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Insight Into the Metabolomic
Characteristics of Post-Transplant
Diabetes Mellitus by the Integrated
LC-MS and GC-MS Approach-
Preliminary Study
Min Wang1, Jie Xu2, Na Yang1, Tianqi Zhang1, Huaijun Zhu1* and Jing Wang3*
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Nanjing, China, 2 Physical and Chemical Department, Nanjing Center for Disease Control and Prevention, Nanjing, China,
3 College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China

Post-transplantation diabetes mellitus (PTDM) is a common metabolic complication after
solid organ transplantation, which not only results in elevated microvascular morbidity, but
also seriously impacts graft function and recipient survival. However, its underlying
mechanism is not yet fully understood. In this study, an integrated liquid
chromatography- mass spectrometry (LC-MS) and gas chromatography-mass
spectrometry (GC-MS) based-metabolomics approach was adopted to dissect the
metabolic fluctuations and deduce potential mechanism associated with PTDM. 68 adult
liver transplant recipients were recruited and classified as 32 PTDM and 36 non-PTDM
subjects. PTDM group and non-PTDMgroup were well matched in gender, age, BMI, family
history of diabetes, alcohol drinking history, ICU length of stay and hepatitis B infection.
Peripheral blood samples from these recipients were collected and prepared for instrument
analysis. Data acquired from LC-MS and GC-MS demonstrated significant metabolome
alterations between PTDM and non-PTDM subjects. A total of 30 differential metabolites
(15 from LC-MS, 15 from GC-MS) were screened out. PTDM patients, compared with non-
PTDM subjects, were characterized with increased levels of L-leucine, L-phenylalanine,
LysoPE (16:0), LysoPE (18:0), LysoPC (18:0), taurocholic acid, glycocholic acid,
taurochenodeoxycholic acid, tauroursodeoxycholic acid, glycochenodeoxycholic acid,
glycoursodeoxycholic acid, etc, and with decreased levels of LysoPC (16:1), LysoPC
(18:2), LysoPE (22:6), LysoPC (20:4), etc. Taken collectively, this study demonstrated
altered metabolites in patients with PTDM, which would provide support for enhancing
mechanism exploration, prediction and treatment of PTDM.
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1 INTRODUCTION

Solid organ transplantation (SOT), with more than 110,000
transplantations performed worldwide annually (1), is the
treatment of choice for patients with end-stage organ failure.
The short-term outcome of SOT improved remarkably due to
advances in organ preservation (2), surgical techniques (3),
immunosuppression regimens (4) and so on. However,
metabolic complications, such as diabetes mellitus,
hypertension and dyslipidemia, severely impact the long-term
survival (5, 6).

Diabetes mellitus after SOT, defined as post-transplantation
diabetes mellitus (PTDM), is considered to be a variant of type 2
diabetes mellitus (T2DM). PTDM is formally diagnosed at least
45 days post-transplantation and has a sudden onset within the
first year post-transplantation (7). The reported prevalence of
PTDM varies from 30% to 40% in liver recipients, 10% to 40% in
renal recipients and 20% to 40% in other SOT recipients (8).
PTDM is one of the major risk factors for diabetes-associated
microvascular complications and infections, contributing to 1.63
times higher risk of graft failure and 1.87 times higher risk of
mortality in SOT recipients (9).

Despite the prevalence and unfavorable outcomes associated
with PTDM, the mechanism underlying PTDM is not entirely
known. Over the past few decades, scientists devoted to evaluate
factors affecting PTDM occurrence, such as age, gender, hepatitis
infection, family history of type II diabetes mellitus, body mass
index and immunosuppressive agents (10–12). Since PTDM is a
serious frequent metabolic complication characterized by hepatic
glucose overproduction, insulin hyposecretion and resistance, it
is reasonably assumed that many metabolites and pathways are
quite likely to be interrupted and play a critical role in the whole-
body metabolic dysfunction. Thus, the comprehensive
measurement and characterization of altered metabolites could
give insights into the metabolic mechanism of PTDM.

Metabolomics is an invaluable tool for reflecting a series of
biological processes underlying metabolic homeostasis and their
complex association with peculiar disease, lifestyle, or genetic
modifications, etc (13). Compared to targeted metabolomics
focusing on well-defined metabolites, untargeted metabolomics
aims at the qualitative or quantitative monitoring of all low-
molecular-weight metabolites in a biological fluid and has been
widely used to discover specific metabolic patterns of diseases
(14). A range of analytical platforms including gas
chromatography-mass spectrometry (GC-MS) (15), liquid
chromatography-MS (LC-MS) (16), nuclear magnetic
resonance (NMR) spectroscopy (17) and direct infusion MS
(18) have been widely applied in metabolomics area. Among
these, GC-MS and LC-MS are the two most powerful and
commonly used analytical techniques owing to their high
resolution of the chromatographic system, high sensitivity of
MS detector and wide detection magnitude during the
qualification and quantification of metabolites. Moreover, since
no single analytical platform can cover the entire metabolome in
a biological sample, the integration of GC-MS and LC-MS would
serve as an appropriate strategy to capture a broader spectrum of
metabolites (19, 20).
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In this study, we aimed to primarily screen out the
differentially expressed metabolites in PTDM and explore its
potential pathophysiological mechanism by analyzing the
metabolomic characteristics of PTDM recipients with the aid
of the integrated liquid chromatography- mass spectrometry
(LC-MS) and gas chromatography-mass spectrometry (GC-
MS) based-metabolomics. For the first time to our knowledge,
the metabolic profiles involved in PTDM were explored, which
would provide novel insights into the underlying mechanisms of
PTDM from the perspective of metabolomics.
2 MATERIALS AND METHODS

2.1 Patients and Sample Collection
Adult (age ≥ 18 years) liver transplant recipients who had
undergone primary liver transplantation between July 2019
and June 2020 at the Affiliated Drum Tower Hospital of
Nanjing University Medical School, China were enrolled in
this study. Patients were excluded if they were followed up less
than one year after transplantation, underwent ABO
incompatible transplantation, received a multi-organ
transplantation, had diabetes mellitus prior to transplantation
or developed acute rejection. The receipts received a standard
triple-drug immunosuppression regimen including tacrolimus,
mycophenolate mofetil and corticosteroids.

The experimental protocol was reviewed and approved by the
Ethics Committee of the Affiliated Drum Tower Hospital of
Nanjing University Medical School (No. 2020-053-01). Signed
informed consent was exempted due to the deidentified data
provided to researchers and residual biosamples used.

According to the International Consensus Meeting on PTDM
(7), PTDM is diagnosed at least 45 days post-transplantation
using the American Diabetes Association (ADA) criteria for type
2 diabetes mellitus: with symptoms of diabetes plus random
plasma glucose ≥ 200 mg/dL (11.1 mmol/L) or fasting plasma
glucose ≥126 mg/dL (7.0 mmol/L) or 2-h plasma glucose after an
oral glucose ≥200 mg/dL (11.1 mmol/L) during an OGTT or
glycated hemoglobin (HbA1c) ≥6.5%. In this study, 32 and 36
recipients were assigned into the PTDM group and the non-
PTDM group, respectively. Peripheral blood samples from these
recipients were collected after overnight fasting at time of PTDM
diagnosis and centrifugated at 1760 g for 10 min to prepare
plasma. All the plasma samples were then divided into aliquots
and stored at -80°C until analysis.

2.2 LC-MS Based-Metabolomics
2.2.1 Sample Preparation for LC-MS Based-
Metabolomics
Plasma was thawed in a refrigerator at 4°C and thoroughly
vortexed with seven times pure ice-cold acetonitrile for 5 min.
The mixture was then centrifuged two times at 18407 g for
10 min at 4°C prior to injection into LC-MS system.

2.2.2 LC-MS Spectral Acquisition
Chromatographic separation was achieved on Shimadzu
Prominence series ultra-fast liquid chromatography (UFLC)
January 2022 | Volume 12 | Article 807318
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system equipped with Phenomenex Kinetex C18 column
(100×2.1 mm, 2.6mm; Phenomenex, Torrance, CA, USA) and a
guard column, SecurityGuard ULTRA cartridge UHPLC C18 for
2.1 mm ID column (Phenomenex, Torrance, CA, USA). The
column and autosampler were set at 40°C and 4°C, respectively.
The gradient elution involved a mobile phase consisting of
acetonitrile (mobile phase A) and 0.1% formic acid (mobile
phase B) with a gradient program as follows: 5%-95% A, 0-20
min and 95%A, 20-23 min. The mobile phase was directly
delivered into mass spectrometer at 0.4 mL/min, and the
injection volume was 5 mL.

Mass spectrometry was performed on an ion trap/time-of-
flight hybrid mass spectrometry with an electrospray ionization
(ESI) source (IT/TOF-MS, Shimadzu, Japan). The mass
spectrometer was operated simultaneously in positive and
negative electrospray ionization modes by switching the
interface voltage between 4.5 kV and -3.5 kV. The other
parameters were set as follows: curved desorption line (CDL)
temperature, 200°C; heat block temperature, 200°C;
microchannel plate detector voltage, 1.65 kV; nebulizer gas
(N2), 1.5 L/min; drying gas (N2), 10.0 L/min; collision energy,
10%, 30% and 60%. MS/MS analyses were conducted in data
dependent acquisition, in which precursor ions are serially
fragmented to generate their corresponding product-ion
spectra. Product-ion spectra were acquired automatically in
advance for a large number of ions. Furthermore, if the MS/
MS information of the selected discriminating variables was
missing, the product ion spectrum for these variables were
acquired independently in manual mode. External calibration
using the sodium trifluoroacetate was adopted to regulate the MS
and MS/MS data.

2.3 GC-MS Based-Metabolomics
2.3.1 Sample Preparation for GC-MS Based-
Metabolomics
The plasma was prepared with a two-step derivatization
procedure, that is, alkylation and silylation, according to
previous reports with a few modifications (21, 22). Briefly
speaking, a 10 µL aliquot of plasma was thoroughly vortexed
with ten times methanol followed by centrifuged at 18047g
at 4°C for 10 min in two cycles. Then 80 mL supernatant was
transferred to a brown glass vial and oximated with 25 mL
methoxyamine hydrochloride (10 mg/mL in pyridine) at 4°C
for 90 min. Finally, the mixture was vacuum-dried and silylated
with 120 mL N-methyl-N-(trimethylsilyl) trifluoroacetamide
(MSTFA) at 27°C for 120 min to separate for GC-MS analysis.

2.3.2 GC-MS Spectral Acquisition
GC-MS analysis was performed using GC/MS-QP2010 Ultra
(Shimadzu Inc., Kyoto, Japan) equipped with an electron impact
source operating in positive mode with the energy of 70 eV.
Separation was achieved on a fused silica capillary column (Rtx-
5MS; 30.0 m× 0.25 mm, 0.25 µm, Restek, USA) with a
programmed temperature vaporization. The initial oven
temperature was held at 70°C for 3 min, ramped to 320°C at a
rate of 10°C/min, and finally held at 320°C for 2 min. The
Frontiers in Endocrinology | www.frontiersin.org 366
injection was performed in split mode (1: 50). Helium
(>99.999%) was used as the carrier gas at a constant flow rate
of 1.0 mL/min. For mass detection, full scan with a mass range of
m/z 45-600 was adopted, and the ion source temperature was set
at 200°C.

2.4 Quality Assurance Procedure
To assure the robustness of analytical system and an acceptable
level of data quality for non-targeted metabolomics, pooled QC
samples, prepared by mixing equal volumes of each analyzed
sample (23), were injected at the beginning of the batch to
condition the analytical platform and then almost every six
samples to monitor the system. The metabolic features that are
detected in < 80% of QC samples (80% rule) and those with a
relative standard deviation (RSD), as calculated for the QC
samples, of > 30% (RSD 30% rule) were removed (20). The
quality assurance procedure was performed to remove metabolic
features with poor repeatability.

2.5 Statistical Analysis and Pathway
Enrichment
The obtained LC-MS and GC-MS raw data files were processed
using Profiling Solution version 1.1 (Shimadzu, Japan) for peak
detection, matching, and alignment. After filtered by “80% rule”
and “RSD 30% rule”, missing values replacement and total ion
intensity normalization, the resulting data was imported to
SIMCA software 13.0 package (version 13.0; Umetrics, Umeå,
Sweden) for multivariate statistical analysis including principal
component analysis (PCA) and orthogonal partial least squares
discriminant analysis (OPLS-DA). Ions with variable importance
in the projection (VIP) exceeding 1.0 in the OPLS-DA model
and P-value adjusted by Benjamini-Hochberg method (pFDR)
below 0.05 (24) were retained for further identification.
Spearman correlation analysis was then applied to explore the
correlations between differential metabolites and clinical indices
of recipient.

The differential ions generated from LC-MS were tentatively
identified based on the public online databases, such as the
Human Metabolome Database (http://www.hmdb.ca) and the
Metlin database (http://metlin.scripps.edu) and confidently
annotated by matching retention time and mass characteristics
with those of in-house standards (25); meanwhile, those from
GC-MS were characterized by comparing the standard mass
fragments in National Institute of Standards and Technology
Research Library based on >70% similarity index (26) and
confirmed with the characteristics of the authentic standards
available in our lab.

To visualize and interpret the metabolic pathways related to
PTDM, the differential metabolites were imported into
MetaboAnalyst 5.0, which is a free web-based tool that uses
the high-quality KEGG metabolic pathway database as the
backend knowledge-base. Meanwhile, Cytoscape (http://www.
cytoscape.org), a highly popular Java-based open source software
tool, was adopted to visualize and analyze metabolite, gene and
protein interaction networks. The list of differential metabolites
(compound names or KEGG IDs) were first loaded in the
January 2022 | Volume 12 | Article 807318
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Metscape, a plugin for Cytoscape, to construct the compound-
reaction-enzyme-gene network. Then, the network centrality
parameters, such as degree, betweenness, and centroid value,
were computed by CentiScaPe, another plugin for Cytoscape, to
extract the core subnetwork.
3 RESULTS

3.1 Patient Characteristics
A total of 68 recipients, including 32 PTDM subjects and 36 non-
PTDM subjects were recruited. The baseline demographic
characteristics and clinical data of the two groups were
presented in Table 1. PTDM group and non-PTDM group
were well matched with no significant difference in gender,
age, BMI, family history of diabetes, alcohol drinking history,
ICU length of stay and hepatitis B infection.

3.2 Metabolomic Analysis
Typical total ion chromatograms (TICs) of PTDM and non-
PTDM recipients were presented in Supplementary Figure 1.
However, there was no visual difference in metabolic profiles
between PTDM group and non-PTDM group. Therefore, PCA,
an unsupervised method of multivariate analysis, was first
performed to get an overview of the difference on the
metabolic profiles. Outliers were checked using the Hotelling
T2 range, adopting 95% and 99% confidence limits for suspect
and strong outliers, respectively. Two patients from the PTDM
group appeared out of Hotelling’s ellipse at the 99% confidence.
These two outliers shared the common feature that their liver
function parameters, i.e. aspartate aminotransferase and alanine
aminotransferase, were abnormal, and one of them died at the
third year post-operation. Since then, the two outliers were
removed, multivariate analysis was re-performed. As shown in
Supplementary Figure 2, except two samples which lay between
95% and 99% Hotelling T2 ellipse, all of the remaining samples
lay inside the 95% Hotelling T2 ellipse. Tight clustering of QC
samples was observed in PCA score plots (Figures 1A, D, G),
giving some confidence that the analytical process was running
robustly providing reproducible metabolic profiles.

As depicted in PCA score plots (Figures 1A, D, G), there was
a visual separation between PTDM and non-PTDM groups,
indicating metabolic disorders in PTDM. Furthermore,
supervised OPLS-DA was introduced to maximize the
Frontiers in Endocrinology | www.frontiersin.org
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separation and dig out differential metabolites. All the three
models produced a goodness of prediction with Q2 > 0.5 and the
differences between R2Y and Q2 <0.3 (27) (Figures 1B, E, H).
Furthermore, permutation test (200 times) and CV-ANOVA
were performed to validate the generated models (28). For the
permuted R2 and Q2, all the values were lower than their
corresponding original ones, the intercepted value of Q2 in the
vertical axis was below 0 and p-values of CV-ANOVA for all
models were below 0.05 (Figures 1C, F, I), demonstrating high
goodness of fit for the generated OPLS-DA models.

Moreover, the combination of VIP>1 and pFDR<0.05 was
applied to screen out the differential metabolites between PTDM
and non-PTDM. As a result, a total of 37 differential metabolites
(21 from LC-MS, 16 from GC-MS) were identified. Furthermore,
Spearman correlation analysis was adopted to explore the
correlations between these differential metabolites and fasting
plasma glucose. Based on the correlation coefficients, L-valine,
LysoPE (20:4), LysoPE (18:2), LysoPC (20:2), LysoPC (18:1),
LysoPC (16:0) and LysoPC (14:0) were removed because of the
weak correlation (-0.3 < Spearman correlation coefficients < 0.3)
(Supplementary Figure 3). Finally, a total of 30 differential
metabolites (15 from LC-MS, 15 from GC-MS) were retained
for further analysis. The detailed information including
compound name, molecular formula, retention time and fold
change value were shown in Table 2 (GC-MS data) and Table 3
(LC-MS data). These 30 differential metabolites annotated six
main c lasses , inc luding e ight amino ac ids , seven
glycerophospholipids, six bile acids (BAs), three carbohydrates,
three long-chain fatty acids and others (Figure 2A).
Furthermore, the contents variations of differential metabolites
were depicted as a heatmap (rows correspond to metabolites,
columns to samples, red and green denote increased and
decreased signals in PTDM group compared with non-PTDM
group) in Figure 2B.

3.3 Altered Pathways Related to PTDM
To explore potential metabolic pathways involved in PTDM, the
differential metabolites were imported into MetaboAnalyst for
functional enrichment analysis and network topology analysis.
Results (Figure 2C) indicated that aminoacyl-tRNA
biosynthesis, valine, leucine and isoleucine biosynthesis,
primary bile acid biosynthesis, taurine and hypotaurine
metabolism, glycine, serine and threonine metabolism, arginine
biosynthesis with p-value less than 0.05 were the critical
disturbed pathways involved in progression of PTDM (29, 30).
To clearly elucidate the possible underlying mechanism of
PTDM, a hypothetical metabolic network was reconstructed by
using these differential metabolites, with the direction of the
content change labeled (Figure 3A).

Moreover, the MetScape plugin for Cytoscape was used to
construct the compound-reaction-enzyme-gene network based on
the 30 differential metabolites (31). Among them, LysoPCs, and
LysoPEs were regarded as category IDs. Additionally, for some
metabolites, such as tauroursodeoxycholic acid (TUDCA),
glycoursodeoxycholic acid (GUDCA) and glycochenodeoxycholic
acid (GCDCA) were not retrieved in the MetScape plugin or
KEGG database. Hence, there were 542 nodes containing 154
TABLE 1 | Clinical characteristics of the recruited PTDM and non-PTDM
recipients.

Parameters Non-PTDM PTDM P-value

Total N 36 32
Sex (male/female) 28/8 22/10 0.290
Age (years) 49.92 ± 10.61 49.06 ± 9.48 0.806
BMI (kg/m2) 22.83 ± 3.91 23.53 ± 3.31 0.323
family history of diabetes, n (%) 3 2 0.738
alcohol drinking history, n (%) 4 3 0.809
ICU length of stay (day) 3.19± 3.09 3.13 ± 1.98 0.366
hepatitis B infection, n (%) 25 27 0.826
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compounds, 112 reactions, 87 enzymes and 189 genes in the
network (Supplementary Figure 4). Then, the node centrality
indexes, namely degree, betweenness, and centroid value, were
calculated to extract the core subnetwork displaying a critical role
Frontiers in Endocrinology | www.frontiersin.org 588
in the process of PTDM (32). As shown in Figure 3B, nine
metabolites, namely linoleic acid, L-leucine, L-glutamine, L-
phenylalanine, L-cysteine, cholesterol, L-serine, L-lysine, and
LysoPC, were selected as hub metabolites. Meanwhile, eight
A B

D E F

G IH

C

FIGURE 1 | Multivariate modelling of LC-MS and GC-MS data after log transformation and pareto scaling. (A) PCA score plot of LC-MS (+) data: R2X=0.527, Q2 =
0.322; (B) OPLS-DA score plot of LC-MS (+) data: R2X=0.131, R2Y=0.782, Q2 = 0.502, CV-ANOVA p value = 1.0e-10; (C) the 200-permutation test of LC-MS (+)
data; (D) PCA score plot of LC-MS (-) data: R2X=0.613, Q2 = 0.255; (E) OPLS-DA score plot of LC-MS (-) data: R2X=0.165, R2Y=0.816, Q2 = 0.535, CV-ANOVA p
value =2.4 e-9; (F) the 200-permutation test of LC-MS (-) data; (G) PCA score plot of GC-MS data: R2X=0.681, Q2 = 0.458; (H) OPLS-DA score plot of GC-MS
data: R2X=0.301, R2Y=0.899, Q2 = 0.701, CV-ANOVA p value =8.0e-14; (I) the 200-permutation test of LC-MS (+) data:. Blue circles: non-PTDM; red squares:
PTDM; black triangles: QC.
TABLE 2 | Differential metabolites identified by GC-MS.

Compound Datebase ID Formula VIP pFDR Ion RT Similarity Fold change

Urea HMDB00294 CH4N2O 1.34 <0.001 9.29 93 0.89
L-Leucine* HMDB00294 CH4N2O 1.14 0.001 9.73 74 1.15
L-Serine* HMDB00187 C3H7NO3 1.51 <0.001 11.03 91 1.20
L-Threonine HMDB00167 C4H9NO3 1.44 <0.001 11.39 76 0.62
L-Proline* HMDB00162 C5H9NO2 1.33 <0.001 13.28 93 0.84
L-Cysteine* HMDB00574 C3H7NO2S 1.15 <0.001 13.71 74 0.69
L-Lysine HMDB00182 C6H14N2O2 1.35 <0.001 15.59 91 0.86
L-Glutamine HMDB00641 C5H10N2O3 1.55 <0.001 16.35 84 0.76
Deoxyribose HMDB03224 C5H10O4 1.16 0.002 17.18 81 1.58
D-Glucose HMDB00122 C6H12O6 1.21 0.001 17.92 90 1.16
D-Glucuronic acid HMDB00127 C6H10O7 1.44 <0.001 18.97 83 1.33
Palmitic acid HMDB00220 C16H32O2 1.17 0.006 19.31 92 0.87
Uric acid HMDB00289 C5H4N4O3 1.05 0.010 19.78 87 0.88
Linoleic acid HMDB00673 C18H32O2 1.21 0.001 22.36 77 0.86
Cholesterol HMDB00067 C27H46O 1.35 <0.001 28.64 92 0.89
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FIGURE 2 | Analysis of the differentially expressed metabolites. (A) classification of the 30 identified differentially expressed metabolites; (B) Heat map of the
differentially expressed metabolites in each group. Rows, samples; columns, metabolites. The red band indicates an increased level of metabolites, while the green
band indicates a decreased level of metabolites in PTDM group compared with non-PTDM group; (C) Summary of the altered metabolism pathways determined with
MetaboAnalyst v. 5.0.
TABLE 3 | Differential metabolites identified by LC-MS.

Rt (min) Molecular Formula m/z ion forms MS/MS fragment VIP pFDR Fold change Identification

1.17 C9H11NO2 166.0877 [M+H]+ 120.0864 1.21 0.031 1.19 L-Phenylalanine
15.12 C14H28O2 227.2014 [M-H]- 109.1859, 145.8610 1.45 <0.001 0.59 Myristic acid
13.40 C21H44NO7P 454.2942 [M+H]+ 313.2706, 436.2881 2.12 <0.001 1.44 LysoPE (16:0)

[M-H]- 196.0368, 255.2354
14.94 C23H48NO7P 482.3258 [M+H]+ 341.3087, 421.2729, 464.3151 1.86 <0.001 1.26 LysoPE (18:0)

480.3075 [M-H]- 283.2683
12.58 C24H48NO7P 494.3252 [M+H]+ 184.0746, 476.3165 1.94 <0.001 0.67 LysoPC (16:1)

538.3254 [M+HCOO]- 253.2237, 478.2988
13.11 C26H50NO7P 520.3414 [M+H]+ 184.0755, 443.2782, 502.3330 2.23 <0.001 0.62 LysoPC (18:2)

564.3337 [M+HCOO]- 279.2348, 504.3167
15.35 C26H5N4O7P 524.3722 [M+H]+ 184.0750, 311.2981, 447.2860, 506.3643 1.86 0.001 1.22 LysoPC (18:0)

568.3622 [M+HCOO]- 100.5837, 283.2678, 508.3450
12.95 C27H44NO7P 526.2948 [M+H]+ 385.2803, 508.2844 1.89 <0.001 0.74 LysoPE (22:6)

524.2744 [M-H]- 196.0423, 283.2474, 327.2220
13.13 C28H50NO7P 544.3401 [M+H]+ 184.0779, 485.2655, 526.3357 2.55 <0.001 0.81 LysoPC (20:4)

588.3329 [M+HCOO]- 126.9552, 303.2333, 528.3122
10.54 C26H43NO5 448.3051 [M+H]+ 414.3102, 432.3129 1.89 0.001 1.54 Glycochenodeoxycholic Acid

450.3414 [M-H]- 386.3051
9.10 C26H43NO6 464.2998 [M-H]- 295.2011, 364.2687, 402.3076, 446.2918 1.56 0.001 3.67 Glycocholic Acid*
9.28 C26H45NO6S 498.2868 [M-H]- 355.2611, 480.2768 1.82 0.003 5.63 Taurochenodeoxycholic Acid*
8.14 C26H45NO6S 498.2869 [M-H]- 290.2154, 355.2671, 384.3029, 480.2768 2.12 <0.001 4.30 Tauroursodeoxycholic Acid
8.19 C26H45NO7S 514.2822 [M-H]- 515.2866 1.12 0.028 5.14 Taurocholic Acid*
9.24 C26H43NO5 448.3051 [M-H]- 386.3108, 449.3126 2.54 <0.001 2.72 Glycoursodeoxycholic Acid
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enzymes, such as aspartate transaminase, phospholipase A2 and
tryptase, were involved in this subnetwork.
4 DISCUSSION

As a frequent metabolic complication, PTDM seriously affects
the life quality and long-term survival of recipients. However,
data on the mechanism of PTDM are scarce. Beyond this, the
treatment is based on expert experience rather than research-
based evidence at the current stage. Metabolomics,
encompassing the comprehensive and systematic profiling of
multiple metabolites, is a promising approach to provide an
understanding of physiological and pathological status of the
living organism. Nevertheless, reports on the adoption of
metabolomics to describe the metabolic profiles and pathways
involved in PTDM have not been published. In this study, for the
first time to our knowledge, the metabolic profiles and pathways
involved in PTDM were explored by the integrated LC-MS and
Frontiers in Endocrinology | www.frontiersin.org 71010
GC-MS based-metabolomics, which aimed to provide novel
insights into the underlying pathophysiological mechanisms of
PTDM. All individuals enrolled in our study were free of diabetes
pre-transplantation and matched on gender, age, BMI, family
history of diabetes, alcohol drinking history, ICU stay length and
hepatitis to minimize confounding factors.

The integrated untargeted metabolomics revealed that 30
significantly changed metabolites, among which 15 decreased
and 15 increased, possibly contributed to the development of
PTDM. Based on their chemical structure, these significantly
changed metabolites mainly belongs to the classes of amino
acids, bile acids, glycerophospholipids and others.

Our findings highlighted several amino acids, particularly the
branched-chain amino acids (BCAAs) and aromatic amino acids
(AAAs), were noteworthy and might be served as biomarkers of
PTDM. BCAAs (leucine, isoleucine and valine) and AAAs
(tyrosine, phenylalanine and tryptophan) have been proven to
be potential contributors to the development of insulin resistance
and diabetes in both humans (33) and rodent models (34).
A

B

FIGURE 3 | Analysis of potential biomarkers and related pathways. (A) Schematic overview of metabolic pathways based on the differentially expressed metabolites.
The metabolites indicated with red or green arrows represent increased or decreased levels, respectively, in PTDM group. (B) The compound-reaction-enzyme-gene
subnetwork. Red hexagons represent the identified differentially expressed metabolites. Green squares represent enzymes which might regulate the identified
metabolites. Grey diamonds represent reactions catalyzed by those enzymes.
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A nested case-control study in the Framingham Offspring Study
comprising 2422 normoglycemic individuals followed for 12
years indicated that plasma levels of three BCAAs (isoleucine,
leucine, valine) and two AAAs (tyrosine and phenylalanine)
exhibited highly significant associations with the future
development of T2DM (35). Furthermore, a meta-analysis
focusing on dietary BCAAs intake and T2DM showed that oral
BCAAs supplementation is positively associated with T2DM risk
(36). The same result was found in double AAAs intake to mice
(37). Our results also suggested L-phenylalanine and L-leucine
increased in participants with PTDM. Since BCAAs and AAAs
(expect tyrosine) are essential amino acid which must be
obtained from the diet, their elevated circulating levels might
be the result of excess intake and/or disruption of their catabolic
process. However, epidemiological results are controversial, with
some indicating that a diet high in BCAAs were positively
associated with circulating levels (38), while others not (35).
Since then, we inferred that the elevated circulating levels of
BCAAs might arise from the hindrances to their downstream
catabolism. Unlike most amino acids, whose catabolism take
place in the liver, BCAAs are initially catabolized by branched-
chain-amino-acid aminotransferase (BCAT) in extrahepatic
tissues (such as skeletal muscle) to form branched chain a-
keto acids (BCKAs) and then by branched chain a-keto acid
dehydrogenase (BCKD), the rate-limiting enzyme in BCAA
catabolism. Zhou M et al. (39) revealed that the enhancement
of BCKD activity by administration of BT2 to BCKD deficiency
obese (ob/ob) mice reduced the abundance of BCAAs and
BCKAs, resulting in markedly attenuated insulin resistance.
The BCAA catabolism was suggested as a potential therapeutic
target for insulin resistance and T2DM. In addition, recent work
revealed that elevated circulating BCAAs levels correlated with
intestinal microbiota dysbiosis of the host. Prevotella copri and
Bacteroides vulgatus were proven to be the main species
associated with the biosynthesis of BCAAs and insulin
resistance (40). Gavage with Prevotella copri would induce
insulin resistance, aggravate glucose intolerance and augment
circulating levels of BCAAs (38), while Gavage with Bacteroides
vulgatus exerted the opposite effect (41). Similar to previous
studies, the levels of L-leucine and L-phenylalanine were
significantly higher in PTDM recipients than in non-PTDM
ones, which might be due to BCAAs catabolism hindrance and/
or host intestinal microbiota dysbiosis.

Significant variations in specific BAs species were found in
our study. Simply put, the levels of taurocholic acid (TCA),
TUDCA, taurochenodeoxycholic acid (TCDCA), glycocholic
acid (GCA), GUDCA and GCDCA were significantly higher in
PTDM receipts than in non-PTDM ones. As the most frequent
etiology of liver transplantation (76.5%) in our study, hepatitis B
virus has been proven to alter the expression of CYP7A1, a key
enzyme involved in bile acid synthesis (42). Thus, the
disturbance in BA profiles has been repeated observed in
hepatitis B virus-infected patients for decades (43, 44). To
minimize the influence from this confounding factor, case and
control subjects were well-matched in hepatitis B virus infection.
What’s more, in terms of aspartate aminotransferase, alanine
aminotransferase, hepatic function of liver transplant recipients
Frontiers in Endocrinology | www.frontiersin.org 81111
normally recovered within a few days, which was consistent with
previous research (45). Two participants with hepatic
disfunction were excluded from data analysis. Over the last few
decades, BAs have attracted considerable attention in the field of
diabetes, obesity, nonalcoholic fatty liver disease and so on. BAs
are synthesized in hepatocytes and then undergo enterohepatic
circulation with six to eight times per day in humans. Thus, BAs
are detected at relatively lower levels in plasma compared with
them in the liver, bile and intestine. In human, most bile acids are
conjugated to glycine (G) and taurine (T) at a ratio of about 3:1.
To date, it is still uncertain whether and what circulating BAs
alter in patients with T2DM. For instance, a cross-sectional study
including 224 T2DM patients and 102 nondiabetic individuals
indicated that patients with T2DM possessed increased plasma
levels of TCDCA, GCDCA, deoxycholic acid (DCA),
taurodeoxycholic acid (TDCA) and glycodeoxycholic acid
(GDCA), and decreased levels of CA and TCA (46). Another
case-control study of age- and gender-matched T2DM versus
control demonstrated elevated levels of TCA, TDCA, GDCA and
DCA in T2DM subjects (47). Furthermore, a nested case-control
study of 1,707 matched T2DM-control subject pairs within the
China Cardiometabolic Disease and Cancer Cohort Study
showed that conjugated primary BAs (GCA, TCA, GCDCA
and TCDCA) and secondary BA (TUDCA) were positively
related with T2DM risk, while unconjugated BAs (CA, CDCA
and DCA) were inversely associated with T2DM risk (48).
Accordingly, the currently human studies provided conflicting
results, with some reporting certain BAs species increased in
T2DM and others reporting those decreased in T2DM. Beyond
this problem, considering the relatively small number of
participants, the variation of BAs in PTDM recipients need to
be verified in a large cohort.

What’s more, we found a series of LysoPCs and LysoPEs
expressed differentially in PTDM recipients. The concentration
of lysoPCs in plasma, up to 100mM in healthy subjects (49), is
much higher than that of lysoPEs. In plasma, LysoPCs,
representing 5%-20% of total phospholipids, are mainly
formed by lecithin-cholesterol acyltransferase (LCAT) in the
process of transferring fatty acyl residues in sn-2 position of
phosphatidylcholine to free cholesterol for the formation of
cholesteryl esters, or by endothelial lipase, or by direct hepatic
secretion (50). The alterations of LysoPCs species linked to
T2DM have been widely studied. Significant lower levels of
LysoPC (18:2), LysoPC (18:1), LysoPC (18:0), and LysoPC
(17:0) were found in T2DM and impaired glucose tolerance
(IGT) cohort in the population-based Cooperative Health
Research in the Region of Augsburg (KORA) study. Among
them, LysoPC (18:2) served as a predictor for T2DM, which was
independently confirmed in the European Prospective
Investigation into Cancer and Nutrition (EPIC)-Potsdam study
(51). A global lipidomics analysis of 293 Chinese individuals has
also shown that LysoPC (18:0), LysoPC (18:1), and LysoPC
(18:2) were all negatively correlated with HOMA-IR (52). Our
finding was in agreement with above findings that LysoPC (18:2)
exhibited significantly lower level in PTDM than non-PTDM
recipients. Several other studies have reported inconsistent
findings, i.e. diabetic men exhibited higher levels of centain
January 2022 | Volume 12 | Article 807318

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Wang et al. Metabolomics of PTDM
LysoPCs, including LysoPC (14:0), LysoPC (16:1), LysoPC
(18:1), LysoPC (22:6), LysoPC (20:5) and LysoPC (18:3), but
not including LysoPC (18:2), LysoPC (16:0) and LysoPC (18:0)
(53). Our study exhibited inverse change trends of different
LysoPC species with increased expression in LysoPC (18:0)
and decreased expression in LysoPC (18:2), LysoPC (16:1) and
LysoPC (20:4), which might be due to the opposite effects of
saturated and unsaturated acyl LysoPC. Park JY et al. (54)
reported that lysoPC and lysoPE species containing unsaturated
fatty acids were associatedwith an increased risk of coronary artery
disease, whereas those containing saturated fatty acids were
associated with a decreased risk. Saturated LysoPCs, such as
LysoPC (16:0), are a potent inflammatory mediator, while
polyunsaturated acyl LysoPCs, including LysoPC (20:4) and
LysoPC (22:6), can serve as an anti-inflammatory lipid mediator
and inhibit the inflammation inducedby saturated LysoPCs (55). In
mousemodels,YeaK et al. (56) have reported that the bloodglucose
lowering effectofLysoPCswere found tobe sensitive tovariations in
lysoPC acyl chain length, which may elucidate the divisive findings
in our study. Therefore, lysoPCs play a complex role in T2DM,
especially special type of T2DM like PTDM, which needs further
work to clarify.

Our study recruited liver transplant recipients to address the
“real-world” problem in PTDM. The metabolomic results help to
give a new sight in the mechanism of PTDM. Since the analyzed
sample size was small, we speculate that PTDM might be
associated with the perturbation in amino acids, bile acids and
glycerophospholipids. This hypothesis provides possible research
direction in the field of PTDM. In addition, a major limitation of
plasma metabolomics is that all of the differential metabolites are
detected in plasma, their actual origins are unclear. Further studies
should investigate the highlighted pathways in relevant tissues
(such as muscle and liver) and their relations to PTDM for a
comprehensive understanding of its underlying mechanism.
5 CONCLUSION

In summary, the integrated LC-MS and GC-MS based-
metabolomics was adopted to dig out differentially changed
metabolites associated with PTDM. A total of 30 metabolites
(15 from LC-MS, 15 from GC-MS) significantly altered in PTDM
recipients were identified. Findings indicated that alterations in
plasma metabolites, particularly amino acids, BAs and LysoPCs
may contribute to the progression of PTDM. Our study offered
a novel insight into the pathological mechanism of PTDM.
Frontiers in Endocrinology | www.frontiersin.org 91212
Further studies are needed to verify these findings and to
unravel the underlying mechanisms involved in PTDM.
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19. Zeki ÖC, Eylem CC, Reçber T, Kır S, Nemutlu E. Integration of GC-MS and
LC-MS for Untargeted Metabolomics Profiling. J Pharm BioMed Anal (2020)
190:113509. doi: 10.1016/j.jpba.2020.113509

20. Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson
N, et al. Procedures for Large-Scale Metabolic Profiling of Serum and Plasma
Using Gas Chromatography and Liquid Chromatography Coupled to Mass
Spectrometry. Nat Protoc (2011) 6(7):1060–83. doi: 10.1038/nprot.2011.335

21. Pu X, Gao YQ, Li RT, Li W, Tian Y, Zhang ZJ, et al. Biomarker Discovery for
Cytochrome P450 1a2 Activity Assessment in Rats, Based on Metabolomics.
Metabolites (2019) 9(4):77. doi: 10.3390/metabo9040077

22. Dai D, Chen JC, Jin M, Zhang ZJ, Chen WH, Xu FG. Dynamic Metabolomic
Analysis of Intestinal Ischemia-Reperfusion Injury in Rats. IUBMB Life (2020)
72(5):1001–11. doi: 10.1002/iub.2238

23. Dudzik D, Barbas-Bernardos C, Garcıá A, Barbas C. Quality Assurance
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Objective: The objective of this study was to reveal the potential crosstalk between
immune infiltration and N6- methyladenosine (m6A) modification in the placentas of
patients with gestational diabetes mellitus (GDM), and to construct a model for the
diagnosis of GDM.

Methods: We analyzed imbalanced immune infiltration and differentially expressed m6A-
related genes (DMRGs) in the placentas of patients with GDM, based on the GSE70493
dataset. An immune-related DMRG signature, with significant classifying power and
diagnostic value, was identified using a least absolute shrinkage and selection operator
(LASSO) regression. Based on the selected DMRGs, we developed and validated a
nomogram model using GSE70493 and GSE92772 as the training and validation
sets, respectively.

Results: Infiltration of monocytes was higher in GDM placentas than in control samples,
while the infiltration of macrophages (M1 and M2) in GDM placentas was lower than in
controls. A total of 14 DMRGs were strongly associated with monocyte infiltration, seven
of which were significant in distinguishing patients with GDM from normal controls. These
genes were CD81, CFH, FABP5, GBP1, GNG11, IL1RL1, and SLAMF6. The calibration
curve, decision curve, clinical impact curve, and receiver operating characteristic curve
showed that the nomogram recognized GDM with high accuracy in both the training and
validation sets.

