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Editorial on the Research Topic
RNA modifications and epitranscriptomics, Volume II

RNA modifications have been proven to be an important complement to epigenetics.
Currently, at least 170 types of RNA modifications have been identified among all three life
domains. In the past decade, several molecular functions of RNA modifications have been
unveiled, including RNA structure switches, RNA stability, RNA export, and translation. RNA
modification-associated biological processes such as neuro and embryo development, cell cycle,
and stress response were also investigated. Additionally, aberrant RNA modifications have
been observed in multiple diseases and are considered as potential therapeutic targets.
However, compared with well-studied DNA modifications and posttranslational
modifications, the biological meanings of RNA modifications have not been yet deciphered
in detail. To facilitate the understanding of RNA modifications and their biological roles, we
collected 14 articles on this Research Topic, including 13 research articles and a review.

Pecori et al. provide unique work on this Research Topic, focusing on the RNA editing
mechanism. Based on high-throughput sequencing methods, the authors found putative
U-to-C editing sites. A more in-depth analysis revealed that such sites may be misinterpreted
as novel modification events, resulting instead from A-to-I editing on overlapping antisense
RNAs that are transcribed from the same loci. Their findings were experimentally validated
by RT‒qPCR and editing quantification.

Noncentral nervous system sepsis can cause sepsis-related encephalopathy (SAE), a
brain dysfunction disease. To identify the potential biomarkers and association among the
gut microbiome, serum metabolomic profile, and RNA m6A methylation in SAE patients,
Wang H. et al. collected twenty patients with and without SAE. In this work, authors
integrated multiple experimental methods, such as ELISA, RT‒qPCR, 16S rDNA
sequencing, and LC-MS/MS. The ELISA and RT‒qPCR results showed positive
correlations between IL-6, ICAM-5, and the m6A methyltransferase METTL3, while the
m6A demethylase FTO was decreased in SAE patients. Interestingly, a positive correlation
between the abundance of Acinetobacter and the expression of METTL3 was also observed,
which affected the diversity of the gut microbiome. In general, m6A regulators could be used
for SAE screening.

Three studies used high-throughput sequencing to show the landscape of
posttranscriptional regulation. She et al. provided an epitranscriptome profile in villous
tissues from spontaneous abortion (SA). They applied MeRIP-seq to detect methylation
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regions and integrated bioinformatics analysis. Based on the
sequencing results, the authors suggest that the methylation
distribution and motifs differ in SA and normal conditions. In
the conjoint analysis of meRIP-seq and RNA-seq, the enriched gene
ontology and KEGG pathways also differed between SA and normal
conditions. Additionally, their results suggested that m6A
modification plays an important role in SA by regulating lysine
degradation and the Hippo signaling pathway. In summary, the
authors believe their findings provide an alternative therapeutic
target for spontaneous abortion.

Wang S. et al. presented the epitranscriptome of the mammary
gland tissues of dairy goats at different lactation stages. They applied
MeRIP-seq to show 2,476 and 1,451 m6A methylation peaks during
the early and peak stages of lactation, respectively. The distribution of
m6A peaks among transcriptomes differs at the early and peak stages,
whereas the motif is similar in different stages. The differentially
methylated genes were further analyzed by gene ontology and KEGG
pathway analyses, and the results suggest that hypo- or
hypermethylated genes participate in biological processes, such as
cell apoptosis, cell growth processes, cellular components, or
biogenesis. Finally, the hub genes show that HRAS, JUN, and
EGFR may play the most important roles in the lactation stages.

miRNA is another type of posttranscriptional regulation. Fei
et al. used high-throughput miRNA-seq to analyze differentially
expressed miRNAs in the liver tissue between Hu (short/fat-tailed)
sheep and Tibetan (short/thin-tailed) sheep. Compared with Hu
sheep, six upregulated and five downregulated miRNAs were
observed in Tibetan sheep. Miranda and RNAhybrid were used
to predict the target of miRNA. The differentially expressed miRNAs
and their target genes were integrated into gene ontology and KEGG
pathway analysis. In addition to bioinformatics analysis, oar-miR-
432-regulated SIRT1 was validated by Western blotting. In general,
authors believe their work could provide a theory to study the fat
metabolism of sheep.

Two works focused on colon cancer. He et al. provided a
bioinformatics analysis to show the potential association between
RNA methylation and lncRNAs in colon cancer, which could be
biomarkers for hot and cold tumors and prognosis. They used RNA-
seq data from the colon cancer cohort from TCGA and identified
m1A/m5C/m6A/m7G-related lncRNAs based on Pearson
correlation. In a further step, univariate Cox regression analysis
was applied to identify 23 RNA modification-related lncRNAs with
prognostic value. Additionally, the patients classified into different
groups based on RNA modification-related lncRNAs had different
clinical characteristics in immune microenvironmental infiltration
and immunotherapy response. The authors believe their work will
contribute to personalized treatment regimens. Other works
presented by Li et al. analyzed the necroptosis-related genes in
the colon cancer cohort and the potential association between
necroptosis-related genes and RNA modifications.

Gao et al. and Lu et al. showed that m6A and m5C participate in
the development of liver disease, respectively. Gao et al. used wet lab

methodologies to identify that the m6A methyltransferase
METTL16 contributes to liver fibrosis in chronic hepatitis B
infection. Lu et al. used bioinformatics analysis to identify m5C-
related lncRNAs in hepatocellular carcinoma.

Bioinformatics analysis with experimental verification was
integrated into osteoporosis, breast cancer, and uterine fibroids
studies. Qiao et al. analyzed high-throughput sequencing data to
show that m6A regulators are biomarkers in osteoporosis, which was
validated by experiments. Huang et al. used TCGA-BRCA RNA-seq
data to identify m7G-related lncRNAs and validated them by RT‒
qPCR. Cai et al. analyzed previously published DNA and RNA
methylation profiles to study uterine fibroids and validated them by
experiments to identify PLP1 as a biomarker. Another work
presented by Wang Z. et al. used different datasets to build a
prediction model for the prognosis of idiopathic pulmonary
fibrosis and validation.

Sun et al. provided a review article to summarize the roles of
m6A methylation in aging and aging-associated diseases, including
tumors, neurodegenerative diseases, diabetes, and cardiovascular
diseases. In addition, the authors also discussed the association
between m6A methylation and autophagy, inflammation, oxidative
stress, and DNA damage. Considering the importance of m6A in
aging and disease development, the authors suggest that m6A-
related drugs should be developed to address the challenges of aging.

Generally, in this Research Topic, 13 articles focused on
posttranscriptional regulation-related biological processes or
disease development covering m1A/m5C/m6A/m7G, and one
article studied the mechanism of RNA editing. We hope our
Research Topic enhances our understanding of RNA modifications.
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Association Among the Gut
Microbiome, the Serum Metabolomic
Profile and RNA m6A Methylation in
Sepsis-Associated Encephalopathy
Hui Wang, Qing Wang, Jingjing Chen and Cunrong Chen*

Department of Intensive Care Medicine, Union Hospital Affiliated to Fujian Medical University, Fuzhou, China

Objective: To investigate the relationship among the gut microbiome, serummetabolomic
profile and RNA m6A methylation in patients with sepsis-associated encephalopathy
(SAE), 16S rDNA technology, metabolomics and gene expression validation were applied.

Methods: Serum and feces were collected from patients with and without (SAE group and
non-SAE group, respectively, n = 20). The expression of serum markers and IL-6 was
detected by enzyme-linked immunosorbent assay (ELISA), and blood clinical indicators
were detected using a double antibody sandwich immunochemiluminescence method.
The expression of RNA m6A regulator were checked by Q-RTPCR. The gut microbiome
was analyzed by 16S rDNA sequencing and the metabolite profile was revealed by liquid
chromatography-mass spectrometry (LC-MS/MS).

Results: In the SAE group, the IL-6, ICAM-5 and METTL3 levels were significantly more
than those in the non-SAE group, while the FTO levels were significantly decreased in the
SAE group. The diversity was decreased in the SAE gut microbiome, as characterized by a
profound increase in commensals of the Acinetobacter, Methanobrevibacter, and Syner-
01 genera, a decrease in [Eubacterium]_hallii_group, while depletion of opportunistic
organisms of the Anaerofilum, Catenibacterium, and Senegalimassilia genera were
observed in both groups. The abundance of Acinetobacter was positively correlated
with the expression of METTL3. The changes between the intestinal flora and the
metabolite profile showed a significant correlation. Sphingorhabdus was negatively
correlated with 2-ketobutyric acid, 9-decenoic acid, and L-leucine, and positively
correlated with Glycyl-Valine [Eubacterium]_hallii_group was positively correlated with
2-methoxy-3-methylpyazine, acetaminophen, and synephrine acetonide.

Conclusion: The gut microbiota diversity was decreased. The serum metabolites and
expression of RNA m6A regulators in PBMC were significantly changed in the SAE group
compared to the non-SAE group. The results revealed that serum and fecal biomarkers
could be used for SAE screening.

Keywords: sepsis-associated encephalopathy, gut microbiota, serum metabolomic, 16S rDNA, rna m6a
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INTRODUCTION

Sepsis-related encephalopathy (SAE) is a severe disease with brain
dysfunction, mainly caused by non-central nervous system sepsis
(Guo et al., 2021). The clinical manifestation of SAE are a
disturbance of consciousness, mild cognitive impairment,
delirium, and coma (Tomasi et al., 2017). The fatality rate of
SAE is as high as 30–70%, seriously affecting the survival of
patients (Kempker and Martin, 2016). At present,
electroencephalogram (EEG), transcranial Doppler, and a
series of serum markers (including intercellular adhesion
molecule-5 [ICAM-5] and soluble protein-100β [S-100β]) have
certain value in the early diagnosis, evaluation, prognosis, and
other aspects of SAE. However, prospective studies with large
samples are lacking, and there is currently no targeted therapy
available for the early prevention and symptomatic treatment of
SAE (Harding et al., 2016; Falck et al., 2017). SAE is a pathological
state, but its pathogenesis is not yet fully understood. The
occurrence of SAE is believed to be related to the nonspecific
inflammation and noninflammatory response of brain cells. The
pathogenic basis of SAE is the change in the metabolic function of
brain cells following brain injury (Flierl et al., 2010; Sallam et al.,
2016; Khaertynov et al., 2017). Neuroinflammation is the main
mechanism which recently are reported related to RNA m6A
methylation underlying the development of SAE (Ji et al., 2015;
Nardelli et al., 2016). Therefore, anti-neuroinflammation could
be a key factor in improving this syndrome.

The gut microbiota is involved in the nervous system,
apoptosis, immunity, metabolism, blood brain barrier, and
other brain functions through the gut-brain axis. Abnormal
changes in gut microbes are closely related to brain diseases
such as cognitive dysfunction (Erny et al., 2015; Chu et al., 2019).
The cholinergic anti-inflammatory pathway is an important
pathway through which the intestinal flora affect brain
function, and is known as the bacterium-entero-brain axis.
Cholinergic anti-inflammatory pathways could regulate
inflammatory responses in central nervous system and the
peripheral tissues (Ertle et al., 2021; Melo et al., 2021; Wedn
et al., 2021). The function of the central choline system is closely
related to the higher functions of the brain, such as awakening,
learning, memory, sleep, and sensorimotor functions. An
excessive inflammatory response is an underlying mechanism
of the development of SAE, and studies have shown that the
electrical stimulation of cholinergic nerves can reduce the
occurrence of SAE by inhibiting the inflammatory response
(Wang et al., 2016; Hering and Winklewski, 2017; Hoover
et al., 2017).

With the widespread application and continuous development
of molecular-based technology, metabolomics analysis has been
increasingly applied in various studies, the results of which can
lay a theoretical foundation for clarifying the mechanisms of
numerous diseases (Hara et al., 2015; Zhu et al., 2019; Bai et al.,
2021). From the gut microbiome, tryptophan-derived AHR
ligands in the CNS can regulate astrocyte function to inhibit
inflammation and neurodegeneration (Rothhammer et al., 2016).
Metabolites of intestinal flora, such as neurotransmitter short-
chain fatty acids, can participate in neural activation and regulate

the synaptic activity of proximal neurons of the intestinal nervous
system, which are related to many psychiatric diseases (Sajdel-
Sulkowska, 2021; Wang et al., 2021).

In recent years, many studies have shown that RNA m6A
epigenetics can participate in the regulation of the occurrence and
development of a variety of diseases, andmore andmore evidence
shows that metabolism, intestinal flora and RNA epigenetics
build a complex cross regulatory network (Jabs et al., 2020;
Luo et al., 2021; Yao et al., 2021; Tang et al., 2022). The main
regulatory factors of rnam6a in human body have been gradually
revealed, including RNA methyltransferase, demethylase protein
and so on. Especially m6A in SAE, there is no research on the
relationship between these factors.

In this study, we performed 16S rDNA combined with LC-
MS/MS to identify differences in the metabolites in the sera of
patients with and without SAE. This study was conducted to
study the associations among gut microbiome, metabolites and
RNA m6A regulators in SAE, and to give new theoretical support
for diagnosis and treatment of SAE.

MATERIALS AND METHODS

Study Subjects
Twenty patients with SAE who were admitted to the Union
Hospital affiliated to Fujian Medical University from January
2021 to July 2021 were included in the study group, and 20
patients without encephalopathy and sepsis (non-SAE) who were
admitted during the same period were included in the
control group.

The patients were classified following an examination of
symptoms, signs, blood, biochemistry, and laboratory culture.
The inclusion criteria were patients who met the diagnostic
criteria for sepsis (patients with confirmed severe sepsis were
transferred to the ICU for treatment); patients with SAE
confirmed by craniocerebral imaging and EEG; age >18 years
old; and patients with no previous history of CNS diseases and
complete clinical data. Patients with the following conditions
were excluded: combined liver and kidney failure, heart failure,
and shock; coagulation mechanism disorders; uremia
encephalopathy, drug poisoning, cerebral infarction, cerebral
hemorrhage, and cerebral tumor; and severe cognitive
impairment.

This study was approved by the Ethical Review Committee of
the Union Hospital affiliated to Fujian Medical University, and
informed consent was obtained from each study participant.

Deoxyribonucleic Acid Extraction
Stool sampling cups were used to collect fecal samples from the
patients in both groups (n = 20 per group). A commercial kit
(Tiangen, Beijing, China) was used to extract the microbial
genomic DNA from each fecal sample (250–500 mg) (TGuide
S96 Soil/fecal genomic DNA).

Ribonucleic Acid Extraction and Q-RTPCR
The total RNA was extracted according to the instructions of the
kit. After extraction, the total RNA was extracted with 20 μL total
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RNA, including RNA, was obtained by elution with ldepc water
(pure water without RNA enzyme). RNA purity and concentration
were measured on nanodrop. Reverse transcription kits, primers,
probes and real-time quantitative RT qPCR kits were purchased
from Applied Biosystems. Take 200 ng of total RNA from each
group and add 15 μL Reverse transcription reaction was carried
out in the RT reaction system. Real time quantitative RT qPCR
was performed by fluorescence quantitative PCR. The total RT
qPCR reaction system was 20 μL. Of which 2 × taqman Master
Mix 10 μL, cDNA 1 33 μL. TaqMan primer and probe 1 μL and
autoclaved deionized water 7 67 μL. Reaction conditions: 95°C
for 10 min; 95 °C for 15 s, 60°C for 60 s, 40 cycles. Each reaction
is provided with 3 multiple holes, and the difference of CQ value
between multiple holes is no more than 1, which is used for data
analysis and calculate the average CQ value.

16S rDNA Sequencing
The 16S rDNA sequencing experiment was performed using
BIOTREE (Shanghai, China). Using the primers 338F and
806R to amplify the V3/V4 region of the 16S rDNA genes.
The primer sequences were as follows: F: 5ʹ-ACTCCTACG
GGAGGCAGCA-3ʹ, R: 5ʹ-GGACTACHVGGGTWTCTAAT-
3ʹ. The established libraries were inspected first, and the
qualified libraries were sequenced with an Illumina NovaSeq
6,000 (Illumina). FastQC (0.11.9), Trimmomatic (version
0.33), UCHIME (version 8.1), USEARCH (version 10.0),
QIIME, and R packages (v3.2.0) were used to perform
bioinformatic analysis. The data was available in public
database PRJCA007583 (https://ngdc.cncb.ac.cn/).

For the metastats analysis, a t-test was performed to obtain the
p and the Q values. Finally, according to the p or Q value, the
relevant species were screened, and the default value was p ≥ 0.05.

The default parameters for LEfSe to detect taxa with rich
differences between groups. Only those taxa with a log linear
discriminant analysis (LDA) score >4 were ultimately considered.

Metabolite Extraction
The LC-MS/MS nontargetmetabolomics experiment was conducted
using BIOTREE (Shanghai, China). Briefly, extract solution (1
volume acetonitrile: 1 volume methanol) was added to 50 μL
sample. Then, the sample was rotated for 30 s and sonicated for
10 min, before precipitating the proteins. Finally, the sample was
centrifuged to collect the supernatant for the next experiments.

LC-MS/MS
LC-MS/MS was processed on an UHPLC system (Vanquish,
Thermo Fisher Scientific). The UPLC BEH Amide column
coupled to the Q Exactive HFX mass spectrometer (Orbitrap
MS, Thermo) was used. All steps were common procedure
processed by company.

Data Preprocessing and Annotation
ProteoWizard was used to convert the data into the mzXML
format, and the R program package (kernel XCMS) was used for
peak recognition, peak alignment, and peak integration. Then, it
matches with the BiotreeDB (V2.1) self-built two-level mass
spectrometry database for material annotation.

Enzyme-Linked Immunosorbent Assay
Blood samples were collected from the two groups for ELISA (n =
20 for each group). On the first day after the diagnosis of SAE and
non-SAE, 5 ml of fasting peripheral venous blood was sampled
from the patients in the morning, and low-molecular-weight
heparin was inserted into the anticoagulant vacuum vein
collection. The blood was obtained by centrifugation and
collecting the supernatant. ELISA was used to determine the
levels of BDNF, NSE, ICAM-5, and S-100β (i.e., S-100β [F0027-B,
F0161-B, F11072-B, F11076-B]; Fankew, Shanghai FANKEL
Industrial Co., Ltd., China) in the blood samples. All
experiments were repeated three times.

Detection of Blood Clinical Indicators
The white blood cell (WBC) and neutrophil (NEUT) levels were
measured by UniCel® DxH 800 Coulter® (Beckman Coulter, Inc.,
United States). The procalcitonin (PCT) level was measured by a
double antibody sandwich immunochemiluminescence method
(VIDAS 30, Shanghai Fengyue Trading Co., Ltd., China), and the
interleukin-6 (IL-6) (ab178013, Abcam, United States) level was
measured by ELISA. All experiments were repeated three times.

Statistical Analysis
The measurement data are presented as the mean ± the standard
deviation. The enumeration data are described as percentage, and
the χ2 test was used for inter-group comparison. p-values < 0.05
indicated statistically significant differences.

RESULT

Patient Characteristics
Twenty patients from each group were selected for
clinicopathological analysis. There were no significant
differences in sex, age, basic disease (e.g., hypertension and
diabetes), or infection site (i.e., respiratory tract,
gastrointestinal tract, urinary system, and blood flow) between
the two groups (Table 1). TheWBC, NEUT, PCT, and IL-6 levels
were significantly increased in the SAE group. We used ELISA to
further analyze the levels of serum makers in the two groups. In
the SAE group, the expression levels of BDNF, NSE, S-100β, and
ICAM-5 were significantly higher than those in the non-SAE
group (Figures 1A–D). In the SAE group, the expression level of
METTL3 was increased while FTO was decreased (Figure 1E).
Other m6A regulators have no significant difference.

Analysis of the Diversity of Gut Microbiota
To understand the diversity of the intestinal microbiota of
patients with SAE, the fecal microorganisms in both groups
were analyzed by 16S rDNA sequencing. The rank abundance
curve showed that all samples contained high species richness and
evenness (Figure 2A). The alpha indexes (i.e., Chao1, PD whole,
Shannon, and Simpson index) showed that compared to the non-
SAE group, the fecal microbial diversity of the SAE group did not
significantly decrease (Figure 2B). Analysis of the taxonomic
composition on the basis of the OTUs showed 769 common
microbial species in the feces of both groups (Figure 2C). Six and
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TABLE 1 | Analysis of general patient data.

SAE (n = 20) Non-SAE (n = 20) χ2/t/z p

Gender [n/%] 0.107 0.744
Male 13 (65%) 12 (60%)
Female 7 (35%) 8 (40%)
Age 62.3 ± 13.55 62.45 ± 12.50 −0.036 0.971
Basic disease [n/%]
Hypertension 4 (20%) 6 (30%) 0.533 0.465
Diabetes 2 (10%) 3 (15%) 0.000 1.000
Other 17 (85%) 19 (95%) 0.278 0.605

Infection Site [n/%]
Respiratory Tract 19 (95%) 16 (80%) 0.914 0.342
Gastrointestinal Tract 5 (25%) 5 (25%) 0.000 1.000
Urinary System 1 (5%) 1 (5%) 0.000 1.000
Blood Flow 1 (5%) 1 (5%) 0.000 1.000

Serum Biochemicals
WBC(×109/L) 15 (9.17) 8 (4.17) −2.137 0.033*
NEUT (×109/L) 14 (9.17) 7 (3.12) −2.53 0.011*
PCT (ng/ml) 20 (6.57) 2 (0.8) −3.194 0.001**
IL-6 (pg/ml) 784 (214,5000) 228 (81,611) −2.336 0.02*

WBC:white blood cell count; NEUT: neutrophil count; PCT: procalcitonin; IL-6: Interleukin-6. *p < 0.05, **p < 0.01.

FIGURE 1 | The expression levels of BDNF, NSE, S-100β, ICAM-5, METTL3 and FTO in blood. The expression levels of BDNF (A), NSE (B), S-100β (C), ICAM-5
(D). * and ** indicates p < 0.05 and 0.01 respectively.
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FIGURE 2 | Diversities of fecal microbiome. (A) The rank abundance curve. (B) The changes of Chao 1 index. (C) Venn diagram. A: SAE group; B: nonSAE group.
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seven species-specific microorganisms were found in the SAE and
non-SAE groups, respectively (Figure 2C).

Differences in the Intestinal Microbiota
Between the Sepsis-Related
Encephalopathy and Non-Sepsis-Related
Encephalopathy Groups
ANOSIM was performed to analyze the similarity between multi-
dimensional data groups. The R value was 0.044, and the p value
was 0.022; these values indicated that no significant differences
between and within groups, with high inspection reliability
(Figure 3A). LEfSe analysis showed five differential
biomarkers between the SAE and non-SAE groups (LDA score
>4). Compared to the SAE group, the genera Eubacterium_
coprostanoligenes, Eubacterium_coprostanoligenes_group
[Eubacterium]_hallii_group, and f_Ruminococcaceae were

higher in the non-SAE group, while the genera g_Klebsiella
and s_uncultured_bacterium_g_Klebsiella were lower in the
non-SAE group (Figure 3B). Metastat analysis revealed 16
different genera between the two groups, showing a
remarkable increase in commensals in the Acinetobacter,
Methanobrevibacter, and Syner-01 but depletion of
opportunistic organisms in Anaerofilum, Catenibacterium, and
Senegalimassilia in the two groups.

Serum Metabolomic Profiles of the
Sepsis-Related Encephalopathy and
Non-Sepsis-Related Encephalopathy
Groups
The serum metabolic profile was examined using high-
throughput LC/MS. The PCA score indicated that clustering
of the QC samples in the positive- or negative-ion mode had

FIGURE 3 | Analysis of the differential microbial in fecal. (A) the differentia in two groups (ANOSIM). (B) LDA score displays the different microbiota (p < 0.05).
Orange represents increase, and blue represents decrease. A: SAE group; B: nonSAE group.
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FIGURE 4 | Serummetabolomic analyses. (A,B) The PCA score plot and the PLS-DA scores plot in positive ionmodel and in negative ionmode, respectively. (C,D)
Heatmaps of 18 metabolites and 8 metabolites in positive ion model and in negative ion model, respectively. Blue circle: QC sample, green circle: nonSAE group, red
circle: SAE group. A: SAE group; B: nonSAE group.
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good stability (Supplemental Figure 1 and 2). The PLS-DA score
could separate the SAE group from the non-SAE group according
to the difference between the two groups in either the positive- or
negative-ion mode (Supplemental Figure 1 and 2). The heatmap
showed that in the positive-ion and negative-ion mode, there
were 300 (MS2 score >0.8) (Figure 4A) and 158 (MS2 score >0.8)
potential biomarkers in the SAE group, respectively (Figure 4B).

Serum Metabolomic Profiles of the
Sepsis-Related Encephalopathy and
Non-Sepsis-Related Encephalopathy
Groups
The volcano plot showed that 143 of the detected serum metabolites
changed significantly in the positive-ion mode (Figure 5A), among
which 18metabolitesmatched theMS2name, and7 and 11metabolites
were downregulated and upregulated, respectively. In the negative-ion
mode, 129 of the detected serum metabolites changed significantly
(Figure 5B), among which, 8 metabolites matched theMS2 name, and
3 and 5 metabolites were upregulated and downregulated, respectively.
In addition, the main metabolic pathways for enriching differential
metabolites were analyzed. Thirteen metabolic pathways
(Supplemental Figure 3A) (e.g., cyanoamino acid, aspartate,
alanine, and pantothenate and glutamate metabolism, and CoA
biosynthesis) and six metabolic pathways (Supplemental Figure 3B)
(e.g., linoleic acid, taurine, and hypotaurine metabolism and pentose
phosphate pathway) were observed.

Correlation Between Gut Microbiota and
Serum Metabolites
We next investigated the possible correlation of changes in the
metabolites and the intestinal microbiome spectra. The differences
in the intestinal flora and serum metabolites between the two
groups were analyzed by Spearman’s correlation coefficient, and

were found to have a significant correlation (Figure 6).
Furthermore, we found the abundance of Acinetobacter was
positively correlated with the expression of METTL3, the person
correlation factor r was 0.436 with significance (p = 0.03).

In the positive-ion mode, the [Eubacterium]_hallii_group was
positively correlated with 2-methoxy-3-methylpyazine,
acetaminophen, and synephrine acetonide; Sphingorhabdus was
positively correlated with glycyl-valine; and the [Eubacterium]
_coprostanoligenes_group was positively correlated with 2-
methoxy-3-methylpyazine and synephrine acetonide.

In the negative-ion mode, Sphingorhabdus was negatively
correlated with 2-ketobutyric acid, 9-decenoic acid, and L-leucine.
In addition, uncultured_bacterium_f_Family_XVIII and
uncultured_bacterium_c_0319-7L14 were positively correlated
with 2-ketobutyric acid. There was a positive correlation between
Dorea and sedoheptulose, and Syner-01 and L-leucine.

DISCUSSION

SAE is a diffuse brain dysfunction, mainly caused by non-central
nervous system sepsis. The reasons for this process may include
brain inflammation, neurotransmitter dysfunction, and
abnormal activation of microglia (Mazeraud et al., 2020).

In our study, the SAE group was found to have a higher
expression level of WBC, NEUT, PCT, and IL-6 than the non-
SAE group, which was consistent with the findings of previous
studies (Jun andWen Zhenjie, 2020; Zhao et al., 2020; Deng et al.,
2021). Studies have shown that the levels of serum NSE, S-100β,
and IL-6 were obviously increased in the SAE group; thus, S-100β,
serumNSE, and IL-6 levels were significantly correlated with SAE
(Tomasi et al., 2017; Guo et al., 2021). A previous study
demonstrated that the BDNF levels of patients with SAE were
higher than those of patients with sepsis alone (Wen Zhenjie,
2018). In this study, the levels of BDNF, NSE, ICAM-5, and S-

FIGURE 5 | The characteristics and pathway of serum metabolites. (A,B) Volcano map in positive-ion model and in negative-ion model, respectively. (C,D) The
different metabolites pathway related with SAE were confirmed, in positive ion model and in negative ion model, respectively. Red: up-regulation, blue: down-regulation,
gray: not significant, *p < 0.05.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8597278

Wang et al. Microbiome, Metabolomic and RNAm6A in SAE

14

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


100β in the SAE group were obviously increased, consistent with
the findings of previous studies. In addition, we found that the
expression of mettl3 and FTO changed. Previous studies have

shown that RNA m6A is widely involved in the occurrence and
development of various diseases. This result also implies its
association with metabolism and intestinal flora in diseases.

FIGURE 6 | The correlation between gut microbiome and serum metabolomic. (A) In positive ion model (B) In negative ion model. Red: up-regulation, blue: down-
regulation, gray: not significant, *p < 0.05.
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SAE is a pathological state, and its pathogenesis remains
ambiguous. At present, it remains necessary to use advanced
technology to conduct research to clarify its exact molecular
mechanism. This research was performed to better understand
the pathogenesis of SAE, and to bring new theoretical support for
diagnosis and treatment of SAE. To our knowledge, this is the first
study to combine LC–MS/MS metabolomics and 16S rDNA
sequencing to analyze the exact molecular mechanism of SAE.

The gut microbiota can regulate the biological processes of the
nervous system, apoptosis, immunity, metabolism, the blood brain
barrier, and other brain functions through the gut-brain axis.
Abnormal changes in these microorganisms are closely related to
various brain diseases. With the occurrence of sepsis, the abundance
of intestinal flora in the population and rats undergoes specific
changes, mainly at the genus level. The proportion of Alistipes has
risen significantly, contrary to the significant decrease in
Faecalibacterium (Li et al., 2018). The brain function of rats in
the sepsis group decreased with the change in the intestinal flora.
Intestinal flora has also been demonstrated to impact SAE via the
vagus nerve, with an increase in Firmicutes phylum and a decrease in
Proteobacteria phylum observed in the fecal microbiota
transplantation groups compared to the lipopolysaccharide group
(Liu et al., 2020). Probiotics could protect the sepsis patients from
cognitive impairment through reversing the abnormalities in the
intestinal flora (Li et al., 2019). Our research revealed that the
diversity of the intestinal flora was reduced in the SAE group. In
the SAE and non-SAE groups, a substantial increase in commensals
in Acinetobacter, Methanobrevibacter, and Syner-01 was found, but
opportunistic organisms in the Anaerofilum, Catenibacterium, and
Senegalimassilia were depleted. The results indicated that the gut
microbiota diversity and number were decreased in patients with
SAE, which is in line with the results of previous studies.

The host converts intestinal flora metabolites directly or
indirectly into nutrients (Mizock, 1990; Jonas et al., 2018). Host
cells have various biological functions, and SAE tissue and cell
abnormalities can be detected using metabolomics methods, the
results of whichmay contribute to the discovery of new indicators for
early diagnosis or therapy of SAE. The concentrations of all aromatic
amino acids in cerebrospinal fluid are upregulated in hepatic
encephalopathy, whereas in patients with sepsis, only the
phenylalanine levels are elevated (Yen et al., 2015). According to
the Glasgow Coma Score (GCS), patients with SAE are divided into
15, 12–14, 9–11, and 3–8 groups, with 63 different metabolites
observed between the SAE and control groups. The common
metabolites in all groups were as follows: for the group with GCS
= 15 points, 4-hydroxyphenylacetic acid; GCS = 12–14 points,
carbostyril and 3-ethyl-4,7-dimethoxy (35.8%); GCS = 9–11
points, malic acid peak 1; GCS = 3–8 points, oxalic acid. The
GCS was also related to the concentration of 4-
hydroxyphenylacetic acid (Zhu et al., 2019). In this study, 272
different metabolites and 19 different metabolic pathways were
found between the SAE and non-SAE groups. The results showed
that the metabolic pathways were abundant in tryptophan
metabolism and primary bile acid biosynthesis, which was
inconsistent with the results of previous studies.

We found that bacteria and metabolites were correlated in
preterm infant feces, and previous studies have shown that bacterial

metabolism has an impact on metabolite abundance in humans and
mice (Dodd et al., 2017; Stephen et al., 2018). In this study,
Sphingorhabdus was negatively correlated with 2-ketobutyric acid,
9-decenoic acid, and L-leucine but positively correlated with glycyl-
valine. Moreover [Eubacterium]_hallii_group was positively
correlated with 2-methoxy-3-methylpyazine, acetaminophen, and
synephrine acetonide. In addition, abundance of [Eubacterium]
_hallii_group was significantly decreased in SAE. This suggest
that the correlation may play role in SAE development.

In line with previous studies, our results indicated that the gut
microbiota diversity and number were downregulated in the
patients with SAE.

CONCLUSION

In conclusion, in patients with SAE, the diversity and quantity of
intestinal flora were downregulated, and bacteria were increased or
depleted, accompanied by changes in the serum metabolic map.
Our results uncovered the relationship between intestinal flora and
serum metabolites in patients with SAE, which may provide
theoretical support for the diagnosis and treatment of SAE.
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Identification of RNA
Methylation-Related lncRNAs
Signature for Predicting Hot and Cold
Tumors and Prognosis in Colon
Cancer
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N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), and 7-
methylguanosine (m7G) are the major forms of RNA methylation modifications, which are
closely associated with the development of many tumors. However, the prognostic value
of RNA methylation-related long non-coding RNAs (lncRNAs) in colon cancer (CC) has not
been defined. This study summarised 50 m6A/m1A/m5C/m7G-related genes and
downloaded 41 normal and 471 CC tumor samples with RNA-seq data and
clinicopathological information from The Cancer Genome Atlas (TCGA) database. A
total of 1057 RNA methylation-related lncRNAs (RMlncRNAs) were identified with
Pearson correlation analysis. Twenty-three RMlncRNAs with prognostic values were
screened using univariate Cox regression analysis. By consensus clustering analysis,
CC patients were classified into two molecular subtypes (Cluster 1 and Cluster 2) with
different clinical outcomes and immune microenvironmental infiltration characteristics.
Cluster 2 was considered to be the “hot tumor” with a better prognosis, while cluster
1 was regarded as the “cold tumor” with a poorer prognosis. Subsequently, we
constructed a seven-lncRNA prognostic signature using the least absolute shrinkage
and selection operator (LASSO) Cox regression. In combination with other clinical traits, we
found that the RNA methylation-related lncRNA prognostic signature (called the “RMlnc-
score”) was an independent prognostic factor for patients with colon cancer. In addition,
immune infiltration, immunotherapy response analysis, and half-maximum inhibitory
concentration (IC50) showed that the low RMlnc-score group was more sensitive to
immunotherapy, while the high RMlnc-score group was sensitive to more
chemotherapeutic agents. In summary, the RMlnc-score we developed could be used
to predict the prognosis, immunotherapy response, and drug sensitivity of CC patients,
guiding more accurate, and personalized treatment regimens.

Keywords: colon cancer, RNA methylation, long non-coding RNA, immunotherapy, tumor immune
microenvironment
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INTRODUCTION

Colon cancer (CC), a common gastrointestinal malignancy, is the
third leading cause of cancer-related mortality, and morbidity
worldwide (Siegel et al., 2022). Although patient prognosis has
significantly improved with the advances in surgery,
radiotherapy, and chemotherapy techniques, the 5-years
survival rate for patients with advanced CC is only 10% (Su
and Zhang, 2017). In recent years, immunotherapy has shown
excellent anti-tumor efficacy in many types of malignancies, such
as colon cancer, head and neck tumors, melanoma, kidney cancer,
and lung cancer (Constantinidou et al., 2019; Morse et al., 2020).
However, not all CC patients respond to immunotherapy.
Patients who benefit from immunotherapy are mainly those
with mismatch repair-deficient (dMMR) or microsatellite
instability-high (MSI-H), with an efficacy rate of only 30–40%,
and this population represents only a small fraction of those with
advanced CC(Le et al., 2017; Morse et al., 2020). Other
immunotherapeutic biomarkers include tumor mutational
burden (TMB) and programmed cell death ligand-1 (PD-L1)
expression (Chan et al., 2019; Luchini et al., 2019; Sagredou et al.,
2021). However, the above markers have significant limitations in
clinical application, and there exist some patients who are
negative for the above markers and can also benefit from PD-
1/PD-L1 based immunotherapy (Liu et al., 2019; He et al., 2021).
Therefore, it is urgent to find some novel and effective biomarkers
to detect the prognosis of CC and to guide immunotherapy
regimens.

RNA methylation is considered an important process in
epigenetic regulation, which occurs in mRNA and in ncRNA (Xu
et al., 2021). Various forms of RNA methylation exist depending on
the site of methylation, including N1-methyladenosine (m1A), 5-
methylcytosine (m5C), N6-methyladenosine (m6A), 7-
methylguanosine (m7G), and 2-O-dimethyladenosine (m6Am)
(Xie et al., 2020). RNA methylation is involved in various
physiological and pathological processes, and its dysregulation is
closely associated with the development of human cancer. For
example, the m6A-related regulator METTL3 was found to be
highly expressed in several types of cancers and associated with
poor prognosis, including gastric cancer (Wang et al., 2020), liver
cancer (Chen et al., 2018), and colon cancer (Li et al., 2019a). The
m5C-related factors form a tumor microenvironment suitable for
migration and metastasis of various cancer cells by regulating some
known tumor promoters, such as HDGF, TGF-β, FGF2, and
G3BP1(Zhang et al., 2021c). The m1A demethylase ALKBH3,
also known as prostate cancer antigen 1 (PCA-1), in addition to
being exceptionally abundant in prostate cancer (Konishi et al.,
2005), the oncogenic role of m1A demethylation has been found in
colon (Zhao et al., 2019), breast (Woo and Chambers, 2019), and
lung cancers (Tasaki et al., 2011). METTL1/WDR4-mediated
enhancement of m7G modification improves translation
efficiency and is associated with poor prognosis in several cancers
(Katsara and Schneider, 2021). In addition, recent studies have
demonstrated that RNA methylation can play a critical role in
tumor immunity by affecting immune cell maturation and RNA
immunogenicity, which provides a new direction for future cancer
immunotherapy (Zhang et al., 2021a).

Long non-coding RNAs (lncRNAs) are a class of non-protein-
coding RNAs with transcripts longer than 200 nt, mainly
involved in epigenetic regulation, transcriptional, and post-
transcriptional regulation (Cao et al., 2019). Increasing
evidence suggests that lncRNAs play an integral role in the
development and progression of several cancers, including
colon cancer, suggesting that they could serve as novel
biomarkers, and therapeutic targets (Meng et al., 2021; Dong
et al., 2022; Shen et al., 2022). In recent years, studies on the
relationship between RNA methylation and lncRNA in tumors
have become the hot topic. For example, NSUN2-mediated m5C
methylation of lncRNA H19 may contribute to the development
and growth of hepatocellular carcinoma by affecting the
interaction with oncoprotein G3BP1 (Sun et al., 2020).
ALKBH5 promotes the invasion and metastasis of gastric
cancer cells by demethylating lncRNA NEAT1 (Zhang et al.,
2019). Wang et al. developed an m5C-related lncRNA prognostic
model to predict patient prognosis (Wang et al., 2021b). Zhang
et al. constructed a risk model including 31m6A-related lncRNAs
in colon cancer that could be used to predict patient prognosis
(Zhang et al., 2021b). However, studies including four major
(m6A, m1A, m5C, and m7G) RNA methylation modification-
related lncRNAs in tumors have remained relatively rare so far. In
this study, we collected transcriptomic data and clinical
information from CC patients and performed a series of
bioinformatic analyses to understand the expression of m6A,
m1A, m5C, and m7G-RNA methylation modification-related
lncRNAs and their impact in CC, and to elucidate the
potential mechanisms of prognosis. The significance and
originality of this study is that it further reveals a potential
link between RNA methylation modification patterns and
tumor microenvironment and clinical treatment response. This
novel signature can be used to assess the sensitivity of CC patients
to immunotherapy and chemotherapy.

MATERIALS AND METHODS

Data Acquisition and Processing
Transcriptome profiling data, somatic mutation data, and
corresponding clinical data for the TCGA-CORD cohort were
downloaded from The Cancer Genome Atlas (TCGA) database
(https://cancergenome.nih.gov/), including data from 471 CC
and 41 normal case samples. Gene expression profiles were
then fully annotated with the Gencode project (Frankish et al.,
2019) and distinguished into mRNAs and lncRNAs profiles. The
GSE17536 dataset (N = 177) was obtained from Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) as an external
validation set to better verify the role of target lncRNAs.

Differential Expression and Mutational
Analysis of RNA Methylation Regulators
Through the review of the latest literature, a total of 50m6A-, m1A-,
m5C-, and m7G-RNA methylation regulators were obtained.
Among them, 25 m6A regulators (METTL3, METTL14,
METTL16, WTAP, KIAA1429, VIRMA, RBM1, RBM15,
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RBM15B, and ZC3H13, FTO, ALKBH5, YTHDC1, YTHDC2,
YTHDF1, YTHDF2, YTHDF3 IGF2BP1, IGF2BP2, IGF2BP3,
HNRNPA2B1, HNRNPC, HNRNPG, RBMX, LRPPRC, and
FMR1) (Li et al., 2019b; Hu et al., 2019; An and Duan, 2022), 13
m1A regulators (TRMT6, TRMT61A, TRMT61B, TRMT61C,
TRMT10C, BMT2 RRP8, YTHDF1, YTHDF2, YTHDF3, and
YTHDC1, ALKBH1, and ALKBH3) (Xie et al., 2020; Song et al.,
2021a), 14 m5C regulators (NOP2, NSUN1, NSUN2, NSUN3,
NSUN4, NSUN5, NSUN7, DNMT1, TRDMT1, DNMT3A,
DNMT3B, TET2, YBX1, and ALYREF) (Meng et al., 2021), and
2 m7G regulators (METTL1 and WDR4) (Tomikawa, 2018) were
included. RNA methylation regulators differentially expressed in
colon cancer and normal tissues in the TCGA-CORD cohort were
identified using the “limma” package. The “maftools” package was
used to generate mutation maps of RNA methylation regulators in
CC patients. CNV altered positions of RNA methylation regulators
on 23 chromosomes were mapped using the “RCircos” package.

Identification of RNA Methylation-Related
lncRNA and Analysis of Their Prognostic
Value
Pearson correlation analysis was used to screen for lncRNAs co-
expressed with differentially expressed RNA methylation-related
genes (|Pearson R|>0.5 and p-value <0.001). Univariate Cox
regression analysis was performed to screen for RMlncRNAs
significantly associated with OS (p < 0.05), and the Sankey
diagram was mapped by the “ggalluvial” R package. The Wilcoxon
test was used to detect differences in the expression of prognosis-
related RMlncRNAs between tumor tissues and normal tissues.

Consistent Clustering of RNA
Methylation-Related lncRNAs
Based on the expression of RMlncRNAs with prognostic value,
unsupervised consensus clustering was performed using
“ConsensusClusterPlus” on 433 colon cancer patients to identify
potential molecular subtypes (Wilkerson and Hayes, 2010). R
packages “ survival” and “survminer” were used to analyze the
prognosis of samples with different molecular subtypes. Clinical data
were included and analyzed for differences in molecular subtypes by
using the “heatmap” R package for distinct clinicopathological
features. The proportion of 22 tumor-infiltrating immune cells
(TICs) in each sample was quantified using the CIBERSORT
algorithm (Newman et al., 2015). The ESTIMATE algorithm was
used to calculate the tumor microenvironment (TME) score
(including immune score, stromal score, ESTIMATE score, and
tumor purity) for each sample (Yoshihara et al., 2013). In addition,
we synthesized 38 immune checkpoint genes from the literature and
examined the expression of these checkpoint genes amongmolecular
subtypes (Pardoll, 2012; Nirschl and Drake, 2013).

Construction and Validation of RNA
Methylation-Related lncRNA Signature
The TCGA-CORD cohort was randomly divided into a training
set and a test set (1:1 ratio). A minimum absolute shrinkage and

selection operator (LASSO) Cox regression analysis was used to
narrow down candidate lncRNAs and develop an RNA
methylation-related lncRNA signature (we named it RMlnc-
score). The formula is as follows: RMlnc-score = Σ (βi × Expi)
(β: coefficients, Exp: lncRNA expression level). Patients were then
divided into high RMlnc-score and low RMlnc-score groups
based on the median value of RMlnc-score. Kaplan-Meier
survival curves were plotted using the R package “survival” to
describe the overall survival difference between the high and low
score groups. Receiver operating characteristic curves (ROC)
analysis was performed to evaluate its sensitivity and accuracy.
Heatmaps were generated to reveal differences in signature
lncRNA expression in the low and high RMlnc-score groups.

Analysis of the Prognostic Value and
Clinical Relevance for the RMlnc-Score
The student’s t-test was used to assess the relationship between
RMlnc-score and clinical characteristics. In addition, survival
analysis was performed to further elucidate the relationship
between RMlnc-score by sex (male and female), age (≤65 and
>65 years), T-stage (T1-2 and T3-4), N-stage (N0 and N1-2),
M-stage (M0 andM1), and grade (stages I-II and stages III-IV) in
each subgroup for prognostic ability. Subsequently, univariate
and multivariate Cox regression analyses were used to determine
the relationship and independence between clinicopathological
characteristics and RMlnc-score. A nomogram and calibration
curves were then constructed based on independent prognostic
factors from multivariate Cox regression analysis to predict the
probability of survival at 1, 3, and 5 years in CC patients. The
GSE17536 dataset was used as an external validation cohort to
further assess the prognostic value and clinical relevance of model
lncRNAs.

Principal Component Analysis and
Assessment of Immune Cell Infiltration
The R package “scatterplot3d” was used to perform PCA analysis
to explore potential differences between high and low RMlnc-
score groups. To analyze the correlation between RMlnc-score
and TICs, we used different software (including ssGSEA, xCELL,
Timer, Quantiseq, MCPcounter, EPIC, CIBERSORT-ABS, and
CIBERSORT) to comprehensively analyze of immune cell
infiltration.

Assessment of Response to Anti-Tumor
Therapy
The tumor immune dysfunction and exclusion (TIDE) algorithm
(Fu et al., 2020) was used to assess the potential response of colon
cancer patients in the different RMlnc-score groups to
immunotherapy. Data from the Genomics of Drug Sensitivity
in Cancer (GDSC) database were used to predict the response of
CC patients to chemotherapeutic drug therapy. The
“pRRophetic” R package (Geeleher et al., 2014) was used to
calculate the half-maximal inhibitory concentration (IC50) of
common chemotherapeutic agents.
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Prediction of RNA Methylation Modification
Sites on 7 lncRNAs
m6A-Atlas (Tang et al., 2021) and SRAMP(Zhou et al., 2016)
were used to predict the m6A site of the lncRNAs; m5C-Atlas
(Ma et al., 2022) and RNAm5Cfinder (Li et al., 2018) were used to
predict the m5C site of the lncRNAs; m7GHub (Song et al., 2020)

and iRNA-m7G (Chen et al., 2019) databases were used to predict
the m7G site of the lncRNAs.

Statistical Analysis
All statistical analyses were performed using R software (v4.0.2). p
values < 0.05 were considered statistically significant if not
explicitly stated.

FIGURE 1 | Workflow diagram of this study.
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RESULTS

Landscape of RNA Methylation Regulator
Expression and Gene Mutation in CC
The workflow of this study is illustrated in Figure 1. First, we
investigated the expression of 50 m1A-, m5C-, m6A-, and m7G-
RNA methylation regulatory genes in the TCGA-CORD cohort
(Figure 2A). The results showed that there were 42 differentially
expressed RNA methylation regulatory genes. Among them, 37
regulators were highly expressed in colon cancer tissues, and five
were lowly expressed in colon cancer tissues. Next, we investigated the
incidence of somatic mutations and copy number variations for 50
regulators in TCGA-CORD. A total of 140 of 399 samples (35.09%)
experienced genetic alterations in RNA methylation regulators
(Figure 2B). Among them, ZC3H13 (9%) was the gene with the
highest mutation frequency, followed by YTHDC2 (6%), and RBM15
(5%.) The investigation of CNV alteration frequency revealed that all

RNA methylation regulators were found to show prevalent CNV
alterations. Among them, DNMT3B, ALYREF, YTHDF1/3,
IGF2BP2/3, YBX1, and HNRNPA2B1 showed significant copy
number amplification, while TRMT6, YTHDF2, YTHDC2, and
RBM15/15B showed remarkable copy number deletions
(Figure 2C). Figure 2D shows the location of CNV changes in
RNA methylation regulators on chromosomes. The above analysis
revealed a high degree of heterogeneity in the expression and inherited
variation status of RNAmethylation in CC, demonstrating that RNA
methylation-related regulators may play a pivotal position in the
occurrence and development of CC.

Identification of RNA Methylation-Related
lncRNAs in CC Patients
We identified 1,057 lncRNAs significantly associated with 42
differentially expressed RNA methylation regulators by using

FIGURE 2 | Characteristics and differences of RNA methylation-related regulators in CC. (A) Heatmap of differential expression of RNA methylation-related
regulators between normal (n = 41) and colon cancer tissues (n = 471) in the TCGA-CORD cohort. (B) Mutation waterfall plots of 399 colon cancer patients from the
TCGA-CORD cohort. (C) Copy number variation (CNV) frequency of RNA methylation-related regulators in the TCGA-CORD cohort. (D) The location of CNV alterations
of RNA methylation-associated regulators on chromosomes in the TCGA-CORD cohort. *p<0.05; **p<0.01; ***p<0.001.
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Pearson correlation analysis and defined them as RMlncRNAs.
Based on the mRNA-lncRNA co-expression pattern, we
constructed a Sankey diagram to show their linkage
(Figure 3A). After excluding normal tissues or patients lacking
survival data, we merged survival information with RMlncRNA
expression data of colon cancer patients (final number of patients
= 433). Subsequently, we performed univariate Cox regression
analysis and found that 23 RMlncRNAs were significantly
associated with OS of colon cancer patients (p < 0.05,
Figure 3B). Among them, only TNFRSF10A-AS1 was
identified as a protective factor with a risk ratio (HR) < 1,
while all others were considered as risk factors. The bar graph
and heatmap showed significant differences in the expression of
these 23 prognosis-related RMlncRNAs between normal and
colon cancer tissues (Figures 3C, D).

Molecular Subtypes Mediated by
23 Prognosis-Related RMlncRNAs
Based on the expression levels of 23 prognosis-related
RMlncRNAs in CC samples, we clustered 433 samples by an
unsupervised clustering approach to further elucidate the
biological differences between subgroups. Our results showed
that K = 2 was the optimal number of clusters with the highest

correlation within groups and the least interference between
groups (Figures 4A–C). Therefore, CC patients were divided
into two subgroups: Cluster1 (n = 170) and Cluster2 (n = 263).
The survival analysis results showed a significant survival
advantage for Cluster2 patients (p = 0.021, Figure 4D). The
heatmap showed differences in prognosis-related RMlncRNA
expression between subgroups (Figure 4E), and most
RMlncRNAs were highly expressed in Cluster1. In addition,
we found that patients with distant metastasis (M1) were
more represented in Cluster1 (p < 0.05), while other
clinicopathological features were not significantly different
between the two subgroups.

Characterization of Immune
Microenvironmental Infiltration Between
the Distinct Clusters
We further explored the differences in immune
microenvironment characteristics between distinct clusters to
understand the interactions between RNA methylation-related
lncRNAs and the immune microenvironment (TME). The results
of CIBERSORT analysis (Figure 5A) showed that 8 of the 22
immune infiltrating cells differed between clusters, with T cells
CD8, T cells regulatory (Tregs), NK cells resting, NK cells

FIGURE 3 | Identification of prognostic value of RNA methylation-related lncRNAs. (A) 1,057 lncRNAs were co-expressed with differentially expressed RNA
methylation-related regulators. (B) Univariate Cox regression analysis screened 23 lncRNAs with prognostic value. (C,D) The boxplot and heatmap of 23 lncRNAs with
prognostic value differentially expressed between 41 normal and 471 tumor tissues in the TCGA-CORD cohort. *p<0.05; **p<0.01; ***p<0.001; ns, no sense.
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activated, monocytes, dendritic cells resting, and neutrophils
showed more infiltration in Cluster2, while only T cells CD4
memory activated were highly enriched in Cluster1. The
percentages of 22 immune cell types in GC patients between
the two clusters are shown in Figure 5B. ESTIMATE analysis
showed (Figure 5C) that the immune score (p < 0.001), stromal
score (p = 0.0062), and ESTIMATE score (p < 0.001) were
significantly higher in Cluster2 than Cluster1, while the tumor
purity in Cluster1 (p < 0.001) was considerably higher than
Cluster2. In addition, we tried to determine the correlation
between subgroups and some immune checkpoints. We found
remarkable differences in the expression levels of 18 immune
checkpoint genes between the two subtypes (p < 0.05). The
expression levels of PD-1, PD-L1, HAVCR2, CTLA4, LDHA,
LGALS9, TNFRSF18, YTHDF1, LAG3, CD40, TNFRSF4,
TNFRSF9, CD86, B2M, and CD8A were higher in Cluster2,
whereas PDCD1LG2, IL12A, PVR, and JAK1 were higher in
Cluster 2 (Figure 5D). Previous studies have shown that high
immune scores and activation of suppressive immune
checkpoints (like HAVCR2, PD-L1, CTLA-4) play a crucial
role in “hot tumors” (Zhan et al., 2021). “Hot tumors” are

more likely to benefit from immune checkpoint blockade
(ICB) therapy, whereas “cold tumors” with low levels of
immune infiltration are more likely to become resistant to
immunotherapy (Galon and Bruni, 2019). Therefore, we may
consider cluster 1 as the “cold tumor” and cluster 2 as the “hot
tumor”, which may predict different immunotherapy responses.

Construction and Validation of RNA
Methylation-Related lncRNA Prognostic
Signature
The 433 colon cancer patients were randomly divided into a training
set (n = 217) and a test set (n = 216). To avoid overfitting, we
screened the seven most powerful prognostic RMlncRNAs by
LASSO regression analysis, which were used to construct the
RNA methylation-related lncRNA prognostic signature (RMlnc-
score) (Figures 6A, B). The correlation coefficients are shown in
Table 1. Patients were classified into low RMlnc-score and high
RMlnc-score groups according to the cut-off values of RMlnc-score.
The RMlnc-score for each patient was calculated as follows:RMlnc-
score=(0.0645*ALMS1-IT1 expression) + (−0.1268*TNFRSF10A-

FIGURE 4 |Overall survival and clinical characteristics of different subgroups of CC. (A) Consensus matrix at optimal k = 2. (B) The cumulative distribution function
(CDF) from k = 2 to 9. (C) Relative variation of the area under the CDF region at k = 2–9. (D) Kaplan-Meier curves of the overall survival (OS) time of cluster 1 and cluster 2
(p = 0.021). (E) Heatmap of clinical characteristics and 23 prognostic lncRNA expressions among the two clusters. *p<0.05.
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AS1 expression) + (0.6464*FRMD6-AS1 expression) +
(0.6173*STARD7-AS1) + (0.4430*LINC02257 expression) +
(0.2254*AP001505.1 expression) + (0.2329*AC019205.1
expression). The Kaplan-Meier curves showed that in the training
set (p < 0.001, Figure 6C) and test set (p = 0.002, Figure 6D),
patients in the high RMlnc-score group had a worse prognosis
compared to the low RMlnc-score group. The area under the curve
(AUC) for 5-years overall survival (OS) was 0.741 and 0.734 for the
training and test sets, respectively (Figures 6E, F). In the overall
cohort (Figure 6G), the RMlnc-score (our study) had an AUC of
0.737 at 5-years overall survival, which was substantially higher than
ChaiLncSig (AUC = 0.653), YunLncSig (AUC = 0.658), and

ZhangLncSig (AUC = 0.659). This suggests that the RMlnc-score
has higher accuracy in predicting survival compared to three recently
published lncRNA signatures for colon cancer (Chai et al., 2021; Yun
and Yang, 2021; Zhang et al., 2021d). The survival status and RMlnc-
score score curves for the training and test sets showed (Figure 6H, I,
7I) that RMlnc-score was proportional to the number of deaths in
CC patients. The heatmaps showed (Figures 6J, K) that the
expression of ALMS1-IT1, FRMD6-AS1, STARD7-AS1,
LINC02257, AP001505.1, and AC019205.1 was upregulated in
the high RMlnc-score group, while TNFRSF10A-AS1 was
upregulated in the low RMlnc -score group was up-regulated. In
addition, we performed a validation analysis of the signature

FIGURE 5 | Characterization of TME cell infiltration in different clusters. (A) CIBERSORT analysis of the abundance of 22 tumor-infiltrating immune cells (TICs)
infiltration between the two groups. (B) The bar graph displaying the ratio of 22 TICs types for CC patients in cluster 1 and cluster 2. (C) The violin plots depicting the
difference in tumormicroenvironment scores (including immune score, stromal score, ESTIMATE score, and tumor purity) between the two clusters. (D) Expression of 32
immune checkpoint genes between the two clusters. pp < 0.05; ppp < 0.01; pppp < 0.001;ns, no sense.
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FIGURE 6 | RNA methylation-related lncRNA prognostic signature. (A,B) Seven optimal RNA methylation-related lncRNAs were found using the least absolute
shrinkage and selection operator (LASSO) cox regression. (C,D) Kaplan-Meier curves for overall survival in the training and test sets. (E,F) ROC curves were used to
predict the 5-years survival of patients in the training and test sets. The AUC was 0.741 in the training set and 0.734 in the test set. (G) Comparison of RMlinc-score with
other prognostic evaluation models. (H,I) Survival status and RMlinc-score curves in the training and test sets. (J,K) Heatmap of RNAmethylation-related lncRNAs
expression in the training and test sets.
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lncRNA in theGSE17536 cohort. However, due to fewer non-coding
genes in the microarray data, we only detected ALMS1-IT1 and
FRMD6-AS1. Our results showed that high expression of ALMS1-
IT1 (p = 0.044) and FRMD6-AS1 (p = 0.034) was significantly
associated with poor prognosis of patients (Figures 7A, B). High
expression of ALMS1-IT1 was associated with high grade (p =
0.0017, Figure 7C) and high expression of FRMD6-AS1 was

associated with high stage (p = 0.021, Figure 7D) and high grade
(p = 0.028, Figure 7E).

Independent Prognostic and Clinical
Correlation Analysis
Stratified survival analysis in combination with clinical
characteristics (Figures 8A–L) showed that in age>65 (p <
0.001), age ≤ 65 (p < 0.001), male (p < 0.001), female (p =
0.004), stage III-IV (p = 0.002), T3-4 (p < 0.001), M0 (p < 0.001),
and N1-2 (p < 0.001) subgroups of patients, survival was
significantly lower in the high RMlnc-score group than in the
low RMlnc-score group. By comparing the RMlnc-score of
patients in different groups, we found that RMlnc-score
increased with increasing T-stage, N-stage, M-stage, and
clinical stage, while no significant differences were seen for age
and gender (Figures 8M–R). Univariate Cox regression analysis
showed that age, stage, T-stage, N-stage, M-stage, and RMlnc-
score (all p < 0.001) were strongly associated with prognosis
(Figure 9A). Multivariate Cox regression analysis confirmed that

TABLE 1 | The correlation coefficients of 7 RNA methylation-related lncRNAs.

Gene Coef

ALMS1-IT1 0.064532959
TNFRSF10A-AS1 −0.12683763
FRMD6-AS1 0.64643134
STARD7-AS1 0.617319233
LINC02257 0.443023664
AP001505.1 0.225414755
AC019205.1 0.232908459

FIGURE 7 | Validation of lncRNA prognostic signatures in the GEO cohort. (A) Kaplan-Meier survival curve of ALMS1-IT1. (B) Kaplan-Meier survival curves of
FRMD6-AS1. (C)Correlation between ALMS1-IT1 expression and grade. (D)Correlation between FRMD6-AS1 expression and stage. (E)Correlation between FRMD6-
AS1 expression and grade.
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FIGURE 8 | Correlation of clinical characteristics with RMlnc-score by subgroup analysis. Kaplan-Meier curves stratified by (A,B) age, (C,D) sex, (E,F) N stage,
(G,H) T stage, (I,J) M stage, and (K,L) clinical stage. (M–R) Differential analysis of RMlnc-score for different subgroups.
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age, T-stage, and RMlnc-score were independent prognostic
factors for CC patients (Figure 9B). Based on the three
independent prognostic factors in the multivariate Cox
regression analysis, we created a nomogram capable of
predicting the incidence of OS in CC patients at 1, 3, and
5 years (Figure 9C). The calibration curve demonstrated the
high accuracy and sensitivity of this nomogram (Figure 9D).

PCA Analysis and Immune
Microenvironment Characterization
The results of principal component analysis (PCA) showed no
significant differences between the high RMlnc-score group and
the low RMlnc-score group in the expression of all genes
(Figure 10A), RNA methylation-related genes (Figure 10B), and
RNA methylation-related lncRNAs (Figure 10C). However, in the

expression of the seven lncRNAs used in the prognostic model
(Figure 10D), there was a significant difference between the high
RMlnc-score and low RMlnc-score groups. We also explored
whether our model could predict immune cell infiltration in CC.
The bubble plot (Figure 10E) showed that RMlnc-score was
positively correlated with CD4+ T cells, cancer-associated
fibroblast (CAFs), myeloid dendritic cell, macrophage M0, NK
cell activated, hematopoietic stem cell while negative correlation
with CD4+8 cell, monocyte, neutrophil, and B cell plasma. The
ssGSEA results (Figure 10F) showed that some immune cells,
including dendritic cells (DCs), activated dendritic cells (aDCs),
immature dendritic cells (iDCs), mast cells, neutrophils, NK cells,
and type 2 T helper were significantly increased in the low RMlnc-
score group, and some pathways associated with immune function,
namely APC co-stimulation, C-C chemokine receptor, and cytolytic
activity, were significantly activated in the low RMlnc-score group.

FIGURE 9 | Establishment of nomogram for predicting OS in colon cancer patients. (A) Univariate Cox regression analysis of clinical characteristics and RMlnc-
score in CC samples. (B)Multivariate Cox regression analysis of clinical characteristics and RMlnc-score in CC samples. (C) The nomogram with multiple independent
predictors, including age, T-stage, and RMlnc-score, was employed to predict 1-, 3-, and 5-years OS in patients with colon cancer. (D) Calibration curves of the
nomogram for predicting 1,3,5-years OS.
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Immunotherapy Response Analysis
TMB and MSI have been reported to be predictive biomarkers of
immunotherapeutic response (Ock et al., 2017; Vandekerkhove
et al., 2021). Therefore, we first compared somatic mutations in
high RMlnc-score and low RMlnc-score and visualized the top 20
genes with the highest mutation frequency (Figures 11A, B).
However, there was no significant difference in tumor mutational
load between the high RMlnc-score and low RMlnc-score groups
(Figure 11C). We then compared the differences in MSI
distribution between the different scoring groups and found
that the low RMlnc-score group was associated with higher
microsatellite instability (MSI) (Figure 11D). TIDE, a novel
predictive marker of immunotherapy, was better than known
immunotherapy biomarkers (including TMB and PD-L1
expression) for response to immunotherapy in certain tumors
(Wang et al., 2019). Higher TIDE scores indicate that tumor cells
are more likely to induce immune escape, thus indicating a lower
response rate to immunotherapy. Surprisingly, we found that
patients in the low RMlnc-score group had significantly lower
TIDE scores (including T cell dysfunction and exclusion scores)
than those in the high RMlnc-score group (Figures 11E–G). The
above findings suggested that RMlnc-score correlates with the
response of CC patients to immunotherapy and may help predict
the efficacy of ICB immunotherapy.

