

McIntosh, A. R., and Gonzalez-Lima, F. (1993). Network analysis of functional
auditory pathways mapped with fluorodeoxyglucose: associative effects of a
tone conditioned as a Pavlovian excitor or inhibitor. Brain Res. 627, 129–140.
doi: 10.1016/0006-8993(93)90756-d

Meng, C., Brandl, F., Tahmasian, M., Shao, J., Manoliu, A., Scherr, M., et al. (2014).
Aberrant topology of striatum’s connectivity is associated with the number of
episodes in depression. Brain 137, 598–609. doi: 10.1093/brain/awt290

Metter, E. J., Riege, W. H., Kuhl, D. E., and Phelps, M. E. (1984). Cerebral
metabolic relationships for selected brain regions in healthy adults. J. Cereb.
Blood Flow Metab. 4, 1–7. doi: 10.1038/jcbfm.1984.1

Miller, J. M., Schneck, N., Siegle, G. J., Chen, Y., Ogden, R. T., Kikuchi, T.,
et al. (2013). fMRI response to negative words and SSRI treatment outcome in
major depressive disorder: a preliminary study. Psychiatry Res. 214, 296–305.
doi: 10.1016/j.pscychresns.2013.08.001

Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., and Bandettini, P. A.
(2009). The impact of global signal regression on resting state correlations: are
anti-correlated networks introduced? Neuroimage 44, 893–905. doi: 10.1016/j.
neuroimage.2008.09.036

Pandya, M., Altinay, M., Malone, D. A., Jr. and Anand, A. (2012). Where in the
brain is depression? Curr. Psychiatry Rep. 14, 634–642. doi: 10.1007/s11920-
012-0322-7

Pessoa, L. (2008). On the relationship between emotion and cognition. Nat. Rev.
Neurosci. 9, 148–158. doi: 10.1038/nrn2317

Phillips, M. L., Drevets, W. C., Rauch, S. L., and Lane, R. (2003). Neurobiology
of emotion perception I: the neural basis of normal emotion perception. Biol.
Psychiatry 54, 504–514. doi: 10.1016/s0006-3223(03)00168-9

Pizzagalli, D. A. (2011). Frontocingulate dysfunction in depression: toward
biomarkers of treatment response. Neuropsychopharmacology 36, 183–206.
doi: 10.1038/npp.2010.166

Pizzagalli, D. A., Holmes, A. J., Dillon, D. G., Goetz, E. L., Birk, J. L., Bogdan, R.,
et al. (2009). Reduced caudate and nucleus accumbens response to rewards in
unmedicated individuals with major depressive disorder. Am. J. Psychiatry 166,
702–710. doi: 10.1176/appi.ajp.2008.08081201

Rubinov, M., and Sporns, O. (2010). Complex network measures of brain
connectivity: uses and interpretations. Neuroimage 52, 1059–1069.
doi: 10.1016/j.neuroimage.2009.10.003

Schreckenberger, M., Gouzoulis-Mayfrank, E., Sabri, O., Arning, C., Schulz, G.,
Tuttass, T., et al. (1998). Cerebral interregional correlations of associative

Frontiers in Human Neuroscience | www.frontiersin.org February 2017 | Volume 11 | Article 48 | 91

https://doi.org/10.1038/sj.npp.1301593
https://doi.org/10.1016/j.biopsych.2013.05.036
https://doi.org/10.1016/j.biopsych.2013.05.036
https://doi.org/10.1176/appi.ajp.160.1.64
https://doi.org/10.1016/s0924-977x(02)00102-5
https://doi.org/10.1016/s0193-953x(02)00104-1
https://doi.org/10.1055/s-0035-1554712
https://doi.org/10.1001/archpsyc.61.9.877
https://doi.org/10.1016/j.biopsych.2014.08.009
https://doi.org/10.1016/j.biopsych.2014.08.009
https://doi.org/10.1016/j.biopsych.2006.09.020
https://doi.org/10.1038/jcbfm.2014.82
https://doi.org/10.1002/hbm.22442
https://doi.org/10.1523/JNEUROSCI.2409-10.2010
https://doi.org/10.1098/rstb.2012.0407
https://doi.org/10.1038/nrn2453
https://doi.org/10.1038/jcbfm.1984.73
https://doi.org/10.1097/01.WCB.0000085441.37552.CA
https://doi.org/10.1097/01.WCB.0000085441.37552.CA
https://doi.org/10.1038/sj.jcbfm.9600493
https://doi.org/10.1038/sj.jcbfm.9600493
https://doi.org/10.1016/j.neulet.2011.08.017
https://doi.org/10.1016/j.neulet.2011.08.017
https://doi.org/10.1523/JNEUROSCI.2063-07.2007
https://doi.org/10.1176/appi.ajp.158.987.899
https://doi.org/10.1016/j.pscychresns.2007.12.020
https://doi.org/10.1016/j.biopsych.2006.07.017
https://doi.org/10.1016/j.neuroimage.2012.07.023
https://doi.org/10.1176/appi.ajp.2010.10101419
https://doi.org/10.1001/archgenpsychiatry.2011.9
https://doi.org/10.1016/j.neuroimage.2011.05.051
https://doi.org/10.1038/mp.2010.138
https://doi.org/10.1038/mp.2010.138
https://doi.org/10.1016/0006-8993(93)90756-d
https://doi.org/10.1093/brain/awt290
https://doi.org/10.1038/jcbfm.1984.1
https://doi.org/10.1016/j.pscychresns.2013.08.001
https://doi.org/10.1016/j.neuroimage.2008.09.036
https://doi.org/10.1016/j.neuroimage.2008.09.036
https://doi.org/10.1007/s11920-012-0322-7
https://doi.org/10.1007/s11920-012-0322-7
https://doi.org/10.1038/nrn2317
https://doi.org/10.1016/s0006-3223(03)00168-9
https://doi.org/10.1038/npp.2010.166
https://doi.org/10.1176/appi.ajp.2008.08081201
https://doi.org/10.1016/j.neuroimage.2009.10.003
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