Conclusions: Our results provide clues that crosstalk between m6A modification and
immune infiltration may have implications in terms of novel biomarkers and therapeutic
targets for GDM.

Keywords: gestational diabetes mellitus, N6-methyladenosine modification, immune infi ltration,
monocyte, nomogram
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INTRODUCTION

Gestational diabetes mellitus (GDM) is a form of diabetes that is
first diagnosed during pregnancy, with a worldwide prevalence of
9–21%. GDM frequently affects both short-term and long-term
health in the mother and offspring, because of the diverse genetic
background and epigenetic modifications that occur in response to
nutritional and environmental factors (1, 2). Currently, the precise
etiological mechanisms of GDM remain unclear; however,
numerous studies have found that GDM is a multifactorial
disease that involves genetic factors, lifestyle, and chronic
inflammation. Insulin resistance (IR) and pancreatic b-cell
dysfunction are regarded as essential for the pathogenesis of
GDM (2, 3). Although the exact mechanisms remain to be
clarified, chronic inflammation has been reported to participate
in the development of IR and pancreatic b cell failure, which in
turn leads to GDM (4). The placenta is a temporary organ formed
during pregnancy, which serves as the only bridge connecting the
mother and fetus, and has important endocrine function. Placenta-
derived inflammatory cytokines, such as interleukin-1 beta (IL-1b),
IL-6, IL-15, IL-10, IL-34, IL-38, and tumor necrosis factor alpha
(TNF-a), can stimulate immune cells and aggravate immune and
inflammatory responses, thereby exacerbating chronic
inflammation and maternal IR and inducing b cell failure during
pregnancy (5–11). Moreover, immune cells and inflammatory
cytokines are important components of the placental
microenvironment, which is essential for normal pregnancy (12,
13). Imbalanced immune infiltration in the placenta contributes to
the pathogenesis and development of pregnancy-specific diseases,
including GDM, and may affect GDM-related adverse pregnancy
outcomes and clinical prognosis (13–15).

Chemical modifications of cellular RNAs can result in
secondary structure modifications, splicing, degradation, or
molecular stability, which are emerging layers of post-
transcriptional gene regulation. More than 160 chemical
modifications have been identified (16). N6- methyladenosine
(m6A) RNA modification is the most prevalent type of RNA
epigenetic processing (17, 18). m6A modification is mediated by
its effector proteinsare in a dynamic and reversible pattern (17).
m6A occurs mainly in the 3’- UTR and the vicinity of the
termination codon mRNA, which is recogonized by “readers”
(YTH domain family (YTHDF]1–3, and insulin-like growth
factor 2 mRNA-binding proteins 1–3), catalyzed by methylases
[methyltransferase-like (METTL)3/14, and Wilms’ tumour 1-
associated protein], and removed by demethylases [fat-mass and
obesity-associated protein (FTO), and alkylation repair homolog
protein 5] (19). Recent evidence indicates that perturbations of
m6A modifications dysregulate mRNA metabolism, including
mRNA stability, mRNA splicing, RNA nucleation, RNA-protein
teractions and mRNA translation, thereby contributing to
various physiological and pathophysiological processes
(20–22). Numerous m6A modifications have been shown to
regulate adipogenesis, glucose metabolism, insulin resistance,
and the related chronic immune response (17, 21, 23). This
suggests that m6A modifications are implicated in the
development of metabolic diseases, although the specific
knowledge regarding GDM is still in its infancy.
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In this study, we aimed to reveal the imbalanced immune
infiltration in the placenta of patients with GDM, the
differentially expressed m6A-related genes (DMRGs) involved,
as well as the crosstalk between them, and also to develop a
nomogram model for the diagnosis of GDM.
MATERIALS AND METHODS

Data Collection
The human expression dataset GSE70493 was downloaded from the
Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/
geo/). The expression data in GSE70493 contained 63 samples of the
maternal placenta (GDM; n = 32 and normal glucose tolerance
[NGT]; n = 31). We obtained 17,661 m6A-related genes by crossing
data from the RMBase (24) and RMvar (25) databases. The
expression data in GSE92772 were obtained for validation and
contained RNA profiles of maternal whole blood cells from eight
GDM and eight NGT pregnant women in their second trimester.
The workflow of this research is shown in Figure 1.

Screening of Differentially Expressed
m6A-Related Genes
Using the R software ‘limma’ package, we identified differentially
expressed genes (DEGs) in the GSE70493 dataset, based on the
criteria of |log2 fold change| > 0.1 and P value < 0.01. Heatmaps
were generated using the R software ‘pheatmap’ package. In the
case of multiple probes corresponding to the same gene, we
selected the probe with the lowest P value. Genes without official
symbols were removed, and all symbols were converted to
symbols approved by the HUGO Gene Nomenclature
Committee. We then crossed the DEGs with m6A-related
genes to obtain the DMRGs.

Functional-Enrichment Analysis
To determine the potential functions and enriched pathways of
DMRGs in GDM, Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways were analyzed using
the R software ‘enrichplot’ package. A P value of < 0.05 was set as
the cutoff.

Evaluation of Immune Cell Infiltration
in Placenta
CIBERSORTx (26) was utilized to quantify the abundance of 22
immune cell types in each sample by imputing the gene
expression profiles of GSE70493. We then compared the
differences in immune cell infiltration between GDM patients
and healthy subjects.

Selection of Core DMRGs Correlated
With Immune Infiltration
Pearson correlation coefficient (PCC) analysis was conducted to
identify the DMRGs correlated with the differentially infiltrated
immune cells between GDM and healthy patients. LASSO
analysis, a linear regression model penalized with the L1 norm,
was used to further narrow down the variables owing to its
tendency to prefer solutions with fewer non-zero coefficients. A
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tuning parameter, lambda, was used to control the number of
coefficients with a value of zero. The 10-fold K cross-validations
for the centralization and normalization of selected variables to
select the optimal lambda value using R software. The core
DMRGs that correlated with immune infiltration were
identified using LASSO analysis.

Construction and Validation of the
Nomogram Model for GDM Diagnosis
A logistic regression model was considered to evaluate the
performance the core m6A-related genes selected by LASSO to
estimate the probability of GDM. Based on this model, we
constructed a nomogram for individual predictions of GDM
using R software. To validate the classification ability of the
nomogram model, calibration was analyzed using a
bootstrapping approach and randomly repeated 1,000 times
with replacement. Decision curve analysis and clinical impact
curves were used to determine clinical usefulness. The receiver
operating characteristic (ROC) curve was used to evaluate the
sensitivity and specificity of the nomogram. To externally validate
Frontiers in Endocrinology | www.frontiersin.org 317
the nomogram, we then applied the calibration, decision curve,
clinical impact curve, and ROC curve analysis on GSE92772.

Statistical Analysis
Data processing and statistical analyses were performed using R
software (version 4.0.3). Associations between quantitative
variables were assessed using the Student’s t-test. Spearman’s
rank correlation analysis was used to explore the correlations
between different variables. LASSO regression, logistic
regression, and nomogram development were conducted using
“glmnet”, “survival”, and “rms” packages, respectively. P values <
0.05 were considered significant.
RESULTS

Landscape of DMRGs in
GDM Pregnancies
Based on the criteria described above, we identified 207 DEGs in
GSE70493 and obtained 106 DMRGs by crossing the DEGs with
FIGURE 1 | Flowchart of the research workflow. Abbreviations are defined as follows: differentially expressed gene (DEG), gestational diabetes mellitus (GDM),
differentially expressed m6A-related gene (DMRG), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Pearson correlation coefficient (PCC),
least absolute shrinkage and selection operator (LASSO).
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17,661 m6A-related genes. A heatmap of the DMRGs is shown in
Figure 2. The list of all DMRGs is shown in Table S1. To elucidate
the functions and pathways of the 106 DMRGs, we conducted
enrichment analysis using R software. Based on the GO category
biological process, DMRGs were mainly enriched for the terms
interferon-gamma-mediated signaling pathway, antigen
processing and presentation of endogenous antigen, positive
regulation of leukocyte-mediated immunity, positive regulation
of T cell-mediated cytotoxicity, cellular response to interferon-
gamma, and cell killing (Table S2 and Figure 3A). KEGG
pathways were mainly enriched in viral myocarditis, type 1
diabetes mellitus (T1DM), phagosomes, cell adhesion molecules,
and autoimmune thyroid disease (Table S3 and Figure 3B).

Immune Cell Infiltration in the Placenta
We further explored differential immune cell infiltration in the
placenta between GDM and control cases by quantifying the
abundance of 22 immune cell types (Supplementary File 1).
The results indicated that the infiltration of monocytes was
higher in GDM placentas than in control samples, while the
infiltration of macrophages M1 and M2 in GDM placentas were
lower. No significant differences were observed among the other
immune cells (Figure 4A). Higher propotion of M2 than M1
phenotype in GDM compared to controls was observed
(Supplementary Figure 1).

Identification of the DMRGs Signature
Related to Monocyte Infiltration
Considering the obviously high infiltration of monocytes in the
GDM placentas, we calculated the PCCs of the abundance of
monocytes and the expression levels of DMRGs. Fourteen DMRGs
(methanethiol oxidase [SELENBP1], fatty acid-binding protein 5
[FABP5], G-protein coupled receptor 183 [GPR183], inhibitor of
differentiation 4 [ID4], G-protein-coupled receptor 65 [GPR65], G-
protein subunit g 11 [GNG11], guanylate binding protein 1 [GBP1],
complement factor H [CFH], tetraspanin [CD81], interleukin-1
receptor-like 1 [IL1RL1], cathepsin K [CTSK], sterile alpha motif
domain-containing protein 9-like [SAMD9L], spermatogenesis
associated serine-rich 2-like [SPATS2L], and signaling
lymphocytic activation molecule family 6 [SLAMF6]), with a |
PCC| > 0.3 and P value < 0.01, were selected from 106 DMRGs for
further analysis (Figure 4B). Based on LASSO regression analysis,
seven DMRGs (CD81, CFH, FABP5, GBP1, GNG11, IL1RL1, and
SLAMF6) had nonzero coefficients, with a lambda coefficient of
0.1059 (Figures 5A, B). The count of the potential m6A
modification sites are shown in Figure 5C. The expression
matrix of the seven key DMRGs, based on the 63 samples, was
extracted from the dataset GSE70493. The expression levels of
CD81, CFH, GBP1, IL1RL1, and SLAMF6 in GDM samples were
lower than those in control samples, while expression levels of
FABP5 and GNG11 were higher in GDM placentas than those in
controls (Figures 5D, E). As shown in Figure 4B, these seven
DMRGs were significantly correlated with each other.

Development of the Nomogram Model
We extracted the expression matrix of the seven core DMRGs
based on the training set of 63 samples extracted from dataset
Frontiers in Endocrinology | www.frontiersin.org 418
GSE70493. A model incorporating the DMRGs CD81, CFH,
FABP5, GBP1, GNG11, IL1RL1, and SLAMF6 was developed and
presented as a nomogram (Figure 6A). The probability of GDM
was accurately predicted using a calibration curve (Figure 6B).
The decision curve (Figure 6C) and clinical impact curve
(Figure 6D) revealed that our model demonstrated a positive
net benefit without increasing the number of false positives. In
addition, ROC curve analysis revealed that the area under the
curve (AUC) was 83% (Figure 6E), indicating a good
classification ability of the nomogram model.

Diagnostic Value of the DMRGs Signature
Related to Monocyte Infiltration
Considering that screening for GDM is usually performed during
24–28 weeks of gestation, we selected GSE92772 as the validation
set to evaluate the diagnostic value of the core DMRG signature,
which is based on blood samples extracted during the second
trimester. GSE92772 contains the expression matrix of SLAMF6,
FABP5, GBP1, GNG11, IL1RL1, and CD81, without CFH present.
In the validation set, the calibration curve (Figure 7A), decision
curve (Figure 7B), and clinical impact curve (Figure 7C) also
exhibited good performance. Moreover, the nomogram model
exhibited high diagnostic value in distinguishing patients
with GDM from those with NGT, with an AUC value of
85.9% (Figure 7D).
DISCUSSION

GDM is a common complication of pregnancy, adversely
affecting both the mother and fetus (1, 2). The etiology of
GDM, which involves genetic background and epigenetic
modifications, remains unclear . Chronic low-grade
inflammation during pregnancy can contribute to the
pathogenesis of GDM by exacerbating maternal IR and
inducing b cell failure (4). As an endocrine organ, the placenta
derives inflammatory cytokines that stimulate immune cells and
aggravates the immune/inflammatory response (12, 13).
Moreover, the disturbance of immune cell infiltration in the
placenta is attributed to pregnancy-specific diseases, including
GDM, as well as GDM-related adverse outcomes (13–15). In this
study, we found that the infiltration of monocytes was higher in
GDM placentas than in control samples, while the infiltration
level of macrophages (M1 and M2) in GDM placentas was lower
than that in the controls. Monocyte infiltration has been shown
to be crucial during inflammation. As important mediators of the
innate immunity, monocytes circulate in the bloodstream and
pass into tissues during the steady state and in increased
quantities during inflammation (27). GDM is considered as a
low-degree inflammation, and elevated levels of monocytes in
the peripheral blood of patients with GDM have been previously
reported (28). Based on the expression of superficial CD14 and
CD16 in flow cytometry, monocytes can be divided into three
subsets: classical (CD14++CD16-), intermediate (CD14+CD16++)
and non-classical (CD14+CD16+) (29). Angelo et al. (28) observed
increased percentage of classical monocytes, decreased frequency of
intermediate monocytes in the peripheral blood of patients with
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FIGURE 2 | Heatmap of differentially expressed m6A-related genes. The up- and down-regulation of genes are indicated with red and blue color, respectively.
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GDM compared to controls. By contraries, an increase in the
intermediate subset and a decreased frequency of classical
monocytes were detected in healthy pregnancy compared to non-
pregnant women (30). Considering that the variation in levels of
monocyte subsets may contribute to the development of
inflammation in GDM, it is essential to develop new studies on
this topic to validate these findings. During gestation, bone marrow-
derived monocytes can migrate from the bloodstream to the uterus
and differentiate into decidua-specific macrophages upon exposure
to this local microenvironment (31–34). A proportion of tissue-
resident macrophages is constantly replaced by blood monocytes,
and the mechanisms behind these differential renewal patterns are
not fully understood and may be controlled by the tissue specific
microenvironment (27, 35, 36). Inflammatory stimuli often depleted
macrophages and induce monocyte recruitment; these monocytes
might potentially contribute to tissue-resident macrophages upon
Frontiers in Endocrinology | www.frontiersin.org 620
the resolution of inflammation (27). Therefore, the decrease in
macrophages and increased monocytes may be due to the
inflammation during GDM. Decidual macrophages are highly
plastic (37). It is generally accepted that macrophages are mainly
the M1 (pro-inflammatory) phenotype during the pre-implantation
period, and change to M2 (anti-inflammatory) phenotype following
trophoblast attachment and invasion; macrophages seem to revert
to M1 phenotype at the time of delivery (37–39). Inappropriate
macrophage polarization may cause adverse pregnancy outcomes
(30, 37). There are controversies regarding the use of placental
macrophages in describing GDM. An imbalance of M2 to M1
macrophages has been observed in the placentas of diabetic patients
and rats (40), as well as in placentas of GDM patients (41).
Opposing conclusions have been reported in other studies, in
which macrophages maintain the M2 phenotype in GDM
compared to controls (42–44). In the present study, we also
A

B

FIGURE 3 | Functional enrichment analysis. (A) The top 10 GO biological process categories. (B) The top 10 KEGG pathways.
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observed higher propotion of M2 than M1 phenotype in GDM
compared to controls (Supplementary Figure 1).

m6A methylation plays a vital role in glucose/lipid
metabolism as well as its related chronic inflammatory
processes (23, 45–47). FTO moduates glucose metabolism via
regulating forkhead box protein O1 and activating transcription
factor 4 of m6A modification (46, 48). FTO also regulates
adipogenesis by controlling cell cycle progression in an
YTHDF2 dependent mechanism (45). METTL3 regulates lipid
metabolism via mediating JAK1 mRNA stability an m6A-
YTHDF2 dependent manner (47), and regulating NF-kB and
MAPK via meditating m6A modification of TNF receptor
associated factor 6 (49). Due to the dynamic and reversible
nature, m6A methylation can be reversed by environmental
stressors, including changes in nutrition. High-fat diet affecs
METTL3 and FTO mRNA expression, and fasting state leads to
Frontiers in Endocrinology | www.frontiersin.org 721
the reduced FTO mRNA expression and increases m6A levels
(50, 51). It remains unknown whether m6A modifications play a
role in GDM. Exploration of the crosstalk between m6A
modification and GDM may provide a potential strategy for
the diagnosis, prognosis and treatment. We obtained m6A-
related genes from the RMBase and RMvar databases and
identified DMRGs based on the GSE70493 dataset. Enrichment
analysis was conducted to determine the biological functions of
the DMRGs. Notably, several pathways, such as type 1 diabetes
mellitus and autoimmune thyroid disease, were closely correlated
with the development and mal outcome of GDM. Recent studies
have revealed that a small but significant population of patients
with GDM develop postpartum T1DM (52, 53). Emerging
evidence suggests that perturbations of the thyroid hormone
signaling pathway and antibodies are associated with GDM
development and adverse outcomes (54, 55). In terms of the
A

B

FIGURE 4 | Differentially expressed m6A-related genes (DMRGs) related to monocyte infiltration in GDM Pregnancies. (A) Landscape of immune infiltrations in GDM
Pregnancies. (B) Correlation among the abundance of monocytes and 14 correlated DMRGs. Asterisks denote statistical significance (ns, no significance; *p < 0.05;
**p < 0.01).
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A B

C

E

D

FIGURE 5 | Differentially expressed m6A-related genes (DMRGs) signature selection through LASSO regression analysis. (A) LASSO coefficient profiles of 14
differentially expressed m6A-related genes (DMRGs). The coefficient profile plot was produced against the log (lambda). (B) The partial likelihood deviance (binomial
deviance) curve was plotted versus log (lambda) to verify the optimal lambda value. Dotted vertical lines were drawn based on the 1-SE criteria. Seven DMRGs with
non-zero coefficients were selected by optimal lambda. (C) Counts of potential m6A modification sites of the selected DMRGs. (D) Relative expression levels of
CD81, CFH, FABP5, GBP1, GNG11, IL1RL1, and SLAMF6. (E) Hierarchical clustering of the expression pattern of CD81, CFH, FABP5, GBP1, GNG11, IL1RL1, and
SLAMF6. Asterisks denote statistical significance ( *p < 0.05; **p < 0.01).
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GO biological process category, the DMRGs were closely related
to inflammatory- and immune-related biological processes.
Therefore, we suggest that, in addit ion to chronic
inflammation, the immune response may also contribute to the
pathophysiology of GDM.

As stated above, monocyte infiltration is aberrant in the
placentas of patients with GDM. We obtained DMRGs related
to monocyte infiltration, of which seven DMRGs (CD81, CFH,
FABP5, GBP1, GNG11, IL1RL1, and SLAMF6) were selected
through LASSO regression analysis to construct a nomogram.
Frontiers in Endocrinology | www.frontiersin.org 923
FABP5 belongs to the calycin superfamily and fatty-acid binding
protein family, and serves as a gatekeeper for mitochondrial
integrity to modulate regulatory T cells (Treg) and subdue
immune responses (56). It has been reported that increased
intra-tumoral FABP5 contributes to CD8+ T-cell infiltration
and is linked to overall and recurrence-free survival, indicating
that FABP5 could be an immunometabolic marker in
hepatocellular carcinoma (57). Moreover, FABP5 has been
observed to be enriched in classical monocytes of heart failure
patients, suggesting that FABP5 contributes to monocyte
A

B C

D E

FIGURE 6 | Development and internal validation of a nomogram model for GDM based on GSE70493. (A) Nomogram model for patients with GDM. (B) Calibration
curve for predicting possibility of GDM. Decision curve (C) and clinical impact curve (D) for assessing the net benefit of the nomogram. (E) ROC curve to assess
classifying ability of the nomogram model.
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activation (58). CD81 is a tetraspanin that participates in
adaptive immunity and host-virus interactions (59, 60). As an
inhibitor of the alternative complement pathway, CFH protects
self-surfaces from immune attacks, thereby engaging in host-
virus interactions and innate immunity (61–63). GBP1 is
involved in macrophage apoptosis and pyroptosis (64).
Interleukin-33 (IL-33) is the only known ligand of IL1RL1, and
IL1RL1/IL-33 signaling participates in various inflammatory
diseases (65). SLAMF6 is expressed in a variety of immune
cells and may be involved in crosstalk between different
microenvironments (66–68). Finally, GNG11, a member of the
guanine nucleotide-binding protein family, is involved in various
transmembrane signaling systems (69, 70). The nomogram
showed a robust performance in distinguishing GDM patients
from normal controls in the training set (GSE70493), with an
AUC of 83%. GDM diagnosis is usually confirmed by a 75 g-oral
glucose tolerance test during the second trimester. GSE92772,
which is based on blood samples extracted during 24–28 weeks of
gestation, was selected to externally validate the diagnostic
capacity of the nomogram. The nomogram model exhibited a
high diagnostic value with an AUC value of 85.9%, although it
Frontiers in Endocrinology | www.frontiersin.org 1024
lacked the expression matrix of CFH. Therefore, our findings
suggest that this m6A-related signature, correlated with
monocyte infiltration, can be regarded as a novel biomarker
and potential therapeutic target for GDM.

This study had a few limitations. A comprehensive analysis of
the placenta and peripheral blood is warranted to verify the
mRNA expression, protein expression and m6A-modification
status of CD81, CFH, FABP5, GBP1, GNG11, IL1RL1, and
SLAMF6. The diagnostic ability of the nomogram model may
require further validation using a larger sample size. For
subsequent research, more clinical parameters regarding
valuable prognosis risk characteristics should be incorporated
to verify the predictive ability of the nomogram.
CONCLUSION

In this study, we analyzed the immune landscape and DMRGs in
the placentas of patients with GDM. Some DMRGs were strongly
associated with monocyte infiltration, which was higher in GDM
placentas than in the control group. Based on seven selected
A B

C D

FIGURE 7 | Diagnostic value of the monocyte infiltration related DMRGs signature based on GSE92772. (A) Calibration curve to identify the diagnostic value for
GDM. Decision curve (B) and clinical impact curve (C) for assessing the clinical usage. (D) ROC curve used for assessing the sensitivity and specificity of the model.
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DMRGs linked to monocyte infiltration in GDM placentas, we
developed and validated a highly accurate nomogram for
recognizing GDM.
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INTRODUCTION

Obesity prevalence in a global context has been identified as a trigger that causes increased risk for
developing chronic diseases, largely due to the presence of subclinical inflammation (1). In fact,
changes in glucose and fatty-acid metabolism have been associated with diets involving excessive
consumption of sucrose and saturated fat (2). This dietary pattern leads to changes in immune
system activity such as an increase in macrophage infiltration and its polarization towards the M1
phenotype, which in turn deregulates the M1/M2 ratio, reducing the degree of tissue remodeling,
and local homeostasis of insulin-sensitive tissues. In addition, there is a relationship between the
M1/M2 imbalance and proinflammatory markers of adaptive immunity in the context of chronic
diseases (3). In this regard, the role played by leukotriene B4 (LTB4), a proinflammatory lipid
mediator produced from arachidonic acid (AA), has been highlighted (4). In this context, the high-
fat diet (HFD) is probably a strong stimulus for LTB4 synthesis as this diet increases AA levels and
consequently the production of lipid mediators in the visceral adipose tissue (5). In other words, a
potent stimulus for LTB4 synthesis is possibly HFD-induced lipotoxicity. The LTB4 synthesis is
enhanced in other instances than obesity since the LTB4/LTB4R1 axis is important for the immune
system during an acute infection (6). In addition, LTB4 is also increased in atherosclerosis and
arthritis, pathologies that are associated with chronic inflammation (7–9). Despite the increase in
LTB4/LTBR1 being not only specific for obesity, it is well documented that LTB4 has a pivotal role
in sustaining proinflammatory status in the context of obesity and insulin resistance (IR), due to its
capacity to promote migration of the M1 macrophage when coupled to its receptor, referred to as
LTB4R1 (10). Furthermore, Li and colleagues (11) have established the relationship between the
LTB4-LTB4R1 system and glucose metabolism in in vivo and in vitro studies. Indeed, they have
shown that LTB4 treatment impairs insulin-stimulated glucose transport by decreasing insulin-
stimulated Akt phosphorylation due to IRS-1 serine phosphorylation, which in turn inhibits Glut4
translocation in L6 myocytes. In contrast, they also observed that the LTB4R1 inhibitor (CP105696)
restores insulin sensitivity, as evidenced by increasing the glucose infusion rate during
hyperinsulinemic-euglycemic clamp studies of C57BL rodents fed on a HFD for 14 weeks. Given
the relevance obtained in proving the role played by LTB4 in the context of obesity and IR, in the
current article we focus on evidence that shows LTB4 acting on inflammation developed due to
HFD-induced obesity, along with the potential strategies used to mitigate the connection between
LTB4-LTB4R1.
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THE UNDERLYING MECHANISMS OF
ACTIVATION OF THE LTB4-LTB4R1 AXIS
IN INSULIN RESISTANCE

When Li and colleagues (11) achieved the inhibition of the LTB4/
LTB4R1 axis, either by knock out or pharmacological inhibition of
LTB4R1, and observed that LTB4 can directly promote IR, the
understanding of the underlying mechanisms became intriguing.
In this regard, they uncovered that the G protein-coupled
receptor (Gai) and c-Jun N-terminal kinases (JNK) activity as the
mediators of LTB4/LTB4R1 deleterious effects in obesity. To
elucidate the role of Gai the authors pre-treated myocytes with
the Gai pharmacological inhibitor, pertussis toxin, that resulted in
blockade of LTB4 effects to impair insulin signaling (Figure 1). In
contrast, as LTB4-LTB4R1 can induce 307 serine phosphorylation
of IRS-1 in obesity, which in turn interferes in the insulin signaling
pathway, the same authors also assessed the effects of the inhibition
of serine kinases IKK, ERK and JNK.While knockdown of IKK and
ERK had no effects on LTB4-induced IR, the pharmacological
inhibition of JNK blunted the negative effects of LTB4 in glucose
transport in L6myocytes. Taken together, the results obtained in the
study by Li and colleagues indicate that LTB4 can cause IR by a
mechanism involving JNK activity.

Interestingly, the relationship among LTB4, LTB4R1 and Gai
had already been addressed before by Wang and co-workers (13),
who demonstrated that this axis could modulate microRNAs
Frontiers in Endocrinology | www.frontiersin.org 229
associated with activation of the MyD88-mediated macrophage.
Indeed, macrophages harvested from the peritoneum of mice and
cultured 24 h with LTB4 showed an increase in the levels of miR-
155, a micro-RNA able to reduce SOCS1 expression, which in turn
increases MyD88 levels allowing higher toll-like receptor (TLR)
activation. They also demonstrated that LTB4-induced miR-155
expression is mediated by AP-1 since the pretreatment with AP-1
inhibitor SR11302 blunted the effects of LTB4 on miR-155
expression. In accordance, Gaudreault and coworkers (14)
previously demonstrated that the LTB4-LTB4R1 axis can enhance
TLR-induced AP-1 activity through TAK1 phosphorylation.
Furthermore, LTB4 treatment alone is able to induce
proinflammatory effects, such as the release of RANTES and IL-6
(15). Taken together, these studies highlighted that one of
mechanisms by which the LTB4-LTB4R1 axis induces
inflammation is through enhancing the TLR signaling pathway.
IS THERE A CORRELATION BETWEEN
LTB4-LTBR1 AND POLYUNSATURATED
FATTY ACIDS?

Western diets usually have a huge level of omega (w)-6 compared
to a content of w-3; this difference achieves a ratio of 20:1 instead
of 1:1 which is the recommendation for health, thus increasing
risk of some diseases (16). Such imbalance might result in
FIGURE 1 | Leukotriene synthesis occurs from the release of arachidonic acid and the action of cytosolic phospholipase A2 (cPLA2) due to the increase in
intracellular calcium, which increases the expression of 5-lipoxygenase (5-LO), which translocates to the cell nucleus by interacting with 5-LO membrane anchor
activating protein (FLAP). This leads to the formation of 5-hydroperoxyeicosatetraenoic acid (5-HETE) which gives rise to the formation of LTA4, converted to
LTB4 by the action of the enzyme LTA4 hydrolase (LTA4-H) in obese rodents. In turn, lean animals convert LTA4 into lipoxins (LXA4) through the action of the
enzyme 15/12-LO (12). The increased expression of LTB4 exerts inflammatory effects through the high-affinity interaction with its G protein-coupled receptor,
Ltb4r1. This mechanism impairs the metabolism of glucose and fatty acids in the liver, TA and skeletal muscle. These effects are attenuated through the
pharmacological inhibition of LTB4R1 (11).
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increased inflammation, since the products derived from w-6
such as prostaglandin E2 (PGE2) and LTB4 are strong
inflammatory mediators compared to similar mediators that
come from w-3 (17). In this context, Li J. and colleagues (17)
investigated the importance of w-3 and w-6 polyunsaturated
fatty acids (PUFA) in the development of obesity and IR. For this
purpose, they utilized Fat-1 transgenic mice that convert w-6
into w-3, i.e., these animals not only showed high levels of w-3
but also reduction of w-6. These alterations in the omega content
increased the energy expenditure that confers to these animals a
resistance to develop obesity during an HFD challenge.
Interestingly, fat-1 mice exhibited increased glucose tolerance
and even insulin sensitivity, i.e., these animals showed a
protection to HFD-induced IR. The results also showed that
compared to wild type, the transgenic mice exhibited an
important reduction in LTB4 content accompanied by reduced
inflammation, as evidenced by reduced levels of MCP-1 and
TNF-a. Taken together, the results of their study indicate that an
HFD increased w-6 concentration and consequently LTB4 levels,
which in turn induced inflammation and IR. Furthermore,
PGE2, a lipid mediator derived from arachidonic acid, as well
as LTB4, is increased in obesity (18). Indeed, a previous study has
demonstrated that PGE2 worsens insulin resistance induced by
interleukin 6 in hepatocytes (19). Despite this, we did not deeply
address this point in this manuscript because it was focused on
LTB4/LTB4R1. Thus, further studies are necessary to elucidate
the role of each lipid mediator in the development of IR in the
context of obesity.

Increased levels of free fatty acids are certainly one of the
mechanisms involved in the proinflammatory state that link
obesity to insulin resistance (20). Indeed, palmitate, a saturated
fatty acid, can induce proinflammatory M1 macrophage
polarization, which in turn promotes insulin resistance (21).
Thus, palmitate has been extensively used to induce
inflammation and insulin resistance (22, 23). In contrast, oleate,
an unsaturated fatty acid, can improve insulin sensitivity (24, 25).
In this context, a study performed by Pardo and colleagues (26)
observed that preincubation with culture medium of RAW 264.7
macrophages treated with palmitate was able to decrease insulin-
induced IR and Akt phosphorylation in hepatocytes, while such
effect was not observed if macrophages were loaded with oleate.
They also showed that preincubation with palmitate increased
proinflammatory cytokines in macrophages, which in turn
induced ER stress in hepatocytes, while these effects were not
seen with oleate preincubation. In addition, the culture medium
of macrophages pretreated with oleate exhibited lower levels of
LTB4 compared to the culture medium incubated with palmitate.
In contrast, when LTB4 was added to oleate in preincubation of
macrophages, the protection of insulin signaling was missing in
hepatocytes. Thus, this study has confirmed by in vitro studies
w-3 is able to attenuate LTB4 (26). In accordance, a recent study
in vivo showed that HFD enriched with w-3 (eicosapentaenoic
acid) downregulated LTB4 levels and inflammation in visceral
adipose tissue of mice (27). In summary, these data point out
those strategies that decrease w-6/w-3 ratio are promising to
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lower LTB4 levels, thus preventing inflammation and IR
in obesity.
LTB4/LTB4R1 AXIS PROMOTES
PROINFLAMMATORY PHENOTYPE OF B
CELLS WHICH IN TURN ORCHESTRATE
OVERALL INFLAMMATION IN ADIPOSE
TISSUE IN OBESITY

Despite macrophages being the most abundant immune cells
infiltrated into tissues, other immune cells such as leukocytes,
lymphocytes, neutrophils, and eosinophils, are also present and
may participate in the inflammatory process associated with
obesity and IR. In this context, Nishimura and coworkers (28)
demonstrated that CD8+ effector T cells are increased, while
CD4+ helper and regulatory T cells decrease in adipose tissue in
obesity. Furthermore, the activation of CD8+ T cells allows the
recruitment of macrophages and their polarization toward M1,
which evidences a role of adaptive immunity in the development
of IR associated with obesity. In addition, another cell of the
adaptive immune system that plays a role in obesity-induced IR
is the B lymphocyte, since it is in adipose tissue in obesity and its
genetic depletion reduces HFD-induced IR (29, 30).

However, the underling mechanisms related to B cell
recruitment to adipose tissue were not uncovered until an
article published in 2018 (3). In their elegant study, Ying W
and colleagues by using knock out mice models and immune cell
transplants, showed that the LTB4/LTB4R1 axis drives the
attraction of B2 cells to adipose tissue during HFD feeding and
directly stimulates a proinflammatory phenotype in these cells,
promoting IR. They also demonstrated that B2 cells orchestrate
IR by inducing Th1 response in lymphocytes and macrophage
polarization towards M1. Despite this, the authors also
concluded that macrophages can also induce IR by other
mechanisms than this connected to B2 cells, since macrophage
depletion achieved by using clodronate resulted in more
pronounced effects in insulin sensitivity. Furthermore, their
study also evidenced that the pivotal source of LTB4 are
adipocytes because B cells still accumulate in the adipose tissue
after depletion of macrophages and T cells. However, as adipose
tissue also presents eosinophiles, neutrophiles and other immune
cells (3, 31), we cannot rule out their participation, besides
adipocytes, in LTB4 synthesis during obesity development.
Also, as TNF-a, IL-6, and IL-1b increase in obesity by several
mechanisms such as TLR4 activation, ER stress, among others
(32–34), it is reasonable to assume that the increased levels of
these cytokines can also enhance LTB4 synthesis and action. We
also hypothesized that LTB4 and proinflammatory cytokines
may work in a positive feedback loop. However, this point
deserves its own review article. Taken together, these results
unveiled that different immune cells orchestrate adipose tissue
inflammation during obesity development, and shed light on
LTB4R1 as a potential therapeutic target to improve IR.
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CONCLUSIONS

In conclusion, the studies of the Li and colleagues group
discussed in this manuscript highlighted that several types of
immune cells coordinate adipose tissue inflammation during
obesity development and that LTB4/LTB4R1 has an important
role in the inflammation-induced IR by a mechanism that
involves JNK activation. Thus, further studies should
investigate potential strategies to blunt LTB4-LTB4R1 (3, 11)
(Figure 1). We also addressed articles regarding the relationship
between PUFAs and LTB4 (17, 26). These data allow a
conclusion that a high w-6/w-3 ratio increases LTB4 levels, i.e.,
collaborates with development of inflammation and IR in obesity
(16), thus strategies that lower w-6/w-3 ratio are promising to
reduce LTB4 levels and therefore deserve further investigation.
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C, et al. Prostaglandin E2 Exerts Multiple Regulatory Actions on Human Obese
Adipose Tissue Remodeling, Inflammation, Adaptive Thermogenesis and
Lipolysis. PloS One (2016) 11(4):e0153751. doi: 10.1371/journal.pone.0153751

19. Henkel J, Frede K, Schanze N, Vogel H, Schürmann A, Spruss A, et al.
Stimulation of Fat Accumulation in Hepatocytes by PGE2-Dependent
Repression of Hepatic Lipolysis, b-Oxidation and VLDL-Synthesis. Lab
Invest (2012) 92(11):1597–606. doi: 10.1038/labinvest.2012.128

20. Samuel VT, Shulman GI. The Pathogenesis of Insulin Resistance: Integrating
Signaling Pathways and Substrate Flux. J Clin Invest (2016) 126(1):12–22. doi:
10.1172/JCI77812

21. Kwak HJ, Choi HE, Cheon HG. 5-LO Inhibition Ameliorates Palmitic Acid-
Induced ER Stress, Oxidative Stress and Insulin Resistance via AMPK
Activation in Murine Myotubes. Sci Rep (2017) 7(1):5025. doi: 10.1038/
s41598-017-05346-5

22. Fuchs CD, Radun R, Dixon ED, Mlitz V, Timelthaler G, Halilbasic E, et al.
Hepatocyte-Specific Deletion of Adipose Triglyceride Lipase (Adipose
Triglyceride Lipase/Patatin-Like Phospholipase Domain Containing 2)
Ameliorates Dietary Induced Steatohepatitis in Mice. Hepatology (2022) 75
(1):125–39. doi: 10.1002/hep.32112

23. Cintra DE, Ropelle ER, Moraes JC, Pauli JR, Morari J, Souza CT, et al.
Unsaturated Fatty Acids Revert Diet-Induced Hypothalamic Inflammation in
Obesity. PloS One (2012) 7(1):e30571. doi: 10.1371/journal.pone.0030571

24. Gao D, Griffiths HR, Bailey CJ. Oleate Protects Against Palmitate-Induced
Insulin Resistance in L6 Myotubes. Br J Nutr (2009) 102(11):1557–63. doi:
10.1017/S0007114509990948

25. Kwon B, Lee HK, Querfurth HW. Oleate Prevents Palmitate-Induced
Mitochondrial Dysfunction, Insulin Resistance and Inflammatory Signaling
in Neuronal Cells. Biochim Biophys Acta (2014) 1843(7):1402–13. doi:
10.1016/j.bbamcr.2014.04.004
March 2022 | Volume 13 | Article 848006

https://doi.org/10.3389/fendo.2016.00157
https://doi.org/10.20900/immunometab20190010
https://doi.org/10.1172/JCI90350
https://doi.org/10.1172/JCI90350
https://doi.org/10.4049/jimmunol.1100196
https://doi.org/10.4049/jimmunol.0901355
https://doi.org/10.1007/s00018-007-7228-2
https://doi.org/10.1093/intimm/dxz044
https://doi.org/10.1093/intimm/dxz044
https://doi.org/10.1073/pnas.0505845102
https://doi.org/10.1084/jem.20052349
https://doi.org/10.1084/jem.20052349
https://doi.org/10.1159/000353694
https://doi.org/10.1038/nm.3800
https://doi.org/10.1038/nm.3800
https://doi.org/10.2337/db16-0040
https://doi.org/10.4049/jimmunol.1302982
https://doi.org/10.1093/intimm/dxs074
https://doi.org/10.1016/j.bbadis.2013.05.017
https://doi.org/10.1016/j.clnu.2019.06.013
https://doi.org/10.1210/me.2014-1011
https://doi.org/10.1371/journal.pone.0153751
https://doi.org/10.1038/labinvest.2012.128
https://doi.org/10.1172/JCI77812
https://doi.org/10.1038/s41598-017-05346-5
https://doi.org/10.1038/s41598-017-05346-5
https://doi.org/10.1002/hep.32112
https://doi.org/10.1371/journal.pone.0030571
https://doi.org/10.1017/S0007114509990948
https://doi.org/10.1016/j.bbamcr.2014.04.004
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Callegari and Oliveira LTB4 Activation in Obesity
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Diabetic retinopathy is one of the serious complications of diabetes, which the leading
causes of blindness worldwide, and its irreversibility renders the existing treatment
methods unsatisfactory. Early detection and timely intervention can effectively reduce
the damage caused by diabetic retinopathy. Metabolomics is a branch of systems biology
and a powerful tool for studying pathophysiological processes, which can help identify the
characteristic metabolic changes marking the progression of diabetic retinopathy,
discover potential biomarkers to inform clinical diagnosis and treatment. This review
provides an update on the known metabolomics biomarkers of diabetic retinopathy.
Through comprehensive analysis of biomarkers, we found that the arginine biosynthesis is
closely related to diabetic retinopathy. Meanwhile, creatine, a metabolite with arginine as a
precursor, has attracted our attention due to its important correlation with diabetic
retinopathy. We discuss the possibility of the arginine-creatine metabolic pathway as a
therapeutic strategy for diabetic retinopathy.