Drug Sensitivity Analysis
To explore the effect of RMlnc-score on drug response, we
compared the half-maximal inhibitory concentration (IC50) of
the commonly used drugs in both groups. The results showed that
the IC50 values of bicalutamide, lapatinib, sorafenib, metformin,
and temsirolimus were higher in the high RMlnc-score group,
indicating that patients in the low-scoring group were more
sensitive to these five drugs. In contrast, axitinib, bexarotene,
bosutinib, elesclomol, embelin, etoposide, imatinib, lenalidomide,
methotrexate, midostaurin, nilotinib, pazopanib, shikonin,
vinblastine, vinorelbine, and vorinostat had higher IC50 in
patients with low RMlnc-score, implying that patients in the
high RMlnc-score group were more sensitive to these drugs
(Figure 12).

Analysis of RNA Methylation Modification
Sites
After scanning the m6A-Atlas, m5C-Atlas, and m7GHub
databases, we eventually obtained six m6A, nine m5C, and
one m7G modification sites on STARD7-AS1 and five m5C
modification sites on FRMD6-AS1, which have been
experimentally validated (Supplementary Table S1). Then, we
also utilized the widely used bioinformatics tools SRAMP,

FIGURE 10 | The principal component analysis and immune microenvironment differences of high and low RMlnc-score groups. Principal component analysis
between low RMlnc-score and high RMlnc-score groups based on the expression of (A) all genes, (B) RNAmethylation-related genes, and (C) RNAmethylation-related
lncRNAs and the (D) seven lncRNAs of prognostic signature. (E) Correlation between RMlnc-score and tumor-infiltrating immune cells. The correlation coefficient higher
than 0 indicated positive correlation and lower than 0 denoted negative correlation. (F) Differences in immune cells and immune function between the high RMlnc-
score and low RMlnc-score groups. *p<0.05; **p<0.01; ***p<0.001; ns, no sense.
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FIGURE 11 | Predictability of immunotherapy response in the prognostic signature. (A,B)Waterfall plot of the tumor mutational burden (TMB) landscape in the high
RMlnc-score and low RMlnc-score groups presenting the top 20 genes with the highest mutation frequency. (C) Differences in TMB of colon cancer patients in the high
and low RMlnc-score groups. (D)Differences in microsatellite instability (MSI) of colon cancer patients in high and low RMlnc-score groups. (E-G) TIDE prediction scores
(including TIDE score, dysfunction score, and exclusion score) between high RMlnc-score and low RMlnc-score groups. *p<0.05; **p<0.01.
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FIGURE 12 | Anti-tumor drug sensitivity in high RMlnc-score and low RMlnc-score populations.
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RNAm5Cfinder, and iRNA-m7G to predict potential m6A, m5C,
and m7G modification sites on our seven lncRNAs. Some
meaningful results showed that all seven lncRNAs were
potentially methylated (Supplementary Table S2).

DISCUSSION

CC is a highly complex and heterogeneous tumor characterized
by high morbidity and poor prognosis (Kumar et al., 2021).
Chemotherapy for CC has progressed in recent years, but tumor
resistance is frequent when traditional histological and
anatomical classifications are used to guide anti-tumor
therapy. Therefore, accurate identification of molecular
subtypes of CC is vital to guide individualized treatment.
Although previous studies have also identified several
prognostic signatures of CC for the stratification of colon
cancer patients, considerable heterogeneity remains between
subtypes (Cui et al., 2021; Song et al., 2021b). Therefore, more
accurate prognostic signatures of CC are urgently needed to
improve patient survival. An increasing number of studies
have shown that RNA methylation modifications (including
m6A, m5C, m1A, and m7G) play an essential role in tumor
progression and influence specific biological processes by
interacting with lncRNAs (Chen et al., 2021; Yao et al., 2021).
Huang et al. constructed an m5C-associated lncRNA prognostic
signature that accurately predicted breast cancer patient’s
prognosis and immune microenvironment characteristics
(Huang et al., 2021). A recent study has identified the critical
role of m6A/m5C/m1A-related lncRNA-based prognostic
signature in predicting molecular subtypes and prognosis of
head and neck tumors (Wang et al., 2021a). However, to the
best of our knowledge, no prognostic signature based on m6A/
m1A/m5C/m7G-related lncRNAs has been found to be accurate
and applicable to CC patients.

In this study, we first identified 1057 RNA methylation-
associated lncRNAs in the TCGA-CORD cohort, 23 of which
were confirmed with prognostic value. In addition, we defined
two clusters by consensus clustering analysis to investigate
potential molecular subtypes of CC. The results showed that
the subtypes were strongly correlated with tumor stage and OS,
with cluster 2 having better OS and less distant metastasis than
cluster 1, reflecting the association between RNA methylation-
associated lncRNAs and CC progression and prognosis. Recent
studies have shown that RNA methylation and lncRNAs play a
critical regulatory role in the immune system, especially in
immune cell infiltration and anti-tumor immune responses (Li
et al., 2017; Wu et al., 2020; Eptaminitaki et al., 2021). Based on
these findings, we obtained TME scores and immune
microenvironmental landscapes for each CC sample to
investigate the relationship between clusters, TME, and
immune checkpoints. The results showed that TME scores,
immune infiltrating cells, and immune checkpoints differed
significantly between the two clusters. Among them, cluster 2
had a significantly higher immune score, stromal score, and
ESTIMATE score than cluster 1, while cluster 1 had a higher
tumor purity than cluster 2. The majority of immune infiltrating

cells were enriched in cluster 2, including T cells CD8, Tregs, NK
cells resting, NK cells activated, Monocytes Dendritic cells
resting, and Neutrophils. In addition, we found that 15 out of
18 differentially expressed immune checkpoint molecules
(including PD-1, PD-L1, HAVCR2, CTLA4, LDHA, LGALS9,
TNFRSF18, YTHDF1, LAG3, CD40, TNFRSF4, TNFRSF9,
CD86, B2M, and CD8A) were highly expressed in cluster 2. It
was reported that high PD-L1 expression/infiltrating tumors with
high immune scores are usually considered hot tumors which are
sensitive to immunotherapy. In contrast, low PD-L1 expression/
non-infiltrating tumors with low immune scores are typically
regarded as cold tumors which are less effective for
immunotherapy (Kuriyama et al., 2020). Therefore, we
identified cluster 2 as “hot tumor” and cluster 1 as “cold
tumor,” corresponding to different prognoses and
immunotherapeutic responses.

Among the 23 RNA methylation-related lncRNAs, seven
lncRNAs were used to generate prognostic gene signatures
that stratified CC patients into low RMlnc-score and high
RMlnc-score groups with different OS. The survival time of
patients in the high RMlnc-score group was significantly
shorter than that in the low RMlnc-score group, both in the
training and test sets, which also demonstrated that the
prognostic model consisting of all seven lncRNAs could well
predict the prognosis of CC patients. We validated the predictive
ability of RMlnc-score in patients stratified based on
clinicopathological parameters. We noticed that RMlnc-score
showed a strong positive correlation with tumor progression
(T3-4, N1-2, M1, and stage III-IV). Univariate and
multivariate cox regression analyses showed that RMlnc-score,
age, and T-stage were available as independent prognostic factors
for OS in CC patients. By integrating these independent
prognostic factors, we constructed nomograms that could
predict 1-, 3-, and 5-years survival in CC patients, which were
highly accurate and reliable in estimating individual survival
rates. Notably, we further validated the correlation of our
signature lncRNA with clinicopathological features in the
GSE17536 cohort. We detected that high expression of
lncRNAs ALMS1-IT1 and FRMD6-AS1 was associated with
poorer prognosis and poorer differentiation. High FRMD6-
AS1 expression was also associated with higher clinical stage.
Previous studies have shown that upregulation of ALMS1-IT1
can promote lung cancer progression by mediating AVL9
activation of the cell cycle protein-dependent kinase pathway
(Luan et al., 2021). Li et al. constructed a ferroptosis-related
lncRNA prognostic signature that also included ALMS1-IT1 and
found it to be strongly associated with poor prognosis in colon
cancer (Li et al., 2022). These findings validated the oncogenic
properties of ALMS1-IT1 and are consistent with our results.
Unfortunately, there are few studies on the remaining lncRNAs.
Therefore, we anticipated that our results would help to
demonstrate the prognostic value of these RNA methylation-
related lncRNAs, thus providing insights into their potential role
in carcinogenesis and progression of CC.

Currently, only a minority of CC patients have responded to
immunotherapy in clinical practice. Thus, it is necessary to assess the
value of prognostic characteristics in predicting response to
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immunotherapy. The effectiveness of immunotherapy is influenced
by the immunogenicity of the tumor microenvironment, which is
why understanding TME is essential for evaluating immunotherapy
(Turley et al., 2015). The ssGSEA results showed that the lowRMlnc-
score group had a greater enrichment of immune-related cells and
immune-related pathways, including dendritic cells (DCs), activated
dendritic cells (aDCs), immature dendritic cells (iDCs), mast cells,
neutrophils, NK cells, type 2 T helper, APC co-stimulation, C-C
chemokine receptor, and cytolytic activity. The above results
indicated that patients with low RMlnc-score had higher
immunogenicity and better immunotherapy response.

Drug efficacy is related to drug sensitivity and individual
differences in patients, and targeting the appropriate
subpopulation will improve drug efficacy. Therefore, we further
analyzed the sensitivity of patients in distinct RMlnc-score groups to
anti-tumor drugs. Prediction of chemotherapy drug sensitivity
showed that bicalutamide, lapatinib, sorafenib, metformin, and
temsirolimus were the ideal choices for CC patients in the low
RMlnc-score group. At the same time, axitinib, bexarotene,
bosutinib, elesclomol,embelin, etoposide, imatinib, lenalidomide,
methotrexate, midostaurin, nilotinib, pazopanib, shikonin,
vinblastine, vinorelbine, and vorinostat may work better in
patients in the high RMlnc-score group.

However, our study has some limitations. First, this is a
retrospective analysis based on an online public database, and we
used internal validation methods in the TCGA cohort and external
validation in the GSE17536 independent cohort, but large-scale
prospective data are still needed to validate our prognostic
signature. In addition, the potential mechanism of RMlnc-score
may need further validation by in vitro and in vivo experiments.

CONCLUSION

In summary, our study elucidated that RNA methylation-related
lncRNAs and can predict the prognosis of CC patients and guide
more effective and personalized treatment strategies by
identifying hot and cold tumors. Targeting RNA methylation
and lncRNAs would be a promising way to overcome individual
treatment failure and improve patient prognosis.
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N6-methyladenosine (m6A) is the most common and conserved internal eukaryotic mRNA
modification. m6A modification is a dynamic and reversible post-transcriptional regulatory
modification, initiated by methylase and removed by RNA demethylase. m6A-binding
proteins recognise the m6A modification to regulate gene expression. Recent studies have
shown that altered m6A levels and abnormal regulator expression are crucial in the ageing
process and the occurrence of age-related diseases. In this review, we summarise some
key findings in the field of m6A modification in the ageing process and age-related
diseases, including cell senescence, autophagy, inflammation, oxidative stress, DNA
damage, tumours, neurodegenerative diseases, diabetes, and cardiovascular diseases
(CVDs). We focused on the biological function and potential molecular mechanisms of m6A
RNA methylation in ageing and age-related disease progression. We believe that m6A
modification may provide a new target for anti-ageing therapies.

Keywords: N6-methyladenosine, aging, aging-related disease, epigenetics, RNA methylation

1 INTRODUCTION

Ageing is a process of molecular and cellular damage accumulating over time, leading to a
progressive decline in physical and mental capacity and an increased risk of disease and death
(Borghesan et al., 2020). At present, changes in molecular and cellular ageing processes are believed
to be the basis of age-related diseases, including cell senescence, autophagy, inflammation, oxidative
stress, DNA damage, telomere depletion, protease inactivation, and epigenetic disorders (Ungvari
et al., 2020). Ageing is the greatest risk factor for most chronic diseases, leading to morbidity and
mortality (Kennedy et al., 2014). Presently, the field of ageing has focused on understanding the
molecular mechanisms that regulate the ageing process and identifying biomarkers that could help to
predict age-related processes. New therapeutic targets mainly focus on improving the health of the
elderly population.

Epigenetics regulate gene and non-coding RNA expression without altering primary DNA
sequences through many mechanisms, such as DNA methylation, histone modification, and
nucleosome localisation (Portela and Esteller, 2010). Epigenetic imprinting persists during
development and can be passed on to the offspring (Fraga et al., 2005; Kaminsky et al., 2009).
Known epigenetic mechanisms include DNA methylation, histone modification, chromatin
remodelling, and RNA methylation (Wang and Chang, 2018). At present, it is believed that
during the ageing process, a decrease in histone synthesis and a change in chromatin structure
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leads to a general loss of structural heterochromatin (Lee et al.,
2020). Histone variants have also been observed in ageing
organisms, which have different primary sequences and
properties compared to typical histones, thus changing the
gene transcription program (Henikoff and Smith, 2015). In
addition, the ageing process involves DNA methylation
changes (Day et al., 2013; Horvath, 2015; Unnikrishnan et al.,
2019), ATP-dependent chromatin remodelling (Clapier et al.,
2017), histone modifications (including methylation, acetylation,
ubiquitination) (Lawrence et al., 2016), and miRNA changes
(Huan et al., 2018).

As one of the most common post-transcriptional
modifications in eukaryotic mRNA, N6-methyladenosine
(m6A) adds a methyl group to the nitrogen-containing base at
the sixth position of the adenine residue of RNA. It was first
found in the eukaryotic mRNA of Novikov hepatoma cells and
mouse L cells (Desrosiers et al., 1974; Schäfer, 1982). m6A
modification has a conservative identification motif, RRACH
(R = G/A, H = A/C/U) (Csepany et al., 1990). The
evolutionary conservatism and dynamic reversibility of its
modification make it unique for gene expression regulation.
m6A RNA methylation has become a key regulator of various
post-transcriptional gene regulation processes and acts as a
translation initiation mechanism in protein synthesis (Karthiya
and Khandelia, 2020). In addition, numerous reports have
indicated that m6A modification may cause important changes
in the ageing process and affect the occurrence and development
of many age-related diseases. In this review, we focused on m6A
RNA methylation mechanisms related to the ageing process and
emphasised their significance in age-related diseases. We believe
that m6A RNA methylation is a potential target for treating age-
related diseases.

2 OVERVIEW OF N6-METHYLADENOSINE
MODIFICATION

RNA modification is a post-transcriptional process that regulates
gene expression by binding to proteins without involving the
RNA sequence. More than 160 types of RNA modifications,
ubiquitous in both coding and non-coding RNA, have been
identified. First discovered in 1974, m6A modification refers to
the methylation of the sixth nitrogen atom of adenylate. It is
considered the most abundant internal modification in
eukaryotic mRNA (Desrosiers et al., 1974). With recent
improvements in detection techniques, such as high-
throughput sequencing, the study of m6A RNA methylation is
booming. Presently, it has been reported that there are three m6A
residues per average mRNA transcript in mammalian cells
(Dominissini et al., 2012). In addition to mRNA, m6A RNA
methylation covers almost all types of RNA, including transfer
RNAs (tRNAs), ribosomal RNAs (rRNAs), cyclic RNAs
(circRNAs), microRNAs, and small nucleolar RNA (snoRNA)
(Sergiev et al., 2016).

m6A RNA methylation is a dynamic and reversible RNA
modification, and its function is determined by three types of
enzymes: RNA methyltransferase, RNA demethylase, and

m6A-binding proteins (Figure 1) (Fu et al., 2014). m6A
modification is crucial in regulating gene expression, splicing,
RNA editing, RNA stability, controlling mRNA lifespan and
degradation, and mediating ring RNA translation (Zhao et al.,
2017). In addition, m6A modification is related to many
physiological processes, pathological processes, and human
diseases, including the circadian rhythm (Zhong et al., 2018),
reproductive system development (Hongay and Orr-Weaver,
2011; Hsu et al., 2017; Ivanova et al., 2017; Kasowitz et al.,
2018), haematopoietic system development (Wang et al.,
2014a; Zhang et al., 2017), nervous system development and
degeneration (Hess et al., 2013; Lence et al., 2016; Li et al., 2017a;
Yen and Chen, 2021), cardiovascular diseases (CVDs) (Chen
et al., 2021a), nutritional and metabolic diseases (Wu et al.,
2020a), and tumorigenesis (Wang et al., 2020a; Zhou et al., 2020).

2.1 RNA Methyltransferases
RNA methyltransferases, including RNA methyltransferase-like
protein 3 (METTL3) (Bokar et al., 1997), RNAmethyltransferase-
like protein 14 (METTL14) (Liu et al., 2014), Wilms’ tumour 1-
associating protein (WTAP) (Agarwala et al., 2012), RNA-
binding motif protein 15 (RBM15) and its analogue RBM15B
(Patil et al., 2016), Vir-like m6A RNA methyltransferase
associated protein (VIRMA)/KIAA1429 (Schwartz et al., 2014),
Zinc finger CCCH domain-containing protein 13 (ZC3H13)
(Wen et al., 2018), RNA methyltransferase-like protein 16
(METTL16) (Pendleton et al., 2017), and RNA
methyltransferase-like protein 5 (METTL5) (van Tran et al.,
2019; Richard et al., 2019), mediate m6A modification, are
mainly located in nuclear speckles, and are called “m6A
writers.” Among these, METTL3 was the first key RNA
methyltransferase and core RNA methyltransferase subunit of
m6A methylation. It is critical in the occurrence of m6A
modifications and participates in various physiological
processes (Bokar et al., 1997). Abnormal METTL3 expression
changes m6A RNA methylation levels. As the structural support
for METTL3, METTL14 is co-located in the nucleus in a 1:1 ratio
and forms a stable RNA methyltransferase complex responsible
for m6A modification (Liu et al., 2014). WTAP in the RNA
methyltransferase complex is primarily used as a connecting
protein between METTL3 and METTL14. WTAP lacks a
conserved catalytic methylation domain and cannot catalyse
m6A modification, but its deletion significantly affects m6A
modification levels and physiological processes, such as
embryonic differentiation (Ping et al., 2014). METTL3/
METTL14/WTAP is considered to be the core RNA
methyltransferase component, and in recent years, some
studies have reported new RNA methyltransferase complex
components, such as RBM15/15B, which assists in the binding
of METTL3 and WTAP, and its deletion leads to damage to
X-inactive specific transcript (XIST)-mediated gene silencing on
the X chromosome (Knuckles et al., 2018). ZC3H13 (Wen et al.,
2018), VIRMA (Yue et al., 2018), and other proteins also
participate in m6A RNA methylation as cofactors of the m6A
RNAmethyltransferase complex. In addition, Warda et al. (2017)
reported on an independent m6A writer, METTL16, finding that
its binding site does not overlap with the METTL3/METTL14
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methylation complex, and it regulates the stability and splicing of
mRNA by catalysing m6A modification in snoRNAs, U6 small
nuclear RNAs (snRNAs), and other long non-coding RNAs
(lncRNAs). There are continuous reports of new RNA
methyltransferases, such as METTL5, the enzyme responsible
for 18S rRNA m6A modification, and ZCCHC4, a confirmed 28S
rRNA m6A modification enzyme (van Tran et al., 2019; Richard
et al., 2019). Some studies reported that WTAP interacts with
many proteins and lncRNAs, of whichmore than 100may bind to
METTL3 or METTL14 (Schöller et al., 2018). Therefore, “writer”
may include the reported proteins and other components that
need further exploration.

2.2 RNA Demethylases
RNA demethylases, including fat mass and obesity-related
proteins (FTO) (Jia et al., 2011), AlkB homologue 5
(ALKBH5) (Huang et al., 2020a), and AlkB homologue 3
(ALKBH3) (Ueda et al., 2017; Sun et al., 2019), can remove
the m6A modification. They are called “m6A erasers” and are
located in nuclear spots with RNA methyltransferase. In 2011,
FTO was identified as the first m6A RNA demethylase, verifying
that m6A RNA methylation is a dynamic and reversible RNA
modification. FTO-mediated m6A demethylation acts in various
biological processes, inhibiting peroxisome proliferator-activated
receptor (PPARβ/δ) and AMP-activated protein kinase (AMPK)
pathways, disrupting skeletal muscle lipid utilisation, inhibiting
macrophage lipid influx by downregulating PPARγ protein
expression, and accelerating cholesterol outflow via AMPK
phosphorylation. Thus, foam cell formation and
atherosclerosis development were inhibited (Yang et al., 2022).
FTO regulates the alternative splicing of RUNT-related
transcription factor 1 (RUNX1) through m6A modifications
(Zhao et al., 2014), whereas FTO regulates fat formation and
deposition by altering the expression of PPARγ (Lee et al., 2011)
and angiopoietin-like 4 (ANGPTL4) (Wang et al., 2015a). In

addition, FTO is widely involved in regulating the cell cycle (Li
et al., 2019a), tumour growth (Li et al., 2019b), proliferation and
migration (Tang et al., 2019), stem cell maintenance (Su et al.,
2020) and other biological processes.

ALKBH5 is the second m6A RNA demethylase and is
expressed in most tissues, especially the testes (Aik et al.,
2014). ALKBH5 inactivation increases m6A RNA methylation
levels, leading to male-mouse infertility (Tang et al., 2018a). In
addition, ALKBH3 has recently been considered a newm6A RNA
demethylase that preferentially catalyses m6A demethylation in
tRNA (Ueda et al., 2017; Woo and Chambers, 2019).

2.3 N6-Methyladenosine Binding Proteins
The “m6A writers” and “m6A erasers” determine whether RNA
is methylated, but m6A-binding proteins (“m6A readers”)
determine the final biological function of m6A modification.
“m6A readers” recognise and bind to an m6A modified
transcript, then regulate mRNA stability (Zhao et al., 2014),
mRNA splicing (Xiao et al., 2016), mRNA structure (Spitale
et al., 2015), mRNA output (Roundtree et al., 2017), translation
efficiency (Wang et al., 2015b) and microRNA (miRNA)
biogenesis (Alarcón et al., 2015). “Readers” include proteins
containing YTH domains (YTHDF1/2/3 and YTHDC1/2),
heterogeneous ribonucleoproteins including heterogenous
nuclear ribonucleoprotein (HNRNP) C (HNRNPC), HNRNP
G (HNRNPG), and HNRNP A2B1 (HNRNPA2B1), and
insulin-like growth factor 2 binding proteins (IGF2BPs),
which are members of a protein family involved in
regulating some aspects of ageing. Different “readers” have
different cellular localisations and thus perform various
biological functions. YTH domain containing 1 (YTHDC1)
regulates mRNA splicing by recruiting the splicing factor
serine- and arginine-rich splicing factor 3 (SRSF3) or
blocking serine- and arginine-rich splicing factor 10
(SRSF10) in the nucleus (Xiao et al., 2016). In addition, it

FIGURE 1 | Regulation of the m6A modification and the function of the m6A regulators.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8699503

Sun et al. m6A Methylation and Aging

40

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


increases the output of circRNA NOP2/SUN domain family,
member 2 (circNSUN2) in the cytoplasm by interacting with
nuclear output factor 1 (Chen et al., 2019a). HNRNPA2B1 and
HNRNPC are also located in the nucleus. HNRNPA2B1
regulates RNA splicing and promotes miRNA maturation by
recognising pri-miRNA markers and interacting with
DiGeorge syndrome critical region 8 (DGCR8) (Zhao et al.,
2017). HNRNPC selectively recognizes m6A modified
transcripts to promote pre-RNA processing (Liu et al.,
2015). YTHDF1/2/3, YTH domain containing 2 (YTHDC2),
and IGF2BP1/2/3 are localised in the cytoplasm. YTH domain
family protein 1 (YTHDF1) initiates RNA translation by
interacting with translation initiation factors and ribosomes,
whereas YTH domain family protein 2 (YTHDF2) selectively
binds m6A modified transcripts and accelerates their
degradation (Wang et al., 2015b). On the other hand, YTH
domain family protein 3 (YTHDF3) and YTHDF1/2 play a
synergistic role, not only promoting YTHDF1-mediated
translation but also affecting the decline in YTHDF2-
mediated m6A modification (Wang et al., 2014b; Shi et al.,
2017). Like YTHDF3, YTHDC2 is an RNA helicase, and its
helix-unwinding region contributes to RNA binding and
promotes mRNA translation or degradation (Hsu et al.,

2017). Other proteins located in the cytoplasm are
IGF2BP1–3, which recognise and bind to m6A modified
transcripts, thus enhancing mRNA stability (Huang et al.,
2018).

3 N6-METHYLADENOSINE CHANGES IN
MOLECULAR PROCESSES ASSOCIATED
WITH AGEING
Many studies have confirmed that m6A methylation regulates
several physiological processes that are crucial in the ageing
process. Here, we focused on the mechanisms of m6A RNA
methylation in autophagy, inflammation, oxidative stress,
DNA damage, and cell senescence (Table 1).

3.1 N6-Methyladenosine and Autophagy
Autophagy is a highly conserved intracellular clearance
mechanism regulated by various proteins and is important
for maintaining homeostasis in the internal environment. The
mammalian target of rapamycin (mTOR) is a key factor in
autophagy regulation. Protein kinase B (AKT) and mitogen-
activated protein kinase (MAPK) signalling pathways activate

TABLE 1 | The role of m6A modification in the fundamental processes.

The
Processes
related to
aging

m6A regulator Organism Role in
processes

Mechanism Reference

Autophagy MTC Cells, Drosophila Suppression Promote the degradation of ATG transcripts Tang et al. (2021)
METTL14 Leydig Cells Suppression Reduce AMPK activity Chen et al. (2021b)
ALKBH5 Leydig Cells Promotion Promote the activity of AMPK Chen et al. (2021b)

ovarian cancer cells Suppression Regulation of bcl-2 expression Zhu et al. (2019)
FTO, YTHDF2 Cells Promotion Increase the expression of ULK1 Jin et al. (2018)

Inflammation METTL3 Cells Promotion Regulate alternative splicing of MyD88 Feng et al. (2018)
METTL14 Endothelial cell, mice Promotion Promote FOXO1 expression Jian et al. (2020)
ALKBH5 HK-2 cells Promotion Up-regulate MALAT1 expression by demethylation Zhu and Lu, (2020)
FTO Cells Promotion Promote M1 and M2 macrophage activation Gu et al. (2020)
RBM4, YTHDF2 Cells Suppression Decrease m6A modified STAT1 mRNA levels and inhibite the

polarization of M1 macrophages
Huangfu et al.
(2020)

Oxidative
stress

METTL3 mRTECs Suppression Regulate Keap1-Nrf2 pathway Wang et al. (2019c)
METTL14 Cardiomyocytes,

mice
Suppression Regulate Wnt1/β-Catenin Signaling Pathway Pang et al. (2021)

WTAP Cells and rat Promotion Regulate m6A modification of ATF4 mRNA Wang et al. (2021)
FTO Cell, human samples Promotion Increased the translation efficiency of PGC1αmRNA Zhuang et al.

(2019)
YTHDF1/3 Cells Promotion Promote stress granule formation Fu and Zhuang,

(2020)
DNA damage METTL3,

YTHDC1
Cells Suppression Modulates accumulation of DNA-RNA hybrids at DSBs sites and

recruit RAD51 and BRCA1
Zhang et al.
(2020c)

METTL3/14,
YTHDC1

Cells Suppression Active on ssDNA and lesion-containing dsDNA Yu et al. (2021)

YTHDF1 Cells, mice Suppression Upregulates HR-related factors RAD51 and BRCA1 Sun et al. (2022)
Cell
senescence

METTL3 Cells Promotion Target NF-κB, drives the senescence-associated secretory phenotype Liu et al. (2021)
METTL14 Clinical Sample Promotion Participates in the TNF-α-induced m6A modification of miR-34a-5p to

promote cell senescence
Zhu et al. (2021b)

FTO Granulosa cells Suppression Regulates the expression of FOS Jiang et al. (2021)
METTL3,
IGF2BP2

hMSC Suppression Stabilizate of the MIS12 transcript Wu et al. (2020b)
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mTOR to inhibit autophagy, whereas AMPK and p53
pathways negatively regulate mTOR to promote autophagy
(Alers et al., 2012). After mTOR inactivation, UNC-51-like
kinase 1/2 (ULK1/2) is activated and binds to the focal
adhesion kinase family interacting protein of 200 kDa
(FIP200) to form a ULK1 complex with autophagy-related
13 (ATG13) proteins, promoting autophagosome formation
(Codogno et al., 2011). m6A methylation and related
regulators regulate autophagy by regulating ATG expression
or by affecting autophagy-related signalling pathways. In 2018,
Jin et al. first reported a positive regulatory effect of FTO on
autophagy, accomplished by affecting the abundance of Unc-
51 like autophagy activating kinase 1 (ULK1) (Jin et al., 2018).
Another RNA demethylase, ALKBH5, has been shown to
enhance autophagy by reducing m6A methylation in FIP200
transcripts (Li et al., 2020), suggesting a negative correlation
between m6A modification and autophagy. A study of RNA
methyltransferases further confirmed this. METTL3
upregulates methylation and triggers YTHDF1 and
Forkhead box O3 (FOXO3) binding to promote the
translation of FOXO mRNA. FOXO further blocks ATG
gene expression to inhibit autophagy (Lin et al., 2020). A
decrease in METTL14 levels increases the stability of
calcium/calmodulin-dependent protein kinase 2 (CAMKK2)
mRNA and activates the AMPK and ULK1 complex to initiate
autophagy (Chen et al., 2021b).

Abnormal autophagy can lead to diseases, some of which may
be associated with ageing. Studies have shown that autophagy
decreases with age. Increasing autophagy levels can inhibit the
accumulation of damaged proteins, delay the occurrence of
degenerative changes, and prolong life (Rubinsztein et al.,
2011; Papp et al., 2016). There is evidence that autophagy
regulates some age-related diseases in lower organisms (such
as Drosophila and Caenorhabditis elegans), but this hypothesis
has not been confirmed in mammals. Accelerating ageing by
decreasing autophagy is controversial. Nevertheless, several
studies have reported that deleting autophagy proteins leads to
the accumulation of misfolded proteins and abnormal
mitochondria in cells, resulting in premature senescence,
organ dysfunction, and eventually the development of various
ageing-related diseases, such as neurodegenerative diseases,
cancer, CVDs, and metabolic syndrome (Linton et al., 2015;
Guo et al., 2018; Luo et al., 2020). In summary, autophagy
regulation is closely related to ageing, in which m6A
modification plays an important role. Therefore, further
studies on the relationship between m6A modification and
autophagy in ageing may provide a new method for anti-
ageing research.

3.2 N6-Methyladenosine and Inflammation
RNA methylation is involved in inflammation. m6A methylation
affects pathways related to metabolic reprogramming, stress
response, and ageing by regulating type I interferon (IFN)
mRNA stability (Rubio et al., 2018). Lipopolysaccharides
(LPSs) induce inflammation. It has been found that LPS
stimulation promotes METTL3 expression and biological
activity in macrophages, and METTL3 overexpression

alleviates lipopolysaccharide-induced inflammation through
the nuclear factor-κB (NF-κB) signalling pathway, further
confirming the relationship between m6A methylation and
inflammation (Wang et al., 2019a). In addition, the interaction
between m6A modification and inflammation is crucial for
various diseases to occur. YTHDF2 deletion aggravates the
inflammatory state and metastasis of human hepatocellular
carcinoma cells (Hou et al., 2019). After an ischaemic stroke,
FTO expression is downregulated, and m6A methylation is
increased in the main inflammatory pathways, including
interleukin (IL)-6 cytokines, tumour necrosis factor (TNF),
toll-like receptor (TLR), and NF-κB signalling pathways
(Chokkalla et al., 2019). It has been suggested that m6A may
regulate secondary brain injury after cerebral ischaemia by
affecting inflammation.

In summary, m6A methylation affects inflammation under
physiological and pathological conditions. Presently, the chronic
inflammatory state is considered one of the characteristics of
ageing, namely “inflammatory ageing” (inflamm-ageing), which
is mainly characterised by inflammatory cell infiltration and an
increase in pro-inflammatory factors [TNF-α, IL-1β, IL-6,
C-reactive protein (CRP), etc.] Although most current studies
on the relationship between m6A modification and inflammation
are based on specific diseases and signalling pathways, the study
of epigenetic changes in inflammation potentiates the
development of effective drugs with specific anti-ageing targets.

3.3 N6-Methyladenosine and Mitochondria:
Oxidative Stress
Oxidative damage accumulates with ageing in many species and
tissues. RNA modification is mobilised to activate or inhibit
stress-resistant signalling pathways (Peters et al., 2021). Li
et al. (2017b) found that the activities of METTL3/METLL14,
p21, and senescence-related β-galactosidase (SA-βGAL)
increased significantly after oxidative damage stimulated
HCT116 p53−/−cells, indicating that METTL3/METLL14 may
trigger the p53 independent effect of ageing in the oxidative
damage response, which needs to be further tested. Arsenite et al.
stimulated human keratinocytes to induce reactive oxygen species
(ROS) production, increasing WTAP, METTL14, and total m6A
expression levels (Zhao et al., 2019). FTO induces oxidative stress
and increases ROS levels by reducing m6A methylation of
peroxisome proliferator-activated receptor gamma coactivator-
1 alpha (PGC1α) (an important regulator of mitochondrial
metabolism that is also affected by the ageing process) and
increasing PGC1α mRNA translation efficiency.

3.4 N6-Methyladenosine and DNA Damage
DNA damage refers to changes in DNA structure caused by
physical or chemical stimuli in the environment. The persistence
of DNA damage can lead to a prolonged DNA damage response
(DDR) and induce senescence (Di Micco et al., 2021). m6A is
critical in DNA damage and repair. It has been reported that
METTL3/METTL14 and METTL16 are recruited to DNA
damage sites to facilitate DNA repair and the DDR by
adjusting m6A modifications under ultraviolet (UV) radiation
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stimulation (Svobodová Kovaříková et al., 2020). This repair is
carried out through the nucleotide excision repair (NER) pathway
because knockout of the non-homologous end junction (NHEJ)
enzyme SUV391H/H2 does not affect m6A recruitment under
UV stimulation (Svobodová Kovaříková et al., 2020).

3.5 N6-Methyladenosine and Cell
Senescence
Cell senescence results from many processes, including telomere
wear, macromolecular damage, and oncogene-activated signal
transduction (Childs et al., 2015). Senescent cells widely exist in
ageing and diseased tissues, secreting numerous pro-
inflammatory cytokines, called the ageing-associated secretory
phenotype [senescence-associated secretory phenotype (SASP)].
These cytokines regulate the tissue microenvironment and affect
how nearby normal cells function. Studies have shown that
senescent cells are involved in atherosclerosis (Ito et al., 2014),
Alzheimer’s disease (AD) (Boccardi et al., 2015), Parkinson’s
disease (PD) (Chinta et al., 2013), chronic obstructive pulmonary
disease (Barnes et al., 2019), insulin resistance (Aravinthan et al.,
2015), age-related chronic inflammation (Campisi and Robert,
2014), cancer (Calcinotto et al., 2019), osteoporosis (Farr and
Khosla, 2019), and loss of haematopoietic stem cell function (de
Haan and Lazare, 2018) in the elderly.

In 2017, Li et al. (2017b) reported a link between m6A
methylation and cellular senescence. They found that p21
protein methylation increased with m6A methylation, whereas
the p21 mRNA level was not affected by m6A, suggesting that
m6A methylation regulates p21 translation. In another study,
breast cancer cells were exposed to sublethal concentrations of
ammonium trifluoride (SFN). m6A methylation levels decreased,
the activity of SA-βGAL increased, and p53, p21, and p27 protein
levels increased, but the corresponding mRNA levels remained
unchanged. SFN may lead to senescence by reducing m6A
methylation levels (Lewinska et al., 2017). Min et al. reported
an m6A RNA modification map of human peripheral blood
mononuclear cells (PBMCs) from young and old groups. They
found that the total level of m6A modification in PBMCs of the
elderly was significantly lower than that in the young PBMCs,
while the expression of m6A modified transcripts was higher than
that of unmodified transcripts (Min et al., 2018). Shafik et al. have
reported dynamic changes in m6A RNA methylation during
brain ageing. In their study, they compared the m6A spectra
of Brodmann area 9 (BA9) in the cerebral cortex of 6-week-old
and 52-week-old mice and post-mortem pubertal and elderly
human brains, and the results showed that the m6A modification
sites were significantly increased with increasing age, both in mice
and humans. Functional enrichment analysis showed that
differential m6A loci mainly occurred in the untranslated
regions of genes that affect ageing-related pathways, which are
related to the strong negative effect of mRNA expression (Shafik
et al., 2021).

A recent study reported that METTL3 downregulation
decreased m6A modification of human bone marrow
mesenchymal stem cells (hMSC) with premature senescence,
and hMSCs showed accelerated ageing after METTL3 gene

knockout. The m6A modifications in Hutchinson-Gilford
progeria (HGPS) and Werner syndrome (WS) increased with
METTL3 overexpression and delayed disease progression. They
identified MIS12 as the specific target of m6A modification
deletion in the premature ageing process using RNA
sequencing (RNA-seq) and m6A methylation RNA
immunoprecipitation sequencing (MERIP-seq) analysis. m6A
deletion accelerates hMSC ageing, while IGF2BP2 recognises
and stabilizes m6A modified MIS12 mRNA to prevent
accelerating senescence in hMSCs. Based on the above results,
Wu et al. (2020b) proposed a regulatory model in which
METTL3-mediated m6A modification improves the stability of
IGF2BP2-mediated MIS12 mRNA, thus reversing the ageing
phenotype of hMSCs.

Cellular senescence is an important component of the ageing
process. Selective clearance of senescent cells is currently the
focus of anti-senescence research. Senolytics (a mixture of
dasatinib and quercetin), agents that target cellular senescence,
have completed small clinical trials in patients with idiopathic
fibrosis with promising efficacy and safety results (Justice et al.,
2019). The results need to be validated in larger samples and
populations with other age-related diseases. The link between
m6A methylation and cellular senescence may provide novel
therapeutic targets for localising senescent cells, with
important clinical implications.

4 N6-METHYLADENOSINE CHANGES IN
AGEING ASSOCIATED DISEASES/
DISORDERS
The study of m6A RNA methylation and the ageing process has
laid the foundation for more comprehensive and in-depth
exploration into the epigenetic mechanisms of various ageing-
related diseases. At present, several studies focus on the role of
m6A RNA methylation in ageing-related pathological processes,
such as cancer. Here, we summarise the latest reports on m6A
modification and ageing-related diseases, focusing on cancer,
neurodegenerative diseases, diabetes mellitus, and CVDs
(Table 2).

4.1 Cancer
In recent years, many studies on m6A RNA methylation have
reported that changes in m6A modification levels and the
imbalance of regulatory factors are related to the activation
and inhibition of cancer-related signalling pathways.
Therefore, m6A modification is widely involved in the
occurrence (Uddin et al., 2021), progression (Wang et al.,
2020a), and drug resistance of cancer (Huang et al., 2020a)
and may be a promising biomarker and potential therapeutic
target for the diagnosis and prognosis of many kinds of tumours.
High METTL3 (Vu et al., 2017), WTAP (Bansal et al., 2014;
Naren et al., 2021), FTO (Li et al., 2017c), ALKBH5 (Shen et al.,
2020a; Wang et al., 2020b), and YTHDF2 (Paris et al., 2019)
expression has been observed in all subtypes of acute
myelogenous leukaemia (AML), and high WTAP (Naren et al.,
2021), ALKBH5 (Shen et al., 2020a; Wang et al., 2020b) and
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TABLE 2 | The functional roles of RNA m6A modification in various types of human disease.

Age-related
disease

Organism Role in
disease

m6A regulator Functional in
disease

Ref

Cancer:
Respiratory neoplasms
Lung cancer Clinical Samples;

cells
Oncogene METTL3; FTO;

YTHDF1/2; IGF2BP1
Promote LC growth and progress; induce
invasion and metastasis of NSCLC

(Lin et al., 2016; Chen et al., 2020a),
(Liu et al., 2018a; Chen et al., 2018;
Müller et al., 2019)

Cells Suppressor ALKBH5 Inhibits tumor growth and metastasis Jin et al. (2020)
Nasopharyngeal

carcinoma
Cells Oncogene METTL3 Promote proliferation and invasion of NPC

cells
Zheng et al. (2019)

Leukemia Clinical Samples;
cells; mice

Oncogene METTL3; METTL14;
WTAP; YTHDF1; FTO;
IGF2BP1

Promote AML cells proliferation and
leukemia cells self-renewal, growth and
metabolism

(Bansal et al., 2014; Vu et al., 2017;
Li et al., 2018a; Weng et al., 2018)

Gastroinestinal tumor
Hepatocellular

carcinoma
Clinical Samples;
cells; mice

Oncogene METTL3; METTL14;
YTHDF1; KIAA1429;
WTAP; YTHDF2

Induce HCC cells proliferation, migration,
invasion and metastasis

(Chen et al., 2018; Cheng et al.,
2019; Müller et al., 2019)

Cells; mice Suppressor METTL14 Suppress tumor invasion and metastasis Ma et al. (2017)
Gastric carcinoma Cells, Clinical

samples
Oncogene METTL3; ALKBH5 Promote proliferation, tumor angiogenesis,

invasion and metastasis of GC
(Zhang et al., 2019a; Wang et al.,
2020e)

Colorectal cancer Cells, Clinical
samples, mice

Oncogene METTL3; FTO; WTAP;
YTHDC2; YTHDF1;
IGF2BPs

Promote the proliferation, migration,
invasion and EMT of CRC cells

(Tanabe et al., 2016; Zhang et al.,
2016; Shen et al., 2018; Wu et al.,
2019b; Li et al., 2019c)

Cells, clinical
samples

Suppressor METTL3; METTL14 Suppress CRC proliferation and migration (Deng et al., 2019; Chen et al.,
2020b)

Pancreatic cancer Cells, clinical
samples

Oncogene METTL3; YTHDF2 Promote cell proliferation, migration, and
invasion

(Chen et al., 2017; Zhang et al.,
2019b)

Cells, clinical
samples

Suppressor ALKBH5; YTHDF2 Suppress cancer migration, invasion,
and EMT

(Chen et al., 2017; He et al., 2018)

Urological cancers
Bladder cancer Cells, clinical

samples, mice
Oncogene METTL3; FTO; ALKBH5 Promote BC cells proliferation, colony

formation, invasion and metastasis; inhibit
cell apoptosis

(Cai et al., 2018; Wang et al., 2020f)

Clinical samples Suppressor METTL14 Inhibit bladder TIC self-renewal and
tumorigenesis

Gu et al. (2019)

Renal cell cancer Cells, clinical
samples, mice

Oncogene WTAP Enhance cell proliferation abilities Tang et al. (2018b)

Cells, clinical
samples, mice

Suppressor METTL3; FTO Suppress tumor growth, proliferation,
migration, invasion function and cell cycle of
RCC and induce apoptosis

(Li et al., 2017d; Zhuang et al.,
2019)

Prostate cancer Cells Oncogene METTL3; YTHDF2 Promote tumor cells proliferation, survival,
colony formation, and migration

Cai et al. (2019)

Reproductive neoplasms
Breast cancer Cells, clinical

samples, mice
Oncogene METTL3; FTO; ALKBH5 Promote BC cells proliferation, colony

formation and metastasis; inhibit the
apoptosis

(Niu et al., 2019; Wang et al., 2020f)

Ovarian cancer Cells, clinical
samples, mice

Oncogene METTL3; ALKBH5;
IGF2BP1

Promote the proliferation and invasion
in vitro and in vivo

(Hua et al., 2018; Müller et al., 2019)

Cervical carcinom Cells, clinical
samples

Oncogene FTO Promote cell proliferation and migration;
induce resistance

Zou et al. (2019)

Endometrial cancer Cells, clinical
samples, mice

Suppressor METTL3/METTL14 Inhibit the proliferation and tumorigenicity Liu et al. (2018b)

Skin tumors
Melanoma Cells, clinical

samples, mice
Oncogene FTO Increase tumor growth Yang et al. (2019a)

Cells, clinical
samples, mice

Suppressor YTHDF1 Restrain cell growth and migratory ability Jia et al. (2019)

Squamous cell
carcinoma

Cells, clinical
samples, mice

Oncogene METTL3 Promote tumorigenicity Zhou et al. (2019)

Neurodegenerative diseases:
Alzheimer’s disease Mice, clinical

samples
Up-
regulation

METTL3; IGF2BP2;
RBM15B

— (Han et al., 2020; Deng et al., 2021)

Cells, mice, clinical
samples

Down-
regulation

METTL3; FTO — (Huang et al., 2020b; Han et al.,
2020), (Zhao et al., 2021)

Parkinson’s disease Cells Down-
regulation

HNRNPC — Quan et al. (2021)

(Continued on following page)

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8699507

Sun et al. m6A Methylation and Aging

44

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


IGF2BP1 expression (Elcheva et al., 2020) are related to the poor
prognosis of AML patients. The same phenomenon has been
observed in solid tumours. METTL3, RBM15, KIAA1429,
YTHDF1, YTHDF2, HNRNPA2B1, HNRNPC, and IGF2BP1/
2/3 expression levels in lung cancer tissues are significantly higher
than those in normal tissues (Shi et al., 2019; Zhang et al., 2020a;
Li and Zhan, 2020; Sheng et al., 2020).

METTL3 may regulate the growth, differentiation, and
apoptosis of AML cells by affecting the phosphoinositide 3-
kinases (PI3K)/AKT pathway (Vu et al., 2017).
Mechanistically, METTL3 promotes c-MYC, B-cell CLL/
lymphoma 2 (BCL2), and phosphatase and tensin homologue
(PTEN) mRNA translation by regulating m6A modification
levels. Deleting METTL3 increases phosphorylated AKT
(p-AKT) levels. METTL3 also regulates drug resistance and
invasiveness of lung cancer cells by inducing m6A
modification of enhancer of zeste homologue 2 (EZH2)
mRNA in A549 cells (Chen et al., 2020a). In addition, it has
been reported that the tumour suppressor miR-33a targets the 3′-
UTR of METTL3 mRNA to reduce METTL3 expression, thus
inhibiting A549 andNCI-H460 cell proliferation (Du et al., 2017).
This suggests that METTL3 may be a new target for lung cancer
therapy. Recently, Yankova et al. found that STM2457, a small
molecule METTL3 inhibitor, reduced AML growth and increased
apoptosis by reducing the expression of an mRNA known to
cause leukaemia. Further animal experiments showed that
STM2457 prolongs the survival time of various AML mouse
models (Yankova et al., 2021). METTL14 acts in various solid
tumours and leukaemia through different mechanisms.
METTL14 expression is downregulated in AML cells.
However, it still plays a carcinogenic role in AML. METTL14
increases MYB/MYC expression through the SPI1-METTL14-
MYB/MYC signal axis to promote AML occurrence (Weng et al.,
2018). METTL14 inhibits the migration and invasion of renal

cancer cells by downregulating purinergic receptor P2X 6
(P2RX6) protein translation and ATP-P2RX6-Ca2+-p-ERK1/2-
MMP9 signalling in renal cell carcinomas (Wang et al., 2019b).

The RNA demethylases FTO and ALKBH5 are also crucial in
tumours. FTO may act as a tumour promoter. FTO increases the
expression of myeloid zinc finger 1 (MZF1) by reducing m6A
mRNA modification, and promotes lung cancer progression (Liu
et al., 2018a). Knockdown of FTO increases the expression of
tumour suppressor genes ASB2 and retinoic acid receptor alpha
(RARA) and inhibits AML proliferation and differentiation (Li
et al., 2017c). It also reduces the mRNA stability of ubiquitin-
specific protease (USP7) and inhibits cancer cell growth (Li et al.,
2019b).

In addition, some studies have focused on the function of
m6A-binding proteins in tumours. YTHDF1 and YTHDF2 can be
used as oncogenes and tumour suppressors. YTHDF1 deficiency
regulates the transformation efficiency of cyclin-dependent
kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), and
cyclin D1 (CCND1) through the Keap1-Nrf2-AKR1C1
pathway to inhibit tumour cell proliferation and xenograft
tumorigenesis. YTHDF1 deletion also inhibits new lung
adenocarcinoma (ADC) progression (Shi et al., 2019).
However, the study also found that YTHDF1 knockdown
leads to cell resistance to cisplatin, whereas high YTHDF1
expression leads to better clinical outcomes (Shi et al., 2019).
The results of studies on the role of YTHDF2 in lung cancer are
complex. One study reported that YTHDF2 promotes METTL3-
induced tumorigenesis by increasing suppressor of cytokine
signalling 2 (SOCS2) degradation (Chen et al., 2018).
However, another study found that YTHDF2 overexpression
inhibits non-small cell lung cancer (NSCLC) cell growth and
invasion by promoting a decrease in yes-associated protein (YAP)
mRNA in NSCLC cells (Jin et al., 2020). However, these studies
have repeatedly confirmed the dual role of YTHDF1/2 in

TABLE 2 | (Continued) The functional roles of RNA m6A modification in various types of human disease.

Age-related
disease

Organism Role in
disease

m6A regulator Functional in
disease

Ref

Cardiovascular disease:
Hypertension Rat — — The m6A methylation level reduce Wu et al. (2019a)
Cardiac

hypertrophy
Cells, mice Up-

regulation
METTL3; FTO Promote cardiomyocyte hypertrophy both

in vitro and in vivo
(Gan et al., 2013; Dorn et al., 2019),
(Berulava et al., 2020)

Heart failure Clinical samples
and mice

Up-
regulation

METTL3, METTL4,
KIAA1429, FTO,
YTHDF2

Data from MeRIP-seq Zhang et al. (2021)

Clinical sample,
preclinical pig,
mice, cells

Down-
regulation

FTO Increase m6A in RNA and decrease
cardiomyocyte contractile function

Mathiyalagan et al. (2019)

Atherosclerosis Cells, mice, clinical
sample

Up-
regulation

METTL3, METTL14,
IGF2BP1

Promote cardiovascular endothelial cell
proliferation and invasion; aggravates
endothelial inflammation, angiogenesis and
atherosclerosis

(Zhang et al., 2020b; Jian et al.,
2020; Dong et al., 2021)

Diabete mellitus Clinical sample,
cells

Up-
regulation

FTO, METTL3 Induce mRNA expression of FOXO1,
G6PC, and DGAT2

(Yang et al., 2019b; Yang et al.,
2020b)

Cells, mice, clinical
sample

Down-
regulation

METTL3, METTL14 regulated functional maturation and mass
expansion of neonatal β-cells

(De Jesus et al., 2019; Liu et al.,
2019; Men et al., 2019; Wang et al.,
2020d)
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tumorigenesis and progression. IGF2BP1 exerts its carcinogenic
function by regulating the expression of key transcriptional and
metabolic factors, such as TNF receptor 2 (TNFR2), MYB, and
MYC (Li et al., 2018a; Paris et al., 2019; Elcheva et al., 2020).

At present, m6A modification and its regulatory factors have
proven to be crucial in the occurrence, metastasis, immune
escape, and drug resistance of various tumours, including
haematological tumours (Vu et al., 2017), respiratory tumours
[lung cancer (Du et al., 2018) and nasopharyngeal carcinoma
(Zheng et al., 2019)], digestive tract tumours (gastric cancer
(Yang et al., 2020a), colorectal cancer (Ni et al., 2019; Shen
et al., 2020b; Chen et al., 2021c), pancreatic cancer (Geng
et al., 2020), and hepatocellular carcinoma (Chen and Wong,
2020)), urinary tumours [bladder cancer (Han et al., 2019), renal
cell carcinoma (Zhuang et al., 2019), and prostate cancer (Zhu
et al., 2021a)], reproductive system tumours [breast cancer (Cai
et al., 2018), cervical squamous cell carcinoma (Wang et al.,
2020c), epithelial ovarian cancer (Hua et al., 2018), and
endometrial cancer (Liu et al., 2018b)], skin tumours
[melanoma (Yang et al., 2019a; Jia et al., 2019), skin squamous
cell carcinoma (Zhou et al., 2019)], and glioblastoma (Cui et al.,
2017). Current research results show that m6A regulators may
play a dual role in the pathogenesis of tumours, not only as
oncogenes but as tumour suppressors. The biological effects of
the same m6A regulator are different in different tumours. Some
studies have reported the opposite role for an m6A regulator in
the same cancer. In short, m6A modification can be used as a
marker for a variety of tumours to diagnose and evaluate
prognosis and potential therapeutic targets. However, our
understanding of the role of m6A modification in tumours is
still in its infancy. Numerous studies are still needed to explore
the exact molecular mechanism of m6A and tumours to develop
new targeted drugs for clinical treatment.

4.2 Diabetes Mellitus
m6A plays an important role in the pathogenesis of type 2
diabetes mellitus (T2D). It has been reported that the mRNA
expression of RNA demethylase FTO in T2D patients is
upregulated compared with that in a normal control group,
inducing the increased expression of key genes involved in
glucose and fat metabolisms, such as FOXO1, FASN, G6PC,
and DGAT2. This suggests that FTO participates in glucose
metabolism by regulating target gene expression (Yang et al.,
2019b). In addition, some studies have found that METTL3/14
expression in the β cells of T2D patients and diabetic mice is
decreased, leading to decreased β cell proliferation and impaired
insulin secretion by reducing the m6A modification levels of
several transcripts related to cell cycle progression, insulin
secretion, and insulin/IGF1-AKT-PDX1 pathway (De Jesus
et al., 2019; Wang et al., 2020d). In addition, loss of METTL3/
14 is associated with abnormal glucose tolerance, hyperglycaemia,
and hypoinsulinemia in neonatal mice (Liu et al., 2019; Men et al.,
2019; Wang et al., 2020d). A recent study found that METTL3
mRNA and miR-25-3p expression were downregulated in
PBMCs and retinal pigment epithelial (RPE) cells stimulated
by high glucose. RPE cells overexpressing METTL3 could
upregulate p-AKT levels through the miR-25-3p/PTEN axis,

thus rescuing the viability of RPE cells stimulated by high
glucose (Zha et al., 2020). However, inconsistently, Yang et al.
found that METTL3 expression was upregulated in human
diabetic cataract tissue samples and high glucose-induced
human lens epithelial cells (HLECs), and the total level of
m6A modification increased (Yang et al., 2020b). In summary,
m6A modification is involved in the occurrence of T2D and its
related complications. It is expected to provide a new diagnostic
and treatment strategy for T2D and its complications.

4.3 Neurodegenerative Diseases
Currently, m6A modification is considered very important for
nervous system development (Hess et al., 2013; Lence et al., 2016;
Li et al., 2017a). In addition, some studies have found that
abnormal m6A modifications are related to degenerative
changes in the nervous system. Neurodegenerative diseases,
including AD and PD, are caused by the gradual loss of
neuronal structure or function. It has been reported that m6A
modification levels are downregulated in 6-hydroxydopamine (6-
OHDA)-treated PC12 cells and rat striatum, whereas 6-OHDA
increases the level of oxidative stress and Ca2+ influx by inducing
N-methyl-D-aspartate (NMDA) receptor one expression, leading
to the death of dopaminergic neurons that eventually develops
into PD (Chen et al., 2019b). In addition, some studies have
focused on the correlation between m6A modification and AD.
Compared with the control group, METTL3 expression in the
cerebral cortex and hippocampus of AD model mice was
upregulated, FTO expression was downregulated, and
modification levels were significantly increased, suggesting that
m6A methylation promotes AD development (Han et al., 2020).
Mechanistic studies have reported that FTO activates the TSC1-
mTOR-Tau signalling pathway by reducing m6A modification
levels and then participates in the occurrence of AD (Li et al.,
2018b; Annapoorna et al., 2019; Chen et al., 2019b). However,
FTO expression was increased in the brains of ternary transgenic
ADmice, and conditional knockout of FTO in the neurons of AD
mice improved their cognitive ability (Li et al., 2018b). Previous
studies have reported that FTO is associated with structural brain
atrophy in healthy elderly subjects (Ho et al., 2010), and a
prospective cohort study also found that FTO interacts with
apolipoprotein E (APOE) to increase the risk of dementia,
especially AD (Keller et al., 2011). In summary, the above
studies showed that m6A modification is related to
neurodegenerative changes, and its regulatory factors may be
used as candidate therapeutic targets for neurodegenerative
diseases. However, its role and mechanism need further
exploration.

4.4 CVDs
Age is an independent risk factor for CVDs. Studies have shown
that m6A modification may affect the occurrence and
development of various CVDs. The level of m6A RNA
methylation in pericytes of spontaneously hypertensive rats
was decreased, suggesting that m6A is involved in blood
pressure regulation (Wu et al., 2019a). In addition, under
pressure overload stimulation, METTL3 induces compensatory
cardiac hypertrophy by regulating the m6Amodification of kinase
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and intracellular signal pathway transcripts. However, mice with
conditional knockout of the METTL3 gene show the morphology
and function of heart failure after stress or ageing stimulation
(Dorn et al., 2019). Another study found that FTO expression
increased after adipose factor-induced cardiomyocyte
hypertrophy, whereas FTO knockout inhibited the
hypertrophy of neonatal rat cardiomyocytes (Gan et al., 2013).
Berulava et al. (2020) further confirmed these results. They found
that the ejection fraction was significantly decreased in
cardiomyocyte-specific knockout FTO mice, and heart failure
progressed faster (Gan et al., 2013). However, another study
found that increasing FTO expression in the hearts of mice
with heart failure prevented the myocardial contractile
transcript from degrading by reducing its m6A modification
then reducing the decrease in myocardial contractility caused
by ischaemia (Mathiyalagan et al., 2019). These studies suggest
that m6A modification and its regulatory factors are crucial in
maintaining normal myocardial homeostasis, compensatory
myocardial hypertrophy, and heart failure progression.

In addition, m6A also acts in atherosclerosis progression.
METTL14 increases the expression of mature miR-19a by
upregulating the m6A modification of miR-19a and accelerates
the proliferation of cardiovascular endothelial cells (Zhang et al.,
2020b). Additionally, a study reported that METTL14 mediates
endothelial cell inflammation, interacts with FOXO1, and
promotes vascular cell adhesion molecule 1 (VCAM-1) and
intercellular adhesion molecule 1 (ICAM-1) transcription,
while METTL14 knockout inhibits the progression of
atherosclerotic plaques in mice (Jian et al., 2020). It is believed
that m6A modification affects the process of atherosclerosis by
regulating cardiovascular endothelial proliferation and
endothelial cell inflammation.

In summary, numerous studies have confirmed the correlation
between m6Amodification and CVDs, but further research needs
to verify its established molecular changes and pathological
process. In addition, most of the current reports focus on
METTL3 and FTO, and the role of other m6A regulators, such
as m6A binding proteins in CVDs, is still unclear. m6A
modification still needs further exploration to provide a new
treatment strategy for CVDs.

5 CONCLUSION AND PERSPECTIVES

Alterations in the epigenetic transcriptome are key regulators of
gene expression and cellular physiology. m6A, the most abundant
internal modification of mRNAs and lncRNAs, is widely involved
in regulating various cellular processes. Therefore, exploring the
changes and molecular mechanisms of m6A modification in a
pathological state and developing new targeted drugs will provide
a new strategy for the early diagnosis and accurate treatment of
diseases in the future.

Although several studies have reported on the functional role
of m6A RNA methylation in ageing and related diseases, many
major knowledge gaps remain to be filled. First, numerous studies
have confirmed the correlation between m6A and age-related
diseases. However, current research results are controversial. In

tumours, for example, the same m6A regulatory factor may play
different roles in different tumour types. For instance, METTL14
promotes the migration and invasion of breast cancer (Yi et al.,
2020), whereas METTL14 downregulates the cancer-causing
long-chain non-coding RNA X-inactive specific transcript
(lncRNA XIST) and inhibits tumour proliferation and
metastasis in colon cancer (Yang et al., 2020c). This may be
due to the difference in disease types, but research on m6A is still
in its infancy. The level of m6Amodification, the biological role of
regulatory factors in the occurrence and development of various
diseases, and their molecular mechanisms require further study.
There is still a way to go before m6A related drugs can be applied.
Second, the epigenetic clock based on the DNAmethylation site is
recognised as the most promising marker of ageing and has been
used to evaluate anti-ageing efficacy. m6A, a methylated form of
epigenetics and DNAmethylation, has been shown to function in
ageing and ageing-related diseases. Whether it cooperates with
DNA methylation to regulate gene expression during ageing or
whether it has a potential relationship with other types of RNA
modification or epigenetic methods remains to be further studied.

