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Among the various immunological and non-immunological tumor-promoting activities of

myeloid-derived suppressor cells (MDSCs), their immunosuppressive capacity remains

a key hallmark. Effort in the past decade has provided us with a clearer view of

the suppressive nature of MDSCs. More suppressive pathways have been identified,

and their recognized targets have been expanded from T cells and natural killer (NK)

cells to other immune cells. These novel mechanisms and targets afford MDSCs

versatility in suppressing both innate and adaptive immunity. On the other hand, a better

understanding of the regulation of their development and function has been unveiled. This

intricate regulatory network, consisting of tumor cells, stromal cells, soluble mediators,

and hostile physical conditions, reveals bi-directional crosstalk between MDSCs and

the tumor microenvironment. In this article, we will review available information on how

MDSCs exert their immunosuppressive function and how they are regulated in the tumor

milieu. As MDSCs are a well-established obstacle to anti-tumor immunity, new insights

in the potential synergistic combination of MDSC-targeted therapy and immunotherapy

will be discussed.

Keywords: myeloid-derived suppressor cells, immune suppression, tumor microenvironment, immunotherapy,

endoplasmic reticulum stress

INTRODUCTION

Myeloid cells are a group of highly diverse cells that are essential for the normal functioning of
innate and adaptive immunity. Mononuclear myeloid cells include monocytes, macrophages, and
dendritic cells (DCs), and granulocytic myeloid cells include neutrophils, eosinophils, basophils,
and mast cells. In steady state, myelopoiesis is under tight control and remains predominantly
quiescent. A wide range of pathological stimuli, such as infectious microorganisms, tissue
damage, and malignantly transformed cells, induce emergency myelopoiesis that largely leads to
robust expansion of activated monocytes and neutrophils to eliminate potential threats. If these
conditions terminate in time, the homeostasis of myeloid cells will be restored, leaving no negative
consequence to the host; conversely, the persistent presence of low-strength stimuli leads to the
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accumulation of immature myeloid cells characterized by
powerful immunosuppressive capacity, which may serve as a
protective mechanism to prevent excessive tissue damage caused
by unresolved immune response (1).

Studies since the 1970s have highlighted a group
of systematically expanded and pathologically activated
immature myeloid cells in tumor-bearing hosts. Based
on their myeloid origin and immunosuppressive potency,
these cells were termed myeloid-derived suppressor cells
(MDSCs) in 2007 (2). In addition to cancer, MDSCs are
implicated in other diseases, such as chronic inflammation
or infection, autoimmune disorder, trauma, and graft-versus-
host disease (2). MDSCs are a heterogeneous population
consisting of myeloid progenitor cells and immature
myeloid cells, characterized by the lack of surface markers
associated with fully differentiated myeloid cells and by their
morphological resemblance to granulocytic and monocytic
cells (3).

MDSCs are generally divided into two main subsets:
polymorphonuclear MDSCs (PMN-MDSCs, also known
as granulocytic MDSCs) and monocytic MDSCs (M-
MDSCs), which morphologically and phenotypically resemble
neutrophils and monocytes, respectively. In tumor-bearing mice,
MDSCs are generally defined as positive for myeloid lineage
differentiation markers CD11b and Gr-1, with PMN-MDSCs
being Ly6G+Ly6Clow and M-MDSCs being Ly6G−Ly6Chigh

(4). On the other hand, their counterparts in cancer patients
are less definite, since studies on human MDSCs have been
hampered by cellular diversity and a lack of unequivocal
markers. Nonetheless, human PMN-MDSCs are now commonly
defined as CD11b+CD14−CD15+ or CD11b+CD14−CD66b+

and M-MDSCs as CD11b+CD14+HLA-DR−/lowCD15− (4).
Another population of immature MDSCs has recently been
identified. These LIN− (including CD3, CD14, CD15, CD19,
and CD56) HLA-DR−CD33+ cells contain mixed groups
of MDSCs comprising more immature progenitors and
have been defined as “early-stage MDSCs (e-MDSCs)” (4).
However, the murine equivalent of these e-MDSCs has not yet
been defined.

Activated MDSCs actively participate in multiple aspects of
tumor progression, including immune evasion, angiogenesis,
pre-metastatic niche formation, and epithelial-mesenchymal
transition (EMT) (5–7). Among these tumor-promoting
activities, suppression of immune cells is the defining feature
of MDSCs. Since the aforementioned surface markers are
not exclusive to MDSCs and some are shared by other
myeloid cells, phenotyping together with suppressive
function assessment has been proven to be the optimal
strategy for identifying bona fide MDSCs (4). Studies in
the past decade have provided us with a clearer view of
the immunosuppressive nature of MDSCs. In this work,
we intend to thoroughly review the ever-expanding list
of suppressive machineries and cell targets of MDSCs
(Figure 1). The nature of MDSC-mediated immune
suppression will be discussed in detail, highlighting the
antigen specificity of suppression and the regulatory role of the
tumor microenvironment.

SUPPRESSIVE MECHANISMS AND CELL
TARGETS OF MDSCs

Nitric Oxide, Reactive Oxygen Species, and
Peroxynitrite
It is well-established that MDSCs are capable of inhibiting
T-cell function. MDSCs express a high level of inducible
nitric oxide synthase (iNOS), which produces nitric oxide
(NO) (8–11). It is reported that NO suppresses T-cell
proliferation, probably directly by inhibiting the Jak/STAT5
pathway or indirectly by inhibiting the antigen presentation
from DCs (11, 12). Meanwhile, NO induces apoptosis of
T cells (13). On the other hand, MDSCs produce a high
amount of reactive oxygen species (ROS) via NADPH
oxidase (NOX2) (8, 14). The inhibitory effect of ROS on
T-cell function is well-described (15). For MDSCs, this
suppression is caused by decreased expression of T-cell
receptor (TCR) ζ-chain and is abrogated by inhibiting ROS
production (14).

Studies have identified peroxynitrite (PNT), a potent oxidant
produced by reaction between NO and superoxide anion (O·−

2 ),
as a crucial effector molecule of MDSCs. Local production of
PNT in the tumor microenvironment is responsible for the non-
responsiveness of tumor-infiltrating cytotoxic T lymphocytes
(CTLs), and consistently, these CTLs are associated with a high
level of nitrotyrosine, a marker of PNT activity (16). PNT
suppresses T cells by nitrating the TCR complex, leading to
loss of response to specific antigen presented by MDSCs (see
below) (17). In addition to the TCR complex, it has recently
been shown that MDSCs inhibit T-cell activation by nitrating
Tyr394 of lymphocyte-specific protein tyrosine kinase (LCK),
an initiating tyrosine kinase in the TCR-mediated signaling
cascade (18).

Interference With the Trafficking of T Cells
MDSCs impede the access of T cells to target sites by interfering
with their trafficking (19). Expression of a disintegrin and
metalloproteinase 17 (ADAM17), a major sheddase of L-selectin
(CD62L), by MDSCs cleaves the ectodomain of L-selectin and
consequently reduces L-selectin on the surface of naïve CD4+

and CD8+ T cells, therefore limiting their homing to peripheral
lymph nodes and tumor sites (20). In another study, this MDSC-
mediated decreased L-selectin level on T cells is regulated by
high mobility group box protein 1 (HMGB1) in the tumor
microenvironment (21).

Besides directly interfering with T-cell trafficking, MDSC-
derived NO reduces E-selectin expression on endothelial cells,
and PNT causes nitration and inactivation of CCL2 chemokine,
both of which indirectly hamper the migration of T cells to the
tumor site (22, 23).

Depletion of Amino Acids Necessary for
T-Cell Response
MDSCs are able to deplete amino acids required for T-
cell activation and proliferation. A high level of arginase 1
(ARG1) expression by MDSCs depletes L-arginine in the tumor
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FIGURE 1 | Immunosuppressive mechanisms and cell targets of MDSCs. T cells are the primary target of MDSCs. MDSCs produce a high level of nitric oxide (NO),

reactive oxygen species (ROS), and peroxynitrite (PNT), which suppress T cells by inhibiting proliferation, inducing apoptosis, decreasing the TCR ζ-chain and nitrating

the TCR complex. MDSCs deplete amino acids essential for T-cell response. For instance, MDSCs decrease L-arginine and tryptophan level through arginase 1

(ARG1) and indoleamine 2, 3-dioxygenase (IDO), respectively, and reduce the cysteine availability through cystine uptake. CD39/CD73 expression by MDSCs

produces adenosine that inhibits T cells through adenosine receptors. By shedding CD62L (L-selectin) off the T-cell surface or by nitrating CCL2, MDSCs interrupt

T-cell trafficking to the periphery or tumor site. MDSCs express both programmed cell death-ligand 1 (PD-L1), which inhibits T cells through interaction with

programmed cell death protein 1 (PD-1), and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), whose precise role remains unclear. IL-10 and TGF-β, two major

immunosuppressive cytokines produced by MDSCs, are implicated in T-cell suppression and regulatory T cell (Treg) induction. MDSCs also induce Tregs through

CD40 in a contact-dependent manner and recruit Tregs through the production of various chemokines. In addition to T cells, MDSCs suppress natural killer (NK) cells

and dendritic cells (DCs), inhibit B cells, and induce regulatory B cells (Bregs). Lastly, tumor-infiltrating MDSCs, mostly M-MDSCs, may differentiate into suppressive

DCs and tumor-associated macrophages (TAMs). ADAM17, a disintegrin and metalloproteinase 17; iNOS, inducible nitric oxide synthase; NOX2, NADPH oxidase 2.

microenvironment, leading to downregulation of the CD3 ζ-
chain of the TCR complex and proliferative arrest of T cells (24).

On the other hand, MDSCs deprive T cells of
cysteine, an essential amino acid for T-cell activation,
by uptaking cystine and not exporting cysteine. Since
T cells depend on exogenously generated cysteine, the
decreased availability of cysteine in the tumor milieu
results in impaired T-cell activation (25). Furthermore,
it is also reported that indoleamine 2, 3-dioxygenase
(IDO) expression is upregulated in MDSCs isolated from
fresh breast cancer tissue and is responsible for MDSC-
mediated inhibition on T-cell proliferation and Th1
polarization (26).

Adenosine and Adenosine Receptors
Recent studies have identified adenosine, a purine nucleoside,
as a novel effector molecule of MDSCs. Extracellular ATP
or ADP is hydrolyzed by CD39 (nucleoside triphosphate
diphosphohydrolase) into AMP, which is in turn cleaved by
CD73 (ecto-5’-nucleotidase) into adenosine (27). Both CD39 and
CD73 are expressed by MDSCs from tumor-bearing mice and
cancer patients, suggesting that MDSCs are capable of producing
adenosine (28–30). TGF-β promotes the differentiation of
MDSCs into CD39+CD73+ terminally differentiated myeloid
cells with high adenosine production in tumor-bearingmice (31).
Consistently, another recent study has demonstrated that tumor-
derived TGF-β induces CD39/CD73 expression on MDSCs from
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lung cancer patients through the mammalian target of rapamycin
(mTOR)-hypoxia-inducible factor 1α (HIF-1α) pathway, and
these CD39+CD73+ MDSCs represent a distinct subpopulation
that expresses higher levels of HIF-1α, cyclooxygenase 2 (COX2),
IL-10, tumor necrosis factor (TNF)-α, and TGF-β as compared to
their counterparts (32).

It is well-studied that adenosine inhibits the activation and
effector function of T cells, which signals primarily through
A2A and A3 adenosine receptors (33). In the presence of CD73
substrate 5′-AMP, the inhibition of PMN-MDSCs on anti-
CD3/CD28-induced T-cell proliferation is potentiated (28). On
the contrary, CD73−/− MDSCs orMDSCs whose CD39 or CD73
enzymatic activity is inhibited show reduced capacity to suppress
T cells and natural killer (NK) cells (30, 32, 34). Furthermore,
it is reported that MDSCs promote chemoresistance through
the activity of CD39 and CD73 (32). Metformin, a biguanide
used for type 2 diabetes, reduces the expression and activity of
CD39 and CD73 on MDSCs, which leads to reduced MDSC-
mediated suppression of CD8+ T cells in vitro and in vivo, and
may partially account for the survival benefit seen in diabetic
ovarian cancer patients treated with metformin (30).

The adenosine receptors expressed on MDSCs contribute
indirectly to the adenosine-induced immune suppression.
Stimulation of A2B receptors preferentially expands PMN-
MDSCs (28). In mice with melanoma, blockade of A2B receptors
reduces IL-10, monocyte chemoattractant protein 1 (MCP-1),
and MDSCs in the tumor site, which is associated with increased
frequency of intratumoral CD8+ T cells, elevated levels of TNF-α
and IFN-γ, and delayed tumor growth (35). In another murine
melanoma model, selective deletion of A2A receptors in myeloid
cells leads to significantly reduced IL-10 production by MDSCs,
an increase in activated CD8+ T cells and NK cells, and delayed
primary tumor growth and metastasis (36).

CD39 and CD73 are also expressed on tumor cells, regulatory
T cells (Tregs), effector T cells, Th17 cells, and other stromal cells
(33). Ectonucleotidases are supposed to prevent excessive T cell-
mediated immune response and to regulate the balance between
pro-inflammatory ATP and immunosuppressive adenosine.
However, tumor hijacks this network to facilitate immune
evasion. In line with the abovementioned findings, Umansky
et al. have proposed two modes of adenosine signaling. Firstly,
MDSCs, Tregs, and tumor cells may produce extracellular
adenosine to suppress T-cell function in a paracrine manner.
Secondly, adenosine produced by ectonucleotidase on tumor-
infiltrating lymphocytes suppresses their own function in an
autocrine manner; the upregulated CD39 and CD73 expression
by MDSCs and Tregs also enables autocrine adenosine signaling
and potentiates their expansion and/or suppressive activity (33).

MDSC-Derived IL-10
MDSCs are a major source of IL-10 in tumor-bearing host (37–
40), and consistently, the frequency of MDSCs is correlated
with the IL-10 level in peripheral blood of cancer patients
(41). It is becoming clear that IL-10 serves as a non-redundant
suppressive mechanism of MDSCs, and accordingly, blockade
of IL-10 signaling or neutralization of IL-10 leads to alleviated
T-cell suppression, delayed tumor progression, and improved

therapeutic efficacy (37, 42). In addition to T-cell inhibition,
MDSC-derived IL-10 is implicated in the induction of Tregs and
the suppression of DCs (see below).

Recent studies are unraveling the regulation on IL-10
production by MDSCs, which involves cellular and non-cellular
participants. For instance, hypoxia significantly upregulates IL-
10 secreted by MDSCs (43). Exposure to lipopolysaccharide
(LPS), a Toll-like receptor (TLR) ligand, increases IL-10
production by MDSCs, which may require the MyD88 signaling
pathway (44). Transmembrane TNF-α (tmTNF-α), but not
the secretory form, activates MDSCs to upregulate IL-10 and
other immunosuppressive effector molecules through TNFR2
(45). The level of interferon regulatory factor 4 (IRF4),
an essential transcription factor required for lymphoid and
myeloid cell differentiation, reduces remarkably during the
development of MDSCs and modulates the suppression of T
cells through IL-10 and ROS production (46). Tumor cells, not
surprisingly, participate in the MDSC-derived IL-10 regulation.
For instance, knockdown of semaphorin 4D, a pro-angiogenic
factor overexpressed in many malignancies, in tumor cells
reduces the IL-10 production by MDSCs (47). Glioma stem
cell-derived exosomes induce systemic T-cell suppression by
polarizing CD14+ monocytes toward M-MDSC phenotype with
heightened IL-10 level (48). In another study, the NKG2D ligand
RAE-1ε expressed on tumor cells facilitated the expansion and
activation of MDSCs that display pronounced ARG1 activity and
IL-10 production (49).

Similarly, MDSCs developed in the settings of microbial
infection are also capable of producing IL-10 (50–52). In
patients with chronic hepatitis B, IL-10 induced by programmed
cell death protein 1 (PD-1) signaling is responsible for T-cell
suppression by MDSCs (50). In patients with chronic hepatitis C
virus infection, M-MDSCs have higher levels of phosphorylated
STAT3 and IL-10, while blocking STAT3 signaling reduces
hepatitis C virus (HCV)-mediated M-MDSC expansion and IL-
10 expression (51).

TGF-β
TGF-β is another well-documented immunosuppressive cytokine
secreted by MDSCs in tumor-bearing host (22, 43, 53). MDSCs
developed in non-cancer settings are also capable of producing
TGF-β (52, 54). Evidence for the regulation of MDSC-derived
TGF-β remains elusive. It was shown previously that TGF-β
produced by MDSCs is induced in vivo by IL-13 and CD1d-
restricted T cells that are most likely natural killer T (NKT)
cells (55). Recent studies have shown that TGF-β production
by MDSCs is regulated by tmTNF-α, ribosomal protein S19,
and semaphorin 4D (45, 47, 56). On the contrary, CD14+HLA-
DR−/low MDSCs from patients with liver cancer show no TGF-β
secretion (57). These findings suggest that TGF-β production by
MDSCs may be context-dependent.

MDSC-derived TGF-β contributes to T-cell suppression,
although it is probably not the principal mechanism (53).
CD14+HLA-DR−/low MDSCs isolated from melanoma patients
inhibit T cells via TGF-β with no involvement of ARG1 and
iNOS (58). Song et al. have shown that transfer of tumor-
derived MDSCs to asthmatic mice leads to reduced pulmonary

Frontiers in Immunology | www.frontiersin.org 4 July 2020 | Volume 11 | Article 13717

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Yang et al. Suppressive Nature of MDSCs

recruitment of inflammatory cells, suppressed Th2 response, and
decreased IgE production in a TGF-β1-dependent manner (59).
Furthermore, TGF-β is essential in Treg induction by MDSCs
(see below).

Other immune cells are also inhibited by MDSC-derived
TGF-β. For instance, in a murine model of AIDS, M-MDSCs
suppressed B-cell response by superoxide, nitric oxide, PNT,
and TGF-β (54). CD14+HLA-DR−/low MDSCs from melanoma
patients inhibit NK cells primarily through TGF-β that is
stimulated by tumor-derived PGE2 (60). In addition to soluble
TGF-β, MDSCs expanded in tumor-bearing mice express and
utilize membrane-bound TGF-β to suppress NK cells and NKT
cells in a contact-dependent manner (61, 62).

In addition to immune suppression, TGF-β has been
implicated in the regulation of tumor metastasis facilitated by
MDSCs. A portion of tumor cells undergoes EMT to disseminate,
invade surrounding tissue, and metastasize. In a spontaneous
murine model of melanoma, Toh and colleagues have shown for
the first time that MDSCs use TGF-β, epidermal growth factor,
and hepatocyte growth factor to induce EMT and that depletion
of MDSCs results in reduced EMT and fewer metastases (63).
In another study, anti-TGF-β treatment in a murine model of
mammary tumor inhibited tumor growth and lung metastasis,
and depletion of MDSCs diminished this beneficial effect of
TGF-β neutralization (64). Another study from the same group
later demonstrated that specific deletion of gene encoding TGF-
β receptor II in myeloid cells significantly reduces metastasis,
which is mediated by decreased TGF-β1 and type 2 cytokine
production and by reduced ARG1 and iNOS expression. This
effect was largely ascribed to the CD11b+Ly6G+ myeloid
subset (65).

PD-L1 and CTLA-4 Expression by MDSCs
Immune checkpoint pathways act as negative regulators and
prevent excessive immune response. MDSCs assist tumor to
hijack this mechanism in order to promote T-cell anergy, which
signals mostly through the PD-1/programmed cell death-ligand 1
(PD-L1) pathway (66). MDSCs express PD-L1 in various tumor
models (43, 67–73). Meanwhile, numerous studies have found
PD-L1 expression in MDSCs from cancer patients (29, 42, 53,
72, 74–76). In liver cancer patients, the percentage of PD-L1+

MDSCs in peripheral blood correlates with disease stage and
correlates inversely with clinical outcome (76). On the other
hand, MDSCs developed during microbial infection also express
PD-L1 (77, 78).

PD-L1 is implicated in MDSC-mediated T-cell suppression.
PD-L1 blockade reduces the suppressive capacity of MDSCs on
T cells (29, 42, 53, 68, 73, 74, 77–79). In addition to conventional
T cells, in a murine model of liver metastasis, PD-L1 expression
by MDSCs impairs the proliferation of chimeric antigen receptor
cells, while MDSC depletion or PD-L1 blockade improves their
therapeutic efficacy (80). Blocking PD-L1 relieves inhibition on
DCs by MDSCs as well (81).

Several studies have shown that tumor-infiltrating MDSCs
express a higher level of PD-L1 than their peripheral
counterparts, suggesting microenvironmental regulation of
PD-L1 expression (43, 68, 72, 73, 75). For instance, tumor

cells upregulate the PD-L1 expression in MDSCs by interfering
with their arachidonic acid metabolism (82). Tumor-derived
soluble mediators are also responsible for PD-L1 induction in
intratumoral MDSCs (76, 80). Other microenvironmental signals
that regulate PD-L1 expression by MDSCs, such as hypoxia,
cytokines, and stromal cells, will be discussed in detail in the
following sections.

On the other hand, it is reported thatMDSCs express cytotoxic
T lymphocyte-associated antigen 4 (CTLA-4) (43, 71). However,
unlike PD-L1, the precise role and regulation of CTLA-4 is
less well-studied in MDSCs. It is reported that blocking or
silencing CTLA-4 reduces the frequency and ARG1 activity of
MDSCs (83).

Induction and Recruitment of Regulatory T
Cells
MDSCs inhibit effector T cells not only by themselves but also
by inducing and recruiting Tregs. The proliferation of Tregs is
relatively insensitive to suppression by MDSCs as compared with
effector T cells (84). Intratumoral accumulation of Tregs occurs
later than that of MDSCs, while depletion of MDSCs reduces
infiltrating Tregs, suggesting that MDSCs may facilitate the
development of Tregs (85). In non-cancer settings, co-culturing
CD4+ T cells with MDSCs from HIV+ individuals or chronic
hepatitis C patients significantly increases the differentiation of
Foxp3+ Tregs (51, 86).

The mechanism(s) for Treg induction by MDSCs is not
fully understood. During tumor progression, a subset of DCs
with an immature myeloid phenotype is licensed by tumor
cells to promote proliferation of Tregs by producing TGF-β
(87). Huang and colleagues have shown that MDSCs induce
Tregs both in vitro and in vivo, which requires activation of
T cells and is dependent on IFN-γ and IL-10. The authors
speculated that, in response to IFN-γ produced by activated T
cells, MDSCs secret TGF-β and IL-10, both of which participate
in the development of Tregs (88). Another study from this same
group later demonstrated that CD40 expression on MDSCs is
required for Treg induction, since adoptive transfer of CD40-
deficient MDSCs or administration of anti-CD40 antibodies fails
to induce Tregs (89). Treg induction by MDSCs is attenuated in
the Transwell system that separates the two cell types, suggesting
the requirement of direct cell-to-cell contact (90). In a murine
model of B-cell lymphoma, MDSCs promoted the expansion of
Tregs from pre-existing natural Tregs but not conversion from
naïve T cells. In that study, MDSCs induced tumor-specific Tregs
via antigen uptake, processing, and presentation, which requires
ARG1 but not TGF-β (91).

In addition, MDSCs may promote the recruitment of Tregs
to the tumor milieu. Tumor-infiltrating M-MDSCs produce
CCR5 ligands CCL3, CCL4, and CCL5, and meanwhile, Tregs
exhibit high surface expression of CCR5 and are recruited to
tumor tissue by CCL4 and CCL5. Accordingly, Tregs from
CCR5 knockout mice almost completely lost their ability to
migrate toward M-MDSCs in vitro (92). In a murine model
of glioblastoma multiforme, both M-MDSCs and Tregs were
recruited by CCL2 produced by tumor-associated macrophages
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(TAMs) and microglia (93). A recent study revealed a closed
loop between mast cells, MDSCs, and Tregs in the tumor
microenvironment. Mast cells induce infiltration of MDSCs to
tumor and induce their IL-17 secretion; MDSC-derived IL-17
attracts Tregs indirectly and potentiates their suppressive activity
and IL-9 production; IL-9 in turn promotes the survival and
tumor-promoting function of mast cells. In that study, IL-17
promoted Treg recruitment by increasing the level of CCL17 and
CCL22 in the tumor microenvironment (94).

Studies on the relation between MDSCs and Tregs in
cancer patients are relatively limited. A positive correlation
between MDSCs and Tregs in peripheral blood and tumor site
has been detected in cancer patients (40, 95). Hoechst and
colleagues have shown that CD14+HLA-DR−/low M-MDSCs
from hepatocellular carcinoma patients induce suppressive
CD4+CD25+Foxp3+ Tregs in a contact-dependent manner
when co-cultured with autologous CD3/CD28-stimulated CD4+

T cells (57). In addition, to induce Tregs from CD4+ T cells, a
study from the same group has shown that CD14+HLA-DR−/low

M-MDSCs are able to convert Th17 cells to Foxp3+ Tregs,
which is dependent on MDSC-derived TGF-β and retinoic acid
(96). Jitschin et al. have shown that M-MDSCs from chronic
lymphocytic leukemia (CLL) patients suppress T-cell activation
and promote Treg induction, which is partly dependent on IDO
activity (95). Furthermore, the authors have also demonstrated
that after co-culture with CLL cells, monocytes from healthy
donors resemble the phenotypic, suppressive, and Treg-inducing
characteristics of M-MDSCs from CLL patients (95). In patients
with lung cancer, a novel tumor-infiltrating B7-H3+CD14+HLA-
DR−/low subset of MDSCs is reported to induce Tregs in vitro,
which is partly dependent upon IL-10 (40).

Interestingly, there are also reports revealing no clear
association between MDSCs and Tregs. In mice bearing T-cell
lymphoma, the percentage of intratumoral Tregs is invariably
high throughout tumor growth and does not relate to the
accumulation kinetics of MDSCs (9). In another study, the T-
cell non-responsiveness induced by adoptive transfer of MDSCs
was not caused by Treg induction (97). Furthermore, in contrast
to the abovementioned Treg-inducing action of M-MDSCs, it is
reported that PMN-MDSCs impair TGF-β-mediated generation
of inducible Tregs (iTregs) from naïve T cells and inhibit
proliferation of naturally occurring Tregs (nTregs) without
affecting Foxp3 expression (98). These discrepancies need to be
clarified by further study.

Suppression of Natural Killer Cells
NK cells are another major target of MDSCs. The reduced
number and impaired function of NK cells in tumor-bearing
mice are inversely correlated with the increased level of MDSCs
and are restored by depletion of MDSCs (61, 99). A similar
inverse correlation is also observed in patients with non-Hodgkin
lymphoma (39). It is shown that the enhanced lactate production
by tumor cells inhibits NK cells not only directly by inhibiting
their cytotoxicity but also indirectly by increasing the number of
MDSCs (100). Interestingly, a recent study has demonstrated that
a portion of immature NK cells is converted into MDSCs in the

presence of GM-CSF and that this conversion is abolished by IL-
2 exposure (101). This novel developmental pathway of MDSCs
may account, at least partially, for the reduced level of NK cells in
tumor-bearing host.

In murine models, the cytotoxicity, NKG2D expression, and
IFN-γ production of NK cells are inhibited by MDSCs both in
vitro and in vivo (61, 102). This suppression is contact-dependent
and requires membrane-bound TGF-β1 on MDSCs (61, 102). In
a recent study, Elkabets et al. identified a novel subset of Gr-1high

PMN-MDSCs that is induced by IL-1β and lacks Ly6C expression
(Ly6Cneg). These Ly6Cneg MDSCs produce higher levels of
iNOS and ROS than Ly6Clow MDSCs and, correspondingly,
exhibit stronger suppression of T cells and NK cells (103).
The MDSC-mediated NK cell suppression is associated with
increased metastasis in mice during gestation (104). In tumor-
bearing mice treated with medroxyprogesterone acetate, which
is commonly used as hormone replacement therapy and as a
contraceptive, MDSCs exhibit higher suppression of NK cells as
compared with MDSCs from control mice, implying a potential
mechanism for increased breast cancer incidence associated with
prolonged medroxyprogesterone acetate administration (105).

In patients with liver cancer or advanced melanoma,
CD14+HLA-DR−/low MDSCs suppress autologous NK-cell
cytotoxicity and IFN-γ production (60, 106). This suppression
is independent of ARG1 and iNOS but requires cell-to-cell
contact through NK-activating receptor NKp30 on NK cells,
suggesting expression of NKp30 ligand(s) by MDSCs (106).
In addition, TGF-β produced by MDSCs from melanoma
patients, which is stimulated by PGE2, also serves as a
major mechanism for NK-cell suppression (60). In addition,
MDSCs from cancer patients inhibit Fc receptor-mediated signal
transduction and downstream effector function of NK cells,
including antibody-dependent cellular cytotoxicity and cytokine
production, probably through NO production (107).

As an essential defensive mechanism of the innate immune
system, it is not surprising that NK cells are suppressed by
MDSCs generated in microbial infection. It is shown that
polymorphonuclear neutrophils and PMN-MDSCs dampen
the activation and cytotoxic activity of NK cells toward
Aspergillus fumigatus (108). In another study with mice
infected by vaccinia virus, PMN-MDSCs negatively regulated
the proliferation, activation, and function of NK cells, which
helped to contain excessive NK cell activity (109). In HCV
infection, CD33+CD11blowHLA-DRlow MDSCs suppress the
IFN-γ production of NK cells by depleting L-arginine via ARG1
(110). Interestingly, CD66b+CD33b+HLA-DRlow PMN-MDSCs
increase strikingly in the cord blood of neonates when compared
with peripheral blood of healthy children and adults. These cord
blood PMN-MDSCs are able to inhibit the function of T cells and
NK cells, which may be responsible for the impaired host defense
of neonates (111).

Conversely, there are studies showing NK cell activation by
MDSCs. For instance, Nausch et al. have found that MDSCs
from tumor-bearing mice express NKG2D ligand RAE-1 and
activate NK cells to produce IFN-γ, which is partially contact-
dependent and requires signaling throughNKG2D (112). Inmice
bearing NK-sensitive tumor, poly I:C treatment allows MDSCs
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to prime NK cells and consequently leads to delayed tumor
growth. MDSC-derived IFN-α after poly I:C administration
activates NK cells, which drives CD69 expression and IFN-γ
production but does not induce cytotoxic activity of NK cells
(113). A recent study has shown that M-MDSCs infiltrate in
the tumor microenvironment prior to NK cells and are required
for the tumoricidal activity of NK cells to eradicate galectin-
1-deficient GL26 glioma (114). Taken together, the seemingly
contradictory findings mentioned above suggest that the effect
of MDSCs on NK cells, either inhibitory or stimulatory, is most
likely context-dependent.

Impaired Function of Dendritic Cells by
MDSCs
Relatively less information is available on the direct impact of
MDSCs onDCs. Accumulation ofMDSCs in tumor-bearingmice
and cancer patients is associated with impaired differentiation
and accumulation of DCs (115–117). Unfortunately, the
underlying mechanism(s) is not fully understood. In a murine
model of allergic airway inflammation, LPS exposure promoted
the development of a group of myeloid cells in the lung that
resembled MDSCs phenotypically and functionally. These cells
inhibited the reactivation of primed Th2 cells by DCs (118). In
mice with hepatocellular carcinoma, MDSC-derived IL-10 was
found to be responsible for the impaired TLR ligand-induced
IL-12 production and T-cell stimulatory activity of DCs (116).
Recently, it was shown that MDSC-mediated suppression of
antigen presentation from DCs to CD4+ T cells depends on NO,
which may cause nitration of STAT1, a key mediator for antigen
presentation, and, consistently, this suppression is abrogated by
iNOS inhibitors (11). In another recent study, Notch and STAT3
signals were found to be required by MDSCs to suppress the
differentiation, maturation, and antigen presentation ability of
DCs in vitro and in vivo (119).

Due to their superior antigen presentation and T-cell
activation properties, DCs are utilized as cancer vaccines
to prompt immunity against malignant cells. DC vaccines
loaded with tumor antigens through various approaches aim to
induce and potentiate tumor antigen-specific T-cell response.
In line with MDSC-mediated suppression of DCs, favorable
therapeutic efficacy of DC vaccination is associated with a
reduced level of MDSCs in tumor-bearing mice (120, 121).
In cancer patients, when monocyte-derived DCs are used
as vaccines, the presence of CD14+HLA-DR−/low MDSCs in
the starting monocyte population causes impairment of DC
maturation, antigen uptake, migration, and T-cell stimulation
capacity (122). Therefore, it is reasonable to apply DC-based
vaccines in combination with agents that target MDSCs.
These agents include chemotherapeutics (e.g., all-trans retinoic
acid, gemcitabine, and cyclophosphamide) (123, 124), tyrosine
kinase inhibitors (e.g., sunitinib, axitinib, and dasatinib) (125–
127), lenalidomide (128), and anti-Gr-1 antibody (120), and
these combinations have shown reduced levels of MDSCs
and improved efficacy in pre-clinical studies. The initiation
of immune response by DC vaccines involves interaction
between multiple immune cell types. Therefore, to overcome the

immunosuppressionmediated byMDSCs andmaximize efficacy,
further research is still needed to accurately define the action of
MDSCs and other immune cells in DC vaccine-induced anti-
tumor immunity.

B Cells
In recent years, B cells have emerged as a novel target of MDSCs.
In an in vitro model of B lymphopoiesis, MDSCs induced
by adipocyte-derived factors inhibited B-cell development
through IL-1 production (129). PMN-MDSCs inhibited the
recruitment, proliferation, and cytokine secretion of B cells in the
central nervous system of mice with experimental autoimmune
encephalomyelitis (130). In the settings of retroviral infection
and autoimmune disease, several animal studies have revealed
that MDSCs impair B cell response by many of the mechanisms
utilized in T-cell suppression, such as ROS, iNOS, ARG1, TGF-β,
and PGE2 (54, 131). MDSCs from mice infected with retrovirus
express V-domain Ig-containing suppressor of T-cell activation
(VISTA), a negative checkpoint regulator that is homologous
to PD-L1 and inhibits T-cell response, and VISTA deficiency
in MDSCs or neutralization of VISTA by blocking antibody
partially rescues the impaired B-cell proliferation (132). Both
contact-dependent and contact-independent inhibition have
been implicated in these studies (54, 131).

Whether these suppressivemechanisms are used byMDSCs in
cancer settings is less well-elucidated. ROS, ARG1, iNOS PGE2,
and TGF-β have recently been suggested to exert suppressive
effects on B-cell proliferation and antibody production by tumor-
induced MDSCs (133). In a murine model of lung cancer,
the impeded B cell differentiation was associated with tumor
progression and MDSC infiltration; mechanistically, MDSCs
inhibit B cell response by TGF-β-mediated modulation of IL-7
and downstream STAT5 signaling, which are both essential in
B-cell differentiation and function (133). In another study, Ku
et al. showed that tumor-induced MDSCs reduce L-selectin on
naïve CD4+ and CD8+ T cells and that even moderate L-selectin
reduction is sufficient to profoundly disrupt homing of T cells to
distant lymph nodes. Interestingly, the loss of L-selectin has also
been found in B cells. In the study concerned, the shedding of
L-selectin from naïve T cells and B cells was contact-dependent
and was independent of major L-selectin sheddase ADAM17.
Since the trafficking of both naïve B cells and CD4+ precursors
of follicular helper T cells was hindered, the authors suggested
that the T cell-dependent antibody production in lymph nodes
may have been severely impaired (134).

Regulatory B cells (Bregs) are immunosuppressive and inhibit
the expansion of pathogenic T cells and other pro-inflammatory
lymphocytes through the production of IL-10, IL-35, and TGF-
β. In consistence with these properties, Bregs have been shown
to suppress anti-tumor immunity and promote tumor growth.
In patients with colorectal cancer, the level of Bregs positively
correlates with disease stage and with the frequency of MDSCs
(135). In a murine model of breast cancer, Shen et al. showed
that MDSCs upregulate PD-L1 expression on B cells and
dampen their anti-tumor response; more interestingly, MDSCs
may transform B cells into a novel subtype of Bregs that
possesses higher inhibitory capability on T cells as compared
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with other subsets of Bregs (136). In another study, MDSCs
induced the expansion of IL-10-producing Bregs, probably
through iNOS, and ameliorated autoimmunity in mice with
systemic lupus erythematosus (137). Conversely, in mice infected
with retrovirus, M-MDSCs inhibited the proliferation of IL-10-
producing Bregs in response to LPS stimulation (54).

ANTIGEN-SPECIFIC AND NON-SPECIFIC
SUPPRESSION OF CD8+ AND CD4+ T
CELLS

Among the various cell targets, suppression of T cells remains
the characteristic necessary to define bona fide MDSCs, provided
that the phenotypic criteria are met. With the abovementioned
mechanisms, MDSCs are capable of suppressing both antigen-
specific and non-specific T-cell response (Figure 2). It is
now generally accepted that ROS, and PNT in particular,
are responsible for antigen-specific suppression, provided
that MDSCs and T cells are in close contact, since these
substances are unstable and short-lived, while iNOS, ARG1,
and immunosuppressive cytokines are responsible for antigen-
non-specific suppression, since effector molecules of these
mechanisms have relatively longer half-lives and require cellular
proximity, but not close interaction, to exert inhibition (1).

Early studies have shown that Gr-1+ immature myeloid
cells isolated from tumor-bearing mice are able to uptake and
process soluble proteins and present the antigenic epitopes on
their surface (97). Their suppression of antigen-specific CD8+

T cells requires antigen presentation via MHC class I and
ROS production (14, 138). Studies in the last decade have
revealed that MDSC-induced antigen-specific T-cell tolerance
results from post-translational modification of the TCR complex.
MDSCs from gp91phox−/− mice produce little ROS and fail to
inhibit CD8+ T cells, and neutralization of PNT abrogates the
suppressive activity of MDSCs on T cells (17). Nagaraj et al.
demonstrated that the close and prolonged cell-to-cell contact
during antigen recognition allows MDSC-derived PNT to cause
nitration of tyrosines in the TCR-CD8 complex, which induces
conformational changes in these molecules and leads to loss
of binding ability to peptide-MHC complex (17). Consistently,
using double TCR transgenic CD8+ T cells, the same group
later showed that MDSCs induce CD8+ T-cell tolerance only
against the peptide presented by themselves, while they do not
affect T-cell response to peptide specific for other TCR that is
not presented by MDSCs (139). In accordance with previous
findings, the authors showed that nitration of surface molecules
of T cells is localized to the site of physical interaction between
MDSCs and T cells, which may lead to dissociation between TCR
and CD3ζ molecules, and consequently, nitrotyrosine positive
CD8+ T cells are rendered non-responsive to specific peptide
(139). In another study, however, ROS were found not to be
involved in antigen-specific T-cell suppression by MDSCs, and
MDSCs deficient in MHC class I showed no impairment in
antigen-specific suppression, which excludes the necessity of
antigen presentation (9).

Interestingly, PNT produced byMDSCs can facilitate immune
evasion of tumor cells even in the presence of normal functioning

FIGURE 2 | Antigen specificity of MDSC-mediated suppression of CD4+ and CD8+ T cells. The antigen specificity of T-cell suppression by MDSCs is determined

largely by the characteristics of the effector molecules involved. The short-lived reactive oxygen species (ROS) and peroxynitrite (PNT) are responsible for

antigen-specific suppression, provided that MDSCs and T cells are in close contact, while arginase 1 (ARG1), nitric oxide (NO), and immunosuppressive cytokines,

which have relatively longer half-lives, mediate antigen-non-specific suppression. During the close and prolonged interaction between MDSCs and CD8+ T cells in

antigen recognition, PNT causes nitration and conformational changes of the TCR complex and dissociation of CD3ζ molecules. CD8+ T cells consequently lose their

binding ability to peptide-MHC class I complex and are rendered non-responsive to specific peptide presented by tumor cells. PNT may also induce structural

changes of MHC class I on tumor cells, leading to reduced antigenic peptide binding. In this case, antigen-specific CD8+ T cells, even if functional, fail to recognize

tumor cells. For CD4+ T cells, antigen-specific suppression by MDSCs has been reported and may require sufficient MHC class II expression by MDSCs. iNOS, nitric

oxide synthase; NOX2, NADPH oxidase 2.
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T cells. PNT induces nitration and structural changes of MHC
class I molecules on tumor cells, which hampers their capacity to
bind antigenic peptide and subsequently impairs the recognition
by CTLs, therefore affording tumor cells resistance to antigen-
specific CTLs (140). These findings collectively suggest the
involvement of multiple mechanisms in antigen-specific CD8+

T-cell suppression by MDSCs.
On the other hand, evidence for MDSC-mediated antigen-

specific suppression of CD4+ T cells remains elusive, and
different results have been reported. It was previously indicated
that MDSCs fail to suppress antigen-specific CD4+ T-cell
proliferation, which may be due to the low MHC class II
expression onMDSCs, which precludes them from forming close
contact with CD4+ T cells (91, 138). However, MDSC-mediated
suppression of the proliferation of CD4+ T cells exposed to a
specific peptide has been reported, which is at least partially
due to cysteine deprivation by MDSCs (25, 88). Interestingly,
Nagaraj and colleagues have shown that MDSCs are able to
suppress antigen-specific CD4+ T-cell response in vitro and in
vivo, as long as their MHC class II expression reaches a sufficient
level (141). In different experimental systems, MDSCs are able
to blunt IFN-γ production of both tumor-specific CD8+ and
CD4+ T cells in the spleen of tumor-bearing mice in vivo (142).
In patients with liver cancer, depletion of CD14+HLA-DR−/low

M-MDSCs enhances IFN-γ secreting CD4+ T cells specific to
α-fetoprotein (57). These discrepancies might be explained, in
part, by the varied MHC class II level of MDSCs that has been
described in different tumor models and human studies, and
under some experimental conditions, MDSCs could inhibit the
proliferation of T cells without affecting the IFN-γ production
and vice versa (3, 4).

REGULATION ON THE SUPPRESSIVE
NATURE OF MDSCs

In most studies, immunosuppressive activity is detected only in
MDSCs derived from tumor-bearing host but not in their control
counterparts from tumor-free host, suggesting a tight control
over MDSCs by tumor. MDSCs carry out immune suppression
principally in the tumor microenvironment, which is a highly
dynamic complex and plays a crucial role in tumor development.
The constant bi-directional communication betweenMDSCs and
the ever-changing microenvironment shapes the phenotype and
function of MDSCs (Figure 3). For instance, tumor-derived M-
MDSCs show higher suppression of T cells than spleen- or bone
marrow-derived M-MDSCs from the same mice. Several cellular
and non-cellular components of the tumor microenvironment,
including the subset composition of MDSCs, tumor cells, stromal
cells, cytokines, metabolic state, and hypoxia, regulate the
suppressive nature of MDSCs.

Subset Composition and Antigen
Specificity and Capacity of
MDSC-Mediated Suppression
It is now clear that the suppressive machineries of MDSCs do
not act simultaneously, and subsets of MDSCs use different

mechanisms for T-cell suppression (9, 10, 92, 143). For instance,
M-MDSCs, whose activity mainly relies on ARG1, NO, and
immunosuppressive cytokines, inhibit both antigen-specific and
non-specific T-cell response (8, 10, 19, 92, 143, 144), while PMN-
MDSCs, whose activity largely depends on high ROS and PNT
production, inhibit T cells in an antigen-specific manner (10, 92).
In one study, only M-MDSCs, but not PMN-MDSCs, were able
to augment the activation-induced Fas upregulation of CD8+ T
cells through NO production and sensitize them to Fas-mediated
apoptosis and were able to impede the differentiation of mature
CTLs (143). Therefore, the suppressive nature of MDSCs is
influenced by their subset composition.

PMN-MDSCs is commonly the predominant subpopulation
in peripheral lymphoid organs in many murine tumor models,
and accordingly, antigen-specific T-cell tolerance is detected at
these sites (145, 146). This peripheral antigen-dependent T-cell
inhibition may partially explain the findings in some studies that
T cells in the periphery retain their responsiveness to other non-
specific stimuli (3, 17, 97). On the other hand, the proportion
of M-MDSCs is substantially higher in the tumor milieu (144,
145), and in spite of the common findings that PMN-MDSCs
may still be the prevalent subpopulation, M-MDSCs are more
suppressive than PMN-MDSCs on a per-cell basis (9, 119). As
a consequence, tumor-infiltrating MDSCs demonstrate higher
immunosuppressive capacity than their peripheral counterparts
and are able to inhibit both antigen-specific and non-specific
T-cell function (19, 147, 148).

In spite of these findings, it is noteworthy to point out that
similar or even stronger inhibitory capacity of peripheral MDSCs
has also been reported (140, 149, 150) and that non-specific
T-cell suppression is not uncommon in MDSCs derived from
peripheral lymphoid organs (149, 151).

It is common that the ratio between subgroups of MDSCs
varies in different tumor models. Unfortunately, many of
these studies have not addressed the subset composition of
intratumoral or peripheral MDSCs in detail, nor have they
assessed the suppressive capacity of PMN-MDSCs and M-
MDSCs separately. Therefore, the discrepancies on antigen
specificity and capacity of MDSC-mediated suppression, on the
one hand, should be interpreted with care, and on the other
hand, may suggest that subset composition of MDSCs is not
likely the sole nor a major determinant that influences their
suppressive nature.

Tumor-Derived Mediators
The generation of MDSCs includes two phases. Firstly, aberrant
myelopoiesis and blocked differentiation of immature myeloid
cells lead to the expansion of MDSCs, mainly driven by various
growth factors; secondly, these MDSCs are activated to be fully
functional, primarily promoted by pro-inflammatory factors.
This two-signal model of expansion and activation may answer
the question of why MDSCs are not generated under normal
physiological settings or during acute inflammation. In steady
state, growth factors stimulate normal hematopoiesis without
generating MDSCs due to the absence of pro-inflammatory
factors, whereas during acute inflammation, in the absence of
sustained growth factors, pro-inflammatory factors alone do not
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FIGURE 3 | Regulation on the suppressive nature of MDSCs by subset composition and the tumor microenvironment. Differential suppressive capacity and

mechanism(s) between PMN-MDSCs and M-MDSCs influence the suppression by MDSCs as a whole population (left). In peripheral lymphoid organs where

PMN-MDSCs predominate, suppression by MDSCs is mainly antigen-specific, since the activity of PMN-MDSCs depends largely on reactive oxygen species (ROS)

and peroxynitrite (PNT). In tumor where the proportion of M-MDSCs increases, suppression is more potent and is both antigen-specific and non-specific, since

M-MDSCs are more suppressive and mainly rely on arginase 1 (ARG1), nitric oxide (NO), and immunosuppressive cytokines. A network of cytokines, hostile physical

conditions, and cells in the tumor microenvironment regulates MDSCs in multiple aspects (right). Soluble mediators derived from tumor regulate the suppressive

activity of MDSCs and also drive their development. After being taken by MDSCs, the contents of tumor-derived exosomes, which act as intercellular messengers,

promote the expansion and potentiate the suppressive capacity of MDSCs. Like tumor cells, MDSCs undergo metabolic reprogramming to adapt to varying

surroundings. Hypoxia-inducible factor 1α (HIF-1α) induced by the mammalian target of rapamycin (mTOR) pathway enhances glycolysis and may potentiate

suppression by MDSCs, whereas glycolysis has also been reported to be a negative regulator. The heightened fatty acid oxidation (FAO) is associated with

upregulated ARG1 and increased NO and PNT production. Hypoxic signaling, primarily through HIF-1α, is another central regulator. HIF-1α promotes many

non-immunological activities of MDSCs, including differentiation, pro-angiogenesis, and pro-metastasis. HIF-1α augments MDSC-mediated suppression by

upregulating several effector molecules. The hostile conditions in the tumor milieu, such as oxidative stress, nutrient deprivation, and acidic waste accumulation,

causes ER stress and induce unfolded protein response (UPR) in MDSCs. ER stress response marker C/EBP homologous protein (CHOP) regulates ARG1,

superoxide, and PNT production by MDSCs. The bidirectional communication with stromal cells fine-tunes the induction, homeostasis, differentiation, and suppressive

function of MDSCs. Bregs, regulator B cells; CAFs, cancer-associated fibroblasts; DCs, dendritic cells; iNOS, nitric oxide synthase; LOX-1, lectin-type oxidized LDL

receptor-1; NK, natural killer; PD-L1, programmed cell death-ligand 1; Tregs, regulatory T cells.

lead to MDSC generation either, since immature myeloid cells
may rapidly differentiate into mature myeloid cells.

As discussed in the previous sections, many of the tumor-
derived mediators actively regulate the suppressive function of
MDSCs. In a murine model of tissue-specific inflammatory
response, MDSCs from inflammatory or tumor site are more
suppressive than MDSCs from spleen, and splenic MDSCs from
inflamed mice are more suppressive than splenic MDSCs from
naïve mice (148). Further study from the same group has shown
that MDSCs exposed to IFN-γ, IL-13, and GM-CSF in vitro or
MDSCs localized in inflammatory or tumor site in vivo have
elevated L-arginine transporter cationic amino acid transporter
2 expression, which parallels the expression of ARG1 and iNOS
and is required for optimal suppressive activity of MDSCs (146).
These findings suggest a priming effect of tumor-derived pro-
inflammatory cytokines. In a more recent study, tumor cells
upregulate tumor necrosis factor-α-induced protein 8-like 2
(TIPE2) in MDSCs through ROS, which in turn controls the

polarization of MDSCs by increasing pro-tumoral and inhibiting
anti-tumoral mediator expression (152).

Several pro-inflammatory factors are reported to enhance the
suppressive potency of MDSCs. For instance, PGE2 generated
by COX2 in tumor cells upregulates ARG1 expression of
MDSCs through the EP4 receptor (153). PGE2 promotes
hypermethylation and repression of a cluster of myeloid genes,
which is in contrast to the profile from DCs generated in
vitro or CD11b+ cells from healthy controls. This MDSC-
specific gain of methylation requires the upregulation of DNA
methyltransferase 3A, while its downregulation abolishes the
immunosuppressive properties ofMDSCs (154). It another study,
PGE2 potentiates the suppressive function of human M-MDSCs
induced by GM-CSF/IL-6 from peripheral blood mononuclear
cells (155). However, whether these actions of PGE2 occur in
vivo remains to be determined. IL-17 not only enhances tumor-
infiltrating MDSCs, probably by increasing CXCL1 and CXCL5
secretion by tumor cells, but also potentiates their inhibition on T
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cells through upregulation of ARG1 and IDO (156). The calcium-
binding pro-inflammatory proteins S100A8 and S100A9, which
are ubiquitously present in the tumor microenvironment, drive
the accumulation of MDSCs through increased recruitment to
primary tumor and pre-metastatic niche (150). It was recently
reported that S100A8 enhances T-cell suppression by MDSCs
(157) and that S100A9 induces IL-6 and IL-10 release by MDSCs
(158). Furthermore, MDSCs also express and secret S100A8/A9,
thus forming a positive feedback loop that helps to maintain
suppressive MDSCs in the tumor microenvironment (150).

Both type I and II interferons upregulate PD-L1 expression
in MDSCs. It is well-documented that IFN-γ functions as
a master regulator of PD-L1 expression in tumor. IFN-γ
neutralization reduces tumor-infiltrating PD-L1+ MDSCs in
vivo, and mechanistically, IFN-γ upregulates IRF1, which in
turn binds to IRF-binding sequence in cd274 promoter and
activates PD-L1 expression (72). The IFN-γ level in the tumor
microenvironment may be reduced due to MDSC-mediated
suppression of T cells and NK cells, which are important sources
of IFN-γ. As a compensatory mechanism, MDSCs may maintain
their PD-L1 expression by secreting IFN-α and IFN-β, which
bind to IFN receptor type I and upregulate PD-L1 in an autocrine
manner (159).

It is noteworthy to point out that many of the tumor-
derived mediators influence more than one aspect of MDSCs.
For instance, in addition to promoting expansion, GM-CSF
alone is able to promote immunosuppression by MDSCs (160).
GM-CSF increases IL-4Rα expression on MDSCs, which leads
to IL-13-induced ARG1 upregulation (161), and GM-CSF
drives PD-L1 and IDO expression of MDSCs through STAT3
activation (69, 80). Tumor-derived migration inhibitory factor
has been reported to promote the differentiation, recruitment,
and suppressive activity of MDSCs (162, 163). These pleiotropic
and redundant effects further complicate the regulatory network
of MDSC development.