Keywords: diabetic retinopathy, metabolomics, biomarker, creatine, arginine, mechanism
Abbreviation: DR, Diabetic retinopathy; T2DM, type 2 diabetes mellitus; PKC, protein kinase C; Cr, creatine; PCr,
phosphocreatine; CK, creatine kinase; NMR, nuclear magnetic resonance; MS, mass spectrometry; LC, liquid
chromatography; GC, gas chromatography; HILIC-MS, hydrophilic interaction chromatography-mass spectrometry; FIA–
MS, Flow-injection analysis-mass spectrometry; CE, capillary electrophoresis; HPLC, high-performance liquid
chromatography; UPLC, ultra-high performance liquid chromatography; CE, Capillary electrophoresis; PDR, proliferative
diabetic retinopathy; OIR, oxygen induced ischemic retinopathy; GC-MS, gas chromatography mass spectrometry; UPLC-MS,
ultra-performance liquid chromatography-mass spectrometry; TCA, tricarboxylic acid cycle; LC-MS, liquid chromatography-
mass spectrometry; HILIC-MS Hydrophilic interaction chromatography-mass spectrometry; UPLC-Q-Axis Orbiter-MS,
ultra-performance liquid chromatography-quadrupole-Exactive Orbitrap-mass spectrometry; IDO, indolamine-2,3-
dioxygenase; UACR, albumin/creatinine; KEGG, Kyoto Encyclopedia of Genes and Genomes; NOS, nitric oxide synthase;
NO, nitric oxide; EDHF, endothelium-derived hyperpolarizing factor; GAA, guanidinoacetate; Hcy, homocysteine;
ECs, endothelial cells; EC, endothelial cell; LPC, Lysophosphatidylcholine; ICAM-1, increased intercellular cell
adhesion molecule-1.
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INTRODUCTION

Diabetic retinopathy (DR) has been recognized as the main cause
of blindness worldwide, with about one-third of all diabetes
patients developing diabetic retinopathy (1). The retina is
metabolically active and transmits electrochemical signals from
photoreceptors to the brain via neurons, supported by glial cells
and vascular tissue (2). The entire process relies on highly
complex coordination between the various cell types, and the
blood-vision barrier plays a key role (3, 4). The accumulation of
glycation end products, oxidative stress, polyol pathway and
protein kinase C (PKC) activation are the main pathogenesis of
DR. This changes the normal interaction between cells and
causes serious blood vessel abnormalities leading to damaging
of the blood-retinal barrier and neuronal function (5–9).
Diabetic retinopathy is difficult to cure, diagnosis and drug
intervention in the early stages of diabetic retinopathy can
effectively prevent or slow down the progression of disease.
Therefore, identification of biomarkers associated with disease
progression can be very helpful.

Metabolomics is the analysis of a large number of endogenous
small molecules. It provides the overall metabolic profile of a
biological sample as opposed to genomics and proteomics, which
provide the profiles for DNA/RNA and proteins alone,
respectively (10–12). The methods of analysis used in
metabolomics are mostly classified into two categories: targeted
metabolomics and non-targeted metabolomics (13–15). In
contrast to targeted metabolomics, which focuses only on
changes in specific metabolites, non-targeted metabolomics is
designed to capture much more metabolite information to
compare these high-throughput data under normal vs. disease
states (15–17). Non-targeted metabolomics approaches can thus
discover potential biomarkers of diseases and provide an effective
basis for diagnosing and treating them (18–20).

Arginine, a semi-essential amino acid, involved in many
biological processes such as creatine biosynthesis and the urea
cycle, is one of the strongest insulin secretagogues, which induce
insulin release from pancreatic b cells (21). Additionally, arginine
is a substrate for nitric oxide synthase (NOS) and can produce NO,
which exerts a significant influence on the health of the vascular
endothelial cells as well as the kidneys (22, 23). Creatine (Cr) can
be either be synthesized endogenously within the body or
extrinsically derived from foods like meat, fish, etc. (24). Cr,
phosphocreatine(PCr), and creatine kinase (CK) isoenzymes are
responsible for maintaining the ATP pool (25). Therefore, creatine
is one of the leading sports supplements (26). As research
continues, Creatine has been found to have multiple
physiological effects, including anti-inflammatory (27–29),
antioxidant (30–33), neuroprotective (34), reduce homocysteine
(Hcy) (35–37), and anti-diabetic (34).

This review aims to summarize the progress of metabolomics
studies in diabetic retinopathy and to explore common research
platforms for metabolomics. We also summarize the current
knowledge of known metabolomics biomarkers of diabetic
retinopathy based on literature and analyze the metabolic
pathways involving those biomarkers. In addition, we discuss
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the creatine-arginine metabolic network as a potential area for
finding new treatment strategies.
METABOLOMICS ANALYSIS PLATFORM

Metabolomics analysis platform can be divided into two main
types, nuclear magnetic resonance (NMR) spectroscopy (38) and
mass spectrometry (MS) (39, 40). Using different instruments
and platforms, typically 50 to as many as 5000 different
metabolites can be identified at any given time. No technique
so far has been successful in identifying all metabolites in a single
run or analysis, and most metabolomics studies use only one
platform or multiple tandems. Due to the complementarity
between NMR (41) and MS (42), researchers often use
combinations of NMR and MS as well as employ the current
method to enhance research quality and expand the metabolome
coverage (43–46).

Nuclear Magnetic Resonance
(NMR) Spectroscopy
NMR spectroscopy can measure the behavior of an atom’s
nucleus when subjected to a magnetic field (47, 48). Currently,
instruments that use 500 and 600 MHz frequencies are the most
widely used instruments to detect these signals and are the
optimal choice for their sensitivity and manufacturing cost. It
is worth noting that the resolution of these signals increases
when the magnetic field strength is higher (49).

NMR spectroscopy applies to both liquid/gas phase samples
as well as tissue samples (50, 51). It carries several advantages, for
example, it requires less sample preparation and the detection
process is non-destructive to the sample, so it can be reused for
other studies. Moreover, NMR has high reproducibility and good
quantitative performance, allowing the measurement of the
number of protons under a given condition which allows for
direct comparison with spectral data (52). However, the primary
disadvantage of NMR is its lower sensitivity compared with MS.
NMR can identify nearly 50 metabolites in serum/plasma
samples and approximately 200 in urine (53).

Mass Spectrometry (MS)
Mass spectrometry is an analytical method that measures the
ion-to-mass ratio based on the ionization of components in the
samples by an ion source, and is widely used in the detection of
metabolites (54–56). The sample can be directly analyzed by
mass spectrometry, or in tandem with other separation methods
to obtain mass spectra, such as liquid chromatography (LC) (57–
59), gas chromatography (GC) (60, 61), hydrophilic interaction
chromatography-mass spectrometry (HILIC-MS) (62), Flow-
injection analysis-mass spectrometry(FIA–MS) (63), or
capillary electrophoresis (CE) (64, 65). It should be noted that
no single method can separate all metabolites simultaneously, as
some metabolites are difficult to ionize, and in some cases, mass
number limitations prevent mass spectrometry techniques from
measuring all metabolites (66). LC has been most widely used
because of its better separation. Especially, high-performance
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liquid chromatography (HPLC) and ultra-high performance
liquid chromatography (UPLC) have become increasingly
popular (67–69). GC also offers high separation, but it is
unable to measure metabolites with poor thermal stability (70).
Capillary electrophoresis (CE) has a long history of use. Its
application is mainly limited by its poor sensitivity, which has
been greatly improved by the introduction of the CE-ESI
interface (71, 72).

Compared to NMR, MS has a much higher sensitivity and is
therefore able to measure a wider range of metabolites (40, 43,
73, 74). In particular, UPLC offers excellent chromatographic
separation, high speed, and high sensitivity, allowing the
detection of thousands of metabolites within a short
time (75–78). HPLC tandem MS plays a huge contribution in
research that requires high throughput, such as natural drug
development and disease biomarker identification (79–83).
BIOMARKERS FOR
DIABETIC RETINOPATHY

Vitreous Humor Biomarkers
Tomita et al. (84) analyzed the metabolites of vitreous humor in
43 proliferative diabetic retinopathy (PDR) patients, and 21
controls using ultra-performance liquid chromatography-mass
spectrometry (UPLC-MS) with significant differences in creatine.
The authors found that patients with PDR had lower levels of
creatine and higher levels of glycine in the vitreous humor than
controls. They also verified in an oxygen induced ischemic
retinopathy (OIR) model that reduced creatine levels correlate
with retinal vascular proliferation and demonstrated that oral
creatine caused a significant reduction in retinal vascular
proliferation (p=0.0024), opening the possibility for a new
therapeutic strategy for diabetic retinopathy. Wang et al. (85)
identified potential DR biomarkers in vitreous humor using gas
chromatography mass spectrometry (GC-MS). Vitreous humor
samples were gathered from 28 type-2 diabetes patients
with PDR as well as 22 non-diabetic patients with macular
fissure. They found 15 potential biomarkers in the vitreous
humor, namely pyruvate, ornithine, uric acid, pyroglutamic
acid, creatinine, L-leucine, L-alanine, L-threonine, L lysine,
L-valine, L-phenylalanine, L-isoleucine, L-glutamine, inositol,
and hydroxylamine. These are mainly involved in various
metabolic pathways such as gluconeogenesis, ascorbate-aldose
metabolism, valine-leucine-isoleucine biosynthesis, and
arginine-proline metabolism.

A non-targeted metabolomics study on vitreous humor from
patients with DR showed changes in glucose metabolism as well
as activation of the pentose phosphate pathway. Glass fluid
samples from PDR patients (n=9) and normal subjects were
kept as controls (n=8) and were analyzed by ultra-performance
liquid chromatography-mass spectrometry (UPLC-MS). A
variety of metabolites were found to be potential biomarkers,
including xanthine, pyruvate, proline, and guanine (86). Paris
et al. (62) used liquid chromatography-mass spectrometry (LC-
MS) and hydrophilic interaction liquid chromatography
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(HILIC)-mass spectrometry to analyze the vitreous humor of
PDR patients (n=9), non-diabetes control patients (n=11), and
OIR mouse model. They found significant changes in the levels
of octanoyl carnitine, propionyl carnitine, hexanoyl carnitine,
acetylcarnitine, palmitoylcarnitine, elaidic/vaccenylcarnitine,
allantoin, glutamate, lysine, and arginine. Barba et al. (87)
analyzed the vitreous humor of a total of 22 patients suffering
from PDR and 22 non-diabetic patients and found that the
content of lactate and glucose among the PDR patients was
higher than that in non-diabetic patients, while that of galactitol
and ascorbic acid was lower when compared with that in non-
diabetic patients. The reduced galactitol level was attributed to
activation of the polyol pathway.

Plasma Biomarkers
Plasma metabolomics of 124 DR patients and 32 controls were
explored using GC–MS, and UPLC–MS. They identified
glutamine and glutamic acid as new biomarkers for the
prediction of DR (88). A plasma metabolomics analysis based
on GC–MS demonstrated that 2,4-dihydroxybutyric acid
(DHBA), 3,4-DHBA, ribonic acid, and ribitol are risk markers
for DR progression as these metabolites are associated (P <0.042)
with DR (89). Another plasma metabolomics study using GC-
MS identified 11 potential biomarkers of diabetic retinopathy,
namely 1,5-gluconolactone, 1,5-anhydroglucitol, gluconic acid,
lactose/cellobiose, maltose/trehalose, 2-deoxyribonic acid, 3,4-
dihydroxybutyric acid, erythritol, mannose, ribose, and urea. The
samples for this study were acquired from 40 patients
undergoing non-proliferative diabetic retinopathy (NPDR) and
40 patients suffering from T2DM without retinopathy. Metabolic
pathway analysis indicated a remarkable enrichment of the
pentose phosphate pathway, which could explain the NADPH
production against oxidative stress (49). Sumarriva et al.
performed plasma metabolomics research showed that
compared to diabetes controls, the metabolism of multiple
amino acids, such as leukotrienes, niacin, pyrimidine, and
purine, changed in DR patients. Arginine, citrulline, glutamic
g-semialdehyde, and de-hydroxy carnitine were critical members
in the above pathways differences (90). Li et al. (91) employed
GC-MS in the study of plasma metabolomics in 25 patients with
PDR, 39 patients with NPDR, and 24 patients with NDR, and
found 10 metabolites with significant differences: b-
hydroxybutyrate, methylmalonic acid, citric acid, pyruvate,
glucose, stearic acid trans-oleic acid, L-aspartate, linoleic acid,
and arachidonic acid.

Serum Biomarkers
Xuan et al. (92) studied 43 patients with diabetic retinopathy and
44 normally controlled serum lipomics using UPLC-MS.
Significant differences were found in the following 14 lipid
metabolites: Lysophosphatidylcholine(LPC)(14:0) LPC (14:0),
LPC (16:0) LPC (14:0), LPC (16:0), LPC (16:1), LPC (18:0),
LPC (18:1), LPC (18:2), LPC (18:3), LPC (18:4), LPC (20:0), LPC
(20:3), LPC (20:4), LPC (20:5), LPC (22:3), and LPC (22:6). These
provide a basis for the discovery of lipid biomarkers in diabetic
retinopathy. Xuan et al. (93) in their study used multi-platform
techniques to analyze serum samples from 111 diabetic patients
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without retinopathy (NDR=111) and 350 diabetic patients with
retinopathy (n=350). The DR-induced metabolic changes were
usually linked to glycolytic metabolism, tricarboxylic acid cycle
(TCA) metabolism, urea cycle metabolism, polyol metabolism,
amino acid metabolism, and lipid metabolism. Following a
systematic screening using univariate analysis, 2-piperidone
and 12-HETE were recognized as potential biomarkers for DR.
12-HETE, an eicosanoid-like acid, is the leading product of
human 12-lipoxygenase (LOX), inducing endoplasmic
reticulum stress in human retinal endothelial cells. Studies
show that 12-LOX is involved in retinal microvascular
disorders of DR (94–96). A study based on widely targeted
metabolomics evaluated serum metabolites from 69 type 2
diabetes mellitus (T2DM) patients with DR and 69 T2DM
patients without DR. The biomarkers of diabetic retinopathy
identified using a UPLC-MS system were linoleic acid,
nicotinuric acid, ornithine, and phenylacetylglutamine. In
particular, this research developed a new multidimensional
network of biomarker systems and the area under the curve
(95% CI) of this system is an exploration of the biomarker
determination method (97).

Zhu et al. (98) studied the serum metabolomics of 21 PDR
patients and 21 diabetic patients without retinopathy (NDR)
patients. A total of 63 significant changes in metabolites were
found using LC-MS. Fumaric acid, uridine, acetic acid, and
cytidine (area under curve 0.96, 0.95, 1.0, and 0.95,
respectively) are considered potential biomarkers of PDR. A
serum metabolomics study of 24 patients with PDR, 22 patients
with NPDR, and 35 healthy human control groups demonstrated
that compared with the control group, indolamine-2,3-
dioxygenase (IDO) expression was enhanced among patients
with NPDR, while the levels of kynurenine, kynurenic acid, and
3-hydroxy kynurenine were higher in PDR patients. The authors
speculated that diabetic retinopathy might be related to IDO and
tryptophan metabolites (99). Serum samples from patients with
NPDR (n=123), PDR (n=51), and NDR (n=143) were profiled by
targeted mass-spectrometry-based metabolomics. After
multivariate analyses, 16 metabolites were found to show
profound changes, including tetradecenoylcarnitine (C14:1),
hexadecanoylcarnitine (C16), lysine, methionine, tryptophan,
tyrosine, total dimethyarginine, phosphatidylcholine diacyl
C32:2, phosphatidylcholine diacyl C34:2, phosphatidylcholine
d i a cy l C36 : 2 , phospha t idy l cho l ine d i a cy l C38 : 6 ,
phosphatidylcholine diacyl C40:6, phosphatidylcholine acyl-
a lkyl C36:5 , phosphat idylchol ine acyl-alkyl C42:3,
hydroxysphingomyeline C22:1 and sphingomyeline C24:0 (63).

Aqueous Humor Biomarkers
Wang et al. (85) analyzed and identified potential DR biomarkers in
aqueous humor of 23 patients suffering from PDR and 25 patients
with non-diabetic cataracts. Eight metabolites, namely D-glyceric
acid, isocitric acid, threonine, d-glucose, inositol, L-lactic acid,
citrulline, and fructose 6-phosphate, were found to be significantly
different in the aqueous humor by comparative analysis.

A metabolomics study based on NMR was carried out on the
aqueous humor samples from diabetic patients with cataracts
(n=13), DR patients with cataracts (n=14), and elderly cataracts
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(n=7). Metabolites such as lactate, succinate, 2-hydroxybutyrate,
aspartamide, dimethylamine, histidine, threonine, and glutamine
showed significant changes. Pathway analysis showed that DR
might be related to alanine, aspartic acid, and glutamate
metabolic pathways (100). The information of DR biomarker
was listed in Table 1.
KEGG ENRICHMENT ANALYSIS

We enriched the above potential biomarkers according to the
types of biological fluids, intending to comprehend the
relationship between biomarkers and diseases. Enrichment
analysis by metaPA and Kyoto Encyclopedia of Genes and
Genomes (KEGG) showed that metabolic pathways enriched
in the different biological fluids are unique (Figure 1). It is worth
mentioning that arginine-related metabolism was both enriched
in vitreous humor, plasma, serum, and aqueous humor. This
suggests that arginine has a critical effect on diabetic retinopathy.
DISCUSSION

Biomarkers can provide early warning signs in patients with
serious diseases. Therefore, they help in the early diagnosis of the
disease so that effective treatment can be made available to
the patient at the earliest. In this review, we have summarized
the known potential biomarkers for DR, in a variety of biological
samples, including vitreous humor, plasma, serum, and aqueous
humor, from research done in recent years. Through enrichment
analysis, we found that arginine-related metabolic pathways were
abnormal in a variety of biological fluids.

Arginine Biosynthesis-Related Metabolites
Are Significantly Elevated in DR Patients
The urea cycle is a part of the arginine biosynthesis pathway, and
the arginase enzyme can cleave arginine to generate urea and
ornithine. Ornithine can be converted into citrulline, and then
citrulline is produced through a series of reactions to arginine
(101). The metabolites of the urea cycle seem to have some
association with DR. The metabolites of the urea cycle seem to
have some association with DR.The levels of ornithine (85, 97,
102), arginine (62, 90, 102), citrulline (85, 90, 102), proline (86),
and argininosuccinate (102) were significantly elevated in DR
patients (Figure 2) (73). The above content expands our
understanding of the pathogenesis of DR. The changes in the
metabolites of the urea cycle, especially arginine, are significantly
associated with DR.

Arginine is involved in many biological processes and is also
the substrate of nitric oxide synthase (NOS) and arginase,
producing nitric oxide (NO) and urea, respectively (103). NO
is a vasodilator that exerts a significant influence on vascular
endothelial health, while arginine induces the release of insulin
in pancreatic b cells (Figure 3) (104). In addition, animal
experiments using DR mouse models and bovine retinal
endothelial cells cultivated by high glucose revealed the role of
arginine metabolism as a mediator for DR (105, 106).
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TABLE 1 | The information of diabetic retinopathy biomarker.

Study Samples Platform Number (cases/model
and controls)

Potential biomarkers Pathways

Tomita et al. (84) Vitreous
humour

UPLC-MS 43 PDR and 21 non-
diabetic epiretinal
membrane

Creatine, succinate, glycine, lactate, pyruvate, proline,
allantoin, urate, citrulline, ornithine, dimethylglycine, N-
acetylserine, a-ketoglutarate

Glycine, serine, arginine
and proline amino acid
metabolism

Wang et al. (85) Vitreous
humour

GC-TOF-MS 28 PDR and 22 non-
diabetic patients with
macular fissure

Pyruvate, ornithine, uric acid, pyroglutamic acid,
creatinine, L-leucine, L-alanine, L-threonine, L lysine, L-
valine, L-phenylalanine, L-isoleucine, L-glutamine, inositol,
and hydroxylamine

Gluconeogenesis,
ascorbate-aldose
metabolism, valine-
leucine-isoleucine
biosynthesis, and arginine-
proline metabolism

Haines et al. (86) Vitreous
humour

UPLC-MS 9 PDR and 8 non-
diabetic patients

Xanthine, pyruvate, proline, and guanine Unclear

Paris et al. (62) Vitreous
humour

LC-MS and
HILIC-MS

9 PDR and 11 non-
diabetic patients

Octanoylcarnitine, propionylcarnitine, hexanoylcarnitine,
acetylcarnitine, palmitoylcarnitine, elaidic/
vaccenylcarnitine, allantoin, glutamate, lysine, and
arginine

Unclear

Barba et al. (87) Vitreous
humour

NMR 22 PDR and 22 non-
diabetic patients

Lactic acid, glucose, galactitol, and ascorbic acid Unclear

Rhee et al. (88) Plasma GC–TOF–MS
and UPLC–
Q–TOF–MS

124 DR and 32 NDR Glutamine and glutamic acid Unclear

Curovic et al. (89) Plasma GC-MS 141 DR and 504 NDR 2,4-dihydroxybutyric acid (DHBA), 3,4-DHBA, ribonic
acid, and ribitol

Unclear

Chen et al. (49) Plasma GC-MS 44 NPDR and 40 NDR 1,5-Anhydroglucitol, 1,5-gluconolactone, 2-deoxyribonic
acid, 3,4-dihydroxybutyric acid, erythritol, gluconic acid,
lactose/cellobiose, maltose/trehalose, mannose, ribose,
and urea

Pentose phosphate
pathway

Sumarriva et al.
(90)

Plasma LC-MS 83 DR and 90 NDR Arginine, citrulline, glutamic g-semialdehyde, and
dehydroxycarnitine

The metabolism of
multiple amino acids,
leukotrienes, niacin,
pyrimidine, and purine

Li et al. (91) Plasma GC-MS 25 PDR, 39 NPDR, and
24 NDR

Pyruvate, L-aspartate, b-hydroxybutyrate, methylmalonic
acid, citric acid, glucose, stearic acid trans-oleic acid,
linoleic acid, and arachidonic acid

Unclear

Xuan et al. (92) Serum UPLC - MS 44 PDR and 43 non-
diabetic patients

LPC (14:0), LP (16:0), LPC (14:0), LPC (16:0), LPC
(16:1), LPC (18:0), LPC (18:1), LPC (18:2), LPC (18:3),
LPC (18:4), LPC (20:0), LPC (20:3), LPC (20:4), LPC
(20:5), LPC (22:3), and LPC (22:6)

Unclear

Xuan et al. (93) Serum GC-MS, LC-
MS

350 DR and 111 NDR 2-Piperidone and 12-HETE Unclear

Zuo et al. (97) Serum UPLC-MS 69 DR and 69 NDR Linoleic acid, nicotinuric acid, ornithine, and
phenylacetylglutamine

Unclear

Zhu et al. (98) Serum LC-MS 44 NPDR and 40 NDR Fumaric acid, uridine, acetic acid, and cytidine Alanine, aspartate and
glutamate metabolism,
caffeine metabolism, beta-
alanine metabolism, purine
metabolism, cysteine and
methionine metabolism,
sulfur metabolism,
sphingosine metabolism,
and arginine and
proline metabolism

Munipally et al. (99) Serum HPLC 24 PDR, 22 NPDR, and
35 healthy human
control group

kynurenine, kynurenic acid, and 3-hydroxy kynurenine Tryptophan metabolites

Yun et al. (63) Serum LC-MS and
FIA-MS

123 NPDR, 51 PDR,
and 143 NDR

Tetradecenoylcarnitine, hexadecanoylcarnitine, lysine,
methionine, tryptophan, tyrosine, total Dimethyarginine,
phosphatidylcholine diacyl C32:2, phosphatidylcholine
diacyl C34:2, phosphatidylcholine diacyl C36:2,
phosphatidylcholine diacyl C38:6, phosphatidylcholine
diacyl C40:6, phosphatidylcholine acyl-alkyl C36:5,
phosphatidylcholine acyl-alkyl C42:3,
hydroxysphingomyeline C22:1, and phingomyeline C24:0

Unclear

(Continued)
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Arginine-Creatine Metabolic Pathway May
Be a New Therapeutic Strategy for DR
Meanwhile, another biomarker that caught our attention,
creatine, a product of arginine metabolism. Unlike the elevated
levels of arginine, creatine levels were significantly lower in
patients with DR (84, 85). Thereby, we put forward a
hypothesis that the reduced conversion of arginine to creatine
leads to metabolic changes in DR patients with increased
arginine levels and decreased creatine levels. Callback of this
metabolic change, may be a new treatment strategy for DR.
There is no strong evidence for this hypothesis, but there is
substantial research supporting the positive effects of creatine
supplementation on DR.
Frontiers in Endocrinology | www.frontiersin.org 638
Creatine can be either be synthesized endogenously within the
body or extrinsically derived from foods like meat, fish, etc. (24).
There are two steps in creatine biosynthesis. The first step is
to catalyze arginine and glycine with L-arginine glycine
amidinotransferase (AGAT; EC 2.1.4.1) to produce ornithine and
guanidinoacetate (GAA).This stepmainlyoccurs in thekidneyand is
mostly distributed in themitochondrial intermembrane space (107).
The second step is themethylation of GAA in the amidino group for
producing Cr through the action of S-adenosyl-l-methionine: N-
guanidinoacetate methyltransferase (GAMT; EC 2.1.1.2) (108), the
liver is possible to be the principal organ contributing this reaction
(109,110).Approximately two-thirdsofCr isphosphorylated to form
PCr, a key agents of cellular energy regeneration (111, 112). Cr, PCr,
TABLE 1 | Continued

Study Samples Platform Number (cases/model
and controls)

Potential biomarkers Pathways

Wang et al. (85) Aqueous humor GC-TOF-MS 23 PDR and 25 NDR D-glyceric acid, isocitric acid, threonine, d-glucose,
inositol, L-lactic acid, citrulline, and fructose 6-phosphate

Unclear

Jin et al. (100) Aqueous humor NMR 13 diabetic patients with
cataract, 14 DR with
cataract, and 7 elderly
cataract

Lactate, succinate, 2-hydroxybutyrate, aspartamide,
dimethylamine, histidine, threonine, and glutamine

Alanine, aspartic acid and
glutamate metabolic
pathways
March 2022 | V
LC-MS, liquid chromatography-mass spectrometry; HPLC, ultra-performance liquid chromatography; UPLC-MS, ultra-performance liquid chromatography-mass spectrometry;
UPLC–Q–TOF–MS, ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry; GC-MS, gas chromatography mass spectrometry; GC-TOF-MS, gas
chromatography quadrupole time-of-fight mass spectrometry; HILIC-MS hydrophilic interaction chromatography-mass spectrometry; NMR, nuclear magnetic resonance;
FIA–MS, flow-injection analysis-mass spectrometry; UPLC-Q-Axis Orbiter-MS, ultra-performance liquid chromatography-quadrupole-Exactive Orbitrap-mass spectrometry;
DR, diabetic retinopathy; NDR, diabetic patients without retinopathy; PDR, proliferative diabetic retinopathy; NPDR, non-proliferative diabetic retinopathy;
LPC, Lysophosphatidylcholine.
FIGURE 1 | Enrichment analysis of DR potential biomarkers in vitreous humor, plasma, serum, and aqueous humor.
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and creatine kinase (CK) isoenzymes are responsible formaintaining
the ATP pool (25). This is critical for some organs with high energy
demands, like retina, skeletal or cardiac muscle, retina, spermatozoa,
and brain (113).

AGAT is the rate-limiting enzyme in creatine biosynthesis,
simultaneous reduction in mRNA content, enzyme levels, and
AGAT enzyme activity when endogenous sources or dietary Cr
supplementation (114). This feedback inhibition of AGAT by Cr
is most pronounced in the kidney and pancreas, which are the
Frontiers in Endocrinology | www.frontiersin.org 739
major tissues for GAA production (115). Research shows that
ingestion of creatine supplements reduces the rate of creatine
biosynthesis (116).GAA, catalyzed by GAMT to generate
creatine, is an important intermediate in creatine biosynthesis.
Deficiency of GAMT will cause GAA accumulation and lead to
axonal hypersprouting and apoptosis (117). There are no reports
of abnormal GAA levels in DR patients.

Studies have shown that creatine supplementation can help
improve hyperglycemia (34) and improve glycemic control in
FIGURE 2 | Increased levels of proline, ornithine and arginine in the vitreous humor of PDR patients; arginine levels are elevated in the serum of severe DR patients;
citrulline levels are elevated in the aqueous humor of DR patients.
FIGURE 3 | Arginine is catalyzed by the substrate of nitric oxide synthase (NOS) to produce NO, and arginine can induce the release of insulin from pancreatic b cells.
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patients with type 2 diabetes (118). In mice, lower creatine levels
could be ascribed to the vascular proliferation of the retina under the
OIR model (p=0.027) with the use of retinal metabolomics.
Moreover, it was seen that this vascular proliferation could be
reversed after the administration of oral creatine via anti-VEGF
(84). Tomita et al. found that a decrease in creatine was
accompanied by an increase in glycine levels in OIR mice, this
results consistent with the vitreous humor of PDR patients (84).
Glycine is involved in the biosynthesis of creatine, the amidine
group of arginine is transferred to glycine to generate ornithine and
GAA, and then GAA is catalyzed by GAMT to generate creatine.
Increased glycine appears to be protective for DR, and glycine has
proven anti-glycation and anti-diabetic properties (119, 120).
Moreover, glycine significantly upregulated the mRNA expression
of PEDF (an angiogenesis inhibitor) (121). However, in the study by
Tomita et al., arginine was not significantly different in the vitreous
humor of PDR patients and the retina of OIR mice. In previous
studies, arginine was reported to be significantly elevated in plasma
and vitreous humour (62, 90, 102).

Mitochondria are the primary site of production ATP and the
main source of cellular energy. The number of mitochondria in a
cell depends on its energy demand (122). Mitochondrial
Frontiers in Endocrinology | www.frontiersin.org 840
dysfunction due to overproduced of ROS in hyperglycemic states
(122, 123), and make a major impact on tissues with high energy
demands, such as the retina (111). Study shows persistent
hyperglycemia leads to reduced mitochondrial respiration (124),
Cr-Pcr system is essential for energy-demanding tissues and cells
due to the maintenance of adequate ATP pools (111).

Another study showed that creatine enhanced the functional
capillary density in skin and recruitment in post-occlusive reactive
hyperemia (35, 125). The author speculates that creatine may help
increase the bioavailability of epoxyeicosatrienoic acid (EET),
thereby improving endothelium-derived hyperpolarizing factor
(EDHF) stimulation and microvascular dilation (125). Apart from
this, the potential therapeutic effect of creatine on the nervous
system also deserves attention. It has been reported that creatine
protects against neurotoxicity and oxidative stress (30, 31).
Oxidative stress is one of the biggest risk factors for diabetic
retinopathy. An animal experiment demonstrated that creatine
has a significant antioxidant effect and indicated that creatine
supplementation may become a treatment strategy for
neurodegenerative diseases caused by oxidative stress (34, 126).
Besides, creatine administration significantly attenuated abnormal
glucose tolerance, and is considered to delayed the onset of diabetes
FIGURE 4 | The approach of creatine in treating diabetic retinopathy: i) Creatine has the potential to act as an anti-inflammatory aid and provide vascular protection.
ii) Creatine has a significant antioxidant effect and protects mtDNA and nerve cells from cytotoxicity induced by oxidative stress. iii) Creatine may help increase the
bioavailability of epoxyeicosatrienoic acid, thereby improving microvascular dilation. iv) Creatine may reduce the formation of Hcy. v) Creatine supplementation can
help improve hyperglycemia.
March 2022 | Volume 13 | Article 858012

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Sun et al. Metabolomics Analysis of Diabetic Retinopathy
(34). Studies have shown that creatine exhibits resistance to
oxidation, which is effective in protecting mtDNAs from oxidative
stress-elicited cytotoxicity (127, 128). Suggestively, creatine could
provide a way for the effective management of diseases involving
oxidative stress (126–128).

Synthesis of creatine yields homocysteine as a byproduct,
which is an amino acid that contains sulfhydryl groups.
S-adenosylmethionine (SAM) is demethylated to generate creatine
as well as S-adenosyl homocysteine (SAH). SAH hydrolase (SAHH)
enzyme then hydrolyzes SAH to Hcy. A correlation has been
reported between the increase in Hcy expression and an
aggravated risk for diverse DR, including blood retinal barrier
dysfunction, inflammation, and mitochondria dysfunction (129–
131). Replenishment of creatine has been demonstrated to save the
SAM input (132–134) given about 40–70% expenditure of entire
methyl groups by the creatine synthesis (134), which can diminish
the Hcy formation (133) and may help reduce the possibility of
developing DR.

In addition, creatine can reduce acute inflammation induced by
carrageenan, whose action is identical to that of butazepine, a non-
steroidal anti-inflammatory drug (27). Research done by Nomura
et al. on pulmonary endothelial cells (ECs) revealed that after the
administration of 0.5 mM creatine, the endothelial cell (EC)
expressions of E-selectin and Intercellular Adhesion Molecule-1
were suppressed. Moreover, the serotonin-and H2O2-elicited
permeability of endothelium was also prominently reduced upon
creatine (5 mM) replenishment. These observations suggested that
the administration of creatine makes the membranes more stable,
and the ECs less leaky (28). Associations between DR and increased
intercellular cell adhesion molecule-1 (ICAM-1), E-selectin
expressions, and enhanced permeability “leakiness” of the
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endothelium have been reported several times (135). It shows that
creatine has the potential to act as a protector of the vascular system
and as an inflammation inhibitor (Figure 4).
CONCLUSION

In recent years, researchers have identified many potential DR
biomarkers, which are not yet used for clinical diagnosis. Further
research is required to clarify their molecular mechanisms in DR.
In this review, we have discussed the known biomarkers of
diabetic retinopathy, which can help in predicting and
preventing DR in the future. Furthermore, we suggest that the
arginine-creatine metabolic pathway may be a new strategy for the
treatment of diabetic retinopathy.
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Supplementation on Systemic Microvascular Density and Reactivity in Healthy
Young Adults. Nutr J (2014) 13(1):115. doi: 10.1186/1475-2891-13-115

126. Matthews RT, Yang L, Jenkins BG, Ferrante RJ, Rosen BR, Kaddurah-Daouk
R, et al. Neuroprotective Effects of Creatine and Cyclocreatine in Animal
Models of Huntington’s Disease. J Neurosci (1998) 18(1):156–63. doi:
10.1523/JNEUROSCI.18-01-00156.1998

127. Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen
P, et al. A Creatine-Driven Substrate Cycle Enhances Energy Expenditure
and Thermogenesis in Beige Fat. Cell (2015) 163(3):643–55. doi: 10.1016/
j.cell.2015.09.035

128. Maresca A, Del Dotto V, Romagnoli M, La Morgia C, Di Vito L, Capristo M,
et al. Expanding and Validating the Biomarkers for Mitochondrial Diseases.
J Mol Med (Berl) (2020) 98(10):1467–78. doi: 10.1007/s00109-020-01967-y

129. Tawfik A, Samra YA, Elsherbiny NM, Al-Shabrawey M. Implication of
Hyperhomocysteinemia in Blood Retinal Barrier (BRB) Dysfunction.
Biomolecules (2020) 10(8):1119. doi: 10.3390/biom10081119

130. Elsherbiny NM, Sharma I, Kira D, Alhusban S, Samra YA, Jadeja R, et al.
Homocysteine Induces Inflammation in Retina and Brain. Biomolecules
(2020) 10(3):393. doi: 10.3390/biom10030393

131. Kowluru RA. Diabetic Retinopathy: Mitochondria Caught in a Muddle of
Homocysteine. J Clin Med (2020) 9(9):3019. doi: 10.3390/jcm9093019

132. Deminice R, Cella PS, Padilha CS, Borges FH, da Silva LE, Campos-Ferraz
PL, et al. Creatine Supplementation Prevents Hyperhomocysteinemia,
Oxidative Stress and Cancer-Induced Cachexia Progression in Walker-256
Tumor-Bearing Rats. Amino Acids (2016) 48(8):2015–24. doi: 10.1007/
s00726-016-2172-9

133. McCarty MF. Supplemental Creatine may Decrease Serum Homocysteine
and Abolish the Homocysteine ‘Gender Gap’ by Suppressing Endogenous
Creatine Synthesis. Med Hypotheses (2001) 56(1):5–7. doi: 10.1054/
mehy.1999.1014

134. Brosnan JT, Silva R, Brosnan ME. The Metabolic Burden of Creatine Synthesis.
Amino Acids (2011) 40(5):1325–31. doi: 10.1007/s00726-011-0853-y
March 2022 | Volume 13 | Article 858012

https://doi.org/10.1007/s00125-018-4560-z
https://doi.org/10.1007/s00125-018-4560-z
https://doi.org/10.1194/jlr.M056069
https://doi.org/10.1194/jlr.M056069
https://doi.org/10.1371/journal.pone.0057254
https://doi.org/10.1136/bmjdrc-2020-001443
https://doi.org/10.1186/s12986-019-0358-3
https://doi.org/10.3109/13813455.2011.623705
https://doi.org/10.1016/j.jpba.2019.06.013
https://doi.org/10.1016/j.jpba.2019.06.013
https://doi.org/10.1016/j.immuni.2019.11.012
https://doi.org/10.1016/j.ajo.2021.09.021
https://doi.org/10.1074/jbc.RA119.007810
https://doi.org/10.1172/JCI108502
https://doi.org/10.1016/j.preteyeres.2013.06.002
https://doi.org/10.3389/fimmu.2013.00173
https://doi.org/10.1016/0014-5793(75)80966-5
https://doi.org/10.1038/196286a0
https://doi.org/10.1017/S0007114513003012
https://doi.org/10.1007/978-1-4020-6486-9_16
https://doi.org/10.1007/978-1-4020-6486-9_16
https://doi.org/10.1007/s00726-011-0877-3
https://doi.org/10.1152/physrev.2000.80.3.1107
https://doi.org/10.1016/S0021-9258(17)32477-8
https://doi.org/10.1002/9780470122952.ch4
https://doi.org/10.1515/cclm.1992.30.6.325
https://doi.org/10.1016/j.nbd.2015.03.029
https://doi.org/10.1007/s00421-010-1676-3
https://doi.org/10.1007/s00421-010-1676-3
https://doi.org/10.1006/exer.1993.1167
https://doi.org/10.1006/exer.1993.1167
https://doi.org/10.1007/BF00731438
https://doi.org/10.1016/j.exer.2018.05.004
https://doi.org/10.1016/j.exer.2018.05.004
https://doi.org/10.1080/14728222.2018.1439921
https://doi.org/10.3390/antiox9100905
https://doi.org/10.1167/iovs.17-21929
https://doi.org/10.1186/1475-2891-13-115
https://doi.org/10.1523/JNEUROSCI.18-01-00156.1998
https://doi.org/10.1016/j.cell.2015.09.035
https://doi.org/10.1016/j.cell.2015.09.035
https://doi.org/10.1007/s00109-020-01967-y
https://doi.org/10.3390/biom10081119
https://doi.org/10.3390/biom10030393
https://doi.org/10.3390/jcm9093019
https://doi.org/10.1007/s00726-016-2172-9
https://doi.org/10.1007/s00726-016-2172-9
https://doi.org/10.1054/mehy.1999.1014
https://doi.org/10.1054/mehy.1999.1014
https://doi.org/10.1007/s00726-011-0853-y
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Sun et al. Metabolomics Analysis of Diabetic Retinopathy
135. Sun H, Cong X, Sun R, Wang C, Wang X, Liu Y. Association Between the
ICAM-1 K469E Polymorphism and Diabetic Retinopathy in Type 2 Diabetes
Mellitus: A Meta-Analysis. Diabetes Res Clin Pract (2014) 104(2):e46–9. doi:
10.1016/j.diabres.2014.01.028

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
Frontiers in Endocrinology | www.frontiersin.org 1345
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Sun, Kong, Zhang, Han, Sun, Yan and Wang. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
March 2022 | Volume 13 | Article 858012

https://doi.org/10.1016/j.diabres.2014.01.028
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Frontiers in Endocrinology | www.frontiersi

Edited by:
Undurti Narasimha Das,

UND Life Sciences LLC, United States

Reviewed by:
Loranne Agius,

Newcastle University, United Kingdom
Jalal Taneera,

University of Sharjah, United Arab
Emirates

*Correspondence:
Khalid Hussain

khussain@sidra.org

Specialty section:
This article was submitted to

Diabetes: Molecular Mechanisms,
a section of the journal

Frontiers in Endocrinology

Received: 22 December 2021
Accepted: 07 April 2022
Published: 18 May 2022

Citation:
Sharari S, Aouida M, Mohammed I,
Haris B, Bhat AA, Hawari I, Nisar S,

Pavlovski I, Biswas KH, Syed N,
Maacha S, Grivel J-C, Saifaldeen M,

Ericsson J and Hussain K (2022)
Understanding the Mechanism of
Dysglycemia in a Fanconi-Bickel

Syndrome Patient.
Front. Endocrinol. 13:841788.

doi: 10.3389/fendo.2022.841788

ORIGINAL RESEARCH
published: 18 May 2022

doi: 10.3389/fendo.2022.841788
Understanding the Mechanism of
Dysglycemia in a Fanconi-Bickel
Syndrome Patient
Sanaa Sharari 1,2, Mustapha Aouida1, Idris Mohammed1,2, Basma Haris2,
Ajaz Ahmad Bhat3, Iman Hawari 1,2, Sabah Nisar3, Igor Pavlovski3, Kabir H. Biswas1,
Najeeb Syed3, Selma Maacha3, Jean-Charles Grivel3, Maryam Saifaldeen1,
Johan Ericsson1,4 and Khalid Hussain2*

1 Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU),
Qatar Foundation, Doha, Qatar, 2 Department of Pediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha, Qatar,
3 Department of Research, Sidra Medicine, Doha, Qatar, 4 School of Medicine and Medical Science, University College
Dublin, Belfield, Ireland

Fanconi–Bickel Syndrome (FBS) is a rare disorder of carbohydrate metabolism that is
characterized mainly by the accumulation of glycogen in the liver and kidney. It is inherited
as an autosomal recessive disorder caused by mutations in the SLC2A2 gene, which
encodes for GLUT2. Patients with FBS have dysglycemia but the molecular mechanisms
of dysglycemia are still not clearly understood. Therefore, we aimed to understand the
underlying molecular mechanisms of dysglycemia in a patient with FBS. Genomic DNA
was isolated from a peripheral blood sample and analyzed by whole genome and Sanger
sequencing. CRISPR-Cas9 was used to introduce a mutation that mimics the patient’s
mutation in a human kidney cell line expressing GLUT2 (HEK293T). Mutant cells were
used for molecular analysis to investigate the effects of the mutation on the expression and
function of GLUT2, as well as the expression of other genes implicated in dysglycemia.
The patient was found to have a homozygous nonsense mutation (c.901C>T, R301X) in
the SLC2A2 gene. CRISPR-Cas9 successfully mimicked the patient’s mutation in
HEK293T cells. The mutant cells showed overexpression of a dysfunctional GLUT2
protein, resulting in reduced glucose release activity and enhanced intracellular glucose
accumulation. In addition, other glucose transporters (SGLT1 and SGLT2 in the kidney)
were found to be induced in the mutant cells. These findings suggest the last loops (loops
9-12) of GLUT2 are essential for glucose transport activity and indicate that GLUT2
dysfunction is associated with dysglycemia in FBS.