James et al. SSRI Effects on Interregional SERT Relation

language processing: a positron emission tomography activation study
using fluorine-18 fluorodeoxyglucose. Eur. J. Nucl. Med. 25, 1511–1519.
doi: 10.1007/s002590050329

Sheline, Y. I. (2011). Depression and the hippocampus: cause or effect? Biol.
Psychiatry 70, 308–309. doi: 10.1016/j.biopsych.2011.06.006

Sheline, Y. I., Barch, D. M., Donnelly, J. M., Ollinger, J. M., Snyder, A. Z., and
Mintun, M. A. (2001). Increased amygdala response to masked emotional faces
in depressed subjects resolves with antidepressant treatment: an fMRI study.
Biol. Psychiatry 50, 651–658. doi: 10.1016/s0006-3223(01)01263-x

Sheline, Y. I., Price, J. L., Yan, Z., and Mintun, M. A. (2010). Resting-
state functional MRI in depression unmasks increased connectivity between
networks via the dorsal nexus. Proc. Natl. Acad. Sci. U S A 107, 11020–11025.
doi: 10.1073/pnas.1000446107

Spies, M., Knudsen, G. M., Lanzenberger, R., and Kasper, S. (2015). The serotonin
transporter in psychiatric disorders: insights from PET imaging. Lancet
Psychiatry 2, 743–755. doi: 10.1016/s2215-0366(15)00232-1

Sung, S. C., Wisniewski, S. R., Balasubramani, G. K., Zisook, S., Kurian, B.,
Warden, D., et al. (2013). Does early-onset chronic or recurrent major
depression impact outcomes with antidepressant medications? A CO-MED
trial report. Psychol. Med. 43, 945–960. doi: 10.1017/s00332917120
01742

Tao, H., Guo, S., Ge, T., Kendrick, K. M., Xue, Z., Liu, Z., et al. (2013). Depression
uncouples brain hate circuit. Mol. Psychiatry 18, 101–111. doi: 10.1038/mp.
2011.127

Taylor, M. J., Freemantle, N., Geddes, J. R., and Bhagwagar, Z. (2006).
Early onset of selective serotonin reuptake inhibitor antidepressant action:
systematic review and meta-analysis. Arch. Gen. Psychiatry 63, 1217–1223.
doi: 10.1001/archpsyc.63.11.1217

Teasdale, J. D., Howard, R. J., Cox, S. G., Ha, Y., Brammer, M. J., Williams, S. C.,
et al. (1999). Functional MRI study of the cognitive generation of affect. Am.
J. Psychiatry 156, 209–215. doi: 10.1176/ajp.156.2.209

Vanicek, T., Spies, M., Rami-Mark, C., Savli, M., Höflich, A.,
Kranz, G. S., et al. (2014). The norepinephrine transporter in attention-
deficit/hyperactivity disorder investigated with positron emission
tomography. JAMA Psychiatry 71, 1340–1349. doi: 10.1001/jamapsychiatry.20
14.1226

Veer, I. M., Beckmann, C. F., van Tol, M. J., Ferrarini, L., Milles, J., Veltman, D. J.,
et al. (2010). Whole brain resting-state analysis reveals decreased functional

connectivity inmajor depression. Front. Syst. Neurosci. 4:41. doi: 10.3389/fnsys.
2010.00041

Wang, L., Li, K., Zhang, Q., Zeng, Y., Dai, W., Su, Y., et al. (2014). Short-
term effects of escitalopram on regional brain function in first-episode
drug-naive patients with major depressive disorder assessed by resting-
state functional magnetic resonance imaging. Psychol. Med. 44, 1417–1426.
doi: 10.1017/s0033291713002031

Wang, L., Xia, M., Li, K., Zeng, Y., Su, Y., Dai, W., et al. (2015). The effects
of antidepressant treatment on resting-state functional brain networks in
patients with major depressive disorder. Hum. Brain Mapp. 36, 768–778.
doi: 10.1002/hbm.22663

Weissenbacher, A., Kasess, C., Gerstl, F., Lanzenberger, R., Moser, E., and
Windischberger, C. (2009). Correlations and anticorrelations in resting-state
functional connectivity MRI: a quantitative comparison of preprocessing
strategies. Neuroimage 47, 1408–1416. doi: 10.1016/j.neuroimage.2009.05.005

World Health Organization (2015). ‘‘Depression’’, in Fact Sheet. Available online
at: http://www.who.int/mediacentre/factsheets/fs369/en/ [accessed November
27, 2015].

Xia, M.,Wang, J., and He, Y. (2013). BrainNet Viewer: a network visualization tool
for human brain connectomics. PLoS One 8:e68910. doi: 10.1371/journal.pone.
0068910

Zhu, X., Wang, X., Xiao, J., Liao, J., Zhong, M., Wang, W., et al. (2012). Evidence
of a dissociation pattern in resting-state default mode network connectivity in
first-episode, treatment-naive major depression patients. Biol. Psychiatry 71,
611–617. doi: 10.1016/j.biopsych.2011.10.035

