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With the aging process, brain functions, such as attention, memory, and cognitive

functions, degrade over time. In a super-aging society, the alteration of neural

activity owing to aging is considered crucial for interventions for the prevention of

brain dysfunction. The complexity of temporal neural fluctuations with temporal scale

dependency plays an important role in optimal brain information processing, such as

perception and thinking. Complexity analysis is a useful approach for detecting cortical

alteration in healthy individuals, as well as in pathological conditions, such as senile

psychiatric disorders, resulting in changes in neural activity interactions among a wide

range of brain regions. Multi-fractal (MF) and multi-scale entropy (MSE) analyses are

known methods for capturing the complexity of temporal scale dependency of neural

activity in the brain. MF and MSE analyses exhibit high accuracy in detecting changes

in neural activity and are superior with regard to complexity detection when compared

with other methods. In addition to complex temporal fluctuations, functional connectivity

reflects the integration of information of brain processes in each region, described as

mutual interactions of neural activity among brain regions. Thus, we hypothesized that

the complementary relationship between functional connectivity and complexity could

improve the ability to detect the alteration of spatiotemporal patterns observed on

electroencephalography (EEG) with respect to aging. To prove this hypothesis, this study

investigated the relationship between the complexity of neural activity and functional

connectivity in aging based on EEG findings. Concretely, MF and MSE analyses were

performed to evaluate the temporal complexity profiles, and phase lag index analyses

assessing the unique profile of functional connectivity were performed based on the

EEGs conducted for young and older participants. Subsequently, these profiles were
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combined through machine learning. We found that the complementary relationship

between complexity and functional connectivity improves the classification accuracy

among aging participants. Thus, the outcome of this study could be beneficial in

formulating interventions for the prevention of age-related brain dysfunction.

Keywords: EEG signal, multi-scale entropy, aging, functional connectivity, multi-fracial

1. INTRODUCTION

Complex temporal variability within brain activity plays an

important role in perceptual and overall mind and behavioral
processes and is known to be a mechanism for stochastic
resonance and facilitation (as reviewed in McDonnell and
Ward, 2011; Garrett et al., 2013; Takahashi, 2013; Yang
and Tsai, 2013; Nobukawa and Nishimura, 2020). Moreover,
various memory function components, cognitive functions, and

perceptual functions of the brain are associated with brain
activity at each temporal scale, as well as with frequency-
band specific behaviors, such as theta, beta, alpha, and
gamma bands (Klimesch et al., 2007). Therefore, studies using
high time resolution for electroencephalography (EEG) and
magnetoencephalography (MEG) are currently being conducted
to evaluate the complexity of high-frequency components. In

particular, neural fluctuations with temporal scale dependency,
which can be observed with EEG and MEG, including their
relationship with cognitive function (McIntosh et al., 2008),
development (Hasegawa et al., 2018), aging (Takahashi et al.,
2009, 2016; Nobukawa et al., 2019a), and the pathology of
mental disorders (Takahashi et al., 2010; Ahmadlou et al., 2011;

Nobukawa et al., 2019b, 2020a), have been extensively studied.
Multi-scale entropy (MSE) and multi-fractal (MF) analyses are
widely utilized as an effective evaluation method for complexity
with temporal scale dependency (as reviewed in Takahashi,
2013; Yang and Tsai, 2013). These methods that focus on the
temporal scale dependency of complexity can capture alterations
in brain activity within a variety of psychiatric disorders (Yang
and Tsai, 2013). In particular, EEG signals in schizophrenia
have been reported to be less complex in the frontal region
based on a slow temporal scale (Paulus et al., 1996; Takahashi
et al., 2010). Similarly, patients with bipolar disorder show less
neural complexity (Gottschalk et al., 1995). Considering the
temporal scale dependence within EEG for Alzheimer’s disease
(AD), MSE analysis showed low complexity in the frontal
region (Mizuno et al., 2010; Ni et al., 2016). In addition, MF
analysis can detect the severity of cognitive impairment in
AD (Zorick et al., 2020). Moreover, recent studies have shown
that the profile of temporal complexity for EEG signals can
be utilized for classifying EEG for AD, and the combination
of complexity profiles obtained via MF and MSE enhances the
accuracy of AD identification based on their complementary
relationship (Zorick et al., 2020; Ando et al., 2021). Consequently,
approaches for combining complexity profiles could open new
avenues for the identification and characterization of the complex
patterns of neural activity regarding cognitive alteration in
psychiatric disorders.

In addition to the complex temporal variability, functional
connectivity reflects the integration of brain information
processes in each neural region, which are represented as mutual
interactions of neural activity among brain regions (reviewed
in Varela et al., 2001; Buzsáki and Draguhn, 2004; Fries,
2005; Hutchison et al., 2013). Therefore, functional connectivity
correlates with cognitive function and alters several pathological
conditions characterized by impairments in cognitive function,
such as AD (Hata et al., 2016; Yu et al., 2016), autism
spectrum disorder (ASD) (Righi et al., 2014), and attention deficit
hyperactivity disorder (ADHD) (Ueda et al., 2020). Functional
connectivity reflected in EEG has been quantified by coherence,
correlation, and mutual information analyses, which reflect
the degree of synchronization of neural activity between brain
regions (Aertsen et al., 1989; Friston et al., 1993; Bullmore
and Sporns, 2009). In recent years, measured values, such as
synchronization likelihood (Stam and Van Dijk, 2002) and the
phase lag index (PLI) (Stam et al., 2007), have been used as
an evaluation method for phase synchronization to solve the
problem of volume conduction as a cause for the detection of
spurious synchronizations (Nunez et al., 1997; Nolte et al., 2004).
By utilizing this advantage of the PLI within EEG, alterations in
functional connectivity under pathological conditions have been
revealed in previous studies (Engels et al., 2015; Ueda et al., 2020;
Nobukawa et al., 2020a). For example, children with ADHDwere
reported to have a lower gamma PLI than children with typical
development (Ueda et al., 2020); AD is associated with a reduced
alpha, beta, and gamma PLI compared with that observed in
healthy controls (Nobukawa et al., 2020a). Likewise, patients with
schizophrenia reportedly demonstrate a reduced PLI of the beta
band in the frontal region and a reduced PLI of the gamma
band throughout the scalp (Takahashi et al., 2018). The PLI
has also been used to assess frequency dependence in children
with ASD (Takahashi et al., 2017). Furthermore, the PLI can
capture functional connectivity within high cognitive functions
among healthy older participants (Nobukawa et al., 2020b). PLI
is robust against artifacts such as body and eye movements,
and muscle activation thus the influence of artifacts on PLI is
relatively small, because the major parts of this influence lie in
the amplitude space of signals, while PLI estimates phase-based
functional connectivity (Stam et al., 2007). However, in the higher
frequency gamma band range, artifacts due to muscle activity
are larger compared to slower frequency ranges (Whitham et al.,
2007, 2008); therefore, there may be issues with PLI estimation
accuracy in the gamma range (Lau et al., 2012; Engels et al., 2015).

In recent trends within neural activity analysis, multiple
spatio-temporal profiles of neural activity (which combine
profiles obtained by several evaluation methods) are integrated
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via machine learning; subsequently, analyses detecting the
pathology of several psychiatric disorders and estimating the
ability of brain function have been conducted with higher
accuracy as compared with using a single profile (reviewed
in Vu et al., 2018). In particular, informative studies have
been conducted combining profiles of functional connectivity
and temporal complexity (Ghanbari et al., 2015; Nobukawa
et al., 2020a). Studies have also reported a complementary
relationship between functional connectivity and neural
complexity (Ghanbari et al., 2015; Nobukawa et al., 2020a).
In patients with ASD, increasing (or decreasing) complexity
decreases (or increases) functional connectivity, suggesting that
the functional connectivity and complexity are complementary
(Ghanbari et al., 2015). For patients with AD, the relationship
between functional connectivity and complexity shows different
temporal scales and region-specific dependencies in both healthy
participants and among patients with AD, suggesting that the
relationship between functional connectivity and complexity
may reflect the complex pathological process occurring within
AD (Nobukawa et al., 2020a). However, to the best of our
knowledge, an approach combining functional connectivity and
the complexity of neural activity has not been evaluated under
healthy conditions. Even in the healthy aging process, brain
functions, such as attention, memory, and cognitive functions,
degrade over time (Birren and Fisher, 1995). Therefore, in a
super-aging society, the alteration of spatial-temporal neural
activity owing to aging is considered crucial for interventions for
the prevention of brain dysfunction.

Thus, we hypothesized that the complementary relationship
between functional connectivity and complexity could improve
the ability to detect alteration of spatiotemporal patterns within
EEGwith respect to the aging process. In this study, MF andMSE
analyses were performed to evaluate the temporal complexity
profiles, and PLI analyses evaluating the unique profile of
functional connectivity were performed based on EEG among
younger and older participants. Subsequently, these profiles were
combined via machine learning methodology.

2. MATERIALS AND METHODS

2.1. Participants
A total of 32 healthy younger people (15 males, 17 females;
average age, 23.9 years; standard deviation [SD], 4.7 years; age
range, 20–35 years) and 18 healthy older people (7 males, 11
females; average age, 57.5 years; SD, 4.7 years; age range, 51–
67 years) were enrolled in this study. These groups were sex-
matched (χ2 = 0.30, p = 0.59). The older participants were
all non-smokers and were not on any medications. Participants
with medical or neurological conditions (including epilepsy or
head trauma occurring in the past), as well as those with a history
of alcohol or drug dependence, were excluded from the current
study. All the participants provided their written informed
consent following an explanation of study procedures as well as
risks and benefits by study personnel. This study was approved
by the Ethics Committee of Kanazawa University and was
conducted in accordance with the principles of the Declaration

of Helsinki and its later amendments. The EEG data used in
this study evaluated the dynamics of phase synchronization
(Nobukawa et al., 2019a).

2.2. EEG Recordings
Methods for recording and pre-processing EEG data have
been reported and established in previous research (Mizuno
et al., 2010). Specifically, the participants in the current study
sat in a soundproof recording room, and their EEG was
measured under controlled room lighting conditions. For EEG
measurement, 16 electrodes (Fp1, Fp2, F3, F4, C3, C4, P3, P4,
O1, O2, F7, F8, Fz, Pz, T5, and T6) were used; this system
was based on the recommended electrode arrangement under
the international 10–20 system. EEG activity was measured
with reference to the binaural connection. The EEG-4518
monitor used for electroencephalogram measurements in this
study was manufactured by Nihon Kohden Co., Ltd. (Tokyo,
Japan). The sampling frequency was 200 Hz for the recording.
The electrode/skin conductance impedance was controlled
to within less than 5k� for each electrode. Participants’
electroencephalogram signals were measured for 10–15 min in
a resting state with the eyes closed. Researchers visually inspected
the participants’ arousal using a video surveillance system;
participants were asked to close their eyes, and researchers
confirmed that only awake epochs were measured. If the alpha
and theta oscillations became weaker or stronger, compared
with ones at beginning stage of the recording, this duration
was not used for evaluation, because this duration belonged to
the light sleep stage. Additionally, the EEG signals were visually
assessed to identify artifacts, such as muscle activity, blinks,
and eye movement; consequently, 60-s (12,000 data points)
of artifact-free time-series segments within the EEG signals
recorded in the awake state with eyes closed were identified.
For each epoch, bandpass filtering with the range of 2.0–60 Hz
was applied. The first and last 5-s period (1,000 data point) in
each bandpass-filtered epoch were removed to avoid transient
behaviors produced by the bandpass filtering process. MSE and
MF analyses were performed for 50 consecutive seconds (i.e.,
10,000 data points) of epochs. In the PLI analyses, values decrease
with increasing epoch length (Fraschini et al., 2016); therefore, it
is difficult to identify changes with an increasing epoch length.
In addition, using short epoch lengths makes it impossible to
capture information on slow frequency components. To balance
these considerations, the PLI analysis divided 50 consecutive
seconds (10,000 data points) into 10 epochs of 5 s each (Takahashi
et al., 2017, 2018; Nobukawa et al., 2020a,b).

2.3. Multi-Fractal Analysis
The overview of flow for multi-fractal analysis is shown in
Figure 1A. In MF analyses, wavelet leaders derived from the
coefficients of the discrete wavelet transform are widely used
(Jaffard et al., 2006; Wendt and Abry, 2007). MF analysis is
an analysis method that uses the Hölder index to represent
the fractal dimension of the partial structure that characterizes
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FIGURE 1 | Overview of flow for complexity analysis. (A) Multifractal (MF) analysis. (B) Multiscale entropy (MSE) analysis.

the structure of data X via spectrum data. The discrete wavelet
coefficient of the discrete signal X(t) is given by Equation (1).

dX(j, k) =

∫

R
X(t)2j,ψ0(2

−jt − k)dt (j = 1, 2, ..., k = 1, 2, ...)

(1)

Here, ψ0 is a compact-supported mother wavelet function. The
Equation (2) shows one-dimensional wavelet leaders which are
time- or frequency-localized suprema of the absolute value of the
discrete wavelet coefficients dX(j, k):

Lx(j, k) = sup
λ′⊂3λj,k

|dX(λ
′)| (2)

Here, λ = λj,k = [k2−j, (k + 1)2−j] represents the time interval

of the scale 2−j. Additionally, 3λj,k−1 = ∪λj,k ∪ λj,k+1 represents
the adjacent time (Wendt and Abry, 2007). The spectrum of
singularity of LX is defined by Equation (3) with wavelet leaders
(Jaffard et al., 2006; Wendt and Abry, 2007).

D(h) = inf
q6=0

(1+ qh− ζL(q)) (3)

Here, h indicates the Hölder index. Also, q indicates the moment
of the wavelet leaders. The scaling index ζL(q) is defined by
Equation (4). The wavelet leader structure function SL(q, j) is
defined by Equation (5).

ζL(q) = lim inf
j→∞

(

log2 SL(q, j)

log2 2
−j

)

(4)

SL(q, j) =
1

nj

nj
∑

k=1

|LX(j, k)|
q (5)

Here, nj indicates the number of samples of X when the scale
is 2j. As the Hölder index h approaches 1.0, the time-series
shape becomes more differentiable. However, as the Hölder
index h approaches 0, the time-series shape becomes nearly
discontinuous. A signal is monofractal if the scaling index
ζL(q) is a linear function and D(h) converges to a particular h.
Contrastingly, the fact that the signal is multi-fractal indicates
a scaling index, where ζL(q) deviates from linearity and D(h) is
widely distributed in h. In this study, to capture the profile of
D(h), the primary cumulant c1 ofD(h) was used as an indicator of
the smoothness of the entire time series signal, and the secondary
cumulant c2 was used as an index evaluating the local fluctuation
of the time-series signal. For the multi-fractal time series, D(h)
is distributed around c1. Therefore, the degree of distribution
of D(h) reflects the multi-fractal property, which corresponds
to |c2|. The time-series with large (small) multi-fractality (|c2|)
exhibits intermittent and transient behavior with large (small)
amplitude (Ihlen, 2012); while, the complexity notified by
c1 reflects the degree of complexity for temporal behavior
in entire time-range, instead of intermittent behavior (see
Supplementary Material). In this study, multi-fractal analysis
was performed using the wavelet toolbox in MATLAB (https://
jp.mathworks.com/products/wavelet.html; MathWorks, Natick,
MA, USA).

2.4. Multi-Scale Entropy Analysis
The overview of flow for MSE analysis was shown in Figure 1B.
MSE analysis was used to assess the temporal scale dependence
for EEG time series complexity (Costa et al., 2002). The
time-series sample entropy of the random Z-score variables
{x1, x2, ..., xN} is given by Equation (6).

h(r,m) = − log
Cm+1(r)

Cm(r)
. (6)

Here,Cm(r) is the probability of |x
m
i −xmj | < r(i 6= j, i, j = 1, 2, ...)

among all pairs of i and j. xmi indicates an m-dimensional vector
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xmi = {xi, xi+1, ..., xi+m−1}. In the MSE analysis, {x1, x2, ..., xN} is
calculated using Equation (7) for coarse-grained time series yj.

xj =
1

τ

jτ
∑

i=(j−1)τ+1

yi(1 ≤ j ≤
N

τ
). (7)

Here, {y1, y2, ..., yN} represents the observed signals. τ (τ =

1, 2, ...) represents the temporal scale. In this study, we set m = 2
and r = 0.2 (Costa et al., 2002) and MSE analysis was performed
using the Physio Toolkit toolbox in MATLAB (http://physionet.
incor.usp.br/physiotools/sampen/).

2.5. Phase Lag Index Analysis
The PLI was obtained to measure phase synchronization, and the
characteristics of the synchronization signal were quantitatively
estimated. The EEG signal was divided into five frequency bands:
the delta (2–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30
Hz), and gamma bands (30–60 Hz). Here, several studies showed
that artifacts in the gamma band due to muscle activity is larger
compared with slower frequency bands (Whitham et al., 2007,
2008). Therefore, through visual examination of EEG signals,
the time including muscle activity was avoided in the evaluation
epochs. Each band division divides the signal at time t, and the
point φa is indicated by phase φa(t) and amplitude Aa(t) using
the Hilbert transform. In addition, the phase difference 1φab(ti)
observed between signals with two different points a and b at time
ti is given by Equations (8) and (9) (Stam et al., 2007).

1φab(ti) = φa(ti)− φb(ti) (8)

1φmod(ti) = 1φab(ti)mod2π (9)

The PLI of the signal between the two points a and b for the
duration T is given by Equation (10).

PLIab =

∣

∣

∣

∣

∣

1

T

T
∑

i=0

sign(1φmod(ti))

∣

∣

∣

∣

∣

(10)

When signals with the same source are observed at different
points, 1φab(ti) is 0 and 1φmod(ti) = 0; subsequently the PLIab
value becomes 0. In addition, the observation at the point on the
opposite side of the electric dipole is defined as 1φab(ti) = π

within Equation (8) in cases where the signal source is assumed
to follow the dipole model. This yields PLIab = 0. The average
PLI of any electrode a via another electrode b = 1, 2, ...,K(b 6= a)
(called the node strength; NS) is given by Equation (11). Here, K
represents the total number of electrodes K = 16.

NSa =
1

K − 1

K
∑

b=1,b6=a

PLIab (11)

2.6. Statistical Analysis
For c1 and |c2|, repeated-measures analysis of variance (ANOVA)
was performed to determine statistically significant differences
between the younger and older groups. Age group was used
as an inter-subject factor, and the 16 electrodes from Fp1 to
T6 were used as intra-subject factors. The ANOVA results were
represented by F values based on intra-group and inter-group
variance comparisons. Greenhouse-Geisser adjustments were
applied to the degrees of freedom. The α = 0.05 bilateral level
was used; this was considered a statistically significant criterion
for avoiding type I errors. A post-hoc t-test was subsequently
used to evaluate the main effect between the younger and older
age groups and effect of the interactions per electrode. Here,
Benjamini-Hochberg false discovery rate (FDR) correction was
applied to the t value for multiple comparisons of c1 and |c2|
(q < 0.05) (16 p values: 16 electrodes).

In the ANOVA for sample entropy, age group was used as an
inter-subject factor, and the 16 electrodes from Fp1 to T6 and a
temporal scale were used as intra-subject factors. A post-hoc t-
test was subsequently used to evaluate the main effect between
the younger and older groups and effects of interaction for the
electrodes and temporal scales. The α = 0.05 bilateral level was
used. FDR correction was applied to the t scores for multiple
comparisons (q < 0.05) (480 p values: 16 electrode× 30 scales).

In ANOVA for NS at each frequency band, age group was
used as an inter-subject factor, and the 16 electrodes (from
Fp1 to T6) were used as intra-subject factors. A post-hoc t-
test was subsequently used to evaluate the main effect between
the younger and older groups and effect of the interaction for
the electrodes. The α = 0.05 bilateral level was used. FDR
correction was applied to the t scores for multiple comparisons
(q < 0.05) (80 p values: 16 electrodes × 5 frequency bands).
The t-test was used for electrode-pair-wise group comparison of
PLI between the younger and older groups. With a control for
multiple comparisons, FDR correction was applied to the t scores
(q < 0.05) (600 p values: 120 electrode pairs× 5 bands).

Older participants were classified using the receiver operating
characteristics (ROC) curve. A logistic regression model based
on sample entropy, c1, |c2|, and the NS of the PLI was used to
identify older participants. Here, the logistic regression model
outputs the “older participants” discrimination probability for
each participant. The true/false positive rate at each threshold
of discrimination probability from 0 to 1.0 for both groups was
then measured. Principal component analysis was used as a pre-
treatment for dimensionality reduction, and logistic regression
based on c1, |c2|, sample entropy, and the NS of the PLI was
implemented. The accuracy of discrimination was evaluated
using the area under the ROC curve (AUC). We also used 5-fold
cross-validation to prevent overfitting; AUC= 1.0 corresponds to
perfect discrimination, and AUC= 0.5 corresponds to random
discrimination. Here, the principal component analysis was
conducted within cross validation (Shim et al., 2021) to avoid
the inaccurate estimation of performance of discrimination. AUC
values were averaged among 20 trials to choose tested and
evaluated data set in 5-fold cross-validation and their standard
deviations (SD) were also derived.
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To evaluate the relationship between NS and complexity, we
used Spearman’s correlation R between NS and the complexity
indexes (c1, |c2|). To control the multiple comparison, FDR
correction was applied these R-scores (q < 0.05) (16 p values:
16 electrodes).

3. RESULTS

3.1. Multi-Fractal Analysis
MF analysis was performed in the younger and older participants.
Figure 2 shows the mean and standard deviation for each group
with respect to D(h) and h. Owing to its wide distribution,
this analysis is thought to reflect the multi-fractal characteristics
(Sikdar et al., 2018) of the EEG signals for both groups. Table 1
shows the repeated-measures ANOVA results of the first (c1) and
second (|c2|) cumulants within a singular spectrum. A strong
main effects were observed for c1 and |c2|. The mean values of
c1 and |c2| in the older and younger groups, as well as the results
of a post-hoc t-test between the older and younger groups, are
shown in Figure 3. The post-hoc t-test revealed that the value of
c1 was statistically significantly lower for the older participants
at 13 electrodes (F3, Fz, F4, F7, F8, C3, C4, P3, Pz, P4, T6, O1,
and O2) (q < 0.050). In addition, the results showed that the
value of |c2| was statistically significantly lower for the older
participants at 14 electrodes (Fp1, Fp2, F3, Fz, F4, F7, F8, C3,

FIGURE 2 | Spectrum of singularity for the older and younger groups. This

figure shows the mean and standard deviation of each group for D(h) and h,

respectively. Owing to the wide distribution observed here, these results are

thought to reflect the multifractal characteristics of the EEG signals for both

groups.

C4, Pz, P4, T6, O1, and O2) (q < 0.050). The results of the MF
analysis demonstrated that aging increases complexity (shown
by less smoothness) and decreases multi-fractality. The time-
series with large (small) multi-fractality exhibits intermittent
and transient behavior with large (small) amplitude (Ihlen,
2012). Meanwhile, complexity reflects the degree of complexity
for temporal behavior in entire the time-range, rather than
intermittent behavior. Therefore, EEG signal in older subjects
corresponds to homogeneous and highly complex temporal
behaviors.

3.2. Multi-Scale Entropy Analysis
MSE analysis was performed in the younger and older
participants. Table 2 shows the repeated-measures ANOVA
results for the MSE analysis. We found that no main effect was
observed, although there were interactions in the group × scale
and the group × node × scale. The mean values of sample
entropy in the older and younger groups, as well as the results of a
post-hoc t-test between the older and younger groups, are shown
in Figure 4. The results demonstrated a statistically significantly
higher sample entropy for the older participants (q < 0.050)
in the temporal-scale region of 1 to 5 (0.005 to 0.025 s at all
electrodes). The results of the MSE analysis demonstrated that
aging increases complexity on a fast temporal scale.

3.3. Phase Lag Index Analysis
PLI analysis was performed on younger and older participants.
Table 3 shows the ANOVA analysis results for the NS of the
PLI for each band among younger and older participants. The
results indicated that there was a main effect in the delta and
gamma bands and that there was an interaction with respect to
the group× node in the alpha, beta, and gamma bands. The post-
hoc t-test results for the NS are shown in Figure 5C. Although
no statistically significant differences satisfying with FDR criteria
q < 0.05 were observed between the older and younger groups,
relatively higher NS at delta and gamma band in the older group
was observed. Regarding the PLI among pair-wise electrodes, the
mean values of the PLI in the older and younger groups, as well
as the results of t-tests between the older and younger groups,
are shown in Figures 5A,B. No statistically significant differences
satisfying with FDR criteria (q < 0.05) were observed between
the older and younger groups.

3.4. Correlation Analysis Between
Complexity and Functional Connectivity
To evaluate the relationship between complexity and functional
connectivity, a correlation analysis was performed, using

TABLE 1 | Younger vs. older repeated measure ANOVA analysis results [F value (p value, partial η2 )] in multifractal (MF) analysis.

Group Group × nodes Degree of freedom (ǫ)

c1 F = 25.25 (p < 0.001, η
2 = 0.345) F = 1.73 (p = 0.13, η2 = 0.035) 5.06 (ǫ = 0.034)

|c2| F = 22.23 (p < 0.001, η
2 = 0.317) F = 1.73 (p = 0.11, η2 = 0.035) 6.04 (ǫ = 0.035)

F and p values with p < 0.05 are represented by bold characters. Degree of freedom and Greenhouse-Geisser adjustments ǫ in the interaction for group × nodes are also shown.
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FIGURE 3 | (A) 1st cumulant of the spectrum of singularity c1. The mean values of c1 in the younger (left) and older (right) groups. (B) t values comparing the younger

and older groups. Warm (cold) colors represent higher (smaller) c1 values for older versus younger participants. The left and right of the figure correspond to the t- and

t-values satisfying the false discovery rate (FDR) correction criteria q < 0.050. The c1 value for the older group, which had statistically significantly lower values at F3,

Fz, F4, F7, F8, C3, C4, P3, Pz, P4, T6, O1, and O2, and is shown here. (C) Absolute value of 2nd cumulant of the spectrum of singularity |c2|. The mean values of |c2|

in the younger (left) and older (right) groups are shown here. (D) t-values comparing the older and younger groups. Warm (cold) colors represent higher (smaller) |c2|

values for older versus younger participants. The left and right correspond to the t- and t-values satisfying the FDR correction criteria q < 0.050. The |c2| of the older

group had statistically significantly lower values at Fp1, Fp2, F3, Fz, F4, F7, F8, C3, C4, Pz, P4, T6, O1, and O2.
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TABLE 2 | Younger vs. older repeated–measures ANOVA results [F value (p value, partial η2 )], degree of freedom and Greenhouse-Geisser adjustments ǫ in multi scale

entropy (MSE) analysis.

Group Group × node Group × scale Group × node × scale

F = 3.37 (p = 0.073, η2 = 0.066) F = 1.51 (p = 0.21, η2 = 0.030,

degree of freedom: 3.62, ǫ = 0.242)

F = 19.93 (p < 0.001, η2 = 0.293

degree of freedom: 2.94, ǫ = 0.102)

F = 1.949 (p = 0.020, η2 = 0.039

degree of freedom: 13.898, ǫ = 0.032)

F and p values with p < 0.05 are represented by bold characters.

FIGURE 4 | Multi-scale entropy analysis in younger and older groups. The horizontal axis represents the temporal-scale factor, τ . (A) Mean values of sample entropy

from 1 (0.005 s) to 30 (0.15 s) scale factors in younger (left part) and older (right part) participants are shown here. (B) t-values comparing the older and younger

groups are shown here as well (left part). Warm (cold) colors represents a higher (smaller) sample entropy value for older individuals than for younger participants. The

observed t-value satisfies the FDR correction criterion q < 0.050 (right part). A statistically significantly higher sample entropy of the low temporal-scale regions 1 to 5

(0.005–0.025 s) is depicted here.

Spearman’s correlation, between NS and the complexity indexes
(c1, |c2|). Figure 6 shows the Spearman’s correlations between
NS of PLI and c1 and between NS of PLI and |c2| in both the
younger and older groups. The correlation with c1 did not meet
the FDR correction criteria of q < 0.050; while there were
positive correlations with NS at alpha and |c2| at Fp1, Fp2, F3, F4,

and Fz as well as NS at beta band and |c2| at F3 in younger group.
In Figure 7, the scatter plots at these electrodes were shown,
significantly large positive correlations were observed. Therefore,
large node strength might lead the intermittent and transient
behavior reflecting |c2| in local neural activity, instead of steady
neural variability reflecting c1.
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TABLE 3 | Younger vs. older repeated-measure ANOVA analysis results [F value (p value, partial η2)] in the node strength (NS) of phase lag index (PLI).

Group Group × nodes Degree of freedom (ǫ)

delta F = 4.18 (p = 0.046, η2 = 0.80) F = 1.26 (p = 0.262, η2 = 0.026) 8.183 (ǫ = 0.546)

theta F = 0.04 (p = 0.833, η2 = 0.001) F = 0.98 (p = 0.453, η2 = 0.020) 8.948 (ǫ = 0.597)

alpha F = 1.09 (p = 0.301, η2 = 0.022) F = 3.95 (p < 0.001, η2 = 0.076) 5.899 (ǫ = 0.393)

beta F = 0.097 (p = 0.757, η2 = 0.002) F = 2.89 (p = 0.006, η2 = 0.057) 7.060 (ǫ = 0.471)

gamma F = 4.17 (p = 0.047, η2 = 0.080) F = 3.35 (p = 0.002, η2 = 0.065) 6.785 (ǫ = 0.452)

F and p values with p < 0.05 are represented by bold characters. Degree of freedom and Greenhouse-Geisser adjustments ǫ in the interaction for group × nodes are also shown.

FIGURE 5 | (A) Mean values of phase lag index (PLI) for each band in younger (upper parts) and older (lower parts) groups. (B) t-values between the younger and

older groups (upper parts). The warm (cold) colors represents higher (smaller) PLI values in the older group than in the younger group. (lower parts). (C) t-values for the

node strength (NS) of PLI between the older and younger groups. Warm (cold) colors represent a higher (smaller) NS for older versus younger individuals. Although no

statistically significant differences satisfying with FDR criteria q < 0.05 were observed between the older and younger groups, relatively higher NS at delta and gamma

band in the older group was observed. In PLI among pair-wise electrodes, no statistically significant differences satisfying with FDR criteria (q < 0.05) were observed

between the older and younger groups.

3.5. ROC Curve Analysis
To evaluate the classification ability for c1, |c2|, and the PLI,
we evaluated the ROC. We observed a statistically significantly
large sample entropy in the older group for time scales of 1
to 5, as shown in Figure 4. Therefore, the sample entropy was
averaged in this temporal region for the purpose of clarification.

Table 4 shows the results of the ROC in cases with the first-
third principal components of c1 and |c2|, as well as sample
entropy. In the results shown in Table 4, c1 had the highest
value (AUC = 0.86). Table 5 shows the results of the ROC in
cases with the first-third principal components for the NS of
the PLI in the delta, theta, alpha, beta, and gamma bands. In

Frontiers in Aging Neuroscience | www.frontiersin.org 9 February 2022 | Volume 14 | Article 79329813

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Ando et al. Neural Network Activity in Aging

FIGURE 6 | Spearman’s rank correlation coefficient R between NS of PLI and c1 in younger (1st line) and older (2nd line) groups. The correlation values did not meet

the FDR correction criteria of q < 0.050. Spearman’s rank correlation coefficient R between NS of PLI and |c2| in younger (3rd line) and older (4th line) groups. The

electrodes with correlation values to meet the FDR correction criteria of q < 0.050 are surround with a line. In younger group, positive correlation with NS at alpha and

|c2| at Fp1, Fp2, F3, F4, and Fz and positive correlation with NS at beta band and |c2| at F3 were confirmed.

the results shown in Table 5, NS at alpha had the highest value
(AUC = 0.84). Table 6 shows the results of the ROC in cases
with the first-third principal components of the combination
of c1 and |c2| and the combination of the NS at alpha, as well
as c1, |c2| and sample entropy. Almost AUC values increased
by combining the NS at alpha, c1, |c2|, and sample entropy
in comparison with cases using a single index, as shown in
Tables 4, 5. While, at the other bands, AUCs in the NS are
significantly lower in comparison with the complexity indexes
(c1, c2, and sample entropy) (see Tables 4, 5). Therefore, AUCs
in the case with combinations of NS at the other band and the
complexity index are inferior to AUCs in the case using a single
complexity index.

To demonstrate that the determination area for older
participants is determined by c1, |c2|, sample entropy, and
the NS at alpha of the PLI, the determination area of the
older participants was defined as the plane between the first
principal components of c1 and first principal components

of |c2|, and plane between the first principal components
of c1 and first principal components of the NS at alpha,
plane between the first principal components of |c2| and
first principal components of the NS at alpha, and plane
between the first principal components of sample entropy
and first principal components of the NS at alpha (see
Figure 8). Here, the other components, with the exception
of the axis of the planes, were set to average among
participants in both the younger and older study groups. The
dependency on all of these factors in the decision region
was confirmed.

4. DISCUSSION

In this study, we investigated the relationship between
complexity and functional connectivity in aging via EEG.
In the MF analysis, we found that c1 (as the index for the
smoothness of the EEG signal) decreased with aging, and |c2|
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FIGURE 7 | Scatter plot between NS of PLI at alpha/beta bands and |c2| in younger group where Spearman’s rank correlation R coefficient satisfies with FDR

correction criteria of q < 0.050 in Figure 6. The significant large positive correlations were observed.

TABLE 4 | The area under the ROC curve (AUC) for c1, |c2|, and sample entropy

averaged scale 1–5.

AUC (SD)

c1 0.862 (0.029)

|c2| 0.857 (0.026)

sample entropy 0.850 (0.026)

In this case, c1, |c2|, and sample entropy, each first-third principal components, were

used separately. Here, AUC values were averaged among 20 trials to choose tested and

evaluated data set in 5-fold cross-validation and their standard deviations (SD) were also

derived.

(which is an index of a multi-fractal nature) also decreased
with aging. In the MSE analysis, a statistically significant
region-specific increase in the small-temporal-scale sample
entropy of aging was observed. In the PLI analysis, we found that
functional connectivity increased in the delta and gamma bands

TABLE 5 | AUC for the NS of the PLI. In this case, the NS of the PLI was used

separately for each of the first-third principal components.

AUC (SD)

NS at delta 0.600 (0.055)

NS at theta 0.545 (0.053)

NS at alpha 0.840 (0.030)

NS at beta 0.785 (0.034)

NS at gamma 0.708 (0.058)

Here, AUC values were averaged among 20 trials to choose tested and evaluated data

set in 5-fold cross-validation and their standard deviations (SD) were also derived.

with aging. In the comparison of the classification accuracy
among c1, |c2|, small-temporal-scale sample entropy, and
the NS of the PLI, c1 demonstrated the highest classification
accuracy (AUC = 0.86). Considering the complementary
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TABLE 6 | AUC for the combination of c1 and |c2| and the combination of the NS at alpha, c1, |c2| and sample entropy.

AUC (SD) t-value (p-value)

with c1

t-value (p-value)

with |c2|

t-value (p-value) with

sample entropy

t-value (p-value)

with NS at alpha

c1 & |c2| 0.885 (0.038) t = 2.69 (p = 0.014) t = 2.96 (p = 0.007) - -

c1 & NS at alpha 0.881 (0.046) t = 1.82 (p = 0.083) - - t = 4.82 (p < 0.001)

|c2| & NS at alpha 0.887 (0.035) - t = 3.31 (p = 0.003) - t = 5.79 (p < 0.001)

sample entropy & NS at alpha 0.873 (0.031) - - t = 3.27 (p = 0.004) t = 4.37 (p < 0.001)

In this case, the first-third principal components were used separately. Here, AUC values were averaged among 20 trials to choose tested and evaluated data set in five–fold cross-

validation and their standard deviations (SD) were also derived. The paired t-value comparing with AUC only used single measure (c1, |c2|, sample entropy.) The t and corresponding

p values with p < 0.05 are represented by bold characters. Positive t value indicates the increased AUC in the combination case.

FIGURE 8 | Decision region (represented as the red region) for older participants with a decision probability of more than 0.9, obtained via logistic regression, is

shown on the plane between the 1st principal component of c1 and the 1st principal component of |c2| (upper left part), the plane between the 1st principal

component of c1 and the 1st principal component of NS at alpha (upper right part), and the plane between the 1st principal component of |c2| and the 1st principal

component of NS at alpha (lower left part), and the plane between the 1st principal component of sample entropy and the 1st principal component of the NS at alpha

(lower right part). Here, the other components, except for the axis of the planes, were set to average among participants in both the younger and older groups. The

dependency on all these factors in the decision region was confirmed.

TABLE 7 | Younger vs. older repeated–measures ANOVA results [F value (p value, partial η2 )] with mean values of relative power at gamma band among 16 electrodes as

covariate in c1, |c2|, mean values of sample entropy in low temporal-scale regions 1 to 5 (0.005–0.025 s), and NS at gamma band.

Group Group × node degree of freedom (ǫ)

c1 F = 9.059 (p = 0.004, η2 = 0.162) F = 1.109 (p = 0.356, η2 = 0.023) 5.151 (ǫ = 0.343)

|c2| F = 4.143 (p = 0.047, η2 = 0.081) F = 1.009 (p = 0.420, η2 = 0.021) 6.023 (ǫ = 0.402)

sample entropy F = 10.179 (p = 0.003, η2 = 0.178) F = 1.104 (p = 0.355, η2 = 0.023) 3.792 (ǫ = 0.253)

NS at gamma F = 0.127 (p = 0.723, η2 = 0.003) F = 1.704 (p = 0.109, η2 = 0.035) 6.853 (ǫ = 0.457)

F and p values with p < 0.05 are represented by bold characters. Degree of freedom and Greenhouse-Geisser adjustments ǫ in the interaction for group × node are also shown.

Frontiers in Aging Neuroscience | www.frontiersin.org 12 February 2022 | Volume 14 | Article 79329816

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Ando et al. Neural Network Activity in Aging

relationship between complexity and functional connectivity, the
accuracy of aging classification improved based on the current
study results.

It is imperative to discuss the reason why c1, which is an index
of smoothness, decreases with aging. Gamma activity has been
reported to increase with age (Böttger et al., 2002). In our results,
a higher relative power of the gamma band in the major part
of the electrodes was confirmed (see Supplementary Material).
A previous study demonstrated that the degree of complexity
of EEG signals predominantly depends on smaller temporal
scale (i.e., fast frequency component) behaviors, instead of on
larger temporal scale (i.e., slow frequency component) behaviors
(Nobukawa et al., 2019b). Our results exhibit a tendency
corresponding with these findings; that is, it can be interpreted
that our observed increasing complexity (decreasing c1 and
increasing smaller temporal-scale sample entropy) is induced by
increasing gamma activity due to aging.

In the gamma band, artifacts due to muscle activity are larger
compared to lower frequency bands (Whitham et al., 2007,
2008). Therefore, although the majority of the time segments
with artifacts involving muscle activity were removed in the
evaluation epochs, it was essential to investigate the influence
of muscle activity on gamma band results in the estimation of
functional connectivity and complexity.Table 7 shows the results
of younger vs. older groups repeated-measures ANOVA with
the mean values of relative power at the gamma band among
16 electrodes as covariate in c1, |c2|, mean values of sample
entropy in low temporal-scale regions 1 to 5 (0.005–0.025 s),
and NS at gamma band. Resultingly, the group difference is
maintained in c1, |c2|, and small-temporal-scale sample entropy.
However, the group difference was not confirmed in the NS at
gamma band. Therefore, in an epoch involving muscle activity,
functional connectivity at the gamma band might be more
strongly affected.

Moreover, we must consider the reason why the relationship
between multi-fractality and complexity and their underlying
neurophysiological mechanism. The time-series with large
(small) multi-fractality exhibits intermittent and transient
behavior with large (small) amplitude (Ihlen, 2012). Complexity
reflects the degree of complexity for temporal behavior in the
entire time-range, instead of intermittent behavior. Therefore,
EEG signal in older subjects corresponds to homogeneous
and high complex temporal behaviors. In the aging process,
the connectivity of the wide range of inter neural networks
becomes weak and the neural noise increases; consequently,
the amount of network communication decreases (Cremer
and Zeef, 1987; Onoda et al., 2012; Nobukawa et al., 2019a).
Therefore, the amplitude of intermittent transient behavior
driven by the neural activities from the other regions might
become weak, that is, the decreased multi-fractality might
reflect fewer global neural interactions. Regarding complexity,
as mentioned above, increasing complexity (decreasing c1 and
increasing smaller temporal-scale sample entropy) is induced by
increasing gamma activity due to aging. Considering fact that
gamma-band activity relates to local excitatory and inhibitory
neural interaction (Börgers and Kopell, 2003), increasing

complexity is caused by the alternation of local regional
neural activity.