Tumor-Derived Exosomes
Exosomes are small extracellular vesicles released by nearly all
cells and are present in most body fluids. These membrane-
bound vesicles contain proteins, DNA, mRNA, and miRNA
and act as intercellular messengers (164). Tumor constantly
produces and secrets exosomes. Upon contact with target
cells, tumor derived-exosomes are able to alter the phenotypic
and functional characters of the recipients, reprogramming
them into participants in tumor progression. In the early
phase of tumor growth, exosomes derived from immune cells
in the tumor microenvironment may facilitate anti-tumor
response, while in more advanced disease, tumor derived-
exosomes promote immune suppression by interfering with the
differentiation, maturation, and anti-tumor activity of immune
cells (164). Several recent studies have shown that MDSCs also
produce exosomes, whose contents are implicated in their own
chemotaxis, survival, pro-metastatic, and immunosuppressive
activity (165).

Studies have shown that tumor-derived exosomes promote
the expansion of MDSCs. Administration of tumor-derived
exosomes to healthy mice leads to increased frequency of

immature myeloid cells that acquire the phenotypic and
functional characters of MDSCs (166). Tumor derived-exosomes
induce accumulation of splenic and intratumoralMDSCs that are
able to promote tumor growth, which is dependent on exosomal
PGE2 and TGF-β (167). In multiple myeloma, exosomes derived
from both tumor cells and stromal cells expand MDSCs (168,
169). In addition, tumor derived-exosomes may contribute to
metastasis by inducing accumulation of MDSCs, PMN-MDSCs
in particular, in the pre-metastatic niche (170, 171).

Many of the suppressive machineries of MDSCs can be
potentiated by tumor derived-exosomes, including expression
of ARG1 and iNOS, and production of IL-10 and VEGF
(48, 167, 169, 172). The suppressive capacity of MDSCs
on T cells is accordingly heightened (48, 169). STAT3 is
implicated in this exosomal regulation onMDSCs (169). Chalmin
et al. have shown that HSP72 expressed on tumor derived-
exosomes induces suppressive activity of MDSCs, which activates
STAT3 in a TLR2/MyD88-dependent manner through autocrine
production of IL-6 (142). Similarly, in another study, MDSCs
were expanded and activated by exosomal HSP70, which induced
phosphorylation of STAT3 through the TLR2/MyD88 pathway
(172). In consistence with these findings, T-cell proliferation
is inhibited by MDSCs isolated from mice treated with tumor
derived-exosomes but not by MDSCs isolated from MyD88
knockout mice treated with tumor derived-exosomes (171).
Furthermore, stromal cell-derived exosomes are also reported
to enhance T-cell suppression by MDSCs, probably through the
STAT3 pathway as well (168).

Tumor-derived exosomes are able to mediate RNA transfer
from tumor cells to recipient cells. Ridder and colleagues have
shown that MDSCs are the major recombined cells in the
tumor microenvironment after the uptake of exosomes and
their RNA content and that MDSCs recombined with exosomal
RNA display enhanced ARG1, TGF-β, and PD-L1 expression as
compared to the non-recombined counterparts (173). In a recent
study, hypoxia increases exosome secretion by glioma cells.
Moreover, hypoxia upregulates miR-10a and miR-21 in glioma-
derived exosomes, which in turn potentiates the suppressive
function of MDSCs (174).

Metabolic Reprogramming of MDSCs
Along with disease progression, malignant cells undergo
dramatic alteration in their energy metabolism to meet the
demand for rapid tumor growth and to adapt to the varying
microenvironment. Meanwhile, it was recently demonstrated
that tumor-associated immune cells also experience metabolic
changes that help to shape their pro- and/or anti-tumor response
(175). In this regard, metabolic reprogramming is emerging as
a regulator of MDSCs. Using MSC-1 cells, an immortalized
murine MDSC cell line, early in vitro studies have revealed two
distinct bioenergetic states that coincide with the exponential and
stationary growth phases of MSC-1 cells (176) and that their
maturation and suppressive potential are accompanied by an
increase in the central carbon metabolism activity (177).

MDSCs exhibit a high glycolytic rate (175). The enhanced
glycolysis of MDSCs helps to keep their ROS level within a
safe range and promotes their survival and accumulation in
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tumor-bearing host (178). mTOR-mediated HIF-1α induction
is essential in glycolytic activation (175). Inhibiting the mTOR
pathway blocks the differentiation of M-MDSCs from precursors
by impairing glycolysis. Consistently, 2-deoxyglucose, which
inhibits glycolysis, blocks the differentiation of M-MDSCs, while
metformin, which promotes glycolysis, rescues the reduction in
M-MDSCs caused by mTOR inhibition (179). On the other hand,
glycolysis in tumor cells also contributes to the expansion of
MDSCs, which is mediated by increased production of G-CSF,
GM-CSF, and lactate (100, 180).

In addition to promoting expansion, glycolysis regulates
the function of MDSCs. A recent study has found that
enhanced glycolysis mediated by the mTOR pathway leads to
stronger suppressive capacity of tumor-infiltrating M-MDSCs as
compared with splenic M-MDSCs and that mTOR inhibition
by rapamycin reduces the glycolysis, intratumoral level, and
suppressive activity of M-MDSCs (181). Attenuated iNOS and
ARG1 may be responsible for the impaired function caused by
rapamycin-mediated glycolysis inhibition (179).

On the contrary, glycolysis as a negative regulator of MDSCs
has also been reported. It is shown that mTOR- and HIF-1α-
induced glycolytic activation is required for differentiation of
MDSCs to a less suppressive M1 phenotype (182). In the settings
of transplantation and autoimmune disorder, dexamethasone
expands MDSCs and strengthens their function. In a model of
immunological hepatic injury, dexamethasone inhibits HIF-1α-
dependent glycolysis in MDSCs and promotes their suppressive
activity to protect against inflammatory injury (183). In addition,
there are studies showing that mTOR inhibition by rapamycin
potentiates the suppressive activity of MDSCs, which protects
against acute graft-versus-host disease and acute kidney injury
(184, 185); yet, unfortunately, the glycolytic or other metabolic
characteristics of MDSCs were not determined in these studies.
These seemingly conflicting results indicate the complexity and
the possibly context-dependent manner in which glycolytic rate
determines the function of MDSCs.

Recently, it is shown that tumor-infiltrating MDSCs have
increased fatty acid oxidation (FAO), which is accompanied by
upregulated ARG1, increased NO, and PNT production, and
that FAO inhibition impairs the suppressive activity of MDSCs
in vitro and in vivo (186). Only intratumoral MDSCs, and
not splenic MDSCs, have increased FAO, suggesting that the
microenvironment is responsible for this metabolic alteration
(186). Consistently, a further study from the same group
demonstrated that tumor-derived cytokines, such as G-CSF and
GM-CSF, induce the expression of lipid transport receptors
in intratumoral MDSCs through the activation of STAT3 and
STAT5, which leads to increased uptake of lipids that are
present at high concentrations in the tumor microenvironment;
intracellular accumulation of lipids in turn increases the oxidative
metabolism and suppressive activity of MDSCs (187).

Hypoxia and HIF-1α
Hypoxia caused by excessive oxygen consumption by tumor cells
and aberrant organization of tumor vasculature is a common
feature of the tumor microenvironment and plays a central
role in tumor progression, primarily through HIF-dependent

signalings.Multiple activities ofMDSCs are regulated by hypoxia.
For instance, hypoxia facilitates the recruitment of MDSCs
to tumor site (188, 189). Intratumoral MDSCs preferentially
localize in poorly perfused and hypoxic regions, and their
pro-angiogenic capacity is generally enhanced by hypoxia (6).
The homeostasis of tumor-infiltrating MDSCs is fine-tuned by
the hypoxic microenvironment, since hypoxia promotes the
differentiation of intratumoral MDSCs to TAMs (190), while it is
also reported that hypoxia promotes the maintenance of MDSCs
by upregulating ectonucleoside triphosphate diphosphohydrolas
2 in tumor cells, which forms a 5′-AMP-rich microenvironment
and prevents differentiation of MDSCs (191).

It is now generally accepted that microenvironmental hypoxia
directly augments the suppressive function of MDSCs (1).
In a tumor model with similar PMN-MDSC to M-MDSC
ratios in spleen and tumor site, Corzo et al. found that the
inhibition on T cells is antigen-specific by splenic MDSCs, which
display higher ROS production, while it is both antigen-specific
and non-specific by tumor-infiltrating MDSCs, which exhibit
upregulated ARG1 and iNOS. Exposure of splenic MDSCs to
hypoxia leads to non-specific T-cell suppression, suggesting
that the hypoxic microenvironment may convert MDSCs into
non-specific suppressors. This conversion is mediated by HIF-
1α (190). A similar difference in suppressive mechanisms
and antigen specificity is detected in MDSCs obtained from
peripheral blood and tumor tissue of patients with head and
neck cancer (190). Similarly, it was recently reported that HIF-
1α potentiates the immunosuppressive activity of splenic MDSCs
in a murine model of chronic Leishmania infection (192).

Noman et al. have shown that the PD-L1 level is higher on
intratumoral MDSCs than on splenic MDSCs and that hypoxic
stress upregulates PD-L1 on splenic MDSCs through HIF-1α.
More importantly, hypoxia potentiates the ability of splenic
MDSCs to suppress both specific and non-specific stimuli-
mediated T-cell proliferation, while PD-L1 blockade abrogates
the enhanced suppression under hypoxia, in part by decreasing
the production of suppressive cytokines, particularly IL-6 and
IL-10, in hypoxic MDSCs (43). The authors have also found
that hypoxia increases the secretion of IL-6, IL10, and TGF-
β from MDSCs (43). In another study from the same group,
tumor-infiltrating MDSCs expressed an increased level of miR-
210 as compared with splenicMDSCs, and hypoxia inducedmiR-
210 in splenic MDSCs via HIF-1α. MiR-210 in turn enhanced
the suppressive capacity of splenic MDSCs by increasing their
ARG1 activity and NO production without affecting ROS, IL-6,
or IL-10 production or PD-L1 expression (67). In a more recent
study, HIF-1α acted as a transcriptional activator of VISTA, a
negative checkpoint regulator in the B7 family, in MDSCs and
consistently, antibody blockade or genetic ablation of VISTA
abolished MDSC-mediated suppression of T cells under hypoxic
but not normoxic conditions (193). These findings suggest
that hypoxia regulates MDSC-mediated suppression through
multiple pathways.

MDSCs actively participate in tumor metastasis by inducing
EMT, increasing the invasiveness and stemness of tumor
cells, and stimulating angiogenesis (5, 6). Unfortunately, the
precise roles of hypoxia and hypoxic signalings in these
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MDSC-driven steps of metastatic cascade are not well-defined.
On the other hand, MDSCs actively participate in pre-
metastatic niche formation. MDSCs, especially the granulocytic
subset, reach the pre-metastatic site prior to the arrival of
disseminated tumor cells, which is regulated indirectly by
hypoxia in the primary tumor. In a murine mammary tumor
model, tumor that grows in pre-irradiated mammary tissue
has decreased vascular density and is more hypoxic and
metastatic, recapitulating the clinical features of locally relapsed
breast cancer after radiation therapy; HIF-1-dependent Kit
ligand expression by hypoxic tumor cells mobilizes c-Kit+

PMN-MDSCs to home to pre-metastatic lungs to promote
metastasis (194). In other studies, PMN-MDSCs are recruited
by MCP-1 or G-CSF derived from hypoxic tumor cells to pre-
metastatic lungs, where they may inhibit the cytotoxicity of NK
cells (195, 196).

Endoplasmic Reticulum Stress and
Unfolded Protein Response
In homeostatic settings, the endoplasmic reticulum (ER)
readily handles the folding of secretory and transmembrane
proteins. The hostile conditions in the tumor milieu, such as
hypoxia, oxidative stress, nutrient deprivation, and acidic waste
accumulation, impair the protein-folding capacity of ER, thus
provoking a cellular state of ER stress. When the misfolded
proteins exceed a tolerable level, PKR-like ER-resident kinase
(PERK), inositol-requiring enzyme 1α (IRE1α), and activating
transcription factor 6α (ATF6α) detect the presence of ER stress
and trigger unfolded protein response (UPR) to improve the
folding efficiency in ER (197). These ER-localized sensors are
held inactive by chaperone BiP in steady state, while upon
ER stress, the dissociation of BiP activates all three sensors:
PERK phosphorylates the translation initiation factor eIF2α,
which restricts cap-dependent translation and in turn upregulates
activating transcription factor 4 (ATF4) and its downstream
target C/EBP homologous protein (CHOP); IRE1α cleaves the
X-box-binding protein 1 (XBP1) mRNA, and the spliced mRNA
is re-ligated to produce highly active XBP1s that regulates gene
expression involved in protein folding; ATF6α fine-tunes UPR by
regulating the transcription of ER chaperone genes (197).

Unresolvable ER stress often leads to cell death, while
tolerable defect in protein-folding capacity may fuel tumor cell
survival, metastasis, angiogenesis, and therapeutic resistance.
The immunosuppressive effect of ER stress is receiving growing
attention (197). Mahadevan et al. have shown that stressed tumor
cells actively regulate the function of myeloid cells. For instance,
tumor cells undergoing ER stress release yet unidentified soluble
mediators that lead to upregulated UPR markers and pro-
inflammatory cytokines in responder macrophages (198). This
transmissible ER stress also imprints bone marrow-derived DCs
with increased ARG1 and decreased ability to cross-present
antigen to CD8+ T cells (199). On the other hand, intrinsic ER
stress regulates the myeloid cell activity as well. STAT3 synergizes
with STAT6 in macrophages to promote cathepsin secretion and
tumor invasion through the IRE1α pathway (200). ER stress
and XBP1 activation in tumor-infiltrating DCs lead to abnormal

lipid accumulation, which impairs their antigen presentation
capacity (201).

In line with macrophages and DCs, MDSCs exhibit clear
signs of ER stress and UPR. MDSCs isolated from tumor-
bearing host have a higher level of ER stress response markers as
compared with monocytes and neutrophils from the same host
or healthy control (202). Furthermore, the CHOP level in tumor-
infiltrating MDSCs is higher than in splenic MDSCs or other
tumor-infiltrating immune cells (203).

Recent studies have demonstrated that ER stress response
regulates the homeostasis and suppressive function of MDSCs.
ER stress induces apoptosis of MDSCs through upregulation of
TRAIL-R or through the eIF2α-ATF4-CHOP pathway; though
the lifespan of MDSCs is shortened by ER stress, it may stimulate
myelopoiesis and the turnover of MDSCs in tumor-bearing host
(202, 203). Administration of the ER stress inducer thapsigargin
promotes infiltration of MDSCs in tumor and enhances their
suppressive capacity through upregulation of ARG1, iNOS, and
NOX2 (204).

Thevenot et al. have elaborately shown that the suppressive
activity of MDSCs is regulated by ER stress response marker
CHOP (203). In CHOP-deficient mice, tumor growth is
significantly retarded, while it is partially restored by depletion
of MDSCs, suggesting a reversal of the tumor-promoting
activity of MDSCs. Consistently, functional assessment of tumor-
infiltrating CHOP−/− MDSCs reveals reduced suppression of T
cells, which is associated with decreased ARG1, superoxide, and
PNT; furthermore, these CHOP−/− MDSCs acquire a DC-like
phenotype and are able to stimulate immune response.

In another study, ER stress-related genes were found
to be among the most upregulated in PMN-MDSCs, as
compared with neutrophils from the same cancer patient
or a healthy individual (205). Surface expression of lectin-
type oxidized LDL receptor-1 (LOX-1), which is regulated by
ER stress, effectively distinguishes immunosuppressive PMN-
MDSCs from neutrophils in cancer patients (205). ER stress
induced by thapsigargin promotes LOX-1 upregulation in human
neutrophils and converts them into immunosuppressive cells,
which is prevented by inhibiting the IRE1α-XBP1s pathway (205,
206). However, whether downstream signaling through LOX-
1 is responsible for the acquisition of suppressive activity by
neutrophils remains undetermined.

Crosstalk Between MDSCs and Stromal
Cells in the Tumor Microenvironment
Many of the tumor-promoting roles of MDSCs, such as immune
suppression, pro-angiogenesis, and pro-metastasis, are regulated
by the surrounding cells in the tumor microenvironment. How
tumor cells regulate the immunosuppressive function of MDSCs
has been discussed in previous sections. The induction and
suppressive capacity of MDSCs are also fine-tuned during
the dynamic and mutualistic communication with the non-
malignant stromal cells in the tumor milieu. Many of these cells
are not merely targets but also regulators of MDSCs.

MDSCs primarily inhibit T-cell response, and on the other
way round, T cells influence the suppressive nature of MDSCs.
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The antigen-specific CD4+ T cells, and not CD8+ T cells,
enhance the immunosuppressive capacity of MDSCs by turning
them into non-specific suppressors in vitro and in vivo.
Mechanistically, this effect requires cross-linking of MHC class
II on MDSCs during cell-to-cell contact with activated CD4+

T cells, and the subsequent retrograde signaling in MDSCs
upregulates COX2 and PGE2 expression (141). In a recent study,
IFN-γ produced by T cells was found to be critical in regulating
the enhanced suppressive activity of MDSCs induced by TLR2
ligand, which promoted differentiation of MDSCs into iNOS+

macrophages (207).
In addition to immunosuppression, T cells regulate the

induction of MDSCs. It has been reported that FasL+-activated
T cells may regulate the homeostasis of MDSCs through Fas-
FasL interaction, which induces apoptosis of MDSCs (208). In
human colorectal cancer, γδT cells promote the recruitment,
proliferation, and survival of PMN-MDSCs through secretion
of large amounts of IL-17 and other cytokines, including IL-
8, GM-CSF, and TNF-α (209). It has been shown in different
murine tumor models that TNF-α secreted by CD4+ T cells, and
partially by CD8+ T cells, induces myelopoiesis, which increases
the frequency of MDSCs (210).

PD-L1 expression on MDSCs is upregulated upon co-
culture with T cells (79), and MDSCs are able to induce
PD-1 expression on T cells through TGF-β (75, 211). In
melanoma-bearing mice receiving IL-2- and TNF-α-coding
adenovirus in combination with adoptive T-cell therapy, PD-L1
was upregulated in intratumoral MDSCs, and the frequency of
PD-1+ CD8+ T cells correlated with the PD-L1 expression level
on MDSCs in tumor site (70).

Not only doMDSCs promote Treg induction and recruitment:
their suppressive function is also modified by Tregs. An earlier
study reported that CD80 expression is required for MDSC-
mediated antigen-specific T-cell suppression, which is dependent
on CD4+CD25+ Tregs and CTLA-4 and that depletion of
CD4+CD25+ Tregs diminishes the suppression mediated by
MDSCs (212). In a more recent study, Treg depletion decreased
PD-L1 expression and IL-10 production by MDSCs (73). In a
murine model of melanoma, the expansion, recruitment, and
activation of MDSCs occurred in a Treg-dependent manner and
required the expression of IDO (213). Therefore, it is likely that
MDSCs and Tregs do not act separately but rather cooperate
reciprocally in immune suppression.

Crosstalk betweenMDSCs and B cells has been found recently.
In one study, MDSCs that accumulated around the germinal
center co-localized with B cells in the spleen of tumor-bearing
mice, and cell-to-cell interaction through TNFR2 on MDSCs
and membranous TNF on B cells promoted the proliferation
and differentiation of B cells into IgA-producing plasma cells
(214). Both IL-10 and TGF-β are crucial for this MDSC-mediated
IgA response. In another study, Bregs from tumor-bearing mice
increased the immunosuppressive and pro-metastatic function of
MDSCs, partially through the TGF-β type I/II receptor signaling
axis (215).

IL-10 is implicated in the interaction between MDSCs
and other immune cells. Through cell-to-cell contact, MDSCs
produce IL-10 to downregulate IL-12 by macrophages, and

macrophages in turn stimulate IL-10 upregulation by MDSCs
(216). The increased IL-10 level and reduced IL-12 level
consequently skew the immunity toward a tumor-promoting
type 2 response. In another recent study, MDSC-derived IL-
10 decreased IL-6 and TNF-α while increasing NO produced
by macrophages (217). Meanwhile, IL-10 produced by MDSCs
may reduce MHC class II molecule expression on macrophages,
leading to diminished antigen-presentation capacity (218). This
bi-directional crosstalk between MDSCs and macrophages is
accentuated by the inflammatory microenvironment. MDSCs
isolated from tumor with a heightened IL-1β level produce
more IL-10 and downregulate IL-12 by macrophages to a
greater degree as compared with MDSCs from less inflammatory
tumors (38). This IL-10 elevation by MDSCs requires IL-6
from macrophages and signaling through TLR4 on MDSCs and
macrophages (38, 218). This action of inflammation is further
corroborated by the findings that pro-inflammatory mediators
PGE2 and HMGB1 upregulate IL-10 in MDSCs in the presence
of macrophages (21, 218).

It is reported that mast cells not only induce the recruitment
but also promote the suppressive function of MDSCs, probably
through CD40L-CD40 interaction (219, 220).

Cancer-associated fibroblasts (CAFs) are a heterogeneous
group of activated fibroblasts that play pleiotropic roles in tumor
development and are able to modulate anti-tumor immunity on
various levels. Through secretion of CCL2 and CXCL12, CAFs
facilitate the recruitment ofMDSCs (221). Meanwhile, pancreatic
CAFs produce multiple MDSC-promoting soluble mediators, IL-
6 in particular, and favor the differentiation of MDSCs (222).
CAFs from hepatic cancer attract monocytes to the tumor
microenvironment by CXCL12 and induce their differentiation
into MDSCs through IL-6-mediated STAT3 activation (223).
The MDSC-promoting effect of CAFs in breast cancer involves
epigenetic regulation by histone deacetylase 6 (224). Consistently,
inhibiting CAFs leads to reduced in vivo induction and
intratumoral level of MDSCs (225, 226). On the other hand,
MDSCs promote activation and migration of CAFs, suggesting a
positive feedback loop that amplifies interaction between them.
To further complicate the issue, in recent studies, CAFs show
similar phenotypic and immunosuppressive characteristics to
the circulating fibrocytes that may arise from MDSCs and may
represent a novel MDSC subset (227).

CONCLUSIONS AND PERSPECTIVES

Among the multiple tumor-promoting characteristics of MDSCs,
the capacity to suppress T-cell response remains a key hallmark.
Given the complexity of the tumor immune microenvironment,
it is not surprising that MDSCs are more than a T-cell suppressor
and that their function is regulated on multiple levels. With the
advances in phenotyping and functional assessment in recent
years, a clearer view of the immunosuppressive nature of MDSCs
has been achieved. Firstly, several novel suppressive mechanisms
have been identified, which makes MDSCs a versatile suppressor.
Secondly, the antigenicity of MDSC-mediated T-cell inhibition
depends largely on the properties of the effector molecules
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utilized, since a different level and duration of intercellular
contact is required; furthermore, differential suppressive potency
and preferential mechanisms between subsets of MDSCs
compartmentalize T-cell suppression in tumor-bearing host:
immunosuppression is relatively weak and is antigen-specific
in the periphery, while it is strong and is both antigen-specific
and non-specific in the tumor milieu. Thirdly, the recognized
targets of MDSCs have been extended from T cells to other
immune cells, such as NK cells, DCs, and B cells, which broadens
their suppressive spectrum and makes them suppressive in both
innate and adaptive immunity. Lastly, in addition to clarification
of their expansion and activation in the presence of tumor,
the development and function of MDSCs are fine-tuned by
several microenvironmental factors. With these characteristics
unraveled, a pivotal role of MDSCs in the intricate network of
immune suppression within the tumor microenvironment has
been unveiled.

As a competent accomplice in carcinogenesis and disease
progression, the correlation between MDSCs and tumor burden
and disease stage is well-documented. For instance, a recent
meta-analysis has shown for the first time that a high level
of MDSCs is associated with shorter survival outcomes in
patients with solid tumors and hematologic malignancies (228).
This notion has two therapeutic implications. On the one
hand, MDSCs have been regarded as an attractive target
in cancer therapy. Various pre-clinical and clinical studies
have shown promising benefits by targeting MDSCs, which
can be achieved by depleting their quantity, blocking their
trafficking, or inhibiting their immunosuppressive activity (5).
On the other hand, due to their potent immunosuppressive
capacity, MDSCs act as a major obstacle to natural anti-tumor
immunity, hinder the efficacy of immunotherapy, and constitute
an important mechanism for resistance. Accordingly, a high
level of MDSCs predicts poor response to immune checkpoint
inhibitor ipilimumab inmetastaticmelanoma patients (66).More
importantly, it is rational to target MDSCs in combination
with immunotherapy, which may yield a synergistic effect and
delay, or even reverse, the occurrence of resistance (66). For
instance, as compared tomonotherapy, the efficacy of an immune
checkpoint inhibitor or cancer vaccine is enhanced by combining
with MDSC-targeted therapy in pre-clinical studies and clinical
trials (66), and T cell-based immunotherapy efficacy is enhanced
by inhibiting the trafficking of MDSCs (229). These benefits
are associated with improved T cell-mediated immune response

against tumor or increased antigen presentation capacity of DCs,
probably due to the relieved inhibition imposed by MDSCs.

However, approaches to combat with MDSCs are still
in their infancy, and there are several conundrums to be
addressed. Considering their versatility and the complexity of
microenvironmental regulation, the suppressive machineries of
MDSCs are not likely to act simultaneously, but most probably
function in a context-dependent manner. As a consequence,
when we target the suppressive function MDSCs, it would be
difficult to identify the most relevant target(s). Meanwhile, taking
into account the indispensability of myelopoiesis in physiological
processes and the phenotypic similarity between MDSCs and
normal myeloid cells, it would be challenging to target MDSCs
accurately without affecting the normal myeloid compartment.

Since they were firstly reported in the late 1970s and consensus
on their nomenclature was reached in 2007, MDSCs as a group
of suppressive myeloid cells have received increasing attention,
and research on MDSCs is booming. Their roles in malignant
and non-malignant settings are becoming clarified. With the
effort in the past decade, an algorithm that includes phenotypic
and functional, and, if possible, molecular criteria necessary to
identify MDSCs was proposed in 2016 (4). This step-by-step
approach aims to minimize ambiguity and helps to dissect the
function of MDSCs in future studies. For instance, it may help us
to better distinguish MDSCs from normal myeloid cells in the
same host. Determining how to target MDSCs more precisely
and efficiently relies, hopefully, on a better understanding of the
development and suppressive nature of MDSCs. Lastly, more
clinical trials are needed to validate the synergistic effect of
MDSC-targeted therapy and cancer immunotherapy.
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Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells
generated during a series of pathologic conditions including cancer. MicroRNA (miRNA)
has been considered as a regulator in different tumor microenvironments. Recent studies
have begun to unravel the crosstalk between miRNAs and MDSCs. The knowledge of the
effect of both miRNAs and MDSCs in tumor may improve our understanding of the tumor
immune escape and metastasis. The miRNAs target cellular signal pathways to promote
or inhibit the function of MDSCs. On the other hand, MDSCs transfer bioinformation
through exosomes containing miRNAs. In this review, we summarized and discussed the
bidirectional regulation between miRNAs and MDSCs in the tumor microenvironment.

Keywords: MDSC, miRNA, tumor microenvironment, tumor resistance, exosomes
INTRODUCTION

Tumor immune escape and metastasis are critical steps in cancer progression, which have been
implicated in the failure of cancer immunotherapies. To achieve that, cancer helper cells in the
tumor microenvironment (TME), including regulatory T cells (T-regs), tumor-associated
macrophages (TAMs), cancer-associated fibroblasts (CAFs), and myeloid-derived suppressor cells
(MDSCs), make a great contribution to protect cancer cells from being recognized and eliminated
by the immune system (1).

Among all the immune suppressive cells in TME, MDSCs played a vital role in cancer escape
from host immune surveillance (2). MDSCs are a group of immunosuppressive cells differentiated
from myeloid cells stimulated by chronic inflammation and other pathological conditions (3).
MDSCs were characterized by different phenotypes and functions. In humans, MDSCs were divided
into two main groups named monocytic myeloid-derived suppressor cells (M-MDSCs) and
polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), also referred to as
granulocytic myeloid-derived suppressor cells (G-MDSCs) (4). These two groups of MDSCs were
defined as CD33+CD11b+HLA-DR-/loCD14+CD15- and CD33+CD11b+HLA-DR-/loCD14-CD15+,
respectively. In mice, M-MDSCs and G-MDSCs or PMN-MDSCs were defined as CD11b+Ly-6G-

Ly-6Chi and CD11b+Ly-6G-Ly-6Clo cells (4–6). Recently, some studies defined early-stage myeloid-
derived suppressor cells (e-MDSCs) characterized with the phenotype of CD3-CD14-CD15-CD19-

CD56-HLA-DR-CD33+- and reported their functions and development (7).
MicroRNA (miRNA) has been investigated in different cancers, and the evidence of its

involvement in the regulation of the tumor microenvironment has been of much interest. Some
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studies found that miRNA expression could be mediated by
cancer-derived factors, MDSCs, or through direct miRNA
import via extracellular vesicles (8). miRNAs have been proven
to regulate MDSCs through various ways including disrupting
the differentiation of myeloid cells, increasing proliferation, and
affecting the immunosuppression and function of immune cells.
In the hematopoietic system, microRNAs are treated as
important regulators of myeloid lineage induction and
differentiation, and recent studies have begun to unravel the
crosstalk between miRNAs and MDSCs in TME (9).

Exosomeswerefirst found in1981 (10) as rubbish carriers to clean
degradedorwasted cell components.However,with thedeepeningof
the research, the positive function of exosomes like intracellular
communication or immune response was gradually exposed to us
(11). Although controversial, thought provoking, studies have
revealed that tumor-derived exosomes from MDSCs can carry
miRNAs that are parts of the tumor microenvironment and
protect tumor cells (9, 12). Furthermore, MDSC-derived exosomes
are alsodelivered to support progressionandmodulate the expansion
and suppressive function of MDSCs themselves (13, 14). MDSC-
derived exosomes carrying miRNAs would make MDSCs more
convenient to interact with tumor cells. On the other hand,
miRNAs transferred by tumor-derived exosomes can make a long-
distance travel in bodyfluid to regulate the expansion and functionof
MDSCs, which assist tumor angiogenesis and invasion.

To create a suitable microenvironment, tumor cells secrete
miRNAs, cytokines, and other molecules to escape from immune
surveillance. The expression of miRNAs controls the function of
MDSCs and inhibitory immune cells, such as T-regs (15). As an
essential component of tumor microenvironment, MDSCs lives
in the inflammatory environment, causing tumor progression
and helping tumors grow and suppressing immunity as well.
MDSCs also regulate miRNAs in the microenvironment. Both
MDSC and tumors can regulate miRNA expression to ease their
increment and metastasis. Furthermore, the exosomes derived
fromMDSCs and tumors can transport miRNAs locally and over
long distance, so that builds a bridge between MDSCs, tumor
cells, and the immune network.

Still, there are challenges remaining. The origin of miRNA is
complex and needs further validation, and whether the miRNA
secreted byMDSCs or tumor cells influences other immune cells in
the microenvironment should be clarified. Solving these questions
might help in finding the way blocking miRNAs specifically.

In this review, we focus on the mechanisms of how miRNAs
exert an effect on MDSC functions, the intercommunication
between miRNAs and MDSCs, their effect on the components of
the tumor microenvironment, and progress on miRNAs in the
exosomes derived from tumors and MDSCs.
MDSCs REGULATES miRNAs IN THE
TUMOR MICROENVIRONMENT

Several studies have shown that not only miRNAs regulate
MDSC function and differentiation, but MDSCs could also
modulate miRNA expression to promote cancer invasion and
metastasis (16). It was reported that MDSCs marked with the
Frontiers in Immunology | www.frontiersin.org 227
myeloid differentiation factor schlafen4 (SLFN4), a regulator of
myeloid cell differentiation, were identified in gastric cancer,
especially in the preneoplastic changes infected by Helicobacter
(17). miR-130b from SLFN4+MDSC promoted gastric epithelial
cell proliferation and was essential for MDSC expressing the
function of T-cell suppression (18). As for papillary thyroid
carcinoma (PTC), the PMN-MDSCs showed a great effect on
PTC progression. It decreased the expression of miR-486-3p,
which targeted the NF-kB pathway directly and thus activated
the NF-kB pathway and facilitated PTC invasion and, in turn,
increased PMN-MDSC expansion and function of repressing T
cells (15). However, the basic mechanism or the key cytokines
regulating this axis still need to be further studied.

The progression of ovarian carcinoma was investigated to be
highly correlated with MDSCs and cancer stem cells (CSCs),
which are dispensable for cancer advancement in TME. MDSCs
upregulated miR-101 expression and further repressed C-terminal
binding protein-2 (CtBP2), a corepressor gene targeting stem cell
core genes directly, and thus promoted the stemness and invasion
of cancer cells. Thus, the MDSCs-miR-101-CtBP2-cancer cell core
genes axis was therefore considered as a potential target for
antitumor immunotherapy (19).
MDSCs-DERIVED EXOSOMAL miRNAs
MEDIATE TUMOR PROGRESSION

Studies have shown that not only tumor-derived exosomes or
extracellular vehicles can mediate the expansion and suppressive
function of MDSCs by delivering miRNAs, but MDSC-derived
exosomes can also carry miRNAs, which have been certified
using next-generation sequencing (13) and exert influence on
tumor invasion and metastasis (14).

miR-143-3p in G-MDSC-derived exosomes inhibited integral
membrane protein 2B (ITM2B) and activated the PI3K/AKT
pathway, thus promoting the cell proliferation of lung cancer
(20). It was reported that MDSCs were involved in the resistance
of chemotherapy for breast cancer and identified its underlying
mechanism with doxorubicin-induced MDSCs (21). The DOX-
MDSC produced exosomal miR-126a and promoted the
induction of IL-13+Th2 T cells, which secreted IL-13 to
increase the proliferation of DOX-MDSC and exosomal miR-
126a. The study also found that the exosomal miR-126a of DOX-
MDSC repressed MDSC apoptosis and contributed to tumor
angiogenesis in an S100A8/A9-dependent way (22).

Geis-Asteggiante et al. provided evidence that MDSC-derived
exosomes carry miRNAs. Four differentially abundant miRNAs
(miR-7022, miR-7062, miR-5134, and miR-704) had predicted
mRNA targets that were part of the apoptotic pathway-inducing
Fas,whichwasalso a validated target ofmiRNA-98a (14).Another4
miRNAs in MDSC-derived exosomes included miR-9, miR-494,
miR-233, and miR-690, which were capable of affecting the cell
cycle, resulting in suppressing the differentiation of myeloid cells
and increasingMDSCproliferation (23, 24).miR-155, akeymiRNA
enriched in MDSC-derived exosomes, increases IL-10 production
in MDSC and contributes to the crosstalk between MDSCs and
macrophages (25–27). miR-155 mediates the MDSC function of
May 2022 | Volume 13 | Article 883683
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suppression through at least two ways including SOCS1 and
inhibiting the generation of CD4+Foxp3+ regulatory T cells (28).
THE miRNAs IN THE TUMOR
MICROENVIRONMENT REGULATE
MDSCs FUNCTION BY DIFFERENT
SIGNAL PATHWAYS

JAK/STAT Pathway
The Janus kinase/signal transducers and activators for the
transcription (JAK/STAT) pathway show great influence on
cell proliferation, differentiation, and inducing inflammatory
microenvironment for cancer. The STAT family is composed
of seven members including STATs 1, 2, 3, 4, 5a, 5b, and 6 (29).
Among all these proteins, STAT3 seems to be a key protein for
the creation of cancer microenvironment and be involved in
MDSC development modulated by miRNAs (29–31). miRNAs
have been proven to interact with MDSCs, and STAT3 could be a
crucial target within it. miR-17-5p and miR-20a downregulated
the suppressive function of MDSCs by targeting the 3’UTR of
STAT3 to block its expression, which remarkably reduced the
production of reactive oxygen species (ROS) and H2O2 (32).
However, only G-MDSCs could be inhibited by miR-17-5p, and
miR-20a and M-MDSCs showed less affection. It was also
demonstrated that miR-17-5p and miR-20a were regulated by
tumor-associated factors and the transfection of these miRNAs
could be a possible treatment for tumor immunotherapy. miR-
6991-3p was markedly reduced in MDSCs from the tumor
microenvironment, which means that miR-6991-3P repressed
the MDSC expansion and function of inhibiting T-cell
proliferation. STAT3 was proved to be the direct target of mir-
66991-3p (33). On the contrary, miR-155 and miR-21
synergistically upregulated STAT3 expression indirectly by
targeting SHIP-1 and PTEN, respectively, and eventually
enhanced the function and expansion of MDSCs. Both were
identified as early indicators for predicting patients’ reactions to
glucocorticoid treatment. Both monocytic and granulocytic
MDSCs were influenced by the upregulation of miR-155 and
miR-21 (25). Studies also revealed that tumor environment-
associated factors activate STAT3 and C/EBPb to increase the
transcription of miR-21a, miR-21b, and miR-181b (34).
Increased levels of these miRNAs disrupted the mixed-lineage
leukemia (MII1)-complex and allowed the PMN-MDSCs to
exert their immunosuppressive function. The STAT3/CEBPb-
miR-21a /b /181b-MII1 ax i s p rov ided an e ff e c t i v e
immunotherapeutic manner against cancer. The M-MDSC in
the colorectal cancer (CRC) microenvironment secreted CCL17.
This chemokine was combined with CR2 and activated the JAK/
STAT3 pathway, which awakened the dormant cancer cells and
promoted cancer progression clinically (35). miR-124-3p was
demonstrated to inhibit the PD-L1 pathway and STAT3
signaling in CRC, which might indicate that miR-124-3p
mediated the MDSCs of CRC through the PD-L1/STAT3
pathway (36). This might be a potential therapeutic target to
Frontiers in Immunology | www.frontiersin.org 328
prevent MDSC accumulat ion and CRC recurrence
and metastasis.

For other STAT proteins, STAT6 is found to strengthen the
expansion of G-MDSCs while it weakens the expansion of M-
MDSCs, and STAT6 could be inhibited by the overexpression of
miR-449c and increases the accumulation of M-MDSCs (37).

SOCS Signal
Suppressor cytokine signaling (SOCS)1, a member of the SOCS
family, is an inhibitor of the JAK/STAT pathway (38), which
mediates the expansion and suppressive function of MDSCs. A
recent study reported that the expression of miR-155 was
required for the suppressive function of MDSCs and was a
necessity for the T-reg induced by MDSCs (28). miR-155
mediated MDSCs by targeting SOCS1 directly and eliminated
the inhibition of the JAK/STAT pathway conducted by SOCS1,
thus contributing to the accumulation of MDSCs and exerting
immunosuppressive function.

It is known that SOCS3 negatively mediates the expansion and
function of MDSCs via inhibiting STAT3 (39). miR-30a was
demonstrated to target SOSC3 directly and increased the
activation of STAT3, participated in MDSC proliferation and
immunosuppression by inducing Arg-1, IL-10, and ROS, thus
eventually resulting in B lymphoma deteriorated with upregulating
MDSC infiltration and suppression (40). miR-9 was also identified as
activating the JAK/STAT pathway via targeting SOCS3 and
promoted the development of eMDSCs in breast cancer. miR-9
improved and coordinated with miR-181a expression, which was
also an inhibitor of the STAT pathway by bounding to PIAS3 (41).

However, in ovarian cancer, miR-101 was reduced while
SOCS2 gene expression increased. The transection of miR-101
could remarkably downregulate SOCS2 and thus inhibit the
invasion and metastasis of ovarian cancer cells (42).

PTEN and PI3K/Akt Pathway
It is well known that PTEN is a key regulator in neutrophils’
spontaneous death (43) and the downregulation of CXCR4-
mediated chemotaxis (44). miR-494, induced by tumor-derived
factors, such as TGF-b1, is reported as an activator ofMDSCs.miR-
494 downregulates PTEN and activates the PI3K/Akt pathway to
enhance the MDSCs’ chemotaxis mediated by CXCR4 and change
the normal progress on apoptosis and cell death, which promotes
the accumulation of MDSCs in tumors (45). The activation of the
Akt pathway also facilitates tumor invasion andmetastasis. Studies
also found that miR-200c, induced by GM-CSF, showed a positive
effect on the proliferation and suppressive function of MDSCs by
targeting PTEN and friend of Gata2 (FOG2) and further activated
the PI3K/Akt and STAT3 pathways (24). miR-21 is demonstrated
to regulate MDSC expansion by targeting PTEN, which increases
the activity of the STAT3 pathway (25).

RUNX1/YAP Pathway
The classical myeloid differentiation-related gene runt-related
transcription factor 1 (Runx1) is modulated during the
differentiation and maturation of MDSCs. RUNX1 is one of
the core-binding family transcriptional factors and is essential to
May 2022 | Volume 13 | Article 883683
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hematopoietic l ineage and myeloid expression and
differentiation (46, 47). Recently, miR-9 has been demonstrated
to be inversely correlated with the expression of RUNX1 in lung
cancer and miR-9 would inhibit MDSC differentiation and
aggravate the suppressive function of MDSCs. Direct injection
of miR-9 successfully repressed tumor development. However,
further clinical studies were needed to verify whether the miR-9
inhibitor was an effective anti-tumor immunotherapy (46). It was
also found that miR-21 maintains the accumulation of MDSCs in
the microenvironment of lung cancer via inhibiting the
expression of RUNX1 (48). In addition, RUNX1 was found to
downregulate the expression of yes-associated protein (YAP) to
deteriorate tumor progression (49). Thus, the miR-21/RUNX1/
YAP axis could be another underlying mechanism for miR-21
mediating MDSCs and tumor growth.

Targeting CCAAT Enhancer-Binding Protein
CCAAT enhancer-binding protein (CEBP) transcription factors
show a significant effect on the proliferation and differentiation
of myeloid cells (50). miR-486 was considered as a regulator of
myeloid cell differentiation and apoptosis by targeting CEBPa,
and the expression between miR-486 and CEBPa was inversely
correlated in tumor-induced M-MDSCs (TM-MDSCs). TM-
MDSCs are a group of cells involved in tumor angiogenesis
and immunity escape by suppressing the function of T cells.
However, either miR-486 or CEBPa overexpression would
inhibit the differentiation of myeloid cells, indicating that both
miR-486 and CEBPa were involved in the expansion of TM-
MDSCs in tumors (51). Based on the suppressive function of
MDSCs in tumor-bearing mice, △9-tetrahydrocannabinol
(THC)-induced MDSCs were used to confirm that miR-690
had great potential on maintaining the immunosuppression of
MDSCs via decreasing the expression of CEBPa and decaying
their terminal differentiation (23). Although some studies
utilized miR-155 as a promoter for the induction of MDSCs in
tumors and the lack of miR-155 led to the deterioration of solid
tumor (52), Kim et al. found that miR-155 negatively correlated
with the expression of MDSCs and identified CEBP as a target of
the miR-155-mediating recruitment of MDSCs (53).
Other Targets
Hypoxia-inducible factor 1a (HIF-1a) plays a major role in
converting MDSC differentiation and function in the tumor
microenvironment with hypoxia (54). Under hypoxia, miR-210,
elevated by HIF-1a, affected Arg1, IL-16, and CXCL12 expression
and further exacerbated the function of MDSCs, promoting the
development of tumors (55). HIF-1a, a direct target of miR-155,
was upregulated inmiR-155-deficientMDSCs, which increased the
expression of chemokines and further accelerated MDSC
infiltration in TME (56). Other miRNAs also presented the
function of tumor-inhibiting, for instance, miR-233 remarkably
slowed the progression of the tumor by repressing myeloid cell
differentiation toMDSCs via targetingmyocyte enhancer factor 2C
(MEF2C) (57).
Frontiers in Immunology | www.frontiersin.org 429
miR-34a contributes to the expansion of MDSCs by
suppressing the expression of N-myc. Instead of promoting
MDSC proliferation, miR-34a reduces the apoptosis of MDSCs
without an effect on progenitor cell differentiation to increase
their infiltration (58). miR-34a was also demonstrated to be the
driver of MUC1, promoting C-Myc expression in AML-related
EVs and the expansion of MDSCs (59). Moreover, miR-34 was
confirmed to have a synergistic effect on MDSCs with TWIST
(60), a transcription factor of the bHLH family, and contributes
to cancer progression and immune resistance (61).

It was elaborated that the PEG2/miR-10a/AMPK axis played
an undeniable role in chemotherapy-resistant breast cancer. The
PEG2 released by doxorubicin-resistant cancer cells stimulated
miR-10a expression, which was the activator of the AMPK
pathway, thus leading to the upregulation of MDSC
immunosuppression (62). Further studies of this axis would
provide a silver lining for treating chemotherapy-resistant tumors.

It is known that CXCR4 plays an essential role in recruiting
MDSCs and promoting the progression and metastasis of CRC
(63). miR-133a-3p was proven to be involved in this process by
activating RhoA/ROCK signal and was mediated by lncRNA
XIST (64).

Zhao et al. came up with a prognostic model of 4-circulating
miRNAs (miR-21, miR-130b, miR-155, and miR-28) to predict
the outcome of diffuse large B-cell lymphoma and tested its
validity with a cohort study. They also revealed the association
between the 4-circulating miRNA model and the RAS signal
pathway and how the tumor environment affects lymphoma. In
tumor progression, the alteration of these miRNAs led to RAS
pathway activation and MDSC upregulation (65).

Tumor-Derived Exosomes and
Extracellular Vesicles
Exosomes and extracellular vehicles (EVs) can carry and deliver
miRNAs to MDSCs and contribute to the regulation of MDSCs
as miRNAs secreted in situ. Tumors produce EVs and exosomes
as a manner of augmenting the immunosuppression of MDSCs
in the tumor microenvironment and assisting their invasion and
escape from surveillance of immune cells (66, 67). miR-9 and
miR-181a in exosomes derived from breast cancer were
identified to target SOCS3 and PIAS3, respectively, and further
activated the JAK/STAT pathway, thus promoting the
amplification and development of eMDSC (41). The miR-21a
in exosomes from Lewis lung carcinoma cells accelerates tumor
growth through targeting programmed cell death protein 4
(PDCD4) through activating the autocrine production of IL-6
and phosphorylation of the STAT3 signaling pathway and thus
enhances the expansion of MDSCs and tumor growth (68).
Furthermore, miR-21 in oral squamous cell carcinoma (OSCC)
enhanced the immunosuppressive function of MDSCs through
an miR-21/PTEN/PD-L1 axis (69) and in esophageal squamous
cell carcinoma (ESCC), miR-21 activated the STAT3 pathway
carried by cancer-associated fibroblast (CAF)-secreting
exosomes, which upregulated the induction of M-MDSC
corporate with IL-6 (70). Has-miR-494-3p and has-miR-1260a
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in pancreatic ductal adenocarcinoma (PDAC)-derived exosomes
mediated the suppressive function of MDSCs in an Smad4-
dependent way (71). miR-10a and miR-21a carried by
hypoxia-stimulated glioma-derived exosomes (H-GDEs)
showed a more aggressive mediating MDSC suppression on
CD8+T cells than N-GNEs did. Both miRNAs in exosomes
regulated MDSCs separately through miR-10a/Rora/IkBa/NF-
kB and miR-21/PTEN/PI3K/AKT pathways (72). The transfer of
miR-29a and miR-92a showed similar effects like miR-10a and
miR-21a in glioma with the hypoxia tumor environment.
Hypoxia-induced glioma produced exosomes to carry miR-29a
and miR-92a and transferred them to promote the differentiation
of functional MDSCs (73). MiR-107 in the gastric cancer-derived
exosomes was caught by MDSCs and inhibited the expression of
DICER1 and PTEN genes, thus increasing the expansion of
MDSCs and ARG1 expression, respectively (74). miR-1246 in
glioma-derived exosomes was demonstrated to mediate MDSC
differentiation and activation in a dual-specificity phosphatase 3
(DUSP3)/extracellular signal‐regulated kinase (ERK)-dependent
mechanism. The expression of exosomal miR-1246 was
correlated with glioma recurrence (75). The main signal
pathways of MDSCs that interacted with microRNAs in the
tumor microenvironment are illustrated in Figure 1.

Tumor-derived extracellular vesicles serve as a communication
tool for the crosstalk between cells by carrying proteins, RNAs,
and DNAs (76). EV-carried miRNAs could mediate the expansion
and suppressive function of MDSCs via targeting different points
or pathways in the tumor microenvironment (77, 78). CLL-
derived EVs contributed to MDSC accumulation by transferring
miR-155 and could be inhibited by vitamin D (79). A line of
miRNAs (miR-146a, miR-155, miR-125b, miR-100, miR-125a, let-
7e, miR-146b, miR-99b) in the EVs derived from melanoma was
Frontiers in Immunology | www.frontiersin.org 530
associated with the accumulation of MDSCs and the
immunotherapy of checkpoint inhibitors (67).
PERSPECTIVE

Although MDSCs have been studied for decades, the bidirectional
regulation between microRNA and MDSCs still needs further
investigation. The first question is where the miRNAs are from.
MicroRNA can be secreted by various cells, including MDSCs
themselves. The origin of miRNA is complex and needs further
validation. The next question is whether the miRNA secreted by
MDSCs influences other immune cells in the microenvironment.
Immune regulation is a network, regulated by cytokines, miRNAs,
and other molecules. It is well known that MDSCs and cancer cells
secrete exosomes, which contain many miRNAs, and regulate
other immune cell functions. Catherine Fenselau et al. used next-
generation sequencing, identifying more than 1,400 miRNAs in
MDSC-derived exosomes, and 24% of them were related toMDSC
(13). Therefore, using advanced technologies, such as the third-
generation sequencing, will help us investigate more information
about miRNAs in exosomes. In the future, targeting specific
miRNA could block or enhance MDSC function. Through
systemic or carrier-loaded delivery, it might regulate MDSC
function using miRNA-based drugs.
CONCLUSION

Immune escape and chemotherapy resistance are tough
problems for the treatment of tumors. However, with
continuous studies of factors in the tumor microenvironment,
FIGURE 1 | Main signal pathways interacted with microRNAs in tumor microenvironment. MicroRNAs in tumor microenvironment exert positive or negative effect on
MDSCs targeting different signal pathways. PTEN, Phosphatase and tensin homolog; SHIP-1, Src Homology 2-containing inositol phosphatase-1; CEBP, CCAAT/
enhancer binding protein; JAK-STAT3, Janus kinase-signal transducer and activator of transcription; PD-L1, Programmed death-ligand 1; SOCS3, suppressor
cytokine signaling 3; RUNX1, runt-related transcription factor 1; MEF2C, MADS box transcription enhancer factor 2, polypeptide C.
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great progress has been made on miRNAs and MDSCs. Multiple
studies have elaborated that miRNAs mediate MDSC expansion
and function via targeting pathways or transcriptional factors
including STAT, PTEN, RUNX1, SOCS, CEBP, and other target
points. It was also described that MDSCs regulated miRNA
expression to facilitate their proliferation and create favorable
conditions for tumor growth and invasion. Other than the
mechanisms of direct interaction between miRNAs and
MDSCs, studies tried to figure out if there were some indirect
ways to achieve the same outcome as their counterparts did. The
exosomes and extra vehicles secreted from cancer cells and
MDSCs carried miRNAs and made a difference in the tumor
microenvironment. However, more studies are needed to verify
the accuracy and feasibility of the results and data existing.
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The success of immunotherapeutic approaches in hematological cancers is

part ia l ly hampered by the presence of an immunosuppressive

microenvironment. Myeloid-derived suppressor cells (MDSC) are key

components of this suppressive environment and are frequently associated

with tumor cell survival and drug resistance. Based on their morphology and

phenotype, MDSC are commonly subdivided into polymorphonuclear MDSC

(PMN-MDSC or G-MDSC) and monocytic MDSC (M-MDSC), both

characterized by their immunosuppressive function. The phenotype, function

and prognostic value of MDSC in hematological cancers has been intensively

studied; however, the therapeutic targeting of this cell population remains

challenging and needs further investigation. In this review, we will summarize

the prognostic value of MDSC and the different attempts to target MDSC (or

subtypes of MDSC) in hematological cancers. We will discuss the benefits,

challenges and opportunities of using MDSC-targeting approaches, aiming to

enhance anti-tumor immune responses of currently used cellular and non-

cellular immunotherapies.