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 James, Baldinger-Melich, Philippe, Kranz, Vanicek, Hahn,
Gryglewski, Hienert, Spies, Traub-Weidinger, Mitterhauser, Wadsak, Hacker,
Kasper and Lanzenberger. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution and
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org February 2017 | Volume 11 | Article 48 | 92

https://doi.org/10.1007/s002590050329
https://doi.org/10.1016/j.biopsych.2011.06.006
https://doi.org/10.1016/s0006-3223(01)01263-x
https://doi.org/10.1073/pnas.1000446107
https://doi.org/10.1016/s2215-0366(15)00232-1
https://doi.org/10.1017/s0033291712001742
https://doi.org/10.1017/s0033291712001742
https://doi.org/10.1038/mp.2011.127
https://doi.org/10.1038/mp.2011.127
https://doi.org/10.1001/archpsyc.63.11.1217
https://doi.org/10.1176/ajp.156.2.209
https://doi.org/10.1001/jamapsychiatry.2014.1226
https://doi.org/10.1001/jamapsychiatry.2014.1226
https://doi.org/10.3389/fnsys.2010.00041
https://doi.org/10.3389/fnsys.2010.00041
https://doi.org/10.1017/s0033291713002031
https://doi.org/10.1002/hbm.22663
https://doi.org/10.1016/j.neuroimage.2009.05.005
http://www.who.int/mediacentre/factsheets/fs369/en/
https://doi.org/10.1371/journal.pone.0068910
https://doi.org/10.1371/journal.pone.0068910
https://doi.org/10.1016/j.biopsych.2011.10.035
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


ORIGINAL RESEARCH
published: 13 February 2017

doi: 10.3389/fnhum.2017.00062

Abnormal Spontaneous Brain Activity
in Women with Premenstrual
Syndrome Revealed by Regional
Homogeneity
Hai Liao 1†, Yong Pang 2†, Peng Liu 3, Huimei Liu 2, Gaoxiong Duan 1, Yanfei Liu 3,
Lijun Tang 2, Jien Tao 2, Danhong Wen 4, Shasha Li 1, Lingyan Liang 1 and Demao Deng 1*

1Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China, 2Department
of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China, 3Life Science Research
Center, School of Life Science and Technology, Xidian University, Xi’an, China, 4Department of Teaching, First Affiliated
Hospital, Guangxi University of Chinese Medicine, Nanning, China

Edited by:
Luis Manuel Colon-Perez,
University of Florida, USA

Reviewed by:
Irene Messina,

University of Padua, Italy
Jiliang Fang,

China Academy of Chinese Medical
Sciences, China

*Correspondence:
Demao Deng

demaodeng@163.com

†These authors have contributed
equally to this work.

Received: 10 November 2016
Accepted: 30 January 2017
Published: 13 February 2017

Citation:
Liao H, Pang Y, Liu P, Liu H, Duan G,

Liu Y, Tang L, Tao J, Wen D, Li S,
Liang L and Deng D (2017) Abnormal
Spontaneous Brain Activity in Women

with Premenstrual Syndrome
Revealed by Regional Homogeneity.

Front. Hum. Neurosci. 11:62.
doi: 10.3389/fnhum.2017.00062

Background: Previous studies have revealed that the etiologies of premenstrual
syndrome (PMS) refer to menstrual cycle related brain changes. However, its intrinsic
neural mechanism is still unclear. The aim of the present study was to assess abnormal
spontaneous brain activity and to explicate the intricate neural mechanism of PMS using
resting state functional magnetic resonance imaging (RS-fMRI).

Materials and Methods: The data of 20 PMS patients (PMS group) and 21 healthy
controls (HC group) were analyzed by regional homogeneity (ReHo) method during
the late luteal phase of menstrual cycle. In addition, all the participants were asked
to complete a daily record of severity of problems (DRSP) questionnaire.

Results: Compared with HC group, the results showed that PMS group had increased
ReHo mainly in the bilateral precuneus, left inferior temporal cortex (ITC), right inferior
frontal cortex (IFC) and left middle frontal cortex (MFC) and decreased ReHo in the
right anterior cingulate cortex (ACC) at the luteal phase. Moreover, the PMS group had
higher DRSP scores, and the DRSP scores positively correlated with ReHo in left MFC
and negatively correlated with ReHo in the right ACC.

Conclusion: Our results suggest that abnormal spontaneous brain activity is found in
PMS patients and the severity of symptom is specifically related to the left MFC and right
ACC. The present findings may be beneficial to explicate the intricate neural mechanism
of PMS.

Keywords: premenstrual syndrome, resting state, fMRI, regional homogeneity, brain

Abbreviations: ACC, Anterior cingulate cortex; BMI, Body mass index; BOLD, Blood oxygenation level dependent;
CNS, Central nervous system; DMN, Default mode network; DSM-5, Diagnostic and Statistical Manual of Mental
Disorders-5th Edition; DRSP, Daily rating of severity of problems; EPI, Echo planar imaging; FC, Functional connectivity;
FDR, False discovery rate; FOV, Field of view; HC, Healthy controls; IFC, Inferior frontal cortex; ITC, Inferior temporal
cortex; KCC, Kendall’s coefficient of concordance; MFC, Middle frontal cortex; PMDD, Premenstrual dysphoric disorder;
PMS, Premenstrual syndrome; rCBF, regional cerebral blood flow; ReHo, Regional homogeneity; ROIs, Regions of interest;
RS-fMRI, Resting state functional magnetic resonance imaging; SPECT, Single photon emission computed tomography;
TE, Echo time; TR, Repetition time.
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INTRODUCTION

Premenstrual syndrome (PMS) refers to a series of cycling
and relapsing physical, emotional, cognitive and behavioral
symptoms that regularly recur during the late luteal phase
of each menstrual cycle and relieve soon after the onset of
menses (Tacani et al., 2015). It is estimated that more than
80% of women are affected by PMS (Halbreich, 2003). The
symptoms of PMS are often mild, but many patients present
gradually worsening symptoms within 10 years (Freeman, 2003),
and approximately 3%–10% of PMS women suffer from severe
syndrome associated with substantial distress or functional
impairment which eventually reach the criteria for premenstrual
dysphoric disorder (PMDD;Hamaideh et al., 2014; Ryu and Kim,
2015). PMS has a significant negative effect on woman’s quality
of life, and disturbs family relationships, work, productivity,
social activity and sexual relationships (Freeman, 2003; Halbreich
et al., 2003). It is also an important risk factor for postpartum
depression (Buttner et al., 2013). However, no characteristic
symptoms and signs occur, nor is a recognizable physiological
and anatomical factor identified in PMS. Thus, it is necessary to
pay more attention to understanding the underlying mechanism
of PMS.