Furthermore, it is necessary to consider why the classification
accuracy is improved by adding the NS at alpha. The
activity of the neural network alternates region-specifically with
aging [as reviewed in Reuter-Lorenz (2002)]. In our result,
NS at alpha exhibits significant high region-specificity (see
Table 3). Such age-related region-specific characteristics could
be extracted by principal component analysis and logistic
regression; consequently, a relatively high classification accuracy
was thus obtained in the current study. Furthermore, in recent
years, studies on complexity and functional coupling have
pointed out complementary relationships (Ghanbari et al., 2015;
Nobukawa et al., 2020a); the studies have reported that their
combination improves the detection accuracy of pathological
conditions. This relationship is attributed that the inter-regional
neural interactions as functional connectivities induce the local
regional variability (Sporns et al., 2007; Misic et al., 2011),
which was observed between NS and multi-fractality |c2|
(see Figures 6, 7). The complementarity was also observed
in the decision plan for this study (see Figure 8). Based on
these results, we conclude that the combination of complexity
and the PLI likely improves the classification accuracy of
aging.

Finally, in addition to the substantial strengths of the current
investigation, the limitations of this study need to be considered.
The EEG signal does not always reflect the neural activity
just below the electrodes. In this study, EEG was measured
using 16 electrodes, which is less than the current number
of electrodes recommended by the International Federation
of Clinical Neurophysiology (Seeck et al., 2017). Therefore,
using MEG and high dense EEG with increased high spatial
resolution and applying cortical positioning method might
enhance the ability to identify the complex functional connection
structures caused by aging. Regarding temporal-scale resolution,
recently, Kosciessa et al. (2020) indicated an issue in the
coarse-grain process’s ability to rigidly extract the complexity
with temporal-scale specificity (Kosciessa et al., 2020). Since
the age-related alternation of power was distributed in wide
frequency bands in this study, the need for a more appropriate
method to extract temporal-scale dynamics is important to
thoroughly investigate neural interactions and temporal-scale
specific complexity. In future studies, these points should be
dealt with.

5. CONCLUSION

In this study, we were able to portray the changes in
neural activity with aging by using MF and MSE analyses,
which are complexity analyses, as well as PLI analysis,
which evaluates the functional connections. Classification
accuracy was improved by combining functional connectivity,
which has a complementary relationship with the index
of complexity. Despite certain limitations, the outcome of
this study demonstrates that the complementary relationship
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between complexity and functional connectivity within EEG
plays an important role in detecting age-related changes in
neural activity. Therefore, these results could be useful in
formulating interventions for the prevention of age-related
brain dysfunction.
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Contrary to group-based brain connectivity analyses, the aim of this study was to
construct individual brain metabolic networks to determine age-related effects on brain
metabolic connectivity. Static 40–60 min [18F]FDG positron emission tomography (PET)
images of 67 healthy subjects between 20 and 82 years were acquired with an
integrated PET-MR system. Network nodes were defined by brain parcellation using
the Schaefer atlas, while connectivity strength between two nodes was determined
by comparing the distribution of PET uptake values within each node using a
Kullback–Leibler divergence similarity estimation (KLSE). After constructing individual
brain networks, a linear and quadratic regression analysis of metabolic connectivity
strengths within- and between-networks was performed to model age-dependency.
In addition, the age dependency of metrics for network integration (characteristic
path length), segregation (clustering coefficient and local efficiency), and centrality
(number of hubs) was assessed within the whole brain and within predefined functional
subnetworks. Overall, a decrease of metabolic connectivity strength with healthy aging
was found within the whole-brain network and several subnetworks except within the
somatomotor, limbic, and visual network. The same decrease of metabolic connectivity
was found between several networks across the whole-brain network and the functional
subnetworks. In terms of network topology, a less integrated and less segregated
network was observed with aging, while the distribution and the number of hubs did
not change with aging, suggesting that brain metabolic networks are not reorganized
during the adult lifespan. In conclusion, using an individual brain metabolic network
approach, a decrease in metabolic connectivity strength was observed with healthy
aging, both within the whole brain and within several predefined networks. These
findings can be used in a diagnostic setting to differentiate between age-related changes
in brain metabolic connectivity strength and changes caused by early development
of neurodegeneration.
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INTRODUCTION

[18F]FDG positron emission tomography (PET) is a valuable
molecular neuroimaging technique to study the glucose
metabolism in the human brain which in turn serves as a proxy
for neuronal activity. Many studies have shown a progressive
decrease of cerebral [18F]FDG uptake with aging, mainly
observed in the medial frontal lobe and anterior cingulate cortex
(Fujimoto et al., 2008; Knopman et al., 2014; Yoshizawa et al.,
2014; Kakimoto et al., 2016; Ishibashi et al., 2017; Malpetti et al.,
2017; Van Aalst et al., 2021). Whether these age-related changes
are a linear or quadratic function of adult age with the latter
showing accelerated changes in the elderly is still under debate.
In parallel, structural and functional cerebral changes have been
detected during the lifespan by different groups using MRI
techniques. Overall, these studies showed increased gray matter
(GM) atrophy observed by voxel-based morphometry MRI
analyses (Good et al., 2001; Allen et al., 2005; Smith et al., 2007;
Bagarinao et al., 2018) and reduced cerebral structural integrity
assessed by diffusion tensor imaging (DTI) (Moseley, 2002; Head
et al., 2004; Sullivan and Pfefferbaum, 2006) and differences in
brain activation patterns using functional MRI (fMRI) (Grady,
2012; Avelar-Pereira et al., 2017) due to aging. To study these
aging effects on brain structure and function, brain connectivity
analysis has proven to be a very useful approach as it reveals
important information about connections and interactions
between different brain regions and allows to study the brain
from a topological viewpoint. To assess brain connectivity, graph
theoretical methods are generally applied which model the brain
using a weighted, undirected graph. This way, a wide range of
graph-based connectivity measures, reflecting both local and
global brain connectivity, is extracted to quantify the underlying
network topology. In literature, the majority of connectivity
findings are derived from DTI and fMRI studies, which provide
information on axonal pathways, or on correlations between
the blood-oxygen-level-dependent (BOLD)-signal time course
of different brain regions (Betzel et al., 2014; Damoiseaux,
2017; Frau-Pascual et al., 2021). In contrast to structural and
functional connectivity, brain metabolic connectivity findings
using [18F]FDG PET are mainly based on group-level analyses
(Sala and Perani, 2019) where correlations between regional
uptake values across subjects are used as connectivity measures
between different brain regions. However, a novel approach
using the Kullback–Leibler divergence similarity estimation
(KLSE) was recently introduced to generate an individual brain
metabolic network for a single subject using static [18F]FDG
PET imaging (Wang et al., 2020a). This technique assumed
that brain regions with similar glucose metabolism are highly
interconnected while brain regions with differences in glucose
metabolism have a lower connectivity strength. To determine
the connectivity strength between two regions, KLSE was used
to compare the intra-regional distribution of PET uptake values
between different regions. Using these metabolic connectivity
strengths, the approach successfully predicted the individual
risk of progression from mild cognitive impairment (MCI) to
Alzheimer’s disease (AD) (Wang et al., 2020a). The aim of this
study was to apply this novel technique on [18F]FDG PET-MR
data of a cohort of 67 healthy controls, covering an age range

of 20–82 years, to evaluate age-related effects on graph-based
connectivity measures for network integration, segregation, and
centrality. We evaluated these age effects on the level of both
the whole brain and different functional brain networks where
we considered networks which represent the intrinsic functional
connectivity of the cerebral cortex. This study is also the first
step toward using these metrics in a diagnostic setting where it
is mandatory to discriminate effects of healthy aging from early
development of neurodegeneration as aging is the primary risk
factor for many neurodegenerative disorders (Hou et al., 2019).

MATERIALS AND METHODS

[18F]FDG PET-MR Imaging
A total of 67 healthy volunteers (33 males and 34 females; age:
52 ± 17 years, range 20–82 years) were recruited prospectively
between December 2015 and February 2017. The main exclusion
criteria for this study were major internal pathology or having
(had) cancer, having a first-degree relative with dementia, a
history of important neurological and/or psychiatric disorders,
and substance abuse or current use of centrally acting medication.
Subjects underwent a neurological examination resulting in a
Mini-Mental State Examination (MMSE) score ≥ 28 and a
score of ≤9 on the Beck’s Depression Inventory (BDI) for all
subjects. This study was approved by the local ethics committee
of UZ Leuven Gasthuisberg, and all participants gave written
informed consent.

Subjects received an intravenous bolus injection of [18F]FDG
(152 ± 10 MBq) and underwent a simultaneous [18F]FDG
PET-MR scan (General Electric Healthcare Signa PET-MR).
Listmode data acquired between 40 and 60 min were rebinned
in four frames of 5 min and corrected for motion. Sinograms
were corrected for dead time, random, and scatter, while a
proprietary template-based MR-based attenuation correction
(MRAC) was used for attenuation correction. Each frame was
reconstructed using ordered subset expectation maximization
(OSEM, 28 subsets and 4 iterations) and included time of
flight (TOF) information, resolution modeling, and a Gaussian
post-smoothing with a full width half maximum (FWHM)
of 4.5 mm. The multi-frame PET data were rescaled to
standardized uptake values (SUV) and averaged to obtain a
static SUV PET image.

Simultaneous with the PET acquisition, a 3D volumetric 3
Tesla T1 weighted BRAVO MR sequence was acquired using
an 8-channel phased-array coil (plane: sagittal; echo time (TE):
3.2 ms; repetition time (TR): 8.5 ms; inversion time (TI): 450 ms;
flip angle: 12◦; receiver bandwidth: 31.2 kHz; NEX: 1; voxelsize:
1 mm × 1 mm × 1 mm) followed by a 3D T2 weighted FLAIR
sequence (plane: sagittal; TE: 130 ms; TR: 8,500 ms; TI: 2,298 ms;
voxelsize: 1 mm× 1 mm× 1.4 mm).

Individual Brain Metabolic Connectivity
Networks
[18F]FDG PET images were spatially normalized using a non-
linear normalization using the CAT12 toolbox of Statistical
Parametric Mapping (SPM12; Welcome Trust Centre for
Neuroimaging, University College, London, United Kingdom)
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and smoothed with a Gaussian filter of 8 mm. For each subject,
[18F]FDG uptake was normalized to the total uptake in the GM.
Subject specific tissue probability maps for GM, white matter
(WM), and cerebrospinal fluid (CSF) were derived based on the
3D T1-weighted MR data in SPM12 and used to delineate volume
of interest (VOI) defined by the Schaefer atlas (Schaefer et al.,
2018). This functional atlas includes the frontoparietal (4 VOIs)
network together with seven functional subnetworks containing
the visual (13 VOIs), somatomotor (14 VOIs), dorsal attention
(13 VOIs), salience and ventral attention (14 VOIs), limbic (5
VOIs), control (16 VOIs), and default mode (21 VOIs) network
(Supplementary Table 1).

For depicting an individual metabolic network for each
subject, the 100 brain parcels, determined by the Schaefer atlas,
were considered as nodes, and the [18F]FDG uptake in each pair
of nodes was used to generate a metabolic correlation matrix. This
was performed by extracting the intensity values of voxels within
each node to estimate the probability density function (PDF) of
intensity values for that parcel. All PDFs were estimated using
brain parcels in MNI space containing minimum 800 voxels.
Furthermore, the PDF for each parcel was estimated using the
kernel density estimation (KDE) with optimal bandwidths for
the number of voxels of that specific parcel chosen automatically
using the diffusion Botev method as implemented in the KDE-
diffusion toolbox in Python version 3.9 (Botev et al., 2010).
In addition, PDFs were estimated in a standardized histogram
space with a fixed range of values and a fixed bin size for all
parcels and all subjects. Then, the KLSE method was used to
estimate the similarity between the PDFs of two nodes and
construct a correlation matrix which represents the pairwise
metabolic connections or edges. In general, KLSE is based on
the KL divergence (DKL) between two PDFs. However, to have
a symmetric measure, the following variation of DKL was used:

DKL (P,Q) =

∫
x

(
P (x) log

P (x)
Q (x)

+ Q (x) log
Q (x)
P (x)

)
dx

where P and Q are two PDFs defined on the same x range.
Finally, the metabolic connectivity strength between two nodes
was calculated as the KL similarity (KLS) measure as follows:

KLS (P,Q) = e−DKL(P,Q).

This way, an undirected weighted metabolic connectivity
matrix was estimated for each subject and quantified using
graph-based connectivity metrics without applying a threshold to
generate a binarized connectivity matrix.

Brain Metabolic Connectivity Metrics
Several graph theory metrics of metabolic connectivity were
calculated to characterize global and nodal connectivity. Global
connectivity of each network was assessed using the mean
connectivity strength and the characteristic path length, while
nodal connectivity was assessed using the clustering coefficient
and the local efficiency. All nodal metrics were averaged over all
pairs of nodes in order to examine network characterization of
the whole network. Furthermore, to assess network centrality,
four nodal metrics were used, being the degree, characteristic

path length, clustering coefficient, and betweenness centrality
to determine central nodes within the network, called hubs.
To calculate the clustering coefficient and the local efficiency,
a generalization for weighted undirected graphs was used
as proposed by Wang et al. (2017), while all other metrics
were calculated using the brain-connectivity toolbox in Python
(Rubinov and Sporns, 2010).

First, to quantify the connectivity within each individual
network, the average metabolic connectivity strength over
all pairs of nodes of each network was determined for
the whole-brain network. In addition to this whole-brain
connectivity measure, the metabolic connectivity strength within
each functional subnetwork was assessed as well as between-
network metabolic connectivity strengths. The average within-
network connectivity strength was calculated by averaging
the connectivity values over all nodes within each functional
subnetwork, while between-network connectivity strengths were
generated by averaging the connectivity values over all nodes
within two functional subnetworks (Varangis et al., 2019).

Then, two types of connectivity metrics were calculated for
each metabolic network. First, the characteristic path length
of each network was calculated as the measure of functional
integration of the brain network. Second, the average clustering
coefficient over all nodes, reflecting the average prevalence
of clustered connectivity around individual nodes, as well
as the average local efficiency which represents the average
strength of local connectedness within neighboring nodes, were
calculated as measures of functional segregation of the brain
network. Measures of network integration and segregation were
calculated for the whole-brain network, as well as within each
functional subnetwork.

Finally, hubs within each individual network were identified
based on the hub score using four criteria which are determined
based on whether the node belongs to the top 20% of nodes (a)
showing the highest degree, (b) showing the lowest path length,
(c) showing the lowest clustering coefficient, and (d) showing the
highest betweenness centrality. If the hub score was at least 2, the
node was considered a hub (Ran et al., 2020). As such, the number
of hubs is a measure of functional centrality in the corresponding
network. To examine a potential network reorganization during
aging, we divided our study population in a group of young
(n = 22, age: 32± 7 years), middle-aged (n = 22, age: 51± 5 years),
and elderly (n = 23, age: 69 ± 6 years) healthy volunteers and
compared the number of hubs within the whole brain and within
functional subnetworks between these groups.

Statistics
A multiple linear regression model was used to assess the
effect of age on the different network connectivity metrics
within the whole-brain network, as well as within and between
different functional subnetworks. Both a linear and second-order
polynomial (quadratic) age dependency of connectivity metrics
were considered while the sum-of-squares F test was used to
select the most appropriate model. Goodness of fit was reported
using the coefficient of multiple correlation r. All statistical
analyses were performed with Prism (version 9, GraphPad, San
Diego, CA, United States) using a significance level of p < 0.05.
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Then, significant multiple linear regression models were used
to assess% differences in connectivity metrics during the adult
lifespan by comparing a 20-year-old subject with an 80-year-
old subject.

RESULTS

An overview of linear and quadratic age effects on metabolic
connectivity metrics within the whole-brain network and the
functional subnetworks are given in Table 1. In addition,
representative mean and coefficient of covariation of metabolic
connectivity matrices for three age groups (young, middle-aged
and old, respectively) are shown in Supplementary Figure 1.

Age Effects on Mean Metabolic
Connectivity Strength
An overview of regression analysis results assessing the average
metabolic connectivity strength as function of age is given in
Table 2 and Figure 1 for the whole-brain network as well as
for different functional subnetworks. Within the whole network,
a linear decreasing age effect on the metabolic connectivity
strength was found (p = 0.0001, r = 0.45), resulting in a decrease
of 16.3% during the adult lifespan. This decrease in metabolic
strength within the brain network was also observed when
comparing the distribution of metabolic strength of a 20-year-old
with an 80-year-old subject (Supplementary Figure 2). For the
predefined functional subnetworks, a quadratic decreasing age
effect on the metabolic connectivity strength was found within
the frontoparietal network (p = 0.0008, r = 0.46), showing a
decrease in metabolic strength of 41.2% between a 20-year-old
and 80-year-old subject. In the default mode, control, dorsal
attention, and ventral attention network, a linear decrease of
metabolic connectivity strength with age was found (p = 0.0179,
r = 0.29; p = 0.0048, r = 0.34; p = 0.0061, r = 0.33; and
p < 0.0001, r = 0.48, respectively), resulting in a decrease of
14.9, 17.2, 18.4, and 28.3%, respectively, during the adult lifespan.
In contrast, no effect of age was found in the somatomotor,
limbic, and visual network. Representative connectome networks
of the ventral attention and the somatomotor network with an
upper connectivity threshold of 0.80 of a young and an old
healthy subject are given in Figure 2, showing lower connectivity

within the older subject compared with the younger subject in
the ventral attention, dorsal attention, frontoparietal, control,
and default mode network, but not in the somatomotor, limbic,
and visual network.

Finally, 26 out of 36 (72%) between-network metabolic
connectivity strengths showed a significant decrease with age
(Supplementary Table 2). In 7 out of 36 (19%) between-network
connectivity strengths, the quadratic model was the preferred
model to model age effects, while 19 out of 36 (53%) between-
networks showed a linear decrease with age.

Age Effects on Functional Integration
Metrics
Results of the regression analyses to model a functional
integration metric assessed by the characteristic path length as
a function of age within the whole-brain network and within
functional subnetworks are given in Table 2 and Figure 3. For
the characteristic path length, a linear increasing effect of age
was found within the whole-brain network (p < 0.001, r = 0.67),
resulting in an increase of 13.2% during the adult lifespan. Within
functional subnetworks, a quadratic increasing effect of age was
found within the frontoparietal network (p = 0.0001, r = 0.49).
During the adult lifespan, an increase in a characteristic path
length of 51.4% was found within this network. Otherwise, in
the default mode, control, dorsal attention, and ventral attention
network, a linear increase of network integration was found with
age as assessed by the characteristic path length (p = 0.0036,
r = 0.35; p = 0.0121, r = 0.30; p = 0.0031, r = 0.36; and p < 0.0001,
r = 0.51, respectively). Comparing the characteristic path length
of a 20-year-old and 80-year-old subject, an increase of 16.8, 13.9,
20.8, and 34.4% was found in the default mode, control, dorsal
attention, and ventral attention network, respectively. In contrast,
no effect of age on the characteristic path length was found in the
somatomotor, limbic, and visual network.

Age Effects on Functional Segregation
Metrics
Results of the regression analyses to model functional segregation
metrics assessed by the average clustering coefficient and the
average local efficiency, as function of age within the whole-brain
network and within functional subnetworks, are given in Table 2
and Figures 4, 5. For both the average clustering coefficient

TABLE 1 | Overview of linear and quadratic age effects (age and age2, respectively) on metabolic network characteristics within the whole-brain network, as well as
within functional subnetworks obtained from a multiple linear regression model.

Mean connectivity strength Characteristic path length Average clustering coefficient Average local efficiency

Whole brain network Age Age Age Age

Frontoparietal network Age2 Age2 Age2 Age2

Default mode network Age Age Age Age2

Control network Age Age Age Age

Dorsal attention network Age Age Age Age

Ventral attention network Age Age Age Age

Somatomotor network / / / /

Limbic network / / / /

Visual network / / / /
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TABLE 2 | Overview of multiple linear regression analyses to model network metrics as function of age within the whole-brain network and within functional subnetworks.

p-Value r-Value ß0 ß1 ß2 20y 80y %Diff

Mean connectivity strength

Whole brain network 0.0001 0.45 0.34 -0.88E-03 / 0.32 0.27 –16.3

Frontoparietal network 0.0003 0.48 0.13 6.80E-03 –0.08E-03 0.23 0.14 –41.2

Default mode network 0.0179 0.29 0.31 -0.739E-03 / 0.30 0.25 –14.9

Control network 0.0048 0.34 0.44 –1.182E-03 / 0.41 0.34 –17.2

Dorsal attention network 0.0061 0.33 0.50 –1.442E-03 / 0.47 0.38 –18.4

Ventral attention network <0.0001 0.48 0.48 –2.06E-03 / 0.44 0.31 –28.3

Somatomotor network 0.9922 / / / / / / /

Limbic network 0.4787 / / / / / / /

Visual network 0.2913 / / / / / / /

Characteristic path length

Whole brain network <0.0001 0.49 2.29 5.26E-03 / 2.39 2.71 13.2

Frontoparietal network 0.0001 0.49 4.56 –94.12E-03 1.21E-03 3.16 4.78 51.4

Default mode network 0.0036 0.35 2.43 7.19E-03 / 2.57 3.01 16.8

Control network 0.0121 0.30 1.97 4.78E-03 / 2.07 2.35 13.9

Dorsal attention network 0.0031 0.36 1.69 6.28E-03 / 1.81 2.19 20.8

Ventral attention network <0.0001 0.51 1.72 11.11E-03 / 1.94 2.61 34.4

Somatomotor network 0.9621 / / / / / / /

Limbic network 0.5648 / / / / / / /

Visual network 0.4884 / / / / / / /

Average clustering coefficient

Whole brain network 0.0001 0.45 0.36 –0.92E-03 / 0.34 0.28 –16.4

Frontoparietal network 0.0003 0.47 0.23 9.40E-03 –0.11E-03 0.37 0.28 –24.8

Default mode network 0.0314 0.26 0.34 –0.74E-03 / 0.33 0.29 –13.5

Control network 0.0048 0.34 0.49 –1.31E-03 / 0.46 0.39 –16.9

Dorsal attention network 0.0117 0.31 0.58 –1.54E-03 / 0.55 0.45 –16.9

Ventral attention network <0.0001 0.47 0.55 –2.29E-03 / 0.51 0.37 –27.0

Somatomotor network 0.9839 / / / / / / /

Limbic network 0.9913 / / / / / / /

Visual network 0.2458 / / / / / / /

Average local efficiency

Whole brain network <0.0001 0.50 0.24 –0.60E-03 / 0.23 0.20 –15.5

Frontoparietal network 0.0011 0.44 0.05 8.31E-03 –0.10E-03 0.18 0.08 –53.4

Default mode network 0.0134 0.36 0.15 2.22E-03 –0.03E-03 0.18 0.15 –16.1

Control network 0.0026 0.36 0.29 –0.93E-03 / 0.27 0.22 –20.4

Dorsal attention network 0.0096 0.31 0.34 –1.04E-03 / 0.32 0.26 –19.5

Ventral attention network 0.0001 0.46 0.29 –1.36E-03 / 0.27 0.19 –30.5

Somatomotor network 0.9425 / / / / / / /

Limbic network 0.1944 / / / / / / /

Visual network 0.8200 / / / / / / /

Multiple linear regressions are described as Y = ß0 + ß1.age + ß2.age2. Regression p-values, overall r-values, and regression coefficients are given. Significant p-values
and coefficients are given in bold. Metric values and differences between an 80-year-old and 20-year-old subject are also given.

and the average local efficiency, a linear decreasing effect of
age was found within the whole-brain network (p = 0.0001,
r = 0.45 and p < 0.0001, r = 0.50). This resulted in a decrease
of 16.4 and 15.5%, respectively, in terms of average clustering
coefficient and average local efficiency during the adult lifespan.
For the functional subnetworks, a decreasing quadratic effect
with age was observed in terms of average local efficiency
within the frontoparietal network (p = 0.0011, r = 0.44), as
well as within the default mode network (p = 0.0134, r = 0.36).
Within these networks, a decrease in the average local efficiency
of 53.4 and 16.1% was observed between a 20-year-old and

80-year-old subject. For the average clustering coefficient, a
decreasing quadratic effect with age was also found within the
frontoparietal network (p = 0.0003, r = 0.47), while a decreasing
linear effect with age was observed within the default network
(p = 0.0314, r = 0.26). During the adult lifespan, a decrease in the
average clustering coefficient of 24.8 and 13.5%, respectively, was
observed within these networks. Furthermore, a decreasing linear
age effect of network segregation was also found in the control
(p = 0.0048, r = 0.34), dorsal attention (p = 0.0117, r = 0.31),
and ventral attention network (p < 0.0001, r = 0.47) as assessed
by the average clustering coefficient. For these subnetworks, the
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FIGURE 1 | Multiple linear regression model of average metabolic connectivity strength with age within the whole-brain network and within functional subnetworks.

FIGURE 2 | Connectome for a young and elderly healthy subject within the ventral attention network and the somatomotor network with an upper threshold of 0.80
for the metabolic connectivity strength, showing a decreased metabolic connectivity strength with age in the ventral attention network but not in the somatomotor
network.

average local efficiency also showed a decreasing linear effect with
age (p = 0.0026, r = 0.36; p = 0.0096, r = 0.31; and p = 0.0001,
r = 0.46). Comparing a 20-year-old subject with an 80-year-old
subject showed a decrease in the average clustering coefficient

of 16.9%, 16.9%, and 27.0% respectively, and a decrease in the
average local efficiency of 20.4, 19.5, and 30.5%, respectively.
Again, no effect of age was found in the somatomotor, limbic,
and visual network.
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FIGURE 3 | Multiple linear regression model of the characteristic path length with age within the whole-brain network and within functional subnetworks.

FIGURE 4 | Multiple linear regression model of the average clustering coefficient with age within the whole-brain network and within functional subnetworks.

Age Effects on Functional Centrality
Metrics
The median and interquartile range (IQR) of the absolute number
of hubs within the whole brain as well as within the functional
subnetworks is given in Table 3. Within the whole brain, a linear
regression analysis did not show an effect of age on the number
of hubs (p = 0.20). In addition, no age-related reorganization
was observed as the number of hubs within the whole brain and

functional subnetworks remained stable in a young, middle-aged,
and old group (Table 3).

DISCUSSION

To our knowledge, this is the first study to explore the effect of age
on individual brain metabolic connectivity using [18F]FDG PET.
Our results showed that individual brain metabolic networks
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FIGURE 5 | Multiple linear regression model of the average local efficiency with age within the whole-brain network and within functional subnetworks.

became less integrated and less segregated during aging. We
observed these age-related effects on the level of the whole
brain as well as within the functional subnetworks except within
the control, limbic, and visual network. The same decrease
of metabolic connectivity was found between several networks
across the whole-brain network and the functional subnetworks.
Meanwhile, no network reorganization was observed with aging
as distribution of hubs throughout the brain, and different
subnetworks remained unchanged during aging.

In literature, only few studies explored the effect of aging on
metabolic connectivity networks in healthy subjects. While our
study found a decrease in metabolic connectivity with aging,
two other groups reported an opposite trend using a group-
based correlation approach (Arnemann et al., 2018; Huang et al.,
2021). However, it is not straightforward to compare our findings
with these studies as a group-based correlation approach highly

TABLE 3 | Overview of number of hubs within the whole-brain network, as well as
within functional subnetworks.

All subjects Young Middle-aged Old

Whole brain network 19 (18–21) 20 (18–21) 19 (18–21) 20 (19–22)

Default mode network 4 (3–5) 4 (3–4) 4 (3–5) 4 (3–5)

Control network 4 (3–5) 4 (3–4) 3 (2–4) 4 (3–5)

Dorsal attention network 3 (2–4) 4 (3–5) 3 (2–4) 3 (3–4)

Somatomotor network 3 (2–4) 2 (1–3) 3 (2–4) 3 (3–5)

Ventral attention network 2 (1–3) 2 (1–3) 2 (1–3) 2 (1–3)

Visual network 1 (0–2) 1 (0–2) 1 (0–2) 1 (0–2)

Limbic network 1 (0–2) 1 (1–2) 1 (0–2) 1 (0–2)

Frontoparietal network 1 (0–1) 1 (0–2) 1 (1–2) 1 (0–1)

Values are presented as median [interquartile range (IQR)] of all subjects, as well as
of a young, middle-aged, and old group.

depends on group composition where a homogeneous group with
low inter-subject variability in regional [18F]FDG uptake could
result in lower correlation measures. In addition, correlation
measures are not sensitive to differences in regional uptake
values which are consistent across subjects. On the contrary,
the KLSE approach compares the intra-regional metabolic
distribution between different regions within a single subject
where it uses all uptake values within each brain region and
thus much more information compared with correlation-based
measures which consider only the averaged regional uptake of
brain regions. As such, this approach provides a quantitative
representation of the tracer distribution throughout the brain and
the different subnetworks with a high average metabolic strength
between nodes representing a rather homogeneous [18F]FDG
uptake in the corresponding brain regions. This way, metabolic
connectivity estimated across subjects using correlation measures
and with-subject using the KLSE approach proved to be high
complementary. Meanwhile, univariate VOI-based and voxelwise
approaches have mainly been used so far to study age-related
effects on brain glucose metabolism. These studies showed
differences in the age-dependency of glucose metabolism between
different brain regions with consistently higher age-related
decrease of [18F]FDG uptake in the frontal, cingulate, temporal
cortex, and in subcortical GM regions compared with other
brain regions (Fujimoto et al., 2008; Knopman et al., 2014;
Yoshizawa et al., 2014; Kakimoto et al., 2016; Ishibashi et al., 2017;
Malpetti et al., 2017; Van Aalst et al., 2021). As this translates
into a more heterogeneous distribution of [18F]FDG uptake
throughout the brain with aging, this also results in a lower global
metabolic connectivity strength in elderly healthy persons which
is in line with our findings. More specifically, these VOI-based
results, showing higher age-related decrease of [18F]FDG uptake
in prefrontal cortex, medial frontal cortex, temporal and high
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parietal cortex, and insula (Van Aalst et al., 2021), also support
our findings of an age-related decrease of metabolic connectivity
in default mode, frontoparietal, control, dorsal attention, and
ventral attention network as these brain regions are involved in
these functional networks.

Contrary to metabolic connectivity, the effect of age on
functional connectivity has been extensively explored using fMRI
(Betzel et al., 2014; Geerligs et al., 2014; Damoiseaux, 2017;
Farras-Permanyer et al., 2019; Varangis et al., 2019; Mancho-Fora
et al., 2020). In general, functional connectivity based on fMRI
showed an age-related decrease in functional connectivity and a
loss in network integrity as well as in network segregation during
the lifespan, which are in line with our metabolic connectivity
findings. Within subnetworks, Varangis et al. (2019) reported
decreased functional connectivity based on fMRI in the default
mode, frontoparietal, ventral attention, and dorsal attention
network which is similar as our age-related changes within the
functional subnetworks using [18F]FDG PET. To compare our
findings with these fMRI studies on functional connectivity, we
used the Schaefer atlas for the brain parcellation as this allowed us
to define the major functional networks across the cerebral cortex
which are also frequently used in fMRI analysis (Watabe and
Hatazawa, 2019). Although connectivity metrics are not directly
comparable, we observed a similar decrease in local efficiency and
increase in characteristic path length and clustering coefficient
(Sun et al., 2012).

In terms of methodology, we applied a novel KLSE approach
to define metabolic connectivity at a subject level. This approach
has already been validated and successfully implemented to
predict the progression from MCI to AD using [18F]FDG PET
(Wang et al., 2020a,b). To determine an individual metabolic
network, the KLSE approach relies on a predefined atlas for
brain parcellation and defining the nodes of each individual
network. To assure a robust estimation of the PDF within
each parcel, a granularity of 100 parcels was selected for
the whole-brain parcellation as more parcels would result in
less voxels per parcel and impact PDF estimates (Brownlee,
2020). In addition, a fully weighted network approach was
chosen to preserve the higher information content over binary
network and avoid the need for a rather arbitrary threshold
for the binarization. Although weighted networks are often
more difficult to interpret, weighted networks are especially of
interest for studying brain metabolic connectivity as variations in
metabolic connectivity strength can be described by connectivity
weights (Fornito et al., 2016). Finally, we also implemented the
KLSE approach including a region-based voxelwise correction
for partial volume effects (PVC) to assess the contribution
of underlying morphology changes on aging (Thomas et al.,
2011; Greve et al., 2016). Age-related results from metabolic
connectivity based on PVC [18F]FDG PET images also showed
a less integrated and less segregated metabolic brain network
during aging within the whole brain and the same functional
subnetworks (Supplementary Table 3). In 18 out of 36 (50%)
between-networks, a similar age-related decrease in metabolic
connectivity was found across the whole brain and several
functional subnetworks (Supplementary Table 4). Altogether,
age-related results from metabolic connectivity based on PVC

[18F]FDG PET images agreed with the uncorrected PET FDG
results (Supplementary Table 3), suggesting a true observed
effect of aging on the metabolic connectivity.

In terms of study limitations, we considered only a limited
number of connectivity metrics. However, we made sure to
include metrics that represented both global and local brain
metabolic connectivity and measured network integration,
segregation, and centrality such that a wide range of connectivity
metrics was covered. Another limitation is that we did not
look at a gender effect on the metabolic connectivity due to
rather small sample size and because man and women were not
homogeneously distributed within our study population.

In the future, it would be interesting to further explore this
novel individual approach for PET tracers targeting specific
neurotransmission systems, amyloid load, or tau deposition (Sala
and Perani, 2019). For these tracers, single-subject network
metrics could serve as diagnostic markers to quantify differences
between healthy subjects and specific patient groups and to
explore the association between these individual metrics and
clinical outcome (Paldino et al., 2017; Fortier et al., 2019).
However, a diagnostic approach would probably benefit much
more from using a brain atlas for the parcellation, which is
more related to PET data analysis, such as the Hammers atlas,
instead of the Schaefer atlas which is more functionally oriented.
Furthermore, one could take advantage of this individual
approach and combine this individual metabolic network with
individual structural and functional networks to obtain an
integrated multiplex network. This way, the network topology of
the human brain can be explored from a multilayer perspective
which could further improve diagnosis and patient stratification
(Giuliano Zippo and Castiglioni, 2016).

CONCLUSION

In this study, age-related changes in brain metabolic connectivity
during the adult lifespan were revealed using an individual
brain metabolic network constructed with [18F]FDG PET.
Overall, metabolic connectivity within the whole-brain network
decreased with aging and resulted into a less integrated and
less segregated network, while no evidence was found for
reorganization of brain metabolic networks during healthy aging.
The same age-related decrease in metabolic connectivity was
also found in predefined functional subnetworks but not in
the control, limbic, and visual network. A similar decrease in
metabolic connectivity with aging was observed between several
networks across the whole brain and functional subnetworks.
Finally, these findings were in line with age-related functional
connectivity changes during the adult lifespan using fMRI.
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This study investigated the relationship between preoperative cerebral blood flow (CBF)
in patients with idiopathic normal pressure hydrocephalus (INPH) and preoperative
clinical symptoms and changes of clinical symptoms after shunt surgery. A total of 32
patients with diagnosed INPH and 18 age-matched healthy controls (HCs) were involved
in this study. All subjects underwent magnetic resonance imaging (MRI), including
3D pulsed arterial-spin labeling (PASL) for non-invasive perfusion imaging, and clinical
symptom evaluation at baseline, and all patients with INPH were reexamined with clinical
tests 1 month postoperatively. Patients with INPH had significantly lower whole-brain
CBF than HCs, with the most significant differences in the high convexity, temporal
lobe, precuneus, and thalamus. At baseline, there was a significant correlation between
the CBF in the middle frontal gyrus, calcarine, inferior and middle temporal gyrus,
thalamus, and posterior cingulate gyrus and poor gait manifestation. After shunting,
improvements were negatively correlated with preoperative perfusion in the inferior
parietal gyrus, inferior occipital gyrus, and middle temporal gyrus. Preoperative CBF
in the middle frontal gyrus was positively correlated with the severity of preoperative
cognitive impairment and negatively correlated with the change of postoperative
MMSE score. There was a moderate positive correlation between anterior cingulate
hypoperfusion and improved postoperative urination. Our study revealed that widely
distributed and intercorrelated cortical and subcortical pathways are involved in the
development of INPH symptoms, and preoperative CBF may be correlative to short-term
shunt outcomes.

Keywords: idiopathic normal pressure hydrocephalus (INPH), pulsed arterial-spin labeling (PASL), neuroimaging,
dementia, gait disorder, incontinence

INTRODUCTION

Normal-pressure hydrocephalus (NPH) is a hydrocephalus syndrome characterized by the clinical
triad of gait disturbance, cognitive decline, and incontinence, with ventricular enlargement and
a normal cerebrospinal fluid (CSF) pressure. Clinically, it can be classified as idiopathic normal
pressure hydrocephalus (INPH) or secondary normal pressure hydrocephalus (SNPH) based
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on whether the etiology is definite (Adams et al., 1965). At
present, confirmation of INPH depends on the CSF tap test and
shunt surgery (Nakajima et al., 2021), and clinical symptoms are
treatable by permanent drainage (Relkin et al., 2005). However,
a large number of patients with INPH are complicated with
comorbidities, such as Alzheimer’s disease (AD), Parkinson’s-like
diseases, extrapyramidal dyskinesia diseases (Allali et al., 2018),
or similarities with normal aging (Agerskov et al., 2018), which
may be the reason for a poor or even negatively impacting shunt
response (Broggi et al., 2016; Bräutigam et al., 2019; Macki et al.,
2020). With up to 40% of patients not responding, it remains
difficult and essential to select patients who would benefit from
surgery (Giordan et al., 2018). Therefore, by analyzing the
relationship between baseline cerebral perfusion and changes in
clinical symptoms after shunt, we attempted to infer the neural
substrates underlying changes in clinical manifestations of INPH
in order to screen the shunt surgery recipients and minimize
unnecessary invasive procedures.

There is evidence that the pathological mechanism of INPH
is complex and not only results from CSF circulation disorder
(Lalou et al., 2018) but is also related to cerebrovascular self-
regulation disorder and abnormal brain metabolism (Landau
et al., 2014). Most studies have shown a significant decrease
in regional cerebral blood flow (rCBF) in patients with INPH
compared with healthy elderly individuals (Ziegelitz et al., 2014;
Virhammar et al., 2017; Mattoli et al., 2020). Most studies have
demonstrated that whole and regional cerebral blood flow (CBF)
in patients with INPH were significantly lower than those in
normal controls. Existing studies have not been consistent with
the relationship between baseline CBF and change in clinical
symptoms after shunt surgery. White matter CBF has been shown
to gradually increase with greater distance from the ventricle,
especially the lateral ventricle. In terms of gray matter, the frontal
cortex and central gray matter were predominantly affected
(Virhammar et al., 2014; Ziegelitz et al., 2016; Tuniz et al., 2017;
Mattoli et al., 2020). Some studies suggest that hippocampal
perfusion also decreased (Ziegelitz et al., 2014; Ziegelitz et al.,
2015).

Arterial spin labeling (ASL) is a relatively new non-invasive
perfusion imaging method that utilizes endogenous blood-
based water molecules as tracers (without ionizing radiation)
to visualize and quantify CBF (Jezzard et al., 2018). Based on
the persistent stability of internal brain metabolic activity in the
resting state, ASL can explore and monitor alterations in tissue
perfusion in states of brain dysfunction (Soldozy et al., 2019).

The study aimed to determine the relationship between
baseline CBF and preoperative clinical symptoms and the efficacy
of shunt surgery. We hypothesized that baseline CBF may be
associated with clinical changes after shunt surgery and help
screen patients with INPH for shunt surgery clinically.

MATERIALS AND METHODS

Subjects
This study was approved by the Institutional Review Board
of Huadong Hospital affiliated with Fudan University

(approval number: 2017K027). The ethics committee waived the
requirement of written informed consent for participation.