Keywords: Fanconi-Bickel syndrome (FBS), dysglycemia, glucose transporter 2 (GLUT2), clustered regularly
interspaced short palindromic repeats (CRISPR)- Cas9, sodium-glucose transport protein 2 (SGLT2)
INTRODUCTION

The classical phenotype of Fanconi-Bickel Syndrome (FBS) was initially described by 1 (1). GLUT2
mutations were first described in three FBS patients, including the original patient in 1997 (2). More
than 100 FBS cases with different SLC2A2 mutations; nonsense, missense, Fs/InDel, intronic, and
compound heterozygous variants have been reported so far (3–8). SLC2A2 gene consists of 11 exons
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and 10 introns and encodes for the GLUT2 transmembrane
protein (524 amino acids) (SLC2A2-201 ENST00000314251.8)
(9). GLUT2 is a low affinity facilitated glucose transporter and
expressed in tissues that have a role in glucose homeostasis.
GLUT2 in human and rat liver is considered the primary
transporter for glucose uptake and storage as glycogen during
the feeding state, and to release glucose either by glycogenolysis
or gluconeogenesis during the fasting state (10, 11). Glycogen
storage, post-prandial hyperglycemia and fasting hypoglycemia
in FBS patients can be explained due to a disturbance in glucose
transport and metabolism in the liver. Moreover, GLUT2 in the
kidney releases filtered glucose into the blood circulation.
Previous studies suggested that GLUT2 dysfunction in the
kidney is associated with glycogen storage and glycosuria,
which are the main symptoms found in FBS patients (12, 13).
Furthermore, GLUT2 is the major glucose transporter in the rat
beta cells and is suggested to play a role in glucose uptake and
insulin secretion. However, GLUT2 is expressed at low levels in
human beta cells, and its role is not well studied and is still
controversial (3, 14, 15). FBS patients develop dysglycemia
(glucose intolerance, post-prandial hyperglycemia, fasting
hypoglycemia, transient neonatal diabetes, frank diabetes
mellitus, and gestational diabetes) with different severity
regardless of the type of mutation. The molecular mechanisms
of dysglycemia in FBS are not well understood (4). In this study,
we aimed to mimic a patient’s GLUT2 mutation in human
embryonic kidney cells (HEK293T) to investigates the role of
GLUT2 in dysglycemia associated with FBS.
MATERIALS AND METHODS

Patient Recruitment and Genetic Analysis
This study was approved by the Institutional Review Board for
the Protection of Human Subjects, Sidra Medicine, Qatar and
written informed consent was obtained for the study. Clinical
information was collected and genomic DNA of the patient and
parents was isolated from peripheral blood samples using
QIAamp DNA Blood Maxi Kit (Qiagen). Whole-genome
sequencing (WGS 30x) using the Illumina HiSeq platform was
performed. Sanger sequencing was used to confirm the mutation
in the patient and both parents using primers (Table S1).
Snapgene software was used for Sanger sequencing analysis.

CRISPR-Cas9
Clustered Regularly Interspaced Short Pallindromic Repeats
(CRISPR)-Cas9 system was used for GLUT2 gene modification
in human embryonic kidney cells (HEK293T). Different guide
RNAs (gRNAs) close to the patient mutation identified by the
PAM sequence (NGG) were designed (Table S1). The gRNA
construct containing the 20 nucleotides target CRISPR sequence
(crRNA) and the tracer sequence (tracrRNA) was generated. The
genome-editing protocol described by Lee et al. (16) was used
with the few changes to introduce GLUT2 edits in HEK293T
cells. To form the gRNA, sense and antisense oligonucleotides
with BbsI overhangs (Table S1) were phosphorylated with T4
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polynucleotide kinase. The Cas9 plasmid (pX330-U6-
Chimeric_BB-CBh-hSpCas9 was a gift from Feng Zhang
(Addgene plasmid # 42230; http://n2t.net/addgene:42230;
RRID : Addgene_42230)) was digested with BbsI and purified
from a 1% agarose gel using a gel extraction kit (QIAEX II).
Subsequently, ligation of the digested pX330-U6-Chimeric_BB-
CBh-hSpCas9 plasmid with the annealed gRNAs were
performed at 16°C overnight, using T4 DNA ligase
(Invitrogen). The gRNA-Cas9 plasmid was transformed into
chemically competent TOP10 bacteria (ThermoFisher), and
screened on LB agar plates supplemented with 100 mg/mL
ampicillin. Positive Cas9-gRNA plasmids were validated by
Sanger sequencing using CRISPR_Seq primers (Table S1)
following plasmids extraction using QIAprep Spin Miniprep
Kit (QIAGEN). Further amplification of the positive plasmids
was performed using Endofree Plasmid Maxi Kit (QIAGEN). To
detect the most efficient gRNA, HEK293T cells were used. In
short, HEK293T cells were transfected with the different gRNA-
Cas9 plasmids using FuGENE® HD Transfection Reagent
(Promega). Eighty thousand cells were seeded in a 24-well
plate, and 1ug of gRNA-Cas9 plasmid was transfected with 3.4
ml of FuGENE HD transfection reagent. Genomic DNA was
extracted from the transfected HEK293T cells after 2-3 days
using Genomic DNA QuickExtract (EpiCentre, Madison, WI,
USA) and amplified by Amplitaq reaction at 55°C using genomic
GLUT2 forward and reverse primers (Table S1), and purified
following the manufacturer’s protocol (QIAquick PCR
Purification Kit (50), QIAGEN)). T7 endonuclease assays were
performed to detect heteroduplex DNA resulting from gene
editing (one wild-type and one mutant DNA strand). 200 ng
of purified DNA was denatured and annealed in a thermomixer
(10 minutes at 95°C, followed by a gradual decrease in
temperature to 25°C). Reannealed DNA was then mixed with
an enzyme master mix containing 0.5 mL of T7 Endonuclease I
(New England Biolabs), 0.2 mL of 10× NEBuffer #2, and 1.3 mL of
sterile distilled water and incubated at 37°C for 60 minutes. The
reaction was stopped immediately after incubation by
the addition of 6 mL of an EDTA-containing stop solution. The
entire reaction was loaded on a 2% agarose gel and stained with
SyberSafe. The mutations introduced by the individual gRNAs
were further analyzed by Sanger sequencing of bacterial colonies
following TA cloning (TOPO® TA Cloning® Kit, Invitrogen)
using M13 primers (Table S1). gRNA with the highest editing
activity was used to transfect HEK293T cells for single cell
originated clone isolation and expansion. Lastly, Sanger
sequencing of several HEK293T cell colonies was performed to
identify the specific gene edits generated. The mutation in the
selected clone was confirmed in the first three passages to exclude
any contamination from wild-type cells.

Growth Assay
To visually monitor cell growth, 300,000 wild-type (WT)/mutant
HEK293Tcells were seeded in 60 mm culture dishes, and images
were taken by a 10X microscope on days 1 and 4. Edu Cell
Proliferation Assay (EdU-647, Merck Millipore) was performed
on day 2 using 60,000 WT/mutant cells in 4-well glass chambers
slides. Edu (50 mM) was added to the test chambers and
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incubated for 3 hours. The cells were fixed with 4% PFA for 15
minutes and permeabilized with 0.5% Triton X-100 in PBS for 20
minutes. Then, 100 mL of reaction cocktail was added for
30 minutes and kept in the dark, followed by washing with 3%
BSA in PBS and stained with DAPI. Fluorescence images of
stained and fixed cells were acquired using a 60x oil objective in
an Eclipse Ti inverted microscope (Nikon, Tokyo, Japan) fitted
with a CSU-X1A confocal spinning disk unit (Yokogawa, Tokyo,
Japan), a Visitron Systems (VS) – Laser Merge System Laser
Combiner including VS-ViRTEx experiment control unit, and a
pco.edge 4.2 scientific CMOS camera (PCO AG, Kelheim,
Germany). Images were collected in the VisiView (Visitron
Systems GmbH, Puchheim, Germany) and analyzed with Fiji/
ImageJ (NIH, Bethesda, MD) (17, 18). Briefly, 16-bit confocal
fluorescence images were converted into 8-bit images, and
individual cell nuclei were manually selected using the
freehand selection tool. Selected regions of interest (ROI) were
added to the ROI manager, and background-subtracted mean
intensities were calculated and plotted for each cell type.

Flow Cytometry
We used 50,000 WT/mutant HEK293T cells to measure the
expression of GLUT2. Cells were fixed with 4% PFA for 15
minutes and then permeabilized for 20 minutes. A small portion
of each cell type was kept unstained, while the remaining cells
were incubated with 10µl of anti-hGLUT2 PE-conjugated mouse
IgG2a antibody (R&D SYSTEMS, FAB14148) or 5µl of PE mouse
IgG1 control antibody (400112, BioLegend) and remaining
volume of 100ml of Brilliant staining buffer (BD Biosciences)
for 15 minutes in the dark. The stained cells were washed once
with staining buffer (BioLegend), and the signal was measured on
a BD Symphony A5 instrument.

qRTPCR
The expression of other glucose transporters (SGLT1, SGLT2,
and GLUT1) in WT and mutant HEK293T cells was examined
quantitatively. RNA from WT/mutant HEK293Tcells was
extracted following the manufacturer’s protocol (RNeasy Mini
Kit, Qiagen) and normalized to 2 µg for cDNA synthesis. Three
µL cDNA products were added to Fast 96-Well reaction plates
Frontiers in Endocrinology | www.frontiersin.org 348
(0.1 mL) (Applied Biosystems) and amplified using SYBRR

Green PCR master mix (Applied Biosystem) at primer-specific
Tm (Table S1). The mRNA levels were quantified using a
QuantStudio™ 12K Flex SystemBlock 96-well instrument.

Glucose Uptake Assay
To test the glucose uptake activity, 500,000 WT/mutant cells
were incubated in low glucose medium for 3 hours, followed by
incubation with 1 mM 2-DG for 1 hour. Cells were lysed with
extraction buffer at 85°C for 40 minutes. Next, the reaction
mixtures were neutralized with 10 mL neutralizing buffer.
Intracellular glucose levels were analyzed as recommended by
the manufacturer (Glucose Uptake Assay Kit (Colorimetric,
Abcam). The absorbance was measured at 412 nm using a
microplate reader (Flaoster, Omega).

Statistical Values
All results were assessed three times, and the average of three values
is given as the Standard deviation. P-value was calculated using two-
tailed t-test. P-value <0.05 is considered as a significant difference.
RESULTS

Clinical Information and Genetic
Testing Results
We report a 2-year-old Palestinian boy born to consanguineous
parents with FBS (Figure 1A). He was born full term by normal
vaginal delivery with a birth weight of 2.8 Kg (3rd centile) and
length 49 cm (15th centile). Maternal history was significant for
gestational diabetes mellitus. His newborn screening showed
high galactose levels with normal GALT activity. He was
followed up by a metabolic team and started on a special
formula feed since birth. On day 18 after birth, the patient
presented with poor feeding, vomiting, and polyuria. His
biochemical tests showed severe metabolic acidosis with
electrolyte imbalance, glycosuria, proteinuria, and phosphaturia
(Table 1). In addition, the patient displayed dysglycemia (fasting
hypoglycemia and post-prandial hyperglycemia, with low levels
of C-peptide and insulin). HbA1c levels were high, and diabetes
A B-1

C

B-2

FIGURE 1 | Clinical characteristics of patient: (A) Family Pedigree (B) Radiological findings (x-ray showed rickets (1), and hepatomegaly (2). (C) Growth charts
(According to CDC length chart, patient has short stature (dot) responding to growth hormone (red arrow), and underweight (dot).
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mellitus Type 1 evaluation was negative for all autoantibodies
(Table 1). At the age of 5 months, the patient was found to have
hepatomegaly (Figure 1B-2) and impaired liver function tests
(Table 1) with liver biopsy showing stage 1 fibrosis. The lipid
profile was normal except for elevated triglyceride levels
(Table 1). In addition, the patient had failure to thrive and
also developed rickets (Figure 1B-1). An MRI of the brain
showed features suggestive of anterior pituitary (adenohypophysis)
hypoplasia. As for the full pituitary hormonal tests, they were normal
except for low IGF-1 levels (Table 1) and the patient was diagnosed
with growth hormone (GH) deficiency following a GH provocation
test (data not shown). Recombinant GH therapy was started for the
patient andmonitored over six months, where he showed an increase
in height to 16cm/year compared to 3 cm/year before therapy
(Figure 1C). In addition, the patient received multiple medications
for electrolyte imbalance (sodium bicarbonate, potassium,
phosphorous, and vitamin D). The patient’s whole genome
sequencing revealed a homozygous mutation (c.901C>T, R301X)
(NM_000340) in the SLC2A2 gene, with both parents being carriers
of the same mutation. The mutation was confirmed by Sanger
sequencing of patients DNA (Figure 2). Figure S1 illustrates the
expected truncated GLUT2 topology for the patient.

CRISPR-Cas9 Technology to Mimic
GLUT2 Patient’s Mutation in
HEK293T Cells
We cloned four different gRNAs into a Cas9-expressing plasmid
to edit GLUT2 in HEK293T cells (Figure S2). gRNA3 was found
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to be the most efficient to edit GLUT2 (Figure S3) with different
insertion and deletion mutations in GLUT2 (Figure S4). The
selected HEK293T colony displayed a deletion mutation of 11
nucleotides, located two nucleotides after the patient mutation
site (c. 901 C>T, R301X) (Figure 3). This resulted in a frameshift
in GLUT2 and introduced a stop codon at c. 1164. Both the
mutant and the WT cell lines were monitored by Sanger
sequencing for few passages, all of which revealed a clean and
identical sequences (Figure 3). Mutant cell line showed only the
recurrent deletion trace; no WT nor other traces was detected,
and therefore the cell line was characterized with a homozygous
mutation in GLUT2 close to the mutation site identified in the
patient. These cells were subsequently used to evaluate the
impact of GLUT2 mutation on glucose transport activity.

Proliferation Rate of WT and Mutant Cells
We cultured the same number of WT and mutant HEK293T
cells in complete DMEM medium supplemented with 10% fetal
bovine serum and 1% P/S to assess the difference in growth. Both
cell lines displayed similar morphology; however, the GLUT2
mutant cells grew slower than the WT cells at day 1 and 4
(Figure S5), suggesting that the mutation of GLUT2 affected cell
growth. To further explore this possibility, we performed Edu
incorporation assays to investigate the difference in proliferation
rate between WT and mutant cells. The Edu signal (red
fluorescence) was strong in wild-type cells when compared to
mutant cells (Figure 4, top panel). Quantification of the intensity
of the Edu signal suggested that wild-type cells proliferated at a
TABLE 1 | Summary of biochemical tests for the patient.

Investigation Test value Normal range

Electrolyte levels and Urine analysis
Serum phosphorus (mmol/L) 0.80 0.93-1.64
Serum calcium (mmol/L) 1.7 2.2 -2.7
Serum Sodium (mmol/L) 132 134-146
Serum Potassium (mmol/L) 3.1 3.5-5.0
BUN (mmol/L) 2.6 1.2-6.3
Creatinine (µmol/l) 25 35-58
Urinalysis Proteinuria (+2) glycosuria (+3)

Phosphaturia
Liver function tests

Alanine amino transferase (ALT) (IU/L) 82 8-22
Aspartate transaminase (AST) (IU/L) 110 0-30
Alkaline phosphatase (IU/L) 410 48-95
Blood glucose tests
Fasting glucose (mmol/l) 2.1 3.5-5.5
2 hours post OGTT (mmol/l) 20 7.8-11.1
C-Peptide (ng/ml) [At Diagnosis] 0.33 0.78-5.19
Insulin (pmol/l) [At Diagnosis] 6 111-1153
HbA1c% [At Diagnosis] 8.1 4.8-6.0
Diabetes mellitus Type 1 evaluation (GAD65, Insulin, IA-2, ZnT8 Abs test) Negative –

Miscellaneous Hormone Profile
TSH (mIU/L) 3.34 0.4-4.0
PTH intact (pmol/l) 1.8 2.0- 6.8
IGF-1 (mcg/dl) <3.0 27.4-113.5
Lipid profile
Cholesterol (mmol/l) 3.5 <5.18
Triglyceride (mmol/l) 3.2 <1.7
High Density Lipoprotein (HDL-C) (mmol/l) 0.7 >1.17
Low Density Lipoprotein LDL (mmol/l) 2 <2.6
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FIGURE 3 | Sanger sequencing of the first three passages of sorted HEK293T cells with GLUT2 mutation. The deletion mutation was confirmed in the first three
passages of the sorted cell colony to validate cell genotype.
FIGURE 2 | Genetic analysis of patient and parents. Sanger sequencing of DNA of the patient showed homozygous mutation of SLC2A2 (c.901C>T, R301X), and
the parents are carriers.
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significantly faster rate than the mutant cells (Figure 4,
lower panel).

GLUT2 Expression in Wild-Type and
Mutant HEK293T
The expression of GLUT2 protein in wild-type and mutant cells
was monitored using flow cytometry. Surprisingly, the
expression of GLUT2 was significantly increased in the mutant
cells in comparison to wild-type cells (Figure 5).

The Expression of Other Glucose
Transporters in HEK293T Cells
We were interested in investigating the expression of other
glucose transporters in the GLUT2 mutant cells. Therefore, the
gene expression of SGLT1, GLUT1, and SGLT2 was assessed
using qRT-PCR. We amplified an equal amount of cDNA from
normalized high-quality RNA (2mg) extracted from WT and
mutant HEK293T cells. The mutant cells displayed a slight
increase in the expression of SGLT1 (Figure 6). We were
Frontiers in Endocrinology | www.frontiersin.org 651
unable to detect any expression of SGLT2 in WT cells, while
the same transporter was expressed at relatively higher levels in
the mutant cells (Figure 6). The expression of GLUT1 was
slightly reduced in the mutant cells compared to WT cells
(Figure 6). Thus, our results suggest that mutation of the
SLC2A2 gene (GLUT2) in HEK293T cells results in the
overexpression of a dysfunctional GLUT2 protein and
enhanced expression of SGLT2, which could result in increased
accumulation of intracellular glucose.

Glucose Uptake in WT and Mutant
HEK293T Cells
To study the effect of the GLUT2 mutation on glucose uptake, cells
were incubated with 1 mM 2-DG. Interestingly, the intracellular
levels of 2-DG were significantly higher in the mutant cells
compared to WT cells (Figure 7). To determine whether the
increased accumulation of glucose in the mutant cells was due to
an increase in SGLT2 expression (Figure 6) or due to the inhibition
of GLUT2-mediated glucose export, the glucose uptake assay was
FIGURE 4 | Reduced proliferation of GLUT2 mutant cells. Top panel: Confocal fluorescence images of WT and mutant GLUT2 expressing HEK293T cell nuclei
showing reduced Edu incorporation. Lower panel: Graph showing Edu intensity in the nuclei of WT and mutant GLUT2 expressing HEK293T showing significantly
lower Edu intensities (p<0.0001). Analysis based on single cell nuclei measurement.
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repeated in the presence of the SGLT2 inhibitor empagliflozin. As
illustrated in Figure 7, the SGLT2 inhibitor reduced glucose
accumulation in both cell lines. Importantly, the accumulation of
intracellular glucose remained higher in the mutant cells even in the
presence of the inhibitor, suggesting that the mutant GLUT2
Frontiers in Endocrinology | www.frontiersin.org 752
protein is less efficient in glucose export. Thus, we suggest that
the last four transmembrane domains (domains 9-12) of GLUT2
are essential in glucose export activity in kidney cells, and treatment
with SGLT2 inhibitors could attenuate the dysglycemia observed in
FBS patients.
FIGURE 6 | qRT-PCR to assess the expression of other glucose transporters
in HEK293T. GLUT2 mutation stimulates the expression of SGLT2. Significant
induction of SGLT1 and SGLT2 in mutant cells in comparison to WT cells.
Down-regulation of GLUT1 expression in mutant cells in comparison to WT
cells. P-value was calculated using two-tailed t-test and presented with a ‘‘*’’
in the graph. **P values less than 0.01; ***P values less than 0.001.
FIGURE 7 | Glucose uptake test in WT and mutant HEK293T cells using 2-DG.
Mutant cells have significantly increased glucose accumulation in comparison to
WT. Treatment of the cells with the SGLT2 inhibitor (Empagliflozin) confirmed the
GLUT2 release activity in the mutant cells is disturbed. P-value was calculated
using two-tailed t-test and presented with a ‘‘*’’ in the graph. **P values less than
0.01; ***P values less than 0.001; ****P values less than 0.0001.
FIGURE 5 | Flow cytometry to assess the expression of GLUT2 protein in WT and mutant HEK293T cells. The expression of GLUT2 was significantly increased in
the mutant cells. P-Value <0.001 using nonparametric Mann-Whitney test.
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DISCUSSION

Dysglycemia is observed in virtually all patients with FBS at some
stage of their lives. The pattern of dysglycemia in FBS patients can
range from fasting hypoglycemia, post-prandial hyperglycemia, and
diabetes mellitus. However, the underlying biochemical and
molecular mechanisms of dysglycemia are not well understood.
This study aimed to understand how disturbances in GLUT2
function is associated with dysglycemia in an FBS patient. For the
first time, we use CRISPR-Cas9 genome editing to mimic the
mutation identified in a FBS patient in HEK293T cells, a human
embryonic kidney cell line. In the kidney, the main role of GLUT2 is
to transport glucose back to the circulation, thereby preventing
glucose loss. Using this novel FBS model, we demonstrate that the
gene edited cells accumulate more glucose than the wild-type cells,
likely as a result of reduced glucose export. Our results could
therefore explain, at least in part, the accumulation of glycogen in
the kidneys in some FBS patients.

A recent study aimed at understanding the molecular
mechanisms of dysglycemia in FBS used HEK293 cells transfected
with constructs expressing either wild-type or FBS-associated
mutant GLUT2. All mutants displayed the same fructose uptake
activity as the WT protein, except for p.Thr198Lys, which displayed
a small decrease in uptake activity (19). Although informative, this
work was based on the overexpression of mutant proteins on top of
wild-type endogenous GLUT2 expressed in HEK293. In contrast,
the current study aimed to understand the molecular mechanisms
of dysglycemia in FBS patients by mimicking the GLUT2 mutation
we recently identified in a patient. To achieve this aim, we used
CRISPR-Cas9 gene editing to introduce a mutation in SLC2A2 in
HEK293T cells. One of our gRNAs introduced a deletion mutation
close to the mutation found in our patient, thereby causing a
frameshift and a stop codon at nucleotide 1164 (Figure 3). The
mutant cells displayed slower proliferation than the wild-type cells,
which suggest that GLUT2 could affect cell growth (Figure 4). This
is an interesting observation as most patients with FBS have short
stature and failure to thrive and thus needs further investigations.

Proximal tubular cells augment glucotoxicity during
hyperglycemia, either by increased glucose reabsorption or
intracellular glucose accumulation (20). Song et al. suggested
that the inhibition of SGLT1 results in mild glycosuria that is
enhanced in response to SGLT2 inhibition (21). Chhabra et al.
reported glycosuria in mice with hypothalamic melanocortin
deficiency due to decreased GLUT2 expression (22). In addition,
Hinden et al. showed that the inhibition of the cannabinoid-1
receptor (CB1R) leads to down-regulation of GLUT2. Hence, the
translocation of GLUT2 to the apical membrane of renal proximal
tubular cells (RPTCs) was affected, causing a decrease in glucose
reabsorption and glycosuria in diabetic mice (23). Moreover, de
Souza Cordeiro et al. specifically knocked out GLUT2 in mice and
reported that GLUT2 dysfunction was associated with glycosuria
and improved glucose tolerance (24). Another study showed an
increase in glucose uptake by the apical movement of GLUT2 in
rats treated with streptozotocin to induce diabetes; this effect
disappeared in response to overnight fasting (25). In addition, a
separate study demonstrated that the expression and activity of
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SGLT2 and GLUT2 were enhanced in human exfoliated proximal
tubular epithelial cells (HEPTECs) isolated from patients with type
2 diabetes mellitus in comparison to healthy controls (26).
Recently, Jiang et al. explained the potential role of renal SGLT2
and GLUT2 in the pathology of gestational diabetes mellitus
(GDM) in a mouse model exposed to a high-fat diet (27).

During euglycemia, glucose reabsorption in the kidneys
occurs primarily via SGLT2 and secondarily through SGLT1
(28). GLUT2 and GLUT1 release glucose across the basolateral
membrane into the bloodstream. Glycosuria occurs once the
glucose levels in the blood exceed the maximum re-absorptive
capability of the kidneys. During hyperglycemia, SGLT2 and
SGLT1 activities are enhanced due to increased glucose
glomerular filtration. Moreover, protein kinase C stimulates
the translocation of GLUT2 to the brush border membrane,
which may increase glucose reabsorption (28). Wu et al.
concluded that the last four transmembrane domains (domains
9 to 12) play a major role in glucose transport activity using
Xenopus oocytes and mammalian cells (29). The latter
conclusion is supported by the data reported in the current
study. The GLUT2 mutant generated in our study contains a
premature stop codon upstream of transmembrane domains 9-
12 and the mutant protein displays reduced glucose transport
activity (Figure 7).

In our study, mutation of GLUT2 in HEK293T cells resulted
in the upregulation of GLUT2 protein (Figure 5). This was a
rather surprising observation, since the gene editing introduced a
premature stop codon in GLUT2. Thus, the exact nature of the
GLUT2 protein in the edited cells will require further studies.

We found that the mRNA levels of SGLT2 were very low in
wild-type HEK293T cells (Figure 6), which is consistent with a
previous finding showing that the mRNA and protein levels of
SGLT2 are minimal in the proximal tubular cell line (HK-2) in
comparison to human kidney cells (30). Interestingly, we found
that the mRNA levels of SGLT2 were increased in cells
expressing mutant GLUT2 (Figure 6). Moreover, the
accumulation of intracellular glucose was increased in the
mutant cells (Figure 7). One possibility for the increased
accumulation glucose in the mutant cells could be the
enhanced expression of SGLT2 in these cells. To test this
hypothesis, the glucose uptake assay was repeated in the
presence of a clinically used SGLT2 inhibitor. As expected, the
inhibitor attenuated glucose accumulation in both wild-type and
mutant cells. However, the accumulation of glucose in the
mutant cells remained higher than the wild-type cells even in
the presence of the SGLT2 inhibitor, supporting our hypothesis
that the GLUT2 mutant cells have a defect in glucose export.

In conclusion, our results support the notion that the last four
transmembrane domains of GLUT2 (domains 9-12) are vital for
glucose transport activity and suggest that disturbances in
GLUT2 expression and/or function could contribute to the
dysglycemia observed in FBS. It will be very important to
explore if the intracellular accumulation of glucose that we
observe in our gene edited HEK293T cells also results in the
accumulation of glycogen, similar to the accumulation of
glycogen in the kidneys observed in some FBS patients. In
May 2022 | Volume 13 | Article 841788
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addition, future work will focus on using CRISPR-Cas gene
editing to introduce FBS-associated GLUT2 mutations in other
metabolically active human cells, including pancreatic beta and
liver cell lines. Such studies will allow us to better understand the
role of GLUT2 in FBS, and hopefully help in the development of
better treatment options for FBS patients.

The limitation of our study is that we have only studied a
single patient with a GLUT2 mutation. Similar studies should be
undertaken in more patients with other GLUT2 mutations.
Another limitation of our study is that we were unable to
determine if the accumulation of glucose in our GLUT2
mutant HEK293T cells resulted in increased accumulation of
glycogen in these cells. The most accurate method to monitor
glycogen accumulation in non-liver cells is metabolic labeling
using radioactive glucose. Unfortunately, the strict regulations
controlling the use of radioactive materials in Qatar prevented us
from performing these studies. Such studies should however be
explored with collaborators outside Qatar in the future.
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Objective: To explore differentially expressed miRNAs in type 2 diabetes and their
potential cellular functions.

Methods: We screened plasma miRNAs by miRNA array analysis and validated them by
TaqMan real-time PCR in 113 newly diagnosed, untreated type 2 diabetes cases and 113
healthy controls. Low-abundance plasma proteins encoded by miR-193b-3p target
genes were explored in this study population. We further investigated the potential
cellular functions of the differentially expressed miRNAs in HepG2 cells.

Results:miR-193b-3p was differentially expressed in type 2 diabetes cases compared to
healthy controls (fold change = 2.01, P = 0.006). Plasma levels of triosephosphate
isomerase (TPI1, a protein involved in the glycolytic pathway) decreased in type 2 diabetes
cases (fold change = 1.37, P = 0.002). The effect of miR-193b-3p on TPI1 was verified by
transfection of miR-193b-3p into HepG2 cells. miR-193b-3p inhibited the expression of
YWHAZ/14-3-3z in the PI3K-AKT pathway, subsequently altering the expression of
FOXO1 and PCK1. After transfection, cells were incubated in glucose-free medium for
another 4 h. Glucose levels in medium from cells with elevated miR-193b-3p levels were
significantly higher than those in medium from negative control cells (P = 0.016). In
addition, elevated miR-193b-3p reduced glucose uptake by inhibiting insulin receptor (IR)
and GLUT2 expression.

Conclusion: Plasma miR-193b-3p levels increased in type 2 diabetes cases, and TPI1
levels decreased in both plasma and HepG2 cells with increased miR-193b-3p levels,
while extracellular lactate levels did not significantly changed. Moreover, miR-193b-3p
may affect glucosemetabolism by directly targeting YWHAZ/14-3-3z and upregulating the
transcription factor FOXO1 downstream of the PI3K-AKT pathway.

Keywords: type 2 diabetes, microRNA, proteomics, glucose metabolism, case-control study
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INTRODUCTION

Type 2 diabetes has been a growing global problem in last
decades. Its main pathological mechanisms include insulin
resistance in muscle, adipose, and liver tissues combined with
dysfunction and subsequent failure of insulin-producing
pancreatic beta cells (1–3). The global diabetes prevalence in
2019 is estimated to be 9.3% (463 million people), rising to 10.2%
(578 million) by 2030 and 10.9% (700 million) by 2045. China
has 116.4 million people with diabetes, causing a heavy medical
and economic burden (4)..

MicroRNA (miRNA) molecules are short non-coding RNAs
that mediate RNA silencing and post-transcriptional regulation
of gene expression, negatively regulate the abundance of specific
proteins, and then control numerous cellular and biological
processes including metabolism (5). Accumulating evidence
also suggests that miRNAs play an important role in cellular
metabolic regulation (e.g., let-7 family), adipocyte differentiation
(e.g., miR-133a), pancreatic development (e.g., miR-375, miR-
26a-5p), and insulin biosynthesis, secretion, and signaling (e.g.,
miR-375, miR-7) (6, 7). For the cellular glucose metabolism,
miRNAs play a pivotal role by targeting the key rate-limiting
enzymes of relevant pathways to fine-tune control of metabolic
homeostasis. Aberrant expression of these miRNAs can result in
an over or under expression of key enzymes, such as
phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-
phosphatase (G6PC), contributing to the etiology of diabetes
(8). Dysfunction in multiple tissues that control glucose
homeostasis and insulin sensitivity often occurs years before
diagnosis (9, 10). Diabetes is generally diagnosed based on
elevated plasma glucose level which does not distinguish stage
progression of diabetes (8). Recent studies have shown that
miRNAs can be detected in circulating blood and can be future
biomarkers for diagnosis of diabetes states (11). Plasma miRNAs,
such as miR-122, have been shown to be differentially expressed
at the progressive glycemic impairment stage (12), and miR-144-
3p was found elevated in newly diagnosed diabetes (13). Previous
studies explored the cellular functions of miRNAs or circulating
miRNAs separately, and few of them have delved into the
potential function of circulating miRNAs (14–18).

Proteins are important molecules in cellular functions. With
the development of mass spectrometry proteomic approaches,
studies have shown that low-abundance plasma proteins, such as
adiponectin and resistin (19–21), are associated with diabetes
risk (22, 23). Subsequent studies have also shown that these low-
abundance proteins are involved in the development and
progression of diabetes and are direct effector molecules in
tissue or cellular dysfunction (24–26). miR-375 has been found
to play an important role in the development and progression of
diabetes by targeting messenger RNA (mRNA) transcripts and
regulating protein expression (6, 7, 27, 28). However, most
previous studies have explored the differences in plasma
miRNA levels and plasma protein levels separately, and few
have examined the differences in plasma miRNA and protein
levels in the same study population or investigated their potential
associations and underlying biological mechanisms in the
development of type 2 diabetes.
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Therefore, in the present study, we first explored the plasma
miRNA profiles in 113 pairs of age- and sex-matched newly
diagnosed, untreated diabetes cases and controls. Second, we
examined the plasma proteomic profiles in the same study
population and performed further bioinformatic analysis of
miRNA target genes and signaling pathways enriched with the
target genes. Finally, we verified the associations between
miRNA and protein levels through in vitro experiments. We
further explored the potential mechanism of the differential
expression of plasma miRNAs in the development of type 2
diabetes through miRNA transfection and molecular biology
experiments. The detailed workflow of this study is shown in
Supplementary Figure 1.
MATERIALS AND METHODS

Study Design and Population
The Dongfeng-Tongji (DFTJ) cohort was established in 2008 and
enrolled 27,009 retired employees of DongfengMotor Corporation
(DMC) who resided in Shiyan city, Hubei, China. Participants
completed epidemiological questionnaires, provided blood
samples, and participated in physical examinations at baseline
enrollment in 2008. The participants were invited to participate in
a follow-up examination in 2013, and the follow-up rate was 96.2%
(n=25,978). Detailed information on the DFTJ cohort is described
elsewhere (29). Participants were defined as having type 2 diabetes
if they had a fasting plasma glucose level of ≥ 7.0mmol/L and/or a
hemoglobin A1c (HbA1c) level of ≥ 6.5% (30). Individuals with
type 2 diabetes who did not have cardiovascular disease or cancer
and did not take any antidiabetic medication were selected as cases.
Accordingly, a 1:1 age- and sex-matched population of individuals
without diabetes, cancer, cardiovascular diseases, and medication
use was selected as the control population. Finally, a total of 113
case-control pairs were enrolled in the present study. The detailed
characteristics of the cases and controls are presented in Table 1.
The 113 pairs of case-control samples were randomly divided into
a screening group (n = 15 pairs) and a validation group (n = 98
pairs) to explore differentially expressed miRNAs. Considering the
amount of plasma used for protein screening, twenty-five pairs of
samples were randomly selected for protein screening, and an
equal number of validation group samples were used for miRNA
screening. The characteristics of the participants in the validation
group are shown in Supplementary Table 1.

All participants gave written informed consent. The study
protocol was approved by the Ethics and Human Subject
Committee of the School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, and
Dongfeng General Hospital, DMC.
Plasma Sampling and RNA Isolation
Approximately 5 ml of venous blood was collected from each
participant, placed in an EDTA-anticoagulant tube and
centrifuged at 1000 × g for 10 min. Plasma was carefully
transferred to an RNase-free tube and stored at −80°C until
use. Prior to isolating miRNAs from plasma, we transferred the
May 2022 | Volume 13 | Article 814347
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supernatant to a new tube after a brief centrifugation. Total RNA
was isolated from plasma using a miRNeasy Serum/Plasma Kit
(Qiagen) according to the manufacturer’s instructions. In total,
200 ml of plasma was used for the entire miRNA extraction.
Approximately 1.6 × 108 copies/µl of synthetic Caenorhabditis
elegans cel-miR-39 (Qiagen) was added to the denatured plasma
samples as an internal control for the validation study. RNA
sample concentrations were quantified using a NanoDrop ND-
1000 (Nanodrop, USA).