KEYWORDS

hematological cancers, myeloid-derived suppressor cells, immunotherapies, multiple
myeloma, leukemia, lymphoma
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1 Introduction

The tumor microenvironment is a complex and dynamic

network of distinct cell types (1–3). The composition of the

environment is variable between different tumor types; however,

it typically includes stromal cells, blood vessels, immune cells

and extracellular matrix (4). Myeloid-derived suppressor cells

(MDSC), tumor associated macrophages (TAM) and regulatory

T-cell (Treg) are major components of the microenvironment

and are critical drivers of immunosuppression, creating a tumor-

promoting and drug resistant niche (5, 6).

MDSC are a heterogeneous population of immature myeloid

cells and are generated in the bone marrow (BM) by

myelopoiesis (7). Under healthy conditions, the precursor cells

can terminally differentiate into mature dendritic cells,

granulocytes or macrophages. However, in pathological

circumstances including cancer, the differentiation of

precursor cells is partially blocked, leading to an accumulation

of an immature myeloid cell population, defined as MDSC (8, 9).

MDSC are known to accumulate during cancer progression and

promote tumor immune escape through multiple mechanisms

including (i) the expression of enzymes [e.g., arginase (Arg),

nitric oxide synthase (NOS), indoleamine 2,3-dioxygenase

(IDO)], (ii) the release of reactive oxygen species (ROS), (iii)

sequestering of cystine (↓ extracellular pool of cysteine), (iv) the

interaction and stimulation of other immunosuppressive cell

types (e.g., Treg) and (v) the secretion of immunosuppressive

cytokines (e.g., IL-6, IL-10, TGF-b) (10–13).
In hematological malignancies, the presence and

accumulation of MDSC is often correlated with a poor

prognosis, however the optimal strategy to specifically eliminate

MDSC or alter their suppressive function remains challenging

(14). Immunotherapy emerged as one of the most promising

treatment options for almost all types of hematological cancers

and is primarily focused on the modulation/stimulation of T-cell

using monoclonal antibodies, bispecific T-cell engagers, cell

therapies, vaccines and immune checkpoint inhibitors (e.g., PD-

1-, LAG-3-, CTLA-4-blocking antibodies) (15). In this regard,

therapeutic strategies to tackle immunosuppressive cell types

(including MDSC, TAM and Tregs) became an interesting

option to increase anti-tumor immune responses and overcome

the occurrence of drug resistance to currently used or investigated

cancer immunotherapies.
2 MDSC phenotype and prognostic
value in hematological cancers

MDSC are commonly subdivided into two groups:

monocytic MDSC (M-MDSC) and granulocytic (or

polymorphonuclear) MDSC (G-MDSC). The phenotype and

morphology of M-MDSC is very similar to monocytes, G-
Frontiers in Immunology 02
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MDSC and neutrophils also share common characteristics

(e.g., arginase-mediated arginine depletion) (16–18). Despite

the morphological and phenotypical similarities, functional

differences between steady-state neutrophils and G-MDSC are

descr ibed including a higher act ivi ty of arginase ,

myeloperoxidase (MPO), and ROS; reduced expression of

CD16 and CD62L; and less granules in G-MDSC compared to

neutrophils (17, 19). In recent years, it became clear that M-

MDSC and G-MDSC also utilize distinct mechanisms to

suppress the immune system. M-MDSC hamper T-cell

responses in a STAT1/3- and iNOS-dependent manner, which

is associated with increased NO and immunosuppressive

cytokine production (IL-10, TGF-b). The effect of G-MDSC,

on the other hand, is attributed to an antigen-specific induction

of T-cell tolerance by STAT3 activity and increased expression of

Arg-1, ROS, peroxynitrite and prostaglandin E2 (8).

In humans, the distinction between MDSC and monocytes/

neutrophils can be made based on density gradient and

phenotypic markers (e.g., expression HLA-DR), however the

distinction between these subtypes in mice is much more

challenging and therefore the nature and uniqueness of the

MDSC populations continues to be a matter of debate. In

murine models, MDSC are phenotypically defined as

CD11b+GR1+ and further subdivided into CD11b+Ly6G−

Ly6Clow for M-MDSC and CD11b+Ly6G+Ly6Clow for G-MDSC.

In humans, both subtypes are distinguished based on the

following phenotypic markers: CD11b+CD14+CD15−CD33+

HLA-DR−/low for M-MDSC and CD11b+CD14−CD15+CD33+

(CD66b+) for G-MDSC (17, 18). More recently, in humans, a

third “early-stage” MDSC subset (eMDSC) has been identified,

characterized as Lin− (CD3/14/15/19/56) HLA-DR−CD33+. This

subset comprises immature progenitor and precursor cells with

colony-forming activity, however its exact function and

contribution to immune suppression remains unclear (20).

Various reviews described the presence and immunosuppressive

function of MDSC in hematological malignancies, however below

we aimed to provide a brief and structured overview about the

main findings on MDSC subsets and their prognostic value in

different hematological cancers as this is particularly important in

the context of therapeutic strategies (Table 1) (14, 20, 47–50).
2.1 Leukemia

Acute Myeloid Leukemia (AML) represents the most

common myeloid malignancy and is characterized by the

expansion of immature myeloid progenitors or blasts in the

BM and peripheral blood (PB) (51). In AML, distinct MDSC

subsets have been characterized and specifically the circulating

M-MDSC subset (defined as CD14+HLA-DRlow) appeared to be

elevated and correlated with a poor prognosis in AML patients

(21, 22). In addition, eMDSC (CD33+CD11b+HLA-DR−/

LowCD14−CD15−) were also increased in the PB of AML
frontiersin.org
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TABLE 1 Summary of MDSC representative phenotype and their prognostic role in different hematological cancers.

Diseases Source MDSC subgroups/phenotype
definition

Clinical finding Ref

Leukemia AML PB
BM

M-MDSC: CD11b+HLA-DR-CD14-/
+CD33+CD15-

G-MDSC: CD11b+HLA-DR-CD14-CD33+CD15+

Higher MDSC level in PB and BM of AML patients VS. HD. (21)

PB M-MDSC: CD14+HLA-DRlow/- Higher circulating M-MDSC frequencies in CD14+ monocytes and PBMC VS.
HD (p < 0.01).

(22)

PB eMDSC: Lin-(CD3/14/15/19/56)HLA-DR-CD33+ Unknown (23)

BM MDSC: CD33+CD11b+HLA-DRlow/neg Significantly increased MDSC in BM (p < 0.01). (24)

CML PB M-MDSC: CD14+HLA-DR-

G-MDSC: CD11b+CD33+CD14-HLA-DR-
MDSC levels were increased at diagnosis and returned to normal levels after
therapy (p < 0.001, p < 0.0001).

(25)

PB MDSC: CD11b+ CD14-CD33+ PB MDSC levels were increased in samples from Sokal high-risk patients (p <
0.05).

(26)

B-ALL PB

BM

M-MDSC: CD45+CD19-HLA- DR-

CD11b+CD33+CD14+

G-MDSC: CD45+CD19-HLA- DR-

CD11b+CD33+CD15+

G-MDSC were significantly elevated in PB and BM vs. age-matched HD (p <
0.05, p < 0.01).
G-MDSC levels correlated positively with clinical therapeutic responses and B-
ALL disease prognostic markers.

(27)

PB MDSC: LinHLA-DR-CD33+CD11b+ MDSC levels significantly increased in early diagnosed B-ALL patients VS.
HD.

(28)

CLL PB M-MDSC: CD14+HLA-DRlow/- The M-MDSC were upregulated in patients (p < 0.0001) and were correlated
with CLL tumor progression, poor prognosis, and correlated with the presence
of CD4+ T and CD5+CD19+ cells.

(29)

PB M-MDSC: CD14+CD11b+CD15-HLA-DRlow/- M-MDSC were increased in PB of CLL Patients and correlated with The Rai
Stage (p < 0.001), and a close association with unfavorable prognostic
markers.

(30)

PB M-MDSC: CD14+CD11b+CD15-HLA-DRlow/- Higher median percentage of M-MDSC with IL-10 or TGF-1 expression in
CLL patients than in HD (p < 0.001, p < 0.0001).

(31)

PB M-MDSC: HLA-DR CD11b+CD33+CD14+

G-MDSC: HLA-DRlowCD11b+CD33+CD15+
Higher numbers of G-MDSC in patients correlated with different Th- subsets,
and were more strongly associated with a poor clinical course than M-MDSC.

(32)

Lymphoma DLBCL PB M-MDSC: CD14+HLA-DR-

G-MDSC: Lin-CD123-HLA-DR-CD33+CD11b+
Increased M-MDSC and G-MDSC populations in whole blood VS. HD (p =
0.001, p = 0.01). M-MDSC were correlated with the IPI and EFS (p = 0.034,
hazard ratio = 0.19).

(33)

PB M-MDSC: CD14+HLA-DRlow/- Increased frequency of M-MDSC was found in ND vs. HD (p < 0.01) and
associated with tumor progression in patients. (ND vs. Rel VS. Rem, p < 0.05,
p < 0.01).

(34)

HL PB MDSC: CD11b+CD33+CD14-CD34+HLA-DR-

M-MDSC: CD14+HLA-DRlow/-

G-MDSC: CD11b+CD33+CD14-HLA-DR-Lin-

All MDSC subsets (immature MDSC, G-MDSC, M-MDSC) were higher in
patients VS. HD (p = 0.03, p = 0.02, p 0.04), and higher MDSC percentages
were present in non-responders. CD34+ immature MDSC were predictive for
a short PFS in HL patients (p = 0.03).

(35)

B-NHL BM M-MDSC: CD14+CD33+HLA-DR-

G-MDSC: CD10-HLA-DRlow/-
Differences in M-MDSC (ND, Rem and Rel of B-NHL patients vs. HD, p <
0.0001, P < 0.001, p < 0.001). G-MDSC% was increased in PB (ND and Rem
and Rel of B-NHL patients vs. HD, p <0.0001, p < 0.0001, p < 0.0001).

(36)

Multiple
Myeloma

PB M-MDSC: CD14+HLA-DRlow/- Increased level of MDSC in patients with MM at diagnosis VS. HD (p < 0.05). (37)

PB
BM

M-MDSC: CD14+HLA-DRlow/- M-MDSC of ND MM patients were increased in PB and BM vs. HD (p <
0.01), and were associated with MM progression and response to therapy (ND
and Rem and Rel of MM patients VS. HD, p < 0.01).

(38)

PB
BM

M-MDSC: CD11b+CD14+HLA-DRlow/-

G-MDSC: CD11b+CD33+HLA-DRlow/-CD14-

CD15+

PB M-MDSC show correlation with serum creatinine, lactate dehydrogenase,
and b-microglobulin and inverse correlation with hemoglobin level PB M-
MDSC of patients with progressive disease showed higher levels than those of
patients at diagnosis and in complete response (p = 0.003 and 0.026,
respectively).
BM M-MDSC levels were higher in patients with progressive disease than
those in patients at diagnosis (p = 0.007).
PB M-MDSC > 0.3%) at diagnosis had an independent adverse prognostic
impact on OS.

(39)

(Continued)
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patients, however its impact of prognosis remains unknown

(23). Interestingly, Sun et al. observed a correlation between the

total number of MDSC in the BM (CD33+CD11b+HLA-

DRlow/−) and minimal residual disease (MRD) (determined by

flow cytometry), as MDSC levels in the high MRD group

(MRD > 1×10−2) was significantly higher than that in the

middle (1x10−2 > MRD > 1×10−4) and the low (MRD <

1×10−4) MRD groups (24).

Chronic Myeloid Leukemia (CML) is a hematopoietic stem

cell malignancy characterized by the acquisition of the t (9, 48)

chromosomal translocation leading to expression of the BCR/

ABL oncogene (52). Both M-MDSC (CD14+HLA-DR−) and G-

MDSC (CD11b+CD33+CD14-HLA-DR−) were increased in the

PB of CML patients compared to healthy controls and treatment

with the tyrosine kinase inhibitor imatinib decreased the MDSC

percentages to normal levels (25, 53). Although higher levels of

G-MDSC could be detected in high-risk patients (based on Sokal

score) compared to low-risk patients, its impact on prognosis

needs to be further elucidated (26).

In precursor B cell Acute Lymphoblastic Leukemia (B-ALL),

a malignancy of precursor B cells with the highest incidence

am o n g c h i l d r e n , e l e v a t e d l e v e l s o f G -MDSC

(CD45+CD19−HLA-DR−CD11b+CD33+CD15+) in the PB and

BM of newly diagnosed patients has been observed (27). Similar

to the findings in AML, a correlation could be observed between

the G-MDSC levels, in the BM and PB, and MRD status of B-

ALL patients at diagnosis. In addition, the frequency of G-

MDSC correlated positively with other prognostic indicators
Frontiers in Immunology 04
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including the percentage of CD20+ cells and blast cells (14,

27, 28).

Chronic Lymphocytic Leukemia (CLL) arises from the clonal

expansion of CD5+ B lymphocytes in the BM (54). A study of 49

CLL patients demonstrated an upregulation of CD14+HLA-

DRlow/− M-MDSC compared to healthy patients (29). In

addition, the elevated levels of M-MDSC were significantly

correlated with tumor progression and a poor prognosis of CLL

pa t i ent s (30 ) . The nega t i ve impac t o f M-MDSC

(CD14+CD11b+CD15−HLA-DR−/low) on the clinical outcome of

CLL patients was also confirmed by Kowalska et al. (31). In

contrast, the study by Ferrer et al. found a significant increase in

the G-MDSC (HLA-DRlowCD11b+CD33+CD15+) number of CLL

patients which was associated with a poor clinical outcome. While

CLL-derived G-MDSC suppressed T-cell growth in vitro, M-

MDSC were less immunosuppressive due to the presence of

TNFa and were defined as a more immunostimulatory subtype.

The authors concluded that the G-MDSC appeared to be the

preferred subtype to target, since they more effectively induce

immune suppression in CLL patients (32).
2.2 Lymphoma

Diffuse large B cell lymphoma (DLBCL) is the most common

type of non-Hodgkin lymphoma (NHL) hat develops from the

B lymphocytes. Azzaoui et al. observed an increase in M-MDSC

(CD14+HLA-DRlow) and G-MDSC (Lin-HLA-DR-CD33+CD11b+)
TABLE 1 Continued

Diseases Source MDSC subgroups/phenotype
definition

Clinical finding Ref

PB M-MDSC: CD14+HLA-DRlow/-

eMDSC: CD11b+Lin-(CD3/14/15/19/56)HLA-
DR-CD33+

In the pre-ASCT analyses, lower M-MDSC (median) were associated with a
longer time to progression (TTP) (p < 0.001). Pre-ASCT M-MDSC more
strongly inhibited the in vitro cytotoxic effect of mephalan compared with
pre-ASCT eMDSC (p < 0.01).

(40)

PB M-MDSC: G-MDSC: CD10-HLA-DRlow/- Higher G-MDSC in PB of ND and Rel VS. HD (p = 0.03, p < 0.001). (41)

PB
BM

M-MDSC: CD11b+CD33+CD15-

G-MDSC: CD11b+CD33+HLA-DRlow/-CD14-

CD15+

G-MDSC are increased in BMMC of MM patients (highest in RRMM) VS.
MGUS/SMM patients or HD (p < 0.05). G-MDSC in BMMC and PBMC of
MM patients expressed higher levels of PD-L1 (p < 0.05).

(42)

PB
BM

G-MDSC: HLA-DRlow/-

CD33+CD11b+CD15+CD14
There is an association between high G-MDSC levels and poor OS in PB and
BM of MM patients vs. HD (p < 0.05, p < 0.01).

(43)

PB M-MDSC: CD33+CD11b+HLA-
DRlow/-CD14+CD15
G-MDSC: CD33+CD11b+HLA-DRlow/-CD14-

CD15+

The G-MDSC subpopulation was increased in samples from patients with
MM (both patients with progressive disease and patients with stable disease
vs. age-matched controls, p < 0.0001, p < 0.0445.)

(44)

PB M-MDSC: CD66b+CD15-CD14+HLA-DR-

G-MDSC: CD66b+CD15+CD14-HLA-DR-
G-MDSC and M-MDSC were increased in PB of MM VS. HD (p < 0.0001).
Argl+G-MDSC percentage was increased in PB of ND MM patients VS.
MGUS (p < 0.0001), and it was higher in RRMM VS. ND (p < 0.0001).

(45)

BM G-MDSC: CD11b+CD13+CD16+ G-MDSCs are defined as CD11b+CD13+CD16+ neutrophils in MM. (46)
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populations in DLBCL patients, however the M-MDSC were the

only subset that could be correlated with the International

Prognostic Index and event-free survival (33). This observation

was confirmed by Wang et al. who demonstrated a significant

increase in the circulating M-MDSC (CD14+CD33+HLA-DR−/low)

of newly diagnosed and relapsed DLBCL patients and found that

the level of M-MDSC could be used as a biomarker for poor

prognosis of DLBCL patients (34).

The presence of Reed-Sternberg cells is a specific hallmark of

Hodgkin lymphoma (HL). Romano et al. demonstrated that all

circulating MDSC subsets (CD11b+CD33+CD14−CD34+HLA-

DR− or immature MDSC, CD11b+CD33+CD14−HLA-DR− or

G-MDSC, CD14+HLA-DRlow/− or M-MDSC) were increased in

HL patients compared to normal subjects. Higher MDSC

percentages were present in non-responders and CD34+

immature MDSC were predictive for a short progression-free

survival in HL patients (35).

More recently, a study in B-NHL patients including CLL,

DLBCL, marginal zone lymphoma (MZL), high‐grade B‐cell

lymphoma (HGBL), mantle‐cell lymphoma (MCL), primary

central nervous system lymphoma (PCNSL) and follicular

lymphoma (FL) patients was carried out to investigate the

impact of MDSC number and subsets (CD14+CD33+HLA‐

DR−/low for M‐MDSC, CD10‐HLA‐DR−/low for G‐MDSC) on

B-NHL patient’s prognosis. A significant increase could be

observed in the levels of M-MDSC and G-MDSC in the

diverse types of B-NHL compared to healthy donors. MDSC

levels were closely associated with disease progression (tumor

stage, LDH levels) and both subsets were defined as effective

indicators of poor prognosis in B-NHL patients (36, 55).
2.3 Multiple myeloma

Multiple myeloma (MM) is a plasma cell malignancy in

which monoclonal plasma cells proliferate in the BM (56).

Controversial results were reported regarding the MDSC levels

and subtypes present in MM patients. One of the first studies

demonstrated elevated levels of M-MDSC (CD14+HLA-DR−/

low) in MM patients at diagnosis compared to healthy controls

(57). In addition, M-MDSC levels were correlated with tumor

progression and MDSC levels could be considered as an

indicator for the efficacy of therapy (37, 38). A study by Bae

et al. recently confirmed the independent adverse prognostic

impact of PB derived M-MDSC in patients with MM and

suggested the analysis of M-MDSC as a prognostic marker in

clinical practice (39). In the context of autologous stem cell

transplantation (ASCT), lower M-MDSC levels were associated

with a longer time to progression. Interestingly, pre-ASCT

derived M-MDSC strongly inhibited the in vitro cytotoxic

effect of melphalan; which could be reduced by the blockade

of colony-stimulating factor 1 receptor (CSF1R) (40). However,

more recent studies demonstrate a significant increase of G-
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MDSC (CD11b+CD33+HLA‐DR−/lowCD14-CD15+) in BM and

PB of MM patients compared to monoclonal gammopathy of

undetermined significance (MGUS), smoldering MM patients

and healthy controls, while no significance could be observed for

M-MDSC (41–44). The increase in G-MDSC was also associated

with MM disease activity and could be used to predict the

response to immunomodulatory agent lenalidomide (45). Perez

et al. also observed a correlation between the clinical

significance, immunosuppressive potential, and transcriptional

network of well-defined neutrophil subsets. In addition, they

suggested a set of optimal markers (CD11b/CD13/CD16) for

accurate monitoring of G-MDSC in MM patients (46).
3 Therapeutic approaches to target
MDSC in hematological cancers

In past years, some specific and various unspecific strategies

have been investigated to either modulate the MDSC suppressive

function, affect their differentiation/maturation potential, block

MDSC development or deplete this cell population in the tumor

microenvironment. Below, and in Figure 1 and Table 2, we will

summarize all strategies that have been tested in the context of

hematological cancers.
3.1 MDSC depleting agents

3.1.1 Cytotoxic therapies
5-Fluorouracil and Gemcitabine, both chemotherapeutic

compounds routinely used in the clinic for the treatment of

cancer, have been described to decrease the number of MDSC in

preclinical mouse models of hematological cancers (58–60). Due

to the low selectivity and dose-dependent toxicity, various

encapsulated gemcitabine formulations have been developed

and examined for safety and tumor-directed toxicity. Sasso

et al. demonstrated that low dose gemcitabine-loaded lipid

nanocapsules efficiently targeted the M-MDSC subset and

relieved tumor-associated immunosuppression in vitro and in

vivo using the E.G7-OVA lymphoma model. The efficient uptake

of the nanocapsules into the M-MDSC subset was attributed to a

mechanism called ‘macropinocytosis’. Moreover, authors found

that preconditioning with low dose gemcitabine-loaded lipid

nanocapsules enhanced the efficacy of adoptive T-cell therapy in

the E.G7-OVA tumor model, further illustrating its potential as

immune modulating therapy in cancer (61).

3.1.2 Monoclonal antibodies
Daratumumab is an anti-CD38 monoclonal antibody, FDA

approved in 2015 for the treatment of relapsed/refractory MM

patients. Besides the ubiquitous expression of CD38 on MM

cells, CD38 antigen is also expressed by other cell types including
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MDSC and regulatory B cells (62). Krejcik et al. demonstrated

that in vitro generated G-MDSC (CD11b+CD14–HLA–DR–

CD15+CD33+) expressed elevated CD38 and were highly

sensitive to daratumumab-mediated ADCC/CDC compared

with the isotype control. Findings were confirmed in patients

treated with a combination of lenalidomide, dexamethasone

with or without daratumumab. Using western blot analysis, a

selective reduction of M-MDSC was observed in patients treated

with the triple combination compared to patients treated with

dexamethasone and lenalidomide (93). Data obtained by Cohen

et al. further supported the daratumumab-mediated depletion of

M-MDSC using a combination of daratumumab and anti-PD-1

monoclonal antibody cetrelimab in relapsed/refractory MM

patients (63).

3.1.3 MDSC-depleting peptibodies
Using a competitive peptide phage display platform,

candidate peptides were identified that specifically bind to

MDSC derived from EL4 mice, a murine lymphoblastic tumor

model. Peptides were fused with the Fc portion of mouse IgG2b
Frontiers in Immunology 06
39
to generate MDSC-specific peptibodies. In vivo studies in

lymphoma models including A20, EL4 and E.G7-OVA

demonstrated that the peptibodies were able to deplete intra-

tumoral MDSC, without affecting other inflammatory cell types

(e.g., dendritic cells and T-cell). In contrast to anti-GR1

depleting antibodies which preferentially eliminate G-MDSC,

peptibodies were able to deplete both M-MDSC and G-MDSC

subsets. Peptibodies significantly delayed tumor growth in EL4

mice and alarmins S100A8/S100A9 were identified as potential

candidate targets expressed by the MDSC (64, 94).

3.1.4 Brentuximab vedotin
Brentuximab Vedotin (BV) is an antibody-drug conjugate

designed to selectively deliver monomethylauristatin E, a

microtubule-disrupting agent, to CD30-expressing cells. The

compound has been FDA approved in 2018 for the treatment of

patients with previously untreated stage III or IV classical HL in

combination with chemotherapy (95). Although it remains

unclear whether CD30 is expressed or not on MDSC subsets,

Romano et al. demonstrated that BV reduced the absolute number
B

C D

A

FIGURE 1

The landscape of MDSC-targeting strategies in hematological cancers. Multiple MDSC-targeting approaches were evaluated in hematological
cancers to restore the anti-tumor immune response, including: (A) depleting MDSC populations through low-dose chemotherapy agents, mAbs,
peptibodies, brentuximab vedotin, epigenetic compounds, CD33/CD3-bispecific T-cell engaging (BiTE®) antibody, LXR agonist RGX-104,
Immunomodulatory drugs et al; (B) attenuating the immunosuppressive mechanisms of MDSC by immune checkpoint inhibitors, tyrosine kinase
inhibitors, MRIAN, notch inhibitors, S100A9 inhibitors, STAT3 inhibitors, phosphodiesterase-5 inhibitors, histamine hydrochloride; arginase
inhibitors; (C) inducing the differentiation of MDSC into mature myeloid cells by all-trans-retinoic acid (ATRA) to reduce MDSC population and
remove their immunosuppression; (D) inhibiting MDSC accumulation in the tumor microenvironment by palmitoyltransferase inhibitor and
zoledronic acid. mAb, monoclonal antibody; BiTE, bi-specific T-cell engagers; 5-FU, 5-fluorouracil; LXR, activation of liver X receptor; STAT3,
signal transducer and activator of transcription 3; NOX2, NADPH oxidase 2; ATRA, all-trans-retinoic acid; DC, dendritic cell.
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of three MDSC subtypes (CD11b+CD33+CD14−CD34+HLA-

DR−; M-MDSC and G-MDSC) coinciding with reduced soluble

Arg-1 levels and restored the entire T-cell populations in HL

patients; indicating its therapeutic use as MDSC targeting

agent (65).

3.1.5 Epigenetic compounds
5-aza-2′-deoxycytidine, also known as decitabine (DAC), has

been shown to act as an irreversible inhibitor of DNA

methyltransferases and induces gene-specific DNA demethylation

when administered at a low dose (96). Besides the reactivation of

tumor suppressor genes through demethylation, DAC exerts

pleiotropic effects on the tumor immune microenvironment

including the upregulation of MHC-I/MHC-II expression levels,

the increased expression of co-stimulatory molecules and the

targeting of immunosuppressive cell types. The effect of DAC on

MDSC subtypes was analyzed in leukemia (WEHI-3), lymphoma

(EL4) and MM (MPC11) models in vitro and in vivo. DAC

treatment induced MDSC apoptosis (CD11b+GR1+) in vitro and

increased T-cell activation in leukemia and lymphoma models. In

the MCP11 MM model, DAC inhibited MM cell proliferation and

induced an autologous T-cell immune response by depleting theM-

MDSC subset in the MM BM microenvironment (66, 67).

Histone deacetylase (HDAC) inhibitors (e.g. entinostat,

valproic acid, vorinostat) are another class of epigenetic

compounds and were also reported to reduce MDSC levels or

inhibit MDSC suppressive capacity in solid tumor models (97).

Treatment of BM mononuclear cells of MM patients with

ACY241, an HDAC6 selective inhibitor, significantly reduced

the HLA-DRlow/-CD11b+CD33+ MDSC population, while it

augments the immune response as evidenced by increased

perforin/CD107a expression, IFN-g/IL-2/TNF-a production

and ant igen-spec ific cent ra l memory cyto tox ic T

lymphocytes (68).

3.1.6 CD33/CD3-bispecific T-cell engaging
(BiTE®) antibody

AMG 330 is the first BiTE® developed against CD33, an

antigen that is not only expressed on the majority of AML-blasts,

but also on M-MDSC (98). Jitschin et al. observed an increase in

the percentage of HLA-DRlow (CD14+CD11b+) M-MDSC, that

co-express CD33, in newly diagnosed AML patients compared

to healthy controls. In the presence of AMG 330, T-cell were able

to eliminate CD33+IDO+ in vitro generated MDSC. Adding

MDSC to co-cultures of T-cell and AML cells resulted in

reduced AML-blast killing, while the addition of an IDO

inhibitor promoted the AMG 330-mediated clearance of AML-

blasts. Data suggest a dual anti-tumor effect of AMG 330

through increased T-cell mediated cytotoxicity against AML

blasts and CD33+ MDSC (69). Another study by Cheng et al.

evaluated the effects of AMV 564, a novel bivalent CD33/CD3 T-

cell engager and showed immunodepletion of MDSC and anti-
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tumor activity using primary samples of myelodysplastic

syndrome (MDS) patients and a disseminated leukemia mouse

model (70).

3.1.7 LXR agonist RGX-104
Liver-X nuclear receptors (LXR) are members of the nuclear

hormone receptor family that drive, among others, the

transcriptional activation of ApoE. Masoud et al. observed that

an LXR agonist RGX-104 induces apoptosis of MDSC and

enhances T-cell activation in solid tumor models (71). RGX-

104 is currently evaluated in an ongoing phase 1 clinical trial in

patients with metastatic solid cancers or lymphomas that have

progressed on standard therapies (NTC02922764). Blood

sample analysis revealed a depletion of G-MDSC and

increased T-cell activation after treatment of cancer patients

with RGX-104.

3.1.8 Immunomodulatory drugs
Immunomodulatory drugs (IMiDs), including lenalidomide

and pomalidomide, are a group of drugs that are derivatives

from thalidomide and are routinely used in the treatment of MM

(99). Kuwahara-Ota et al. examined the impact of IMiDs on

MDSC in vitro and found a significant reduction in MDSC level

upon coculture of MM-derived PB mononuclear cells and

human MM cell lines, with pomalidomide being more potent

than lenalidomide (72). However, clinical evidence supporting

this hypothesis is missing as lenalidomide-treated patients

showed a higher abundance of CD14+CD15+ MDSC.

Moreover, in vitro findings by Görgun et al. demonstrated that

lenalidomide could not overcome MDSC-mediated T-cell

suppression in MM (100). In the A20 lymphoma tumor

model, a lenalidomide-associated reduction in systemic MDSC

number and increased immune activation has been observed,

further illustrating the controversy regarding the impact of

lenalidomide on MDSC populations, depending on the used

tumor model and type.
3.2 Inhibition of MDSC suppressive
activity

3.2.1 Immune checkpoint inhibitors
In MM, the immune checkpoint PD-L1 was significantly

higher expressed on the G-MDSC subset of BM and PB-derived

MM patients (newly diagnosed and relapsed) compared to G-

MDSC of MGUS and healthy individuals (42). Although some

studies in solid tumors suggest that PD-L1 blocking could

partially restore the MDSC suppressive function, Ahn and

colleagues could not observe any effect of a PD-L1 blocking

antibody on splenic MDSC number or subsets in the MOPC-315

immunocompetent MM model (101–104). To fully elucidate

whether PD-L1 expression on MDSC is linked to its suppressive
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TABLE 2 Overview of MDSC-targeting approaches in hematological cancers.

Agents Disease Model Mechanisms/ Functions Ref

Cytotoxic therapies 5-FU Lymphoma EL-4 syngeneic model Gemcitabine and 5-FU decreased the number of MDSC. (58)

Gemcitabine
MM
Lymphoma

5T33MM model
A20 syngeneic model
E.G7-OVA model

Targeting MDSC by anti-GR1 antibodies and 5-FU reduced tumor load.
Accumulation of MDSC in the spleen of lymphoma-bearing mice. Lipid
nanocapsules loaded with a lauroyl-modified form of gemcitabine efficiently target
the M-MDSC subset.

(59)
(60,
61)

Monoclonal
antibodies

Daratumumab MM Patient PB, BM
samples

G-MDSC expressed elevated CD38 and were highly sensitive to daratumumab-
mediated ADCC/CDC.
Daratumumab-mediated depletion of M-MDSC using a combination of
daratumumab and cetrelimab in RRMM patients.

(62)
(63)

MDSC-depleting
peptibodies

Peptibodies Lymphoma EL-4 syngeneic model In vivo, intravenous peptibodies injection depleted blood, splenic and intra- tumoral
MDSC. S100 family proteins were identified as candidate targets.

(64)

Brentuximab
Vedotin

HL Patient PB samples BV reduced the absolute number of three MDSC subtypes and s-Arg-1 levels.
Patients with baseline s-Arg-1 >200 ng/ml had inferior PFS at 36 months.

(65)

Epigenetic
compounds

Decitabine Lymphoma
Leukemia
MM

EL-4 syngeneic model
WEHI-3 model
MPC-11 model

DAC treatment depleted MDSC in vivo. DAC activated adaptive T-cell response in
vitro and autologous T-cell response to tumor cells in vivo by depleting MDSC.

(66)

DAC treatment inhibited MPC-11 proliferation in vivo by depleting M-MDSC and
increasing T-cell infiltration in tumor tissue.

(67)

ACY241 MM Patient BM samples ACY241 decreases the frequency and expression of immune checkpoints on CD138+

MM cells, regulatory T-cells and MDSC.
(68)

CD33/CD3-
bispecific BITE®

antibody

AMG330 Leukemia Primary AML-blasts AMG330 triggers T-cell mediated lysis of AML-blasts that is further enhanced by
MDSC depletion.

(69)

AMV564 MDS MDS BM primary
samples, CD33hi
SKM1 xenograft
model

AMV 564 showed anti-tumor activity by immunodepletion of MDSC in primary
MDS patients and in a disseminated leukemia mouse model.

(70)

LXR agonist RGX-
104

RGX-104 Lymphoma LXR agonist treatment promotes MDSC apoptosis in vitro and in vivo. Patient blood
sample analysis revealed a depletion of G-MDSC after treatment of cancer patients
with RGX-104.

(71)

Immunomodulatory
drugs

Lenalidomide
Pomalidomide

MM Patient PB, BM
samples

LEN and POM prevent MDSC induction through transcriptional expression and
production of CCL5 and MIF, and increased the mRNA level of IRF8 (a negative
regulator of differentiation towards MDSC) in PBMC.

(72)

Immune checkpoint
inhibitors

VISTA-
targeting

AML Patient PB samples
C1498 syngeneic PD-
1H knockout model

VISTA is highly expressed on MDSC in patients, and increased in ND patients.
VISTA knockout/targeting diminished the inhibition of CD8 T-cell activity by MDSC
in AML. VISTA on host cells and AML cells induces immune evasion in AML.

(73,
74)

Tyrosine kinase
inhibitors

Ibrutinib CLL A cohort of previously
untreated CLL
patients, PBMC
samples

Ibrutinib therapy selectively alters the numbers of MDSC, CD4+ and CD8+ T-cells
and Th-cell subsets in vivo.

(32)

Dasatinib CML Patients and age-
matched HD PB
samples

The percentage of M-MDSC correlates with MMR in patients treated with dasatinib. (75,
76)

Metabolic
Reprogramming
Immunosurveillance
Activation
Nanomedicine

MRIAN T-ALL Activated Notchl
mutant driven T-ALL
model

MRIAN efficiently penetrates BM and selectively targets leukemic cells and MDSC
in T-ALL mice. MRIAN Inhibits mitochondrial metabolism and reduces ROS levels
in MDSC.

(77)

Notch inhibitors ADAM10

Anti-Jagged
antibody

T-ALL

Lymphoma

ADAM10 transgenic
(A10Tg) model

Patient PB samples

Notch3-transgenic
T-ALL model
Notchl-activated KE-
37 cell line and HD PB
EL-4 syngeneic
model

ADAM10 overexpression in transgenic mice resulted in a systemic expansion of
MDSC. The accumulation of MDSC was attributed to the differential cleavage of
Notch in S2 and S3 products by ADAM10.
Daratumumab-mediated depletion of M-MDSC using a combination of
daratumumab and cetrelimab in RRMM patients
Notch-signaling deregulation in immature T-cells promotes CD11b+Grl+

MDSC in the Notch3-transgenic murine model of T-ALL.
Human Notch-Dependent T-ALL cell lines induce MDSC from HD PBMC.
Tumors induce Jagged ligands in MDSC through NFkB-p65.
Anti-Jagged therapy induces an anti-tumor effect, and impacts the
suppressive activity of tumor-MDSC.

(78–
80)

(Continued)
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function, additional studies are required in MM models that

allow BM-derived MDSC investigation as well.

V-domain Ig suppressor of T-cell activation (VISTA) or PD-

1H is a novel checkpoint regulator that is predominantly

expressed in the hematopoietic compartment, and particularly

within the myeloid lineage (105). In solid tumors, inhibition of

VISTA resulted in improved anti-tumor immune responses in

vivo and currently clinical trials are ongoing to assess its

therapeutic potential in advanced solid tumor malignancies

(NCT05082610, NCT04475523) (106). In AML, VISTA was

found to be highly expressed on monocytes (CD45intCD11b+

CD14high/low) and myeloid leukemia blasts (CD45in vs. SCC).
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VISTA expression on PB-derived MDSC (CD11b+CD33+ HLA-

DR−) was significantly higher in AML patients compared to

healthy controls. In addition, siRNA mediated knockdown of

VISTA in MDSC resulted in increased T-cell proliferation in

vitro and diminished the MDSC-mediated suppression of CD8+

T-cell. Strikingly, the authors observed a strong correlation

between VISTA-expressing MDSC and PD-1 expressing T-

cells (including CD4, CD8 and Treg), indicating a link

between both checkpoints to suppress the immune system in

AML patients (73). In another study, VISTA-expressing murine

myeloid leukemia cells were injected into wild type and PD-1H

(VISTA) knock out mice. Authors observed a reduction in AML
TABLE 2 Continued

Agents Disease Model Mechanisms/ Functions Ref

S100A9 inhibitors ABR-238901 MM 5T33MM model Blocking S100A9 interactions with ABR-238901 did not directly affect MDSC
accumulation but did reduce IL-6 and IL-10 expression by MDSC. ABR-238901
treatment in combination with bortezomib resulted in an increased reduction in
tumor load compared with single treatments.

(81)

Tasquinimod 5T33MM model
5TGM1 model

Tasquinimod has direct anti-tumor effects in vivo. Tasquinimod targets M-MDSC
and increases serum interferon-gamma.

(82)

STAT3 inhibitors AZD9150 NHL
(primarily
DLBCL)

Patient PB AZD9150 therapy resulted in a decrease of G-MDSC and increased CD4 and CD8
T-cells in three out of four NHL patients.

(83)

Phosphodiesterase-5
inhibitors

Sildenafil B cell
lymphoma

A20 syngeneic model IL-4Ra expression on MDSC correlates with tumor progression and can be inhibited
by sildenafil.

(84)

Tadalafil MM Case report MM
patient

Tadalafil, in a patient with end-stage RRMM reduced MDSC function and generated
a dramatic and durable anti-myeloma immune and clinical response.

(85)

Clinical trial of MM
patients (refractory to
lenalidomide-based
regimens

MDSC were not detected in any of the patients at baseline in both blood and BM.
No clinical response could be observed.

(86)

NOX2 inhibitor Histamine
hydrochloride

Lymphoma EL-4 syngeneic model HDC reduces tumor progression by targeting NOX2+ MDSC. HDC significantly
reduced the accumulation of MDSC within EL-4 lymphomas.

(87)

Arginase inhibitor nor-NOHA
CD1158

MM Patient PB samples T-cell proliferation and cell cytotoxicity is enhanced by PMN-SN in the presence of
arginase inhibition. T-cell cytokine secretion is hyperactivated by PMN-SN in the
presence of arginase inhibition.

(16,
88)

AML AML mice NOG-
SCID mice

The AML mice had significant reductions in plasma arginine compared to controls.
The arginine depleting therapy can inhibit antigen-dependent T cell responses in
vitro and in vivo.

(89)

All-trans-retinoic
acid

Lymphoma EL-4 Syngeneic model ATRA induces expression of GSS and accumulation of GSH in MDSC. (90)

APL Transgenic PML-
RARA APL model T-
cell depletion in APL
B6 model HIS APL
model

In PML-RARA mice, the remission following ATRA treatment was accompanied
with normalized levels of PGD2, ILC2s, M-MDSC, and a recovery of activated CD8+
T-cells. T-cell depleted APL B6 mice showed a shorter survival and an increase in
ILC2 and M-MDSC. The increase in PGD2 and a major accumulation of ILC2 and
M-MDSC upon leukemia engraftment were observed in HIS APL mice that were
reverted by ATRA therapy.

(91)

PalmitoyItransferase
inhibitor

2-BP AML Patient PB samples Palmitoylated proteins on the AML-EVs' surface contribute to the TLR2-dependent
MDSC reprogramming

(92)
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ROS, reactive oxygen species; NFkB-p65, nuclear factor kappa-light-chain-enhancer of activated B cells; IL6, interleukin 6; CTLs, cytotoxic T lymphocyte; GSS, glutathione synthase; GSH,
glutathione; PDG2, a receptor for prostaglandin D2; ILC2, group 2 innate lymphoid cells.
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cell growth in PD-1H knock out mice, which was further

diminished by the administration of PD-1H blocking

antibodies. These data suggest that VISTA expression on both

the host cells and AML cells are involved in the cancer immune

evasion. Moreover, epigenetic modulation using DAC further

increased the overall survival of PD-1H knock out mice,

indicating the potential of combining both compounds in

clinical setting (74).

3.2.2 Tyrosine kinase inhibitors
Ibrutinib is a first-in-class oral irreversible inhibitor of Bruton

Tyrosine Kinase (BTK), a critical enzyme in the B-cell receptor

signaling cascade, and is highly effective in the treatment of CLL,

MCL and Waldenstrom’s macroglobulinaemia. BTK has been

described to be expressed by MDSC and treatment with ibrutinib

was found to affect the MDSC generation and function in solid

tumor models, indicating its therapeutic potential to increase

immune-based therapies (107, 108). A study by Ferrer et al.

demonstrated that G-MDSC were the preferential subset to

target in CLL patients to increase T-cell function. Three months

ibrutinib therapy of CLL patients resulted in a significant decline

of G-MDSC, while M-MDSC and monocytes remained

unaffected. While ibrutinib had no direct effect on the T-cell

suppressive activity, it skewed the T-cell differentiation to T helper

1 cells in the presence of MDSC, indicating a change from an

immunosuppressive towards a more immune effective state (32).

The effect of other tyrosine kinase inhibitors including

imatinib, nilotinib and dasatinib on MDSC levels was

evaluated in CML patients. All compounds induced a

significant reduction in G‐MDSC at 3–6 months and 9–12

months of treatment. However, the M-MDSC subset was not

significantly changed during imatinib and nilotinib therapy and

was only reduced in dasatinib‐treated patients. Interestingly, a

significant correlation was found between the major molecular

response (MMR) values and number of persistent M‐MDSC at

12 months of dasatinib treatment, indicating its prognostic value

in these patients (75, 76).

3.2.3 Metabolic modifier MRIAN
Metabolic Reprogramming Immunosurveillance Activation

Nanomedicine (MRIAN) is an L-phenylalanine polymer,

developed to target the immunosuppressive BM micro

environment by inhibiting MDSC. MRIAN reduced ROS levels

and induced MDSC differentiation towards functional immune

cells (e.g., macrophages, natural killer cells, dendritic cells). In T-

ALL mice, MRIAN significantly improved the T-cell number

and function by inhibiting MDSC. Studies also demonstrated an

enhanced cellular uptake of MRIAN in T-ALL cells and MDSC

compared to normal hematopoietic cells and progenitors.

MRIAN assembled to doxorubic in (MRIAN-Dox)

demonstrated an enhanced anti-tumor efficacy and reduced

toxicity profile (including cardiotoxicity and myeloablation
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side effects) in T-ALL mice; indicating its therapeutic potential

as metabolic modifier to target MDSC (77).

3.2.4 Notch inhibitors
The Notch signaling pathway has been identified to play a

key role in MDSC accumulation (109–111). In transgenic mice

overexpressing ADAM10, a Notch processing enzyme, an

accumulation of systemic CD11b+Gr1+ MDSC was found (78).

A study by Grazioli et al. observed an expansion of MDSC in a

transgenic mouse model of Notch3-dependent T-ALL.

Interestingly, using both in vitro and in vivo experiments, they

found that CD4+CD8+ T-cell (derived from the Notch3-

transgenic mice) were the drivers of MDSC accumulation,

through a mechanism that was dependent on both Notch and

IL6. Conversely, anti-Gr1-mediated depletion of MDSCs in T-

ALL-bearing mice significantly reduced the proliferation and

expansion of malignant T-cell. These data were confirmed by

coculturing human Notch-dependent T-ALL cell lines and

healthy donor derived PB mononuclear cells in vitro, resulting

in increased CD14+HLA-DRlow/neg MDSC accumulation and T-

cell suppression; effects that were not observed with T-ALL cells

that did not express Notch1- or Notch3-activated protein (79).

Another therapeutic approach to alter Notch signaling is the

use of anti-Jagged blocking antibodies. Sierra et al. assessed the

anti-tumor and immunogenic effect of CTX014, a humanized

IgG1 blocking antibody, cross-reactive for both mouse and

human Jagged1 and 2, in solid and hematological tumor

models. Surprisingly, results demonstrated an increase of

CD11b+GR1+ MDSC in tumors of mice treated with anti-

Jagged therapy compared to vehicle. Data suggested that anti-

Jagged therapy triggered an anti-tumor immune response

through induction of immunogenic MDSC-like cells. Anti-

tumor and immunogenic effects of anti-Jagged therapy was

evaluated in an E.G7-OVA T-cell lymphoma model in

combination with adoptive T-cell transfer of OT-I cells.

Results showed that anti-Jagged therapy could overcome

tumor-induced immune tolerance and increased the effect of

the T-cell based immunotherapy (80).

In solid tumors, targeting Notch using g-secretase inhibitors
significantly increased the MDSC number in preclinical cancer

models (112). There was a specific increase in the G-MDSC

subset and a downregulation of CD80, CD115 and CD124

markers, all associated with MDSC suppressive function.

Using short hairpin constructs against RBP-J, Notch signaling

was attenuated in BM cells and this resulted in reduced MDSC

suppressive capacity. In addition, injection of RBP-J-deficient

MDSC in tumor-bearing mice significantly reduced the tumor

growth compared to controls (79, 113).

Altogether, these studies revealed a role of Notch signaling in

the accumulation and suppressive function of MDSC in tumor-

bearing mice. However, whether the effect is direct, indirect or a

combination of both remains to be elucidated.
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3.2.5 S100A9 inhibitors
S100A9 is a calcium-binding protein, mainly secreted by

granulocytes and monocytes, and has been reported to be

essential for MDSC survival and accumulation in tumor-bearing

mice including MM and lymphoma models (114). In MM, our

group demonstrated the expression of S100A9 and its receptor

TLR4 in both monocytic and granulocytic MDSC subsets. S100A9

acted as a chemoattractant for MM cells in vitro and induced the

expression of pro-inflammatory cytokines by MDSC (e.g., TNFa,
IL-6, IL-10). Targeting the interaction of S100A9 and its receptors

using ABR-238901 did not affect MDSC accumulation, but

significantly reduced cytokine expression by MDSC. Moreover,

anti-angiogenic and anti-MM effects were observed in vivo using a

combination therapy of ABR-238901 and bortezomib (81).

Recently, we also investigated the effects of S100A9 inhibitor

tasquinimod, currently evaluated in clinical trial for relapsed/

refractory MM patients and observed a clear reduction in the M-

MDSC subset in vivo (NCT04405167). In addition, tasquinimod

abolished the immunosuppressive activity of in vitro generated

MDSC, illustrating its potential as an immunotherapeutic

compound (82).

3.2.6 STAT3 inhibitors
Although STAT3 activation is known to play a pivotal role in

MDSC accumulation and function, the effects of STAT3

inhibitors on MDSC activity is rather controversial (115, 116).

AZD1480, a small-molecule inhibitor of JAK1/2 kinase,

significantly decreased MDSC number and delayed tumor

growth in MO4 melanoma-bearing mice. Despite a decrease in

MDSC percentage, Maenhout et al. observed an enhanced

MDSC-suppressive capacity and impaired T-cell proliferation

and IFN-g secretion upon treatment with AZD1480 (117).

AZD9150, a next-generation antisense oligonucleotide

inhibitor of STAT3, also demonstrated potent anti-tumor

effects of lymphoma cell lines and in preclinical lymphoma

models (83). The inhibitor was evaluated in a small group of

non-HL patients and three out of four patients showed a

decrease in the circulating G-MDSC population and an

increase in CD4+ and CD8+ T-cell (118). Napabucasin,

another STAT3 inhibitor, was also found to abrogate the

MDSC suppressive function in solid tumors and exhibited

potent cytotoxicity against NHL cell lines (119, 120). However,

napabucasin-mediated MDSC-targeting and modulation has not

been investigated in hematological cancers so far.

3.2.7 Phosphodiesterase-5 inhibitors
Phosphodiesterase-5 (PDE5) inhibitors (e.g., sildenafil, tadalafil,

vardenafil), particularly used for nonmalignant conditions in the

clinic, have been found to increase anti-tumor immune responses

by altering the MDSC suppressive function and restoring anti-

tumor immunity (121). Using the A20 lymphoma model, it has

been found that IL4Ra expression onMDSC correlated with tumor
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progression and could be inhibited using sildenafil. In addition,

sildenafil reduced lymphoma-induced T-cell anergy and expansion

of regulatory Treg (84). A case report of a patient with end-stage

relapsed/refractory MM showed that the addition of tadalafil to its

treatment regimen (lenalidomide, clarithromycin, dexamethasone)

reduced theMDSC suppressive activity, as illustrated by a reduction

in IL4Ra+, iNOS, Arg-1 and ROS. Interestingly, the changes in

MDSC function were more pronounced in the BM compared to the

blood and were associated with an increase in T-cell function (↑
IFNg expression). With the administration of tadalafil, the patient

could tolerate the combination of lenalidomide and dexamethasone

and achieved a very good partial response (+/- 90% reduction in

tumor burden) (85). Although a clinical trial was initiated

combining tadalafil, dexamethasone and lenalidomide in MM

patients who were refractory to lenalidomide-based regimens, the

study was terminated at an early stage due to a lack of response. The

limited efficacy could be explained by the low number of MDSC

present in the patients at the time of enrollment, potentially

attributed to the pre-treatment with lenalidomide (86). Further

studies are required to investigate the impact of PDE-5 inhibitors in

patients with elevated MDSC levels.

3.2.8 Histamine hydrochloride
Histamine hydrochloride (HDC) is a NOX2 inhibitor and is

known to inhibit the immunosuppressive function of myeloid cells

by reducing ROS production (122). Low-dose IL-2 combined with

HDC is approved in Europe for remission maintenance in adult

AML patients. Grauers et al. further unraveled the impact of HDC

on MDSC number and function using the EL4 lymphoma tumor

model. HDC significantly reduced MDSC number in vivo and

altered the MDSC-induced immunosuppression of T-cells ex vivo.

Moreover, using Nox2 knock out mice and GR1-depleting

antibodies, it has been suggested that HDC exerted its anti-tumor

effects by targeting the NOX2+ GR1+ cells in vivo. Finally, authors

also observed an enhanced anti-tumor efficacy using the

combination of HDC and anti-PD-1 antibodies in the EL4

lymphoma model. HDC-mediated effects on MDSC were further

evaluated using blood samples of AML patients that received HDC

in conjunction with low-dose IL-2 for relapse prevention

(NCT01347996) (87). HDC/IL-2 therapy resulted in a significant

reduction in the frequency and absolute counts of M-MDSC, and

this strong reduction significantly predicted the leukemia-

free survival.

3.2.9 Arginase inhibitors
Arginase is a key enzyme involved in the immuno

suppressive function of G-MDSC. Romano et al. demonstrated

that Arg-1 is mainly expressed by G-MDSC in MM, and that

both Arg-1 and G-MDSC are reduced after treatment with

lenalidomide in vivo (45). Interestingly, Vonwirth et al.

demonstrated that arginase inhibition, using nor-NOHA or

CB-1158, could reduce T-cell anergy of MM patients in the
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1016059
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fan et al. 10.3389/fimmu.2022.1016059
presence of supernatant derived from polymorphonuclear

neutrophil granulocytes (~G-MDSC). In preclinical solid

tumor models, arginase inhibitor CB-1158 inhibited MDSC-

mediated immunosuppression, increased T-cell proliferation

and activity, and reduced tumor growth in vivo (89). A first-

in-human phase 1 study in solid tumors demonstrated that CB-

1158 was well tolerated and achieved on-target inhibition as

illustrated by the increase in plasma arginine (16, 88). Moreover,

arginase inhibition has been proposed as an interesting adjuvant

therapy by Mussai et al. in leukemia patients. Inhibition of the

arginine metabolism by L-NMMA and L-NOHA enhanced the

proliferation and cytotoxicity of anti-NY-ESO (AML associated

cancer-testis antigen) T-cells against epigenetically-treated AML

blasts. In addition, it could also boost the anti-CD33 Chimeric

Antigen Receptor T-cell cytotoxicity against AML, further

illustrating its potential as adjunct therapy in hematological

cancers (89).
3.3 Induction of MDSC differentiation

3.3.1 All-trans-retinoic acid
All-trans-retinoic acid (ATRA), a vitamin A derivative, has

been described as an inducer of myeloid cell differentiation and

maturation, reducing MDSC number and inducing activation of

immune responses in preclinical hematological and solid tumor

models (90). In acute promyelocytic leukemia (APL) patients,

peripheral ‘group 2 innate lymphoid cells’ (ILC2s) were found to

be increased and hyperactivated, and in turn activated M-MDSC

(CD14+CD33+) through IL-13 secretion. Using patient samples

and APL mice, authors demonstrated that ATRA-treatment

reversed the increase in ILC2 induced M-MDSC, accompanied

by an increase in T-cell function in vitro and in vivo (91).