We retrospectively reviewed patients with INPH who were
admitted to the inpatient unit at the neurosurgery department of
Huadong Hospital affiliated with Fudan University to undergo
shunt surgery from May 2019 to July 2021. The inclusion
criterion for patients with diagnosed INPH according to expert
consensus on the diagnosis and treatment of INPH in Experts
consensus on diagnosis and treatment of normal pressure
hydrocephalus in China (2016) were as follows: (1) age over
60 years; (2) the presence of at least one of the triad of symptoms
(i.e., gait disturbance, dementia, or incontinence) with insidious
progression for more than 6 months; (3) ventricular dilatation
(Evans’ index > 0.3); (4) CSF pressure < 200 mm H2O; (5) the
absence of other diseases that might account for such symptoms;
and (6) underwent magnetic resonance examination, CSF tap
test, and lumboperitoneal shunt surgery. The exclusion criteria
for the patients with INPH were as follows: (1) cerebral infarction
and dementia caused by clear causes and hospitalization for
severe mental illness and (2) SNPH.

The inclusion criteria for elderly healthy controls (HCs) were
as follows: (1) age over 60 years; (2) no gait disorder, cognitive
impairment, or urination disorder, and normal Mini-Mental
State Examination (MMSE) score; (3) conventional cerebral
magnetic resonance imaging (MRI) showing no abnormalities;
and (4) no active neurological, systemic, or psychiatric diseases.

Trained neurologists performed the clinical examinations.
Besides a standard neurological examination, the tests included
the INPH grading scale (INPHGS), MMSE, and for the patients
with INPH, the timed up and go test (TUG-t) (Nakajima et al.,
2021), before and 1 month after shunt surgery. For the INPHGS,
motion disturbance, cognitive impairment, and incontinence
are rated from 0 to 4. The higher the score was, the more
severe the symptoms.

In total, we enrolled 32 patients with diagnosed INPH and 18
HCs into the study. The flowchart of enrollment of the diagnosed
patients with INPH is shown in Figure 1. Demographic data and
clinical characteristics are shown in Table 1.

Magnetic Resonance Protocol
All magnetic resonance (MR) data were acquired using a 3.0-
T MRI scanner (MAGNETOM Prisma, Siemens Healthcare,
Erlangen, Germany). The imaging protocol consisted of resting-
state perfusion imaging assessment via a 3D pulsed arterial-
spin labeling (PASL) sequence and anatomical assessment via
T1-weighted magnetization prepared gradient-echo sequence
(MPRAGE). A routine clinical T2-weighted structural MRI
was also acquired for the neuroradiological assessment of the
participants. For this study and based on preregistration, only the
PASL and the MPRAGE sequences were included in the analyses.

The following parameters were used for the PASL acquisition:
scan duration: 296 s; repetition time (TR): 4,600 ms; time to echo
(TE): 16.18 ms; label time: 700 ms; post-labeling delay: 1,290 ms;
inversion time (TI): 1,990 ms; field of view (FOV): 192 × 192;
3 mm × 3 mm × 3 mm; slice thickness: 3 mm with a 1.5 mm gap;
40 axial slices; and the number of excitations = 4.

The following parameters were used for the MPRAGE
sequences: scan duration = 3 min 39 s; TR: 1,800 ms; TE: 2.37 ms;
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FIGURE 1 | Flowchart describing the inclusion process of patients.

FOV: 250 × 250; 0.87 mm × 0.85 mm × 0.85 mm; slice thickness:
0.85 mm with no gap; and 208 slices.

Magnetic Resonance Imaging Data
Preprocessing
The PASL data were processed using the SPM12 software1 and the
ASL toolbox (ASLtbx2) (Wang et al., 2008). The center of each

1http://www.fil.ion.ucl.ac.uk/spm
2https://cfn.upenn.edu/zewang/ASLtbx.php

volume was first reset to the origin, and all rotations were set
to zero. The first PASL image was set as the reference volume,
and all other images were then motion-corrected relative to
the reference. PASL images were realigned relative to the T1-
weighted images for each subject. Smoothing of the realigned and
coregistered PASL images was performed by applying an SPM
Gaussian smoothing kernel of 6 mm × 6 mm × 6 mm full-
width at half maximum (FWHM). A mask based on the mean
of the smoothed PASL images was employed to exclude out-of-
brain voxels. An ASL difference image was calculated using a
single-compartment model (Buxton et al., 1998) after subtracting
the label image from the control image. The four ASL difference
images were averaged to calculate the CBF maps in combination
with the proton-density-weighted reference images (Xu et al.,
2010). Normalization, using T1 image unified segmentation with
bounding box [–90, –126, –72; 93, 93, 111] and isotropic voxel
size [3, 3, 3], could transform CBF maps to reduce the variability
between individuals and allow meaningful group analyses. A
quality check was performed visually to ensure the good quality
of the preprocessing.

Statistical Analysis
Clinical symptom statistics are expressed as the median
(quartile). We compared the data between the preoperative
INPHs and HCs, and the measurements were made
preoperatively and 1 month postoperatively using the Mann-
Whitney U-test. The statistical analysis was conducted using the
Statistical Package for Social Science version 24.0 (IBM SPSS).

Cerebral blood flow maps were statistically analyzed using
second-level statistical procedures as implemented in SPM12
based on a generalized linear model (GLM). The CBF in
the diagnosed INPH and HC groups was compared using
a two-sample t-test. Multiple regression was used to analyze
the correlation between preoperative CBF and preoperative
and postoperative clinical changes by regressing out the
z-transformed correlation coefficients.

Gender was included as covariates in the regression. The
p-value p < 0.05 [false discovery rate (FDR) corrected, using the
SPM12 software (see text footnote 1)] was considered significant.
CBF clusters were visualized using the xjview3 toolbox. Clusters

3http://www.alivelearn.net/xjview

TABLE 1 | Demographic and clinical data in the diagnosed INPHs and HCs.

INPH (n = 32) Healthy control, HC (n = 18) p1-value p2-value

Preoperative 1 month postoperative Pre vs. HC Pre vs. post

Age (average, range) 75.22 (66∼89) 72 (63∼82) 0.185

Gender (male/female) 24/8 6/12 0.032*

INPHGS

Motion 3 (0) 2 (1) 0 (0.25) < 0.001** < 0.001**

Cognition 3 (1) 2 (0.75) 0 (1) < 0.001** < 0.001**

Urination 2.5 (1) 1 (1) 0 (0) < 0.001** < 0.001**

Total 8 (2) 5 (1) 0 (1.25) < 0.001** < 0.001**

MMSE 17.5 (8) 23 (7) 29 (2) < 0.001** 0.037*

TUG-t 20.15 (10.09) 15.86 (3.85) 9.93 (1.58) < 0.001** 0.001**

Values denote the median (quartile).
Significant differences are marked with *p<0.05 and **p<0.01.
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with significant differences and significant correlations are
displayed in pseudocolor on the calibrated standard brain map,
and their Montreal Neurological Institute (MNI) coordinates and
voxel sizes of peak intensity are listed in a table.

RESULTS

Demographic and Clinical Data
Table 1 shows the demographic and clinical variables of
the patients with diagnosed INPH and HCs. No significant
differences in age were observed between the patients with
INPH and HCs (p > 0.05). As there were significant differences
between the genders, we regressed it as a covariable in all
statistical analyses.

The INPHGS, TUG, and MMSE scores markedly differed
between the patients and HCs (p < 0.001). Furthermore, all
patients with INPH improved in clinical symptoms to varying
degrees after shunt surgery (p < 0.05).

Group Differences in Cerebral Blood
Flow
Statistical analyses were observed regarding an automated
anatomical atlas (AAL) template (Ashburner, 2007). The two-
sample t-test revealed the significant differences between the
patients with diagnosed INPH and HCs in the bilateral cerebrum.
Generally, global and bilateral CBF was significantly lower
in the INPHs than in the HCs, and the following brain
areas were predominant: middle frontal gyrus (Frontal_Mid_L,
R), thalamus, middle temporal gyrus (Temporal_Mid_R, L),
precuneus (Precuneus_R, L), calcarine (Calcarine_L, R), inferior
temporal gyrus (Temporal_Inf_L, R), corpus callosum, caudate,
and middle cingulate gyrus (Cingulum_Mid_R, L) (Figure 2).
The results were corrected by the FDR with a voxel-level p< 0.05.

Correlative Analysis
Regarding the diagnosed INPH group, we calculated Spearman
correlation coefficients between the CBF values and preoperative
clinical scale scores, including the INPHGS (motion, cognition,

FIGURE 2 | Comparison of cerebral blood flow (CBF) among idiopathic normal pressure hydrocephalus (INPH) and healthy control (HC) groups. Significant region
(false discovery rate corrected p < 0.05) illustrated in warm colors for increased values and in cool colors for decreased values. Significant differences were revealed
in the following brain regions: bilateral middle frontal gyrus (Frontal_Mid_L, R), bilateral thalamus, bilateral middle temporal gyrus (Temporal_Mid_R, L), bilateral
precuneus (Precuneus_R, L), bilateral calcarine (Calcarine_L, R), bilateral inferior temporal gyrus (Temporal_Inf_L, R), corpus callosum, bilateral caudate, and bilateral
middle cingulate gyrus (Cingulum_Mid_R, L) (p < 0.05).
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and urination), MMSE, and TUG-t. The brain regions related to
the above clinical data are indicated in Figures 3A–D and Table 2.
A positive correlation was identified between the following
pairs: CBF values in the Frontal_Mid_L, R, Frontal_Sup_L,
and Frontal_Inf_Oper_R and preoperative MMSE scores
(Figure 3A). Negative correlations were identified between the
following pairs: CBF values in the Frontal_Mid_R, Calcarine_R,
L, Thalamus_R, L, and Cingulum_Post_L, R and preoperative
TUG-t scores (Figure 3B), CBF values of the Occipital_Mid_L,
Calcarine_L, Temporal_Inf_R, Temporal_Mid_R, and
preoperative INPHGS-motion scores (Figure 3C), CBF values
in the Frontal_Inf_Tri_R and preoperative INPHGS-cognition
scores (Figure 3D) (p < 0.001).

Furthermore, we also calculated the correlation between the
CBF values and postoperative clinical score changes, including
the changes in INPHGS (motion, cognition, and urination),
MMSE, and TUG-t scores. The brain regions related to the
above clinical data are indicated in Table 3. Positive correlations
were identified between the following pairs: CBF values in the
Cingulum_Ant_R and postoperative INPHGS-urination score
change (Table 3) and CBF values in the Temporal_Mid_R,
L and postoperative TUG-t score change (Table 3). Negative
correlations were identified between the following pairs: CBF
values in the Frontal_Mid_R, L, Temporal_Mid_R, caudate, and
thalamus and postoperative MMSE score change (Table 3) and
CBF values in the Occipital_Inf_L, Parietal_Inf_L, Precuneus_R,
and postoperative INPHGS-motion scores (Table 3) (p < 0.001).

DISCUSSION

In this study, PASL, a non-invasive perfusion imaging technique,
was used to compare cerebral perfusion in patients with INPH

with that in healthy older individuals. We found that the whole-
brain CBF of patients with INPH was significantly reduced, which
was consistent with the results of previous studies (Virhammar
et al., 2014; Ziegelitz et al., 2016; Mattoli et al., 2020), suggesting a
significant decrease in the cerebral perfusion rate. Hypoperfusion
of the brain could further lead to pathophysiological changes in
brain tissue, particularly oxygen metabolism (including oxygen
utilization and extraction) (Göttler et al., 2019).

Overall, significantly reduced CBF in the INPH group
was found in the high convexity gray matter. According to
the Guidelines for Management of Idiopathic Normal Pressure
Hydrocephalus (Third Edition), disproportionately enlarged
subarachnoid space hydrocephalus (DESH) can be observed in
most patients with INPH, which may be a reliable imaging feature
of subarachnoid CSF absorption disorder (Nakajima et al., 2021).
Reduced perfusion in the high convexity brain may result in local
vascular compression due to its greater compression than in other
regions of the brain. In addition, the CSF in the narrow sulcus is
significantly reduced compared with other parts, so the metabolic
efficiency of the local brain tissue is decreased.

There was reduced perfusion in the temporal lobe. One
possible reason is the temporal lobe compression due to the
temporal horn dilation, and another potential cause may be
the AD comorbidity, which may also explain the precuneus
hypoperfusion observed in this study (Ishii, 2020). Consistent
with the findings of Ziegelitz’s two studies on regional cerebral
perfusion (Ziegelitz et al., 2014; Ziegelitz et al., 2015), CBF in
the frontal lobe and periventricular white matter in patients with
INPH was significantly lower than that in controls. Combined
with previous studies (Ziegelitz et al., 2014; Virhammar et al.,
2017), we speculated that the edema in the paraventricular white
matter led to local compression of small vessels and metabolic
disorder of vasoactive metabolites. This study found that thalamic

FIGURE 3 | Correlation of cerebral blood flow (CBF) between brain regions and clinical scale scores in patients with idiopathic normal pressure hydrocephalus
(INPH): (A) Preoperative Mini-Mental State Examination (MMSE) score; (B) Preoperative timed up and go test (TUG-t) score; (C) Preoperative INPH grading scale
(INPHGS) motion score; and (D) Preoperative INPHGS cognition score.
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TABLE 2 | Correlation of cerebral blood flow (CBF) between brain regions and preoperative clinical scale score in idiopathic normal pressure hydrocephalus (INPH).

Preoperative clinical scale No. Brain region Cluster size Peak MNI coordinates (x, y, z) Peak intensity

MMSE 1 Frontal_Mid_L 380 (−15, 54, 12) 4.71

Frontal_Sup_L

2 Frontal_Mid_R 300 (39, 9, 33) 5.18

Frontal_Inf_Oper_R

TUG-t 1 Frontal_Mid_R 125 (18, 51, −6) 3.94

2 Calcarine_R 87 (3, −87, 3) 4.11

Calcarine_L

3 Thalamus_L 45 (−9, −24, 9) 3.93

4 Thalamus_R 61 (24, −18, 9) 4.83

5 Cingulum_Post_L 120 (3, −45, 21) 4.69

Cingulum_Post_R

INPHGS-motion 1 Occipital_Mid_L 4145 (−21, −93, 12) 6.41

Calcarine_L

2 Temporal_Inf_R 344 (54, −27, −3) 5.38

Temporal_Mid_R

INPHGS-cognition 1 Frontal_Inf_Tri_R 21 (33, 18, 27) 3.79

TABLE 3 | Correlation of cerebral blood flow (CBF) between brain regions and postoperative clinical score changes in idiopathic normal pressure hydrocephalus (INPH).

Postoperative clinical score change No. Brain region Cluster size Peak MNI coordinates (x, y, z) Peak intensity

MMSE 1 Frontal_Mid_R 49 (36, 21, 42) 3.83

2 Caudate_R 68 (6, −3, 6) 4.53

Thalamus_R

3 Temporal_Mid_R 36 (45, −48, 15) 3.77

4 Frontal_Mid_L 41 (−30, 9, 42) 4.35

TUG-t 1 Temporal_Mid_R 48 (54, −24, −6) 4.49

2 Temporal_Mid_L 13 (−54, −39, 3) 3.61

INPHGS-motion 1 Occipital_Inf_L 70 (−21, −87, −3) 4.42

2 Parietal_Inf_L 101 (−30, −60, 42) 4.02

3 Precuneus_R 45 (3, −72, 45) 4.09

INPHGS-urination 1 Cingulum_Ant_R 16 (6, 33, 21) 3.73

CBF significantly decreased, which may be due to the decrease in
N-acetyl-aspartate levels in the thalamus of patients with INPH
due to impaired local metabolism (Miyamoto et al., 2007; Lundin
et al., 2011), and downregulated circuits between cortical and
subcortical structures, which may be related to the occurrence of
clinical symptoms.

Many previous studies (Calamante, 2010; Ziegelitz et al., 2014,
2015) assumed that occipital cortex perfusion was less affected
by diseases and used the occipital lobe as an internal reference
to evaluate the perfusion in other brain regions. However, the
results of this study showed that the occipital lobe perfusion in
patients with INPH was significantly reduced compared with that
in HCs, suggesting that there may be some deviation between the
assumptions of previous studies and the real situation.

In this study, there was a significant correlation between the
baseline CBF in the frontal lobe, temporal lobe, basal ganglia,
thalamus, and cingulate gyrus and poor gait manifestation.
Elderly individuals have more brain regions involved in motor
control than younger ones. Previous studies found that the
CBF in the frontal periventricular white matter was significantly
correlated with gait (Jurcoane et al., 2014). The prefrontal

cortex, which receives almost all information from the sensory
system and is preferentially connected to motor information
processing structures, plays a core role in cognitive control
of motor performance, and therefore, elderly individuals are
more dependent on activation of the bilateral frontal cortex
during exercise. The frontal periventricular corticobasal ganglia-
thalamocortical pathways are constituted by the fibers of the
frontal lateral ventricle connected with the supplementary motor
cortex, basal ganglia, and thalamus, which are involved in gait and
body balance control (Virhammar et al., 2014). The thalamus and
cingulate gyrus play important roles in this pathway, so reduced
local perfusion may lead to downregulation of pathway function,
which can manifest as motor dysfunction (Ziegelitz et al., 2015).
The thalamus is the main structure regulating basal ganglia
function and plays an important role in motor function. These
structures influence each other and contribute to the occurrence
and outcome of gait disorders in the course of diseases.

In the study, preoperative CBF in the frontal lobe and
basal ganglia was positively correlated with the severity of
preoperative cognitive impairment associated with INPH and
negatively correlated with the change of postoperative MMSE
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score. Decreased perfusion and metabolic disturbance lead
to impaired ventricular white matter and then influence the
function of the frontal-subcortical pathways and the frontal
periventricular corticobasal ganglia-thalamocortical pathways,
which further affects cognitive function. Previous studies have
proven that this circuit is positively correlated with cognitive and
psychological scores (Ziegelitz et al., 2016).

The improvement in motor function after shunting was
negatively correlated with preoperative perfusion in the parietal
lobe, occipital lobe, and temporal lobe. The occipital lobe is
connected to the precuneus and frontal and temporal lobes
through the cingulate tract and is involved in the regulation
of spatial relations and visual attention of body movement
(Tanglay et al., 2021). Some studies have shown that parietal
occipital white matter damage is associated with gait disorder
(de Laat et al., 2011). We hypothesized that it may be possible
to predict the recovery of motor function after shunting by the
perfusion damage observed in the parietal and occipitotemporal
lobes before surgery.

The results showed that there was a moderate positive
correlation between reduced anterior cingulate perfusion and
improved postoperative urination. The higher brain’s net effect
on micturition is thought to be inhibitory. Moreover, the
micturition reflex passes through the dorsolateral frontal cortex,
anterior cingulate cortex, and hypothalamus (Tish and Geerling,
2020) as a part of the frontal-subcortical pathway and is
closely related to the urinary control function. Preoperative
perfusion in the cingulate gyrus being associated with recovery
of bladder function is likely to predict the functional restoration
of the descending cingulate pathway or cingulate cortex
after shunt surgery.

Some studies have suggested that preoperative whole-brain
CBF is related to clinical outcomes, and patients with lower CBF
show clinical improvements after shunt surgery, indicating that
preoperative CBF may contribute to predicting clinical outcomes
after shunt surgery (Klinge et al., 2002). The slightly lower
significance of our results compared with previous studies may
be related to the small sample size and heterogeneity among the
subjects, as well as differences in research methods and evaluation
criteria of clinical symptoms. The results of previous studies
have been discrepant, and whether baseline CBF can predict the
outcome of shunt surgery has not been determined. Therefore, it
is necessary to expand the sample size and conduct more in-depth
research on this issue.

In some patients, motor function significantly improved
in the short term after shunt surgery, but the duration was
short, with the shortest maintenance of nearly a week. Specific
analysis of individual patients revealed that a long course of the
disease was a common feature. Combined with a CT perfusion
(CTP) study (Ziegelitz et al., 2016), we speculated that massive
CSF drainage could improve periventricular perfusion in the
short term, but there might be permanent damage to white
matter, which may interfere with the improvements in gray
matter perfusion through the frontal periventricular corticobasal
ganglia-thalamocortical pathways.

Positron emission tomography perfusion imaging, the only
technique that can intrinsically quantify perfusion, is considered

the gold standard in the cerebral perfusion evaluation with
imaging (Mattoli et al., 2020). Previous studies have validated
the CBF value of PASL against PET, proving that PASL has high
repeatability in HCs and patients with AD (Xu et al., 2010). The
advantage of the study lies in the quantitative analysis of CBF
based on the whole-brain voxel level. On the one hand, this
method directly analyzes the original data and does not involve
a priori assumption of artificially defined ROI, so it is not subject
to the subjective influence of researchers. On the other hand,
the object of statistical analysis is each voxel in the CBF map,
so the statistical result is not affected by volume. The spatial
normalization process using the individuals’ structural phase
enables a voxel-based statistical comparison of brain images with
different morphologies.

Compared with previous studies that take the occipital cortex
as an internal reference to delineate regions of interest (ROIs),
this study solved the limitations of manually drawing ROIs
and avoided the influence of anatomical artifacts and volume
on research results, resulting in higher accuracy. Therefore,
voxel-based analysis has the advantages of automaticity,
comprehensiveness, objectivity, and repeatability.

There were some limitations to this study that need
to be considered. First, the post-labeling delay in the
PASL technique used in this study was short (1,290 ms),
which led to hypoperfusion artifacts in some subjects.
Second, a single TI PASL was used in this study, which is
less efficient and more dependent on model assumptions
for the arterial transit time, resulting in slightly poorer
accuracy. Considering that the subjects involved in this study
could not undergo a long-time MRI scan due to cognitive
impairment and old age, we chose the short post-labeling
delay single TI PASL sequence as a trade-off. In the following
study, we will continue to increase the sample size of the
INPH group and strengthen follow-up, make a regression
analysis of preoperative perfusion and clinical symptoms,
and try to establish a prediction model of shunt efficacy to
predict the efficacy through preoperative perfusion and help
patients, their families, and healthcare professionals involved
in treating INPH.

CONCLUSION

In this study, we measured brain perfusion in the patients
with diagnosed INPH before and 1 month after shunt surgery
to investigate the relationship between preoperative CBF and
postoperative CBF changes and clinical symptoms. The current
findings suggest that the HCs and the patients with diagnosed
INPH exhibited CBF differences in the whole cerebrum,
especially in the high convexity, temporal gyrus, and frontal
white matter. The perfusion in different brain regions in the
patients with INPH was correlated with clinical symptoms,
and improvements in clinical symptoms after shunting were
affected by the preoperative CBF. This study demonstrates that
widely distributed and intercorrelated cortical and subcortical
pathways are involved in the development of INPH symptoms.
The pathogenesis of hypoperfusion and its specific effects on
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disease development need to be further explored in combination
with other imaging techniques and molecular studies.
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Intracranial atherosclerotic stenosis is one of the main causes of ischemic stroke and

transient ischemic attack. High-resolution magnetic resonance imaging allows us to

directly observe the intracranial artery wall, accurately assess the condition of the vascular

wall, and quantitatively analyze the vascular wall and intracranial atherosclerotic plaque

load.We report a case of acute cerebral infarction with left middle cerebral artery stenosis.

During the first 3weeks, the patient was treated with aspirin 100mg and clopidogrel

75mg daily. Afterwards, the patient continued to be given aspirin, and cilostazol 100mg

twice daily was given instead of clopidogrel. After 24 months of follow-up, we observed

a significant reversal of intracranial atherosclerotic plaque using high-resolution MRI (HR-

MRI) and discussed the advantages of HR-MRI in evaluating drug therapy for intracranial

atherosclerotic plaque.

Keywords: high-resolution MRI, advantages, evaluating, intracranial atherosclerotic plaques, reversal

INTRODUCTION

Intracranial atherosclerotic stenosis (ICAS) is one of the main causes of ischemic stroke and
transient ischemic attack (TIA). Stroke is also a major cause of death and disability worldwide
(Rahman et al., 2021). Active intervention in plaque progression and prevention of stroke are the
main objectives of current drug therapy. Most existing studies evaluate the efficacy of drugs in the
treatment of intracranial atherosclerotic plaques based only on changes in lumen, while few studies
evaluate the plaques’ diameter of the stenosis, vascular area, lumen area, wall area, stenosis rate,
remodeling index, wall area index, and normalized wall index using HR-MRI (Chen et al., 2018;
Chung et al., 2020; Shi et al., 2021). We report a case of acute cerebral infarction with left middle
cerebral artery stenosis. During the first 3 weeks, the patient was treated with aspirin 100mg and
clopidogrel 75mg daily. Afterwards, the patient continued to be given aspirin, and cilostazol 100mg
twice daily was given instead of clopidogrel. After 24months of follow-up, we observed a significant
reversal of intracranial atherosclerotic plaque using high-resolution MRI (HR-MRI) and discussed
the advantages of HR-MRI in evaluating drug therapy for intracranial atherosclerotic plaque.

CASE DESCRIPTION

A 46-year-old Chinese female presented with a sudden-onset right-sided weakness and numbness
1 day ago. She denied diplopia, visual field change, disturbance of consciousness, headache, and

41
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dizziness. She also denied any history of hypertension,
hyperlipidemia, and others. There are no obvious abnormalities
in the patient’s personal and family history. In the emergency
room, the patient’s blood pressure was 163/85 mmHg. On
neurological examination, the muscle strength was IV, the
sensation of pinprick was impaired, and Babinski sign was
positive in the right limb. The routine laboratory examinations
after admission showed that low density lipoprotein cholesterol
was 3.47 mmol/L, triglycerides was 1.79 mmol/L, and the rest
of the routine laboratory examinations showed no obvious
abnormalities. Head MRI showed multiple small areas of acute
infarction on the left basal ganglia, thalamus, and temporal
lobe (Figures 1A–F). During the first 3 weeks, the patient was
treated with aspirin 100mg daily and clopidogrel 75mg daily
for antiplatelet therapy. Afterwards, the patient continued to
be given aspirin, and cilostazol 100mg twice daily was given
instead of clopidogrel. The reason for using cilostazol was that
we referred to the CSPS.com trial (see Section Discussion)
(Toyoda et al., 2019). During the follow-up, rosuvastatin 10mg
daily and amlodipine 10mg daily was continued. During the
follow-up, the lipid control objectives were as follows: LDL-C
≤ 1.8 mmol/L, systolic blood pressure≤140 mmHg, without
complications or neurological deficits. HR-MRI examinations at
hospitalization showed moderate to severe stenosis of the M1

FIGURE 1 | (A–D) Diffusion weighted imaging(DWI) showed multiple and small areas of acute infarction on the left basal ganglia, thalamus, and temporal lobe. (E,F)

ADC image showed multiple and small areas of low signal areas on the left basal ganglia, thalamus, and temporal lobe.

section of the left middle cerebral artery (MCA; Figures 2A–C).
The reexamination result of HR-MRI at 24 months was better,
during which the lumen was slightly narrowed and the wall was
slightly thickened in the same place (Figures 2D–F).

METHODS

The high-resolution MRI used in our study was a 3.0 T MRI
scanner (Ingenia; Philips Healthcare, Best, The Netherlands)
with a 15-channel phased-array coil. Our imaging results
were diagnosed by two radiologists with more than 5 years
of experience in HR-MRI diagnosis. Three-dimensional (3D)
volume isotropic turbo spin-echo acquisition (VISTA) images
were obtained by axial plane scanning of the major intracranial
arteries with the following parameters: repetition time/echo time,
1,300/36ms; field of view, 140 × 200 × 105 mm3; matrix, 280 ×
332 × 210; number of excitations, 2. Acquisition voxel volume
was 0.5× 0.6 × 0.5 mm3, and reconstruction voxel volume was
0.5 × 0.5 × 0.5 mm3. Axial plane images were automatically
constructed with a slice thickness of 0.5mm. The 3D-VISTA scan
time was approximately 5min. We selected time of flight (TOF)
magnetic resonance angiography (MRA) images and 3D-VISTA
images. MRA scan was mainly used to determine the location
and degree of MCA stenosis and to angle the reconstruction
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FIGURE 2 | High-resolution MRI (HR-MRI) examination at hospitalization. (A) Time of flight (TOF) magnetic resonance angiography (MRA) showed severe M1 stenosis

in the left middle cerebral artery (MCA). (B) T1-weighted volume isotropic turbo spin-echo acquisition (T1W-VISTA) showed the location of the plaque and thickens the

eccentric canal wall. T1W-VISTA also showed no significant enhancement on the plaque or surface, similar to the surrounding tissue signals, indicating no thrombosis

on the surface of the plaque. (C) 3D-VISTA reconstruction was carried out at the maximal-lumen-narrowing site, and the rough shape of the patch was hand-drawn.

HR-MRI examination after 24 months. (D) TOF MRA showed that the degree of lumen stenosis was significantly reduced. (E) T1W-VISTA showed that there were still

some plaques on the tube wall, and the lumen was slightly narrow. (F) 3D-VISTA reconstruction showed the diameter of the tube was significantly larger.

plane of 3D-VISTA images to ensure that all cross-sections were
perpendicular to the long axis of the MCA. The cross section
of the MCA was divided into four quadrants: upper, lower,
ventral, and dorsal quadrant. Moreover, changing the color map
of the image from the traditional gray to sky blue will make the
outline and thickness of the blood vessel wall appearmore clearly.
As shown in Figure 3, after we changed the color mapping of
digital picture archiving and communication (PACS) workstation
from gray scale to sky blue, the contour of blood vessel wall in
Figure 3B was clearer than in Figure 3A.

We semi-automatically obtained the vessel diameter, wall

thickness, vessel area (VA), and lumen area (LA) of the maximal-

lumen-narrowing (MLN) site and the reference site by using the
measurement tool on PACS. The calculation formula of the wall
area (WA) was WA=VA-LA. The vessels in the non-stenosis
segment of the proximal MCA were used as reference points,
and the reference wall area and lumen area were measured. The
degree of stenosis was computed as follows: degree of stenosis =
(1 – LA MLN / LA reference) × 100%. The remodeling index (RI)
was defined as VA MLN / VA reference. The wall area index (WAI)

was defined asWAMLN / WA reference. The normalized wall index
(NWI) was defined as WA MLN / (WA MLN+LA MLN)×100%. RI
≤ 0.95 was defined as negative remodeling (NR). Lastly, 0.95 <

RI < 1.05 was defined as intermediate remodeling (IR), and RI≥
1.05 was defined as positive remodeling (PR).

RESULTS

After 24 months of follow-up, we found that the diameter of the
stenosis increased from 1.08 to 1.90mm, the LA increased from
1.13 to 2.56 mm2, the WA decreased from 4.35 to 2.92 mm2, the
stenosis rate on HR-MRI decreased from 49.53 to 11.21%, the RI
increased from 39.65 to 89.82%, the WAI decreased from 1.14 to
0.76, and the NWI decreased from 79.38 to 53.28%, as shown in
Table 1.

DISCUSSION

How to more accurately and more safely evaluate the efficacy
of drug therapy for intracranial atherosclerotic plaque is
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FIGURE 3 | Panels (A,B) show the sagittal position of the perforating artery as shown by the arrow at the upper right. The boundary delineated by the dashed line

indicated by the arrow in the larger image is the rough outline of the vessel wall.

FIGURE 4 | (A) The proximal vessels serve as the reference site. (B) The maximal-lumen-narrowing site before follow-up. (C) The maximal-lumen-narrowing site after

follow-up.

one of the problems that need to be solved in clinical
practice. CT angiography (CTA), MRA, and digital subtraction
angiography (DSA) help us assess intracranial atherosclerotic
stenosis by primarily providing residual lumen diameter. The
methods mentioned above do not provide us with information
about vascular walls, atherosclerotic plaques, etc. HR-MRI can
directly observe the vascular wall and lumen and perform
quantitative and qualitative analysis of plaque, thus providing
more information of clinical value. MRA may exaggerate

the extent of lumen narrowing. For example, the arrow in
Figure 2A shows severe stenosis in the M1 segment of the
left MCA on MRA, whereas Figure 2B shows approximately
moderate stenosis onHR-MRI. Through quantitative analysis, we
calculated that the stenosis of the left MCA was approximately
49.53%, which was approximately moderate and not far from the
stenosis we estimated on T1W-VISTA compared to the severe
stenosis observed on MRA. This also confirms that MRA tend to
overestimate the stenosis of blood vessels. Previous studies have
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TABLE 1 | Changes of various indexes before and after follow-up.

D (mm) VA (mm2) LA (mm2) WA (mm2) R (%) RI (%) WAI NWI (%)

HR-MRI at hospitalization 1.08 5.48 1.13 4.35 49.53 39.65 1.14 79.38

HR-MRI after 24 months 1.90 5.48 2.56 2.92 11.21 89.82 0.76 53.28

HR-MRI, High-resolution MRI; D, The diameter of the maximal-lumen-narrowing site; VA, Vascular area; LA, Lumen area; WA, Wall area; R, Stenosis rate; RI, Remodeling index; WAI,

Wall area index; NWI, Normalized wall index.

shown that CTA may also exaggerate lumen stenosis (Liu et al.,
2013).

In evaluating the effects of drug therapy on intracranial
atherosclerotic plaque, the changes of plaque and vascular wall
should be paid attention to in addition to lumen. However, MRA,
CTA, andDSA cannot provide us with information about plaques
and vascular walls. In addition to stenosis, HR-MRI can also
measure wall thickness, plaque volume, LA, WA, RI, WAI, NWI,
etc. WAI and NWI are commonly used indexes to analyze plaque
load, and their calculation methods are shown in the method
section of this paper. Large culprit plaque load was independently
associated with recurrent acute stroke (Sun et al., 2021). Plaque
load can also be used to assess plaque size and drug efficacy. We
calculated the WAI and NWI to compare plaque load before and
after follow-up, as shown in Figure 4. The WAI decreased from
the initial value of 1.14 to 0.74, and the NWI was approximately
79.38% before and 53.28% after the follow-up, significantly
decreased by 26.1%. All the above findings indicate that the
plaque load was significantly reduced under the intervention of
drugs. Although both methods can describe plaque load, the
latter is increasingly accepted by the majority of scholars and is
regarded as one of the best indicators for evaluating plaque load
at present. The main reason is that WAI is calculated according
to the ratio of theWA of the MLN site to theWA of the proximal
non-stenosis site, which is relatively subjective. However, NWI
is based on the ratio of the wall area of the MLN site, which
is relatively objective and has certain reference value. The RI
is calculated by the wall area, which can be used to judge the
stability of plaque. It is mainly divided into positive remodeling
and negative remodeling. Positive remodeling is often associated
with plaque instability and is prone to cause acute ischemic stroke
(Zhang et al., 2017). For stroke patients with positive remodeling,
luminal imaging at this time often shows normal or mild stenosis,
and the pathological mechanism of stroke is difficult to explain.
HR-MRI can help us study the mechanism of infarction in such
patients with positive remodeling (Sun et al., 2018).

The duration of treatment and the combination of drugs
may be correlated with whether the vascular remodeling index
changes significantly. In Chung and Shi’s study, significant
changes in the vascular RI were not found (Chung et al., 2020;
Shi et al., 2021). Particularly, Chung found no significant change
in the RI after intensive statin treatment (1.09 ± 0.35 vs. 1.03
± 0.30; p = 0.195) (Chung et al., 2020). In our study, the
vascular RI before follow-up was 0.3965, which was much less
than 0.95. After follow-up, the new RI was 0.8982, which was
very close to the range of normal vascular RI. Prolonged statin
therapy may make the plaque more stable and may also bring

the remodeling index back into the normal range. The reason
may be that the duration of intensive statin therapy (6 months)
observed in Chung’s study was relatively short. Long-term and
appropriate antiplatelet therapy is an indispensable link to reduce
clinical events. This was a patient with symptomatic intracranial
artery stenosis who is at high risk of recurrent ischemic stroke.
However, the patient’s DWI showed a small ischemic focus, and
the patient was at a low risk of bleeding after taking antiplatelet
drugs. The reason we chose cilostazol and aspirin long-term
combination therapy is that we referred to the “CSPS.com”
trial in Japan, which showed that for high-risk stroke patients,
long-term combination therapy of cilostazol with aspirin or
clopidogrel had a lower risk of ischemic stroke recurrence
(Toyoda et al., 2019). There was no significant increase in the
risk of serious or life-threatening bleeding. Other studies confirm
this (Lin et al., 2021). Previous studies have found that cilostazol
provides benefits after 60–90 days of treatment (de Havenon
et al., 2021). In addition to inhibiting platelet aggregation,
cilotazol can also promote blood vessel remodeling and lowering
of blood lipid levels, among others. Some studies found that
cilostazol can stabilize or reverse plaque effects. For example,
Lee et al. found that after long-term treatment with cilostazol,
carotid plaque volume and intima thickness were significantly
reduced, leading to vascular remodeling (Lee et al., 2020). In our
study, the reversal of plaque in patients may be related to the use
of cilostazol.

CONCLUSION

High-resolution MRI is one of the more intuitive and non-
invasive auxiliary examinations. Through quantitative analysis
of vascular wall and plaque, HR-MRI can help us compare
the effects of drugs on delaying or reversing intracranial
atherosclerotic plaque from multiple perspectives.
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Two of the main features of idiopathic normal pressure hydrocephalus (iNPH) are
disturbed gait and cognition. These features are typically investigated separately, but
here we combined walking with a cognitive task to investigate if older adults with iNPH
were more susceptible to dual-task interference on walking than those without iNPH. In
total, 95 individuals from the general population participated in our study. Of these, 20
were classified as Possible iNPH (median [interquartile range, IQR] 80 years [75–82.5])
and 75 as Unlikely iNPH (74 years [72–78]). Conversation, 10-m walking, semantic and
phonemic verbal fluency were performed either combined or independently. “Stopping
walking while talking” was noted. Pairwise comparisons and multiple logistic regression
analyses were used. We found that the Possible iNPH group was older, stopped walking
more frequently during the conversation, and had a slower single-task pace. The dual-
task pace was slower for both groups. Only single-task walking pace could predict
Possible iNPH when adjusted for age. We could establish a dual-task cost on gait
performance in this sample of older adults from the general population, but the cost
was not exclusive for individuals with Possible iNPH. To further assess the value of dual-
task testing in iNPH, including observations of stopping walking while talking, a study of
a clinical iNPH material with more severe symptoms would be valuable.

Keywords: dual-task, idiopathic normal pressure hydrocephalus, ageing, cognition, neuropsychology, older
adults

INTRODUCTION

Idiopathic normal pressure hydrocephalus (iNPH) is a disorder affecting older adults with
the hallmark symptoms of gait disturbances, cognitive decline, and incontinence (Hakim and
Adams, 1965; Mori et al., 2012). Radiological characteristics include disproportionately enlarged
subarachnoid-space hydrocephalus (DESH) (Kitagaki et al., 1998), wide temporal horns (Lilja-Lund
et al., 2020), and a narrow callosal angle (Virhammar et al., 2014). Untreated, iNPH reduces life
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expectancy, autonomy, and health-related quality of life (Petersen
et al., 2014; Andrén et al., 2020). Andersson et al. (2019)
found a prevalence in the range of 1.5–3.7% in older adults,
increasing with age to 8.9% among people aged 80 years and
above. The cause of iNPH is still unknown, but candidate factors
are disturbed cerebrospinal fluid (CSF) dynamics and vascular
risk factors, such as diabetes mellitus and arterial hypertension
(Bräutigam et al., 2019).

Correct diagnosis and treatment improve the individual’s
quality of life, as well as have socioeconomical gains (Petersen
et al., 2014; Tullberg et al., 2018). The treatment of iNPH with
CSF shunting can normalize mortality (Andrén et al., 2020),
improve or maintain cognitive function over time (Kambara
et al., 2021), decrease symptoms of gait and balance disturbances,
and reduce incontinence (Todisco et al., 2020). Furthermore,
iNPH is believed to be underdiagnosed, and increased awareness
among clinicians, as well as the general public, could be an
important step toward early recognition (Tullberg et al., 2018;
Nakajima et al., 2021). Timely intervention is important as
potential gains and improvement increase with early shunting
(Andrén et al., 2014; Kambara et al., 2021). Currently, diagnosis
can only be based on clinical examination and radiology, and new
methods of assessment could contribute to the early detection
and understanding of the disorder.