MiRNA Microarray Analysis
AMiRCURY LNA™MicroRNA Array (Exiqon: 7th generation)
was used for initial microarray screening. RNA samples were
labeled and hybridized according to Exiqon’s manual. Scanned
images were imported into GenePix Pro 6.0 software (Axon) for
grid alignment and data extraction. Replicate miRNAs were
averaged and miRNAs with intensities of ≥ 30 in all samples
were selected to calculate the normalization factor. Expression
data were processed using median normalization. After
normalization, miRNAs that were significantly differentially
expressed between the two groups were identified based on the
fold change and P values. Volcanic Plots were used to visually
indicate miRNAs with significant differences. Clustering was
performed to show distinguishable miRNA (Fold Change >=
1.5, P-value <= 0.05) expression profiling among samples. After
applying the Benjamini-Hochberg false discovery rate (FDR)
correction for multiple comparisons, a P value of < 0.05 was
Frontiers in Endocrinology | www.frontiersin.org 358
considered a statistically significant difference. The R Statistical
Software (http://www.r-project.org/), the ggplot2 Package (31),
and pheatmap Package (32) were also used for the analysis of
Volcanic Plots and Clustering, respectively. The microarray data
have been submitted to the Gene Expression Omnibus (GEO)
database (GSE134998; https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE134998).

Quantification of Plasma miRNA
miRNA validation was carried out using TaqMan real-time
quantitative PCR (qPCR). Reverse transcription (RT) was
performed using miRNA-specific stem-loop RT primers and a
MicroRNA RT Kit (Life Technologies) following the
manufacturer’s instructions. The resulting cDNA was diluted
and used immediately for qPCR or stored at −20°C until use.
miRNA expression levels were measured by real-time qPCR in a
ViiA 7 Real-Time instrument (Life Technologies) using
TaqMan® Universal Master Mix (Life Technologies). The
miRNA expression levels were normalized to those of cel-miR-
39 and determined by the equation 2–DCt, where DCt=cycle
threshold (Ct) (miRNA) – Ct (cel-miR-39).

Bioinformatic Analysis
The miRNA target sites in mRNA were predicted with miRDB
(http://mirdb.org/), miRTarBase (http://mirtarbase.mbc.nctu.
edu.tw/php/index.php) and TargetScan (http://www.targetscan.
org/). Pathway enrichment analysis of the target genes was
TABLE 1 | Characteristics of the participants.

Variables DM cases (n=113) Controls (n=113) P

Male, n (%) 53 (46.9) 53 (46.9) 1.0
Age, years 61.1 (7.1) 61.1 (7.1) 0.948
Smoking, n (%)
Never 79 (70.5) 77 (68.1) 0.814
Current 21 (18.8) 25 (22.1)
Ever 12 (10.7) 11 (9.7)

Drinking, n (%)
Never 80 (71.4) 73 (65.2) 0.525
Current 27 (24.1) 31 (27.7)
Ever 5 (4.5) 8 (7.1)

Physical activity, n (%) 102 (91.1) 100 (88.5) 1.0
BMI, kg/m2 25.3 (3.4) 22.9 (3.0) <0.001
WHR 0.89 (0.06) 0.86 (0.06) 0.001
FPG, mmol/L 8.9 (2.4) 5 (0.4) <0.001
HbA1c, % 6.5 (1.5) 5.3 (0.3) <0.001
TG, mmol/L 2 (3.2) 1.3 (0.8) 0.022
LDLC, mmol/L 2.5 (0.9) 2.8 (0.8) 0.005
HDLC, mmol/L 1.5 (0.5) 1.6 (0.4) 0.477
TC, mmol/L 4.8 (1.5) 4.8 (1.1) 0.964
SBP, mmHg 137.7 (22.6) 135.8 (22.4) 0.522
DBP, mmHg 80.0 (13.1) 80.0 (13.0) 0.364
Neutrophil, 109/L 3.7 (1.4) 3.3 (1.2) 0.058
Lymphocyte, 109/L 2 (0.8) 1.7 (0.5) 0.003
Monocyte, 109/L 0.4 (0.2) 0.3 (0.2) 0.046
Eosnophils, 109/L 0.2 (0.2) 0.1 (0.1) 0.014
Basophil, 109/L 0.2 (0.2) 0.1 (0.2) 0.297
WBC, 109/L 6 (1.8) 5.4 (1.4) 0.008
RBC, 1012/L 4.5 (0.4) 4.5 (0.5) 0.205
PLT, 109/L 183.3 (54.8) 196.9 (51.4) 0.056
Family history of diabetes, n (%) 9 (8.2) 8 (7.1) 0.685
May 2022 | Volume 13 | Article
WHR, waist-to-hip ratio.
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performed with the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database resource (http://www.genome.jp/kegg/).
Bioinformatic analysis of the pathway enrichment results was
performed with Database for Annotation, Visualization and
Integrated Discovery (DAVID) tools (http://david.abcc.ncifcrf.
gov/).

Plasma Proteomics
The 113 case-control pairs were randomly divided into a
preliminary screening dataset and a validation dataset. In the
preliminary screening dataset, twenty-five plasma samples from
each group were pooled into five samples, and isobaric tagging
for relative and absolute quantification (iTRAQ)-based protein
expression profiling was performed to identify proteins. The
significantly and differentially expressed proteins were validated
in the validation dataset by multiple reaction monitoring mass
spectrometry (MRM-MS) with liquid chromatography-mass
spectrometry (LC-MS), and synthetic peptides of beta-
galactosidase (Sangon Biotech) were added to the denatured
plasma samples as internal standard peptides.

Cell Culture and miRNA Transfection
All in vitro experiments were performed in human hepatoma
HepG2 cells procured from the National Infrastructure of Cell
Line Resource, Beijing, China. The identity of all cell lines was
confirmed by short tandem repeat profiling at the time of
procurement in July 2018. Cells were maintained in high-
glucose Dulbecco’s modified Eagle’s medium supplemented
with 10% (v/v) heat-inactivated fetal bovine serum, 100 units/
ml penicillin, and 100mg/ml streptomycin under conditions of
5% CO2/95% air at 37°C. HepG2 cells were transfected with
either the mimic negative control (mimic_NC, 50nM) or the
miRNA mimic (50nM) (RiboBio) with Lipofectamine 3000 and
Plus Reagent (Invitrogen) according to the manufacturer’s
instructions. When used, the miRNA inhibitor and inhibitor
negative control were transfected at a dose of 100nM.

RNA Isolation, qRT-PCR, and Western
Blotting
After transfection for 48 h, cells were lysed in radio
immunoprecipitation assay (RIPA) lysis buffer containing
protease inhibitors. Total RNA was isolated from both cells
and media using Invitrogen TRIzol (Life Technologies). Then,
RNA (2mg) was reverse transcribed using random hexamers, and
the expression levels of genes were measured with specific
primers (Supplementary Table 2) and Applied Bio systems
SYBR Green Master Mix (Life Technologies). Proteins were
isolated from both cells and media for in vitro experiments by
cold acetone sedimentation. Protein samples (30mg) were
analyzed by Western blotting (primary antibodies are listed in
Supplementary Table 3).

Glucose Production Assay and Lactate
Measurements
HepG2 cells were transfected with the miRNA mimic or
inhibitor for 48 h. Prior to termination of culture, cells were
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incubated in 12h serum starvation conditions in DMEM without
glucose plus L-glutamine (Cat No: 11966025, Gibco) and then
were incubated 4h in the same medium supplemented with 10%
FBS. Extracellular lactate levels were estimated by a lactate assay
kit (Sigma-Aldrich), and glucose levels were estimated by the
glucose oxidase method.

Glucose Consumption and Intracellular
Glycogen Content Measurements
After HepG2 cells were transfected with the miRNA mimic or
inhibitor and cultured in high-glucose DMEM for 48 h, the
median glucose levels were measured by the glucose oxidase
method. Cell viability was assessed with a Cell Counting Kit-8
(CCK-8) assay (Dojindo Molecular Technologies). Glucose
consumption was normalized by the CCK-8 assay. The
anthrone-sulfuric acid colorimetric method was used to
measure the intracellular glycogen content, which was
normalized to the protein content (Pierce™ Rapid Gold BCA
Protein Assay Kit, Life Technologies). To estimate the effect of
insulin, after 24 h of transfection, cells were serum starved for 12
h and then incubated for 2 h with insulin (100nM).

Statistical Analysis
Differences in clinical characteristics, plasma miRNA levels, and
plasma protein levels between type 2 diabetes cases and controls
were evaluated by chi-square test for categorical variables, by
Student’s t test for normally distributed data or by Mann–
Whitney U test for skewed data. Correlations between plasma
miRNA profiles or protein expression levels (log transformed
and normally distributed) and clinical measurements were
evaluated by Pearson correlation analysis. Multivariate logistic
regression models were used to calculate the odds ratios (ORs)
and 95% confidence intervals (CIs). All bars in figures indicate
the mean ± standard deviation (SD) values, and data were
analyzed using ANOVA with a post hoc test.
RESULTS

Characteristics of the Study Population
As shown in Table 1, BMI, waist-hip ratio (WHR), and levels of
fasting plasma glucose (FPG), HbA1c, and triglyceride (TG) were
significantly higher but the levels of low-density lipoprotein
cholesterol (LDLC) were lower in type 2 diabetes cases than in
controls. Compared with controls, type 2 diabetes cases had
elevated white blood cell counts. Similarly, neutrophil count,
lymphocyte count, and eosinophil count were significantly
higher in type 2 diabetes cases than in controls.

Plasma miRNA Profiles in Type 2 Diabetes
Cases and Controls
Plasma miRNA profiles in 15 case-control pairs were assessed by
miRNA array screening (Figure 1). Among the 1934 detected
miRNAs, 167 were differentially expressed between the two
groups. The results of cluster analysis of differentially
expressed miRNAs are shown in Figure 2A. We selected top
May 2022 | Volume 13 | Article 814347
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12 miRNAs (fold change and P values are listed in Table 2) for
validation in a larger population (98 type 2 diabetes cases and 98
matched controls) using TaqMan real-time PCR, and the
expression levels of 4 miRNAs were successfully measured (To
improve the repeatability, we excluded 8 miRNAs for further
analysis. Because the plasma levels of these miRNAs were below
the instrument detection limit when we validated the 12 miRNAs
by PCR.). The detailed expression profiles of miR-193b-3p, miR-
26b-3p, miR-197-5p, and miR-4739 are shown in Figure 2 (E. b).
As the results indicate, the plasma levels of miR-193b-3p were
significantly elevated in type 2 diabetes cases compared with that
in controls (fold change =2.01, P = 0.006).

Multivariate logistic analysis suggested that plasma miR-
193b-3p levels were significantly associated with elevated
diabetes risk (OR: 2.11, 95% CI: 1.02-4.37) after adjustment for
age, sex, BMI, smoking status, drinking status, and family history
of diabetes. Further adjustment for total cholesterol (TC) levels
and systolic blood pressure (SBP) slightly enhanced the
association (OR: 2.28, 95% CI: 1.05-4.91). Similarly, after
further adjustment for white blood cell count, red blood cell
count, and platelet (PLT) count, the miR-193b-3p level was
consistently associated with increased type 2 diabetes risk (OR:
2.25, 95% CI: 1.05-4.84) (Table 3). In addition, plasma miR-
193b-3p levels were significantly related to TC, TG, FPG, HbA1c,
and lymphocyte count (P < 0.01) (Table 4).

Target Genes of miR-193b-3p
Based on three commonly used target algorithm tools
(TargetScan, miRDB, and miRTarBase), we performed
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pathway enrichment analysis on genes predicted by at least
two of the tools. The PI3K-AKT signaling pathway was
predicted with an FDR of < 0.05 (Supplementary Figure 2).
Three genes including SOS Ras/Rho guanine nucleotide
exchange factor 2 (SOS2), the GTPase KRas (KRAS) (33), and
tyrosine 3-monooxygenase/tryptophan 5-monooxygenase
activation protein zeta (YWHAZ) (34) were potential direct
targets of miR-193b-3p in the PI3K-AKT signaling pathway
and have been reported to be involved in cellular glucose
metabolism. Therefore, we speculated that miR-193b-3p might
regulate cellular glucose metabolism by directly targeting SOS2,
YWHAZ, and KRAS.

Plasma Protein Profiles in Type 2 Diabetes
In total, 815 proteins were detected in pooled plasma by iTRAQ.
The differentially expressed proteins are presented in Figure 2B.
The mRNAs encoding 35 of these proteins were predicted to be
miR-193b-3p targets by three commonly used target algorithm
tools (TargetScan, miRDB, and miRTarBase) (Supplementary
Figure 3). Identified proteins encoded by target genes are listed
in Supplementary Table 4. Differentially expressed proteins are
shown in Table 5. Triosephosphate isomerase (TPI1, P60174),
profilin-1 (PFN1, P07737), talin-1 (TLN1, Q9Y490), and
coactosin-like protein (COTL1, Q14019) were selected for
further validation in a larger population (fold change > 1.2, P
< 0.05, and coverage of identified peptides > 50%). Proteins with
low coverage of identified peptides, including O15511, P21333,
and B3GN61 were not selected for validation (Table 6). The fold
change values and P values of the other 28 proteins are shown in
FIGURE 1 | Study design for the plasma miRNA profile in type 2 diabetes cases and controls. PCR, polymerase chain reaction.
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Supplementary Table 5. KIT and YWHAZ were predicted by
three databases, but YWHAZ was not differentially expressed
between the two groups, and the coverage of identified peptides
for KIT was less than 50%.

Two peptides per protein were selected for relative
quantification of protein levels in plasma from 98 controls and
98 type 2 diabetes cases. The Q1/Q3 transitions of target proteins
Frontiers in Endocrinology | www.frontiersin.org 661
and the internal standard protein (beta-galactosidase) are shown
in Table 7. As shown in Figure 2 (F. b), plasma TPI1 levels
significantly decreased (fold change = 1.37; P = 0.002) but talin-1
levels marginally but significantly increased (fold change = 1.13;
P = 0.032) in type 2 diabetes cases. However, no significant
difference was observed for plasma levels of profilin-1 and
coactosin-like protein. A non-significant negative correlation
A B

D

E

F

C

FIGURE 2 | Results of miRNAs and protein screening and validation. (A) shows the results of cluster analysis of differently expressed miRNAs. Sample numbers
with the test suffix are type 2 diabetes cases (like B01881P_test). Sample numbers with the control suffix are healthy controls (like B01675P_control).
(B) shows the results of cluster analysis of differently expressed proteins. C1-C5: type 2 diabetes cases, D1-D5: healthy controls. (C) The volcano plot of miRNAs in
array screening. (D) The volcano plot of proteins. (E. a) Differential expression of miRNA in plasma screened by miRNA microarray chip. (E. b) Differential expression
of miRNA in plasma validated by Taqman PCR. (F. a) The different expression of 4 plasma proteins in preliminary screening group. (F. b) The different expression of 4
plasma proteins in validation group. (The figures were created by graphPad and R Statistical Software).
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between plasma miR-193b-3p and TPI1 was observed
(Supplementary Figure 4).

We further explored the difference inmiR-193b-3p and protein
levels between type 2 diabetes cases and controls in males and
females (Figure 3). No significant differences in plasma miR-
193b-3p levels were observed between males and females, while
TPI1 levels significantly reduced in females but not in males.

Effects of miR-193b-3p on TPI1 Expression
and Glycolysis in HepG2 Cells
Since TPI1 mRNA was predicted to be the direct target of miR-
193b-3p, a miR-193b-3p mimic was transfected into HepG2 cells to
evaluate the effects of miR-193b-3p on TPI1 gene expression. MiR-
193b-3p was overexpressed in the mimic group compared with the
mimic_NC group, inhibitor group, and inhibitor negative control
group (Figure 4A). However, cell viability did not differ between the
four groups (Supplementary Figure 5A). We further examined the
mRNA and protein levels of TPI1 in transfected cells. The TPI1
protein level (Figure 4B) significantly decreased in mimic group
compared with other groups (P < 0.01), while the TPI1 mRNA
levels did not significantly differ between the mimic group and the
negative control group (Supplementary Figure 5B). Since TPI1 is
an important isomerase in the cellular glycolytic process (35), we
further measured extracellular lactate levels. As shown in
Supplementary Figure 5C, lactate levels did not significantly
differ between the mimic group and other treatment groups.
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MiR-193b-3p Reduced YWHAZ and SOS2
Expression Levels, Subsequently Altering
PCK1 Expression and Gluconeogenesis in
HepG2 Cells
Bioinformatic analysis indicated that miR-193b-3p might
directly target SOS2, YWHAZ, and KRAS and thus regulate
cellular glucose metabolism. In vitro, mRNA levels of YWHAZ
significantly decreased in the miR-193b-3p mimic group
compared to miRNA mimic_NC (P=0.049) and miRNA
inhibitor group (P=0.007) 48 h after miR-193b-3p mimic
transfection (Figure 4C), while SOS2 and KRAS levels did not
significantly change (Supplementary Figures 5D, E). Moreover,
the protein levels of YWHAZ and SOS2 were significantly
decreased in the miR-193b-3p mimic group (Figure 4E)
compared to other groups (P < 0.01). YWHAZ has been
shown to regulate the expression of FOXO1 (36, 37). In
addition, as a transcription factor in the PI3K/AKT signaling
pathway, FOXO1 has been shown to increase the expression of
genes encoding proteins involved in gluconeogenesis, including
phosphoenolpyruvate carboxykinase (PCK1) and glucose 6-
phosphatase (G6PC) (38, 39). Therefore, we further measured
the expression levels of FOXO1, PCK1, and G6PC. Although
mRNA levels of FOXO1, PCK1, and G6PC did not significantly
change (Supplementary Figures 5F–H), the protein levels of
FOXO1 and PCK1 were significantly increased in the mimic
group compared with other groups (Figure 4E, P < 0.01). As
TABLE 2 | Differently expressed miRNAs selected to validation.

miRNAs Fold change P value FDR CV

Controls Diabetes

miR-3591-5p 0.17 5.99E-07 4.22E-05 0.5 0.28
miR-122-3p 0.32 2.66E-06 1.00E-04 0.43 0.38
miR-193b-3p 2.02 2.45E-07 2.02E-05 0.48 0.16
miR-26b-3p 2.11 1.00E-04 2.00E-03 0.58 0.37
miR-300 2.44 5.06E-10 1.56E-07 0.52 0.12
miR-217 2.52 7.96E-07 5.30E-05 0.43 0.3
miR-3926 2.66 1.46E-11 1.38E-08 0.43 0.15
miR-641 2.68 1.31E-07 1.13E-05 0.51 0.28
miR-593-5p 3.13 1.04E-07 1.03E-05 0.61 0.27
miR-105-5p 3.22 3.52E-08 5.40E-06 0.65 0.28
miR-4739 3.45 1.59E-09 3.84E-07 0.65 0.25
miR-197-5p 3.53 1.35E-09 3.51E-07 0.28 0.27
May 2022 | Volume 13 | Artic
CV, coefficient of variance, FDR, False Discovery Rate, FDR is calculated from Benjamini Hochberg FDR.
TABLE 3 | Association of 4 miRNAs with T2D risk in validation population.

Model 1 Model 2 Model 3

OR (95%CI) P OR (95%CI) P OR (95%CI) P

miR-193b-3p 2.11 (1.02,4.37) 0.046 2.28 (1.05,4.91) 0.036 2.25 (1.05,4.84) 0.038
miR-4739 1.00 (0.70,1.44) 0.991 1.01 (0.70,1.44) 0.975 1.05 (0.73,1.52) 0.793
miR-26b-3p 0.80 (0.58,1.12) 0.194 0.81 (0.57,1.15) 0.237 0.87 (0.59,1.28) 0.471
miR-197-5p 0.92 (0.66,1.27) 0.602 0.94 (0.67,1.30) 0.689 0.96 (0.68,1.35) 0.824
le 8
Model 1: adjusted for sex, age, BMI, smoking status, drinking status, physical activities and family history of diabetes.
Model 2: adjusted for variables in model 1 and TC (total cholesterol) and SBP (systolic pressure).
Model 3: adjusted for variables in model 2 and WBC (white blood cell count), RBC (red blood cell count) and PLT count.
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shown in Figure 4D, when cells were incubated in glucose-free
medium for another 4 h after transfection, the glucose level in the
medium of the mimic group was significantly increased
compared to those in the medium of the other groups (mimic
vs. mimic_NC: P =0.002; mimic vs. inhibitor: P = 0.026).

MiR-193b-3p Altered Glucose Uptake in
HepG2 Cells
Since SOS2 is an important upstream factor in the PI3K/AKT
signaling pathway (40, 41), we further estimated the glucose
consumption and intracellular glycogen content of the
transfected cells after incubation in high-glucose DMEM for
another 48 h. Both glucose consumption (P = 0.032) and the
intracellular glycogen content (P = 0.009) were significantly
decreased (Supplementary Figures 5I, J) in the miRNA
overexpression group compared to miRNA knockout group
(mimic vs. inhibitor), whereas the expression levels of glycogen
synthase kinase (GSK3A) and glycogen synthase (GYS2) did not
significantly change (Supplementary Figures 5L, K).
Furthermore, we investigated factors affecting glucose uptake
and found that the protein levels of insulin receptor (IR) and
glucose transporter 2 (GLUT2) were significantly decreased in
the miR-193b-3p mimic group compared to other groups
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(Figure 4F). To further explore the effects of miR-193b-3p on
insulin-mediated glucose uptake, we estimated glucose
consumption and the intracellular glycogen content 2 h after
insulin stimulation. Both were significantly decreased in the
mimic group compared to negative control group (P = 0.015
and 0.049, respectively) (Supplementary Figures 5O, P).
DISCUSSION

It has demonstrated that miRNAs play an important role in the
glucose metabolism (8). MiRNAs in circulating blood could be
potential biomarkers of diabetes (11). Based on a case-control
study we found that plasma miR-193b-3p levels increased in
newly diagnosed, untreated diabetes cases. The in vitro
experiments indicated that elevated levels of miR-193b-3p in
cells may impair glucose metabolism by inhibiting the expression
of SOS2 and YWHAZ/14-3-3z in the PI3K-AKT pathway. These
findings provided new evidence to the important role of miRNAs
in the diabetes development.

Recent studies focused on delineating circulating miRNA
profiles to find new disease biomarkers (9, 15). Previous
studies showed that plasma levels of miR-122 (42), miR-126
TABLE 4 | Pearson correlation coefficients of plasma miRNAs correlation to clinical biochemical measurements and blood cell counts was analyzed in healthy
participants (n=49).

miR-193b-3p miR-4739 miR-26b-3p miR-197-5p

Clinical biochemical measurements
SBP 0.101 0.065 0.250** 0.207**
DBP 0.083 -0.034 0.141 0.049
TG 0.283** -0.021 0.126 0.12
LDLC 0.008 -0.005 0.228** -0.035
HDLC -0.118 -0.003 -0.101 -0.004
CHOL 0.185* -0.033 0.177* -0.03
FPG 0.274** 0.009 -0.133 -0.098
HbA1c 0.237** -0.033 0.218* -0.032
Blood cell counts
Neutrophil 0.023 -0.088 0.254** 0.019
Lymphocyte 0.277** 0.067 0.11 0.045
Monocyte 0.105 0.004 0.031 0.114
Eosnophils -0.054 0.021 0.047 0.075
Basophil -0.045 -0.042 -0.036 -0.029
RBC 0.012 -0.048 0.161* 0.057
PLT -0.011 0.011 0.297** 0.036
May 2022 | Volume 13 | A
* indicates correlations statistically significant: *P < 0.05, **P < 0.01.
TABLE 5 | Differentially Expressed Proteins Identified by iTRAQ Analysis.

Accession Description Peptides Coverage Case vs. Control

Fold change P value

Q4LDE5 Sushi, von Willebrand factor type A, EGF and pentraxin domain-containing protein 1(SVEP1) 0.31 1.41 0.004
P60174 Triosephosphate isomerase 1 (TPI1) 61.85 0.83 0.001
P07737 Profilin-1 (PFN1) 73.57 0.82 0.015
Q9Y490 Talin-1 (TLN1) 53.56 0.81 0.016
Q7Z7M0 Multiple epidermal growth factor-like domains protein 8 (MEGF8) 6.12 0.8 0.001
Q14019 Coactosin-like protein (COTL1) 51.41 0.73 0.018
O15511 Actin-related protein 2/3 complex subunit 5 (ARPC5) 38.41 0.71 0.016
rticle
Accession was the number of proteins in Uniprot database.Peptides coverage: The number of amino acids in the peptide detected by mass spectrometry accounted for a proportion of the
total number of amino acids in the protein.
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(43, 44), and circulating exosomal miR-20b-5p (9) elevated in
type 2 diabetes cases and may affect insulin function.
Furthermore, a previous study showed that plasma miR-193b-
3p levels significantly increased in a prediabetic population and
glucose-intolerant mice (16). Moreover, circulating miR-193b-3p
levels returned to baseline levels in glucose-intolerant mice
receiving chronic exercise therapy intervention. In addition,
polycystic ovary syndrome (PCOS) patients with impaired
glucose metabolism had increased serum miR-193b-3p levels
compared with PCOS patients with normal glucose tolerance
(45). However, the potential mechanism of miR-193b-3p in
cellular glucose metabolism has not been extensively explored.
Limited evidence suggested that miR-193b-3p controls
adiponectin production in human white adipose tissue (46),
which is strongly and inversely associated with diabetes risk (25).

In the present study, plasma miR-193b-3p levels were related
to TG, HbA1c, and FPG levels in healthy controls. In addition,
SOS2, KRAS, and YWHAZ/14-3-3z in the PI3K-AKT signaling
pathway were associated with glucose metabolism, as shown by
miR-193b-3p target gene enrichment analysis (23, 34, 40).
Currently, in vitro studies on glucose metabolism mainly
focused on hepatogenic cells, most commonly human
hepatocellular carcinoma HepG2 cells (47); therefore, we
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further explored the effect of miR-193b-3p on glucose
metabolism in HepG2 cells.

YWHAZ/14-3-3z, a member of the 14-3-3 protein family, is a
direct target of miR-193b-3p in MCF-7 cells (48) and can directly
downregulate the expression of FOXO1, an important
transcription factor downstream of the PI3K-AKT pathway
(37, 49). In the present study, we validated the association of
miR-193b-3p with YWHAZ at both mRNA and protein levels.
Moreover, we found that as miR-193b-3p level increased, the
protein levels of FOXO1 and PCK1 also elevated. Similarly,
glucose output from the cells increased, consistent with
previous findings indicating that FOXO1 increased the
expression of genes encoding proteins involved in
gluconeogenesis, including PCK1 and G6PC (38, 39). In
summary, as shown in Supplementary Figure 6, miR-193b-3p
can target YWHAZ/14-3-3z and subsequently upregulate
transcription factor FOXO1 downstream of the PI3K-AKT
pathway, which increases PCK1 expression, having a potential
effect on enhancing gluconeogenesis. Further experiments are
required to prove this hypothesis.

The present study also showed that the protein level of SOS2
decreased as the level of miR-193b-3p increased. SOS2 has been
reported to be involved in positive regulation of Ras proteins (50)
TABLE 6 | Differentially Expressed Proteins Identified by iTRAQ Analysis.

Accession Description Peptides Coverage Case vs. Control

Fold change P value

Q4LDE5 Sushi, von Willebrand factor type A, EGF and pentraxin domain-containing protein 1(SVEP1) 0.31 1.41 0.004
P60174 Triosephosphate isomerase 1 (TPI1) 61.85 0.83 0.001
P07737 Profilin-1 (PFN1) 73.57 0.82 0.015
Q9Y490 Talin-1 (TLN1) 53.56 0.81 0.016
Q7Z7M0 Multiple epidermal growth factor-like domains protein 8 (MEGF8) 6.12 0.8 0.001
Q14019 Coactosin-like protein (COTL1) 51.41 0.73 0.018
O15511 Actin-related protein 2/3 complex subunit 5 (ARPC5) 38.41 0.71 0.016
May 2022 |
 Volume 13 | Article
Accession was the number of proteins in Uniprot database.Peptides coverage: The number of amino acids in the peptide detected by mass spectrometry accounted for a proportion of the
total number of amino acids in the protein.
FIGURE 3 | Differences of plasma miR-193b-3p and proteins between healthy controls and type 2 diabetes cases in groups according to gender. (The figures were
created by graphPad).
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as an important upstream factor in the PI3K-AKT pathway and
can cooperate with other factors to activate the PI3K-AKT
pathway in (51). Therefore, SOS2 may not significantly affect
the expression of AKT (a serine/threonine kinase), which can be
activated by phosphatidylinositol 3-kinase (PI3K) and plays an
important role in processes of glucose metabolism, including
glycogen synthesis (49). Accordingly, the expression of GSK3A
and GYS2 did not significantly change with elevated miR-193b-
3p levels, which were directly affected by AKT (52).

In addition, decreased expression levels of IR and GLUT2
proteins were observed, but the mRNAs encoding these proteins
were not predicted to be direct targets of miR-193b-3p in the
miRNA-target databases. These reductions may be due to enhanced
gluconeogenesis. Increased intracellular gluconeogenesis reduces
the concentration gradient of glucose across the membrane,
thereby decreasing GLUT2 expression and glucose uptake (53).
In addition, the 14-3-3 protein has been reported to inhibit the
expression of insulin receptor substrate 1 (IRS1), leading to insulin
resistance (54), although the exact mechanism needs to be
further explored.

We observed that as the miR-193b-3p levels increased, the
TPI1 levels decreased in plasma and cells. Given that TPI1 is an
Frontiers in Endocrinology | www.frontiersin.org 1065
enzyme involved in glycolysis without apparent tissue specificity
(reference from Expression Atlas: https://www.ebi.ac.uk/gxa/
home), we cannot attribute its plasma down regulation to a
specific cell type yet. Based on the results of gene enrichment
analysis and liver being one of the main organs involved in the
regulation of glucose metabolism, we chose the hepatocytes to
explore the potential function. For the potential mechanism of
decreased level of TPI1 in HepG2, On the one hand, miR-193b-
3p may directly target TPI1 mRNA through noncanonical
binding mode, as previously mentioned (55). On the other
hand, the central glycolytic enzyme TPI1 has been reported to
play a key role in linking energy with redox metabolism during
the stress response and in cancer, and the pyruvate kinase (PK)
substrate phosphoenolpyruvate (PEP) can inhibit TPI1 activity
in the feedback regulation system of glycolysis (35). In the
present study, the protein levels of PCK1 increased in cells as
miR-193b-3p levels elevated. Together with GTP, PCK1
catalyzes the formation of PEP from oxaloacetate and releases
carbon dioxide and GDP (56). Thus, miR-193b-3p might
indirectly affect cellular function of TPI1.

In vitro cell experiments, the expression of miR-193b-3p in
the miRNA mimic group increased more than 5~10-fold
A

B

D

E FC

FIGURE 4 | Effects of miR-193b-3p on glucose metabolism in HepG2 cells. Mimic: HepG2 cells transfected with miR-193b-3p mimic; mimic_NC: cells transfected
with negative control of mimic; inhibitor: cells transfected with miR-193b-3p inhibitor; inhibitor_NC: cells transfected with negative control of inhibitor. (A) The expression level of
miR-193b-3p after transfection; (B) Representative Western blot of TPI1 and b-actin after transfection. (C) The mRNA expression level of YWHAZ. (D) The level of extracellular
glucose after transfection. (E) Representative Western blot of KRAS, SOS2, YWHAZ, FOXO1, PCK1, G6PC, and Tublin after transfection. (F) Representative Western blot of
GLUT2, IR, GSK3A, GYS2, and b-actin after transfection. The bar graphs of figure (B), (E) and (F) showed the fold change of protein levels (cells transfected with
mimic negative control as reference group) quantified by Image Pro Plus, # indicates P <0.01 for protein level in mimic group compared with all the other groups.
(The figures were created by graphPad).
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compared to the mimic_NC group, while the expression of SOS2
and KRAS on RNA level did not significantly change. However,
significant differences in protein expression levels and glucose
output were observed. Previous studies indicated that miRNAs
can negatively regulate gene expression by targeting specific
mRNA transcripts and inducing their degradation or
translational repression (39). According to the results of this
study, and based on the transcripts analyzed, we suggest that
miR-193b-3p inhibit the translation rather than inducing the
degradation of target mRNAs encoding proteins including IR
and GLUT2 that mediating glucose uptake. Our results
illustrated the effects of miR-193b-3p overexpression on
cellular function, however, the detailed effects of miR-193b-3p
on protein and the effects of cytokines on downstream proteins
and the potential mechanism needed to be further explored.
Regarding the effect of miR-193b-3p on glucose metabolism, we
only observed changes in glucose output and consumption. More
studies are needed to explore this issue.

A strength of this study is that we selected newly diagnosed type
2 diabetes who did not receive any pharmacological treatment.
Thus, we were able to exclude the potential effects of
pharmacological treatment on miRNA profiles and, to some
extent, reduce the potential confounding factors. In addition, we
used a multidimensional “omics” approach in this population-
based study to identify differentially expressed proteins associated
with miR-193b-3p and to gain clues for further functional studies.
Finally, we provided insight into the potential mechanism of miR-
193b-3p in the development of diabetes.

There were several limitations should be considered. Firstly,
miRNAs in plasma or serum are packaged in extracellular vesicles
or bound to various proteins, including lipoproteins and argonaute
proteins (57), and the concentration ofmostmiRNAs in plasma are
relatively low. In the present study, we screened 12 miRNAs with
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obvious differential expression for verification,finally fourmiRNAs
were successfully measured and one miRNA with differential
expression was validated. This might be partly due to the limited
sample size in screen and validation. Secondly, we were unable to
determine the source and target tissues or cells of these miRNAs.
This limitation of the present study requires further research to
distinguish the forms of miRNA present in plasma. Thirdly, the
DFTJ cohort study was conducted in a population of middle-aged
and older individuals; thus, whether these findings are applicable to
other populations remains to be determined. Fourthly, in the
present large study population it is difficult to perform oral
glucose tolerance tests; therefore, diagnosis of diabetes based on
the criteria of FPG ≥ 7.0mmol/L and/or HbA1c ≥ 6.5%may lead to
misclassification.However, thepositive associationofmiR-193b-3p
with diabetes risk might not be attenuated but instead enhanced.
Fifthly, “Fifthly, before testing the glucose synthesized by
gluconeogenic pathway, cells were incubated in serum- and
glucose-free medium for 12 h and were then incubated an
additional 4 h without glucose, so that glycogen stores can be
completely consumed. However, in our experimental design, we
erroneously added 10% serum in the last 4 h of incubation, so we
cannot atribute glucose appereance in the medium completely to
gluconeogenesis, while itmight be better to further study the source
of increased glucose by vivo experiments or using stable isotopes.
Finally, in the present study it is difficult to obtain liver tissue from
diabetic patients for in vitro functional experiments, therefore, we
investigated the effects of miR-193b-3p on glucose metabolism in
HepG2 cells. However it has indicated that the HepG2 cells have
relatively low similarity with human tissue (58), therefore, the
functional effects of miRNA in other cell lines need to be
further verified.

In conclusion, miR-193b-3p was differentially expressed in
plasma of type 2 diabetes cases. With miR-193b-3p levels
TABLE 7 | Q1/Q3 transitions of 4 target proteins selected for the MRM experiments.

Accession Protein Name Peptide Sequence Q1/Q3 (m/z) DP CE

P00722 b-galactosidase GDFQFNISR 542.3/489.3 70.6 28.4
542.3/636.3 70.6 28.4

VDEDQPFPAVPK 671.3/587.2 80.1 33
671.3/755.4 80.1 33

P07737 Profilin-1 DSPSVWAAVPGK 607.3/913.4 75.4 30.7
607.3/301.2 75.4 30.7

TFVNITPAEVGVLVGK 822.5/968.6 91.1 38.5
822.5/1069.6 91.1 38.5

P60174 Triosephosphate isomerase SNVSDAVAQSTR 617.8/562.3 76.2 31.1
617.8/934.5 76.2 31.1

VVLAYEPVWAIGTGK 801.9/1057.6 89.6 37.7
801.9/928.5 89.6 37.7

Q14019 Coactosin-like protein EVVQNFAK 312.2/130 53.9 14.6
312.2/147.1 53.9 14.6

FALITWIGENVSGLQR 902.5/473.3 96.9 41.3
902.5/959.5 96.9 41.3

Q9Y490 Talin-1 AVASAAAALVLK 542.8/914.6 70.7 28.4
542.8/685.5 70.7 28.4
362.2/147.1 57.5 17.3
362.2/260.2 57.5 17.3

GLAGAVSELLR 543.3/617.4 70.7 28.4
543.3/716.4 70.7 28.4
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Accession was the number of proteins in Uniprot database, Q1: parent ion, Q2: transition; DP=Declustering Pressure; CE=Collision Pressure.
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increased, TPI1 levels decreased both in plasma and inHepG2 cells.
Inaddition,miR-193b-3pmayaffect glucosemetabolismbydirectly
targeting YWHAZ/14-3-3z and upregulating the FOXO1
transcription factor downstream of the PI3K-AKT pathway.
Based on the results of observed in HepG2, the effects of miR-
193b-3p on glucose metabolism in other tissues, such as skeletal
muscle and adipose tissue, might be similar. However, it remians to
be eluciated in further studies. Additionally, miR-193b-3p was
verified as a plasma biomarker of diabetes, the expression of miR-
193b-3p in extracellular vesicle in plasma needed test to explore the
origin and destination of miR-193b-3p.
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Various theories for the hormonal basis of diabetes have been proposed and debated
over the past few decades. Insulin insufficiency was previously regarded as the only
hormone deficiency directly leading to metabolic disorders associated with diabetes.
Although glucagon and its receptor are ignored in this framework, an increasing number of
studies have shown that they play essential roles in the development and progression of
diabetes. However, the molecular mechanisms underlying the effects of glucagon are still
not clear. In this review, recent research on the mechanisms by which glucagon and its
receptor contribute to the pathogenesis of diabetes as well as correlations between
GCGR mutation rates in populations and the occurrence of diabetes are summarized.
Furthermore, we summarize how recent research clearly establishes glucagon as a
potential therapeutic target for diabetes.

Keywords: glucagon, diabetes, pathogenesis, glucagonocentric hypothesis, glucagon receptor, glucagon-like
peptide 1
1 INTRODUCTION

Diabetes is a metabolic disorder characterized by hyperglycemia resulting from an absolute
deficiency of insulin secretion (type 1 diabetes, T1D), or a combination of insulin resistance and
an inadequate compensatory insulin secretion (type 2 diabetes, T2D) (1). However, each type of
diabetes in animals and humans is accompanied by hyperglucagonemia (2–4), so glucagon excess is
more critical to the development of diabetes than insulin deficiency (4, 5). Increasing evidence
indicates that blocking glucagon and glucagon receptor (GCGR) can relieve hyperglycemia in
animals and humans, clearly establishing the important roles of glucagon and GCGR in the
pathogenesis of diabetes (6, 7).

Glucagon is a linearpeptide containing29 aminoacids. It is secretedby isleta cells andmainly targets
the liver cells (8).GCGRis aG-protein-coupled receptor (GPCR)mainlydetected in isletb cells and liver
cells (9).After glucagon specifically binds toGCGR, it promotes liver glycogenbreakdown and increases
blood glucose levels to stimulate insulin release (10, 11). Glucagon-like peptide 1 (GLP-1), mainly
expressed in intestinal L cells, activates glucagon-like peptide-1 receptor (GLP-1R) to adjustmetabolism
(12, 13). Glucagon and GLP-1 are derived from the same biosynthetic precursor proglucagon and are
involved in the regulation of lipid and cholic acid metabolism, thereby playing pivotal roles in glucose
metabolism and the pathogenesis of diabetes (7, 12, 13).