Regarding the etiology mechanism of PMS, there exist a great
argument on gonadal hormones (estrogen and progesterone),
gene, psychosocial factors and certain central nervous system
(CNS) pathways (Duvan et al., 2011; Rapkin and Akopians,
2012; Barth et al., 2015; Hantsoo and Epperson, 2015). The
evidence from previous brain imaging studies has showed
that PMS exists CNS dysfunctions. In the animal model,
PMS is associated with dysregulation of hippocampus (Barth
et al., 2014; Gao et al., 2014). As to the patients, the
abnormalities of brain functional activity are also involved
in PMS. Based on the single photon emission computed
tomography (SPECT), the decreases of regional cerebral blood
flow (rCBF) were reported to be located in the temporal
lobes at luteal phase compared with the follicular phase in
PMS patients (Buchpiguel et al., 2000). Liu Q. et al. (2015)
found that compared with healthy subjects, women with
PMS during luteal phase displayed decreased connectivity in
the middle frontal gyrus and parahippocampal gyrus, and
increased connectivity in the left medial/superior temporal
gyri and precentral gyrus within default mode network
(DMN). De Bondt et al. (2015) also indicated that there
were relationships between the premenstrual-like symptoms
and the increased functional connectivity (FC) of the posterior
part of the DMN with the precuneus, middle frontal gyrus,
the posterior cingulate and cuneus. The above-mentioned
studies show that neural abnormalities are embedded in
PMS. However, the underlying elements leading to CNS
dysfunctions in PMS are not well understood. Substantial
studies have demonstrated that psychological changes may be
the pivotal factors resulting in the brain activity abnormalities
(Andermann, 1960; Walker and McGlone, 2013; Ait-Belgnaoui
et al., 2014). Given that PMS patients are tested with significant
psychological changes in menstrual cycle, especially at the
luteal phase (Liu Q. et al., 2015; Watanabe and Shirakawa,

2015). The efforts to investigate the correlates between
psychological changes and neural abnormalities may extend
our understanding of the neural mechanism of PMS. While
the amounts of literature concerning psychological processes
on brain activity of PMS are limited and the studies to
explicate the intricate neural mechanism of PMS are still
insufficient.

Resting state functional magnetic resonance imaging
(RS-fMRI) is a useful tool to gather further insight into intricate
functions of human brain (Bifone and Gozzi, 2011; Branco
et al., 2016). Regional homogeneity (ReHo), a data-driven
method, measures the similarity or synchronization of the time
series of nearest neighboring voxels, and can detect intensity of
regional spontaneous brain activity at the resting state (Zang
et al., 2004). Combining the RS-fMRI and ReHo method,
researchers have detected abnormal neural activity in the resting
state of neuropsychiatric disorders (Yuan et al., 2008), such as
Parkinson’s disease (Wu et al., 2009), depression (Guo et al.,
2011) and schizophrenia (Liu H. et al., 2006). These findings
have confirmed the measurement reliability and sensitivity of
ReHo in the neuropsychiatric fields, which may be helpful to
investigate the abnormal brain activity in PMS.

Thereby, the aim of this study was to investigate the
spontaneous brain activity in the women with PMS and healthy
controls (HC) at the late luteal phase by ReHo method.
We hypothesized that there existed significant changes of the
spontaneous brain activity in women with PMS compared with
HC. We also hypothesized that the neuroimaging findings could
be associated with the psychological changes in PMS.

MATERIALS AND METHODS

Ethics Statement
All subjects were informed about the whole experiment
procedure and signed a written informed consent form. This
study was approved by the Medicine Ethics Committee of First
Affiliated Hospital, Guangxi University of Chinese Medicine,
Guangxi, China. All the research procedures of the present study
were conducted in accordance with the Declaration of Helsinki.

Subjects
This study was performed on First Affiliated Hospital, Guangxi
University of Chinese Medicine. Twenty-three patients (PMS-
group) were recruited via advertisement in the Guangxi
University of Chinese Medicine, Guangxi, China. To quantify
premenstrual symptoms, all the patients were prospectively
screened for 2 months and called for completing a daily
record of severity of problems (DRSP) questionnaire decided
by Dr. Endicott (Endicott et al., 2006; see Supplementary
Material). Clinical diagnostic criteria for PMS were based
on the recommendations and guidelines for PMS (Halbreich
et al., 2007). Meanwhile, Diagnostic and Statistical Manual of
Mental Disorders-5th Edition (DSM-5; American Psychiatric
Association, 2013) was used to exclude patients from PMDD.
All the patients were individually diagnosed by an experienced
associated professor gynecologist. The inclusion criteria for
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PMS were met: (1) age ranged from 18 to 45 years old,
being right-handed; (2) a regular menstrual cycle ranged from
24 to 35 days; (3) the premenstrual symptoms occurred up to
2 weeks before menses in most menstrual cycles; (4) symptoms
remitted shortly following onset of menses and were absent
during most of the mid-follicular phase of the menstrual cycle;
(5) the symptoms were associated with impairment in daily
functioning and/or relationships and/or caused suffering, such
as emotional, behavioral and physical distress; (6) the menstrual-
related cyclicity, occurrence during the late luteal phase of cycle
(days −5 to −1) and absence during the middle follicular phase
(days +6 to +10) were documented by repeated observations
by the patients based on DRSP, and the mean luteal phase
score was at least 30% greater than that of the follicular
phase; and (7) the symptoms were not just an exacerbation
or worsening of another mental or physical chronic disorders.
The exclusion criteria for patients were as follows: (1) being
currently pregnant or lactating; (2) having a history of thyroid
disease, dysmenorrhea, gynecological inflammation, menopausal
syndrome, hysterectomy or bilateral oophorectomy, mastopathy
or cancer, or diabetes or any other structural diseases;
(3) having psychiatric disorders by DSM-5 criteria, such as
schizoaffective disorder, schizophrenia, organic mental disorder,
delusional mental disorder, psychotic features coordinated or
uncoordinated with mood or bipolar disorder; (4) treating
with any steroid compound (including oral contraceptives
and hormonal intrauterine devices), benzodiazepines, or other
psychotropic drugs affecting PMS; (5) having any MRI
contraindications; and (6) smoking or alcohol abuse.