Unfortunately, due to a poor solubility and fast drug

metabolism, the clinical application of ATRA has been limited.

Recently, a drug encapsulated liposome formulation L-ATRA has

been developed with sustained release properties. In vitro treatment

of myeloid leukemia cell lines HL-60 and NB4 resulted in increased

expression of myeloid differentiation markers CD11b and CD11c,

illustrating its therapeutic potential to target MDSC (123).
3.4 Inhibition of MDSC accumulation

3.4.1 Palmitoyltransferase inhibitor
It has been shown that CD14+HLA-DRlow M-MDSC

accumulate in newly diagnosed AML patients. Tohumeken

et al. found that AML-derived extracellular vesicles were taken

up by conventional monocytes in vitro which subsequently

underwent MDSC differentiation. Apparently, the presence of

palmitoylated proteins on the surface of AML-derived

extracellular vesicles was responsible for the activation of

TLR2/Akt/mTOR signaling and accumulation of MDSC. TLR2
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neutralizing antibodies, mTOR inhibitor rapamycin or

palmitoyltransferases inhibitor 2-BP abolished the generation

of MDSC, indicating its potential therapeutic application as

MDSC-targeted therapies (92).

3.4.2 Zoledronic acid
Zoledronic acid is a bisphosphonate used for the treatment of

MM associated hypercalcemia and bone metastasis in solid tumors

(124). Although no information is available on the MDSC-targeting

potential of zoledronic acid in hematological malignancies,

Porembka et al. observed a reduced MDSC accumulation and

improved anti-tumor immune response in pancreatic cancer

models (125). These data suggest that zoledronic acid might exert

a dual role as anti-MM therapy, impacting on the bone disease and

the accumulation of immunosuppressive cell types.
4 Other MDSC-targeting
approaches tested in solid tumors

Although not yet tested in hematological malignancies, other

specific/unspecific MDSC-targeting approaches might be

considered in the future. For example, an indoleamine-pyrrole

2,3-dioxygenase (IDO) peptide vaccine has been developed and

significantly decreased IDO-expressingMDSC. The peptide vaccine

delayed tumor progression in solid tumors inoculated with either

IDO+ or IDO- tumor cells, indicating the therapeutic effect was

partially mediated by targeting of the immunosuppressive

environment (126).

Consistent with the results obtained using AMG 330 and

AMV 564, CD33-directed therapy with gemtuzumab

ozogamicin demonstrated MDSC depleting capacity in solid

tumor models. CD33 was expressed on blood and tissue-

derived MDSC of patients across different cancer subtypes,

indicating its broad therapeutic potential (127).
5 Combinatorial approaches

The past years, immune checkpoint inhibitors and chimeric

antigen receptor (CAR) T-cell therapies emerged as concomitant

approaches to treat hematological cancers. However, the presence

of immunosuppressive MDSC influences their efficacy. A study in

large B-cell lymphoma patients receiving axicabtagene ciloleucel

(axi-cel), a CD19-directed CART-cell therapy, demonstrated a

clear association between poor CART-cell expansion and PB M-

MDSC (128). Combinatorial approaches using CART- therapy or

immune checkpoint inhibitors with MDSC-targeting agents (e.g.,

ATRA, gemtuzumab ozogamicin, AMV 564) clearly enhanced the

anti-tumor efficacy in solid tumor models (127–129). These

results imply the importance of using a similar approach in the

treatment of hematological cancers.
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6 Conclusion

Despite the controversy surrounding the nature and

uniqueness of MDSC, there is no exists about their value as a

therapeutic target in hematological cancers. MDSC contribute to

tumor cell survival, immunosuppression and drug resistance;

however, strategies to specifically eliminate this cell population

or block their development are rather limited. Differences in

analysis, tumor models, disease stages and treatment-related

changes certainly contributed to the complexity to identify

unique markers and specific approaches to tackle this cell type

and reverse their immunosuppressive capacity. Further

developments and applications of single-cell multi-omics will

provide unique insights about the MDSC phenotypical markers

and subsets, hopefully leading to a more specific MDSC-

targeting approach in future. In addition, as MDSC are key

regulators of immunosuppression, they contribute to the

reduced effectiveness of current immunotherapeutic

approaches including CAR-T therapy and immune checkpoint

inhibitors. Specific targeting of these cell types in combination

with other immunotherapies should be evaluated in clinical

trials as this approach might be the key to increase anti-tumor

immune responses and improve patient’s outcome.
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The immune suppressive tumor
microenvironment in multiple
myeloma: The contribution
of myeloid-derived
suppressor cells
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degli Studi di Torino, Torino, Italy, 2SC Ematologia, AO S.Croce e Carle, Cuneo, Italy
Myeloid derived suppressors cells (MDSC) play major roles in regulating

immune homeostasis and immune responses in many conditions, including

cancer. MDSC interact with cancer cells within the tumor microenvironment

(TME) with direct and indirect mechanisms: production of soluble factors and

cytokines, expression of surface inhibitory molecules, metabolic rewiring and

exosome release. The two-way relationship between MDSC and tumor cells

results in immune evasion and cancer outgrowth. In multiple myeloma (MM),

MDSC play a major role in creating protumoral TME conditions. In this

minireview, we will discuss the interplay between MDSC and MM TME and

the possible strategies to target MDSC.

KEYWORDS

MDSC (myeloid-derived suppressor cell), TME (tumor microenvironment), multiple
myeloma, Immunothearpies, immune suppression
Introduction

Multiple myeloma (MM) is a paradigm disease in which progression is fueled by

intrinsic alterations of myeloma cells and tumor-host interactions in the tumor

microenvironment (TME) (1). Disease evolution from monoclonal gammopathy of

undetermined significance (MGUS) to smoldering myeloma (SMM), and symptomatic

disease is characterized by a progressive increase of myeloma cells associated with co-

evolving immunological and metabolic changes making the TME unable to hold the

disease in check (1). We and others have shown that immune alterations are already

detectable in the very early stage of the disease (2, 3) and that they persist in the remission

phase (2). The immune MMTME contexture consists of effector cells (i.e, conventional T

cells, unconventional T cells like NKT cells, gd T cells, NK cells etc), professional
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suppressor cells [i.e, regulatory T cells (Tregs), regulatory B cells

(Bregs), myeloid derived suppressor cells (MDSC)], and cells

that are functionally conditioned by the TME and acquire

protumoral functions like bone marrow stromal cells (BMSC),

endothelial cells, osteoblasts (OB), and osteoclasts (4). Recently,

BM-resident neutrophils have also been reported to contribute

to the TME-induced suppressive commitment of MM patients

(5). Unbalanced distribution of effector and suppressor cells

already detectable in MGUS is induced by the progressive

accumulation of myeloma cells driven by genetic and

epigenetic drivers. The bone marrow (BM), which is where

MM originates and propagates, has the capacity to

physiologically host around 2-5% polyclonal plasma cells.

When myeloma cell infiltration overcomes this threshold, the

TME is immunologically and metabolically shaped to support

myeloma cell growth, to induce drug resistance, and to suppress

immune recognition. MDSC play a major role in the protumoral

reset of MM TME.

We have previously shown that MDSC are significantly

increased in the BM of MGUS and MM patients: granulocytic/

polymorphonuclear MDSC (PMN-MDSC), and not monocytic

MDSC (M-MDSC), are responsible for the increase (2). MDSC

frequency is very similar in MGUS, MM at diagnosis, and MM

in relapse. Unexpectedly, we have found that MDSC frequency is

significantly higher in MM in remission (2), indicating that there

is no correlation between the proportion of BM myeloma cells

and MDSC expansion. Similar data have been reported in mouse

models in which MDSC start to accumulate in the TME as early

as one week after tumor inoculation when the frequency of

myeloma cells is very low (<10%) as in MGUS individuals (6).

Approximately, 20-40% of MDCS express the Programmed

Cell Death-Ligand 1+ (PD-L1+) (2) and therefore are very well-

suited to engage and suppress immune effector cells like Vg9Vd2
cells and NK cells expressing the Programmed Cell Death-1

(PD-1) receptor (2). MDSC are PD-L1+ in MGUS and MM

irrespective of the disease stage, including MM in remission

when most myeloma cells have been cleared from BM (2). The

p e r s i s t e n c e o f PD - L 1+ MDSC c an h i n d e r t h e

immunomodulatory activity of drugs like bortezomib or

lenalidomide after autologous stem cell transplantation.

In conclusion, MDSC play a major role in the establishment

of the immune suppressive TME in MM. The aim of this

minireview is to discuss the mechanisms exploited by MDSC

in cooperation with myeloma cells, professional immune

suppressor cells, and other bystander cells to promote

myeloma cell growth in the BM of MM patients. We will also

discuss possible interventions to dampen the immune

suppression operated by MDSC and other suppressor cells to

recover the antimyeloma activity of immune effector cells.
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MDSC subsets and differentiation

MDSC play a major role in the regulation of immune

homeostasis in healthy individuals, and the regulation of

immune responses in infectious diseases, autoimmunity, aging,

pregnancy, transplantation, and obesity (7). In cancer, the

immune suppressive activity of MDSC is exploited by tumor

cells to evade immune surveillance and support their survival

and accumulation (7).

MDSC are derived from bone marrow hematopoietic stem

cells (7). There are two major subsets of MDSC in humans:

PMN-MDSC and M-MDSC. The first one are phenotypically

and morphologically similar to neutrophils (CD15+ and/or

CD66b+), whereas M-MDSC are similar to monocytes (CD14

+)(7). More recently, a third subset of phenotypically distinct

immature early-MDSC (e-MDSC) has been identified in cancer

patients (8). In this review we will use the termMDSC to identify

both PMN-MDSC and M-MDSC unless otherwise specified.

MDSC development occurs in two partially overlapping

waves (9). The first one is driven by cytokines and soluble

factors including granulocyte-macrophage colony-stimulating

factor (GM-CSF), macrophage colony-stimulating factor (M-

CSF), granulocyte colony-stimulating factor (G-CSF),

interleukin 6 (IL-6), and vascular endothelial growth factor

(VEGF). These cytokines and soluble factors are produced by

tumor cells and/or BMSC in the TME and promote MDSC

differentiation from hematopoietic progenitor cells via STAT3

and STAT5 activation (10, 11, 12). Mesenchymal stromal cells

(MSC) also induce MDSC expansion via the hepatocyte growth

factor (HGF), c-Met, and STAT3 phosphorylation (10). The

second wave is driven by a different set of cytokines and

inflammatory soluble factors like interleukin 13 (IL-13), toll-

like receptor (TLR) ligands, and prostaglandin E2 (PGE2)

yielding to the functional MDSC activation via the STAT1 and

NF-kB pathways (10–12). The TME is highly predisposed to

drive the expansion and activation of MDSC at the expense of

other myeloid-derived cells like monocytes, macrophages and

dendritic cells (DC) (8).
Immuno suppressive MDSC features

The immune suppressive MDSC activity is dependent on: 1)

the depletion of essential CD8+ T- cell nutrients in the TME; 2)

the production of immune suppressive cytokines and/or soluble

factors; 3) the expression of cell surface inhibitory molecules

[i.e., (PD-L1)]; 4) the protumoral metabolic TME rewiring at the

expense of immune effector cells.
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Amino acid depletion

MDSC express the xc- transporter and import cystine, but,

unlike DC and macrophages, they are unable to export cysteine

because they lack the ASC neutral amino acid transporter (13).

Considering the progressive TME invasion by tumor cells and

MDSC at the expense of other cells which can supply

extracellular cysteine, the TME becomes depleted of cysteine

jeopardizing the activation of CD8+T cells that are unable to

convert cystine to cysteine to meet their metabolic

requirements (13).

MDSC also deplete the TME of tryptophan via the enzyme

indoleamine 2, 3-dioxygenase (IDO) (14). T lymphocytes are

very susceptible to tryptophan shortage which restrains their

proliferative responses by inducing an integrated stress response

and the inactivation of the mTOR pathway (15, 16). Tryptophan

catabolites can also induce the apoptosis of cytotoxic T cells (17,

18), and the concurrent differentiation of Tregs (16). L-arginine

(L-arg) is another essential amino acid which is critical for T-cell

immune functions. Arginine metabolism is regulated by the

inducible nitric oxide synthase (iNOS) isoenzymes, arginase

(Arg 1/2) activity, and proline and polyamines synthesis.

MDSC express both iNOS and Arg-1 that induce L-arg

depletion in the TME leading to inhibition of CD3-z
expression in T cells, and induction of apoptosis (7, 9, 19).
Cytokines and soluble factors

The production and release of suppressor cytokines and

soluble factors is another mechanism exploited by MDSC to

protect tumor cells from immune recognition and killing. Nitric

oxide (NO), reactive oxygen species (ROS), peroxynitrite (PNT)

(a short-lived product of NO reaction with ROS), interleukin 10

(IL-10), and transforming growth factor-b (TGF-b) are released
by MDSC with slightly difference between PMN-MDSC and M-

MDSC subsets (7, 9, 20, 21). The hyper-production of ROS and

PNT in the TME impairs the ability of CD8+ T cells to bind to

peptide–major histocompatibility complexes and to respond to

specific peptides (21). NO also hampers the Fc receptor-

mediated effector functions of NK cells (22). IL-10 recruits

Tregs in the TME and decreases CD8+ T-cell antigen

sensitivity by inducing cell surface glycoprotein branching

(23). TGF-b is induced by IL-13 (24) and interferon-g (IFN-g)
(25), and contributes to T-cell suppression through Tregs

development (25). Kynurenine is another soluble immune

suppressive factor that is generated in the TME as a

consequence of tryptophan catabolism by MDSC. Kynurenine

can inhibit T-cell and NK cell proliferation and drive the

differentiation of naïve T cells into Tregs (16).
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Cell surface molecules

The cell surface expression of immune checkpoints ligands

(ICP-L) like PD-L1 is another mechanism used by M-MDSC to

suppress immune effector cells (2, 7, 9), while PMN-MDSC

preferentially exploit the Fas/Fas-ligand pathway to induce T-

cell depletion in the TME (26). The V-domain immunoglobulin

suppressor of T cell activation (VISTA) is a novel co-inhibitory

ligand/receptor highly expressed by MDSC in the TME that

suppresses T-cell effector functions and contributes to acquired

resistance to PD-1/PD-L1 blockade (27). Lastly, CXCR2 is

another cell surface molecule that is critical in mice models

and paediatric sarcoma to promote the accumulation of MDSC

in the TME and hamper the efficacy of anti-PD-1 treatment (28).
Protumoral metabolic TME rewiring

The TME is a very dynamic ecosystem that is progressively

molded by tumor cells to locally create protective conditions to

support their growth and resistance to therapy, from

conventional chemotherapy to immunotherapy (29, 30).

Hypoxia is a major metabolic feature of TME (30), especially

in solid tumors, almost always associated with the extracellular

acidification induced by lactate accumulation. Tumor cells

rewire their metabolism to survive and proliferate in the TME

by: 1) increasing glucose and amino acid uptake, glycolytic flux,

and lactate production; 2) modifying glutamine metabolism,

tricarboxylic acid cycle, and oxidative phosphorylation; 3)

increasing the production of mitochondrial ROS; 4)

modulating fatty acid synthesis and oxidation (FAO) (30).

MDSC partially mimick the metabolic rewiring of tumor cells

by adapting their lactate, glucose, and lipid metabolism to the

hypoxic and acidic TME conditions (31, 32). As a result, MDSC

survive in the TME, contribute to the exacerbation of the

protumoral metabolic TME commitment, and maintain

unaltered their immune suppressor activity (33–35).
Immune suppressive and metabolic
features in MM

MM is a hematologic cancer characterized by the

accumulation of malignant plasma cells (myeloma cells) in the

BM. Progressive colonization of BM results in a deep

remodelling of the BM niche that becomes committed to

support myeloma cell growth, immune evasion, and drug

resistance (1).

MDSC play a major role in establishing the protumoral TME

commitment. We have shown that MDSC accumulation in the
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BM is already detectable in MGUS, and their expansion persists

throughout the entire period of the disease (2), including the

remission phase (2). In our hands, PMN-MDSC was the main

subpopulation to be expanded in MGUS and MM (2), while

other groups have reported the predominance of M-MDSC in

MM at diagnosis and in relapse (36, 37). Immunogenomic

characterization identified CD11b+CD13+CD16+ cells as the

PMN-MDSC subset with strongest capacity to suppress anti-

myeloma activity T-cell immune responses (38). MDSC-like

suppressive activity is also exhibited by MM neutrophils (5),

suggesting that an accurate characterization of MDSC should be

based on phenotypic markers, immunosuppressive potential,

and transcriptional network.

Development and suppressor functions of MDSC are

supported by myeloma cells and bystander cells via direct and

indirect mechanisms. Direct mechanisms operated by myeloma

cells include: 1) IL-6 production (39, 40) which prevents MDSC

differentiation and promotes MDSC accumulation and

activation via the STAT3 signaling pathway (41); 2) the

induction of Mcl-1, an anti-apoptotic protein sustaining

MDSC survival (42); 3) the secretion of galectin-1 that targets

CD304 on MDSC and enhances their immune suppressive

capacity (43); 4) the production of chemokine ligand 5 (CCL5)

and macrophage migration inhibitory factor (MIF) (44). MIF

has also been reported to potentiate the immune suppressive

activity of MDSC via CD84-mediated PD-L1 upregulation (45);

5) the release of exosomes that promotes MDSC growth and NO

production (46)

Bystander cells in the TME also cooperate with myeloma

cells in the induction and activation of immune suppressive

MDSC via direct mechanisms including: 1) IL-6 release (47, 48);

2) exosome release by BMSC (49); 3) production and release of

immune suppressive molecules [i .e . Prostaglandin-

Endoperoxide Synthase 2 (PTGS2), TGF-b, Nitric Oxide

Synthase 2 (NOS2), IL-10 and IL-6] by MSC and OB (50, 51).

In addition to the direct mechanisms listed above, myeloma

cells and bystander cells promote the accumulation and

activation of MDSC via indirect mechanisms. An example is

the metabolic rewiring operated by myeloma cells and bystander

cells that creates an hypoxic and nutrient-depleted TME that

promotes the accumulation and activation of MDSC at the

expense of immune effector cells (52–54). Lactate over-

production shifts MDSC differentiation toward PMN-MDSC

(55), which is the subset that we and others have shown to be

increased in the peripheral blood (PB) and BM of MM patients

(2, 56).

The accumulation and activation of MDSC is beneficial to

myeloma cells creating a very effective protumoral loop (3, 57).

MDSC facilitate the self-renewal of myeloma stem-cells, enhance

their tumorigenic potential via epigenetic regulation (58), and

promote myeloma cell survival via AMPK phosphorylation

leading to increase b-oxidation, ATP production, and

increased NADPH levels (59). MDSC production of S100A9, a
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calcium-binding protein that promotes the release of TNF-a, IL-
6, and IL-10 in autocrine pathway through TLR4 interaction,

attracts myeloma cells in the TME (60) and supports myeloma

cell growth via the activation of the canonical NFkB
pathway (61).

Indirect mechanisms operated by MDSC to support

myeloma cells are deprivation of nutrients, production of

soluble factors, and the expression of cell surface inhibitory

molecules. The common denominator is the impairment of anti-

myeloma immune responses. In addition, PMN-MDSC are

educated to express angiogenesis-related proteins to support

tumor angiogenesis (62).

MDSC upregulate enzymes that contribute to the shortage of

amino acids essential for immune effector T cells. Arginase 1

(Arg-1) expression and NO production by MDSC limit the

availability of L-Arg needed for effective TCR-mediated

signaling (63, 64). MDSC can utilize glutamine for anaplerosis

like myeloma cells (65, 66), exacerbating glutamine deprivation

in the TME (54).

Several soluble factors and cytokines contribute to the

immune suppressor activity of MDSC in the TME, like IL-10,

IL-6, TGF-b, CD40-CD40 Ligand, and IFN-g. These cytokines

tip the scales in favor of Tregs (44, 67), whose number is directly

correlated with MDSC expansion (56). Lastly, CD38 expression

on MDSC (68) contributes to the discontinuous multicellular

pathway of adenosine (Ado), an immune suppressive nucleoside

highly represented in the TME of MM patients (69).

The expression of immune checkpoint (ICP)/ICP-L

contributes to the impairment of anti-myeloma immune

responses. We have previously demonstrated that PD-L1 is

expressed by BM MDSC in all disease states (2) and can

contribute to hold in check anti-myeloma activity of PD1+

effector cells such as T cells, NK cells, and Vg9Vd2 T cells.

Recently, it has been reported in solid tumors that MDSC can

boost the immune suppressive activity of Bregs against T cells

via the PD-1/PD-L1 axis (70, 71).

Lastly, MDSC can trans-differentiate into functional

osteoclasts (72) to combine immune suppressive functions and

direct protumoral functions (73). In mice models, G-MDSC

have also been shown to promote angiogenesis (62), another

major protumoral TME disruption occurring in human

MM (62).

The direct and indirect mechanisms involved in the cross-

talk between MDSC, myeloma cells, immune effector, immune

suppressor cells, and other bystander cells in the TME of MM

patients are shown in Figure 1.
Therapeutic interventions

The correlation between the frequency of MDSC and the

clinical outcome identifies these cells as potential targets of

immune-based therapeutic interventions (74). However, the
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therapeutic targeting of MDSC is not easy given their

multifaceted biological functions and multiple interactions in

the TME. Possible strategies are: 1) to restrain their

accumulation in the PB and TME; 2) to prevent their

functional activation in the TME; 3) to block their protumoral

interactions with myeloma cells and bystander cells.

MDSC a c c umu l a t i o n c a n b e r e s t r a i n e d b y

immunomodulatory drugs (IMiDs) (44) and proteasome

inhibitors (PI) (59). A cereblon (CRBN)-dependent and

-independent down-regulation of CCL5 and MIF is a possible

mechanism of IMiDs activity onMDSC (44) that can be improved

by Arg-1 inhibitors (75). Clinical data confirm the capacity of

IMiDs to restrain MDSC in vivo as shown by the decrease of PB

MDSC in MM patients treated with pomalidomide,

dexamethasone, and daratumumab (76). Daratumumab can also

exert a favourable immune modulatory activity in the TME of

MM patients by depleting CD38+ MDSC via antibody-dependent

cellular cytotoxicity (ADCC) and complement-dependent

cytoxicity (CDC) (68). Data from mice models indicate that

demethylating agents like decitabine (DAC), IL-18, and

zoledronic acid (ZA) can also affect MDSC survival in the TME

(72, 77, 78). ZA is currently used inMM and other solid cancers to

prevent osteoclast activation and bone lesions, but this molecule is

also endowed with pleiotropic immune modulatory activity (79),

including the capacity in murine models to reduce the numbers of

MDSC and prevent their differentiation into osteoclasts (72).
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Targeting CD84 and the CD304-Gal1 axis are other strategies

used in myeloma mouse models to restore anti-myeloma T-cell

responses by reducing MDSC accumulation and PD-L1

expression (45).

The immune suppressive activity of MMMDSC has also been

inhibited in vitro using ABR-238901, a small molecule inhibiting

S100A9 interactions (60), and tasquinimod (74). Anti-estrogen

therapy may also restrain MDSC suppressive activity, since 17b-
estradiol increases their ability to suppress T-cell proliferation

(80). iNOS and Arg-1 activities have been down-modulated in

mice models with tadalafil (81), a PDE5 inhibitor that has been

used with some evidence of clinical efficacy in relapsed/refractory

MM patients in combination with lenalidomide (82). Protumoral

MDSC cellular interactions in the TME can also be limited by

interrupting ICP/ICP-L interactions (2). Daratumumab in

combination with the anti-PD1 monoclonal antibody cetrelimab

has been reported to decrease the number of circulating MDSC

and increase that of CD8+ T cells in the PB of MM patients in

relapse (83). In acute myeloid leukemia (AML), knockdown of

VISTA, a negative checkpoint regulator in the B7 family, reduced

the MDSC-mediated inhibition of T cells (84). Data are not

available in MM yet, but VISTA up-regulation is also expected

in the BM of MM given the hypoxia and low pH as reported in

solid cancer (85).

In conclusion, understanding the mechanisms underlying

the immune suppressive activity of MDSC in MM will pave the
FIGURE 1

Myeloma cell and surrounding cells promote MDSC differentiation and suppressive functions. In turn, MDSC undermine anti-tumor immune
responses and guarantee myeloma cells survival and growth. Red arrows: direct mechanisms; blue arrows: indirect mechanisms. Created by
BioRender.com.
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ground to the therapeutic targeting of these cells to improve the

efficacy of immune-based treatments in MM.
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Lung tumours are widespread pathological conditions that attract much attention

due to their high incidence of death. The immune system contributes to the

progression of these diseases, especially non-small cell lung cancer, resulting in

the fast evolution of immune-targeted therapy. Myeloid-derived suppressor cells

(MDSCs) have been suggested to promote the progression of cancer in the lungs

by suppressing the immune response through various mechanisms. Herein, we

summarized the clinical studies on lung cancer related to MDSCs. However, it is

noteworthy to mention the discovery of long non-coding RNAs (lncRNAs) that had

different phenotypes and could regulate MDSCs in lung cancer. Therefore, by

reviewing the different phenotypes of lncRNAs and their regulation on MDSCs, we

summarized the lncRNAs’ impact on the progression of lung tumours. Data

highlight LncRNAs as anti-cancer agents. Hence, we aim to discuss their

possibilities to inhibit tumour growth and trigger the development of

immunosuppressive factors such as MDSCs in lung cancer through the

regulation of lncRNAs. The ultimate purpose is to propose novel and efficient

therapy methods for curing patients with lung tumours.

KEYWORDS

lncRNA, MDSC, lung cancer, targeted therapy, immunotherapy
1 Introduction

Concerning cancer deaths, lung tumours are recognized as one of the leading causes

globally. They are further classified in the category as conditions whose rates of morbidity

and mortality, as well as the degrees of malignancy, are the highest. Along with the

industrialization progress and environmental changes, the aetiology of lung cancer has

become even more complex (1). According to sources, in 2018, many patients diagnosed with

non-small cell lung cancer (NSCLC) in stage III were recorded, corresponding to 80% of all

cases (2). Despite the ongoing efforts to develop efficient anti-cancer therapies, NSCLC has

become among the most lethal cancers worldwide (3). In recent years, tumour-related
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immunosuppression has become the focal point in targeted therapy

for lung tumours. In this respect, bone marrow-derived suppressor

cells (MDSCs) have attracted much attention. As early as 1970,

studies have pointed out the MDSCs relation to tumour

development (4). Its role in the tumour microenvironment has

been pivotal and turned into a new target for cancer therapy (5). In

a study by Gabrilovich and Nagaraj, the authors confirmed that

MDSCs are heterogeneous cell populations derivative from the

bone marrow precursor and immature cells (IMC). Under standard

conditions, IMC can quickly specialize into dendritic cells (DC),

mature granulocytes, and macrophages. On the occasions of cancer,

infection, inflammation or other illnesses, the authors have reported

an increase in the number of MDSCs and inhibition of IMC

differentiation into developed cells of the bone marrow (6).

Moreover, MDSCs are known for their potent immunosuppressive

function. Immunotherapy with immune checkpoint inhibitors has been

reported to control the long-term effects of tumours to a certain extent.

However, due to the potential repercussions of MDSCs’ massive

expansion, the MDSCs-induced immunosuppression has been

considered the mechanism that effectively hinders the immune

checkpoint blockade (7) Regarding lncRNAs, they have been

implicated in the progression of tumours and various roles

depending on the different expression types. Importantly, lncRNAs

have multiple functions that are not limited to regulating the MDSCs

generation, recruitment and immunosuppression. They also target

multiple pathways simultaneously. The latter allows lncRNAs to act

as markers in diagnosing tumours and are highly valued for targeted

therapy (8). The modulatory effect of lncRNAs on MDSCs and the

regulation of lung tumour tissue may open new horizons in treating

individuals with lung tumours. The current paper is mainly based on

the targeted therapy of MDSCs that lncRNAs have regulated to change

the survival rate of patients with lung tumours. First, to elaborate on the

importance of MDSCs in patients diagnosed with lung tumours, we

have analyzed the MDSCs mechanism and investigated the clinical

studies focused on the matter. Secondly, we studied the role of

differential lncRNA expression in these cells and the impact on

tumour progression. Finally, we have included clinical studies in

which lncRNAs regulated various tumours, justifying their potential

therapeutic value in tumours.
2 The roles of myeloid-derived
suppressor cells (MDSCs) in
lung tumours

2.1 Phenotype of MDSCs

Cell heterogeneity is evident in MDSCs as they include two major

subpopulations, those of granulocytes (G-MDSCs) and monocytes

(M-MDSCs) in both human and animal (mice) models. They are

derived from granulocytes or monocytes and represent relatively

stable forms of pathologic activation of these blood cell populations

(9). In mice, CD11b+ Ly6G-Ly6Chigh and CD11b+Ly6G+Ly6Clow

stand for the phenotype of M-MDSCs and G-MDSCs, respectively.

Related studies have confirmed CD11b+ GR-1lowcells’ ability as the

most efficient in suppressing the immune system in contrast to
Frontiers in Immunology 0259
CD11b+ GR-1high cells, regarded as the least effective. In humans,

the MDSCs ’ complexity is even greater and constitutes

CD11b+CD14+HLA-DRlow/neg M-MDSCs and CD11b+CD14-CD15+

G-MDSCs populations. The MDSCs in cancer patients express

granulocyte markers and bone marrow cell markers like CD11b

and CD33, which are the most common. However, there is still a

need for a profound exploration of the surface markers of M-MDSCs

and G-MDSCs due to the differentiation of the MDSCs’ phenotype in

various diseases (10, 11).Besides, a small group of bone marrow

progenitors with MDSCs characteristics is identified only in humans

and is named the “early MDSC” group. The group is mainly

composed of bone marrow progenitors and precursors that account

for less than 5% of the total number of MDSCs (12). However, many

ongoing efforts have been made to report the surface markers of

MDSCs. With fluorescence-activated cell sorting (FACS) for

evaluating the multicolour immunofluorescence staining, several

phenotypes of MDSCs in lung cancer have been reported (13).
2.2 Mechanism of action of MDSCs

The potent immunosuppressive effects of MDSCs, are present in

most cancers (14). For example, the tumour microenvironment (TME)

comprises different cell populations in a complex matrix. Cellular

components of TME are markers that can regulate cancer processes

like tumour proliferation, angiogenesis, invasion and metastasis,

chemotherapy resistance, etc. Therefore, TME has become a new

target for cancer treatment (15, 16) Furthermore, during tumour

progression, the cells undergo alternations in their metabolism to

satisfy their energy needs, with the ultimate goal of achieving

proliferation and differentiation of the tumour—the last results in

nutrition competition between the immune cells and immune

modulators in the TME of MDSCs. Thus, increased glycolysis, fatty

acid metabolism, and up-regulation of enzymes that are essential

metabolites of catabolism are observed in the MDSCs tumour

microenvironment. The last grants MDSCs immunosuppressive

function (17). Other investigations have demonstrated that the

MDSCs’ immunomodulatory role is mainly based on the inhibition

of T cells (18).This happens by various mechanisms. The first one is

described by the production of reactive oxygen species (ROS), and

reactive nitrogen species (RNS) can result in blocking T cells activation

and function by MDSCs. As reported by Wang et al., G-MDSCs are

mainly responsible for producing ROS and arginase-1 (ARG-1).

In contrast, M-MDSCs mainly produce ARG-1 and nitric oxide

(NO) to exert immunosuppressive effects (19). The half-life of the

produced NO is more extended, while it requires cell entry.

Nonetheless, there is no requirement for close contact between M-

MDSCs and T cells, enabling M-MDSCs effectively inhibit non-specific

T cell responses (20). One prominent feature of MDSCs is the up-

regulation of ROS produced by G-MDSCs in mice and individuals

diagnosed with cancer. The immunosuppressive effect of MDSCs can

be significantly enhanced by the expression of ROS in cancer patients

and mice (21). Concretely, superoxide anion (O2-), hydrogen peroxide

(H2O2) and peroxynitrite (PNT) represent the abovementioned family

of ROS. However, NO reacts with O2- to form PNT, which then

prevents the recognition of the antigen/major histocompatibility

complex (MHC) peptide by nitrification of the MHC class I
frontiersin.org
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molecules and the T cell receptors (TCRs). They reduce the TCR

affinity for antigen-MHC complex and block T cell migration by

nitrification of T cell-specific chemokines (22, 23). The second

mechanism providing MDSCs with immunomodulatory roles

includes the depletion of L-cysteine and arginine by MDSCs, which

are required for the proliferation and activation of T cell (24). The

ARG-1 produced by G-MDSCs and M-MDSCs metabolizes L-arginine

to L-ornithine in the urea cycle, making L-arginine induce its

exhaustion in the TME. Other studies have revealed that PEGylated

forms of Arg I (PEG-ARG I) in mice promote tumour growth. This is

accompanied by augmented amounts of MDSCs (25).On the other

hand, cysteine’s role in T cell activation is indispensable. Factually,

macrophages and DCs deliver to T cells the obtained cysteine, which

the DCs and macrophages metabolise to methionine during the

standard antigen processing and presentation. Moreover, in TME is

observed a reduction in the activation of T cells and cysteine production

by DCs as a result of a deprivation of macrophages of cysteine and DCs.

The above is due to a large number of cysteine depletion by

MDSCs (26).

The third mechanism includes the interaction between MDSCs

with T cells that migrate to the lymph glands and T-cell activity via

the expression of ADAM17 (metalloprotease structural domain 17

and a disintegrin) on their cell membrane. The MDSCs interfere. It

has been reported that the latter leads to the downregulation of the

homing receptor CD62L (L-selectin) on T cells (24).When it comes to

effective anti-cancer immunity, and for purposes of action, it requires

the transportation to the tumour of activated T cells and the

activation of tumour-reactive T cells. Meanwhile, CD62L has been

regarded as an essential molecule in this process, directing primitive

lymphocytes to lymph glands in the periphery.

Furthermore, CD62L has proven necessary for housing the

primitive T cells in the lymph glands, activating molecules on and

in the cell membrane. Conversely, the suppressed activity of CD62L

on primitive T cells by MDSCs decreases the chance of primitive T

cells being delivered to the activation site. The last functions as

MDSCs’ suppressive anti-tumour immune response (27).

The other mechanisms for MDSCs’ reduced immunity are

explained in findings demonstrating that the regulatory T cells

(Tregs) impact tumour immunosuppression. Tregs are considered

to be immunosuppressive cells that promote cancer growth, and they

are significantly increased in the peripheral blood of NSCLC patients

(28). Although there are no proofs to relate MDSCs with the

induction of Tregs, they produce a series of cytokines that allow the

differentiation of Tregs (29, 30). MDSCs promote the amplification of

natural Tregs through the production of IL-10, TGFb, IFNg and

CD40-CD40L interactions and drive the development of the induced

Tregs (24). Sinha et al. have reported that downregulation of the

macrophage IL-12 and the IL-10 production is the outcome of T cell

polarization to a type 2 pro-tumour phenotype (31). According to

sources, the immune cells, specifically the B cells, NK cells,

macrophages (Mø) and Treg cells, interact and can be regulated by

MDSCs (13). The literature shows evidence for the interaction

between DCs, tumour-associated macrophages (TAMS) and

MDSCs in the TME. The outcome of this interaction is the

enhancement of each cell population’s immunosuppressive activity

(24).Thus, in addition to T cell inhibition, MDSCs interfere with the

innate immune response by affecting various cells like the NKT, NK,
Frontiers in Immunology 0360
and macrophages (Figure 1). Factually, the MDSCs’ impact on NK

cells is intricate. One part can inhibit the death of the NK cell by

hindering the production of IFN-g. Importantly, due to the

interaction of RAE-1 with NKG2D that takes place on the NK cells’

surface, the other part via the expression of RAE-1 can result in NK

cells’ activation and provoke their death (24, 32). However, MDSCs’

profile is multi-dimensional. Indeed, they promote tumour cell

invasion, drug resistance, tumour angiogenesis, pre-metastatic niche

formation, and tumour metastasis while participating in tumour

immunosuppressive response (33, 34) .It has been suggested by

Yang et al. that the MDSCs’ non-immunosuppressive effects occur

mainly via the promotion of tumour angiogenesis (35). Epithelial-

mesenchymal transition (EMT) has been shown to play a key role in

the process of tumor initiation and even metastasis, which can

enhance the ability of cancer cells to enter the circulatory system to

promote the metastasis of tumor cells. In the process of EMT, tumor

cells lose polarity and cell-cell connection, and then enter a state of

low proliferation, migration and invasion are enhanced (36). Studies

have shown that EMT is related to the number of MDSCs, and EMT

transcription factors can attract immunosuppressive cells MDSCs,

leading to tumor immunosuppressive microenvironment. In turn,

immunosuppressive factors induce EMT in tumor cells (37).The main

mechanism is due to the fact that MDSCs and TAM further enhance

chronic inflammation in the inflammatory microenvironment, which

leads to EMT and enrichment of cancer stem cell-like cells (CSCs)

and immune suppression may be the cause of drug resistance and

metastasis (38), It is this feedback loop between EMT and immune

suppression that promotes tumor progression. Therefore, the

combination of immunotherapies targeting immunosuppressive

cells such as MDSCs may be a promising treatment for EMT.
2.3 Clinical studies confirming the roles of
MDSCs in lung cancer

MDSCs represent the most significant immunosuppressive

cellular population in individuals with lung tumours. In the stroma

of the tumour, these cells limit the healing efficacy of anti-cancer

curing approaches through their metabolic pathways and other

modalities in response to complex TME (39).There are many

clinical studies on MDSCs in lung tumours, and therapeutic

strategies targeting MDSCs are also gradually emerging. We have

summarized these clinical studies and presented them in Table 1.

Some data show a significant accumulation of M-MDSCs in

NSCLC patients, especially in stage IV patients, compared to stage

III, with the expected lower survival rate of patients with a higher

accumulation of M-MDSCs (40).Other authors found that individuals

with NSCLC exhibited an advanced proportion of G-MDSCs, linked

with improved survival (41). At the same time, other work has

reported on a new human MDSCs subpopulation, CD14 (+) HLA-

DR (-/low), in another cohort of individuals with NSCLC. Among

those individuals, the incidence and total number of CD14 (+) HLA-

DR (-/low) cells in the peripheral blood were considerably augmented

compared with those in healthy NSCLC patients (42). The authors

hypothesized that this was related to tumour metastasis, adverse

reactions to chemotherapy, and tumour immunosuppression. Other

work reported the results of different clinical trials with patients with
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small cell lung cancer (SCLC), in which the depletion of MDSCs

improved the immune response to vaccination and further enhanced

the effect of immune interventions on cancer (43). It was shown that

M-MDSCs from NSCLC patients demonstrated a worse prognosis

(44).Seyed Sajjad Zadian et al. demonstrated that the frequency of M-

MDSCs in NSCLC individuals was significantly more advanced than

that in SCLC and healthy people, which impacted the differential

diagnosis of NSCLC (45). Chien-Ying Liu et al. provided evidence of

increased CD11b +/CD14 ϫ/CD15 +/CD33 +MDSC in the peripheral

blood of NSCLC individuals, which played an essential role in

mediating immunosuppression of NSCLC (46).Other authors

recognized a unique subgroup of MDSCs in NSCLC patients,

namely CD14 (+) S100A9 (+), which inhibited T cells through

arginase, iNOS, and IL-13/IL-4Ra axis and were closely associated

with adverse effects of chemotherapy (47). Some of the reported

studies in Table 1 measured the amount of MDSCs in the peripheral

blood mononuclear cells (PBMCS in untreated NSCLC individuals

and made a comparison with the healthy ones (48). Their studies

proved that the number of G-MDSC increased in NSCLC individuals,

whereas further studies showed that G-MDSCs blocked T cell

proliferation in vitro. The report by Tian Tian et al. who applied

FACS sorting to analyze the peripheral blood of SCLC patients proved
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that the amount of CD14 (+) HLA-DR (-/low) MDSCs in the

peripheral blood of SCLC individuals were considerably augmented.

The authors further provided a clue that the amount of these MDSCs

were predictors of poor prognosis of SCLC (49).

Interestingly, other authors analyzed tumour resections from

NSCLC patients. The results showed that the occurrence of M-

MDSCs in individuals with lung tumours was higher and that the

accumulation of M-MDSCs and G-MDScs in the tumour site was

higher than in peripheral blood. The authors further showed that the

MDSCs amount in the peripheral blood could predict recurrence after

surgery (50).The effect of the first-line treatment on peripheral blood

MDSCs in NSCLC patients was analyzed by other authors. The

obtained data presented that chemotherapy with Bevacizumab

significantly decreased the levels of MDSCs in the peripheral blood

of NSCLC individuals (51). Other authors proposed that the novel

targets for immunotherapeutic drug combinations and the treatment

of NSCLC through the galectin-9/TIM-3 pathway and mMDSCs were

key to anti-PD-1 primary or secondary resistance (52). In patients

with Nivolumab treatment, the reported data in another study

showed that G-MDSCs could be used as potential immune

biomarkers in NSCLC treated with Nivolumab and other second-

line therapies (53). In another study by Pauline L de Goeje et al., it was
FIGURE 1

The process of MDSCs’ formation in lung cancer (A) and the appliance of MDSCs exert tumour immunosuppressive effects (B).
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TABLE 1 Lung cancer clinical studies of MDSCs.

MDSCs Research
population

No. of
people

Biological
specimens Results Reference

M-MDSCs
Advanced NSCLC
individuals
Healthy people

40 NSCLC
patients
20
Healthy
People

Peripheral
blood

Peripheral blood with stage IV accumulates more than in people with stage III;
Individuals with higher accumulation of M-MDSCs have lower survival rates

(40)

G- MDSCs
Individuals with
NSCLC
Healthy people

90 NSCLC
patients
25
Healthy
People

Peripheral
blood

Patients with low G-MDSCs have better OS (41)

CD14(+)HLA-
DR(-/low)

Individuals with
NSCLC

89
Peripheral
blood

CD14(+) HLA-DR(-/low) is a novel MDSCs-mediated tumor immunosuppression
in NSCLC

(42)

MDSCs
Individuals with
SCLC

41
Peripheral
blood

Reduction of MDSCs improves the immune reaction to the injection and can
enhance the effectiveness of immune interventions against cancer

(43)

M-MDSCs
Individuals with
NSCLC

22
Peripheral
blood

An increase in M-MDSCs is strongly linked with primary opposition to
immunotherapy

(44)

M-MDSCs/G-
MDSCs

Individuals with
NSCLC
Individuals with
SCLC
Healthy people

26NSCLC
patients
16 SCLC
patients
8 Healthy
People

Peripheral
blood

The incidence of M-MDSCs is expressively developed in NSCLC individuals than
in SCLC and healthy populations

(45)

CD11b
+/CD14−/
CD15 +/CD33
+ MDSC

Individuals with
NSCLC
Healthy people

173
NSCLC
patients
42
Healthy
People

Peripheral
blood

CD11b +/CD14-/CD15 +/CD33 + MDSCs express their crucial participation in
facilitating immunosuppression in NSCLC

(46)

CD14(+)
S100A9(+)

Patients with NSCLC 101
Peripheral
blood

CD14(+)S100A9(+) is a unique subpopulation of MDSCs that inhibits T cells by
arginase, iNOS and the IL-13/IL-4Ra axis

(47)

G- MDSCs
Individuals with
NSCLC
Healthy people

185
NSCLC
patients
20
Healthy
People

Peripheral
blood

G-MDSCs block T cell proliferation in vitro (48)

CD14(+)HLA-
DR(-/low)

Individuals with
SCLC
Healthy people

42 SCLC
patients
37
Healthy
People

Peripheral
blood

Necessary escalation in the number and incidence of CD14(+) HLA-DR(-/low)
MDSCs in the peripheral blood of SCLC individuals, respectively, whose
frequency can be considered as a forecaster of meagre prediction in SCLC

(49)

M-MDSCs/G-
MDSCs

Individuals with
NSCLC

42
Peripheral
blood/tumour
tissue

Higher frequency of M-MDSCs in tumour tissues compared to normal subjects
An increase of M-MDSCs and G-MDSCs in tumours than in peripheral blood
Levels of MDSCs in peripheral blood predict recurrence after surgery

(50)

MDSCs
Individuals with
NSCLC

46
Peripheral
blood

Significantly lower levels of MDSCs after chemotherapy with Bevacizumab (51)

M-MDSCs
Individuals with
NSCLC

176
Peripheral
blood

Galactoglucose-9/Tim-3 pathway and mMDSCs for NSCLC are critical to anti-
PD-1 primary or secondary resistance

(52)

G- MDSCs

Individuals with
advanced NSCLC
treated with
Nivolumab

53
Peripheral
blood

G-MDSCs play as immune biomarkers in NSCLC after the second-line treatment,
such as with Nabumab

(53)

MDSCs
Individuals with
NSCLC
Healthy people

105
NSCLC
patients
20
Healthy
People

Peripheral
blood

Augmented amounts of MDSCs relate to decreased vitality (54)
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demonstrated that immunoglobulin-like transcript 3 (ILT3) was

expressed on MDSCs in fresh peripheral blood mononuclear cells

(PBMCS) from individuals with NSCLC. The authors demonstrated

that ILT3 cooperated with ligands on the T cells to inhibit T cells, thus

augmenting the amount of MDSCs and decreasing survival (54).

Through the above clinical studies, it is not difficult to find that

MDSCs are closely related to the prognosis of patients with lung cancer.

Compared with normal people, patients with cancer have higher levels

of MDSCs, and most of them achieve immunosuppression by

inhibiting T cells. When the level of MDSCs in patients is higher, the

OS of patients is lower. Lourdes Barrera et al. showed that the OS of

patients with low G-MDSCs is better than that of patients with high G-

MDSCs through a series of data studies, and the level of G-MDSCs is a

potential prognosis of NSCLC disease progression (41). More MDSCs

are found in patients with advanced disease, which is associated with

poor prognosis. At the same time, primary drug resistance occurs

during immunotherapy due to the presence of MDSCs. There are not

many studies on the clinical relevance of MDSCs in human cancer,

which mainly focus on the correlation between high levels of MDSCS

and shorter OS or PFS in different cancers.

Indeed, it is interesting to note that the incidence of M-MDSC and

G-MDSC is increased not only in the peripheral blood of patients but also

in the neoplastic lesions. Both tumor-infiltrating MDSCs subsets were

significantly elevated compared with circulating subsets, confirming that

the tumor site had the strongest immunosuppressive effect. In particular,

the frequency of tumor infiltration and circulating G-MDSCs correlated

with tumor progression (55). In the study by Yoshikane Yamauchi et al.,

it was noted that the frequency of MDSCs in tumors was higher than that

in peripheral blood of the same patients, and this accumulation was

associated with increased concentrations of inflammatory mediators

involved in MDSC migration to the tumor microenvironment and

activation. Moreover, tumor G-MDSCs showed higher expression level

of programmed death ligand 1 than the same cells in peripheral blood

(50). Xinyu Tian et al. isolated MDSCs from tumor tissues of lung cancer

patients by FCM and showed that RUNXOR was significantly associated

with MDSCs-induced immunosuppression in lung cancer patients and

may be a target for anti-tumor therapy (56). It has been suggested that in

a mouse model, monocytic MDSCs can further mature into Tams in the

tumor microenvironment, thereby allowing Tams to induce

chemotherapy resistance through various mechanisms. Tumor-

infiltrating CD68 Tams were analyzed and compared with blood

S100A9 MDSCs from the same patients. Indicating their origin from

S100A9 MDSCs, it was also found that the percentage of blood S100A9

MDSCs was closely correlated with the counts of S100A9 cells and CD68

TAM in tumor tissue, and patients with higher S100A9 and CD68 cell

numbers also showed worse PFS (57).

In addition to clinical studies, several animal trials of MDSCs on lung

cancer progression also exist, through which the key role of MDSCs in

lung cancer can be supported. In the study of Mi So Park et al., it was

found that the main mechanism by which the polypeptide N-acetyl-

galactosaminyltransferase (GALNT3) inhibited the development and

progression of lung cancer in xenograft and syngeneic mouse models

was the ability of MDSCs to infiltrate the tumor site and subsequent

angiogenesis, thereby inhibiting the development of lung cancer (58).

Although treatment with immune checkpoint inhibitors (ICIs) improves

overall survival in a subset of patients with NSCLC, co-occurring KRAS/

LKB1 mutations can drive primary resistance to ICIs. Rui Li et al.
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therefore targeted G-MDSC enrichment as a potential mediator of

immunosuppression in LKB1-deficient NSCLC and sensitized tumors

to immunotherapy by overcoming MDSCs accumulation with all-trans

retinoic acid in a LKB1-deficient NSCLC mouse model (59). Dickson

Adah implanted tumors in mice, obtained whole tumors and tumor-

derived sorted cells of tumor-bearing mice, and found that malaria

infection significantly reduced the proportion of MDSCs and Treg in the

lung tumor tissues of treated mice, and inhibited the expansion and

activation of MDSCs and Treg in the tumor microenvironment (60).

Xiaosan Su et al. also demonstrated that dexmedetomidine (DEX)

induced the proliferation of M-MDSCs during the postoperative period

in lung cancer patients by inducing spontaneous tumor metastasis in

C57BL/6 mice and had a significant pro-angiogenic ability (61). Liran

Levy et al. evaluated the effect of splenectomy in several mouse lung

cancer models and found that the effect of splenectomy on tumor growth

is essentially cell-mediated by MDSCs, which can be used to inhibit the

growth of non-small cell lung cancer by depleting MDSCs (62).

Traditional therapeutic approaches for lung tumours are surgery,

radio- and chemotherapy. Although some of these treatments are

used as first-line therapy, the clinical studies mentioned above have

shown that MDSCs can not only exert be immunosuppressive in the

TME but could directly promote tumour advancement but also

interfere with the prognosis of conventional treatments, thus

making it more critical to treat lung cancer by targeting MDSCs.

MDSCs were proposed as potential targets for the advance of anti-

cancer lung treatment based on the following five aspects (1):

promotion of myeloid differentiation (2); blockage of MDSC

propagation (3); removal of MDSCs (4); functional decay of

MDSCs, and (5) blockade of immune checkpoints (63).Further

research on MDSCs showed that miRNAs/lncRNAs could regulate

the specialization, propagation, and immunosuppressive roles of

MDSCs in TME (64). Therefore, targeting miRNAs and lncRNAs

to stop the development and expansion of MDSCs suppressor cells in

the tumour environment appears more promising.

In the review’s subsequent chapters, we will focus on lncRNAs and

their regulation on the generation, recruitment and immunosuppression

of MDSCs.
3 Expression and roles of lncRNAs
in MDSCs

LncRNAs are a diverse family of non-coding RNAs (ncRNAs).