In this review, we explore the controversial relationships between glucagon and metabolic
disorders associated with diabetes based on recent research with an emphasis on recent evidence
supporting the important role of glucagon. We also elucidate the correlation between GCGR
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mutations in populations and the occurrence of diabetes.
Furthermore, we summarize drug strategies to provide a new
basis for the treatment of diabetes.
2 CONTROVERSY REGARDING THE
ROLE OF GLUCAGON IN METABOLIC
DISORDERS ASSOCIATED
WITH DIABETES

2.1 Insulinocentric Theory
The debate over the relative roles of hormones in the regulation
of diabetes-related metabolic disorders has spanned decades. In
1921, the discovery of insulin was regarded as one of the greatest
breakthroughs in the history of medicine. This led to the
establishment of the insulinocentric view, which proposes that
all diabetes-related metabolic disorders are directly caused by a
lack of insulin secretion (14). Glucagon was not yet characterized
and accordingly was not associated with these metabolic
disorders. The insulinocentric theory was accepted for over
half a century until Unger et al. proposed the bihormone
theory at a conference in 1975 (15, 16).
2.2 Bihormonal Regulation
According to the theory of bihormonal regulation, diabetes results
from the abnormal secretion of both insulin and glucagon (15, 16).
Some metabolic disorders associated with diabetes are directly
caused by insulin deficiency, such as elevated lipolysis, increased
proteolysis, and decreased glucose utilization. Others, such as
decreased glycogen synthesis, increased ketogenesis, elevated
hepatic glycogenolysis, and gluconeogenesis, are direct effects of
excess glucagon (15–18) (Figure 1). Glucagon has glucogenic,
ketogenic, and gluconeogenic functions and mediates severe
Frontiers in Endocrinology | www.frontiersin.org 271
endogenous hyperglycemia and hyperketonemia under a state of
insulin deficiency; thus, it is a direct cause of the substantial increases
in the levels of glucose and ketone in severe presentations of diabetes
(19). Inpatientswithdiabeteswith relatively steady levels of insulin, a
rise in glucagon causes hyperglycemia and glycosuria (17).
Glucagon suppression may be an effective adjunct to routine
antihyperglycemic therapy in patients with diabetes (20–22).
2.3 Glucagonocentric Hypothesis
Glucagonocentric hypothesis was proposed by Unger et al. based
on the following evidence: (a) hyperglucagonemia is present in
all forms of diabetes; (b) marked hyperglucagonemia is caused by
perfusing anti-insulin serum to the normal pancreas; (c) during a
total insulin deficiency, all metabolic manifestations of diabetes
can be suppressed by glucagon suppressors, like somatostatin,
and in global Gcgr knockout (Gcgr-/-) mice, demonstrating that b
cell destruction does not cause diabetes (4). Thus, compared with
insulin deficiency, glucagon excess plays a more essential role in
the development of diabetes.

Gcgr -/- mice were designed to further understand the role of
GCGR in the development of diabetes; these mice do not respond
to glucagon at any concentration, and their fasting blood glucose
levels are lower than those of wild-type mice. These knockout
mice exhibit enhanced glucose tolerance and elevated insulin
sensitivity during insulin tolerance testing (23). When b cells of
Gcgr -/- mice were destroyed by streptozotocin (STZ) and insulin
secretion was inhibited, animals did not develop hyperglycemia,
suggesting that Gcgr -/- mice do not develop T1D, even under a
state of insulin deficiency (24). After the transient repair of
defective Gcgr with an adenovirus vector, the blood glucose levels
of the mice increased after b cell destruction (25). When Gcgr
was inactivated again, blood glucose levels returned to normal,
suggesting that in the absence of glucagon, insulin deficiency
does not result in abnormal blood glucose levels, and that the
FIGURE 1 | Hormonal regulation of glucose homeostasis in the islet cells. This diagram illustrates the metabolic effects of glucagon and insulin. Blood glucose levels
influence secretion of insulin and glucagon. Insulin deficiency leads to elevated lipolysis, increased proteolysis, and decreased glucose utilization, while excess
glucagon leads to decreased glycogen synthesis, increased ketogenesis, elevated glycogenolysis, and gluconeogenesis. Red arrows refer to a stimulatory effect,
while blue arrows refer to an inhibitory effect.
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abnormal blood glucose concentration caused by insulin
deficiency can be restored by eliminating the effect of glucagon
(25). Hence, blocking Gcgr can restore hyperglycemia in rodent
models with insufficient insulin secretion; however, this effect
requires a certain number of b cells (26). Active GLP-1 was
identified in pancreatic perfusate from Gcgr -/- but not wild-type
mice (27), and FGF21 acts additively with GLP-1 to prevent
insulinopenic diabetes in mice lacking glucagon action (28),
which further reduces the risk of Gcgr -/- mice developing
diabetes. On the contrary, Gcgr knockout implies that glucagon
cannot function normally, which can cause a series of metabolic
problems, such as hyperglucagonemia and compensatory
hyperplasia of a cells (23, 29, 30). Therefore, the above
phenomena should be monitored in the development of GCGR
antagonists. The therapeutic potential of GCGR is not fully
recognized and should be a basis of further studies; however,
the established animal models provide an effective means for the
development of strategies to reduce the incidence of diabetes.
3 MECHANISM BY WHICH GLUCAGON
AFFECTS INSULIN SECRETION

In healthy people, high blood glucose stimulates b-cell insulin
secretion, and glucagon secretion is suppressed; low blood
glucose inhibits b-cell insulin secretion, and glucagon secretion
is stimulated (Figure 1). Nevertheless, hyperglucagonemia was
present in patients with diabetes, including T1D (31) and T2D
(32). No significant difference of plasma glucagon level was
found between T1D and T2D (31, 32). Absolute deficiency or
relative deficiency of insulin secretion weakened the inhibition of
insulin on glucagon (4).

Glucagon’s role in intra-islet paracrine regulation is essential.
Svendsen et al. (27) used isolated perfused pancreas from wild-
type, Glp-1r knockout, diphtheria toxin-induced proglucagon
knockdown, b cell-specific Gcgr knockout, and Gcgr−/− mice to
examine glucagon-induced insulin secretion. They found that
paracrine glucagon actions are required for maintenance of
normal insulin secretion, and intra-islet glucagon signaling
involves the activation of both GCGR and GLP-1R. Loss of
either GCGR or GLP-1R does not change insulin responses,
whereas combined blockage of both receptors significantly
reduces insulin secretion (27). Additionally, Gcgr -/-mice show
normal blood glucose levels and increased glucagon levels in
glucose-stimulated insulin secretion (GSIS) tests after treatment
with 10 mM (33) or 12 mM (27) glucose. This is similar to levels
observed in control mice, suggesting that the insulin-promoting
effect of glucagon is achieved mainly via GLP-1R. However, as
the cognate downstream receptor of glucagon, the physiological
significance of b-cell GCGR remains subtle. Zhang et al. (34)
states that glucagon potentiates insulin secretion via b-cell
GCGR at physiological but not high concentrations of glucose,
and b-cell GCGR activation promotes GSIS more than GLP-1R
in high fat diet. These findings indicate that GCGR contributes to
glucose homeostasis maintenance during nutrient overload.
These studies emphasized the indispensable roles of GCGR on
Frontiers in Endocrinology | www.frontiersin.org 372
b cells in mediating both the glucose balance and catabolic state
and implied that GCGR is closely related to the pathogenesis of
diabetes. Accordingly, studies of the mechanisms by which
GCGR regulates insulin secretion are of great significance.

In pancreatic b cells, GLUT2, a glucose transporter protein, is
required for GSIS (35). Glucose binding toGLUT2 is a key pathway
leading to increased ATP levels, deionization, increased
intracellular calcium concentration, and enhanced insulin
exocytosis. GLUT1 expression decreased in Gcgr–/– mice but
increased in wild-type mice after glucose stimulation (36). As a
paracrine hormone, glucagon binds to GCGR with high affinity,
while also exerting a “spillover” effect by binding to GLP-1R with
low affinity (37). After glucagon binds to GCGR and GLP-1R on b
cells, the activated receptors engage the G protein Gas, which
stimulate the generation of cyclic adenosine monophosphate
(cAMP) (34, 38–40). The response of glucagon to glucose mainly
depends on cAMP signaling in islet b cells and the increased cAMP
level promotes insulin release (39, 41) (Figure 2).
4 ASSOCIATION OF GCGR MUTATIONS
WITH DIABETES IN VARIOUS
POPULATIONS

T2D, also called non-insulin dependent diabetes mellitus, is a
common disorder with complex traits. Multiple genomic scans
have identified different loci associated with T2D, including a
locus on chromosome 17q24-25 (42, 43) and GCGR on
chromosome 17q25, which might be explained by linkage
identified in the same region (44). GCGR mediates glucose
homeostasis by binding to glucagon and may contribute to the
pathogenesis of T2D and the development of b-cell dysfunction,
resulting in a deficient insulin response in some patients with
T2D. Further studies are needed to determine the effect of
hepatic glucagon resistance on metabolic disorders and its
association with the occurrence of diabetes. Chronic
hyperglycemia increases the protein expression of GCGR in
the liver and decreases downstream glucagon signaling, leading
to liver glucagon resistance (45, 46). GCGR mutations may be
related to hyperglucagonemia via the impairment of endogenous
glucagon autofeedback, to high hepatic glucose output in T2D
via elevated glycogenolysis and/or gluconeogenesis, and to
abnormal insulin secretion via the glucagon resistance of b
cells in T2D.

GCGR is regarded as a candidate gene for the pathogenesis of
T2D and GCGR mutations with similar frequencies have been
found associated with T2D (47). Polymorphisms in the GCGR
gene are associated with T2D in Caucasians (48). The Gly40Ser
variant of GCGR (c.118G >A) causes a change from glycine (at the
40th amino acid residue) to serine. In French and Sardinian
familial T2D groups, 5% and 8% of randomly selected patients
with diabetes, respectively, showed Gly40Ser mutations. These
percentages are substantially higher than the frequencies of any
other candidate gene mutations reported previously (47). Gough
et al. examined patients from three geographically distinct regions
in the United Kingdom and the Gly40Ser mutation was present in
June 2022 | Volume 13 | Article 928016
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15/691 patients with T2D and 1/425 geographically matched
controls (48), suggesting that individuals with the Gly40Ser
mutation may be predisposed to T2D. GCGR mutation
frequencies have been examined in other populations and
regions. However, the Gly40Ser mutation was not detected in
studies involving subjects of Japanese (49–52), Finnish (53), Dutch
(54), Utahans (55), German (54, 56), Russian (57), Indian Tamil
(58), Han Chinese (59), Taiwanese (60), Brazilian (61), and Italian
(44) descents. Another study (62) conducted in different areas of
Sardinia did not find low insulin secretion in the population
carrying this mutation in contrast to the earlier 1995 study (47).
It showed that the Gly40Ser variation was not related to T2D in
the Sardinian population and that its frequency varied among
regions in Sardinia. Although no such association was found in
Brazil, reduced insulin secretion was observed in Gly40Ser carriers
(61). Based on a genetic analysis of 64 children with diabetes, the
Gly40Ser mutation may be associated with T2D susceptibility in
China (63). It reduces the binding of GCGR and glucagon and
insulin secretion; this observation led Hansen to hypothesize that
the Gly40Ser mutation in GCGR can lead to the abnormal
functioning of islet b cells and may predispose carriers to
diabetes, possibly by impairing glucagon-mediated signaling and
decreasing the sensitivity of the target tissues to glucagon (64).

In addition to the relationship between the Gly40Ser
mutation and T2D, an elevated frequency of GCGR mutations
has been found in probands from multiple (affected sibling pair)
families with T1D, also known as insulin-dependent diabetes;
however, the lack of preferential transmission from heterozygous
parents to affected siblings with T1D suggests population
stratification (48). Overall, this Gly40Ser mutation may
promote islet b-cell dysfunction, resulting in deficient insulin
responses in patients with diabetes.

Together, these findings suggest that the contribution ofGCGR
to diabetes may vary and mutations in this gene play only a small
role in determining the susceptibility of an individual to diabetes
Frontiers in Endocrinology | www.frontiersin.org 473
and the observed genetic heterogeneity of diabetes. Given the
heterogeneity of the disease, the importance of GCGR for diabetes
susceptibilitymayvaryamongethnicitiesowing to thedifferences in
genetic and environmental factors. GCGR is a polymorphic gene.
The absence of a GCGR polymorphism (Gly40Ser) at one site does
not rule out mutations associated with susceptibility to diabetes in
other regions. For example, in addition to Gly40Ser, homozygous
missense mutations (P86S) have been found in GCGR; these
mutations contribute to the formation of an ineffective GCGR,
resulting in hyperglycemia and extreme a-cell proliferation (65).
Recent studies have reported 250 missense variants in human
GCGR (66, 67). GCGR shows lower allelic diversity and fewer
missense variants and variants with trait associations than the
other class B1 GPCRs. These observations support the crucial role
of the glucagon system in metabolism and indicate that the
predominant signaling pathway mediating the physiological
effects of GCGR is the one mediated by Gas. These findings
provide a clear link between molecular mechanisms and clinical
phenotypes. The metabolic phenotypes related to several missense
variants of GCGR have been investigated in case studies and in
studies of genetically engineered animals, including V368M and
V369M (68, 69). Further research is needed to explore the
relationship between GCGR variants and diabetes.
5 GLUCAGON-RELATED THERAPIES
FOR DIABETES

Several emerging glucagon-based therapies are under pre-clinical
and clinical development.

5.1 GCGR Antagonism
GCGR antagonism has been proposed as a pharmacological
approach to treat T1D or T2D, including the use of small
molecule antagonists, monoclonal antibodies (mAb) against
FIGURE 2 | Activation of GCGR and GLP-1R to promote insulin secretion in islet b cells. Glucagon binds to GCGR and GLP-1R on b cells and the activated
receptors engage the G protein Gas. This results in adenylate cyclase activation and cAMP formation. Glucose binds to GLUT2, which increases ATP levels and
intracellular calcium concentration, and enhances insulin exocytosis. The increase in intracellular cAMP levels activates PKA, which also promotes insulin exocytosis.
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GCGR, and antisense oligonucleotides that reduce expressionof the
receptor (70–73). Relevant clinical trials have shown that they can
reduce blood glucose levels through inhibition of glucagon action
(74–76); however, several adverse effects, such as increased LDL-
cholesterol (LDL-c), ALT level, and bodyweight, have been
observed (74, 77).
5.1.1 GCGR Antagonists
Several GCGR antagonists have been developed to improve
glucose tolerance, insulin secretion, and glucose control in
animals (78, 79), and have shown remarkable efficacy in
patients with T2D, such as MK-0893, MK-3577, LY2409021
and LGD-6972 (76, 80–82). They upregulate circulating GLP-1
level by promoting intestinal L-cell proliferation and GLP-1
production in T2D (82). MK-0893 and MK-3577, which were
advanced to phase II clinical trials, led to robust glucose lowering
in patients with T2D; however, their adverse effects, such as
increased LDL-c and ALT level, have hindered their clinical
development (83–86). LY2409021 significantly reduced blood
glucose and HbA1c levels with a lower risk of hypoglycemia (80,
81), but it increased liver fat (87). LGD-6972 is an allosteric
GCGR antagonist, structurally different from other small
molecule GCGR antagonists. It was well tolerated at all tested
doses and did not cause hypoglycemia (88, 89), but additional
details on biochemical differentiation are lacking and this
compound does not appear to be under active clinical
development (71).
5.1.2 GCGR mAbs
With the cessation of clinical trials of GCGR antagonists and
better understanding of the protein structure of GCGR,
antibodies against GCGR have been developed. GCGR mAbs
have good specificity, strong targeting, and are relatively easy to
source. They can not only return blood glucose and HbA1c to
normal levels when administered to mice with T1D not treated
with insulin (73), as well as patients with T1D (90), but also show
a strong hypoglycemic effect in mice and monkeys with T2D (91,
92). They can even induce b cell regeneration by the
transdifferentiation of a portion of pancreatic a cells or d cells
into b cells (93). REMD 477 is a fully competitive mAb against
GCGR. A single dose of REMD-477 significantly reduces insulin
requirement in patients with T1D, which improves glycemic
control in patients without serious adverse reactions (90).
Another GCGR mAb, REGN1193, has good safety and
tolerability, but transient elevation of transaminases was also
observed (94). Overall, GCGR mAbs are promising for
improving glycemic control and have great research promise.
5.1.3 GCGR Antisense Oligonucleotides (GR-ASO)
GR-ASO inhibits the effect of glucagon mainly by decreasing the
expression of GCGR mRNA (95). The intraperitoneal
administration of GR-ASO to db/db mice and Zucker diabetic
fatty (ZDF) rats decreases (nearly normalizes) non-fasting blood
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glucose levels (95). GR-ASO improves b-cell function (i.e.,
improves the insulin response to intraperitoneal glucose
stimulation) and substantially improves glucose tolerance in
normal and ZDF rats. However, Gcgr-/- mice and other
animals treated with GR-ASO show extensive islet a-cell
proliferation and significantly elevated circulating proglucagon-
related peptide levels (96). Recently, ISIS-GCGRRx (76), IONIS-
GCGRRxN (97), and ISIS 325568 (98) have been shown to
attenuate glucagon-stimulated hepatic glucose production and
glucose fluctuations. They support the treatment of GR-ASO in
patients with T2D.
5.2 GLP-1R Agonists
The most well-characterized biological function of GLP-1 is to
potentiate glucose-dependent insulin secretion, which makes the
GLP-1R an attractive target in the treatment of T2D (99). Thus,
GLP-1R agonists are clinically used as anti-diabetic drugs (100).
Glucagon not only acts to antagonize insulin in the fasting state
but also functions in the fed state and promotes insulin secretion
to maintain normal blood glucose levels (34). The insulin-
promoting properties of glucagon are mediated by GCGR and
GLP-1R in b cells (27, 33, 101); however, GLP-1R is the main
receptor to exert an insulin-stimulating effect (101). It is
reasonable to assume that even with GCGR mutations in b
cells, glucagon binding to GLP-1R exerts an insulin-promoting
effect that can reduce blood glucose concentrations in patients
with diabetes. Although GLP-1R agonists have been used for the
treatment of diabetes, their efficacy is limited by target receptor
desensitization and downregulation via the recruitment of b-
arrestins (102, 103). GLP-1R agonists with decreased b-arrestin-
2 recruitment have shown promising effects in recent preclinical
and clinical studies (104). Understanding the mechanisms of
action may resolve these issues with the application of GLP-
1R agonists.
5.3 GCGR and GLP-1R Co-Agonists
Owing to the traditional view that the main effect of glucagon is
to increase blood glucose levels, the idea of increasing glucagon
concentration as a means of reducing glucose levels initially met
resistance. Nevertheless, the action of glucagon on GCGR and
GLP-1R (regulators of insulin secretion and energy metabolism)
has a significant effect on systemic glucose homeostasis (105). On
the one hand, GCGR and GLP-1R co-agonists can activate GLP-
1R to promote insulin secretion and then reduce blood glucose.
On the other hand, they can activate GCGR, promote lipid
metabolism and reduce body weight (106–108). Since human
islets have more mixed a-b cell interfaces, the ratio of GCGR to
GLP-1R may be particularly vital to human islet function (8,
109). SAR425899 is a novel polypeptide with a co-excitatory
effect on GCGR and GLP-1R, which can reduce blood glucose
and HbA1c levels and reduce body weight in patients with T2D;
however, it has an adverse effect on the gastrointestinal tract
(110). It also improves postprandial blood glucose control by
significantly enhancing b cell function and slowing glucose
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absorption rate (111). These findings highlight the possible
clinical relevance of dual agonist peptides that simultaneously
stimulate the synthesis of GCGR and GLP-1R and may drive the
development of novel antidiabetic drugs.
6 CONCLUSIONS

In this review, we provide a clear overview of various theories of
hormonal regulation of diabetes, with a focus on the essential roles
of glucagon and its specific receptor in the pathogenesis of
diabetes. Although GCGR and glucagon play important roles in
diabetes, the mechanisms and role of mutations still needs to be
explored. We summarized the pleiotropic effects of glucagon,
future research prospects, and the development of novel
therapeutic strategies. This area of research remains challenging
but exciting. Further research on islet a cells, glucagon, and GCGR
Frontiers in Endocrinology | www.frontiersin.org 675
signaling pathways is expected to provide a basis for developing
new strategies for diabetes prevention.
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Methylglyoxal, a major precursor of advanced glycation end products, is elevated in the
plasma of patients with type 2 diabetes mellitus. Islet b-cell function was recently shown to
be regulated by N6-methyladenosine (m6A), an RNA modification consisting of
methylation at the N6 position of adenosine. However, the role of m6A methylation
modification in methylglyoxal-induced impairment of insulin secretion in pancreatic b cells
has not been clarified. In this study, we showed that treatment of two b-cell lines, NIT-1
and b-TC-6, with methylglyoxal reduced m6A RNA content and methyltransferase-like 3
(METTL3) expression levels. We also showed that silencing of METTL3 inhibited glucose-
stimulated insulin secretion (GSIS) from NIT-1 cells, whereas upregulation of METTL3
significantly reversed the methylglyoxal-induced decrease in GSIS. The methylglyoxal-
induced decreases in m6A RNA levels and METTL3 expression were not altered by
knockdown of the receptor for the advanced glycation end product but were further
decreased by silencing of glyoxalase 1. Mechanistic investigations revealed that silencing
of METTL3 reduced m6A levels, mRNA stability, and the mRNA and protein expression
levels of musculoaponeurotic fibrosarcoma oncogene family A (MafA). Overexpression of
MafA greatly improved the decrease in GSIS induced by METTL3 silencing; silencing of
MafA blocked the reversal of the MG-induced decrease in GSIS caused by METTL3
overexpression. The current study demonstrated that METTL3 ameliorates MG-induced
impairment of insulin secretion in pancreatic b cells by regulating MafA.
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INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a public health problem of
considerable magnitude that is characterized by hyperglycemia,
insulin resistance, and gradual exhaustion of insulin secretion
from pancreatic b cells (1). Methylglyoxal (MG), a highly
reactive dicarbonyl product of glucose metabolism, is believed
to be the most important precursor of advanced glycation end
products (AGEs). We (2) and others (3, 4) have demonstrated
that plasma MG levels are significantly higher in T2DM patients
than in control individuals. MG may be involved in the
development of DM and diabetic complications by acting as
either a precursor of AGEs or a direct toxin (5–7). MG reduced
islet b-cell insulin secretion both in vivo and in vitro (8–10);
however, the molecular mechanism by which MG treatment
results in decreased insulin secretion has not been elucidated.

N6-Methyladenosine (m6A), the most frequent mRNA
modification in eukaryotes, has garnered wide interest in
recent years because of its roles in regulating mRNA splicing,
output, translation, and stability (11, 12). m6A levels are mainly
regulated by methyltransferases such as methyltransferase-like 3
(METTL3) and methyltransferase-like 14 (METTL14), as well as
demethylases, fat mass, obesity-associated protein (FTO), and a-
k e tog lu t a r a t e -dependen t d ioxygena s e homo log 5
(ALKBH5) (13).

The m6A modification is essential for the physiological
function of pancreatic b cells (14). Levels of m6A RNA in the
pancreatic islets and plasma of patients with T2DM were
markedly lower than those in control subjects (14–18). These
changes in m6A levels were attributed to decreases in METTL3
and METTL14 expression (14, 18–20) and an increase in FTO
expression (16). Musculoaponeurotic fibrosarcoma oncogene
family A (MafA), a key regulator of insulin gene transcription,
is markedly decreased in the b cells of patients with T2DM (21).
Wang et al. showed that METTL3 specifically targets MafA and
regulates its protein expression (18). However, to the best of our
knowledge, it remains unclear whether the m6A modification is
involved in MG-induced dysfunction of b-cell insulin secretion.
Therefore, the present study was designed to explore the
connection between MG and m6A levels and to clarify the
mechanisms underlying the role of the m6A RNA modification
in MG-induced b-cell dysfunction.
MATERIALS AND METHODS

Cell Culture
The mouse insulinoma b-cell lines NIT-1 and b-TC-6 were
purchased from Procell Life Science and Technology Co.
(Wuhan, China). The cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM; Gibco, California, USA) containing 10%
fetal bovine serum (Gibco, California, USA). NIT-1 and b-TC-6
cells were treated with 1mMofMG (Sigma,Missouri, USA) for the
duration indicated in each experiment. This concentration of MG
was selected based on previous studies (9, 10), which showed that
1 mM of MG sufficiently decreased islet b-cell function in vitro.
Frontiers in Endocrinology | www.frontiersin.org 280
Cell Transfection
Small interfering RNAs (siRNAs) targeting METTL3 (si-
METTL3), the receptor for advanced glycation end products
(RAGE, si-RAGE), glyoxalase 1 (Glo-1, si-Glo-1), and MafA (si-
MafA), as well as a negative control siRNA (si-NC), were
synthesized by Riobio Technology Co. (Guangzhou, China).
The siRNA sequences were as follows:

siRNA METTL3-1: 5′‐GGACTCGACTACAGTAGCT‐3′;
siRNA METTL3-2: 5′‐CAAGTATGTTCACTATGAA‐3′;
siRNA METTL3-3: 5′‐GACTGCTCTTTCCTTAATA‐3′;
siRNA RAGE-1: 5′‐GCATTCAGCTGTTGGTTGA‐3′;
siRNA RAGE-2: 5′‐CCACTGGAATTGTCGATGA‐3′;
siRNA RAGE-3: 5′‐CCAGCAGCTAGAATGGAAA‐3′;
siRNA Glo-1: 5′‐CTATGAAGTTCTCGCTCTA‐3′;
siRNA Glo-2: 5′‐GCAAACGATGCTAAGAATT‐3′;
siRNA Glo-3: 5′‐AGAAGACAGCATGGACGTT‐3′;
siRNA MafA-1: 5′‐TCAACGACTTCGACCTGAT‐3′;
siRNA MafA-2: 5′‐TGATGAAGTTCGAGGTGAA‐3′;
siRNA MafA-3: 5′‐GATGAAGTTCGAGGTGAAG‐3′.

Lipofectamine 3000 reagent (Invitrogen, California, USA),
Opti-MEM medium (Gibco, California, USA), and siRNAs were
mixed and incubated at room temperature for 15 min and then
added to cells and incubated for 36 h. Three siRNA sequences
were synthesized for each target gene, and the siRNA targeting
METTL3-2, RAGE-1, Glo-1-2, and MafA-3 with the highest
inhibition efficiencies were selected for subsequent experiments
(Supplementary Figure S1).

Recombinant adenovirus constructs with either METTL3
(Ad-METTL3) or an empty vector (Ad-NC) and pCDNA3.1
plasmids carrying either MafA (pCDNA-MafA) or the empty
vector (pCDNA) were synthesized by HanBio Technology Co.
(Shanghai, China). Cells were infected with Ad-NC or Ad-
METTL3 for 48 h. Cells were transfected with pCDNA or
pCDNA-MafA using Lipofectamine 3000 reagent (Invitrogen,
California, USA) for 48 h.

m6A RNA Methylation Quantification
m6A RNA methylation was quantified using the m6A RNA
Methylation Quantification Kit (Abcam, Cambridge, UK).
Total RNA was extracted from NIT-1 and b-TC-6 cells using
TRIzol reagent (Tiangen, Beijing, China). Briefly, the negative
control, positive control, and 200 ng of sample RNA were added
to the designated wells. Diluted capture antibody, detection
antibody, and diluted enhancer solution were then added to
each well. The m6A content was quantified colorimetrically; the
absorbance at 450 nm was measured using a microplate reader;
and the m6A content was calculated based on a standard curve.
The percentage of total RNA containing m6A was calculated
using the formula provided by the manufacturer.

Quantitative Real-Time PCR
Total RNA was extracted and reverse transcribed using a reverse
transcription kit (Tiangen, Beijing, China) according to the
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manufacturer’s instructions. Gene expression was analyzed by
qPCR using the SYBR Green PCR Kit (Tiangen, Beijing, China).
Expression levels of target genes were normalized to b-actin and
differences were calculated using the 2−DDCt method. The primer
sequences used were as follows:

M E T T L 3 f o r w a r d p r i m e r : 5 ′ -
CATCCGTCTTGCCATCTCTACGC-3′,

reverse primer: 5′-GCAGACAGCTTGGAGTGGTCAG-3′;
M E T T L 1 4 f o r w a r d p r i m e r : 5 ′ -

TCGACCGAAGTCACCTCCTC-3′,
reverse primer: 5′-AGGAGTAAAGCCGCCTCTGT-3′;
F T O f o r w a r d p r i m e r : 5 ′ -

GACACTTGGCTTCCTTACCTGACC-3′,
reverse primer: 5′-ACCTCCTTATGCAGCTCCTCTGG-3′;
A L K B H 5 f o r w a r d p r i m e r : 5 - ′

GCAAGGTGAAGAGCGGCATCC-3′,
reverse primer: 5′-GTCCACCGTGTGCTCGTTGTAC-3′;
M a f A f o r w a r d p r i m e r : 5 ′ -

GCTTCAGCAAGGAGGAGGTCAT-3′,
reverse primer: 5′-TCTCGCTCTCCAGAATGTGCCG-3′;
b - A c t i n f o r w a r d p r i m e r : 5 ′ -

CGTGAAAAGATGACCCAGATCA-3′,
reverse primer: 5′-CACAGCCTGGATGGCTACGT-3′.

Western Blot Analysis
NIT-1 and b-TC-6 cells were washed twice with cold PBS and
lysed in 100 ml of modified RIPA buffer (Beyotime, Shanghai,
China). Proteins were separated using SDS-PAGE and
immediately transferred to nitrocellulose membranes. The
membranes were incubated with the primary antibody
overnight and then with the appropriate secondary antibodies
for 2 h. The antibodies used were as follows: anti-METTL3 (Cat.
No.: ab195352, 1:1000; Abcam, Cambridge, UK), anti-METTL14
(Cat. No.: ab220030, 1:1000; Abcam, Cambridge, UK), anti-
RAGE (Cat. No.: 42544, 1:800; CST, Massachusetts, USA),
anti-Glo-1 (Cat. No.: NP-006699.2, 1:500; ABclonal, Wuhan,
China), anti-MafA (Cat. No.: 79737, 1:1000; CST, Massachusetts,
USA), and anti-b-actin (Cat. No.: T0022, 1:3000; Affinity,
Melbourne, Australia). The target proteins on the blots were
detected using a Tanon 5200 visualizer. The results were assessed
by densitometry using ImageJ software.

Glucose-Stimulated Insulin Secretion
As described in our previous study, cultured cells were washed
with Krebs buffer (128.8 mM of NaCl, 4.8 mM of KCl, 1.2 mM of
MgSO4, 1.2 mM of KH2PO4, 1.2 mM of CaCl2, and 10 mM of
HEPES, pH 7.4) containing 0.2% bovine serum albumin. NIT-1
cells were incubated in Krebs buffer containing 2.8 mM of
glucose for 30 min, and basal insulin secretion was measured
(22–24). Stimulated insulin secretion was measured after
incubating NIT-1 cells in Krebs buffer with 25 mM of glucose
for 60 min. An aliquot of the buffer was collected, and insulin
release was measured using an ELISA kit (Abcam, Cambridge,
UK). The glucose-stimulated insulin secretion (GSIS) index was
calculated by dividing the insulin secreted in cells exposed to
25 mM of glucose by the insulin secreted in cells exposed to
2.8 mM of glucose (24).
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Methylated RNA Immunoprecipitation
Coupled With qPCR Assay
Methylated RNA immunoprecipitation coupled with qPCR
(MeRIP-qPCR) was performed using the MeRIP kit (Bersinbio,
Guangzhou, China), according to themanufacturer’s instructions.
Briefly, total RNA was extracted from NIT-1 cells using TRIzol
reagent, and the extracted RNA was fragmented using ultrasound
treatment. The processed fragments were approximately 300 bp.
After fragmentation, 50 ml of each RNA sample (the input sample)
was stored at −80°C and the remaining portion of each RNA
sample was immunoprecipitated with an anti-m6A antibody
(Abcam, Cambridge, UK) or anti-IgG antibody. The RNA-
antibody hybridization solution was incubated with Protein A/G
magnetic beads for 1 h at 4°C in a vertical mixer. The beads were
washed three times and digested with proteinase K at 55°C for
45min. The supernatant was transferred to new RNase-free tubes,
and the RNA was purified and subjected to qPCR. The MafA
primer sequences were as follows:

Forward: 5′-CAGGAAAAGCGGTGCTGGAGG-3′,
Reverse: 5′-CGAAGCTCTGACCCCGGAAGG-3′.

RNA Stability Assay
NIT-1 cells were treated with 5 mg/ml actinomycin D (Sigma,
Missouri, USA) to inhibit mRNA transcription. After incubation
for the indicated times, the treated cells were collected, and total
RNA was extracted using TRIzol reagent. MafA mRNA expression
was measured by qPCR. b-Actin was used for normalization.

Statistical Analysis
Data are presented as the mean ± standard deviation (SD). One-
way analysis of variance followed by the Newman–Keuls test was
used to compare differences among groups. Statistical
significance was set at p < 0.05.
RESULTS

m6A RNA Modification and METTL3
Expression Levels Were Reduced in
MG-Treated Pancreatic b Cells
To explore the potential role of MG in the m6A modification in
pancreatic b cells, the m6A content in total RNA was measured
in MG-treated and untreated NIT-1 and b-TC-6 cells. As shown
in Figure 1A, the m6A levels in RNA were significantly reduced
in NIT-1 (reduced by 36.8%) and b-TC-6 (reduced by 39.3%)
cells after MG treatment, indicating an MG-induced decrease in
m6A modification in pancreatic b cells. We then evaluated the
mRNA and protein expression of the m6A methyltransferases
METTL3 and METTL14 and the demethylases FTO and
ALKBH5 in MG-treated and untreated NIT-1 and b-TC-6
cells. Following treatment with MG for 24 h, METTL3 mRNA
levels were markedly downregulated in both NIT-1 cells
(reduced by 43.5% versus the untreated control (Con),
p < 0.05) and b-TC-6 cells (reduced by 35.5% versus Con,
p < 0.05) (Figures 1B, C). In contrast, the mRNA expression
levels of METTL14, FTO, and ALKBH5 did not change
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significantly (Figures 1B, C). Immunoblotting analysis showed
that MG treatment decreased METTL3 protein expression in
NIT-1 cells in a time-dependent manner (reduced by 29.4% at
4 h, 35.3% at 6 h, 50.4% at 12 h, and 65.2% at 24 h versus Con,
p < 0.05; Figure 1D). In contrast, in MG-treated b-TC-6 cells,
METTL3 protein expression was only reduced after 24 h of
treatment (reduced by 44.5% versus Con, p < 0.05; Figure 1F).
These findings suggest that MG may reduce m6A levels in
pancreatic b cells by decreasing METTL3 expression; NIT-1
cells are more sensitive than b-TC-6 cells to this MG
treatment-induced decrease in METTL3 expression. Therefore,
we selected NIT-1 cells to further characterize this effect.

Effects of METTL3 on Glucose-Stimulated
Insulin Secretion From Pancreatic b Cells
To clarify the role of METTL3 in b-cell insulin secretion, we
assessed the effects of METTL3 on GSIS from NIT-1 cells under
normal culture conditions. We suppressed the expression of
Frontiers in Endocrinology | www.frontiersin.org 482
METTL3 with siRNA (Figures 2A, B) and found that the GSIS
index was significantly reduced (by 22.2%, p < 0.05 versus si-NC,
Figure 2C). To further investigate the biological function of
METTL3, an adenovirus vector to overexpress METTL3 was
transfected into NIT-1 cells (Figures 2D, E). Upregulation of
METTL3 significantly reversed the MG-induced reduction in the
GSIS index in NIT-1 cells (by 44.2%, p < 0.05; Figure 2F).

Effects of RAGE Knockdown on METTL3
Expression and m6A RNA Levels in NIT-1
Cells
Advanced glycation end products (AGEs) exert biological effects
via specific receptors; the most well-characterized is RAGE (25).
Treatment of NIT-1 cells with MG, a major precursor of AGEs,
enhanced RAGE expression (Figures 3A, B). To investigate
whether the effects of MG on the m6A modification are
mediated by RAGE, we knocked down RAGE expression using
a siRNA (Figures 3A, B). The MG-induced reductions in
B C

D E

F G

A

FIGURE 1 | Methylglyoxal (MG) treatment decreased m6A RNA methylation and METTL3 expression levels in pancreatic b cells. (A) m6A levels in total RNA from NIT-1
and b-TC-6 pancreatic b cells treated with 1 mM of MG (MG) for 24 h and untreated control cells (Con). (B, C) mRNA expression of the m6A methyltransferases METTL3
and METTL14 and the demethylases FTO and ALKBH5 in NIT-1 (B) and b-TC-6 (C) cells treated with 1 mM of MG for 24 h as measured by qPCR. The mRNA level of
each gene was normalized to b-actin. (D–G) Immunoblotting of METTL3 and METTL14 protein expression levels in NIT-1 (D, E) and b-TC-6 (F, G) cells treated with
1 mM of MG for different time periods. b-Actin was used as an internal control. Results are presented as the means ± SD of 3–4 independent experiments. *p < 0.05.
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METTL3 expression (Figures 3A, C) andm6ARNAmodification
levels (Figure 3D) were not reversed by knockdown of RAGE.

Effects of Glo-1 Knockdown on METTL3
Expression and m6A Levels in NIT-1 Cells
Glo-1 is the main component of the glyoxalase system and is
essential for MG detoxification in all mammalian cells (7).
Similar to previous studies (26–29), MG treatment decreased
Glo-1 expression in NIT-1 cells (Figures 4A, B). Interestingly,
Glo-1 knockdown further reduced METTL3 expression
(decreased by 50.2% versus MG treated, p < 0.05; Figures 4A,
C) and m6A RNA levels (decreased by 52.3% versus MG treated,
p < 0.05; Figure 4E) in MG-treated NIT-1 cells. These effects
were attributed to decreased MG degradation and an increased
intracellular MG concentration (increased by 23.7% versus MG
treated, p < 0.05; Figure 4D).

Loss of METTL3 Attenuated the
Expression of MafA
Similar to the results observed in specific b cells in the islets of
METTL3/14 knockout mice (18), we found that MafA protein
and mRNA expression levels were markedly downregulated in
NIT-1 cells after METTL3 knockdown (decreased by 44.6% and
57.0%, respectively, versus si-NC, p < 0.05; Figures 5A–D). We
conducted rescue experiments and observed that overexpression
of METTL3 reversed the decreases in MafA protein and mRNA
expression in MG-treated NIT-1 cells (increased by 38.5% and
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39.1%, respectively, versus MG, p < 0.05; Figures 5E-G). MeRIP-
qPCR confirmed that the m6A levels in MafA mRNA were
decreased by METTL3 silencing in NIT-1 cells under normal
culture conditions (decreased by 34.6% versus si-NC, p < 0.05;
Figure 5H). The m6A levels in MafA mRNA were increased by
upregulation of METTL3 in MG-treated NIT-1 cells (increased
by 81.2% versus MG, p < 0.05; Figure 5I). We conducted an
RNA stability assay to investigate the relationship between m6A
and MafA mRNA stability. As shown in Figure 5J, MafA mRNA
levels were decreased in METTL3-silenced NIT-1 cells after
ActD treatment, indicating METTL3 knockdown led to
reduced stability of MafA mRNA. MafA mRNA decay induced
by MG treatment in NIT-1 cells was significantly ameliorated by
transfection with Ad-METTL3 (Figure 5K). These results
indicate that METTL3 regulates MafA expression in an m6A-
dependent manner.