Twenty-two age matched HC, right-handed women (HC
group), with regular menstrual cycle of 24–35 days were
recruited in this study. All the HC were free of psychiatric
or neurological illness via assessment by medical history and
physical examinations, and had no history of alcohol or drugs
abuse. All the HC also underwent the same diagnostic screening
tests.

Meanwhile, each subject was asked to complete an identical
assessment protocol in the body mass index (BMI), women’s
menstrual cycle, menophania, length of menstrual cycle,
menstruation.

Experimental Paradigm
The PMS group and HC group were randomly arranged to
receive fMRI examinations. Based on the females’ physical
characteristics and hormone level, all the test dates were set
at the late luteal phase, ranging from 1 to 5 days before
menstruation. To confirm the relatively stable and low level
of endogenous cortisol and estradiol, all of the scan tests
were conducted between 20:00 and 22:00 pm (Bao et al.,
2004). For menstrual cycle stage verification, we obtained
prospective self-reports about when their menstruation started
and combined this information with the primary gynecological
examinations and B-ultrasonic wave results to arrange the
test times. The subject then received a RS-fMRI scan for
6 min. During the scan, each subject was instructed to
keep eyes closed, not to think about anything and to stay
awake.

MRI Data Acquisition
MRI data were acquired using a 3.0 Tesla Siemens Magnetom
Verio MRI System (Siemens Medical, Erlangen, Germany)
at the Department of Radiology, First Affiliated Hospital,
Guangxi University of Chinese Medicine, Nanning, Guangxi,
China. To avoid head movement, each subject’s head was
immobilized by foam pads in a standard 8-channel birdcage
head coil. FMRI images were acquired with a single-shot
gradient–recalled echo planar imaging (EPI) sequence with
the parameters as following: repetition time (TR)/echo time
(TE) = 2000 ms/30 ms, flip angle = 90◦, field of view
(FOV) = 240 mm × 240 mm, matrix size = 64 × 64, slice
thickness = 5 mm and slices = 31. High resolution T1-weighted
images were then obtained with a volumetric three-dimensional
spoiled gradient recall sequence with the parameters as following:
TR/TE = 1900 ms/2.22 ms, FOV = 250 mm × 250 mm, matrix
size: 250 × 250, flip angle = 9◦, slice thickness = 1 mm and
176 slices.

Image Preprocessing
Preprocessing was performed with SPM8 (SPM8)1. The first
10 volumes of each functional time series were removed to avoid
the instability of the initial MRI signal. The remaining images
were corrected for acquisition time delay between different
slices and realigned to the first volume. The head motion
parameters were calculated by estimating the translation in
every direction and the angular rotation on each axis for
every volume. If the translation was more than 1.5 mm in
any cardinal direction and the rotation was more than 1.5◦

in each of the orthogonal x, y and z axes, the subject was
discarded. The realigned functional images were then spatially
normalized to the Montreal neurological institute space using
the normalization parameters estimated by T1 structural image
unified segmentation, re-sampled to 3 mm × 3 mm × 3 mm
voxels. Several sources of spurious variance, such as the estimated
motion parameters, average blood oxygenation level dependent
(BOLD) signals in ventricular and white matter regions, were
dislodged from the images. After removing the variance,
linear drift was removed and temporal filter (0.01–0.08 Hz)
was then performed on the time series of each voxel to
reduce the effect of low-frequency drifts and high-frequency
noise.

ReHo Analysis
The parameter of Kendall’s coefficient of concordance (KCC)
was utilized to measure the similarity of time series of a given
voxel to the ones of its 26 nearest voxels in a voxel-wise way based
on the hypothesis that a voxel is temporally similar to the ones of
its neighbors. Individual ReHo maps were created by computing
KCC within a gray matter mask in a voxel-wise manner using
REST Software2. When the center cube was on the edge of the
gray matter mask, we only computed ReHo for a voxel if all of
remaining nearest voxels were within the gray matter mask. For
every subject, KCCmap was normalized by dividing KCC in each

1http://www.fil.ion.ucl.ac.uk/spm/
2http://restfmri.net/forum/index.php
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voxel by the mean KCC of total gray matter. The KCC fMRI data
were then spatially smoothed with a Gaussian kernel of 6 mm
full-width at half-maximum.

Statistical Analysis
Demographic and clinical data were compared using two-sample
t-test. The threshold level in all statistical analysis for significance
criterion was determined at p < 0.05. Two sample t-test was
then applied to examine different patterns of the spontaneous
brain activity between the PMS patients and HC. All of the
contrast threshold was set at p < 0.05 (false discovery rate
(FDR) corrected). We applied correlation analysis to estimate
the relationships between the influence of symptom severity
of disease and the regions of interest (ROIs) showing the
differences in PMS patients compared with HC. First, the 6 mm
sphere around the peak voxels in the significant between-
group clusters was formed as the ROIs. Pearson correlations
between the mean ReHo of the ROIs and DRSP values were
then estimated. The age, BMI, menstruation, menophania,
length of menstrual cycle were considered as covariates of no
interest in this study. Adjustment for multiple comparisons was
made with the Bonferroni correction for correlation analysis
(p < 0.05).