Dual-tasking is characterized by performing two separate tasks
at the same time, straining limited cognitive resources (Pashler,
1994). An everyday example is walking and talking. Cognition
and gait are negatively affected during dual-tasking, more so than
what increased age alone represents (Verhaeghen et al., 2003;
Al-Yahya et al., 2011). There are several ways to investigate dual-
tasking, such as having a conversation while walking (Beauchet
et al., 2009). Lundin-Olsson et al. (1997) found that older adults
who stopped walking while talking (SWWT) had a significantly
higher risk of falling within the next 6 months. This is important
as fall accidents in older adults more frequently result in death
or severe injuries compared with falls among adults 20–65 years
old (Sibelius and Dahlström, 2005; Bridenbaugh and Kressig,
2015). Another method of testing dual-tasking is verbal fluency
combined with walking (Al-Yahya et al., 2011).

Given that higher age, gait disturbances, and cognitive decline
are characteristic features of iNPH, difficulties in “walking-and-
talking” dual-tasking seem likely. However, there are only a few
studies on dual-tasking in iNPH (Armand et al., 2011; Allali et al.,
2013, 2017a,b; Schniepp et al., 2017; Selge et al., 2018). Dual-
task testing has revealed positive tap test responders (Allali et al.,
2013, 2017a), possibly better than single-task (Armand et al.,
2011), and the effect was best 3 days post drainage (Schniepp
et al., 2017). In addition, iNPH patients with apathy had an
increased stride time variability during backward-counting and
walking compared with iNPH without apathy (Allali et al.,
2017b). Dual-task performance was also found to differentiate
between progressive supranuclear palsy and iNPH, with better
performance for the latter (Selge et al., 2018). The hypothesis
here was that subjects with Possible iNPH are more susceptible
to dual-task interference compared with older adults from the
general population without iNPH. To the best of our knowledge,
this hypothesis has not been tested before.

MATERIALS AND METHODS

Participants
The participants were recruited from an epidemiological study
on iNPH among inhabitants of Jämtland Härjedalen, Sweden,
aged 65 years or older (Kockum et al., 2018; Andersson et al.,
2019; Lilja-Lund et al., 2020). The final sample consisted of 95
individuals with and without symptoms of iNPH. Figure 1 shows
the selection flowchart.

Method of Diagnosing
The Japanese guidelines, 2nd edition, were used to diagnose
iNPH (Mori et al., 2012). The iNPH symptom scale was
used to assess gait, balance, incontinence, and neuropsychology
(Hellström et al., 2012). The participants underwent computed
tomography (CT) of the brain (GE MD Optima CT540). The
protocol used was 120 kV, 300 MaS, rotation time 0.5 s with
a pitch of 0.6, generating a slice thickness of 0.6 mm with
4 mm reconstructions in three planes. Radiological markers of
iNPH were scored using the iNPH Radscale (Kockum et al.,
2018, 2020). Cognitive status was screened using the Mini-mental
State Examination (MMSE) (Folstein et al., 1975). Symptoms of
depression were screened using the Geriatric Depression Scale
(GDS-15) (Kørner et al., 2006).

Single-and Dual-Tasks
The participants were asked about how they got to the hospital
on the way to the examination room from the waiting room.

FIGURE 1 | Flow-chart representing included participants. a see
Andersson et al., 2019. Other conditions severely affecting gait and/or
cognition was excluded from the sample (Alzheimer’s disease, hip-surgery,
cancer, visual impairment, spinal stenosis, and secondary hydrocephalus. Five
of them failed the dual task, and three used walking aid). Three declined
neurological examination, three had incomplete neuropsychological tests, and
two declined imaging. Two participants had been given a shunt after the 2014
study. Nine randomly picked participants (all diagnosed with Unlikely iNPH)
were given a pilot test protocol. The number of pilots needed was based on
when the test protocol was fulfilling the aim of the study.
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Observations on whether they stopped walking during this
conversation was noted. Similarly, SWWT was registered during
the dual-task testing described below.

The single-tasks consisted of timed silent 10-m walking at a
normal pace and verbal fluency while seated. The pace was timed
with a stopwatch. The participants were asked to “name as many
things as possible you can think of that you can find in a grocery
store” during the semantic test. On the phonemic test, they were
asked “to say as many words as possible that you can think of
starting with the letter A, except numbers, names of persons, or
places.” The time-limit on single-task fluency was 60 s.

The dual-task testing consisted of walking 10-m at a preferred
pace while performing a semantic or phonological verbal fluency
test. Things you can find in a home were used as a semantic
fluency task and the letter F on the phonemic fluency. The
investigator counted the words using a mechanical tally counter.
Repeated words were excluded from all fluency counts.

Statistical Analyses
Statistical analyses were conducted using IBM SPSS Statistics 27
(IBM Corp., Armonk, NY, United States). The assumption of
normal distribution was investigated and tested with the Shapiro–
Wilk test. Non-parametric tests were chosen based on the
group size, skewed distribution, and types of variables analyzed.
Distribution of sex and frequency of SWWT were tested using
chi-square and Fisher’s exact tests. Differences between groups
were tested using the Mann–Whitney U-tests. Multiple logistic
regression analyses were performed to adjust for age. Differences
between tasks were tested using the Friedman test and Wilcoxon
signed ranks tests. The following equation was used to calculate
the dual-task cost:

DTtime − STtime
STtime

∗ 100

The level of significance was set to p < 0.05 with Bonferroni
correction applied when appropriate.

RESULTS

The final sample consisted of 95 participants, with 75 in the
Unlikely iNPH group and 20 in the Possible iNPH group.
The Possible group was older (median [interquartile range,
IQR]; 80 years [75–82.5] vs. 74 years [72–78], p = 0.004), had
more symptoms (iNPH score 73.9 [67–81] vs. 90.5 [80.7–95.3],
p < 0.001), and more radiological signs of iNPH (Radscale score
4 [3–5] vs. 2 [1–3], p < 0.001). The two groups did not differ in
sex, education, MMSE, or GDS-15 (n.s.), as shown in Table 1.

Observations of SWWT during conversation revealed that two
(10%) from the Possible iNPH group stopped walking and none
(0%) in the Unlikely group (p = 0.044). During dual-task testing,
the number of people who stopped walking was similar for both
groups (n.s.), as shown in Table 2.

Both groups reduced their pace during dual-tasking when
compared to single-task walking [Possible iNPH χ2 (2) = 26.7,
p < 0.001; and Unlikely iNPH χ2 (2) = 103.9, p < 0.001].
The post-hoc analysis showed that the pace was reduced during

TABLE 1 | Descriptive statistics of participants.

Possible iNPH Unlikely iNPH χ2 p

Participants n (female%) 20 (45%) 75 (59%) 1.196 0.317

Md (IQR) Md (IQR) U

Age (years) 80 (75–82.5) 74 (72–78) 438 0.004

INPH symptom scalea (0–100) 73.9 (67–81) 90.5 (80.7–95.3) 264 <0.001

INPH Radscaleb (0–12) 4 (3–5) 2 (1–3) 254.5 <0.001

Education (years) 9 (7–12.5) 9 (7–13) 684 0.541

MMSEc (0–30) 27 (26–28) 27 (26–28) 712.5 0.795

GDS-15d (0–15) 2 (0.25–3) 1 (0–2) 550 0.059

Md, median; IQR, interquartile range. aHellström et al. (2012); higher
score = less symptoms. bKockum et al. (2018); higher score = more symptoms.
cFolstein et al. (1975); higher score = less symptoms. dKørner et al. (2006); higher
score = more symptoms. Significant values of p are in bold.

TABLE 2 | Frequency of participants who stopped walking while talking (SWWT).

Possible iNPH
n = 20

Unlikely iNPH
n = 75

Fischer’s exact
test p-value

Stops
n (%)

Walks
n (%)

Stops
n (%)

Walks
n (%)

Conversation 2 (10) 18 (90) 0 (0) 73 (100) 0.044

Semantic fluency 3 (15) 17 (85) 7 (9) 68 (91) 0.434

Phonemic fluency 3 (15) 17 (85) 18 (24) 57 (76) 0.548

Significant values of p are in bold.

semantic (z = −3.1, p = 0.002) and phonemic (z = −3.9,
p < 0.001) dual-task fluency for the Possible iNPH group.
Equally, the pace slowed down during semantic (z = −7.1,
p < 0.001) and phonemic (z = −7.4, p < 0.001) dual-task
fluency for the Unlikely iNPH group. The dual-task cost on
pace did not differ between the two groups. The increase in
walking time during semantic fluency for the Possible iNPH
group was (median, IQR) 38% (5–61%), and 34% (18–71%) for
the Unlikely iNPH (n.s.). During phonemic fluency, the increase
in walking time for the Possible iNPH was 41% (25–62%), and
45% (21–112%) for the Unlikely iNPH (n.s.), as shown in Table 3.

There were some differences between the groups in single-task
performance. The Possible iNPH group had a slower single-task
pace (p < 0.001) and produced fewer words during semantic
single-task fluency (p = 0.024) but generated a similar number
of words during phonemic single-task fluency (n.s.) compared
with the Unlikely iNPH group (as shown in Table 3). Single-task
pace predicted Possible iNPH correctly (odds ratio [OR] [95%
CI] 1.45 [1.02–2.06], p = 0.038) when adjusting for age. However,
semantic single-task fluency adjusted for age could not predict
iNPH diagnosis correctly (n.s.).

Performance was worse for both groups on the phonemic tasks
compared with the semantic tasks. The dual-task pace was slower
(z = −2.5, p = 0.013), and word production decreased during
single-task (z = −3.9, p < 0.001) and dual-task phonemic fluency
(z = −3.4, p < 0.001) for the Possible iNPH group. Similarly,
dual-task pace (z = −4.0, p < 0.001), and single-task (z = −7.5,
p < 0.001) and dual-task fluency (z = −6.2, p < 0.001) decreased
for the Unlikely iNPH group, as shown in Table 3.
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TABLE 3 | Mann-Whitney U-tests of group differences in walking speed and verbal fluency.

Possible iNPH Unlikely iNPH

n = 20 n = 75

Md (IQR) [min–max] Md (IQR) [min–max] U p

Single-task

10-meter walking (sec.) 10.1 (9.6–11.7) [7–31] 8.8 (7.6–9.8) [6–13] 337 <0.001

Semantic fluencya 17.5 (12.5–21.8) [11–30] 22 (17–27) [8–44] 502.5 0.024

Phonemic fluencya 8.5 (6–11.8) [2–15] 10 (7–13) [1–23] 648.5 0.352

Dual-task

Semantic 10-m (sec.) 14.0 (12.3–17.0) [8–33] 12.0 (9.0–17.0) [6–41] 555 0.074

Phonemic 10-m (sec.) 16.0 (14.0–17.0) [10–98] 13.0 (10.0–20.0) [7–43] 557 0.077

Semantic fluencya 8 (6–10.8) [4–15] 8 (6–10) [2–17] 735.5 0.894

Phonemic fluencya 5.5 (4–6.8) [1–16] 5 (4–6) [1–17] 661.5 0.414

Md, median; IQR, interquartile range. Significant values of p are in bold. aNumber of words.

DISCUSSION

We hypothesized that older adults with Possible iNPH could
be more susceptible for dual-task interference. We found that
the Possible iNPH group SWWT more frequently during
the conversation compared with the Unlikely iNPH group.
Furthermore, the Possible iNPH group was slower during single-
task walking compared with the Unlikely iNPH group. However,
in contrast to our hypothesis, no difference in SWWT was found
between the groups during the semantic or phonemic dual-task
testing and the dual-task cost on pace and word production was
similar for both groups.

The need to stop walking to talk during the normal
conversation did not occur for the Unlikely group, but it
was 10% in the Possible iNPH group. In their study, Lundin-
Olsson et al. (1997) presumed that stopping walking happens
due to attentional constraints when performing two tasks
at once but no cognitive assessments beyond the MMSE
score for the whole sample were reported. However, this
assumption has support in other studies confirming that
executive functioning in older adult fallers was reduced
compared with non-fallers and younger adults and that the
risk of falling increases with poor cognitive performance
(Springer et al., 2006; Montero-Odasso et al., 2012). Montero-
Odasso et al. (2012) argue in their review that gait and
cognition should be viewed as intertwined aspects of aging
and not as separate domains. Proactive measures against
falling (such as exercise, revision of medications, and
environmental factors) should be taken since older adults
who stop talking is at greater risk of cognitive decline and falling
(American Geriatrics Society et al., 2001).

Another indication of an increased cognitive load during
dual-tasking was that both groups decreased their pace during
dual-task fluency, in line with the “bottleneck” view of
available executive capacity (Yogev-Seligmann et al., 2008).
Other studies have found that verbal fluency had a negative
impact on walking speed, and there is evidence of left
prefrontal cortical (PFC) engagement relating to gait speed
control, regardless of global physical strain (Harada et al.,

2009; Al-Yahya et al., 2011). The limitations of a central
executive coordinating multi-sensor processing in a top-down
fashion involving the PFC could be related to the reduction
of pace during dual-tasking (Katus and Eimer, 2019). One
study found that young adults had increased PFC activity while
talking during walking compared with an older population,
and the authors argue that this could be caused by the
age-related decrease in PFC functioning found in older age
(Holtzer et al., 2011).

We assumed that dual-tasking would increase the cognitive
load and potentially amplify discrepancies between the two
groups in our study. However, in contrast to the difference in
SWWT during normal conversation, the two groups did not
differ in the frequency of SWWT during the dual-task fluency
tests. One possible explanation is that normal conversation is
less taxing compared with the verbal fluency tasks and therefore
less likely to trigger SWWT in the Unlikely group. The increase
in the number of participants who SWWT during the verbal
fluency tasks supports this interpretation. We could not compare
potential dual-task cost to walking speed during conversation as
this was not noted.

Interestingly, walking speed during dual-tasking did not
statistically differ between the two groups, but a clear dual-task
effect emerged in both groups. One effect was the dispersion
of walking time within the groups. During single-task walking,
the IQR in speed was approximately 2 s for both groups.
During dual-tasking, the widest IQR for the Possible iNPH was
5 s during semantic fluency and 10 s for the Unlikely iNPH
during phonemic fluency. Hence, even though the Possible iNPH
median walking time repeatedly surpassed the Unlikely group
by approximately 2 s, the heterogeneous dual-task effect in the
Unlikely group contributed to the value of p exceeding the alpha
level. In summary, we could establish a dual-task cost, but the
effects were not exclusive to the Possible iNPH, and individual
differences were marked.

There were also differences regarding the performance of
single-task. Gait disturbances are a core feature in iNPH
and the Possible iNPH group had a slower single-task pace
when adjusting for age. Hence, testing single-task walking is
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fundamental in investigating iNPH. Moreover, the Possible iNPH
group had a lower word production during single-task semantic
fluency compared with the Unlikely iNPH group. However,
adjusting for age revealed that the higher age significantly
contributed more to the classification of diagnostic categories.
Other studies have found that increased age was associated with
a reduction in verbal fluency (Tombaugh et al., 1999). However,
it is important to consider that age does not completely exclude
effects following iNPH as the prevalence of the disorder increases
with age (Andersson et al., 2019). The study sample comes from
a population-based epidemiological study, and the higher age
for the Possible iNPH group is in accordance with the literature
(Iseki et al., 2014; Jaraj et al., 2014; Nakajima et al., 2021). Other
demographic variables did not differ between the groups (the sex
distribution, level of education, MMSE score, and GDS-15 score).

Previous studies have shown that phonemic fluency is more
related to the PFC, and semantic fluency to the hippocampi
(Glikmann-Johnston et al., 2015). Inferior performance on a
more hippocampi-dependent task in iNPH is intriguing as
widening of the temporal horns surrounding the hippocampi has
been associated with all main symptoms of iNPH (Lilja-Lund
et al., 2020). Furthermore, a study using verbal fluency during
walking to evaluate the effects of tap-testing in iNPH revealed
improvements in semantic fluency post-tap but not in phonemic
fluency, possibly indicating that semantic fluency is sensitive to
iNPH (Allali et al., 2017a).

Studies comparing patients with iNPH and clinical
populations found that iNPH performed worse on phonemic
fluency compared with Alzheimer’s disease and de novo
Parkinson’s disease, but not on semantic fluency (Miyoshi et al.,
2005; Picascia et al., 2019). However, it is important to note that
our participants were relatively healthy. The patients with iNPH
in Picascia et al. (2019) had more severe and diffuse cognitive
symptoms compared with the de novo Parkinson’s disease; a
group with less severe cognitive decline. The cognitive state was
inferior for all participants in Miyoshi et al. (2005) compared
with our sample. Most studies on iNPH are retrospective
studies, often related to shunting. Our sample from the general
population had less progressed symptoms and represents what
clinicians might meet in their practice, before diagnosis. On
the other hand, this likely contributed to the relatively few
differences between the groups in our study.

The participants were not instructed to prioritize any of the
tasks (pace or fluency) during the dual-task testing. In hindsight
and future studies on dual-tasking, it would be interesting to
question the participants afterward if they prioritized any of
the tasks intentionally, even though they were not instructed
to do so. Still, 22% of the participants stopped walking during
the most demanding task (phonemic dual-task) in violation
of the instructions. Stopping walking and talking can cause
extreme outliers in time. Future studies could investigate if
this standstill is more frequent in specific groups, e.g., more
severe iNPH, Alzheimer’s disease, and notably Parkinson’s
disease. A recent meta-analysis reviewed the effects of dual-
tasking on Parkinson’s disease with the overall conclusion that it
affects walking speed negatively, however, they did not mention
SWWT or “freezing of gait” (Raffegeau et al., 2019). It would

be interesting to include dual-task effects beyond pace when
studying neurocognitive disorders.

“Stops walking while talking” has been suggested as a clinical
test of dual-tasking but a lack of standardized questions has raised
some concerns (Yogev-Seligmann et al., 2008; Beauchet et al.,
2009). A strength of our study was that we had the same question
and conditions when testing SWWT. There are some limitations
to our study as well. We had to exclude direct comparison of
dual-task effects on verbal fluency since different letters and
categories can be confounding when comparing fluency and
using the same items would introduce more learning effects
(Tombaugh et al., 1999; Lezak et al., 2012). Video recordings
of walking tests would have been helpful in additional analyses.
The choice to exclude invasive tests, such as CSF analysis, was
made to minimize associated risks and drop-out. However, using
clinical and radiological features to diagnose iNPH is viable in
epidemiological studies on iNPH (Mori et al., 2012).

Future research could investigate if SWWT can help assess
and predict shunt outcomes. Studies on SWWT typically focus
on fall-incidents (Ayers et al., 2014). It would be interesting
to evaluate the predictive value of SWWT in diagnosing iNPH
or other neurocognitive disorders in longitudinal studies. The
topic of the conversation in our study (how they got to the
clinic) prompted the episodic memory of a recent event involving
spatial navigation. It would be interesting to investigate if
the topic for the conversation matters for dual-task cost or
SWWT, for example, whether there is a difference between
semantic memory vs. episodic memory. Given that semantic and
episodic memory display different trajectories of change across
the lifespan, targeting different memory systems could be of
interest (Nyberg et al., 2003, 2020).

CONCLUSION

The Possible iNPH group SWWT more frequently during
conversation and had a slower single-task walking time. There
was a distinct dual-task interference with walking speed being
negatively affected during verbal fluency, but the dual-task
cost was similar in both groups. The use of dual-tasking
needs to be further investigated to delineate its usefulness
in iNPH. It is noteworthy that dual-task effects can alter
performance in unexpected ways compared with standard single-
task testing.
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Background: Timely and accurate prediction of delayed cerebral ischemia is critical for

improving the prognosis of patients with aneurysmal subarachnoid hemorrhage. Machine

learning (ML) algorithms are increasingly regarded as having a higher prediction power

than conventional logistic regression (LR). This study aims to construct LR and ML

models and compare their prediction power on delayed cerebral ischemia (DCI) after

aneurysmal subarachnoid hemorrhage (aSAH).

Methods: This was a multicenter, retrospective, observational cohort study that enrolled

patients with aneurysmal subarachnoid hemorrhage from five hospitals in China. A total

of 404 aSAH patients were prospectively enrolled. We randomly divided the patients into

training (N = 303) and validation cohorts (N = 101) according to a ratio of 75–25%. One

LR and six popular ML algorithms were used to construct models. The area under the

receiver operating characteristic curve (AUC), accuracy, balanced accuracy, confusion

matrix, sensitivity, specificity, calibration curve, and Hosmer–Lemeshow test were used

to assess and compare the model performance. Finally, we calculated each feature

of importance.

Results: A total of 112 (27.7%) patients developed DCI. Our results showed that

conventional LR with an AUC value of 0.824 (95%CI: 0.73–0.91) in the validation cohort

outperformed k-nearest neighbor, decision tree, support vector machine, and extreme

gradient boosting model with the AUCs of 0.792 (95%CI: 0.68–0.9, P = 0.46), 0.675

(95%CI: 0.56–0.79, P < 0.01), 0.677 (95%CI: 0.57–0.77, P < 0.01), and 0.78 (95%CI:

54
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0.68–0.87, P = 0.50). However, random forest (RF) and artificial neural network

model with the same AUC (0.858, 95%CI: 0.78–0.93, P = 0.26) were better than

the LR. The accuracy and the balanced accuracy of the RF were 20.8% and 11%

higher than the latter, and the RF also showed good calibration in the validation

cohort (Hosmer-Lemeshow: P = 0.203). We found that the CT value of subarachnoid

hemorrhage, WBC count, neutrophil count, CT value of cerebral edema, and monocyte

count were the five most important features for DCI prediction in the RF model.

We then developed an online prediction tool (https://dynamic-nomogram.shinyapps.io/

DynNomapp-DCI/) based on important features to calculate DCI risk precisely.

Conclusions: In this multicenter study, we found that several ML methods, particularly

RF, outperformed conventional LR. Furthermore, an online prediction tool based on the

RF model was developed to identify patients at high risk for DCI after SAH and facilitate

timely interventions.

Clinical Trial Registration: http://www.chictr.org.cn, Unique identifier:

ChiCTR2100044448.

Keywords: logistic regression, prediction model, delayed cerebral ischemia, subarachnoid hemorrhage,

inflammatory response, machine learning

INTRODUCTION

Aneurysmal subarachnoid hemorrhage (aSAH) is a severe
acute cerebrovascular disorder resulting in high morbidity and
mortality; roughly 50% of aSAH survivors have permanent
neurological deficits (Molyneux et al., 2005; Fugate and
Rabinstein, 2012). Delayed cerebral ischemia (DCI) is the most
frequent complication after aSAH, affecting ∼ 30% of patients,
often causing serious damage because of its late diagnosis
(Macdonald, 2014; Francoeur and Mayer, 2016). Hence, timely
and accurate prediction of DCI is critical for the treatment and
prognosis of patients with aSAH. A precise, reliable model for
early prediction of DCI development is urgently needed.

Traditional logistic regression (LR) is the primary method
to construct models for predicting disease outcomes. However,
when LR is used for complex multivariate non-linear
relationships, complex transformations are often required
owing to low robustness and multicollinearity between variables
(Tu, 1996). Machine learning (ML) is valuable for analyzing
clinical data because it can fully employ input features and
predict outcomes more accurately (Jordan and Mitchell, 2015).
Several studies suggested that in DCI, ML models utilizing
admission clinical characteristics have better predictive power
than LR (Ramos et al., 2019; de Jong et al., 2021; Savarraj et al.,
2021). However, the model performance is not generally high
due to the incomplete clinical features. Admission clinical
characteristics include baseline information, laboratory test
results, and imaging data, and the fragmented application of
these data may reduce predictive performance; therefore, these
features must be systematically utilized. To the best of our
knowledge, there is no study that utilizes relatively complete
clinical features to construct ML and LR models, some of which
were not compared in previous studies.

We determined several types of the currently most popular
ML algorithms to achieve the following aims. First, we
constructed and validated a conventional LR and several
ML models based on relatively complete clinical features on
admission. Second, we compared the predictive performances
of the LR and ML models. Third, we established an online
prediction tool based on the important features identified by
the optimal model, which is convenient for clinicians and can
precisely calculate the risk of DCI after aSAH.

METHODS

Study Design and Patient Enrollment
This multicenter, retrospective, observational cohort study
utilized clinical data from the electronic health record
system. The study participants consisted of all adult
patients with aSAH within 24 h of onset who were treated
in the Department of Neurosurgery from April 2019
to June 2021, Renmin Hospital of Wuhan University,
Huzhou Central Hospital, Affiliated Hospital of Panzhihua
University, General Hospital of Northern Theater Command,
First Hospital of Shanxi Medical University. The study
eventually enrolled 404 patients (Figure 1). According
to SAH guidelines, aSAH was diagnosed using head
computed tomography (CT), CT angiography, or digital
subtraction angiography.

The inclusion criteria were: (1) spontaneous aSAH, (2)
admission within 24 h after onset, (3) blood laboratory tests and
head CT scans within 24 h after admission, (4) microsurgical
clipping or coil embolization within 72 h after onset, and (5) DCI,
which occurs within 4–30 days after aSAH.

The exclusion criteria were: (1) admission time exceeded
24 h after onset, (2) intracerebral hemorrhage or vascular
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FIGURE 1 | The flowchart of study design and detailed patient enrollment.

malformation, (3) acute infection, (4) postoperative state on
admission, (5) bilateral mydriasis or other permanent brain
injuries on admission, (6) non-surgical treatment, and (7)
patients who died within 3 days after admission.

Clinical Data Collection
Patient demographic data (sex, age), medical history
(hypertension, diabetes mellitus, coronary heart disease,
smoking, alcohol consumption, anticoagulant treatment, and
previous diseases), and clinical state on admission [World
Federation of Neurosurgical Societies (WFNS), Hunt and Hess
grade (HH), and modified Fisher scale (mFS)] were collected.
Aneurysmal details were also recorded, including aneurysm
number, location, length, neck size, and treatment. Surgical
methods and laboratory tests on admission (glucose, D-dimer,
as well as white blood cell [WBC], neutrophil, lymphocyte, and
monocyte counts) were also utilized in this study.

CT Value Assessment
The CT values of subarachnoid clots and cerebral edema were
manually measured and collected, and measurement methods
and references are provided in the Supplementary Data 1.

All CT scans were completed using a GE scanner (64-section
Optimal CT680) without contrast enhancement. The following
parameters were used: tube voltage, 120 kVp; tube current
modulation, 300mA; detector configuration, 64 × 0.625mm;
rotation time, 0.5 s; slice thickness, 5mm; and collimation,
10 mm.

Regions of interest (ROIs) were manually drawn on the
central area of the blood clots in representative slices by
two neurosurgeons who were blinded to the patients’ clinical
information. The mean blood clot density in the subarachnoid
space was measured in each ROI (a circle 3–8mm across),
returning the mean Hounsfield Unit (HU) value. Subarachnoid
cisterns/fissures, including the lateral Sylvian fissure, anterior
interhemispheric fissure, medial Sylvian fissure, suprasellar
cistern, ambient cistern, and quadrigeminal cistern, were used to
determine themeanHU (Woo et al., 2017; Kanazawa et al., 2020).

Regions of interest (circles 5–10mm across) of the
cerebral edema were bilaterally and symmetrically drawn
on a representative CT slice. If blood clots were below the
insular cortex, the ROI was drawn on the thalamus and basal
ganglia. Otherwise, the ROI was drawn on the bilateral centrum
semiovale (Claassen et al., 2002; Ahn et al., 2018).
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Outcome Definitions
The definition of DCI should meet at least one of the following
criteria: (1) no other etiology could have caused a permanent
or temporary focal neurological impairment (such as aphasia,
apraxia, hemianopia, or neglect) between 4 and 14 days after
aSAH; (2) the Glasgow Coma Scale score decreased by at least
two points [either on one of its components (eye opening, verbal
response, motor response), or on total score]; and (3) head CT
scans revealed a low-density area that was not noticeable on
admission or immediately after the operation, and there were no
other causes except vasospasms between 4 and 30 days after aSAH
(Vergouwen et al., 2010).

Sample Size
We used the events per variable criterion with a value of 10
(Peduzzi et al., 1996) to estimate the effective sample size in
this study. Our preliminary analysis indicated that nine variables
were entered into a multivariable LR model. Hence, at least 90
patients with DCI should be included in the training cohort.
Moreover, according to the risk of DCI occurrence after SAH,
∼30% worldwide, there should be at least 300 patients in the
model training cohort.

Processing of Missing Data
This dataset included 17 patients with missing values, which
accounted for <5% of the study population, so we directly used
the missing value deletion method to process the data (Eekhout
et al., 2012).

Model Development
A total of 404 patients with aSAH from five medical centers
were prospectively enrolled. We randomly divided the patients
as training cohort (N = 303) and validation cohort (N =

101) according to a ratio of 75–25%. The training cohort
was utilized to develop a conventional LR, k-nearest neighbor
(KNN), support vector machine, decision tree, random forest
(RF), extreme gradient boosting, and artificial neural network
(ANN) models.

Machine Learning Models Development
LR

The model was trained by fitting the predictor variables with
P < 0.1 in univariate analysis to multivariate logistic analysis.
We used the backward stepwise regression method based on the
Akaike information criterion to select the optimal variables and
constructed a final LR model. “MASS” package in R software was
performed to fit the model.

LASSO

LASSO regression, which is suitable for analyzing high-
dimensional data, was used to select the most informative
prediction variables. We used the “glmnet, corrplot, caret”
packages and 10-fold cross-validation to obtain the optimal λ

and factors.

KNN

KNN model uses local geographic information in the predictive
environment to predict the results of the new samples. For

example, a KNN model with ten neighbors uses the ten closest
observations in multidimensional space to predict the results of a
new sample based on a distance assessment. The optimal K value
was determined by 10-fold cross-validation and the “e1071, class,
kknn, kernlab, caret” packages.

SVM

The uniqueness of SVM algorithms is that they mainly use data
points from each result class that is closest to the class boundary
or misclassified when determining the boundary structure. The
radial basis function was applied in this work, and the optimal
gamma value and minimum error of the SVM model were
determined by 10-fold cross-validation.

DT

DT algorithms partition the sample data by splitting prediction
features at discrete cut-points and are usually presented in the
form of a tree. In this study, the decision tree algorithm uses
the Gini index to determine each split’s optimal variable and
location. The cost complexity parameter that penalizes more
complex trees is used to control the size of the final tree. Ten-fold
cross-validation and “rpart, partykit, caret” packages were used
to determine the minimum error value.

RF

RF builds a predictive model by sampling objects and variables,
generating multiple decision trees, and classifying objects in
turn. Finally, the classification results of each decision tree are
summarized, and themode category in all prediction categories is
the category of the object predicted by the RFmodel. The optimal
number of trees was determined using 10-fold cross-validation
and “randomForest” package.

XGBoost

XGBoost is an optimized distributed gradient enhancement
library designed to be efficient, flexible, and portable. It
implements ML algorithms under the Gradient Boosting
framework. The optimal parameters were determined by
“xgboost” package and 10-fold cross-validation.

ANN

ANN is an algorithmic mathematical model that imitates
the behavioral characteristics of animal neural networks and
performs distributed and parallel information processing. This
kind of network relies on the system’s complexity, adjusts the
interconnection between a mass of internal nodes to achieve
the purpose of processing information, and has the ability
of self-learning and self-adaptation. Ten-fold cross-validation
and “caret, MASS, neuralnet, vcd” packages were conducted to
determine the optimal parameters of this model.

Dynamic Nomogram
A web-based dynamic nomogram application was then
developed based on the optimal prediction variables based
on optimal features. Calibration curve with 1,000 resample
bootstrap was used to assess the calibration ability, and the
clinical effectiveness was evaluated by decision curve analysis
(DCA) and clinical impact curve (CIC). The packages “rmda,
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TABLE 1 | Patinets baseline characteristics in training and validation cohorts.

Characteristics Training cohort

(n = 303)

Validation

cohort

(n = 101)

P-value

Demographics

Age (years) 57 (51, 64) 57 (51, 63) 0.903

Gender (Female) 179 (59) 68 (67) 0.175

Medical history

Hypertension 142 (47) 50 (50) 0.73

Diabetes 9 (3) 3 (3) 1.000

CHD 12 (4) 2 (2) 0.532

Smoking 54 (18) 17 (17) 0.94

Drinking 37 (12) 13 (13) 1.000

Anticoagulant 11 (4) 3 (3) 1.000

Disease history 0.886

ICH 3 (1) 0 (0)

CI 6 (2) 1 (1)

WFNS grade 0.163

I–II 227 (75) 68 (67)

III 37 (12) 13 (13)

IV 22 (7) 12 (12)

V 17 (6) 8 (8)

Hunt and Hess grade 0.327

I–II 211 (70) 59 (58)

III 59 (19) 27 (27)

IV 18 (6) 9 (9)

V 15 (5) 6 (6)

Modified Fisher scale 0.037

1–2 157 (52) 36 (35)

3 76 (25) 37 (37)

4 70 (23) 28 (28)

Aneurysm location 0.694

ACA 273 (90) 93 (92)

PCA 30 (10) 8 (8)

Aneurysm number 0.428

Single 269 (89) 86 (85)

Multiple (≥2) 34 (11) 15 (15)

Mean aneurysm size

Neck (mm) 3.2 (2.4, 3.75) 3.5 (2.5, 4.3) 0.068

Length (mm) 4.4 (3.15, 5.5) 4.9 (3.5, 6.7) 0.017

Aneurysm treatment 0.015

Clipping 154 (51) 66 (65)

Coiling 149 (49) 35 (35)

Decompressive craniectomy 16 (5) 11 (11) 0.084

Admission laboratory

results

Glucose (mmol/L) 6.96 (5.94, 8.17) 6.8 (5.61, 8.06) 0.396

D-dimer (mg/L) 1.17 (0.58, 2.5) 1.36 (0.82, 2.5) 0.288

WBC (10∧9/L) 11.23

(9.27, 13.99)

11.21

(8.98, 14.4)

0.646

Neutrophil (10∧9/L) 9.57 (7.56, 12.28) 9.9 (7.27, 12.8) 0.887

Lymphocyte (10∧9/L) 0.9 (0.68, 1.25) 0.92 (0.65, 1.27) 0.842

Monocytes (10∧9/L) 0.5 (0.34, 0.7) 0.5 (0.33, 0.7) 0.655

(Continued)

TABLE 1 | Continued

Characteristics Training cohort

(n = 303)

Validation

cohort

(n = 101)

P-value

Admission CT value (HU)

ClotCT 57 (52, 62.02) 58 (54, 63) 0.17

EdemaCT 26.82

(24.2, 28.98)

26.88

(25.07, 29)

0.36

DCI 85 (28) 27 (27) 0.898

DCI, indicates delayed cerebral ischemia; ACA, aneurysm includes anterior cerebral

artery, middle cerebral artery, internal cerebral artery, anterior communicating artery;

posterior communicating artery; PCA, aneurysm includes posterior cerebral artery, basilar

artery, anterior inferior cerebellar artery, posterior inferior cerebellar artery, vertebral artery;

ACA, anterior circulation aneurysm; PCA, posterior circulation aneurysm; WBC, White

blood cell; CT, computer tomography; HU, Hounsfield Unit; WFNS, World Federation

of Neurosurgical Surgeons; ICH, Intracerebral hemorrhage; CI, cerebral infarction; CHD,

Coronary heart disease.

MASS, survival, ggplot2, ggridges, DynNom, and riskRegression”
and “shinyapps.io” were performed to achieve this process.

Model Performance Evaluation
We used the area under the receiver operating characteristic
curve (AUC) with 95% confidence intervals (95% CIs), accuracy,
balanced accuracy, confusion matrix, sensitivity, and specificity
indicators in both training and validation cohorts to evaluate
model performance. The AUC value was used to assess model
discrimination, while the calibration curve with 10-fold cross-
validation (1,000 resample) and Hosmer–Lemeshow test can
reflect the model calibration performance.

Statistical Analysis
We applied the Kolmogorov–Smirnov test to determine the
data distribution before formally analyzing the data. Continuous
variables analyzed using the independent t-test or Mann-
Whitney U-test are presented as mean ± SD or median with
interquartile range. Categorical variables analyzed using the
chi-square or Fisher’s exact tests are expressed as numbers
(percentages). The statistical difference between the AUCs of
these models was completed by DeLong test. The feature
importance was calculated by Gini index using RF algorithm.
The total score of all feature importance was added up to 100.
A higher importance coefficient commonly indicated a stronger
influence on the occurrence of DCI. For continuous variables that
were important for DCI indicator, we used the Youden index
to calculate the cut-off value to distinguish patients who were
prone to be DCI. All statistical tests were two-tailed and p < 0.05
were considered statistically significant. Statistical analyses were
conducted using IBM SPSS Statistics for Windows, version 26.0,
(IBM Corp., Armonk NY, USA) and R software, version R×64
4.1.0 (https://www.r-project.org/).

RESULTS

Baseline Characteristics
The number of patients with DCI were 85 (28%) and 27 (27%)
in training and validation cohorts, and women comprised 179
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TABLE 2 | Patients baseline characteristics in model training cohort.

Characteristics Total (n = 303) Non-DCI (n = 218) DCI (n = 85) P-value

Demographics

Age (years) 57 (51, 64) 57 (52, 65) 56 (49, 64) 0.414

Gender (Female) 179 (59) 126 (58) 53 (62) 0.552

Medical history

Hypertension 142 (47) 103 (47) 39 (46) 0.932

Diabetes 9 (3) 6 (3) 3 (4) 0.714

CHD 12 (4) 5 (2) 7 (8) 0.042

Smoking 54 (18) 35 (16) 19 (22) 0.263

Drinking 37 (12) 26 (12) 11 (13) 0.962

Anticoagulant 11 (4) 6 (3) 5 (6) 0.19

Disease history 0.367

ICH 3 (1) 2 (1) 1 (1)

CI 6 (2) 3 (1) 3 (4)

WFNS grade <0.001

I–II 227 (75) 185 (85) 42 (49)

III 37 (12) 22 (10) 15 (18)

IV 22 (7) 7 (3) 15 (18)

V 17 (6) 4 (2) 13 (15)

Hunt and Hess grade <0.001

I–II 211 (70) 167 (77) 44 (52)

III 59 (19) 42 (19) 17 (20)

IV 18 (6) 5 (2) 13 (15)

V 15 (5) 4 (2) 11 (13)

Modified Fisher scale <0.001

1–2 157 (52) 126 (57) 31 (36)

3 76 (25) 56 (26) 20 (24)

4 70 (23) 36 (17) 34 (40)

Aneurysm location 0.695

ACA 273 (90) 195 (89) 78 (92)

PCA 30 (10) 23 (11) 7 (8)

Aneurysm number 1.000

Single 269 (89) 194 (89) 75 (88)

Multiple (≥2) 34 (11) 24 (11) 10 (12)

Mean aneurysm size

Neck (mm) 3.2 (2.4, 3.75) 3.2 (2.5, 3.98) 3.2 (2.2, 3.7) 0.228

Length (mm) 4.4 (3.15, 5.5) 4.4 (3.26, 5.5) 4.2 (3, 6) 0.963

Aneurysm treatment 0.002

Clipping 154 (51) 98 (45) 56 (66)

Coiling 149 (49) 120 (55) 29 (34)

Decompressive craniectomy 16 (5) 3 (1) 13 (15) <0.001

Admission laboratory results

Glucose (mmol/L) 6.96 (5.94, 8.17) 6.94 (5.92, 8.14) 6.96 (6.1, 8.3) 0.454

D-dimer (mg/L) 1.17 (0.58, 2.5) 1.11 (0.55, 2.33) 1.51 (0.78, 3.82) 0.024

WBC (10∧9/L) 11.23 (9.27, 13.99) 10.5 (8.75, 12.65) 14.6 (11.7, 17.3) <0.001

Neutrophil (10∧9/L) 9.57 (7.56, 12.28) 8.89 (7.27, 11.16) 12.1 (9.67, 14.7) <0.001

Lymphocyte (10∧9/L) 0.9 (0.68, 1.25) 0.94 (0.68, 1.26) 0.83 (0.68, 1.09) 0.266

Monocytes (10∧9/L) 0.5 (0.34, 0.7) 0.44 (0.32, 0.66) 0.65 (0.44, 0.9) <0.001

Admission CT value (HU)

ClotCT 57.1 ± 7.05 55.23 ± 6.33 61.9 ± 6.54 <0.001

EdemaCT 26.82 (24.2, 28.98) 26.75 (24.25, 28.45) 27 (24.2, 30) 0.28

ACA, aneurysm includes anterior cerebral artery, middle cerebral artery, internal cerebral artery, anterior communicating artery; posterior communicating artery; PCA, aneurysm includes

posterior cerebral artery, basilar artery, anterior inferior cerebellar artery, posterior inferior cerebellar artery, vertebral artery; ACA, anterior circulation aneurysm; PCA, posterior circulation

aneurysm; WBC, White blood cell; CT, computer tomography; HU, Hounsfield Unit; WFNS, World Federation of Neurosurgical Surgeons; ICH, Intracerebral hemorrhage; CI, cerebral

infarction; CHD, Coronary heart disease.
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(59%) and 68 (67%) patients in the two groups, respectively. The
median age in both the cohorts was 57 years. In terms of other
admission clinical features, there were more patients with mFS
of 3–4 point in the validation cohort than training cohort (P
< 0.05), and the aneurysm mean length size in the validation
cohort was larger than the training cohort (p < 0.05). Among
the patients with aSAH in the validation cohort, there is a larger
proportion of patients who chose aneurysm clipping (p < 0.05).
However, there were no significant differences in medical history,
disease history, other clinical conditions, aneurysm location,
aneurysm number, admission laboratory results, and admission
CT value between the two cohorts (P > 0.05). Table 1 shows the
detailed baseline characteristics of the datasets. We also analyzed
the baseline characteristics of the DCI and non-DCI groups in
the training cohort. Table 2 shows the detailed baseline data of
the two groups in the training cohort.