In addition, several reports have shown that m6Amodification
has great potential as a diagnostic marker and therapeutic target
in the treatment of anti-ageing and age-related diseases, but few
have identified inhibitors specifically targeting m6A regulatory
proteins. Previous studies have found that the natural product
rhein competitively binds the FTO active site in vitro (Chen et al.,
2012), inhibits inflammation (Hu et al., 2019) and improves
virus-induced lung injury (Shen et al., 2019). However, it is
unclear whether m6A methylation regulation mediates these
effects. Therefore, more drugs modified by m6A are required
to fill this gap. In addition, the exact function of each m6A
regulatory factor is not consistent in different cells, diseases, and
even different stages of disease development. Our understanding
of this is not comprehensive, which is also a challenge for
applying m6A in anti-ageing therapy.
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GLOSSARY

6-OHDA 6-hydroxydopamine

AD Alzheimer’s disease

ADC adenocarcinoma

AKT Protein kinase B

ALKBH3 AlkB homologue 3

ALKBH5 AlkB homologue 5

AML acute myeloid leukaemia

AMPK AMP-activated protein kinase

ANGPTL4 angiopoietin-like 4

APOE apolipoprotein E

ASB2 ankyrin repeat and SOCS box containing 2

ATG13 autophagy-related 13

BA9 Brodmann area 9

BCL2 B-cell CLL/lymphoma 2

CAMKK2 calcium/calmodulin-dependent protein kinase kinase 2

CCND1 cyclin D1

CDK2 cyclin-dependent kinase 2

CDK4 cyclin-dependent kinase 4

circNSUN2 circRNA NOP2/SUN domain family, member 2

circRNA cyclic RNA

CRP C-reactive protein

CVD cardiovascular disease

DDR DNA damage response

DGCR8 DiGeorge syndrome critical region 8

DNMT3A DNA methyltransferase 3α

EGFR epidermal growth factor

EZH2 enhancer of zeste homologue 2

FIP200 family interacting protein of 200kDa

FOXO3 Forkhead box O3

FTO fat mass and obesity-related proteins

HDF human diploid fibroblasts

HGPS Hutchinson-Gilford progeria

HLEC human lens epithelial cell

hMSC human bone marrow mesenchymal stem cell

HNRNPC heterogeneous nuclear ribonucleoprotein C

HNRNPG heterogeneous nuclear ribonucleoprotein G

HNRNPA2B1 heterogeneous nuclear ribonucleoprotein A2B1

ICAM-1 intercellular adhesion molecule 1

IFN: interferon

IGF2BP insulin-like growth factor 2 binding protein

IL Interleukin

LPS Lipopolysaccharides

lncRNA long non-coding RNA;

lncRNA XIST long-chain non-coding RNA X-inactive specific transcript

m6A N6-methyladenosine; MAPK: mitogen-activated protein kinase

MERIP-seq m6A methylation RNA immunoprecipitation sequencing

METTL3 RNA methyltransferase-like protein 3

METTL5 RNA methyltransferase-like protein 5

METTL14 RNA methyltransferase-like protein 14

METTL16 RNA methyltransferase-like protein 16

miRNA microRNA

MK2 MAPKAPK2

mTOR mammalian target of rapamycin

MZF1 myeloid zinc finger 1

NER nucleotide excision repair

NF-κB nuclear factor-κB

NHEJ non-homologous end junction

NMDA N-methyl-D-aspartate

NSCLC non-small cell lung cancer

P13K phosphoinositide 3-kinases

P2RX6 purinergic receptor P2X 6

p-AKT phosphorylated AKT

PBMC peripheral blood mononuclear cell

PD Parkinson’s disease

PGC1α peroxisome proliferator-activated receptor gamma coactivator-
1 alpha

PPARβ/δ peroxisome proliferator-activated receptor

PTEN phosphatase and tensin homologue

RARA retinoic acid receptor alpha

RBM15 RNA -binding motif protein 15

RNA-seq RNA sequencing

ROS reactive oxygen species

RPE retinal pigment epithelial

rRNA ribosomal RNA

RUNX1 RUNT-related transcription factor 1

SA-βGAL senescence-related β-galactosidase

SAM S-Adenosyl Methionine

SASP senescence-associated secretory phenotype

SFN ammonium trifluoride

snoRNA small nucleolar molecule RNA

snRNA small nuclear RNA

SOCS2 suppressor of cytokine signalling 2

SRSF10 serine- and arginine-rich splicing factor 10

SRSF3 serine- and arginine-rich splicing factor 3

T2D type 2 diabetes mellitus

TAZ PDZ binding motif-based transcriptional coactivator
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TLR toll-like receptors

TNF tumour necrosis factor

TNFR2 tumour necrosis factor receptor 2

tRNA transfer RNA

ULK1 Unc-51 like autophagy activating kinase 1

ULK1/2 UNC-51-like kinase

USP7 ubiquitin specific protease 7

UV ultraviolet

VCAM-1 vascular cell adhesion molecule 1

VIRMA Vir-like m6A RNA methyltransferase associated protein

WS Werner syndrome

WTAP Wilms’ tumour 1-associating protein

XIST X-inactive specific transcript

YAP yes associated protein

YTHDC1 YTH domain containing 1

YTHDC2 YTH domain containing 2

YTHDF1 YTH domain family protein 1

YTHDF2 YTH domain family protein 2

YTHDF3 YTH domain family protein 3

ZCCH4 zinc finger CCHC-type containing 4

ZC3H13 zinc finger CCCH domain-containing protein 13
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The Alteration of m6A Modification at
the Transcriptome-Wide Level in
Human Villi During Spontaneous
Abortion in the First Trimester
Jiajie She1,2†, Kaifen Tan3†, Jie Liu4†, Shuo Cao3, Zengguang Li3, You Peng3, Zhuoyu Xiao3,
Ruiying Diao1* and Liping Wang1*

1The First Affiliated Hospital of Shenzhen University, Reproductive Medicine Centre, Shenzhen Second People’s Hospital,
Shenzhen, China, 2Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China, 3Department
of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China, 4Department of
Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China

A growing number of studies have demonstrated that N6 methyladenine (m6A) acts as an
important role in the pathogenesis of reproductive diseases. Therefore, it is essential to
profile the genome-wide m6Amodifications such as in spontaneous abortion. In this study,
due to the trace of human villi during early pregnancy, we performed high-throughput
sequencing in villous tissues from spontaneous abortion (SA group) and controls with
induced abortion (normal group) in the first trimester. Based on meRIP-seq data,
18,568m6A peaks were identified. These m6A peaks were mainly located in the
coding region near the stop codon and were mainly characterized by AUGGAC and
UGGACG motif. Compared with normal group, the SA group had 2,159 significantly
upregulated m6A peaks and 281 downregulated m6A peaks. Biological function analyses
revealed that differential m6A-modified genes were mainly involved in the Hippo and Wnt
signaling pathways. Based on the conjoint analysis of meRIP-seq and RNA-seq data, we
identified thirty-five genes with differentially methylated m6A peaks and synchronously
differential expression. And these genes were mainly involved in the Wnt signaling
pathway, phosphatase activity regulation, protein phosphatase inhibitor activity, and
transcription inhibitor activity. This study is the first to profile the transcriptome-wide
m6A methylome in spontaneous abortion during early pregnancy, which provide novel
insights into the pathogenesis and treatment of spontaneous abortion in the first trimester.

Keywords: N6 methyladenine (m6A), spontaneous abortion, early pregnancy, MeRIP-seq, villous tissues

INTRODUCTION

Spontaneous abortion (SA) is considered to be one of themost common and severe complications during
early pregnancy, which affects 10–15% of pregnant women (Rossen et al., 2018). The etiology of SA is
multifactorial, which mainly includes endocrine abnormalities, immune abnormalities, abnormal uterine
anatomy, prethrombotic state, chromosome abnormality and infection factors. There may still be other
unknown factors contributing to SA, so further investigation is needed. To date, the role of some
epigenetic modifications (DNAmethylation, histonemodification, and non-coding RNA) in SA has been
well identified (Liu et al., 2018; Wang et al., 2019; Chen et al., 2021). As the most abundant epigenetic
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modification of mRNA in eukaryotic cells, m6Amodification affects
the stability (Wang et al., 2014; Ke et al., 2017; Huang et al., 2020),
translation (Meyer et al., 2015;Wang et al., 2015; Shi et al., 2017), and
splicing of mRNA (Xiao et al., 2016; Pendleton et al., 2017).
Although previous studies have also illuminated that m6A
modification plays important roles in the regulation of immune
function and inflammatory response, the relationship between m6A
methylation and SA remains to be elucidated.

As known, the m6A modification includes three main
components: 1) “writers”, the methyltransferase complex, such
as METTL3 (methyltransferase-like 3), METTL14
(methyltransferase-like 14) (Wang et al., 2016), and METTL16
(methyltransferase-like 16) (Mendel et al., 2018); 2) ‘readers’,
RNA binding proteins, including YTHDF1/2/3 (YTH-family
proteins 1/2/3), and YTHDC1/2 (YTH domain containing
proteins 1/2) (Xu et al., 2015; Gao et al., 2019), and IGF2BP1/
2/3 (insulin-like growth factor 2 mRNA binding proteins 1/2/3)
(Huang et al., 2020); 3) “erasers”, demethylases, including
ALKBH5 (alkB homolog 5) (Zheng et al., 2013) and FTO (fat
mass and obesity-associated protein) (Jia et al., 2011). Recently,
studies have shown that YTHDF2 can regulate oocyte maturation
in female mice and negatively regulate the JAK-STAT pathway to
affect the development of mouse nervous system (Ivanova et al.,
2017). Wang et al. found that FTO can inhibit the expression level
of myogenin, and thus inhibit the differentiation of muscle cells.
Li et al. found that ALKBH5 might inhibit the invasion of
trophoblast cells in patients with recurrent pregnancy loss,
inhibit trophoblast invasion and thus affect mRNA stability.
Furthermore, m6A modification has also been confirmed to be
associated with embryonic stem cell differentiation (Aguilo et al.,
2015; Geula et al., 2015), hematopoietic system development
(Zhang et al., 2017), myogenesis (Wang et al., 2017), and early
embryonic development (Sui et al., 2020). Xia’s lab mapped the
transcriptome-wide m6A profiles of major fetal tissues including
human placenta (Xiao et al., 2019), but the m6A methylome in
human villi during spontaneous abortion in the first trimester has
not been characterized.

In this study, due to the trace of early villous tissue, we
performed high-throughput sequencing to determine the
transcriptome-wide m6A methylome in human villi from
patients with spontaneous abortion and controls with induced
abortion in the first trimester. Using MeRIP-seq data, we further
identified differential m6A peaks in villous tissue based on the
comparison of spontaneous abortion and induced abortion
samples. Then, we identified differentially expressed genes
using RNA-seq data. Finally, the conjoint analysis of MeRIP-
seq and RNA-seq revealed some genes with differentially
methylated m6A peaks and synchronously differential
expression, which might provide an alternative strategy for the
therapy and prevention of spontaneous abortion.

MATERIALS AND METHODS

Samples Collection
Villous tissues from patients with spontaneous abortion and
controls with induced abortion used in this research were

obtained with written informed consent from all participants.
All tissues were approved by the Medicine Ethics Committee of
Shenzhen Second People’s Hospital (Approval number,
20210517001-FS01). The inclusion criteria were: (1) Patients
who were clinically diagnosed with spontaneous abortion for
the first time or healthy women who underwent voluntary
induced abortion; (2) Age between 18 and 35; (3) Gestational
ages between 6-8 weeks. The exclusion criteria were: (1) Patients
with fetal chromosomal or congenital abnormalities; (2) Patients
with abnormal uterine structures; (3) Patients with polycystic
ovary syndrome, endometriosis, and thyroid disease; (4) Patients
with vaginitis. Three spontaneous abortion samples and three
induced abortion samples were obtained from elective
terminations of apparently normal pregnancies. These samples
were further used for MeRIP-seq. The villous tissue was rinsed in
precooled normal saline three times, while the tissue with a
diameter of 1 mm was cut with ophthalmic scissors. After the
tissue was mixed in Trizol solution in a volume ratio of 1:10, it
was ground to homogenate with a freeze grinder, and the left
tissue was frozen in liquid nitrogen.

MeRIP Sequencing
Total RNA from each sample was isolated using TRIzol reagent
(Invitrogen) and fragmented into ~100-nucleotide-long
fragments by zinc acetate. Next, Affinity-purified anti-m6A
polyclonal antibodies (Abcam) were used for
immunoprecipitation to analyze approximately 300 μg of
fragmented RNA. After stringent washing with a high-salt
buffer (400 mM NaCl, 0.05% NP-40, 10 mM Tris–HCl),
competitive buffer (150 mM NaCl, 0.05% NP-40, 10 mM
Tris–HCl, 0.25 mg ml−1 mix of adenosine, uridine, guanosine
and cytidine), high-detergent buffer (150 mM NaCl, 0.5% NP-
40,10 mM Tris–HCl), and immunoprecipitation buffer (150 mM
NaCl, 0.05% NP-40, 10 mM Tris–HCl), bound RNA was eluted
by competition with 1 mg ml−1 N6-methyladenosine
(Selleckchem) and used for library construction using the
NEBNext Ultra RNA Library Prep Kit v2 for Illumina. After
removal of ribosomal RNA using the Epicentre Ribo-zero rRNA
Removal Kit (Epicentre), total RNA from each tissue was
fragmented and a library was constructed using the NEBNext
Ultra RNA Library Prep Kit v2 for Illumina (New England
Biolabs) as input RNA. RNA-seq libraries of m6A antibody-
enriched mRNAs and input mRNAs were prepared.
Sequencing was carried out using an Illumina Hiseq 4000
platform according to the manufacturer’s instructions.

Data Analysis
Trimmomatic (v.0.27) (Bolger et al., 2014) was used for quality
control of paired-end sequencing data. Reads that mapped to
rRNA and tRNA sequences (obtained from the UCSC gene
annotation (hg38)) using bowtie2 (v.2.3.4) (Langmead and
Salzberg, 2013) were discarded, and the remaining reads were
aligned to the GRCh38 using hisat2-align (v.2.1.0) (Kim et al.,
2015). Unique reads with high mapping quality were retained
using Picard (v.2.16.0) and SAMtools (v.1.7.0). MACS2 (v.2.1.1)
(Gaspar, 2018) was used to identify m6A peaks with the
parameter ‘--nomodel’ and ‘-q 0.05’. ExomePeak2 package
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FIGURE 1 | Characteristics of m6A methylation in human villi during spontaneous abortion in the first trimester. (A) Volcano plots showing the significantly altered
m6A peaks. (B) Accumulation of the region of average m6A peaks along with all transcripts in SA group and normal group. (C) Pie charts showing the distribution of m6A
peaks in SA group and normal group. (D) The distribution of altered m6A peaks per gene. (E) The distributions of altered m6A peaks in all chromosomes. (F) The top two
m6A motifs enriched from the altered m6A peaks.
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(v.1.2.0) (Meng et al., 2014) was used for the identification of
differentially methylated peaks. The GFF annotation file was
referred to determine the strand information of m6A peaks.
The findMotifsGenome.pl Perl script from the Homer software
suite was used for motif search with the “-mask -rna -len 6”
parameters. Genomic locations were split into CDS, 5′UTR,
3′UTR, promoter (2 kb upstream and 100 bp downstream of
the TSS), and intergenic regions. The distribution of m6A peaks
on mRNA was analyzed using the R package Guitar (v.1.7.0) (Cui
et al., 2016). Differentially expressed genes were identified using
the RNA-seq data (the corresponding MeRIP-seq input library
data) by the R package DEseq2 (v.1.32.0) (Love et al., 2014). The
R package clusterProfiler (v.4.1.3) (Wu et al., 2021) was used to
calculate the biological significance of differentially methylated
genes and differentially expressed genes through the Gene
Ontology (GO) database and the latest Kyoto Encyclopedia of
Genes and Genomes (KEGG) database.

The Construction of Hub Gene Network
The STRING (v11.5) (https://string-db.org/cgi/input.pl)
(Szklarczyk et al., 2021) has been widely applied to construct a
protein-protein interaction (PPI) network. Based on those DEGs,
the “Multiple proteins” option was selected. The minimum
required interaction score was set as “high confidence (0.700)”
and a PPI network was constructed. And then, the cytoHubba
(Chin et al., 2014) was employed to identify hub genes. The
eccentricity algorithm was selected and twenty top-ranked genes
were chosen as hub genes. Finally, Cytoscape (v3.9.0) (Demchak
et al., 2014) was used to visualize the hub gene network.

Statistical Analyses
The t-test was used for comparing the statistical significance
between two groups. For each analysis, p < 0.05 was considered as
statistically significant.

Data Availability
The raw sequencing and processed data reported in this study have
been deposited in the Sequence Read Archive (SRA) and Gene
Expression Omnibus (GEO) database and are accessible at https://
dataview.ncbi.nlm.nih.gov/object/PRJNA786693 and https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE193052, respectively.

RESULTS

Profiles of m6A Modification in Human Villi
With Spontaneous Abortion in the First
Trimester
Due to the trace of early villous tissue, we performed a micro
MeRIP-seq analysis of villous tissues from three patients with
spontaneous abortion (SA group) and three controls with
induced abortion (normal group) in the first trimester. We
detected a total of 18,568 m6A peaks in these two groups by R
package exomePeak2. As shown in Figure 1A, compared with
normal group, SA group had 2,159 significantly upregulated m6A
peaks, which corresponded to transcripts of 2,087 genes, and 281
significantly downregulated m6A peaks, which corresponded to
transcripts of 311 genes (| log2 (fold change) | > 0.585 and p <
0.05). The top 20 altered m6A peaks were listed in Table 1. Then,
we investigated the distribution of m6A peaks in the SA and
normal group and found that m6A peaks in the SA and normal
group were primarily enriched in the coding sequence (CDS) near
the stop codon and the whole CDS region, respectively
(Figure 1B). However, m6A peaks in the SA group showed a
distinct pattern from m6A peaks in the normal group with a
relative decrease in the number of m6A peaks in the coding
sequence (CDS) (42.08 vs. 45%) and 5′ untranslated region
(5′UTR) (1.64 vs. 2%) and a relative increase in the 3′

TABLE 1 | Top 20 altered m6A peaks in human villi during spontaneous abortion in the first trimester.

Chr Peak start Peak end Peak region Gene name Regulation Log2(FC) P value

chr4 158,171,401 158,172,272 intron FAM198B up 5.830 5.76E-03
chr4 119,033,176 119,033,301 3′ UTR MYOZ2 up 5.829 4.81E-03
chr4 453,467 453,542 intron ABCA11P up 5.778 8.64E-03
chr1 169,376,663 169,377,063 exon NME7 up 5.586 8.54E-03
chrX 101,488,487 101,488,537 non-coding ARMCX4 up 5.580 7.82E-03
chr4 37,020,627 37,022,548 TTS LOC100508631 up 5.563 8.18E-03
chr16 69,356,783 69,357,056 exon TMED6 up 5.263 1.13E-02
chr8 18,221,796 18,221,846 5′ UTR NAT1 up 5.198 1.48E-02
chr9 88,462,616 88,475,585 intron NXNL2 up 5.165 1.59E-02
chr4 13,615,416 13,615,466 exon BOD1L1 up 5.157 1.38E-02
chr4 372,742 375,592 3′ UTR MIR571 down −4.054 7.14E-03
chr11 78,658,228 78,658,303 exon NARS2 down −3.808 1.70E-02
chr16 12,572,889 12,573,014 3′ UTR MIR4718 down −3.588 3.27E-02
chr3 37,819,313 37,819,463 3′ UTR ITGA9-AS1 down −3.415 1.37E-03
chr7 83,135,139 83,135,189 exon PCLO down −3.388 2.05E-02
chr1 241,595,581 241,595,642 TTS CHML down −3.307 2.46E-02
chr1 147,757,292 147,758,409 3′ UTR GJA5 down −3.233 4.10E-08
chrX 72,204,881 72,204,956 3′ UTR PIN4 down −3.199 4.94E-02
chr3 37,819,488 37,819,538 3′ UTR ITGA9-AS1 down −3.167 2.36E-03
chr22 30,663,347 30,663,422 TTS DUSP18 down −3.159 2.39E-02

3′UTR, 3′untranslated region; 5′UTR, 5′untranslated region; TTS, transcription termination site.
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untranslated region (3′UTR) (19.93 vs. 19%) (Figure 1C). By
analyzing the distribution of m6A peaks per gene, we found that
most genes only had one corresponding m6A peak (1,878/236
genes with upregulated and downregulated peaks, respectively)
(Figure 1D). Furthermore, dysregulated m6A peaks were found
in all chromosomes, except chrY, and were mainly found in chr1,
chr2, chr3, chr4, chr5, chr6, chr7, chr17 (Figure 1E). Moreover,
the m6A peaks were mainly characterized by AUGGAC and
UGGACG motif (Figure 1F).

GO and KEGG Pathway Enrichment
Analysis of Differentially m6A-Modified
mRNA
To investigate the biological significance of m6A modification in
villous tissues of patients with spontaneous abortion and controls
with induced abortion in the first trimester, we performed GO
and KEGG pathway enrichment analyses of differentially

methylated mRNAs. GO ontology was classified into three
categories: biological process (BP), cellular component (CC),
and molecular function (MF). The top five significantly
enriched BPs, CCs, and MFs of genes with upregulated and
downregulated m6A peaks were shown in Figures 2A,B,
respectively. The results in Figure 2A indicated that GO terms
such as the regulation of Wnt signaling pathway, Rho protein
signal transduction, transcription coregulator activity, and
transcription corepressor activity were significantly enriched,
and GO terms such as regulation of RNA biosynthetic process,
regulation of nucleic acid-templated transcription and DNA-
binding transcription factor activity were significantly enriched
in Figure 2B. For KEGG pathway enrichment analysis, we found
that genes with upregulated m6A peaks in villous tissues of
patients with spontaneous abortion in the first trimester were
significantly associated with the lysine degradation, ubiquitin-
mediated proteolysis, herpes simplex virus 1 infection, adherens
junction, phosphatidylinositol signaling system, inositol

FIGURE 2 | GO and KEGG pathway enrichment analyses of differentially methylated mRNA. (A) The top 5 GO terms of genes with significantly upregulated m6A
peaks. (B) The top 5 GO terms of genes with significantly downregulated m6A peaks. (C) The top 10 KEGG pathways of genes with significantly upregulated m6A peaks.
(D) The top 10 KEGG pathways of genes with significantly downregulated m6A peaks.
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phosphate metabolism, and Hippo signaling pathway - multiple
species (Figure 2C). Genes with downregulated m6A peaks were
significantly associated with herpes simplex virus 1 infection,
glycosphingolipid biosynthesis-ganglio series, Hippo signaling
pathway, tryptophan metabolism, and Wnt signaling pathway
(Figure 2D). The enrichment of genes in the four major pathways
is shown in Figure 3.

Overview of mRNA Expression Profiles and
Conjoint Analysis of meRIP-Seq and
RNA-Seq
Through RNA-seq (meRIP-seq input library), we detected the
transcriptome profiles of villous tissues from patients with
spontaneous abortion and controls with induced abortion in
the first trimester. R package DESeq2 was used to detect
differentially expressed genes (DEGs). Compared with normal

group, SA group had 254 significantly upregulated genes and 133
significantly downregulated genes (| log2 (fold change) | > 0.585
and p < 0.05; Figures 4A,B). TheMA plot was visualized for these
DEGs (Supplementary Figure S1). The top 20 DEGs are listed in
Table 2. The top 5 significantly enriched BPs, CCs, and MFs of
genes with upregulated and downregulated expressed genes and
top 10 KEGG pathways were displayed in Supplementary Figure
S2. Based on these DEGs, we construct a PPI network through the
STRING database. The hub genes selected from the PPI network
are visualized in Supplementary Figure S3. According to the
eccentricity scores, we identified twenty hub genes with highest
confidence scores from the network, and found that most of hub
genes were related to immune response and embryonic
development. Then, we conducted conjoint analysis of the
MeRIP-seq and RNA-seq data and explored the relationship
between differential m6As and host gene expression level. We
found that the expression level of host gene of differential m6As

FIGURE 3 | Four major KEGG pathways. (A) Phosphatidylinositol signaling system. (B) Hippo signaling pathway–multiple species. (C) Hippo signaling pathway.
(D)Wnt signaling pathway. The colors in the graph from red to green indicate the change from high to low in m6A dysregulation on genes. The colors in the graph from
yellow to blue indicate the change from high to low in m6A dysregulation on compounds.
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was lower in both SA group and normal group compared with
constitutive m6As (Supplementary Figure S4). Dividing all
differentially methylated m6A peaks with all differentially
expressed mRNAs into four groups (hyper-up, hyper-down,
hypo-up, and hypo-down), we identified 34 hypermethylated
m6A peaks in mRNAs that were significantly upregulated (28;
hyper-up) or downregulated (6; hyper-down), while 2
hypomethylated m6A peaks in mRNAs that were significantly
upregulated (1; hypo-up) or downregulated (1; hypo-down)
(Figure 4C, Supplementary Table S1). Finally, we performed
GO and KEGG pathway enrichment analysis to explore the
biological function of those genes (35) with differentially
methylated m6A peaks and differential expression. The top 5

significantly enriched BPs, CCs, and MFs indicated that these
genes were mainly enriched in the ossification (BP category),
nuclear outer membrane (CC category), and core promoter
sequence-specific DNA binding (MF) (Figure 4D). However,
no KEGG pathways were significantly enriched.

DISCUSSION

In this study, we performed high-throughput sequencing to reveal
the m6A transcriptome-wide map in human villi during
spontaneous abortion in the first trimester. Using the MeRIP-
seq data, we found 2,398 genes corresponding to 2,440 altered

FIGURE 4 | Conjoint analysis of MeRIP-seq and RNA-seq data. (A) Volcano plots showing the differentially expressed genes in villous tissues of SA group
compared with normal group. (B) Heatmap plots showing the differentially expressed genes in villous tissues of SA group compared with normal group. (C) Four-
quadrant plots showing the distribution of genes with significant changes in both the m6Amodification andmRNA levels. (D) The top 5 GO terms of genes with significant
changes in both the m6A modification and mRNA levels.
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m6A peaks, which were highly enriched by the m6A consensus
motif (RRACH). The enrichment was not perfectly overlapping
the RRACH motif described in literature, which might be related
to the parameters (-mask -rna -len 6) used for motif search. These
genes were mainly involved in lysine degradation, Hippo
signaling pathway, ubiquitin-mediated proteolysis, and
glycosphingolipid and glycosaminoglycan biosynthesis.
Through conjoint analysis of meRIP-seq and RNA-seq data,
we identified 35 genes with differentially methylated m6A
peaks and synchronously differential expression, which
revealed the relationship between m6A methylation and gene
expression. These genes were enriched in the Wnt signaling
pathway, phosphatase activity regulation, protein phosphatase
inhibitor activity, and transcription inhibitor activity. It was
recently reported that m6A inhibition through targeted
strategies was effective in counteracting different diseases, such
as myeloid leukaemia. This could provide a background for the
development of therapeutics and for further investigations in the
future (Bedi et al., 2020; Garbo et al., 2021; Moroz-Omori et al.,
2021; Yankova et al., 2021).

The cellular mechanisms underlying SA are the proliferation
and apoptosis of cytotrophoblasts and human decidual cells
(Cinar et al., 2012). Studies have shown that at 6-8 weeks in
the first trimester of pregnancy, the expression level of TIMP-1
(tissue inhibitor of MMP-2) in villous tissue is significantly
decreased, which leads to the abnormal invasion of
trophoblast cells, and thus leads to spontaneous abortion
(Kesanakurti et al., 2013). As reported, the high expression of
e-cadherin (E-cad) in villous tissue affects the invasion of
trophoblast, making it difficult for placenta implantation,
resulting in spontaneous abortion (Li et al., 2017). MiR126,
located in the region of epidermal growth factor-like domain 7
(EGFL7), negatively regulates vascular endothelial growth factor
(VEGF), which reduces shallow implantation of trophoblasts, and
finally leads to spontaneous abortion (Schmidt et al., 2007).

Basing on the MeRIP-seq data, we identified some
differentially methylated mRNAs which were closely linked to
many important pathways. KEGG pathway enrichment analysis
results indicated that genes with upregulated m6A modification
sites were involved in the regulation of lysine degradation. Some
studies have confirmed the relationship between lysine
metabolism and early embryo development. Studies
illuminated that lysine deprivation during low-protein diets
could adversely affect early embryo development (Van Winkle
et al., 2020). Lysine was specific to LSD1, a demethylase, which
regulated the expression and appropriate timing of key
developmental regulators during early embryonic development
(Foster et al., 2010). Our results indicated that m6A modification
might affect early embryonic development by regulating lysine
degradation. For these genes with upregulated m6A modification
sites, another related pathway was Hippo signaling pathway.
Hippo signaling plays a critical role in early embryonic
development as low Hippo activity is required for trophoblast
differentiation and high Hippo activity permits inner cell mass
formation (Wu and Guan, 2021). During murine
preimplantation embryogenesis, Hippo signaling pathway is
known to play a significant role in lineage segregation and
henceforth the formation of blastocysts (Sasaki, 2015). Our
results suggested that modulating m6A modifications of the
Hippo signaling pathway might be a possible therapy for in
human villi during spontaneous abortion in the first trimester
in the future.

In addition, another related pathway was ubiquitin-mediated
proteolysis. Studies suggested that ubiquitin-mediated proteolysis
could be used to regulate Hippo signaling and thus participate in
early embryonic development (Ma et al., 2018). Therefore, m6A
modification might affect ubiquitin-mediated proteolysis to
regulate Hippo signaling and thus regulate early embryonic
development. Genes with downregulated m6A modification
sites were mainly enriched in glycosphingolipid and

TABLE 2 | The top 20 differentially expressed mRNAs in human villi during spontaneous abortion in the first trimester.

Gene name Log2(FC) Regulation Location Strand P-value

LILRB4 6.994372489 up chr19:54643889-54670359 + 2.56E-05
KRT6A 6.408677648 up chr12:52487174-52493257 − 0.000353
TMEM176B 6.402794137 up chr7:150791285-150801360 − 0.000225
TMEM176A 6.289546685 up chr7:150800403-150805120 + 0.000221
WNT10A 6.231355116 up chr2:218880363-218899581 + 0.000217
CTD-2020K17.3 6.217088894 up chr17:45238028-45241734 − 0.000581
CXCL10 6.158743623 up chr4:76021117-76023497 − 0.000178
TNC 5.941216251 up chr9:115019578-115118257 − 1.42E-05
CD300E 5.778269717 up chr17:74609887-74623738 − 2.10E-06
CXCL9 5.640406283 up chr4:76001275-76007488 − 0.000375
HBE1 −13.27930895 down chr11:5268345-5505617 − 1.55E-06
HBZ −9.7258281 down chr16:152687-154503 + 1.59E-05
SLC4A1 −8.109924704 down chr17:44248385-44268141 − 3.30E-05
SPTB −7.906942374 down chr14:64746283-64879883 − 0.000189
COX4I2 −7.653108088 down chr20:31637888-31645006 + 0.000574
LINC02484 −4.950756206 down chr4:34120894-34269747 − 7.19E-10
ADAMTS18 −4.478881307 down chr16:77247813-77435114 − 0.000323
RAPGEF4 −4.44120067 down chr2:172735274-173052893 + 6.25E-10
GOLGA2P7 −4.061744557 down chr15:84199311-84230136 − 0.000712
AGTR1 −3.91772292 down chr3:148697784-148743008 + 4.73E-05
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glycosaminoglycan biosynthesis. Glycosphingolipids (GSLs) were
a class of ceramide-based glycolipids essential for embryo
development in mammals (Yamashita et al., 1999; Russo et al.,
2016), whether glycosaminoglycan (GAG) biosynthetic was
important for mouse embryonic stem cells (mESCs) (Nairn
et al., 2007). Based on our results, we hypothesized that m6A
modification might influence the expression level of some genes
related to glycosphingolipid and glycosaminoglycan biosynthesis
and thus influence embryo development.

Through the conjoint analysis of MeRIP-seq and RNA-seq
data, thirty-five genes with differentially methylated m6A
peaks and synchronously differential expression in
spontaneous abortion were discovered (Supplementary
Table S1). Among these genes, IGFBP3, C/EBPβ may be
regulated by m6A modification of mRNAs. IGFBP3
(Insulin-like growth factor binding protein 3) with high
expression level suggested betted oocyte maturation and
early embryo development (Wang et al., 2006). IGFBP3 is
highly expressed in the endometrium and at the maternal-fetal
interface, which promoted the matrix metalloproteinases 2
(MMP2) expression and cell migration in both human
endometrial stromal cells (HESCs) and primary human
decidual stromal cells (HDSCs) (Luo et al., 2020).
Combined with our results, m6A modification may promote
the expression of IGFBP3 and thus promote the high
expression of MMP2 and the low expression of its tissue
inhibitors TIMP-1, and finally lead to spontaneous
abortion. CCAAT/enhancer binding protein β (C/EBPβ) is
the earliest marker of enveloping layer (EVL) and is essential
for EVL differentiation in zebrafish (Zhang et al., 2021).
Studies indicated that C/EBPβ transcription factor could
inhibit the mRNA decay of IL-8 and thus repress the
inflammatory response (Zhang et al., 2010). Moreover,
C/EBPβ is also a biomarker of endometrial receptivity and
plays a conserved functional role during embryo implantation
(Kannan et al., 2010). Combined with our results, altered m6A
modification may influence the expression of C/EBPβ, regulate
embryo implantation and thus influence early embryo
development. However, detailed molecular mechanisms are
still unknown and further exploration deserves careful
consideration in the future.

CONCLUSION

Here, we systematically investigated the whole-transcriptome m6A
profile of human villous tissues during spontaneous abortion in the
first trimester, revealing a dynamic m6A methylation landscape in
spontaneous abortion for the first time. Based on the conjoint

analysis of MeRIP-seq and RNA-seq data, many genes with
differentially methylated m6A peaks and synchronously
differential expression were discovered. It indicated a potential
link between m6A methylation and mRNA expression, and might
provide an alternative therapeutic strategy for spontaneous
abortion. In addition, the m6A modification profile might
provide novel insights into the pathogenesis and treatment of
spontaneous abortion during early pregnancy.
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N7-methylguanosine-related
long non-coding RNAs in breast
cancer
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Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China

Long non-coding RNA (lncRNA) are closely associated with the occurrence and

progression of tumors. However, research on N7-methylguanosine (m7G)-

related lncRNA in breast cancer is lacking. Therefore, the present study explored

the prognostic value, gene expression characteristics, and effects of m7G-

related lncRNA on tumor immune cell infiltration and tumor mutational burden

(TMB) in breast cancer. lncRNA expression matrices and clinical follow-up data

of patients with breast cancer were obtained from The Cancer Genome Atlas,

revealing eight significantly differentially expressed and prognostically relevant

m7G-related lncRNAs in breast cancer tissues: BAIAP2-DT, COL4A2-AS1,

FARP1-AS1, RERE-AS1, NDUFA6-DT, TFAP2A-AS1, LINC00115, and

MIR302CHG. A breast cancer prognostic signature was created based on

these m7G-related lncRNAs according to least absolute shrinkage and

selection operator Cox regression. The prognostic signature combined with

potential prognostic factors showed independent prognostic value, reliability,

and specificity. Meanwhile, we constructed a risk score-based nomogram to

assist clinical decision-making. Gene set enrichment analysis revealed that low-

and high-risk group were associated with metabolism-related pathways. Our

study demonstrated the association between tumor immune cell infiltration

based on analyses with the CIBERSORT algorithm and prognostic signature. We

also assessed the correlation between prognostic signature and TMB. Lastly,

quantitative real-time polymerase chain reaction analysis was performed to

validate differentially expressed lncRNAs. The effective prognostic signature

based on m7G-related lncRNAs has the potential to predict the survival

prognosis of patients with breast cancer. The eight m7G-related lncRNAs

identified in this study might represent potential biomarkers and therapeutic

targets of breast cancer.
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breast cancer, m7G-related lncRNA, prognostic signature, tumor immune cell
infiltration, tumor mutational burden
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1 Introduction

Breast cancer (BC) is the most common malignancy

worldwide (Winters et al., 2017), and its mortality rate is

increasing every year. Among all malignant diseases,

representing approximately 23% of cancer-related deaths, BC

is considered a leading cause of death in postmenopausal women

(Akram et al., 2017). TheWorld Health Organization emphasizes

that early diagnosis remains the most critical approach for

improving the outcomes and survival rate of patients with BC

(Bray et al., 2018). Therefore, it is indispensable to explore novel

prognostic biomarkers and develop further measures for the

diagnosis and treatment of BC.

Multiple mechanisms intertwine to ensure the correct and

timely expression of each gene, with several of these mechanisms

targeting the life cycle of RNA molecules, from transcription to

translation (Batista, 2017; Zhang et al., 2019a). The modification

of RNA have been reportedly demonstrated a crucial link with

the development of cancer, as well as cardiovascular, metabolic,

neurological, and other diseases, because of their reversibility,

dynamics, and involvement in important biological processes

(Jonkhout et al., 2017). The rapid development of RNA

methylation profiling technologies and high-throughput

sequencing (Qiang et al., 2018; Zou et al., 2019; Hasan et al.,

2020; Tang et al., 2021) has revealed that N7-methylguanosine

(m7G) modification is a considerable portion of RNA

modifications.

As one of the most prevalent RNA modifications, m7G

modifications are usually located in the 5′ cap and inner

position of eukaryotic mRNAs or within rRNA and tRNA

(Zhang et al., 2019b; Song et al., 2020). To date, studies on

m7G primary focused on methylases of m7G, including the

Trm8p/Trm82p heterodimer complex in yeast and the

corresponding homologous methyltransferase-like protein-1

(METTL1) and WD repeat domain 4 (WDR4) proteins in

humans. It has been reported that the METTL1/

WDR4 complex could stabilize the tertiary structure of tRNA

through the installation of m7G modifications at site G46 of

diverse tRNA variable loops (Shaheen et al., 2015). In addition,

the METTL1/WDR4 complex promotes miRNA biogenesis by

modifying primary miRNA transcripts with m7G (Pandolfini

et al., 2019). In addition, research has confirmed that the m7G

modification is tightly correlated to tumor development and

progression. In intrahepatic cholangiocarcinoma, the methylase

METTL1 mediates m7G tRNAmodification, selectively regulating

the translation of oncogenic transcripts, including genes involved

with the cell cycle and epidermal growth factor receptor (EGFR)

pathways (Chen Z. et al., 2021). In hepatocellular carcinoma,

c-Myc (MYC) activates WDR4 transcription and facilitates the

stability and translation of CCNB1 mRNA through m7G

modification, affecting the phosphorylation of PI3K and AKT

and promoting P53 ubiquitination, ultimately fueling the

progression of hepatocellular carcinoma (Chen Z. et al., 2021).

In BC, the proliferative activity of BC cells is approximately 35%

higher in patients with PIK3CA mutations, which are dependent

on the m7G regulator mRNA cap methyltransferase (RNMT). As

such, RNMT-targeted therapies in patients with PIK3CA

mutations have better developmental prospects (Dunn et al.,

2019). However, further m7G RNA methylation studies are

needed to explore the mechanisms underlying cancer

development.

Advances in genome sequencing technology have revealed

that most of the genome does not encode proteins; nevertheless,

non-coding genetic material is of great importance to various

biological processes, like DNA methylation and RNA

modification. Non-coding RNAs can be divided into two

major categories based on their length: short non-coding

RNAs (e.g., miRNAs and snRNAs) and long non-coding

RNAs (lncRNAs). lncRNAs, a large group of structurally

complex RNA genes, could regulate gene expression by

interacting with DNA, RNA, or protein molecules and play

cellular roles through various mechanisms. lncRNAs have

been proposed as biomarkers of cancer (Lai et al., 2020; Li

et al., 2021). For instance, CAT104, LINC01234, and STXBP5-

AS1 have been confirmed to predict the prognosis of patients

with BC (Fernandes et al., 2019). Compared with the healthy

controls, plasma lncRNA HULC concentrations are higher in

patients with hepatocellular carcinoma (Parasramka et al., 2016).

Likewise, overexpressed in prostate cancer, PCA3 is considerated

as a diagnostic biomarker and therapeutic target, which is a

prostate-specific lncRNA (Lee et al., 2011). Identifying the

differential expression of lncRNAs in tumors, which play roles

in promoting both tumorigenesis and tumor suppression,

provides an opportunity to develop new cancer therapies

based on targeting lncRNAs.

Currently, studies on the interaction between m7G

modification and lncRNAs in BC are lacking. Thus, the

purpose of present study is to explore the prognostic ability,

gene expression features, clinical value, and predictive value on

tumor immune cell infiltration and TMB ofm7G-related lncRNAs

in BC. To this end, we identified prognostic m7G-related lncRNAs

in BC, created a prognostic risk signature, and further developed a

nomogram according to the risk score, presenting a tool with

promising prognostic value for BC (Figure 1).

2 Materials and methods

2.1 Data collection and processing

The lncRNA expression and clinical follow-up data shown in

this research were collected from The Cancer Genome Atlas

(TCGA) database (http://cancergenome.nih.gov/). Data from

1,222 breast tissues, including 1109 BC and 113 normal

tissues, were analyzed. Table 1 presents the clinicopathological

characteristics of the patients.
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2.2 Identification of m7G-related lncRNAs

From previously published studies, we extracted 40 m7G

regulators; gene sets were selected from the GSEA (https://www.

gsea-msigdb.org) database (“GOMF_M7G_5_PPPN_

DIPHOSPHATASE_ACTIVITY”, “GOMF_RNA_7_

METHYLGUANOSINE_CAP_BINDING”, and “GOMF_

RNA_CAP_BINDING”). Pearson correlation analysis was

performed using the “limma” R package to select m7G-

lncRNA. The m7G-lncRNA pairs with a correlation

coefficient >0.4 and p < 0.001were kept. A total of 429 m7G-

related lncRNAs were identified. The “dplyr,” “ggalluvial,” and

“ggplot2” R packages were used to visualize the results of the

m7G-lncRNA co-expression network as Sankey diagrams.

2.3 Selection of prognostic m7G-lncRNAs

First, we conducted a univariate Cox proportional hazards

analysis with a p < 0.01 to select m7G-related lncRNAs that has

association with the survival of patients with BC. Subsequently,

using the least absolute shrinkage and selection operator

(LASSO) Cox regression analysis, the best prognostically

relevant lncRNAs were selected to build the prognostic

signature. Gene interaction networks and Sankey plots were

generated using Cytoscape 3.8, “dplyr,” “ggalluvial,” and

“ggplot2” R packages.

2.4 Development and validation of the
m7G-lncRNA prognostic signature (m7G-
LPS) and nomogram

We used the “glmnet” R package to develop a lasso signature,

which optimizes the L1 regularization parameter lambda through

a built-in cross-validation function. With the help of the

following formula, we calculated the risk score for each patient:

Risk score � ∑
n

i�1
Coef i * xi

where Coefi and xi represent the survival-related regression

coefficient and expression of each m7G-lncRNA, respectively.

Thereafter, based on the median of the prognostic risk score,

the patient was assigned to either low- or high-risk groups. The

heat map and scatter plots were generated using the heatmap

FIGURE 1
Flow chart of the study.

Frontiers in Genetics frontiersin.org03

Huang et al. 10.3389/fgene.2022.1030275

69

https://www.gsea-msigdb.org/
https://www.gsea-msigdb.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1030275


function in R. The survival curves were plotted with the Kaplan-

Meier method and adopted to analyze the discrepancy in overall

survival (OS) between patients in the low- and high-risk groups.

Univariate and multivariate Cox regression analyses were

implemented to evaluate the independence of the risk score in

predicting prognosis compared to other clinical variables.With the

aid of the R package “ROCR,” the performance of the prognostic

signature was evaluated by receiver operating characteristic (ROC)

curve analysis.We then developed a nomogram using the R library

“rms” package based on the independent prognostic factors for the

clinical quantitative prediction of survival in patients with BC.

Nomogram calibration was assessed using calibration plots. The

genomes, which contains m7G genomes, m7G-lncRNA genomes,

and m7G-LPS group expression profiles were implemented for

effective dimensionality reduction, pattern recognition, and

exploratory visual analysis through principal component

analysis (PCA).

2.5 Gene set enrichment analysis (GSEA)
analysis

GSEA analysis was performed to identify potential biological

signaling pathways involved in low- and high-risk groups. When

the |normalized enrichment score| > 1, nominal p-value < 0.05,

and false-discovery rate q-value < 0.25, the pathways were

defined as significantly enriched.

2.6 Correlation between the prognostic
signature and tumor immune cell
infiltration

The CIBERSORT with the LM22 gene set that we obtained

from the CIBERSORT website was utilized to estimate the total

immune infiltration in each BC sample and immune cell subsets

(http://cibersort.stanford.edu/). Defining 22 human immune cell

subtypes, LM22 is an annotated gene signature matrix containing

547 marker genes (e.g., dendritic cells, T cells, and B cells). With

the aim of improving the accuracy of the deconvolution

algorithm, 100 permutations of the default signature matrix to

calculate the CIBERSORT p-values and root mean square errors

for each sample file were implemented. Subsequently, regarding

the differences in immune cell infiltration between the low- and

high-risk groups, we utilized a threshold of p < 0.05 to analyze the

differences by screening BC data. Spearman’s test was performed

to assess correlations among different tumor immune cell types.

2.7 Analysis of tumor mutational burden

We obtained the somatic mutation data of BC from the

TCGA database and calculated the tumor mutational burden

(TMB) of each BC sample. We investigated the difference in

TMB between the high-risk and low-risk groups and visualized it

using “maftool,” “limma,” and “ggpubr” R packages. We

obtained the optimal TMB cut-off value according to the

algorithm in the “survminer” R package, and divided all

samples into the high-TMB and low-TMB groups. We drew

the Kaplan–Meier survival curve of high-TMB and low-TMB

groups and analyzed the difference in the OS using the “survival”

R package. The high- and low-TMB groups were further divided

based on the prognostic signature into four groups: high-TMB

and high-risk, low-TMB and high-risk, low-TMB and low-risk,

and low-TMB and high-risk.

2.8 Cell culture

Breast cancer cell lines MCF7 were cultured in Dulbecco’s

Modified Eagle Medium (DMEM, Gibco) supplemented with

10% FBS and 100 U/mL Penicillin/Streptomycin in a 5%

TABLE 1 Clinical characteristics of breast cancer patients in the
training cohort.

Variables No. of patients Percentage (%)

Age (years)

≤55 471 42.9

>55 626 57.1

Unknown 19 1.7

Gender

Female 1,085 98.9

Male 12 1.1

Pathological stage

I 183 16.7

II 621 56.6

III 249 22.7

IV 20 1.8

Unknown 24 2.2

T stage

T1 281 25.6

T2 635 57.9

T3 138 12.6

T4 40 3.6

Unknown 3 0.3

N stage

N0 516 47.0

N1 364 33.2

N2 120 10.9

N3 77 7.0

Unknown 20 1.8

M stage

M0 912 83.1

M1 22 2.0

Unknown 163 14.9
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CO2 incubator. Human normal breast cell lines MCF-10A

were cultured in DMEM-F12 medium supplemented with 10%

fetal bovine serum, 100 μg mL−1 epidermal growth factor

(EGF), 1 mg mL−1 hydrocortisone, 10 mg mL−1 insulin, 100

U mL−1 penicillin G and 100 μg mL−1 streptomycin. Cells were

collected at 90% confluence, and the medium was changed

every 24–48 h.

2.9 RNA extraction and reverse
transcription-quantitative polymerase
chain reaction (RT-qPCR)

Gene expression for eight m7G-related lncRNA was

measured by RT-qPCR. Total RNA was obtained from MCF-

10A and MCF-7 cells using TRIzol reagent (TAKARA, Japan).

The cDNA was synthesized with RNA Transcription Kit

(TAKARA, Japan) and RT-qPCR was performed using SYBR

Premix Ex Taq II (TAKARA, Japan). Expression was measured

using CT values, normalized to that of GAPDH (ΔΔCT = ((CT

(target, test) −CT (reference, test)) − (CT (target, calibrator) −CT

(reference, calibrator)), and then expressed as 2-ΔΔCT. All RT-
qPCR primers are listed in Table 2.

2.10 Statistical analysis

Kruskal–Wallis or Wilcoxon tests were used for intergroup

comparisons of the differences in the expression of m7G

regulators and m7G-related lncRNAs, the

clinicopathological parameter, the proportion of the

21 tumor-infiltrating immune cell subtypes, and TMB in

high- and low-risk groups. Two-sided log-rank tests were

performed to compare Kaplan–Meier OS curves. All

statistical analyses were carried out using software R

(version 4.2.1). p-values < 0.05 were regarded as indicating

statistically significant differences.

3 Results

3.1 Identification of m7G-related lncRNAs
and construction of the prognostic
signature

To explore the role of m7G regulators in BC, we analysis

the expression of m7G-related genes in breast cancer.

Supplementary Figure S1 shown that 31 genes are

differentially expressed in breast cancer. In addition,

patients with different m7G-related gene expression levels

have different prognosis in breast cancer, despite the lack of

statistical significance which needs to be further improved in

the future work (Supplementary Figure S2). But we can still

see the significance of m7G in breast cancer. On the basis of

the co-expression analysis in TCGA database, the lncRNAs of

387 genes were identified as co-expressed with m7G

(Figure 2A). Further, the prognosis of BC was tightly

associated with 11 m7G-related lncRNAs using univariate

Cox regression analysis (p < 0.001): BAIAP2-DT, COL4A2-

AS1, RNF213-AS1, FARP1-AS1, RERE-AS1, SH3BP5-AS1,

NDUFA6-DT, TFAP2A-AS1, SEMA3F-AS1, LINC00115, and

MIR302CHG (Figure 2B). Among them, eight m7G-related

lncRNAs were further selected to construct a prognostic

indicator based on the LASSO Cox regression algorithm,

namely, BAIAP2-DT, COL4A2-AS1, FARP1-AS1, RERE-AS1,

NDUFA6-DT, TFAP2A-AS1, LINC00115, and MIR302CHG

(Figure 2C). The coefficients of the eight selected genes

calculated by LASSO regression analysis are shown in

Table 3. The m7G-associated lncRNA–mRNA interaction

network consisted of four m7G regulators and eight

lncRNAs, as shown in Figure 2D, demonstrating that the

m7G regulator EIF4A1 is a key node co-expressed with

seven lncRNAs and the prognostic role of all lncRNAs in

BC are protective factors.

3.2 Validation of the clinical significance of
eight m7G-lncRNAs

To support the clinical significance of these lncRNAs, a

paired differential expression analysis was performed,

revealing significant group differences in all lncRNAs.

TABLE 2 Primer sequences used for RT-qPCR.

Primer Sequence 59 to 39

BAIAP2-DT- F CATCCAGAGATCGCCCTGAC

BAIAP2-DT- R GTCAGGTTCCACAGCTACCC

COL4A2-AS1-F TGTGGGATGGAGACATCCTGA

COL4A2-AS1-R CAGAGCTGTTCCAAAATGCCA

FARP1-AS1-F CAGGTGGATGGAAAGAGG

FARP1-AS1-R AGATCACGGAGATGGTGG

RERE-AS1-F CCCAGGAAGGCAGACAGATAA

RERE-AS1-R CTCGGGGGAGCTGTAGTTTG

NDUFA6-DT-F CTGCCGTCTTATCCCAGGAG

NDUFA6-DT-R GAGACGTTCAGTCGAAGCCC

TFAP2A-AS1-F ATTGCTCGCCAGTACCACAA

TFAP2A-AS1-R GTGGCGGAATTGGGGTAAGA

LINC00115-F GCTTTTTGTGGCCAAACCCA

LINC00115-R CTCAGTGACGGAACCGGAC

MIR302CHG-F TGTTCCTGCTTGTGGTGCAT

MIR302CHG-R AAAGTTGAAGGGAGCCCACC

GAPDH-F GGTGTGAACCATGAGAAGTATGA

GAPDH-R GAGTCCTTCCACGATACCAAAG

Frontiers in Genetics frontiersin.org05

Huang et al. 10.3389/fgene.2022.1030275

71

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1030275


Specifically, COL4A2-AS1 andMIR302CHG expression was high

in normal tissues (Figure 3A). In addition, we conducted the

Kaplan–Meier survival analysis, Supplementary Figure S3

revealed that BAIAP2-DT, COL4A2-AS1, RERE-AS1,

NDUFA6-DT, TFAP2A-AS1, and LINC00115 were associated

with good prognosis. Last, we examined the relationship

between m7G-lncRNA expression and clinicopathological

characteristics, demonstrating significant differences between

different molecular subtypes of BC (p < 0.001). Moreover, the

expression levels of RERE-AS1 (p < 0.05), TFAP2A-AS1 (p <
0.01), and MIR302CHG (p < 0.05) varied according to tumor

stage (stage I, II, III, and IV), COL4A2-AS1, RERE-AS1,

NDUFA6-DT, and MIR302CHG varied according to T stage

(T1, T2, T3, and T4). However, in the subgroup analyses

based on the N stage (N0, N1, N2, and N3), only BAIAP2-DT

and FARP1-AS1 were differentially expressed in different N

stages (Figure 3B).

3.3 Validity of the m7G-LPS

Using the m7G-LPS, patients were classified into two

subgroups based on whether the risk score was more than

(high-risk) or less than (low-risk) the median of all patient

FIGURE 2
m7G-associated lncRNAs (m7G-lncRNAs) and their co-expression networks with significant prognostic value in breast cancer. (A) Sankey plot
showing the relationship between m7G and m7G-lncRNAs. (B) Forest diagram of univariate Cox regression analysis of m7G-lncRNAs. (C) A LASSO
Cox regression was used to select independent factors and construct a prognostic signature. (D) Network and Sankey plot showing the connection
of m7G and eight m7G-lncRNAs with independent prognostic value.
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risk scores. The heat map in Figure 4A showed that eight

m7G-related lncRNAs are significantly differentially

expressed between low- and high-risk groups. Besides, T

stage, age, and survival status of patients with BC are

related to risk subgroups. The risk curve and scatter plot

showed an increased mortality rate with an increasing risk

score (Figure 4B). Further, we investigated if m7G-LPS could

predict survival by performing the survival analysis of

Kaplan–Meier. The high-risk group exhibited remarkably

worse OS compared to the low-risk group (p < 0.001;

Figure 4C). These findings support that the m7G-LPS has

prognostic value for patients with BC.

Furthermore, we verified the prognostic value of the

m7G-LPS and patient clinicopathological characteristics.

The univariate and multivariate hazard ratio (HR) values

of the risk score were 693 and 576, respectively, and

all p-values were <0.001. This indicated that the risk score

calculated through the m7G-LPS could serve as an

independent predictor of prognosis in BC. In addition,

univariate analysis showed that age, T, N, and M

stages, but not gender, had significant prognostic value

(p < 0.001). However, only age played an independent role

in multivariate analysis (HR = 1.034, p < 0.001; Table 4).

Based on ROC curve analyses, we found that the risk score

yielded an area under the ROC curve (AUC) value of 0.686,

which was the largest value among all clinicopathological

factors. In addition, the 3-, 5-, and 10-year ROC

curves showed corresponding AUC of the risk score of

0.693, 0.630, and 0.686, respectively (Figure 5A). These

findings confirm that the signature can reliably predict

the outcome of patients with BC. The prediction accuracy

of the m7G-LPS was further validated. Thus, age and

risk scores were included in the nomogram to better

predict the 3-, 5-, and 10-year survival of patients

with BC (Figure 5B). The calibration plots for the

nomogram shown that the model calibration line is very

close to the ideal calibration line, depicting good calibration

(Figure 5C).

3.4 Differences in the m7G status of low-
and high-risk groups and biological
pathways of the m7G-LPS

PCA in four groups revealed that compared with the other three

groups, BC samples in the m7G-LPS group could be better divided

into two different groups (Figure 6A), further demonstrating the

sensitivity and specificity of the m7G-LPS. To identify the potential

biological signaling pathways underlying the molecular differences

between high- and low-risk groups, we applied GSEA analysis. The

result revealed that KEGG pathways, such as citrate cycle, TCA

cycle, oxidative phosphorylation, pentose phosphate pathway,

steroid biosynthesis, and terpenoid backbone biosynthesis, were

remarkably enriched in high-risk samples, and alpha linolenic

acid metabolism, ether lipid metabolism, glycerospholipid

metabolism, inositol phosphate metabolism, and linoleic acid

metabolism in low-risk samples (Figure 6B). The results

indicated that m7G-related lncRNAs may involve in metabolism-

related signaling pathway.

3.5 Correlation between m7G-LPS and
tumor immune cell infiltration

Tumor immune cell infiltration is closely related to tumor

occurrence, invasion, and metastasis. Therefore, further

investigation was conducted to explore whether the m7G-LPS

risk score correlates with the expression of 21 tumor-infiltrating

immune cell types. As shown in Figure 7A, naive B cells (p <
0.001), CD8 T cells (p < 0.001), resting CD4 memory T cells (p =

0.007), activated CD4 memory T cells (p = 0.0016),

M0 macrophages (p < 0.001), M2 macrophages (p < 0.001),

and neutrophils (p < 0.001) showed significantly different levels

of infiltration between the low- and high-risk groups.

Correlations between tumor-infiltrating immune cells in BC

tissues are shown in Figure 7B. Both resting CD4 T memory

and CD8 T cells showed a moderately negative correlation with

M0 macrophages (r = –0.51 and –0.51, respectively).

3.6 TMB analysis and correlation with
m7G-LPS

TMB is associated with immunotherapy efficacy and is

emerging as a potential biomarker. To examine the underlying

value of TMB in BC, we performed TMB analysis through single

nucleotide variation BC data in TCGA database to assess cancer-

associated gene mutation frequency. Figure 7C shows a high TMB

(85.03%) in the high-risk group. Gene mutations were more

frequent in TP53 (39%). In the low-risk group, the proportion of

samples with mutations was 82.2%, slightly lower than that in the

high-risk group, and PIK3CAwas themost frequently mutated gene

(38%). In addition, our risk subgroup-based analysis, shown in

TABLE 3 m7G-lncRNAs selected to build m7G-LPS and the
corresponding coefficients.

lncRNAs Coefficients

BAIAP2-DT −0.27758412746579

COL4A2-AS1 −1.41967228671049

FARP1-AS1 −0.671077622897499

RERE-AS1 −0.69129846535715

NDUFA6-DT −0.352552610278439

TFAP2A-AS1 −0.360410426066037

LINC00115 −0.107203641246423

MIR302CHG −0.508621483491941
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Figure 7D,manifested that the TMB of high-risk patients was higher

than that of low-risk patients. Subsequently, according to the TMB

score, we classified all patients into low- and high-TMB groups. We

further analyzed the value of the prognosis of TMB in patients with

BC by Kaplan–Meier survival analysis. Our findings indicated worse

OS for high-TMB patients by contrast with low-TMB patients. In

combination with the prognostic signature, we found that patients

with BC with both high-TMB and high-risk scores had the worst

prognosis. The above data indicate that TMBhas prognostic value in

BC, and combined with the risk model, it can better predict the

outcome of patients with BC (Figure 7E).

3.7 RT-qPCR validation of differentially
expressed m7G-related lncRNAs

Univariate Cox regression and lasso Cox regression analysis

was used to screen prognostic m7G-related lncRNAs, which were

used to construct m7G-LPS. Further studies are required to

validate the findings of lncRNAs, so we conducted the RT-

qPCR test in vitro. Supplementary Figure S4 shows BAIAP2-

DT, FARP1-AS1, NDUFA6-DT,MIR302CHG, and TFAP2A-AS1

high expression in MCF-7, and LINC00115 low expression in

MCF-7.

FIGURE 3
Differential expression analysis of m7G-associated lncRNAs (m7G-lncRNAs). (A) A paired differential expression analysis of the eight prognosis-
related m7G-lncRNAs in normal and breast cancer (BC) tissues. (B) Differential expression analysis of m7G-lncRNAs in BC tissues according to
molecular subtype, histological stage, T stage, and N stage (ns: not significant; *p < 0.05; * *p < 0.01; * * *p < 0.001).
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4 Discussion

Worldwide, BC is the most common malignant tumor in

women (Momenimovahed and Salehiniya, 2019). Despite

continuing advancements in the multidisciplinary approach to its

treatment (Waks and Winer, 2019), BC remains the primary killer

of women with cancer. In recent years, with the development of

bioinformatics and the application of high-throughput sequencing,

m7Gmodification has been recognized as playing a key role in RNA

splicing, stability, and efficient translation (Malbec et al., 2019; Chen

K. et al., 2021, 0; Zhang et al., 2021). However, functional studies of

the m7G modification-related lncRNAs remain limited. Therefore,

in this study, we selected and validated eight differentially expressed

m7G-related lncRNAs with prognostic values in BC, namely,

BAIAP2-DT, COL4A2-AS1, FARP1-AS1, RERE-AS1, NDUFA6-

DT, TFAP2A-AS1, LINC00115, and MIR302CHG, created m7G-

LPS, and conducted a combined analysis of the clinicopathological

characteristics, tumor immune cell infiltration, and TMB to

FIGURE 4
m7G-associated lncRNA (m7G-lncRNA) prognostic signature based on the eight prognosis-related m7G-lncRNAs. (A) Heat map of the
difference in expression of the m7G-lncRNAs and clinicopathologic factors between the high- and low-risk groups (B) Distribution of the
relationship between the risk score and patient survival status. (C) Kaplan–Meier survival analysis in the high- and low-risk groups (*p < 0.05; * * *p <
0.001).
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FIGURE 5
Validation of the reliability of the m7G-LPS and development of the nomogram. (A) Receiver operating characteristic curve of m7G-LPS and
clinicopathological factors. (B) The nomogram developed based on the independent prognostic factors of age and risk score to predict the 3-, 5-,
and 10-year survival rates. (C) The calibration plots of the nomogram were measured to evaluate the predicted probabilities of the nomogram.

TABLE 4 Univariate and Multivariate analysis of m7G-LPS and clinicopathological factors.

Characteristics Univariate analysis Multivariate analysis

Hazard
ratio (95% CI)

p value Hazard
ratio (95% CI)

p value

Age 1.033 (1.019–1.048) <0.001 1.034 (1.019–1.049) <0.001
Gender 0.866 (0.121–6.212) 0.886 0.555 (0.077–4.008) 0.559

Stage 2.149 (1.698–2.720) <0.001 1.680 (0.999–2.826) 0.050

T 1.510 (1.216–1.876) <0.001 0.945 (0.698–1.280) 0.715

M 6.481 (3.633–11.561) <0.001 1.716 (0.750–3.926) 0.201

N 1.688 (1.401–2.035) <0.001 1.165 (0.864–1.572) 0.316

Risk score 693.158 (71.684–6702.607) <0.001 575.749 (57.656–5749.424) <0.001
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examine the role of m7G-related lncRNAs in BC.We found that the

m7G-LPS can predict the clinical outcome of patients with BC and

evaluate the immune cell infiltration of tumors and TMB in BC.

Model-lncRNAs can be used as diagnostic lncRNA biomarkers and

may serve as potential therapeutic targets. Overall, the m7G-LPS

discovered in this study extends the concept of post-transcriptional

modifications of lncRNA, paving a path toward the exploitation of

new measures for disease prevention, early detection, and therapy,

ultimately contributing to improving patient prognoses.

Currently, many studies have constructed prognostic models of

m7G-related lncRNAs by analyzing transcriptomic data from open

databases, which can be used to estimate the prognosis of cancer

patients (Song et al., 2021, 2022; Liu et al., 2022). For instance, in

esophageal squamous cell carcinoma, a prognostic model

constructed using seven prognostic m7G-related lncRNAs could

predict the prognosis of patients, and the risk score calculated

through risk signature was strongly associated with the level of

immune cell infiltration (Zhao et al., 2022). In clear cell renal cell

carcinoma, 12 prognostic m7G-related lncRNAs were screened, and

the constructed model proved to have good accuracy and reliability

in predicting OS (Ming and Wang, 2022). In hepatocellular

carcinoma, m7G-LPS showed clinical value in predicting

outcomes, immunotherapy effects, and drug sensitivity in

patients with hepatocellular carcinoma (Wei et al., 2022).