RESULTS

Demographic and Clinical Results
In this study, three PMS patients and one HC were excluded
from further data analysis because of distinct head movement.
Finally, 20 women with PMS and 21 matched HC were included
in our study. There were no significant differences in terms of
age, BMI, menstruation (days), menophania (years), length of
menstrual cycle (days) between the PMS group and HC-group
(Table 1).

DRSP Result
The mean late luteal phase score of PMS group was 73.47 ± 7.84,
it was the highest in groups. And the score variation rate from
the middle follicular phase to the late luteal phase of PMS group
was (46.24 ± 7.05)%. Each of the late luteal phase score in PMS
group exceeded 50 and it was at least 30% larger than that of the
follicular phase, which showed contrary to HC group (Table 2
and Figure 1).

TABLE 1 | Demographic and clinical characteristics for the study.

Variable PMS (n = 20) HC (n = 21) p value

Age (years) 21.85 ± 1.72 21.38 ± 0.86 0.284a

BMI 18.60 ± 1.71 19.50 ± 1.48 0.081a

Menophania (years) 13.75 ± 1.44 13.00 ± 1.09 0.068a

Length of menstrual
cycle (days)

29.95 ± 1.76 29.80 ± 1.56 0.789a

Menstruation (days) 5.60 ± 1.09 5.38 ± 1.11 0.530a

Abbreviations: PMS, premenstrual syndrome; HC, healthy control; BMI, body mass

index. All values are mean ± standard deviation (SD). aThe p-value was obtained

by two sample t-test.

TABLE 2 | The mean scores of late luteal phase and middle follicular
phase and variation rate in PMS group and HC group.

Groups L Phase M Phase (L-M)/L∗100%

PMS group
Subject 01 62.6 43.0 31.3%
Subject 02 67.0 35.2 47.5%
Subject 03 59.6 37.2 37.6%
Subject 04 66.2 39.6 40.2%
Subject 05 76.6 37.8 50.7%
Subject 06 88.0 46.6 47.0%
Subject 07 67.0 36.0 46.3%
Subject 08 86.8 32.0 63.1%
Subject 09 68.4 33.2 51.5%
Subject 10 65.6 40.6 38.1%
Subject 11 85.2 43.6 48.8%
Subject 12 74.6 40.4 45.8%
Subject 13 74.4 37.8 49.2%
Subject 14 78.8 45.0 42.9%
Subject 15 71.2 35.6 50.0%
Subject 16 73.0 38.2 47.7%
Subject 17 73.0 43.6 40.3%
Subject 18 80.8 35.2 56.4%
Subject 19 74.4 38.0 48.9%
Subject 20 76.2 44.6 41.5%

HC group
Subject 01 26.4 24.6 6.8%
Subject 02 43.0 30.4 29.3%
Subject 03 43.4 35.2 18.9%
Subject 04 31.0 32.0 −3.2%
Subject 05 43.8 29.6 32.4%
Subject 06 27.4 26.0 5.1%
Subject 07 34.4 30.6 11.0%
Subject 08 41.2 31.2 24.2%
Subject 09 28.4 27.6 2.8%
Subject 10 33.0 26.8 18.8%
Subject 11 42.4 30.0 29.2%
Subject 12 46.2 34.2 26.0%
Subject 13 26.8 25.8 3.7%
Subject 14 30.2 27.2 10.0%
Subject 15 24.8 24.0 3.2%
Subject 16 43.6 32.2 26.1%
Subject 17 24.0 25.2 −5.0%
Subject 18 28.2 25.4 9.9%
Subject 19 44.6 33.0 26.0%
Subject 20 40.6 39.4 3.0%
Subject 21 31.4 26.8 14.6%

Abbreviations: PMS, premenstrual syndrome; HC, healthy control; L Phase, late

luteal phase; M Phase, middle follicular phase.

Imaging Result
Compared with HC group, the results revealed that PMS group
exhibited increased ReHo mainly in the bilateral precuneus, left
inferior temporal cortex (ITC), right inferior frontal cortex (IFC)
and left middle frontal cortex (MFC), as well as decreased ReHo
in the right anterior cingulate cortex (ACC) at luteal phase
(Figure 2).

Correlation Analysis
Correlation analysis was applied to the ReHo and individual
DRSP scores in the PMS group at luteal phase. The results
indicated the DRSP scores in the PMS group positively correlated
with the ReHo in the left MFC (r = 0.706, p = 0.001) and
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FIGURE 1 | The mean daily record of severity of problems (DRSP) score and its variation rate between groups. (A) The mean DRSP score between PMS
group and HC-group. (B) The variation rate of DRSP scores in PMS group and HC group. Abbreviations: PMS, premenstrual syndrome; HC, healthy control;
L Phase, late luteal phase; M Phase, middle follicular phase.

negatively correlated with the ReHo in the righ ACC (r =−0.656,
p = 0.002; Figure 3).

DISCUSSION

In present study, we adopted a RS-MRI strategy to investigate
the spontaneous neural activity in PMS patients based on the
ReHo method. Compared with HC, we observed altered patterns
of spontaneous neural activity in PMS at luteal phase, mainly
located in the bilateral precuneus, left ITC, right IFC, left MFC
and right ACC. Moreover, in PMS group, the left MFC and right
ACCwere associated with the severity of clinical symptoms based
on DRSP.

FIGURE 2 | Distinct brain regions. (A) Increased regional homogeneity
(ReHo) in brain regions between PMS patients and HC; (B) decreased ReHo
in brain region between PMS patients and HC.