Model Performance Evaluation and
Comparison
When using the validation cohort to evaluate and comparemodel
performance, our results showed that conventional LR with an
AUC value of 0.824 (95%CI: 0.73–0.91) outperformed KNN,
decision tree, support vector machine, and extreme gradient
boosting model with the AUCs of 0.792 (95%CI: 0.68–0.9,

DeLong: P = 0.46), 0.675 (95%CI: 0.56–0.79, DeLong: P < 0.01),
0.677 (95%CI: 0.57–0.77, DeLong: P < 0.01), and 0.78 (95%CI:
0.68–0.87, DeLong: P = 0.50). However, the RF and ANN model

TABLE 3 | Model performance evaluation using training and validation cohorts.

Cohort Model AUC (95%CI) Accuracy Sensitivity Specificity

Training LR 0.837 (0.784–0.889) 0.828 0.552 0.935

KNN 0.992 (0.985–0.998) 0.904 0.658 1.000

SVM 0.781 (0.728–0.834) 0.934 0.765 1.000

DT 0.827 (0.772–0.883) 0.808 0.623 0.881

RF 1.000 (1.000–1.000) 1.000 1.000 1.000

XGB 0.884 (0.844–0.925) 0.828 0.917 0.600

ANN 1.000 (1.000–1.000) 0.759 0.548 0.905

Validation LR 0.824 (0.737–0.912) 0.802 0.444 0.932

KNN 0.792 (0.683–0.901) 0.802 0.407 0.946

SVM 0.677 (0.578–0.775) 0.772 0.259 0.959

DT 0.675 (0.559–0.791) 0.703 0.444 0.797

RF 0.858 (0.783–0.932) 0.802 0.518 0.905

XGB 0.780 (0.686–0.874) 0.693 0.77 0.481

ANN 0.858 (0.782–0.932) 0.594 0.365 0.837

LR, logistic regression; KNN, K-nearest neighbor; SVM, support vector machine; DT,

decision tree model; RF, random forest; XGBoost, extreme gradient boosting; ANN,

artificial neural network.

FIGURE 2 | The ROC curves, accuracy, sensitivity, and specificity of ML methods and conventional LR. (A,B) The AUCs of ML methods and LR in the training and

testing datasets. (C–E) The accuracy, sensitivity, and specificity of LR, KNN, SVM, DT, RF, XGB, and ANN in the training and testing datasets are 82.8, 90.4, 93.4%,

80.8, 100, 82.8, 75.9% (blue); 80.2, 80.2, 77.2, 70.3, 80.2, 69.3, 59.4% (orange); 55.2, 65.8, 76.5, 62.3, 100, 91.7, 54.8% (blue); 44.4, 40.7, 25.9, 44.4, 51.8, 77,

36.5% (orange), 93.5, 100, 100, 88.1, 100, 60, 90.5% (blue); 93.2,94.6, 95.9, 79.7, 90.5, 48.1, 83.7% (orange).
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FIGURE 3 | The calibration curve of RF model. (A) shows the 10-fold cross validation using training cohort; (B) illustrates the 10-fold cross-validation using the

validation cohort.

with a same AUC (0.858, 95%CI: 0.78–0.93, DeLong: P = 0.26)
still performed well than the LR. Furthermore, the accuracy
and balanced accuracy of the RF were 20.8 and 11% higher
than the latter. Supplementary Table 1 shows the confusion
matrix and balanced accuracy of ML and LR model using
training and validation cohorts. Figure 2 and Table 3 present
the performances of all models when using the training and
validation cohorts. In addition, Figure 3 demonstrates that the
superior RFmodel had a good calibration performance according
to the calibration curve and Hosmer–Lemeshow test in the
training (X2 = 8.78, df = 8, P-value = 0.36;) and validation
cohort (X2 = 10.97, df = 8, P-value = 0.203). Table 4 and
Figure 4 show the process of model development.

Individual Variable Importance
The five most important features for DCI prediction were
CT value of subarachnoid hemorrhage (15.68), WBC count
(13.72), neutrophil count (12.28), CT value of cerebral edema
(8.54), and monocyte count (7.54). The cut-off value of
WBC, neutrophil, and monocyte counts for predicting DCI
were 11.2 × 10∧9/L, 9.58 × 10∧9/L, and 0.46 × 10∧9/L,
respectively. Moreover, the cut-off value of CT value in
subarachnoid hemorrhage and cerebral edema were 60.12 (HU)
and 28.15 (HU). Figure 5 shows all input feature importance. An
online prediction tool (https://dynamic-nomogram.shinyapps.
io/DynNomapp-DCI/) was developed based on the five optimal
predictors in the RF model, which could precisely calculate
the risk value of DCI after aSAH. A risk percentage of 50%
calculated by this tool commonly represents an occurrence of
DCI in patients with aSAH. Figure 6 displays the interface of the
online tool for predicting DCI. Both decision curve analysis and
clinical impact curve on the validation cohort showed a superior
overall net benefit over the entire range of threshold probabilities
(Figure 7).

TABLE 4 | The univariate and multivariate analysis during fitting logistic regression

model.

Variable OR (95%CI) P-value Variable aOR (95%CI) P-value

CHD 3.82 (1.18–13.25) 0.025 NA NA NA

WFNS 2.07 (1.65–2.63) <0.001 WFNS 1.53 (1.11–2.12) 0.009*

HH 1.97 (1.53–2.58) <0.001 NA NA NA

MFS 1.57 (1.24–2.02) <0.001 MFS 0.76 (0.53–1.08) 0.137

Treatment 0.42 (0.24–0.71) 0.001 Treatment 0.41 (0.21–0.77) 0.007*

DC 12.93 (4.03–57.6) <0.001 DC 4.54 (1.01–25.13) 0.059

ClotCT 1.17 (1.12–1.23) <0.001 ClotCT 1.11 (1.05–1.17) <0.001*

WBC 1.29 (1.19–1.39) <0.001 WBC 1.58 (1.11–2.33) 0.018*

NC 1.25 (1.16–1.36) <0.001 NC 0.74 (0.5–1.07) 0.141

MC 8.44 (3.48–21.59) <0.001 NA NA NA

D-dimer 1.07 (1.02–1.15) 0.016 NA NA NA

CHD, Coronary heart disease; WFNS, World Federation of Neurosurgical Surgeons; HH,

Hunt and Hess grade; MFS, modified Fisher scale; DC, Decompressive craniectomy;

WBC, White blood cell; NC, Neutrophil; MC, Monocytes. aOR, adjusted odds ratio.

*indicates statistical significance (p < 0.05) by multivariate logistic regression.

DISCUSSION

In this study, the eligible patients with aSAH from five
medical centers were randomly divided into model training and
validation cohorts. One conventional LR and six types of famous
ML methods were used to construct the prediction model by
incorporating relatively complete admission clinical data, and all
model performances were assessed and compared. To the best of
our knowledge, this study is the first to utilize the rounded clinical
features to develop the model and systematically compare the
performance of several popular ML methods and conventional
LR onDCI prediction. In addition, firstly, we developed an online
prediction tool based on the most important features of the RF
model to precisely calculate the risk of DCI development.
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FIGURE 4 | The training process and optimal parameters of six types of full-feature ML models. (A) shows the training process of k-nearest neighbor, and the optimal

K-value is 21; (B) shows the error and gamma parameter of the support vector machine during the training process, and the two optimal parameters are 0.238 and

0.1; (C) illustrates the training process of the decision tree model, and the most important branches are subarachnoid clot CT value and WBC count; (D) displays the

training process of random forest, and the optima tree number of the RF model is 179; (E) shows the training process of eXtreme Gradient Boosting, and the optimal

parameters are gamma of 0.25, max depth of 2, and n-rounds value of 100; (F) demonstrates the training process of artificial neural network, and generalized weights

of all clinical features are seen.

It was considered that only a few admission clinical features
would not lead to an accurate DCI prediction. However, the
most commonly used multivariable prediction models are still
based on LR. For instance, de Rooij et al. (2013) incorporated
some features selected by LR and constructed a practical risk
chart for DCI prediction. The AUC value of this risk chart was
0.69 in the validation cohort. Liu et al. (2020) used six factors
selected via LR to develop a nomogram for DCI, which achieved
an AUC value of 0.65 on the test set. Other studies have also
employed the conventional LR method to identify independent
factors for DCI prediction (Al-Mufti et al., 2017, 2019a; Duan
et al., 2018; Hurth et al., 2020). In our study, the LR model
incorporated four independent features for DCI classification
and achieved an AUC value of 0.837 in the validation cohort,
which was higher than the AUC values previous models reported
(de Oliveira Manoel et al., 2015; Foreman et al., 2017; van
der Steen et al., 2019; Liu et al., 2020). The inclusion of
complete admission clinical information can enable the LR
to select the optimal variables to improve the prediction
performance, which may explain the better performance of our
LR model. However, owing to the robustness of the LR model,
it cannot take full advantage of information from all clinical
input features.

Machine learning models can solve the problem of high-
dimensional data more robustly than the conventional LR

method, making them suitable for fitting more features for
prediction (Brusko et al., 2018; Buchlak et al., 2020). This
capability can reduce the subjectivity in statistical analysis
and ensure the objectivity of the results. Recently, ML
algorithms have been developed rapidly, and some studies
have reported the use of ML to predict the occurrence of
DCI. de Jong et al. (2021) constructed a feedforward artificial
neural network model and achieved an AUC of 0.72 for
DCI prediction with a database with 362 patients. Their
model performed equally well as the VASOGRADE model (de
Oliveira Manoel et al., 2015). The ANN model in our study,
with an AUC of 0.858, had a better predictive power than
the conventional LR model and outperformed the previous
ANNmodel.

Some researchers have compared the performances of LR and
ML models for the prediction of DCI or other diseases. For
instance, Savarraj et al. (2021) developed ML and LR models
for DCI classification using a dataset with 399 patients. Their
results showed that the ML model with the highest AUC value
of 0.75 ± 0.07 outperformed the LR model. Ramos et al. (2019)
reported that the ML model with the highest AUC value of
0.74 performed better than the best LR model with an AUC
of 0.63. However, Nusinovici et al. (2020) reported that the
LR model could perform equivalently to the ML models in
their study, and Chen et al. (2020) showed that ML models
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FIGURE 5 | All features importance of random forest calculated by Gini index.

FIGURE 6 | The interface of the online prediction tool for predicting delayed cerebral ischemia.
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FIGURE 7 | The clinical and practical evaluation of the online prediction tool. (A) shows a decision curve analysis (DCA); (B) displays a clinical impact curve (CIC).

cannot outperform the conventional LR model in predicting
other diseases. In our study, we constructed several popular ML
models based on the relatively complete clinical features, some
of which were not compared in previous studies. The prediction
ability of the LR model was inferior to those of the ANN and
RF models, but better than those of the KNN, support vector
machine, decision tree, and extreme gradient boosting models.
This indicates that the traditional LR method still can play an
important role in DCI prediction. AlthoughML canmake perfect
use of the input characteristics, data overfitting may lead to poor
prediction performance.

Subarachnoid hemorrhage is a state of systemic inflammatory
response syndrome, with both biochemical and cellular reactions
(Parkinson and Stephensen, 1984). SAH initiates the rapid
activation of the inflammatory cascade, and growing evidence
suggests that an early neurovascular inflammatory response is
a potential mechanism of late cerebral vasospasm and early
brain injury (Helbok et al., 2015). The CT value in SAH often
represents the subarachnoid clot density and can reflect the
cerebral inflammatory response. At present, the measurement
method of CT density value of subarachnoid clot still relies
on the manual drawing of ROI. Kanazawa et al. (2020) found
that an ROI CT value of ≥49.95 HU is correlated with DCI
occurrence. Our results are consistent with those of previous
studies showing that the CT value of >60.12 HU plays a
prominent role in DCI prediction. Additionally, Ahn et al.
(2018) constructed a scoring system for predicting DCI and
clinical outcomes based on early cerebral edema after aSAH.
This scoring system may become a surrogate marker of early
brain injury and predicts DCI and prognosis after aSAH. Our
consequence also illustrates that early cerebral edema also has
an important influence on DCI prediction. As we know, WBC
and neutrophil counts also play an important role in reflecting
neuroinflammatory responses. Al-Mufti et al. (2019b) found that
a WBC count >12.1 × 109/L was the strongest predictor of
DCI after adjusting for confounding factors, including clinical

grade and aneurysm clipping treatment. Our results found that
the WBC count >11.2 × 10∧9/L, neutrophil count >9.58 ×

10∧9/L, and monocytes count >0.46 × 10∧9/L were the most
important features for the prediction DCI. A recent study has
shown that admission WBC, neutrophil, and monocyte counts
were higher in patients with DCI and unfavorable prognosis
(Gusdon et al., 2021). Inspiringly, our study confirmed this,
which could account for the fact that DCI development is closely
relative to the inflammatory response. Future basic research
should further explore the inflammatory machine during the
occurrence of DCI.

Based on the superior prediction performance of the RF,
we used the most important features to construct an online
prediction tool, which will aid in the early identification
of patients at high risk of DCI after aSAH and allow
timely interventions.

Our study systematically collected admission baseline
information, laboratory test results, and admission CT imaging
data, and these pieces of information are representative as
possible of the true condition of aSAH patients when they
are admitted to the hospital. Secondly, in order to avoid the
defects of single-center data modeling, we collected data from
multiple medical centers, making the DCI prediction model
more generalized and robust, which is the second innovation of
this study. Thirdly, this study covers several of the most popular
machine learning algorithms, which have not been systematically
compared with conventional models in previous studies, which
is also an innovation point. Fourth, we built an online version of
the prediction tool, which is convenient for clinicians to calculate
the risk of DCI based on patient information at admission.
However, there are several limitations that were observed.
This was a retrospective study, and a larger prospective study
should be considered to validate our results. Second, a possible
deviation caused by manual ROI drawing is unavoidable. The
agreement measurements for CT values between an experienced
neurosurgeon and a radiologist were acceptable. Third, having
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an accuracy of 1 or AUC of 1 on the training dataset means
the model is perfect, which is clearly not the case. Among the
model we constructed, the random forest has overfitting. We
know that overfitting may occur when the model tries to fit all
the predicted features with a limited training dataset, which is
to say a modeling error in statistics that occurs when a function
is too closely aligned to the training dataset. Our future studies
will collect more samples to further verify the results of the
RF mode.

CONCLUSIONS

In this multicenter study, we found that several ML methods,
particularly random forest, outperformed conventional LR.
Furthermore, an online prediction tool based on the random
forest model was developed to identify patients at high risk for
delayed cerebral ischemia after subarachnoid hemorrhage and
facilitate timely interventions.
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Aging may be associated with conditions characterized by motor and cognitive
alterations, which could have a detrimental impact on daily life. Although motors and
cognitive aspects have always been treated as separate entities, recent literature
highlights their relationship, stressing a strong association between locomotion and
executive functions. Thus, designing interventions targeting the risks deriving from
both components’ impairments is crucial: the dual-task represents a starting point.
Although its role in targeting and decreasing difficulties in aging is well known, most
interventions are focused on a single domain, proposing a vertical model in which
patients emerge only for a single aspect per time during assessment and rehabilitation.
In this perspective, we propose a view of the individual as a whole between mind and
body, suggesting a multicomponent and multidomain approach that could integrate
different domains at the same time retracing lifelike situations. Virtual Reality, thanks
to the possibility to develop daily environments with engaging challenges for patients,
as well as to manage different devices to collect multiple data, provides the optimal
scenario in which the integration could occur. Artificial Intelligence, otherwise, offers
the best methodologies to integrate a great amount of various data to create a
predictive model and identify appropriate and individualized interventions. Based on
these assumptions the present perspective aims to propose the development of a new
approach to an integrated, multimethod, multidimensional training in order to enhance
cognition and physical aspects based on behavioral data, incorporating consolidated
technologies in an innovative approach to neurology.

Keywords: virtual reality, machine learning, aging, artificial intelligence, psychometric, rehabilitation, dual-task,
neurology

INTRODUCTION

Population aging is one of the most significant difficulties that social and health systems are
facing today. According to the World Health Organization, in 2020 the population older than
60 years old represented 13.5% of the world’s population. This number is 2.5 times higher than
it was in 1980, and it is growing at an alarming rate (World Health Organization, 2020). The
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current situation emphasizes the significance of reacting to the
constant rise in aging demand by proposing new solutions to
challenges arising from the physiological condition to better meet
their needs. A significant proportion of older people may develop
frailty, multi-morbidity, and disability causing a significant
impact on daily life (Lutz et al., 2008; World Health Organization,
2020). The two most frequent conditions of vulnerability in
aging are frailty and cognitive impairment: they are described
as a pattern of decline in different aspects of motor (i.e., gait,
mobility, balance) and cognitive functions (i.e., attention and
working memory) (Gobbens et al., 2010), that could increase
disability, mortality, reduce the quality of life, and contribute to
adverse outcomes (Speechley and Tinetti, 1991; Fried et al., 2004;
Rockwood, 2005; Panza et al., 2015; Kojima et al., 2018; de Morais
Fabrício et al., 2020) with a direct impact on health as well as on
health care and social costs (World Health Organization, 2020).
As a result, the strong links between aging and altered motor
and cognitive processes should be highlighted, considering also
the well-known link between motor and cognitive functions. An
example of this relationship is locomotion. Although locomotion
appears to be a mechanical effort, it cannot be reduced to a
simple action involving a sequence of repetitive movements.
This action requires the coordination of gait and one or more
cognitive processes at the same time (Yogev et al., 2008; Al-
Yahya et al., 2011). In everyday activities, it may be essential to
adjust our gait to overcome environmental impediments or just
participate in a discussion; these are all requests that necessitate
the ability to accomplish many tasks at the same time. According
to the Cognitive-Motor Interference theory (CMI) (Montero-
Odasso and Speechley, 2018), performing tasks simultaneously,
the so-called dual-task (DT), requires a high level of cognitive
control in terms of executive processes and attentional abilities
whose impairment may produce a deterioration in either motor
and cognitive execution or even both (Yogev et al., 2008). As a
result, it appears clear how executive functions are an important
cognitive resource for normal locomotion. Executive functions
are integrative processes involving cognitive and behavioral
components that are required for targeted and successful actions,
and attentional resource control which are the foundation of the
ability to manage autonomous daily activities (Yogev et al., 2008).

Based on these premises, the need to consider both cognition
and gait as intertwined aspects is crucial, as said by Giovenale
mens sana in corpore sano, considering the individual as a whole
between mind and body. Despite this consideration has been well
known for centuries and the integration of different domains
being daily required, in clinical practice motor and cognitive
processes often continue to be treated as separate entities,
and the intervention methodologies available are frequently
provided vertically, focusing on a single aspect at a time. This
is a disadvantage and could be attributed to the limitations
in considering deficits in aging, which are confined to be
assessed and consequently treated separately concerning motor
and cognition as in the case of frailty, that most authors
operationalized by focusing predominantly on the physical
elements (de Vries et al., 2011). Nowadays, researchers are trying
to solve the question relative how a healthy body promotes a
healthy mind, hence how a healthful mind could influence a

good physical state. In this field, a possible solution appears the
so-called DT paradigm (Dorfman et al., 2014; Lauenroth et al.,
2016). The DT paradigm involves two exercises performed at
the same time, particularly a motor task and a cognitive one
(e.g., walking while counting backward). Evidence suggests that
DT is a powerful tool during both assessment and rehabilitation
processes. On one hand, it is more sensitive than a single task
to detect some early gait dysfunctions (Lunardini et al., 2021).
On the other hand, it benefits a variety of individuals, including
older persons with frailty syndrome, neurological disease, and
poststroke patients (Deutsch et al., 2013; Wajda et al., 2017;
Freitag et al., 2019). However, the most available studies focus
on its benefits only for a healthy body—namely, its implications
on physical processes. For instance, substantial differences have
been shown when comparing CMI with single-task exercise or
no intervention on physical outcomes (Wang et al., 2015), such as
gait speed, stride length, fall rates, and reaction time. Otherwise,
the DT tools used in the neuropsychological field involve the
execution of two concurrent tasks engaging only cognitive
aspects. An example is to judge the accuracy of alphanumeric
equations and practice a simultaneous visual detection task under
focused attention (Bier et al., 2018), as well as a single trial
usually differs from a DT merely in the presentation of one or
two similar stimuli (e.g., discriminating animals and/or celestial
bodies by pressing a left or right button, respectively) (Lussier
et al., 2012, 2021). Additional problems in the DT paradigm
concern the choice of cognitive exercises. During traditional
clinical performance the number of tasks that can be completed
while performing a motor exercise, like walking, is restricted,
especially given the small amount of time it takes to walk a
few meters. Recall of words, serial subtraction, and auditory
Stroop tests are common examples of activities employed (Al-
Yahya et al., 2011; Raffegeau et al., 2019), although walking in
a real context requires a great amount of resources such as
visual attention, searching strategies, and processing of what is
observed. Consequently, operating in a lifelike way is important,
considering body and mind as intertwined aspects that could
reflect the individual as a whole between mind and body.

WHERE COULD THIS INTEGRATION
TAKE PLACE?

Both neuropsychological assessment and training are usually
provided in a paper-and-pencil format and they are administered
in an isolated and non-ecological setting (Gates and Valenzuela,
2010). They consist of specific domain exercises, such as
categorization, classification, etc. addressing a specific ability
(memory for proper names, object location, etc.) (Chaytor and
Schmitter-Edgecombe, 2003; Wenisch et al., 2007; Gates and
Valenzuela, 2010). Computer-based programs are progressively
replacing traditional exercises since they allow for multi-modal
and multi-domain training, which appears to be a key predictor of
functional efficacy (Gates and Valenzuela, 2010; Hu et al., 2021).
They also permit personalized intervention in a controlled way
by modulating the difficulty level on the individual’s baseline,
gradually increasing the difficulty, and tracking results tailored
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to the patient’s needs. Moreover, computer-based interventions
enable the real-time monitoring of cognitive performance as well
as the standardization of interventions. The use of commercial
packages to improve cognition or physical abilities is extremely
prevalent, the Nintendo Brain training and the Brain Age
software are some examples (Nouchi et al., 2012; Clemenson and
Stark, 2015; Hu et al., 2021), as well as games from the Wii Fit
software package (e.g., yoga, soccer, ski jump, tennis) (Franco
et al., 2012; Rendon et al., 2012; Bieryla and Dold, 2013).

A further promising step could be offered by novel techniques
based on immersive simulations of daily settings, i.e., Virtual
Reality (VR). This is a technology that uses 3D computer-
generated environments to replicate lifelike situations in an
ecological, safe, and controlled situation. The fact that users
behave in Virtual Environments (VE) in the same way they
would in the real world distinguishes VR from other types of
media (Slater and Sanchez-Vives, 2016). This illusion depends
on some crucial features such as the feeling of immersion (i.e.,
the number of senses stimulated, valid actions that are possible
within the system, and the reality’s similarity of the stimuli)
(Slater, 2009; Cipresso et al., 2018), the sense of presence within
the environment (i.e., the feeling of “being there” inside the
virtual scenes and tunes its activity accordingly within it) (Riva
and Mantovani, 2014; Cipresso et al., 2018; Riva, 2018), and
the interaction with objects, which allow to experience ourself
as active agents (Sundar et al., 2010; Cipresso et al., 2018; Kim
et al., 2019). VR also guarantees a realistic experience through
multisensorial displays (e.g., visual, auditory, kinesthetic) and
tracking devices that detect any movement and deliver the
recorded data to the visualization system. This information
about the individual is useful for a real-time update of the VE.
Three categories of VR could be identified, based on the degree
of immersion and interaction with the VE: non-immersive,
semi-immersive, and fully immersive systems (Cipresso et al.,
2018; Tuena et al., 2020). The most immersive system enables
high active interaction and immersion using a head-mounted
display or the Cave Automatic Virtual Environment (CAVE).
They can provide a high sense of presence also by isolating
individuals, facilitating natural interactions and exchanges that
are similar to those found in everyday life (Riva and Mantovani,
2014; Riva, 2018). VR also provides further advantages in
terms of integration since it offers the possibility to handle
different devices to perform multiple tasks and collect various
data. For instance, it is not only possible to cycle or walk
with a dedicated bicycle or treadmill while the participant
performs a second task in the VE, but also to collect behavioral
data during activities using specific sensors. Thus, a subject
could perform a cognitive task while cycling for example, and
simultaneously digital biomarkers could be gathered, tracing
what happens as it would be in daily activity. Digital biomarkers
are objective and quantifiable patient data related to the behavior
experienced in the VE (i.e., kinematics) and the physiological
states associated with it, such as electroencephalogram (EEG),
electrocardiogram (ECG), blood volume pulse (BVP), and
respiration signal (RSP), detected by biosensor and medical
signals. Through these variables clinicians could derive important
information about neurophysiological changes (Hausdorff, 2007;

Gates and Valenzuela, 2010), alterations in brain volume in
specific areas (Tian et al., 2017), and consequent cognitive
decline. In fact, particular patterns of gait kinematics such
as slower gait, longer stride time, and more stride-to-stride
variability are closely related to cognitive impairment and motor
risks, with also a strong association between gait and heart
rate dynamics (Hausdorff, 2007). Investigating these aspects
in conjunction with cognitive requests may help to determine
some clinical crucial aspects like disease severity, medication
utility, and objectively document improvements in response to
therapeutic interventions, above and beyond what can be gleaned
from traditional measures.

HOW COULD THIS INTEGRATION TAKE
PLACE?

The massive amount of information extrapolated from a patient
during her/his diagnosis and treatment process needs a similarly
powerful technology to process it and convert it into an output
intelligible for both clinicians and patients. Machine Learning
(ML) may be the most appropriate technique for managing a
large volume of different, complex, and extensive data. Artificial
Intelligence (AI) is a computer science field that performs
activities capable of replicating human performance, such as
learning to understand complex data, which is a process that
requires human intelligence (Bawack et al., 2019; Graham et al.,
2019; Wang, 2019). ML algorithms can discover and predict
data trends and patterns by building on existing information
and highlighting unexpected relationships between variables,
without requiring a priori hypotheses about their relationships
(Graham et al., 2019). Thus, ML is associated with the study and
construction of systems that can learn on their own rather than
following instructions. This “learning by processing” approach
generates increasingly accurate predictive models for diagnosis,
individual prognosis, and risk estimation (Vieira et al., 2017;
Dwyer et al., 2018; Facal et al., 2019). The use of ML in
healthcare has been divided into two categories: supervised (SL)
and unsupervised (UL) techniques. To decide which feature
best predicts the pre-labeled data, SL uses both pre-labeled
data (e.g., cognitive impairment vs. healthy participants) and
extra features acquired from clinical or neuroimaging sources
(Dwyer et al., 2018; Graham et al., 2020). UL techniques, instead,
sets unlabeled and unstructured data, e.g., clinical notes, as a
starting point to seek relationships or patterns and to learn
general representations that enable the automatic extraction of
information when building predictors (Miotto et al., 2016; Dwyer
et al., 2018; Graham et al., 2020). The great opportunity offered by
AI is to combine a great number of various data, thus cognitive
and motor indices may be integrated with digital biomarkers
detected in the VE, offering more reliable and predictive
neurophysiological results compared to the classic paper and
pencil tests. AI could optimize individual treatment strategies by
applying ML techniques, helping the transition to personalized,
effective, and engaging medicine, built on the individual patient’s
needs. In the literature, ML is linked to diagnostic screening
tools with subsequent analysis of the progression of the disease
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(Tack, 2019; Cavedoni et al., 2020; Charvatova et al., 2020). An
innovative approach is applying ML to rehabilitation, allowing
precise predictions on which motor or cognitive parameters are
more predictive for the future maintenance of any improvements
obtained. Treatment Effect Prediction (TEP) is significant in
disease management because it ensures that patients receive
the expected clinical outcomes after undergoing specialized and
complex treatments based on their unique clinical condition.
However, there are still very few studies that analyze the potential
of TEP (Shi et al., 2019; Chu et al., 2020; Wilfling et al.,
2020); the latter are in the pharmacological field and use ML
to predict possible side effects. Therefore, ML can augment the
ability of healthcare providers to improve patient care, deliver
accurate diagnoses, optimize treatment plans, inform decisions
or allocate resources within health systems: precision medicine
is a revolutionary approach already present in the field of
pharmacology (Wilfling et al., 2020).

A PROPOSED CLINICAL APPLICATION

We suggest that VR would be the best scenario for integrating
the two crucial aspects guiding daily life and those important
behavioral characteristics and physiological activation. These
features may be examined systematically and accurately using
ML in conjunction with neuropsychological and clinical data.
This comprehensive strategy could allow for the rehabilitation
and the monitoring of all factors associated with aging decline.
In this section, we will propose an example of this new integrated
approach in the rehabilitation field.

The training will be carried out on elderly people with
frailty syndrome and cognitive impairment. Participants will be
randomly allocated to one of the two conditions: experimental
and Treatment as Usual (TAU). Both trainings will be delivered
throughout ten one-hour sessions. In TAU condition participants
will complete both a paper and pencil neuropsychological
rehabilitation and classic motor exercises. The experimental
condition consists instead of an active VR dual-task played in
the CAVE wearing 3-D glasses at IRCCS Istituto Auxologico
Italiano. This immersive technology includes cameras and several
head-tracked, as well as a variety of physiological and motion
metrics for quantifying embodiment and movements in the VE.
The protocol will be drawn based on existing tools (Pedroli
et al., 2018, 2019a,b), involving different dual-task exercises: the
Positive Bike, Rocks, and the Supermarket.

a. In the Positive Bike exercise, patients will use a stationary
bike placed inside the CAVE. They had to maintain a
constant cycling speed (motor task) and distinguish target
objects from distractors (cognitive task). The exercises
parameters (e.g., time between targets presentation, the
target to select, bike velocity) will be decided by the
therapist in each session.

b. The Rocks is designed to improve balance by immersing
patients in a VE that resembles a straight road and
requiring them to avoid rocks (motor task). We will add
a cognitive part to this exercise: subjects will have to

announce their direction while moving (i.e., if rocks move
to the right, they’ll say “right,” and if they move to the left,
they’ll say “left”).

c. The Supermarket exercise involves executive functions
training in a virtual supermarket where patients will use an
X-Box controller to move around the store and purchase
many things while adhering to strict regulations. There
will be ten distinct activities to choose from, each with a
different level of difficulty. While shopping, we will add a
motor task consisting of a walk-in place with a metronome.

During both training conditions, digital biomarkers will be
collected. At the beginning of each session, all participants
will wear kinematic motion detectors to detect specific bodily
movements, such as velocity and stride variability. They will be
attached with an elastic belt and a velcro closure to a participant’s
trunk and bilateral thigh and shank. Additionally, they will wear a
particular h-Health smartwatch to measure heart rate variability
and a chest strip sensor that will collect cardiovascular and
respiratory activity. Figure 1 shows a schematic illustration of the
technological equipment.

A neuropsychological and motor assessment will be carried
out before (T0), immediately after (T1), three (T2), and six
(T3) months after the end of the 10 sessions, to evaluate the
long-term efficacy of the treatment. To analyze data, we will
assume the use of SL techniques: the goal would be to find a
link between pre-labeled data and each rehabilitation session’s
clinical motor and cognitive findings. (i.e., clinical history of
patients, standard neuropsychological battery results, and digital
biomarkers). Two different types of ML will be tried out: an
ML model built with the personal data set and another ML
model built with the total data set. A schematic illustration
of this model is depicted in Figure 2. In this case, however,
the intent will be to show if there is any predictive long-
term maintenance improvement. This would allow researchers
to determine whether VR dual-task focuses on maximizing the
positive effects of rehabilitation. Indeed, ML is the perfect tool,
which allows analyzing the large amount of several data available:
a mix of the history of the patient, results of the traditional
neuropsychological test, and digital biomarkers. ML will also
support the multidimensional and integrated approach aimed to
use rehabilitation results and data of patients’ clinical history as
the input data to train a strategic dataset that in future could
discriminate new cases. Particularly, using different algorithms,
(e.g., Logistic Regression, Naive Bayes, Random Forest) ML
would be able to track the progress of the rehabilitation of
patients, its effects, and effectiveness based on the clinical
history, neuropsychological tests, and parameters of digital
biomarkers measured.

DISCUSSION

Aging may be a particular source of vulnerability in frailty
individuals and older adults with some cognitive difficulty which
may blur the border between normal and pathological aging,
increasing the likelihood of chronic disease (Lutz et al., 2008).
Thus, early interventions are crucial for preserving cognitive
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FIGURE 1 | Subject’s digital biomarkers detected within a VR environment (CAVE) while performing DT.

FIGURE 2 | Schematic illustration of the innovative model proposed.
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functioning and, as far as possible, slowing the progression of
dementia and physical impairment. When the human system
is functioning properly, a multi-level integrated control system
combines information from the brain with feedback from visual
and proprioceptive sensors to produce, control, and modify
motor patterns in response to environmental changes (Hausdorff,
2007). In this panorama, the combination of dual-task techniques
with a fully immersive technology would presumably help in
providing more precise results in terms of assessment. This allows
for identifying real lifelike problems, and consequently, treating
them with better outcomes compared to a vertical intervention
because it implies the joint presence of neuropsychological and
motor abilities within a realistic experience. Given the potential of
VR, as well as fast feedback and repetitive practice, sophisticated
cognitive processes would be facilitated by enjoyment and
attractiveness, which might help motivate and engage users
(Tuena et al., 2020). Patients would have to employ their
attentional, mnemonic, planning, adaptability, and navigational
skills to perform the virtual assignments. Thus, it is reasonable
to assume that a multisession and multimodal intervention will
help with the transfer of these skills to real-life daily tasks.
These expected results are consistent with prior research, which
has shown that performing two tasks at the same time has
greater positive benefits than performing one activity at a time or
sequential training (Tait et al., 2017). Further, DT is expected to
increase executive functions, locomotion, and daily complicated
activities in general (Mirelman et al., 2011; Wang et al., 2015;
Liao et al., 2019). On these bases, the current perspective seeks
to propose an innovative approach that incorporates different
components while utilizing new technical devices considering
both motor and cognitive baseline and improvements. Indeed,
VR potential lies in duplicating lifelike behaviors (such as cycling
in a park and shopping) in an ecological and controlled setting.
Defining problems in aging that are as similar as in daily
life allows clinicians to provide individual training that could
track the specific needs of the patient that could be treated in
an ecological way instead of standard interventions generally
proposed in clinical practice. However, one of the problems of
rehabilitation is maintaining improvements; hence, it is necessary
to assess whether and how improvements will be maintained,
taking into account the diversity of the results (Pashler et al.,
2001; Verghese et al., 2007; Schaefer et al., 2015). To address
this issue, the present perspective proposes a predictive model
for detecting specific patterns of cognitive and motor impairment
in aging populations and predicting outcomes. Further, digital
biomarkers could also facilitate an advanced outcomes prediction
and personalization of the therapeutic approach, guaranteeing
customization and effective indicators of biologic processes
or responses to therapeutic intervention. Indeed, sensor-based
gait variability parameters were identified as clinically most
relevant digital biomarkers for gait impairment (Hausdorff, 2007;
Cavedoni et al., 2020; Gaßner et al., 2020) and a strong association
between gait and heart rate dynamics have been identified
(Hausdorff, 2007). Investigating these aspects in conjunction
with cognitive requests may help to determine some clinical
crucial aspects such as disease severity, medication utility, and to

objectively document improvements in response to therapeutic
interventions, as well as specific parameters like the difficulty and
sessions, useful for effective personalized training. AI learning
by processing may enable for selection of the most predictive
variables, which will subsequently be empirically verified via
follow-up; it will be also improved, based on the historical
data of patients, results of neuropsychological traditional tests,
and digital biomarkers measured. Measures from the initial
evaluation can be compared to ML clinical data and cognitive-
motor characteristics to see if and how their baseline condition
influenced and predicted the outcome of rehabilitation. These
integrations of different data methodologies and techniques
may improve the treatment’s reliability in terms of better
prognostic indexes and individualized training. Clinicians might
create efficient and individualized training: they could choose
the best therapy in terms of intensity or number of sessions,
for example, they could collect information easily about the
possible future directions of the patients in terms of treatment
and cognitive/motor development and saving patients’ time to
choose appropriate intervention in the assessment phase, by
providing training quickly and efficiently. This approach crosses
standardized therapy provided usually in a pre-structured way.
Specific and well-timed interventions are essential to retain
cognitive functioning and slow the progression of dementia
and physical deterioration. For instance, early detection of gait
deficits allows the early revelation not only of motor risk but
also cognitive deficit, with the possibility to implement timely
intervention (Lunardini et al., 2021). Further, in some cases, it
could be more effective to use a vertical therapy than a traditional
dual-task or a VR dual-task, allowing for long-term improvement
in rehabilitative outcomes.

The integrative model of rehabilitation proposed, however,
could be useful also in the assessment since data may provide
the starting point for future intervention and to evaluate
the person’s progression, considering assessment and training
as a continuum in the patient healthcare. This approach
demonstrates how research and clinical practice are intertwined:
research supplies the instruments, while practitioners provide
critical data to confirm research creating a closed-loop system
that allows researchers and clinicians to effectively interact
with each other.

In summary, while much of the literature has focused on
different methodologies addressed to the needs of the aging
population, little was done considering the individual not as a
circumscribed problem, but as a whole single person composed of
mind and body at the same time. Furthermore, no one has looked
at it and how some predicted characteristics are linked to the
patient’s fragility at the outset, opening up new avenues. In this
paper, cognition meets gait in a dual-task approach that considers
the individual in all her/his whole aspects. On one hand, VR
provides the physical space in which all data can be collected
with a high degree of ecological validity. On the other hand,
ML provides the best procedures aimed to improve quality of
life by lowering healthcare costs and hospitalization rates, hence
expanding primary, and secondary prevention options, in the
perspective of personalized medicine.
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Traditional neuropsychological evaluations are usually carried out using

psychometric paper and pencil tests. Nevertheless, there is a continuous

discussion concerning their efficacy to capture life-like abilities. The

introduction of new technologies, such as Virtual Reality (VR) and 360◦

spherical photos and videos, has improved the ecological validity of

the neuropsychological assessment. The possibility of simulating realistic

environments and situations allows clinicians to evaluate patients in realistic

activities. Moreover, 360◦ photos and videos seem to provide higher levels

of graphical realism and technical user-friendliness compared to standard

VR, regardless of their limitations in terms of interactivity. We developed a

novel 360◦ tool, ObReco-2 (Object Recognition version 2), for the assessment

of visual memory which simulates a daily situation in a virtual house. More

precisely, patients are asked to memorize some objects that need to be moved

for a relocation. After this phase, they are asked to recall them after 15 min

and later to recognize them in the same environment. Here we present a

first study about the usability of ObReco-2, and a second one exploring its

clinical efficacy and updated usability data. We focused on Free Recall and

Recognition scores, comparing the performances obtained by the participants

in the standard and the 360◦ test. The preliminary results support the use

of 360◦ technology for enhancing the ecological value of standard memory

assessment tests.