Collectively, these findings and those of previous studies support

that m7G-related lncRNAs could serve as prognostic and diagnostic

biomarkers for cancer, helping treatment selection and disease

monitoring. In addition, these m7G-related lncRNAs could be

therapeutic targets for BC. In this study, we created an m7G-LPS

based on eight prognostic m7G-related lncRNAs and confirmed its

FIGURE 6
Principal component analysis (PCA) and GSEA analysis of the m7G-LPS. (A) PCA on the expression patterns of grouped samples based on the
whole genome, m7G RNA modification-related genes, m7G-related lncRNAs, and the m7G-LPS expression profiles. (B) KEGG analysis of the m7G-
LPS using GSEA.
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prognostic value. The risk score, combined with age, is an

independent prognostic factor for patients with BC, according to

univariate and multivariate Cox regression analyses. Further, the

AUC value of the ROC curve also showed that the prognostic

signature has high prediction accuracy. Thus, for a more objective

prediction of the 3-, 5-, and 10-year survival rates of patients with

BC, we created a nomogram on the basis of age and the risk score.

Results of PCA showed that compared with the whole-genome,

m7G-related genes, and m7G-related lncRNAs, the expression

profiles in the m7G-LPS group could better distinguish between

low-risk and high-risk patients. Thus, the m7G-LPS has

independent value and extremely high reliability and specificity

for predicting BC prognosis. To the best of our knowledge, this is the

first predictive signature of BC prognosis based on m7G-related

lncRNAs and will likely be further refined by incorporating

accumulating data.

m7G modification is indispensable for RNA metabolism,

processing, and function. It is involved in tumor development,

FIGURE 7
Correlation between the m7G-LPS and infiltrating level of immune cells and TMB. (A) Violin plots of the infiltrating level of 21 types of tumor-
infiltrating immune cells between high- and low-risk groups. (B) Spearman correlation analysis of 21 types of tumor-infiltrating immune cells. (C)
TMB analysis in low- and high-risk groups. (D)Difference analysis of TMB between low- and high-risk group (E) Kaplan–Meier curve analysis of OS is
shown for patients classified according to the TMB and risk score.
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progression, and response to therapy. METTL1 methyltransferase

mediates m7Gmethylation in Let-7e-5pmiRNA andmodulates the

malignant phenotype of cell migration through its catalytic activity

(Pandolfini et al., 2019). In addition, METTL1 also mediates Arg-

TCT-4-1 tRNAmodification, driving oncogenic transformation by

remodeling themRNA “translatome” (Orellana et al., 2021). In lung

cancer, m7G methylase also regulated the m7G modification level

of tRNA, promoting lung cancer growth and invasion. In this

research, we also attempted to analyze the potential biological

functions of the m7G-LPS using GSEA. The Kyoto Encyclopedia

of Genes and Genomes pathway enrichment analysis showed that

metabolism-related pathways were the most enriched in the high-

and low-risk group. Diseases are often caused by deregulated

metabolic signaling (Beckwith et al., 2018, 80), including BC

(Akella et al., 2019). On the one hand, emerging evidence

suggests that oncogenes and tumor suppressor genes in cancer,

which usually include MYC, HIF, P53, and RAS, regulate the

metabolic phenotype of tumor cells and inhibit the TCA cycle,

diverting glutamine to fuel the TCA cycle (Anderson et al., 2018). In

contrast, previous studies confirmed that the stability of the pentose

phosphate pathway is crucial for the cell cycle, proliferation, and

metastases (Lin et al., 2018; Leal et al., 2019). Thus, through

enrichment analysis, we can surmise that the m7G-LPS may

promote BC by regulating metabolic pathways.

Tumor-infiltrating immune cells, key components of the

tumor microenvironment, are reportedly useful in predicting

cancer prognosis, including that of BC (Bense et al., 2017). Thus,

immune cells have emerged as a novel therapeutic target for

cancer (Lazăr et al., 2018). For instance, CD8+ T cells are

associated with tumor size, lymph node status, Ki-67 index,

and molecular subtypes of BC. In addition, infiltration of

CXCL13-expressing CD4+ follicular helper cells is predictive

of BC prognosis (Zhu et al., 2016). B cells that are acutely

activated may be involved in eliminating early tumor cells or

tumor clearance through classical immunoglobulin-mediated

mechanisms (DeNardo and Coussens, 2007). Here, we used

TCGA data to investigate the correlation between the m7G-

LPS and the tumor immune cell infiltration levels. We found

significantly different levels of infiltrating naive B cells,

CD8 T cells, resting CD4 memory T cells, activated

CD4 memory T cells, M0 macrophages, M2 macrophages, and

neutrophils between the low- and high-risk groups, with higher

infiltration levels in the low-risk group, compared to the high-

risk group. Our work indicates that the m7G-LPS have the ability

to predict the infiltration levels of tumor immune cells in BC,

thus, more accurately predicting the prognosis of BC.

The TMB conceptually represents the total number of

mutations in a tumor sample. Tumor mutations cause the

presence of immunogenic neoantigens on the surface of

carcinoma cells. In general, the more mutations (i.e., the

higher the TMB), the greater the likelihood that neoantigens

presented by MHC proteins will be immunogenic, which aids

T cells in recognizing and eliminating carcinoma cells (Rooney

et al., 2015; Chabanon et al., 2016). However, 5% of patients with

BC have high TMB, primarily patients with metastatic BC. A

study has shown that TMB is a novel biomarker of immune

checkpoint inhibitor sensitivity. Compared with the

immunohistochemistry detection of PD-1 and PD-L1

expression, TMB is more effective in predicting the

immunotherapy of patients with tumors, treated with PD-1

and PD-L1 inhibitors. Therefore, patients with high TMB may

benefit from immune checkpoint inhibitors (Barroso-Sousa et al.,

2020). In this work, we also preliminarily examined the

correlation between M7G-LPS and TMB. We found that TP53

gene mutation was mainly found in patients with a high-risk

score, and TMB was higher in patients with low-risk scores. In

the prognostic analysis, we found that patients with high TMB

had poor prognoses. The survival outcome of patients with high

TMB and high-risk scores was the worst in the entire cohort. The

above results indicate that M7G-LPS is helpful in predicting the

TMB of patients with BC, and the combination of TMB and

prognostic m7G-related lncRNAs as biomarkers may help

predict the patient outcome and guide the selection of

immunological treatment.

There are limitations in our study. First, we constructed a m7G-

LSP based on prognostic and differentially expressed m7G-related

lncRNAs, howeverwe have not yet found other data sets that included

expression of eight lncRNAs, clinicopathological characteristics, and

follow-up data. Thus, the m7G-LSP could not be verified further. In

addition, we verified the expression levels of all eight m7G-related

lncRNAs in vitro, but further functional experiments are needed in

future. We leave further verifications as future work.

In conclusion, we identified a novel and reliable prognostic

signature based on eight m7G-related lncRNAs. BAIAP2-DT,

COL4A2-AS1, FARP1-AS1, RERE-AS1, NDUFA6-DT, TFAP2A-

AS1, LINC00115, and MIR302CHG were screened as diagnostic

biomarkers. Further improvement and validation to refine the

predictive signature, nomogram, and diagnostic biomarkers

might provide the necessary evidence for its adoption into

clinical practice, drive the relentless improvement in

prognostic information, and provide new prognostic biological

targets for patients with BC.
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Identification and functional
analysis of m6A in the mammary
gland tissues of dairy goats at the
early and peak lactation stages

Shujun Wang1, Lu Zhang1, Rong Xuan1, Qing Li1, Zhibin Ji1*,
Tianle Chao1, Jianmin Wang1 and Chunlan Zhang2

1College of Animal Science and Technology, Shandong Agricultural University, Taian, China, 2College
of Biological and Agricultural Engineering, Weifang University, Weifang, China

N6-methyladenosine (m6A) is the most common reversible epigenetic RNA

modification in the mRNA of all higher eukaryotic organisms and plays an

important role in the regulation of gene expression and cell function. In this

study, m6A-modified methylated RNA immunoprecipitation sequencing

(MeRIP-seq) and transcriptome sequencing (RNA-seq) were used to identify

the key genes with m6A modification during mammary gland development and

lactation in dairy goats. The results showed that m6A methylation occurred at

3,927 loci, which were significantly enriched in the 3′ untranslated region

(3′UTR) and the termination codon region. In the early stage and peak stage

of lactation, m6A methylation occurred extensively in mammary tissues, and a

total of 725 differentially expressed m6A-modified genes were obtained, all

negatively correlated with mRNA expression. In addition, Gene Ontology (GO)

enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis showed that different methylated genes were mainly involved in the

growth and apoptosis of mammary epithelial cells through signaling pathways,

such as the mitogen-activated protein kinase (MAPK) and phospholipase D

pathways, and then affected the development and lactation of mammary gland.

All in all, we identified and analyzed the methylation events related to the

development and lactation regulation of mammary gland at the early and peak

lactation stages, and provided a theoretical basis to reveal the physiological

regulatory system of mammary gland development and lactation in dairy goats.

KEYWORDS

dairy goats, mammary gland, lactation, MeRIP-seq, m6A

Introduction

In the 1970s, scientists discovered that m6A modification can occur on RNA adenine

(A). Subsequent studies showed that m6A methylation is not the only modification that

exists in the mRNA of prokaryotes, eukaryotes, and viruses; more than

150 posttranscriptional modifications have been revealed in the RNA of all organisms

(Dubin and Stollar, 1975; Boccaletto et al., 2018). The molecular functions of m6A are
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diverse but ultimately affect mRNA transcription by regulating

splicing, half-life, stability, and translation (Nachtergaele and He,

2018). m6A derivatives mediate the posttranscriptional

regulation of gene expression to ensure the precise control of

multiple biological processes. Currently, studies on m6A have

been conducted in humans, plants, and yeast (Bodi et al., 2015;

WangM et al., 2020; Hu et al., 2021). In mammals, m6A has been

investigated in swine, cattle, and cashmere goats (Cao et al., 2020;

Wang T et al., 2020; Li et al., 2021). It is mainly involved in the

regulation of spermatogenesis, oogenesis, embryonic

development, and stem cell pluripotency (Lin et al., 2017; Fan

et al., 2019; Ji and Zhang, 2021; Xu et al., 2021).

The mammary gland is one of the unique organs of

mammals, which function is to produce and secrete milk to

feed offspring (Macias and Hinck, 2012). Its development can be

divided into five stages, i.e., embryonic stage, puberty, gestation,

lactation, and degeneration, and the developmental process is

mainly regulated by hormones, growth factors, and cytokines

(Brisken and Ataca, 2015). There are many physiological

differences in the mammary gland at different stages of

development and lactation. From the early stage to the peak

stage of lactation, mammary epithelial cells continue to

differentiate, the number of lactating cells increases, lactation

activity increases, and the lactation volume gradually increases,

reaching a maximum at the peak stage of lactation (Stefanon

et al., 2002). Studies on mammary gland development and

lactation in dairy goats mostly focus on mRNA (Ji et al.,

2019), long noncoding RNAs (lncRNAs) (Ji et al., 2020), and

microRNA (Xuan et al., 2020), not on m6A. Therefore, in-depth

studies of the key genes, signaling pathways, and their regulatory

mechanisms in the development of mammary glands in dairy

goats are of great value.

The aim of this study was to explore differentially expressed

m6A-methylated genes in the mammary gland tissues of Laoshan

dairy goats during the early and peak lactation stages through

methylated RNA immunoprecipitation sequencing (MeRIP-Seq)

and to analyze the mechanism of regulation of the development

and lactation of mammary gland tissue in the early and peak

lactation stages in dairy goats. This study is expected to provide a

theoretical basis for the molecular breeding of Laoshan dairy

goats.

Materials and methods

Animals

The three Laoshan dairy goats used in this study were all

from the Qingdao Laoshan dairy goat breeding farm. Mammary

gland tissue was collected by surgical procedure after general

anesthesia during the early lactation period (postpartum

20 days) and the peak lactation period (postpartum

90 days),respectively. The dairy goats used in the experiment

were randomly selected from the group, all healthy, non-inbred

individuals, 2 years old, first parity, and similar birth date,

weight, and lambing, they were uniformly managed and fed.

All experimental animal/procedures were treated/performed in

accordance with the guidelines of the Experimental Animal

Management Committee of Shandong Agricultural University.

Every effort was made to reduce animal suffering during the

experiments.

RNA extraction and quality control

Total RNA was extracted using a Trizol kit (Invitrogen,

United States). The integrity of the RNA samples was

evaluated using an Agilent 2100 B bioanalyzer (Agilent

Technologies, United States). A Nano Photometer

spectrophotometer was used to analyze DNA

contamination. A Qubit 2.0 fluorometer was used to

accurately quantify the RNA concentration used to

construct the sequencing library. RNase-free agarose gel

electrophoresis was used for visualization.

Library construction and sequencing

Eukaryotic mRNA from the extracted total RNA was

enriched using Oligo (dT) beads, and a Ribo-Zero™
Magnetic Kit (Epicentre, United States) was used to remove

rRNA and enrich prokaryotic mRNA. Then, the enriched

mRNA fragments were broken into short fragments using

fragment buffer, and the RNA was broken into two samples,

one of which was used as the input control. The transcriptome

sequencing library was constructed to eliminate noise during

the capture of methylated fragments. 10 ug total RNA from

each sample was enriched respectively with an m6A-specific

antibody for the library construction; after the m6A-modified

RNA was captured, the antibody was eluted with magnetic

beads to reduce the background noise from nonspecific binding,

and the ligation product was subjected to agarose gel

electrophoresis, PCR amplification and Illumina

Novaseq6000 sequencing. All sequencing work was

performed by Gene Denovo Biotechnology Co. Ltd.

(Guangzhou, China).

RNA-seq data analysis

The raw reads obtained from the sequencing included

adaptors and low-quality reads. fastp (version 0.18.0) was

used to obtain high-quality pure reads (Chen et al., 2018).

The specific procedure was as follows: 1) reads containing

adaptors were removed; 2) reads containing more than 10%

unknown nucleotides (N) were removed; and 3) reads containing
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more than 50% of low-quality bases (q value ≤20) were removed.

HISAT 2.2.4 (Kim et al., 2015) was used to compare the clean

data with the reference genome. The matched reads were

assembled into transcripts using StringTie v1.3.1 (Pertea et al.,

2015; Pertea et al., 2016). For each transcript, RSEM (Li and

Dewey, 2011) was used to calculate the FPKM value (fragments

per kilobase of transcript per million mapped reads) to quantify

expression abundance and change.

m6A-seq data analysis

The raw image data obtained by sequencing were converted

into sequence data via base calling, which is called raw data and

stored in FASTQ file format. To ensure data quality, quality

control was performed on the original data to reduce the noise

through data filtering and obtain high-quality clean reads for

subsequent analysis. HISAT was used to align the clean reads

with the reference genome of Capra hircus (version:

GCF_001704415.1_ARS1) with default parameters for

subsequent analysis. ExomePeak2 (version: 1.0.0) (Meng

et al., 2014) was used to perform peak calling in the whole

genome, and the threshold was p < 0.05. The position

information for peaks (RNA regions and sites where m6A

modification occurs) in the genome, and sequence

information for peak regions, were analyzed to screen

out peak-related genes. RNA methylation rate = RPM

(MeRIP)/RPM (input) was used to calculate the relative

methylation rate of each peak, and then exomePeak2 (Meng

et al., 2014) was used for differential analysis of the RNA

methylation rate for all peaks in the IP

group. FDR<0.05 and |log2FC|>1 (Wang Y et al., 2020) were

used to screen differential peaks and perform Gene Ontology

(GO) enrichment and Kyoto Encyclopedia of Genes and

Genomes (KEGG) functional enrichment analysis of

differentially expressed peak-related genes.

Correlation analysis of m6A-seq and RNA-
seq data

To comprehensively compare the relationship between m6A

methylation level and gene expression abundance, correlation

analysis was performed for m6A-seq and RNA-seq data. The

peak-related genes were sorted on the basis of their expression

levels and divided into 20 equal parts, and the proportion of

peak in each part was analyzed. The correlation between

expression level and peak enrichment fold change was

analyzed using the basic functions of the R package to create

a scatter plot of the gene expression-peak enrichment fold

change, and the number of genes shared between

differentially expressed genes (DEGs) in the transcriptome

and differentially methylated genes (DMGs) identified via

MeRIP-seq were analyzed to find potential inter-omics

linked genes. The fold difference was used as the dividing

standard to draw a nine-quadrant map to analyze the

coregulatory relationship among common DEGs. The default

threshold for screening DEGs was |log2FC|>1 (Wang Y et al.,

2020). The coregulated genes obtained from the nine-quadrant

map were used for subsequent GO and KEGG enrichment

analysis to investigate the function of m6A-modified mRNA.

GO and KEGG enrichment analyses

GO (Ashburner et al., 2000) is an internationally

standardized gene function classification system that maps

DEGs to various terms in the GO database (http://www.

geneontology.org/). The number of genes for each term was

calculated, and the number of genes with a certain GO function

(molecular function, cellular composition, and biological

process) were counted. The hypergeometric test was used to

find the GO entries that were significantly enriched in the DEGs

against the entire reference gene. The p value is calculated using

the following formula:

P � 1 − ∑
m−1

i�0

(Mi )(
N−M
n−i )

N
n

Where N is the number of genes with a GO annotation; n is the

number of DEGs in N; M is the number of genes annotated as a

specific GO term; and m is the number of DEGs annotated to a

specific GO term. After the calculated p value underwent

Bonferroni correction, the corrected-p ≤ 0.05 was used as

the threshold to obtain GO terms that were significantly

enriched in the DEGs. The main biological functions of

DEGs were determined by GO functional significance

enrichment analysis.

KEGG (Kanehisa and Goto, 2000) is the main public

database for pathways. Pathway significance enrichment

analysis was performed using KEGG pathways as the unit,

and a hypergeometric test was used to identify pathways that

were significantly enriched in DEGs. The calculation formula

for the p value is the same as that for the p value of the GO

functional significance enrichment analysis, where N is the

number of genes with a pathway annotation; n is the

number of DEGs in N; M is the number of genes annotated

as a specific pathway; and m is the number of DEGs annotated

as a specific pathway. Pathways with a Q ≤ 0.05 were defined as

pathways that were significantly enriched in differentially

expressed proteins.

Construction of regulatory networks

Genes related to mammary gland development and lactation

were selected based on the GO and KEGG annotation results, and
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gene regulatory networks were constructed using Scytoscape

v3.9.1 software (Shannon et al., 2003) and the STRING

database (Version 11.5).

Results

Comparison of the quality of the
sequencing data and the reference
genome

In this study, MeRIP-seq was used to identify the m6A data

(IP) and corresponding mRNA data (input, IN) for m6A

methylation in dairy goats at the early stage (E-stage,

postpartum 20 days) and peak stage (P-stage, postpartum

90 days) of lactation. In the RNA-seq library,

166,972,650 and 160,794,082 raw reads were obtained from

the three mammary gland samples in the early and peak stages,

of which 165,695,678 and 159,511,700 were clean reads,

accounting for 99.24% and 99.2% of the reads, respectively.

The Q20% values for the early and peak stages were 97.32% and

97.40% respectively, and the Q30% values were 92.22% and

92.37%, respectively. In the MeRIP-seq library, 15,634,516 and

140,106,744 raw reads were obtained for mammary gland

samples from the early and peak stages, of which

152,341,796 and 137,170,868 were clean reads, accounting

for 97.44% and 97.9% of the reads, respectively. The Q20%

values for the early and peak stages were 92.62% and 93.35%,

respectively, and the Q30% values were 86.05% and 87.09%,

respectively (Table 1).

After comparing the reads with the reference sequences,

the alignment rate of valid reads for replicated samples of

dairy goat mammary gland tissue in the early stage in the

RNA-seq library was 93.04%–96.08%, of which the single

alignment rate was 85.75%–86.34% and the multiple

alignment rate was 7.29%–10.15%. The alignment rate of

valid reads for the replicated samples of dairy goat

mammary gland tissue in the peak stage was 94.39%–

96.46%, of which the single alignment rate was 85.69%–

87.49% and the multiple alignment rate was 6.89%–10.77%.

In the MeRIP-seq library, the alignment rate of the valid reads

for the replicated samples of dairy goat mammary gland tissue

in the early stage was 75.96%–80.89%, of which the single

alignment rate was 55.42%–63.23% and the multiple

alignment rate was 17.44%–20.54%. The alignment rate of

valid reads in the replicated samples of dairy goat mammary

TABLE 1 Comparison of the quality of sequencing data and the reference genome between the two libraries.

Sample Raw
data

Clean
reads

Q20% Q30% GC% Unique
mapped
reads

Multiple
mapped
reads

Total mapped

E1-IN 49336232 48723832
(99.01%)

6989937247
(97.26%)

6613256954
(92.02%)

3645518978
(50.72%)

41781542
(85.75%)

3549962 (7.29%) 45331504 (93.04%)

E1-IP 47274568 45934328
(97.25%)

2021227037
(92.21%)

1871690851
(85.39%)

1137970055
(51.92%)

25455216
(55.42%)

9434574
(20.54%)

34889790 (75.96%)

E2-IN 52823280 52215686
(99.02%)

7497513916
(97.32%)

7095665407
(92.10%)

3798320528
(49.30%)

45085065
(86.34%)

4680842 (8.96%) 49765907 (95.31%)

E2-IP 50759632 49339766
(97.25%)

2216090699
(92.50%)

2054835901
(85.77%)

1241473438
(51.82%)

30472303
(61.76%)

8603775
(17.44%)

39076078 (79.20%)

E3-IN 64813138 64356886
(99.58%)

9254754450
(97.39%)

8792123099
(92.53%)

4696932492
(49.43%)

55296223
(85.92%)

6533475
(10.15%)

61829698 (96.07%)

E3-IP 58311116 56966536
(97.76%)

2373500143
(93.15%)

2216974301
(87.00%)

1291671026
(50.69%)

36019943
(63.23%)

10062207
(17.66%)

46082150 (80.89%)

P1-IN 50993434 50524106
(99.25%)

7295972140
(97.32%)

6901424197
(92.06%)

3711262517
(49.50%)

43640296
(86.38%)

4544886 (9.00%) 48185182 (95.37%)

P1-IP 44199300 43141986
(97.65%)

1688812739
(93.05%)

1577322072
(86.91%)

935110181
(51.52%)

27756879
(64.34%)

6412478
(14.86%)

34169357 (79.20%)

P2-IN 49823380 49215396
(99.11%)

7017856509
(97.28%)

6651148714
(92.20%)

3724866910
(51.63%)

43060635
(87.49%)

3391325 (6.89%) 46451960 (94.39%)

P2-IP 49680806 48636994
(97.97%)

2206924336
(93.49%)

2056514036
(87.12%)

1238363897
(52.46%)

29752521
(61.17%)

9099850
(18.71%)

38852371 (79.88%)

P3-IN 59977268 59418754
(99.24%)

8522800666
(97.60%)

8108542674
(92.85%)

4263050443
(48.82%)

50915336
(85.69%)

6397019
(10.77%)

57312355 (96.45%)

P3-IP 46226638 45314946
(98.07%)

2087434412
(93.51%)

1947410259
(87.24%)

1164951525
(52.19%)

31992607
(70.60%)

5985301
(13.21%)

37977908 (83.81%)

IN, input; IP, m6A; E repsents the early stage, E1, E2 and E3 repsents the different libraries.

The P repsents the peak stage, P1, P2 and P3 repsents the different libraries.
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FIGURE 1
Distribution of reads on chromosomes. The abscissa is the chromosome locus (Mb), and the ordinate is the chromosome ID.
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gland tissue in the peak stage was 79.2%–83.81%, of which the

single alignment rate was 61.17%–70.60% and the multiple

alignment rate was 13.21%–18.71% (Table 1). The most reads

for different samples were distributed on the NC

_030808.1 chromosome (Figure 1).

Identification of m6A modification sites
and motif analysis

In the two lactation periods, 2,476 peaks were identified

during the early stage of lactation, and 1,451 peaks

were identified at the peak stage (Figure 2A). To

understand the degree of m6A modification in genes and to

compare the changes in m6A gene modification in the two

periods, the priority regions of peak gene distribution were

analyzed.

The results showed that peaks were significantly enriched in the

3′ untranslated region (3′UTR, 44.67%) and the termination codon

region (42.81%), followed by the coding DNA sequence (CDS,

7.43%) and initiation codon region (3.84%) (Figure 2B), these

findings are consistent with the results of previous studies on

m6A modification such as pigs and goose (Cao et al., 2020; Xu

et al., 2021). These results indicate that m6A modification presents

different distribution patterns on different gene functional elements,

which indicates that m6A is involved in the regulation of gene

function, which may have unique functions related to mammary

gland development and lactation. In previous studies, researchers

found that the m6A modification site was often accompanied by

motif sequences, e.g., 5′-DRACH-3′ and 5′-RRACH-3’ (D=G/A/U,

R = G/A, H = A/U/C) (Dominissini et al., 2012; Meyer et al., 2012).

This study found that 96.36% sequences contained target motifs

(Table 2). The motif sequences with the highest frequency were

GGACT (10.55%) (Figure 2C) and AAACA (10.13%) (Figure 2D).

FIGURE 2
Regional distribution and motif sequence of m6A modifications on transcripts. (A) Peak distribution of m6A modifications in early and peak
lactation. (B) The distribution of m6A in transcripts (C) and (D) Two commonmotifs with the highest m6A abundance. E represents the early lactation,
P represents the peak lactation, the following are the same.
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RNA-seq gene identification and
functional analysis

From the early to peak stages of lactation, a total of

21,518 genes were identified, including 20,606 known genes

and 912 new genes. Among the 758 DEGs screened using

FDR<0.05 and |log2FC|>1, 228 genes were upregulated, and

530 genes were downregulated during the peak stage of

lactation (Figure 3A).

GO enrichment analysis indicated that 553 DEGs were

annotated into 54 GO terms, including 150 upregulated

DEGs and 394 downregulated DEGs. Among them,

444 DEGs were annotated to 17 cell components, which

were mainly distributed in cells, cell parts, organs, and

organelles. 471 DEGs were annotated to 23 biological

processes, mainly involved in biological regulation, cellular

processes, metabolic processes, and single organs. A total of

385 DEGs were annotated to 10 molecular functions, mainly

related to binding, catalytic activity, and transport activity

(Figure 3C). In the KEGG enrichment analysis, 758 DEGs

were involved in four major KEGG pathways, which mainly

involved cellular processes (162 genes), environmental

information processes (202 genes), genetic information

processes (44 genes), and metabolism (180 genes), and were

involved in 40 secondary KEGG pathways, including cell

growth and apoptosis, cell viability, signal transduction,

transport, and catalysis (Figure 3B).

Identification and functional analysis of
the MeRIP-seq peaks

To analyze m6A modification in different stages of lactation,

MeRIP-seq was used to identify the m6A peaks during the early

and peak stages of lactation. In the early stage, there were

1,401 unique peaks, and in the peak stage, there were

TABLE 2 The motif sequences of m6A peaks and their proportions in the two lactation stages.

Motif p-value % Of target % Of background

E-IP vs. E-input 1e-7 97.94 95.76%

1e-10 95.56 91.77%

P-IP vs. P-input 1e-4 97.11 94.70%

1e-9 94.83 89.83%

Note: Count the frequency (RRACH, DRACH) distribution of specific motifs in all peaks in two periods, and use homer to construct an averaged base frequency matrix for each motif for

enrichment analysis.
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376 unique peaks; the common peaks in the two stages were

1,075 (Figure 2A). After screening, 725 differential peaks were

obtained, of which 112 were upregulation events and 613 were

downregulation events during the peak stage of lactation

(Figure 4A), which distributed in 720 DMGs (Supplementary

Table S1).

GO enrichment analysis of the DMGs indicated that in the

three libraries, 553 DMGs were annotated into 54 GO terms:

455 DMGs were annotated to 19 cell components, distributed

in cells, cell membranes, cell parts, organs, and organelles;

460 DMGs were annotated to 26 biological processes,

involving biological regulation, cellular processes, single

biological processes, multicellular biological processes, and

reproductive processes; and 429 DMGs were annotated to

nine molecular functions, involving binding, catalytic activity,

transport activity, molecular function regulation, molecular

structure activity, and molecular sensor activity (Figure 4C,

Supplementary Table S2.

The functional classification of DMGs was obtained by

KEGG pathway analysis. Among the DMGs, 349 were

involved in six major KEGG pathways, involving cellular

processes (94 genes), environmental information processes

FIGURE 3
Analysis of gene expression and function in dairy goats during early and peak lactation. (A) Analysis results of gene identification at different
lactation stages. (B) KEGG pathway analysis of DEGs. From inside to outside: the first circle—the top 20 KEGG terms enriched, the coordinates of
gene number in the outside circle, and different colors represent different A class; the second circle—the number of genes, different colors represent
different Q value, the smaller Q value, the more red color; the third circle—bar graph of gene numbers, dark purple represents the number of
upregulated genes, and light purple represents thenumber of downregulated genes; the fourth circle—the rich factor value of each pathway. (C)GO
annotation analysis results of DEGs.
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(96 genes), genetic information processes (73 genes), human

diseases (121 genes), organic systems (105 genes), and

metabolism (82 genes). Thirty-nine secondary KEGG

pathways were involved, including cell growth and apoptosis,

cell viability, membrane transport, signal transduction, signal

molecule interaction, transport, and decomposition. Among the

284 pathways analyzed, 24 significantly enriched pathways were

identified, including the MAPK signaling pathway, spliceosome

signaling pathway, Hedgehog signaling pathway, tight junction

signaling pathway, and NF-kappa B signaling pathway et al. The

pathways were mainly involved in biological processes such as

mammary epithelial cell proliferation and apoptosis (Figure 4B,

Supplementary Table S3).

Correlation analysis of MeRIP-seq and
RNA-seq data

In the intragroup association analysis, 2,240 genes weremodified

by m6A methylation during the early stage, and 1,343 genes were

modified by m6A methylation in the peak stage. According to the

cumulative curve, the expression level of genes modified via

methylation was low under the same cumulative frequency of

m6A methylation (Figure 5A). Based on the scatter plot of gene

expression-peak enrichment fold change, the m6A methylation level

was negatively correlated with gene expression abundance, i.e., the

peak enrichment of relatively highly expressed genes was relatively

low (Figure 5B). Through the analysis of the proportion of peaks in

FIGURE 4
Identification and functional analysis of m6A peaks. (A) Peak identification during different lactation stages. (B) Enrichment results for the top
20 DMGs pathways. (C) GO annotation enrichment results for DMGs.

Frontiers in Cell and Developmental Biology frontiersin.org09

Wang et al. 10.3389/fcell.2022.945202

90

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.945202


different gene elements, it was found that each element exhibited a

nonmonotonic functional relationship pattern. When gene

expression abundance reached a certain level, the proportion of

peaks showed a downward trend as gene expression continued to

increase (Figure 5C). In the combined analysis of DEGs and DMGs,

720 DMGs were identified, of which 19 genes were present in the

transcriptome (Figure 5D, Supplementary Table S4).

To visually represent the coexpression of genes and m6A, we

analyzed the nine-quadrant plots and found that 79% of the

genes (15 of 19) were downregulated in the differentially

expressed m6A-modifying genes (Figure 5E). Among them,

seven genes are related to mammary gland development and

lactation, including three hypomethylated and upregulated

genes (COLGALT2, IL20RA, PRKG1), two hypermethylated

and downregulated genes (LOC102185917, GPR132), two

hypomethylated and down regulated genes (GADD45G,

RGS10).

Functional analysis of differential genes
enriched peak in two lactation stages

To more accurately analyze the relationship between the

transcriptome and m6A methylation, this study combined

analysis of DEMs enriched peaks and the DEGs in the early

and peak stages (Figure 6A), found that the peaks in early stage

was distributed among 70 DEGs, and in the peak stage the peaks

was distributed in 46 DEGs, 36 DEGs were existed uniquely in

the early stage, and 12 DEGs were for peak stage uniquely.

In addition, through analysis, it was found that there were

34 genes in common between the differential peak-related genes and

the differential transcriptome genes in the two periods, and GO and

KEGG enrichment analyses were performed (Supplementary Table

S5). The top 20 GO terms were enriched in biological processes and

molecular functions, which were mainly concentrated in the

regulation of biological processes, cell apoptosis, cell growth

FIGURE 5
Combined MeRIP-seq and RNA-seq analysis. (A) Cumulative curve for gene expression with/without m6A modification. The red line represents
the gene set with m6A peak signal, and the blue line represents the gene set without m6A peak signal. (B) Relation of gene expression and peak
enrichment fold change (C) Peak distribution in different gene elements and expression abundance. (D) Venn diagram of differential gene
distribution inmethylomics and transcriptomics (E)Nine-quadrant plot of DEGs with differential peaks. The horizontal axis is the fold difference
(log2) in m6A peak abundance, and the vertical axis is the fold difference (log2) of gene expression abundance in the transcriptome. Blue dots
represent upregulated genes and downregulatedm6A genes, yellow dots represent downregulated genes and downregulatedm6A genes, and green
dots represent downregulated genes and upregulated m6A genes.
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processes, cellular components or biogenesis, signal transduction,

etc., involving 22 genes (ISG15, ISG20, TBX21, MALT1, SLC27A1,

ACTB, TNFRSF21, TNFAIP8L2, VEGFC, PLTP, ANP32A, SLA2,

TBC1D10C, CD8B, ITM2C, FGD3, TMSB4X, TUBB, RGS1,

LOC102174841, PTMA, and PFDN4) (Figure 6B). In the KEGG

enrichment analysis, the relevant pathways were mainly enriched in

cellular processes, environmental information processes, gene

information processes, and organ systems, including cell

transport and catabolism, cell viability, and interactions of

signaling molecules, involving phagosomes (TUBB, ACTB,

LOC102180664, and LOC102185917), cell adhesion molecules

(LOC102180664, CD8B, LOC102185917), the PPAR signaling

pathway (SLC27A1 and PLTP), glycine, serine, and threonine

metabolism (LOC102174841), insulin resistance (SLC27A1),

apoptosis (ACTB and LOC102185917), the MAPK signaling

pathway (VEGFC), and the PI3K-Akt signaling pathway

(VEGFC) (Figure 6C).

Mammary gland development and
lactation regulatory network

Using the GO and KEGG annotation results, 150 genes that

directly annotated mammary gland development and lactation

were selected from the 2,468 common genes obtained from the

two groups (Figure 7A). These genes are mainly involved in

mammary gland formation (GO: 0060592), mammary epithelial

cell proliferation (GO: 0033599), mammary gland epithelial cell

differentiation (GO: 0060644), and biological processes involved

in mammary gland development (GO: 0003006). They are

involved in KEGG pathways, such as cancer (ko05200), the

MAPK signaling pathway (ko04013), cell apoptosis (ko04210),

and the PI3K-Akt signaling pathway (ko04151). Based on the

interaction analysis of coexpressed genes in STRING database,

consisting of 89 nodes and 378 edges, the core genes that showed

the most interactions were HRAS, JUN, and EGFR (Figure 7B).

FIGURE 6
Functional analysis of peak enrichedDEGs during early and peak lactation stages. (A) Venn diagram of peak distribution in differential expression
genes between early and peak lactation stages. (B) GO enrichment analysis of the 34 common peak DEGs. (C) KEGG enrichment analysis of the
34 common peak DEGs.
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Discussion

Methylation modification is an important means of regulating

gene expression in epigenetics and also the earliest epigenetic

modification discovered. m6A methylation is the most conserved

and extensive RNAmodification in living organisms (Rengaraj et al.,

2021). Studies onm6Ahave been conducted in humans, viruses, fruit

flies, plants, and yeast. (Bodi et al., 2015; Wang M et al., 2020; Hu

et al., 2021). In mammals, only swine, cattle, and cashmere goats

have been studied. (Cao et al., 2020; Wang T et al., 2020; Li et al.,

2021). However, there have no studies on m6A methylation in dairy

goats to date, therefore, m6Amethylation and its mechanism during

mammary gland development and lactation in dairy goats are still

unknown. At present, numerous studies have shown that m6A

widely involved in spermatogenesis, oogenesis, skin hair follicle

morphogenesis, embryonic development, stem cell pluripotency,

andmyoepithelial cell differentiation, etc. (Luo et al., 2014; Dai et al.,

2018; Hui et al., 2022). m6Amay also play a crucial role inmammary

gland development and lactation of dairy goats.

In this study, coimmunoprecipitation sequencing and general

transcription sequencing data were combined to analyze the

correlation between m6A modification and the expression of

mammary gland development and lactation-related genes based

on mRNA in the mammary gland tissue of dairy goats. Previous

studies have found that m6A modification characteristics and

patterns are highly consistent in the same species but different in

various species (Dominissini et al., 2012; Meyer et al., 2012; Wang A

et al., 2021). Based on this technology, we investigated the

characteristics and patterns of m6A modification, including the

degree of m6A modification, the distribution position of m6A in

the transcript, and the m6A methylation sequence motif, in the

mRNA transcriptome of dairy goats. During mammary gland

development and lactation, there were a large number of m6A

methylation modifications in mammary gland tissue, including

2,476 peaks identified during the early lactation stage and

1,451 peaks identified during the peak lactation stage. In

addition, the abundance of m6A in the 3′UTR was higher, a

finding that is consistent with the abundance pattern of m6A in

the skin tissue of Liaoning cashmere goats (Wang Y et al., 2021). It

was reported that m6A peaks are significantly enriched in the CDS

and initiation codons (Xu et al., 2021); however, the distribution

pattern of m6A in the goat methylation group was different from

that in goose (Xu et al., 2021), Bombyx mori (Li et al., 2019), mice

(Meyer et al., 2012), and Arabidopsis (Luo et al., 2014; Duan et al.,

2017), indicating that the distribution pattern of m6A is species

specific.

Based on the combined analysis of DEGs in transcriptomes and

differential peaks, 24 DEGs with m6A methylation modifications

were identified in this study, all of which were associated with

mammary gland development and lactation in goats. These data

indicate that there are dynamic changes in the regulation of

important processes by m6A during mammary gland

development and lactation. Similarly, dynamic changes in the

m6A modification in the follicular selection process of chickens

(Fan et al., 2019), different skin tissues of Liaoning cashmere goats

(Wang T et al., 2020), and different stages of porcine follicular

development in swine (Cao et al., 2020) have also been observed.

Among the hypermethylated and downregulated genes in the

FIGURE 7
Regulation networks related to mammary gland development and lactation of dairy goats. (A) Interaction networks of 150 coexpressed genes.
(B) Regulation networks of core gene module.
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differentially coexpressed DEGs and DMGs in the combined

analysis, the proton-sensing G protein-coupled receptor GPR132

activate signals and transduce signals into cells by lowering

pH (Weiß et al., 2017), and its homolog, GPR68, promotes

apoptosis and inhibits the proliferation of goat mammary

epithelial cells (Zhu et al., 2021). In addition, PRKG1, the

hypomethylated and upregulated protein kinase, was negatively

correlated with the expression of placental-associated miR-517a-

3p before and after delivery (Kambe et al., 2014), indirectly

regulating mammary gland development and lactation.

m6A is a chemicalmarker associated with transcript degradation

(He et al., 2017). High levels of m6A modification may endow

transcripts with higher stability at lower transcription levels or

provide stronger signals for reader proteins, thereby more

effectively exerting biological functions (Niu et al., 2013; Wang

et al., 2014). In this study, approximately 15% of m6A-modified

genes had 2 m6A modification sites, and approximately 3% of

m6A-modified genes had 3 m6A modification sites, which may

also increase RNA stability or the probability of being recognized by

reader proteins. These results all indicate that m6A modification

plays a posttranscriptional regulatory role in the mammary gland

transcriptome of dairy goats. To elucidate the possible mechanisms

underlying the involvement of differentially coexpressed genes in

mammary gland development and lactation regulation, GO and

KEGG enrichment analyses were performed. Cells, organelles, and

cellular parts were annotated as cellular components; cellular

processes, signal transduction, metabolic processes, and biological

regulation were annotated as molecular functions; and binding and

catalytic activation were annotated as biological processes. For the

KEGG pathway analysis, the cancer pathway, the PI3K-Akt

signaling pathway, and the MAPK signaling pathway were the

main enriched metabolic pathways.

Based on the GO and KEGG pathway analysis results, 150 genes

related to mammary gland development and lactation were

subjected to an interaction analysis of coexpressed genes. The

core genes that showed the most interactions in the network

were HRAS, JUN, and EGFR. The p21 protein encoded by the

HRAS proto-oncogene induces the invasive phenotype of human

mammary epithelial cells and plays an important role in the

development of breast cancer (Moon et al., 2000). Curcumin can

inhibit the signal transduction of HRAS-transformed mammary

epithelial cells (HRAS MCF10A) to reduce the incidence of breast

cancer (Hahn et al., 2018), thereby promoting mammary gland

development and lactation. JUN (AP-1 transcription factor subunit)

proto-oncogenes include c-Jun, JunB, and JunD. AP-1 is involved in

the proliferation and differentiation of lymphocytes, osteoblasts, and

keratinocytes (Elkeles et al., 1999; Hess et al., 2004). JunB inhibits cell

proliferation by activating the expression of p16 (INK4a).

Furthermore, JunB is a negative regulator of cell proliferation

(Passegue and Wagner, 2000). Therefore, the JUN gene may

regulate mammary gland cell apoptosis. Studies have found that

c-Jun N-terminal kinase (JNK) can regulate the proliferation of

mammary gland cells and lactoprotein synthesis in dairy cows by

activating Tudor-SN (Ao et al., 2021). EGFR is a member of the

epidermal growth factor receptor (HER) family. Studies have found

that EGFR promotes adhesion between mammary gland cells and

regulates the growth and differentiation of human mammary

epithelial cells (Mukhopadhyay et al., 2013). EGFR, at

concentrations ranging from 12.5 to 50 ng/ml, facilitates the

proliferation of mammary epithelial cells in dairy goats, and

activation of the EGFR-mediated signaling pathway promotes the

survival of mammary epithelial cells in dairy goats (Huang et al.,

2020). Therefore, the data obtained in this study provide a basis for

future studies on the role of m6Amethylation in the development of

mammary glands in dairy goats.

Conclusion

In summary, this study revealed the differences in the

transcription and methylation levels of genes in mammary

gland tissue between the early and peak stage of lactation and

explored their regulation in mammary gland development and

lactation function. The proportion, distribution and motif of m6A

genemodification in the mRNA transcriptome of mammary gland

tissue from dairy goats were consistent with the pattern of m6A

modification in the same species; the level of m6A modification in

mammary gland tissue was highly negatively correlated with the

abundance of modified transcripts. The genes that were modified

bym6A at both stages were mainly involved in the regulation of the

proliferation and differentiation of mammary gland epithelial cells

and the development of mammary gland tissue. Among 150 genes

closely related to mammary gland development and lactation,

HRAS, JUN, and EGFR were most likely to play a key role in

regulating mammary gland development and lactation. This study

can provide a theoretical basis for the molecular mechanism of

mammary gland development and lactation regulation in dairy

goats.
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5-Methyladenosine (m5C) is a type of epigenetic modification involved in the

progression of various cancers. To investigate the role of m5C-related long

non-coding RNAs (lncRNAs) in the prognosis and immune cell infiltration in

hepatocellular carcinoma (HCC), we obtained patients’ clinical information and

transcriptome data of HCC from the Cancer Genome Atlas (TCGA) database.

We applied Pearson correlation analysis to construct an m5C-related

lncRNA–messenger RNA (mRNA) co-expression network. Univariate Cox

analysis, least absolute shrinkage and selection operator (LASSO), and

multivariate Cox analysis were employed to establish an m5C-related

lncRNA prognostic risk model. We then verified the model using

Kaplan–Meier analysis, principal component analysis, as well as univariate

and multivariate Cox analyses. The expression of m5C-related lncRNAs was

validated in HCC tissues and different cell lines. Combining the risk score and

clinicopathological features, a nomogram was established for predicting the

overall survival (OS) of HCC patients. Furthermore, gene set enrichment analysis

(GSEA) revealed that some tumor-associated pathways were significantly

enriched in the high-risk group. Immune cell infiltration analysis

demonstrated that the levels of Treg cells, neutrophils, and M2 macrophages

were higher in the high-risk group. In addition, patients with high tumor

mutation burden (TMB) had worse OS than those with low TMB. We also

assessed the immune checkpoint level and chemotherapeutic agent

sensibility. Then in vitro experiments were performed to examine the

biological function of MKLN1-AS in HCC cells and found that knockdown of

MKLN1-AS suppressed the proliferation, migration, and invasion. In conclusion,

m5C-related lncRNAs played a critical role in predicting the prognosis of

patients with HCC and may serve as new therapeutic targets for HCC patients.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most common

malignancies and the fourth leading cause of cancer-related

deaths worldwide (Ma et al., 2016; Xu et al., 2022). Many

types of pharmaceutical therapies have been approved to treat

HCC, including targeted tyrosine kinase inhibitors, immune-

based therapies, and combination of chemotherapy. However,

due to chemoresistance and immunosuppressive elements,

current therapies have not effectively improved the outcome

for HCC patients (Foerster et al., 2022). Therefore, there is an

urgent need for novel accurate prognostic biomarkers that could

lead to more effective diagnostic and treatment strategies.

RNA modification could regulate genetic expression in a

dynamic and reversible way. It is primarily modulated by three

types of effector proteins: writers, readers, and erasers (Biswas

and Rao, 2018). N6-Methylcytosine (m6A) is the main type of

modification in eukaryotic cellular RNAs and plays a vital role in

biological progress, including embryonic stem cell self-renewal,

metabolism, immunity, and apoptosis (Meyer and Jaffrey, 2017).

5-Methylcytosine (m5C) is another common RNA modification.

Similar to m6A methylation, m5C methylation is involved in

RNA metabolism, structural stability, and stress response (Zhao

et al., 2017). Furthermore, increasing evidence has shown that

m5C modification can affect the progression of multiple

malignant tumors, including HCC. Sun et al. reported that

NSUN2-mediated m5C modification of long non-coding RNA

(lncRNA)H19 was positively associated with poor differentiation

of HCC (Sun et al., 2020). Cui et al. reported that NSUN4 was

conspicuously upregulated in HCC and could work as an

independent prognostic factor (Cui et al., 2022).

LncRNA is a type of non-coding RNAmolecule with a length

greater than 200 nt. It modulates gene expression mainly at

epigenetic, transcriptional, and post-transcriptional levels

(Bridges et al., 2021). Numerous lncRNAs have been reported

to be closely correlated with carcinogenesis, metastasis,

prognosis, and diagnosis of various cancers (Abbastabar et al.,

2018). Previous studies have found that some methylation

regulators could affect tumor progression by regulating the

level of relevant lncRNAs. Dai et al. (2020) reported that

METTL3 could upregulate the expression level of

LINC00958 by increasing its stability, and

LINC00958 sponged miR-3619-5p to upregulate hepatoma-

derived growth factor, thereby promoting HCC progression.

Hu et al. reported that IGF2BP2 could serve as a member of

m6A readers and increase the stability of lncRNA DANCR, thus

promoting cell proliferation and carcinogenesis of pancreatic

cancer (Hu et al., 2020). In addition, Cui et al. reported that RNA

m6A demethylase FTO could epigenetically upregulate the

expression of LINC00022, thereby promoting tumorigenesis of

esophageal squamous cell carcinoma (Cui et al., 2021). So far, few

studies have reported the relationship between m5C regulators

and lncRNAs in HCC progression and immune cell infiltration.

Therefore, further understanding of how m5C modification

interacts with lncRNAs in HCC may be favorable for

exploring effective biomarkers and novel therapeutic targets.

Accumulating studies have shown that immune cells in the

tumor microenvironment (TME) play a determinative role in

tumor progression (Hinshaw and Shevde, 2019). A series of

immunotherapy approaches have been successfully applied in

clinical practices, such as the adoptive cell transfer, modulation of

immune checkpoints, and dendritic cell-based vaccination (Lei

et al., 2020). LncRNAs were key regulators in the immune

system, which could regulate tumor invasion and evade

immune surveillance by regulating tumor immune cell

activation, proliferation, and cytokine secretion. In HCC,

lncRNA FENDRR sponged miR-423-5p to suppress the

inhibitory function of Tregs within TME, therefore weakening

the immune evasion capability (Yu et al., 2019). Xue et al. (2019)

reported that M2 macrophages were the predominant tumor-

infiltrating immune cells in bladder cancer and associated with

the prognosis of patients. However, the relationship between

m5C-related lncRNAs and tumor-associated immune cells in

HCC remains unknown.

This study aimed to explore the prognostic significance and

immune landscape of them5C-related lncRNAs inHCC. Based on

the Cancer Genome Atlas (TCGA) database and bioinformatic

analyses, we constructed an m5C-related lncRNA prognostic

model and subsequently validated the accuracy and efficiency

of the model. We utilized a nomogram to predict patients’ survival

rates. Furthermore, the association between immune cell

infiltration and the risk model was analyzed. More importantly,

the responses of HCC patients to chemotherapy and

immunotherapy were predicted to provide guidance for clinical

treatment. Finally, we conducted experiments in vitro to identify

the biological function of MKLN1-AS identified with the highest

contribution in the risk model.

Materials and methods

Data and m5C regulator acquisition

The clinical and transcriptome data of 374 HCC tissues and

50 normal tissues were obtained from TCGA data website (http://

portal.gdc.cancer.gov/). After excluding four samples without

complete survival time and status, 370 HCC samples were

included for further study. The clinical characteristics of these

patients with HCC are shown in Supplementary Table S1. We

also downloaded the annotation file of GRCH38 from the

Ensemble official website (http://asia.ensembl.org) to

distinguish mRNAs and lncRNAs. A total of 16 m5C

regulators (NOP2, DNMT1, DNMT3A, DNMT3B, NSUN2,

NSUN3, NSUN4, NSUN5, NSUN6, NSUN7, TRDMT1,

ALYREF, YBX1, TET1, TET2, and TET3) were selected

according to previous publications. The differential expression
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of 16 m5C regulators between tumor and normal tissues was

analyzed using the limma package in R software (p < 0.05, | log2

(folding change) | > 1). We also used survival and survminer

packages to perform survival analysis.

Construction and validation of m5C-
Related lncRNA prognostic risk model

Pearson correlation analysis was implemented to identify

m5C-related lncRNAs with |Pearson R| > 0.4 and p < 0.001. We

then used the limma package to perform differential m5C-related

lncRNA expression analysis between HCC tissues and normal

tissues and thus acquired 633 differentially expressed lncRNAs

(p < 0.05). HCC cases were randomly divided into a training

cohort and a testing cohort in a 1:1 ratio. In the training cohort,

we conducted the univariate Cox regression analysis to screen out

prognostic lncRNAs. Based on screened 17 lncRNAs with

prognostic value, we performed the least absolute shrinkage

and selection operator (LASSO) Cox regression and

multivariate Cox regression to construct the prognostic

prediction model. Five lncRNAs were extracted and used for

further analysis. The risk score of each patient was calculated

using the following formula:

Risk score = ∑i=1
n Coefi ×Xi (Coefi represents the coefficients,

and Xi represents the expression value of each m5C-related

lncRNA).

Next, we graded each HCC patient. All patients were divided

into high- and low-risk groups based on the median risk score

calculated from the training cohort. We used the survival R

package to implement Kaplan–Meier (KM) survival curve

analysis. Receiver operating characteristic (ROC) curves was

also constructed to evaluate the prognostic capability of the

risk model. Moreover, we used principal component analysis

(PCA) to visualize whether the risk score could well distinguish

the high-risk group from the low-risk group.

Evaluation of m5C-Related lncRNA risk
model as independent prognostic
indicator

We performed subgroup stratification survival analysis in

clinicopathological features using KM plot to confirm the

prediction performance of the model. Univariate and

multivariate Cox regression analyses were conducted to assess

whether the risk model was an independent factor. In addition,

we constructed a heatmap based on clinical characteristics and

differential expression of the five prognostic lncRNAs in different

risk groups. Furthermore, combining the risk score and TNM

stage, we established a nomogram to improve clinical diagnosis

and application. Moreover, the nomogram’s predictive value was

evaluated using ROC curve.

Cell culture and quantitative real-time
PCR assay

Human HCC cell lines (Huh7, HepG2, Hep3B, and SNU-

387) and one normal liver cell line (L-02) were obtained from the

Cell Bank of the Chinese Academy of Sciences (Shanghai, China).

The cell lines were cultured in medium containing 10% fetal

bovine serum (FBS) with 5% CO2 at 37°C. We also collected

20 pairs of HCC and para-carcinoma tissue samples from the

Department of Hepatobiliary Surgery, the Affiliated Hospital of

Xuzhou Medical University, from March 2021 to May 2022. To

evaluate the expression level of m5C-related lncRNAs, we used

RNA Isolater Total RNA Extraction Reagent (Vazyme, Nanjing,

China) to isolate total RNAs from the tissue samples and cell

lines. Reverse transcription was performed using HiScript II Q

RT SuperMix (Vazyme, Nanjing, China), and quantitative real-

time PCR was then conducted using ChamQ SYBR qPCRMaster

Mix (Vazyme, Nanjing, China). The relative expression of the

five lncRNAs was calculated using the 2−ΔΔCT method, and

GAPDH served as an internal control. The primer sequences

used in our study are listed in Supplementary Table S2.

Prediction of m5C sites on five lncRNAs

RNAm5Cfinder (Ban et al., 2020), m5C-Atlas (Ma et al.,

2022), and iRNA-m5C (Chen et al., 2021) databases were used to

predict the m5C site of the lncRNAs.

Function and signaling pathways
enrichment analysis

The limma package was implemented to screen genes that

were differentially expressed between the high- and low-risk

groups. Subsequently, we performed gene ontology (GO) and

Kyoto encyclopedia of genes and genomes (KEGG) analysis to

explore the potential function and pathway between the

differentially expressed genes (DEGs). Finally, GSEA software

(GSEA_4.2.2) was used to identify potential signaling pathways

in the high- and low-risk groups.

Tumor immune analysis and somatic
variant analysis

We calculated the correlation coefficient between the risk

score and the immune infiltrated cells based on currently

acknowledged software, including TIMER, XCELL,

QUANTISEQ, MCPcounter, EPIC, CIBERSORT-ABS, and

CIBERSORT. We used Wilcoxon signed-rank test to analyze

the difference in immune infiltrating cell abundance between

high- and low-risk groups. We also measured Spearman
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correlation coefficients between the risk score and the immune

infiltrated cells, and the results are displayed herein in a lollipop

diagram. The activities of 13 immune-related pathways between

two groups were quantified using the “GSVA” package by

ssGSEA. Next, we performed a two-way analysis of variance

(ANOVA) to explore the association of the immune infiltration

subtype with a risk score. R package maftools were used to

analyze the gene somatic mutation data downloaded from the

Genomic Data Commons (GDC) database.

Immunotherapy response and drug
sensitivity analysis

The TIDE algorithm was applied to predict the

immunotherapeutic response. We also analyzed the

differential expression level of 34 immune checkpoints

between different risk groups. Furthermore, we used R

package pRRophetic to predict the half-maximal inhibitory

concentration (IC50) of drugs for HCC samples from different

risk groups. In addition, the association between the expression

level of prognostic lncRNAs and drug sensitivity was determined

using relevant data obtained from CellMiner database.

Cell transfection

SiRNAs targeting MKLN1-AS (si-MKLN1-AS#1, si-

MKLN1-AS#2) and the negative control (si-NC) were

designed and synthesized by Gene Pharma Technology

(Shanghai, China). HepG2 cells were transfected with

siRNAs by siLentFect Lipid Reagent (Bio-Rad, CA,

United States). After 48 h, the cells were collected for further

experiments. The siRNAs sequences against MKLN1-AS are

listed in Supplementary Table S3.

Cell counting Kit-8 (CCK-8) assay

Transfected cells (2000 cells/pore) were seeded into 96-well

plates for CCK-8 assay. Then, 10 μl of CCK-8 reagent (APExBIO,

USA) and 100 μl of serum-free MEM medium were introduced

into cells and incubated for 2 h. Subsequently, the absorbance

was measured at 450 nm at 0, 24, 48, 72, and 96 h.

Transwell assay

In invasion assay, the top chamber was treated with

Matrigel (BD Biosciences, Mississauga, Canada) while in the

migration assay was not. Transfected cells (5 × 105 cells/pore)

were seeded into the upper layer of the transwell. A total of

700 μl chamber MEM medium with 20% FBS was added to the

lower chamber, and the chamber was cultured at 37°C for

24–48 h. The invaded cells were fixed by 4%

paraformaldehyde and stained with 0.1% crystal violet. A

light microscope was used to observe cell migration and

invasion.

Wound healing assay

Transfected HepG2 cells were seeded in six-well plates and

cultured to 80% confluence. Then, 200 μL pipette tips were used

to create clear scratches in each well. Thereafter, the cells were

cultured in a serum-free MEM medium. The scratches were

imaged by a light microscopy at 0 and 24 h.

Statistical analysis

One-way ANOVA was used to compare the differential

expression level of 16 m5C regulators between HCC tissues

and normal tissues. Cytoscape was used to plot the co-

expression network of five m5C-related lncRNA–mRNA.

The KM method and log-rank test were employed to

compare the survival curves between various subgroups.

Univariate and multivariate Cox regression analyses were

used to identify independent prognostic factors. The

nomogram was evaluated for predictable performance by

calibration curve, and ROC curve was used to measure the

prognostic efficiency of the nomogram for 1-, 3-, and 5-year

overall survival (OS). Statistical analysis was carried out using

R version 4.1.1, and p < 0.05 was considered statistically

significant.

Results

The Landscape of Expression and Prognosis of 16 m5C

Regulators in HCC Tissues.

The workflow of this study is shown in Figure 1. We first

explored the differential expression of 16 m5C regulators

between HCC tissues and normal tissues in TCGA dataset.

We found that all 16 m5C regulators except TET2 and

TRDMT1 were differentially expressed. NSUN6 expression

was significantly downregulated in HCC than in normal

tissues, whereas that of the other 13 m5C regulators was

significantly upregulated in HCC (Figure 2A). To evaluate the

interaction among 16 m5C regulators, the correlation analysis

showed that most m5C regulators were positively correlated with

other regulators. We found a weak correlation between

NSUN6 and other regulators and a strong correlation between

DNMT3A and TET3 (Figure 2B). The m5C regulator network

was depicted to indicate the interactions, connection, and

prognostic value of m5C regulators for HCC patients. The
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most common positive correlation was found not only in the

same category but also between different types of regulators.

Negative correlations occurred between NSUN6 and NSUN5,

NSUN6, and YBX1, and NSUN6 and ALYREF (Figure 2C). KM

survival analysis showed significant differences among 15 m5C

regulators in OS of HCC patients (Figures 2D–F and

Supplementary Figure S1).

Construction and verification of the m5C-
Related lncRNA risk model

Pearson correlation analysis was conducted to identify the

m5C-related lncRNAs based on the expression of m5C regulators

and lncRNAs in HCC patients. Then 633 m5C-related lncRNAs

were screened out using differential expression analysis. We

FIGURE 1
Flow diagram of this study.
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FIGURE 2
The landscape of expression and prognosis of m5C regulators in HCC patients. (A)Heatmap displaying different expressions of m5C regulators
in HCC. (B) Spearman correlation analysis of 16 m5C regulators. (C) The interaction between m5C regulators in HCC. The size of the circle
represented the influence of each regulator on prognosis, and the range of values calculated by log-rank test was p < 0.0001, p < 0.001, p < 0.01, p <
0.05, and p < 1. Purple in the right part of the circle indicates risk survival factors and green in the right part of the circle indicates favorable
survival factors. The types of m5C regulators are labeled as different colors in the left part of the circle. The thickness of lines shows correlation
strength. Positive correlation is shown in pink and negative correlation in blue. (D–F) Overall survival analysis based on three m5C regulators’
expression in HCC.
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FIGURE 3
Construction of the m5C-lncRNA risk model. (A) The co-expression network of m5C regulators and their related lncRNAs. (B) Forest plot
showing the hazard ratio of 17 lncRNAs with prognostic value using univariate Cox regression analysis. (C,D) LASSO regression is performed, and
cross-validation for optimal parameter. (E) Co-expression network of the five m5C-related lncRNAs and m5C regulators. (F) Sankey diagram
showing the relationship between m5C regulators and m5C-related lncRNAs. (G) The correlations between 16 m5C regulators and five m5C-
related lncRNAs. (H) Heatmap of the differential expression of five lncRNAs in tumor-and normal tissues.
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FIGURE 4
Verification of the m5C-lncRNA risk model. Kaplan-Meier curves of overall survival of high-risk and low-risk groups in the training cohort (A),
testing cohort (B), and entire cohort (C). The distribution of risk scores, survival status and expression matrix of five-lncRNA signature in the training
cohort (D), testing cohort (E), and entire cohort (F). ROC curves of the model for OS prediction including 1, 2, and 3 years in the training cohort (G),
testing cohort (H), and entire cohort (I). PCA analysis between the high-risk and low-risk groups based on all genes (J), m5C genes (K), m5C-
lncRNAs (L), and risk lncRNAs (M).
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constructed a co-expression network of m5C regulators and

their related lncRNAs (Figure 3A). In addition, we randomly

divided 370 HCC cases into a training cohort (50%, n =

186 cases) and a testing cohort (50%, n = 184 cases). Next,

univariate Cox regression analysis was conducted to screen the

prognostic m5C-related lncRNAs in the training cohort. The

result showed that 17 lncRNAs with increased risk (hazard

ration, HR > 1) were deemed to have important prognostic

value (Figure 3B). Subsequently, we performed LASSO Cox

regression to analyze the 17 prognostic m5C-related lncRNAs,

followed by multivariate Cox regression analysis to build a

prognostic risk model for HCC (Figures 3C,D). Finally, we

obtained five lncRNAs with a prognostic significance to

construct the prognostic model (Supplementary Table S4). A

co-expression network for the visualization of the five m5C-

related lncRNAs and 16 m5C regulators was established

(Figures 3E,F). We also observed that NRAV and

AL031985.3 had the strongest correlation with m5C

regulators, whereas ELFN1-AS1 had the weakest correlation.