The DRSP is considered to be a preferred instrument for
prospective assessment on premenstrual disorders, it can provide
the sensitive, reliable and valid measures of the symptoms and
functional impairment criteria for PMS (Endicott et al., 2006).
The evidence from previous study has demonstrated that the
higher score of DRSPmeans PMS patients being at more negative
and stressful conditions (Watanabe and Shirakawa, 2015). While
psychological changes are deemed to make important impacts
on the brain activity. Based on our findings of the highest DRSP
scores at the late luteal phase in PMS group, we infer that patients
might feel more stress and negative mood at the late luteal phase,
such significant psychological changesmight eventually affect the
brain activity of PMS patients.

The first major finding of the present study was the decreased
ReHo in right ACC of PMS patients compared with HC. ACC
is well known to be one of the most important higher-order
brain structure exceedingly related to emotional and cognitive
processing (Mayberg et al., 2002; Davis et al., 2005; Lavin
et al., 2013). ACC is also a central component in cognitive
and execution control system referred to detect incongruence
between expectations and outcomes during decision-making
processes (Vincent et al., 2008). When human brains are
suffered from the conflict monitoring in the relationships
of the structure to other functional networks with which
they interact may have important consequences for attention,
affect and/or emotion regulation, ACC shows its central
monitored and adjustive functions in effectively allocating the
resources to the center (Kerns et al., 2004; Petersen et al.,
2014). A meta-analysis pointed out that ACC was also a
special structure vulnerably involved in generating emotional
responses or expressing negative emotion, it showed functional
dysregulation when frequently confronted negative emotional
stimuli including fear, anxiety, pain and emotional conflict,
and patients with generalized anxiety and stress disorders were
related to the weakened or impaired functionality of ACC
(Etkin et al., 2011). As far as we know, PMS patients were
cyclically suffered from negative stimuli in emotion, physic
and behavior. Thereby, our finding of decreased ReHo in
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FIGURE 3 | Correlation between the ReHo and individual DRSP scores in the PMS group. (A) The left MFC showed ReHo significant positive correlations
with DRSP scores. (B) The right ACC showed ReHo significant negative correlations with DRSP scores. Each triangle represents the data from one subject.
Abbreviation: DRSP, daily record of severity of problems; ReHo, Regional homogeneity; MFC, middle frontal cortex; ACC, anterior cingulate cortex.

ACC indicates that there might exist functional abnormality or
impairment in ACC. The researchers reported that the negative
symptoms had been shown to have important effects on the
activity of ACC and influenced the behavior of functional
networks at rest during the menstrual cycle (Petersen et al.,
2014). A RS-fMRI study on women brains found that the gray
matter volume in the ACC was significantly associated with
menstrual cycle (De Bondt et al., 2013). The aforementioned
literature results revealed that ACC was a vulnerable and
crucial region referred to functional abnormality at the late
luteal phase, which was correlated with the clinical negative
symptoms. Based on the findings of DRSP scores negative
correlation with ReHo and the right ACC, it suggests that PMS
patients might be affected by negative psychological stimuli,
and then the ACC lose its higher-order cognitive, controlled
and executive functions or central monitored and adjustive
functions in allocating the resources to the center, which may
partly contribute to underlying neural mechanism of PMS.
Nevertheless, PMS is a special syndrome cyclically recurring
during the late luteal phase but relieving soon after the onset of
menses (Tacani et al., 2015). We speculate that patients may be
at the periodic states from in-control to out-control. Thereby,
besides the ACC, there might be existed other important
structures being responsible for the baseline brain activity of PMS
patients.

The precuneus represents a relevant cortical structure of
the parietal lobes. It is a crucial node of the DMN involved
in imagery, simulation visuospatial integration and self-
awareness. It is also a core region that is responsible for baseline
brain activity, and participates in functions such as intrinsic
ongoing mental processes and fundamental cognitive social
functions (Pereira-Pedro and Bruner, 2016). The precuneus
is associated with interoceptive and emotional processing
with widely distributed networks sharing connectivity with
many brain regions in the frontal, temporal, occipital and
parietal cortices (Tanaka and Kirino, 2016). It showed
greater activation to incongruent stimuli than to congruent
stimuli (Kitada et al., 2014). Halbreich et al. (2003) pointed
out that the CNS of PMS patients were usually suffered

from incongruent stimuli rooted in the gonadal hormone’s
fluctuations. Here, based on the finding of activation in the
precuneus revealed by the increased ReHo, we speculate that
this phenomenon may be due to the effect of incongruent
stimuli on patients’ brain. Meanwhile, the negative symptoms
may affect the precuneus and certain brain regions, and
then the precuneus enhances its core action on maintaining
the baseline brain activity or strengthens its networks
connectivity with other brain regions. However, as to the
healthy female subjects, studies showed the contrary results
with decreased activation in precuneus during the luteal
phase. Kunisato et al. (2011) reported that the precuneus
would be inclined to work at morbid state during luteal
phase (Helmbold et al., 2016). Thereby, due to the activation
of precuneus, its higher-order functions may be motivated,
and then the physical, emotional, cognitive and behavioral
symptoms of PMS would be cyclically relieved soon after
luteal phase. This phenomenon may be partly contributed
to the functional adjustment of the precuneus in PMS
patients. However, the development of PMS might be not
merely confined to one region, the neural foundation of
PMS would be an intricate process and might be involved in
multiple regions, networks or system. There may have other
dysfunctions of brain regions or functional networks in PMS
patients.