KEYWORDS

memory, neuropsychological assessment, 360◦ video, virtual reality, object
recognition, neuroscience

Introduction

Recently, the debate regarding the ecological validity of the measures typically
employed for the assessment of cognitive domains seems to be an open-ended question
in the neuropsychological field. Ecological validity refers to the degree of association

Frontiers in Aging Neuroscience 01 frontiersin.org

75

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2022.875748
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2022.875748&domain=pdf&date_stamp=2022-07-28
https://doi.org/10.3389/fnagi.2022.875748
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnagi.2022.875748/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-875748 July 27, 2022 Time: 8:14 # 2

Bruni et al. 10.3389/fnagi.2022.875748

between what is observed during neuropsychological testing
and real-life activities, i.e., the ability of paper and pencil tests
to predict real-life functioning (Sbordone, 1996). Despite the
widespread use of paper and pencil tests, their ability to predict
patients’ skills in real-life circumstances could be limited (Neguţ
et al., 2016; Rizzo and Koenig, 2017). One of the main issues is
that patients may not show deficits in the clinical setting but at
the same time report some difficulties in everyday situations or
vice versa (Chaytor and Schmitter-Edgecombe, 2003; Mondini
et al., 2016). Indeed, during the clinical evaluation patients
are required to carry out various behavioral and cognitive
activities in a controlled setting which may not always predict
their functioning in a real-life situation. Therefore, it is worth
considering the debate over the efficacy of many traditional
tests assuming a more function-based approach rather than a
construct-based one (Parsons, 2015; Parsons et al., 2017; Serino
and Repetto, 2018). A construct-based approach starts from a
solid theoretical paradigm assessing abstract constructs without
an explicit interest in predicting real-life functional abilities.
On the other hand, a function-based approach arises from
direct observations of patients’ performance in real-life contexts
to guarantee a more ecological assessment (Sbordone, 1996;
Parsons, 2015; Parsons et al., 2017). The Rivermead Behavioural
Memory Test (RBMT) is the most well-known example of
this approach for memory assessment (Wilson et al., 1989). It
includes a series of daily-life tasks such as locating personal
objects, remembering an appointment, recalling an itinerary,
etc.

In recent years, technologies might be considered promising
realities in accomplishing and improving ecological validity,
sensitivity, and specificity of traditional assessment methods.
Among these, virtual reality (VR) emerges as a suitable
possibility in neuropsychological assessment. This technology
can be employed to develop highly ecological and controlled
environments resembling the real-life contexts in which
patients’ daily activities usually take place (Riva and Mantovani,
2014; Neguţ et al., 2016; Riva et al., 2019). It thus can
allow researchers and clinicians to measure cognitive and
motor abilities in naturalistic environments, obtaining better
prognostic indexes of real-life functioning in a safe and
controlled situation. This approach has been widely used
in the medical and neuropsychological field to assess and
treat different pathologies such as traumatic brain injury
(Aida et al., 2018; Alashram et al., 2019) and post-stroke
(Saposnik and Levin, 2011; Laver et al., 2017). Moreover, it
has been revealed promising for balance deficits (Allain et al.,
2014) and memory impairments (Matheis et al., 2007; Ouellet
et al., 2018; Serino and Repetto, 2018). More specifically,
memory interventions included several tasks in which patients
were required to perform some activities while navigating in
the 3D environments (i.e., office and supermarket) (Matheis
et al., 2007; Ouellet et al., 2018; Serino and Repetto, 2018).
The employment of 360◦ immersive photos and videos is

a growing declination of VR technology that may offer
promising outcomes (Serino and Repetto, 2018; Realdon et al.,
2019; Ventura et al., 2019). They are spherical videos or
photos captured by an omnidirectional camera. As previously
mentioned, this method has greater benefits than graphic-based
VR as it can capture the real environment, providing a high
level of visual realism that can increase participant engagement.
Moreover, this technology is inexpensive and easy-to-use (Bohil
et al., 2011). Furthermore, the user-friendly design makes 360◦

technologies more suitable for the assessment of patients with
mild to severe impairments (Sbordone, 1996; Realdon et al.,
2019) who may have some difficulties interacting with more
sophisticated devices.

The present study aims to test a 360◦ technology for memory
assessment compared to a traditional paper and pencil test
included in the RBMT-III (Wilson et al., 2008; Beschin and
Urbano, 2013). Based on promising results from an earlier pilot
study showing the feasibility of a 360◦ memory assessment
(Pieri et al., 2021), we improved technology using higher-level
equipment to design ObReco-2 (Object Recognition version 2).
Firstly, we present the results of a usability study (Study 1),
and then the results of the clinical efficacy along with updated
usability data (Study 2).

Study 1 (usability study)

Materials and methods

Participants
For the usability assessment, participants were enrolled

among the patients and outpatients of the Department of
Medical Rehabilitation of Istituto Auxologico Italiano in Milan.
They were volunteers aged over 60 (without maximum age
limitation), with a normal or corrected-to-normal vision.
Exclusion criteria were: (i) invalidating internist, psychiatric,
neurological conditions which could affect the usability of the
task; (ii) cognitive impairments certifiable by a score at the Mini-
Mental State Examination (MMSE) Italian version (Measso
et al., 1993; Magni et al., 1996) lower than 24 points. The
resulting sample included 10 participants (6 females and 4
males), with a mean age of 75.5 (SD = 5.36) and a mean of 12.3
(SD = 3.89) years of education. All the subjects’ demographic
data and MMSE scores are reported in Table 1. Before the
usability session, all participants signed the informant consent.
The study received ethical approval from the Ethical Committee
of the Istituto Auxologico Italiano.

Materials
Files were recorded in a real environment using the Insta

360 ONE X, an omnidirectional video camera that can record
spherical photos and videos with a resolution respectively
of 608 × 3040 and 5.760 × 2.880 pixels. We combined all
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TABLE 1 Demographic data and mini-mental state
examination scores.

Descriptives

Years Education MMSE

Mean 75.5 12.3 25.8

Standard deviation 5.36 3.89 1.47

Min 68 4 23.3

Max 84 18 28.0

photos and videos into a single interactive experience, using
the InstaVR software©. The result consists of an application
deliverable via smartphone that may be experienced using
a Cardboard, which allows the user to navigate within this
immersive 360◦ scenario. In particular, the application was
provided via an InstaVR link on the smartphone which was
inserted into the Cardboard to show the environment.

Procedure
For this study participants were examined in two sessions

at a maximum of 2 days apart. In the first session, the MMSE
was administered to quantify the general cognitive state of the
patients. The second phase of the study consisted of a usability
study employing cardboard (Daydream view©). Usability is a
key factor that needs to be evaluated when employing new
technologies. It can be defined as the degree to which a user
can utilize a given system to achieve specific goals effectively,
efficiently, and satisfactorily. Usability test allows the clinicians
to identify obstacles and facilitators, develop appropriate tasks
for the target, define the usability criteria and test its clinical
use (Tuena et al., 2020). During the usability session, all the
participants were sitting on a turning chair, to freely explore the
360◦ virtual environments using the cardboard.

User experience measures
In the present study, the usability has been assessed

using the System Usability Scale (SUS) (Brooke, 2020),
the Senior Technology Acceptance Model (STAM) (Chen
and Lou, 2020), the thinking aloud protocol (TAP) (Lewis,
1982), and the Independent Television Commission Sense of
Presence Inventory (ITC-SOPI) to assess the cybersickness
(Lessiter et al., 2001). The SUS (Brooke, 2020) is a “quick
and easy-to-use” questionnaire which includes ten items
describing the user’s feeling concerning the interaction
with the technology. For each of these answers, the
participants need to define their degree of agreement using
a 5-point Likert scale ranging from “Strongly Agree” to
“Strongly Disagree”. The final score ranges from 0 (lack
of usability) to 100 (optimal usability). The STAM is a
13-items questionnaire that analyzes four components of
the STAM: attitude through technologies, perception of
control, anxiety related to technologies, and general health

conditions (Chen and Lou, 2020). The TAP (Lewis, 1982)
is a qualitative technique that is generally administered to
test the usability of new technology. Subjects are asked to
express their opinion regarding the technology employment
and criticism while performing the task. The observer,
on the other hand, is asked to take notes of participants’
observations and concerns without attempting to interpret
their actions and words. All the verbalizations are transcribed
and analyzed to develop the formal usability report. The
ITC-SOPI (Lessiter et al., 2001) is a questionnaire that
includes 44 items addressing the individual’s feelings after
the VR experience. Participants are asked to determine
their degree of agreement with each of these sentences
using a 5-point Likert scale ranging from “Strongly Agree”
to “Strongly Disagree”. The ITC-SOPI includes four
subscales: Sense of Physical Space (19 items), Engagement
(13 items), Ecological Validity (5 items), and Negative
Effects (6 items).

ObReco-2
ObReco-2 is a 360◦ task aimed to assess visual memory

simulating a real-life situation in a daily setting. Users are
immersed in a virtual living room, in which they are required
to encode and then recall some target objects that have been
relocated, as described in Bruni et al. (2022). The virtual
interactive experience consists of a series of different phases:

(i) Familiarization. Patients who wear the headset find
themselves immersed in a natural 360◦ landscape; here
they have to explore the environment. The objective is to
make the patient familiar with the technology and to detect
possible side effects (i.e., cybersickness).

(ii) Encoding. On a black screen, the participants are first given
a brief explanation of the context: Marco, who is living
with other roommates, must move and he had to relocate
all of his possessions, thus he labels them with his name.
Participants experience a household setting, such as a living
room, in which they can with a first-person perspective
which is the one of the experimenter. This one moves
about the room highlighting the 15 target items for 3 s
each and attaching a tag bearing the name “Marco” to each
one Figure 1). In the living room, there are also 15 other
objects used as distractors. In this phase, participants are
instructed to name all the targets.

(iii) Interference. Participants are asked to take off their
headsets and complete non-verbal tasks15 for minutes.

(iv) Free recall. They are instructed to name as many objects
from the encoding phase as they can.

(v) Recognition. Participants had to wear the headset once
again for this last section. They are instructed to explore the
prior living room (Figure 2), discover and name the target
objects among all of the previous things and an unknown
set of 15 distractor objects.
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FIGURE 1

A screenshot showing the task presented during the encoding
phase. Here the experimenter is labeling a target object.

FIGURE 2

The panoramic photo of the room in which target objects are
mixed with distractors.

Data analysis

We organized all the data collected in a Windows
Excel sheet and we performed descriptive analyses of the
usability questionnaires investigating users’ experience with
technology.

Results

The descriptive user experience (UX) measures are shown in
Table 2.

Starting from quantitative data, the mean score of the SUS
is 69.3 (SD = 18.1). According to Bangor et al. (2009) this score
indicates that ObReco-2 is placed in a marginal zone between
Ok and a Good level of usability as shown in Figure 3.

The results of the STAM scale reveal that our sample
has a positive attitude toward technology (M = 6.10/10;
SD = 3.7), has good control/access to technological devices
(M = 7,13/10; SD = 1.98), has a medium level of technology-
related anxiety (M = 5.60/10; SD = 3.07), and considers
themselves in good health conditions (M = 8.58/10; SD = 1.8).
As shown by the ITC-SOPI sub-scale investigating negative
effects, all subjects reported minimal side effects (M = 1.87;
SD = 0.90) indicating that the use of ObReco-2 did not

determine dizziness and cybersickness. Qualitative results of
the thinking aloud protocol are shown in Table 3. It is
structured as follows: (i) description of the task (1st column),
(ii) problems encountered by patients (2nd column), (iii)
some possible solution for those problems (3rd column),
and (iv) number of patients that encountered problems (4th
column). Overall, patients did not encounter problems using
the cardboard. However, most patients reported difficulties
in the encoding exercise in which they were required to
explore the room following labels and naming Marco’s objects.
Five patients had difficulty in exploring the environment.
Four patients reported unclear images; one didn’t name all
the objects and four people had difficulty finding the initial
correct direction to follow the 360◦ video. Finally, one person
reported nausea.

Study 2 (usability study and clinical
efficacy)

Materials and methods

Participants
For this clinical efficacy and usability study, 20 patients

were enrolled at the Department of Medical Rehabilitation of
Istituto Auxologico Italiano in Milan. They were volunteers
aged over 55, with a normal or corrected-to-normal vision.
Exclusion criteria were (i) invalidating internist, psychiatric,
or neurological conditions which could affect the task; (ii)
cognitive impairments difficulties certifiable by a score at the
MMSE Italian version lower than 24 points (Measso et al.,
1993; Magni et al., 1996). Before the session, all participants
signed the informant consent. The study received ethical
approval from the Ethical Committee of the Istituto Auxologico
Italiano. The sample was composed by 12 females and 8
males, divided in experimental group (ObReco-2–VR) (Mean
age = 68.2 years, SD = 5.45, mean education = 12, SD = 4.45,
6 females) and control group (RBMT-III—paper and pencil)
(Mean age = 69.7 years, SD = 7.63, mean education = 14.6,
SD = 3.84, 6 females). All the subjects’ demographic data and
MMSE scores are reported in Table 4. The two groups are
comparable in age t(18) = 0.506, p = 0.619, in years of education
t(18) = 1.400, p = 0.179 and MMSE t(18) = 0.506, p = 0.619.

Materials
Improving VR experience, we implemented all the

previously collected files into a single interactive experience,
using Unity3D©. The result consists of an interactive
application deliverable through a head-mounted display
(HMD), which allows the user to navigate and interact within
the immersive 360◦ scenario. The application was downloaded
and installed directly on an Oculus Quest-2© HMD to be
used without any restrictions. Thanks to the most advanced
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TABLE 2 Descriptives of the user experience (UX) measures.

SUS STAM-a STAM-c STAM-anx STAM-h ITC-sp ITC-e ITC-ev ITC-ne

Mean 69.3/100 6.10/10 7.13/10 5.60/10 8.58/10 2.94/5 3.33/5 3.96/5 1.87/5

Standard deviation 18.1 3.07 1.98 3.07 1.80 1.03 0.73 0.94 0.90

Min 40.0 1.00 3.25 1.00 4.60 1.18 1.77 2.00 1.00

Max 100 9.33 10.0 10.0 11.2 4.25 4.31 4.80 3.83

For each measure there are mean and the maximum available score, standard deviation and minimum (min) and maximum (max) score reported by participants.
SUS, System Usability Scale; CSQ; STAM-a, attitude through technologies subscale; STAM-c, Senior Technology Acceptance Model perception of control subscale; STAM-anx, Senior
Technology Acceptance Model anxiety related to technologies subscale; STAM-h, Senior Technology Acceptance Mode health conditions subscale; ITC-sp, Independent Television
Commission Sense of Presence Inventory-Sense of Physical Space subscale; ITC-e, Engagement subscale; ITC-ev, Ecological Validity subscale; ITC-ne, Negative Effects subscale.

FIGURE 3

Graphical representation of the interpretation of system usability scale (SUS). The vertical line shows the position of the SUS mean score (69.3)
obtained in study 1 according to the rating comparison scale provided by Bangor et al. (2009).

functionalities, participants can have major interactivity with
the environment, without the continuous intervention of
the experimenter. In the first usability study, subjects were
limited in their interaction with the environment; different
links were provided to them, corresponding to the different
parts of the ObReco-2. Indeed, at the end of each task, the
experimenter required them to remove the Cardboard in order
to provide the next link. Here all tasks were provided in a
unique VR experience.

Procedure
The study involved randomized between-subject data

collection. Each participant performed two sessions, that lasted
about one hour, at a maximum of two days apart. In the first
session, a neuropsychological assessment was performed, then
participants were randomly assigned to different conditions: the
traditional paper and pencil tests (RBMT-III Italian Version)
and the experimental one (ObReco-2). During the 360◦ session
all the participants were sitting on a turning chair, to freely
explore the virtual environments using an Oculus Quest-
2© HMD.

Neuropsychological assessment
The neuropsychological evaluation included the MMSE, the

Frontal Assessment Battery (FAB) Italian Version (Appollonio
et al., 2005), the Babcock Story Recall Test (BSRT) Italian
Version (Spinnler and Tognoni, 1987), the Rey Auditory

Learning test (RAVLT) (Carlesimo et al., 1996), the Tower
of London (ToL) (Allamanno et al., 1987), Attentive matrices
(Spinnler and Tognoni, 1987), test exploring Constructive
Apraxia (Arrigoni and de Renzi, 1964), Trail Making Test
(TMT) (Amodio et al., 2002) and Raven’s progressive matrices
(Caffarra et al., 2003). Moreover, participants performed the
Picture Recognition sub-test included in the RBMT-III Italian
Version (Beschin and Urbano, 2013). The Picture Recognition
is a sub-test of the RBMT-III. It is divided into two parts: the
encoding and the recognition phases. During the encoding, the
patient is asked to see a set of 15 pictures representing common
animate and inanimate objects (e.g., a clock, a chicken) and
to recognize and name each one of them. In the recognition
phase, the participant is asked to observe a set of 30 pictures
including target items (i.e., the 15 pictures presented in the
Encoding Phase) and distractors (i.e., 15 pictures not included
in the Encoding Phase): for each of these, the patient is asked
to answer yes if the picture was presented previously or no
if it was not. During the Recognition task, several measures
are collected: the HR (the proportion of yes responses to old
items) the False Alarm Rate (the proportion of yes responses to
distractors), and the False Alarm Unknown (the proportion of
yes responses to unknown distractors) (Snodgrass and Corwin,
1988). The raw score obtained in the sub-test is the number of
pictures correctly recognized. Moreover, before the Recognition
Phase, we included a Free Recall task, in which the patient was
required to recall every object he/she could from those presented
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TABLE 3 Qualitative usability results of thinking aloud protocol.

Task Problem Solution N.S.

Use of cardboard

Wear cardboard None None –

Remove cardboard Sense of annoyance/sense
of falling after removing
the cardboard

Encourage the patient to
keep his/her eyes open to
avoid falling

1

Instructions

Listening None None –

Comprehension None None –

Familiarization

Listening None None –

Comprehension None None -

Execution Blurry image Improve the quality of VR
video

1

Encoding

Listening None None –

Comprehension None None –

Execution Difficulty to explore the
environment in an
appropriate order

Improve instructions’
clarity

5

Encourage to listen
carefully the instructions

Unclear image Improve the quality of
images

4

Name all the objects Improve instructions’
clarity

1

Difficulty to find the
initial object labeled

Improve the instructions 4

Nausea Provide slower execution
of the exercise

1

Recognition

Listening None None –

Comprehension None None –

Execution Dizziness Provide slower execution
of the exercise

1

Recognizes many
distractors caused by
blurry image

Improve the quality of
images

1

in the encoding phase. The raw score is defined by the number
of objects correctly reported.

Data analysis

All the analyses were performed using Jamovi Software
(The jamovi project, 2021). After having collected all the data
in a Windows Excel sheet, we computed different indexes
for both the RBMT-III and ObReco-2. In particular, for the
recognition tasks, we computed three different scores: the HR,
(the proportion of yes responses to targets), the False Alarm
Rate (the proporton of yes responses to distractors), and the
False Alarm “unknown” (the proportion of yes responses to
unknown distractors, i.e., objects that were not included in
the encoding phase). Then, we performed Mann–Whitney

U tests to compare the free recall and recognition scores
in both RBMT-III and 360◦ modalities, investigating the
statistically significant differences in the two performances. We
also performed correlation analyses to investigate relationships
between neuropsychological examinations and memory indices
from RBMT-III and ObReco-2. At last, we performed
descriptive analyses of the usability questionnaires and then we
compared (using Mann–Whitney U) usability scores of study
1, in which participants used cardboard, and study 2 where
otherwise they used an Oculus Quest-2.

Results

Usability
Starting from quantitative data, the mean score of the SUS

is 74 (SD = 14.7). According to Bangor et al. (2009) this score
indicates that ObReco-2 is placed in a Good Level of usability as
shown in Figure 4.

The results of the STAM scale reveal that our sample
has a positive attitude toward technology (M = 6.81/10/10;
SD = 2.98), has good control/access to technological devices
(M = 7.39/10; SD = 1.66), has a medium level of technology-
related anxiety (M = 6/10; SD = 2.81), and considers themselves
in good health conditions (M = 7.62/10; SD = 1.31). As shown
by the ITC-SOPI sub-scale investigating negative effects, all
subjects reported minimal side effects (M = 1.90; SD = 1.79)
indicating that the use of ObReco-2 did not determine dizziness
and cybersickness. The descriptive of UX measures are shown
in Table 5. Considering qualitative results of the Thinking
Aloud Protocol, a limited number of patients referred to
similar problems to those observed in the cardboard’s group:
they mentioned blurry images and difficulty to identify where
the labels are immediately when the task started. At last, we
compared the usability scores of study 1 (Cardboard) and study
2 (Oculus Quest-2). The results of the independent t-test reveal
non-statistically significant differences suggesting that both
cardboard and Oculus Quest-2 are easy-to-use technologies.

Clinical efficacy

The descriptives of the accuracy on free recall and
recognition tasks performances of two groups are presented
in Table 6. The results indicate that for the free recall tasks,
participants performed better after ObReco-2 than RBMT-III in
terms of the number of targets correctly recalled although the
difference is not statistically significant (U = 39.0, p = 0.416).
Concerning the recognition indexes, participants recognized
more objects after the standard presentation compared to
the 360◦ one, and the observed difference is statistically
significant (U = 21.5, p = 0.029). We also performed a statistical
analysis to investigate correlations between neuropsychological
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TABLE 4 Demographic data and mini-mental state examination scores.

Descriptives

Years_PP Education_PP MMSE_PP Years_VR Education_VR MMSE_VR

Mean 69.7 14.6 27.6 68.2 12.0 27.2

Standard deviation 7.63 3.84 1.79 5.45 4.45 1.74

Min 57 8 25.5 59 5 24.7

Max 81 18 30.0 75 18 30.0

PP, paper and pencil group; VR, virtual reality group.

FIGURE 4

Graphical representation of the interpretation of system usability scale (SUS). The vertical line shows the position of the SUS mean score (74)
obtained by the Oculus Quest according to the rating comparison scale provided by Bangor et al. (2009).

TABLE 5 Desciptives of the user experience (UX) measures of the study 2.

SUS STAM-a STAM-c STAM-anx STAM-h ITC-sp ITC-e ITC-ev ITC-ne

Mean 74/100 6.81/10 7.39/10 6/10 7.62/10 3.43/5 3.87/5 4.12/5 1.90/5

Standard deviation 14.73 2.98 1.66 2.81 1.32 0.86 0.78 0.71 1.79

Min 55.00 1.00 3.5 2.00 5.60 1.80 2.30 3.00 1.00

Max 90.00 10.00 9.50 10.00 9.20 4.60 4.80 5.00 6.80

For each measure there are mean and the maximum available score, standard deviation and minimum (min) and maximum (max) score reported by participants.
SUS, System Usability Scale; CSQ; STAM-a, attitude through technologies subscale; STAM-c, Senior Technology Acceptance Model perception of control subscale; STAM-anx, Senior
Technology Acceptance Model anxiety related to technologies subscale; STAM-h, Senior Technology Acceptance Mode health conditions subscale; ITC-sp, Independent Television
Commission Sense of Presence Inventory-Sense of Physical Space subscale; ITC-e, Engagement subscale; ITC-ev, Ecological Validity subscale; ITC-ne, Negative Effects subscale.

examinations and memory indices from RBMT and ObReco-
2. In the control group, results show a statistically significant
correlation between FAB and RBMT Recognition (HR)
(r = 0.687, p = 0.028). None of the other neuropsychological tests
correlates with RBMT. On the other hand, in the experimental
group ObReco-2 scores correlate with AM (r = 0.642, p = 0.045)
and delayed RAVLT (r = 0.645, p = 0.044).

Discussion

The ongoing scientific debate about the ecological validity
of classical assessment encourages the implementation of VR
in neuropsychological assessment (Chaytor and Schmitter-
Edgecombe, 2003; Parsons, 2015; Neguţ et al., 2016). Based
on this rationale, we aimed to design an assessment tool
that used naturalistic and life-like situations; we decided to

develop an application using 360◦contents which allow a
more ecological performance rather than computer-generated
VR (Serino and Repetto, 2018). The results are promising:
patients were satisfied with the application and they expressed
interest in trying a new assessment methodology. They were
fascinated by the exploration of a virtual environment, and they
reported enjoyment in performing exercises in this innovative
way. Furthermore, results revealed minimal negative effects
while wearing the cardboard. Only a small number of them
experienced dizziness or sickness as a possible collateral effect.
However, considering the experience with the cardboard, it
was limited: patients could not interact directly with the
environment due to technical restrictions. Every phase of the
task required the experimenter’s intervention and thus the
experience of the users was not continuative. To overcome these
limitations, we designed and ameliorated this task by employing
an advanced technology: the Oculus Quest-2. Results of the
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TABLE 6 The table shows the descriptives of the accuracy obtained by the participants in the free recall tasks (FR) and the correct objects identified
in the recognition task hit rate (HR) in the standard Rivermead Behavioural Memory Test (RBMT) and virtual reality (VR) (ObReco) conditions. The
last column indicates the false alarms (FAR) i.e., the yes responses to the wrong items.

Descriptives

RBMT_FR OBRECO_FR RBMT_HR OBRECO_HR OBRECO_FAR

Mean 5.30 6.20 11.1 9.20 1.30

Standard deviation 2.45 2.10 1.52 1.81 0.675

usability scales revealed that ObReco-2 is Acceptable and has
a Good Level of usability (Bangor et al., 2009). It means that
the product was judged “goodness” by users. Positive outcomes
came also from the results of the STAM scale (Chen and
Lou, 2020), confirming users’ acceptance and usage. It means
that the four key factors identified by the model, performance
expectation, effort expectation, anxiety related to technology, and
facilitating conditions (health condition) predict the intent to use
the proposed tool. Technology acceptance is the perception of
attitudes and behavioral intent to use technology, and it is a
major predictor of technology adoption and usage. In support
of this, the Negative Effects scale indicates minimal dizziness
and cybersickness. This result could be explained by the minimal
movement required in the VR environment and the limited
duration of the VR exposure (about 10 min). Nevertheless, some
technical problems were reported by the TAP (Lewis, 1982) in
both usability studies, possible solutions for the main described
issues could be improving the clarity of the instructions, adding
a more specific training phase, improving the quality of images,
and suggesting a slower execution of the exercise. Although the
two study groups were different and we couldn’t compare the
two devices, the UX measures of both, cardboard and Oculus, do
not seem to differ. On one hand, the lack of interactivity of the
cardboard could have been experienced as an advantage instead
of a limit for a sample of old people who don’t have proper
skills with technologies. In this way, cardboard may be managed
more simply and quickly. On the other hand, the experience
provided by the Oculus Quest-2 in terms of immersivity, sense
of presence, and engagement guarantee better immersive quality
and better VR experience which explain the high scores of
acceptability for this device.

A further purpose of this exploratory study was to test
the efficacy of 360◦ technology in neuropsychological memory
assessment. Considering previous results from literature (Serino
et al., 2017; Realdon et al., 2019) we expected to find some
correlations between memory performances in the standard
sub-test of the RBMT-III and the ObReco-2. The results
indicated that participants obtained higher scores on the free
recall tasks in the virtual conditions, showing a better trend
performance after the ObReco-2, although this difference is
not statistically significant. This trend could be explained by
other factors including engagement and interaction provided
by the VR experience. In fact, in agreement with previous

studies (Robertson et al., 2016; Makowski et al., 2017), a
higher level of immersivity and realism leads to better memory
encoding. The photorealism of 360◦ environments may have
elicited a visual memory encoding similar to that seen in
everyday life, resulting in the greater visual encoding of stimuli,
easier recall of items, and increased ecological validity of the
evaluation technique. Overall, these results are consistent with
those found by Pieri et al., which used a minor number of
target objects to be remembered (Pieri et al., 2021). For what
concerns the recognition performance, the pattern of results is
inverted: participants showed high levels of accuracy in both
conditions but performed significantly better in the RBMT-III
condition. These results could be explained by analyzing the
participants’ qualitative reports. They described difficulties in
recognizing objects during the encoding phase in the virtual
task, due to the low quality of the video. Future studies could
introduce a preliminary naming test to verify this condition.
Moreover, while in the RBMT-III participants had to encode
one object per time, in the virtual task all the target objects
were shown in the environment at the same time. This could
have prevented them to focus their attention singularly on
each object, although this condition is the most similar to
real-life situations. This complexity reflects the daily routine
in which ecological patterns require actively exploring the
space to discriminate the target items from the distractors.
This may have allowed a slightly more sensitive and ecological
assessment of recognition memory when compared to the
RBMT-III condition.

Limitation and conclusion

The present work is not exempt from limitations. First, the
sample is restricted in its size and representativity. We primarily
focused on the features of the technology, but further studies
must include a larger sample size with different demographic
characteristics. The second gap regards the technological
equipment, currently, the 360◦ devices market offers much
higher-quality omnidirectional cameras (e.g., Insta360 Pro 2©)
which can provide a higher-quality of images and a higher
ecological value to the obtained measures. Then, another
limitation refers to the difference between samples of study 1
and study 2 in terms of MMSE scores.

Frontiers in Aging Neuroscience 08 frontiersin.org

82

https://doi.org/10.3389/fnagi.2022.875748
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-875748 July 27, 2022 Time: 8:14 # 9

Bruni et al. 10.3389/fnagi.2022.875748

Even with its limitations, these findings show the feasibility
of 360◦-VR assessment, thus encouraging the implementation
of this technology in the development of ecological tests for
memory evaluation. Based on these assumptions, future studies
are needed to develop and validate standardized applications
for the assessment of different cognitive domains but also
different memories, for example, semantic or autobiographical.
Further works are also required to clarify which advantages and
disadvantages characterize VR, to improve the design of 360◦

experiences, and to investigate cognitive assessment using the
innovative proposed tool in different populations.
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While MRI contrast agents such as those based on Gadolinium are needed for

high-resolution mapping of brain metabolism, these contrast agents require

intravenous administration, and there are rising concerns over their safety

and invasiveness. Furthermore, non-contrast MRI scans are more commonly

performed than those with contrast agents and are readily available for

analysis in public databases such as the Alzheimer’s Disease Neuroimaging

Initiative (ADNI). In this article, we hypothesize that a deep learning model,

trained using quantitative steady-state contrast-enhanced structural MRI

datasets, in mice and humans, can generate contrast-equivalent information

from a single non-contrast MRI scan. The model was first trained, optimized,

and validated in mice, and was then transferred and adapted to humans.

We observe that the model can substitute for Gadolinium-based contrast

agents in approximating cerebral blood volume, a quantitative representation

of brain activity, at sub-millimeter granularity. Furthermore, we validate the

use of our deep-learned prediction maps to identify functional abnormalities

in the aging brain using locally obtained MRI scans, and in the brain of

patients with Alzheimer’s disease using publicly available MRI scans from ADNI.
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Since it is derived froma commonly-acquiredMRI protocol, this framework has

the potential for broad clinical utility and can also be applied retrospectively to

research scans across a host of neurological/functional diseases.

KEYWORDS

aging, CBV, deep-learning, gadolinium, MRI, Alzheimer’s disease

Introduction

Gadolinium-based contrast agents (GBCAs) are

intravenously administered with Magnetic Resonance

Imaging (MRI), and they are most widely known for their

utility in mapping, enhancing, and detecting structural brain

lesions such as those found in cancer, infections, or bleeding

(Borges et al., 2012; Lohrke et al., 2016; Shen and Duong, 2016).

Another utility of GBCAs, far less popular until recent years,

is to identify functional abnormalities, such as those that alter

brain metabolism in aging, neuropsychiatric disorders, and

neurodegenerative diseases (Belliveau, 1991; Lewandowski et al.,

2013; Schobel et al., 2013; Khan et al., 2014). For these functional

lesions, GBCAs can be used to generate high-resolution cerebral

blood volume (CBV) maps, thereby deriving a quantitative

correlate of metabolic dysfunction that is otherwise invisible to

MRI without contrast.

However, recent studies have begun to call the safety of

GBCAs into question (Quattrocchi and van der Molen, 2017;

Ramalho et al., 2017; Guo et al., 2018; Dillman and Davenport,

2020). GBCAs contain gadolinium, a heavy metal, and are

injected into a vein to improve the visualization of internal

organs, blood vessels, and tissues during an MRI. After being

administered, GBCAs are mostly cleared out from the body

through the kidneys. However, trace amounts of gadolinium

may stay in patients’ bodies, including the brain, for months

to years after receiving GBCAs. GBCAs may also increase the

risk of nephrogenic systemic fibrosis, a rare but serious disease,

in people with severe kidney failure. Even if these concerns are

addressed, GBCA administration requires intravenous access,

a requirement that places risks on patients and healthcare

practitioners, as well as limiting its application in cases when

contraindicated (Guo et al., 2018). Thus, there is a need to find

a “GBCA substitute”, one that can generate GBCA-equivalent

information from a non-contrast MRI scan.

Apart from other alternatives, one solution may lie in

the non-contrast MRI scans themselves. The main purpose of

GBCAs is to selectively highlight signals from the blood so that

the blood vessels can visually stand out from the surrounding

brain tissues. However, though not visually apparent, such

blood-tissue contrast is also present even in non-contrast MRI

scans. The underlying reason comes from magnetic resonance

physics. The intensity of a voxel in a non-contrast MRI scan

is determined by the physical properties, namely the proton

density (PD), the T1-, T2-, and T2*- relaxation time constants,

of the corresponding material within that voxel. Importantly,

blood and different brain tissues have distinct T1 relaxation time

constants. At 3 Tesla, the average T1 relaxation time constants

of the white matter, the gray matter, and the blood are 866.9,

1433.2, and 1984.4 ms, respectively (Hasgall et al., 2022). In

addition, a previous study has shown that some dark structures,

identified mainly as vessels, are frequently misclassified as the

cerebrospinal fluid (CSF) in T2/PD MRI (Dugas-Phocion et al.,

2004) and further demonstrated that ignoring vessel contrast

when handling partial volume effect can also lead to an over-

estimation of the CSF variance in the intensity space. Other

studies have also shown that vessels appear darker than brain

tissues on T2*-weighted gradient echo magnetic resonance

(GRE) images due to shorter T2* relaxation (Small et al.,

2000), and this contrast between blood vessels and brain tissues

has been named the susceptibility vessel sign (SVS) (Flacke

et al., 2000; Rovira et al., 2004). Hence, non-contrast MRI

scans are theoretically able to yield patterns of voxel intensities

to distinguish blood vessels from surrounding tissues, though

such differences are too subtle to reliably detect and quantify

with previous analytical or qualitative methods. Nevertheless,

according to magnetic resonance physics, at least a fraction of

the GBCA-contrast information due to blood vessels is present

and partially encoded, in non-contrast structural MRI scans

through a non-linear function.

Deep learning, a subset of machine learning, is an established

method for approximating non-linear functions using a data-

driven approach. A deep learning model should, therefore,

be able to learn how to optimally extract key features at

a voxel level, by inspecting MRI scans where GBCAs were

administered along with their non-contrast counterparts. As

such, a growing number of recent studies have begun validating

this assumption (Kleesiek et al., 2019; Liu et al., 2019; Li

et al., 2021). Among these, one study managed to use deep

learning to reduce the GBCA dose (Gong et al., 2018), but

not to completely substitute for it. Other studies succeeded in

obviating the need for GBCA (Kleesiek et al., 2019; Liu et al.,

2019; Li et al., 2021) but these deep learning models require

the acquisition of an array of multiple MRI sequences, some

of which are not widely or clinically available. Among these

studies that succeeded in obviating the need for GBCA, more
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modern deep learning-based methods are especially well suited

for this task and demonstrated favorable performance: for the

BayesUNet method (Kleesiek et al., 2019) with a comprehensive

multiparametric MRI protocol including pre-contrast T1-

weighted, T2-weighted, T2-weighted fluid-attenuated inversion

recovery (FLAIR), diffusion-weighted imaging (DWI) and

susceptibility-weighted imaging (SWI) sequences as the input

for predicting synthetic post-contrast T1-weighted sequence,

analysis of the whole brain showed a peak signal-to-noise ratio

(PSNR) of 22.967 ± 1.162 and a structural similarity index

(SSIM) of 0.872 ± 0.031; for the CGAN method (Preetha et al.,

2021) with pre-contrast T1-weighted, T2-weighted and FLAIR

sequences as the input, the model reached a median SSIM of

0.818 (95% CI 0.817 - 0.820); and the MMgSN-Net method (Li

et al., 2021) with pre-contrast T1-weighted and T2-weighted

sequences as the input achieved top-ranked scores in averaged

PSNR of 33.17± 2.14 and SSIM of 0.887± 0.042.

With these issues in mind, we hypothesized that a deep

learning model could extract GBCA-equivalent information

from a single and commonly-acquired high-resolution MRI

scan, by training and optimizing the model using a large and

unique GBCA MRI dataset. Previous deep learning studies

relied on GBCA datasets generated for radiological purposes,

where post-GBCA scans are, by necessity, re-scaled in order to

facilitate a radiologist’s ability to detect and characterize brain

abnormalities. Such re-scaling operations are performed in a

case-by-case manner without a universal scaling factor, thus

increasing the intersubject variability across a dataset.

Through our previous study in mapping functional brain

lesions that localize to specific regions of the hippocampal

formation, we have extensively used GBCAs to generate

quantitative, high-resolution CBV maps (Small et al., 2011;

Pavlopoulos et al., 2013; Schobel et al., 2013; Brickman et al.,

2014; Khan et al., 2014; Provenzano et al., 2020). By design,

these quantitative maps preserve scaling with respect to the

post-GBCA image. While not the original intent, we have

accrued a large-scale dataset with reduced inter and intrasubject

variability, which we predicted would benefit the training

of our model. In parallel to generating a large-scale and

quantitative GBCAdataset in humans, we have also accumulated

a similar MRI dataset in mice (Moreno et al., 2006; Khan

et al., 2014). Again, the original intent was to validate patterns

of hippocampal dysfunction observed across disease states;

however, because these animal study subjects were siblings with

identical genetic backgrounds, this dataset is likely to contain

less variability than possible in humans.

In this study, we exploited this distinct cross-species and

quantitative GBCA dataset. Beginning with mice to prove

the concept, we first designed, optimized, and trained a deep

learning model to synthesize GBCA enhancement in the mouse

brain from the T2-weighted structural MRI. We further adapted

the proposed deep learning model to the human dataset and

validated that it can also indicate GBCA enhancement in the

human brain from the T1-weighted MRI. The deep learning

model will be referred to herein as “DeepContrast”. We then

utilized this DeepContrast technique to study brain aging

and Alzheimer’s disease, applying it to both in-house datasets

from an aging study, as well as to the publicly available ADNI

dataset from Alzheimer’s patients and age-matched controls.

The studies conducted are outlined in Figure 1. Our results

demonstrate that trained deep learning contrast enhancement

models can successfully identify and localize brain functional

changes that occur through aging and Alzheimer’s disease

previously only identifiable with GBCA methods.

Materials and methods

As an overview, we conducted 4 sets of studies, as

summarized in Figure 1: Healthy Mouse, Healthy Human,

Human Aging, and Human AD. In the first two studies,

we qualitatively and quantitatively assessed the ability of

our proposed DeepContrast model to predict the GBCA

enhancement in healthy mice and human brains. In the latter

two, we first conducted pilot studies to validate whether

the DeepContrast-synthesized CBV maps exhibited the same

patterns observed from real CBV data in prior research. Then

we performed utility studies to demonstrate the potential use

cases. Due to the inherent differences between the Aging and

AD studies (presence vs. absence of ground truth, continuous

vs. categorical, etc.), the utility studies were designed differently.

In this section, we will describe the data source, data

preparation, and detailed analyses performed.

Animal subjects and human participants

Healthy mouse

We used 49 healthy adult C576J/BL male mice (12–14

months old).

Healthy human

We aggregated the healthy human MRI data from previous

acquisitions at Columbia University. As we mentioned in the

Introduction section, these scans were originally acquired for

the purposes of mapping functional lesions. This included 598

participants (16–94 years old) with single acquisitions and

another 11 participants with baseline and follow-up acquisitions

14 days apart.

Human aging

For both the pilot and utility studies, we used scans

from 177 participants (20–72 years old) that were cognitively
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FIGURE 1

Overview of the studies conducted. We first performed proof-of-concept studies in mice to validate our hypothesis that deep learning can

extract information equivalent to Gadolinium-based contrast agent (GBCA) contrast enhancement from a single-modal non-contrast MRI scan,

and then conducted extensive analyses in humans to scrutinize the capability of this proposed approach. Study: A study conducted; Aim: The

purpose of the study; Source: where the imaging data come from; MRI: modality/type of data used in the study; Model: specific DeepContrast

model used in the study. AD: Alzheimer’s disease; ADNI: Alzheimer’s Disease Neuroimaging Initiative dataset; CBV: cerebral blood volume;

Gd-Uptake: GBCA contrast uptake maps; T2W: T2-weighted scans; T2W-CE: T2-weighted contrast-enhanced scans; T1W: T1-weighted scans;

T1W-CE: T1-weighted contrast-enhanced scans.

normal. These 177 participants were a subset of the 598 healthy

participants. The selection criteria will be described in the

following ‘Preprocessing and partitioning’ section.