They encompass different ncRNAs like miRNAs, LncRNAs, snRNAs

and CircRNAs (65).LncRNAs’ transcripts are longer than 200

nucleotides and are involved in the pathophysiology of many diseases

(66). Relevant studies have pointed out that the number of human

lncRNAs exceeds the number of protein-coding genes (67). The

ENCODE project projected that the human genome contained over

28,000 different lncRNAs, most yet undiscovered (68).Some studies

show that lncRNA categories have a high degree of diversity (69),

ranging in number from a few hundred to several thousand nucleotides

(70).RNA polymerase II transcribes lncRNAs, and according to their

genomic localization, mode of action and function can be classified into

intronic lncRNAs, intergenic lncRNAs (lincRNAs), enhancer lncRNAs

(ELNcRNAs), bidirectional lncRNAs, and sense overlapping lncRNAs

(64, 71). Some authors have proven that lncRNAs are mRNA
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precursors, and compared with mRNAs, ncRNAs show moderate

sequence conservation, while lncRNA-pre-mRNA has a significant

part in alternative splicing (72, 73). The expression of a variety of

lncRNAs is abnormal in various diseases, especially malignant tumours.

Some data show that lncRNAs regulate the bone marrow and immune

cells. Their regulatory mechanisms are complex and diverse, and they

have become vital regulators mediating cell activation, proliferation,

differentiation, apoptosis and autophagy (74). Therefore, lncRNAs may

have potential diagnostic, prognostic or therapeutic importance.

Table 2 demonstrates the expression of lncRNAs and their regulatory

effect on MDSCs.
3.1 The lncRNA PVT1 as a potential
oncogene in a variety of cancer types

The mouse plasmacytoma variant 1(Pvt1) gene represents a long

non-coding RNA located on chromosome 15 (Ch 15) that was

reported for the first time in 1985 (82). It is a candidate oncogene

coding for a homologous lncRNA to the human Pvt1 gene, localized
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on Ch 8, specifically near the c-Myc locus on 8Q24. It encodes 52

ncRNA variants, including 26 linear and 26 circular isoforms and six

microRNAs and is long 1.9 KB (83, 84). LncRNA PVT1 is recognized

as an oncogene in many tumours. Its overexpression is associated

with hepatocellular carcinoma, gastric, oesophagal, cervical, and

bladder cancer and acute myeloid leukaemia (85–87), Yu Zheng

et al. proves that Pvt1 is highly expressed in tumour-expanding G-

MDSCs. The results show that lncRNA Pvt1 downregulation

considerably blocked the immunosuppressive function of G-MDSC

in vitro, reducing tumour development and suppressing anti-tumour

immune responses. Since Pvt1 expression is augmented in tumour-

infiltrated G-MDSCs more than in splenic G-MDSCs, the hypoxic

conditions in TME are considered to trigger such a phenomenon.

Therefore exposure of splenic G-MDSCs to hypoxic environments

reveals an upregulation of both mRNA and protein levels of HIF-1a
in these cells. HIF-1a role in the process is clarified by blocking its

upregulation by its specific inhibitor YC-1. The results show restored

upregulation of Pvt1 and c-myc in hypoxic environments, thus

indicating that HIF-1a augmented Pvt1 expression in G-MDSCs

cells under hypoxia (75).
TABLE 2 Expression of lncRNA and its regulatory effect on MDSCs.

lncRNA Length Time of
the first
report

Mechanism Impact MDSCs Related diseases Reference

PVT1 1.9kb 1985 Hif-1a up-regulates the expression of
PVT1 in MDSCs under hypoxia stress

To promote the
immunosuppressive
effect of MDSCs

Hepatocellular carcinoma, gastric
cancer, oesophagal, cervical, bladder,
acute myeloid leukopathy

(75)

RUNXOR 260kb 2014 RUNXOR regulates RUNX1 expression by
recruiting RUNX1 protein at the 3’ end
and binding to promoters and enhancers

Promote the production
of MDSCs and
immunosuppressive
effect

Lung cancer, acute myeloid leukaemia (56)

lnc-CHOP 1800
bases

2018 Inc-chop binds to CHOP and the C/EBPb
isoform LIP to induce the activity of the
C/EBPb isoform LAP

Promote the production
of MDSCs and
immunosuppressive
effect

Lung cancer, breast cancer, murine
melanoma, murine ovarian tumour

(76)

RNCR3 unknown unknown RNCR3 binds to Mir-185-5p and releases
Chop

Promote the production
of MDSCs and
immunosuppressive
effect

Colorectal cancer, glioma, prostate, (77)

Olfr29-ps1 963bp unknown Olfr29-ps1 promotes the
immunosuppressive role and specialization
of MDSCs by forming Mir-214-3p after
mbA modification

It promotes the
immunosuppressive
function and
differentiation of MDSCs

Lung, breast, pancreatic cancer,
urothelial carcinoma

(78)

HOTAIR 2200
bases

2007 HOTAIR induces more CCL2 secretion
and promotes the proliferation of MDSCs

It promotes the
immunosuppressive
function and
differentiation of MDSCs

Nasopharyngeal, breast, pancreatic,
liver, stomach cancer, non-small cell
lung cancer

(79)

HOTAIRM1 1052bp 2009 HOTAIRM1 enhances the expression of
HOXA1 in MDSCs

The immunosuppressive
function of MDSCs was
weakened

Hepatocellular carcinoma, colorectal
cancer, Gastric cancer, head and neck
neoplasms, Ovarian, Thyroid cancer

(80)

lnc-C/EBPb unknown 2018 The binding of LNC-C/EBPb to C/EBPb
homotypes LIP and WDR5 downregulates
IL4il

The immunosuppressive
function of MDSCs was
weakened

Melanoma, colon cancer, ovarian,
breast cancer

(81)

MALAT1 8kb 2003 It acts directly on MDSCs The immunosuppressive
function of MDSCs was
weakened

Hepatocellular carcinoma,
Endometrial stromal sarcoma,
Cervical, Breast cancer, Osteosarcoma,
Colorectal cancer

(8)
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3.2 The expression of RUNXOR is closely
related to MDSC induced
immunosuppression in lung tumors

RUNX1 overlapping RNA (RUNXOR) is a lncRNA transcribed by

an upstream promoter and overlapping with RUNX1. It significantly

controls bone marrow cells’ growth by targeting RUNT-associated

transcription factor 1 (RUNX1) (88). LncRNA RUNXOR is about 260

KB long (89). As less research has been done on RUNXOR, dating back

as far as 2014, RUNX1 is located on chromosome 21 and is usually

disrupted by chromosomal translocations in haematopoietic

malignancies. The most common observed translocation is t (8, 21),

which is common in acute myeloid leukaemia (90). RUNXOR can

regulate RUNX1 expression by recruiting the RUNX1 protein at its 3’

end, and upon binding to promoters and enhancers, it makes it

participate in chromosomal translocations in malignant cells

tumours (90).

Furthermore, by binding straight to chromatin, RUNXOR

orchestrates the long-range chromosomal inner loops. Xinyu Tian

et al. proves that the RUNXOR and RUNX1 in MDSCs from the

peripheral blood of lung cancer patients are differentially expressed in

the tissues around the lung cancer compared to the normal tissues. The

study results show that lncRNA RUNXOR is augmented in the lung

cancer blood samples, while RUNX1 activity is reversely connected

with immunosuppression in MDSCs. Moreover, the activity of

RUNXOR is advanced in MDSCs in the lung tumour samples than

in the adjacent tissues. The knockdown of RUNXOR also decreased

arg1 activity in MDSCs. This suggest that RUNXOR expression is

considerably related to MDSC-induced immunosuppression in lung

tumours and may be a good aim for anti-tumour therapeutic

approaches (56).
3.3 lnc -chop regulated MDSCs
specialization into M-MDSCs

Lnc-chop is a novel lncRNA identified in MDSCs. It is positioned

in the intronic region of the gene on Ch 11. Relevant data indicate that

transcription factor C/EBPb, C/EBP-homologous protein (CHOP)

and phosphorylated STAT3 directly influence MDSCs growth

(91).CHOP is coded by Ddit3 and takes part in the diminished

production of significant factors associated with MDSCs functions,

including ARG-1, PNT (peroxynitrite), and superoxide, thereby

inhibiting MDSCs activity (92). In addition, lnc-CHOP is associated

with lung, breast cancer, murine melanoma, and murine ovarian

tumours. The results from the 2018 Yunhuan Gao’s trial notes that

lnc-chop would be expressed in MDSCs mediated by factors involved

in inflammation and tumour development, while lnc-chop

potentiates MDSCs immunosuppressive activity in vivo and in

vitro. These data indicates that lnc -chop regulated MDSCs

specialization into M-MDSCs and that M-MDSCs have a more

potent immunosuppressive effect. The mechanism behind this is

that lnc-chop interacts with CHOP and the C/EBPb isoform LIP to

activate the C/EBPb isoform LAP, thus lnc-chop triggers

enhancement of H3K4me3 in the promoters of Arg-1, NOS2,

NOX2 and COX2, which are implicated in MDSCs role in

suppressing the immune system in TEM (76).
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3.4 RNCR3 has potential
immunomodulatory functions

RNCR3, also known as LINC00599, is a lncRNA, which is highly

conserved in mammals. In tumours, RNCR3 has oncogenic functions

and promotes the progression of colorectal, prostate and brain

cancers (93).RNCR3 is a crucial regulator of cell propagation,

specialization, cell death, metastasis and atherosclerosis (94).

Knockdown of RNCR3 leads to increased plasma amounts of TNF-

a, CCL2 and IL-6, signifying its potential immunomodulatory

functions. Wencong Shang’s trial confirms that RNCR3by acted as

a competing endogenous RNA (ceRNA) during MDSC

differentiation. Tying to miR-185-5p and releasing Chop stimulated

their specialization and immunosuppressive activity. There is a close

relationship between RNCR3, miR-185-5p and Chop, and the

relationship between the three and how they regulated MDSCs is

further elaborated in their subsequent experiments. As mentioned

earlier, Chop triggers MDSCs’ specialization and activity in vivo,

whereas its reduced activity blocks the activity of Arg-1 and iNOS.

Therefore, the authors conclude that RNCR3 triggers MDSCs’

specialization by interacting with spongy miR-185-5p to free its

target gene Chop. In addition, tumour microenvironmental

molecules such as IL-6 triggered RNCR3 expression during MDSCs

specialization and further promote their immunosuppressive

activity (77).
3.5 Olfr29-ps1 can promote the
immunosuppressive effect of MDSCs

Olfr29-ps1, a lncRNA distributes in the cytoplasm and nucleus, is

a pseudogene, 963 bp in length, located on mouse Ch 4. Its sequence is

preserved in vertebrates and is significantly overexpressed in

peripheral blood mononuclear cells from individuals with colon

and rectal cancer. It is linked with lung, breast, pancreatic, and

uroepithelial cancer. Olfr29-ps1 is regulated by the pro-

inflammatory cytokine IL6 and tumour-associated factors. IL6 up-

regulates Olfr29-ps1 expression in MDSCs, while Olfr29-ps1 is

considerably reduced in MDSCs in B16 tumour mice after IL6

knockdown. The Olfr29-ps1 knockdown results in lower NO, H2O2

and ROS in the cells, whereas increased NO, H2O2 and ROS are

detected in MDSCs that overexpressed Olfr29-ps. Moreover, it is

further confirmed that Olfr29-ps1 silencing diminished the protein

levels of Arg-1, iNOS, Cox2 and Nox2, while the protein levels of Arg-

1, iNOS, Cox2 and Nox2 are augmented in MDSCs that

overexpressed Olfr29-ps1. These results signify that Olfr29-ps1

promoted Arg-1 production in M-MDSCs, and H2O2 in G-MDSCs,

contributing to the MDSCs specialization and suppression of the

immune system. MDSC overexpressing Olfr29-ps1 in murine models

of melanoma resulted in larger, faster and heavier tumour growth.

The mechanism by which Olfr29-ps1 affect MDSCs was further

investigated. LncRNA pseudogene Olfr29-ps1 can directly sponge

mir-214-3p and promote the differentiation and immunosuppressive

function of M-MDSC in vitro and in vivo, which may be achieved by

targeting MyD88. Data show that miR-214-3p diminished MyD88

mRNA and protein levels. Furthermore, the interaction between

Olfr29-ps1 and miR-214-3p is reliant on the modification of m6A
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by Olfr29-ps1. Data show that lncRNA Olfr29-ps1 have seven

conserved GGAC sequences, the most shared m6A sequences.

Therefore, RIP-PCR Olfr29-ps1 is modified by m6A in IL6-induced

MDSC. These results confirm that Olfr29-ps1 promoted MDSCs’

functions by forming miR-214-3p after mbA modification (78).
3.6 HOTAIR activity was significantly
enhanced in lung cancer patients

HOTAIR was discovered in 2007 by Rinn et al. (95). It is a 2.2-

kilobase ncRNA located at the HOXC site, specifically in the

intergenic place between HOXC11 and HOXC12 genes in the

HOXC cluster on Ch 12. HOTAIR recruits a transcriptional

corepressor polycombsin Complex 2 (PRC2) to repress the HOXD

(homeobox gene cluster D) expression (96). In individuals diagnosed

with lung tumours, HOTAIR activity is considerably augmented.

Therefore, it is considered a new controller of lung tumours, which

has great significance in the possible therapeutic approaches to lung

cancer (97). HOTAIR is also overexpressed in nasopharyngeal

carcinoma, breast, pancreatic, liver, gastric and non-small cell lung

cancer (98).HOTAIR was proven to be linked with MDSCs functions

in hepatocellular carcinoma lines. In HCC patients, MDSCs exerted

their immunosuppressive functions by inducing regulatory T cells.

Other authors demonstrated that HOTAIR induced the secretion of

CCL2, which recruited TAM and MDSCs, in PBMCs co-cultured

with HOTAIR overexpressing cells. It was also shown that HOTAIR

played a crucial role in promoting macrophages and MDSCs by

secreting cytokines and chemokines from HCC cells (79).
3.7 HOTAIRM1 is highly active in
different tumors

HOTAIRM1 (HOXA transcribed antisense RNA bone marrow

specific 1) was discovered by (Xueqing Zhang et al., 2009). It is

1052bp in length and is located in the HOXA gene cluster between

HOXA1 and HOXA2 on human Ch 7 (99). Initially, it was considered

the most prominent intergenic transcript of granulocyte

differentiation and up-regulation in NB4 promyelocytic leukaemia.

Other authors proved that it was overexpressed in specific myeloid

lines (100). Recent data show that HOTAIRM1 is a lncRNA that is

abnormally active in different tumours and is related to hepatocellular

carcinoma, colorectal, gastric, head and neck, ovarian, thyroid

cancers, etc (101).Some authors detected that HOTAIRM1

expression was significantly reduced in tumour tissues. In addition,

overexpression of HOTAIRM1 downregulated Arg1 expression levels

and inhibited the effect of MDSCs. However, when HOTAIRM1 was

overexpressed, the HOXA1, a target gene of HOTAIRM1, was

significantly enhanced, suggesting that HOTAIRM1 could trigger

HOXA1 expression in MDSCs. In contrast, its silencing or HOXA1

expression in MDSCs significantly reduced the frequency of MDSCs

and their inhibitory function. It was further found that HOXA1

overexpression downregulated the activity of the immunosuppressive

molecule Arg1 and ROS production in MDSCs and that HOXA1

overexpression enhanced CD4+ Th1 and CD8+ CTL cell initiation so

that HOXA1 overexpression enhanced the anti-tumour T-cell
Frontiers in Immunology 0966
response and suppressed the immunosuppressive effect of MDSCs,

thereby delaying tumour progression (80).
3.8 Lnc C/EBPb was significantly increased
in G-MDSC

Lnc-c/EBPb is located on Ch 1 and 4. It is represented by three

subtypes of C/EBPb: liver-rich activator protein (LAP) and liver-rich

repressor protein (LIP) (102). Studies on LNC-C/EBPb are scarce. In

2018 some authors reported on the isolation of MDSCs from mice

carrying melanoma, colon, ovarian and breast cancer. MDSCs subsets

were classified to analyze the expression of RNC-C/EBPb in different

MDSC subsets. The results demonstrated that lnc-C/EBPb was found

in G-MDSC, M-MDSC and macrophages, and the amount of lnc-C/

EBPb was significantly augmented in G-MDSCs. It has been

suggested that ARG-1, NOS2, NOX2 and COX2 activity was

controlled by C/EBPb, which lessened MDSCs’ immunosuppressive

functions (103). The underlying mechanism included LNC-C/EBPb
knockdown, which changed the transcriptional activity of several

genes, like interleukin4-induced gene-1 (IL4i1). However, LNC-C/

EBPb binding to C/EBPb homotypes LIP and WDR5 was necessary

for LNC-C/EBPb-mediated IL4il silencing. The results showed that

the expression of LNC-C/EBPb was controlled by IL 6, while LNC-C/

EBPb potentially promoted the differentiation of PMN-MDSC.

Furthermore, LNC-C/EBPb hindered the specialization of MDSCs

into M-MDSCs (81).
3.9 MALAT1 regulates the differentiation
of MDSCs

MALAT1 (metastasis-associated lung adenocarcinoma transcript

1) is an extensively investigated lncRNA, especially in tumour biology.

It is also recognized as NEAT2 (a nuclear-rich transcript 2), mainly

localized in the nucleus and highly preserved among animals. In

humans, it is found on chromosome 11q13. Its main transcript length

is about 8kb in humans and 6.7kb in mice (104). It was one of the

earliest lncRNA genes discovered, and some data linked it with

metastasis in NSCLC individuals. It was overexpressed in NSCLC

patients and appeared predictive of early-stage NSCLC in individuals

with a high risk of metastasis. However, MALAT1 was not only highly

expressed in lung cancer but participated in the progression and

expansion of hepatocellular carcinoma, endometrial stromal sarcoma,

cervical, breast cancer, osteosarcoma, colorectal cancer and others

(105). Furthermore, MALAT1 regulated the molecular signalling

pathways that drove cell division, apoptosis, cell cycle, metastasis,

invasion, and immune response. It was linked to tumour site, size,

salinization and cancer stage, so the MALAT1 abnormal expression in

tumour tissues or body fluids could be used for diagnostic and

prognostic purposes (106).Other authors proved that the average

transcription activity of MALAT1 in PBMCs isolated from

individuals with lung tumours was considerably reduced and was

adversely linked with the amount MDSCs. These results proved that

MDSCs and CTL were negatively correlated in PBMCs of individuals

with lung tumours. However, according to Qinfeng Zhou et al.,

MALAT1 levels were not directly correlated with MDSCs and CTLs
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in PBMCs of patients with lung tumours. Therefore, it could be

concluded that MALAT1 regulated the differentiation of MDSCs.

This study also demonstrated that MALAT1 knockdown increased

the number of MDSCs by regulating their differentiation, which

provided a new understanding of the development of lung tumours

and proposed a possible target for supplementary diagnosis and

management of lung tumours (8).

Tumor microenvironment, such as hypoxia, the presence of IL-6 and

other inflammatory factors, may promote the expression of lncRNA in

MDSCs. For example, IL-6 or tumor-related factors can induce the

overexpression of lnc C/EBPb, LNC-CHOP, Olfr29-ps1, Pvt1 and

RNCR3 in MDSCs, while chronic and low-dose stimulation of

inflammation and tumor factors can also promote the down-regulation

of lncRNAs. For example, HOTAIRM1 and MALAT1 are down-

regulated in MDSCs from lung cancer patients . These

microenvironmental factors produce different effects. From the above

introduction, we can know that lnc-CHOP, Olfr29-ps1, Pvt1, RUNXOR,

HOTAIR and RNCR3 can promote the immunosuppressive function

and differentiation of MDSCs. lnc-C/EBPb, HTOAIRM1 and MALAT1

blocked the immunosuppressive and differentiation functions of MDSCs,

resulting in completely different effects. At the same time, some studies

have shown that lncRNAs(such as Olfr29-ps1, lnc-CHOP, RNCR3 and

RUNXOR) can participate in the first stage of MDSCs expansion and

then participate in the second stage of MDSCS activation due to the

identification of different targets, while Pvt1 can only participate in the

second stage. In addition, lncrnas can also play cell-to-cell

immunosuppressive and tumor-promoting roles through exosomes

secreted by MDSCs.
4 The roles of lncRNAs in lung cancer

LncRNAs control the immune cells’ functions by various

mechanisms. The regulation of MDSCs in various tumour tissues

by lncRNAs can promote their application in immunoregulatory anti-

cancer therapy or as biomarkers. LncRNAs have dual roles in cancer.

They can block or trigger its development. For example, the

transmission of lncRNAs in exosomes triggers drug non-

responsiveness. Data show that LncRNA H19 encapsulated into

exosomes and unambiguously facilitated by hnRNPA2B1 is moved

to non-resistant NSCLC cells, resulting in non-responsiveness to

Gefitinib (36).In our study, we explored and summarized the direct

regulation of lung cancer by lncRNAs and further investigated the

indirect regulation of lncRNAs on lung cancer by regulating

MDSCs (Figure 2).
4.1 LncRNAs directly regulate lung cancer

Taking lncRNAs as an entry point holds the promise of further

improving the survival of individuals with lung tumours.

Unfortunately, there is a lack of lncRNA-related lung cancer

studies. Here, we summarize the available information on lncRNAs’

regulation of lung cancer and provide the findings in Table 3.

The roles of lncRNA PITPNA antisense RNA 1 (PITPNA-AS1)

were studied in individuals with NSCLC. The results showed that the

transcription levels of PitPNA-AS1 in NSCLC tissues were
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overexpressed in NSCLC tissues. However, its silencing blocked

NSCLC propagation and metastasis. An interesting connection

between PitPNA-AS1 and microRNA (miR)-32-5p was detected,

proving that PITPNA-AS1 downregulation inhibited the

progression of NSCLCs by directing Mir-32-5p. This suggested

PITPNA-AS1 as a diagnostic and prognostic biomarker of NSCLC

(107). Other authors proved that the lncRNA ZEB2-AS1 was

overexpressed in NSCLC patients, which stimulated the epithelial-

mesenchymal transition (EMT) in these patients, proving that

lncRNA ZEB2-AS1 may become a new diagnostic, prognostic and

therapeutic factor (108). Hongxia Wu et al. proposed that targeting

the lncRNA NEAT1 could be a possible treatment for NSCLC (109).

Some studies have pointed out that the zinc finger protein (ZNF) 281

could be a tumour suppressor lncRNA in glioma. Xin Lu et al.

followed up on patients for 5 years to analyze the role of ZNF281

in NSCLC. They found that ZNF281 up-regulated the phosphatase

and tensin homolog (PTEN) by down-regulating Mir-221 in NSCLC,

thus constraining cancer cell propagation and death (110). The

lncRNA LINC00473 was overexpressed in lung tumour tissues and

NSCLC cells (A549 and H1299), resulting in a low 5-year patients’OS

(overall survival). Studies on lung tumour tissues demonstrated that

LINC00473 interacted with Mir-497-5p and blocked its activity, thus

promoting the propagation of NSCLC cells (111). To explore the

relationship between lncRNA transforming associated RNA (PTAR)

and Mir-101 in NSCLC, Wenjun Yu et al. conducted a series of

studies during which they proved that lncRNA PTAR was up-

regulated in NSCLC cells and could be combined with Mir-101 to

inactivate it to stimulate the growth of NSCLC cells (112). GACAT1

(the lncRNA gastric cancer-associated transcript 1) plays a

carcinogenic role in different types of cancer. It is overexpressed in

NSCLC tissues, which may be associated with the adverse outcome of

NSCLC patients. This finding delivers new knowledge for developing

novel therapeutic approaches for NSCLC (113). AWPPH is a recently

revealed lncRNA, which can be highly expressed in NSCLC tissues,

thus stimulating the propagation of NSCLC cells, and considerably

inhibiting the survival rate of patients with high AWPPH expression

(114).LncRNA prostate cancer-associated transcript (PCAT) 19 also

has a certain effect on the progression of NSCLC, PCAT19 was found

overexpressed in NSCLC, which increased NSCLC cell proliferation

and promoted the progression of NSCLC (115).Ting Wang et al.

discovered the role of lncRNA-ATB in NSCLC using the in vitro

cultured NSCLC NCI-H838 cell line. Their findings revealed that

lncRNA-ATB promoted lung cancer progression by inhibiting miR-

200a expression and reversed the promotion of b-linked protein

expression to promote apoptosis in NSCLC cells (116).The newly

discovered lncRNA SET binding factor 2 antisense RNA 1 (LncRNA

SBF2-AS1) is involved in the progression of many cancers like lung,

breast, hepatocellular carcinoma, thyroid, gastric, colorectal cancers

and others (118). Interestingly, Weilong Ye et al. identified 13

lncRNAs related to Gefitinib metabolism and applied them to build

the prognostic model of NSCLC patients (119). This proves that

lncRNA studies are not limited to particular tumour tissue, and more

and more studies have proposed new ideas for the diagnosis,

treatment and prognosis of lncRNAs.

Ghada Mohamed Gamal El-din et al. verified the expression of

serum markers RAB27A mRNA and RNA-RP11-510m2 in 20

individuals with lung tumours, 10 individuals with COPD and 10
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controls in good physical shape. The results showed that the serum

exosome RAB27A mRNA was positively correlated with lung cancer,

whereas NRC-RNA-RP11-510m2 was negatively correlated, which

could be developed as biomarkers for diagnosis and prognosis of lung

tumours (120).LncRNAs HOTAIR has been shown to induce

tumorigenesis of several cancer types. Chunlin Ke et al. explored

the relationship between the four types of lncRNA HOTAIR and the

susceptibility to lung cancer. One thousand seven hundred fifteen

individuals with lung tumours and 2745 healthy subjects were

recruited. The results proved that HOTAIR was important in lung

cancer screening and prognosis prediction, especially for people with

high-risk factors (121). Sik1-lnc is another lncRNA adjacent to salt-

inducible kinase 1 (SIK1) and can be abnormally expressed in lung

cancer. Other authors (Liu Yang et al.) studied the expression of SIK1

and SIK1-LNC in samples from lung cancer patients and established

that the transcription activity of SIK1 and SIK1-LNC was decreased.

Moreover, SIK1-LNC considerably repressed the propagation of

lung cancer cells, signifying that SIK1-LNC served as a novel

biomarker and target for lung cancer therapeutic approaches

(122).TSLC1, as a tumour suppressor gene in various cancers, is

considerably repressed in NSCLC tissues and cell lines. The increased

expression of TSLC1 inhibited the viability, migration and invasion of
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NSCLC cells. Other authors explored the biological mechanism of the

antisense RNA of TSLC1, namely lncRNA RP11-713B9.1, in the

development and progression of NSCLC. They analyzed the tumour

tissues of 46 NSCLC patients. They established that the activity of

RP11-713B9.1 was undoubtedly connected with TSLC1 (a tumour

suppressor gene), while the overexpression of RP11-713B9.1 led to a

substantial overexpression of TSLC1. In other words, the inhibition of

RNA RP11-713B9.1 transcription backed NSCLC cell survival (123).
4.2 LncRNAs regulate lung cancer by
modulating the functions of MDSCs

MDSCs are indispensable for the occurrence and progression of

lung tumors. Therefore it is very logical to assume that lncRNAs could

regulate lung tumors indirectly b modulating MDSCs’ activity. In a

study by Qinfeng Zhou et al., the levels of MDSCs and ARG-1 were

significantly increased in PBMCs of lung cancer patients.

Simultaneously, the relative expression of lncRNA MALAT1 PBMCs

of individuals with lung tumors was considerably reduced. The direct

effect of MALAT1 on MDSCs was further confirmed by siRNA

interference of MALAT1 expression, which resulted in the inhibition
A

B

FIGURE 2

LncRNAs directly regulate lung cancer (A), and the lncRNAs regulate lung cancer by regulating MDSCs (B).
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of MDSCs expansion (8). RUNXOR lncRNA is significantly related to

MDSCS-induced immunosuppression in individuals with lung tumors

and could serve as therapeutic targets. In another study, the expression

of lncRNA RUNXOR in PBMCs isolated from individuals with lung

tumors was studied by qRT-PCR. The level of RUNXOR in individuals

with lung tumors was found to be augmented. Moreover, the authors

detected a differential expression of RUNXOR in squamous cell lung

and lung adenocarcinoma, thus suggesting that RUNXOR could be

used to differentiate lung tumor types. Furthermore, the analysis of the

peripheral blood of individuals with lung tumors showed that

RUNXOR transcription was augmented with the increase of MDSCs

percentage and Arg1 levels but was decreased with the increase of the

Th1/CTL cell ratio. This suggested that the transcriptional activity of

this lncRNA controlled the immunosuppressive function of MDSCs in

these individuals (56). In another study, it was shown that lncRNA

Snhg6 mainly exists in the cytoplasm.Furthermore, they proved that

Snhg6 controlled MDSCs specialization by decreasing the stability of

EZH2 without affecting their immunosuppressive functions (124). As

mentioned above, the up-regulation of the lncRNAHOTAIRM1 down-

regulated the inhibitory molecules in MDSCs. Other authors proved

that HOTAIRM1 was conveyed in different types of lung cancer,

especially in lung adenocarcinoma, and its transcription activity was

considerably diminished inMDSCs from tumor tissues. Moreover, they

showed that when HOTAIRM1 was overexpressed, Arg1 expression

levels in MDSCs were down-regulated, thus inhibiting the propagation

of MDSCs in lung tumors (125). In another study, the authors

established that lncRNA F730016J06Rik (AK036396) was
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overexpressed in G-MDSCs, whereas its knockdown promoted the

maturation of G-MDSCs and reduced their immunosuppression

functions. Data show that the Fcnb protein can bind to some

proteases to promote the production of ROS and Arg1 by MDSCs

through the lectin pathway in granulocyte. The last accelerates the

migration of MDSCs to tumor sites. Therefore, AK036396 can enhance

the stability of Fcnb protein through the ubiquitin-proteasome system.

Thus, the maturation and function of G-MDSCs can be regulated to

accelerate immune suppression (126). Yu Zheng et al. implanted Lewis

lung cancer (LLC) cells into mice, isolated MDSCs by microbeads and

flow cytometry, and measured the transcriptional activity of Pvt1. The

authors detected that Pvt1 was overexpressed in G-MDSCs derived

from cancer samples. The immunosuppressive effect of tumor-

infiltrating MDSCs was mainly due to increased Arg1 transcription

and production of nitric oxide by HIF-1a. Coincidentally, Yu Zheng

et al. first identified Pvt1 as a HIF-1a target in G-MDSCs of LLC mice

cells under hypoxia. RNA interference of Arg1 diminished its activity,

ROS production in G-MDSCs decreased, and the antitumor T-cell

response was restored. From this perspective, the authors concluded

that targeting Pvt1 attenuated G-MDSCS-mediated immune

suppression (75). LncRNAs regulate tumors far beyond lung cancer.

The proof comes from Zohreh Khodaii et al., who explored the

LncRNA-Mir-mRNA complex to find new targets in a rectal tumor.

The depletion of Lactobacillus acidophilus in individuals with rectal

tumors induced the transcription of the lncRNA-Mir-mRNA network,

which delivers new observing and treatment methods for rectal cancer

patients (127). Other authors performed biopsies of tumor and non-
TABLE 3 Regulation of lncRNAs in lung cancer.

lncRNA Lung cancer
subtypes

Effects on lung cancer Mechanism Reference

PITPNA-
AS1

NSCLC Silencing inhibits NSCLC cell proliferation,
metastasis, and epithelial-mesenchymal transition

To inhibit NSCLC progression by silencing PitPNA-AS1 by
targeting Mir-32-5p

(107)

ZEB2-AS1 NSCLC
(A549)

It is significantly expressed in NSCLC tissues and
triggers metastasis and epithelial-mesenchymal
transition of NSCLC tumour cells

unknown (108)

NEAT1 NSCLC Modulates sensitivity to iron death in NSCLC cells unknown (109)

ZNF281 NSCLC Blocks proliferation of cancer cells and triggers cell
death

Overexpression of ZNF281 and PTEN can accelerate cell apoptosis
and inhibit cancer cell proliferation. ZNF281 can down-regulate
Mir-221 in NSCLC to up-regulate PTEN

(110)

LINC00473 NSCLC
(A549、 H1299)

It can promote cell propagation and metastasis and
inhibit cell death in NSCLC

LINC00473 promotes the progression of NSCLC by regulating the
ERK/P38 and MAPK signalling pathways and the expression of
Mir-497-5p

(111)

PTAR NSCLC(A549) It indorses cell division and metastasis of NSCLC LncRNA PTAR triggers the growth of NSCLC cells by inactivating
Mir-101

(112)

GACAT1 NSCLC Down-regulation blocks cell division and triggers
cell death in NSCLC

The expression of GACAT1 in NSCLC was decreased by sponging
Mir-422a to inhibit the progression of NSCLC

(113)

AWPPH NSCLC Overexpression triggers cell propagation and
blocks cell death in NSCLC

LcRNA AWPPH triggers NSCLCs propagation by stimulating the
Wnt/b-catenin signalling pathway

(114)

PCAT 19 NSCLC Overexpression resulted in increased proliferation
of NSCLC cancer cells

Overexpression of PCAT 19 can down-regulate p53 and promote
the progression of NSCLC

(115)

LncRNA
ATB

NSCLC Promote apoptosis of NSCLC cancer cells LncRNA ATB inhibited the activity of Mir-200a and promoted the
b-catenin transcription in reverse

(116)

lncRNA
MIR4435-
2HG

adenocarcinoma
of lung

Mir4435-2HG knockdown considerably blocked
the propagation and metastasis of lung tumour
cells

Mir4435-2hg binds to b-catenin to stop its destruction controlled
by the proteasome system, thereby controlling the EMT and cancer
stem cell properties in lung tumours

(117)
f
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tumor tissues from patients with gastric cancer. They showed that

lncRNA PVT1 expression was increased, whereas the lncRNA ZFAS1

expression was decreased compared with non-tumor parts. PVT1 and

ZFAS1 were biomarkers for detecting and treating gastric cancer cases

(128). Furthermore, the lncRNA MEG3 was reported as a tumor

suppressor in breast cancer. Battseren Bayarmaa et al. evaluated the

impact of MEG3 polymorphism on neoadjuvant therapy in144 patients

with breast cancer. The results showed that MEG3 polymorphism was

associated with the chemotherapy response and toxicity of paclitaxel

and cisplatin. This indicated that MEG3 polymorphism has the

potential as a prognostic marker for breast cancer individuals (129).

Xianmin Guan et al. obtained bone marrow samples from 146 pediatric

patients with acute myeloid leukaemia (AML) and 73 patients with

non-hematologic malignancies. They measured lncRNA-SOX6-1

expression to examine the association between lncRNA-SOX6-1 and

AML. SOX6-1 transcription was augmented in the AML patients

compared to the healthy volunteers, which promoted cell

propagation while inhibiting cell death and was related to worse risk

diversification and poorer treatment outcomes (130). Similarly,

Zhenqing Tan et al. studied the relationship between INK4

expression and the clinical characteristics and prediction of AML in

patients, they studied the transcription of ANRIL in bone marrow

mononuclear cells (BMMCs) in 178 patients with initial AML and 30

healthy donors. Compared with healthy people, lncRNA ANRIL levels

were increased in AML patients, and those with augmented ANRIL

transcription had smaller event-free survival (EFS) and OS. Therefore,

ANRIL was proposed as a biomarker for AML. Moreover, it has clinical

relevance in assisting the diagnosis, treatment and prognosis prediction

of AML and identifying potential drug targets of AML (131).
5 Summary and outlook

The development mechanisms of tumour cells are diverse, and the

tumour microenvironment changes are also complex and

miscellaneous. To successfully implement tumour immunotherapy,

tumour suppressors must be removed. Recent data have shown that

MDSCs are the chief controllers of cancer immune responses and

inflammation in individuals with tumours as they intensely constrain

the antitumor immune response of CD4+ T cells, CD8+ T cells and NK

cells, thus triggering tumour growth. MDSCs play critical roles not only

in lung cancer carcinogenesis but also in its progression and prognosis.

Therefore, MDSCs are an attractive therapeutic target because they are

carefully related to adverse effects. With the discovery of many novel

lncRNAs and the general studies on their roles in different pathologies,

particularly cancer, lncRNA research has become a new trend. Factors

generated by the tumour and its accompanying hypoxia or

inflammatory TME may sustain the expression of some non-coding

RNAs. Based on lncRNAs, treatment strategies targeting MDSCs can

recover our understanding of MDSCs and disclose new tumour

propagation instruments.

Furthermore, the study of novel lncRNAs that regulate the

activity of MDSCs is expected to enable their application in
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immunoregulatory therapy or as biomarkers. In particular, recent

data proved that lncRNAs play a significant part in NSCLC

development, which will provide a new direction for our

subsequent research on lung cancer. However, the complex

biological mechanism of MDSCs also poses new challenges for

targeted therapy. In addition, the functional connection between

lncRNAs and MDSCs does not seem strong enough, the

investigations on the way the lncRNAs regulate MDSCs are yet in

their infancy, and the clinical research on lncRNA-related lung cancer

is very little. Nevertheless, it is hoped that with the development of

social science and the progress of medical technology, more clinical

studies in this field can be piloted to approve the possibility of

regulating MDSCs in lung cancer by lncRNAs. The last will deliver

novel ideas for lung cancer treatment and bring more benefits to lung

cancer patients.
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Tumor−associated macrophage
polarization in the inflammatory
tumor microenvironment
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The chronic inflammation of tumor continues to recruit TAMs (tumor−associated

macrophages) to the TME (tumor microenvironment) and promote polarization.

Pro-inflammatory signals polarize macrophages to the M1 phenotype to enhance

inflammation against pathogens. Tumor inflammatory development changes the

pro-inflammatory response to an anti-inflammatory response, resulting in the

alteration of macrophages from M1 to M2 to promote tumor progression.

Additionally, hypoxia activates HIF (hypoxia-inducible factors) in the TME, which

reprograms macrophages to the M2 phenotype to support tumor development.

Here, we discuss the factors that drive phenotypic changes in TAMs in the

inflammatory TME, which wil l help in the development of cancer

immunotherapy of macrophages.

KEYWORDS

tumor-associated macrophages, polarization, inflammatory, tumor microenvironment,
cancer immunotherapy of macrophages
1 Introduction

Macrophages are innate immune cells that play a key role in inflammation. At the

initiation of inflammation, the number of neutrophils in the circulation increases, followed

by monocytes that differentiate to macrophages to promote inflammation against invading

pathogens (1). Further inflammation or chronic inflammation can result in tissue damage,

and macrophages can also assist in preventing excess inflammation from occurring to protect

the body (1). Macrophages in the inflammatory microenvironment eliminate invading

pathogens, damaged tissue and apoptotic host cells, which further lead to the resolution of

inflammation and tissue reparation (2). It was found that infected tissue without

macrophages had an increased apoptotic neutrophil population and prolonged

inflammation and tissue damage (3).

Because inflammation has the potential to cause harm, the inflammatory process is

typically tightly regulated by macrophages. Pro-inflammatory or activity signals, such as

interferon-g (IFN-g), colony-stimulating factor-1 (CSF-1), and lipopolysaccharide (LPS),

polarize macrophages to the M1 phenotype to promote inflammatory development. Because

non-resolving inflammation damages tissue, inflammation should be shut down by anti-

inflammatory signals, such as IL-10 and transforming growth factor beta (TGF-b), that
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activate macrophages to resolve the inflammatory process (4). An

abnormal regulation between pro-inflammatory and anti-

inflammatory signals drives many diseases (4).

In the inflammatory TME, the proportion ofmacrophages can be as

high as 30%-50%, and their function has been considered as the ‘soil’ for

tumor growth.At the earliest stageof the tumor,macrophages polarize to

M1 to generate an antitumor response. However, once tumors progress

past the initial state, the macrophages polarize toM2 to promote tumor

progression andmalignancy (4–6). Tumors are also considered ‘wounds

that do not heal’ that lead to chronic inflammatory and imbalanced

polarization of macrophages (7–9). The present review provides an

overview of macrophage polarization in inflammatory TME and

proposes a therapeutic strategy for treating cancer.
2 Distribution of macrophages in the
TME

Macrophages polarize to different phenotypes in response to

signals and cytokines in their environment. Many factors affect

TAM polarization and distribution, such as inflammatory signals

and cytokines in the TME. The distribution of polarized TAMs in the

tumor microenvironment is shown in Figure 1 (9). As an important

component of leukocytes, TAMs are mainly derived from circulating

monocytes, tissue residue macrophages and myeloid-derived cells

(MDSCs). Under specific conditional stimulation and an unequal

distribution of nutrients created by the TME, macrophages can be

polarized to the M1 type (classically activated phenotype, with

markers such as CD80/86) and M2 type (alternatively activated

phenotype, with markers such as CD206, CD163, CD204, and

stabilin-1), which play an important role in carcinogenesis and

metastasis (10). The unequal distribution of oxygen and nutrients

in TME affects macrophage polarization. Macrophages are near

perfused vessel areas, where nutrients such as glucose, glutamine,

and oxygen are high, which induces macrophage polarization to the
Frontiers in Oncology 0275
M1 type. Macrophages residing away from vessels in an environment

of chronic hypoxia and a high concentration of lactate are induced to

polarize to the M2 type (Figure 1) (1, 9). Both M1 and M2

macrophages are found in TME, whereupon cells in hypoxic areas

show more dominant M2 activation. For example, TAMs can express

both the M1 marker CD80 and the M2 marker CD206. However, in

hypoxic areas, the M1 marker CD80 is expressed at lower levels, and

the M2 marker CD206 is expressed at higher levels than in high

oxygen areas (11).

Initiation of inflammation in the TME and pro-inflammatory

cytokines, such as interleukin (IL)-1-b, IL-6, and IL-8, are produced

by tumor cells, immune cells and nonmalignant cells that promote

M1 polarization (12). IL-4, macrophage colony-stimulating factor

(M-CSF), or granulocyte-macrophage colony-stimulating factor

(GM-CSF), as well as IL-10, TGF-b and HIF-1a produced by the

hypoxic TME, can skew macrophages to the M2 phenotype. For

example, HIF-1a in hypoxic melanoma cells induced translocation

and secretion of IL-10, which induced macrophage activation to the

alternative M2 phenotype (13).
3 Factors affecting the polarization of
tumor macrophages in TME

3.1 Inflammation

In TME, cells face hypoxia, nutrient deprivation and metabolic

stress that cause sustained apoptosis and death. In the chronic

inflammatory TME, apoptotic cells produce ‘find-me’ signals to

recruit lymphocyte cells that produce inflammatory signals to keep

out damaged tissue and prevent their own clearance (9), and the

recruitment of neutrophils followed by monocytes that initiate

inflammatory signals activates macrophages to the M1 phenotype (8).

But the chronic inflammation leads to the production of anti-

inflammatory signals and the transition of macrophages from the M1

to anti-inflammatory M2 phenotype to prevent excess inflammation

from occurring (14). M2 macrophages further secrete anti-

inflammatory signals, such as IL-10 and TGF-b, to promote

angiogenesis, remodeling, and immune suppression, which increase

cancer cell proliferation, metastasis and resistance to therapy (15).

Chronic cancer-associated inflammation also contributes to the

TME producing cytokines and chemokines, such as IL-4, IL-6, IL-10,

IFN-g, CCL2, CCL5, CD40L, and TNF (8, 16–18). The cytokine and

chemokine balance of pro- and anti-inflammatory mediators is a key

factor in the progression of macrophage polarization and tumor

development. An abundance of pro-inflammatory cytokines and

chemokines in the TME recruit and polarize macrophages to the

M1 phenotype and promote inflammation. With the development of

inflammation, non-resolving cancer inflammation also produces an

anti-inflammatory signal to inhibit inflammation that alters

macrophages from the M1 to M2 type (9). As mentioned before,

The chronic inflammation of tumors continue to cause pro-and anti-

inflammatory response occurring, result in sustained polarization

macrophages from the M1 to M2 type in the TME (Figure 2) (9).

In the clinic, macrophage polarization is strongly related to tumor

stage; in the early phases of tumor inflammation, the TME recruits

and polarizes more macrophages to the M1 phenotype, and in the
FIGURE 1

Distribution of macrophages in the tumor microenvironment.
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tumor advanced state, more M2 macrophages are found, suggesting a

dynamic switch from the M1 to the M2 phenotype (19). Moreover,

several studies in murine and human tumors also observed a “mixed”

macrophage phenotype in the TME, and the phenotype of

macrophages also differs from tumor to tumor or within different

areas of the same tumor (20, 21), and macrophages in an advanced

state of tumors show a more dominant M2 marker expression pattern

(11). Cytokines and chemokines secreted by pro- and anti-

inflammatory signals can alter the physiological development of

macrophages. It is known that at the earliest stage of the tumor,

pro-inflammatory M1 macrophages are activated, and with tumor

development, macrophages will convert to the immunosuppressive

M2 phenotype in cancer nests to promote tumor growth (4–9, 15,

22, 23).
3.2 Hypoxia

The TME creates an unequal distribution of oxygen and nutrients

that affect TAM polarization. In well oxygenated areas of the TME,

macrophages show some qualities of classical (M1) activation. In

contrast, in hypoxic areas, the TME produces HIF, TGF-b, or IL-6,
which provokes alternative (M2) activation of macrophages to

promote tumor progression.

Hypoxic stress in the TME not only alters the metabolism of

macrophages but also alters their phenotype (9). Hypoxia activates

HIF transcription factors to enhance HIF-dependent gene expression
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and promote the accumulation of the HIF-1/2 protein to adapt to

oxygen shortage and metabolic stress. The pathways regulated by HIF

can increase glycolysis and suppress O2 consumption. In hypoxic

areas, nutrients also become scarce, and HIF enhances the Otto

Warburg effect and alters metabolites to express more lactate and

kynurenine to promote tumor cell proliferation. Due to the high

concentrations of lactate, chemokines, and HIF-1/2 secreted from the

hypoxic TME, macrophages are drawn to hypoxic areas and polarize

to the M2 phenotype. HIF activation in the hypoxic TME also induces

the expression of a number of genes, such as VEGF or matrix

metalloprotease 9 (MMP9), that affect macrophage polarization and

drive tumor progression (24). In the hypoxic TME of melanoma,

tumor cells accumulate HIF-1 and also release high mobility group

box 1(HMGB-1), which induces macrophages to produce IL-10

driving them to an M2-like phenotype that promotes proliferation

and metastasis (13).

Hypoxic and nutrient stresses not only alter the phenotype of

macrophages but also reprogram them. Hypoxic and nutrient stresses

also provoke cell apoptosis, necroptosis, and autophagic death. To

survive in oxygen- and nutrient-deprived TME, cells promote

autophagy signaling pathways, but this promotion is always

excessive and causes cell apoptosis and death. Apoptotic and dead

cells are recognized by phagocytes that recruit and polarize

macrophages to the TME. As mentioned before, the inflammation

of tumors cause sustained cell apoptosis and death occurring in the

TME, resulting in recruitment of macrophages and direct polarization

of macrophages to the M1 phenotype; then, the hypoxic TME
FIGURE 2

The inflammatory tumor microenvironment affects macrophage polarization (created in BioRender.com) (9).
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promotes the transition of macrophages from the M1 phenotype to

the M2 phenotype or directly polarizes macrophages to the M2

phenotype to support tumor development (Figure 2) (9).
3.3 Tumor cells

In the TME, tumor cells recruit and reeducate macrophages to

adopt a special phenotype by secreting vascular endothelial growth

factor (VEGF), platelet-derived growth factor (PDGF), TGF-b, CCL2,
or M-CSF (17, 25, 26). Hypoxic tumor cells also produce high

amounts of lactate and HIF to polarize macrophages to the M2

phenotype to block effective antitumor immune responses by

inhibiting tumor surveillance by T and NK cells (9, 27, 28). High

lactate levels produced by tumor cells also evoke HIF-1a and HIF-2a

accumulation in macrophages, which changes the pro-inflammatory

environment to an anti-inflammatory environment by reducing NF-

kB activity, in turn reducing T and NK-cell activation (9, 29). Tumor

cells also promote membrane cholesterol efflux induces IL-4-

mediated signaling in macrophages and alters their phenotype to

promote tumor invasion and metastasis (30, 31). It was found that co-

culturing macrophages with tumor cells increased HIF-1 and VEGF

expression, which induced the dysregulation of arginase and Fizz1,

and this was correlated with a gene signature found in alternatively

activated macrophages that promote tumor development (9, 32).

The influence of tumor cells and macrophages is interactive. For

example, when TAMs are cocultured with hepatoma cells,

macrophage-derived IL-6 and IL-8 activate JAK kinase, which

phosphorylates STAT3 activating STAT3 signaling in tumor cells

and promotes the epithelial mesenchymal transition(EMT), thus

enhancing tumor invasion and metastasis (33, 34). M2 TAMs can

also induce high expression of both PD-L1 and CTLA4 in cancer cells,

which promotes immune escape through limiting activationof

cytotoxic T cells in the TME. TAMs induce high levels of PDL1

expression that correlate with poorer clinical outcomes in

hepatocellular carcinoma (HCC) (8, 35–39).
3.4 Immune cells

Regulatory immune cells, such as Treg cells, MDSCs and B cells,

can also regulate macrophage polarization. Treg cells inhibit CD8+ T-

cells secreted IFN-g, that maintain macrophages in the M2-like

phenotype, which also reduces fatty acid oxidation and induces

lipid accumulation in macrophages by increasing the expression of

sterol regulatory element binding protein 1 (SREBP1) (40).

Inflammatory interleukin-17-positive (IL-171) T cells can recruit

and promote maturation of chemokine receptor 3–positive

(CXCR3) B cells, which induce M2b macrophage polarization in

human HCC (41). Tumor-infiltrating lymphocytic B cells program

macrophages to the M2 phenotype via Bruton tyrosine kinase (BTK)

activation in a PI3K-Y manner and inhibit B-cell infiltration.

Inhibition of BTK in the pancreatic TME reduced tumor growth

and enhanced antitumor activation (42).

MDSCs are heterogeneous immune cells that consist of myeloid

progenitor cells and immature myeloid cells (IMCs). They can

differentiate into TAMs and can affect macrophage polarization
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within TME. MDSCs can suppress the immune response by

abnormally regulating STAT3 to promote anti-inflammatory (M2-

like) macrophage polarization (31, 43). MDSCs are usually recruited

to the TME and produce IL-10, which inhibits macrophage

expression of IL-12 and alters the macrophage phenotype to M2.

MDSCs also express high levels of arginase-1, which promote

macrophage polarization and contribute to immune suppression (8,

43, 44).
3.5 Chemokines and cytokines

Macrophage polarization in the TME is dynamic and dependent

on the balance of chemokines and cytokines. Numerous chemokines

(such as CCL2, CCL5, CCL15, and CCL20) and cytokines (such as

TGF−b, CSF-1 and TNF) have been demonstrated to participate in

the mechanism of monocyte-derived macrophage recruitment,

migration and polarization (45–49). The representative molecules

are discussed below.

3.5.1 CCL2
CCL2 is a small chemokine which is mainly produced by tumor

cells and surrounding stromal cells. CCL2 recruit CCR2+

inflammatory monocytes from the bone marrow to the peripheral

blood that lead to cancer metastases and poor clinical outcomes (50).

CCL2 elevation in the TME is essential for the recruitment and

education of monocyte-derived macrophage polarization.

Macrophages express CCR2 were recruited by CCL2 that result in

up regulating their expression levels of angiogenic factors, such as IL−

6, VEGF, and MMP9, which contributed to tumor vascularization.

Inhibition of the CCL2/CCR2 signaling pathway can block monocyte

recruitment and suppress the polarization of macrophages toward the

M2 phenotype (51–53).

3.5.2 CSF-1
Colony-stimulating factor 1 (CSF-1) involve in macrophage

recruitment, differentiation, mature, and survival. CSF-1 receptor

(CSF-1R) is a tyrosine kinase receptor which mainly expressed on

monocytic lineages which will differentiate into TAMs. CSF-1 and IL-

34 bind to CSF-1R active cascade of signaling in monocytes will

increase recruitment of M2-like phenotype and promote

immunosuppression (54). Tumor-derived CSF-1 promotes tumor

growth and enhances M2 polarization and infiltration. Targeting

CSF-1/CSF-1R signaling in combination with CXCR2 antagonists

can prevent M2 polarization and shows a strong antitumor effect (55).

It was found that CSF-1/CSF-1R signaling inhibition can reduce TAM

infiltration and enhance the CD8+/CD4+ T-cell ratio to kill tumor

cells. In a transgenic mouse model, targeting TAMs by CSF-1R

blockade enhanced the anticancer efficacy of platinum-based

chemotherapies (56, 57). It was also found that combination

treatments of CSF-1/CSF-1R inhibitors with PD1-PDL1 inhibitors

are promising candidates for effective elimination of TAMs (54).