Besides the finding of increased ReHo in the precuneus, our
study showed increased ReHo in left ITC of PMS patients at
luteal phase. Temporal cortex generally plays a crucial role in
auditory, language processing and memory. However, previous
studies have indicated that temporal cortex also serves as a
key region in patients with psychiatric disorders because of
abnormal activity or structure was found in the subregions of
temporal cortex (Kasai et al., 2003; Ma et al., 2012). Halbreich
pointed out that PMS might be related to abnormal temporal-
limbic circuitry which might be heredity or acquired in a
very early age (Halbreich, 2003). A SPECT study showed
the changes of rCBF in the temporal lobes on luteal phase
compared with the follicular phase in PMS patients (Buchpiguel
et al., 2000). Liu Q. et al. (2015) demonstrated that PMS
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females showed increased FC in temporal cortex at luteal
phase. Our observations were consistent with previous findings
with abnormal activation in temporal cortex. In present study,
PMS patients showed abnormal reactivity in the left ITC and
right ACC (a region of limbic system) at the luteal phase
compared with HC. It should be pointed out that further
analysis using FC method is needed for the temporal-limbic
emotional circuitry reactivity between the left ITC and right
ACC, whichmight be more important to investigate the potential
neural mechanism behind the emotion related disorder in female
with PMS.

The abnormal changes in right IFC and left MFC were
other interesting findings in PMS patients. IFC and MFC
are two important parts of prefrontal cortex, which are
taken part in integration of cognitive, emotional behaviors
by uniting emotional biasing signals or markers into decision
making processing (Gusnard et al., 2001; Simpson et al.,
2001). The emotional response inhibition of prefrontal cortex
was sensitive to the variations of the menstrual cycle (Amin
et al., 2006), the observation from this study showed that
there was significantly raised activation in the prefrontal cortex
when faced to emotional response inhibition during the luteal
phase by comparing with the follicular phase. This prior
finding was consistent with our results of increased ReHo
in right IFC and left MFC. Prefrontal cortex was a special
brain functional region which could significantly express some
characteristic receptors contributed to the symptoms of PMS.
Previous literature showed that prefrontal cortex enriched
the CNS-related receptors concentration (Kugaya et al., 2003;
Liu B. et al., 2015). These receptors have intrinsic influence
on cognitive and emotional functions in the menstrual cycle
(Bethea et al., 2000). It will further provide the neural base
for explicating the right IFC and left MFC involved in
PMS. Not coincidentally, as the sever form of PMS, PMDD
patients were found similar abnormalities in prefrontal cortex.
For example, Gingnell et al. (2013) showed that there was
significantly increased reactivity in the prefrontal cortex when
referred to negative emotional stimuli during the luteal phase.
Moreover, PMDD patients had greater prefrontal activation
than healthy subjects, and the abnormally increased activation
of prefrontal cortex was correlated with the degree of the
disease (Baller et al., 2013). Based on the finding of the
DRSP scores positive correlation with ReHo in the left MFC,
it could indicate that the left MFC might be another key
region related to the degree symptom of PMS. Nevertheless,
our observations were inconsistent with the findings of Liu Q.
et al. (2015), the study demonstrated that the PMS patients
had decreased activity in the MFC. We inferred that these
incomplete coincidences with each other might be attributed
to the different sample or analysis method, yet the MFC as an
important region involving in the abnormal brain activity for
the PMS patients was consensual. The increased ReHo in right
IFC and left MFC suggests that the cortical emotional circuitry
reactivity during negative stimuli is altered in PMS at the luteal
phase, which might be part of the pathophysiology behind
the emotional and cognitive symptoms or lack of emotional
control reported by female with PMS. And the abnormalities

within the right IFC and left MFC are speculated to hinder
the processing of brain function and therefore to constitute
a vicious cycle in the maintenance of clinical manifestations
of PMS.

However, in holistic perspective, abnormal functional areas
in PMS may go beyond the functions of single areas due
to these areas usually interacting with each other to provide
a more comprehensive brain system. In present study, we
found the changed brain areas including the precuneus, ITC,
ACC, IFC and MFC, which were referred to the default
system functions. The DMN plays a vital role in self-referential
activity, such as assessing characteristics of external and
internal cues, planning the future, and remembering the
past (Raichle and Snyder, 2007; Buckner et al., 2008). More
importantly, theoretical models concerning the role of the
default system in psychopathology had been well described
in the previous literature (Zhao et al., 2007; Sheline et al.,
2009; Messina et al., 2016). Given that psychological changes
indeed occur in PMS, we conclude that the psychological
changes might have some effects on modulating activity of
DMN in PMS patients during the luteal phase. Our conclusion
is in accordance with previous studies (De Bondt et al., 2015;
Liu Q. et al., 2015), which observed the abnormal activity
in the DMN for PMS patients. Thereby, the changed DMN
would attach much more importance to the neural mechanism
of PMS.

Our study was subject to some limitations that need to be
taken into consideration: (1) the luteal phase was a key stage
involved in PMS, PMS patients mainly referred to a series
of symptoms in this phase. So, our study merely made an
investigation on the abnormal brain activity of PMS patients
at luteal phase by comparing with HC. The study did not
investigate whether or not abnormal brain activity might exist
among the luteal phase and follicular phase in PMS group and
HC group, we would pay more concern on these topics in
next stage. (2) Another limitation of the present study was the
relatively limited sample size. Enlargement of the sample size
would be the direction of our future study; and (3) The method
of ReHo can not directly show the connectivity between brain
regions, further analysis and application by diverse data analysis
methods (e.g., FC) ormulti modal functional magnetic resonance
imaging may extend our understanding of the neural mechanism
of PMS.

CONCLUSION

To summarize, we observed the changed patterns of spontaneous
neural activity in PMS patients during the resting state, with
increased ReHo in the bilateral precuneus, left ITC, right
IFC, left MFC and decreased ReHo in the right ACC at
luteal phase. Furthermore, our findings showed that the
DRSP scores (an important index for assessing PMS severity
and symptoms) in the PMS group positively correlated with
ReHo in the left MFC and negatively correlated with the
ReHo in the right ACC. The present findings may enhance
our understanding of the neurobiological underpinnings
of PMS.
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