Human AD

For the pilot study, we selected 50 cognitively normal (CN)

and 50 Alzheimer’s disease (AD) participants, each with two

back-to-back repeated scans from ADNI (Mueller et al., 2005),

resulting in a 100-participant (60–90 years old) dataset. For

the utility study, we prepared a larger, 2,580-participant (50–

100 years old) dataset from ADNI, with 1290 CN and 1290

AD participants.

Image acquisition protocols

Healthy mouse

We used CBV-fMRI to image male Wildtype (WT) mice

used in the healthy mouse study, with the imaging protocol

as previously described (Moreno et al., 2006). A Bruker

BioSpec 94/30 (field strength, 9.4 T; bore size, 30 cm) horizontal

small animal MRI scanner equipped with CryoProbe and

software ParaVision 6.0.1 (Bruker BioSpin, Billerica, MA, USA)

and a 23-mm 1H circularly polarized transmit/receive capable

mouse head volume coil were used for the imaging. Mice were

anesthetized using medical air and isoflurane (3% volume for

induction, 1.1–1.5% for maintenance at 1 liter/min air flow,

via a nose cone). A flowing water heating pad was used to

maintain the body temperature at around 37◦C. Sterile eye

lubricant was applied before each scan. T2-weighted images

were acquired before and 36 min after intraperitoneal injections

of the GBCA-based contrast agent Gadodiamide (Omniscan; GE

Healthcare, Princeton, NJ, USA) at the dosage of 10 mmol/kg.

T2-weighted images were acquired with Refocused Echoes

(RARE) sequence (repetition time (TR) = 3,500 ms, effective

echo time (TE) = 45 ms, rapid acquisition and relaxation

enhancement (RARE) factor = 8, voxel size = 450×76×76 µm).

Healthy human

The images were acquired under a steady-state CBV-

fMRI protocol as previously described (Khan et al.,

2014). A gradient echo T1-weighted scan (TR = 6.7 ms,

TE = 3.1 ms, field of view (FOV) = 240×240×192 mm,

voxel size = 0.9×0.9×0.9 mm) was acquired before a pair

of un-scaled T1-weighted images (TR = 7 ms, TE = 3 ms,

FOV = 240×240×196 mm, voxel size = 0.68×0.68×3 mm),

all using a Philips Achieva 3.0-T MRI scanner. The image

resolution used results from a systematic exploration of the scan
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protocol’s parameters. Scans were acquired before and after a

bolus injection of a GBCA-based contrast agent (Omniscan, GE

Healthcare).

Human aging

The data used in the Human Aging study was a subset of the

Healthy Human study, and hence the protocols were identical.

Human AD

The images included in our studies were acquired

using a 3D magnetization prepared rapid gradient echo

(MP-RAGE) protocol, yielding near-isotropic images (voxel

size ≈ 1×1×1 mm). More details can be found in the official

documentation of ADNI (Mueller et al., 2005).

Preprocessing and partitioning

Healthy mouse

In total, 49 WT mice were used in this study. Whole brain

T2W MRI scans before (T2W) and 35 mins after (T2W-CE)

intraperitoneal injection of Gadodiamide were acquired. The

Gd-Uptake ground truth was quantified with the standardized

delta-R2, which was derived using the samemethod as discussed

before (Moreno et al., 2006), followed by standardization to the

dynamic range of [0, 1]. We used 3D PCNN (Chou et al., 2011)

with the manual correction to generate brain masks, which we

used as training fields over which the model was optimized

and performancemetrics were calculated. A train-validation-test

ratio of 8:1:1 was applied in the Healthy Mouse Model training.

Healthy human

T1-weighted MRI scans were acquired using the protocols

as described previously (Brickman et al., 2014; Provenzano

et al., 2020), before (T1W) and 4 min after (T1W-CE) a

bolus intravenous injection of Gadodiamide. Unlike many other

similar studies, during the MRI acquisition for the same session,

the receiver gain was intentionally kept constant and the offset

was set to zero. As a result, the T1W and T1W-CE scans

shared the same scaling and zero shifting, and hence the same

voxel intensity between each T1W/T1W-CE pair corresponds

to the same relaxation-time property in the magnetic resonance

physics context. Each T1W and T1W-CE pair was spatially

aligned when provided. For intensity normalization, each T1W

scan was compressed to the dynamic range of [0, 1], and

the corresponding T1W-CE scan was scaled by the same

factor to preserve the voxel intensity correspondence. The Gd-

Uptake ground truth was quantified with the steady-state MRI

method (Brickman et al., 2014), by subtracting the normalized

T1W scans from the respective T1W-CE scans. We generated

brain masks using the BET function in FMRIB Software Library

(FSL) (Jenkinson et al., 2012), which we used as training

fields over which the model was optimized and performance

metrics were calculated. We generated tissue label maps using

the FAST function in FSL for tissue-of-interest analyses. The

train-validation-test split yielded 326 for training, and 93 for

validation, while 179 participants were left for the test set.

Human aging

The 177-participant cohort used for the aging study was

a subset of the 179 participants in the test set of the Healthy

Human Model, where 2 participants were dropped due to low

segmentation quality as defined through a failure of processing

the FreeSurfer (v6.0.0) Parcellation. After normalization to the

dynamic range of [0, 1], the T1W scans were directly treated

as inputs to the model to generate the Gd-Predicted maps.

Synthesized CBV maps were then generated by applying the

same normalization method on the Gd-Predicted maps as we

would quantify CBV maps.

Human AD

For the large-scale utility study, we screened T1W MRI

scans and excluded all scans except for 3 Tesla MP-RAGE

acquisitions (Supplementary Figure S4b top left). After that,

we further performed propensity score matching (PSM) to

match the age distribution and eventually resulted in a dataset

with 1,290 scans of patients with AD and 1,290 scans of

age-matched CN volunteers (Supplementary Figure S4b bottom

left). A major challenge was that the appearance and anatomy

of the scans used in the AD study notably differ from those

used to train the DeepContrast Healthy Human Model. They

were acquired under the same field strength (i.e., 3 Tesla),

but specific scan parameters such as echo time and repetition

time are different between the ADNI protocol and the CBV-

fMRI protocol. Additionally, the participants in the AD study

are generally older (60–90 years old) and half of them harbor

Alzheimer’s pathology, thus resulting in a potential mismatch

in anatomy. We approached these issues by applying (1) affine

registration for T1W MRI data and (2) rigid registration to the

unbiased MNI152 template on the raw whole brain data and

then (3) minimizing the between-cohort appearance difference

using a dynamic histogram warping (DHW) algorithm (Cox

et al., 1995) as it was demonstrated to be among the best intensity

matching methods in medical imaging (Wagenknecht et al.,

2000). Specifically, we calculated the mean normalized-brain-

region 2048-bin histogram of each cohort derived a bin-to-bin

mapping between the cohorts and applied the mapping to each

individual scan in the AD study. In step (4), we minimized

the anatomical difference by diffeomorphic registration using

the Symmetric Normalization (SyN) algorithm (Avants et al.,

2009) prior to applying the DeepContrast model. Finally, we
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normalized the scans to the dynamic range of [0, 1] and

provided them to the model to generate the Gd-Predicted maps.

Synthesized CBV maps were then generated by applying the

same normalization method as we would quantify synthesized

CBV maps and up-sampled to a voxel size of 1×1×1 mm. The

data pre-processing is illustrated in Supplementary Figure S4a.

The prepared cohort with a total of 2580 T1W scans and

2580 synthesized CBV scans, were randomly assigned to train,

validation, and test sets at an 8:1:1 ratio. Randomization was

performed on the participant level to prevent data leakage. AD

and CN participants were independently randomized to balance

the presence of both classes in each set. The data distribution was

summarized in the right half of the Supplementary Figure S4b.

For the pilot study, we used a subset containing 50 AD

and 50 CN participants each with two back-to-back repeated

scans. Compared to the large-scale utility study, the sample size

was reduced to accommodate the voxel-based data analysis tool

(SPM12) used in the pilot study. Data processing was the same

as above.

DeepContrast model implementation

All model variants developed in our studies, as mentioned

in Figure 1, shared the common residual attention U-Net (RAU-

Net) architecture (Figure 2).Model inputs were the non-contrast

MRI scans, while the outputs were the corresponding predicted

GBCA contrast (Gd-Predicted). The inputs and outputs were

2D slices of equal dimension since the MRI scans were acquired

under 2D protocols. The slice direction was defined as the axis

with the lowest spatial resolution, which was axial for Healthy

Mouse scans and coronal for Healthy Human scans.

The RAU-Net is an extension of the arguably most

popular deep learning architecture in medical imaging, the U-

Net (Ronneberger et al., 2015), with the addition of residual

blocks (He et al., 2016) and the attention gates (Vaswani et al.,

2017; Oktay et al., 2018). As an example of a convolutional

neural network (CNN), the U-Net extracts imaging features by

utilizing local convolutions along the entire image or volume.

The U-Net consists of multiple encoding layers across which

the image dimension shrinks whereas the feature dimension

increases so that compact high-level abstractions are generated

along the process, and the same number of decoding layers to

decipher these abstractions into image space information. The

add-on residual blocks simplify the entities to be approximated

across each layer and, therefore, enables training of deeper

networks, while the attention gates learn to differentially

enhance or suppress specific regions in the feature maps

so that the downstream outcomes are better represented for

targeting objective.

Specifically, the encoding and decoding paths consist of

the same number of residual convolution blocks that utilize

concatenation, attention mechanisms, and skip connections

such that layers feed not only into the next layer but into the

layer after the next layer. On the encoding path, each residual

block is followed by amax-pooling layer, and the last featuremap

feeds into a bottleneck layer with 3×3 convolution and batch

normalization, connecting the deepest layer to the decoding path

with several more blocks alternating one un-pooling layer and

one residual block. Skip connections concatenate the output of

each dense layer in the encoding path with the respective un-

pooled feature map of the same size before feeding it as input

to the decoding residual block. The output of the last decoding

layer is the input for a 1×1 convolution layer that produces the

final Gd-Predicted map.

Healthy mouse model

Themodel (Supplementary Figure S1) used inmouse studies

was a 2D RAU-Net that consisted of 5 encoding and decoding

layers. The model input was a 2D axial slice of the mouse brain

scans. Adam optimizer with a learning rate of 0.001 was used in

this study. Our batch size was 3 and the loss function was mean

squared error (MSE).

Healthy human model

The model (Supplementary Figure S2) used in the healthy

human study and further applied to the Aging and AD studies

was a 2D RAU-Net that consisted of 6 encoding and decoding

layers. The model input was a 2D coronal slice of the human

brain scans. SGD optimizer with an adaptive learning rate

handle with a 0.1 initial learning rate was used in this study. Our

batch size was 4 and a robust adaptive loss function (Barron,

2019) was utilized. The robust adaptive loss function is

a generalization of the Cauchy/Lorentzian, Geman-McClure,

Welsch/Leclerc, generalized Charbonnier, Charbonnier/pseudo-

Huber/L1-L2, and L2 loss functions. By introducing robustness

as a continuous parameter, the robust adaptive loss function

allows algorithms built around robust loss minimization to

be generalized, which improves performance on basic vision

tasks like calculating the intensity mapping function in

our case.

Statistical methods

Healthy mouse and healthy human

Prediction vs. ground truth similarity assessment

Peak signal-to-noise ratio (PSNR), structural similarity

index (SSIM) (Wang et al., 2004), Pearson correlation

coefficient (P.R), and Spearman correlation coefficient (SR)

were used to quantify the performance of all the DeepContrast

models. PSNR, Pearson correlation coefficient, and Spearman

correlation coefficient were evaluated within the brains or
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FIGURE 2

Training strategies of the various DeepContrast models implemented. (A) This training strategy applied to the Healthy Mouse Model.

Preprocessing includes intensity normalization and brain extraction. Ground truth Gd-Uptake was derived using the standardized delta-R2

equation. Note that there is an additional standardization step that maps the dynamic range of the standardized delta-R2 to the range of [0, 1],

before the application of the brain mask. The loss function was calculated between the Gd-Uptake and the predicted version only using the

voxels within the brain mask region. (B) This training strategy applied to the Healthy Human Model. Preprocessing included intensity

normalization and brain extraction. Ground truth Gd-Uptake was derived using the steady-state delta-R1 equation. The loss function was

calculated between the Gd-Uptake and the predicted version only using the voxels within the brain mask region.

subregions, and SSIM was calculated in the minimum bounding

box around the brains or subregions.

Human aging

Pilot study part 1: Voxel-based analysis on the

hippocampal circuit

Voxel-based analysis (Figures 4B,C) was performed by first

transforming the non-contrast images using a diffeomorphic

registration algorithm (Avants et al., 2009) with nearest-

neighbor interpolation to an unbiased brain template created

from the 177 scans in the Aging study (Avants et al., 2009).

The GBCA-predicted maps were generated by the Healthy

Human model using the native-space non-contrast T1W

scans as the input and were subsequently used to generate

synthesized CBV maps by normalization using the mean

value among the top 10% brightest voxels within the brain

region (representing signal intensity from pure blood). These

synthesized CBV maps were then transformed into the template

using the same transformation parameters calculated from

the registration process and subsequently smoothed using a

3 mm-diameter spherical kernel. Transformed and filtered

synthesized CBV maps were analyzed using SPM12 (Ashburner

et al., 2014). Data were analyzed with a multiple regression

model, including sex as a covariate and age as the regressor.

Age-related differences were contrasted using Student’s t-test.

FreeSurfer regional segmentation was then performed on the

unbiased template image, and the hippocampal formation

mask is generated by binarizing and combining the labels

corresponding to the hippocampus and entorhinal cortex. The

age-related regression t-map was then projected onto the MNI-

152 brain template using diffeomorphic transformation with

nearest-neighbor interpolation. The result was thresholded at

p < 0.005 and corrected for multiple comparisons at the

cluster level within the hippocampal formation using a Monte-

Carlo simulation implemented in AFNI-3dClustSim (Forman

et al., 1995; Cox, 1996; Cox et al., 2017) (10,000 iterations)

to yield a corrected p < 0.05. The final corrected age-related

regression t-map was then overlaid onto the MNI-152 template

in cross-section using 3DSlicer (Fedorov et al., 2012) and also

displayed with composite-with-shading volume rendering over

semi-transparent models of the hippocampal formation.

Pilot study part 2: Region of interest analysis on

aging-related dentate gyrus region

The 177 native-space synthesized CBV scans were used to

conduct the dentate gyrus (DG) region of interest (ROI) analysis.

Multiple linear regression with sex as a covariate and age as the

regressor was conducted over the bilateral DG, as defined by

FreeSurfer parcellation. A scatter plot was drawn (Figure 4D)

with each point representing the DG-mean synthesized CBV

value after the removal of the sex effect for one participant.

Utility study: Synthesized CBV maps aging e�ects over

the entire cortex

The GBCA-predicted maps were generated in the native

space of each participant and were afterward used for CBV

quantification together with the experimentally acquired ground

truth GBCA-uptake maps using the same whole brain top

10% mean normalization. Similarly, the T1W scans were

normalized to generate a comparable counterpart. We used

T1W scans for comparison because they were the only input

to the DeepContrast model to generate GBCA-predicted maps.

The CBV (quantified from Gd-Uptake), synthesized CBV
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FIGURE 3

Quantitative evaluation of the DeepContrast in the healthy mouse and human brains. (A) DeepContrast prediction (Gd-Predicted) highly

concords with the ground truth GBCA-uptake map (Gd-Uptake) in the mouse brain. The non-contrast scans and the contrast-enhanced scans

are displayed for reference. Color bars indicate the colormap and dynamic range used in the cross-sectional brain images. (B) The similarity

between the model prediction and the ground truth, evaluated on all 6 scans in the test set using quantitative metrics, where the

non-contrast (T2W) scans are used as the performance baseline. (C) DeepContrast prediction (Gd-Predicted) highly concords with the ground

truth GBCA-uptake map (Gd-Uptake) in the cognitive normal human brain. Color bars indicate the colormap and dynamic range used in the

cross-sectional brain images. (D) The similarity between the model prediction and the ground truth, evaluated on 179 scans of cognitively

normal (CN) participants using quantitative metrics, where non-contrast (T1W) scans are used as the performance baseline. (E) DeepContrast

shows higher test-retest reliability than the experimentally acquired Gd-Uptake ground truth. For all voxel-based metrics, only the voxels within

the brains or subregions are used. SSIM is calculated on the minimum bounding box of the brains or subregions. Asterisks indicate level of

statistical significance (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001). PSNR: peak signal-to-noise ratio; SSIM, structural similarity index;

P. R, Pearson correlation coe�cient; S.R, Spearman correlation coe�cient.

(quantified from Gd-Predicted), and normalized T1W scans

were used for age-related regression in the multiple brain

regions. Multiple linear regressions with sex as a covariate

and age as the regressor were conducted using the mean

CBV/synthesized CBV/T1W values extracted from the region

across 177 participants, over selected regions (Figure 5) and

overall 72 cortical ROIs (Figure 6). The ROIs were parcellated

by FreeSurfer over the T1W scans in the native space in order to

minimize segmentation errors.

For the ROC analysis, each ROC figure contained 1,000

individual ROC curves. The average ROC was shown as a

solid black curve while the SD was shown as the shaded area.

All these individual ROC curves were computed using one

pair of ground truth (CBV) t-score maps and a prediction

candidate (synthesized CBV or non-contrast T1W) t-score

map. Both the ground truth t-score map and the prediction

candidate t-score map were binarized into 2 classes at 1,000

different binarization thresholds evenly distributed between the

minimum and the maximum value, yielding 1,000 versions for

each. Each individual ROC curve was derived using the regular

ROC computation method as described above with one of the

1,000 versions of the ground truth and all 1,000 versions of the

prediction candidate. The ROC analysis was performed using

Scikit-learn (Pedregosa et al., 2011).
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FIGURE 4

DeepContrast maps di�erential anatomical patterns of dysfunction in the hippocampal formation. (A) A three-dimensional rendering of the

bilateral hippocampal formation (left panel) consisting of the hippocampus (HC) and the entorhinal cortex (EC) and axial, sagittal, and coronal

slices from a group-wise T1-weighted MRI template cutting through the hippocampal formation (right three panels). The hippocampal

formation is displayed along the anterior-to-posterior axis. (B) A voxel-based analysis of the synthesized CBV maps of 177 individuals ranging

from 20 to 72 years of age reveals that the greatest age-related decline occurred in the body of the hippocampal circuit (color-coded by the

degree of significance). (C) A coronal slice, onto which the hippocampal formation mask is applied, reveals that age-related decline primarily

localizes to the dentate gyrus. The voxel-based analysis is conducted using a multiple regression model in SPM12 using sex as a covariate and

age as the regressor, and the age-related di�erences are contrasted using Student’s t test. Multiple comparisons are corrected for, yielding

voxel-wise p < 0.005 and cluster-wise p < 0.05 (refer to methods). (D) A scatter plot shows the association between age and mean synthesized

CBV values in the dentate gyrus after the removal of gender e�ects (βage = −6.36e-4, tage = −4.64, page = 6.85e-6). The shaded area surrounding

the regression line indicates the 95% CI. (E) A voxel-based analysis of the synthesized CBV maps of 50 Alzheimer’s disease (AD) patients

compared with 50 age-matched normal controls, each with two back-to-back scans, reveals AD-related reduction in the entorhinal

cortex (color-coded by the degree of significance). (F) A coronal slice, onto which the hippocampal formation mask is applied, reveals that

AD-related decline localizes primarily to the transentorhinal cortex. The voxel-based analysis is conducted using a multiple regression model in

SPM12 using age, sex, and participant identity as covariates and diagnostic class (i.e., cognitive normal vs. dementia) as the regressor and the

AD-related di�erence are contrasted using Student’s t-test. Multiple comparisons are corrected for, yielding voxel-wise p < 0.005 and

cluster-wise p < 0.05 (refer to methods). (G) A box plot showing individual-participant mean synthesized CBV values in the right transentorhinal

cortex indicates a significant di�erence between patients with Alzheimer’s disease and healthy controls (two sample t-test one-tailed p = 0.031).

Center line: median; box limits: upper and lower quartiles; whiskers: 1.5× interquartile range; points: outliers. HC: hippocampus; EC: entorhinal

cortex; DG: dentate gyrus; CA3: cornu Ammonis 3; CA1: cornu Ammonis 1; Sub: subiculum; Prs: presubiculum; PaS: parasubiculum.

Frontiers in AgingNeuroscience 09 frontiersin.org

93

https://doi.org/10.3389/fnagi.2022.923673
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnagi.2022.923673

FIGURE 5

DeepContrast maps age-related changes in brain regions vulnerable and resistant to aging. (A) A three-dimensional rendering of the inferior

frontal gyrus (IFG), dentate gyrus (DG) and entorhinal cortex (EC) overlaid on a group-wise T1-weighted MRI template. (B) The age-related

regressions of CBV maps over these regions demonstrate the aging-vulnerability of IFG and DG and the aging-resistance of EC. (C) The

age-related regressions of synthesized CBV maps over the same regions demonstrated the same vulnerability or resistance to aging. (D) The

scatter plots of the ROI-mean CBV vs. synthesized CBV values of the 177 participants further show the consistency of the two measures.

Human AD

Pilot study part 1: Voxel-based analysis on the

hippocampal circuit

Voxel-based analysis (Figures 4E,F) was performed by first

transforming the non-contrast images using a diffeomorphic

registration algorithm (Avants et al., 2009) with nearest-

neighbor interpolation to an unbiased brain template created

from the 200 scans (i.e., 50 AD and 50 CN participants each

with 2 back-to-back repeated scans) in the pilot study. We then

ran these non-contrast scans through the DeepContrast Healthy

Human Model to generate synthesized CBV maps, which were

subsequently smoothed using a 3 mm-diameter spherical kernel.

Unlike in the aging study, the application of DeepContrast

was performed after the registration process to help eliminate

major anatomical variances, since the deformations present

in the diseased population were not previously observed

by the model trained on healthy data. GBCA-predicted

scans, the direct output of the model, were used to quantify

synthesized CBV maps using the same method as described in

the Aging study above. These synthesized CBV maps, already

co-registered upon creation, were analyzed using SPM12. Data

were analyzed with a multiple regression model, including

age and sex as covariates and diagnostic class (i.e., cognitive

normal vs. dementia) as the regressor. AD-related differences

were contrasted using Student’s t-test. FreeSurfer regional

segmentation was then performed on the unbiased template

image, and the hippocampal formation mask was generated

by binarizing and combining the labels corresponding to the

hippocampus and the entorhinal cortex, while an extended

hippocampal formation mask was additionally generated to

also include the parahippocampal cortex. The AD-related

regression t-map was then projected onto the MNI-152

brain template using diffeomorphic transformation with

nearest-neighbor interpolation. The result was thresholded

at p < 0.005 and corrected for multiple comparisons at the

cluster level within the extended hippocampal formation

using a Monte-Carlo simulation implemented in AFNI-

3dClustSim (10,000 iterations) to yield a corrected p < 0.05.

The final corrected AD-related regression t-map was then

overlaid onto the MNI-152 template in cross-section using

3DSlicer and also displayed with composite-with-shading

volume rendering over semi-transparent models of the

hippocampal formation.

Pilot study part 2: Region of interest analysis on

AD-related transentorhinal cortex region

The 200 template-space synthesized CBV scans were used

to conduct the right transentorhinal cortex (TEC) ROI analysis.

A two-sample t-test was conducted over the right TEC, at the

boundary between the right entorhinal cortex (EC) and the
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FIGURE 6

DeepContrast maps age-related changes over the entire cortex. (A) Three-dimensional volume rendering of the age-related t-score maps over

the 72 FreeSurfer cortical region-of-interests (ROIs) reveals that the age-related changes in the synthesized CBV maps is similar to those in the

ground truth CBV maps, despite that the non-contrast T1W scans which serves as the input to the DeepContrast model does not share either

the same or the opposite trends. (B) A scatter plot of the age-related t-score over the 72 ROIs demonstrates that the age-related changes in

synthesized CBV are consistent to those in CBV (P.R = 0.816, S.R = 0.786) while the T1W counterparts do not (P.R = –0.131, S.R = –0.122). (C) An

analysis of the concordance to CBV t-scores by treating it as a 1,000-class classification problem reveals that age-related changes in

synthesized CBV have significant predictive power on those in CBV (sensitivity = 0.76, specificity = 0.89, AUC = 0.91) while the T1W counterparts

do not (sensitivity = 1.00, specificity = 0.04, AUC = 0.43).

right parahippocampal cortex (PHC). The region was defined

as the intersection between the EC-PHC region and a sphere

centered at the middle of the EC-PHC intersection and spanning

a diameter of the extent of the EC-PHC boundary (11 mm).

A box plot overlaid with individual data points was drawn

(Figure 4G) to indicate the group-wise difference between the

normal controls and the patients with AD.

Utility study: Synthesized CBV improves AD

classification

For the AD classification tasks with one single

input modality, the architecture “VGG-19 with batch

normalization” (VGG-19BN) (Marcel et al., 2016) was

used (Supplementary Figures S5a,b). When both T1W

and synthesized CBV were used as input, each as one

three-dimension(3D) volume, we used separate VGG

encoders for each volume and later combined the

extracted feature vectors before feeding them into fully-

connected layers. The two encoders may have different

weights (Supplementary Figure S5c). For any of these

architectures, the input is the relevant 3D scans while the

output is a continuous-valued number representing the

predicted AD-likelihood.

To evaluate the descriptiveness of the predicted AD-

likelihoods, receiver-operating characteristics (ROC) studies

were conducted to analyze the concordance between the model-

generated classification and the ground truth AD/CN labels. The

ROC curves, one for each well-trained classifier, represent the

classification performance at each potential numerical threshold

to binarize the predicted AD-likelihood score. The sensitivity

and specificity (the sum of whom peaks at the operating point),

as well as the total area under the ROC curve, demonstrate the

effectiveness of the classification method. The significance of the
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difference among these ROC curves is calculated using DeLong’s

test (DeLong et al., 1988).

Furthermore, we investigated the brain regions that had the

most contributions to the AD classification task by visualizing

the class activation maps (CAM) (Bolei et al., 2015). We used

all 131 T1W and 131 synthesized CBV scans from patients with

AD to generate an averaged CAM for each input type. We

were interested in whether or not the brain regions the classifier

found most relevant to the AD class were in fact physiologically

meaningful.

Results

DeepContrast in the mouse brain

We first designed, optimized, and trained the model on

wildtype (WT) mice brain scans (37 for training and 6 for

validation; refer toMethods section), in which we had previously

generated quantitative T2-weighted GBCA-uptake brain maps.

Similar to the previous studies (Kleesiek et al., 2019; Liu et al.,

2019; Li et al., 2021), we compared the similarities between

the GBCA-predicted maps and the GBCA-uptake ground truth

maps by performing voxel-wise analyses across the whole brain

on a test set with 6 scans (Figures 3A,B) using metrics that

measure signal quality (peak signal-to-noise ratio) and structural

similarity (structural similarity index). We further incorporated

two other metrics to represent linear (Pearson correlation

coefficient) and monotonic (Spearman correlation coefficient)

relationships across corresponding voxels. Between the maps,

the peak signal-to-noise ratio was 24.59 ± 0.60, the Pearson

correlation coefficient was 0.695 ± 0.008 (p < 0.0001), the

Spearman correlation coefficient was 0.606± 0.008 (p < 0.0001),

and the structural similarity index was 0.831± 0.008 (Figure 3B

and Table 1). This analysis shows that the DeepContrast-

generated GBCA-predicted maps from WT mice showed high

similarity to the GBCA-uptake ground truth maps generated

fromWTmice.

DeepContrast in the human brain

We adapted the DeepContrast model to human brain

MRI datasets by modifying the model network architecture,

hyper-parameters, and training strategies. First, same as in our

mouse study, we compared the similarities between the GBCA-

predicted images or maps, and the GBCA-uptake ground truth

maps by performing voxel-wise analyses across the whole brain

on a test set with 179 scans (Figures 3C,D). Between the maps,

the peak signal-to-noise ratio was 29.64 ± 0.07, the Pearson

correlation coefficient was 0.822 ± 0.002 (p < 0.0001), the

Spearman correlation coefficient was 0.625± 0.003 (p < 0.0001),

and the structural similarity index was 0.879± 0.002 (Figure 3D

and Table 1). Thus, in healthy human brains, we also see a high

similarity between the GBCA-predicted maps and that of the

GBCA-uptake ground truth maps.

In addition to the whole-brain analysis for similarity

measures, we decided to extend our comparisons to two

additional analyses. In the tissue of interest (TOI) analysis, we

compared the similarities between the maps in white matter,

gray matter, and cerebrospinal fluid (CSF). Similar to the

global results, the performances by tissue types demonstrated

the same trend: the GBCA-predicted maps were quantitatively

similar to the GBCA-uptake ground truth maps. The results are

illustrated in Figure 3D and reported in Table 1. In the region-

of-interest (ROI) analysis, we compared the similarities between

the maps in 126 distinct ROIs in the whole brain segmented

by FreeSurfer (Fischl, 2012). Among the 126 ROIs, 121 had a

significant Pearson correlation coefficients (p < 0.001) and 123

had significant Spearman correlation coefficients (p < 0.001)

(Supplementary Figure S3).

Finally, we were also interested in evaluating reproducibility

in a test-retest paradigm. We conducted a series of test-

retest reliability analyses on the GBCA-predicted maps vs.

the GBCA-uptake ground truth maps across the whole brain

on a test set with 11 repeated scan pairs (Figure 3E). For

the GBCA-predicted maps, the peak signal-to-noise ratio was

30.11 ± 0.44, the Pearson correlation coefficient was 0.919

± 0.005 (p < 0.0001), the Spearman correlation coefficient

was 0.722 ± 0.010 (p < 0.0001), and the structural similarity

index was 0.948 ± 0.002. As a comparison, for the GBCA-

uptake ground truth maps, the peak signal-to-noise ratio was

27.70 ± 0.24, the Pearson correlation coefficient was 0.815

± 0.007 (p < 0.0001), the Spearman correlation coefficient

was 0.415 ± 0.017 (p < 0.0001), and the structural similarity

index was 0.832 ± 0.007. Among all the analyses, the test-

retest reliabilities of the GBCA-predictedmaps were consistently

higher than the test-retest reliabilities of the GBCA-uptake

ground truth maps (p < 0.0001) (Figure 3E). We also performed

the TOI analysis, and the results are illustrated in Figure 3E

and reported in Table 1. Among all metrics in all tissue types,

the test-retest reliabilities of the GBCA-predicted maps were

consistently higher than the test-retest reliabilities of the GBCA-

uptake ground truth maps (p < 0.0001) (Figure 3E).

DeepContrast visualizes functional
lesions in aging and Alzheimer’s disease
brains

We generated GBCA-predicted maps from non-contrast

T1-weighted MRI scans with DeepContrast, and subsequently

quantified synthesized CBVmaps with a sub-millimeter in-plane

resolution of 0.68×0.68 mm in the coronal planes and slice

thickness of 3 mm (refer to Methods). Then, we conducted
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TABLE 1 Quantitative evaluations of DeepContrast models.

Model Evaluation Region Data PSNR P.R S.R SSIM

Healthy Similarity Whole Brain Gd-Uptake vs. T2W 22.16± 0.59 –0.072± 0.032 0.074± 0.013 0.707± 0.007

Mouse Gd-Uptake vs. Gd-Predicted 24.59± 0.60 0.695± 0.008 0.606± 0.008 0.831± 0.008

Healthy Similarity Whole Brain Gd-Uptake vs. T1W 15.40± 0.09 –0.194± 0.003 –0.323± 0.005 0.446± 0.002

Human Gd-Uptake vs. Gd-Predicted 29.64± 0.07 0.822± 0.002 0.625± 0.003 0.879± 0.002

White Matter Gd-Uptake vs. T1W 15.40± 0.09 –0.194± 0.003 –0.323± 0.005 0.446± 0.002

Gd-Uptake vs. Gd-Predicted 35.15± 0.09 0.633± 0.006 0.437± 0.002 0.969± 0.001

Gray Matter Gd-Uptake vs. T1W 14.72± 0.06 –0.029± 0.002 –0.039± 0.003 0.462± 0.001

Gd-Uptake vs. Gd-Predicted 30.18± 0.07 0.807± 0.004 0.510± 0.003 0.946± 0.001

CSF Gd-Uptake vs. T1W 20.65± 0.07 0.124± 0.003 0.120± 0.004 0.802± 0.003

Gd-Uptake vs. Gd-Predicted 25.47± 0.08 0.728± 0.004 0.604± 0.003 0.936± 0.001

Test-Retest Whole Brain Gd-Uptake of two repeated acquisitions 27.70± 0.24 0.815± 0.007 0.415± 0.017 0.832± 0.007

Reliability Gd-Predicted of two repeated acquisitions 30.11± 0.44 0.919± 0.005 0.722± 0.010 0.948± 0.002

White Matter Gd-Uptake of two repeated acquisitions 31.18± 0.18 0.713± 0.015 0.129± 0.008 0.933± 0.004

Gd-Predicted of two repeated acquisitions 35.14± 0.40 0.899± 0.006 0.368± 0.014 0.986± 0.001

Gray Matter Gd-Uptake of two repeated acquisitions 27.89± 0.32 0.844± 0.008 0.327± 0.020 0.907± 0.005

Gd-Predicted of two repeated acquisitions 30.42± 0.44 0.937± 0.004 0.596± 0.013 0.976± 0.001

CSF Gd-Uptake of two repeated acquisitions 24.04± 0.27 0.762± 0.014 0.585± 0.019 0.907± 0.004

Gd-Predicted of two repeated acquisitions 26.32± 0.48 0.882± 0.009 0.800± 0.008 0.967± 0.001

Evaluations varied depending on the aspects being assessed for each model. All metrics were reported in the form of mean± standard error of the mean (SEM). PSNR, peak signal-to-noise

ratio; P.R, Pearson correlation coefficient; S.R, Spearman correlation coefficient; SSIM, structural similarity index.

voxel-based analyses (VBA) and ROI-based analyses on the

synthesized CBV maps to identify sites of dysfunctions in

normal aging and Alzheimer’s disease (AD).

Normal aging

The first study we conducted aimed to validate whether

DeepContrast can capture the subtle aging effects on

basal metabolism. First, we focused on the hippocampal

circuit (Figure 4A). As shown in Figures 4B,C, the age-related

decline in our DeepContrast-generated synthesized CBV maps

localized primarily to the dentate gyrus (DG). This result

replicates prior studies (Small et al., 2002, 2004; Chawla and

Barnes, 2007; Moreno et al., 2007; Brickman et al., 2014; Feng

et al., 2020a), where the age-related decline in brain metabolism

in the hippocampal formation has been shown to occur

primarily in the DG. In the complementary ROI analysis of the

DG, the synthesized CBV values showed a linear decline with

age (βage =−6.36e-4, tage =−4.64, page = 6.85e-6) (Figure 4D).

We also analyzed two other brain regions, namely the

inferior frontal gyrus (IFG), found to be more vulnerable to

aging (Shen et al., 2012; Hoffman and Morcom, 2018; Feng

et al., 2020a,b), and the entorhinal cortex (EC), found to be

less vulnerable to aging (Gómez-Isla et al., 1996; Small et al.,

2004, 2011; Feng et al., 2020a). The synthesized CBV maps

demonstrated the same age-related trends as the ground truth

CBV over these regions (Figure 5).

Finally, we extended the analysis to the entire cortex and

found that the synthesized CBV maps reflected similar

age-related changes as the ground truth CBV overall

cortical ROIs (Figure 6). The multi-class Receiver Operative

Characteristics (ROC) curve, which represented the level of

concordance between synthesized CBV and ground truth CBV,

reached a sensitivity of 0.76 and a specificity of 0.89 at the

operating point, and the area-under-the-curve (AUC) was 0.91

(Figure 6).

Alzheimer’s disease

The second study we conducted aimed to validate

whether DeepContrast could capture the regional vulnerability

in patients with Alzheimer’s disease dementia, where we

utilized publicly available data from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) (Mueller et al., 2005). Similar

to the above approach, we performed a VBA analysis over

the hippocampal circuit (Figure 4A). Replicating previous

findings (Braak and Braak, 1996; Brickman et al., 2011,

2014; Small et al., 2011; Pavlopoulos et al., 2013; Schobel

et al., 2013; Khan et al., 2014; Sperling et al., 2014; Coughlan

et al., 2018; Provenzano et al., 2020; Simoes et al., 2021), the

Alzheimer’s disease-related decline in the synthesized CBV

maps primarily localized to a region termed the transentorhinal

cortex (TEC) (Figures 4E,F). In the complementary ROI analysis

of the right TEC, the synthesized CBV values were significantly
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lower (p = 0.031) in patients with AD compared to the healthy

controls (Figure 4G).

Next, we trained VGG-like models (Simon et al., 2016) to

perform participant-level AD classification on a class-balanced

and age-matched dataset with more than 2,500 scans. We

tested the models on the same stand-alone set of 131 AD

scans and 129 CN scans. Compared to using the T1W MRI

data alone, when we included the synthesized CBV maps

generated using DeepContrast as the input to the model,

the classification accuracy increased significantly (Figure 7A).

However, the specific approach to combining the two modalities

affected the performances (Table 2). The best fit that we found

was to assign a designated encoder for each modality without

weight sharing between them.

Finally, we used class activation maps to identify specific

brain regions that influenced the best performing classifier

when it determined that a person has AD (Figure 7B). The

most highly contributing structural information comes from

the temporal lobe, while the most highly informative artificial

functional information was observed to come from the parieto-

occipital lobe.

Discussion

Gadolinium-based contrast agents’s utility for MRI can be

organized around two primary pathophysiologies. The first is a

breakdown of the blood-brain barrier that often accompanies

many structural lesions, and, in that case, GBCA extravasates

into the parenchyma and enhances lesion detection (Garcia

et al., 2020). The second is alterations in neuronal metabolism,

typical of most functional disorders, in which case intravascular

GBCA is used to quantify regional CBV, a cerebrovascular

variable tightly coupled to energy metabolism (Belliveau, 1991;

Gonz et al., 1995; Østergaard et al., 1998; Sugahara et al.,

1998; Aronen et al., 2000). As proof-of-principle, we optimized

models for our investigation of the second scenario. We

have demonstrated that DeepContrast can extract GBCA-like

contrast information from non-contrast T1W structural MRI

scans to quantify regional CBV. As GBCA’s utility can be

largely divided into two pathophysiologies, we anticipate that

future large-scale studies across a range of diseases might

lead to two generalizable models–one for structural disorders

that are more likely to impact the integrity of the blood-

brain barrier, and another for functional lesions that alters

brain metabolism, although GBCA contrast is much subtler for

functional compared to structural lesions.

DeepContrast’s utility can be organized according to its

broad applications. The first is for research. There is an

increasing number of brain MRI databases, such as ADNI,

whose primary purpose is brain imaging and disease research.

Standard T1-weighted MRI scans are among the most common

protocols across all of these datasets, typically acquired for

mapping regional structural differences, such as regional volume

or cortical thickness. DeepContrast can be retroactively applied

to these data and can be used to generate synthetic functional

maps, significantly expanding pathophysiological insight that

can be derived across a range of disorders. For example, by

using the DeepContrast model, we have demonstrated that a

large-scale synthetic functional dataset could be generated and

further used to provide superior AD classification. For single

input modalities, the AD classifier trained on the synthesized

CBV functional images provided improved AD identification

when compared with the AD classifier trained on T1W scans.