3.5.3 IL-6
IL-6 is an important cytokine, which is closely related to the

malignant behavior, such as promotion of inflammation,

proliferation, angiogenesis, invasion, metastasis of tumor in TME. It
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was found that IL-6 was a risk factor that highly expressed in chronic

inflammatory tumor tissue that lead to poor prognosis (58). In

inflammatory TME, IL-6 secreted by TAMs resulting in a vicious

cycle that further promote macrophages polarization to TAMS and

increase IL-6 expression which can lead to a smoldering

inflammatory state, and enhance tumor cell metastasis (46, 59).

Chen S,et al. showed that IL-6 was responsible for TAMs induced

renal cell carcinoma cells migration, invasion, EMT by activating I L-

6/STAT3 signaling (60). IL-6 acts on IL-6R/gp130 receptors and

active STAT3 signaling which can promote epithelial-mesenchymal

transition (EMT), angiogenesis and immunosuppression in cancers

(61). Han IH, et al. found that IL-6 induces M2 polarization and

promotes proliferation of prostate cancer cells (62). And Zhang W,

et al. showed that IL-6 promotes PD-L1 expression in monocytes and

macrophages through JAK2/STAT1 and JAK2/STAT3/c-MYC

signaling and induces immunosuppression in an orthotopic tumor

transplantation model (63). Activated STAT3 by IL-6 also promotes

the secretion of IL-10 and maintain the immunosuppressive function

of Tregs (64).

3.5.4 IL-10
IL-10 is a immunosuppressive cytokines secreted by immune cells,

such as monocytes, macrophages and B cells. IL‐10 induces the TAMM2

polarization that further secrete high IL‐10, IL‐6, TGF‐b, which can

promoting fibrosis and enhance tumor growth (65, 66). Patients with

high level expression of IL-10 in both the serum and peritoneal effusions

are correlated with advanced stage disease (67). By contact with its

receptor, IL-10 can also activate the IL-10/STAT3 signaling pathway

which skew macrophages to TAM M2 and promote high expression of

various antiapoptosis, pro-tumorigenic and immunosuppression related

genes (68). IL-10 also through TLR4/IL-10 signaling pathway alter

macrophages to TAMM2 to promote epithelial-mesenchymal transition

in pancreatic cancer cells (69). IL-10 expressed by TAMs suppresses IL-12

production by DCs, thus limit cytotoxic CD8+ T cell responses and resist

chemotherapy. It could improve chemotherapybyblocking IL-10 receptor

to enhance primary tumor response in breast cancer with paclitaxel and

carboplatin treatment (70). It was also found thatmacrophages exposed to

tumor culture supernatants secretingmore IL-10 thatmay trigger a rise of

the intratumoral forkhead/wingedhelix scurfy (FoxP3)+Tregspopulation,

which are associated with HCC aggressive (71).

3.5.5 TNF
TNFmainlypositively regulatesM1polarizationbyactivating tumor

necrosis factor receptor (TNFR) and the NF-kB signaling pathway to

suppress M2 polarization. Other cytokines, such as myeloid

differentiation primary response 88 (MyD88), can also inhibit M2 gene

expression in TAMs, leading to an M1 phenotype (8, 72).

3.5.6 TGF-b
TGF-b is a growth regulatory protein that shows both antitumoral

and pro-tumoral activities. In the precancerous state, TGF-b inhibits

cell proliferation, whereas in the established tumor stage, TGF-b
enhances macrophage secretion of IL−10, which promotes

macrophage polarization and induces immune evasion and

metastasis. TGF−b secreted by TAMs promotes macrophage

alteration to the pro−tumor M2 type (73).
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4 Cancer immunotherapy of
macrophages

Macrophages are trapped in the TME and promote the development

and progression of tumors. Inflammation and cell death result in

recruitment and maturation of macrophages into M1 TAMs. Hypoxia

that enhancesHIF genetic expression promotesre polarization ofM2-type

macrophages (9). The mode of tumors is considered ‘wounds never heal’,

and the non-resolving tumor inflammatory response continues to recruit

macrophages and mature them into the M1 phenotype, and with tumor

development, hypoxia and anti-inflammatory cytokines transform

macrophages to the M2 phenotype to promote tumor growth (9).

Depending on the mode, improving tumor therapy should therefore

consider blocking inflammation and blocking macrophage recruitment

and eliminating preexisting TAMs (74). Because of diversity and

heterogeneity of tumors, here, we use solid tumor therapeutic strategies

as paradigm to explain as following (Table 1).
4.1 blocking CCL2-CCR2 and CXCR4-
CXCL12 signaling

Blocking the CCL2-CCR2 axis and CXCR4‐CXCL12 signaling

pathway can prevent TAM recruitment and infiltration into the TME

(74), which has shown potential therapeutic value for solid tumors in

preclinical and clinical studies (Table 1). For example, an anti-CCL2

antibody, carlumab (CNTO888), can inhibitor macrophage

infiltration to the tumor in mice, which has been applied in clinical

trials to treat solid tumors and metastatic castrate-resistant prostate

cancer (75). Clinical studies indicated that single-agent carlumab only

temporarily repressed serum CCL2, resulting in no significant

antitumor effects (76). However, combination of carlumab with

several conventional chemotherapy regimens such as paclitaxel and

carboplatin, significantly enhance the antitumor response (77)

Also, inhibition CXCR4‐CXCL12 signaling can more specifically

promote TAM exclusion. CXCL12 is a cancer-associated fibroblast

derived factor which recruit CXCR4-expressing monocytes toTME

and skew to M2-like macrophages to promote tumor growth (78). It

was found that targeting the CXCR4-CXCL12 signaling could effective

treat for solid tumors in the clinic trails. For example, a CXCR4

antagonist Plerixafor (AMD3100), which can inhibit the secretion of

VEGF-A from TAMs and lead to reduce tumor angiogenesis, has been

used in clinical trials for treating solid tumors and children cancer (73).

Other CXCR4 antagonist, such as LY2510924 (CXCR4 antagonist

peptide) also use in clinical trials for treating solid tumors (74, 79).
4.2 blocking CSF-1/CSF-1R signaling

As mention before, the CSF-1/CSF-1R signaling pathway also

plays a key role in TAM recruitment and polarization. Therefore,

blocking the signal in TAMs has been developed in clinical trials for

solid tumor therapy (80). For example, a monoclonal antibody

Emactuzumab (RG7155) could effectively inhibit CSF-1R activation.

Emactuzumab treatment significantly reduces CSF-1R+/CD163+

macrophages in diffuse-type giant cell tumor and increases the ratio
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of CD8+/CD4+. Emactuzumab in combination with chemotherapy

and immunotherapy are underway in clinical trials of solid tumor

treatment (74). CSF-1R specific inhibitors, such as PLX3397,

PXL7486, AMG820, BLZ945, et al., also have been used in clinical

trials for treatment of solid tumor. It was found that both CSF-1R

antibodies and inhibitors could improve therapy in preclinical and

clinical trial. For example, the CSF-1R inhibitor BLZ945, alone or in

combination with anti-PD1 antibody immunotherapy could block

macrophage recruitment and alter macrophage polarization to
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antitumor type that currently was being assessed in clinical trials

for advanced-stage solid tumors treatment (74).
4.3 blocking CD47-SIRPa signaling

Although eliminating and inhibiting recruitment TAM strategies

can delay tumor progression, these therapeutic approaches may have

systemic toxicities as they target all macrophages without specific, and
TABLE 1 Clinical trials of solid tumors associate of macrophage-targeting compounds.

Action Compounds Clinical
phase

Tumor type and combination agent Clinical
trials

Elimination and blocking
recruitment of M1 and M2 TAMs

Carlumab (CNTO888,CCL2 inhibitor) I Solid tumors + doxorubicin liposome injection;
+gemcitabine;+ Paclitaxel and carboplatin;+ docetaxel

NCT01204996

plerixafora (AMD-3100, CXCR4
antagonist)

II Solid tumors NCT01225419

LY2510924 (CXCR4 antagonist peptide) I Solid tumors NCT02737072

Emactuzumab (RG7155, CSF-1R
antibody)

I Advanced Solid Tumors + RO5509554 NCT01494688

Emactuzumab (RG7155, CSF-1R
antibody)

I Advanced solid tumors + Atezolizumab NCT02323191

PLX3397(Plexxikon, CSF-1R inhibitor), Ib/II Advanced solid tumors + paclitaxel NCT01596751

ARRY-382(CSF-1R inhibitor) II Advanced solid tumors + pembrolizumab NCT02880371

Pexidartinib (CSF-1R inhibitor) I Advanced solid tumors NCT02734433

BLZ945(CSF-1R inhibitor) I Advanced solid tumors NCT02829723

JNJ-40346527(CSF-1R inhibitor) I Prostate cancer NCT03177460

IMC-CS4(CSF-1R inhibitor) I Advanced solid tumors NCT01346358

FPA008 (Cabiralizumab, CSF-1R
antibody)

I Advanced solid tumors + nivolumab NCT02526017

PXL7486(CSF-1R inhibitor) I Advanced solid tumors NCT01804530

AMG820 (Amgen, CSF-1R inhibitor) I Solid tumors NCT01444404

SNFX-6352
(CSF-1R antagonists)

I Advanced solid tumors + Durvalumab NCT03238027

Trabectedin I Solid tumor, Adult + Durvalumab NCT03496519

Reprogramming TAM M2 to M1 to
antitumor

Hu5F9-G4(CD47-SIRPa inhibitor) I Advanced solid malignancies NCT02216409

Hu5F9-G4(CD47-SIRPa inhibitor) I Advanced solid malignancies and colorectal carcinoma +
cetuximab

NCT02953782

TTI-621 (SIRPa-IgG1 Fc) I Solid tumors + Rituximab or Nivolumab NCT02663518

Selicrelumab(CD40 agonist) I Solid tumors + Atezolizumab NCT02304393

Selicrelumab(CD40 agonist) I Advanced solid tumors + Vanucizumab or Bevacizumab NCT02665416

SEA-CD40(CD40 agonist) I Solid tumors + pembrolizumab NCT02376699

IMO-2125(TLR9 agonist) I Refractory solid tumors, metastatic melanoma NCT03052205

SD101(TLR9 agonist) I/II Solid tumors + SBRT + pembrolizumab NCT03007732

Anakinra (IL-1R antagonist) I Advanced solid tumors + everolimus NCT01624766

GSK1795091(TLR4 agonist) I Advanced solid tumors + GSK3174998 anti- OX40) or
(GSK3359609 anti- ICOS) or pembrolizumab

NCT03447314

(Continued)
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eliminating TAMs can be rapid compensation by tumor-associated

neutrophils (TANs). It was found that withdrawal of CCL2/CCR2

inhibitors might accelerate metastasis in breast cancer by dramatically

releasing of monocytes which were trapped in the bone marrow (81).

So, it is appealing new strategies such as re-educating macrophages to

anti-tumor phenotypes to overcome these limitations.

One method of re-educating macrophages is using inhibitors to

block receptor signals on macrophages that modulate phagocytosis.

Tumor cells overexpress the “don’t eat me” signaling molecule CD47,

which suppresses macrophage phagocytic capacity by interacting with

signal regulatory protein alpha (SIRPa). Using anti-CD47 antibodies

to disrupt the CD47-SIRPa axis can restore the ability of

macrophages to engulf tumors (74). Many conventional anti-CD47

antibodies have been demonstrated to be successful in preclinical and

clinical trials. For example, it was found Hu5F9-G4, an anti-CD47

antibody, could inhibit the interaction of CD47 with SIRPa and

promoted macrophage-mediated phagocytosis to kill cancer cells.

Hu5F9-G4 has been used in clinical trials to treat solid tumors and

various hematological malignancies (82).

Also, the polypeptides or recombinant proteins including

engineered high-affinity SIRPa protein which derived from SIRPa
can act as decoy bind to CD47 to disrupt the CD47-SIRPa signaling.

Studies showed that recombinant protein TTI-621 which composed

of the N-terminal domain of SIRPa fused to human IgG1 could

suppress tumor growth by increasing macrophage-mediated

phagocytosis of solid tumor cells (83). TTI-621 is now in clinical

investigation to treat solid tumors.
4.4 CD40 agonists

CD40 is a superfamily member of TNF receptor and expresse on

many antigen-presenting cells (APCs) as well as some tumor cells. It

was found that agonistic anti-CD40 antibodies could stimulate TAMs

to promote the secretion of the proinflammatory cytokines such as

NO and TNF-a to activate effector T cells to reestablish tumor

immune surveillance. It was found that many agonistic anti-CD40

antibodies such as Selicrelumab (CD40 agonist) in combination with

immunotherapy significantly promoted macrophages phagocytic
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act iv i ty to ant i tumor. Se l icre lumab combinat ion with

immunotherapy such as atezolizumab has been use in clinical trials

to treat solid tumors (74).
4.5 Toll-like receptor agonist

Toll-like receptors (TLRs) play critical roles in activating the

innate immune reaction of macrophages toward antitumor M1

phenotype. Activation of multiple TLR signals promotes phagocytic

activity of macrophages and enhances antitumor responses. For

example, it was found that TLR4 and TLR5 agonists could polarize

more CD206+ M2 TAMs to CD86+ M1 phenotype and suppressed

tumor growth without obvious toxicity. Other TLR agonists have also

been found to alter f M2 TAMs to pro-inflammatory M1 phenotype

and promote tumor regression in mouse models (84). TLR9 agonist

IMO-2125, which can induce tumor regression by promoting

macrophage polarization to antitumor type, has been evaluated in

clinical trials to treat refractory solid tumors and metastatic

melanoma (74). However, TLR stimulation by agonist always lead

to PD-L1 expressed level elevation in macrophages, resulting in

limiting antitumor responds. To overcome this setback, IMO-2125

combined with immunotherapy such as iplimumab to treat cancer

more effective. Recently, MO-2125 combined with iplimumab was

approved by FDA to treatment of melanoma. Others TLR9 agonist,

such as SD101 was also investigation along with PD-1 blockade in

clinical trials to enhance therapeutic efficacy (74, 85).
4.6 PI3Kg inhibitor and other treatments
promoting macrophage reprogramming

Phosphatidylinositide 3-kinases (PI3K), which can specifically

phosphorylate the 3′ position in the inositol moiety of phospholipids,

play crucial roles in inflammatory, immunosuppression associated with

cancer or autoimmune diseases. PI3Kg is the class IB PI3K member

which playing significant roles in immunosuppressive transcriptional

programming by contacting with G protein (86). PI3Kg promotes

transcription of genes and enhance immunosuppressive factors Arg1,
TABLE 1 Continued

Action Compounds Clinical
phase

Tumor type and combination agent Clinical
trials

Telratolimod (MEDI91973, TLR7/8
agonist)

I Solid tumors + Durvalumab and/or Palliative Radiation NCT02556463

IPI-549(PI3Kg inhibitor) Ib Advanced solid tumors + nivolumab NCT02637531

Vanucizumab(Vasculature-modulating
agent Ang2/VEGF)

I Advanced/metastatic solid tumors NCT02665416

EF-022(Efranat, vitamin-D-binding
protein, macrophage-activating factor)

I Solid tumors NCT02052492
Data were obtained from http://clinicaltrials.gov.
CCL2, C-C motif chemokine ligand 2; CCL5, C-C motif chemokine ligand 5; CCR2, C-C motif chemokine receptor 2; CXCR2, C-X-C chemokine receptor type 2;CSF-1,colony-stimulating factor-1;
CSF-1R, Colony stimulating factor 1 receptor; CARMs, chimeric antigen receptor macrophages; EMT, epithelial mesenchymal transition; Fizz1, found in inflammatory zone 1; GM-CSF, granulocyte-
macrophage colony-stimulating factor; HIF, hypoxia-inducible factors; HCC, hepatocellular carcinoma; HMGB-1, high mobility group box 1; IFN-g, interferon-g; IL-6, interleukin-6; IMCs, immature
myeloid cells; LPS, lipopolysaccharide; M-CSF, macrophage colony-stimulating factor; MDSCs, myeloid-derived suppressor cells; MMP9, matrix metalloprotease 9; MyD88, myeloid differentiation
primary response 88; PD-L1: programmed cell death ligand 1; PD-1, programmed cell death protein 1; PDGF, platelet-derived growth factor; RP-182, a synthetic 10-mer amphipathic analog of host
defense peptides; ROS, reactive oxygen species; SREBP1,sterol regulatory element binding protein 1; SIRPa, signal regulatory protein alpha;TAMs, tumor−associated macrophages; TME,tumor
microenvironment; TNF, tumor necrosis factor; TNFR, tumor necrosis factor receptor; TGF-b: transforming growth factor beta; VEGF, vascular endothelial growth factor.
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TGF-b, and IL‐10 expression that links to the M2 immunosuppressive

macrophage phenotype (87).

PI3Kg inhibitors can alter macrophages toward proinflammatory

phenotype and block recruitment of macrophages and neutrophils

from peripheral blood (88, 89). IPI‐549, the PI3Kg‐selective inhibitor,
has been reported to promote macrophage polarization to M1 states

and enhancing immunotherapy by increasing CD8+ T‐cell activation

and cytotoxicity (90). IPI-549 combination with nivolumab has been

investigated in phase I clinical trials for several advanced solid tumors.

Other classical treatments such as blocking the function of TAM-

expressed PD-L1to promote macrophage reprogramming to enhance

antitumor effects. TAMs expressing the checkpoint molecule PD-L1

negatively regulate the phagocytic ability of TAMs and suppress

cytotoxic T-cell immunity against tumor cells. Blocking the PD-1/PD-L1

pathway can enhance the phagocytosis of macrophages and prolong the

survival ofmice in cancermodels (91). It also improved therapy in clinical

treatment by blocking the function of TAM-expressed PD-L1 (92).

Recently, a new technique of re-educating macrophages to generate

chimeric antigen receptor macrophages (CARMs) has emerged for cell-

based cancer immunotherapy. It was found that CARMs encoding the

CD3z intracellular domain can target the tumor antigen mesothelin or

HER2 and kill antigen-positive solid tumor cells (93, 94). A huge

breakthrough was shown in CARM immunotherapy on July 27, 2020,

and the FDA approved the investigational newdrug application for anti-

humanHER2-CARM(CT-0508) to treat recurrent ormetastaticHER2-

overexpressing solid tumors (79).
5 Conclusions and perspectives

Inflammation is a double-edged sword in tumor treatment. It

should distinguish ‘antitumor inflammation (acute inflammation)’

and ‘pro-tumor inflammation (chronic inflammation)’ for precision

tumor therapy. ‘Antitumor inflammation’ can active the immune

system that recognize and cause tumor cell death by immune

surveillance process. But chronic inflammation promotes

immunosuppression and tumor progression (95).TAMs polarize and

orchestrate tumor-related inflammation in TME. M1 phenotype

secrete pro-inflammatory cytokines (TNF-a, IL-1b, IL-12, e.g.), and
co-stimulatory molecules to present antigen efficiently and promote

Th1 response to destroy tumor cells. However, M2 TAM secrete anti-

inflammatory and immunosuppressive molecules (IL-4, IL-10, TGF-b,
e.g.), to promote chronic inflammation that lead to sustained recruit

and po la r i z e TAMs to the TME and promote tumor

malignant transformation.

Targeting TAM therapeutic protocols, such as eliminating and

inhibiting recruitment, switching the M2 phenotype to the M1

phenotype, enhancing phagocytosis and increasing antigen

presentation to kill tumor cells, and new CARM technology have

also greatly improved cancer treatment. However, these cancer

treatment technologies are still a long way off. The biggest difficulty

is how to precisely promote the ‘antitumor inflammation’ inducing by

macrophage to kill tumor cells and eliminate pro-tumor chronic

inflammation in tumor therapy. For example, eliminating and

inhibiting recruitment TAM strategies to treat inflammatory tumor

may have systemic toxicities as they target all macrophages including

M1and tissue-resident macrophages without specific that will leads to
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increased bacterial infections, metastasis and accelerated death. And

switching the M2 to the M1 phenotype may only result in temporary

and limited antitumor efficacy. Because of tumor heterogeneity, it is

difficult to definite TAMs subpopulations in different human tumors.

Also, TAMs are not stably inherited and they can change in TME. By

contact with tumor cells, M1may sustained polarize to M2 to promote

malignancy progression. In addition, although anti-tumor

inflammation producing by TAM M1 can cause tumor cell death, it

can also create a mutagenic microenvironment which may lead to

TAM polarization to M2 resulting in promoting tumor progress.

So, it need to explore new strategies that not only renovate the

inflammatory tumor “soil” that consist by the TAMs to construct a

anti-tumor microenvironment, but also kill the tumor “seeds” in the

“soil”. Thus, continuous studies are needed to elucidate the

mechanisms that drive phenotypic changes in TAMs in

the inflammatory TME, which will help in the development of

cancer immunotherapy of macrophages.
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Carbon dot-based
nanomaterials: a promising
future nano-platform for
targeting tumor-associated
macrophages

Yingying Miao, Shuang Wang, Butian Zhang* and Lin Liu*

Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
The tumor microenvironment (TME) is the internal environment that tumors

depend on for survival and development. Tumor-associated macrophages

(TAMs), as an important part of the tumor microenvironment, which plays a

crucial role in the occurrence, development, invasion and metastasis of various

malignant tumors and has immunosuppressant ability. With the development of

immunotherapy, eradicating cancer cells by activating the innate immune system

has yielded encouraging results, however only a minority of patients show a

lasting response. Therefore, in vivo imaging of dynamic TAMs is crucial in patient-

tailored immunotherapy to identify patients who will benefit from

immunotherapy, monitor efficacy after treatment, and identify alternative

strategies for non-responders. Meanwhile, developing nanomedicines based

on TAMs-related antitumor mechanisms to effectively inhibit tumor growth is

expected to become a promising research field. Carbon dots (CDs), as an

emerging member of the carbon material family, exhibit unexpected

superiority in fluorescence imaging/sensing, such as near infrared imaging,

photostability, biocompatibility and low toxicity. Their characteristics naturally

integrate therapy and diagnosis, and when CDs are combined with targeted

chemical/genetic/photodynamic/photothermal therapeutic moieties, they are

good candidates for targeting TAMs. We concentrate our discussion on the

current learn of TAMs and describe recent examples of macrophage modulation

based on carbon dot-associated nanoparticles, emphasizing the advantages of

their multifunctional platform and their potential for TAMs theranostics.
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Introduction
Overall, 1,918,030 new cancer cases are expected to be diagnosed

in the United States in 2022, equivalent to 5,250 new cancer patients

per day. Men have a lifetime cancer probability of 40.2%, slightly

higher than women (38.5%), and it is also the leading cause of death. In

recent years, immunotherapy has emerged as a rising star in the cancer

therapeutics spectrum and is a promising strategy for cancer treatment

(1). Regrettably, definitive durable therapeutic effects are observed in a

small proportion of patients. But the majority show limited clinical

benefit or no response at all (2). In order to overcome the resistance of

immunotherapy, the mechanism of immunosuppression has been

studied in depth in recent years. Numerous studies have shown that

the tumor microenvironment (TME) plays an important role in

immunosuppression. Multiple inhibitors in the tumor

microenvironment (TME) have been identified through analysis.

Cell populations, among which tumor-associated macrophages

(TAMs) stand out, are promising new targets for tumor

immunotherapy (3). TAMs are a prevalent type of inflammatory cell

found in the stroma of various tumors. They exhibit a diverse range of

phenotypic characteristics and contribute to tumor growth, metastasis,

and recurrence by facilitating an immunosuppressive environment. In

solid tumors, TAMs are closely associated with poor prognosis.

Despite the complex phenotype, macrophages can be divided

into two subtypes based on function: M1 (anti-tumor immunity)

and M2 (immunosuppression and tumor immune evasion through

suppression of T cell function). M1 macrophages secrete pro-

inflammatory cytokines and chemokines, present antigens

professionally, participate in positive immune responses, and play

a role in immune surveillance. In contrast, M2 macrophages have

weaker antigen presentation abilities and primarily inhibit immune

responses through their secretions. Cytokines such as IL-10 and

TGF-b can down-regulate immune responses, with M2

macrophages as the central players. When combined with other

immunosuppressive cells in the tumor microenvironment (TME),

these factors not only cannot exert anti-tumor activity but can also

create a favorable environment for tumor growth and metastasis.

Therefore, evaluating the balance between M1 and M2

macrophages can be a useful strategy for characterizing the

immune landscape of the tumor microenvironment. Higher levels

of tumor-infiltrating M2 were significantly associated with shorter

survival, while higher proportions of M1 with pan-macrophages (%

M1) showed a positive correlation with longer overall survival (4).

At present, a variety of related small molecule drugs have been

developed targeting TAMs (5). Nevertheless, the lack of targeting of

these small molecule drugs and the complex microenvironment of

solid tumors in clinical trials have limited the efficacy of these small

molecule drugs to a certain extent (6). Nanomaterials possess a

diverse range of physicochemical properties that enable them to

function as both delivery carriers and immunomodulators, making

them a promising avenue for improving the immunosuppressive

microenvironment of tumors. Research on polarization induced by

nanomaterials has focused on a variety of materials, including

carbon-based materials, iron oxide nanoparticles, gold particles,

zinc oxide particles, and more (7).
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As a new member of the family of carbon nanomaterials, CDs

are small carbon-based nanoparticles that have gained a lot of

attention in recent years due to their unique optical, electrical, and

chemical properties, such as small-scale morphology, easily

functionalized surface, and tunable optical properties (8). These

properties make CDs attractive for a range of applications,

including in medicine.

One of the most promising applications of CDs in medicine is in

the field of bioimaging (9, 10). CDs can be easily conjugated with

biomolecules such as proteins, antibodies, or nucleic acids, and can

be used as fluorescent probes to visualize cells, tissues, and

organs (11).

Carbon dots offer several advantages compared to traditional

organic dyes or semiconductor quantum dots, such as low toxicity,

good biocompatibility, and high photostability. They can be used in

various bioimaging applications, including fluorescence imaging,

intracellular imaging, and biosensors. Carbon dots have a high

quantum yield, making them effective fluorescent probes for

detecting cancer cells, pathogens, and other biological targets (12,

13). Their small size and ability to penetrate cell membranes make

them ideal for imaging intracellular structures and studying cellular

processes such as endocytosis, exocytosis, and cell division (14–16). In

addition, carbon dots can be used as biosensors to detect specific

biomolecules or environmental factors, such as glucose, heavy metals,

and other chemicals in biological and environmental samples (17, 18).

Another potential application of CDs in medicine is in drug

delivery (19). CDs can be functionalized with different types of

molecules such as drugs, peptides, or nucleic acids, and can be used

to deliver these molecules to specific cells or tissues. CDs have

shown promise for delivering drugs to cancer cells, for example, by

targeting tumor-associated macrophages or by enhancing the

therapeutic efficacy of chemotherapy drugs (20, 21).

In addition to their potential applications in bioimaging and

immunotherapy, carbon dots have also been investigated for their

antibacterial and antiviral properties (22–24). These nanoparticles

have been found to inhibit the growth of various types of bacteria

and viruses, including drug-resistant strains, and have been

proposed as a potential alternative to traditional antibiotics or

antiviral drugs (25–27).

Overall, the theranostic potential of carbon dots (CDs) and

associated nanoparticles is rapidly advancing due to their unique

optical properties and versat i l i ty in preparation and

functionalization. CDs have been utilized for imaging

macrophages and tracking their movement in tissues, due to their

high quantum yield and photostability (28). Given the intrinsic

physicochemical properties and multifunctionality of CDs, their

interactions with TAMs offer exciting possibilities that are worth

exploring. Currently, there is limited research on carbon dot-

targeted TAM imaging, diagnosis, and treatment, although studies

have demonstrated their potential in inflammation and

antibacterial applications. CDs have also shown promise in

immunotherapy, where they can stimulate the immune system to

fight diseases. This review paper primarily focuses on analyzing the

potential of CD-associated nanoparticles in targeting TAMs,

summarizing their application in monitoring and regulating

macrophages, and highlighting current challenges in this field.
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Characteristics of tumor-associated
macrophages
Origin, phenotypes, and function of TAMS

Macrophages are distributed throughout body tissues with the

functions of phagocytosis and in response to inflammatory signals

strategically. Tissue macrophages are derived from embryonic or

adult hematopoietic stem cell (HSC) progenitors, and the relative

contribution of these cell populations varies from tissue under

homeostasis conditions (29). A monocyte is a kind of white blood

cell that is made in the marrow and travels through the blood to

tissues in the body where it becomes a peripheral monocyte

reservoir or non-classical patrolling monocyte or tissue-resident

macrophage in the steady state (30). Macrophages respond to the

combined stimulation of the origin and resident tissue which

contribute the polarization responses (31).

In most human solid malignancies, tumor-associated

macrophages (TAMs) and their precursors occupy the most

significant portion of bone marrow infiltration, which can

account for up to 50% of the total solid tumor volume (32). A

large number of current studies show that the localization and

density of TAMs are related with poor clinical outcomes in some

kinds of solid cancers, including bladder, breast, liver, renal,

prostate, and gastric cancer (33–40). Monocyte-derived TAMs

take a large part of tissue-resident macrophages in tumors, except

for a small part of TAMs derived from tissue-resident macrophages

(41). Monocytes are recruited by chemokines (CCL1, CCL2, and

CCL5), VEGF, PDGF, TGF-b and CSF -1. Among these cytokines,

CCL2 plays a major role in the recruitment of monocytes (42–48).

Studies have shown that targeting the CCL2-CCR2 axis could

effectively reduce tumor growth and metastasis in mouse models

(49). After being recruited to the TME, monocytes can differentiate

into M1-like macrophages (pro-inflammatory and usually anti-

tumor) and M2-like macrophages (anti-inflammatory and pro-

tumor) due to the heterogeneity of the microenvironment (50–

52). More and more evidence suggests that TAMs are similar to

normal macrophages in their capacity for adopting a broad range of

intermediate act ivat ion states , reflect ing the diverse

microenvironmental conditions and rich plasticity according to

different signals in the tumor microenvironment (5, 53).

The phenotype of tumor-associated macrophages (TAM) is

driven by both the tumor microenvironment (TME) and the

tumor immune microenvironment (TIME). Under the influence

of TIME, adaptive and innate immune cells provide chemical

messengers for regulating the functional phenotype of

macrophages, such as immunoglobulin secreted by B cells, IL4

and IL13 secreted by TH2 cells, Treg cells secreted IL10 and TGFb,
as well as IFNg and TNF secreted by NK cells, CTL and TH1 cells.

In the TME, cytokines secreted by tumor cells, tumor-associated

fibroblasts, directly affect the phenotype of TAMs, while oxygen

deficiency, fibrosis, and cellular stress also customize the phenotype

of TAMs. Thus, immune-related and non-immune-related

factors jointly drive functional or dysfunctional antitumor

immune. TAMs are programmed to drive inflammation when the
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microenvironment has functional vasculature, normoxia, low

extracellular matrix density, more TH1 cells than TH2 cells, and

high cytotoxic T cell (CTL) infiltration. Macrophages exhibit a

robust antitumor adaptive immune response. In contrast, tumor

hypoxia and fibrosis are combined with infiltration of large

amounts of cancer-associated fibroblasts (CAFs) and

immunosuppressive cells, and macrophages are programmed to

promote a pro-tumor phenotype of immunosuppression and tissue

remodeling, resulting in cytotoxicity T lymphocyte (CTL) rejection

and suppression.

Studies have shown that M1 phenotype macrophage is

stimulated by cytokines such as IL12, TNF, and IFNg, microbe-

associated molecular patterns (MAMPs) such as bacterial

lipopolysaccharide (LPS), or other Toll-like receptors (TLR)

agonists (54–57). In contrast, anti-inflammatory M2 macrophages

are polarized by the stimulation of some of cytokines such as IL4,

IL5, IL10, IL13, CSF1, TFGb1 and PGE2 (58, 59).

M1-type TAMs can express factors such as nitric oxide synthase

(iNOS), reactive oxygen species (ROS), and IL-12 that have the

functions of phagocytosis and killing target cells (60). M2-type

TAMs are associated with high expression of IL-10, IL-1b and

VEGF in vivo. They can also express a large amount of scavenger

receptors, which have the functions of clearing debris, promoting

angiogenesis, tissue reconstruction, and injury repair and promote

the function of tumorigenesis and development (61–63). Patients

with more M2 TAMs infiltration have a lower survival rate and an

increased lymph node metastasis rate (64). In general, both M1 and

M2 TAMs exhibit strong intrinsic plasticity, can cross-regulate each

other’s functions, and do not represent a fixed, frozen phenotype; M1

and M2 TAMs can co-exist in the same tumor microenvironment;

therefore, molecular targets that control polarization balance may be

important avenues for tumor immunotherapy. Polarization

biomarkers for M1-type macrophages include CD86 and CD80,

and for M2-like macrophages include CD163, CD204, CD206,

CD115, and CD301 (65).

The induction of monocytes into the tumor microenvironment

into M1/M2 macrophages also changes dynamically with the

development of tumors. In the early stages, macrophages can

recognize and present malignant cells to lymphocytes. Early stages

of tumors exhibit a limited degree of hypoxia, at which time the

immune microenvironment exhibits an immunostimulatory state,

such as a massive infiltration of effector T cells and polarization of

tumor-associated macrophages (TAMs) to an M1-like state (66). As

the tumor progresses, cancer cells consume a large amount of glucose.

They produce more lactate, which promotes the generation of a

hypoxic environment, and the secretion of cytokines also facilitates

the recruitment of hematogenous monocytes. It promotes them to an

immunosuppressive M2-like state of polarization (67).

TAMs are the center of inhibiting the ability of T cells in tumors

to respond, and the current limitations of various immunotherapies

are closely related to this, especially those related to immune

checkpoints. One study showed that TAM and CD8+ T cells

engage in specific, persistent, antigen-specific synaptic

interactions that not only fail to activate T cells but actually

exhaust them and accelerate the process under hypoxic

conditions (68). The current findings indicate that TAMs can
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regulate T cells through direct and indirect pathways, respectively

(69). Tumor-associated macrophages (TAMs) can directly inhibit

cytotoxic T cells through three pathways. Macrophages are involved

in immunosuppression through a variety of mechanisms, such as

expressing immune checkpoint molecules, including programmed

cell death 1 ligand 1 (PDL1) (51), producing inhibitory cytokines

like IL-10 and transforming growth factor-b (TGF-b) (52), and

modulating their metabolic activity by consuming metabolites (such

as L-arginine) and producing reactive oxygen species (ROS) (70,

71). In this summary, we highlight the effects of immune cells and

the alterations in macrophage phenotype that occur within the

tumor microenvironment and immune microenvironment

(Scheme 1).
Modulating TAMs for tumor
immunotherapy

Depending on the different sources and phenotypes of TAMs,

tumor immunotherapy targeting macrophages can be divided into

four categories (1): inhibiting the migration of monocytes or M-

MDSCs to tumors (2), depleting TAMs (3), repolarizes TAMs (4),

altering TAM metabolism (72), as shown in (Scheme 2). Since

conventional modulators of TAMs face challenges such as non-

specific targeting, limited drug delivery efficiency, rapid blood

clearance, and systemic toxicity, nanoparticles are rationally

designed to deliver them or directly participate in regulation, as

they can be designed with tunable dimension and surface charge,

Moreover, nanoparticles can be easily internalized by the

phagocytosis inherent in macrophages, which promotes the

effective accumulation of nanoparticles and their payloads in

tumors to enhance their tumor penetration (73). Therefore,

engineered nanoparticles for targeted delivery of TAMs to tumors

or direct modulation of TAMs have enormous potential to

strengthen tumor-specific accumulation and modulator blood

circulation time and thus reduce side effects, which can enhance
Frontiers in Immunology 0487
TAMs modulatory efficacy (7). Here, we will analyze whether CDs-

associated nanoparticles can regulate the possibility of TAMs based

on the above four strategies.
Mechanism and importance of carbon
materials in TAMs

The remarkab le phys i cochemica l proper t i e s and

biocompatibility of carbon-based materials have sparked

significant interest in their potential applications in cancer

immunotherapy. These nanomaterials exhibit distinctive

characteristics that make them highly promising for biomedical

imaging and therapy. They have been extensively investigated for

their ability to facilitate one-photon and two-photon imaging,

which makes them ideal for both shallow and deep-tissue

imaging. Additionally, their ease of functionalization and

biocompatibility allow for targeted delivery of therapeutic agents

and imaging agents. As research progresses, carbon-based

nanomaterials have the potential to become valuable tools in the

diagnosis and treatment of a range of diseases, including cancer

(74–78). Rajendra K. Singh and Hae-Won Kim and their team have

developed a novel type of nanoparticles called fluorescent

mesoporous bioglass nanoparticles (fBGn) that can be used for

cancer diagnosis and treatment. These nanoparticles are based on

carbon dots (CD) and possess a variety of beneficial properties,

including triple-mode imaging, photodynamic and photothermal

therapeutic effects, and the ability to deliver anticancer drugs in a

pH-dependent manner. The researchers were able to demonstrate

the effectiveness and biocompatibility of fBGn in vivo using a nude

mouse model. The authors suggest that fBGn hold great promise for

cancer theranostics due to their multifunctional capabilities for

imaging, drug delivery, and therapy (79). Singh and Kim have

developed a novel nanoplatform called C-dot bioactive organosilica

nanosphere (C-BON) that has the potential for therapeutic and
SCHEME 1

The role of TAMs in the tumor microenvironment.
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diagnostic purposes in tissue repair and disease treatment. This

platform has several advantages, including its ability to label cells

and tissues, load and deliver drug molecules, and exhibit

photothermal activity. Additionally, the C-BON has demonstrated

excellent bioactivity and cell compatibility, making it a promising

candidate for future applications in theranostics. Overall, this

innovative technology offers a multifunctional approach to

chemotherapy and photothermal therapy with optical imaging,

paving the way for improved treatments in the future (80).

Carbon-based materials, such as carbon nanotubes, graphene

oxide, and fullerenes, have been shown to modulate TAMs’

activation state and promote an anti-tumor immune response

(78, 81, 82). One of the mechanisms by which carbon-based

materials can achieve this is through the regulation of TAMs’

phagocytic activity. Carbon-based materials have been shown to

enhance TAMs’ phagocytosis of tumor cells, leading to their

subsequent destruction and increased activation of the immune

system against the tumor (83).

In addition, carbon-based materials can also promote the

polarization of TAMs towards an M1-like phenotype, which is

associated with an anti-tumor immune response (82). This is

achieved through the activation of toll-like receptors (TLRs),

which are involved in the recognition of pathogen-associated
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molecular patterns (PAMPs) and damage-associated molecular

patterns (DAMPs) on the surface of cancer cells (77, 84, 85).

Moreover, carbon-based materials can also act as a drug

delivery platform for targeted delivery of anti-cancer agents to

TAMs (86). This targeted delivery can increase the efficacy of

anti-cancer agents and minimize their off-target effects.

Overall, carbon-based materials have emerged as a promising

strategy for modulating TAMs’ activation state and promoting an

anti-tumor immune response. The unique properties of carbon-

based materials make them an attractive candidate for further

development in cancer immunotherapy.
Characteristics of CDs

Carbon-based nanostructured substances, such as graphene,

carbon nanotubes and fullerenes, have attracted wide attention

due to their unique physical and chemical properties and diverse

applications. Compared to the above carbon nanostructures,

carbon dots (CDs) exhibit excellent dispersion, low toxicity,

biocompatibility, biodegradation, abundant raw materials,

low cost , and abundant photoluminescence (PL) and

photoelectrochemical properties (8, 87). Historically, In 2004 CDs
SCHEME 2

Schematic representation of modulating tumor-associated macrophages as immunotherapy.
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was discovered in arc emission carbon soot, whose PL emission

attracted the attention of researchers (88). In 2006, polymers (i.e.,

PEG, etc.) were used for surface passivation to enhance the PL

emission of CDs (89). In 2010, well-crystallized CDs were

s yn th e s i z ed and pu r ifi ed , s how ing s i z e -d ependen t

photoluminescence (90). In general, CDs can be thought of as

spherical carbon particles (graphitic fragments) less than 10 nm in

size (91). The chemical structure of carbon dots can be a hybrid

carbon structure of sp2 and sp3, with a single-layer or multi-layer

graphite structure, or it can be aggregated particles of polymers.

Specifically, carbon dots include graphene quantum dots (GQDs),

carbon quantum (CQDs), and polymer dots (CPDs). GQDs refer to

a carbon core structure with a single layer or less than 5 layers of

graphene and chemical groups bonded to the edges. The size of

graphene quantum dots has a typical anisotropy and carbon lattice

structure, and the lateral dimension is larger than the vertical

height; CQDs are spherical and have a clear lattice, and the

surface has abundant chemical groups CQDs have an intrinsic

state luminescence mechanism and a quantum confinement effect

of particle size. CPDs are usually cross-linked flexible aggregates

formed from non-conjugated polymers through dehydration and

partial carbonization, and there is no carbon lattice structure.

Currently, four fluorescence mechanisms have been reported as

follows (1) quantum confinement effect (QCE) (2), defect state (3),

molecular (fluorophore) state, and (4) crosslink-enhanced emission

state (92). The characteristics of carbon dots have attracted

widespread attention in the field of biomedicine. Currently, CPDs

are the core of research and development of carbon dot materials.

The excellent properties of CPDs, such as photostability, excellent

biocompatibility, simple synthetic route, flexible designability, deep

red/NIR emission, and two-photon/multiphoton fluorescence,

make CPDs an ideal candidate for fluorescent probes for in vitro

and in vivo bioimaging (19, 93).
Synthesis strategy of carbon dots for
bioimaging and therapy

There are many methods for preparing carbon dots, which can

be generally divided into top-down method (Top-down) and

bottom-up method (Bottom-up). The top-down synthesis method

is mainly to thoroughly pulverize the carbon skeleton to generate

CDs, while the bottom-up method uses some organic molecules as

precursors (carbon sources) to synthesize CDs (94). In the history of

carbon dots, the top-down strategy was first used to prepare carbon

dots, which refers to the synthesis of carbon dots by physically or

chemically stripping carbon nanoparticles from large carbon

skeletons, including discharge methods, electrochemical methods,

etc. method, laser ablation method, etc. (95, 96). Although these

methods can generate CDs in relatively large quantities, they often

suffer from expensive instrumentation, complex synthesis

procedures, long synthesis times, low yields, high impurities,

complex purification procedures, and still require post-synthesis

procedures to tune optoelectronic properties (97). From the

perspective of fluorescence properties of CDs, the oxidative
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cleavage of carbon sources leads to more structural defects, which

leads to the degradation of photoluminescence performance, which

is the most restrictive issue for their biomedical applications (98).

Bottom-up synthesis is more prevalent now (99). The advantage

of this strategy is the availability of a large number of molecular

precursors, among other benefits including multiple heat treatment

options, faster reaction times and more uniform properties of the

final material. The selection of precursors and synthesis procedure

(i.e., pre-synthesis control) affects the physicochemical properties of

CDs in terms of size, degree of graphitization, surface functional

groups, and doping. However, some structural and functional

features of the precursors can be retained in the nanoparticles,

which allows a certain degree of predictability in the designed

nanoparticles. At the same time, the strategy of using heteroatom

doping can enrich the functional properties of carbon dots and

adjust the range of photoluminescence.

Bottom-up synthetic strategies can obtain nanoparticles

emitting from the blue to the near-infrared (NIR) region (100).

The bottom-up method mainly uses some organic molecules as

precursors to prepare CDs through a series of chemical reactions,

including template method, microwave digestion synthesis method,

ultrasonic oscillation method, solvothermal method, strong acid

oxidation method and hydrothermal method, etc. Among these

methods, hydrothermal method, solvothermal method and

template method are widely used (101). CDs can be

functionalized by surface passivation and heteroatom doping

(102). With proper functionalization, carbon dots have promising

applications in biomedical fields such as biosensors, bioimaging,

and photodynamic therapy; magnetic resonance imaging of

chemical exchange saturation transfer; photodynamic and

photothermal therapy; PH and ROS in microenvironments

monitor and treatment (103–109).
Application of carbon dot-associated
nanoparticles in monitoring
macrophages

Currently, cancer treatment response is routinely assessed with

the Response Evaluation Criteria in Solid Tumors (RECIST), based

on changes in tumor size and the presence or absence of new

tumors (110). However, in immunotherapy, pseudoprogression has

emerged as a distinct response mode in which activated immune

cells infiltrate the tumor environment leading to increased tumor

volume and delayed treatment response (111). Because TAMs are

the highest proportion of immune-infiltrating cells in tumors and

their substantial impact on immunotherapy, immunoimaging of

TAMs is essential to evaluate changes in tumor burden, allow early

treatment intervention, reflect the dynamic shift in immune

markers during immunotherapy, and avoid early termination of

effective therapy according to RECIST criteria (112).

Thanks to carbon dots’ inherent fluorescence characteristics

and physical and chemical properties, it has the intrinsic advantage

of being a macrophage imaging agent. Raja S and co-workers

synthesized a carbon dot derived from curauá that exhibited a
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graphitic-like structure with an average diameter of 2.4 nm, good

water solubility, sophisticated carboxyl and hydroxyl functional

groups, excitation-dependent multicolor fluorescence emission (in

the range of 450 nm to 560 nm) and excellent photostability. Cell

experiments show that carbon dots tolerate the J774.A1 mouse

macrophage cell line, can effectively internalize carbon dots into its

cytoplasmic compartment and is an excellent nanoprobe for

effective long-range cell imaging (113).

Xiaowei Xu and colleagues aimed to develop a carbon

nanoparticle incorporating aspirin. They synthesized fluorescent

aspirin-based carbon dots (FACD) through a one-step microwave-

assisted method, condensing aspirin and hydrazine. Imaging data

revealed that FACD effectively penetrated mouse monocyte-

macrophage cells in vitro (114).

Shi Y et al. synthesized highly fluorescent and ultra

biocompatible N-doped carbon quantum dots derived from

aminated alkali lignin green precursors for cellular imaging and

intracellular irons detection of RAW 264.7 cells. AL-CQDs

produced in the 4–10 nm range exhibited excitation-dependent

and pH-stable fluorescence properties. They were used to detect

iron ions ranging from 100 nm to 1 mm with a detection limit as

low as 8 nm, where Fe3+ ions could be detected by the AL-CQDs.

The amine group is trapped, forming an absorbing complex that

results in significant fluorescence quenching (115).

Yawei Li and colleagues fabricated stable nanoparticles

composed of the supramolecular assembly of carbon dots (CDs)

and RTBs, which could be taken up and visualized by macrophages.

Notably, the CDs-RTB nanoparticles were found to promote

macrophage proliferation, as well as the production of NO, IL-6,

and TNF-a in RAW264.7 cells, and increase mRNA expression,

indicating enhanced immunomodulatory activity. These findings

highlight the potential of CDs as a simple and stable platform for

assembling RTB, thereby facilitating the application of RTB as an

immunostimulant (116).

The photoluminescent properties, low toxicity, and

biocompatibility characteristics of these carbon dots exhibit

excellent properties in bioanalysis and bioimaging. However,

fabricating stable highly near-infrared (NIR) fluorescent GQDs

using facile methods remains a challenging task. Reagen S and a

co-worker developed NIR CDs from the biomass-derived organic

molecule cis-cyclobutane-1,2-dicarboxylic acid via one-step

pyrolysis. The prepared GQDs exhibit excellent photostability and

stability over a wide pH range. Using biomass as raw material to

prepare carbon dots is a very convenient and economical method.

Most importantly, there were two peaks in the fluorescence

emission spectra of GQDs, one in the NIR region around 860

nm. The results of cell experiments on the mouse macrophage cell

line RAW 246.7 showed that GQDs entered cells by endocytosis on

fluorescence images and were nontoxic to cells at concentrations up

to 200 mg/mL (117).

At the same time, the CDs-based composite material has more

prosperous functions, which can significantly improve CDs’ cellular

uptake and imaging potential. It was shown that nanocomposite

formulations of carbon dots (<5 nm) encapsulated in lipid-based

lyotropic liquid crystal nanoparticles (~250 nm) enhanced the

bioimaging potential of carbon dots by improving cellular uptake
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efficiency and converging carbon dot light emission (118). Carbon

dot-associated nanoparticles enable multimodal imaging by doping

with heteroatoms or forming assemblies. Sun S and co-workers

anchored a small amount of photosensitizer chlorin e6 (Ce6)

(0.56% by mass) on amino-rich red-emitting carbon dots (RCD).

They synthesized Ce6-modified RCD (named Ce6-RCD)

multimodal imaging capability (i.e. , fluorescence (FL),

photoacoustic (PA), and PT) (119).

Saladino GM et al. synthesized metallic rhodium (Rh)

nanoparticles conjugated and cross-linked with nitrogen-doped

carbon quantum dots, which combine optical and X-ray

fluorescence as multimodal bioimaging contrast agents. CQDs

confer optically fluorescent properties to Rh NPs and improve

their biocompatibility, as demonstrated in vitro by real-time cell

analysis (RTCA) on a macrophage cell line (RAW 264.7) (120).

Su Y and colleagues developed Hafnium-doped carbon dots

(HfCDs) using a simple one-pot pyrolysis method. This innovative

nanoparticle exhibited remarkable capabilities for CT/fluorescence

imaging (9).

By doping Gd (iii) into CQDs via one-pot pyrolysis, Pan Y et al.

reported an efficient and mild method for the facile synthesis of

carbon quantum dots (CQDs)-based bimodal fluorescent (FL)/

Magnetic resonance (MR) imaging probe cryogenic process.

Nanoparticles doped with heavy N elements can significantly

improve the quantum yield. Gd3+ is stably captured and

sequestered by the carbon dot framework, maximizing its role in

shortening the longitudinal relaxation time. Therefore, the

synthesized nanoparticles have the advantages of strong

fluorescence brightness and high MR response with minimal

Gd3+ extravasation, making them an ideal dual-modality imaging

probe (121).

He X et al. prepared novel carbon dots (CDs) L-CD/C-CD from

Gd (iii) salt/complexes, cationic polymers, and citric acid, which

combine the abilities of gene delivery and multi-modal (MR/FL)

imaging (122).

Weng Y and co-workers et al. report a multifunctional

nanocarrier (CDs/ICG-uLDHs) prepared by simple self-assembly

of red-emitting carbon point (CDs) and indocyanine green (ICG),

which can be used for three-mode fluorescence/photoacoustic/two-

photon bioimaging and high-efficiency photothermal therapy (123).

By doping rare earth ions, carbon dot composites can obtain

excellent UCL imaging, magnetic resonance imaging (MRI), and

computed tomography (CT) imaging performance (124).

The multifunctional hybrid nanoparticles prepared by Wang H

et al. have fluorescence/MRI dual-mode imaging capabilities, which

are made by embedding a magnetic Fe3O4 core into a mesoporous

silica shell of carbon point (CD) and paclitaxel (PTX), covered by

another layer of silica (21).

In addition to direct cell imaging, carbon dots also serve as

sensitive sensors to rapidly image reactive oxygen species (ROS)

and reactive nitrogen species (RNS) signals involved in various

biological processes and many pathologies with high selectivity and

contrast. Gong Y et al. developed phosphorus and nitrogen co-

doped carbon dots (PC-NDs). ROS and RNS can sensitively and

selectively quench the strong fluorescence of PN-CD in vitro and in

vivo. It can be used for live-cell imaging of reactive oxygen species
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(ROS) and reactive nitrogen species (RNS) in macrophages. The

carbon dots prepared by Yu C et al. are highly selective for NO and

can be operated in an utterly aqueous medium, which can track

exogenous NO levels in various cell lines such as Raw 264.7, L929

and Hela cells; it is also used to visualize endogenously produced

NO stories in the Raw 264.7 macrophage cell line (125).

Studies as shown in Figure 1 illustrate that different protocols for

multimodal imaging in monitoring macrophages can be achieved

with appropriate surface functionalization, heteroatom doping, and

assembly of carbon dot-associated nanoparticles (Figure 1).

Application of carbon dot-associated
nanoparticles in regulating
macrophages

CDs are generally soft and nontoxic in vitro and in vivo.