Moreover, correlations among m5C regulators and lncRNAs

were mostly positive (Figure 3G). As displayed in Figure 3H, the

expression levels of the five m5C-related lncRNAs were

significantly different between HCC and normal tissues. The

risk score of each HCC patient was calculated as follows: Risk

score = 0.4635* NRAV expression level +0.8199* MKLN1-AS

expression level +0.6452* AL031985.3 expression level +

0.3553* ELFN1-AS1 expression level +0.7350*

AL928654.1 expression level. Notably, the positive

coefficients of the five lncRNAs revealed that they were all

risk survival factors. We then divided the patients of the

training cohort into high- and low-risk groups based on the

median risk score. KM survival curves showed that patients

with high-risk scores had poor prognoses (Figure 4A). Risk

score and survival status distributions showed that more and

more patients died as the risk score increased. Additionally, our

analysis showed that all the five lncRNAs had higher expression

levels in the high-risk group (Figure 4D). Then, we used the

same score formula to calculate the risk score of each patient in

the testing cohort and the entire cohort, which were employed

to validate the signature. The results were similar to those

displayed in the training cohort (Figures 4B,C,E,F).

Furthermore, we analyzed the prognostic accuracy of risk

score using the ROC analysis (in the training cohort: 1-, 2-,

and 3-year AUC = 0.762, 0.761, and 0.749, respectively; in the

testing cohort: 1-, 2-, and 3-year AUC = 0.776, 0.701, and 0.679,

respectively; in the entire cohort: 1-, 2-, and 3-year AUC =

0.771, 0.730, and 0.712, respectively) (Figures 4G–I). We used

PCA to visualize the different distribution patterns between the

two groups based on all genes, m5C genes, m5C-lncRNAs, and

risk lncRNAs. Based on risk lncRNAs, patients were distributed

in obviously different directions, so that the m5C-related

lncRNA risk model may well differentiate between the high-

and low-risk groups (Figures 4J–M).

Validation of the suitability of the model
using stratified survival analysis

We conducted stratified analysis by dividing the HCC

patients into various subgroups and comparing the OS

between high- and low-risk groups to evaluate the prognostic

value of this model under different HCC clinicopathological

subgroups. The survival analysis revealed that patients with

high-risk scores had shorter OS in various subgroups

(age >65 years versus age ≤65 years, female versus male,

G1–2 versus G3–4, T stage1–2 versus T stage3–4, M0 stage,

N0 stage, TNM stage I–II versus TNM stage III–IV)

(Supplementary Figure S2).

The m5C-Related lncRNA risk model was
an independent prognostic factor for HCC
patients

According to the expression level of each lncRNA, we divided

HCC patients into high- and low-expression groups and then

performed KM survival analysis on them. The survival curves

showed that patients in the high-expression group of

AL031985.3, AL928654.1, MKLN1-AS, and NRAV had

shorter OS and worse prognoses. Nevertheless, OS of ELFN1-

AS1 in the high- and low-expression groups had no statistical

differences (Figures 5A–E). According to the heatmap, TNM and

T stages (p < 0.01) were statistically significantly different

between the high- and low-risk groups, but other

clinicopathological features had no statistical differences

(Figure 5F). Furthermore, we conducted univariate and

multivariate Cox regression analyses to confirm whether the

risk score calculated using the m5C-related lncRNA risk

model could be used as an independent prognostic factor. The

univariate analysis showed that TNM stage (p < 0.001), T stage

(p < 0.001), M stage (p = 0.021), and risk score (p < 0.001) were

prognostic factors, whereas the multivariate Cox regression

analysis revealed that TNM stage (p < 0.001) and risk score

(p < 0.001) could serve as independent prognostic factors for

patients with HCC (Figures 5G,H). In clinical practices, to

provide an accurate quantitative tool for evaluating the

individual OS of HCC patients, we formulated a nomogram

based on risk score and TNM stage screened by multivariate Cox

regression analysis to predict 1-, 3-, and 5-year OS probability

(Figure 6A). As shown in the calibration curve, the actual and

predicted 1-, 3-, and 5-year OS were almost in perfect

concordance (Figures 6B–D). The time-dependent ROC

curves were used to evaluate the specificity and sensitivity of

the nomogram for predicting the prognosis of HCC patients. Our

results revealed that AUC values of nomogram were 0.778, 0.806,

and 0.786 at 1-, 3-, and 5-year OS, respectively (Figure 6E).

Besides, we compared AUC values of risk score, age, gender,

grade, and stage and noted that the risk score was superior to
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FIGURE 5
Validation of the m5C-related lncRNAs risk score as an independent prognostic factor in HCC patients. (A–E) KM survival curves indicated the
relationship of the five lncRNAs with prognosis in HCC patients. (F) Heatmap showing the correlation between expression levels of the five m5C-
lncRNAs and clinicopathological features. (G,H)Univariate andmultivariate Cox regression analysis of risk score and clinicopathological parameters.
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FIGURE 6
Construction and validation of the nomogram based on m5C-related lncRNA risk model. (A) Nomogram with risk score and TNM stage for
predicting 1-, 3-, and 5-year survival for HCC patients. (B–D) The calibration curves showing the consistency of nomogram-predicted and actual 1-,
3-, and 5-year OS. (E) ROC analysis evaluating the predictability of the nomogram for 1, 3, and 5 years OS. (F) A comparison of AUC of risk score and
clinical factors at 1-year showed the optimal prognostic value of the risk score.
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FIGURE 7
Validating the expression levels of fivem5C-related lncRNAs. The expression levels of m5C-related lncRNAs in (A–E) 5 cell lines and (F) 20 pairs
HCC tissues and paracancerous tissues. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 8
Function and pathways enrichment analysis of m5C-related lncRNAs. (A–C) Visualization of the enriched biological processes by GO analysis.
(D,E) KEGG analysis displaying the enriched signaling pathways related to risk model.
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other clinical factors (Figure 6F). In summary, the m5C-related

lncRNA risk model had the optimal ability to predict the

prognosis of HCC patients.

Validation of the fivem5C-Related lncRNA
expression in hepatocellular carcinoma
cell lines and tissues, and analysis of m5C
modification sites

We further validated the five m5C-related lncRNA

expression levels in HCC cell lines and tissue samples by RT-

qPCR assay. The expression levels of these five lncRNAs were

examined in Huh7, HepG2, Hep3B, SNU-387, and L-02 cell lines.

Our results showed that NRAV expression level was upregulated

in HCC cell lines compared with the liver cell line (Figure 7A).

AL031985.3, AL928654.1, ELFN1-AS1, and MKLN1-AS

expressions were upregulated in part of HCC cell lines

(Figures 7B–E). We then performed the differential expression

analysis of the five lncRNAs in 20 pairs of HCC and para-

carcinoma tissue samples. The results revealed that MKLN1-AS,

NRAV, ELFN1-AS1, AL928654.1, and AL031985.3 expression

levels were upregulated in HCC tissues (Figure 7F). After

scanning the m5C-Atlas, we found two m5C modification

sites on NRAV and eleven m5C modification sites on

MKLN1-AS. We also utilized RNAm5Cfinder and iRNA-m5C

databases to predict potential m5C modification sites on our five

lncRNAs, and eventually obtained m5C modification sites on all

five lncRNAs (Supplementary Table S5).

The functional and pathway enrichment
analysis

We conducted GO and KEGG analysis based on the

differential genes between the high- and low-risk groups to

better identify the potential biological mechanisms. The top five

GO terms were sister chromatid segregation, nuclear division,

mitotic sister chromatid segregation, mitotic nuclear division, and

chromosome segregation (Figures 8A–C). KEGG analysis showed

that these signaling pathways were mainly enriched in cell cycle,

PI3K-Akt signaling pathway, proteoglycans in cancer, glycolysis/

gluconeogenesis, and ECM–receptor interaction (Figures 8D,E).

Furthermore, the activated pathways enriched in the high- and

low-risk groups were identified through gene set enrichment

analysis (GSEA). We found that Notch signaling pathway, cell

cycle, regulation of autophagy, and pathways in cancer were

activated in the high-risk group, whereas fatty acid metabolism,

tryptophan metabolism, PPAR signaling pathway, and beta

alanine metabolism were activated in the low-risk group

(Supplementary Figure S3). These results revealed the

association of m5C-related lncRNAs with biological function

in HCC.

Association of m5C-Related lncRNAs with
immune cell infiltration

We conducted a Spearman correlation analysis to illustrate

the relationship between the m5C-related lncRNAs and immune

cell infiltration. As shown in the lollipop diagram, the risk score

was positively correlated with Treg cells, CD4 + T cells,

neutrophils, M1 macrophages, and M2 macrophages and

negatively correlated with hematopoietic stem cells and

endothelial cells (Figure 9A and Supplementary Table S6).

The heatmap indicated the difference in the infiltrating levels

of immune cells between the high- and low-risk groups based on

the TIMER, XCELL, QUANTISEQ, MCPcounter, EPIC,

CIBERSORT-ABS, and CIBERSORT software (Figure 9B).

Comparative analysis of immune-related functions or

pathways by ssGSEA showed that the scores of APC co-

stimulation, MHC class I and para-inflammation were higher

in the high-risk group, while the cytolytic activity and type II IFN

response scores were the opposite (Figure 9C). Furthermore, we

compared the risk score in different immune infiltration subtypes

and found that the high-risk score was strikingly correlated with

C1, while the low-risk score was strikingly correlated with C4

(Figure 9D). The above results suggested that the m5C-related

lncRNA risk model of HCC was related to immune status.

Tumor mutation burden based on m5C-
Related lncRNA risk model

We analyzed the association between the risk score and

tumor mutation burden (TMB) using somatic mutation

information downloaded from TCGA-HCC cohort. Figures

9E,F show the top 20 mutated genes with a high mutation

frequency. We found that patients in the high-risk group had

more mutation event compared with those in the low-risk group

(Figure 9G), and TP53 presented the highest mutation frequency

in both groups. Besides, patients with high TMB suffered shorter

survival time than those with low TMB (Figure 9H). Next, we

divided HCC patients into four groups to conduct a combined

analysis of TMB and risk score: high TMB + high risk, high TMB

+ low risk, low TMB + high risk, and low TMB + low risk. As

shown in Figure 9I, patients in the low TMB + low-risk group

were found with a better survival probability than those in the

other three groups.

Evaluation of responses to
immunotherapy and chemotherapy based
on m5C-Related lncRNA risk model

The TIDE algorithm was used to predict immunotherapy

response in the high- and low-risk groups. As demonstrated in

Figure 10A, the patients in the high-risk group were found with
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FIGURE 9
Estimating the correlation between m5C-related lncRNAs and immune infiltration and mutation analysis. (A) The correlation analysis of risk
score and tumor-infiltrating immune cells by TIMER, XCELL, QUANTISEQ, MCPcounter, EPIC, CIBERSORT-ABS, and CIBERSORT software. (B) A
heatmap indicating the differential immune responses between the high- and low-risk groups based on the above seven software. (C) The
differential scores of 13 immune-related functions in high- and low-risk groups. (D)Comparison of the risk score in different immune infiltration
subtypes. *p < 0.05, **p < 0.01, and ***p < 0.001; ns, non-significant. (E,F)Waterfall plot of the 20 topmutated genes with highmutation frequency in
the high-risk group (E) and low-risk group. (F,G) The differentmutation event between two groups. (H) KM analysis between high/low TMB groups. (I)
Comparative analysis of prognosis combining risk score and TMB.
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FIGURE 10
Analysis of immunotherapy and chemotherapy responses based on m5C-related lncRNAs risk model. (A) Comparison of TIDE scores between
the high-risk and low-risk groups. (B) The difference of 34 immune checkpoints expression level between high- and low-risk groups shown in the
box plot. (C) Differences in PD-L1 expression between high- and low-risk groups. IC50 of axitinib (D), dasatinib (E), doxorubicin (F), erlotinib (G),
gemcitabine (H), mitomycin.C (I), rapamycin (J), and sorafenib (K) in high- and low-risk groups.
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higher TIDE scores than those in the low-risk group, suggesting

that the high-risk group was more likely to react to

immunotherapy. To investigate the relationship between the

risk group and the expression of immune checkpoints, we

compared the expression levels of 34 immune checkpoints

and found higher expression level in the high-risk group than

FIGURE 11
Analysis of correlation between the prognostic lncRNAs expression and drug sensitivity. (A–P) The scatter plot showed the top 16 associations
between prognostic lncRNAs expression and drug sensitivity.
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in the low-risk group (Figure 10B). Recently, immune checkpoint

inhibitors (ICIs) have been conducted in the field of HCC

therapy. Programmed cell death 1 ligand 1 (PD-L1), one of

the key indicators in cancer immune evasion, has already been

used to predict the potential response to immune checkpoint

blockade (ICB) therapy. In our study, we discovered that PD-L1

expression level was significantly higher in the high-risk group

than in the low-risk group, indicating that high-risk patients were

more sensitive to PD-L1 blockade immunotherapy (Figure 10C).

Furthermore, we identified the relationship between risk score

FIGURE 12
MKLN1-AS facilitated the proliferation, migration, and invasion of HCC cells in vitro. (A) qRT-PCR validation of MKLN1-AS expression in
HepG2 cells transfected with siRNAs. (B) The viability of HepG2 detected by the CCK-8 assay. (C) Transwell assay performed to evaluate the
migration and invasion abilities of HepG2 cell transfected with indicated siRNAs. (D) Cell migration ability detected via wound healing assay. All data
are presented as the mean ± standard deviation (SD). * p < 0.05, **p < 0.01, ***p < 0.001.

Frontiers in Genetics frontiersin.org18

Lu et al. 10.3389/fgene.2022.990594

114

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.990594


and common chemotherapeutic drug sensitivity. The results

showed that IC50 values of axitinib, rapamycin, dasatinib,

sorafenib, and erlotinib were higher in the high-risk group,

suggesting that patients from the low-risk group had higher

sensitivity to these five drugs. Besides, IC50 values of gemcitabine,

doxorubicin, and mitomycin C was higher in the low-risk group,

which indicated higher sensitivity to these three drugs in the

high-risk group (Figures 10D–K). Finally, we investigated the

prognostic lncRNAs from the CellMiner database NCI 60 RNA

seq and compound activity: DTP NCI-60. As revealed in

Figure 11, ELFN1-AS1 and NRAV were correlative to the

sensitivity of some chemotherapy drugs, and the correlativity

between ELFN1-AS1 expression level and the sensitivity of drug

dromostanolone propionate was the strongest (correlation =

0.410, p = 0.001).

Functional validation analysis

We then selected MKLN1-AS with the highest contribution

in the risk model (Coef = 0.8) for further biological function

verification in HCC cells. HepG2 cell was chosen for MKLN1-AS

knockdown via transfection with siRNAs. qRT-PCR assays were

performed to detect the transfection efficiency, and both siRNA

fragments downregulated the expression level of MKLN1-AS

(Figure 12A). CCK-8 assay indicated that MKLN1-AS

knockdown markedly repressed the proliferation of

HepG2 cells (Figure 12B). Then, we observed that the

knockdown of MKLN1-AS remarkably suppressed migration

and invasion abilities of HepG2 cells via transwell assay

(Figure 12C). Furthermore, wound healing assay showed that

after culture for 24 h, scratches of knock-down groups healed

slowly and the area of cell migration decreased, indicating that

downregulation of MKLN1-AS expression could inhibite the

migratory ability of HepG2 cells (Figure 12D). Collectively,

these findings confirmed that MKLN1-AS promotes HCC cell

proliferation, migration, and invasion in vitro.

Discussion

RNA post-transcriptional modifications (such as m6A, m5C,

m1A, and m7G), as well-explored events, have been proved to be

involved in the carcinogenesis and progression of various cancers.

M5C modification, already observed in various RNAs, can promote

the proliferation, migration, invasion, and angiogenesis of cancers

(Li et al., 2022). LncRNAs, which are widely used as a target or

biomarker for disease and treatment, can regulate tumor growth

through various mechanisms, including chromatin remodeling,

natural antisense transcripts, and chromatin interactions (Fang

and Fullwood, 2016). A growing body of evidence has indicated

that m6A modification can modulate lncRNAs to affect the

pathological processes of cancer development. However, few

studies have systematically reported the function of m5C-related

lncRNAs in HCC. Taken together, gaining more insight into the

relationship between lncRNAs andm5Chas ameaningful likelihood

of predicting the prognosis and guiding therapy for HCC. In this

study, we constructed a prognostic risk model of five m5C-related

lncRNAs and analyzed their role in the prognosis and immune cell

infiltration. Moreover, cell experiments for one of the five m5C-

related lncRNAs, MKLN1-AS, were conducted to confirm the

accuracy of the prognostic risk model. So far, no study has been

conducted to analyze the prognostic value of m5C-related lncRNAs

in HCC. Our findings may be used as novel biomarkers or

therapeutic targets for more accurate diagnosis, prognosis, and

treatment.

Recently, ferroptosis-related gene signature, pyroptosis-

related lncRNA signature, inflammatory response-related gene

signature, immune-related gene signature, and m6A-related gene

signature have been constructed to predict OS for HCC. In this

study, we explored m5C-related lncRNAs by analyzing HCC data

downloaded from TCGA database, and five m5C-related

lncRNAs capable of prognostic value were finally selected to

construct a prognostic risk model. PCA analysis showed that

high-risk group patients could be clearly differentiated from the

low-risk group patients by using the model. Besides, the model

can serve as an independent prognostic factor for HCC patients

based on univariate and multivariate Cox regression analyses. In

addition, our nomogram could figuratively predict 1-, 3-, and 5-

year survival according to the comprehensive score. The results

above suggested that the prognostic risk model constructed by

five lncRNAs had a potential predictive effect. The five m5C-

related lncRNAs, which were NRAV, AL031985.3, MKLN1-AS,

ELFN1-AS1, and AL928654.1, were highly expressed in tumor

tissues by bioinformatics analysis. We subsequently validated the

expressions of the five lncRNAs in HCC cell lines and tissues by

RT-qPCR assay. The results were consistent with results from

bioinformatics analysis. Besides, four of these lncRNAs were

associated with prognosis based on survival analysis. A recent

study has revealed that NRAV could negatively regulate antiviral

responses by repressing the expression of interferon-stimulated

genes (Ouyang et al., 2014). MKLN1-AS has been proven to be

one of lncRNAs in hepatocellular carcinoma-related competing

endogenous RNA networks and affected HCC progression (Gao

et al., 2020). Our results showed that the knockdown of MKLN1-

AS could suppress proliferation, migration, and invasion in the

HepG2 cell line. Bioinformatic analysis showed that AL031895.3,

as inflammatory response-related lncRNA and immune-related

gene, was also overexpressed in HCC cell lines, which indicated

that AL031985.3 could be an adverse prognostic indicator for

HCC (Li et al., 2022). ELFN1-AS1 affects the proliferation,

invasion, and metastasis of esophageal cancer and colorectal

cancer by regulating miRNAs (Zhang et al., 2020; Zhai et al.,

2021). AL928654.1 has not been reported yet; hence, further

studies are needed to clarify the effects of these five lncRNAs in

the tumorigenesis and development of HCC.
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Using GSEA, we explored the molecular mechanism

underlying m5C-related lncRNAs. Notch signaling pathway,

cell cycle, regulation of autophagy, and pathways in cancer

were significantly enriched in the high-risk group. Previous

studies have shown that Notch signaling pathway was related

to the pathogenesis of liver fibrosis, and EGFL8 regulated HCC

cell migration, invasion, and apoptosis via the activation of

Notch signaling pathway (Wu et al., 2021; Zhu et al., 2021).

The cell cycle regulates the duplication and transmission of

genetic information; however, the dysregulated cell cycle

progression is common in the pathogenesis of cancer (Wiman

and Zhivotovsky, 2017). Autophagy plays a key role in cellular

homeostasis maintenance and tumorigenesis. A relevant study

has indicated that in the progress of affecting lipid metabolism in

hypoxic environments, autophagy could maintain the

proliferation of HCC cells and promote cancer cell survival

(Toshima et al., 2014). It is worth noting that the metabolism-

related pathways were closely linked with patients in the low-risk

groups. Many studies illustrate the role of metabolic-related

pathways in HCC progression; for instance, CD147, which is

overexpressed in many cancers, influences tumor progression by

promoting the reprogramming of fatty acid metabolism (Li et al.,

2015). These results suggested that m5C-related lncRNAs may

participate in the genesis and development of HCC by the

pathways mentioned above, but further experimentation

verification is needed. LncRNAs are known to be expressed in

various immune cells and play a vital role in controlling the

development and differentiation of these immune cells (Atianand

et al., 2017). Tumor infiltration of immune cells in TME, which

influences the prognosis of many tumor patients, is attracting

much attention. In this study, we made an in-depth analysis of

the relationship between risk scores and tumor-infiltrating

immune cells using seven common methods. We found

higher infiltrating levels of Treg cells, CD4 + T cells,

neutrophils, M1 macrophages, and M2 macrophages in the

high-risk group than in the low-risk group. Alternatively,

endothelial cells and hematopoietic stem cells had a higher

expression level in the low-risk group. Based on previous

studies, the increased expression of tumor-associated

neutrophils, M2 macrophages, and Treg cells are correlated

with adverse clinical outcomes in HCC patients (Zhou et al.,

2016; Wu et al., 2021). Our results were consistent with previous

results. Moreover, the increased activities of type II IFN response

meant that tumor immune surveillance and elimination play a

role in the high-risk group (Kaplan et al., 1998; Liang et al., 2022).

Immunotherapy has received much attention and is expected to

become a promising therapeutic method in HCC. We used TIDE

algorithm to evaluate the immunotherapeutic response. The

result indicated that HCC patients in the high-risk group had

a better response to immunotherapy.

ICB therapy, such as anti-PD-L1 antibodies, has shown good

prospects in a variety of malignancies. In HCC, the anti-PD-

1 antibodies and the anti-Cytotoxic T-Lymphocyte Antigen 4

(CTLA-4) antibodies have been approved for second-line

treatment (Pinter et al., 2021). However, immune-related

adverse events occur during therapy. Thus, predictive

biomarkers for ICB response are urgently needed to maximize

the efficacy and keep more patients from adverse effects and

heavy economic burden of immunotherapy. Therefore, we

compared the expression level of 34 immune checkpoint

genes and found a higher expression in the high-risk

group. The results above prove that the risk model could

predict the expression level of immune checkpoints and is

expected to provide important insights into the enhancement

of immunotherapy efficacy. Recent studies have found that

tumor mutation burden was related to the production of

antitumor neoantigens and was identified as a useful

biomarker to predict the response to immunotherapy,

especially PD-L1 therapy (Chan et al., 2019). As shown in our

result, TMB was higher in the high-risk group than the low-risk

group, indicating better sensitivity to immunotherapy in the

high-risk group. Furthermore, survival analysis suggested that

patients with a high burden of tumor mutations had poor

prognoses than patients with a low burden. Besides, we

combined TMB and risk score and analyzed their survival.

The prognosis of patients with high tumor mutation loads in

the high-risk subgroup was the worst. Taken together, our

research is the first study to explore the relationship between

m5C-related lncRNA prognostic risk model and immune cell

infiltration, especially immunotherapy.

Tumor resistance to chemotherapeutic drugs often makes

chemotherapy unsatisfactory, and thus, efficient and

individualized drugs and targets are needed to benefit more

HCC patients (Wu et al., 2021). Drug sensitivity analysis

suggested that doxorubicin, gemcitabine, and mitomycin are

ideal choices for HCC patients in the high-risk group, while

axitinib, dasatinib, erlotinib, sorafenib, and rapamycin are

suitable for patients in the low-risk group. We also explored

the therapeutic potential of five m5C-related lncRNAs by

analyzing their association with drug sensitivity of some small-

molecule drugs. Our results showed that ELFN1-AS1 was sensitive

to dromostanolone propionate, vorinostat, denileukin diftitox

ontak, and vismodegib. NRAV was sensitive to vandetanib,

dacomitinib, afatinib, lbrutinib, copanlisib, and erlotinib.

Ibrutinib is a first-in-class oral irreversible inhibitor of BTK

(Bruton’s tyrosine kinase) and has been demonstrated to be an

effective treatment for chronic lymphocytic leukemia and other

B-cell lymphomas (Ahn and Brown, 2021). Erlotinib, an epidermal

growth factor receptor tyrosine kinase inhibitor, is used to treat

some types of non-small cell lung cancer and advanced pancreatic

cancer (Carter et al., 2022). Vorinostat (Lin et al., 2021),

dacomitinib (Ji et al., 2021), vandetanib (Carvalho et al., 2022),

afatinib (Wu et al., 2021), and vismodegib (Duplaine et al., 2021)

also have anticancer effects in malignancies. In the future, further

experiments are required to confirm their therapeutic potential for

the targeted therapy of HCC.
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However, there are some shortcomings and limitations in our

study. For example, we constructed and validated our m5C-

related lncRNA risk model using TCGA database, lacking

external validation from ICGC or GEO databases for lack of

expression data of some selected m5C-related lncRNAs. In

addition, we validated the five m5C-lncRNA expression levels

using RT-qPCR, but further underlying molecular mechanisms

studies are required to make the prediction results more reliable.

Moreover, partial clinical information, such as M stage and N

stage, was unavailable. Hence, in the future, more clinical and

experimental studies are warranted to confirm the accuracy of

the prognostic risk model.

Conclusion

We constructed a new prognostic risk model consisting of

five m5C-related lncRNAs. Our risk model proved to be

meaningful in functional analysis, immune cell infiltration,

tumor mutation load, and drug sensitivity, indicating the

prospect of targeting these lncRNAs for improving the

responsiveness to immunotherapy and chemotherapy in HCC.

To a certain degree, our study provides new insights to support

further research on the role of m5C-related lncRNAs in HCC

occurrence and development.
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Development of
necroptosis-related gene
signature to predict the
prognosis of colon
adenocarcinoma

Miaomiao Li1, Tianyang Zhang1 and Wei Chen1,2*
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2Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese
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Colon adenocarcinoma (COAD) is a common malignancy and has a high

mortality rate. However, the current tumor node metastasis (TNM) staging

system is inadequate for prognostic assessment of COAD patients.

Therefore, there is an urgent need to identify reliable biomarkers for the

prognosis COAD patients. The aberrant expression of necroptosis-related

genes (NRGs) is reported to be associated with tumorigenesis and

metastasis. In the present work, we compared the expression profiles of

NRGs between COAD patients and normal individuals. Based on seven

differentially expressed NRGs, a risk score was defined to predict the

prognosis of COAD patients. The validation results from both training and

independent external cohorts demonstrated that the risk score is able to

distinguish the high and low risk COAD patients with higher accuracies, and

is independent of the other clinical factors. To facilitate its clinical use, by

integrating the proposed risk score, a nomogram was built to predict the risk of

individual COAD patients. The C-index of the nomogram is 0.75, indicating the

reliability of the nomogram in predicting survival rates. Furthermore, two

candidate drugs, namely dapsone and xanthohumol, were screed out and

validated by molecular docking, which hold the potential for the treatment

of COAD. These results will provide novel clues for the diagnosis and treatment

of COAD.
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1 Introduction

Colon adenocarcinoma (COAD) is one of the most common

cancers worldwide and the second leading cause of cancer death

(Bray et al., 2018). Surgery and chemotherapy remain the

mainstay of colon cancer treatment (Miller et al., 2019). At

present, the prognostic assessment and treatment planning of

COAD patients depend largely on the TNM staging system

(Kehoe and Khatri, 2006). Even at the same tumor stage,

however, due to tumor heterogeneity, there are still significant

disparities in disease progression and clinical outcomes. Hence,

TNM staging system is not fully capable of predicting the

prognosis of colon cancer patients. Accordingly, more reliable

prognostic biomarkers are needed for the diagnose of colon

cancer. The occurrence of tumors is inseparable from the

abnormal gene expressions, and which have been used as

biomarkers to predict the prognosis of diseases (Liu et al.,

2018; Gao et al., 2020). Most recently, it was reported that the

aberrant expression of necroptosis-related genes (NRGs) is

closely associated with the tumorigenesis and metastasis (Ding

et al., 2022; Qi et al., 2022).

Necroptosis is a double-edged sword in the carcinogenesis

and progression of cancer. The tumor cell necrosis can lead to

tumor necrosis and promoted tumor metastasis (Lebrec et al.,

2015). For example, the pro-necrosis proteins, such as RIPK1,

RIPK3, and MLKL, play key roles in promoting tumor growth

(Liu et al., 2016). Conversely, necroptosis also exhibits tumor

suppressive effects. Results from two independent groups showed

that overexpression of the cell necroptosis factor RIP3 inhibited

the proliferation of colon cancer cells (Feng et al., 2015; Krysko

et al., 2017). These findings show that cellular necrosis has a

multifaceted biological role in carcinogenesis and invasion.

Therefore, NRGs have gained attentions of researchers and

have been proposed for risk classification and survival

prediction of COAD patients. For example, Huang et al.

found that a necroptosis-related miRNA risk signature

consisting of seven miRNAs could be used to predict the

prognosis of colon cancer patients (Huang et al., 2021).

Subsequently, Yang et al. constructed a necroptosis-related

miRNA signature for predicting colon cancer prognosis (Yang

et al., 2022). Later on, Liu et al. proposed another model to

predict the prognosis of colon cancer patients based on

necroptosis-related lncRNAs(Liu et al., 2022). However, these

studies only used the TCGA dataset for internal validation, and

did not test their results on the external validation dataset.

Moreover, their accuracies for predicting the prognosis of

colon cancer patients are not satisfactory. Therefore, new

reliable signatures are needed to predict survival in COAD

patients.

In this study, based on the seven differently expressed NRGs, we

proposed a new NRGs-based model to predict the prognosis of

COAD patients. The proposed model is able to distinguish the high

and low risk patients in both internal training and external testing

dataset with higher accuracies. In order to facilitate its clinical use, a

prognostic nomogram was built to quantify the death risk of

individual patients. Moreover, on the basis of Connectivity Map

(Cmap) database (Subramanian et al., 2017), the candidate drugs for

the treatment of high risk patients were screened out and validated

by molecular docking analysis. The workflow of this work was

shown in Figure 1.

2 Materials and methods

2.1 Data collection

The TCGA public database (https://portal.gdc.cancer.gov/) was

used to gather COADRNA-sequencing (RNA-seq) data and clinical

follow-up information. After excluding the samples with a follow-up

period of less than 30 days and samples with duplicate patients, we

obtained 417 tumor tissue samples and 41 non-tumor tissue

samples. The RNA-seq data were then converted to transcripts

per million (TPM). The 556 independent validation samples were

fetched from the GEO dataset (https://www.ncbi.nlm.nih.gov/geo/)

with the accession number GSE39582.

2.2 Acquisition of differentially expressed
NRGs

159 NRGs involved in the necroptosis signaling pathway

were obtained from the KEGG database (https://www.genome.

jp/kegg/, Supplementary Table S1). The limma package (version

3.42.2) in R software (version 3.6.1) was used to perform the

differential expression analysis of NRGs in tumor and non-tumor

tissue with p < 0.05, false discovery rate (FDR) < 0.05 and |

log2FoldChange|>0. The pheatmap (version 1.0.12) and

EnhancedVolcano (version 1.4.0) packages were used for the

visualization of differentially expressed genes (DEGs). The R

package clusterProfiler (Yu et al., 2012) (version 3.14.3) was used

for GO and KEGG enrichment analysis, and enrichplot (version

1.6.1) was used for visualization studies.

2.3 Definition of the NRGs based risk score

Univariate Cox regression analysis was used to screen NRGs

that were significantly (p < 0.05) associated with COAD survival

rates. And then, a LASSO-Cox regression analysis was used to

select the NRGs signature. The genes thus obtained were used to

define a risk score defined as following,

Risk score � ∑
n

i�1
CoefipExp i

where i stands for one of the n NRGs, Expi is the expression level

of gene i, and Coefi is the corresponding coefficient determined
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by LASSO-Cox regression analysis. Patients were then split into

two subgroups, namely low risk group and high risk group, based

on the median of risk score. The survival (version: 3.2–7) and

glmnet (version: 4.1–1) (Friedman et al., 2010) packages in R

were used for the analysis.

2.4 Prognostic performance analysis of
risk signature

Kaplan-Meier survival analysis was used to assess the survival

differences between the two risk groups. The receiver operating

characteristic (ROC) curve was used to evaluate the accuracy for

predicting the overall survival (OS) of COAD patients. The

univariate and multivariate Cox regression analysis were used

to test whether the risk score is independent of the other clinical

traits (age, sex, stage, TNM grade).

2.5 Gene set enrichment analysis

The org. Hs.eg.db (version 3.10.0), clusterProfiler (version

3.14.3), and ggplot2 (version 3.3.3) packages in R were used to

perform gene set enrichment analysis (adjust p < 0.05).

2.6 Construction and verification of
nomogram

For facilitating clinical use, the nomogram was built by using

the rms (version 6.1–1) and survival (version 3.2–7) packages in

R. The discriminative ability of the nomogram was assessed by

using AUC smoothing curve and C-index. Calibration curves

were used to evaluate the relationship between actual results (45-

degree diagonal) and predictive probabilities. The accuracy was

obtained after 1,000 times of bootstraps (Huang et al., 2016).

2.7 Candidate drug identification

The Cmap database was used to identify the drugs for the

treatment of patients in the high risk group. The DEGs between

high and low risk groups in the TCGA-COAD cohort were

identified by using differential expression analysis (|log2FC|≥1.5,
p < 0.05, and FDR<0.05). By inputting the DEGs of the high risk

group into Cmap, the potential drug candidates were obtained

and sorted based on their scores ranging from -100 to 100. The

positive scores indicate the synergistic effects of the drugs on

diseases, while negative scores indicate antagonistic effects of the

drugs on diseases (Subramanian et al., 2017). Hence, the drugs

FIGURE 1
The flow chart of this study.
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with negative scores hold the potential for the treatment of

diseases. In the present work, drugs with score less than

-80 were selected out for further analysis.

2.8 Drug targets identification and
validation

The targets of the candidate drugs were predicted by using

the STITCH database (http://stitch.embl.de/) with the

confidence score greater than 0.8 (Szklarczyk et al., 2016).

Only the targets that differentially expressed between high and

low risk groups and significantly correlated with patient OS

were screened out. The 2D structures of candidate drugs were

taken from the PubChem database (https://pubchem.ncbi.

nlm.nih.gov/), and their 3D chemical structures were drawn

using ChemOffice 2019. The protein structures of the targets

were obtained from the RCSB PDB database (PDB, http://

www.pdb.org/). The AutoDockTools-1.5.6 and Autodock

Vina-1.1.2 were used to perform molecular docking

between candidate drugs and the targets (Morris et al.,

2009; Trott and Olson, 2010). A docking free energy less

than -5.0 kcal/mol was regarded as a stable binding (Li

et al., 2022). PyMOL-2.4.0 and Discovery studio 4.5 were

used to visualize the molecular docking results.

2.9 Statistical analysis

All statistical analysis and result visualization were
performed by using R (version 3.6.1). The Wilcoxon test was
utilized to determine the difference between the two groups. The
Pearson correlation coefficient was calculated to assess the
associations between clinicopathological characteristics and
risk scores. p < 0.05 was regarded as statistically significant
for two-sided tests.

3 Results

3.1 Differentially expression of NRGs

Among the 159 NRGs, 105 were differentially expressed (p <
0.05 and FDR<0.05) between normal and COAD samples,

Figure 2A. Further analysis demonstrated that 40 NRGs were

significantly under-expressed in tumor tissues, and 65 were

significantly over-expressed, Figure 2B and Supplementary

Table S2. The results from KEGG analysis demonstrated that

the most significantly enriched pathway of the differentially

expressed NRGs is necroptosis (Supplementary Figures

FIGURE 2
The differentially expressed NRGs. (A) Heatmap for the
105 differentially expressed NRGs. Red is tumor tissue samples,
and blue is normal samples (*p < 0.05; **p < 0.01; ***p < 0.001). (B)
A volcano plot of NRGs. Up-regulated and down-regulated
genes are indicated by red and blue, respectively.
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FIGURE 3
Validation of the prognostic NRGs signature in COAD patients (A–B) The TCGA-COAD samples were divided into high and low risk groups
according to themedian risk score. The larger the risk score, themore the samples of deaths. (C)Differentially expression of prognostic genes in high
and low risk groups are depicted in a boxplot. Red is the high risk group and green is the low risk group (***p < 0.001). (D) Kaplan-Meier curve for
predicting OS in the TCGA cohort. Red is the high risk group and blue is the low risk group. (E) ROC curve in the TCGA cohort. (F) Kaplan–Meier
curve for predicting OS in the GEO cohort. (G) ROC curve in the GEO cohort.
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S1A,B). However, the GO enrichment analysis demonstrated that

the under-expressed and over-expressed NRGs were enriched in

different entries (Supplementary Figure S1C and S1D). For the

biological process (BP), the up-regulated genes were most

significantly enriched in regulation of apoptotic signaling

pathway, while down-regulated genes were in necroptotic

process. In terms of cellular component (CC), the up-

regulated genes were in nuclear chromatin, while down-

regulated genes were in endosome membrane. The most

significantly enriched molecular function of up-regulated

genes is cytokine receptor binding, while that of down-

regulated genes is protein serine/threonine kinase activity.

These results demonstrated that the differentially expressed

NRGs were associated distinct biological functions.

3.2 Establishment and validation of the
prognostic NRGs signature in COAD
patients

Univariate Cox regression analysis showed that eight

NRGs were significantly associated with the survival status

of COAD patients (Supplementary Table S3). We further

employed the LASSO-Cox regression analysis to assess the

survival rates of COAD patients, and obtained seven NRGs

(Supplementary Figures S2A,B, Supplementary Table S4). It

was found that five of them (CAMK2B, H2AC6, MLKL,

RBCK1, and TRAF2) were risk factors and two

(RIPK3 and VDAC3) were protective factors

(Supplementary Figure S2C). Then, they were used to

build the prognostic-related NRG signature (also called

risk score, see section 2.3).

On the basis of the prognostic-related NRG signature, each

sample was assigned a risk score. With the median risk score as a

cut-off value, the samples in the dataset were divided into high

risk group (n = 208) and low risk (n = 209) group, respectively.

With the increasement of risk score, the number of deaths

increased progressively (Figures 3A,B). In the high risk group,

the risk factors were significantly overexpressed, while the

protective factors were significantly under expressed

(Figure 3C). The Kaplan-Meier survival curve based on the

risk score shows that the high and low risk groups have

significantly different survival rates. Patients in the high risk

group having a lower OS than those in the low risk group

(Figure 3D).

The performance of the risk score for predicting the

patient’s OS was evaluated by using the ROC curve. Its

area under the ROC curve (AUC) for 1-year, 3-year and 5-

year OS were 0.697, 0.711, and 0.737 (Figure 3E), respectively.

The AUC for predicting 5-year OS is better than those

reported by Huang et al. (AUC = 0.724) (Huang et al.,

2021), Yang et al. (AUC = 0.656) (Yang et al., 2022), and

Liu et al. (AUC = 0.639) (Liu et al., 2022). The 7-NRGs based

risk score model was further validated in the independent

GEO dataset (GSE39582). Compared with low risk patients,

patients in the high risk group also had a worse OS

(Figure 3F). The AUCs for 1-, 3-, and 5-year OS were

0.636, 0.577, and 0.587 (Figure 3G). These results indicate

that the developed prognostic model is reliable, and the seven

NRGs holds the potential to be efficient biomarkers for the

prognosis of COAD.

3.3 NRGs signature is an independent
prognostic factor

The univariate and multivariate Cox regression analysis were

further performed to test whether the risk score is independent of

the other clinical factors. The result of univariate Cox regression

analysis demonstrated that risk score, age, stage, T, N, and M

stages were all associated with patient survivals (Figure 4A). The

multivariate Cox regression analysis demonstrated that the risk

score is independent of the above mentioned clinical factors

(Figure 4B), and can satisfactorily classify the survival status,

tumor stage, N and M grades of COAD patients (Figures 4C–F).

With the increase of the risk score, the pathological degree of

tumor become worse. These findings imply that the risk score is

effective in predicting the survival and prognosis of COAD

patients.

3.4 Gene set enrichment analysis

The results of GSEA demonstrated that the focal adhesion,

ECM-receptor interaction and glycosaminoglycan

biosynthesis pathways were enriched in the high risk group

(Figures 5A–C, Supplementary Table S5), indicating that the

tumor metastasis and invasion were the characteristics of high

risk group. Chemical carcinogenesis-DNA adducts,

ferroptosis and chemical carcinogenesis-reactive oxygen

species were the enriched pathways of the low risk group

(Figures 5D–F), demonstrating that tumor formation and

progression are the characteristics of the low risk

group. These results were consistent with the progression

of COAD.

3.5 Construction and evaluation of a
prognostic nomogram for individual
COAD patients

In order to facilitate personalized survival prediction of COAD

patients, the nomogram was built based on risk score, T and age

(Figure 6A). The C-index and AUC were used to evaluate the

performance of the nomogram, and the calibration curve is used to

see how well the prediction matches the actual. The C-index of the
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model is 0.75 and the 1-, 3-, and 5-year survival probabilities are

quite close to ideal performance (45-degree line), indicating

satisfactory performance of the nomogram in predicting OS

(Figure 6B). When compared with a single kind of prognostic

feature, the nomogram outperforms risk score, T and age for

predicting the survivals of COAD patients, suggesting the better

performance of nomogram (Figure 6C).

3.6 Candidate drugs identification for high
risk COAD patients

To identify potential drugs for the treatment of high risk

COAD patients, a total of 237 DEGs (Supplementary Table

S6) were used as the inputs of the Cmap database, among

which, 210 DEGs were significantly up-regulated and 27 were

FIGURE 4
Independent prognostic analysis. (A) Univariate independent prognostic analysis in the TCGA cohort. (B) Multivariate independent prognostic
analysis in the TCGA cohort. (C–F) NRGs signature based outcome stratification of different clinicopathological features (Status, Stage, N, M).
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significantly down-regulated in the high risk group. It was

found that five drugs, namely MST-312, flucytosine,

ganglioside, xanthohumol and dapsone, were with the

scores less than -80 and held the potential for the

treatment of high risk patients (Table 1).

3.7 Targets screening and molecular
docking

Based on the STITCH database, we obtained 17 targets for

the five candicate drugs, including seven for dapsone, three for

flucytosine, and seven for xanthohumol, respectively (Figures

7A–C). Eight of the 17 genes were differentially expressed in

high risk group. NOTCH1, DNMT1, LCAT were over-

expressed, while CYP3A4, NAT2, DGAT1, CYP3A5,

CYP3A7 were under-expressed (Figure 7D). Further

analysis demonstrated that only two of the eight

differentially expressed genes were significantly associated

with the survival of COAD patients (Figures 7E,F and

Supplementary Figure S3). The patients with a high

expression of NAT2 and a low expression of LCAT exhibit

the higher survival rate (Figures 7E,F). Therefore, it is

speculated that the drugs xanthohumol and dapsone may

affect tumor progression by affecting the abnormally

expression of LCAT and NAT2, respectively.

To validate whether the xanthohumol and dapsone could

interact with target genes, the molecular docking was performed

between the drugs and target genes, i.e. dapsone and NAT2,

xanthohumol and LCAT, respectively. The dapsone and NAT2

(PDB ID: 2 P FR) had a docking affinity score of -6.4 kcal/mol

(Figure 8A). Dapsone binds to NAT2 through interacting with

amino acid residues, such as glu261, leu275, ser274, gly276,

glu264, leu267, asn278, leu279, val263 and glu260. The

docking affinity score between xanthohumol and LCAT (PDB

ID: 4X96) was -7.1 kcal/mol (Figure 8B). Xanthohumol binds to

LCAT through interacting with amino acid residues, such as

asp56, phe58, glu55, thr54, lys53, thr123, arg52, asn379, his122,

phe382, gly199 and tyr51. These results demonstrate that

dapsone and xanthohumol possess good combination with

their targets, and hold the potential to be the drugs for the

treatment of COAD.

4 Discussion

The development of biomarkers and therapeutic targets at the

molecular level is crucial for the prognosis and treatment of COAD.

Tumorigenesis and metastasis are both aided by necroptosis (Stoll

et al., 2017; Seehawer et al., 2018; Yan et al., 2022). Dysregulated

expression of necroptosis genes can lead to chronic colonic

inflammation which promotes colon cancer growth (Wang et al.,

FIGURE 5
Functional gene set enrichment analysis. (A–C) The pathways enriched in high risk group; (D–F) The pathways enriched in low risk group.
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2020), suggesting that necroptosis is important for the development

of COAD. At the meantime, it was also reported that medicines and

substances that can interact with necroptosis genes have anticancer

potentials (Su et al., 2015; Gong et al., 2019). In the present work, we

therefore developed a NRGs based model for predicting the

prognosis of COAD patients and identified the candidate drugs

for the treatment COAD.

The proposed risk score model was built by using seven

differentially expressed NRGs, namely CAMK2B, H2AC6,

FIGURE 6
Construction and evaluation of the prognostic nomogram. (A) The nomogram predicts the probability of the 1-, 3-, and 5-year OS. (B) The
calibration plot of the nomogram for predicting the probability of the 1-, 3-, and 5-year OS. (C) AUC smooth curve for evaluating the accuracy of
nomogram predictions.

TABLE 1 Summary of connectivity map prediction results.

Drugs Score Description

MST-312 -93.38 Telomerase inhibitor

Flucytosine -87.35 Antifungal

Ganglioside -85.85 SRC activator

Xanthohumol -82.18 ATPase inhibitor

Dapsone -80.21 Bacterial antifolate
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FIGURE 7
Candidate drugs screening for high risk patients and target identification. (A–C) The identified targets (confidence score>0.8) from STRING for
dapsone, xanthohumol and flucytosine, respectively. (D) Eight of the 17 targets were significantly differentially expressed, of which five were
significantly under-expressed in the high risk group and three were significantly over-expressed (**p < 0.01; ***p < 0.001). (E,F) Patients with a high
NAT2 expression and patients with a low LCAT expression had a higher survival rate.
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FIGURE 8
The result of molecular docking between candidate drugs and targets. (A) Themolecular docking results between dapsone and its target NAT2.
(B) The molecular docking results between xanthohumol and its target LCAT.
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MLKL, RBCK1, VDAC3, RIPK3, and TRAF2. CAMK2B

regulates the microenvironmental remodeling of renal

papillary cell carcinoma, which has an anti-tumor effect (Jia

et al., 2022). H2AC6, which belongs to the H2A family of

histones, is a replication-dependent histone. Histone H2A has

been linked to diabetic nephropathy, atherosclerosis,

cardiovascular disease, and hypertensive kidney injury (Gao

et al., 2013; Jiang et al., 2018; Yerra and Advani, 2018; Pei

et al., 2021). MLKL may serve as a promising target to block

tumor regeneration and participate in the regulation of

necroptosis pathway, thereby improving the efficacy of

radiation therapy for colorectal cancer (Wang et al., 2019).

Overexpression of RBCK1 was reported to be associated with

a poor prognosis in colorectal cancer patients (Liu et al., 2019).

VDAC3 has been linked to cancer and pathology as a potential

marker of mitochondrial status (Reina et al., 2016). Up-

regulation of RIPK3 can prevent the development of liver

cancer (Wu et al., 2020). TRAF2 is a tumor suppressor gene

in colon cancer (Moon et al., 2021). Considering that RNA

modifications were associated with the development of

cancers, we performed the conservation analysis of N6-

methyladenosine (m6A) modification for the seven genes by

using ConsRM(Song et al., 2021). The conserved m6A sites

were identified in TRAF2 and RBCK1, suggesting that m6A

modification may be also associated with the pathogenesis

of COAD.

Based on the proposed model, the patients in the TCGA

cohort were clustered into low and high risk groups. In the high

risk group, patients have a considerably shorter OS than those in

the low risk group. The ROC curves obtained from the TCGA

training data and the independent GEO data indicated that the

proposed model has a relative high accuracy for predicting the

OS of COAD patients and could be utilized as an independent

predictor to predict patients’ risk of death.

The results from GSEA enrichment analysis demonstrated that

the tumor metastasis and invasion associated signaling pathways

were enriched in the high risk group (Figure 5). For example, the

focal adhesion signaling pathway is closely related to tumor invasion

(Golubovskaya and Cance, 2010). ECM-receptor interaction is an

important pathway for colorectal cancer cell metastasis (Nersisyan

et al., 2021). Glycosaminoglycan can promote cancer angiogenesis

and metastasis (Wei et al., 2020). Signaling pathways related to

tumor formation and progression were enhanced in the low risk

group. Ferroptosis and chemical carcinogenesis promote the

occurrence and development of cancer (de Bono et al., 2020;

Chaudhary et al., 2021).

In order to provide insights for the treatment of COAD, we

identified two candidate drugs, namely dapsone and xanthohumol,

from the Cmap database. The dapsone improves the overall survival

of colon cancer patients by inhibiting the expression level of tumor

growth-driving elements IL-8 (Fisher et al., 2019; Kast et al., 2022).

Xanthohumol acts as a carcinogenic inhibitor, lowdose xanthohumol

treatment blocks the proliferation and spread of primary colon

cancer cells (Torrens-Mas et al., 2022). The results of molecular

docking analysis demonstrated that dapsone and xanthohumol can

interact with NAT2 and LCAT, respectively. Thus, dapsone and

xanthohumol may alter the tumor progression of high risk COAD

patients by acting on NAT2 and LCAT, respectively. Further

experimental analysis was needed to illustrate the detail mechanisms.

Taken together, we developed a NRGs signature that can be

used to predict the prognosis of COAD patients and screened out

two candidate drugs for the treatment of high risk COAD patients.

Inevitably, the following limitations should be considered in the

future works. First, the robustness of the proposed model should be

validated by large-scale prospective trials or cell experiments.

Second, experiments are needed to validate the interactions

between candidate drugs and targets and to demonstrate their

treatment mechanisms on COAD. In addition, the data from the

RNA modification databases, such as m6A-atlas (Tang et al., 2021),

m5C-atlas (Ma et al., 2022), andm7Ghub (Song et al., 2020), should

be integrated to further examine whether RNA modifications are

associated with COAD as well.
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Objective: We aim to identify the crucial genes or potential biomarkers

associated with uterine fibroids (UFs), which may provide clinicians with

evidence about the diagnostic biomarker of UFs and reveal the mechanism

of its progression.

Methods: The gene expression and genome-wide DNA methylation profiles

were obtained from Gene Expression Omnibus database (GEO). GSE45189,

GSE31699, and GSE593 datasets were included. GEO2R and Venn diagrams

were used to analyze the differentially expressed genes (DEGs) and extract the

hub genes. Gene Ontology (GO) analysis was performed by the online tool

Database for Annotation, Visualization, and Integrated Discovery (DAVID). The

mRNA and protein expression of hub genes were validated by RT-qPCR,

western blot, and immunohistochemistry. The receiver operating

characteristic (ROC) curve was used to evaluate the diagnostic value.

Results: We detected 22 DEGs between UFs and normal myometrium, which

were enriched in cell maturation, apoptotic process, hypoxia, protein binding,

and cytoplasm for cell composition. By finding the intersection of the data

between differentially expressed mRNA and DNA methylation profiles, 3 hub

genes were identified, including transmembrane 4 L six family member 1

(TM4SF1), TNF superfamily member 10 (TNFSF10), and proteolipid protein 1

(PLP1). PLP1 was validated to be up-regulated significantly in UFs both at mRNA

and protein levels. The area under the ROC curve (AUC) of PLP1 was 0.956, with

a sensitivity of 79.2% and a specificity of 100%. Conclusion: Overall, our results

indicate that PLP1 may be a potential diagnostic biomarker for uterine fibroids.
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1 Introduction

Uterine fibroids (UFs) are one of the most common uterine

benign neoplasms in women of reproductive age, with amorbidity of

77% (Stewart, 2005), and symptomatic lesions occur in 20%–40% of

UFs patients (Leyland et al., 2022). The main clinical symptom

includes menorrhagia, abnormal uterine bleeding, infertility,

recurrent spontaneous abortion, and other pelvic disorder (Styer

and Rueda, 2016; Dolmans et al., 2021). Moreover, UFs are the

primary incidents of hysterectomy (Ciarmela et al., 2022) with a

quantifiable economic and social burden (Cardozo et al., 2012).

Ultrasound is the first-line imaging technique in the evaluation of

UFs (Russo et al., 2022). It can provide information about some

characteristics of morphology, such as cystic area, echogenicity,

borders, and vascularization of the lesion. Nevertheless, it is

difficult for clinicians to differentiate the benign myoma in the

uterine from malignant leiomyosarcoma accurately. Recently, a

novel diagnosis strategy has emerged that integrates the

histological features and molecular biomarkers to provide a

comprehensive assessment of UFs and determine whether a

complete hysterectomy is required (Levy et al., 2013; Trovik et al.,

2014; Croce and Chibon, 2021; Machado-Lopez et al., 2021).

However, these potential biomarkers still lack reliable clinical

utility (Levy et al., 2013), as the sensitivity or specificity of them

is less than 75% or 99.6%, respectively (Anderson et al., 2010). Thus,

more valuable biomarkers validated for the diagnosis of UFs are

desperately required. It may also enable us better understand the

mechanism of progression and some important features of UFs.

DNA methylation, one of the epigenetic modifications of

DNA in mammalians, refers to the transfer of a methyl group

to the fifth carbon of a cytosine residue on the DNA sequence to

form 5-methylcytosine (Reik et al., 2001). It occurs in CpG

dinucleotides that are clustered frequently in regions of about

1–2 kb in length, called CpG islands, in or near the promoter and

first exon regions of genes (Jones, 2012; Schübeler, 2015; Dor and

Cedar, 2018). The frequency of CpG in gene regulatory regions is

different. It was demonstrated that in leiomyomas, CpG sites were

hypomethylated in the distal region of the estrogen receptor-alpha

(ER-alpha) promoter combined with the higher ER-alpha mRNA

levels (Asada et al., 2008). Besides, the aberrant expression of

methyltransferases (Li et al., 2003) and other existence of

differently methylated genomic locus in fibroids were also

reported to separate the UFs from myometrium (Croce and

Chibon, 2015; Braný et al., 2019; Liu et al., 2019; Sato et al.,

2019; Maekawa et al., 2022). Based on the specific

hypomethylated/hypermethylated genes (Islam et al., 2013; Sato

et al., 2016) and the genome-wide DNA methylation profiles of

UFs (Navarro et al., 2012;Maekawa et al., 2013), DNAmethylation

is considered to be themainstay epigenetic mechanism of UFs. It is

involved in the developmental processes of UFs by silencing,

switching, and stabilizing genes. Hence, genes associated with

DNA methylation may offer us some useful clinical diagnostic

biomarkers for UFs. Nevertheless, the hub gene is still unclear.

In the present study, three Gene Expression Omnibus (GEO)

datasets were utilized for analyzing the key gene relevant to DNA

methylation in UFs. The hub gene was further validated by RT-

qPCR, western blot, and immunohistochemistry. Finally, the

receiver operating characteristic (ROC) curve was used to

evaluate the performance of this biomarker for diagnosing UFs.

2 Methods

2.1 Obtaining the gene expression profiles
in UFs

All three gene expression profiles in leiomyoma and normal

myometrium tissue (GSE45189, GSE31699, and GSE593) were

obtained from the National Center of Biotechnology Information

(NCBI) Gene Expression Omnibus (GEO). The retrieval strategy

was present with several keywords: leiomyoma, myometrium,

gene expression profiling, and DNA methylation genome-wide

association study. The inclusion was as follows: 1) a case-control

research design; 2) includes UFs and normal myometrium tissue;

3) The original profiles should contain a genome-wide

assessment. The exclusion criteria were the following: 1) non-

case–control research design; 2) Other tissue. The analysis of the

GSE45189 data set was based on 3 frozen UFs and 3 normal

myometrium tissue obtained from the uterus with leiomyoma.

The GSE31699 data set includes the gene expression profile of

68 UFs and paired normal myometrium tissue. The GSE593 data

set included 6 tissue samples for DEGs analysis only. All details of

sample information and experiment type are shown in Table 1.

2.2 Identification of DEGs between uterine
fibroids and normal myometrium

Weanalyzed the DEGs betweenUFs and normalmyometrium

tissue from the gene expression profiles of GSE45189, GSE593, and

GSE31699 datasets respectively. The differential DNAmethylation

genes were analyzed from the genome-wide DNA methylation

profiles in GSE45189 and GSE31699 datasets respectively. All

differential genes were identified using the online analysis tool

GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/). Benjamin-

Hochberg was applied for the control of false discovery rate

(FDR), and p < 0.05 was utilized as the database’s cut-off

criteria. We draw the Venn diagram by the online tool (http://

bioinformatics.psb.ugent.be/webtools/Venn/).

2.3 Gene Ontology analysis

In this study, Gene Ontology (GO) analysis was performed

by the online tool, Database for Annotation, Visualization, and

Integrated Discovery (DAVID version 2021, https://david.
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ncifcrf.gov/home.jsp) (Han et al., 2022). The 22 DEGs distracted

from all 3 datasets were uploaded to DAVID, and p < 0.05 was

identified as the critical threshold for significant enrichment. The

GO term included the following three criteria: molecular

function (MF), cell composition (CC), and biological

process (BP).

2.4 PLP1 methylation analysis

The CpG islands around the PLP1 gene promoter were

profiled by the UCSC Genome online tool (https://genome.

ucsc.edu/). The DNA methylation data of the PLP1 gene was

retrieved from the DiseaseMeth version 2.0 database (http://bio-

bigdata.hrbmu.edu.cn/diseasemeth/) (Song et al., 2022). The

RNA modification type of PLP1 was identified by m6A-atlas

(Tang et al., 2021) (http://rnamd.org/m6a) and m5C-atlas (Ma

et al., 2022) (http://rnamd.org/m5c-atlas/index.html). The

possible m6a regulator of PLP1 was analyzed by the online

tools m6a target (http://m6a2target.canceromics.org/).

2.5 Clinical data

A total of 48 patients of UFs were recruited for this study who

underwent myomectomy or hysterectomy with a final

histological diagnosis of uterine fibroids in Tongji Hospital

from 2018–2020. 14 UFs-free individuals were considered a

control group. The slices of normal myometrium tissue were

difficult to obtain, especially for UFs patients who underwent

myomectomy. We included the patients with single uterine

prolapse (8/14) who underwent hysterectomy, or patients with

cesarean section scar diverticulum (CDS) who were treated by

hysteroscopy (6/14) as a comparable control. The normal

myometrium tissue from the slices of the CDS patients was

identified by pathologists and only the section of myometrium

tissue was included for further IHC analysis. Exclusion criteria

for all participants consisted of fibroid degeneration,

leiomyosarcoma, adenomyosis, and other gynecologic or

pelvic malignant disorders. Any women with complicated

diseases, for example, metabolic disorders, hypertension,

autoimmune diseases, and treated with hormones before

surgery were excluded. The information of all patients was

collected from electronic medical records in Tongji Hospital

which contains age, myoma location (FIGO), the maximum

diameter of fibroids, and previous history of pregnancies and

surgery. All procedures of this study were approved by the Ethics

Committee of Tongji Medical College, Huazhong University of

Science and Technology (2022S068).

2.6 RT-qPCR

Total RNA was extracted from leiomyoma and normal

myometrium tissue using RNA-easy Isolation Reagent

(Vazyme, R701). Synthesis of cDNA was performed using the

PrimeScript™ RTMaster Mix (Takara, RR036A). Then, real-time

PCR analyses (Vazyme, Q712-02) were carried out in triplicate

for each sample. All gene expression was normalized to GAPDH.

The expression levels were calculated using the 2-ΔΔ Cq method

(Livak and Schmittgen, 2001). The PCR primers were listed at

supplemental Tabel1.

2.7 Western blot

All leiomyoma and normal myometrium tissue was lysed by

RIPA buffer contended with 1% PMSG. Standard western

blotting procedures were used (Liu C. et al., 2021). The

primary antibody used PLP1 (Abcam, ab254363, 1:2000).

Equal loading was confirmed using the glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) antibody (CST, 5174S, 1:

2000). The appropriate anti-Rabbit HRP-linked secondary

antibody (CST, 7074, 1:3000) was used.

2.8 Immunohistochemistry and
hematoxylin and eosin stain

The section (4-μm thick) of paraffin-embedded leiomyoma

and normal myometrium were deparaffinized and rehydrated

using a series of graded xylene and alcohol. All slices used EDTA

TABLE 1 Gene Expression Omnibus (GEO) data set.

GEO accession Platform UFs Normal myometrium Experiment type

GSE593 GPL96 5 5 Affymetrix Human Genome U133A Array

GSE45189 GPL6244 3 3 Affymetrix Human Gene 1.0 ST Array

GPL13534 3 3 HumanMethylation450 BeadChip

GSE31699 GPL6947 68 68 Illumina HumanHT-12 V3.0 expression Beadchip

GPL8490 68 68 Illumina HumanMethylation27 BeadChip

Note: UFs, uterine fibroids.
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for antigen retrieval. After 1 h cooled, 10% H2O2 was used to

quench endogenous peroxidase activity. Blocking was performed

using goat serum for 30 min, RT. The primary antibody used

PLP1 (Abcam, ab254363, 1:2000). The HRP labeled anti-Rabbit

secondary antibody was used the following day. Finally, the slices

were mounted with the coverslips using Permount TMMounting

Medium. And all adjacent slices were stained with hematoxylin

and eosin (H&E) based on the basic protocol. The percentage of

positive stained was conculcated as follows (Karpathiou et al.,

2021): 0 = 0%, 1 = 0–25%, 2 = 26–50%, 3 = 51–75%, 4 = 76–100%.

The intensity scoring was conducted as follows: 0 = no staining,

1 = weak, 2 = moderate, 3 = strong. The final scores of all sections

were based on multiplying the percentage by intensity. [0] =

negative expression; [1–3] = low expression; [4–12] = high

expression.

2.9 Statistical analysis

All data were presented as the mean ± SD, and data generated

in vitro were compared using Student’s t-tests. We performed

χ2 test to explore the relationship between UFs and normal

myometrium for categorical data. Receiver operating

characteristic (ROC) analysis based on the IHC score of all

cases was performed to evaluate the diagnostic value of PLP1.

The optimal cutoff value in the ROC curve was set to the value

that maximizes the Youden index. Youden’s index was defined as

sensitivity + specificity—1. The statistical significance threshold

was set at a p-value of <0.05. SPSS v21.0 (IBM, United States) and

GraphPad Prism 8.0 (GraphPad, United States) were used for

statistical analysis and figures preparation.

3 Results

3.1 Identification of differentially
expressed genes between uterine fibroids
and normal myometrium

A total of 163 DEGs were identified between UFs and

normal myometrium in GSE593 data set by GEO2R analysis,

including 58 upregulating genes and 105 downregulating genes.