A Change in MafA Expression Was
Associated With METTL3-Regulated GSIS
From NIT-1 Cells
To test whether METTL3 regulates GSIS from NIT-1 cells
through MafA, rescue experiments were conducted by
transfecting NIT-1 cells transfected with both si-METTL3 and
either pcDNA or pcDNAMafA (Figures 6A–C). Overexpression
of MafA (pcDNA MafA) greatly improved the decrease in GSIS
triggered by METTL3 silencing in NIT-1 cells (increased by
36.7% versus si-METTL3 + pcDNA, p < 0.05). NIT-1 cells were
B C

D E F

A

FIGURE 2 | Effects of METTL3 on GSIS from pancreatic b cells. (A, B) Immunoblot of METTL3 protein expression in NIT-1 cells transfected with METTL3 siRNA (si-
METTL3) or a nonspecific control siRNA (si-NC), which was set to 1. (C) The GSIS index of NIT-1 cells transfected with si-METTL3 or si-NC. (D, E) Immunoblot of
METTL3 protein expression in NIT-1 cells (MG), NIT-1 cells transfected with METTL3 expression adenovirus (MG+Ad-METTL3), and NIT-1 cells transfected with a
nonspecific control adenovirus (MG+Ad-NC) that were treated with 1 mM of MG for 24 h. (F) The GSIS index in NIT-1 cells was transfected with Ad-METTL3 or Ad-
NC and treated with 1 mM of MG for 24 h. Results are presented as the means ± SD of n = 3–4 independent experiments. *p < 0.05.
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transfected with Ad-METTL3 + si-NC or Ad-METTL3 + si-
MafA and the GSIS index was measured (Figures 6D–F). The
reversal of the MG-induced GSIS decrease caused by METTL3
overexpression in NIT-1 cells was abrogated by knockdown of
MafA (decreased by 42.4% compared to MG + Ad-
METTL3, p < 0.05).
DISCUSSION

Accumulation of MG in plasma has been implicated in the
development of both DM and diabetic complications (5–7).
We previously showed that plasma MG levels are markedly
enhanced in patients with newly diagnosed T2DM, indicating
that MG accumulation plays an important role in the onset of
DM and not merely its complications (2). In fact, MG levels are
increased and insulin content and GSIS were reduced in
pancreatic islets isolated from a rat model with chronic MG
infusion-induced T2DM, suggesting that MG accumulation
leads to pancreatic b-cell dysfunction in T2DM (8). Therefore,
the current study was designed to explore the regulatory
mechanisms of MG b-cell dysfunction.

Although increasing evidence suggests that m6A plays a role
in many pathological processes in eukaryotic cells, studies on its
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roles in controlling pancreatic b-cell maturity and physiological
function have just begun (14). We reported here, for the first
time, that MG treatment significantly decreased m6A levels in
NIT-1 and b-TC-6 cells. Although MG treatment had no effect
on the expression of METTL14, FTO, and ALKBH5, it obviously
reduced METTL3 mRNA and protein expression. METTL3 and
METTL14 form stable heterodimers and maintain high levels of
m6A (30). METTL3 may be more important for regulating
pancreatic b-cell function than METTL14 because the increase
in blood glucose is higher in b-cell METTL3 knockout mice than
in b-cell METTL14 knockout mice (19, 20). Therefore, the
decrease in m6A levels in b cells was attributed to MG-induced
downregulation of METTL3 expression. Silencing of METTL3
impaired GSIS from NIT-1 cells under normal culture
conditions, whereas upregulation of METTL3 in NIT-1 cells
ameliorated the MG-induced decrease in GSIS. These data
suggest that METTL3 plays a significant role in MG-induced
reductions in pancreatic b-cell m6A levels and GSIS.

AGE-RAGE interaction stimulates the generation of reactive
oxygen species and inflammation mechanisms that enhance
AGE-induced cell and tissue injury (25). MG can increase
AGE accumulation and RAGE expression, resulting in human
endothelial cell injury (31, 32). RAGE-deficient mice have
characteristics that antagonize the decrease in insulin
B

C D

A

FIGURE 3 | Effects of RAGE knockdown on METTL3 expression and m6A RNA methylation levels in NIT-1 cells. (A–C) Immunoblotting of RAGE and METTL3
protein expression in NIT-1 cells transfected with RAGE siRNA (si-RAGE) or a nonspecific control siRNA (si-NC) and treated with 1 mM of MG for 24 h. (D) m6A
levels in total RNA from NIT-1 cells treated as described for (A–C). Results are presented as the means ± SD of n = 3–4 independent experiments. *p < 0.05.
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sensitivity caused by MG administration (33). Thus, we
investigated whether the MG-induced changes in m6A levels
and METTL3 expression were associated with RAGE. However,
RAGE silencing failed to reverse the MG-induced reductions in
METTL3 expression and m6A levels in RNA, indicating that
these m6A changes are not closely related to the RAGE pathway.

As described in our previous studies (34) and others (9),
incubation of pancreatic b cells with MG dramatically increased
intracellular MG content. Further experiments were performed
to determine whether the intracellular accumulation of MG in
NIT-1 cells is involved in the m6A-related changes caused by MG
treatment. The glyoxalase system detoxifies most cellular MG,
and Glo-1 converts MG into a nontoxic hemithioacetal
metabolite using glutathione (28, 29). Upregulation of Glo-1
reduced hyperglycemia-induced carbonyl stress, AGE
accumulation, and oxidative stress in diabetic rats (35). Similar
to previous studies (26–29), Glo-1 expression was markedly
suppressed in NIT-1 cells following MG treatment, which
promoted intracellular accumulation of MG. The results
showed that Glo-1 silencing increased the intracellular
concentration of MG and further reduced METTL3 expression
and m6A RNA levels. Taken together, our findings suggest that
the decreases in METTL3 expression and m6A content in NIT-1
cells after MG exposure may be attributed, at least in part, to the
increase in intracellular MG accumulation.

In a rat model of MG-induced T2DM, MafA expression was
reduced in pancreatic tissue (8, 36). We also confirmed that MafA
Frontiers in Endocrinology | www.frontiersin.org 785
mRNA and protein expression were decreased inMG-treated NIT-
1 cells. In the present study, METTL3 silencing markedly decreased
the half-life of MafA mRNA and protein levels in NIT-1 cells,
indicating that MafA might be a direct target of METTL3.
Moreover, upregulation of METTL3 reversed the MG-induced
reduction in MafA expression. The results of the MeRIP-qPCR
assay suggested that m6A levels in MafA mRNA were increased by
METTL3 overexpression in MG-treated NIT-1 cells. MafA mRNA
decay in NIT-1 cells induced by MG exposure was significantly
ameliorated by upregulation of METTL3. Therefore, we conclude
that MafA is a critical transcription factor regulated by METTL3
during MG-induced pancreatic b-cell damage.

MafA is not only a key activator of insulin transcription but
also a master regulator of genes involved in maintaining b-cell
function (37). Knockdown of MafA with siRNA led to impaired
insulin secretion in EndoC-bH1 cells (a human-derived b-cell
line) and human islets (38). Matsuoka et al. generated transgenic
db/db mice that specifically overexpress MafA in islet b cells and
found that these mice had significantly lower plasma glucose
levels, higher plasma insulin levels, and augmented islet b-cell
mass (39). This is consistent with our observations that MafA
overexpression reversed the b-cell GSIS impairment caused by
METTL3 silencing. MafA silencing significantly abolished the
protective effects of METTL3 upregulation against GSIS
reduction in MG-treated NIT-1 cells. Taken together, these
data indicated that changes in MafA expression are associated
with METTL3-regulated GSIS in NIT-1 cells.
B
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FIGURE 4 | Effects of Glo-1 knockdown on METTL3 expression and m6A RNA methylation levels in NIT-1 cells. (A–C) Immunoblotting of Glo-1 and METTL3 protein
expression in NIT-1 cells transfected with Glo-1 (si-Glo-1) or a nonspecific control siRNA (si-NC) and treated with 1 mM of MG for 24 h. (D) Intracellular MG levels in
NIT-1 cells were treated as described in (A–C). (E) m6A levels in total RNA from NIT-1 cells treated as described in (A–C). Results are presented as the means ± SD
of n = 3–4 independent experiments. *p < 0.05.
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FIGURE 5 | Loss of METTL3 attenuates the expression of MafA. (A–D) METTL3 and MafA protein and mRNA levels were measured by immunoblotting and qPCR,
respectively, in NIT-1 cells transfected with METTL3 siRNA (si-METTL3) or a nonspecific control siRNA (si-NC), which was set to 1. (E–G) MafA protein and mRNA
expression levels in NIT-1 cells transfected with Ad-METTL3 or a nonspecific control adenovirus (Ad-NC) and treated with 1 mM of MG for 24 h were measured by
immunoblotting and qPCR, respectively. (H, I) m6A MafA mRNA levels as detected by MeRIP-qPCR in NIT-1 cells transfected with si-METTL3 or si-NC, which was set to
1 (H), or Ad-METTL3 or Ad-NC and treated with 1 mM of MG for 24 h (I). (J, K) MafA mRNA as measured by qPCR in NIT-1 cells transfected with si-METTL3, si-NC,
Ad-METTL3, or Ad-NC and treated with ActD to block transcription. Results are presented as the means ± SD of n = 3–4 independent experiments. *p < 0.05.
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FIGURE 6 | Changes in MafA expression were associated with METTL3-regulated GSIS from NIT-1 cells. (A) Immunoblot of MafA expression in NIT-1 cells
transfected with si-METTL3 + pcDNA or si-METTL3 + pcDNA MafA. (B) Quantification of the immunoblot in (A). (C) The GSIS index of the cells described in (A). (D)
Immunoblot of MafA expression in NIT-1 cells transfected with Ad-METTL3 + si-NC or Ad-METTL3 + si-MafA and treated with 1 mM MG for 24 h. (E) Quantification
of the immunoblot in (D). (F) The GSIS index of the cells described in (D). Results are presented as means ± SD of n = 3‐4 independent experiments. *p < 0.05.
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Our study provides new insights into the cause of islet b-cell
dysfunction in patients with diabetes. The decrease in pancreatic
b-cell m6A levels could be partly attributed to MG accumulation
in pancreatic islets during DM development. Increasing METTL3
expression in islet b cells may be a novel method for ameliorating
MG-induced diabetic b-cell dysfunction. However, further animal
and clinical studies are required to confirm this finding.
CONCLUSION

In summary, the present study demonstrated, for the first time,
the connection betweenMETTL3-regulated m6A RNA levels and
MG-induced pancreatic b-cell insulin secretion dysfunction. We
found that treatment with MG reduced the m6A levels in b cells
by decreasing METTL3 expression. Upregulation of METTL3
ameliorated MG-induced impairment of insulin secretion in
pancreatic b cells by regulating MafA expression.
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Associations between rs3480
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polymorphisms of FNDC5 with
type 2 diabetes mellitus
susceptibility: a meta-analysis

Xianqin Yang1†, Li Ni2†, Junyu Sun3†,
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Wuhan University, Wuhan, China, 3College of Health and Nursing, Wuchang University of
Technology, Wuhan, China, 4Department of Pathology, Maoming People’ s Hospital,
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Background: FNDC5 is a novel and important player in energy regulation

related to glucose metabolism and insulin levels. Thus, it may affect the

incidence of type 2 diabetes mellitus (T2DM). Nevertheless, the association

between FNDC5 single nucleotide polymorphisms (SNPs) and susceptibility to

T2DM remains unclear. The aim of this meta-analysis was to explore whether

the SNPs, rs3480 and rs16835198, are associated with the risk of T2DM.

Methods: Studies published before February 1st, 2022 were screened to identify

the included studies. R software was also applied for calculation of odds ratio

(OR), 95% confidence interval (95% CI), heterogeneity, and sensitivity analysis.

Results: Seven studies for rs3480 (involving 5475 patients with T2DM and

4855 healthy controls) and five studies for rs16835198 (involving 4217

patients with T2DM and 4019 healthy controls) were included in this meta-

analysis. The results revealed a statistically significant association of rs3480

with T2DM under homozygote (GG vs AA: OR = 1.76, 95% CI = 1.31–2.37, P =

0.0002, I2 = 59%) genetic model. However, there was no statistically

significant correlation between rs16835198 and susceptibility to T2DM

under allelic (G vs T: OR = 1.33, 95% CI = 0.94–1.89, P = 0.11, I2 = 84%),
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heterozygote (GT vs TT: OR = 1.17, 95% CI = 0.80–1.69, P = 0.42, I2 = 71%),

homozygote (GG vs TT: OR = 1.35, 95% CI = 0.95–1.94, P = 0.10, I2 = 62%),

recessive (GG+GT vs TT: OR = 1.25, 95% CI = 0.88–1.79, P = 0.22, I2 = 72%),

and dominant (GG vs GT+GG: OR = 1.20, 95% CI = 0.96–1.50, P = 0.11, I2 =

46%) genetic models.

Conclusions: The present meta-analysis revealed that rs3480 in FNDC5 is

significantly associated with susceptibility to T2DM, while rs16835198 does not

show such an association.
KEYWORDS

polymorphism, type 2 diabetes mellitus, susceptibility, meta-analysis, FNDC5
1 Introduction

The number of patients with type 2 diabetes mellitus

(T2DM) is increasing worldwide, and T2DM has become one

of the most serious medical and health issues worldwide (1) .

According to the International Diabetes Federation (IDF), the

number of diabetes cases worldwide will reach 600 million by

2035 (2). Diabetes may be accompanied by a variety of

complications, such as stroke, blindness, kidney failure, and

myocardial infarction (3). Furthermore, it should be noted that

even in individuals with mild hyperglycemia (prediabetes), such

complication had been observed (4–6). These complications are

the main cause of death and disability in patients with diabetes

(4, 7). T2DM not only seriously affects the quality of life of

patients, but also brings heavy economic burden to societies and

families. Therefore, early detection of T2DM could have

important clinical significance, studying the etiology and

pathogenesis of T2DM is of great significance to the survival

and development of human beings.

Irisin, a novel intriguing myokine, was recently reported and

described by Bostrom et al. Irisin is released upon cleavage of the

plasma membrane protein fibronectin type III domain

containing protein 5 (FNDC5), whose gene expression is

suggested to be driven by muscle-specific transgenic

overexpression of the exercise-responsive transcriptional co-

activator peroxisome proliferator-activated receptor (PPAR)-g
co-activator-1a (PGC-1a) (5, 8). In an animal model of obesity

and T2DM, irisin intervention increases mitochondrial

uncoupling, mitochondrial oxidative metabolism, and fatty

acid oxidation in skeletal muscle (6, 9). Clinical studies have

discovered that there is an association between irisin levels and

metabolic disturbance. Its serum concentration is reduced in

patients with T2DM, obesity, metabolic syndrome, and

nonalcoholic fatty liver disease (7, 8, 10, 11). Furthermore,

young male athletes possess higher irisin levels than middle-
02
90
aged obese women (9, 12). Therefore, FNDC5 is considered an

attractive target for metabolic disease.

The incidence of T2DM is closely related to genetic and

environmental factors (10, 13). Searching for pathogenic genes

involved in T2DM and revealing the pathogenesis of T2DM at

the molecular level can provide help for early detection of

individuals at high risk of T2DM and prevention of

complications. Single nucleotide polymorphism (SNP) refers to

polymorphisms in the DNA sequence caused by variations in a

single nucleotide at the genomic level. SNPs are commonly

inherited in humans, accounting for more than 90% of all

known polymorphisms.

Several studies have evaluated the association of SNPs in

FNDC5 with susceptibility to T2DM. However, the results are

inconsistent. Therefore, the role of these FNDC5 SNPs in the

risk of T2DM remains unclear. Here, we conducted a meta-

analysis based on the available data to determine whether

FNDC5 rs3480 (G>A) and rs16835198 (G>T) SNPs are

associated with susceptibility to T2DM.
2 Methods

2.1 Guideline selection

In order to ensure the transparency and accuracy of the

reporting medical research, the present meta-analysis was

conducted following the PRISMA guidelines, as they are

appropriate for systematic reviews and meta-analyses (14, 15).
2.2 Literature search

PubMed, Embase, Cochrane, China National Knowledge

Infrastructure, and Chinese BioMedical Literature databases were
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used to retrieve literatures systematically. The language of the

studies was limited to Chinese and English. The search strategy

involved the use of the following terms: “FNDC5,” “fibronectin type

III domain containing protein 5,” “type 2 Diabetes mellitus,”

“T2DM,” “single nucleotide polymorphism,” and “SNP.”

Systematic retrieval was conducted until February 1st, 2022.
2.3 Inclusion criteria

The inclusion criteria were as follows: (1) case-control study

on the correlation between the SNPS, rs3480 and rs16835198,

and T2DM risk; (2) the diagnosis of T2DM conforms to WHO

diagnostic criteria; (3) the study population in the study is

consistent with Hardy-Weinberg Equilibrium (HWE); (4) the

literature provides genotypic and/or allelic frequencies of the

rs3480 and rs16835198 SNPs.

Studies were excluded if one of the following exclusion criteria

was fulfilled: (1) no control group; (2) comments, review,

abstracts, letters, conference presentations, and studies on

animal models; (3) lack of genotypic and/or allelic frequencies

of the rs3480 and rs16835198 SNPs. In case of duplicate

publications, the study with the largest sample size was included.
2.4 Data extraction and quality
assessment

Two authors (Yang and Ni) read the titles of the articles

independently and assessed the quality of the included articles. In

case of any disagreement, a decision was made after discussion.

The two authors extracted the following data from all included

articles: first author, year of publication, country of participants,

number of cases and controls, genotypic distribution in cases and

controls, genotyping methods, and HWE. An external referee was

invited in case of disagreements not resolved by both investigators.

We applied the Newcastle Ottawa scale (NOS) to evaluate

the quality of eligible studies from different aspects: (1) adequate

definition of case; (2) representativeness of the cases; (3)

selection of controls; (4) definition of controls; (5)

comparability of cases and controls; (6) ascertainment of

exposure; (7) same method of ascertainment for cases and

controls; (8) non-response rate. The NOS has a score range of

0 to 9, and ≥7 was considered of high quality (14, 16).
2.5 Statistical analysis

We employed R (version 4.0.3) software and meta package

for statistical analyses. To evaluate the strength of correlation

between rs3480, rs16835198, and T2DM under five genetic

models, odds ratios (ORs) and 95% confidence interval (CIs)

were calculated. Statistical significance was set at P < 0.05. Q test

and I2 statistic were used to assess heterogeneity among the
Frontiers in Endocrinology 03
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included studies. The heterogeneity was obvious if the P value of

the Q test < 0.1 or I2 ≥ 50% (16, 17).

The random-effect model was used when significant

heterogeneity was present, otherwise, the Mantel-Haenszel fixed-

effect model was used. Actually, considering the clinical

heterogeneity among the observational studies (e.g, sex, age,

adjusted confounders, and so on), it would be more proper to

use random-effects model first, even not statistical heterogeneity

was observed (18, 19), therefore, we used random-effects model to

calculate all the genetic models. Sensitivity analysis, test the stability

of results, was conducted using R software (4.0.3) and meta

package. The publication bias was assessed by Egger’s test (17, 20).
3 Results

3.1 Characteristics of the included
studies

Literature search was carried out according to the PRISMA

flow chart shown in Figure 1. A total of 27 potentially relevant

articles were found after the retrieval process. 15 articles were

selected for further analyses after exclusion of all duplicate

articles identified by screening through the titles and abstracts.

Another 12 articles were subsequently excluded after careful

reading of the abstracts and titles. 9 articles were finally included

in the present meta-analysis (21–29). Table 1 shows the qualities

of all included studies as determined by NOS evaluation (30).

Detailed information of the 9 included articles is presented

in Table 2.
3.2 Quantitative analysis

3.2.1 Association between rs3480 and
susceptibility to T2DM

Seven studies involving 5475 patients with T2DM and 4855

healthy controls were included in the meta-analysis to explore

the potential association between rs3480 and susceptibility

to T2DM.

The present meta-analysis discovered that the correlations

between an FNDC5 rs3480 (G/A) and susceptibility to T2DM in

homozygote (GG vs AA: OR = 1.76, 95% CI = 1.31–2.37, P =

0.0002, I2 = 59%) genetic model was statistically significant. In

contrast, no statistical significance was found for correlations

between rs3480 and T2DM susceptibility in allelic (G vs A: OR =

1.21, 95% CI = 0.98-1.50, P = 0.08, I2 = 82%), heterozygote (GA

vs AA: OR = 1.14, 95% CI = 0.86–1.52, P = 0.35, I2 = 65%),

recessive (GG vs GA+AA: OR = 1.12, 95% C = 0.91-1.37, P =

0.28, I2 = 68%), and dominant (GG+GA vs AA: OR = 1.17, 95%

CI = 0.98–1.39, P = 0.09, I2 = 23%) genetic models. Our results

suggested that people carrying the G allele in rs3480 had higher
frontiersin.org
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susceptibility to T2DM. The forest plots are presented

in Figure 2.

There was obvious heterogeneity in the allelic, heterozygote,

homozygote, and recessive models; therefore, subgroup analysis

was performed. As shown in Figure 3, rs3480 possessed a

significant association with susceptibility to T2DM in Chinese

individuals under the homozygote (GG vs AA: OR = 2.30, 95%

CI = 1.18-4.49, P = 0.01, I2 = 62%) models. Sensitivity analyses

were further applied for different genetic models. As shown in

Figure 4, no significant heterogeneity was observed in any of the

genetic models after excluding each study.

3.2.2 Association between rs16835198 and
T2DM risk

A total of five studies involving 4217 patients with T2DM

and 4019 healthy controls were finally included to assess the

potential correlation between rs16835198 and susceptibility to

T2DM. Figure 5 showed that there was no association between

rs16835198 and susceptibility to T2DM under allelic (G vs T:

OR = 1.33, 95% CI = 0.94–1.89, P = 0.11, I2 = 84%),
Frontiers in Endocrinology 04
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heterozygote (GT vs TT: OR = 1.17, 95% CI = 0.80–1.69, P =

0.42, I2 = 71%), homozygote (GG vs TT: OR = 1.35, 95% CI =

0.95–1.94, P = 0.10, I2 = 62%), recessive (GG+GT vs TT: OR =

1.25, 95% CI = 0.88–1.79, P = 0.22, I2 = 72%), and dominant

(GG vs GT+GG: OR = 1.20, 95% CI = 0.96–1.50, P = 0.11, I2 =

46%) genetic models. Figure 6 exhibited the results of

sensitivity analyses for the included studies, there was no

heterogeneity for all the genetics models after excluding

each study.

No obvious asymmetry was observed in the Egger’s test for

any comparison, which suggested that the findings were unlikely

to be influenced by publication bias. The results of rs3480 and

rs16835198 were summarized in Table 3.
4 Discussion

T2DM is a complex polygenic metabolic disease caused by

the interaction of genetic and environmental factors. Unhealthy
FIGURE 1

The Flow chart showing the study selection process.
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TABLE 1 The newcastle-ottawa quality assessment scale.
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(23)

* * *
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(24)

* *

Tang
(21)

* *

Al-Daghri
(25)

* *

Allah
(26)

* *

Khidr
(22)

* *

Pan
(27)

*

Zabibah
(28)

* *

*Represents one scores following the Newcastle-Ottawa. Quality Assessment Scale.
**Represents two scores following the Newcastle-Ottawa Quality Assessment Scale.
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lifestyles increase the risk of T2DM, but not all individuals with

unhealthy lifestyle habits develop the disease. Therefore, genetic

factors play a very important role in the onset and progression of

T2DM, which needs to be further studied. SNPs are

polymorphisms of the DNA sequence caused by variations in

a single nucleotide at the genomic level. They are commonly

inherited in humans, accounting for more than 90% of all

known polymorphisms.

In 2007, Sladek et al. used Genome Wide Association Study

(GWAS) to identify diabetes susceptibility genes in the French

population. Several research groups further identified and

confirmed SNPs associated with diabetes susceptibility. Thus,

the association between SNPs and T2DM susceptibility is being

gradually revealed (31–33). FNDC5 is a precursor of irisin and

can significantly disrupt metabolism. In an obese mouse model,

overexpression of FNDC5 enhances energy expenditure,

lipolysis, and insulin sensitivity, and improves hyperlipidemia,

hyperglycemia, and hyperinsulinemia (15). A high-fat diet

increases the mRNA and protein levels of FNDC5 in muscle

tissue of obese mice (34). Moreover, FNDC5 protein levels are

increased in muscle tissue after endurance training.

Multiple SNPs significantly associated with metabolic

disease susceptibility in different populations have been found
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in the FNDC5 gene. Rs16835198 was found to be significantly

associated with insulin sensitivity and obesity in the German and

Egyptian populations, respectively (35). The results showed a

significant association of the rs16835198 G allele with fasting

insulin levels and body mass index in 6822 Chinese Han

individuals (21). The G allele of rs3480 has been associated

with elevated hemoglobin a1c levels in Brazilian women with

T2DM (23). In addition, the rs3480 GG genotype has been

associated with a reduced risk of obesity and a lower body weight

index in the Saudi population. Therefore, SNPs in FNDC5 are

critical for regulating metabolic homeostasis (36). Our meta-

analysis showed that rs3480 is associated with susceptibility to

T2DM, and that people carrying the G allele have a higher

susceptibility to T2DM. Previous studies have shown that miR-

135-5p preferentially binds to the G allele of rs3480 after

upregulation, thus enhancing the attenuating effect of miR-

135-5p on FNDC5 and reducing the FNDC5 mRNA levels,

which results in a weakened regulatory effect of FNDC5 on

metabolic diseases (37). In addition, miR-135-5p is upregulated

in serum and renal tissue of patients with diabetic nephropathy

(38). Taken together, these results suggest that the G allele of

rs3480 is detrimental to FNDC5 expression, which may explain

the association with T2DM.
TABLE 2 Characteristics of included studies.

Author(year) Country Case/Control Genotype distribution Genotyping methods HWE

Case Control

rs3480

GG AG AA GG AG AA

Brondani (23) Southern Brazilian 942/434 178 359 405 79 185 170 TaqMan assay >0.05

Gao (24) China 281/286 23 110 148 22 114 150 Mass
array

>0.05

Tang
(21)

China 3397/3405 267 1275 1855 225 1306 1874 Mass
array

>0.05

Al-Daghri (25) Saudi 376/410 78 181 117 88 186 136 TaqMan assay >0.05

Allah
(26)

Egypt 71/70 24 35 12 10 28 32 TaqMan assay >0.05

Pan
(27)

China 358/200 30 133 195 13 76 111 Mass
array

>0.05

Zabibah (28) Iraq 50/50 7 25 18 4 18 28 PCR-
RFLP

>0.05

rs16835198

GG GT TT GG GT TT

Tanisawa (29) Japan 82/81 32 35 15 19 50 12 TaqMan assay >0.05

Gao (24) China 280/286 83 150 47 81 131 74 Mass
array

>0.05

Tang
(21)

China 3397/3402 929 1661 807 899 1735 768 Mass
array

>0.05

Khidr
(22)

Egypt 100/50 54 37 9 18 21 11 TaqMan assay >0.05

Pan
(27)

China 358/200 97 178 83 50 96 54 TaqMan assay >0.05
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In addition, our meta-analysis showed that rs16835198 is

not associated with susceptibility to T2DM. Rs16835198 is

located on the 3’ region of the FNDC5 gene, which is unlikely

to affect the amino acid sequence of the protein products (39).

Rs16835198 may not be significantly related to FNDC5

expression changes; therefore, rs16835198 is not strongly

associated with susceptibility to T2DM. However, the number
Frontiers in Endocrinology 07
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of articles included in this study is very limited and further

exploration is needed.

This meta-analysis has some limitations. First, it included

nine articles with large and heterogeneous populations,

including three studies on Chinese Han individuals, two on

Egyptian populations, and four on individuals from Southern

Brazil, Saudi Arabia, Iraq, and Japan each. The differences
B

C

D

E

A

FIGURE 2

Forest plots of the polymorphism of rs3480 and the T2DM risk under five genetic models (A-E).
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B

C

D

E

A

FIGURE 3

Forest plots of the polymorphism of rs3480 and the T2DM risk under five genetic models in Chinese. (A) allelic, (B) heterozygote, (C)
homozygote, (D) recessive, and (E) dominant genetic models.
FIGURE 4

Sensitivity analysis of studies included in analysis of rs3480 and T2DM risk.
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among races may have affected the results. The best approach

would have been to conduct subgroup analysis for each race, but

the literature volume of the corresponding subgroups was not

sufficiently large. Therefore, a comprehensive analysis can only

be conducted after the inclusion of more articles. Second, only
Frontiers in Endocrinology 09
97
English and Chinese articles were included in this meta-analysis,

and data presented in other languages were not included.

In conclusion, we found that the rs3480 G allele in FNDC5

may confer moderate risk for T2DM. Further investigation of

these SNPs may improve our understanding of the occurrence
B

C

D

E

A

FIGURE 5

Forest plots of the polymorphism of rs16835198 and the T2DM risk under five genetic models. (A) allelic, (B) heterozygote, (C) homozygote,
(D) recessive, and (E) dominant genetic models.
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and progression of T2DM. We are aware that the present meta-

analysis results were derived from a limited sample size.

Therefore, future analyses with larger sample sizes and

including more studies are required to define the associations

between rs3480 and T2DM risk.
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FIGURE 6

Sensitivity analysis of studies included in analysis of rs16835198 and T2DM risk.
TABLE 3 Summary OR and 95% CI of rs3480, rs16835198 polymorphisms and T2DM.

SNP Genetic models n OR 95% CI Pvalue I2 P publication bias(Egger)

rs3480

Allelic
model

G vs A 7 1.21 0.98-1.50 0.08 82% 0.146

Heterozygote model GA vs AA 7 1.14 0.86-1.52 0.35 65% 0.624

Homozygote model GG vs AA 7 1.76 1.31-2.37 0.0002* 59% 0.229

Dominant model GG+GA vs AA 7 1.17 0.98–1.39 0.09 23% 0.402

Recessive model GG vs GA+AA 7 1.12 0.91-1.37 0.28 68% 0.586

rs16835198

Allelic
model

G vs T 5 1.33 0.94-1.89 0.11 84% 0.620

Heterozygote model GT vs TT 5 1.17 0.80-1.69 0.42 71% 0.098

Homozygote model GG vs TT 5 1.35 0.95-1.94 0.10 62% 0.610

Dominant model GG+GT vs TT 5 1.20 0.96-1.50 0.11 46% 0.384

Recessive model GG vs GT+GG 5 1.25 0.88-1.79 0.22 72% 0.810
Bold values represents significant association.
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physiology: A review
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Type 2 diabetes mellitus, obesity and metabolic syndrome are becoming more

prevalent worldwide and will present an increasingly challenging burden on

healthcare systems. These interlinked metabolic abnormalities predispose

affected individuals to a plethora of complications and comorbidities.

Furthermore, diabetes is estimated by the World Health Organization to have

caused 1.5 million deaths in 2019, with this figure projected to rise in coming

years. This highlights the need for further research into the management of

metabolic diseases and their complications. Studies on circadian rhythms,

referring to physiological and behavioral changes which repeat approximately

every 24 hours, may provide important insight into managing metabolic disease.

Epidemiological studiesshowthatpopulationswhoareat riskofcircadiandisruption

suchas night shiftworkers and regular long-haulflyers are also at anelevated risk of

metabolic abnormalities such as insulin resistance and obesity. Aberrant expression

ofcircadiangenesappears tocontribute to thedysregulationofmetabolic functions

such as insulin secretion, glucose homeostasis and energy expenditure. The

potential clinical implications of these findings have been highlighted in animal

studies and pilot studies in humans giving rise to the development of circadian

interventions strategies including chronotherapy (time-specific therapy), time-

restricted feeding, and circadian molecule stabilizers/analogues. Research into

these areas will provide insights into the future of circadian medicine in metabolic

diseases. In this review, we discuss the physiology of metabolism and the role of

circadian timing in regulating thesemetabolic functions. Also,we review the clinical

aspects of circadian physiology and the impact that ongoing and future research

may have on the management of metabolic disease.

KEYWORDS

circadian rhythm, pancreas, insulin, metabolism, obesity
Introduction

Diabetes mellitus is estimated to affect 415 million adults worldwide,

approximately 90% of whom have type 2 diabetes (1). Diabetes can lead to

microvascular (e.g. retinopathy, nephropathy and neuropathy) and macrovascular

complications which substantially increase the risk of developing cardiovascular
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disease and can substantially decrease the quality of life of

these individuals (2). Managing diabetes and the associated

complications will introduce more strain on healthcare

systems worldwide as this disease becomes more prevalent

(3). This highlights the need for both determining

the importance of risk factors, which may modulate

susceptibility to disease, and management of the metabolic

syndrome (referring to metabolic abnormalities listed in

Figure 1, which together increase the risk of cardiovascular

diseases and type 2 diabetes) , obesity and type 2

diabetes (T2DM).

Many physiological processes , including energy

expenditure and glucose homeostasis are regulated by

circadian rhythms (4, 5), which are 24-hour daily cycles of

physiological and behavioral patterns (6). The circadian

rhythm apparatus consists of a central master clock located

in the suprachiasmatic nuclei (SCN) within the hypothalamus,

which synchronizes peripheral oscillators located in various

tissues such as the liver, pancreas, adipose tissue and skeletal

muscle. The SCN is entrained by light (7, 8), which allows

synchronization with the external environment i.e. the 24-

hour light-dark cycle governed by the Earth’s rotation. This

directs the central and peripheral clocks to adapt to changes in

light, optimizing physiological processes to these daily cycles.

Through a number of regulatory mechanisms (e.g. endocrine,

neurological, thermal), the SCN coordinates responses

with the peripheral clocks, which have their own phases, to

ensure synchronized daily rhythms are maintained (9). In
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addition, peripheral rhythms can also be modulated, for

example, by nutrient sensing (i.e. from food intake),

hormonal cues and temperature. Although the SCN acts as

the master pacemaker in the human body, it is evident

that circadian oscillations are observable in almost every cell

of the body and these rhythms may persist in isolation from

the SCN (10).

Disruption of circadian rhythms exacerbates metabolic

diseases that include T2DM, obesity and metabolic syndrome

in both animal models and humans (11–15) (Figure 1).

Experimental and epidemiological studies show that night

shift-workers are more likely to develop metabolic

abnormalities, predisposing these individuals to developing

T2DM compared to daytime workers (16–22). This elevated

risk of developing T2DM is also seen in populations with social

jetlag, a condition characterized by disruption to an individual’s

sleeping pattern, and thus circadian rhythms, due to social

engagements, leading to individuals feeling “jet lagged” or

tired (20, 21, 23).

Many central and peripheral hormones that influence

metabolism exhibit circadian rhythmicity. This review will

focus on the current understanding of how circadian rhythms

can influence pancreatic physiology and the consequent effects

on metabolism and how this knowledge may be used to enhance

clinical management of T2DM, obesity and metabolic

syndrome. While we will focus on the pancreas in this review,

other metabolic tissues e.g. liver, skeletal muscle and adipose

tissue are also altered by circadian rhythms (Figure 2). While
FIGURE 1

Influences on, and consequences of, circadian rhythm disruption. Both endogenous and external factors can predispose individuals to circadian
disruption. This can cause dysfunction of peripheral oscillators, which are involved in the regulation of metabolic functions such as body weight
homeostasis, glucose metabolism and b-cell function. Individuals who experience circadian disruption, which may be through phase delays/
advances or by changes in amplitude (difference between peak and trough of the rhythms) are at an elevated risk of developing metabolic
abnormalities, which can lead to metabolic syndrome and T2DM.
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providing background information on blood glucose

homeostasis and insulin resistance to those less familiar with

these concepts Section 2: (Pancreatic physiology), we will also

highlight key ways circadian rhythms are disrupted and how

they interact to increase the risk of obesity and T2DM (Figure 3)

discussed in Section 3 (Circadian rhythms in the pancreas), 4

(Molecular circadian rhythms in the pancreas) and 5

(Modulation of circadian rhythm).
Pancreatic physiology

The pancreas is a multifunctional organ which regulates

metabolism and digestion through several endocrine and

exocrine mechanisms (24). These tightly regulated,

interrelated mechanisms are necessary for blood glucose

homeostasis, lipolysis, and food intake (4, 5). Histologically,

the pancreas contains clusters of exocrine cells known as acini

which surround a network of interconnected ducts (25).

The acini secrete inactive forms of pancreatic enzymes

known as zymogens which subsequently enter the gut and

become active digestive enzymes, including lipase, amylase

and proteases. The endocrine cells of the pancreas are

arranged in clusters known as the islets of Langerhans

which contain a, b, g and d cells (26). Each of these cell

populations within the islets secrete different hormones,

as discussed later. Together, these pancreatic hormones

regulate blood glucose homeostasis, food intake and insulin

responses and are therefore integral to understanding T2DM

and metabolic syndrome.
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Introduction to blood
glucose homeostasis

Blood glucose homeostasis is a highly regulated process,

strongly influenced by both local (i.e. pancreas) and distal (i.e.

liver, intestine, brain) signals (Figure 4). In this section, we

discuss the role different hormones have on regulating

blood glucose.

In normal pancreatic physiology, the b cells of the islets of

Langerhans express glucose transporter type-2 (GLUT-2)

molecules which detect changes in blood glucose levels, having

high capacity and low affinity for glucose (27). Glucose enters the

b cells through these high-capacity transporters and

subsequently enters the glycolytic pathway and mitochondrial

metabolism, which increases the cytoplasmic concentration of

ATP leading to the gating of ATP-sensitive potassium channels

(KATP). The subsequent plasma membrane depolarization opens

voltage-dependent calcium channels (VDCC) and allows an

influx of calcium into the cell. The increased intracellular

concentration of calcium causes the fusion of insulin granules

with the cell membrane and the secretion of insulin.

Insulin exerts its effect on cells by binding to insulin

receptors on the cell surface. These insulin receptors

are homodimers, consisting of two a and two b subunits.

Insulin binds to the extracellular a subunits, leading to

autophosphorylation of the b subunits that are tyrosine

receptor kinases (RTKs). These RTKs phosphorylate insulin

receptor substrate (IRS) that activates downstream pathways

mediating the cellular effects (28). Insulin acts on several body

tissues including the liver, adipose tissue and skeletal muscle to
FIGURE 2

Circadian influences on different metabolic tissues. Light is the main entrainment factor for the SCN, the master pacemaker of the circadian
system, which, through a number of signals e,g. hormones and neurotransmitters, synchronizes the circadian rhythms of peripheral tissues to
light exposure. Crosstalk between these peripheral tissues and the brain enable feedback to modulate these rhythms e.g.the hormones insulin,
ghrelin, leptin and cortisol provide feedback to the arcuate nucleus in the brain. There are many peripheral tissues, which regulate metabolic
functions, including the liver, pancreas, skeletal muscle and adipose tissue, each of which exhibit their own rhythmicity. Together, these
peripheral rhythms regulate many metabolic functions, including glucose homeostasis, insulin secretion and fatty acid metabolism.
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allow the entry of glucose into these cells to undergo glycolysis

and mitochondrial metabolism or anabolic processes such as

glycogenesis or lipogenesis (29). Importantly, insulin inhibits

hepatic gluconeogenesis and glucose secretion, regulating blood

glucose levels. The liver is also sensitive to decreased blood
Frontiers in Endocrinology 04
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concentrations of insulin, and this stimulates glucose synthesis

and secretion. Insulin receptors are expressed throughout

different regions of the brain (30). In the arcuate nucleus of

the hypothalamus (ARC), insulin modulates anorexigenic and

orexigenic neuronal activity. Anorexigenic neurons (pro-
FIGURE 3

Circadian rhythms and their disruption: Topics to be discussed in this review. Circadian rhythms, influenced by light/dark cycles and diet and
time of food intake, control many pancreas functions. Disruption to these circadian influences (altered light exposure, shift work/jet lag, genetic
mutations) can lead to weight gain and dysregulated blood glucose homeostasis increasing the risk of developing obesity and T2DM. For
information related to these factors altering the circadian rhythms please see the specific sections mentioned above within the review. Section
3: Circadian rhythms in the pancreas, Section 4: Molecular circadian rhythms in the pancreas and Section 5: Modulation of circadian rhythm.
FIGURE 4

Interactions regulating blood glucose homeostasis. Blood glucose homeostasis is controlled by many signals both locally within the pancreas,
and more distally, from the brain, liver, muscle, intestine, stomach and adipose tissue. Within the pancreatic islets, the a cells secrete glucagon,
the b cells secrete insulin (and amylin), gcells secrete pancreatic polypeptide and the d cells secrete somatostatin. In response to high glucose
e.g. from dietary intake, the islet bbcells secrete insulin, which is detected by multiple tissues in the periphery, leading to the synthesis or
induction of many molecules/pathways e.g. lipogenesis and gluconeogenesis, as well as the inhibition of others e.g. glycogenolysis. Importantly,
there are many mechanisms of regulation to control the secretion of insulin both locally (e.g. glucagon and somatostatin) and more distally, e.g.
intestine/stomach via hormones (e.g. grehlin and glucocorticoids) and incretins (GIP/GLP-1). Exogenous circadian modulation factors such as
light and food intake (shown in purple) can also regulate blood glucose homeostasis, as can endogenous factors such as glucocorticoids, which
also show rhythmicity. Black arrows indicate induction, red lines indicate inhibition. .
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opiomelanocortin (POMC) and cocaine–amphetamine-

regulated-transcript (CART)) are stimulated by insulin whilst

orexigenic neurons [neuropeptide Y (NPY) and agouti-related

peptide (AgRP)] are inhibited (31). These actions

simultaneously decrease food intake and increase energy

expenditure. Leptin, a hormone released by adipose cells and

also controlled in a circadian manner (32), exerts a similar effect

by stimulating POMC and CART, whilst inhibiting NPY

neurons (33). Together leptin and insulin act as signals of

adiposity which allow the body to regulate adipose tissue

mass (34).

