About this Research Topic
Most of our present-day understanding about how microorganisms cooperatively exploit the resources in their environment was addressed in co-culture studies using previously purified strains grown in the laboratory under conditions, which are irrelevant in the environment, such as for example excessive H2 partial pressure. It is of importance to learn how far and how fast electrons could be shared between species to make use of substrates they could otherwise not use, unaccompanied. Hence we need to broaden our understanding about how shuttles, chemical intermediates, conductive sediment layers or direct contact sustain interspecies interactions.
The field of electromicrobiology is fast emerging, embedding multiple disciplines from microbial physiology, microbial geochemistry, biophysics and electrochemistry. Engineering labs showed a regular interest in this field from its commencement, hoping to foster the development of new technologies for green energy production (microbial fuel cells) and biosynthesis of fuels, plastics or other bio-commodities.
With this research topic we hope to advance our basic understanding about the mechanisms microbes use to interact with electrodes, minerals or other microorganisms. We wish to learn if there is an evolutionary advantage to electric interspecies interactions in the environment, and understand the evolutionary pressure that makes microorganisms cooperate using a certain mechanism rather than another. By understanding how and why microorganism cooperate under certain conditions we could challenge the present day models of element cycles, and set in motion better strategies to improve waste decomposition, or to eliminate green house gasses from certain environments.
There are five points we would like to address with this research topic:
1.Strategies used by microorganisms to interact with each other directly or to conductive materials, electron shuttles etc.
2.Novel interactions of microorganisms with electrodes and other insoluble electron acceptors.
3.Environmental niches for unusual microbial interspecies interactions.
4.Understand the competitive advantage of a certain metabolic interspecies interaction over another.
5.Impact of microbial electric interactions in the carbon cycle in the environment.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.