DEGs were analyzed from the gene expression profiles in

GSE45189 and GSE31699 datasets respectively. Thereinto,

189 upregulated and 309 downregulated genes were

identified by GEO2R analysis in GSE45189 dataset. As for

GSE31699 dataset, 2060 DEGs were identified, which

included 1129 upregulating genes and 931 downregulated

genes. The DEGs of UFs and normal myometrium for each

dataset was visualized in the corresponding volcano plots

(Figures 1A–C). The DEGs from all datasets were identified

by the Venn diagram (Figure 1 D), 22 DEGs were shown in

Table 2.

3.2 Analysis of Gene Ontology Enrichment

The GO enriched terms were analyzed by DAVID database.

The results showed that DEGs between UFs and normal

myometrium of all 3 datasets were mainly enriched in cell

maturation, regulation of the apoptotic process, cellular

response to hypoxia, and response to testosterone in the

biological process. Protein binding was the most enrichment

term in the molecular function criterion. Considering the cell

composition criterion, the results showed that DEGs mainly

concentrated on the cytoplasm. All terms of GO analysis are

presented in Figure 1E.

3.3 Identify the hub gene

Epigenomic aberrations, especially DNA methylation have

been identified as one of the main mechanisms for UFs

pathogenesis (Mlodawska et al., 2022). Over the years,

literature has reported that aberrant DNA methylation occurs

throughout the genome in UFs (Islam et al., 2013; Sato et al.,

2014; Sato et al., 2016; Sato et al., 2019; Maekawa et al., 2022),

accompanied by mRNA expression discrepancy, demonstrating

that aberrant gene expression caused by aberrant DNA

methylation plays a key role in the pathogenesis of UFs. The

datasets included in this study, GSE31699 and GSE45189,

provided data about genome-wide DNA methylation of UFs

(Navarro et al., 2012; Maekawa et al., 2013). The differential

DNA methylation genes were analyzed by GEO2R. The volcano

plots of the hypermethylation/hypomethylation genes were

presented in the supplemental figure. To investigate the

accurate genes with aberrantly DNA promoter methylation,

we drew the Venn diagram as followed (Figure 2A). The

differential DNA methylation genes in both GSE31699 and

GSE45189 datasets and the 22 DEGs extracted from all

3 datasets were analyzed, and three hub genes were found

(TM4SF1, TNFSF10, PLP1). The RT-qPCR was implemented

to verify the gene expression. Among them, PLP1 was

overexpressed in UFs tissue (Figures 2B–D).

3.4 The expression of PLP1 might be
regulated by both DNA methylation and
RNA modification

Multiple CpG islands were present in Supplemental Figure

S2. Then, we found that the PLP1 transcripts were methylated to

varying degrees in uterine carcinosarcoma and uterine corpus

endometrial carcinoma (Supplemental Figure S2). Interestingly,

we discovered that PLP1 was linked to N6-methyladenosine

(m6A) modification. Metagene analysis of m6A indicating

modification of PLP1 in 3′UTR gene region in the human

embryonic stem cells (ESC). The RNA binding protein and
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binding region were present in Supplemental Table S2. We

curated and analyzed a set of 5 acknowledged m6A regulators

of PLP1 (4 readers and 1 writer). The detailed descriptions of

m6A regulators were present in Supplemental Table S3.

3.5 Baseline characteristics of the patients

To verify the expression of PLP1 in UFs tissue, we collected

tissue samples from UFs patients. A total of 48 UFs patients from

Tongji Hospital who underwent abdominal surgery caused by

uterine fibroids (UFs) and 14 UFs-free individuals were included

in this study. The mean age of all participants enrolled in this

study is approximately 45, of which the age of UFs patients is

42 and UFs-free participants is 44. There was no statistical

difference in age, number of pregnancies, and whether

previous abdominal surgery was performed between these two

groups. The basic characteristics of all participants were shown in

Table 3. The additional fibroid characteristics of UFs patients

were summarized in Table 4. The mean maximum diameter of

leiomyoma in this study is 6.4 cm. The mean size of UFs in this

study was relatively large because all those fibroids were detected

for surgical reasons. Myomectomy was operated on in 79.2% (38/

48) of patients while the rest of the patients (20.8%, 10/48)

underwent a hysterectomy. Notably, 12.5% (6/48) of patients had

a previous myomectomy.

FIGURE 1
DEGs identified by GEO2R. Volcano plot of differentially expressed genes in GSE593 (A), GSE31699 (B), and GSE45189 (C) datasets. Up-
regulation and down-regulation genes are marked with red and blue respectively. The criteria for a DEG are |log2FC|>1 and adjusted p-value < 0.05.
(D) Venn diagram based on the DEGs from all 3 datasets, 22 genes were extracted. (E) Gene Ontology Enrichment analysis of 22 DEGs. P < 0.05 was
identified as the critical threshold for significant enrichment. MF, molecular function, CC, cell composition, BP, and biological process.
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3.6 Elevated PLP1 expression in UFs tissue

The qRT-PCR and Western blot results showed PLP1 was

overexpressed in UFs compared with that in normal

myometrium (Figure 2B, Figures 3A,B). In addition, IHC

staining of PLP1 was performed in UFs and paired normal

myometrium (Figure 3C). The corresponding H&E-stained

sections were also shown in Figure 3C to illustrate the

histological characteristics of UFs. PLP1 was upregulated in

UFs compared with that in normal myometrium tissue. The

relative IHC score based on all cases demonstrated the expression

of PLP1 significantly increased in UFs (Figure 3D).

3.7 ROC curve analysis

The diagnostic value of PLP1 of uterine fibroids was

determined by the ROC curve which was constructed by the

IHC score (Figure 4). The area under the ROC curve (AUC) was

0.956 with p < 0.005. The results showed the cutoff value was

2.069 with a sensitivity of 79.2% and a specificity of 100%,

suggesting PLP1 presented high diagnostic accuracy of UFs.

4 Discussion

Uterine fibroids, formed by the proliferation of smooth

muscle cells, are one of the most common benign tumors in

women of reproductive age (Styer and Rueda, 2016). Numerous

studies have demonstrated the potential biomarker for the

diagnosis and surveillance of UFs, but the efficacies were still

unclear (Levy et al., 2013). In this study, comprehensive

bioinformatics methods were used to verify the biomarker as

well as to investigate the possible molecular mechanism

underlying the development of UFs.

We analyzed the DEGs of 3 datasets, including GSE593,

GSE45189, and GSE31699 datasets, under the same criteria using

GEO2R. 22 DEGs were found between UFs and normal

FIGURE 2
Identification of the hub gene. (A) The co-expressive differentially expressed genes in differently mRNA expression profiles (from GSE593,
GSE31699, and GSE45189 datasets) and genome-wide DNA methylation genes (from GSE31699, GSE45189 datasets) by Venn diagram.
M-GSE31699, M-GSE45189 indicated the differential DNAmethylation genes. (B–D) The relativemRNA expression of TM4SF1, TNFSF10, and PLP1 by
RT-qPCR. n = 14/groups. ***p < 0.001. ns no statistical significance.

TABLE 2 Gene symbol of 22 differentially expressed genes.

Gene symbol Gene full name FDR

KIF5C kinesin family member 5C 4.652

PLP1 proteolipid protein 1 3.158

RAD51B RAD51 paralog B 2.189

ZMAT3 zinc finger matrin-type 3 1.867

TYMS thymidylate synthetase 1.795

NAV2 neuron navigator 2 1.403

CFLAR CASP8 and FADD like apoptosis regulator -0.91

PRKCH protein kinase C eta -1.07

ITGB4 integrin subunit beta 4 -1.351

MPP5 membrane palmitoylated protein 5 -1.379

GPC4 glypican 4 -1.408

TNFSF10 tumor necrosis factor superfamily member 10 -1.505

ADIRF adipogenesis regulatory factor -1.608

EPAS1 endothelial PAS domain protein 1 -1.634

GATA2 GATA binding protein 2 -1.709

CALCRL calcitonin receptor like receptor -1.947

ABLIM1 actin binding LIM protein 1 -2.04

ABCA8 ATP binding cassette subfamily A member 8 -2.644

PPARG peroxisome proliferator activated receptor gamma -2.74

SPTBN1 spectrin beta, non-erythrocytic 1 -3.376

TM4SF1 transmembrane 4 L six family member 1 -3.498

DUSP1 dual specificity phosphatase 1 -4.915
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myometrium tissue samples. The DEGs were mainly enriched in

cell maturation and regulator of apoptotic. It is well known that

apoptosis is one of the key regulators of fibroid growth, and the

dysregulation of apoptotic pathways may contribute to the

development of UFs (Okolo, 2008). Another main enrichment

in the biological process was the cellular response to hypoxia.

Leiomyoma grows in the hypoxia microenvironment, and such

environment may lead to the formation of UFs (Zhou et al., 2011;

Tal and Segars, 2014). The hypoxia-inducible factor-1protein was

also overexpressed in UFs tissue compared with myometrium

(Miyashita-Ishiwata et al., 2022a; b). Response to testosterone

was also enriched in our analysis. Fujimoto et al. reported that

testosterone increased after treatment with estradiol

dipropionate in leiomyoma, while it not occurred in the

myometrium, which indicated that testosterone might

participate in the biological process of UFs (Fujimoto et al.,

1994). Nonetheless, Ke LQ et al. failed to find reliable evidence to

prove the effectiveness of danazol, a synthetic isoxazole derivative

chemically related to 17-ethinyl testosterone, in UFs in clinical

trials (Ke et al., 2009). Although there is still an uncertain

conclusion on the response of testosterone in UFs, the

aberrant activities of this process might impact the

development of UFs, which is consistent with our enrichment

analysis. Most of the DEGs were enriched in protein binding for

molecular function (19/22) based on our results.

As one of the well-studied epigenomic processes in mammals

(Bestor, 2000), DNA methylation was considered as a potential

mechanism in the pathology of UFs. Many aberrantly

hypermethylation/hypomethylation genes were detected in by

genome-wide DNA methylation assays (Li et al., 2003; Yamagata

et al., 2009; Navarro et al., 2012; Islam et al., 2013; Maekawa et al.,

2013; Carbajo-García et al., 2022), and numerous genes were

validated to participate in the developmental progress of the UFs

in vitro experiments. SATB homeobox 2 and neuregulin 1 were

proved to be the upregulated hypermethylated genes involved in

the pathogenesis of uterine leiomyoma by activating theWNT/β-

TABLE 3 Baseline characteristics of all participants.

Characteristic UFs (n = 48) UFs-free (n = 14) p-value

Age (mean ± SD; range) 42.10 ± 7.23; 27–53 44.07 ± 11.22; 29–61 0.435

No. of pregnancies (mean ± SD; range) 2.17 ± 1.49; 0–5 2.85 ± 1.28; 0–5 0.127

Previous abdominal surgery

yes 23 9 0.281

no 25 5

Note: SD, standard deviation; UFs, uterine fibroids.

TABLE 4 Fibroid characteristics in participants with fibroids (n = 48).

Parameters No. cases %

Location

Anterior 16 33.3

Posterior 12 25.0

Lateral 6 12.5

Fundal 10 20.8

others (broad ligament, cervix etc.) 4 8.3

Maximum diameter

mean

<5 6 12.5

5–8 37 77.1

>8 5 10.4

Surgery type

myomectomy 38 79.2

hysterectomy 10 20.8

Previous myomectomy

Yes 6 12.5

No 42 87.5

Frontiers in Genetics frontiersin.org07

Cai et al. 10.3389/fgene.2022.1045395

139

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1045395


catenin and TGF-β pathways (Sato et al., 2019). Shimeng Liu

et al. sorted cells from UFs tissue into stem cell-like cells and

revealed that most of the stem cells in UFs were hypermethylated.

Meanwhile, tumor growth was suppressed when administered

the hypomethylating drug, 5′-Aza (Liu et al., 2020; Liu S. et al.,

2021). The methylation condition of mediator complex subunit

12 (MED12), one of the most widely reported somatic mutation

genes in UFs (Mäkinen et al., 2011), also could separate the UFs

from myometrium on account of the aberrantly clustering

molecular pathways based on the MED12 methylation-

induced DEGs (Maekawa et al., 2022). All these facts

combined with the genome-wide DNA methylation profile of

UFs suggested that methylation was the vital epigenetic

mechanism in UFs and the significant DEGs between UFs

FIGURE 3
PLP1 expression in UFs tissue (A) The PLP1 protein expression of tissue from fibroids and normal myometriumwas assessed byWestern blot. (B)
The relative expression of PLP1 is based on the gray value of Western blot. N = 4/groups. *p < 0.05. (C) Immunohistochemical and corresponding
hematoxylin and eosin stains results of fibroids and normal myometrium tissue (magnification 200). IHC, immunohistochemical, HE, hematoxylin
and eosin stains, UFs, Uterine Fibroids, NM, Normal Myometrium. (D) Relative IHC score. UFs, n = 48. NM, n = 14. ***p < 0.001.
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and myometrium might be induced by the local changes of DNA

methylation at genome loci. To identify the key genes in this

progress, we next combined the DEGs extracted above with the

different DNA methylation conditions genes in both

GSE45189 and GSE31699 datasets. Consequently, TM4SF1,

TNFSF10, and PLP1 were identified, in which only PLP1 was

significantly upregulated as verified by RT-qPCR.

PLP1 is the most abundant protein of myelination (Eng

et al., 1968; Norton and Poduslo, 1973; Wight, 2017), and the

mutation of PLP1 can lead to the X-chromosome-linked

leukodystrophy Pelizaeus–Merzbacher disease (Elitt et al.,

2020). PLP1 has been widely reported in the formation of

the central nervous system while the aberrant expression of

PLP1 in various malignant tumors was identified by the

bioinformatic analysis (Li et al., 2017). Remarkably, the high

level of PLP1 in primary colorectal cancer patients presents

poorer overall survival times than those with low expression

levels (Han et al., 2020). Although the underlying mechanism is

unclear, PLP1 was still considered a potential biomarker in

other diseases other than only in nervous system lesions (Khalaf

et al., 2022). PLP1 was considered as the hypomethylation and

transcriptionally upregulated genes in leiomyoma based on the

genome-wide DNA methylation and mRNA expression

analysis (Navarro et al., 2012). The results of this present

study showed that the PLP1 was over-expressed in UFs

tissue based on the comprehensive analysis of irregular

methylation genes and DEGs in fibroids. Then the validation

was conducted at both mRNA and protein levels based on the

tissue samples from leiomyoma patients. To the best of our

knowledge, it is the first time to validate the dysregulation of

PLP1 in benign tumors. Our result suggested that the

hypomethylation of PLP1 might be involved in the

pathophysiology of UFs, but further experiments still need to

implement. Moreover, overexpressed PLP1 exhibited major

oxidative phosphorylation deficits (Wight, 2017) and the

down-regulation of oxidative phosphorylation aggravates

therapeutically adverse tumor hypoxia (Ashton et al., 2018).

According to our result that the 22 DEGs including PLP1 were

FIGURE 4
ROC curve depicting the diagnostic value of PLP1. The values of AUC, optimum cutoff, sensitivity, and specificity are 0.956 (p < 0.001), 2.069,
79.2% and 100%, respectively.
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enriched in hypoxia, we constructed the posits that PLP1 might

participate in the hypoxia program to onset the fibroids.

However, the underlying mechanisms were speculated

through different tissue types, which should be further

investigated in UFs.

To evaluate the diagnostic meaning of PLP1 expression in

UFs, we drew the ROC curve based on the calculation of the

IHC score, indicating that PLP1 expression can be a

convincing biomarker for UFs with the AUC, sensitivity,

and specificity of 0.956, 79.2%, and 100%, respectively.

However, the limitation of this ROC analysis is based on

IHC score only, lacking clinical utility. The specificity analysis

was limited by the fact that PLP1 expression tissue samples

were derived only from UFs and normal myometrium,

although it was credible.

5 Conclusion

In summary, we obtained 22 DEGs in UFs via

bioinformatical analysis and identified PLP1 as the core gene

by the combined analysis of genome-wide DNA methylation

profiles and 22 DEGs. The over-expression of PLP1 in UFs tissue

was validated in both mRNA and protein levels for the first time.

Our findings indicated that PLP1 is a potential diagnostic

biomarker of the UFs.
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methylation on chronic hepatitis
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The role of genetic factors in the occurrence and progression of CHB (CHB) is

still not fully explored. In recent years, genome-wide association studies on

CHB patients have demonstrated that a large number of CHB-associated single

nucleotide polymorphisms exist in the gene intron, which may regulate

expression at the transcriptional level. Modification of RNA m6A methylation

is one of the key mechanisms regulating gene expression. Here we show that

METTL16, an m6A regulator involved in mRNA intron splicing, is differentially

expressed in CHB the tissue of patients who has definite diagnosis of mild and

severe fibrosis. At the same time, there are also significant differences in the

expression of CHB-associated genes such as HLA-DPA1 and HLA-DPB1. The

expression of HLA-DPB1 is related to METTL16. Furthermore, analyses of RNA

binding of METTL16 and HLA-DPB1 show that the silencing of METTL16 in

astrocytes downregulates m6A and expression of HLA-DPB1. In conclusion,

METTL16 participates in the progression of CHB fibrosis by regulating the m6A

level and expression of HLA-DPB1.

KEYWORDS

M6A, METTL16, CHB (chronic hepatitis B), HBV-hepatitis B virus, GWAS

Introduction

Chronic hepatitis B (CHB) is a chronic inflammatory disease in patients with hepatitis

B virus (HBV) infection. The incidence of CHB ranks first among all kinds of infectious

diseases (Lok, 2002). More than 1.3 billion people in global are infected with HBV, about

260 million are with CHB, which causes about 1 million deaths every year (Perz et al.,

2006; Schweitzer et al., 2015). CHB has become a very serious health and social problem.

Heredity, the virus, and the environment are important factors in the pathogenesis of

CHB, which leads to high heterogeneity in clinic. From the perspective of population

susceptibility to CHB and disease progression, genetic variation can lead to differences in

clinical manifestations among individuals. Since the publication of the first genome-wide
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association study (GWAS) of CHB in 2009, genetic studies on

patients with CHB have revealed many single nucleotide

polymorphisms (SNPs) associated with susceptibility to CHB

(Raza et al., 2007). Several studies have confirmed that these

SNPs are mainly concentrated in a series of human leukocyte

antigen (HLA) loci, including HLA-DP, HLA-DQ, HLA-C, and

HLA-DOA (Lau et al., 2011; Yamada et al., 2014; Akcay et al.,

2018). Among them, Mbared et al. found that the SNP

rs9277535 with the most significant association with CHB in a

Japanese population was located in the 3′ untranslated region of

HLA-DPB1. The SNP was also identified in Korean, Thai, and

Han populations with different significance. Moreover, rs3077, a

representative CHB-associated SNP in different populations, is

located in the 3′ untranslated region of HLA-DPA1. In addition,

SNPs located in EHMT2, TCF19, UBE2l3, CFB, FDX1, and other

gene regions are also associated with susceptibility to CHB in

different regions. However, CHB progresses to liver cirrhosis and

liver cancer. GWAS shows that variation in the SNP ofHLA gene

closely related to the progression of CHB to liver cirrhosis and

participates in the occurrence of liver cancer. Previous studies

have shown that the cytotoxicity of HLA class I and class II play

an critical role in the spontaneous clearance of HBV. However,

the clinical heterogeneity of CHB cannot be fully analyzed from

only the level of genetic variation. The associated SNPs vary in

different populations, and some findings are difficult to

replicate, or even show the opposite results. In the results of

GWAS, the genes that play an important role in CHB is not

statistically significant. Most SNPs located at HLA loci are

located in the untranslated region. The functional mechanism

is not clear, which may be related to mRNA expression of the

gene. SNP loci associated with hepatitis are distributed in the

intron region of the gene. From the perspective of SNP–amino

acid protein function, the mechanism of action of these SNPs

cannot be deeply analyzed. Although it is believed that

these SNPs can affect the pathogenesis of CHB by altering

gene expression, their key mechanism of action has not been

revealed.

Recent studies have found that modification of N6 methyl

adenosine (m6A) is an important way of controlling gene

expression by eukaryotic mRNA. m6A modification is mainly

distributed in introns and the 3′ untranslated region, especially in
region near the stop codon and splice site, which is involved in

RNA processing and metabolic function (Liu and Zhang, 2018).

m6Amodification takes part in different stages of development of

mRNA (Imam et al., 2018), including RNA folding, stability,

splicing, nuclear output, translation regulation, and degradation,

to regulate RNA biological function, protein translation, and life

activity (Zhao et al., 2021; Tong et al., 2022). m6Amodification of

precursor mRNA mainly takes place in the untranslated region,

and m6A methylase and reader proteins located in the nucleus.

Thus, it can be inferred that m6A modification mainly occurs in

the nucleus and affects mRNA splicing (Meyer et al., 2012; Zhao

et al., 2014; Xu et al., 2017). Knockout of METTL3 results in the

downregulation of introns. In addition, m6A demethylase FTO

preferentially binds to the RNA intron region, downregulates

m6A modification on the one hand, but prevents RNA from

binding to splicing protein SRSF2 on the other hand, resulting in

abnormal splicing (Dominissini et al., 2012). These studies show

that m6A modification of RNA in untranslated regions could

affects gene expression by regulating RNA processing and

metabolism. This phenomenon provides clues for analyzing

the role of SNPs in the untranslated region in the

pathogenesis of CHB. We speculate that SNPs in the

untranslated region impact the occurrence and development

of CHB by affecting m6A modification and regulating gene

expression.

In addition, many studies have shown that m6A modification

can change expression of important viral genes. Researchers have

proven that modification of m6A methylation is widely involved

in replication of the HBV virus, inflammatory response, immune

regulation, and fibrosis and plays a role in liver injury, tumors,

and organ failure (Kostyusheva et al., 2021). Imam h et al.

mapped the m6A site in HBV RNA (Qu et al., 2021; Cheng

et al., 2022; Kim et al., 2022; Kim and Siddiqui, 2022; Zhao et al.,

2022). m6A modification is necessary for efficient reverse

transcription of the viral genome and can also regulate the

stability of HBV RNA (Kim and Siddiqui, 2021a). Chronic

infection with HBV and hepatitis C virus is the main cause of

hepatocellular carcinoma (Xiao et al., 2016; Xu et al., 2017).

There is increasing evidence that hepatocellular carcinoma

oncoproteins induced by both virus are controlled by m6A

modification. Recent works found that m6A modification

involves the regulation of hepatocellular carcinoma through

METTL3 and METTL14. First, Chen et al. (2018) observed

the expression of METTL3 increased abnormally in liver

cancer and increased cell proliferation in vitro, resulting in

promoted tumorigenicity in vivo (Xu et al., 2017). METTL3 is

significantly upregulated in hepatocellular carcinoma and

promotes tumor progression. It inhibits SOCS2 expression

and promotes cancer cell proliferation and metastasis through

the m6A-YTHDF2 mechanism. Chen et al. (2018) found

interference with METTL3 reduce the expression of

SOCS2 mRNA. Second, it was reported that METTL14 is

downregulated in liver cancer, and thereby regulates the

development of liver cancer (Bartosovic et al., 2017; Ma et al.,

2017). Together these evidences suggest that m6A modification

has a key role in liver-related diseases through various

m6A-related proteins (Wu et al., 2019; Wu et al., 2020; Kim

and Siddiqui, 2021b; Wang and Zhou, 2022). Modification of

m6A methylation is involved in the pathogenesis of liver injury,

organ failure, and fibrosis. However, it is unclear whether it is

involved in the development of CHB.

Here, we investigated the expression of m6A regulator in

different stages of CHB, examined the relationship between m6A

and CHB-associated genes, and checked the change in m6A and

expression of gene loci with CHB-associated SNPs.
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Materials and methods

Patients

The ethical approval was approved by the ethics committee

of Mengchao Hepatobiliary Hospital of Fujian Medical

University and all study participants obtained informed

consent. Clinical data were collected from patients with

CHB diagnosed by liver biopsy in our hospital in 2019 or

2020. The diagnostic criteria were in accordance with the

guidelines for the prevention and treatment of CHB

(2019 Edition), and study subjects provided informed

consent before enrollment. Inclusion criteria were 1) being

HBsAg positive for more than 6 months and HBsAb negative

and 2) being between 18 and 60 years old. Exclusion criteria

were 1) the presence of acute hepatitis B, liver failure, or

primary liver cancer, in combination with drug liver, alcoholic

liver, or fatty liver, in combination with any other viral

infection and other serious disease; 2) use of antiviral drugs

up to 3 months before enrollment; 3) receipt of

immunosuppressant and immunomodulator treatment up

to 6 months before enrollment; 4) autoimmune liver disease

and systemic autoimmune disease; and 5) pregnancy.

Specimens

A BARD puncture biopsy gun (with a sampling length of

2.2 cm) and 16 g disposable cutting biopsy needle were used for

the liver puncture biopsy. One tissue specimen was stained with

he, Masson, and reticular fibers, and a single pathologist read the

film uniformly according to the pathological diagnostic criteria.

The other specimen was kept in the refrigerator at −80°C.

Tandem mass spectrometry (LC/MS)

After total RNA is extracted with Trizol, mRNA can be

enriched with Oligo (dT) magnetic beads. RNA was digested

from a single strand into a single base with nuclease P1. Alkaline

phosphatase and ammonium bicarbonate were added, the

sample was allowed to incubate for several hours, and then

the sample was injected into a liquid chromatograph. Finally,

the overall degree of m6A methylation on mRNA was calculated

according to the ratio of m6A to total adenine.

Real-time fluorescence quantitative PCR

Tissues or cells were digested and lysed by Trizol reagent.

After Trizol was added to cells or tissues, total RNAwas extracted

with chloroform isopropanol extraction. cDNA was synthesized

by reverse transcription with a one-step PrimeScript cDNA

synthesis kit. Quantitative PCR was performed with a one-

step SYBR PrimeScript RT-PCR kit. GAPDH was used as the

internal reference gene, and the quantitative results were 2−ΔΔCT

indicates. The primer information was in (Supplemental

Table S1).

meIP-PCR

The combination of immunoprecipitation (ChIP) and PCR

technology can be utilized to efficiently determine the interaction

in vivo. RNA was isolated and broken into small fragments by

ultrasounication. An specific antibody was added, and the antibody

formed an immune binding complex with the target protein. De

crosslinking, RNA purification and qPCR were further processed.

FIGURE 1
Illustration of GWAS studies in CHB. (A)Manhattan plot of CHB associated SNP reviewed from published literature. Note that most SNPs located
in the chromosome 6. (B)Distribution of SNP in gene different regions. Note that intron is hot regions where CHB associated SNP frequently located.
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Statistical analysis

SPSS 20.0 was used for statistical the analysis. The

measurement data conforming to normal distribution adopts

mean ± standard deviation (±s). t tests were used for pairwise

comparisons of normally distributed data. Single-factor analysis

of variance was used for multigroup comparisons. Spearman

correlation analysis was used to analyze correlations between

various factors and the occurrence and degree of liver fibrosis in

patients with CHB.

FIGURE 2
Pathological analysis of patients with different levels of liver fibrosis. According to Ishak scoring (A,B) s1, (C,D) s2, (E,F) s4, (G,H) s5. (A,C,E,G)HE,
(B,D,F,H) Masson.
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Results

SNPs associated with susceptibility to CHB
are located in different genes

GWAS has identified 102 SNP sites related to susceptibility to

or progression of CHB (Figure 1A and Supplemental Table S2).

We discovered that only three SNPs were distributed in the exon

region of the gene, nearly 26 were distributed in the intron region

of the gene, and the rest were distributed in the 3′ and 5′
untranslated regions (Figure 1B).

Patients show different levels of liver
fibrosis

A BARD puncture biopsy gun (with a sampling length of

2.2 cm) and 16 g disposable cutting biopsy needle were used for

FIGURE 3
Comparison of expression level ofm6A regulator inmild and severe fibrosis groups. (A)writers, (B) erasers. Note that METTL16 is significantly up-
regulated in severe fibrosis group.
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the liver puncture biopsy. Two complete liver tissues with a

length of about 1.5–2.0 cm were taken. One tissue sample was

sectioned consecutively into five pieces; and stained with

conventional HE staining, Masson staining, and reticular

fibers. A single pathologist read the film uniformly according

to the pathological diagnostic criteria and divided the films into a

mild fibrosis group (s1–s2) and a severe fibrosis group (s4–s5)

according to Ishak scoring criteria (Figure 2).

METTL16 is differentially expressed in the
mild and severe fibrosis groups

Quantitative PCR was carried out to detect the expression

level of a series of m6A methyltransferase regulator genes.

METTL16 expression was significantly higher in the severe

group than in the mild group (Figure 3A). The expression of

other m6A demethyl regulators were also checked, and there was

no statistically significant differences. Then we detected the m6A

modification level of total RNA in the two groups by LC/MS and

found that it was significantly (more than 2 times) higher in the

severe group than in the mild group (Figure 3B).

HLA-DPB1 is differentially expressed in
fibrosis groups

Asmentioned earlier, SNPs related toCHBare located in different

genes in the genome according to GWAS. The expression of 15 genes

was detected in each sample by quantitative RT-PCR. A total of eight

genes were significantly differentially expressed in the two groups of

samples. That is, HLA-DPA1, HLA-DPB1, HLA-DPB2, HLA-DQB2,

ITPR3, and NUP205 were upregulated in the severe group. In

contrast, HSD17B8, RING1, and SKIV2L were downregulated in

the severe group (Figure 4A).

The relationships between these differentially expressed

genes and the expression of m6A regulators were analyzed by

Pearson correlation analysis. mettl16 was significantly

positively correlated with HLA-DPB1 and HLA-DPA1

(Figures 4B,C).

FIGURE 4
CHB GWAS genes differentially expressed between mild and severe fibrosis groups. (A) expression level of CHB GWAS genes. Note that HLA-
DPB1 is up-regulated in severe fibrosis group. (B,C) METTL16 is co-expressed with HLA-DPB1 and HLA-DPA1.
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There are different levels of m6A on HLA-
DPB1 in the mild and severe fibrosis
groups

It was suggesting that the expression of HLA-DPB1 is related

to the level of RNA m6A. The m6A level of HLA-DPB1 in each

sample was detected by MeIP qPCR. The level of m6A on HLA-

DPB1mRNAwas significantly increased in the severe group than

in the mild group (Figure 5A).

METTL16 interacts with HLA-DPB1 mRNA

The m6A level of HLA-DPB1 mRNA was consistent with its

expression in each group and was also related to the expression of

mettl16. This implies that mettl16 may be one of the causes of the

difference in m6A level and expression of HLA-DPB1. First

RNAip experiments showed that mettl16 could bind to HLA-

DPB1 mRNA (Figure 5B).

Then we silenced the expression of METTL16 in hepatic

stellate cells and detected the expression of HLA-DPB1 and the

degree of m6A modification. In the METTL16 silencing group,

the m6A level of HLA-DPB1 mRNA was significantly

downregulated by more than 2 times (Figures 5C,D).

Discussion

Molecular genetics research on CHB has revealed a large

amount of genetic information that is of great value for

obtaining a complete understanding of the pathogenesis of

CHB and the development of innovative treatments. Especially

in the past 2 decades of population genetics research, a large

number of SNPs related to susceptibility to and progression of

CHB have been found through GWAS. Most of these studies

have been conducted in Asian populations, and their

conclusions are well targeted. The high prevalence of CHB

in Asia can be further understood from these research results.

The SNPs found in these GWASs are mainly concentrated in

HLA loci, including HLA-DPA1, -DPB1, -DQB2, and -DPB2.

As an important gene group that regulates the body’s immune

response, the HLA complex participates in the anti-HBV

immune response, affects the chronicity of HBV infection

and the strength of the immune response, and participates

in the progression of CHB to cirrhosis and liver cancer.

Therefore, the expression of these genes is likely closely

related to CHB. In our study, we found that HLA-DPA1

and HLA-DPB1 differed significantly in groups with

different degrees of liver fibrosis. This result suggests that

the expression of these two genes may be involved in

FIGURE 5
METTL16 control HLA-DPB1 expression through regulating m6A level. (A) m6A level of HLA-DPB1 mRNA between mild and severe fibrosis
groups. (B) METTL16 interact with HLA-DPB1 mRNA. (C,D) knock-down METTL16 reduced m6A and mRNA of HLA-DPB1 in hepatic stellate cells.
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mediating the progression of CHB. In addition, we found that

other CHB-related loci, such as HSD17b8, ITPR3, NUP205,

RING1, and SKIV2l, were upregulated or downregulated in

different ways in the groups with different degrees of liver

fibrosis. This shows that controlling the expression of CHB-

related genes at the transcriptional level is of great significance

for regulating the progression of CHB. However, we found a

large number of CHB-associated SNPs found in GWAS were

located in the noncoding region of the locus, which suggests

that these genes may be involved in regulating CHB at the

transcriptional level rather than the function of the encoded

protein. In conclusion, our data show that genes with CHB-

associated SNPs can participate in the mechanism of CHB

through transcriptional regulation.

m6A modification plays an vital role in transcriptional

regulation in eukaryotes. The stability, transportation, splicing,

and translation efficiency of mRNA are closely related to the

degree of m6Amodification. This modification is regulated by the

complex. METTL3, METTL14, WTAP, and KIAA1429 form the

“writer,” whereas alkbh4 and FTO form the “eraser.” These

usually regulate the modification of mRNA in the coding

region and the 3′ or 5′ end. Recent studies have found that

RNA has m6A modifications in the intron region, which affects

the splicing of mRNA. Mettl16 is a key methyltransferase whose

precursor mrnam6a modification affects intron cleavage. In our

study, key regulatory factors of m6A, especially mettl16, were

differentially expressed in tissues with different degrees of liver

fibrosis, although other m6A regulators did not differ

significantly. This shows that m6A participates in the

regulation of CHB mainly through mett16. However, the

GWASs summarized above found that SNPs associated with

CHB are mainly located in the noncoding region of the gene. This

is consistent with the function of mettl16. We further found that

mettl16 could bind to HLA-DPB1 mRNA and change its m6A

modification level and expression. In clinical samples, the

expression of METTL16 was also correlated with HLA-DPB1.

All these findings suggest that mettl16 may affect CHB by

regulating the expression of these CHB-associated loci, a new

mechanism in the process of CHB that needs to be analyzed

further.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding authors.

Ethics statement

The studies involving human participants were reviewed and

approved by the ethics committee of Mengchao Hepatobiliary

Hospital of Fujian Medical University. The patients/participants

provided their written informed consent to participate in this

study.

Author contributions

HG, ML, and DL designed the project and wrote the

manuscript. HG, XW, and HM did almost molecular

experiments. SL, DZ, WW, ZL, MC, and QL helped data

analysis and revised manuscript.

Funding

Fujian Medical Innovation Project (2020CXB038); Fujian

Natural Science Foundation (2021J011289); Fuzhou Science

and technology plan project (2021-S-099; 2021-S-114; 2020-

WS-130).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.996245/full#supplementary-material

Frontiers in Genetics frontiersin.org08

Gao et al. 10.3389/fgene.2022.996245

152

https://www.frontiersin.org/articles/10.3389/fgene.2022.996245/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.996245/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.996245


References

Akcay, I. M., Katrinli, S., Ozdil, K., Doganay, G. D., and Doganay, L. (2018). Host
genetic factors affecting Hepatitis B infection outcomes: Insights from genome-wide
association studies. World J. Gastroenterol. 24 (30), 3347–3360. doi:10.3748/wjg.
v24.i30.3347

Bartosovic, M., Molares, H. C., Gregorova, P., Hrossova, D., Kudla, G., and
Vanacova, S. (2017). N6-methyladenosine demethylase FTO targets pre-mRNAs
and regulates alternative splicing and 3’-end processing. Nucleic Acids Res. 45 (19),
11356–11370. doi:10.1093/nar/gkx778

Chen, M., Wei, L., Law, C. T., Tsang, F. H., Shen, J., Cheng, C. L., et al. (2018).
RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer
progression through YTHDF2-dependent posttranscriptional silencing of
SOCS2. Hepatol. Baltim. Md) 67 (6), 2254–2270. doi:10.1002/hep.29683

Cheng, D., Wu, C., Li, Y., Liu, Y., Mo, J., Fu, L., et al. (2022). METTL3 inhibition
ameliorates liver damage in mouse with Hepatitis B virus-associated acute-on-
chronic liver failure by regulating miR-146a-5p maturation. Biochim. Biophys. Acta.
Gene Regul. Mech. 1865 (3), 194782. doi:10.1016/j.bbagrm.2021.194782

Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M.,
Ungar, L., Osenberg, S., et al. (2012). Topology of the human and mouse m6A
RNA methylomes revealed by m6A-seq. Nature 485 (7397), 201–206. doi:10.1038/
nature11112

Imam, H., Khan, M., Gokhale, N. S., McIntyre, A. B. R., Kim, G. W., Jang, J. Y.,
et al. (2018). N6-methyladenosine modification of Hepatitis B virus RNA
differentially regulates the viral life cycle. Proc. Natl. Acad. Sci. U. S. A. 115
(35), 8829–8834. doi:10.1073/pnas.1808319115

Kim, G. W., Moon, J. S., and Siddiqui, A. (2022). N6-methyladenosine
modification of the 5’ epsilon structure of the HBV pregenome RNA regulates
its encapsidation by the viral core protein. Proc. Natl. Acad. Sci. U. S. A. 119 (7),
e2120485119. doi:10.1073/pnas.2120485119

Kim, G. W., and Siddiqui, A. (2022). Hepatitis B virus X protein expression is
tightly regulated by N6-methyladenosine modification of its mRNA. J. Virol. 96 (4),
e0165521. doi:10.1128/JVI.01655-21

Kim, G. W., and Siddiqui, A. (2021). Hepatitis B virus X protein recruits
methyltransferases to affect cotranscriptional N6-methyladenosine modification
of viral/host RNAs. Proc. Natl. Acad. Sci. U. S. A. 118 (3), e2019455118. doi:10.1073/
pnas.2019455118

Kim, G. W., and Siddiqui, A. (2021). The role of N6-methyladenosine
modification in the life cycle and disease pathogenesis of Hepatitis B and C
viruses. Exp. Mol. Med. 53 (3), 339–345. doi:10.1038/s12276-021-00581-3

Kostyusheva, A., Brezgin, S., Glebe, D., Kostyushev, D., and Chulanov, V. (2021).
Host-cell interactions in HBV infection and pathogenesis: The emerging role of
m6A modification. Emerg. Microbes Infect. 10 (1), 2264–2275. doi:10.1080/
22221751.2021.2006580

Lau, K. C., Lam, C. W., Law, C. Y., Lai, S. T., Tsang, T. Y., Siu, C. W., et al. (2011).
Non-invasive screening of HLA-DPA1 and HLA-DPB1 alleles for persistent
Hepatitis B virus infection: Susceptibility for vertical transmission and toward a
personalized approach for vaccination and treatment. Clin. Chim. Acta. 412 (11-
12), 952–957. doi:10.1016/j.cca.2011.01.030

Liu, Z., and Zhang, J. (2018). Human C-to-U coding RNA editing is largely
nonadaptive. Mol. Biol. Evol. 35 (4), 963–969. doi:10.1093/molbev/msy011

Lok, A. S. (2002). Chronic Hepatitis B. N. Engl. J. Med. 346 (22), 1682–1683.
doi:10.1056/NEJM200205303462202

Ma, J. Z., Yang, F., Zhou, C. C., Liu, F., Yuan, J. H., Wang, F., et al. (2017).
METTL14 suppresses the metastatic potential of hepatocellular carcinoma by

modulating N(6) -methyladenosine-dependent primary MicroRNA processing.
Hepatol. Baltim. Md) 65 (2), 529–543. doi:10.1002/hep.28885

Meyer, K. D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C. E., and Jaffrey, S. R.
(2012). Comprehensive analysis of mRNA methylation reveals enrichment in 3’
UTRs and near stop codons. Cell 149 (7), 1635–1646. doi:10.1016/j.cell.2012.05.003

Perz, J. F., Armstrong, G. L., Farrington, L. A., Hutin, Y. J., and Bell, B. P. (2006).
The contributions of Hepatitis B virus and hepatitis C virus infections to cirrhosis
and primary liver cancer worldwide. J. Hepatol. 45 (4), 529–538. doi:10.1016/j.jhep.
2006.05.013

Qu, S., Jin, L., Huang, H., Lin, J., Gao, W., and Zeng, Z. (2021). A positive-
feedback loop between HBx and ALKBH5 promotes hepatocellular carcinogenesis.
BMC Cancer 21 (1), 686. doi:10.1186/s12885-021-08449-5

Raza, S. A., Clifford, G. M., and Franceschi, S. (2007). Worldwide variation in the
relative importance of Hepatitis B and hepatitis C viruses in hepatocellular
carcinoma: A systematic review. Br. J. Cancer 96 (7), 1127–1134. doi:10.1038/sj.
bjc.6603649

Schweitzer, A., Horn, J., Mikolajczyk, R. T., Krause, G., and Ott, J. J. (2015).
Estimations of worldwide prevalence of chronic Hepatitis B virus infection: A
systematic review of data published between 1965 and 2013. Lancet (London, Engl.
386 (10003), 1546–1555. doi:10.1016/S0140-6736(15)61412-X

Tong, J., Zhang, W., Chen, Y., Yuan, Q., Qin, N. N., and Qu, G. (2022). The
emerging role of RNA modifications in the regulation of antiviral innate immunity.
Front. Microbiol. 13, 845625. doi:10.3389/fmicb.2022.845625

Wang, Y., and Zhou, X. (2022). N(6)-methyladenosine and its implications in
viruses. Genomics Proteomics Bioinforma. S1672-0229(22), 00083–3. doi:10.1016/j.
gpb.2022.04.009

Wu, F., Cheng, W., Zhao, F., Tang, M., Diao, Y., and Xu, R. (2019). Association of
N6-methyladenosine with viruses and related diseases. Virol. J. 16 (1), 133. doi:10.
1186/s12985-019-1236-3

Wu, F., Cheng, W., Zhao, F., Tang, M., Diao, Y., and Xu, R. (2020). Association of
N6-methyladenosine with viruses and virally induced diseases. Front. Biosci. 25 (6),
1184–1201. doi:10.2741/4852

Xiao, W., Adhikari, S., Dahal, U., Chen, Y. S., Hao, Y. J., Sun, B. F., et al. (2016).
Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61 (4),
507–519. doi:10.1016/j.molcel.2016.01.012

Xu, K., Yang, Y., Feng, G. H., Sun, B. F., Chen, J. Q., Li, Y. F., et al. (2017). Mettl3-
mediated m(6)A regulates spermatogonial differentiation and meiosis initiation.
Cell Res. 27 (9), 1100–1114. doi:10.1038/cr.2017.100

Yamada, N., Shigefuku, R., Sugiyama, R., Kobayashi, M., Ikeda, H., Takahashi, H.,
et al. (2014). Acute Hepatitis B of genotype H resulting in persistent infection.
World J. Gastroenterol. 20 (11), 3044–3049. doi:10.3748/wjg.v20.i11.3044

Zhao, B., Wang, W., Zhao, Y., Qiao, H., Gao, Z., and Chuai, X. (2021). Regulation
of antiviral immune response by N (6)-methyladenosine of mRNA. Front.
Microbiol. 12, 789605. doi:10.3389/fmicb.2021.789605

Zhao, T., Qi, J., Liu, T., Wu, H., and Zhu, Q. (2022). N6-Methyladenosine
modification participates in the progression of hepatitis B virus-related liver fibrosis
by regulating immune cell infiltration. Front. Med. 9, 821710. doi:10.3389/fmed.
2022.821710

Zhao, X., Yang, Y., Sun, B. F., Shi, Y., Yang, X., Xiao, W., et al. (2014). FTO-
dependent demethylation of N6-methyladenosine regulates mRNA splicing and
is required for adipogenesis. Cell Res. 24 (12), 1403–1419. doi:10.1038/cr.
2014.151

Frontiers in Genetics frontiersin.org09

Gao et al. 10.3389/fgene.2022.996245

153

https://doi.org/10.3748/wjg.v24.i30.3347
https://doi.org/10.3748/wjg.v24.i30.3347
https://doi.org/10.1093/nar/gkx778
https://doi.org/10.1002/hep.29683
https://doi.org/10.1016/j.bbagrm.2021.194782
https://doi.org/10.1038/nature11112
https://doi.org/10.1038/nature11112
https://doi.org/10.1073/pnas.1808319115
https://doi.org/10.1073/pnas.2120485119
https://doi.org/10.1128/JVI.01655-21
https://doi.org/10.1073/pnas.2019455118
https://doi.org/10.1073/pnas.2019455118
https://doi.org/10.1038/s12276-021-00581-3
https://doi.org/10.1080/22221751.2021.2006580
https://doi.org/10.1080/22221751.2021.2006580
https://doi.org/10.1016/j.cca.2011.01.030
https://doi.org/10.1093/molbev/msy011
https://doi.org/10.1056/NEJM200205303462202
https://doi.org/10.1002/hep.28885
https://doi.org/10.1016/j.cell.2012.05.003
https://doi.org/10.1016/j.jhep.2006.05.013
https://doi.org/10.1016/j.jhep.2006.05.013
https://doi.org/10.1186/s12885-021-08449-5
https://doi.org/10.1038/sj.bjc.6603649
https://doi.org/10.1038/sj.bjc.6603649
https://doi.org/10.1016/S0140-6736(15)61412-X
https://doi.org/10.3389/fmicb.2022.845625
https://doi.org/10.1016/j.gpb.2022.04.009
https://doi.org/10.1016/j.gpb.2022.04.009
https://doi.org/10.1186/s12985-019-1236-3
https://doi.org/10.1186/s12985-019-1236-3
https://doi.org/10.2741/4852
https://doi.org/10.1016/j.molcel.2016.01.012
https://doi.org/10.1038/cr.2017.100
https://doi.org/10.3748/wjg.v20.i11.3044
https://doi.org/10.3389/fmicb.2021.789605
https://doi.org/10.3389/fmed.2022.821710
https://doi.org/10.3389/fmed.2022.821710
https://doi.org/10.1038/cr.2014.151
https://doi.org/10.1038/cr.2014.151
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.996245


Prognostic analysis of
m6A-related genes as potential
biomarkers in idiopathic
pulmonary fibrosis

Zhiqiang Wang1,2†, Lanyu Shen1†, Junjie Wang2, Jiaqian Huang2,
Huimin Tao1 and Xiumin Zhou1*
1Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China,
2Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou,
China

Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal lung disease with

limited treatment options. N6-methyladenosine (m6A) is a reversible RNA

modification and has been implicated in various biological processes.

However, there are few studies on m6A in IPF. This project mainly explores

the prognostic value of m6A-related genes as potential biomarkers in IPF, in

order to establish a set of accurate prognostic prediction model. In this study,

we used GSE28042 dataset in GEO database to screen out 218 m6A-related

candidate genes with high IPF correlation and high differential expression

through differentially expressed gene analysis, WGCNA and m6A correlation

analysis. The genes associated with the prognosis of IPF were screened out by

univariate Cox regression analysis, LASSO analysis, and multivariate Cox

regression analysis, and the multivariate Cox model of prognostic risk of

related genes was constructed. We found that RBM11, RBM47, RIC3,

TRAF5 and ZNF14 were key genes in our model. Finally, the prognostic

prediction ability and independent prognostic characteristics of the risk

model were evaluated by survival analysis and independent prognostic

analysis, and verified by the GSE93606 dataset, which proved that the

prognostic risk model we constructed has a strong and stable prediction

efficiency.

KEYWORDS

N6-methyladenosine (m6A), WGCNA, m6A-related genes, prognosis risk model, IPF

1 Introduction

Pulmonary fibrosis (PF) is a chronic, progressive tissue repair response, which leading

to irreversible scarring and lung remodeling (King et al., 2011). PF can occur secondary to

certain predisposing factors or diseases, such as radiation (He et al., 2019), asbestos (Pira

et al., 2018), silica (Cao et al., 2020), drugs (Della Latta et al., 2015), autoimmune diseases

(Fischer and Distler, 2019), etc. However, some patients with PF without a clear cause,

which is called idiopathic pulmonary fibrosis (IPF). IPF is a chronic, age-related
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interstitial lung disease (ILD) characterized by excessively

deposition of extracellular matrix (ECM) protein and

irreversible loss of lung function, causing progressive

respiratory failure (Richeldi et al., 2017; Barratt et al., 2018).

The pathogeny of IPF is still unknown, but it likely related to

heredity and environment. There are large regional differences in

the incidence of IPF, ranging from 0.35 to 1.30 per

100,000 individuals in Asia–Pacific countries, 0.09 to 0.49 per

100,000 individuals in Europe, and 0.75 to 0.93 per

100,000 individuals in North America (Maher et al., 2021).

IPF tends to occur in men between 40 and 50 years of age

and has a poor prognosis. The average life expectancy of

untreated IPF patients is only 3–5 years, and most patients die

of acute exacerbations of IPF or respiratory failure. Actually,

acute exacerbations of IPF can occur at any time during the

course of the disease and are associated with extremely high

mortality (Spagnolo andWuyts, 2017). Although two antifibrotic

drugs, nintedanib and pirfenidone, have been shown to delay the

progression of IPF, there is currently no drug that can cure IPF

(Raghu et al., 2015).

Epigenetics usually refers to the heritable modification of

genetic material without changing gene sequence, including

DNA methylation, RNA methylation, histone modification,

chromosome remodeling, etc., which plays an important role

in various diseases and tumors (Berger et al., 2009). At present,

more than 100 kinds of RNA (mRNA, lncRNA, snRNA, etc.)

have been found post-transcriptional modifications, among

which N6-methyladenosine (m6A) is the most common (Yue

et al., 2015; Boccaletto et al., 2018). M6A RNA modification is a

dynamic and reversible post-transcriptional modification

process mediated by m6A WER proteins (methyltransferase

“writers”, demethylase “erasers”, binding proteins “readers”),

which plays a crucial regulatory role in RNA metabolism,

splicing, translation and other processes (Wang et al., 2020).

Previous studies have shown that m6A is widely involved in the

development of various diseases, such as pneumonia, lung

cancer, colorectal cancer, breast cancer, nasopharyngeal

cancer, systemic lupus erythematosus, etc. (Li et al., 2018;

Chang et al., 2020; Yue et al., 2020; Maher et al., 2021; Meng

et al., 2021; Li et al., 2022). For example, Li et al. (2021) found that

SNHG4 promoted LPS-induced inflammation by inhibiting

METTL3-mediated m6A level of STAT2 mRNA. And

research pointed out that overexpressed FTO enhanced the

expression of MZF1 by reducing the m6A modification level

and stability of MZF1 mRNA, thereby promoting the

development of lung cancer (Liu et al., 2018). Similarly,

enhanced activity of methyltransferase METTL3 increased the

m6A modification level of JUNB mRNA and accelerated the

progression of TGF-β-induced lung adenocarcinoma (LUAD)

(Wanna-Udom et al., 2020). These studies indicated that RNA

methylation regulators could affect the development of the above

diseases by regulating the m6A modification of RNA. M6A-

related genes can also be used as diagnostic and prognostic

markers for lung diseases. For example, studies found that

m6A-related genes (EGFR, RFXAP, KHDRBS2, ADAMTS6,

etc.) were determined to be associated with overall survival

(OS) in patients with LUAD, in which RFXAP and

KHDRBS2 exhibited independent prognostic value (Sun et al.,

2021). Additionally, Jia et al. (2022) showed that three m6A-

related genes (FAM71F1, MT1E, andMYEOV) were identified as

prognostic genes in Lung Squamous Carcinoma (LUSC).

However, there are few reports on m6A methylation

modification in the occurrence and development of IPF.

Therefore, it is of great significance to explore m6A-related

genes and construct IPF-related prognostic risk model to

assist in judging the progression and prognosis of IPF.

Weighted gene co-expression network analysis (WGCNA) is

a comprehensive analysis technique based on biological network,

which can identify a class of genes (or proteins) that are co-

expressed, and cluster genes with similar expression patterns

through algorithms into different modules, analyze the

association between modules and characteristic traits or

phenotypes, use clustering modules to associate with

phenotypes to build a co-expression network, and explore the

core genes (or proteins) in the modules, so as to provide ideas for

exploring the molecular mechanism of diseases (Presson et al.,

2008; Yin et al., 2018). Compared with microarray and high-

throughput sequencing analysis, WGCNA is suitable for multiple

statistical tests to analyze the correlation between genes and avoid

losing the trend information of genes according to a fixed

threshold screening.

The Cox proportional hazards model is essentially a

regression model commonly used in medical research statistics

to study the association between a patient’s survival time and one

or more predictor variables (Cox, 1972). It is applicable to

quantitative predictor variables and categorical variables. It

mainly includes univariate and multivariate Cox regression

analysis. Univariate Cox analysis is usually used to remove

collinearity, but may lead to synergistic effects caused by other

variables, so multivariate Cox regression is performed to correct

other factors, which is often used for data modeling in survival

analysis (Huang and Liu, 2006; Li et al., 2016).

In this paper, the microarray data GSE28042 was

downloaded from the Gene Expression Omnibus (GEO)

database, and the gene expression profiles of peripheral blood

mononuclear cell (PBMC) and the corresponding clinical data of

75 IPF samples and 19 normal samples were obtained. Through

the analysis of differentially expressed genes, WGCNA and m6A

correlation analysis method, a group of m6A-related candidate

genes with high IPF correlation and differential expression were

screened. The genes associated with the prognosis of IPF were

screened out by univariate Cox regression analysis, LASSO

analysis, and multivariate Cox regression analysis, and the

multivariate Cox model of prognostic risk of related genes

was constructed. Finally, the prognostic predictive ability and

independent prognostic characteristics of the risk model were
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evaluated by survival analysis and independent prognostic

analysis, and verified by GSE93606 dataset, which is intended

to provide a basis for prognostic prediction of IPF patients

(Figure 1).

2 Materials and methods

2.1 Data collection and processing

First, we searched the GEO database (https://www.ncbi.

nlm.nih.gov/geo/) for keywords such as “idiopathic

pulmonary fibrosis”, “survival”, “blood”, etc. Then, by

combining samples for survival information, we eventually

included the GSE28042 and GSE93606 datasets into the study.

GSE28042 was used as the experimental dataset and

GSE93606 was used as the validation dataset. The

GSE28042 dataset contains the gene expression profiles of

peripheral blood mononuclear cell (PBMC) and their

corresponding clinical data of 75 IPF patients and

19 healthy people. The probes were converted to

corresponding gene symbols by referring to the annotation

information of the GPL6480 [Agilent-014850 Whole Human

Genome Microarray 4 × 44K G4112F (Probe Name version)]

platform. The GSE93606 dataset contains peripheral whole

blood gene expression profiles and corresponding clinical data

of 60 IPF patients and 20 healthy subjects. The probes were

converted to the corresponding gene symbols by referring to

the annotation information of GPL11532 [Hugene-11-ST]

Affymetrix Human Gene 1.1 ST Array [transcript (Gene)

version] platform.

2.2 Construction of weighted gene co-
expression network analysis

In order to explore the modules and genes related to the

clinical characteristics of healthy people and IPF patients, the

data of GSE28042 were analyzed by using the WGCNA package

of R language, and the samples were clustered. In order to ensure

the reliability of the results, we analyzed the samples and

removed the samples that were not clustered, that is, the

outlier samples. In order to ensure that the network conforms

to the scale-free network distribution, the “pickSoftTreshold”

function in the WGCNA package is used to calculate the

correlation coefficient of β value and the mean of gene

connectivity, and the appropriate soft threshold β is selected

to make the network conform to the standard of scale-free

network. Then, the modules were clustered with a minimum

cluster of 100 genes and a cut height of 0.25. Finally, the gene

significance (GS) andmodule membership (MM) were calculated

and correlated with clinical traits. The two modules with the

highest correlation with IPF were selected, and the genes in the

modules were further analyzed. Genes in the co-expression

module have high connectivity and genes in the same module

may have similar biological functions.

2.3 DEG analysis

Using R language (R) 4.0.3 limma package to analyze the

gene differences between the gene expression matrix of

peripheral blood monocytes of healthy people and IPF

patients. Set the screening criteria as |log2FC| >0.5, p < 0.05

FIGURE 1
The workflow for prognostic analysis of m6A-related genes as potential biomarkers for idiopathic pulmonary fibrosis.
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FIGURE 2
WGCNA module construction and selection of modules with high correlation with IPF. (A) Sample clustering diagram (delete 7 outlier
samples by setting the height to 120); (B) Determination of the optimal soft threshold (in the process of module selection, the adjacency
matrix is converted into a topology matrix, and the optimal soft threshold β = 10 is determined); (C) Cluster tree of co-expressed gene
modules (similar genes are grouped into the same module through dynamic splicing and cluster analysis); (D) The correlation
between gene modules and clinical information (The redder the color, the higher the positive correlation; the greener the color, the
higher the negative correlation. Numbers in the figure are Pearson’s correlation coefficient, and corresponding p-values are in
parentheses); (E) The correlation between Black and Pink modules and IPF is represented by scatter plot.
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(correction method is FDR). The up-and down-regulated genes

were represented by mapping volcanoes.

2.4 Screening of differentially expressed
genes associated highly with idiopathic
pulmonary fibrosis

The common genes obtained by WGCNA analysis and DEG

analysis were defined as IPF highly correlated differential genes.

Use the Venn diagram (https://bioinfogp.cnb.csic.es/tools/

venny/index.html) to show all the differentially expressed

genes associated highly with IPF.

2.5 Identification of m6A-related
candidate genes

The cor () and cor. test () functions of R language were used

to calculate the correlation between the expression levels of

23 m6A regulators (METTL3, METTL14, METTL16, WTAPI,

VIRMA, ZC3H13, RBM15, RBM15B, YTHDC1, YTHDC2,

YTHDF1, YTHDF2, YTHDF3, HNRNPC, FMR1, LRPPRC,

HNRNPA2B1, IGFBP1, IGFBP2, IGFBP3, RBMX, FTO,

ALKBH5) and the expression levels of IPF highly correlated

differential genes and calculate the p value (Deng et al., 2018;

Chen et al., 2019). The genes significantly associated with either

m6A regulator (| Pearson R | > 0.5 and p < 0.05) was defined as

candidate genes related to m6A.

2.6 Gene function and pathway
enrichment analysis

The online website Metascap (https://metascape.org/gp/

index.html) was used to analyze the module function and

pathway enrichment of m6A-related candidate genes to

further explore the biological functions of these genes. GO

analysis was used to annotate the functions of genes and their

products in three aspects, including biological process (BP),

molecular function (MF) and cellular component (CC). KEGG

database is a collection of information about genes, proteins,

FIGURE 3
Screening and enrichment analysis of m6A related candidate genes. (A) Volcano map of differentially expressed genes (red are up-regulated
genes, green are down-regulated genes, black are non-differentially expressed genes); (B) The genes screened by DEG and WGCNA were
intersected by Venn diagram, and IPF highly correlated differentially expressed genes were obtained; (C) Pearson correlation analysis was used to
screen out m6A-related candidate genes in IPF; (D) GO and KEGG enrichment analysis were performed for m6A related candidate genes.
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chemical components and their interactions, reactions and

relationship networks to annotate gene functions and

metabolic pathways.

2.7 Construction of prognostic risk model
and independent prognostic analysis

A series of m6A-related prognostic genes were screened by

univariate Cox regression analysis (KM < 0.05, p < 0.05), and

further screened by LASSO regression method. Then, the

prognosis model was constructed by multivariate Cox

regression analysis, and the forest map was drawn. The

Kaplan-Meier method of the “survival” function package was

used to analyze the survival of the screened genes, and the

survival curve was drawn.

The median prognostic risk value was set as a threshold.

According to this threshold, samples from patients with IPF

patients were divided into low-risk and high-risk groups. The

distribution of risk grades between the low-risk group and the

high-risk group was plotted as a scatter plot. The survival status

and survival time of patients in the two different risk groups were

also plotted as a scatter plot. Then the Kaplan-Meier method was

used to draw survival curves for the risk models.

Clinical traits and risk values were compared with survival time

and survival status. Independent prognostic analysis was conducted

to test the prognostic ability of the prognostic risk model, and to

observe whether the prognostic model can be independent of other

clinical traits and whether it has independent prognostic

characteristics of IPF. The R package “timeROC” was used to

draw time-dependent ROC curves and “survivalROC” was used

to verify the accuracy of the prognostic risk model. The ROC curve

was drawn to predict the accuracy of the model, and the accuracy

was judged by the area under the curve.

2.8 Statistical analysis

In this study, the R (version 4.2.0) and RStudio software were

utilized to carry out the statistical analysis and figure preparation.

p-values less than 0.05 were defined as statistically significant.

3 Results

3.1 WGCNA module construction and
selection of modules with high correlation
with idiopathic pulmonary fibrosis

WGCNA analysis was performed using gene expression

matrix. After setting the high degree to 120, 7 outlier samples

(GSM693752, GSM693820, GSM698444, GSM698447,

GSM698445, GSM693751, GSM693823) were removed.

Finally, 71 IPF samples and 16 normal samples were analyzed

later (Figure 2A). When the scale-free topological fitting index

R2 reaches 0.9, the appropriate β value is chosen as 10

(Figure 2B). The dynamic clipping tree algorithm was

provided to segment the modules and construct the network

diagram. Cluster analysis was performed on the modules and the

modules with similarity greater than 0.75 were merged into new

modules, in which the minimum module had 100 genes and the

clipping height was 0.25 (Figure 2C). On this basis, the WGCNA

method based on sequence free network was used to modularize

genes, and the topological overlap matrix between all genes was

described by heat map, and the relationship between sample

features and modules was analyzed. The colors corresponding to

the modules are darkred, green, darkturquoise, brown,

midnightblue, black, lightgreen, royalblue, tan, lightyellow,

cyan, pink, darkgreen, lightcyan, grey60, turquoise, yellow,

blue, greenyellow, grey. Among them, the grey module is the

gene that cannot be clustered to other modules, so it will not be

analyzed in the subsequent analysis (Figure 2D). Key modules

were identified according to the correlation coefficient between

module features and traits, in which the black module had the

highest positive correlation (cor = 0.59, p < 3.4e-130), and the

pink module had the highest negative correlation (cor = 0.48, p <
1.1e-78), and finally determined that the black module and the

pink module were the twomodules with the highest degree of IPF

correlation. A scatter plot was used to represent the correlation

between black or pink modules and IPF, and a total of 2729 genes

were found (Figure 2E).

3.2 The differentially expressed genes
between idiopathic pulmonary fibrosis
samples and normal samples were
screened

Using the limma package in R language to screen

differentially expressed genes, based on |log2FC|>0.5 and p <
0.05 (correction method is FDR) as the threshold, the differential

genes in the IPF patients and healthy population samples in the

GSE28042 dataset were screened. A total of 1292 differentially

expressed genes were found, of which 606 genes were up-

regulated and 686 were down-regulated. The results of

differentially expressed genes were used to construct a volcano

plot, where red represents up-regulated genes, green represents

down-regulated genes, and black represents genes defined as

non-differential (Figure 3A).