However, due to their efficient light harvesting in an extensive

spectral range from ultraviolet to near-infrared, CDs exhibit strong

photodynamic effects, and photoexcited CDs can generate reactive

oxygen species (ROS). ROS is a crucial mediator of oxidative stress

and redox signal transduction in immune cells (126–128). The

regulation of ROS by CDs may have a profound impact on the

immune response. Yu Jin et al. found that CDs can reprogram

macrophages by eliminating ROS to suppress pro-inflammatory

responses and promote pro-reparative M2 conversion (129). Huibo

Wang and colleagues found that carbon dots (CDs) produced

through a one-step hydrothermal process using citric acid and

glutathione exhibited excellent intracellular reactive oxygen species

(ROS) scavenging activity in macrophages. This scavenging activity

was e ff e c t i v e i n r educ ing inflammat ion caused by

lipopolysaccharide (LPS) induction in macrophages, suggesting

that CDs have potential as a therapeutic agent for inflammatory

conditions. Studies have found that CDs can effectively remove up

to 98% of intracellular ROS, especially inhibit the nuclear factor

kappa-light chain enhancer (NF-kB) signaling pathway of activated
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B cells, reduce the expression level of inflammatory factor IL-12,

thereby regulating Macrophage phenotype (130). At the same time,

many studies have shown that carbon dots can induce autophagy

(131–133). Mitochondrial ROS plays a key role in promoting

macrophage polarization into an inflammatory phenotype by

damaging the autophagolysosome system (134). Therefore,

carbon dots may regulate immune responses through these two

aspects and impact on macrophages (135–137). A study shows that

degradable carbon dots (CDs-1) prepared from L-ascorbic acid can

up-regulate the expression of HMOX1 in animal cells and tissues,

and can increase the expression of HMOX1 by 5 times in a short

period of time, thereby reducing cell inflammation ROS levels in

models with therapeutic effects on LPS-induced acute lung injury in

mice (138).

In another study, researchers synthesized highly biocompatible

CDs (Gly-CDs) by hydrothermal method using glycyrrhizic acid, an

active ingredient of Chinese herbal medicine, as a raw material. The

results indicated that Gly-CDs inhibited the invasion and

replication of PRRSV, stimulated the antiviral innate immune

response, and inhibited the accumulation of intracellular reactive

oxygen species (ROS) caused by PRRSV infection (139).

Osteoclasts, specialized cells derived from the fusion of

monocyte/macrophage hematopoietic lineage precursors, are the

primary cells involved in normal bone remodeling and pathological

bone destruction in vivo. One of the main causes of hyperactivation

of osteoclasts is the overproduction of reactive oxygen species.

Chitosan-derived nitrogen-doped carbon dots (N-CDs)

synthesized by Chen Runfeng et al. have the ability to scavenge

reactive oxygen species (ROS). Experiments showed that N-CD

effectively abolished the RANKL-induced increase in ROS

generation, thereby attenuating the activation of NF-kB and

MAPK pathways, whereby osteoclast genesis and bone resorption

were effectively attenuated in vitro. Furthermore, N-CD protected

mice from lipopolysaccharide (LPS)-induced calvarial destruction

and breast cancer cell-induced tibial bone loss. Based on the

excellent biocompatibility and efficient ROS scavenging ability of
B
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FIGURE 1

Bioimaging of macrophages with various CDs :(A) Fluorescence images indicated AL-CQDs could detect iron ions of RAW 264.7 cells. (B) The RTCA
assay demonstrated that Rh-CQDs NPs can enable multimodal imaging in the RAW 264.7 cell line. (C, D) Transmission electron microscopy and
Fluorescence microscopy analysis shows that C-dots can be stably imaged in B16F1 and J774.A1 cytoplasm.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1133238
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Miao et al. 10.3389/fimmu.2023.1133238
N-CDs, for the first time, it provides a nanomaterial treatment plan

for the clinical treatment of osteolytic diseases (140).

Cai H et al. synthesized a carbon dot capable of simultaneously

achieving cell labeling and regulating mesenchymal stem cell (MSC)

behavior. Bifunction CDs were prepared with D-glucosamine

hydrochloride and sodium p-styrene sulfonate as raw materials by

one pot hydrothermal method. The synthesized CDs had uniform

particle size (about 4 nm), was well dispersed in aqueous solution,

and showed excellent fluorescence stability under other conditions.

More importantly, CDs can effectively promote osteogenic and

chondrogenic differentiation of rBMSCs through the production of

reactive oxygen species (ROS), without affecting their pluripotency

(141). Shao D et al. also had similar results with citrate-based

carbon dots, which significantly provided long-term tracking and

promoted the differentiation of rBMSCs into osteoblasts through

the ROS-mediated MAPK pathway (142).

Injection of GQDs was able to penetrate the blood-brain barrier,

inhibited the loss of cerebellar Purkinje cells, and demonstrated

reduced microglial activation. Microglia are macrophages in the

brain, suggesting that carbon dots can regulate macrophages

through autophagy (143) . Another study shows that

electrochemically produced CDs irradiated with blue light (470

nm, 1W) produce reactive oxygen species, including singlet oxygen.

Light-excited CD-induced cell death is manifested by apoptosis

(externalization of phosphatidylserine, activation of caspases, DNA

fragmentation) and autophagy (autophagy vesicles formation, LC3-

I/LC3-II transformation, morphological and/or biochemical

characterization of autophagy target p62) (144).

The results of Yiru Qin et al. revealed that CDs slightly affected

the cell viability and membrane integrity of macrophages, while

CDs significantly increased reactive oxygen species (ROS)

production as well as apoptotic and autophagic cell death, while

Bax, Bad, caspase 3, caspase 9 increased expression levels of beclin 1

and LC3-I/II and decreased Bcl-2. In addition, low concentrations

of CDs significantly increased the expression of tumor necrosis

factor-a (TNF-a), interleukin-1b (IL-1b), IL-8. In contrast, high

concentrations of CDs had a negative effect on cytokine production

opposite effect. SB202190 is a selective inhibitor of p38 mitogen-

activated protein kinase (MAPK), which abolishes the cytokine

induction of CD in macrophages. Furthermore, CDs significantly

increased the phosphorylation of p38 MAPK and p65 and

promoted the nuclear translocation of nuclear factor-kB (NF-kB).
These results suggest that CDs induce ROS production, apoptosis,

autophagy, and inflammatory responses in THP-1-activated

macrophages through p38MAPK and NF-kB-mediated signaling

pathways. This indicates that carbon dots have the function of

regulating stimulatory factors in macrophages (145).

Carbon dots also offer enormous potential due to their

enzymatic properties compared to natural enzymes. Yao L et al.

report a carbon dot-based nanozyme prepared from chlorogenic

acid (ChA), a primary bioactive natural product in coffee. The study

found that ChA CDs exhibited significant GSH oxidase-like activity,

which recruited a large number of tumor-infiltrating immune cells,

including T cells, NK cells, and macrophages, thereby transforming

“cold” tumors into “hot” tumors, activating systemic anti-tumor

immune response (146).
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Although ricin-binding subunit B (RTB) can promote the

activation of macrophages and regulate cell-mediated immunity,

its application is severely limited due to the inherent properties of

the protein, such as poor stability and low cellular uptake efficiency.

In the work of Li Y et al., stable nanoparticles were prepared by

supramolecular assembly of carbon dots (CDs) and RTBs. The

formed CDs-RTB are highly durable and can protect RTB from

enzymatic hydrolysis. More importantly, CDs-RTB could promote

the proliferation of macrophages, increase the production of NO,

IL-6, and TNF-a in RAW264.7 cells, and increase the expression of

mRNA , i n d i c a t i n g t h a t CD s - RTB e n h a n c e d t h e

immunomodulatory activity. This work highlights the potential of

CD as a simple and stable assembly platform that effectively

facilitates the application of RTB as an immunostimulatory agent

(147). At the same time, it suggested that CD has the potential to be

an excellent immune adjuvant.

Sun Q et al. have developed a novel nanocomposite to target

activated macrophages in the colon with real-time imaging and

therapeutic capabilities. The nanocomposite was formed by

covalent conjugating mannosylated NPs (Man-NPs) with carbon

dots (CDs). Cellular experiments showed greater uptake of

nanocomposites by inflamed macrophages compared to untreated

macrophages and the mannose receptor-negative cell line 4T1. This

indicates that carbon dots can target and recognize M2

macrophages after functionalization (148).

The above studies indicate that carbon dots have the ability to

influence macrophage plasticity through several mechanisms. Firstly,

they can induce ROS production and autophagy, which can alter

macrophage phenotype from M2 to M1-like, resulting in an

enhanced immune response against tumors. Secondly, carbon dots

can modulate macrophage polarization by inhibiting the expression

of cytokines such as IL-10 and TGF-b, leading to an increase in the

M1/M2 ratio and improving the characterization of the tumor

immune microenvironment. Additionally, carbon dots can act as

immunomodulators and delivery vehicles, improving the uptake of

therapeutic agents by macrophages and potentially improving the

immunosuppressive microenvironment of tumors. These findings

suggest that carbon dots may hold promise as a therapeutic approach

for targeting TAMs. A relevant mechanism is illustrated in Figure 2.
Concluding remarks and future
perspectives

TAMs contribute to tumor initiation, progression, and

metastasis. Therapeutic agents that eliminate TAMs, inhibit TAM

infiltration, and/or activate TAM polarization toward the M1

phenotype have shown remarkable clinical potential. Considering

the critical role of TAMs in tumor immune suppression, various

macrophage-targeting nano theranostics formulations have been

developed in recent years. As a new type of nanomaterial, CDs have

evolved from a single functional capability of diagnosis (or

treatment) in nanomedicine theranostics by their inherent

photoluminescence characteristics, excellent physical and

chemical properties, and rich tunability. It is an intelligent
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treatment and diagnosis system. So far, there are few studies on the

application of carbon dots in evaluating and regulating TAMs.

However, through literature analysis, this review found that CDs

have apparent advantages in the imaging and regulation of

macrophages. Here, we illustrate the potential of carbon dots in

macrophage imaging and regulation (Scheme 3). The fluorescence
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visible in the whole range provides a basis for monitoring

macrophage distribution, polarization state, and functional

changes. At the same time, the carbon dots exhibited the role of

nanozyme and immune adjuvant, which can regulate the

polarization state of macrophages and promote the infiltration of

immune cells through the ROS generated by photoluminescence
B
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FIGURE 2

Regulation ROS and autophage with CDs. (A, B) CDs orchestrated macrophage repolarization in vitro and indicating the immunomodulatory
mechanism of CDs mediated OA therapy. (C, D) CDs with radical-scavenging activity in alleviating the LPS-induced inflammation in macrophages.
(E, F) N-CDs downregulated ROS with suppressed ROS downsteam signaling pathway.
SCHEME 3

Application of carbon dots in macrophage imaging and modulation.
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and the induction of autophagy. In addition, TAMs are highly

enriched in tumor hypoxic sites. This shows that CDs have inherent

advantages and great potential for monitoring and regulating

TAMs. However, compared with other nanomaterials that have

been applied for a long time, the application of CDs in diagnosis

and therapy needs to solve more difficulties.

First, further theoretical breakthroughs are required to fine-tune

the properties of carbon dots. On this basis, the demand for near-

infrared photoluminescence can be stably realized. Second, the

tumor microenvironment is complex, and how to achieve safe

and efficient target recognition of TAMs is a crucial point that

needs to be studied. Third, the current application of carbon dots in

macrophages shows a bidirectional effect of ROS and autophagy.

Therefore, how to correctly evaluate the state of TAMs and change

the immunosuppressive effect of TAMs is very important in the

future. Developing multimodal CDs with synergistic strategies may

be feasible to achieve this maximal theranostic purpose.

Therefore, with nanomedicine development, CDs are a suitable

carrier and a promising reagent for nanomedicine theranostics. If

scientists and engineers adequately resolve the above problems, CDs

are expected to make outstanding contributions to the development

of immunotherapy.
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Myeloid-derived suppressor cells (MDSCs) are a heterogeneous myeloid cell

population and serve as a vital contributor to the tumor microenvironment.

Reactive oxygen species (ROS) are byproducts of aerobic respiration and are

involved in regulating normal biological activities and disease progression.

MDSCs can produce ROS to fulfill their immunosuppressive activity and

eliminate excessive ROS to survive comfily through the redox system. This

review focuses on how MDSCs survive and function in high levels of ROS and

summarizes immunotherapy targeting ROS in MDSCs. The distinctive role of ROS

in MDSCs will inspire us to widely apply the blocked oxidative stress strategy in

targeting MDSC therapy to future clinical therapeutics.

KEYWORDS

MDSCs, ROS, immunotherapy, tumor, tumor micro environment (TME)
1 Introduction

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid

cells with immunosuppressive activity. MDSCs play a crucial role in tumorigenesis and

inhibit antitumor immune responses to promote tumor development (1, 2). In addition to

cancer, MDSCs are also involved in autoimmune diseases, sepsis, bone marrow

transplantation and infection diseases (1, 3).Reactive oxygen species (ROS) have

miscellaneous effects and are involved in both cell biological activities and oxidative

stress disease (4). Notably, ROS are one of the dominant immunosuppressive functional

effector molecules of MDSCs, and MDSCs can also adjust the ROS level to a proper level to

maintain the state of MDSCs. Currently, immunotherapy that targets MDSCs has achieved

significant results, but targeting ROS in MDSCs has not yet become a therapeutic focus that

will be worth further investigation.

This paper summarizes the distinctive regulation, scavenging and effects of ROS in

MDSCs. In addition, we generalize immunotherapy that targets ROS in MDSCs. This will

provide novel potential insight for targeting MDSC immunotherapy.
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2 MDSCs

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous

population composed of immature myeloid cells (IMCs). In

pathological conditions such as cancer, infectious diseases, trauma,

and some autoimmune disorders, IMCs cannot differentiate into

mature myeloid cells, which causes the activation and expansion of

MDSCs (1, 5). At present, we can identify MDSCs by phenotype and

immunosuppressive function. The phenotype of mouse MDSCs is

CD11b+Gr-1+. According to different epitopes (Ly6G and Ly6C) in

Gr-1, mouse MDSCs can be further divided into two subgroups:

CD11b+Gr-1+Ly6GhighLy6Clowgranulocyte/polymorphonuclear

MDSCs (G-MDSCs /PMN-MDSCs ) and CD11b+Gr -

1+Ly6GlowLy6Chighmonocytic MDSCs (M-MDSCs) (6). More

importantly, we can use different antiapoptotic molecules to

discriminate PMN-MDSCs and M-MDSCs. The antiapoptotic

molecule MCL-1 is required for the development of PMN-MDSCs,

while M-MDSCs require another antiapoptotic molecule, c-FLIP (7).

The phenotype of human MDSCs and their subsets is different from

that of mice. Human MDSCs express CD11b+CD33+HLA-DR-/low.

Human PMN-MDSCs express CD15, while human M-MDSCs

express CD14 (8). In most types of cancer, PMN-MDSCs are the

predominant population, while M-MDSCs have stronger

immunosuppressive activity than PMN-MDSCs (1). Except for

phenotypic identification, many original methods are being

exploited to identify MDSCs. Single-cell RNA sequencing

(scRNAseq) technology could describe MDSCs by novel surface

markers (CD84, JAML) and definite PMN-MDSCs with

enrichment genes (Ngp, Ltf, Anxa1, Mmp8 and Cybb) (9, 10). IHC

staining analysis showed that MDSCs are located in the tumor

epithelial border (11). Moreover, metabolite and lipid analyses of

MDSCs also demonstrated that MDSCs have a specific response to

high glucose concentrations (12).

The immunosuppressive activity of MDSCs relies on the

expansion and activation of MDSCs. There are a variety of factors

accounting for the expansion of the MDSCs, such as cyclooxygenase

2 (COX2), prostaglandin, stem-cell factor (SCF), macrophage CSF

(M-CSF), granulocyte/macrophage CSF (GM-CSF), vascular

endothelial growth factor (VEGF), TNF-a, polyunsaturated fatty

acids, MyD88 and HIF-1a (13–15). Most of these factors advance

the expansion of the MDSCs by triggering the STAT3, IRF8, C/

EBP-b and NOTCH signaling (16). Among them, STAT3 is a vital

regulator of the expansion of MDSCs, which can also upregulate the

proinflammatory protein S100A8/9 expression and induce the

expression of the downstream targets of STAT3 including

survivin, BCL-XL and cyclin-D1 (13, 14). Endoplasmic reticulum

(ER) stress can promote the accumulation of MDSCs by activating

TNF-related ligand receptors which induce the apoptosis (15). Last

but not least, the metabolites adenosine, IDO and lactic acid

accumulated in the TME can also contribute to the expansion of

MDSCs (17). Other factors, such as IFN-g, IL-1b, IL-4, IL-6, IL-13,
TNF and high mobility group Box 1(HMGB1), could influence the

MDSCs suppressive activity by activating STAT1, STAT3, STAT6

and NF-kB signaling pathways (18).
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Several major molecules contribute to MDSC-mediated

immune suppression, including arginase 1 (Arg-1), inducible

nitric oxide synthase (iNOS), COX2, TGF-b, IL-10 and ROS.

Many factors, such as STAT3, C/EBPb, p50 NF-kB, and IDO1,

play a critical role in MDSC function by regulating these functional

effector molecules (16, 19, 20). Arg-1, which converts L-arginine to

urea and L-ornithine, inhibits T-cell function by decreasing the

expression of the CD3z chain and impairing the expression of

cyclin D3 and cyclin-dependent kinase 4 (cdk4) (21). ROS are the

characteristic molecules of PMN-MDSCs, while M-MDSCs mainly

produce NO (8). NO produced by MDSCs leads to the suppression

of T-cell responses by reducing the tyrosine phosphorylation of

JAK3 and STAT5, preventing MHC II transcription and triggering

T-cell apoptosis (22). The interaction between ROS and NO can

promote the formation of peroxynitrite, which leads to the

desensitization of T-cell receptors and T-cell tolerance. Treatment

of cancer with AT38 ([3-(aminocarbonyl)furoxan-4-yl] methyl

salicylate) could increase antitumor immunity by interfering with

the expression of ARG1 and NOS2 enzymes in myeloid cells (23).

In addition, MDSCs can recruit and expand Treg cells via the

immunosuppressive cytokines IL-10 and TGF-b. MDSCs can also

reduce the secretion of IL-6 and TNF-a by macrophages and shape

them into the M2-type phenotype, which promotes tumor

progression (24). In turn, Treg cells induce the expression of B7

homolog 1 (B7-H1), B7-H3 and B7-H4 on the cell surface of

MDSCs, which causes an increase in IL-10 production and

immunosuppressive activity of MDSCs (25). In addition, MDSCs

can produce adenosine due to the high expression of CD73 and

CD39, which hydrolyze ATP into adenosine, and adenosine can

inhibit the immune responses of both T cells and NK cells in the

tumor microenvironment (26).
3 ROS

Reactive oxygen species (ROS), oxygen-containing derivatives,

include a range of species such as superoxide (O2.-), hydrogen

peroxide (H2O2), nitric oxide, peroxynitrite, hypochlorous acid,

singlet oxygen and hydroxyl radicals (27). Among them, the three

most common forms of ROS are superoxide, H2O2 and hydroxyl.

Different forms of ROS can have different targets. To illustrate,

H2O2 takes effect through the modification of specific cysteine,

selenocysteine, methionine and histidine residues in targeted

proteins (28, 29), but O2.-, hydroxyl radicals and peroxynitrite can

irreversibly undermine intracellular proteins, DNA and lipids (30).

In cancer, the most studied ROS components are O2.-and H2O2

(31). However, the main increased pool of ROS released by MDSCs

is primarily H2O2 under pathological conditions (32).

ROS are byproducts of aerobic respiration that can be produced

by many cells, including hematopoietic stem cells (HSCs), tumor

cells, cancer stem cells (CSCs) and immune cells (33). The

production of ROS relies on cell type. Tumor cells, MDSCs and

professional phagocytes can produce abundant ROS. However,

HSCs and CSCs have low ROS content (34, 35).
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ROS are short-lived, strong-effect and short reaction distance

compounds that serve as a double-edged sword that elicits both

beneficial and harmful effects in cells. The most common influence

is the toxic side effects of ROS. Elevated levels of ROS can damage

cells and intracellular components, cause DNA hydroxylation,

protein denaturation and tissue damage, and ultimately lead to

cell cycle G2/M arrest, apoptosis, senescence and death, and ROS

can also participate in mitochondria, death receptors, and

endoplasmic reticulum-mediated apoptosis (36). However, ROS

also serve as the second messenger of cell signal transmission to

play a regulatory role in many crucial biological activities of normal

cells (4).
4 Sources of ROS in MDSCs

NADPH oxidase (NOX) enzymes and mitochondria are major

sources of endogenous ROS. In addition, there are numerous

cel lular sources of ROS, including xanthine oxidase,

cyclooxygenases, cytochrome p450 enzymes, lipoxygenases and

the endoplasmic reticulum (28).

Two major sources of ROS in MDSCs are NOX2 and

mitochondria. Compared with MDSCs, cancer cells and

macrophages also utilize mitochondria and NADPH oxidase to

produce ROS. However, T cells express no or very low levels of

NADPH oxidase (37).

Mitochondria have ten sites to generate O2.-, particularly those

derived from mitochondrial electron transport chain (ETC)

complexes. Complex I and III of the ETC generate O2.-, which is

rapidly converted to H2O2 via mitochondrial SOD2, while the O2.-

from the complex can be converted into H2O2 by cytosolic SOD1

(38). Mitochondrial ROS are implicated in diverse diseases,

including cancer, diabetes and inflammatory disorders, and

regulate healthy cell physiological function (39).

The NOX family has seven members: NOX1–5, DUOX1 and

DUOX2 (40). NOX2 is a multicomponent complex that is made up

of a transmembrane heterodimer that contains NOX2 and

p22phox. Other components are cytosolic protein factors,

including p47phox, p67phox, p40phox and small GTP-binding

proteins such as G proteins RAC1 or RAC2. Under basal

conditions, gp91phox and p22phox are transmembrane proteins,

while the cytosolic subunits p47phox, p67phox and p40phox are

connected together, and RAC combined with GDP forms a complex

with its inhibitor Rho-GDI and does not interact with the other

three cytosolic subunits. When exposed to stimulus, NOX2 is

activated. Upon activation, p47phox is phosphorylated and then

migrates to the membrane, where it combines with gp91phox and

p22phox. Rho-GDI separates from the complex, and then RAC

binding with GDP combines with gp91phox to form a

multicomponent complex (41). NOX2 catalyzes the conversion of

oxygen molecules into superoxide anions, which generates H2O2 by

SOD. Deficiency or dysfunction of NOX2 in phagocytes may reduce

ROS production, resulting in chronic granulomatous disease (CGD)

(42). Comparably, MDSCs in NOX2-deficient mice produced less

ROS, which lose the ability to inhibit the CD8+ T-cell immune

response (43). Rats and mice with decreased ROS caused by allelic
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polymorphisms of p47phox were more susceptible to developing

severe arthritis (44).
5 Regulation of ROS production
in MDSCs

Many factors can regulate ROS production, such as GM-CSF,

interleukin, TGF, TNF, FGF, platelet-derived growth factor, TLR

agonists, protease, nucleotide receptors, TCR stimulation and

peroxynitrite (32, 45, 46).

Various types of cells and survival environments possess

different ROS regulatory mechanisms. In terms of MDSCs, it has

been proven that multiple molecules can govern intracellular ROS,

such as STAT3, fatty acid transport protein 2 (FATP2) and

noncoding RNAs. STAT3 is an important transcription factor

related to the expansion, differentiation and function of MDSCs.

STAT3 directly increases the expression of p47phox, which belongs

to the NOX2 complex, by binding to the promoter region of

p47phox. Blocking STAT3 could downregulate the expression of

gp91phox and p47phox to decrease ROS production (43, 47, 48). In

addition, tumor-derived GM-CSF activated STAT3 signaling to

induce the expression of FATP2 in MDSCs. Subsequently, FATP2

in MDSCs can take up abundant lipids that cause elevated ROS

levels (49). Furthermore, noncoding RNAs (lincRNAs and

miRNAs) that have been upregulated during bacterial and viral

infection are reported to influence ROS generation in MDSCs (50).

During virus infection, lncRNA RUNXOR and HOTAIRM1 are

upregulated and are responsible for elevated levels of ROS, Arg-1

and iNOS in MDSCs (51, 52). MiRNA-10a and miRNA-21, which

are also upregulated in hypoxia-induced glioma-derived exosomes,

could strengthen ROS and NO production in MDSCs with the

potential to enhance the suppressive activity of MDSCs (53).

In addition, cancer-associated fibroblasts (CAFs) can polarize

monocytes to MDSCs, which suppress CD8+ T-cell proliferation

and function by generating ROS (54). Murine olfactory ecto-

mesenchymal stem cell-derived exosomes could also enhance the

suppressive activity of MDSCs by upregulating ROS and NO

levels (55).

In contrast to MDSCs, other myeloid cells, such as

macrophages, can stimulate NADPH oxidase expression and

activity to elevate the level of ROS by other disparate factors, such

as P2X7, brain-specific angiogenesis inhibitor 1 (BAI1), beryllium,

myocardin-related transcription Factor A (MRTF-A) and TLRs

(56–60). However, mitochondrial uncoupling protein 2 (UCP2),

paraoxonase 1 (PON1) and IL-10 negatively regulate the ROS level

in macrophages (61–63).
6 ROS scavenging in MDSCs

In general, the cell needs an appropriate level of ROS to

maintain normal physiological function. Either too few or too

many ROS are harmful. Normally, ROS production is controlled

in a safe range, and superfluous ROS can be neutralized by the

antioxidant system to maintain cell homeostasis. The antioxidant
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system contains antioxidant enzymes and nonenzymatic molecules.

Common antioxidant enzymes include superoxide dismutase

(SODs), catalase, peroxidase (PRDXs), peroxiredoxins (Prxs) and

glutathione peroxidase (GPXs) (64). Other nonenzymatic

antioxidant molecules are glutathione, flavonoids, thioredoxin,

and vitamins A, C and E (65, 66). If the redox system is out of

balance, the rising ROS will lead to oxidative stress. Oxidative stress

is considered a vital inducer of many pathological diseases, such as

cancer, atherosclerosis, multiple sclerosis, ischemia and reperfusion

injury, Alzheimer’s disease, cardiovascular diseases and traumatic

brain injury (67–71).

For example, the antioxidant system of tumor cells can cope

with the production of ROS properly via antioxidant enzymes and

autophagy (72). The overproduction of ROS in tumor cells could

maintain the pro-tumourigenic signaling, which results from the

upregulation of SOD expression, local inactivation of a H2O2-

degrading enzyme, oxidative inactivation of phosphatase and

tension homolog (PTEN) and mutations in Nrf2 and P53

transcription factors (4, 73–75).

Surprisingly, MDSCs could still survive and function excellently

by producing high levels of ROS. How can MDSCs scavenge

superfluous ROS? This can be ascribed to some essential factors,

such as Nrf2, HMGB1, IDO1, calcium-calmodulin kinase 2

(CaMKK2), HIF-1a, pyruvate dehydrogenase kinase 1 (PDK1)

and phosphoenolpyruvate (PEP) (Figure 1)
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The Nrf2 transcription factor plays a crucial role in regulating

the antioxidative response and inducing the expression of

antioxidant and detoxification enzyme genes, including heme

oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1

(NQO1), catalase and SOD (76). Under normal circumstances,

Nrf2 combined with Kelch-like ECH-associated protein 1 (Keap1)

is limited to degradation in the cytoplasm. However, under

oxidative stress conditions, Keap1 is modified at a specific

cysteine position to disable its E3 ligase adaptor and release Nrf2.

The released Nrf2 translocates into the nucleus and binds to the

small musculoaponeurotic fibrosarcoma (sMaf) protein to form

active heterodimers that transactivate downstream antioxidant

response elements (AREs) and induce their transcription to exert

antioxidant effects (77). Nrf2 is greatly applied to reduce

intracellular oxidative stress and apoptosis. Compared to wild-

type MDSCs, Nrf2-deficient MDSCs display a greater

accumulation of intracellular ROS and attenuated antioxidant

enzyme induction (78). MDSCs in the host expressing Nrf2

reduce oxidative stress and cell apoptosis; thus, MDSCs can

survive longer (79, 80).

With the exception of Nrf2, the existence of HMGB1 in MDSCs

cannot be underestimated. HMGB1, a damage-associated molecular

pattern (DAMP) molecule, is a vital driver of MDSC accumulation

and immunosuppressive function, as reported in early studies. In

the tumor microenvironment, elevated ROS can increase
FIGURE 1

Regulation of ROS in MDSCs.
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cytoplasmic translocation and release HMGB1 (81). Subsequently,

HMGB1 promotes the survival and viability of MDSCs by inducing

autophagy (80, 82).

MDSCs also express some enzymes, such as IDO1 and

CaMKK2, to negatively modulate the generation of ROS. IDO1, a

heme-binding metabolic enzyme, consumes superoxide anion

radicals and peroxides to catalyze tryptophan (Trp) into

kynurenine (Kyn) (83). CD11b+Gr1+ MDSCs from IDO-KO

hosts enhanced ROS generation and downregulated the

expression of ROS scavenging genes (84, 85). Moreover, CaMKK2

could upregulate the transcription level of Nrf2, not NOX1 and

NOX2, to decrease the ROS level by phosphorylating and activating

its downstream target AMPK (86, 87).

In addition, hypoxia plays a crucial role in regulating the function

of tumor derived MDSCs. HIF-1a could decrease NOX2 expression

and excessive ROS production, which may give rise to the preferable

survival of MDSCs in the tumor microenvironment (88). In turn,

ROS could facilitate HIF-1a accumulation, and then HIF-1a
activates PDK1, which could prevent the persistence of potentially

harmful and superfluous mitochondrial ROS by inhibiting pyruvate

dehydrogenase to restrain the conversion of pyruvate to acetyl-CoA,

resulting in a lessened tricarboxylic acid (TCA) cycle (89, 90). Apart

from hypoxia, tumor cells can increase the glycolysis of MDSCs in the

tumor microenvironment. Tumor derived MDSCs displayed higher

glycolysis to prevent the cell apoptosis by restraining excess ROS

production. Most importantly, the glycolytic metabolite

phosphoenolpyruvate (PEP) is a crucial antioxidant agent that

averts MDSC apoptosis and contributes to MDSC survival by

hindering excessive ROS production (91).

In contrast to MDSCs, HSCs and CSCs have low ROS content.

Several signaling molecules, such as ataxia telangiectasia mutated

(TAM), PI3K/Akt, FoxO3 (FoxO transcription Factors 3),

phosphatase and tensin homology (PTEN), p53, Prdm16 (PR

domain-containing 16), HIF-1a, p38MAPK, and Nrf2, account

for the low ROS level to maintain stemness and quiescence in

HSCs (33). For example, neural stem cells have a high level of ROS

(92). CSC cells also have reduced levels of ROS, which may be

attributed to the variant isoform CD44v of the adhesion molecules

CD44 and CD13 that boosts the activity of the free radical

scavenging system (93, 94).

MDSCs can produce ROS by mitochondria and NOX2. MDSCs

can take up lipids through FATP2 to promote mitochondrial ROS

production. Moreover, the transcription factor STAT3 can increase

NOX2 expression to upregulate ROS levels in MDSCs. Then, the

elevated ROS level can activate the antioxidant system to eliminate

excessive ROS. Nrf2 could be transcriptionally activated to initiate

the expression of its downstream antioxidant genes. The high level

of ROS can also induce nuclear heterotopic HMGB1 to promote the

survival of MDSCs by autophagy. In addition, HIF-1a can activate

PDK1 to inhibit mitochondrial ROS production. IDO1 can

scavenge ROS with its metabolic characteristics. Another enzyme,

CaMKK2, can activate AMPK to decrease ROS production. The

glycolytic metabolite PEP could also prevent massive ROS

production to keep the ROS level in a suitable range.
Frontiers in Immunology 05102
7 Effects of MDSC-derived ROS

ROS signaling can activate cellular signaling pathways, such as

NF-kB, mitogen-activated protein kinase (MAPK), JAK/STAT and

phosphoinositide 3-kinase (PI3K)/AKT (4, 95). Furthermore, ROS

also enhance the activity of activator protein-1 (AP-1) by

stimulating MAPK cascades to dominate a wide range of cellular

processes and trigger P53 transactivation that mediates apoptosis,

and ROS can induce the expression of redox factor-1 (Ref-1),

leading to the transcriptional activity of HIF-1a (96, 97).

Generally, ROS are considered to have proinflammatory effects,

but it has also been reported that ROS derived from NOX2 have

anti-inflammatory functions (45). In the murine arthritis (CIA)

model, NADPH-deficient dendritic cells can produce more

proinflammatory cytokines and induce both Th1 and Th17

responses to promote autoimmune arthritis (98). In addition,

ROS derived from NOX2 could inhibit the NLRP3 inflammasome

via the PI3K/Akt/NF-kB pathway at 3 days after stroke (99).

ROS produced by MDSCs could have distinct impacts on

different cells (Figure 2). In the tumor microenvironment, PMN-

MDSCs release ROS into the extracellular space to directly and

indirectly support tumor progression. ROS produced by PMN-

MDSCs inhibited T-cell responses through p-STAT3 signaling.

ROS have an impact on the activation, proliferation and effect of

T cells by regulating cell surface thiol levels (44, 100). Specifically,

peroxynitrite could nitrate the TCR/CD8 complex, which prevented

it from combining with pMHC, and H2O2 reduced the TCRz chain
and IFN-g secretion of T cells to destroy T-cell function (43, 48). In

addition, when encountering circulating tumor cells (CTCs), PMN-

MDSCs can produce excessive levels of ROS to upregulate Notch1

expression in CTCs via the Nrf-2-ARE axis. Notch1 could bind to

the ligand jagged on the surface of PMN-MDSCs. In addition,

Nodal, the downstream target gene of Notch1 in CTCs, can bind to

Noda1 recptor cripto in PMN-MDSCs in turn, and the interaction

between these signals eventually promotes the survival and

proliferation of CTCs (101). Likewise, ROS derived from

macrophages and granulocytes can inhibit the activation,

proliferation and effect of T cells, and macrophages and activated

T cells produce ROS to induce regulatory T cells (102–105).

In addition to inhibiting T cells, ROS released by MDSCs have

immunosuppressive activities on B cells and NK cells under

infection pathological conditions. During virus infection, two

subsets of MDSCs rapidly accumulate at the infected site. In

detail, PMN-MDSCs inhibit the activation, proliferation and

function of NK cells and reduce the secretion of IFN-g and

granzyme B via ROS (106, 107), while M-MDSCs release ROS,

including superoxide, peroxynitrite, and nitric oxide, but not H2O2,

to suppress B-cell responses (108). Similarly, human PMN-MDSCs

isolated from buffy coats could also produce ROS and other soluble

mediators to suppress B-cell proliferation and antibody

production (109).

However, professional phagocytes, tumor cells and CSCs are

distinct from MDSCs. Professional phagocytes generate ROS to

effectively jeopardize pathogens by interacting with microbial
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components to impair bacterial metabolism (110). ROS in tumor

cells have dualistic impacts on the initiation, promotion,

progression and metastasis of tumor cells (111). Increased ROS

levels in tumor cells could facilitate tumorigenicity by enhancing the

proliferation, growth, survival, invasion and metastasis of tumor

cells. In contrast to these effects, ROS can suppress tumor growth by

inducing apoptosis, autophagy, necrosis and ferroptosis. Both

normal stem cells and CSCs exhibit low levels of intracellular

ROS content to maintain stemness (112).

In summary, MDSCs and ROS are interactive and mutually

beneficial. MDSCs can produce ROS to inhibit antigen-specific T

cells (32, 47). In turn, ROS could regulate the differentiation and

immunosuppressive activity of MDSCs. In the absence of ROS, the

function of MDSCs could be lost to suppress adaptive T-cell

responses (43). Additionally, ROS can affect the differentiation of

myeloid cells by regulating related gene expression. High levels of

ROS can prevent MDSCs from differentiating into mature myeloid

cells, while low levels of ROS resulting from catalase and a lack of

NOX2 activity enable MDSCs to differentiate into TAMs and DCs

(113). How to control ROS levels in MDSCs is a priority and needs

further investigation.

ROS produced by MDSCs can have diverse effects on different

kinds of cells. MDSCs-derived ROS can promote the proliferation

and metastasis of circulating tumor cells by Nrf2/Notch1/Nodal

signaling. MDSCs-derived ROS have an inhibitory effect on other

immune cells, such as T, B and NK cells, and promote disease

progression by inhibiting their function.
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Currently, a variety of immune therapies to target MDSCs are

being exploited to improve the efficacy of cancer immunotherapy.

MDSCs mediated immuno- suppressive function could be

abrogated when ROS production is inhibited (114). Remarkable

achievements have been made in strategies to lessen the ROS

production and block the induction of oxidative stress in MDSCs

(115) (Table 1).

The most representative molecules of anti-inflammatory and

antitumor drugs are bardoxolone methyl (CDDO-Me), nitroaspirin

and Embelin. On account of its capacity to upregulate several

antioxidant genes, including NAD(P)H: quinone oxidoreductase 1

(NQO1), thioredoxin, catalase, superoxide dismutase and heme

oxygenase, CDDO-Me could efficiently abrogate the immune

suppressive effect of MDSCs and enhance T-cell function by

activating the target gene NQO1 to decrease MDSC-mediated

ROS production, while CDDO-Me did not affect the NO level in

MDSCs (116). Nitroaspirin has also been proven to inhibit ROS

production and limit the activity of Arg-1 and iNOS in MDSCs

(18). Treatment combining vaccination against gp70 with

nitroaspirin could inhibit MDSC function and enhance antitumor

activity (117). Embelin has anti-inflammatory and antitumor effects

in previous studies. It could impair the immunosuppressive activity

of MDSCs by reducing the generation of ROS through STAT3

signaling to improve the antitumor immune response in colitis-

associated cancer mice (129).
FIGURE 2

Regulation of other cells by MDSC-derived ROS.
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TABLE 1 Effect of ROS-targeted drugs on MDSCs.

Drug Type Disease Mechanism References

CDDO-Me Synthetic triterpenoid Renal cell carcinoma or soft tissue
sarcoma patients
EL-4 thymoma, MC38 colorectal
carcinoma and Lewis lung cancer
mouse model

Activate the target gene NQO1 to decrease ROS
level

(116)

Nitroaspirin Nitro derivative CT26 colon carcinoma mouse
model

Decrease ROS level (18, 117)

Sanguinarine (SNG) Benzophenone alkaloid Lewis lung cancer mouse model Decrease ROS level (118)

Baicalein Traditional Chinese
medicine

Systemic lupus erythematosus
mouse model

Enhance Nrf2 activation to decrease ROS level (119)

Jianpi Huayu Decoction
(JHD)

Traditional Chinese
medicine

H22 hepatocellular carcinoma
mouse model

Decrease ROS level (120)

1a,25-Dihydroxyvitamin
D3 (calcitriol)

Vitamin D 4-nitroquinoline 1-oxide (4-
NQO)–induced esophageal cancer
mouse model

Decrease the phosphorylation of STAT3 to decrease
ROS level

(121)

Endostatin (ES) Fragment derived from
collagen XVIII

Orthotopic renal cell carcinoma
mouse model

Decrease ROS level (122)

Ferumoxytol Iron supplement LPS-induced sepsis mouse model Decrease ROS level (123)

L-NIL iNOS inhibitor B16 melanoma mouse model Decrease STAT3 activation to decrease ROS level (124)

Histamine
dihydrochloride (HDC)

NOX2 inhibitor MC38 colorectal carcinoma and
4T1 mammary carcinoma mouse
model

Decrease ROS level in NOX2-dependent way (125)

Celecoxib COX-2 inhibitor AB1 mesothelioma mouse model Decrease ROS level (126)

SAHA Histone deacetylase
inhibitor

4T1 mammary tumor mouse
model

Increase ROS level (127)

Alisertib Aurora-A kinase inhibitor 4T1 mammary tumor mouse
model

Downregulate the mRNA expression level of CYBB
and NCF1 and inhibit JAK2-STAT3 pathway to
decrease ROS level

(128)

Embelin X-linked inhibitor of
apoptosis protein (XIAP)
inhibitor

Colitis-associated cancer mouse
model

Limit C/EBPb and STAT3 signaling to decrease
ROS level

(129)

Sildenafil Phosphodiesterase-5
inhibitor

Immunocompetent murine tumor
models of major surgery

Decrease ROS level (130)

N-acetylcysteine (NAC) ROS inhibitor P493 B lymphocytoma xenograft
mouse model

Stimulate the degradation of HIF-1a to decrease
ROS level

(131)

Pam3CSK4 TLR2 agonist Hepatocellular carcinoma mouse
model

Decrease ROS level (132)

Swertianolin Isolated from plant
gentianella acuta

Sepsis mouse model Decrease ROS level (133)

Curcumin Derived from plant
turmeric

Lewis lung cancer mouse model Decrease ROS level (134)

Withaferin A (WA) Natural product 4T1 mammary tumor mouse
model

Decrease the phosphorylation of STAT3 to decrease
ROS level

(135)

polysaccharide nCKAP-2 Isolated from plant
Curcuma kwangsiensis

MSC2 cells Activate TLR4-NF-kB signaling to decrease ROS
level

(136)

liposomal doxorubicin
and liposomal vaccine
containing E75

Liposomal antibiotics and
the liposomal peptide

TUBO breast cancer mouse model Decrease ROS level (137)

GMI An immunomodulatory
peptide from Ganoderma
microsporum

S.aureus-induced periprosthetic
joint infection mouse model

Decrease ROS level (138)

(Continued)
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In addition, many inhibitors are being exploited to reduce ROS

level such as N-acetylcysteine (NAC), L-NIL, histamine

dihydrochloride (HDC), celecoxib, alisertib, SAHA and sildenafil.

NAC, a well-established antioxidant that had the ability to reduce

ROS and increase the extracellular pool of cysteine. Many animal

models have verified its antitumor efficacy. NAC could stimulate

the degradation of HIF-1 and inhibit its activity by neutralizing ROS

(131). Moreover, the iNOS inhibitor L-NIL, NOX2 inhibitor HDC

and COX-2 inhibitor celecoxib could weaken MDSCs function by

downregulating ROS production, resulting in enhanced antigen-

specific cytotoxicity of CTL (124–126).

Along with inhibitors that target the effector molecules of the

immunosuppressive activity of MDSCs, enzyme inhibitors can

achieve similar outcomes. The selective Aurora-A kinase inhibitor

alisertib directly weakened the immunosuppressive function of

MDSCs by notably downregulating the mRNA expression levels

of associated genes, such as NOS2, S100A8, S100A9, CYBB and

NCF1, and compromising ROS production by inhibiting the JAK2-

STAT3 pathway (128). Phosphodiesterase-5 (PDE-5) inhibitors

reversed surgery-induced PMN-MDSC immunosuppression by

downregulating the level of ROS (130).

Out of the ordinary, the histone deacetylase inhibitor SAHA

could augment the intracellular ROS to induce apoptosis in MDSCs.

That might be a promising and novel MDSCs-targeted therapy

(127). In addition, TLR2 agonist Pam3CSK4 could attenuate

hepatocellular carcinoma progression by decreasing ROS content

and promoting MDSCs polarization (132).

Natural products are increasingly being discovered and

researched in tumor therapy. With the deeper comprehension of

natural products, many plant extracts have antioxidant impacts.

Among them, withaferin A (WA), a component of the root extract

of the plant Withania somnifera Dunal (WRE), could decrease ROS

production in MDSCs through a STAT3-dependent mechanism

(135). The polysaccharide nCKAP-2 contained in native Curcumae

Rhizoma (CR) could induce MDSC apoptosis in a dose-dependent

manner through the TLR/NF-kB pathway. In addition, nCKAP-2

can significantly relieve the inhibitory effect of MDSCs on T cells by

reducing the ROS level (136). Moreover, curcumin has been

reported to lessen the production of ROS and the Arg-1

expression level in MDSCs, which not only inhibited the

accumulation of MDSCs in spleen and tumor tissue but also

weakened the immunosuppressive function of MDSCs (134).

Swertianolin isolated from Swertia and sanguinarine (SNG)

derived from Sanguinaria canadensis could prominently decrease

the secretion of ROS to inhibit the immunosuppressive effect of

MDSCs (118, 133).

Traditional Chinese medicines have made enormous

achievements in antioxidant activity. Baicalein is a traditional
Frontiers in Immunology 08105
Chinese herbal medicine. Baicalein prevented the expansion and

function of MDSCs in lupus mice, which can be attributed to

decreased ROS levels and enhanced Nrf2 activation (119). Jianpi

Huayu decoction (JHD), another traditional Chinese medicine, is

an experienced prescription for tumor therapy. When MDSCs were

treated with JHD, MDSCs could differentiate into macrophages and

dendritic cells, and ROS levels were reduced (120).

Furthermore, endostatin (ES) derived from collagen XVIII has

the potential to target PMN-MDSCs selectively, resulting in

obviously reduced ROS production (122). Doxorubicin (Dox), the

conventional chemotherapy to reduce the number of MDSCs in

tumor tissues and promote antitumor responses, is converted into a

liposomal formulation to improve the efficacy of therapy, as well as

the peptide named the E75 epitope (Pep) originating from human

epidermal growth factor receptor 2 (HER2/neu). Combination

therapy with liposomal nonliposomal Dox and liposomal Pep was

the best treatment compared to other single therapies, which

decreased ROS generation and downregulated multiple genes

related to immunosuppressive function, such as S100A8, S100A9,

Arg-1 and iNOS (137). 1a,25-Dihydroxyvitamin D3 (calcitriol)

supplementation could reverse the increased level of ROS in IL-6-

induced MDSCs (121). In the same way, iron supplementation with

ferumoxytol could attenuate MDSC function by significantly

downregulating ROS production and inhibiting the expansion of

MDSCs in LPS-induced septic mice (123). In addition, GMI is a

fungal immunomodulatory protein isolated from Ganoderma

microsporum that reduces MDSC expansion in bone marrow cells

(BMCs) stimulated by S. aureus biofilms, which was attributed to

increased cytokine expression and a reduction in ROS levels (138,

140, 141). L-4F, an apolipoprotein A-I (ApoA-I) mimetic peptide,

inhibited the immunosuppressive function of PMN-MDSCs but not

M-MDSCs by decreasing ROS and H2O2 production (139).
Conclusion

Based on a previously published review, this paper further

updated and listed the new molecules found in recent years that

can regulate ROS levels in MDSCs and comprehensively

summarized the therapeutic drugs that can target ROS levels in

MDSC s . T h i s p r o v i d e s a t r e a tm en t s t r a t e g y f o r

cancer immunotherapy.

Compared to other myeloid cells, such as macrophages or

tumor cells, ROS play an irreplaceable and distinctive role in

MDSCs. On the one hand, MDSCs are required to produce ROS

to suppress the antitumor immune response. In turn, excessive ROS

can be removed to promote MDSC survival comfortably by

activating factors, such as Nrf2, HMGB1, HIF-1a, IDO1,
TABLE 1 Continued

Drug Type Disease Mechanism References

ApoA-I mimetic peptide
4F (L-4F)

An apolipoprotein A-I
(ApoA-I) mimetic peptide

Pancreatic cancer mouse model Decrease the phosphorylation of STAT3 to decrease
ROS level

(139)
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CaMKK2 and PEP. On the other hand, an appropriate level of ROS

can prevent further differentiation of MDSCs to better maintain

their state and nature. However, other myeloid cells, such as

macrophages, have the same sources of ROS as MDSCs and

regulate intracellular ROS levels by different factors, such as P2X7

and BAI1. Tumor cells can also induce autophagy to scavenge

excessive ROS.

It is widely believed that ROS can promote the development of

tumors, but a large number of studies have shown that ROS can

promote tumor cell apoptosis and death. At present, studies are

emerging that tend to exploit immunotherapies that utilize the

ability of ROS to kill tumor cells. Therapy targeting ROS in MDSCs

can be therapeutic by impairing MDSC differentiation and function.

How to combine targeted ROS therapy in MDSCs and tumor cells

requires further consideration.
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Peptostreptococcus anaerobius-
induced chemoresistance in
colorectal cancer: the important
roles of MDSC recruitment and
EMT activation

Jinhua Gu1†, Xiaojun Lv1†, Wenwen Li1, Guangcai Li2,
Xialian He2, Ye Zhang2, Lihong Shi3* and Xiaoqian Zhang1*

1Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, China,
2School of Clinical Medicine, Weifang Medical University, Weifang, China, 3College of Rehabilitation
Medicine, Weifang Medical University, Weifang, China
Peptostreptococcus anaerobius (P. anaerobius, PA) in intestinal flora of patients

with colorectal cancer (CRC) are associated with poor prognosis. Studies have

shown that P. anaerobius could promote colorectal carcinogenesis and

progression, but whether P. anaerobius could induce chemoresistance of

colorectal cancer has not been clarified. Here, both in vitro and in vivo

experiments showed that P. anaerobius specifically colonized the CRC lesion

and enhanced chemoresistance of colorectal cancer to oxaliplatin by recruiting

myeloid-derived suppressor cells (MDSCs) into the tumor microenvironment.

Furthermore, this study revealed that it was the increased secretion of IL-23 by

MDSCs that subsequently facilitated the epithelial–mesenchymal transition

(EMT) of tumor cells to induce chemoresistance of CRC by activating the

Stat3-EMT pathway. Our results highlight that targeting P. anaerobius might be

a novel therapeutic strategy to overcome chemoresistance in the treatment

of CRC.

KEYWORDS

Peptostreptococcus anaerobius , chemoresistance, MDSCs, IL-23, EMT,
colorectal cancer
1 Introduction

Colorectal cancer (CRC) is the third most common diagnosed cancer and the second-

leading cause of cancer death worldwide. Moreover, in the past few decades, CRC is shifting

to diagnosis at a younger age and a more advanced stage (1–3). Despite the fact that

palliative chemotherapy for advanced-stage colorectal cancer has led to substantial

improvement of overall survival, over half of CRC patients suffered from
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chemoresistance, and the pervasive development of acquired

chemoresistance has always been the main cause of cancer relapse

and metastasis (4–6). Therefore, uncovering the underlying

mechanisms associated with CRC chemoresistance is

indispensable for designing novel treatment strategies.

The intestinal flora, representing the largest microbial reservoir

in human body, is intimately associated with human growth,

nutritional metabolism, and disease onset (7–9). The cecum and

colon harbor the most dense and diverse communities of bacteria in

gut microhabitats. These bacteria can be found in feces, gut lumen,

colon mucus layers, colorectal epithelia, and even tumor stroma (10,

11). Meanwhile, it is remarkable that the intestinal flora has been

found to be involved in regulating the onset and progression of CRC

by modulating the tumor microenvironment (12). It is reported that

some intestinal flora, such as Streptococcus bovis, Enterotoxigenic

Bacteroides fragilis, and Enterococcus faecalis, can promote the

occurrence, development, and chemoresistance of CRC through

inflammatory reaction, genotoxins, oxidative stress, metabolites,

and biofilms (11). In particular, certain bacteria such as Gamma-

proteobacteria and F. nucleatum can penetrate mucus and lead to

chemoresistance by metabolizing chemotherapeutics and activating

autophagy in colorectal tumor (13, 14). Peptostreptococcus

anaerobius (P. anaerobius, PA), an anaerobic Gram-positive

bacterium that commonly exists in human oral and intestinal

tracts, has been found in high abundance in intestinal flora of

chemoresistant CRC patients (13, 15–18) and P. anaerobius could

d i r ec t l y educa t e CRC ce l l s and the cor re spond ing

microenvironment to promote cancer progression (13, 17–19).

However , whether P. anaerobius could induce CRC

chemoresistance and, if so, its underlying mechanism,

remains unclear.

Recruited from immature myeloid cells by tumor-derived

growth factors and inflammatory factors (20–22), MDSCs play
Frontiers in Immunology 02111
important roles in modulating immune responses to promote

CRC progression (20). CRC patients with high levels of MDSCs

have worse outcomes (23–27) than those with low levels of MDSCs

(28–30). Remarkably, a significantly high enrichment of MDSCs in

a CRC model with P. anaerobius-treated ApcMin/+mice was

reported recently (19). Consistently, another prognostic analysis

showed that P. anaerobius was enriched in high-risk stage III colon

cancer samples, and the invaded bacteria activated tumor-

associated myeloid cells and caused them to produce the cytokine

IL-23, which was significantly characteristic in the high-risk group

(31). These findings indicated that both P. anaerobius and MDSCs

were closely related to the development of CRC, but the

relationships among P. anaerobius, MDSCs, and chemoresistance

still need to be further clarified.