Glucagon, another pancreatic hormone, is secreted by a cells

in the pancreatic islets in response to decreased blood glucose

levels (35). It opposes the action of insulin in glucose control by

stimulating glucose synthesis and secretion. Glucagon also

stimulates ketogenesis and lipolysis in the liver. Glucagon

levels in the hepatic portal vein are detected by the liver and

this signal is relayed centrally via the vagal afferents to the ARC

to reduce meal sizes by stimulating postprandial satiety (36).

Additionally, glucagon is able to cross the blood-brain barrier

(BBB) and has been shown to activate GPCR pathways in the

ARC in animal models (37). This implies that glucagon may

have a direct effect on the CNS to regulate food intake.

The hormone amylin is co-secreted with insulin by the

pancreatic b cells, reducing food intake by inhibiting

orexigenic neurons in the ARC (38). Amylin also activates the

area postrema (AP) in the medulla oblongata of the brainstem to

slow gastric emptying, inhibit gastrointestinal secretions and

inhibit the postprandial secretion of glucagon (39).

Somatostatin, a hormone secreted by pancreatic d cells,

regulates digestion, food intake and glucose metabolism

through endocrine, exocrine and neurological mechanisms.

This hormone inhibits the secretion of the insulin and

glucagon as well as prolactin, thyroid stimulating hormone,

gastrin and secretin. In the gut, somatostatin inhibits digestive

secretions including pancreatic enzymes, gastric acid and bile.

Corticosteroids, produced in the adrenals, regulate a variety

of physiological processes including stress responses, immune

responses and inflammation, blood glucose homeostasis and

electrolyte balance (40). The secretion of these hormones is

also regulated by the circadian clock and follows a 24-hour cycle

(41, 42). The two main classes of corticosteroids are

mineralocorticoids and glucocorticoids (43). Whereas

mineralocorticoids, such as aldosterone, regulate fluid and

electrolyte balances by modulating the activity of the renal

tubules (44), glucocorticoids have anti-inflammatory effects

and also regulate carbohydrate, protein and lipid metabolism

(45). Cortisol is the main endogenous glucocorticoid in human

physiology and is also released as part of the stress response,

which in the presence of hypoglycemia, increases blood glucose

levels, in both stress and hypoglycaemia, by stimulating

gluconeogenesis (46).
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Incretins are peptide hormones that are secreted by gut cells

postprandially to regulate blood glucose levels and nutrient

absorption (47). The two main incretins are glucagon-like

peptide-1 (GLP-1) and gastric inhibitory peptide (GIP) (48,

49), and they decrease blood glucose levels by facilitating the

secretion of insulin from pancreatic b cells (50). GLP-1 also

inhibits the secretion of glucagon by pancreatic a cells. In

addition, incretins also slow the rate of gastric emptying to

regulate the rate of nutrient absorption (51). Both GLP-1 and

GIP are inactivated by dipeptidyl peptidase-4 (DPP-4) (47).

Several GLP-1 analogues and DPP-4 inhibitors are used

clinically in the management of T2DM (52). Preliminary

reports indicate that GIP analogues may also be effective in

the management of T2DM, although further investigation is

needed to elucidate the clinical efficacy of these drugs (53–56).

Ghrelin initiates appetite by stimulating orexigenic NPY

neurons and inhibiting POMC neurons in the ARC, and is

also secreted by gastrointestinal cells, located predominantly in

the stomach. Ghrelin also raises blood glucose levels by

inhibiting glucose-stimulated insulin secretion (GSIS) and

impairing glucose tolerance (57, 58).
An introduction to insulin resistance

Insulin resistance, a core component in the pathophysiology

of T2DM, is associated with the metabolic syndrome (MS) and

obesity (59), and influenced by many factors (Figure 5). Insulin

resistance occurs in the presence of chronic energy excess, which

leads to accumulation of ectopic lipids in hepatic and skeletal

muscle tissue, impairing insulin signaling in these tissues,

resulting in hyperglycemia. Although insulin resistance and

obesity are strong risk factors for T2DM, these factors alone

are not sufficient to produce hyperglycemia (60). b cell

dysfunction in the islets of Langerhans is also required to

produce T2DM, although the degree of b cell function and

insulin resistance varies between individuals. b cell dysfunction

results from an inability to detect elevated glucose levels to

stimulate an appropriate secretion of insulin (59), which

exacerbates hyperglycemia.

The mechanisms of b cell dysfunction are not fully

understood. A number of factors are believed to contribute to

this phenomenon, including proinflammatory cytokines which

are associated with obesity and induce mitochondrial stress in b
cells (61). Macrophage infiltration into adipose tissue is

considered to be the main source of cytokines in obese

individuals, with both macrophage infiltration into the adipose

tissue and cytokine secretion, shown to be modulated by

circadian rhythms (62). Thus, their immune rhythms may also

play an important role in b cell dysfunction. Chronic exposure to
hyperglycemia causes oxidative stress which damages the

organelles such as the mitochondria and endoplasmic reticula,
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leading to the apoptosis of these cells. Inflammation and

oxidative stress contribute to the accumulation of reactive

oxygen species in b cells, which hinders the mitochondrial

electron transport chain and further damages organelles, thus

exacerbating b cell dysfunction.

Although obesity and insulin resistance are risk factors for

developing T2DM, not everyone who has these risk factors will

progress to developing this condition (63). Indeed, some insulin

resistant, obese individuals remain euglycemic because their b
cells compensate by secreting more insulin. Genetic factors are

determinants of whether or not b cell dysfunction develops in

these individuals and there are several genetic variants which

may protect or predispose to T2DM (64, 65).

Dietary factors are key risk factors for developing insulin

resistance and b cell dysfunction (66). For example diets

containing high amounts of saturated fats cause increased

levels of circulating fatty acids, which is a risk factor for

developing insulin resistance (67). Fatty acids compete with

glucose for uptake and metabolism by tissues. Therefore,

hyperglycemia wil l further increase free fatty acid

concentrations in the blood, leading to a glucolipotoxic state

which is toxic to b cells (59).
Circadian rhythms in the pancreas

Blood glucose homeostasis and insulin resistance are

strongly influenced by both local (i.e. pancreas) and distal (i.e.
Frontiers in Endocrinology 06
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liver, intestine, brain) circadian rhythms, impacting multiple cell

types and the secretion of many hormones (Figures 4, 5).

It is clear that the secretion of insulin and glucagon, insulin

sensitivity and glucose tolerance all display circadian

rhythmicity (68–73), which can be disrupted in individuals

with T2DM and their first degree relatives (74). Glucagon

secretion is also controlled in a rhythmic manner; however,

the circadian rhythms in both b and a cells are in different

phases allowing them to respond accordingly to the local

changes in glucose and insulin concentrations respectively

(75). Bilateral thermic SCN ablation in rats has demonstrated

the role of the central clock in glucose metabolism as in these

rats, the diurnal patterns of glucose levels and insulin and

glucagon secretion became arrythmic (70, 76). Furthermore,

this SCN ablation caused desynchrony between peripheral

clocks, indicating that the SCN master pacemaker maintains

synchronization under normal physiological conditions (77, 78).

In addition to this, cortisol is secreted in a rhythmic, diurnal

manner, with peak levels occurring shortly after waking in the

morning (79, 80). Circadian disruption and misalignment are

associated with aberrant cortisol secretion patterns (81), while a

flattened diurnal cortisol curve and a diminished cortisol

awakening response have both been associated with T2DM

(82–84).

Both GIP and GLP-1 display circadian rhythmicity in

humans and disruptions of these secretory patterns have been

associated with obesity and T2DM (85–87). Furthermore, it has

been postulated that GLP-1 is a key component of peripheral
FIGURE 5

Factors influencing insulin resistance. Multiple factors may contribute to the development of insulin resistance. Excess food intake and the type
of diet eaten can promote the accumulation of lipids in tissues, reducing insulin signaling and causing hyperglycemia and insulin resistance.
Chronic hyperglycemia induces b cell stress, leading to b cells that fail to secrete sufficient insulin to maintain euglycemia, or exhausted/
destroyed b cells, which do not secrete insulin, further promoting hyperglycemia. Genetics play an important role as some individuals may
develop insulin resistance but remain euglycemic. Immune responses, particularly cytokines secreted from macrophages, can also promote
adiposity and insulin resistance. Responses to food intake and immune responses (shown in purple) can be altered by the time of day and thus
circadian rhythms may alter these responses. Black arrows indicate induction, red lines indicate inhibition.
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metabolic clocks, which entrains pancreatic, hepatic and gut

clocks to daily patterns of nutrient intake (88, 89).

Ghrelin secretion oscillates in a circadian pattern which is

reciprocally correlated to insulin secretion patterns (90).

Immunolabelling studies show that ghrelin-responsive neurons

in brain centers, including the ARC, receive direct synaptic input

from the SCN, indicating that the downstream effects of ghrelin

are regulated by the circadian timing system (91).

Thus, the regulation of blood glucose homeostasis is strongly

influenced by circadian rhythms, both directly in the pancreas

and through influences in other peripheral tissues i.e. the

intestine, brain and liver. The successful coordination of these

rhythms between the different tissues is paramount for

maintaining good health. Preclinical animal model as well as

human studies have been performed to investigate the role of the

circadian molecular clock in regulating glucose homeostasis,

insulin sensitivity and energy expenditure as discussed in more

detail next.
Molecular circadian rhythms in
the pancreas

Circadian rhythms are coordinated by tightly regulated

central and peripheral clocks which respond to environmental

and behavioral cues such as light, food intake and sleep-wake

cycles (92). At the molecular level (Figure 6), Brain and Muscle

Aryl hydrocarbon receptor nuclear translocator (Bmal) 1 and 2,

Circadian Locomotor Output Cycles protein Kaput (Clock),

Cryptochrome (Cry) 1 and 2, Period (Per) 1-3 genes regulate

circadian rhythms via transcriptional-translational feedback

loops (92). CLOCK and BMAL1 form heterodimers which

bind to E-box sequences (CANNTG, where N is any

nucleotide) to promote the transcription of Per and Cry genes.

After translation, PER and CRY proteins form heterodimers in

the cytoplasm and subsequently translocate into the nucleus to

inhibit CLOCK : BMAL1 complexes from promoting further

transcription. This cyclical regulation of transcription is

achieved through modulating clock-specific and ubiquitous

histone modifying factors. For example, CLOCK contains a

histone-acetyltransferase (HAT) domain and also recruits

histone 3 (H3) methyltransferase MLL1 and JARID1a, which

inhibits histone deacetylase 1 (HDAC1) promoting CLOCK :

BMAL1 activation (93–95), while PER1, recruits the SIN3A/

HDAC1 complex which prevents CLOCK : BMAL1 complexes

from binding to promoter regions (96).

CLOCK : BMAL1 complexes also promote the transcription

of the nuclear receptors REV-ERBa/b and retinoic acid

receptor-related orphan receptors (RORs) a/b. ROR proteins

encourage the transcription of BMAL1 whereas REV-ERB

proteins inhibit transcription (97, 98). These opposing factors

compete for the ROR Response Element (RORE) binding sites
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(AGGTCA preceded by a 5 base pair A/T rich sequence). ROR

also promotes the transcription of Nuclear factor, interleukin 3

regulated (Nfil3), which suppresses the transcription of Per and

Cry genes (99) and more recently has also been shown to

influence intestinal lipid uptake and obesity (100). Thus, the

circadian clock genes modulate susceptibility to metabolic

disease, as shown in both mouse and human genetic studies.
Mouse circadian genetic studies

Studies of gene-deficient mice have identified that deletion,

or mutation, of any core circadian gene can lead to altered

glucose homeostasis or weight gain. In this section, we discuss

the impact these genes individually have on metabolic

circadian functions.

Studies on homozygous Clock mutant mice, characterized

by lengthened circadian periods due to a deletion of exon 19 and

amino acid 51 in the C-terminal activation domain of clock,

show that circadian feedback loops have a considerable role in

regulating glucose metabolism (101, 102). These mice

demonstrate hyperphagia, dyslipidemia, hyperglycemia and

hyperinsulinemia, all of which are associated with type 2

diabetes, obesity and metabolic syndrome. Interestingly, the

clock mutation in these mice also reduces islet size and b cell

proliferation (13), indicating an important role for circadian

rhythms in both islet and b cell development. This suggests

circadian rhythm modulation may promote b cell development

and expansion, thus limiting metabolic dysfunction.

Mice deficient in bmal1 displayed impaired adipogenesis and

hepatic carbohydrate metabolism (11, 12). Global bmal1

deficiency resulted in a blunted response to hypoglycemia, due

to reduced hepatic gluconeogenesis, whereas liver-specific

bmal1-deficiency resulted in impaired glucose tolerance (11,

103). Pancreas-specific bmal1 gene knock out (KO) models

develop hyperglycaemia and hypoinsulinemia, both of which

are characteristic of diabetes development (13). Together, these

suggest fundamental roles for intrinsic circadian responses in

individual cell types. Understanding the roles of individual cell

types in modulating these rhythms, and how that impacts on

crosstalk with other cell types, will be fundamental in developing

targeted therapeutic strategies to be explored.

Per and cry are downstream target genes of Clock/Bmal1.

Homozygous per2 knockdown mice had lower total

triacylglycerol and non-esterified fatty acids compared with

their wild-type (WT; i.e. per2-sufficient) counterparts; however

there was no difference in the expression of other clock genes in

white adipose tissue (WAT) (104). In this study, Grimaldi and

colleagues found that Per2 is likely to regulate lipid metabolism

through a PPARg2-dependent mechanism (104). Per3 is also

involved in lipid metabolism and Per3-deficient mice are more

prone to weight gain, when exposed to a high-fat diet (HFD),

compared to their WT counterparts (105).
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Murine cry1 and cry2 gene deletions are associated with

disruptions in the circadian rhythmicity of insulin and glucagon

secretion, which in turn are associated with insulin resistance,

hypertension and impaired glucose tolerance and dyslipidemia

(106, 107). Similarly, agonists of Cry1 and Cry2 inhibit hepatic

gluconeogenesis in vitro (108). In contrast, liver-specific

expression of adenoviral encoded cry1, at a time when Cry1 is

endogenously low, appeared to protect the mice from these

metabolic risk factors and increased insulin sensitivity, whilst

decreasing blood glucose (109). These differences may relate to

cell-specific roles, differences in mice studied (food-restricted or

not), timing and methodology of alteration (i.e. lifelong gene

deficiency or induced expression following adenovirus delivery)

or alterations in other circadian gene regulation or expression.

Rev-erba plays an important role in regulating insulin and

glucagon secretion and pancreatic b cell proliferation (110).

Downregulation of rev-erba using siRNA in mouse pancreatic

islet cells reduces glucose-stimulated insulin secretion (GSIS) in

mouse models (111). The authors of this study found that

exogenous leptin treatment enhanced rev-erba expression in

vitro and in vivo, whilst a HFD further downregulated rev-erba
expression. Mouse models lacking rora and rev-erba have lower

high-density lipoprotein and decreased adiposity compared to

their WT counterparts (97, 112). Solt and colleagues showed that

Rev-erb agonists can decrease fat mass and total serum

cholesterol in diet-induced obese mice (113). Similarly, Rora
inverse agonists are effective at preventing hyperglycaemia in

mouse models of type 2 diabetes (114).
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Thus, studies of mice have greatly helped to identify key

mechanisms and cell-specific contributions that aid in the

modulation of circadian rhythms, leading to altered

susceptibility to obesity and diabetes development. It is clear

that this is a growing field and more understanding is required of

how cell intrinsic clocks impact on other cell types and how

other environmental factors may alter peripheral oscillations,

leading to altered susceptibility to obesity and diabetes

development. Further knowledge of how we can modulate the

circadian rhythms in humans will be vital, but animal models

may be very helpful for developing preclinical therapies for

translation into humans.
Human genetic studies

There are single nucleotide polymorphisms (SNPs) in

humans that have been associated with the risk of developing

metabolic dysbiosis, obesity and T2DM (Table 1). Clock SNPs

can predispose individuals to developing obesity, metabolic

syndrome and T2DM by altering the metabolism of fatty acids,

as well as the monosaturated fatty acid content of red blood cells

(115–118). Similarly, a SNP in NPAS2, a paralog of CLOCK,

which can also bind to BMAL1 (126), has also been linked to risk

factors (e.g. hypertension) for developing metabolic syndrome

(119). SNPs in Bmal1 have also been associated with

hypertension, hyperglycemia, T2DM and gestational diabetes

(120, 121). In addition, SNPs in CLOCK : BMAL1-repressing
FIGURE 6

Transcription/translation feedback loops that modulate circadian rhythms at the molecular level. The induction of circadian rhythms relies on
oscillations in gene expression and repression. In the initiation of the circadian rhythms, Bmal1 and Clock are transcribed/translated and then
form a heterodimer. This CLOCK : BMAL1 heterodimer initiates the transcription of a number of genes including Per, Cry and Nr1d1/Nr1d2 (rev-
erba/b) genes, all which negatively repress the circadian initiators BMAL1 and/or CLOCK. In addition, CLOCK : BMAL1also activates Ror
transcription, promoting transcription of Bmal1, while also inducing Nfil3 transcription/translation, which inhibits Per and Cry gene transcription.
There are also epigenetic modulation factors e.g. (de)acetylation or (de)methylation that also regulate the circadian rhythm as shown in purple.
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TABLE 1 SNPs in circadian rhythm-related genes associated with metabolic dysfunction, obesity and T2DM in humans.

Gene
and
location

SNP
[allele(s)]

Study Population Association Reference

Clock
(4q12)

rs1554483
(G)
rs4580704
(C)
rs68437222
(C)
rs6850524
(G)
rs4864548
(A)
rs1554483-
rs4864548
(GA)

Lean (n=715) and overweight/obese (n=391) individuals of self-reported European
descent in Buenos Aires, Argentina.

Up to 1.8-fold risk of developing
overweight/obesity

(115)

rs4580704
(CC)
rs1801260
(C)

1100 American individuals of European descent Increased risk of developing
metabolic syndrome components

(116)

rs4864548-
rs3736544-
rs1801260
(CAT)

537 individuals from 89 British families (all white European) Associated with presence of metabolic
syndrome

(117)

rs4580704
(CC)

7098 individuals with T2DM or with 3 or more cardiovascular risk factors (all
European)

Increased fasting glucose, and
increased development of T2DM.
Increased risk of cardiovascular
disease in individuals with T2DM.

(118)

Npas2
(2q11)

rs11541353
(C)

517 Finnish individuals Associated with hypertension (119)

Bmal1
(11p15)

rs7950226-
rs11022775
(haplotype
AC)

1304 individuals from 424 British families with T2DM of European descent T2DM (120)

rs6486121-
rs3789327-
rs969485
(CCA)

Hypertension

rs7950226
(A)
rs11022775
(C)
rs7950226-
rs11022775
(GC)
rs7950226-
rs11022775
(AC)

185 women with Gestational diabetes and 161 controls (Greek population) Increased risk of developing
gestational diabetes

(121)

Cry2
(11p11)

rs11605924
(A)

21 GWAS cohorts including up to 46,186 non-diabetic individuals, with a further
follow up of 25 loci in 76,558 additional individuals of white European descent from
United States or Europe

Higher fasting glucose levels (122)

Per2
(2q37)

10870 (A) 517 Finnish individuals Increased risk of raised plasma
glucose

(119)

rs2304672
(G)
rs4663302 (T)

454 overweight/obese Spanish individuals Increased snacking, higher stress
when dieting, more likely to eat when
bored
Higher waist circumference and waist
to hip ratio

(123)

(Continued)
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genes, such as Cry and Per genes, have also been implicated in

metabolic disease. Both Cry2 and Per2 SNPs have been associated

with impaired glucose tolerance (119, 122), while Per2 SNPs have

also been associated with binge eating and stress related to

dieting, leading to increased weight gain (123). These core

circadian rhythm-inducing genes, modulate the rhythmic

expression of many other genes in the body. One example is

the rhythmic secretion of melatonin, which in humans increases

in the evening and decreases in the daytime, aiding in regulating

our sleep/wake cycles (127). Interestingly, two SNPs in one of the

melatonin receptors, the melatonin receptor 1B gene (Mtnr1b),

have been associated with higher fasting glucose concentrations,

reduced b cell function (as measured by homeostasis model

assessment (HOMA)) and an increased risk of developing

T2DM (124, 125). This SNP appears to influence the dynamics

of melatonin secretion, which may modulate the susceptibility to

developing T2DM (128). This suggests important roles for both

the SNPs involved in the molecular circadian clock, but also their

downstream genes in modulating susceptibility to metabolic

syndrome, obesity and T2DM.

Information on the expression of clock genes in human

pancreatic islets is limited, but circadian genes are expressed in

human islets (129). In individuals with T2DM, Cry2, Per2 and

Per3 expression was reduced in the islets compared to islet

donors without T2DM (130). Additionally, in vitro, islets

cultured in glucolipotoxic conditions (16.7mmol/L glucose per

1mmol/L palmitate) for 48 hours downregulated the expression

of Per3 in the pancreatic islets of individuals without T2DM

(130). The aforementioned studies highlight the importance of

circadian clock genes in regulating metabolic functions such as

glucose tolerance and b cell function; however, many of these

studies did not investigate the expression of these genes at the

protein level. Although Stamenkovic and colleagues correlated

mRNA expression to corresponding protein concentrations in

human islets, post-transcriptional factors such as miRNA and

post-translational modifications were not examined in this study

(130). Future studies that address these interactions and

mechanisms of regulation may provide additional insights into

the relationship between the circadian clock and metabolic

physiology. Additional studies, particularly in non-white
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European populations, with increased numbers of participants

are also greatly needed.
Modulation of circadian rhythm

Misalignment between peripheral and central clocks is

associated with insulin resistance, metabolic abnormalities and

cardiovascular disease (17, 131, 132). This desynchrony can be

achieved experimentally through a forced desynchronization

(FD) protocol which involves altering behavioral patterns,

such as feeding and sleep-wake cycles, so that they are

substantially longer or shorter than 24 hours, whilst ensuring

that the subjects are only exposed to dim light during their wake

times (133). The aim of this is to desynchronize endogenous

circadian rhythms from external influences e.g. food intake, light

exposure as outlined in Figure 7. Buxton and colleagues

demonstrated that a FD protocol (sleep restriction and

circadian disruption) increased plasma glucose levels in

human studies (134). Although the mechanism for this is

unclear, a study which utilized human islet amyloid

polypeptide (HIP) transgenic rats showed that circadian

disruption accelerated the b cell loss and dysfunction in this

model of T2DM (135). Furthermore, sleep deprivation studies

demonstrated disrupted rhythmicity of insulin and glucagon

levels, as well as insulin sensitivity and glucose tolerance (136–

138). In these studies, circadian rhythm cycles have clearly

influenced susceptibility to metabolic disease. In this section,

we break down the different environmental cues that can

significantly alter circadian rhythms in animal models

and humans.
Altered light cycles

In mice, electrophysiological monitoring has shown that

exposure to constant light reduced the amplitude (the

difference between peak and trough) of SCN rhythmicity

(139). This resulted in increased food intake, whilst energy

expenditure was decreased. These mice also showed a
TABLE 1 Continued

Gene
and
location

SNP
[allele(s)]

Study Population Association Reference

Mtnr1b
(11q14)

rs1387153 (T) 2151 non-diabetic (encompassing lean and obese) French subjects with European
ancestry. Replication analysis conducted in 5,518 middle-aged non-diabetic Danish
individuals, 3,886 and 1,453 non-diabetic French individuals from 2 cohorts and
5,237 young (16 years of age) Finnish individuals

Increased fasting blood glucose,
increased risk of developing
hyperglycemia and T2DM

(124)

rs10830963
(G)

10 GWAS study cohorts and 13 case-control studies (18,236 cases, 64,453 controls)
of European descent

Increased fasting blood glucose levels,
reduced beta cell functions and an
increased risk of developing T2DM

(125)
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complete loss of rhythmicity in insulin sensitivity, energy

expenditure and food intake. In humans, light intensity has

been shown to regulate postprandial glucose levels and

triglycerides (140). In this study, healthy lean men and obese

men with T2DM were exposed in the morning to 5 hours of

either bright light (4000 lux) or dim light (10 lux), with a 600kcal

meal given 1 hour after the start of the light exposure. While no

changes were seen in the fasting or postprandial glucose levels of

healthy lean men between dim or bright light exposure, obese

men with T2DM had improved fasting and postprandial glucose

levels, when exposed to bright light. In addition, healthy lean

men exposed to bright light had higher fasting and postprandial

plasma triglycerides, while in obese men with T2DM bright light

only increased postprandial plasma triglycerides and did not

change fasting triglyceride concentrations. Similar results were

also seen in a study of individuals with insulin-resistance

exposed to either bright day – dim evening light or dim day –

bright evening light conditions (141). Thus, the light exposure

can significantly impact our glucose homeostasis.
Altered diets and time of food intake

A high-fat diet also disrupts central and peripheral clocks in

mouse models, including hypothalamic, adipose and hepatic

clocks (142). The timing of food intake also affects circadian

clocks. When kept in a 12-hour light/12-hour dark cycle (12:12h

LD), mice consume the majority of their food during the dark

phase when food is available ad libitum (143). In contrast, during

timed food restriction, mice fed a HFD only during the light

phase gained more weight than those fed during the dark phase
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(144). Similarly, mice fed a HFD restricted to the dark phase are

less likely to develop metabolic abnormalities such as obesity and

glucose intolerance than mice fed the same HFD ab libitum

(145). Time-restricted feeding, where food is provided for a

specific duration only, is also effective at preventing obesity and

metabolic syndrome in circadian gene-deficient mice (whole

body cry1/2-deficient mice and liver-specific bmal1 and rev-

erba/b-deficient mice) (146). Feeding restricted to the light

phase also caused a desynchrony of peripheral clocks in the

pancreas, liver, heart and kidneys by up to 12 hours, which did

not affect the SCN (147). Mice exposed to calorific restriction in

12:12h LD cycles will become partly diurnal, as opposed to

purely nocturnal and this is attributed to changes in peripheral

clocks and the SCN (148, 149).

As in the animal studies, the timing of eating also influences

risk of diabetes in humans. For example, a randomized crossover

study showed that a later dinner was associated with impaired

glucose tolerance in a subset of MTNR1B (melatonin receptor

1B) risk allele carriers (150). The postulated role of melatonin in

this process agreed with a previous study showing that

exogenous melatonin could also cause impaired glucose

tolerance (151). Conversely, feeding restricted to 9 hours

improved glycemic control in men with type 2 diabetes (152).

Similarly, time-restricted eating (TRE) also improved metabolic

parameters such as weight, visceral fat, atherogenic lipids and

blood pressure in individuals with metabolic syndrome (153,

154); however, these benefits of TRE were observed in small

sample sizes (n=15-20) and are currently under investigation

larger cohorts (155, 156). Maintaining TRE after weight is

potentially a challenge and further research would also

be necessary.
FIGURE 7

Modulation of host circadian rhythms. Circadian rhythms can be modulated through a number of interventions, including changes to the central
clock via changes in the light/dark cycle or sleep/wake cycle, as well as changes to peripheral clocks e.g. food restriction. Disruption to the
central clock can lead to disconnection from the peripheral clocks and vice versa. These changes to the circadian rhythm are often experienced
by those with jet lag or in overnight shift workers. .
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In a FD protocol study involving 5 male and 5 female adults,

increased blood glucose levels were coupled with a paradoxical

rise in insulin secretion during the misalignment phase (where

eating/sleeping is 12 hours out of synchrony with the normal

schedule) (131). Another study which combined a FD protocol,

with restricted sleeping hours (6.5 hours in a 28-hour day),

showed a similar rise in glucose levels in the individuals, coupled

with increased insulin secretion (134). A possible explanation for

this may be reduced insulin sensitivity secondary to circadian

misalignment. This is supported by a 12-hour rapid shift work

protocol, which utilized the hyperinsulinemic-euglycemic clamp

and showed that circadian misalignment is associated with

decreased insulin sensitivity (157).

The timing of nutrient intake also alters the circadian

rhythmicity of the gut bacterial composition in mice (158,

159). For example, bacterial species belonging to the phylum

Firmicutes thrive postprandially in response to dietary glycan

intake, whilst the phyla Bacteroidetes and Verrucomicrobia

usually peak in numbers during fasting periods (158–160). As

mentioned, the gut microbiota can oscillate, altering important

metabolic functions in mice. In line with this, a recent study in

humans identified a gut bacterial signature, encompassing 13

taxa with disrupted rhythmicity, which, in conjunction with

BMI, could be used to predict individuals who would later

develop T2DM (161). Thus, host-microbial rhythms may act

as a biomarker for disease development. Interestingly, common

gastric bypass procedures such as Roux-en-Y gastric bypass,

which enable individuals to lose weight, are associated with

altered microbial composition (162). It would be interesting to

assess whether these procedures also alter host and

microbial rhythmicity.
Shift work

As mentioned previously, circadian misalignment, and by

extension shift-work, is a risk factor for developing metabolic

syndrome, obesity and type 2 diabetes (18). Circadian

misalignment as a risk factor for metabolic abnormalities has

been corroborated in a real-life study that compared day-shift

and night-shift workers (16). In this study, night-shift workers

were found to have increased postprandial glucose and insulin

levels as well as elevated triacylglyerol levels, compared to day-

shift workers. A meta-analysis of 12 observational studies

revealed that shift-work is associated with a 9% increase in the

chance of developing T2DM compared to people who have not

been exposed to shift work (19). Importantly, people who have

rotating shift work are more at risk than those employed in

constant shift work (22). This is likely due to exposure to both

light and food intake at times-of-day different to when the body

naturally anticipates these changes. Furthermore, a rat study

using a simulated shift-work protocol (using rotating running

wheels) was consistent with the human data and caused the
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animals to develop abdominal obesity and blunted rhythmicity

of glucose levels (163). In rats, disruption of 12:12h LD cycles,

with continuous light exposure, accelerated b cell dysfunction

and loss, whilst impairing GSIS (135, 164). Studies on b cell-

specific bmal1 knockout mice showed that Bmal1 plays an

important role in adapting to circadian disruptions and

preventing oxidative stress (14). Thus, a loss of function of this

gene predisposes mice to b cell dysfunction and further

to diabetes.
Jet lag

Jet lag is also associated with circadian misalignment and is

characterized by a series of psychological and physiological

symptoms such as low mood, impaired cognitive performance,

loss of appetite, gastrointestinal disturbances and general

malaise (165). Chronic jet lag may elevate the risk of

developing cancer, cardiomyopathy and T2DM (166–168) and

can be simulated in animal experiments by altering the duration

of light or dark cycles (169). Studies utilizing this approach have

found that there is extensive desynchrony between different

body tissues and also variation in the time taken by different

tissues to adjust to new light/dark cycles (170). Adrenal

glucocorticoids (GCs) appear to play a key role in the re-

entrainment process of circadian rhythms in jet lagged mice

(171–173). Injection of metyrapone (MET; an inhibitor of

corticosterone synthesis) prior to performing the jet lag

protocol, was found to prolong re-entrainment when

administered in the inactive phase and accelerate re-

entrainment when given during the active phase (170). Since

the SCN does not express GC receptors, GCs are unlikely to

directly feedback to the SCN to regulate this process (173, 174).

It has been hypothesized that dysregulation of the adrenal clock

may cause aberrant secretion of other adrenal hormones such as

aldosterone alongside GCs, which may feedback to the master

pacemaker to regulate re-entrainment (175).

In jet-lagged mice, both the composition of the bacteria and

metabolic functions were altered compared to control mice

(158). These mice experienced impaired glucose tolerance and

obesity caused by the bacteria as (a) these metabolic

abnormalities were diminished following the eradication of the

microbiota using antibiotics and (b) the transplantation of

microbiota from these jet-lagged mice to germ-free mice,

which lack all bacteria, transferred these metabolic

abnormalities to the recipient mice. Together, these studies

suggest that there is a functional relationship between host

and bacterial rhythms which are important in modulating

metabolic dysbiosis. Thus, alterations of the bacterial

composition or oscillations could potentially be harnessed to

prevent obesity, metabolic abnormalities or T2DM.

Social jet lag, defined as a temporal discrepancy between a

person’s sleep pattern on working days and non-working days
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(23), has also been associated with diabetes susceptibility.

Individuals with greater than 1 hour of social jet lag have a

75% greater chance of developing diabetes or prediabetes,

compared to people with less than 1 hour of social jet lag (21).

Together, rodent and human studies have identified that the

timing of food intake, nutrient content and light exposure are

important stimuli in regulating the metabolic clock. These

findings indicate that novel interventions such as time-specific

therapy (chronotherapy) or interventions which target the

circadian system such as synthetic circadian protein analogues

may be beneficial in the future management of metabolic

syndrome and T2DM (176).
Chronotherapy

Chronotherapy is the concept of administering drugs or

other treatments at optimal times of the day in order to produce

the most benefit (177). In clinical practice, statins are typically

taken in the evening as their mechanism of action is to inhibit 3-

hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase,

an enzyme which peaks in concentration in the night (178).

There are many other examples of chronotherapy already in

existence and its importance in relation to diabetes management

as discussed below.

Bromocriptine is a dopamine agonist which is used as an

adjunct in the treatment of T2DM (179). Dopaminergic activity

in the hypothalamus follows a circadian rhythm and drives

hepatic gluconeogenesis and adipocyte lipolysis. Bromocriptine

is thought to reduce this drive when given within 2 hours of

waking to prevent hyperglycaemia and dyslipidaemia. Although

bromocriptine demonstrated efficacy in glycemic control and

has been approved by the Food and Drug administration (FDA)

in T2DM, this drug is infrequently used in clinical practice (52,

180, 181).

Despite preclinical studies showing that metformin interacts

with molecular components of the circadian system and has

time-dependent effects on blood glucose (182–184), there have

not been any clinical studies to investigate the timing of

metformin administration. This may be especially important

given oscillations in both host and bacterial rhythms, as

metformin alters the bacterial composition and function to

mediate therapeutic effects of the drug (185). As metformin is

a first line therapeutic for T2DM, it would seem particularly

important to maximise efficacy. Similarly, the short-acting

sulfonylurea drug tolbutamide appears to have time-dependent

effects on insulin secretion but its chronotherapeutic potential is

yet to be investigated (186).

Targeting circadian rhythm proteins may also be important

for preventing/reversing metabolic dysbiosis. REV-ERBa
agonist SR9011 and REV-ERBb agonist SR9009 reduced

obesity and hyperglycaemia in mouse models (113). Both of

these synthetic REV-ERB agonists induced increased energy
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expenditure in white adipose tissue. Furthermore, the

naturally-derived compound nobiletin activates circadian

molecules RORa and RORg and prevents metabolic syndrome

from developing in diet-induced obese mice (187). Synthetic

CRY stabilizers have also been reported to have a protective

effect against diabetes by improving glucose tolerance in mice

(188). In these rodent studies, these drugs have a short half-life

and are typically administered by injection at intervals shorter

than 3 hours to maintain suitable bioavailability (189). It has

been hypothesized that humans would eliminate the active

metabolites of these drugs even more quickly, therefore

requiring more frequent injections (189). In a clinical context,

this may not be practical. Therefore, this pharmacological

obstacle must first be addressed before studies in humans can

be carried out effectively. Novel therapies for T2DM, obesity and

metabolic syndrome may be identified if these and similar drugs

can demonstrate similar effects in human studies.
Future directions

In today’s industrialized world, only a minority of people

have an internal sleep-wake cycle which is consistent with their

social commitments (190). Therefore, it is unsurprising that

social jetlag is common in the population (23). An individual’s

personal circumstances has a substantial influence on many of

the exogenous factors which influence circadian rhythms

including sleep-wake cycles, exposure to light, eating times

and activity level (191). These environmental factors, together

with endogenous characteristics such as age, genetics and

chronotype (i.e. the time of day people are most alert/sleep),

influence the degree of circadian desynchrony which an

individual experiences (9).

In clinical practice, there is currently neither a standardized

scoring system which precisely encompasses the exogenous

determinants of circadian activity, nor is there a genetic

screening program which identifies carriers of genetic

variations predisposing people to circadian disruption. The

future development of these risk stratification tools may

influence clinical practice by allowing disease management to

be tailored to an individual’s circadian rhythmicity. For example,

the timing of drug administration could be regulated in order to

maximize efficacy, which may enable reduced drug

concentrations to be used, thus limiting any toxicity or

potential side effects. In order for this to be achieved, further

epidemiological studies are necessary to quantify the relative risk

of circadian disruption associated with different behavioral and

genetic risk factors.

There are many exogenous factors which can alter host/

microbial rhythmicity, which can then modulate susceptibility to

metabolic dysfunction and T2DM. Recent evidence has shown

arrhythmic bacterial signatures could be used as a biomarker to

predict individuals who would later develop T2DM; thus, further
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investigation into host/microbial rhythms, or lack thereof, as

biomarkers for predicting metabolic dysfunction or the onset of

diabetes should be conducted. Non-pharmacological

interventions can also be used to target the circadian system in

metabolic disease. Currently, trials investigating the effects of

time-restricted feeding are taking place on large cohorts with

type 2 diabetes and metabolic syndrome (155, 156). The results

from these studies will provide insight into the potential for

simple lifestyle changes that can modulate circadian rhythms as

a therapy. Understanding the mechanism behind these changes

will be vital.
Summary

Human epidemiological and genetic studies have

highlighted the importance of circadian rhythms in metabolic

diseases such as T2DM and metabolic syndrome. This has led to

extensive research in animal models and humans, which have

concluded that circadian dysregulation and misalignment is

associated with the development of metabolic abnormalities.

Clinical applications of this knowledge may include the

optimization of existing antidiabetic therapies such as

metformin. Circadian molecules such as nobiletin, REV-ERB

agonists and CRY stabilizers have demonstrated efficacy in

preclinical studies and may lead to the development of novel

treatments for diseases linked to circadian dysregulation.

However, limitations in current knowledge mean that further

research is required before these interventions can be

used clinically.
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