3.3 Screening of IPF highly correlated
differentially expressed genes

The 2729 genes in Black and Pink modules obtained by

WGCNA analysis were highly correlated with IPF, and the
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1292 genes obtained by DEG analysis were significantly different.

Therefore, a total of 405 genes were obtained by taking the

intersection of the two genes through Venn diagram, and these

genes were defined as IPF highly correlated differentially

expressed genes (Figure 3B).

3.4 Screening and enrichment analysis of
m6A-related candidate genes

Pearson correlation analysis was used to screen out

218 candidate genes related to m6A from IPF highly

correlated differentially expressed genes (|Pearson R|>0.5, p <
0.05) (Figure 3C). At the same time, the online website Metascap

(https://metascape.org/gp/index.html) was used to analyze the

candidate genes related to m6A. The results showed that the

candidate genes mainly focused on the pathways of herpes

simplex virus type I infection, neutrophil degranulation, cilia

assembly and so on (Figure 3D).

3.5 Construction of prognostic risk model

30 genes associated with IPF prognosis were screened out

from 218 m6A-related candidate genes by univariate Cox

method (Table 1), and 5 genes associated with IPF prognosis

were further screened by LASSO method (Figure 4A). On this

basis, further multivariate Cox regression analysis showed that

RBM11, RBM47, RIC3, TRAF5 and ZNF14 candidate genes had

significant impact on the prognosis of IPF patients (Figure 4B).

These five genes were used to construct a multivariate Cox model

of prognostic risk in IPF patients, riskscore=

(−0.44084*RBM11)+ (0.631579*RBM47) + (−0.01935*RIC3) +

(−0.58291*TRAF5) + (−0.00528*ZNF14) (Table 2). The

expression heat map and survival analysis of these five genes

were displayed (Figures 4C,D). Among them, the survival rate

was low when RBM47 was highly expressed, while the survival

rate was high when RBM11, RIC3, TRAF5, and ZNF14 were

highly expressed. The protein-protein interactions between

5 genes and 23 m6A regulators were analyzed by the STRING

database (https://cn.string-db.org/), and it was found that there

were obvious protein-protein interactions between RBM11,

RBM47 and m6A regulators (Figure 4E). In addition, m6A-

Atlas (http://rnamd.org/m6a/) also showed that the five key

genes had m6A sites, which increased the credibility of the

research content.

3.6 Survival analysis and independent
prognostic analysis

To further verify the predictive ability of the model for

prognosis, we took the median risk value of patients as the

threshold, divided patients into high risk group and low risk

group, and analyzed the survival status and survival time of

patients in two different risk groups (Figure 5A). And through

the survival curve, it was found that the survival rate of high-risk

patients was low, while the survival rate of low-risk patients was

high, which preliminarily demonstrated the correctness of the

model (Figure 5B).

To further assess whether the risk model for these 5 key genes

has independent prognostic features of IPF, we performed an

independent prognostic analysis. We performed univariate and

multivariate independent prognostic analyses for the above five

key genes, respectively, indicating that the risk model of the five

key genes was independent of other clinicopathological

parameters (gender, age) (Figures 5C,D).

By analyzing the prognostic risk model and drawing the ROC

curve, it was found that compared with other factors, the AUC

TABLE 1 The univariate Cox regression analysis demonstrating
30 genes associated with IPF prognosis.

ID HR p value

ACPP 2.819365 0.007666706

ADAP2 3.162390 0.010084724

BEST1 2.767257 0.004894885

BIRC3 0.380656 0.001404292

C19orf59 2.313709 0.003886102

CLEC2D 0.330340 0.002016299

CLK1 0.274811 0.005419468

CLK4 0.201311 0.00567289

DOCK5 3.361948 0.00399794

EFHA2 0.556492 0.007436865

FAM161A 0.571926 0.045819138

FRAT1 2.398299 0.009385627

JDP2 2.102222 0.005909982

KIAA1147 0.418338 0.02874775

KLF12 0.438746 0.007658451

LRBA 0.432600 0.048624944

MIDN 2.336528 0.03280022

RBM11 0.465034 0.0003472

RBM47 3.284265 0.001557636

RIC3 0.410807 0.00061674

SACS 0.520899 0.04322521

SLC38A1 0.327794 0.002712488

SLC8A1 2.434524 0.012780222

TIMP2 2.492529 0.030980637

TRAF5 0.257449 0.000397483

TTC18 0.314697 0.001033081

ZNF14 0.295492 0.000512298

ZNF30 0.380889 0.007052629

ZNF529 0.298259 0.000842414

ZNF573 0.258771 0.001805436
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FIGURE 4
Screening of key genes associated with IPF prognosis. (A) LASSO regression analysis screened 5 genes associated with prognosis; (B)
Multivariate Cox regression analysis of the effect of five key genes RBM11, RBM47, RIC3, TRAF5, ZNF14 on the prognosis of patients with IPF; (C)
Expression levels of key candidate genes in different IPF samples; (D) Kaplan-Meier survival analysis of key genes; (E) Protein interactions between
five key genes and 23 m6A regulators.
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value of riskscore was greater than that of other factors (age and

gender) (Figure 5E). By plotting the time-dependent ROC curve

of the prognostic risk model, it can be found that although the

AUC value in the first year was low (AUC at 1 year = 0.63), the

AUC value gradually increased with time (AUC at 2 years = 0.77,

AUC at 3 years = 0.85, AUC at 4 years = 0.95) (Figure 5F). This

indicates that the accuracy of our prognostic model is good.

3.7 Validation of prognostic risk model

The GSE93606 dataset was used as the validation dataset to

validate our prognostic risk model by survival analysis and

independent prognostic analysis. In the validation dataset,

survival analysis verified that high-risk patients had a low

survival rate, while low-risk patients had a high survival rate

(Figures 6A,B). Multivariate prognostic analysis verified that the

prognostic risk model was independent of other

clinicopathological parameters (gender and age) (Figure 6C).

ROC curve verified the accuracy of the prognostic risk model

(Figures 6D,E). These results indicate that the prognostic risk

model has strong and stable predictive efficiency.

4 Discussion

The etiology of IPF is still not fully understood, but some

studies have shown that its pathogenesis may be related to the

abnormal damage and repair of alveolar epithelial cells,

epithelial-to-mesenchymal transition (EMT), fibroblast-to-

myofibroblast transformation (FMT), and inflammatory

response (King et al., 2011). Worldwide, the incidence and

mortality of IPF are on the rise. Lung transplantation is the

only treatment for IPF that can prolong life expectancy (Kumar

et al., 2018). Unfortunately, IPF patients without lung

transplantation have a short median survival time. M6A is the

most abundant post-transcriptional modification in mRNA and

long non-coding RNA (lncRNA) in most eukaryotes. In addition,

studies have reported that m6A is involved in post-

transcriptional modification, cell differentiation, cell recoding,

cell stress and other processes, and plays an important role in

lung diseases such as lung cancer, pulmonary hypertension and

chronic obstructive pulmonary disease through various

mechanisms. However, there are few studies on m6A in IPF.

Therefore, it is necessary to explore the prognostic value of m6A-

related genes in IPF and establish a set of prediction models for

evaluating the survival time of IPF and improving the prognosis

of patients.

In this study, we downloaded GSE28042 dataset from GEO

database, which included peripheral blood monocyte cell gene

expression profiles and their corresponding clinical information

of 75 IPF samples and 19 normal samples, and analyzed the

obtained data. The gene expression matrix was used for

differential gene analysis, and 606 up-regulated genes and

686 down-regulated genes were screened. The correlation

between each module and the trait was obtained by WGCNA

analysis combined with correlation heat map. The black and pink

modules with the highest positive and negative correlations were

selected, and 405 intersection genes were obtained by intersection

of the DEG and the module genes with the highest correlation in

the selected WGCNA. Then, 218 m6A-related candidate genes

were screened out from the 405 IPF highly correlated

differentially expressed genes by Pearson correlation analysis,

and the enrichment analysis of these genes showed that the above

genes were mainly enriched in herpes simplex virus type Ⅰ(HSV-

1) infection, neutrophil degranulation, ciliary assembly and other

pathways. Studies have shown that chronic viral infections,

mainly herpes virus infections, may contribute to the

development of IPF. And HSV-1 is a kind of herpes virus, it

can enter the alveoli through the respiratory tract and spread

with the blood, resulting in focal necrotizing pneumonia,

followed by diffuse pulmonary fibrosis (Luyt, 2020).

Neutrophil degranulation is one of the important links that

neutrophils participate in the inflammatory response. As

inflammatory cells, neutrophils participate in the progression

of PF by promoting the proliferation of fibroblasts and enhancing

the differentiation of myofibroblasts (Gregory et al., 2015; Klopf

et al., 2021). Cilia is an organelle protruding from the cell surface.

The abnormal structure and function of cilia can cause various

diseases, such as bronchiectasis and reproductive infertility (Jain

et al., 2012; Girardet et al., 2019). Moreover, studies have shown

that pulmonary fibrosis is associated with bronchiectasis

(Fitzgerald et al., 2017). The above relevant findings suggest

that the m6A-related candidate genes screened were closely

related to the occurrence and development of PF. Therefore,

we hypothesized that the m6A-related candidate genes were

associated with IPF.

In order to explore the role of m6A-related candidate genes

in the prognosis of IPF, we screened out 30 genes associated with

patient prognosis by univariate Cox analysis, and then screened

out 5 key genes (RBM11, RBM47, RIC3, TRAF5, ZNF14) by

LASSO analysis and multivariate Cox analysis. The above studies

indicate that the five key genes and 23 m6A regulators are

significantly correlated and modified by their regulation. This

regulation can be direct or indirect, but its specific mechanism is

TABLE 2 The result of multivariate COX regression analysis.

ID COEF HR HR.95L HR.95H p value

RBM11 −0.44084 0.643493 0.357941 1.156848 0.140723

RBM47 0.631579 1.880578 0.748600 4.724255 0.178993

RIC3 −0.01935 0.980836 0.438145 2.195713 0.962464

TRAF5 −0.58291 0.558274 0.184302 1.691076 0.302605

ZNF14 −0.00528 0.994734 0.297910 3.321466 0.993152
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still unknown. The results of protein-protein interaction analysis

also showed that RBM11 and RBM47 had protein-protein

interactions with m6A regulators, and the m6A-Atlas analysis

showed that all five key genes had m6A sites (Tang et al., 2021),

which added confidence to our results. We construct a riskscore

model as an indicator to predict the prognosis of IPF [riskscore =

(−0.44084*RBM11) + (0.631579*RBM47) + (−0.01935*RIC3) +

(−0.58291*TRAF5) + (−0.00528*ZNF14)], and then survival

analysis was performed to assess the effect of the above genes

on the prognosis of IPF patients. The results of single-gene

survival analysis showed that high expression of RBM11,

RIC3, TRAF5, ZNF14 was associated with good prognosis of

IPF, while high expression of RBM47 was associated with poor

prognosis; overall survival analysis of the risk prognostic model

showed that high-risk patients had poor survival, while low-risk

patients had higher survival, which preliminarily indicated the

FIGURE 5
Survival analysis and independent prognostic analysis of the prognostic risk model. (A) Distribution of patients in different risk groups and risk
levels; (B) Overall survival curve of the model; (C) Univariate independent prognostic analysis; (D) Multivariate independent prognostic analysis; (E)
ROC curve of different factors (riskscore, age, gender); (F) ROC curve of different years (1, 2, 3 and 4 years).
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correctness of the model. Simultaneous univariate and

multivariate independent prognostic analyses indicated that

the risk model for these five key genes was independent of

other clinicopathological parameters (gender, age). TRAF5 is

an important signal transducer for a wide range of TNF receptor

superfamily members, and it mainly mediates the activation of

NF-κB pathway (Au and Yeh, 2007). Indeed, study has shown

that overactivation of NF-κB pathway is associated with

apoptosis of alveolar epithelial type II cells (AEC2) and the

development of PF (Yang et al., 2018). Besides, Ben-David

et al. (2016) demonstrated that inflammatory signals regulate

the expression and splicing of RIC3, thereby influencing the

α7 nA-ChR mediated cholinergic anti-inflammatory pathway.

Although the role of inflammation in fibrosis is controversial, it is

still considered to be an important component of IPF. Recently,

Kim et al. (2019) pointed out that RBM47 promotes the EMT of

cells by promoting TJP1-mediated alternative splicing. Globally,

EMT is considered to be one of the key mechanisms of PF. When

FIGURE 6
Validation of the accuracy of the prognostic model using the GSE93606 dataset. (A) Distribution of patients and risk levels in different risk
groups; (B) Overall survival curve of the model; (C) Multivariate independent prognostic analysis; (D) ROC curve of different factors (age and
riskscore); (E) ROC curve of different years (1, 2 years).

Frontiers in Genetics frontiersin.org11

Wang et al. 10.3389/fgene.2022.1059325

164

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1059325


tissues are subjected to various injuries, a series of immune

signals are generated, leading to inflammation and promoting

EMT. In this process, macrophages, neutrophils and other

immune cells are recruited and release proinflammatory

cytokines to maintain inflammation and pulmonary fibrosis

(Salton et al., 2019). In conclusion, we speculate that the

above three genes are closely related to the progression of

pulmonary fibrosis. However, studies on RBM11 and

ZNF14 in lung diseases are rare.

These results indicated that the key genes screened by

bioinformatics methods were highly correlated with the

occurrence and development of IPF, and had a significant

correlation with the prognosis of IPF patients. Therefore, the

above five key genes can provide reference for the diagnosis and

treatment of IPF. We also analyzed the risk model. By drawing

the time-dependent ROC curve of the prognostic model, we

found that the AUC value gradually increased with the increase

of time, indicating that the accuracy of our prognostic model was

good. Finally, the prognostic model was verified by the

GSE93606 dataset. It can be seen that the prognostic model is

also applicable to this dataset, which further confirms that the

prognostic risk model has a strong and stable prediction

efficiency.

However, the study also has certain limitations. First, our results

are based on data from existing public databases. Therefore, a large-

scale, prospective, multicenter study is needed to further validate our

results. Secondly, our study population ismainly fromEuropean and

American populations. Therefore, our findings may not be optimal

for patients from other countries and ethnicities. Finally, the

correlation between some key genes and the development and

progression of IPF has not been confirmed by biological

experiments. In follow-up studies, experimental validation will be

performed to reveal the relationship between key genes and IPF. In

this way, we can determine their suitability as new diagnostic and

therapeutic targets to provide a rationale for the clinical diagnosis

and treatment of IPF.
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ADAR RNA editing on antisense
RNAs results in apparent U-to-C
base changes on overlapping
sense transcripts
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Despite hundreds of RNA modifications described to date, only RNA editing

results in a change in the nucleotide sequence of RNA molecules compared to

the genome. In mammals, two kinds of RNA editing have been described so far,

adenosine to inosine (A-to-I) and cytidine to uridine (C-to-U) editing. Recent

improvements in RNA sequencing technologies have led to the discovery of a

continuously growing number of editing sites. These methods are powerful but

not error-free, making routine validation of newly-described editing sites

necessary. During one of these validations on DDX58 mRNA, along with

A-to-I RNA editing sites, we encountered putative U-to-C editing. These

U-to-C edits were present in several cell lines and appeared regulated in

response to specific environmental stimuli. The same findings were also

observed for the human long intergenic non-coding RNA p21 (hLincRNA-

p21). A more in-depth analysis revealed that putative U-to-C edits result

from A-to-I editing on overlapping antisense RNAs that are transcribed from

the same loci. Such editing events, occurring on overlapping genes transcribed

in opposite directions, have recently been demonstrated to be immunogenic

and have been linked with autoimmune and immune-related diseases. Our

findings, also confirmed by deep transcriptome data, demonstrate that such loci

can be recognized simply through the presence of A-to-I and U-to-C

mismatches within the same locus, reflective A-to-I editing both in the

sense-oriented transcript and in the cis-natural antisense transcript (cis-

NAT), implying that such clusters could be a mark of functionally relevant

ADAR1 editing events.
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1 Introduction

Recent years have seen an exponential increase in RNA

sequencing (RNA-seq) technologies providing scientists with

an incredible amount of transcriptomic data. Once compared

to genomic data (DNA-seq), RNA-seq reveals information about

several post-transcriptional processes that RNA molecules can

undergo. For example, RNA editing is a mechanism that alters

the RNA sequence itself. In mammals, two distinct kinds of RNA

editing have been described so far, adenosine to inosine (A-to-I)

and cytidine to uridine (C-to-U). These edits are the result of the

deamination activity by proteins belonging to the adenosine

deaminase acting on RNA (ADAR) (Bass, 2002; Nishikura,

2010; Savva et al., 2012) and the apolipoprotein B mRNA

editing enzyme catalytic subunit (APOBEC) (Blanc and

Davidson, 2010; Sharma et al., 2015, 2019; Lerner et al., 2018;

Pecori et al., 2022) families, respectively. Reverse transcriptase

incorporates guanosines (G) and thymidines (T) into cDNA at

positions where inosines and uridines are present in the RNA,

leading to base changes not present in the genomic DNA. For this

reason, editing sites can be detected by directly comparing RNA-

seq to DNA-seq data or a reference genome (Levanon et al., 2004;

Picardi and Pesole, 2013; Wang et al., 2016; John et al., 2017;

Piechotta et al., 2017).

Several bioinformatics pipelines have been developed for the

analysis of next-generation sequencing (NGS) data to detect

RNA editing sites (Ramaswami and Li, 2016; Eisenberg and

Levanon, 2018; Diroma et al., 2019), leading to a constant

increase of entries in their catalogs and the generation of new

databases (Kiran and Baranov, 2010; Ramaswami and Li, 2014;

Picardi et al., 2017; Mansi et al., 2021). Despite these

improvements, RNA editing detection in NGS datasets

remains challenging due to the many sources of DNA-RNA

sequence mismatches, leading to the necessity of routine

validation by reverse transcription-polymerase chain reaction

(RT-PCR). RT-PCR is a two-step method in which the RNA is

first retrotranscribed into cDNA, and then cDNA is amplified at

specific locations via PCR. This method has some variations; for

example, cDNA can be produced from oligo-dT, random

hexamers, or specific primers for a particular transcript. In

this latter case, and when a Hot Start DNA Polymerase is

used, the reverse transcription and PCR amplification of a

specific target take place one after the other in the same tube,

in a so-called one-step RT-PCR reaction. This method allows a

fast and easy RT-PCR setup, optimal for RNA editing detection

validation. Additionally, one-step RT-PCRs exclusively generate

cDNA from the transcript of interest leading to higher sensitivity

in RNA editing detection when the transcript of interest is poorly

expressed or edited (Wacker and Godard, 2005; Kluesner et al.,

2021).

In this study, we report the observation of a putative U-to-C

RNA editing while validating some A-to-I ADAR1 editing sites.

U-to-C edits were observed on an mRNA (DDX58) and a long

intergenic non-coding RNA (hLincRNA-p21) nearby A-to-I

editing sites. In both cases, U-to-C editing appeared to be

regulated upon specific stimulations a feature characteristic of

RNA modifications. After looking for an RNA modification that

could lead to this base change, we realized that U-to-C edits result

from A-to-I editing on overlapping antisense RNAs that had not

been previously described. We have also confirmed this finding

by the analysis of known sense–antisense transcripts through

deep transcriptome data from human tissues.

2 Materials and methods

2.1 Cell lines, treatments, and
transfections

RCK8 cells (DSMZ, Cat# ACC-561, RRID: CVCL_1883) and

U2932 (DSMZ, Cat# ACC-633, RRID: CVCL_1896) were

cultured at 37°C, 5% CO2, in RPMI-1640 medium (Sigma-

Aldrich, Cat# R8758), supplemented with 15% fetal bovine

serum (PAN Biotech, Cat# P40-37100) and 1% of Penicillin/

Streptomycin (Sigma-Aldrich, Cat# P4333). A549 cells (DSMZ,

Cat# ACC-107, RRID: CVCL_0023) were cultured at 37°C, 5%

CO2 in high-glucose DMEM (Sigma-Aldrich, Cat# D6429)

supplemented with 10% fetal bovine serum (PAN Biotech,

Cat# P40-37100) and 1% penicillin/streptomycin (Sigma-

Aldrich, Cat# P4333). HEK293T cells (obtained from DKFZ,

ATCC, Cat# CRL-3216, RRID: CVCL_0063) were cultured at

37°C, 5% CO2 in high-glucose DMEM (Sigma-Aldrich, Cat#

D6429) supplemented with 5% FBS (PAN Biotech, Cat# P40-

37100) and 1% penicillin/streptomycin (Sigma-Aldrich, Cat#

P4333). Cell lines were authenticated using Multiplex Cell

Authentication by Multiplexion (Heidelberg, Germany) as

described recently (Castro et al., 2013). Additionally, the

purity of cell lines was validated using the Multiplex cell

Contamination Test by Multiplexion (Heidelberg, Germany)

as described recently (Schmitt and Pawlita, 2009). No

Mycoplasma, SMRV or interspecies contamination was detected.

For interferon-alpha (IFNα) stimulation, 2.5 × 105

HEK293T cells were seeded in 12-well plates in a total volume

of 1 ml media containing 200 U/ml of IFN-α (PBL Assay Science,
Cat# 11100–1). After 16 h, cells were collected, and RNA was

extracted using a Qiagen RNeasy Plus kit (Qiagen, Cat# 74134).

For doxorubicin treatment, 105 HEK293T cells were seeded

in 24-well plates to have around 30%–50% confluency the day

after. The following day the cells were transfected with pcDNA3-

hLincRNAp21-MS2 (Chillón and Pyle, 2016) using a mix of

plasmid DNA and polyethyleneimine (PEI, Polysciences, Cat#

23966) in an approximately 1:1 ratio (2.5 µg DNA:2 µg of PEI).

6 h post-transfection, the media was replaced with new complete

media and 2 µM doxorubicin hydrochloride (Sigma-Aldrich,

Cat# D1515) or DMSO only as control (Sigma-Aldrich, Cat#

D2650) were added 10–12 h post-transfection, for 12 h. RNAwas
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then extracted using a Qiagen RNeasy Plus kit (Qiagen, Cat#

74134).

2.2 Plasmids

pcDNA3-hLincRNAp21-MS2 contains the 3898 nt-long

LIsoE2 isoform of the human lincRNA-p21 (GenBank:

KU881768.1) tagged with 24 copies of MS2 RNA hairpins, as

previously described (Chillón and Pyle, 2016).

LentiCRISPRv2 was a gift from Feng Zhang (Addgene,

plasmid #52961; https://addgene.org/52961; RRID: Addgene_

52961) (Sanjana et al., 2014). DNA oligos #12–13 were cloned

into this plasmid following the instructions of “lenti-CRISPRv2

and lentiGuide oligo cloning protocol” (Addgene plasmid

#52961) to generate lenti-CRISPR-ADAR1 exon 4 [from

Pestal et al. (2015); Supplementary Figure S7A]. As a control,

lenti-CRISPR-NT (Lenti-NT) was cloned accordingly using

oligos #14–15 based on control 800 from the GeCKO

v2 library (Sanjana et al., 2014). pCMVDR8.91 (coding for

HIV gag-pol) and pMD2.G (encoding the VSV-G

glycoprotein) were a kind gift from Prof. Didier Trono

(Lausanne, Switzerland).

pSpCas9(BB)-2A-GFP (PX458) was a gift from Feng Zhang

(Addgene plasmid # 48138; https://n2t.net/addgene:48138;

RRID:Addgene_48138) (Ran et al., 2013). DNA oligos

#16–19 were cloned into this plasmid linearized by restriction

digestion (BbsI) using NEBuilder® HiFi DNA Assembly Master

Mix (NEB, Cat# E2621). We, therefore, obtained three plasmids

for knocking out human DTWD1, DTWD2, or TSR3 as

previously described (Takakura et al., 2019; Babaian et al.,

2020) and an additional non-targeting control (NT-ctrl) based

on control 800 from the GeCKO v2 library (Sanjana et al., 2014).

2.3 Genome-wide A-to-I sense-antisense
RNA editing analysis

Ribo-depleted RNA-seq experiments from seven human

tissues (Supplementary Material S1) were selected from the

“RNA Atlas” project (Lorenzi et al., 2021) and downloaded

from GEO under the accession GSE138734. Known

annotations for antisense and protein-coding genes were

obtained from Gencode (v38), downloaded in gtf format,

and converted into bed format. Antisense and protein-

coding annotations were intersected by means of the

“intersect” function embedded in the Bedtools package

(Quinlan, 2014), discarding overlapping intervals less than

300 bp. The resulting genomic coordinates of overlapping

sense-antisense genes were used as input in a modified

version of REDItools (Picardi and Pesole, 2013), able to split

reads according to their orientation. Only editing candidates

supported by more than five reads and organized in non-

redundant clusters (represented by A-to-G or T-to-C

mismatches according to gene strandness) were retained. All

the editing sites considered in this analysis are described in

Supplementary Material S1.

Circular heatmaps were generated using the R package

circlize (Gu et al., 2014) and the cytoband representation of

the human genome assembly hg38. Heatmaps color scale

represents an RPKM-like normalization of editing events.

The entire pipeline and scripts are available at https://github.

com/BioinfoUNIBA/antisenseEditing.

2.4 A-to-I and U-to-C editing sites
validation and quantification

For editing site validation, PCRs were performed on genomic

DNA (gDNA) and RNA. gDNA was extracted using the High

Pure PCR Template Preparation kit (Roche, Cat# 11796828001)

following manufacturer instructions. PCR amplification was

performed using Q5® High-Fidelity DNA Polymerase (NEB,

Cat# M0491). RNA was extracted using the RNeasy Plus Mini

kit (Qiagen, Cat# 74134) and treated with DNase (Invitrogen,

Cat# AM 1907). Following RNA extraction, RT-PCRs were

performed with gene-specific primers (Supplementary Table

S1) and a One-step RT-PCR kit (Qiagen, Cat# 210212). All

the PCR products were purified (Macherey-Nagel, Cat# 740609)

and analyzed by Sanger sequencing. Quantification of editing was

performed directly from the Sanger traces using MultiEditR

(Kluesner et al., 2021). Alternatively, the PCR products were

cloned using a CloneJET PCR cloning kit (Thermo Scientific,

Cat# K1232) according to the manufacturer’s instructions and

transformed into DH5a bacteria (NEB, Cat# C2987). Ten to

twenty resultant bacteria colonies were sent for sequencing to

determine edits and their frequency in the targeted region. All the

primers used in this study were designed using Primer-BLAST

(Ye et al., 2012), AmplifX 2.0.7 (by Nicolas Jullien; Aix-Marseille

Univ, CNRS, INP, Inst Neurophysiopathol, Marseille,

France—https://inp.univ-amu.fr/en/amplifx-manage-test-and-

design-your-primers-for-pcr) or ApE (by M. Wayne Davis,

https://jorgensen.biology.utah.edu/wayned/ape/). The

chromosomal locations of all the editing sites analyzed in this

study are listed in Supplementary Table S2.

2.5 RT-qPCR

RNA was extracted using the RNeasy Plus Mini kit (Qiagen,

Cat# 74134). Before qPCR, RNA was additionally treated with

DNase (Invitrogen, Cat# AM 1907). cDNA synthesis was then

performed using ProtoScript M-MuLV First-Strand Synthesis

Kit (NEB, Cat# E6300) using 1 µg of RNA DNAse digested.

cDNA was synthesized using oligo-dT or random primers to

detect DDX58 or hLincRNA-p21, respectively. Two microliters of
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a 1:2 diluted cDNA were used to set up a 10 µl qPCR reaction

using SsoAdvanced Universal SYBR Green Supermix (Bio-rad,

Cat# 1725270). Finally, fold change expression was calculated

using the comparative CT method (ΔΔCT) (Livak and

Schmittgen, 2001). Supplementary Table S1 lists all the

primers used in this study.

2.6 Generation of a HEK293T
ADAR1 knockout cell line

Lenti-CRISPR-ADAR1 or lenti-CRISPR-NT, in combination

with pCMV-DR8.91 and pMD2.G, were calcium-phosphate

transfected into HEK293T cells for lentiviral particle production

(ratio 3:1:3). After 48–72 h, cell-free supernatant was collected and

used for transduction of HEK293T cells. The transduced cells were

selected with puromycin (1 μg/ml). As soon as non-transduced

cells died (~2 days), ADAR1 knockout cells were seeded in 96-well

plates in a limiting dilution (0.5 cells/well). Upon expansion of

single clones, ADAR1 KO clones were validated by Western blot

(Cell Signaling Technology, Cat# 14175, RRID: AB_2722520)

following IFN-α stimulation using β-Actin as a loading control

(Sigma-Aldrich, Cat# A5441, RRID: AB_476744). Lenti-NT

control cells were kept polyclonal. After screening, clones three

and four were shown to completely abolish ADAR1 (p110 and

p150) expression (Supplementary Figure S7B). Therefore, clone

three was used for the experiments conducted in this work.

2.7 Generation of HEK293T DTWD1,
DTWD2 or TSR3 knockout cell lines

pSpCas9(BB)-2A-GFP carrying the sgRNAs for DTWD1,

DTWD2 or TSR3 were transfected into HEK293T cells using

Lipofectamine 2000 (ThermoFisher, Cat# 11668019) following

manufacturer instructions. 48 h after transfection, GFP-positive

cells were sorted and plated (one cell per well) in 96-well plates.

The clonality was validated by visual inspection with a

microscope, and positive clones were screened by Sanger

sequencing.

2.8 Statistical analysis and data
visualization

Data were analyzed and plotted using GraphPad Prism (version

9.3.1). Specific information about data presentation is provided in

each figure caption throughout themanuscript. Statistical significance

was calculated by unpaired, two-tailed Student’s t-test: *p< 0.05, **p<
0.01, ***p < 0.001, ****p < 0.0001, ns: not significant.

3 Results

3.1 Observation of a persistent U-to-C
base change in DDX58

RNA-seq data analysis represents a powerful method to

detect new RNA editing sites. Unfortunately, these

technologies are not error-free; thus, validation of these newly

discovered RNA editing sites is still necessary. This validation is

performed via PCR amplification of a specific region containing

the editing sites to be validated from either DNA or cDNA (the

latter represents the RNA). In a recent work from our lab, we

identified RNA editing sites comparing RNA- and DNA-seq data

in a cohort of Diffuse large B cell lymphoma (DLBCL) patients

(Pecori et al., 2021). We used a one-step RT-PCR reaction to

validate some of those sites due to its higher sensitivity in RNA

editing detection for low edited or expressed transcripts (Wacker

and Godard, 2005; Kluesner et al., 2021). While validating some

A-to-I editing sites within the transcriptDDX58 in RCK8, a B cell

lymphoma-derived cell line, we also observed the presence of

numerous putative U-to-C edits. In a short region

(~600 nucleotides) of the 3′ untranslated region (3′UTR) of

DDX58 we could detect 11 A-to-I sites and 11 U-to-C sites

(Figure 1A, upper). A-to-I and U-to-C RNA editing events are

observed as A-to-G and T-to-C in cDNA. Despite all the

detections and quantifications being done on cDNA,

throughout this manuscript, we refer to them as A-to-I and

U-to-C base changes.

All those edits are visible in Sanger sequencing following

amplification of cDNA but not genomic DNA (gDNA),

validating them as real RNA editing sites (Figure 1A, lower).

While U-to-C editing is well described in plants (Yoshinaga

et al., 1996; Knie et al., 2016; Ruchika et al., 2021), it has been

rarely described in Metazoans (Villegas et al., 2002; Liu et al.,

2004); thus, we decided to investigate further this preliminary

observation. We then performed the same validation on

another three cell lines, namely U2932, HEK293T, and A549.

Except for A549, we confirmed the observation of putative

U-to-C base changes at the same precise sites identified in

RCK8 (Figure 1B). To check a possible functional connection

between the A-to-I and U-to-C editing, we quantified the

frequency of U-to-C and A-to-I at all sites for all the cell

lines (Figures 1C, D). No specific trend was observed, with

different cell lines showing variations in the level of both editing

types. Altogether these findings demonstrate the presence of an

apparent and persistent U-to-C RNA editing in DDX58mRNA.

This editing can be found at the exact locations in different cell

lines, and it seems independent of A-to-I editing. Indeed, the

A549 cell line shows high A-to-I editing within DDX58 but no

U-to-C editing.
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3.2 U-to-C editing in DDX58 mRNA is
dynamic

It is known that RNA modification in general and RNA

editing specifically are crucial during the cellular response to

environmental stimuli or stress (Roundtree et al., 2017; Tan et al.,

2017). To test if the U-to-C editing observed in DDX58 would

change after specific stimulation, we decided to treat

HEK293T cells with interferon-alpha (IFN⍺). IFN⍺ treatment

has two relevant consequences for this experiment: first, it

induces ADAR1 p150 expression (Patterson et al., 1995),

which leads to an increase in A-to-I RNA editing (Hartwig

et al., 2004, 2006); second, it leads to the overexpression of

DDX58, which is an interferon-stimulated gene (ISG) itself

(Matsumiya and Stafforini, 2010). HEK293T cells were chosen

for this experiment because of the high level of U-to-C editing

observed withinDDX58 and because they are responsive to IFN⍺

stimulation (Figures 1B, C and Supplementary Figure S1).

Following stimulation, RNA extraction and one-step RT-PCR

were performed. PCR products were introduced into bacteria,

and single bacterial colonies were sequenced using Sanger

sequencing. Alignment to the unedited reference genome

allowed us to easily count the editing sites in the presence or

absence of stimulation to assess the frequency of A-to-I and

U-to-C editing for each site in the two conditions (Figure 2A and

Supplementary Figure S2). Not surprisingly, IFN⍺ stimulation

leads to a significant increase in A-to-I editing (~4-fold increase

of the mean, Figures 2B, D) which is expected due to the

induction of ADAR1 p150 expression (Patterson et al., 1995;

Hartwig et al., 2004, 2006). However, the opposite effect was

observed for U-to-C editing, for which the treatment led to a

significant decrease (~5-fold decrease of the mean, Figures 2B,

C). These data suggest that putative U-to-C base changes are

differently regulated compared to ADAR-induced A-to-I editing.

3.3 U-to-C editing within the long
intergenic non-coding RNA
hLincRNA-p21

After characterizing the U-to-C editing within DDX58

mRNA, we asked if this editing was also present in other

RNA species, such as long non-coding RNAs (lncRNAs).

LincRNA-p21 is a crucial molecule during the response to

cellular stress driven by p53 (Huarte et al., 2010). While

initially discovered in mice, LincRNA-p21 is also present in

humans (hLincRNA-p21, formally known as TP53COR1).

Recent work has shown that hLincRNA-p21 contains

FIGURE 1
A persistent U-to-C base change in DDX58 cDNA. (A) Upper: schematic representing the identification of 11 U-to-C (red bars) and 11 A-to-I
(green bars) base changes within the 3′UTR of DDX58 in the B cell line RCK8. Primers used for PCR amplification are indicated as small grey arrows.
Lower: representative image of Sanger traces showing that U-to-C base changes (inside the red rectangles) are only present in cDNA and not in
genomic DNA (gDNA). (B) These RNA base changes are present at the same in other cell lines. (C,D) Quantification of the 11 U-to-C (C) and
11 A-to-I (D) sites within different cell lines. Quantification was performed directly from Sanger traces using MultiEditR (Kluesner et al., 2021).
Center = mean and error bars = standard deviation, N = 3.
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inverted-repeat Alu elements, which can fold as independent

domains (Chillón and Pyle, 2016). Interestingly, putative U-to-C

editing events were identified in both sense and antisense Alu

elements (Chillón and Pyle, 2016).

For this reason, we decided to first transfect in HEK293T a

plasmid encoding hLincRNA-p21 and then treat the transfected

cells with doxorubicin, a chemotherapeutic drug that induces

DNA damage. We then performed RNA extraction and one-step

RT-PCR to amplify the sense Alu. Detection and quantification

of editing were performed as described above for DDX58mRNA

(Figure 3A). While doxorubicin treatment was shown to

upregulate hLincRNA-p21 in some cell lines (Chillón and Pyle,

2016), we did not observe any significant changes in the

expression of the endogenous, or in the stability of the

exogenous, hLincRNA-p21 in HEK293T upon treatment

(Supplementary Figure S3). In the absence of treatment, we

observed only nine U-to-C and four A-to-I edits with editing

frequency lower than 0.2 within the sense Alu (Figures 3B–D and

Supplementary Figure S4). However, induction of DNA damage

by doxorubicin leads to a significant increase in both editing

types (~2.5- and ~16-fold increase of the mean for U-to-C and

A-to-I, respectively; Figures 3B–D). Notably, we observed a

substantial increase in the number of low-frequency (<0.1)
edits that were not visible in the absence of stimulation

(Figure 3B and Supplementary Figure S4). The increase of

A-to-I editing upon DNA damage may be explained by recent

findings showing an overall change in ADAR editing in response

to DNA breaks (Jimeno et al., 2021). These data confirm the

previous observation that putative U-to-C editing can also be

identified in lncRNAs.

FIGURE 2
U-to-C base changes within DDX58 are dynamic. (A) Flowchart of the experiment. (B) Upper: schematic representing the 11 U-to-C (red bars)
and 11 A-to-I (green bars) base changes within the 3′UTR of DDX58. Primers used for cDNA synthesis and PCR amplification are indicated as small
grey arrows. Lower: Quantification of base changes within DDX58 3′UTR with and without interferon (IFN) treatment based on sequences from
bacterial colonies (Supplementary Figure S2). U-to-Cs and A-to-Is are shown in red and green, respectively. (C,D) Dot plots showing the
decrease in U-to-Cs and the increase A-to-Is upon IFN treatment. Each dot = one single site; line = mean. A two-tailed unpaired t-test was used to
compare the differences (*p < .05).
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3.4 Apparent U-to-C base changes result
from A-to-I antisense RNA editing

We then decided to look for the enzyme responsible for

generating this U-to-C RNA editing. Few RNA modifications of

uridines have been described to lead to a U-to-C base change. 4-

thiouridine (s4U) itself leads to low levels of U-to-C transitions

after reverse transcription (Hafner et al., 2010), and this level can

be increased by chemical treatments of the RNA [reviewed in

(Duffy et al., 2019)]. Indeed, s4U is often used in methods to

study RNA metabolism because its presence can be easily

detected via sequencing (Herzog et al., 2017; Schofield et al.,

2018). Unfortunately, while s4U is present in bacterial and

archaeal tRNAs, it has not been described in human tRNA

(Boccaletto et al., 2018). It thus is very unlikely to be related

to the U-to-C editing described here. In contrast, the 3-amino-3-

carboxypropylation of uridine has been recently described in

humans (Takakura et al., 2019). This modification leads to the

formation of a 3-(3-amino-3-carboxypropyl) uridine (acp3U),

which can be observed as an apparent U-to-C conversion caused

by misincorporation during cDNA synthesis (Takakura et al.,

2019; Kimura et al., 2020). Additionally, amino-

carboxypropylation of methylated pseudouridine (ψ) has been

described in rRNA in humans (Meyer et al., 2016). This m1acp3ψ
modification perturbs standard base pairing during cDNA

synthesis leading to U-to-C conversion (Babaian et al., 2020).

Therefore, we decided to knock out the writers of these

modifications, namely DTWD1, DTWD2, and TSR3, in

HEK293T cells, as previously described (Takakura et al., 2019;

Babaian et al., 2020).We successfully obtained knockout cell lines

for those proteins. However, we did not observe any changes in

U-to-C editing within DDX58 (Supplementary Figure S5).

A-to-I RNA editing has also been reported on antisense

RNA, with some studies proposing that 15% of editing

originated from transcripts expressed from the antisense

strand (Porath et al., 2014). Widespread antisense

transcription has been reported in humans, with 5%–10% of

all genomic loci expressing overlapping sense and antisense

FIGURE 3
U-to-C base changes are present and dynamic also in the long intergenic non-coding RNA hLincRNA-p21. (A) Flowchart of the experiment. (B)
Upper: schematic representing the plasmid used for overexpression of hLincRNA-p21. This long non-coding RNA contains two inverted Alu
elements (big orange arrows). Primers used for cDNA synthesis and PCR amplification are represented as small grey arrows. Lower: Quantification of
base changes within hLincRNA-p21 sense Alu element with and without doxorubicin (doxo) treatment based on sequences from bacterial
colonies (Supplementary Figure S3). U-to-Cs and A-to-Is are shown in red and green, respectively. (C,D) Dot plots showing the increase of both
U-to-Cs and A-to-Is upon doxorubicin treatment. Each dot = one single site; line = mean. A two-tailed unpaired t-test was used to compare the
differences (**p < 0.01; ****p < 0.0001).
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RNAs (Lehner et al., 2002; Shendure and Church, 2002; Yelin

et al., 2003). Overlapping sense and antisense RNAs often form

structured motifs characterized by the presence of double-

stranded hairpins that can act as substrates for ADAR

(Supplementary Figure S6A). Using one-step RT-PCR

methods with target-specific primers, the cDNA will be

synthesized from both the sense and the antisense RNA.

Following Sanger sequencing, A-to-I antisense RNA editing

may result in an apparent U-to-C base (Supplementary Figure

S6B). Therefore, we explored the possibility that previously-

uncharacterized transcripts are expressed in antisense

orientation to DDX58 and hLincRNA-p21 and modified by

ADAR through A-to-I editing. To answer this question, we

selected RNA samples from the two experimental conditions,

which showed the majority of putative U-to-C editing in DDX58

and hLincRNA-p21, namely IFN− and doxorubicin+, respectively

(Figures 2, 3). On these samples, we performed in parallel three

different one-step RT-PCR, providing both forward (F) and

reverse (R) primers, or only the F or only the R primer,

during the cDNA synthesis step (Figure 4). In this way, we

obtained strand-specific amplification, with F and R primers

generating cDNA specifically from the antisense and sense RNA,

respectively (Supplementary Figure S6B). Both, DDX58 and

hLincRNA-p21 showed abundant amplification from the

antisense RNA on an agarose gel (Figure 4B). Strikingly,

antisense-specific amplification resulted in high detection of

putative U-to-C and no detection of A-to-I. The opposite was

observed following amplification of the sense RNA for both

DDX58 and hLincRNA-p21 (Figure 4C). Additionally,

standard one-step RT-PCR from a HEK293T ADAR1 KO cell

line (Supplementary Figure S7) resulted in no U-to-C or A-to-I

editing detected in DDX58 and only a very low residual editing in

hLincRNA-p21 (Figure 4C). Our data demonstrate that the

putative U-to-C editing results from A-to-I editing on the

antisense RNA indicating high editing activity by ADAR1 on

both sense and antisense DDX58 and hLincRNA-21.

3.5 A-to-I antisense RNA editing in NGS

After observing antisense A-to-I RNA editing in both an

mRNA and a lincRNA, we asked what the impact of this process

FIGURE 4
U-to-C base changes originate from A-to-I RNA editing on antisense RNA. (A) Flowchart of the experiment. (B) Representative agarose gel of
the amplification products of DDX58 and hLincRNA-p21 upon one-step PCR using different primers for cDNA synthesis. C- = negative control. (C)
Dot plots showing the editing frequency in U-to-Cs and A-to-Is measured from Sanger sequencing dependent on the primer used for cDNA
synthesis. Only sites with editing higher than 5% in at least one condition are plotted. Each dot = one single site; line = median; red dashed line
represents the limit of detection of MultiEditR (Kluesner et al., 2021). U-to-Cs and A-to-Is are shown in red and green, respectively.
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at the transcriptome level in different tissues is. To elucidate this

point, we investigated antisense A-to-I RNA editing genome-

wide by using seven ribo-depleted strand-oriented RNA-seq

experiments from various human tissues of the “RNA Atlas”

project (Lorenzi et al., 2021). We created a catalog of sense-

antisense gene overlaps based on Gencode annotations to

provide an unbiased overview of antisense editing. Known

antisense transcripts were initially selected from Gencode,

then overlapping regions of at least 300 bp with sense

transcripts were collected to a total number of 1677 suitable

overlaps. For each one of these, corresponding to a well-defined

genomic interval, we called RNA editing using pre-aligned RNA-

seq reads and a modified version of the REDItools software

(Picardi and Pesole, 2013) able to split reads according to their

orientation. A-to-I RNA editing events supported by at least five

reads and organized in clusters of A-to-G or T-to-C mismatches

were selected for downstream analyses.

On the whole, we observed that the number of A-to-I

editing changes, normalized by the overlap length, was

higher in the sense strands of overlaps than in antisense

strands, and this trend was common to all analyzed samples

and tissues, supporting the previous notion that antisense

editing is low Figure 5 and Supplementary Figure S8; and

(Neeman et al., 2005). On average, only 199 out of

1677 potential overlaps showed evidence of A-to-I RNA

editing. Of these, 21 displayed obvious sense and

antisense editing, 164 sense editing, and 35 antisense

editing only.

However, DDX58 was not among the transcripts identified

by our approach, suggesting its limitations. Namely, antisense

transcripts might be less abundant, leading to lower read depth

(and problems in detecting editing); alternatively, naturally poor

editing on some transcripts might be reported as “no editing”

(depending on cut-offs). Both of these are limitations to our

approach. These limitations could be cell type-specific or disease-

specific. Overall though, our work suggests that clusters of A-to-I

(and U-to-C) editing might specify dually edited, convergently

transcribed regions, offering a potentially simple way to identify

loci that may be of disease relevance (Li et al., 2022).

4 Discussion

Recent improvements in RNA-seq and DNA-seq data have

provided scientists with a considerable amount of data from

which several new RNA editing sites were discovered. However,

these technologies are also affected by other sources of DNA-

RNA sequence mismatches. Thus, RNA editing detection from

NGS data remains a challenging task (Ramaswami and Li, 2016;

Eisenberg and Levanon, 2018; Diroma et al., 2019), and

validation of newly discovered editing sites is necessary. Here,

we report the observation of U-to-C base changes and A-to-I

FIGURE 5
A-to-I antisense RNA editing in NGS data. Circular heatmap for a kidney RNA-seq sample. The external circle represents the chromosomes, and
the two inner circles represent sense (intermediate circle) and antisense (internal circle) editing. A-to-I RNA editing locations are indicated with black
lines connecting the heatmap to the cytoband context of the chromosomes (human genome assembly hg38). Editing levels are depicted in circular
heatmaps using a color scale based on RPKM-like values.
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editing within DDX58 mRNA and the lncRNA hLincRNA-p21.

U-to-C edits show typical features of a bona fide RNA

modification. Indeed, they can be identified in multiple cell

systems and respond to environmental stimulation differently

from other co-existing modifications. However, careful

evaluation demonstrated that putative U-to-C corresponds to

A-to-I editing introduced by ADAR on overlapping antisense

transcripts (Figure 4). Antisense transcription is a frequent

process within the human transcriptome (Lehner et al., 2002;

Shendure and Church, 2002; Yelin et al., 2003). Overlapping

sense and antisense RNAs result in a high sequence

complementarity. Thus, these two molecules could potentially

anneal to each other, creating a dsRNA that can function as a

perfect substrate for ADAR [and in the absence of ADAR, for

MDA5, which can sense such structures and ignite an interferon

response (Li et al., 2022)]. Despite several studies proposing such

a mechanism (Kumar and Carmichael, 1998; Wang et al., 2000;

Carmichael, 2003), only a few cases of editing in sense–antisense

pairs have been reported to date (Kimelman and Kirschner, 1989;

Peters et al., 2003; Athanasiadis et al., 2004; Li et al., 2022).

On the other hand, sense and antisense transcripts folding co-

transcriptionally as independent domains can also generate distinct

dsRNA without needing to pair with each other (Heilman-Miller

and Woodson, 2003; Lai et al., 2013). dsRNA structures formed by

local intramolecular interactions are in line with other reports on

ADAR editing, showing that the majority of A-to-I antisense editing

events are observed within Alu regions and only rarely within

regions that could result from inter-molecular sense-antisense

RNAs interactions (Athanasiadis et al., 2004; Neeman et al.,

2005; Kawahara and Nishikura, 2006). Our observations with

regard to hLincRNA-p21, where no modifications were observed

outside the Alu regions, are in line with the hypothesis of dsRNA

formed by the intramolecular interaction (Kawahara and Nishikura,

2006; Chillón and Pyle, 2016).

For the transcripts whose analysis motivated the work we report

herein (DDX58 and hLincRNA-p21), the antisense editing was

catalyzed by ADAR1 (Figure 4). ADAR1-mediated editing

represents most A-to-I editing in humans and occurs in non-

coding regions of the transcriptome (Eisenberg and Levanon,

2018). The primary function of this editing is to discriminate

between harmless endogenous (or “self”) and harmful exogenous

viral dsRNAs, preventing activation of the cytosolic innate immune

system in the absence of infection. Indeed, ADAR1-mediated editing

of self dsRNA is required to avoid recognition of these structures by

the dsRNA sensor melanoma differentiation-associated protein 5

(MDA5), which otherwise would bind self dsRNA and, upon

interaction with the mitochondrial antiviral signaling protein

(MAVS), would lead to an interferon response (Mannion et al.,

2014; Liddicoat et al., 2015; Pestal et al., 2015). It is still not

completely understood if specific self dsRNAs must be

deaminated by ADAR1 to avoid the cytosolic innate immune

reaction through MDA5. Recent work performed by JB Li and

colleagues has shown that DNAmutations (SNPs) that culminate in

a reduction of A-to-I editing within specific immunogenic dsRNAs

underlie the risk for autoimmune and immune-related diseases.

Notably, the authors identified two kinds of immunogenic dsRNAs,

the ones that originated from an intramolecular pairing of inverted

Alu repeats and, surprisingly, from an intermolecular pairing of

antisense transcripts (Li et al., 2022).

Spurred by this finding, we performed a transcriptome-wide

analysis looking for (annotated) antisense transcripts and

matching them with reported editing events. Like others

before us, we find that such events are rare overall. However,

when convergent transcription overlaps with editing, at least a

quarter (56 out of 199, ~28%) of such transcripts are edited in the

antisense orientation (thus generating apparent “U-to-C” RNA

modification events). Around half of these are edited in both

orientations, suggesting that these events, though rare, are not

insignificant. It is important to note that antisense transcripts are

frequently degraded by the nuclear RNA exosome limiting their

detection in RNA-seq data. Using alternative NGS methods such

as chromatin RNA-seq may improve the detection of antisense

transcripts and, therefore, antisense editing. Finally, our analysis

was limited to known antisense transcripts. Defining the

antisense signal directly from the RNA-seq, despite being

more challenging, may lead to the discovery of non-annotated

antisense transcript and, thus, more antisense RNA editing.

Whether the antisense editing is derived from intra- or

intermolecular interactions of RNAs, the fact that

ADAR1 edits overlapping sense and antisense RNAs may

suggest those transcripts as particularly relevant in activating

MDA5 and, therefore, could be highly immunogenic. In such a

scenario, the identification of clusters of apparent U-to-C and

A-to-I modifications could simplify the prediction of potentially

strongly immunogenic self-dsRNAs [which are thought to be

functionally relevant (Li et al., 2022)].

It is also interesting to notice that changes in sense and

antisense RNA editing upon treatments may happen for different

reasons. For example, the decrease in antisense editing within

DDX58 upon IFN treatment is probably due to the ~20-fold

increase in expression of its sense-transcript together with a 2-

fold increase in ADAR1 expression (Supplementary Figure S1).

Intriguingly, upon doxorubicin treatment, we observed an

increase in both sense and antisense editing without any

increase in ADAR1 expression (Figure 3 and Supplementary

Figure S3B). These results are in agreement with recent findings

by Huertas and others, which describe an increase of A-to-I

editing upon treatment with DSBs-inducing agents, despite no

changes in ADAR protein expression levels (Jimeno et al., 2021).

Regarding DDX58, it is interesting to note that although the

locus is not annotated as a source of cis-NATs, we can

functionally identify antisense transcripts in some cell lines

(RCK8, U2932, HEK293T) but not in others (e.g., A549).

Indeed, A549 shows abundant A-to-I but no U-to-C editing

indicating the absence of antisense transcription (Figure 1).

Considering that DDX58 is an ISG and its transcription is
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highly regulated (Matsumiya and Stafforini, 2010), it is tempting

to speculate that antisense transcription from the DDX58 locus

could have regulatory functions.

Overall, our study demonstrates that antisense A-to-I editing

can result in instances of apparent U-to-C RNAmodification, which

may be misinterpreted as novel modification events. At the same

time, we note that clusters of A-to-I and “U-to-C” modification

events could be simple markers of ADAR activity on functionally

important loci (a characteristic that will aid in their identification).
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Identification and experimental
validation of key m6A
modification regulators as
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osteoporosis
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Osteoporosis (OP) is a severe systemic bone metabolic disease that occurs

worldwide. During the coronavirus pandemic, prioritization of urgent services

and delay of elective care attenuated routine screening and monitoring of OP

patients. There is an urgent need for novel and effective screening diagnostic

biomarkers that requireminimal technical and time investments. Several studies

have indicated that N6-methyladenosine (m6A) regulators play essential roles in

metabolic diseases, including OP. The aim of this study was to identify key m6A

regulators as biomarkers of OP through gene expression data analysis and

experimental verification. GSE56815 dataset was served as the training dataset

for 40 women with high bone mineral density (BMD) and 40 women with low

BMD. The expression levels of 14majorm6A regulators were analyzed to screen

for differentially expressed m6A regulators in the two groups. The impact of

m6A modification on bone metabolism microenvironment characteristics was

explored, including osteoblast-related and osteoclast-related gene sets. Most

m6A regulators and bone metabolism-related gene sets were dysregulated in

the low-BMD samples, and their relationship was also tightly linked. In addition,

consensus cluster analysis was performed, and two distinct m6A modification

patterns were identified in the low-BMD samples. Subsequently, by univariate

and multivariate logistic regression analyses, we identified four key m6A

regulators, namely, METTL16, CBLL1, FTO, and YTHDF2. We built a

diagnostic model based on the four m6A regulators. CBLL1 and YTHDF2

were protective factors, whereas METTL16 and FTO were risk factors, and

the ROC curve and test dataset validated that this model had moderate

accuracy in distinguishing high- and low-BMD samples. Furthermore, a

regulatory network was constructed of the four hub m6A regulators and

26 m6A target bone metabolism-related genes, which enhanced our

understanding of the regulatory mechanisms of m6A modification in OP.

Finally, the expression of the four key m6A regulators was validated in vivo

and in vitro, which is consistent with the bioinformatic analysis results. Our

findings identified four key m6A regulators that are essential for bone
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metabolism and have specific diagnostic value in OP. These modules could be

used as biomarkers of OP in the future.

KEYWORDS

osteoporosis, bone metabolism, M6A, RNA modification, biomarker, osteoclast

1 Introduction

Osteoporosis (OP) is a systemic skeletal disease characterized

by increased fracture risk and decreased bone density or bone

strength that occurs widely in postmenopausal women (Miller,

2016). The prevalence of OP increases with age, from 19.57% in

women aged 50–59 years to 56.10% in women aged 80 years and

older, and it will continue to rise with the aging of the population

in China (Chen et al., 2016). Traditionally, bone mineral density

(BMD) measured by dual X-ray absorptiometry (DXA) is used to

diagnose OP, assess fracture risk, and monitor changes in BMD

over time (Chun, 2011). However, DXA presents some

disadvantages, namely, that accessibility to DXA is limited in

many locations (Curtis et al., 2017). The rapid spread of the

COVID-19 pandemic makes it more difficult to monitor BMD

frequently during OP therapy, as medical resources are diverted

from chronic disease care to combat the pandemic. In addition,

errors in DXA scans/reports are common due to difficulties in the

maintenance of high-quality instrument calibration, data

acquisition/analysis, interpretation, and reporting of results

(Licata et al., 2018). Therefore, exploring novel and effective

screening diagnostic biomarkers that require minimal technical

investment is crucial for the early screening and timely treatment

of OP.

Maintenance of normal bone mass relies on a dynamic

balance between bone resorption and formation. Emerging

evidence has demonstrated that disruption of the balance,

especially overactive osteoclast-induced bone resorption,

predominates the progression of OP(Yao et al., 2017; Chen

et al., 2020). N6-methyladenosine (m6A) modification is the

most abundant internal modification in eukaryotic cells, affecting

mRNA metabolism and various biological processes, including

bone metabolic processes (Wei et al., 2017). m6A modification

can be catalyzed by methyltransferase complexes, including

METTL3, METTL14, WTAP, METTL16, RBM15, RBM15B,

CBLL1, and ZC3H13, which can be removed by the

demethylases ALKBH5 and FTO. Simultaneously, a variety of

proteins that specifically recognize m6A sites have been found,

including YTH family proteins (YTHDF1-3, YTHDC1-2) and

ribonucleoproteins (HNRNPC), which can recognize m6A

modification to regulate mRNA fates (Wu et al., 2018b).

Increasing evidence has demonstrated the roles of m6A

modification in diverse cancers by influencing their

proliferation, migration, and invasion (An and Duan, 2022).

Recently, the association between m6A modification and OP has

also attracted the attention of some researchers. METTL3 is the

most studied molecule and has different effects in different cell

lines. In BMSCs, METTL3 functions as an inhibitor in OP to

promote osteogenic differentiation and enhance bone formation

by activating the PI3K-Akt signaling pathway or the PTH/Pth1r

signaling axis (Wu et al., 2018a; Tian et al., 2019). However,

another study reported that METTL3 could regulate osteoclast

differentiation by increasing the bone resorption ability in RAW

264.7 cells, which may contribute to OP (Li D. et al., 2020). In

addition, several studies have reported that FTO might be a new

candidate for OP, which acts as an activator in OP, and its single

nucleotide polymorphisms (SNPs) have a close relationship with

BMD variation (DR, 1997; Guo et al., 2011; Li et al., 2019).

Furthermore, YTHDF2 disrupts bone homeostasis by regulating

osteoclast differentiation and inflammatory processes (Yu et al.,

2019). The above findings demonstrate that m6A modification

plays a vital role in OP. Nevertheless, gene signatures with

diagnostic value for m6A modification in OP remain largely

unstudied.

Various skeletal disorders have been found to be related to

abnormalities in peripheral blood monocytes (PBMCs), which

are widely accepted as the in vivo working cell model to study

mechanisms in relation to OP(Zhou et al., 2015). PBMCs can

migrate to the bone surface, differentiate into osteoclasts, and act

as precursor cells of osteoclasts. Moreover, PBMCs produce

essential cytokines for osteoclast differentiation, activation,

and apoptosis (Kylmaoja et al., 2018). Recent advances in

high-throughput technologies enable researchers to determine

the molecular mechanisms and potential biomarkers of OP by

isolating and analyzing the gene expression of PBMs. However,

no such reports have systematically investigated the molecular

mechanisms of m6A modification in OP using high-throughput

data analysis.

In this study, we systematically analyzed the expression of

m6A regulators mainly in PBMCs from different BMD samples,

and the impact of m6A modification on bone metabolism

microenvironment characteristics was also explored. Then,

we performed consensus cluster analysis and identified two

m6A modification patterns in low-BMD samples. In addition,

we built a diagnostic model based on four key m6A regulators

for distinguishing high- and low-BMD samples, and a

regulatory network was then constructed to explore the

possible regulatory mechanisms of m6A regulators in OP.

Furthermore, we validated the altered m6A pattern of the

four key regulators during RANKL- and/or MCSF induced

osteoclast formation in vitro. Finally, an ovariectomized

(OVX) mouse OP model was constructed to further validate
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the role of m6A modification in OP. Altogether, the present

findings demonstrate that m6A regulators have a crucial impact

on bone metabolism in OP, suggesting their future potential as

diagnostic biomarkers of OP.

2 Materials and methods

2.1 Data collection and processing

We searched “osteoporosis” in the GEO and Array Express

databases and retrieved datasets with a sample size greater than

or equal to 80. Finally, two datasets were obtained, GSE56815

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE568

15) and E-MEXP-1618 (https://www.ebi.ac.uk/arrayexpress/

experiments/E-MEXP-1618/?query=osteoporosis&page=3&)

The GSE56815 dataset contains the gene expression data of

PBMCs from 80 Caucasian females, including 40 patients with

high hip BMD (20 pre- and 20 postmenopausal) and

40 patients with low hip BMD (20 pre- and

20 postmenopausal), and this dataset served as the training

dataset in the present study. The sample characteristics and

RNA extraction protocol were well described in a previous

study (Zhou et al., 2018). Moreover, the E-MEXP-1618 dataset

served as the test dataset in this study, including 84 transiliac

bone biopsies of postmenopausal females (50–86 years) with

different BMDs. The detailed characteristics of the samples

were presented in an early study (Reppe et al., 2010).

After downloading the two datasets, the probes were

converted to gene symbols based on the corresponding

annotation files. We only kept the probe with the largest

numerical value when encountering probes corresponding

to the same molecule. Then, we used the

normalizeBetweenArrays function of the limma package to

standardize the data, which was visualized with a box plot.

Clustering of the samples was assessed through the principal

component analysis (PCA) chart and the uniform manifold

approximation and projection (UMAP) chart using the

ggplot2 and umap packages.

2.2 Selection and expression analysis of
m6A regulators

Sixteen widely recognized m6A regulators were selected from

published literature, but the expression of two genes,

METTL14 and ALKBH5, was not detected in the selected

datasets, so the two genes were not included in this study.

Therefore, 14 m6A regulators were involved in this study,

namely, seven m6A writers, one m6A eraser, and six m6A

readers (Table 1). The protein–protein interaction (PPI)

network of these regulators was constructed using the

STRING database (https://cn.string-db.org), and the

expression correlations among the 14 m6A regulators in all

samples were calculated by Spearman correlation analysis. To

compare the expression differences of these m6A regulators

between the high- and low-BMD samples, we used the limma

package, and the results were visualized with a heatmap and box

plot. Because the sample size was limited (although still among

the largest of such studies in this field), we used a p-value<0.05 as
the threshold for nominally significant differential expression.

2.3 Analysis of the characteristics of the
bone metabolic microenvironment

The bone metabolism-related gene sets were obtained from

the GSEA database (http://www.gsea-msigbd.org/gsea/index.jsp)

and were related to bone formation and bone resorption, such as

bone remodeling, ossification, and multiple cellular processes of

osteoclasts and osteoblasts (Supplementary Table S1). Single-

sample gene set enrichment analysis (ssGSEA) was then used to

calculate an enrichment score for each gene set in every sample,

and we finally obtained the enrichment score matrix using the R

package GSVA. The limma package was used to assess the

changes in the abundance and activity of these gene sets in

the high- and low-BMD samples, and the results are shown in a

box plot. In addition, the relationship between the m6A

regulators and these gene sets was evaluated by Spearman

correlation analysis.