In this study, both in vitro and in vivo experiments

demonstrated that P. anaerobius could promote chemoresistance

of CRC to oxaliplatin by colonizing colorectal tumor lesion and

facilitating the recruitment of MDSCs into the tumor

microenvironment, which drove EMT and chemoresistance of

tumor cells by releasing IL-23 (Figure 1).
2 Materials and methods

2.1 Bacterial culture

P. anaerobius (ATCC27337) was purchased from Ningbo

Mingzhou Biotechnology Co. Ltd (B81243, MingZhouBio). The

bacteria were maintained in Modified Reinforced Clostridial Broth

Medium (MD039; ATCC Medium 2107, Shandong Topu Biol-

Engineering Co. Ltd) in an anaerobic jar (D-110, MITSUBISHI).

The anaerobic condition was created by the usage of Anaeropack

(D-04, AN0035; MGC AnaeroPackTM Series, MITSUBISHI).
FIGURE 1

The proposed mechanistic scheme of P. anaerobius promoting colorectal chemoresistance.
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2.2 Animal experiments

MC-38 cells (1 × 106 cells per mouse) were implanted in the

cecum of C57BL/6 mice (male, 8 weeks old). Two weeks after

implantation, mice were gavaged with P. anaerobius suspension (1
Frontiers in Immunology 03112
× 108 c.f.u.) concurrently with administration of oxaliplatin (5 mg/

kg/3 days) intraperitoneally for 3 weeks, and feces were collected

weekly for qPCR analysis (Figure 2B). In addition, anti-Gr-1

monoclonal antibody (32) (anti-Gr-1 mAb, 200 mg/mouse, three

times/week, BE0075, Bio X cell) or anti-mouse IL-23 monoclonal
A

B

D

E

C

FIGURE 2

P. anaerobius attenuated the therapeutic effect of oxaliplatin in CRC mice. (A) Representative morphologies and histological images (H&E) of CRC tissues.
Scale bar: 100 µm (left), 25µm (right). (B) Schematic diagram of experimental design and timeline of CRC mice model (n = 6). PA: P. anaerobius; OXA:
oxaliplatin; anti-Gr-1mab: anti-mouse Gr-1 monoclonal antibody; anti-IL-23 mAb: anti-mouse IL-23 monoclonal antibody. (C) The amount of P. anaerobius
in stool samples of CRC mice determined by qPCR (mean±SD, two-tailed unpaired Student’s t-test). (D) Representative TEM images of P. anaerobius (red
arrows) attaching to colon tumor tissue. Scale bars: 500 nm for PA images, 2 mm for colon tumor tissue images. (E) Representative tumor images and
statistical analysis of tumor weights of CRC in different groups (n = 6, mean ± SD, one-way analysis of variance).
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antibody (anti- IL-23 mAb, 200 mg/mouse/week, BE0313, Bio X

cell) was intraperitoneally given to the corresponding group of mice

respectively for 3 weeks to observe the function of MDSCs and IL-

23 in P. anaerobius-induced chemoresistance. Then, the mice were

sacrificed and colonic tumors were collected and weighed. All

animal work was approved by the Animal Experimentation Ethics

Committee of Weifang Medical University.
2.3 Assessment of colonic histopathology

Colonic tumor specimens were formalin-fixed and paraffin-

embedded for histologic examination. Sections of 5 mmwere stained

with H&E and reviewed in a blinded manner by an experienced

pathologist. Dysplasia was defined according to the latest World

Health Organization Classification of Tumors of the

Digestive System.
2.4 Microbial DNA extraction and
P. anaerobius quantification

Stool DNA was extracted by ZR Fecal DNA MiniPrep (D2700,

Beijing Solarbio Science & Technology Co., Ltd) from the feces

samples of mice. DNA was quantified using a Nanodrop 2000

spectrophotometer (Thermo Fisher Scientific, Waltham, MA). Two

microliters of DNA (0.5 ng) was used in each 20 mL of 2×SYBR

Green qPCRMaster Mix (G3320, Servicebio) reaction. The reaction

was performed in triplicate and analyzed on a QuantStudio 7 Flex

System (CFX Connect, Bio-Rad). The primers for P. anaerobius

were GTA AAG GGT GCG TAG GTG GTC (forward 5’→3’) and

CCT CAG TGT CAG TTG CAG TCC (reverse 5’→3’), and primers

for total bacteria were GTG STG CAY GGY TGT CGT CA

(forward5’→3’) and ACG TCR TCC MCA CCT TCC TC

(reverse 5’→3’).
2.5 Transmission electron microscopy

Tumor tissues were fixed in 1% OsO4 in 0.1 MPB (pH 7.4) and

rinsed three times in 0.1 MPB (pH 7.4). After that, the samples were

dehydrated, embedded, cut into 50-nm sections, and stained with

2% uranium acetate and 2.6% lead citrate. A transmission electron

microscope (HT7800/HT7700, HITACHI) was used to obtain

corresponding images.
2.6 Flow cytometry

Multicolor flow cytometry (FCM) was performed to observe the

percentage of MDSCs in the bone marrow of CRC mice. After being

freed of muscles and tendons, the femurs and tibiae of mice were

placed in 70% ethanol for 2 min and subsequently washed in PBS,

then a syringe was used to flush bone marrow cells from the femurs

and tibias with PBS. After red blood cells were lysed, flushing fluid

was filtered through a 100-mm membrane to obtain suspension of
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single cells. Cells were incubated with Fc blocking antibody

(BioLegend, 101319) for 15 min and then stained with

fluorescence-conjugated antibodies of surface markers CD11b

(clone M1/70, eBioscience, 11-0112-82) and Gr-1 (clone RB6-

8C5, Biogems, 83122-80-25) for 30 min. The samples were

detected by a BD FACS Aria Fusion Flow Cytometry Cell Sorter

(BD Biosciences), and the data were analyzed using FlowJo v.9

software (FlowJo LLC).
2.7 Immunofluorescence

Slides (3–4 µm thick) of colonic tumor specimens were

prepared and incubated with FITC-conjugated anti-mouse CD11b

(BioLegend, USA, 101205) and APC-conjugated anti-mouse Gr1

(BioLegend, USA, 101211) overnight at 4°C. Images were acquired

using a fluorescence microscope (Olympus, Japan). Quantification

of fluorescent signals was performed using ImageJ software. The

density of infiltrated MDSC in the tumor microenvironment was

evaluated by averaged CD11b+Gr1+ co-positive (red and green) area

from at least three random 0.42 mm2
fields within the tumors.
2.8 Cell culture

The colon cancer cell line MC-38 was obtained from ATCC and

cultured in the usual culture medium composed of RPMI-1640

medium (GIBCO, Carlsbad, CA) and 10% fetal bovine serum (FBS)

at 37°C in a humidified 5% CO2 atmosphere. For bacterial co-

culture, MC-38 cells were exposed to P. anaerobius with a

multiplicity of infection (MOI) of 200 for 6 h under anaerobic

conditions. Then, the medium containing P. anaerobius was

replaced with the usual medium supplemented with 2%

penicillin/streptomycin and 10 mg/mL gentamicin. After 24 h,

conditioned medium was collected and named PA+MC-38-CM

for further research.
2.9 Wright’s Giemsa staining

Naive MDSCs collected through flow cytometry were prepared

by cytospin to perform morphological assessment using Wright–

Giemsa (Leagene, Beijing, China) staining according to the

manufacturer’s protocol.
2.10 Migration and invasion assay

Transwell assays for evaluating migration and the invasion

ability of cells were conducted using 24-well Millicell Hanging

Cell Culture Insert 8.0 µm PET (Merck Millipore, Darmstadt,

Germany). For migration assay of MDSCs, 2 × 105 cells per well

were incubated in serum-free 1640 in the upper chamber with usual

culture medium in lower wells supplemented with PA-CM (PA

supernatant), MC-38-CM (MC-38 supernatant), or PA+MC-38-

CM, respectively. For invasion assay of MC-38 cells (1 × 105 cells
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per well), 8.0-µm PETs were coated with 10% Matrigel matrix to

imitate extracellular matrix and the usual culture medium in lower

wells was supplemented with MDSCs-CM (supernatant of MDSCs

cultured with PA-MC-38-CM), IL-23 (40 ng/mL, ab259423,

Abcam), or anti-IL-23 (100 ng/mL, BE0313, Bio X cell) +

MDSCs-CM, respectively. After 48 h, migrating/invasion cells on

the basolateral side of the chamber membrane were fixed with

formaldehyde and stained with crystal violet (Merck Millipore,

Darmstadt, Germany). The number of migrating/invading cells

was counted under a light microscope at a magnification of ×400

in five random fields. All assays were repeated at least three

times independently.
2.11 For wound-healing assay

MC-38 cells were pretreated with MDSCs-CM, IL-23 (40 ng/

mL, ab259423, Abcam) or anti-IL-23 (100 ng/mL, BE0313, Bio X

cell) + MDSCs-CM for 24 h respectively. The wound-healing assay

was performed by scratching a single cell layer with a pipette tip.

Images of the scratch area were recorded at five random spots at 0

and 48 h. The migration distance of the wound edge was measured

using a standard size field for each image. The mean migration

distances of the five spots were calculated in triplicate and all data

were statistically analyzed.
2.12 ELISA

Proteins were extracted from the tumor tissues as described

previously (33). The expression levels of VEGF, HGF, IL-6, and IL-

23 in MDSCs culture supernatant with corresponding stimulations

and the IL-23 level in tumor tissues were analyzed by commercial

ELISA kits (R&D Systems) according to the manufacturer’s

protocol. The color reaction was measured as OD450 units on the

microplate reader (Model 550; Bio-Rad). The concentration of

cytokines was determined via a standard curve that was obtained

using the kit’s standards. Experiments were performed in triplicate.
2.13 Cell viability assay

The viability of MC-38 cells was evaluated by the CCK-8

(BS350B, Biosharp) assay. Co-culture of P. anaerobius and MC-

38 cells or PA-CM treatment were conducted to observe the

influence of P. anaerobius on the efficacy of OXA (0.1360 mM) to

MC-38 cells (5 × 103 cells per well). In addition, the efficacy of OXA

(0.1360 mM) to MC-38 cells treated with MDSCs-CM, IL-23, and

anti-IL-23+MDSCs-CM (100 ng/mL, BE0313, Bio X cell)

respectively, were also detected. After cells (5 × 103 cells per well)

were incubated for 24 h, CCK-8 assay was conducted by adding 10

mL of CCK-8 reagent to each well and incubating for 3 h. Finally, the
optical density was determined at 450 nm using the microplate

reader (Model 550; Bio-Rad). Experiments were performed at least

in triplicate.
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2.14 Western blot

The proteins were isolated from cells, separated by 10% SDS–

PAGE, and transferred onto PVDF membranes. Then, the

membranes were blocked with 5% BSA for 2 h and incubated

with primary antibodies overnight at 4°C and secondary antibodies

for 1 h at room temperature, respectively. Anti-ABCC1 (1:1,000, bs-

24241R), Anti-ABCB1 (1:1,000, bs-0563R), Anti-ERCC1 (1:1,000,

bs-1726R), Snail (1:2,000, bs-1371R), and Twist (1:2,000, bs-2441R)

were obtained from Bioss (Bioss, BeiJing); N-cadherin (1:1,000,

14215S), E-cadherin (1:1,000, 14472S), Slug (1:2,000, 9585T), Stat3

(1:1,000, 9139T), and p-Stat3 (1:1,000, 4113S) were obtained from

Cell Signaling Technology (MA); b-actin (1:5,000, 81115-1-RR) was

obtained from Proteintech (MA); Goat-anti-mouse IgG (1:5,000,

A0216) was obtained from beyotime (Shanghai). Membranes were

exposed to Pierce ECL Western Blotting Substrate (GE Healthcare).

Band intensities were determined using ImageJ (National Institutes

of Health). The band intensities were represented by the averages of

three independent experiments.
2.15 Statistical analysis

A Student’s t-test was performed to compare the variables of the

two sample groups. Multiple group comparisons were made by one-

way analysis of variance (ANOVA) followed by Tukey’s test. p-

value less than 0.05 was considered statistically significant. Data

were expressed as mean ± SD from three independent experiments.

All tests were performed using GraphPad Prism, version 8.0

(GraphPad, La Jolla, CA) or SPSS, version 20 (SPSS Inc,

Chicago, IL).
3 Results

3.1 Peptostreptococcus anaerobius
accumulated in implanted colon cancer
lesion and attenuated the therapeutic
effect of oxaliplatin

To investigate the roles of P. anaerobius in CRC

chemoresistance, a colorectal cancer model in C57 mice was

constructed by implanting MC-38 cells in situ. Two weeks later,

three randomly selected mice were dissected to observe tumor

growth and all reached 80–100 mm3 tumor volume (Figure 2A).

Then, P. anaerobius (1 × 108 c.f.u.) were gavaged to CRC mice daily

accompanied with oxaliplatin treatment (5 mg/kg/3 days) for 3

weeks (Figure 2B). Quantitative PCR proved that P. anaerobius

were successfully colonized in intestinal flora (Figure 2C) and

transmission electron microscopy (TEM) showed that P.

anaerobius was more likely to accumulate in the colon cancer

lesion than in normal intestinal epithelium (Figure 2D). In

addition, it seemed that the accumulation of P. anaerobius could

promote the growth of implanted colon cancer since the weight of

CRC treated with P. anaerobius was higher than that without P.
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anaerobius treatment. Interestingly, the supernatant of P.

anaerobius had no obvious influence on tumor proliferation

(Figure 2E). Furthermore, P. anaerobius significantly hindered the

effectiveness of oxaliplatin while the growth of implanted colon

cancer without P. anaerobius gavage could be effectively inhibited

by oxaliplatin (Figure 2E), indicating that P. anaerobius could

attenuate the therapeutic effect of oxaliplatin in CRC mice.
3.2 Peptostreptococcus anaerobius
promoted drug resistance by recruiting
MDSCs into colorectal cancer
microenvironment

As having been reported that the accumulation of P. anaerobius

in colorectal cancer lesion was closely related to chemoresistance (19,

31), this study also found that P. anaerobius could attenuate the

therapeutic effect of oxaliplatin in a mouse model. Meanwhile, in vitro

cell experiments showed that either the co-culture of MC-38 and PA

or PA supernatant stimulation did not affect the sensitivity of MC-38

to oxaliplatin (Figure 3A). Since MDSCs have been reported to be

modulated by P. anaerobius and be responsible for developing

chemoresistance (21), the MDSCs in bone marrow of CRC mice

were analyzed by flow cytometry. The result showed that the

amount of MDSCs was significantly higher in bone marrow of

CRC mice treated with P. anaerobius (Figure 3B). In addition,

immunofluorescence showed a significant increase of MDSC

infiltration in colorectal tumor lesions of mice treated with P.

anaerobius (Figures 3C, D). These findings are consistent with

previously reported studies that found increasing proportion of

MDSCs in CRC with P. anaerobius infection (19). Furthermore,

MDSCs collected from the bone marrow of CRC mice (Figure 3E)

were incubated by PA-CM, MC-38-CM, or PA+MC-38-CM,

respectively. Interestingly, the chemotaxis ability of MDSCs treated

with PA+MC-38-CM increased significantly while compared with

those treated with MC-38-CM and PA-CM (Figure 3F), indicating

that it was the interaction between P. anaerobius and MC-38 but not

the metabolites of P. anaerobius that induced the infiltration of

MDSCs into the tumor microenvironment.

Anti-Gr-1 mAb can selectively cut down MDSCs (34) and has

no obvious influence on other immune cells, then anti-Gr-1 mAb

(200 mg/mouse, three times/week) was intraperitoneally injected in

mice to eliminate MDSCs both in the bone marrow (Figure 3B) and

in the tumor microenvironment (Figures 3C, D). It was interesting

to find out that the tumor was evidently diminished while MDSCs

were eliminated by Anti-Gr-1 in the PA+OXA+Anti-Gr-1 group

compared with the PA+OXA group (Figure 2E), and tumor was also

diminished in the Anti-Gr-1-control group compared with the M

group; however, there was no statistically significant difference. This

could be attributed to the lower levels of MDSCs in the M group,

and the fact that Anti-Gr-1 mAb does not directly exert

cytotoxic effects on the tumor. Taken together, these data

suggested that P. anaerobius could facilitate chemoresistance by

promoting the recruitment of MDSCs into the colorectal

cancer microenvironment.
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3.3 IL-23 secreted by MDSCs promoted
chemoresistance of CRC cells

It has been reported that elevated MDSCs could contribute to

tumor progression by remodeling TME through autocrine and

paracrine (35–37), and a number of soluble factors secreted by

MDSCs, such as IL-6, IL-23, HGF, and VEGF, in various tumors

including CRC were associated with poor chemotherapeutic effect

(31). Therefore, IL-6, IL-23, HGF, and VEGF in the culture medium

of MDSCs were detected by ELISA, and the results showed that the

IL-23 level of MDSCs treated with PA+MC-38-CM increased

significantly and was the highest in all groups (Figure 4A). In

addition, a similar result was obtained in vivo that IL-23 in tumor

tissues of CRC mice treated with P. anaerobius was significantly

higher than that of the CRC model mice (Figure 4B). Furthermore,

IL-23 in tumor tissues decreased remarkably after MDSCs were

eliminated by anti-Gr-1 mAb (Figure 4B).

Next, the role of IL-23 on CRC chemoresistance was

investigated. CCK-8 assay was used to test the viability of MC-

38 cells treated with oxaliplatin, and the IC50 of oxaliplatin to

MC-38 cells was 0.136 mM (Figure 4C). As expected, both

MDSCs-CM and recombinant IL-23 boosted chemoresistance

of MC-38 cells to oxaliplatin, and interestingly, anti-IL-23

antibody attenuated MDSCs-CM induced chemoresistance of

MC-38 cells to oxaliplatin (Figure 4D). Consistent with the

results of CCK-8 assay, Western blot analysis also showed

obviously increased expression of chemoresistance biomarkers

(ABCB1, ABCC1, and ERCC1) in MC-38 cells stimulated by

MDSCs-CM or IL-23 while anti-IL-23 antibody dramatically

diminished the expression of ABCB1, ABCC1, and ERCC1 in

MDSCs-CM-treated MC-38 cells (Figure 4E). Moreover, the

tumor weight was significantly reduced by intravenous

administration of anti-IL-23 antibody (Figure 2E). These

results strongly suggested that IL-23 secreted by MDSCs

promoted chemoresistance of CRC cells to oxaliplatin.
3.4 IL-23 promotes chemoresistance
by activating the EMT in colorectal
cancer cells

Subsequently, the underlying mechanism of chemoresistance

induced by interaction of P. anaerobius and colorectal cancer was

investigated. Epithelial–mesenchymal transition (EMT) has always

been a major cause of chemoresistance in various kinds of cancers

(38) and notable mesenchymal-like fusiform morphological

changes were observed in MC-38 cells treated with MDSCs-CM

(Figure 5A); thus, wound-healing assay and transwell invasion assay

were carried out to observe the migration and invasion ability of

MC-38 cells. The results showed that MDSCs-CM and IL-23 could

significantly enhance the migration and invasion ability of MC-38

cells, and this enhancement could be inhibited by anti-IL-23

antibody (Figures 5B, C). Furthermore, Western blot analysis

showed that N-cadherin, Snail, Slug, Twist, and p-Stat3

expression were significantly upregulated in MDSCs-CM-treated
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FIGURE 3

P. anaerobius promoted oxaliplatin resistance by recruiting MDSCs into the CRC microenvironment. (A) Viability of MC-38 cells co-cultured with P.
anaerobius or in conditioned medium supplemented with PA supernatant (CCK-8 assay, p > 0.05, PA indicated by red arrow). (B) MDSCs (Gr-
1+CD11B+) from bone marrow of CRC mice detected by multicolor flow cytometry. (C, D) MDSCs infiltrated into the tumor microenvironment
detected by fluorescein isothiocyanate (FITC) with anti-mouse CD11b antibody (green), allophycocyanin (APC), anti-mouse Gr-1 antibody (red), and
DAPI (blue). (E) Morphological feature of MDSCs collected by FCM (Giemsa staining, purple-blue leaf-shaped or round-type nucleus and almost
colorless cytoplasm). (F) Chemotaxis ability of MDSCs treated with PA-CM, MC-38-CM, and PA+MC-38-CM (co-culture medium of PA and MC-38),
respectively. (A–F) Data were presented as mean ± SD, p-values were determined by one-way analysis of variance. Three independent experiments
were performed with consistent results.
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MC-38 cells, whereas the expression of E-cadherin had no obvious

change (Figure 5D). In conclusion, these findings suggested that IL-

23, which is secreted by MDSCs, could promote chemoresistance in

colorectal cancer cells by activating EMT.
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4 Discussion

Metagenomic profiling of stool and mucosal samples from CRC

patients revealed that P. anaerobius was an oncogenic bacterial
A

B

D

E

C

FIGURE 4

IL-23 released by MDSCs promoted chemoresistance of CRC. (A) The expression levels of IL-6, VEGF, HGF, and IL-23 in culture medium of MDSCs
determined by ELISA. (B) IL-23 levels in tumor tissues with different treatments. (C) The viability of MC-38 cells treated with different concentrations
of oxaliplatin (CCK-8 assay). (D) The viability of MC-38 cells treated with oxaliplatin after pretreatment with MDSCs-CM, recombinant IL-23, or anti-
IL-23+MDSCs-CM, respectively. (E) The expression of chemoresistance biomarkers of ABCB1, ABCC1, and ERCC1 determined by Western blotting
(mean ± SD, one-way analysis of variance, triplicated).
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candidate enriched in CRC (13, 17, 18) and P. anaerobius has been

found to be involved in the proliferation and chemoresistance of CRC

(19). However, the underlying mechanisms about the contribution of

P. anaerobius to CRC chemoresistance remains unknown. In this
Frontiers in Immunology 09118
study, we elucidated that the accumulation of P. anaerobius in tumor

lesion could mediate the recruitment of MDSCs into the CRC

microenvironment and promote IL-23 secretion by MDSCs, which

led to EMT and chemoresistance of CRC cells.
A

B

D

C

FIGURE 5

IL-23 activated the EMT signaling pathway. (A) The morphology of MC-38 cells after incubation (48 h) with MDSCs-CM, IL-23, anti-IL-23+MDSCs-
CM, respectively. (B) Representative images of wound healing assay of MC-38 cells. (C) Representative images of invasive MC-38 cells. (D) The
expression of N-cadherin, E-cadherin, Snail, Slug, Twist, Stat3, and P-stat3 in MC-38 cells detected by Western blot. (B–D) Data were presented as
the mean ± SD; p-values were determined by one-way analysis of variance. Three independent experiments were performed with consistent results.
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Bacterial colonization, such as F. nucleatum and g-proteobacteria,
are often prerequisite steps to tumor malignant progression (14, 39).

Consistent with previous reports, P. anaerobius avidly colonized the

implanted colon tumor lesions in C57 mice and attenuated the

effectiveness of oxaliplatin. Considering that P. anaerobius has not

been found to induce CRC chemoresistance directly and the

modification of the tumor immune microenvironment has been

reported to play vital roles in intestinal bacteria-related drug

resistance, we suspected that P. anaerobius might promote

chemoresistance by modulating the CRC microenvironment.

Since MDSCs have been reported to be modulated by P.

anaerobius and responsible for developing chemoresistance (40,

41), the MDSCs in bone marrow and in colorectal tumor lesions of

CRC mice were analyzed. The results showed that the amount of

MDSCs both in bone marrow and in implanted colon tumor lesions

was significantly increased in CRCmice infected with P. anaerobius.

Furthermore, in vitro experiments showed that PA+MC-38-CM

had the highest ability of enhancing chemotaxis ability of MDSCs

among PA-CM and MC-38-CM. In addition, the sensitivity of

implanted colorectal cancer to oxaliplatin was rescued by MDSC

elimination. All these findings indicated that P. anaerobius might

facilitate chemoresistance by the aggregation of MDSCs into the

colorectal cancer microenvironment and the interaction between P.

anaerobius and colorectal cancer cells contributed to

chemoresistance of CRC.

MDSCs promote tumor progression and chemoresistance by

remodeling the tumor microenvironment via crosstalk with

surrounding cells by expression of pro-inflammatory cytokines,

growth factors, and angiogenic factors favoring tumor progression

(21). Here, the main tumor-promoting cytokines released by

MDSCs, VEGF, HGF, IL-6, and IL-23 were detected, and the

results showed that only IL-23 levels were significantly increased

in the supernatant of MDSCs cultured with PA+MC-38-CM as well

as in implanted colorectal cancer loaded with P. anaerobius.

Meanwhile, it is also important to note that IL-23 in implanted

tumor tissues decreased remarkably and the efficacy of oxaliplatin

significantly improved after MDSCs were eliminated by anti-Gr-1

mAb, suggesting that IL-23 released by MDSCs facilitated

chemoresistance of CRC to oxaliplatin.

As EMT plays important roles in promoting stem cell

transformation and chemoresistance (38) and IL-23R was

abundantly expressed in colorectal cancer cells (42), we wondered

if IL-23 mediated the chemoresistance and EMT of colorectal

cancer. As expected, both MDSCs-CM and IL-23 induced

increased expression of chemoresistance and mesenchymal

biomarkers as well as transcription factors Snail, Slug, and Twist

by activating the Stat3-EMT signaling pathway, while this activation

could be diminished by anti-IL-23 antibody, supporting the notion

that both MDSC recruitment and IL-23 secretion are essential for P.

anaerobius-related chemoresistance.

There is a complex interaction between tumor microbiome and

gut microbiome, which leads to the limited effect of chemotherapy

and a negative impact on the host immune system (43). Although P.

anaerobius had negative roles in colorectal cancer progression, it

could augment anti-tumor immune responses in oral squamous cell

carcinoma (44). Anyway, the limitations of this study should be
Frontiers in Immunology 10119
addressed. Firstly, the precise mechanisms by which P. anaerobius

recruited MDSCs into CRC microenvironment were not fully

elucidated in the current study. Secondly, a recent study found

that MDSCs-derived IL-1b was involved in CRC chemoresistance

(45), indicating the heterogeneity and necessity of epigenetic

profiling for individualized diagnosis and treatment of cancer.

Hence, we cannot dismiss the possibility that there might be

additional cytokines contributing to the augmentation of

chemoresistance in colorectal cancer. Further investigation is

warranted to elucidate the specific mechanism through which

MDSCs promote chemoresistance.

In conclusion, this study identified the potential contribution of

P. anaerobius to colorectal cancer chemoresistance. In particular, the

colonization of P. anaerobius in CRC lesionmediated the recruitment

of MDSCs into the colorectal cancer microenvironment, which

secreted IL-23 and subsequently promoted chemoresistance by

activating Stat3-EMT of colon cancer cells. These findings provide

clinical implications for improving prognostic assessment and

designing new targeted treatment for CRC patients.
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Potential clinical impact of T-cell
lymphocyte kinetics monitoring
in patients with B cell precursors
acute lymphoblastic leukemia
treated with blinatumomab: a
single-center experience

Andrea Duminuco1,2*†, Uros Markovic1,3†,
Nunziatina Laura Parrinello1, Luca Lo Nigro4, Elisa Mauro1,
Calogero Vetro1, Marina Parisi 1, Cinzia Maugeri1,
Paolo Fabio Fiumara1, Giuseppe Milone1, Alessandra Romano1,5,
Francesco Di Raimondo1,5 and Salvatore Leotta1*

1Division of Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliero Universitaria
Policlinico “G.Rodolico-San Marco”, Catania, Italy, 2Postgraduate School of Hematology, University of
Catania, Catania, Italy, 3Division of Hematology with Bone Marrow Transplant, Istituto Oncologico del
Mediterraneo, Viagrande, Italy, 4Center of Pediatric Hematology Oncology, Azienda Ospedaliero
Universitaria Policlinico “G.Rodolico-San Marco”, Catania, Italy, 5Dipartimento di Specialità Medico-
Chirurgiche, CHIRMED, Sezione di Ematologia, University of Catania, Catania, Italy
Blinatumomab is a bispecific anti-CD3 and anti-CD19 antibody that acts as a T-cell

engager: by binding CD19+ lymphoblasts, blinatumomab recruits cytotoxic CD3+

T-lymphocytes to target the cancer cells. Herewedescribe seven different patients

affected by B-cell precursor acute lymphoblastic leukemia (Bcp-ALL) and treated

with blinatumomab, on which we evaluated the potential association between the

amount of different T-cells subsets and deep molecular response after the first

cycle, identified as a complete remission in the absence ofminimal residual disease

(CR/MRD). The immune-system effector cells studied were CD3+, CD4+ effector

memory (T4-EM), CD8+ effector memory (T8-EM), and T-regulatory (T-reg)

lymphocytes, and myeloid-derived suppressor cells (MDSC). Measurements were

performed in the peripheral blood using flow cytometry of the peripheral blood at

baselineandafter thefirstcycleofblinatumomab.Thefirst results showthatpatients

with a higher proportion of baseline T-lymphocytes achievedMRD negativity more

frequently with no statistically significant difference (p=0.06) and without

differences in the subpopulation count following the first treatment. These

extremely preliminary data could potentially pave the way for future studies,

including larger and less heterogeneous cohorts, in order to assess the T-cell

kinetics in a specific set of patients with potential synergy effects in targeting

myeloid-derived suppressor cells (MDSC), commonly known to have an immune

evasion mechanism in Bcp-ALL.

KEYWORDS

blinatumomab, T-cell kinetics, minimal residual disease, acute lymphoblastic leukemia,
cytokines, MDSCs
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1 Introduction

Treating B-cell precursor acute lymphoblastic-B cell leukemia

(Bcp-ALL) is historically a challenge, above all in adult-age patients,

where the hematopoietic stem cell transplant (HSCT) represented a

curative choice. The use of chemotherapic regimens based on

pediatric-inspired schemes has changed the landscape, improving

the outcomes of these patients (1, 2). Some studies over the years

suggested for some categories of patients no survival advantage

from HSCT in first complete remission compared to the intensive

or pediatric-based chemotherapy regimens alone or combined with

tyrosine-kinase inhibitors (TKIs) for Philadelphia-chromosome

positive (Ph’+) Bcp-ALL (3, 4). On the other side, the

introduction of immunotherapy with monoclonal antibodies

opened up a new treatment chapter for Bcp-ALL patients, above

all when used as a consolidation treatment for those with

measurable residual disease (MRD) after chemotherapy treatment

and in case of relapse. In this scenario, blinatumomab represents the

first bispecific anti-CD3 and anti-CD19 monoclonal antibody that

acts as a T-cell engager recruiting cytotoxic CD3+ T-lymphocytes

and directing them to attack CD19+ lymphoblastic cells. In a phase

3 study in patients with relapsed/refractory (R/R) Bcp-ALL,

blinatumomab, compared to standard “rescue” chemotherapy,

demonstrated superiority both in terms of complete response rate

(44% vs. 25%) and overall survival (7.7 months vs. 4 months) (5).

Although it is evident that the mechanism of action of

blinatumomab involves the patient ’s immune system,

confirmation of the potential role of lymphocyte cytokine kinetics

is still lacking. Moreover, it is not well understood which immune

mediators (immune-effector cells and cytokines) play a major role

in determining the response to blinatumomab. MDSCs cover a

central role and are significantly elevated in peripheral blood and

bone marrow of Bcp-ALL patients, correlated with the clinical

therapeutic responses through an initially well-described

mechanism of immune evasion of tumor cells (6).

Starting from these premises, in this case series, we describe the

treatment response to blinatumomab in 7 Bcp-ALL patients with

unfavorable characteristics and collect data regarding specific

immunological markers associated with peripheral blood T-cell

lymphocytes as potential predictive factors of deep molecular

response to blinatumomab. All patients have provided written

informed consent and were evaluated with peripheral blood flow

cytometry according to our center’s internal guidelines due to the

specific targeting mechanism of the bispecific antibody.
2 Case-series presentation

A schematic representation of the cases is reported in Table 1.
2.1 Case n. 1

A 53-year-old female patient diagnosed with Ph+ Bcp-ALL was

being treated in another center for the first two years from

diagnosis. She received a first-line therapy based on a second-
Frontiers in Immunology 02123
generation tyrosine kinase inhibitor (dasatinib 100 mg daily) and

steroids between March 2020 and October 2020, achieving

complete hematological remission (CR), i.e., blast cells in the

bone marrow (BM) <5% without evidence of extramedullary

disease (EMD). MRD was measured by real-time quantitative

PCR (RT-qPCR) by determining the levels of the BCR-ABL1

fusion transcript, according to international guidelines (7). MRD

was defined as the persistence of the BCR-ABL1 >0.01% (8). Due to

persistently high level of MRD, the patient was started on second-

line treatment with Ponatinib for an additional 15 months, failing to

achieve MRD negativity. The patient next suffered from a

hematological relapse during Ponatinib, with a high rate of blast

cells (>60%) in the bone marrow, and was treated with one cycle of

chemotherapy according to the hyper-CVAD scheme.

Unfortunately, the blast cells were still present in a significant

amount (15%). She was then referred to our center and treated

with fourth-line therapy with blinatumomab as a bridge to an

allogeneic hematopoietic stem cell transplant (HSCT). After the

first cycle, the patient achieved a hematological remission

withpersistent MRD positivity. After the second cycle, an MRD

negativity (<0.01%) was obtained. Therefore, she was referred to

receive an allogeneic HSCT from an HLA identical sibling donor.

She is incomplete remission (+8 months) and has MRD negativity.
2.2 Case n. 2

A 57-year-old male patient was admitted to the Emergency

Department due to the onset of evening fever with chills and sweats

and isolated thrombocytopenia. Bone marrow aspirate revealed a

clonal population of cells (>30%) showing the following

immunophenotype with TdT-pos, PAX5-pos, CD10-pos, and

CD33-neg. A diagnosis of Ph-negative Bcp-ALL was performed.

Therefore, the patient received first-line pediatric-inspired

chemotherapy, including Pegylated Asparaginase (PEG-ASP),

according to the GIMEMA LAL1913 protocol (9). The patient

achieved complete disease remission after the first induction

cycle. However, he was switched to blinatumomab due to MRD

persistence after the fifth cycle of therapy. MRD was measured by

RT-qPCR, and it is defined as the persistence of clonal IgH-

rearrangement >10-4 (8). Three consecutive cycles were

performed, achieving MRD-negativity after the first one and

bridging the patient to allogeneic HSCT from a matched

unrelated donor (MUD). The patient is currently in complete

molecular remission (CMR +6 months after HSCT).
2.3 Case n. 3

A 13 years-old female patient was diagnosed with Ph negative

Bcp-ALL at the Center of Pediatric Hematology Oncology in our

Hospital. She was enrolled in an AIEOP-BFM protocol achieving

CR after Induction with persistent MRD positivity. MRD negativity

was obtained after consolidation therapy. Five years after achieving

CR, a molecular relapse (i.e., a reappearance of the identical IgH-

rearrangement >10-4) was diagnosed. The patient achieved a second
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remission after an induction phase containing vincristine,

idarubicin, and chrysantaspase due to a previous allergic reaction

to PEG-asparaginase. A blinatumomab-cycle was performed

because of a persistent MRD positivity, achieving CR with MRD

negativity, bridging the patient to an allogeneic HSCT from a sibling

HLA-identical donor. She maintained a complete molecular

remission with MRD negativity (i.e., clonal IgH-rearrangement

<10-4 by RT-qPCR) up to the last follow-up in December 2022

(+3 years).
2.4 Case n. 4

A 40-year-old female was diagnosed with Ph-positive Bcp-ALL

at our Institution. At the diagnosis, we performed a CT scan that
Frontiers in Immunology 03124
showed skeletal lesions of the right shoulder compatible with

extramedullary disease (EMD). The patient started on induction

therapy with dasatinib and corticosteroids, achieving a major

molecular response (BCR-ABL1 transcript ≤0.1%) (10). Therefore,

the patient received an allogeneic HSCT from an HLA-identical

sibling donor. The conditioning regimen was myeloablative and

based on total-body irradiation (TBI) and cyclophosphamide. Right

after, the patient achieved an MRD as early as day +30.

Approximately 100 days after the HSCT, the patient experienced

an overt relapse, with 40% of blast cells in the bone marrow, a BCR-

ABL1 positivity (39%), and a chimerism with 20% of DNA from the

recipient (chimerism was measured by short tandem repeat

analysis) (11). Salvage therapy was started with ponatinib and

donor lymphocyte infusions (DLIs). At the end of the third DLI,

a CR with MRD negativity and a full donor chimerism were
TABLE 1 A brief summary of the 7 patients described in the text.

Case
N.

Patients
and ALL’s
features

at
diagnosis

Previous treatments
for ALL

Status of
disease at

blinatumomab
treatment

Concurrent
treatment
and n. of
cycles

Type of
response

Outcome

1
55-year-old
female with
Ph’+ ALL-B

Dasatinib and CS; ponatinib;
chemotherapy based on the

hyper-CVAD scheme
Active disease 2 cycles

CR with MRD
(1st cycle)

CR and MRD-
(2nd cycle)

HSCT consolidation after
blinatumomab, close follow-up

started, without signs of disease after
five months

2
57-year-old
male with
Ph’- ALL-B

Polychemotherapy scheme for
5 cycles

CR with MRD 3 cycles
CR and MRD-

(1st cycle)

HSCT consolidation after
blinatumomab, complicated by

GVHD and maintaining CR after six
months

3
18-year-old
female with
Ph’- ALL-B

Polychemotherapy scheme
with CR for 5 years.

Vincristine, idarubicin, and
chrysantaspase scheme for 1st

relapse

CR with MRD 2 cycles
CR and MRD-

(1st cycle)

HSCT consolidation after
blinatumomab, without signs of

relapse after 3 years

4
42-year-old
female with
Ph’+ ALL-B

Dasatinib and CS;
polychemotherapy scheme for

MRD, followed by
consolidation with HSCT.
Ponatinib and DLI for early

relapse; 3 cycles of
polychemotherapy scheme

Active disease
2 cycles,

associated with
DLI

CR with MRD
(1st cycle)

Relapse after
2nd cycle

Treated with inotuzumab
ozogamicin, venetoclax, asciminib,
until death for disease’s progression

5
36-year-old
female with
Ph’+ ALL-B

Dasatinib and CS;
methotrexate and high-dose
cytarabine consolidated by
HSCT and ponatinib as
maintenance therapy.
For subsequent relapse,

polychemotherapy

CR with MRD
5 cycles,

associated with
DLI

CR with MRD
(1st cycle)

CR and MRD-
(2nd cycle)
Relapse after
5th cycle

Treated with inotuzumab
ozogamicin associated with

ponatinib, ASP-based
polychemotherapy, venetoclax, until

death for disease’s progression

6
14-years-old
male with
Ph’- ALL-B

Polychemotherapy protocol for
induction of remission; 6-

mercaptopurine and MTX as
maintenance

CR with MRD 3 cycles
CR and MRD-

(1st cycle)
Close follow-up, without signs of

relapse after 2 years

7
16-years-old
male with
Ph’- ALL-B

Polychemotherapy scheme
with CR for 8 months.

Vincristine, mitoxantrone, and
ASP for relapse

CR with MRD 2 cycles
CR and MRD-

(1st cycle)
Close follow-up, without signs of

relapse after 1 year
ALL-B, acute lymphoblastic B-leukemia; CS, corticosteroids; CR, complete remission; MRD, minimal residual disease; HSCT, hematopoietic stem cell transplant; ASP, asparaginase; DLI, donor
lymphocyte infusion.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1195734
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Duminuco et al. 10.3389/fimmu.2023.1195734
achieved. One year later, a new relapse occurred during the

maintenance treatment with ponatinib. In the bone marrow, 30%

of blast cells was detected, and the mutational analysis by NGS

sequencing (12) identified the T315I and the E255V mutation,

respectively, in 25% and 60% of BCR-ABL1 positive cells. After

three cycles of chemotherapy based on the LAL1913 scheme,

showing no response, the patient underwent blinatumomab

associated with DLI, obtaining a major molecular response after

the 1st cycle. After the second cycle, the patient experienced bone

pain in the spine and chest, and a CT/PET scan showed lesions

compatible with EMD of the ribs and vertebrae. The patient was

switched to inotuzumab ozogamcin for 5 cycles without obtaining a

response and died of disease progression.
2.5 Case n. 5

A 34-year-old female patient with Ph-positive Bcp-ALL was

treated as the first line with dasatinib in association with steroids,

achieving both complete hematological and molecular remission.

After four months of treatment, she experienced an extramedullary

relapse of the mammary gland. Therefore, she received rescue

therapy with methotrexate and high-dose cytarabine, achieving a

new complete response documented by a PET-CT scan. This

response was consolidated with allogeneic HSCT from an HLA-

identical donor, followed by maintenance therapy with ponatinib.

Twelve months after HSCT, the patient suffered a hematological

relapse and was treated with vincristine and idarubicin. Due to the

persistence of the BCR-ABL1 fusion transcript, she underwent

therapy with blinatumomab associated with DLIs “escalated

dose”. Each DLI was administered after each cycle achieving

complete molecular remission after the second DLI course. After

the fourth cycle of blinatumomab and DLI, molecular relapse

occurred, and the patient was switched to inotuzumab

ozogamicin for six cycles reaching CR with MRD negativity. This

response was maintained for 6 months, followed by an overt

hematologic relapse with 10% leukemic cells in the BM. The

patient was enrolled in an experimental trial with CARCIK-CD19

(13), reaching a transient response and, 3 months after the infusion

of the cellular product, had an overt hematological relapse and died

of disease progression.
2.6 Case n. 6

A 14-year-old male presented to the Center of Pediatric

Hematology Oncology in our Hospital, reporting spinal pain and

pancytopenia. He was diagnosed with a Ph-negative Bcp-ALL and

enrolled in the ongoing protocol AIEOP-BFM ALL 2017. During

the induction phase, he experienced a severe adverse event

characterized by septicemia due to carbapenemase-producing

Klebsiella pneumoniae (KPC-KP) and fungemia due to Candida

species. These infections were complicated by pneumonia requiring

positive pressure ventilation and a cerebral abscess. The patient

received treatment with ceftazidime/avibactam, voriconazole, and

supportive therapy until the resolution of the infectious
Frontiers in Immunology 04125
complications. Because of the persistence of MRD after the

induction treatment, the patient received therapy with

blinatumomab for 4 cycles in an off-label manner because of the

patient’s age (<18 years), reaching MRD negativity after the first

one. The patient was then followed with periodical BM assessments,

maintaining complete remission up to two years after the

completion of the treatment.
2.7 Case n. 7

A 16-year-old male patient was diagnosed with a Ph-negative

Bcp-ALL at the Center of Pediatric Hematology Oncology in our

Hospital. He was enrolled in the ongoing protocol (AIEOP-BFM

ALL 2017), achieving complete remission with MRD negativity at

the end of consolidation (final risk: medium). Two months after the

end of the first-line treatment, an early (<30 months from

diagnosis) bone marrow isolated relapse was diagnosed. Thus, the

patient received a second line therapy based on international

protocol IntReALL-2010 HR (including mitoxantrone, ASP, and

vincristine), achieving CR with the persistence of MRD positivity.

For this reason, because he reached adult age, he received treatment

with blinatumomab, completing 2 cycles and achieving MRD

clearance after the first cycle. Then, he underwent an allogeneic

MUD-HSCT in another Center. One year after the completion of

the therapy, the patient is still in CR withMRD negativity.
3 Results: T-cell lymphocyte
kinetics at baseline and after one
blinatumomab cycle

Patients’ peripheral blood samples (PB) were evaluated using

flow cytometry at baseline and after the first blinatumomab cycle,

according to our center’s internal guidelines. Global T-lymphocyte

kinetics was assessed by measuring the absolute counts of CD3+,

CD4+ effector memory (T4-EM), CD8+ effector memory (T8-EM)

T-lymphocytes, and the count of T-regulatory cells (T-reg). The

individual lymphocyte kinetic variations were reported for each

patient. The T-cell kinetics between different populations is

represented in Figure 1. Patients were divided into two groups

according to the MRD status following the first blinatumomab cycle

(positive in three vs. negative in four patients). MRD status was

chosen as the primary endpoint because it has been highlighted as

the most powerful prognostic factor for patients with Bcp-ALL (14).

The working hypothesis of the present study was that the status of

immune-mediators, such as the T-cell subsets, their ability to

express cytokines involved in the anti-tumoral response, and the

expression of the T-cell exhaustion markers could potentially be

correlated to the depth of blinatumomab response.

In order to evaluate any possible correlation and given the

heterogeneity of the patients in terms of disease type (Ph-Positive

versus Ph-Negative), prior treatment (chemotherapy versus chemo-

free, HSCT versus no HSCT), and tumor burden (MRD positive

versus hematological relapse), we measured both the absolute
frontiersin.org
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counts of the immune-cell subsets and the ratio between the counts

after the first cycle of blinatumomab (T0) and at baseline (T1). The

absolute values and the ratio T1/T0 of the different classes of

lymphocytes are reported in Table 2.

We compared the median absolute cell counts at baseline and

after the first cycle and the ratio T1/T0 between MRD-positive and

MRD-negative patients (respectively, MRD-responsive and MRD

not-responsive patients) at the end of the first cycle of

blinatumomab. These unpaired comparisons were performed by

the Mann-Whitney U-test, with a p <0.05 considered significant.

The MRD-responsive patients after the 1st cycle had a median

baseline count of T- lymphocytes of 1450/mmc, that was higher

than that of the MRD not-responsive patients. The statistical

comparison of the absolute cell counts between MRD-negative

and MRD-positive patients did not reach statistical significance (p

= 0.06). Similarly, the median values of T4-EM (368 vs 94), T8-EM
Frontiers in Immunology 05126
(537 vs. 17), and T-reg (71 vs. 39) were higher in MRD responsive

patients than in MRD-not responsive patients but without reaching

statistical significance (0.22, 0.14, and 0.40, respectively). The p-

values obtained by comparing the ratio T1/T0 measured in MRD-

responsive and in MRD not-responsive patients were, respectively,

0.86 for absolute T-lymphocyte, T8-EM, and T-reg and 0.63 for

T4-EM.

To evaluate cytokines involved in the anti-tumoral response, we

measured the expression of interferon g (IFNg) and programmed

death protein-1 (PD1) in T4-EM and T8-EM. These data were

collected only from 5 patients, 4 of them were MRD-responsive;

thus, an accurate analysis could not be performed. However, the

preliminary results are reported in Table 2.

Based on these findings, we assume that the higher value of total

lymphocytes can predict a deep and robust response to

blinatumomab, despite not achieving a statistically significant

correlation. As for the specific subsets of the T-cell population

and their expression of IFNg and PD1, a minimal number of

heterogeneous patients makes it difficult to draw conclusions.
4 Discussion

Ever since the development of the first-in-class bispecific T-cell

engager antibody blinatumomab, the importance of T-cell kinetics

was discussed as a hypothetically predictive factor for MRD

response, although limited data are available. In a phase 2 study

of blinatumomab, Zugmaier and colleagues assessed the long-term

survival of 36 adult Bcp-ALL relapsed/refractory (RR) patients (15).

Twenty-five patients (69%) achieved MRD response, and ten were

long-term survivors with overall survival (OS) greater than 30

months, including both patients that were consolidated with

allogeneic HSCT and blinatumomab treatment alone for a total of

5 cycles. The more significant expansion of CD3+ T-cells and

increased numbers of CD3+ effector memory cells were

predominant in the long-term survivors in both cycle 1 and cycle

2. The OS was inferior for 30 months in patients with persistent

MRD positivity.

Nägele et al , investigated the correlation between

immunological biomarkers and the clinical response to

blinatumumab in the same study population. In this study the

authors, by monitoring serum cytokines before and during the first

week of each course of blinatumomab, demonstrated that in

patients in complete remission after blinatumomab the serum

levels of IL-6, IL-10, and IFNg reach higher values than in non-

responders patients (16).

In a phase 1 dose-escalated study, the same authors

demonstrated a correlation between a greater expansion of CD4+

and CD8+ T-cells and the clinical response to blinatumomab (17).

Finally, in the phase-3 trial leading to the approval of

blinatumomab in relapsed/refractory Bcp-ALL, the percentage of

CD3+ T-cells measured at baseline had a significant impact on

MRD-response to blinatumumab and greater values of both CD4+

or CD8+ T-cells at baseline predicted higher rates of hematological

remission (18).
FIGURE 1

Graphical representation of Global T-Cell lymphocyte kinetics at
baseline and following the first blinatumomab cycle according to
MRD negative (green line) and positive (red line) status in seven ALL-
B patients.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1195734
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Duminuco et al. 10.3389/fimmu.2023.1195734

Frontiers in Immunology 06127
As regard the potential role of the T-cell exhaustion in

hampering the response of Bcp-ALL to blinatumomab, Feucht

and co-workers have demonstrated that blast cells of Bcp-ALL

highly expressing PD1-ligand are less susceptible to the

blinatumomab-induced cell lysis and this phenomenon could be

reversed, in vitro, by the adjunction of PD1-inhibitors (19).

The role of MDSCs, on the other side, is increasingly discussed

and known, also in the setting of Bcp-ALL and the relationship with

the T-lymphocyte compartment (20). Zahran et al. reported that the

MDSCs correlated to the missed therapeutic response and wished

for a future role as a prognostic indicator or a potential therapeutic

target (21). The same results were confirmed in pediatric patients,

with granulocytic MDSCs levels correlated positively with

therapeutic responses and Bcp-ALL disease prognostic markers

(among which MRD) (6).

The major limitations of the present study are the very limited

number and the heterogeneity of the patients, which makes it

impossible to draw conclusions for the clinical practice.

Moreover, although the recognized role of the MDSCs in

mediating the immune evasion of Bcp-ALL, the investigation of

the MDSCs in hampering the activity of blinatumomab was not

included in the initial conceptualization of the present study and

was included in a subsequent revision of the study-design that is still

ongoing. This knowledge, together with that of the lymphocyte

kinetics, will allow us to have a better understanding of the

underlying mechanisms of the sensitivity of the Bcp-ALL to

immune therapy.

Mainly because of these limitations, the statistical analysis failed

to demonstrate an association between the T-cell kinetics and the

MRD response after one cycle of blinatumomab. However, the

correlation between the absolute lymphocyte counts at baseline and

the MRD response to Blinatumomab was close to the statistical

significance threshold in such a small sample of patients. This is in

line with what has already been reported (18) and is encouraging in

continuing the study by expanding the cohort of the patients in

order to assess not only the function of the T-cell subsets but also

the potential impact of MDSCs in influencing the lymphocytes-

compartment and the response to blinatumomab.Given that the T-

cell expansion in response to blinatumomab could be a biological

pre-requisite for the anti-leukemic activity, we also evaluated the

T1/T0 ratio rather than the absolute lymphocyte counts alone. In

patients with relapsed/refractory Bcp-ALL, a low pre-treatment

lymphocytes count, a non-permissive microenvironment due to

MDSCs, or a low T1/T0 ratio during the 1st cycle, could direct the

choice toward different drugs (i.e., antiCD22 inotuzumab

ozogamicin) (22).

Finally, a strict correlation between MDSCs and PD1/PD1

ligand was reported (23). In different models, MDSCs could

contribute to the resistance to immune checkpoint inhibition

drugs by inhibiting the anti-neoplastic properties of T and NK

cells and stimulating T-regs (24).

Furthermore, IFN-g could regulate the role and the function of

the MDSCs through the modulation of the anti-apoptotic Bcl2

protein by direct interaction with the phosphorylated STAT-1 (25).

Based on these findings, monitoring peripheral MDSCs (defined as

CD11b+CD14−CD15+ or CD11b+CD14−CD66b+) (26) and
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investigation of their potential inhibition in improving the T-

lymphocyte role, represents our future aim for the prosecution of

the study.
5 Conclusion

In the era of the anticancer immunotherapy the discovery of

immunological biomarkers linked to the clinical response to the bi-

specific antibodies could potentially lead to a better selection of the

patients likely to benefit from the treatment. A large, prospective

trial could provide this data, driving the physician toward a choice

that should be adapted to the health of the patient’s immune system.
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