This Research Topic is part of the Plant cell wall in pathogenesis, parasitism and symbiosis series:
Plant cell wall in pathogenesis, parasitism and symbiosisThe cell wall is a complex structure mainly composed of cellulose microfibrils embedded in a cohesive hemicellulose and pectin matrix. Cell-wall structural proteins, enzymes, and their inhibitors are also essential components of plant cell walls. They are involved in the cross-link of cell wall polysaccharides, wall structure, and the perception and signaling of defense-related elicitors at the cell surface. In the outer part of the epidermal cells, the polysaccharides are coated by the cuticle, consisting of hydrophobic cutin, suberin, and wax layers. Lignin, a macromolecule composed of highly cross-linked phenolic molecules, is a major component of the secondary cell wall. The cell wall is the first cell structure on which interactions between plants and a wide range of other organisms, including insects, nematodes, pathogenic or symbiotic micro-organisms take place. It not only represents a barrier that limits access to the cellular contents that provide a rich nutrient source for pathogens but serves as a source of elicitors of plant defense responses released upon partial enzymatic degradation of wall polysaccharides during infection. Modification of the plant cell wall can also occur at the level of plasmodesmata during virus infection as well as during abiotic stresses. The fine structure and composition of the plant cell wall as well as the regulation of its biosynthesis can thus strongly influence resistance and susceptibility to pathogens. We welcome research papers, short communications, reviews, and methods focused on the impact of cell wall during plant stresses and symbiotic interactions.
This Research Topic is part of the Plant cell wall in pathogenesis, parasitism and symbiosis series:
Plant cell wall in pathogenesis, parasitism and symbiosisThe cell wall is a complex structure mainly composed of cellulose microfibrils embedded in a cohesive hemicellulose and pectin matrix. Cell-wall structural proteins, enzymes, and their inhibitors are also essential components of plant cell walls. They are involved in the cross-link of cell wall polysaccharides, wall structure, and the perception and signaling of defense-related elicitors at the cell surface. In the outer part of the epidermal cells, the polysaccharides are coated by the cuticle, consisting of hydrophobic cutin, suberin, and wax layers. Lignin, a macromolecule composed of highly cross-linked phenolic molecules, is a major component of the secondary cell wall. The cell wall is the first cell structure on which interactions between plants and a wide range of other organisms, including insects, nematodes, pathogenic or symbiotic micro-organisms take place. It not only represents a barrier that limits access to the cellular contents that provide a rich nutrient source for pathogens but serves as a source of elicitors of plant defense responses released upon partial enzymatic degradation of wall polysaccharides during infection. Modification of the plant cell wall can also occur at the level of plasmodesmata during virus infection as well as during abiotic stresses. The fine structure and composition of the plant cell wall as well as the regulation of its biosynthesis can thus strongly influence resistance and susceptibility to pathogens. We welcome research papers, short communications, reviews, and methods focused on the impact of cell wall during plant stresses and symbiotic interactions.