TABLE 1 The description of 14 m6A RNA methylation regulators from the Ensembl database.

Gene Ensembl Type Gene Ensembl Type

METTL3 ENSG00000165819 Writers FTO ENSG00000140718 Erasers

METTL16 ENSG00000127804 Writers YTHDF1 ENSG00000149658 Readers

WTAP ENSG00000146457 Writers YTHDF2 ENSG00000198492 Readers

RBM15 ENSG00000162775 Writers YTHDF3 ENSG00000185728 Readers

RBM15B ENSG00000259956 Writers YTHDC1 ENSG00000083896 Readers

CBLL1 ENSG00000105879 Writers YTHDC2 ENSG00000047188 Readers

ZC3H13 ENSG00000123200 Writers HNRNPC ENSG00000092199 Readers
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2.4 Identification of m6A modification
patterns

To further explore the diverse m6A modification patterns

in OP, unsupervised clustering analysis was employed to

classify the low-BMD samples into different subtypes based

on the expression of the 14 m6A regulators using the

ConsensusClusterPlus package. Different modification

patterns were verified by PCA using the

ggplot2 package. Then, the distribution characteristics of

m6A regulators and bone metabolism-related gene sets

among the different subgroups were also compared using

the limma package.

2.5 Construction of a diagnostic model
based on the key m6A regulators

All 14 m6A regulators were used to perform univariate

logistic regression, and the differentially expressed m6A

regulators were included in multivariate logistic regression

to further identify the key m6A regulators in OP. Then, these

key genes serving as variables were used to construct the

diagnostic model and calculate the risk score of each

sample. Next, the median risk score was used as the cutoff,

and the samples with a risk score higher than the median score

were divided into the high-risk subgroup, whereas the samples

with a risk score lower than the median were divided into the

low-risk subgroup. The result was visualized with the risk

factor graph using the ggplot2 package. Furthermore, the

sensitivity and specificity of the model in the training and

test datasets were determined by the ROC curve using the

pROC package.

2.6 Creation of a network of m6A
regulators-m6A target genes

All the targets of these key m6A regulators were screened

from M6A2Target (http://m6a2target. canceromics.org), a

comprehensive database for target genes of m6A

modification, including validated targets reported in the

articles and potential targets based on high-throughput

sequencing data analysis. Then, a Venn diagram was

generated to reveal the common and unique target genes of

these m6A regulators. The common target genes coregulated

by these key m6A regulators were further analyzed. Their

biological functions in Gene Ontology (GO) and KEGG

pathway enrichment were annotated using the

clusterProfiler package. Finally, the regulatory network of

these key m6A regulator-m6A target genes was built using

Cytoscape software (version 3.9.1).

2.7 Cell culture and osteoclast
differentiation

RAW264.7 cells (a murine macrophage cell line) were

cultured in growth medium containing Dulbecco’s modified

Eagle’s medium (DMEM; Gibco, Paisley, United Kingdom)

and 10% fetal bovine serum (FBS; Gibco) in a humidified 5%

CO2 incubator at 37°C. For gene expression analysis and TRAP

staining, RAW264.7 cells were seeded at 1.5×104 cells/well in 24-

well plates in differentiation medium consisting of growth

medium and 10 ng/ml nuclear factor (NF)-κB (RANKL; R&D

Systems, Minnesota, United States). The osteoclast

differentiation medium was changed every 2 days to induce

differentiation, and the cells were cultured for 4 days.

Bone marrow-derived macrophages (BMMs) were isolated

from the tibiae and femurs of 6- to 8-week-old C57BL/6 mice

(Vital River Laboratory, Beijing, China) by flushing the bone

marrow cavity with α-MEM. Then, the cells were cultured in α-
MEM containing 10% FBS overnight to separate the suspended

cells. The suspended cells were then collected and cultured in α-
MEM containing 10% FBS with 10 ng/ml RANKL and 30 ng/ml

mouse macrophage colony-stimulating factor (MCSF; R&D

Systems). The medium was changed every 2 days to induce

differentiation, and the cells were incubated at 37°C with 5%

CO2 for 4 days. The experiment was approved by the Biomedical

Ethics Committee of Peking University (issue number:

LA2020199).

2.8 OVX model construction

Ten healthy female C57BL/6 mice aged 8 weeks (25–30 g)

were randomly divided into two groups (n = 5 per group): the

sham operation group and the OVX group. Ovaries were

surgically removed on both sides after anesthesia, and then

the wound was sutured. Eight weeks after surgery, blood

samples were collected by eyeball plucking, and then

PBMCs were isolated from blood samples using a mouse

peripheral blood monocyte isolation kit according to the

manufacturer’s protocols (Solarbio, Beijing, China). Briefly,

0.75–1 ml peripheral blood samples were collected from a 16-

week-old mouse and diluted with an equal volume of

phosphate buffered saline (PBS). Then, the white

mononuclear cell layer was collected after density gradient

centrifugation and washed with PBS three times followed by

centrifugation at 250 g at room temperature for 10 min to

obtain the mononuclear cell precipitate. Finally, we purified

the cells by the differential adherent method. Cell

precipitation was resuspended in 10% FBS DMEM and seed

on a 24-well plate. Two to 4 hours after incubation, the

inadherent cells were washed away, and the remaining

monocytes were used for RNA extraction.
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2.9 Tartrate-resistant acid phosphatase
staining and osteoclasts counting

All culture media were pipetted out, and samples were

washed with PBS three times and then fixed with 4%

paraformaldehyde for 15 min at room temperature. Next, the

cells were stained with a TRAP Kit (Sigma‒Aldrich Merck,

Darmstadt, Germany) according to the manufacturer’s

protocol for 40 min at 37°C in the dark. The cells were

imaged using light microscopy (BX51, Olympus, Japan), and

TRAP-positive cells were quantified as osteoclasts. This

experiment was independently repeated three times.

2.10 Hematoxylin and eosin staining

HE staining of mouse femurs was used to detect bone

destruction in OVX and sham mice. Femurs were dissected

and fixed in 4% paraformaldehyde for 24 h, decalcified in 14%

ethylene diamine tetraacetic acid (EDTA) at 37°C for 20 days,

and then embedded into paraffin for sectioning. Bone sections

were stained with HE (Beyotime Biotechnology, Shanghai,

China) according to a standard protocol to quantify the

surface area of bone and adipose tissues.

2.11 m6A quantification

Total m6A content was detected by a m6A RNAmethylation

assay kit (Abcam, Cambridge, United Kingdom) following the

manufacture’s protocol. Briefly, total RNA samples of 200 ng for

each group were administered with the solution containing the

anti-m6A antibody. The m6A levels were quantified by using the

colorimetric analysis via absorbance at 450 nm.

2.12 Real-time PCR

Total RNA was extracted with TRIzol reagent (Invitrogen,

CA, United States) and obtained through chloroform isolation

and isopropanol precipitation. Then, cDNA was generated via

reverse transcription using a reverse transcription kit (Thermo

Scientific, MA, United States). Next, the cDNA was amplified by

a SYBR Kit (Roche Applied Science, IN, United States) on the

ABI 7500 Sequencing Detection System (Applied Biosystems,

CA, United States). RPS18 was used as a housekeeping gene, and

the primer sequences used in this process are shown in Table 2.

2.13 Western blotting

The total protein was extracted using a RIPA kit (Huaxing Bio,

Beijing, China), and then the protein concentration was quantified

using a bicinchoninic acid (BCA) kit (Thermo Fisher). Protein

samples (25 ug) were separated on electrophoresed in

polyacrylamide gels and transferred onto polyvinylidene

difluoride membranes (Millipore, MA, United States). After

blocking in 5% skimmed milk at room temperature for 1 h,

membranes were incubated with primary antibodies against

FTO (Proteintech, Wuhan, China), METTL16 (Proteintech),

YTHDF2 (Abcam), CBLL1 (Proteintech), and GAPDH

(Huaxing bio) at 4°C overnight. The membranes were

incubated with HRP-conjugated secondary antibodies (Huaxing

Bio) for 1 h and visualized by an enhanced chemiluminescence

blotting kit (Cwbiotech, Jiangsu, China). The intensities of the

bands were quantified using Quantity One software (Bio-Rad, CA,

United States). GAPDH was used as the internal control.

2.14 Statistical analysis

All the gene expression data from public datasets used in this

study were processed using R software (version 3.6.3). For the

gene expression data from public datasets, correlation analysis

between these m6A regulators and the bone metabolism-related

gene sets was conducted using the Spearman method. The limma

R package was used to analyze these parameters between

different groups. The m6A modification patterns were

identified by unsupervised clustering analysis using the

ConsensusClusterPlus package. Univariate and multivariate

logistic regression analyses were applied to reduce the non-

significant regulators, and the results were visualized using the

TABLE 2 Primer pairs used in the real-time PCR

Genes Forward primer Reverse primer

METTL16 GACAAACCACCTGACTTCGCA TCTGACTGCTTCGGGGTCTT

FTO TTCATGCTGGATGACCTCAATG GCCAACTGACAGCGTTCTAAG

CBLL1 GCGAGCCGAATCATGGATCA CTTCTTCATCACCTTGCGGG

YTHDF2 GAGCAGAGACCAAAAGGTCAAG CTGTGGGCTCAAGTAAGGTTC

RPS18 TTCCAGCACATTTTGCGAGTA CACGCCCTTAATGGCAGTGAT
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forestplot package. The prediction efficiency of the diagnostic

model was assessed by the ROC curve using the pROC package.

The data from the experimental verification are presented as the

mean ± standard deviation, and the comparison between two

groups was performed using the two-tailed Student’s t test. All

comparisons are presented as p values, and a p-value < 0.05 was

considered statistically significant. Significant differences were

considered at p < 0.05 *, p < 0.01 **, and p < 0.001 ***.

3 Results

3.1 Expression of m6A regulators in the
high- and low-BMD groups

The flowchart and analysis strategy used in the present study

are shown in Figure 1. Before further analysis, the RNA expression

data of GSE56815 were normalized (Figure 2A). UMAP and PCA

plots were generated to reduce the dimensionality of the data and

show the diverse gene expression patterns between the high- and

low-BMD samples (Figures 2B,C). To explore the m6A

modification patterns between the two groups, we thoroughly

screened the complete gene expression profiles. There were 14 vital

m6A regulators involved in the study, and their correlations were

assessed at the protein and transcriptome levels. The PPI network

was built on the STRING database and showed close direct

physical interactions and indirect functional correlations

between these m6A regulators (Figure 3A). Then, the

correlation analysis revealed their strong relationship at the

RNA level; notably, YTHDF3 and RBM15 were the most

correlated genes, suggesting that they might work as a unit to

act on OP (Figure 3B, Supplementary Table S2). Further variation

analysis was performed to examine the expression differences in

the 14 m6A regulators in the different groups (Figures 3C,D,

Supplementary Table S3). Among these differentially expressed

genes, four m6A regulators (METTL3, METTL16, HNRNPC, and

FTO) were upregulated, and two m6A regulators (CBLL1 and

YTHDF2) were downregulated.

3.2 Correlations between m6A regulators
and the bone metabolism
microenvironment

As mentioned above, metabolic alterations in bone tissues

contribute to BMD changes and OP occurrence. To probe

FIGURE 1
Flowchart and analysis strategy used in this study.
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their association with m6A regulators and the bone

metabolism microenvironment, 13 bone metabolism-related

gene sets were obtained from the GSEA database, and ssGSEA

was used to calculate the relative enrichment score of each

bone metabolism-related gene set in every sample. The results

of the variation analysis are shown in Figure 4A; eight of the

13 bone metabolism-related gene sets were significantly

dysregulated in low-BMD samples compared to high-BMD

samples, illustrating the disturbance of the bone metabolic

microenvironment in OP (Supplementary Table S4). Then,

the correlations of m6A regulators with bone metabolism-

related gene sets were explored. The results showed that

they had a very close relationship, in which the RBM15-

module pair was most negatively correlated (r = -0.735),

while the RBM15B-multinuclear osteoclast pair was most

positively correlated (r = 0.565) (Figure 4B, Supplementary

Table S5).

3.3 Identification of two distinct m6A
methylation patterns

To further understand the role of m6A regulators in low

BMD, unsupervised clustering analysis based on the 14 m6A

regulators was performed and divided the low-BMD samples into

two distinct m6A modification patterns, including 22 samples in

cluster 1 and 18 samples in cluster 2 (Figures 5A–C,

Supplementary Table S6). The PCA results confirmed that

these m6A regulators could differentiate the two clusters in

low-BMD samples (Figure 5D). Subsequently, we explored the

expression of m6A regulators and bone metabolism-related gene

sets between the two clusters. The variance analysis revealed that

eight of 14 m6A regulators had a significant expression

difference, validating the existence of diverse expression

patterns mediated by m6A methylation modification in low-

BMD samples (Figure 6A, Supplementary Table S7). Likewise,

FIGURE 2
Standardization of gene expression. (A) Box plots of the gene expression data after normalization. (B) The uniformmanifold approximation and
projection (UMAP) plot and (C) principal component analysis (PCA) plot show the differences in gene expression between the two groups. The blue
points represent the high bone mineral density (BMD) data, and the red points represent the low BMD data.
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eight of 13 bone metabolism-related gene sets showed significant

changes between the two clusters, and interestingly, we found

that all these dysregulated gene sets were upregulated in cluster

2 compared to cluster 1, suggesting that cluster 2 might have

more active bone metabolism characteristics (Figure 6B,

Supplementary Table S8).

3.4 Construction and validation of a
diagnostic model of OP

The above findings indicated that m6A regulators were

closely associated with bone metabolism-related gene sets

and played an essential role in BMD and OP. Univariate

logistic regression analysis was conducted to determine the

differentially expressed genes, and five m6A regulators were

found to be significantly correlated with BMD (Figure 7A,

Supplementary Table S9). Then, we employed multivariate

logistic regression to further reduce the unimportant

regulators, and four key regulators were identified, namely,

METTL16, CBLL1, YTHDF2, and FTO (Figure 7B,

Supplementary Table S10). Next, these four key m6A

regulators serving as variables were used to calculate the risk

score of each sample and construct a diagnostic model of OP.

The risk scores of the samples were determined (Supplementary

Table S11), and the median risk score (-0.366) was used as the

cutoff point to divide all the samples into two groups, namely,

the high-risk group and the low-risk group. The high-risk and

low-risk groups corresponded well to the low- and high-BMD

groups, respectively (Figure 7C). In the diagnostic model,

CBLL1 and YTHDF2 were protective factors, and their

expression showed a downward trend with increasing risk

score. METTL16 and FTO were risk factors, and their

expression showed an upward trend with increasing risk

score. Furthermore, the ROC curve demonstrated that the

expression values of the four key m6A regulators had

moderate diagnostic accuracy (Figure 7D). The same result

was also obtained for the test dataset (Figure 7E).

FIGURE 3
Expression and correlation of 14 m6A regulators in osteoporosis. (A) Protein–protein interactions of 14 m6A regulators. (B) Expression
correlations of the 14m6A regulators in all samples. The depth of the color block represents the level of the correlation coefficient, and * denotes the
significance of the statistical analysis. The most correlated gene pair was YTHDF2 and RBM15, the expression status of which is presented in the
scatter plot in the right panel. (C,D) The box plot and heatmap plot show the summary of 14 m6A regulators between the high- and low-BMD
groups, and six m6A regulators (METTL3, METTL16, CBLL1, FTO, YTHDF2, and HNRNPC) were significantly dysregulated.
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3.5 Creation of a BMD-related m6A
regulator-m6A target gene regulatory
network

We obtained 4,868 METTL16 targets, 7,727 CBLL1 targets,

5,207 FTO targets, and 9979 YTHDF2 targets fromM6A2Target,

of which 306 genes were potentially coregulated with the four key

m6A regulators (Figure 8A, Supplementary Table S12).

Furthermore, these 306 targets were intersected with genes in

the bone metabolism-related gene sets, and 26 target genes were

finally obtained (Figure 8B, Supplementary Table S13). The

KEGG pathway analysis showed that these genes were mainly

enriched in parathyroid hormone synthesis, secretion, action,

human papillomavirus infection, and the P13K-AKT signaling

pathway, suggesting that these pathways might be closely related

to BMD and OP (Figure 8C). The GO analysis indicated that the

biological processes of these genes were mainly enriched in

ossification, regulation of ossification, connective tissue

development, and osteoblast differentiation, which were

primarily related to bone metabolism (Figure 8D,

FIGURE 4
Relationship between bone metabolism-related gene sets and m6A regulators. (A) Differences in abundance and activity of bone metabolism-
related gene sets in the high- and low-BMD groups. (B) Expression correlations of these bone metabolism-related gene sets and m6A regulators in
all samples. Significantly, the RBM15-module pair was themost negatively correlated, the expression status of which is presented in the scatter plot in
the upper right panel, while the RBM15B-multinuclear osteoclast differentiation pair was the most positively correlated with expression status
presented in the scatter plot in the lower right panel.
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Supplementary Table S14). Then, we used Cytoscape software

and created a regulatory network composed of the four hub m6A

regulators and the 26 m6A target bone metabolism-related genes

(Figure 8E).

3.6 Validation of the expression of the key
m6A regulators in vitro and in vivo

To identify the reliability of the results based on

bioinformatics analysis, we examined the expression of the

four key m6A regulators (METTL16, CBLL1, YTHDF2, and

FTO) in vitro and in vivo. RAW 264.7 cells, which are a

classic cell line model for osteoclast and OP studies in vitro,

were used in this study. RANKL treatment induced intense

osteoclast differentiation of RAW264.7 cells (Figure 9A,

Supplementary Figure S1A). Compared to control cells, a

significantly elevated number of TRAP+ multinuclear

osteoclasts formed upon RANKL stimulation for 4 days,

indicating that the osteoclast induction model in vitro was

successfully constructed (Figure 9B). We quantified the m6A

content in total RNA by ELISA assays, and the m6A content was

significantly decreased during osteoclast differentiation

(Figure 9C). The expression patterns of METTL16, FTO,

CBLL1, and YTHDF2 at the RNA and protein levels were

examined in RAW264.7 cells, and the results showed

downregulated expression of CBLL1 and YTHDF2 and

upregulated expression of METTL16 and FTO during

osteoclast differentiation (Figures 9D–F). Likewise, osteoclast

differentiation induced from mouse BMMs were used for

further validation. The number of TRAP+ multinuclear

osteoclasts significantly increased upon RANKL- and MCSF

FIGURE 5
Unsupervised clustering analysis based on the 14 m6A regulators. (A,B) Consensus clustering cumulative distribution function (CDF) and the
relative area under the CDF curve for k = 2–10. According to the recommendations for selecting the number of clusters, the number of clusters with
the highest average consistency was k = 2. (C) The heatmap shows the consensusmatrix for the optimal k = 2. (D) The PCA plot confirmed the striking
difference between the two m6A modification patterns.

Frontiers in Genetics frontiersin.org10

Qiao et al. 10.3389/fgene.2022.1072948

189

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1072948


stimulation. (Figures 9G,H, Supplementary Figure S1B). Next, we

examined the total m6A level and the expression of four key

genes in BMMs during osteoclast differentiation. The results

were the same as those in RAW264.7 cells, except METTL16 at

the protein level (Figures 9I–L). Finally, an OVX mouse model

was constructed to represent the OP patients, and a schematic

diagram was drawn to show how we obtained the PBMCs from

mice (Figure 9M). Bone destruction was indicated by HE

staining, and the bone mass was significantly decreased in

OVX mice, which suggested that OP model was successfully

constructed. (Figure 9N). We obtained the same total m6A level

and mRNA expression data of these four key m6A regulators in

PBMCs from the OVXmodel (Figures 9O, P). These results were

consistent with our integrated analysis, indicating that the four

key m6A regulators might be used as biomarkers of OP.

However, the exact regulatory mechanism requires further study.

4 Discussion

OP, characterized by reduced BMD, is a widespread disease

with a high prevalence in older women (Camacho et al., 2020).

Abnormal bone metabolism, including enhanced bone

resorption and diminished bone formation related to low sex

hormones, is the primary pathological mechanism of OP in older

adults (Awasthi et al., 2018). m6A RNA methylation is the most

common epigenetic modification and is confirmed to be involved

in almost every aspect of metabolism (Wei et al., 2017; Wu et al.,

FIGURE 6
Expression of the m6A regulators and bonemetabolism characteristics between the twom6Amodification patterns. (A) Expression differences
of 14 m6A regulators in the two m6A modification patterns. (B) Differences in the abundance and activity of bone metabolism-related gene sets in
the two m6A modification patterns.
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2018b). Studies have found that some m6A regulators, such as

METTL3, FTO, and YTHDF2, play an essential role in bone

metabolism by affecting the differentiation and proliferation of

bone-related cells (Wu et al., 2018a; Li et al., 2019; Yu et al., 2019).

However, an integrated bioinformatics analysis of various m6A

regulators and bone metabolism characteristics in OP has not

been systematically researched, which may increase

understanding of the molecular mechanisms of m6A-mediated

OP and provide some evidence for subsequent treatment.

We first searched GEO datasets and downloaded

GSE56815 data concerning the gene expression of PBMCs in

pre- and postmenopausal females, including 40 high-BMD and

40 low-BMD samples. First, we found that many m6A regulators

have strong protein interactions or expression correlations,

suggesting that they may function as complexes. The

expression of most m6A regulators was altered between the

high-BMD and low-BMD samples, illustrating that m6A

regulators may be involve in OP development. Next, to

investigate the relationship between m6A regulators and bone

metabolism, we obtained 13 bone metabolism-related gene sets

from the GESA database. Osteoporosis and osteoclast signaling

gene sets were upregulated in the low-BMD group, while

ossification, bone remodeling, and osteoclast differentiation,

among other gene sets, were downregulated, implying the

disturbance of the bone metabolic microenvironment in OP.

In addition, we found that these bone metabolism-related gene

sets were closely associated with m6A regulators. RBM15 was

most negatively connected with Module. The module pathway

represents the degree of bone mineralization, which determines

BMD (Roschger et al., 2014). A previous study demonstrated that

circ-CTNNB1 interacted with RBM15 and subsequently

promoted the aerobic glycolysis process (Yang et al., 2022).

FIGURE 7
Construction of a diagnostic model of osteoporosis. (A) Univariate logistic regression analysis was conducted to identify the critical m6A
regulators, indicating that five m6A regulators were significant for osteoporosis (METTL16, CBLL1, YTHDF2, HNRNPC, and FTO). (B) Multivariate
logistic regression was employed to identify the independent modules, and four vital m6A regulators were obtained for the diagnostic model
(METTL16,CBLL1, YTHDF2, and FTO). (C) The risk score was calculated based on the expression of the four vital m6A regulators, and themedian
risk score (–0.366) was used as the cutoff point. All samples were divided into two groups: the high-risk group and the low-risk group. (D,E) The
sensitivity and specificity of the diagnostic model in the training dataset (D) and test dataset (E)were determined by receiver operating characteristic
(ROC) curves, and the area under the curve was calculated.
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Meanwhile, aerobic glycolysis is critical for osteoclastogenesis,

and increased aerobic glycolysis may induce excessive bone

resorption and lead to osteoporotic fractures (Li B. et al.,

2020). RBM15B was most positively connected with

multinuclear osteoclast differentiation, which accelerates bone

absorption and then promotes the occurrence and development

of OP, while no relevant studies have explored the role of

RBM15B in multinuclear osteoclast differentiation, which

needs to be further studied in the future. However, it has been

reported that METTL3 can modulate Atp6v0d2 mRNA

degradation and Traf6 mRNA nuclear export to regulate

osteoclast differentiation and function (Li D. et al., 2020).

These results suggested that m6A modification had an

essential regulatory role in shaping different bone metabolic

microenvironments in OP.

Unsupervised clustering analyses have been used in

several studies based on gene signatures to help elucidate

the underlying mechanism of the studied disease (Zhang et al.,

2020; Shen et al., 2021a; Liu et al., 2021). A recent study

employed this method to comprehensively evaluate the m6A

modification patterns among 9,804 pancancer samples and

identified three distinct m6A modification subtypes, which

enhanced our understanding of the dysregulation of RNA

methylation in tumor microenvironments (Shen et al., 2021b).

We used 14 m6A signatures and developed two distinct m6A

modification subgroups with different bone metabolism

microenvironments in the low-BMD group. Compared with

cluster 1, cluster 2 had more active bone metabolic activities.

The unique characteristics of bone metabolism between the

two clusters verified the feasibility of classifying the bone

metabolic microenvironment by m6A regulators.

Simultaneously, our findings aid a deeper understanding of

the molecular mechanisms of OP and may be used as a basis

for individualized choice of drug therapy (Marozik et al.,

FIGURE 8
Creation of a regulatory network of m6A regulators-m6A target genes. (A)m6A target genes were obtained from M6A2Target, and 306 genes
were potentially coregulated with the four m6A regulators. (B) Twenty-six m6A target genes were also closely related to bonemetabolism. (C) KEGG
pathway analysis showed that these 26 genes were mainly enriched in parathyroid hormone synthesis, secretion, action, human papillomavirus
infection, and the P13K-AKT signaling pathway. (D) TheGO analysis indicated that the biological processes of these genes weremainly enriched
in ossification, regulation of ossification, connective tissue development, and osteoblast differentiation. (E) A regulatory network was built with four
hub m6A regulators and 26 m6A target genes.
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FIGURE 9
Validation of the expression of the key m6A regulators in vitro and in vivo. (A,B) Tartrate-resistant acid phosphatase (TRAP) staining and TRAP+

multinuclear cells counting of RAW 264.7 cells with or without nuclear factor (NF)-κB (RANKL) stimulation. Scale bar, 100 μm. (C) The m6A level in
total RNA isolated from RAW264.7 cells during the osteoclast differentiation. (D) The expression ofMettl16, Fto, Cbll1, and Ythdf2 in RAW264.7 cells
was detected by real-time PCR after cultured with RANKL for 4 days (E,F) Western blotting and quantification of METTL16, FTO, CBLL1 and

(Continued )
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2019). Unsupervised clustering analyses have also been used

in some clinical studies of OP. A study divided patients into

nine subgroups with significant differences in clinical features,

BMD distribution, and medical care costs. It quantified

patients into three different fracture risk levels, which

showed a better understanding of fracture risk phenotypes

(Kruse et al., 2017).

We evaluated the role of m6A regulators in diagnosing OP

or the BMD phenotype using univariate and multivariate

logistic regression analyses, which are widely applied in

diagnosing diseases such as periodontitis and appendicitis

(Eddama et al., 2019; Zhang et al., 2021). Four key m6A

regulators significantly associated with the BMD phenotype

were chosen for the diagnostic model. In this model, patients

with high CBLL1 and YTHDF2 expression had a low likelihood

of decreased bone density. In contrast, patients with high

expression of METTL16 and FTO had an increased risk of

OP. Subsequently, the risk score of all the samples was

evaluated. The results showed that patients with low BMD

had a higher risk score, suggesting their potential clinical value

for the diagnosis of OP. Furthermore, the model’s predictive

power was assessed by ROC analysis, which showed moderate

accuracy. The same result was also obtained in the test dataset,

which further verified the extrapolation of the results. The roles

of FTO and YTHDF2 have been studied in OP. FTO promotes

OP through demethylating Runx2 mRNA and inhibiting

osteogenic differentiation (Wang et al., 2021).

YTHDF2 might be involved in regulation of the

lipopolysaccharide (LPS)-stimulated inflammatory reactions

via regulating the stability of MAP2K4 and

MAP4K4 mRNAs in RAW 264.7 cells (Yu et al., 2019).

However, CBLL1 and METTL16 have mainly been studied in

cancers and act as oncogenic markers to promote the

development and progression of tumors (Hui et al., 2019; Su

et al., 2022). Their role in OP has not been reviewed, which

guides us to further explore their relevant roles in the OP field.

A gene regulatory network containing the four hub m6A

regulators and 26 m6A target genes related to bone metabolism

was constructed to further understand the role of m6A

regulators in OP. The biological processes of these target

genes were mainly enriched in ossification, implying their

essential role in OP or BMD. In addition, KEGG analysis

revealed that these genes primarily focused on parathyroid

hormone synthesis, secretion, action, human papillomavirus

infection, and the P13K-AKT signaling pathway. Parathyroid

hormone has been reported to augment bone formation,

particularly in trabecular and cortical bone, and has a central

role in regulating extracellular fluid Ca ++ and phosphate (Pi)

homeostasis (Goltzman, 2018). One study has showed that

METTL3 reduces the translation efficiency of the bone

marrow stem cell (BMSC) lineage allocator parathyroid

hormone receptor 1 and disrupts parathyroid hormone-

induced osteogenic and adipogenic responses to promote OP

(Wu et al., 2018a). There is no related research on HPV

infection and OP, but one study found higher mean alveolar

bone loss in patients with HPV-positive tumors (Mine Tezal

et al., 2009). The PI3K-AKT signaling pathway has been

reported to be involved in various cellular processes,

including BMSCs proliferation and osteoclast differentiation

(Shen G. Y. et al., 2018). Conditional knockdown of METTL3 in

BMSC suppressed PI3K-Akt signaling and limited the

expression of bone formation-related genes to regulate

osteogenic differentiation and alternative splicing of Vegfa in

BMSC(Tian et al., 2019). These findings may provide a

foundation for m6A modification in OP and imply a

direction for the relationship between m6A regulators and

bone metabolism-related genes in OP.

Finally, we verified the expression of the key m6A

regulators in vivo and in vitro models of OP. Excessive

osteoclast activity results in reduced bone mass and

decreased bone strength in OP, hence, osteoclasts are

considered therapeutic targets for bone-related diseases

including OP. In the present study, we established RANKL-

and/or MCSF-induced BMMs and RAW264.7 cells as

osteoclast differentiation cell models (Kim et al., 2020). In

addition, we constructed animal models of OP to further

investigate our results, and the OVX model is the most

utilized approach in such studies (Fu et al., 2020). We first

quantified m6A contents and found that the total m6A levels

were significantly decreased in osteoclast differentiation cells

and OVX mice, which was consistent with the related research

in OP (Yan et al., 2020). The expression of METTL16, CBLL1,

YTHDF2, and FTO at the RNA and protein levels was

consistent with our bioinformatics analysis results.

However, interestingly, METTL16 and FTO, which exhibit

opposing m6A catalytic abilities, were significantly

FIGURE 9 (Continued)
YTHDF2 in RAW264.7 cells after cultured in RANKL. (G,H) TRAP staining and TRAP+ multinuclear cells counting of bone marrow-derived
macrophages (BMMs) with or without RANKL and macrophage colony-stimulating factor (MCSF) stimulation. Scale bar, 100 μm. (I) The m6A level in
total RNA isolated from BMMs during the osteoclast differentiation. (J) The expression of Mettl16, Fto, Cbll1, and Ythdf2 in BMMs was detected by
real-time PCR after cultured with RANKL andMCSF for 4 days (K,L)Western blotting and quantification ofMETTL16, FTO, CBLL1, and YTHDF2 in
BMMs after cultured in RANKL and MCSF. (M) A schematic diagram shows how peripheral blood monocytes (PBMCs) were obtained from the
ovariectomized (OVX) and shammice. (N) Representative images of Hematoxylin and eosin (HE) staining of mouse femurs showing the reduction of
bone formation in theOVXmice relative to the sham-control counterparts. (O) Them6A level in total RNA isolated from PBMCs of theOVX and sham
mice. (P) The mRNA expression level of Mettl16, Fto, Cbll1, and Ythdf2 in PBMCs of the OVX and sham groups. Compared with the sham group.
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upregulated in RAW264.7 cells, BMMs and PBMCs. The

upregulation trend of FTO, the most important

demethylase, was consistent with the decreasing m6A level

and downregulated expression of CBLL1 and YTHDF2, while

METTL16 exhibited a negative correlation with that. One

possible explanation for the increased METTL16 might be

that METTL16 could be compensating for the feedback of

descending m6A modification induced by FTO, CBLL1 and

YTHDF2 in RAW264.7 cells, BMMs and PBMCs. The

phenomenon that these enzymes with opposite functions

have the same expression trend is common in other m6A-

related studies (Ma et al., 2017). The OVX mouse model is an

excellent preclinical model. However, because a small amount

of peripheral blood, approximately 0.75–1 ml for each mouse,

can be obtained, the number of PMBCs is limited. These

PMBCs could obtain approximately 1 ug of RNA, which

met the experimental verification at the RNA level.

However, those PMBCs were not enough for protein level

verification, and the relevant validation needs to be carried out

in other large animals or clinical trials in the future.

These findings further illustrated the impact of m6A

regulators on the bone metabolic microenvironment of OP.

However, there are still some limitations to our study. First,

collecting blood samples from human patients is an invasive

operation. Considering that our study is a preliminary

exploratory study, it cannot benefit patients for the time

being. Especially during the COVID-19 pandemic, due to the

requirements of ethics and social management, we were unable

to collect human samples, which are more credible than cell

lines and mouse samples. Of course, if we can collect some

blood samples during the operation of OP patients in the future,

we will carry out corresponding experiments for further

verification. In addition, the datasets on OP presently lack a

more extensive sample study, so extrapolation of the above

results may be limited due to the small sample size of our study.

Finally, our study mainly focused on exploring the role of m6A

modification in the diagnosis of OP, and we did not investigate

the specific regulatory mechanism of m6A regulators in OP.

Relevant studies have shown that FTO can regulate the

occurrence and development of OP through the GDF11-

FTO-Pparg axis, which can be used as a potential

therapeutic target (Shen G. S. et al., 2018). Moreover, only a

limited number of FTO inhibitors have been identified, yet their

efficacy and safety are inconclusive. Notably, there are currently

no m6A-based drugs developed for OP. Therefore, to address

these limitations, we still have a long way to go.

5 Conclusion

In conclusion, we preliminarily explored the implications

of m6A regulators in OP by identifying two m6A modification

patterns and constructing a regulatory network of the m6A

regulator-m6A target genes. In addition, we successfully

identified four m6A regulators, namely, METTL16, CBLL1,

YTHDF2, and FTO, as potential biomarkers for diagnosing OP

and the expression of the four key m6A regulators

was validated in vitro and in vivo. Taken together, our

results revealed that m6A modification has essential roles

in OP, which may imply a direction for us to

further explore the specific mechanism of these m6A

regulators in OP.
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MiRNA-Seq reveals key
MicroRNAs involved in fat
metabolism of sheep liver
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There is a genetic difference between Hu sheep (short/fat-tailed sheep) and
Tibetan sheep (short/thin-tailed sheep) in tail type, because of fat metabolism.
Previous studies have mainly focused directly on sheep tail fat, which is not the
main organ of fat metabolism. The function of miRNAs in sheep liver fat
metabolism has not been thoroughly elucidated. In this study, miRNA-Seq was
used to identify miRNAs in the liver tissue of three Hu sheep (short/fat-tailed
sheep) and three Tibetan sheep (short/thin-tailed sheep) to characterize the
differences in fat metabolism of sheep. In our study, Hu sheep was in a control
group, we identified 11 differentially expressed miRNAs (DE miRNAs), including six
up-regulated miRNAs and five down-regulated miRNAs. Miranda and RNAhybrid
were used to predict the target genes of DEmiRNAs, obtaining 3,404 target genes.
A total of 115 and 67 GO terms as well as 54 and 5 KEGG pathways were
significantly (padj < 0.05) enriched for predicted 3,109 target genes of up-
regulated and 295 target genes of down-regulated miRNAs, respectively. oar-
miR-432 was one of the most up-regulated miRNAs between Hu sheep and
Tibetan sheep. And SIRT1 is one of the potential target genes of oar-miR-432.
Furthermore, functional validation using the dual-luciferase reporter assay
indicated that the up-regulated miRNA; oar-miR-432 potentially targeted
sirtuin 1 (SIRT1) expression. Then, the oar-miR-432 mimic transfected into
preadipocytes resulted in inhibited expression of SIRT1. This is the first time
reported that the expression of SIRT1 gene was regulated by oar-miR-432 in
fat metabolism of sheep liver. These results could provide ameaningful theoretical
basis for studying the fat metabolism of sheep.

KEYWORDS

miRNA, liver, fat metabolism, Hu sheep, Tibetan sheep

1 Introduction

MicroRNAs (miRNAs) are a kind of small RNA, whose length is about 22 nt
(nucleotide). Previous studies revealed that miRNAs have distinctive biological
characteristics in proliferation, differentiation, metabolism, and disease (Lin et al., 2020).
In animals and plants, miRNAs are involved in the regulation of post-transcriptional gene
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expression. miRNAs usually bind to the 3’UTR region of mRNA to
inhibit the post-transcriptional translation of target genes and
enhance the degradation or repress the translation of mRNAs
(Rouleau et al., 2017). In Chinese indigenous sheep, sheep can be
divided into short/thin-tailed sheep, long/thin-tailed sheep, short/
fat-tailed sheep, long/fat-tailed sheep, and fat-buttock sheep,
because of the degree of fat deposition along the tail vertebra and
the length of the tail vertebra (Lu et al., 2020). Hu sheep (short/fat-
tailed sheep) and Tibetan sheep (short/thin-tailed sheep) are two
Chinese indigenous sheep breeds with different tail types. Tail fat is
the main energy source for sheep migration, drought, and food
deprivation (Luo et al., 2021). However, studies mainly focus directly
on tail fat to study fat metabolism, which is not the main organ of fat
metabolism (Zhou et al., 2017; Li et al., 2020). The liver is a primary
organ of fat metabolism, fat metabolization in the liver is equally
important to its metabolism in fat tissue. Triglyceride is one of the
lipids mostly formed in the liver, whose metabolism is mainly
controlled through liver parenchyma cells. And the degree of fat
deposition in fat tissue depends on the fat flow in the liver for fat
synthesis. (Carotti et al., 2020). There are differences in the liver of
sheep with different tail types that can reflect the underlying
mechanism of sheep fat metabolism.

With the development of high-throughput sequencing
technology, miRNA-Seq has been widely used in the omics
analysis of humans (Zheng et al., 2016), mice (Peng et al., 2013),
chickens (Sikorska et al., 2021) and cows (Zhang et al., 2019; Chen
et al., 2020) species. And researchers showed that miRNA has an
important function in fat metabolism (Deng et al., 2020). Many
studies have explored the role of miRNA in liver fat metabolism
disease models to clarify the process of disease occurrence. In a non-
alcoholic fatty liver disease (NAFLD) mouse model, Lin et al.
identified that miR-29a not only made body weight gain decrease,
but also the subcutaneous, visceral, and intestinal fat accumulation
and hepatocellular steatosis (Jeon and Carr., 2020). In the non-
alcoholic steatohepatitis (NASH) mouse model, inhibiting the
expression of miR-21 decreased liver injury, inflammation, and
fibrosis (SOARES et al., 2016). In a high-fat-induced mouse model,
miR-378 targeted AMPK to promote the occurrence of liver fibrosis
and inflammation (Lin et al., 2019). Meanwhile, researchers have
analyzed the expression patterns of miRNA in the liver of pigs (Li
et al., 2021) and cows (Liang et al., 2017) across periods. These studies
represented a foundation for further understanding the molecular
regulatory mechanisms of liver tissue fat metabolism.

Because there is a genetic difference between Hu sheep (short/
fat-tailed sheep) and Tibetan sheep (short/thin-tailed sheep) in tail
type, comparing their livers’ miRNA features may find miRNAs
affecting the fat metabolism of Hu sheep (short/fat-tailed sheep) and
Tibetan sheep (short/thin-tailed sheep). Our results could provide a
theoretical basis for further study of the fat metabolism between
different sheep breeds.

2 Matericals and methods

2.1 Tissue collection and sequencing

All animal experiments were approved by the Science
Research Department of the Institute of Animal Sciences,

Chinese Academy of Agriculture Sciences (IAS-CAAS). Ethical
approval complied with the Animal Ethics Committee of the IAS-
CAAS (No. IAS 2019-49). Samples of liver tissues were collected
from three Hu sheep (short/fat-tailed sheep, Yongdeng, Gansu,
China) and three Tibetan sheep (short/thin-tailed sheep, Yushu,
Qinghai, China). Samples from Hu sheep are named HG1, HG2,
and HG3, respectively. Samples from Tibetan sheep are named
ZG1, ZG2, and ZG3, respectively. All sheep were males and
slaughtered at age 1.5. All samples were frozen in liquid
nitrogen in 1.5 mL RNase-free freezing tubes and stored
at −80°C for use. Trizol (Invitrogen, Carlsbad, CA,
United States) was used to extract total RNA. A
NanoDrop2000 spectrophotometer (Thermo Fisher Scientific,
Wilmington, MA, United States) was used to quantify RNA
purity at 260 and 280 nm. Six libraries were constructed with
a commercial sequencing provider: BGI (Mortazavi et al., 2008;
Wang et al., 2009). An Agilent 2,100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, United States) was used to
examine the integrity of the library. All FASTQ sequencing
files have been stored in the Sequence Read Archive (accession
numbers PRJNA785102).

2.2 Sequence analysis

The cleaning of the rawdata was performed based on: 1) poor quality
sequencing reads, 2) reads with 5′ adaptors and without 3’ adaptors; 3)
reads without insert segments; and 5) reads containing poly A; and 6)
reads longer than 18 nucleotides. To ensure that each small RNA had a
unique label, according to the order of possible ribosomal RNA, small
conditional RNA, small nucleolar RNA, small nuclear RNA (snRNA),
and transfer RNA sequences to annotate (Balaskas et al., 2020). The sheep
reference genome Oar_v3.1 (https://www.ebi.ac.uk/ena/browser/view/
GCA_000298735.1, accessed on 20 February 2021) and miRbase21.0
(http://www.mirbase.org, accessed on 20 February 2021) was used to
map clean reads with Bowtie2 (Langmead et al., 2009).

2.3 MiRNA identification and differential
expression analysis

MiRDeep2 software was used to predict novel miRNAs (Kern et al.,
2020). The expression of miRNA was calculated by absolute numbers
counting of molecules using unique molecular identifiers (Pflug and
Haeseler., 2018). Moreover, the lengths of small RNAs (sRNAs) and the
proportion of miRNAs were calculated. The “oar-miR-" and “novel_
mir” terms identify known miRNAs and novel miRNAs, respectively.
Hu sheep is set as a control, DESeq2 software was used to perform the
differential expression analysis, in which the statistical significance was
set at a fold discover rate (FDR) adjusted p-value (padj ≤0.05) by Benja-
mini-Hochberg and |Log2Foldchange| > 0.5.

2.4 Target gene prediction of miRNAs and
gene function enrichment analysis

Miranda (John et al., 2004) and RNAhybrid (Lin et al., 2022)
were used to find more accurate targets of differentially expressed
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miRNA (DE miRNA). g: Profiler was used for genes function
enrichment analysis, in which the statistical significance was set
at a fold discover rate (FDR) adjusted p-value (padj ≤0.05) by
Benjamini–Hochberg (Raudvere et al., 2019). There are
3,109 target genes of upregulated and 295 target genes of
downregulated DE miRNAs were annotated with Gene Ontology
(GO) (http://www.geneontology.org/, accessed on 19 January 2022)
and the Kyoto Encyclopedia of Genes and Genomes (KEGG) (http://
www.genome.jp, accessed on 19 January 2022), respectively.

2.5 Quantitative real-Time PCR

Steam-loop real-time qPCR was used to validate miRNA
sequencing data from seven randomly selected miRNAs (oar-
miR-432, novel_mir70, novel_mir21, nov-el_mir64, novel_
mir58, oar-miR-19b, and oar-miR-29b). The total RNA of each
sample was reversed transcribed with a miRNA 1st Strand cDNA
Synthesis Kit. RT-qPCR was performed on a LightCycler® 480II
qPCR system using miRNA universal SYBR qPCR Master Mix
(Vazyme, Nanjing, China). U6 was used as the reference gene. To
detect the expression of SIRT1, HiScript III 1st Strand cDNA
Synthesis Kit (+gDNA wiper) and ChamQ universal SYBR qPCR
Master Mix (Vazyme, Nanjing, China) were used. And beta-actin
was used as the reference gene. The reverse transcription and PCR
primer sequences are listed in Supplementary Table S1. The
relative expression levels of miRNA and mRNA were calculated
using 2−ΔΔCT (Rao et al., 2013).

2.6 Dual -Luciferase reporter assay

To verify the target relationship of SIRT1 and oar-miR-432, Xho
I and NotI restriction enzyme cutting sites were amplified with the
wild-type 3’UTR of the SIRT1. The primers are listed in
Supplementary Table S1. The wild-type 3’UTR of the SIRT1 was
ligated to vectors and named psiCHECK2-SIRT1-3’UTR-WT.

Using a Site-Directed Mutagenesis Kit (Thermo Fisher
Scientific, MA, United States), the mutant-type 3’UTR of
SIRT1 was obtained and named psiCHECK2-SIRT1-3’UTR-
MT. PsiCHECK2-SIRT1-3’UTR-WT, psiCHECK2-SIRT1-
3’UTR-MT, or pure vectors were co-transfected with oar-miR-
432 mimics; pure vectors were co-transfected with negative
control (NC) or oar-miR-432 mimics into 293T (Pan et al.,
2018). After incubation for 6 h, the culture medium was
changed. After 48 h of incubation, the relative luciferase
activity in the cells was measured using a Dual-Luciferase
Reporter Assay System (Promega, Promega, WI,
United States). Each treatment was performed 4 times for
each group. All plasmid, oar-miR-432 mimics, and negative
control were synthesized by GenePharma (Shanghai, China).

2.7 Sheep preadipocytes culture and
transfection

Sheep preadipocytes were isolated from the tail fat of a 70-day-
old Hu sheep fetus by collagenase digestion. Preadipocyte

transfection and culture were according to our previous method
(Jin et al., 2022). When the cell showed contact inhibition, we
collected cells and extracted protein.

2.8 Western blot

Proteins from cell were extracted with RIPA buffer and
separated on SDS-PAGE gel including 4% concentrated glue and
12% separation gel. After transfer, the PVDF blot membranes were
blocked and then probed with rabbit polyclonal antibody against
SIRT1 (1: 1,000, Proteintech, Chicago, IL, United States) at 4°C
overnight. Alpha-tubulin poly-clonal antibody (1:3,000, Abclonal,
Beijing, China) was used as an internal reference. These blots were
further conjugated with a goat anti-rabbit IgG secondary antibody
(1:1,000, Proteintech, Chicago, IL, United States) labeled with HRP
via incubation and revealed with an ECL kit (Engreen, Beijing,
China), and exposed to X-ray films. Blot intensity quantification was
performed using ImageJ software (1.51j8) (Rha and Gyeol Yoo,
2015).

2.9 Statistical analysis

The data were processed by SPSS 20.0 two-tailed Student’s t-test
(Singh et al., 2019). All the results are presented as means ± standard
deviation. Furthermore, * indicates statistically significant (p < 0.05).
** indicates statistically significant (p < 0.01).

3 Result

3.1 Quality control

The results of the miRNA-Seq data after quality control are
displayed in Table 1. The clean tag count of each sample ranged from
27 to 28 million, and the Q20 of clean tags ranged from 98.20% to
98.50%. About 88.63%–92.75% of the clean reads were mapped to
the sheep reference genome.

3.2 Identification of miRNAs

In this study, 134 known miRNAs and 275 novel miRNAs were
identified from HG1; 132 known miRNAs and 291 novel miRNAs
were identified from HG2; 137 known miRNAs and 298 novel
miRNAs were identified from HG3; 132 known miRNAs and
295 novel miRNAs were identified from ZG1; 133 known
miRNAs and 198 novel miRNAs were identified from ZG2; and
129 known miRNAs and 273 novel miRNAs were identified from
ZG3 (Supplementary Table S2).

3.3 Analysis of differentially expressed
miRNAs

We found 379 novel miRNAs and 139 known miRNAs. Hu
sheep is set as a control, based on the padj ≤0.05, we detected 11 DE
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miRNAs in ZG compared with HG (Figure 1 and Supplementary
Table S3). There are six upregulated miRNAs, including novel_
mir471, oar-miR-432, novel_mir21, novel_mir59, novel_
mir394 and, novel_mir70. There are five downregulated miRNAs,
including oar-miR-29b, novel_mir58, novel_mir54, oar-miR-19b,
and novel_mir64. Three miRNAs were reported that were associated
with fat metabolism.

3.4 DE miRNAs target prediction and
functional analysis

Miranda and RNAhybrid software were used to predict the
target genes of DE miRNAs, resulting in 3,404 predicted target
genes (Supplementary Table S4). GO annotation enrichment was
used to describe the functions of the target genes of upregulated
and downregulated DE miRNAs. These were involved in cellular
components (CCs), molecular function (MF), and biological
processes (BP), including animal organ development,
intracellular organelle lumen, ATP binding, intracellular
vesicles, and kinesin and calcium ion binding (Figures 2A,B
and Supplementary Table S5). A total of 115 GO terms were
significantly enriched by target genes of the upregulated DE
miRNAs, and 54 terms were significantly enriched by target
genes of the downregulated DE miRNAs. DE miRNAs were used
in a KEGG pathway enrichment analysis. Based on all the target
genes of upregulated and downregulated miRNAs, 67 and
5 KEGG pathways were significantly enriched, respectively
(Supplementary Table S6). As shown in Figures 2C,D, the
ECM–receptor interaction signaling pathway, KEGG root
term signaling pathway, transcriptional regulation in the
cancer signaling pathway, the focal adhesion signaling
pathway, and the breast cancer signaling pathway were
simultaneously enriched. Other signaling pathways related to
fat metabolism were enriched, including the PI3K-Akt signaling
pathway, calcium signaling pathway, AMPK signaling pathway,
and MAPK signaling pathway, which are related to fat
metabolism.

3.5 Verified the DE miRNA and the
expression of miRNA by RT-qPCR

The RT-qPCR technique was used to validate the sequencing results.
Seven miRNAs were randomly selected for RT-qPCR verification. The
validation results are displayed in Figure 3A and SupplementaryTable S7.

3.6 Plasmid identification

Eight randomly selected monoclonals and vector universal
primers were used to identify the wild-type psiCHECK2 plasmid
by polymerase chain reaction (PCR) (Supplementary Figure S1) and
sequencing. The sequencing primers are shown in Supplementary
Table S1. Site-directed mutation was used to obtain the mutant-type
psiCHECK2 plasmid. The sequencing results of wild-type
psiCHECK2 plasmid and mutant-type psiCHECK2 are in
Supplementary Table S8 and Supplementary Table S9. Eventually,
the plasmids were constructed successfully.

3.7 Validation of the target relationship
between oar-miR-432 and SIRT1

A dual-luciferase reporter assay indicated that oar-miR-
432 significantly suppressed the luciferase activities for co-
transfection with SIRT1 3’UTR wild-types, although did not
affect the mutant types of SIRT1 3’UTR or blank vectors
(Figure 4B and Supplementary Table S10). These results initially
confirmed the direct interactions between oar-miR-432 and SIRT1.

3.8 Expression of SIRT1 in Liver tissue

The RT-qPCR results showed that the expression trends in oar-miR-
432 and SIRT1 were contrasting. oar-miR-432 was highly expressed in
the liver tissue of Hu sheep, while the SIRT1 was highly expressed in the
liver tissue of Tibetan sheep (Figure 3B, Supplementary Table S7).

TABLE 1 Summary of sequencing data for each library.

Sample name Sequence
type

Raw tag
count

Clean tag
count

Percentage of clean
tag (%)

Q20* of clean
tag (%)

Percentage of mapped
tag (%)

HG1 (short/fat-tailed
sheep)

SE50 28,376,193 27,508,714 96.94 98.50 92.75

HG2 (short/fat-tailed
sheep)

SE50 28,289,347 27,054,271 95.63 98.40 91.58

HG3 (short/fat-tailed
sheep)

SE50 29,793,809 28,483305 95.60 98.40 90.48

ZG1 (short/thin-tailed
sheep)

SE50 30,184,839 28,487,066 94.35 98.30 88.63

ZG2 (short/thin-tailed
sheep)

SE50 28,886,721 27,154,416 94.70 98.20 89.46

ZG3 (short/thin-tailed
sheep)

SE50 29,008,123 27,666,601 95.38 98.50 89.77
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3.9 Expression of SIRT1 in preadipocytes

Oar-miR-432 mimics and negative control were transfected into
preadipocytes. Then we detected the expression of oar-miR-432 and
SIRT1. The expression of oar-miR-432 was increased by oar-miR-
432 mimics (Jin et al., 2022). The result of the Western blot showed
the expression of SIRT1 was inhibited by oar-miR-432 mimics
(Figures 3C,D, Supplementary Table S11, Supplementary Figure
S2, Supplementary Figure S3).

4 Discussion

Thus far, miRNA expression has been studied in the liver tissues of
buffalos (Rha and Gyeol Yoo, 2015), dairy cows (Bu et al., 2017), mice
(Seclaman et al., 2019), rats (Wang et al., 2017), pigeons (Wang et al.,

2020), pigs (Kai et al., 2019), chickens (Xu et al., 2019), and geese (Zheng
et al., 2015). RNA-Seqwas used to construct 41 pairs of ceRNAnetworks
on liver tissue from three Holstein cows, which provide new insight into
resolving bovine lipid metabolism (Liang et al., 2017). In bovine
hepatocytes, miR-27a-5p inhibited calcium sensing receptor (CASR)
expression, triacylglycerol (TAG) accumulation was significantly
suppressed, and low very density lipoprotein (VLDL) secretion was
reduced (Yang et al., 2018). established miRNA-mRNA regulatory
networks related to lipid deposition and metabolism in the livers of
Landrace pigs with the extreme backfat thickness (Kai et al., 2019). RNA-
Seqwas used to constructmiRNA-mRNAnetworks between Jinhua and
Landrace pigs (Huang et al., 2019). These studies provided new insights
into the molecular mechanisms to explore fat metabolism in pigs. Also,
the study found there was a lncRNA-FNIP2/miR-24-3p/FNIP2 axis,
which can regulate lipid metabolism in Sanghuang chicken liver (Guo
et al., 2021).

FIGURE 1
The volcano plots of all expressed miRNAs in the livers of Hu sheep (short/fat-tailed sheep) and Tibetan sheep (short/thin-tailed sheep). The x-axis
denotes the values of log2 (fold-change), whereas the y-axis denotes the −log10 (padj). The colored dots represent the expressed miRNAs, with blue
indicating downregulated miRNAs and red indicating upregulated miRNAs (padj ≤0.05). The black dots indicate that the miRNAs are not statistically
significant (padj >0.05).
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In this study, we used high-throughput sequencing to identify the
expression of miRNA in the livers of Hu sheep and Tibetan sheep. This
study complements the current understanding of miRNA expression
patterns in sheep livers and will help future research on the specific role
of miRNA in regulating fat metabolism. In our study, we identified

11 differential miRNAs. miR-432, miR-19b, and miR-29b are
associated with fat metabolism, and a previous study showed that
miR-432 inhibits milk fat synthesis by targeting stearoyl CoA
desaturase (SCD) and LPL in ovine mammary epithelial cells.
Additionally, miR-432 inhibits the proliferation of ovine mammary

FIGURE 2
Significantly enriched Gene Ontology and KEGG for the target genes of DE miRNAs. (A) Some GO terms of target genes of upregulated DE miRNAs
for BP, CC, and MF in two groups. (B) GO terms of target genes of downregulated DE miRNAs for BP, CC, and MF in two groups. The x-axis displays
enrichment, and the y-axis rep-resents the GO terms. The filled colored circles display each statistically significant GO term. The size of the circles
represents the gene number. (C) Signal pathway of the target genes of upregulated DEmiRNAs in two groups. (D) Some signal pathways of the target
genes of upregulated DE miRNAs in two groups. The x-axis displays the enrich-ment factor of the target genes, and the y-axis represents the KEGG
pathway. The filled colored circles represent each statistically significant KEGG pathway. The size of the circles represents the number of genes.

FIGURE 3
The results of RT-qPCR and Western blot. (A) RNA-Seq and RT-qPCR results of seven differentially expressed miRNAs in ZG compared with HG. (B)
RT-qPCR results of SIRT1 in HG and ZG. (C) (D) Western blot results of SIRT1 in preadipocytes. NC exhibits negative control.
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epithelial cells (Hao et al., 2021). Transcriptome analysis revealed that
miR-432 was differentially expressed in the backfat of cattle; the protein
kinase AMP-activated catalytic subunit alpha 1/2 (PRKAA1/2) and
peroxisome proliferator-activated receptor alpha (PPARA) were
regulation targets to modulate lipid and fatty acid metabolism (Sun
et al., 2014). Interestingly, miR-432 was differentially expressed in tail
fat between Hu sheep and Tibetan sheep, which could have an
important function in sheep fat metabolism (Fei et al., 2022). In
mice SVF cells, miR-19b had an inhibitory effect on the browning
process of adipose tissue (Lv et al., 2018). Researchers found that miR-
29b can regulate blood sugar in adult mice, representing a target for
treating metabolism disease (Hung et al., 2019). Additionally, miR-29b
inhibits the differentiation of pig muscle and subcutaneous
preadipocytes through targeted regulation complement component 1
(C1q) and TNF-related protein 6 (CTRP6) (Wu et al., 2021). Ma et al.
found that lncRNAs, including TCONS_00372,767 and TCONS_
00171,926, were related to fat metabolism among Lanzhou fat-tailed
sheep, small-tailed Han sheep, and Tibetan sheep, and constructed two
co-expression networks of differentially expressed mRNA and lncRNA
(Ma et al., 2018). The research conducted by Cheng et al. showed that
there were differences in the livers of Mongolian and Lanzhou fat-tailed
sheep through RNA-Seq, which provided a reference for researching the
sheep genome (Cheng et a., 2016).

Hu sheep set as a control to identify DE miRNAs. The
extracellular matrix (ECM)–receptor interaction signaling pathway
was significantly enriched by the target genes of upregulated DE
miRNAs and downregulated DE miRNAs. The main constituents of
the ECM–receptor interaction signaling pathway in adipose tissue

include collagen (type I, IV, and VI), fibronectin (FN), laminin
(LN1,8), hyaluronan, and proteoglycan (Lee et al., 2013). The
functional analysis showed differently expressed genes in the
subcutaneous and intramuscular fat of cattle were enriched in
ECM–receptor interaction signaling pathway. In the study of San
et al., some genes which affected intramuscular fat (IMF) deposition
was significantly enriched in the ECM–receptor interaction signaling
pathway (San et al., 2021). In our study, the target genes of
upregulated DE miRNAs were enriched in the PI3K-Akt signaling
pathway, calcium signaling pathway, the AMPK signaling pathway,
and MAPK signaling pathway, which are associated with fat
metabolism (Fu et al., 2022). In our study, forkhead boxO3
(FoxO3) was enriched in the PI3K/AKT signaling pathway and
AMPK signal pathway. In mice fed high-glucose and high-sucrose
diets, FoxO3 promoted hepatic triglyceride synthesis and hepatic
triglyceride accumulation in the liver by positively regulating the
sterol regulatory element binding transcription factor 1 (SREBP1c)
(Wang et al., 2019). Additionally, SIRT1 was enriched in the AMPK
signal pathway. SIRT1 plays an important biological role in regulating
liver lipid metabolism, oxidative stress, and inflammation, and can be
used as a therapeutic target for the treatment of alcoholic and non-
alcoholic fatty liver diseases (Ding et al., 2017). It has been shown that
vitamin D can activate the AMPK/SIRT1 pathway to inhibit the
accumulation of fat in C2C12 skeletal muscle cells (Chang and Kim.,
2019). miR-29 can regulate SIRT1 to inhibit fat deposits in mouse
livers (Kurtz et al., 2015). Additionally, Liang et al. that dietary
cholesterol can promote the occurrence of steatohepatitis through
the calcium signaling pathway (Liang et al., 2018). In a diabetic mouse
model, the ginsenosidemetabolite compoundK inhibits the activation
of the NLR family pyrin domain containing 3 (NLRP3) through the
NF-κB/p38 signaling pathway (Song et al., 2018). Previous studies
have shown that in human liver fat cells, transforming growth factor-
beta 1 (TGF-β1) regulates the platelet-derived growth factor receptor
beta (PDGFD-β) subunit to maintain the activation and proliferation
of fat cells (Pinzani et al., 1995). In our previous study, these pathways
were enriched significantly, including ECM–receptor interaction
signaling pathway, PI3K-Akt signaling pathway, calcium signaling
pathway, AMPK signaling pathway, and MAPK signaling pathway
(Fei et al., 2022). All of the results showed that these pathways could
have a vital function in sheep fat metabolism.

In this research, our goal was to preliminarily determine how
oar-miR-432 and SIRT1 regulate fat metabolism. In our current
study, we use dual-luciferase reporter assays to verify the binding
relationship between miR-432 and the target gene SIRT1. The
expression of SIRT1 was detected in the liver tissues of Hu sheep
and Tibetan sheep. RT-qPCR results showed that the expression of
SIRT1 in Tibetan sheep was significantly higher than that in Hu
sheep. We transfected oar-miR-432 in preadipocytes, and we found
oar-miR-432 can inhibit the expression of SIRT1 at the protein level.
This is the first time reported that the expression of SIRT1 gene was
regulated by oar-miR-432 in fat metabolism of sheep liver. The
regulation of the process leading from mRNA to protein is generally
very complex. Studies have shown that gene repression could be
changed due to the post-transcriptional regulation of miRNA
(Pasquier and Gardès., 2016). Our study showed that oar-miR-
432 downregulated the expression of SIRT1 at the transcriptional
level in sheep liver tissue. Meanwhile, the result of Western blot
showed that oar-miR-432 can downregulated the expression of

FIGURE 4
Result of the luciferase reporter assay. (A) Potential binding site
between oar-miR-432 and SIRT13’UTR. The underlined sequences
represent the mutant sites. (B) WT exhibits the psiCHECK2-SIRT1-
3’UTR-WT. MT exhibits psiCHECK2-SIRT1-3’UTR-MT.
psiCHECK2 exhibits psiCHECK2 pure vectors. Mimics exhibits oar-
miR-432 mimics. NC exhibits negative control. **: indicates
statistically significant (p < 0.01).
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SIRT1 protein in preadipocytes. Our study indicated that p53 is
independent of the oar-miR-432 SIRT1 gene regulation.

5 Conclusion

In summary, our results provide a comprehensive expression
profile of miRNA in the livers between two different sheep breeds.
The DE miRNAs reported in this article may play an important role
in sheep fat metabolism. We have verified that oar-miR-432 can
target the regulation gene SIRT1 in sheep. This study provides a
reference for further research addressing the modulation of fat
metabolism in different sheep breeds.
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