The improvement was further amplified when both modalities

were provided, which allowed the model to take advantage

of both structural and functional information. Among all

the candidate models, the model with two separate encoders

of different weights outperforms the others. Training each

encoder on structural and synthesize functional CBV MRI

scans independently allowed themost efficient feature extraction

and yielded the best classification performances. The class

activation map for the best-performing model revealed an

interesting pattern of collaboration between the two encoders,

each corresponding to a single input modality. The medial

temporal lobe provides the most crucial structural information

as reflected by the structural-encoder. This result is consistent

with previous studies indicating that medial temporal atrophy

is an indicative sign of AD and qualitative assessments of the

region could be used to predict patients at risk of AD (Bradley

et al., 1984; Korf et al., 2004). On the other hand, activation

of the parietal and occipital lobes was representative of regions

experiencing the most functional changes in the AD brain in

accordance with the functional-encoder, which is consistent with

the findings such as decreased resting state neural activity (Yong

et al., 2007; Li et al., 2016) and glucose utilization (Reiman et al.,

1996) in the parieto-occipital cortex.

DeepContrast’s second application is for patient care.

For patient populations with functional lesions, those with

neuropsychiatric and neurodegenerative disorders, a T1-

weighted scan may be ordered as part of standard clinical

practice, to exclude structural abnormalities. For these patients,

deriving CBV mapsvia DeepContrast potentially obviates

the need for ordering other more invasive, burdensome,

and expensive neuroimaging studies for mapping metabolic

dysfunction.

This study has several limitations. First, our study focused

on the identification of functional abnormalities with the

synthesized CBV derived from non-contrast T1W structural

MRI without the need for GBCAs. Detecting structural brain

lesions such as those found in cancer, infections, or bleeding are

still the major utility of GBCAs. Our DeepContrast framework

is sufficiently general that it can be easily extended to the

detection of structural brain lesions with T1W MRIs, but

future study should be done to evaluate its performance in

these conditions. Second, we acknowledge the retrospective
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FIGURE 7

DeepContrast-generated synthesized CBV improves AD classification and provides spatially-meaningful information. (A) Receiver Operating

Characteristics curves for the classification models using T1W structural data only (black), using synthesized CBV functional data only (blue), or

using both in combination (red). p-values were calculated using DeLong’s test. (B) The class-average Class Activation Maps of the

best-performing model, calculated from 131 AD scans in the standalone test set.

TABLE 2 Performances of the five variants of the AD-classification network.

Input Model Sensitivity Specificity ROC AUC Accuracy @ Operating Max accuracy

T1W Regular 0.885 0.860 0.905 0.869 0.873

SynCBV Regular 0.885 0.876 0.919 0.877 0.881

T1W+SynCBV Dual-channel 0.885 0.853 0.936 0.865 0.869

T1W+SynCBV Dual-encoder w/ identical weights 0.802 0.806 0.875 0.800 0.804

T1W+SynCBV Dual-encoder w/ different weights 0.901 0.876 0.942 0.885 0.888

Sensitivity and specificity are calculated at the operating point. Accuracy at the operating point and the maximum accuracy achievable by changing the binarization threshold are

respectively calculated for each candidate. ROC AUC, area under the receiver-operating characteristics curve; SynCBV, synthesized CBV. Best result(s) in each metric are highlighted

in bold.

nature of the study and the absence of inclusion of MRI

data from multiple sites and acquisition protocols. The distinct

quantitative GBCA dataset used to train our DeepContrast

model was collected over a timeframe of around 20 years

at Columbia University using the equivalent protocol on

multiple scanners. The pre- and post-GBCA images used to

derive the CBV maps shared identical imaging settings, which

help reduce the inter and intrasubject variability between

the non-contrast T1W pre-GBCA image and the quantitative

GBCA enhancement and benefit the training of our model.

Future study could address how the use of heterogeneous

data from various cohorts, sites, scanners, and acquisition

protocols might improve the model performance to produce

more stable and generalizable results. This study also shares

the limitations of other studies of GBCA contrast synthesizing

with deep learning. Deep convolutional neural networks have

performed remarkably well on these tasks; however, these

networks are heavily reliant on big data to avoid overfitting.

Unfortunately, medical image analysis applications normally

do not have access to big data. Data augmentation, a data-

space solution to the problem, of limited data can be applied

in future work to enhance the sample size, enrich the data

variance and improve the data quality of the training dataset

such that better models can be built from them. Finally, in
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light of the overall promising performance on the task, it is

important to consider our work as a pioneer proof-of-concept

study, and future work should be done to further improve

its performance to reach the level for clinical purposes. For

instance, the proposed CNN model is trained from scratch,

but applying and fine-tuning a pre-trained model on our

data through transfer learning could further improve model

performance. Future study could also improve our model

through multi-task learning. While we did achieve state-of-

the-art performance by being laser-focused on our single task,

synthesizing CBV from non-contrast T1W structural MRI, we

ignored information that might help us achieve even better

metrics. Specifically, this information could come from training

MRI signals for related tasks, such as image reconstruction, brain

tissue segmentation, or predicting demographic information. By

sharing representations between related tasks in a multi-task

learning framework, it could enable our model to generalize

better on the original task.

In conclusion, by using quantitative GBCA datasets from

both mice and humans, we demonstrated that a deep learning

model can, in principle, generate GBCA-equivalent information

from a single structural MRI scan for the estimation of regional

CBV, and we successfully applied our DeepContrast model to

both an in-house aging dataset and a publicly available ADNI

dataset from Alzheimer’s patients and age-matched controls.
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SUPPLEMENTARY FIGURE S1

Details of the Healthy Mouse Model (Network 1 in Figure 2). This model

is implemented with a 2D five-layered Residual Attention U-Net

architecture. The encoding path (blue blocks in the left half of the

architecture) condenses the image dimensions and enriches the feature

dimension, shrinking the image size from 208×208 pixels to 13×13

pixels while extracting 1,024 channels of features. The decoding path

(red blocks in the right half of the architecture) expands these high-level

features and returns back a single slice of the predicted image with

208×208 pixels.

SUPPLEMENTARY FIGURE S2

Details of the Healthy Human Model (Network 2 in Figure 2). This model

is implemented with a 2D six-layered Residual Attention U-Net

architecture. The encoding path (blue blocks in the left half of the

architecture) condenses the image dimensions and enriches the feature

dimension, shrinking the image size from 352×352 pixels to 11×11

pixels while extracting 2,048 channels of features. The decoding path

(red blocks in the right half of the architecture) expands these high-level

features and returns back a single slice of the predicted image with

352×352 pixels.

SUPPLEMENTARY FIGURE S3

Correlation between the GBCA-uptake map and GBCA-predicted map

over the entire brain. The Pearson (top) and Spearman (bottom)

correlation coe�cients are computed for each of the 126 anatomical

ROIs defined by FreeSurfer between the array of ROI-mean Gd-Uptake

values and the array of ROI-mean Gd-Predicted values extracted from

the 177 participants with successful FreeSurfer parcellation. The analysis

demonstrates significant correlation between the

DeepContrast-predicted contrast and the corresponding ground truth

across a wide range of brain regions (121 ROIs with p < 0.001 for

Pearson correlation coe�cient and 123 ROIs with p < 0.001 for

Spearman correlation coe�cient).

SUPPLEMENTARY FIGURE S4

Details of MRI processing pipeline and partition of the Alzheimer’s

Disease (AD) classification dataset. (a) Data processing pipeline to

generate the input of di�erent AD classification deep learning models.

The preprocessing of structural T1W MR data is necessary to remove

unwanted artifacts and transform the data into a standard version before

feeding them into the models. For each MRI structural, we process the

T1W 3D volume through a standardized pipeline: (1) whole brain a�ne

registration to MNI152 template space and other processing detailed in

a prior study (Feng et al., 2018); (2) whole brain rigid registration to

MNI152 template space; (3) histogram matching to the DeepContrast

CU T1W MRI; (4) whole brain di�eomorphic registration to standard CU

template; (5) generating the synthesized CBV maps; (6) up-sampling the

synthesized CBV maps to 1-mm isotropic resolution. (b) Left: Age

distributions of the participants in the entire dataset (top) and the subset

after propensity-score matching of age (bottom). Right: Age

distributions of the participants assigned to the train, validation, and test

dataset. VS, voxel size; AD, Alzheimer’s diseased; CN, cognitive

normal.

SUPPLEMENTARY FIGURE S5

Details of the three candidates of AD-classification networks (Networks

used in Figure 7). (a) Proposed Model 1. Modified 3D VGG-19 network

with batch normalization uses T1W MRI scans as the model input. This

model aims to perform the AD classification based on structure T1W

MRI scans. (b) Proposed Model 2. Modified 3D VGG-19 network with

batch normalization uses synthesized CBV maps as the model input.

This model aims to realize the AD classification based on functional MRI

maps. (c) Proposed model 3. Modified VGG-19 network with double

encoding paths uses T1W MRI scans and the synthesized CBV maps as

the model input. Separate encoders in the model have the same

structure but di�erent weights. This could help improve the structure

and functional information fusion and classification performance. The

red arrow represents the generation of synthesized CBV from T1W MRI

scans using DeepContrast.
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Brain organoids are valuable research models for human development

and disease since they mimic the various cell compositions and

structures of the human brain; however, they have challenges in

presenting aging phenotypes for degenerative diseases. This study analyzed

the association between aging and the gut metabolite trimethylamine

N-oxide (TMAO), which is highly found in the midbrain of elderly

and Parkinson’s disease (PD) patients. TMAO treatment in midbrain

organoid induced aging-associated molecular changes, including increased

senescence marker expression (P21, P16), p53 accumulation, and epigenetic

alterations. In addition, TMAO-treated midbrain organoids have shown

parts of neurodegeneration phenotypes, including impaired brain-derived

neurotrophic factor (BDNF) signaling, loss of dopaminergic neurons,

astrocyte activation, and neuromelanin accumulation. Moreover, we found

TMAO treatment-induced pathophysiological phosphorylation of α-synuclein

protein at Ser-129 residues and Tau protein at Ser202/Thr205. These results

suggest a role of TMAO in the aging and pathogenesis of the midbrain

and provide insight into how intestinal dysfunction increases the risk of PD.

Furthermore, this system can be utilized as a novel aging model for induced

pluripotent stem cell (iPSC)-based modeling of late-onset diseases.
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Introduction

Aging is the degenerative alterations in the body
with age, accompanied by physiological, behavioral,
and psychological changes, and contributes to the onset
of diseases. In particular, aging is closely related to
neurodegeneration such as Parkinson’s disease (PD) in
the central nervous system (CNS). Although various
genetic and environmental factors that cause PD have
been reported, aging is the greatest risk factor for PD.
However, it remains unknown which specific mechanisms
of aging induce the pre-parkinsonian state or what other
mechanisms isolated from aging lead to PD (Pang et al.,
2019). Understanding the detailed molecular mechanism
of aging-related alteration and disease onset, especially in
the human brain, will be a breakthrough in discovering
treatments to cure.

Although numerous animal models are being studied
to elucidate the relationship between aging and PD and
identify the causes of diseases, these models face some
challenges, including having different anatomical, and
physiological characteristics from humans (Potashkin et al.,
2010). As a method of studying human diseases by more
closely mimicking the human microenvironment, induced
pluripotent stem cell (iPSC) technology has recently been in
the spotlight (Liu et al., 2018). In particular, brain organoids
that can be produced through three-dimensional neuronal
differentiation of human pluripotent stem cells (hPSCs)
provide an advanced in vitro model for studying human
brain development and disease by mimicking the cell types
and tissue architecture of the human brain (Koo et al.,
2019). However, since cellular reprogramming is known to
erase aging-related features of patient cells, such as DNA
damage, mitochondrial reactive oxygen species (ROS),
nuclear envelope dysfunction, and epigenetic alteration
(Simpson et al., 2021), it is limited to recapitulating the
alterations of neurodegenerative diseases that show late-
onset phenotypes with aging in induced pluripotent stem
cell-based disease models. For instance, an increase in α-
synuclein could be observed in an in vitro PD model using

Abbreviations: TMAO, trimethylamine N-oxide; PD, Parkinson’s disease;
AD, Alzheimer’s disease; hPSCs, human pluripotent stem cells; ROS,
reactive oxygen species; FMO3, flavin monooxygenase 3; TMA,
trimethylamine; ER, endoplasmic Reticulum; CHOP, C/EBP homologous
protein; CNS, central nervous system; hESC, human embryonic stem
cell; CSF, cerebrospinal fluid; OD, optical density; SOX2, SRY-box
transcription factor 2; FOXA2, forkhead box protein A2; TH, tyrosine
hydroxylase; GFAP, glial fibrillary acidic protein; MAP2, microtubule-
associated protein 2; XBP1, X-box binding protein 1; GRP78, glucose
regulatory protein 78; CREB, cAMP response element-binding protein;
pCREB, phosphorylated CREB; BDNF, brain-derived neurotrophic factor;
CaMKII, calmodulin-dependent protein kinase II; PSD-95, post-synaptic
density protein 95; IL6, interleukin 6; IFNG, interferon-γ; TNFA, tumor
necrosis factor-α; RT-PCR, real-time PCR; HRP, horseradish peroxidase;
TMB, tetramethylbensidine.

patient iPSC-derived midbrain organoids; however, Lewy
body-like inclusions, a hallmark of PD, were not formed (Kim
et al., 2019). This is why we need a model showing aging
factors for PD study.

Given the importance of degenerative brain disease research,
many studies are being conducted on methods to simulate
them (Brunet, 2020; Slanzi et al., 2020). In iPSC-based studies,
modeling for the implementation of an aging model including
a progeria-induced model is being studied (Miller et al.,
2013). However, the method through genetic modification is
difficult to reproduce the phenomenon of natural aging (Azam
et al., 2021). As a factor inducing such natural aging, the
field of the gut microbiome is receiving attention recently
(Ghosh et al., 2022). The gut microbiota plays an important
role in various human health and diseases ranging from the
immune system, metabolic disorders, and cancer, and shows
potential as a biomarker (Zhu et al., 2020). Several studies
have reported that gastrointestinal dysfunction is associated
with PD risk (Fasano et al., 2015; Mukherjee et al., 2016;
Schapira et al., 2017; Metta et al., 2022). Microbiota dysbiosis
is related not only to atherosclerosis and stroke in the brain,
but also to neurodegeneration such as Alzheimer’s disease
(AD), autism, multiple sclerosis, and PD (Janeiro et al.,
2018; Gandy et al., 2019; Glowacki and Martens, 2020).
Based on the latest report on the formation of a unique
microbiome with aging (Wilmanski et al., 2021), the aging-
related microbiome may be involved in the pathogenesis of
late-onset diseases, including PD.

Trimethylamine N-oxide (TMAO) is a metabolite produced
by flavin monooxygenase 3 (FMO3) in the liver from
trimethylamine (TMA), increases in human and mouse blood
as well as cerebrospinal fluid (CSF) with age, and TMAO
treatment induces an increase in the aging phenotype, neuronal
degeneration, and cognitive impairment in SAMP8, 3X Tg-
AD mice, and HUVECs (Ke et al., 2018; Li et al., 2018;
Govindarajulu et al., 2020; Brunt et al., 2021). Although
the detailed mechanism remains unknown, it has been
reported that it induces endoplasmic reticulum (ER) stress,
C/EBP homologous protein (CHOP), and ROS to pass
through the blood-brain barrier as well as the peripheral
organs, causing neurodegeneration and affecting the CNS
(Govindarajulu et al., 2020; Rosario et al., 2020). Even though
the role of TMAO in PD pathogenesis is largely unknown,
Chen et al. (2020) reported that increased plasma levels
of TMAO in PD patients are associated with PD severity
and progression.

This study devised a method to induce age-related
phenotypes in midbrain organoids for aging and PD modeling.
The effects of TMAO treatment were analyzed in terms
of midbrain aging and PD pathogenesis. Hence, this study
proposes a new research model to study late-onset brain diseases
in human organoids and provides insight into how the gut
microbiota can make the brain old.
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Materials and methods

Cell culture

H9 cells, a human embryonic stem cell line (WiCell,
Madison, WI, United States) and human iPSCs (LRRK2G2019S

mutant PD-patient iPSC and gene-corrected iPSC) (Ha
et al., 2020) were cultured in TeSR-E8 medium (STEMCELL
Technologies, Vancouver, Canada) supplemented with 1%
Pen/Strep (Gibco, Carlsbad, CA, United States) in matrigel
(Corning, NY, United States) coated dishes. Cells were passaged
using ReLeSR (STEMCELL Technologies, Vancouver, Canada),
and the medium was changed on alternate days. This research
with human embryonic stem cell and hiPSCs was approved by
the Public Institutional Bioethics Committee designated by the
Ministry and Welfare (MoHW) (Seoul, South Korea, IRB no.
P01-201409-ES-01, P01-201802-31-001).

Generation of midbrain organoid

Human pluripotent stem cells maintained in the TeSR-
E8 medium were dissociated into single cells with Accutase
(MERTK), and 1.0 × 104 cells were seeded in an ultra-
low attachment 96-well plate (S-bio, Hudson, NH, United
States) for self-organization (Kwak et al., 2020). When the
cell formed embryoid bodies, the media was replaced with
EBM [DMEM/F12 (Gibco, Carlsbad, CA, United States)
supplemented with 20% KSR (Gibco, Carlsbad, CA, United
States), 50 µM Y27632 (Tocris, Bristol, United Kingdom),
3 µM CHIR99021 (Tocris), 1 µM IWP2 (Biogems, Westlake
Village, CA, United States), 2 µM dorsomorphin (Sigma, St.
Louis, MO, United States), 2 µM A83-01 (PeproTech, Rocky
Hill, NJ, United States), 55 µM ß-mercaptoethanol (Gibco,
Carlsbad, CA, United States), 3% FBS (Gibco, Carlsbad, CA,
United States), 4 ng/ml bFGF (PeproTech), 1 µg/ml heparin
(Sigma, St. Louis, MO, United States), 1% NEAA (Gibco,
Carlsbad, CA, United States), 1% Pen/Strep, 1% GlutaMAX
(Gibco, Carlsbad, CA, United States)], and after 24 h, it was
replaced with BGM media (DMEM/F12: Neurobasal medium
(1:1) supplemented with 1X N2 (Gibco, Carlsbad, CA, United
States), 1X B27 w/o vitamin A (Gibco, Carlsbad, CA, United
States), 3 µM CHIR99021, 1 µM IWP2, 2 µM dorsomorphin,
2 µM A83-01, 55 µM ß-mercaptoethanol, 1 µg/ml heparin,
1% NEAA, 1% Pen/Strep, and 1% GlutaMAX). After 2 days,
FGF8 (PeproTech) and SAG (PeproTech) were added to the
BGM media for mesencephalon patterning. The organoids
were embedded in growth factor-reduced matrigel (Corning,
NY, United States). Laminin (BD Science, Franklin Lakes, NJ,
United States) and insulin (Thermo Scientific, Waltham, MA,
United States) were added to the media, and CHIR99021, IWP2,
dorsomorphin, and A83-01 were withdrawn. On day 9, the
matrigel-embedded organoids were transferred to an ultra-low
attachment 6-well plate and cultured on an orbital shaker at

60 rpm. The BMM medium [DMEM/F12: Neurobasal medium
(1:1) supplemented with 1X N2, 1X B27 (Gibco, Carlsbad,
CA, United States), 10 ng/ml BDNF (PeproTech), 10 ng/ml
GDNF (PeproTech), 200 µM ascorbic acid (Sigma, St. Louis,
MO, United States), 125 µM db-cAMP (Biogems), 55 µM ß-
mercaptoethanol, 1 µg/ml heparin, 1% NEAA, 1% Pen/Strep,
and 1% GlutaMAX] was changed on alternate days. After 4WM,
100 uM, or 1 mM of TMAO was continuously treated whenever
the medium was changed once every 2 days.

RNA isolation and qPCR

The organoids were washed with 1XPBS and lysed
using easy-BLUETM. Total RNA extraction kit (iNtRON
Biotechnology, Seongnam, Republic of Korea). RNA was
isolated using chloroform and isopropanol. The RNA pellet
was washed with cold 70% EtOH, and the concentration was
measured using Nanodrop. All 1,200 ng RNA was synthesized
as cDNA with Superscript IV Reverse Transcriptase (Thermo
Scientific, Waltham, MA, United States). The amount of gene
expression was analyzed using Fast SYBRTM Green PCR Master
Mix (Applied Biosystems, Waltham, MA, United States) and
primers for each marker. The expression level of each marker
was normalized with TBP. The primer informations used in this
study are provided in Supplementary Table 1.

Immunocytochemistry

The organoids were fixed in 4% paraformaldehyde at room
temperature for 6 h and washed with 1XPBS. Next, organoids
were embedded in OCT (Sakura, Tokyo, Japan) for frozen
blocks, and frozen organoids were cut into 7 µm slices using
a cryostat (LEICA CM1520). Samples were blocked with 3% of
BSA and 0.02% of sodium azide in 0.025% TBS-T for 1 h after
permeabilization with 0.3% of tritonX-100 (Sigma, St. Louis,
MO, United States) in 0.025% TBS-T for 1 h, and target protein
was stained with 1:100 diluted primary antibodies against
SOX2 (Seven Hills Bioreagent, Cincinnati, OH, United States,
#WRAB1236), FOXA2 (Seven Hills Bioreagent, Cincinnati,
OH, United States, #WRAB1200), LMX1a (Sigma, St. Louis,
MO, United States, #ab10533), Tuj1 (BioLegend, San Diego,
CA, United States, #802001), TH (Sigma, St. Louis, MO,
United States, #T1299), MAP2 (R&D, Minneapolis, Minnesota,
United States, #MAB933), glial fibrillary acidic protein (GFAP)
(DAKO, #Z0334), pERK1/2 (Cell signaling, #9106s), pCREB
(Cell signaling, #9198S), p53 (Santa cruz, biotechnology,
Dallas, TX, United States, #sc-126), Lamin A/C (Santa cruz,
biotechnology, Dallas, TX, United States, #sc-376248), CaMKII
(Novus biologicals, #NB110-96869), BNDF (Alomone labs,
Jerusalem, Israel, #ANT-010), Tri-Me-K9 (abcam, Cambridge,
United Kingdom, #ab8898), PSD-95 (Invitrogen, Waltham, MA,
United States, #MA1-046), Synaptophysin (abcam, Cambridge,
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United Kingdom, #ab32127), α-synuclein (Millipore, Billerica,
MA, United States, #AB9850), pTau (Invitrogen, Waltham,
MA, United States, MN1020), cleaved caspase 3 (Cell signaling,
#9664s) at 4◦C overnight. Slides were washed with 1X TBS-
T and incubated with 1:400 diluted secondary antibodies
(Alexa Fluor 488 goat anti-mouse IgG, Life Technologies,
Alexa Fluor 555 donkey anti-rabbit, Life Technologies) with
Hoechst (Thermo Scientific, Waltham, MA, United States) at
room temperature for 1 h in deem light. The stained slides
were observed under a fluorescence microscope (OLYMPUS,
Shinjuku, Tokyo, Japan, U-TBI90) and a confocal microscope
(ZEISS Oberkochen, Germany, LSM800).

Enzyme-linked immunosorbent assay

According to the manufacturer’s instructions, we used a
dopamine enzyme-linked immunosorbent assay (ELISA) kit to
analyze the dopamine produced by midbrain organoids (Enzo,
Basel, Swizerland, #ENZ-KIT188-0001). Briefly, conditioned
media for each sample was added to each well in addition to
the same volume of biotin detection antibody. The plate was
set at 37◦C for 45 min and washed three times. Next, the
horseradish peroxidase (HRP) streptavidin conjugate working
solution was added and set at 37◦C for 30 min. The samples
were then washed and incubated with the tetramethylbensidine
(TMB) substrate for 15 min at 37◦C in the deem light. The stop
solution was immediately added, and the absorbance [optical
density (OD)] was read using a microplate reader (SpectraMax,
M3 Multi-Mode Microplate Reader) at 450 nm.

Fontana-Masson staining (melanin
stain)

We visualized melanin in midbrain organoids to confirm the
accumulation of neuromelanin using Fontana-Masson (Abcam,
Cambridge, United Kingdom, #ab150669). The samples were
washed in distilled water and set in an ammonical silver solution
at 60◦C for 45 min. Next, it was washed with distilled water
and set in 0.2% gold chloride solution for 30 s at room
temperature. The samples were then washed and set in 5%
sodium thiosulfate solution at room temperature for 2 min.
Finally, nuclei and cytoplasm were stained with the nuclear
fast red solution for 5 min. Before mounting, samples were
dehydrated in 100% EtOH.

Aggresome staining

The misfolded and aggregated protein were identified with
the PROTEOSTAT Aggresome detection kit (Enzo, #ENZ-
51035-K100). According to the manufacturer’s instructions,

samples were washed three times with 1XPBS for 10 min
each. And then incubated with dual detection reagents (Dilute
Aggresome Detection Reagent 1:2000 and Hoechst 33342 1:1000
in 1X Assay Buffer) for 30 min at room temperature in deem
light. After washing with 1XPBS, the samples were mounted and
observed under a confocal microscope.

Statistical analysis

All experiments were repeated three or more times and
analyzed using Prism 6.0. Three to six organoid samples were
analyzed for each group and used three sections per organoid.
In each organoid section, three to five image was analyzed
and image analysis proceeded with ImageJ software which
quantified the fluorescence area of immunostaining in the
same fluorescence intensity states and normalized with the
fluorescence area of Hoechst. The non-parametric (Mann–
Whitney) test was used for statistical analyses. Data values
are presented as AVE ± SD. Statistical significance was set at
P < 0.05, P < 0.01, P < 0.001, P < 0.0001 (∗, ∗∗, ∗∗∗, ∗∗∗∗).

Results

Generation of midbrain organoid

We generated midbrain organoids from human embryonic
stem cells (hESCs) to mimic the identity of the human midbrain,
as previously reported by Kwak et al. (2020). Differentiation
into midbrain organoids was performed by a guided neural-
differentiation protocol (Figures 1A,B) and characterized by
immunostaining for neuronal-specific markers (Figures 1C,D).
At 2 weeks after maturation (2WM), we observed the expression
of the neuronal stem cell marker SRY-box transcription factor
2 (SOX2), as well as the dopaminergic progenitor marker
forkhead box protein A2 (FOXA2), which indicated midbrain-
like specification of organoids. In addition, the expression
of the dopaminergic neuronal marker tyrosine hydroxylase
(TH) began to be detected in 2WM midbrain organoids
(Figure 1D). In 4WM, the astrocyte marker GFAP was detected
in organoids with microtubule-associated protein 2 (MAP2),
TH and FOXA2, indicating glial differentiation in midbrain
organoids (Figures 1D,E). In the magnified image, it was
confirmed that GFAP-positive astrocytes were surround MAP2-
positive neurons (Figure 1F).

The relative mRNA expression of cell type-specific genes
was analyzed using RT-PCR for a quantitative comparison.
The neural stem cell marker SOX2 increased in 2WM
organoids and then decreased in 4WM organoids, and the
expression of the mature neuronal marker MAP2 gradually
increased with differentiation (Figure 1G). Dopaminergic
neuronal markers (PAX3, LMX1a, and TH) maintained high
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FIGURE 1

Characterization of midbrain organoids. (A) Schematic method of the midbrain organoids generation. (B) Representative phase-contrast images
of human embryonic stem cell (hESC) and midbrain organoids at day 2, day 9, and 4 weeks of maturation. (C–E) Representative
Immunostaining fluorescence (IF) Images showing the expression of the differentiation markers (SOX2, FOXA2, TH, MAP2, and GFAP) in
midbrain organoids after 2, 4 weeks of maturation. Hoechst was used for counter nuclei staining. (F) High-resolution images of MAP2 and GFAP
in midbrain organoids. (G,H) The relative mRNA expression level of differentiation markers (SOX2, PAX3, LMX1a, TH, and MAP2) of
undifferentiated hESC and midbrain organoids (2WM, 4WM). (I) Quantification of dopamine secretion to conditioned media from
undifferentiated hESC and midbrain organoids (4WMs). Data are AVE ± SD [P < 0.05(*), P < 0.01(**)]. (Scale bar = 20 µm).

at 4 weeks, but decreased slightly compared to 2 weeks.
This is presumed to be due to the change in the relative
portion of dopaminergic neurons in midbrain organoids with
the increase of astrocytes and non-dopaminergic neurons
(Figure 1H). Furthermore, the dopamine ELISA assay
(Figure 1I) showed increased dopamine secretion (about
3 ng/ml) in the conditioned medium of single midbrain
organoid cultures, demonstrating functional maturation of
dopaminergic neurons in 4WM organoids.

Increase of cellular stress and aging
features by trimethylamine N-oxide
treatment

To evaluate the effects of TMAO on the neuropathological
differentiation of the midbrain, we started treating 4WM
organoids with TMAO at two concentrations (100 µM and
1 mM) for 26 weeks and analyzed the pathophysiological
changes in organoids (Figure 2A). After 4 weeks of TMAO
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FIGURE 2

Aging-associated molecular phenotypes of trimethylamine N-oxide (TMAO)-treated midbrain organoids. (A) Schematics of TMAO treatment in
midbrain organoid. (B) Representative phase-contrast images (upper) and quantification of organoid size (lower). (C) Relative mRNA expression
levels of XBP1 and GRP78. (D) Relative IF images (left) and quantification of phosphorylated cAMP response element-binding protein-positive
cells in indicated groups (8WMs). Hoechst was used for counter nuclei staining. (E) The relative mRNA expression level of CDKN1A, CDKN2A,
and TP53. (F) Representative IF images (upper) and quantification (lower) of the p53-expressing cells in the indicated organoid group.
(G) Representative IF images (upper) and quantification (lower) of the Lamin A/C and Tri-Me-K9 in the indicated organoid group. Data are
AVE ± SD [P < 0.05(*), P < 0.01(**)].

treatment (8WMs organoids), there was no significant
difference in the diameter of the spheres and apoptotic cells
between the control and TMAO treatment groups (Figure 2B
and Supplementary Figures 1A,B).

Previous studies have reported that TMAO induces ER
stress in the aged population and PD patients (Govindarajulu
et al., 2020). In our experiments, the expression of the
ER stress-related genes, X-box binding protein 1 (XBP1)
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and glucose regulatory protein 78 (GRP78), was slightly
increased in TMAO-treated organoids (Figure 2C), similar
to that reported in pancreatic acinar cells (Yang and Zhang,
2021). In addition, phosphorylation of cAMP response
element-binding protein (CREB), known to be inhibited
by ER stress-mediated PERK activation (Kikuchi et al.,
2016), was examined by immunostaining. The results
showed a significant decrease of phosphorylated CREB
(pCREB) by TMAO treatment in midbrain organoids
(Figure 2D), implying the activation of ER stress by TMAO in
midbrain organoids.

We analyzed changes in well-known senescence-
associated aging markers in midbrain organoids to determine
whether TMAO could induce aging-associated alterations in
midbrain organoids. The expressions of CDKN1A (P21),
CDKN2A (P16), and TP53 were analyzed by qPCR in
8WM organoids with or without treatment with TMAO
for 4 weeks. The TP53 expression was increased in organoids
treated with TMAO at 100 µM and 1 mM concentrations
compared to the control (Figure 2E). The expression of
CDKN1A and CDKN2A also increased at the 1 mM TMAO
treatment group (Figure 2E). In addition, immunostaining
showed nuclear accumulation of p53 in TMAO-treated
organoids (Figure 2F).

Moreover, we observed differences in the immunostaining
results for lamin A/C and Tri-Me-K9, which are epigenetic
aging markers reported to maintain the stability of the nuclear
architecture and structure of chromatin (Scaffidi and Misteli,
2006). These proteins are defective with aging and lamin A/C
and Tri-Me-K9 alteration, leading to telomere instability (Burla
et al., 2016). Lamin A/C was decreased in the 1 mM TMAO
treatment group compared to the control group. Tir-Me-K9
tended to decrease with TMAO (Figure 2G). These results
demonstrate that TMAO reduces repressive epigenetic aging
markers and decreases the structural stability of the nucleus and
chromatin in midbrain organoids.

Weakened dopaminergic neuron
protection by trimethylamine N-oxide
treatment

Brain-derived neurotrophic factor regulates TH expression.
It plays a protective role in dopaminergic neurons through
CREB phosphorylation triggered primarily by MAPK/ERK1/2
and calmodulin-dependent protein kinase II (CaMKII) (Palasz
et al., 2020). The decrease in phosphorylation of CREB
by TMAO treatment was confirmed in Figure 2D. We
further tested the intracellular signaling changes of BDNF
supplemented in culture media to maintain the midbrain
organoids. The phosphorylation of ERK1/2 in differentiated
neuronal regions was dramatically reduced (Figures 3A,C), and
CaMKII was decreased in TMAO-treated organoids. In contrast,

BDNF expression was not significantly different (Figures 3B,C),
implying impaired BDNF signaling.

Next, we compared the expression of TH, a marker of
dopaminergic neurons, in midbrain organoids 4 weeks after
TMAO treatment. Immunostaining showed that the number of
TH-positive dopaminergic neurons was decreased in TMAO-
treated organoids (Figures 3D,F). However, there was no
significant difference in Tuj1, indicating that dopaminergic
neurons were more susceptible to TMAO treatment than
other neurons. The decrease in dopamine secretion from
organoids was concentration-dependent following TMAO
treatment (Figure 3G).

Synaptophysin and post-synaptic density protein 95 (PSD-
95), pre- and post-synaptic proteins, respectively, were stained
and quantified to confirm changes in synaptic proteins. PSD95
was decreased by TMAO treatment and Synaptophysin levels
also slightly decrease with TMAO treatment, although this
was insignificant (Figures 3E,F and Supplementary Figure 2),
suggesting TMAO may affect synaptic dysfunction.

Furthermore, we detected neuromelanin in organoids
synthesized from L-dopa and reportedly accumulates in the aged
midbrain. Neuromelanin was produced in 8WM organoids, and
its accumulation was significantly increased in the 1 mM TMAO
treatment group than in the control group (Figures 3H,I).
Altogether, the results show that TMAO-treated midbrain
organoids could mimic parts of the cellular features of the aged
midbrain, including loss of dopaminergic neurons, functional
decline, and neuromelanin accumulation.

Astrocyte activation by trimethylamine
N-oxide treatment

Given that astrocyte activation is one of the features of
the aged brain, we confirmed the expression of the astrocyte
activation marker, GFAP, in TMAO-treated midbrain organoids
for 26 weeks. GFAP expression was enhanced by TMAO
treatment, and astrocytes showed more activating morphology
in the 1 mM TMAO treatment group, while TH-positive
neurons were reduced (Figure 4A).

For quantitative analysis, GFAP and hS100β expression
was examined by RT-PCR in 8WM organoids. As expected,
GFAP expression was significantly increased in the TMAO
treatment groups than in the control group. In addition,
the expression of inflammatory cytokines, interleukin 6
(IL6) and interferon-γ (IFNG) was increased in the 1 mM
treatment group compared to that in the control group.
Still, there was no significant difference between the TMAO
100 µM treatment group and the control. Tumor necrosis
factor-α (TNFA) levels were significantly increased by
TMAO treatment (Figure 4B). These data show that TMAO
might induce astrocyte-mediated inflammatory responses in
midbrain organoids.
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FIGURE 3

Neurodegeneration phenotypes of trimethylamine N-oxide (TMAO)-treated midbrain organoids. (A,B) Representative IF images showing the
ERK phosphorylation (A) and CaMKII/BDNF (B) in the indicated organoid group. Hoechst was used for counter nuclei staining.
(C) Quantifications of the ERK phosphorylation (left), CaMKII (middle), and BDNF (right) in the indicated organoid group. (D,E) Representative IF
images showing the TH- and TUJ-1 positive neurons (D) and synaptic marker expression (PSD-95 and Synaptophysin) (E) in the indicated
organoid group. Hoechst was used for counter nuclei staining. (F) Quantifications of the TH, TUJ-1 (left), PSD-95, and Synaptophysin (right) in
the indicated organoid group. (G) Quantification of dopamine secretion to conditioned media from indicated organoids. (H) Representative
Fontana-Masson staining images for neuromelanin at 8 weeks of maturation in midbrain organoids. (I) Quantifications of Fontana-Masson
staining. Data are AVE ± SD [P < 0.05(*), P < 0.01(**), P < 0.001(***)]. (Scale bar = 20 µm).

Increase of abnormal protein
aggregation by trimethylamine
N-oxide treatment

To verify the association between TMAO and PD
pathogenesis, we confirmed the phosphorylation of the

α-synuclein protein at Ser-129 residues, a representative
pathophysiological modification in PD (Anderson et al., 2006).
Immunostaining of the TMAO-treated midbrain organoids for
26 weeks revealed reactive signals in the intracellular space of
neurons (Figure 5A). Compared to the control group, the 1 mM
TMAO treatment group showed an increase in phosphorylation
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FIGURE 4

Astrocyte activations in trimethylamine N-oxide (TMAO)-treated
midbrain organoids. (A) Representative IF images showing the
TH-positive dopaminergic neurons and glial fibrillary acidic
protein (GFAP)-positive astrocytes in indicated organoids.
Hoechst was used for counter nuclei staining. (B) Relative mRNA
expression level of GFAP and mRNA expression level of
activation astrocytic markers, GFAP, S100β, IL6, TNFA, and IFNA
in indicated organoids (8WMs). Data are AVE ± SD [P < 0.05(*),
P < 0.01(**)]. (Scale bar = 20 µm).

at Ser-129, although not in 100 µM TMAO-treated organoids
(Figures 5A,B).

Furthermore, phosphorylation of Tau at Ser202/Thr205
was increased by TMAO treatment. In the 1 mM TMAO
treatment group, Tau accumulation was observed in the soma
and the axons (Figures 5C,D). After confirming the increase in
phosphorated α-synuclein protein and Tau, protein aggregation
was confirmed by aggresome staining to determine whether
abnormal aggregation of the protein increased. As a result,
aggresome was significantly increased in 1 mM TMAO-treated
organoids compared with a control group (Figures 5E,F).

Discussion

Since more than 90% of patients with neurodegenerative
disorders, such as PD and AD, are sporadic cases, it is
important to understand aging-associated alterations in the
human brain and identify the relationship between age-
related neurodegeneration and pathogenesis (Bekris et al.,
2010; Slanzi et al., 2020). Herein, we investigated PD-
associated predispositions of midbrain organoids by the
microbiome metabolite TMAO, which increases with age. This
study not only elucidates the role of TMAO in midbrain
aging but also proposes a novel alternative method for
studying late-onset degenerative brain disorders in hPSC-
derived organoids.

Although an increase of TMAO has been reported in
patients with PD, its role in midbrain aging and PD pathogenesis
is largely unknown (Chen et al., 2020). In midbrain organoid
models, we found that TMAO treatment can induce several
features of the aged human brain, including increased cellular
senescence and epigenetic aging markers, impaired neuronal
function, glial cell activation, and inflammation (Mattson and
Arumugam, 2018). Furthermore, we found that TMAO leads
to phenotypes similar to the representative phenotype of PD,
including loss of dopaminergic cells, increased phosphorylated
alpha-synuclein, and phosphorylation of Tau. These results
suggest that TMAO may play a crucial role in not only aging
but also Parkinson’s pathogenesis in the midbrain.

Increased senescent cells are a hallmark of aging, and
the expression of p21 and p16 is closely related to cellular
senescence (Bernardes de Jesus and Blasco, 2012; Capparelli
et al., 2012; Lopez-Otin et al., 2013). In our organoid model,
we observed an increased expression of p53, p21, and p16
following treatment with TMAO. In addition, epigenetics,
known as an accurate cellular clock and epigenetic change,
are strong indicators of biological aging (Galow and Peleg,
2022). Long-term TMAO treatment resulted in a tendency
to decrease H3K9me3 in midbrain organoids, suggesting
the possibility of epigenetic aging. Furthermore, we found
defective nuclear lamina in the TMAO-treated organoids. As
the a-type lamina (lamin A/C) assists in maintaining the
nuclear structure and chromatin throughout the nucleus, it is
associated with telomere distribution and function maintenance
(Scaffidi and Misteli, 2006; Burla et al., 2016). These results
suggest that the gut metabolite TMAO could induce cellular
senescence-like molecular changes in midbrain organoids.
Given that senescence cells accelerate tissue aging (Xu et al.,
2018), TMAO-induced cellular senescence may play a role in
midbrain organoid aging.

The decline in the number and function of dopaminergic
neurons with normal aging is well-known, and excessive loss
of dopaminergic neurons induces PD (Noda et al., 2020). We
found that TMAO could induce organoid changes similar to
the dysfunction of the aged midbrain. TMAO-treated organoids
showed a progressive loss of dopaminergic neurons and reduced
dopamine production. Moreover, decreased expression of PSD-
95 in TMAO-treated organoids may imply synaptic dysfunction.
On the other hand, the expression of the astrocyte marker
GFAP was increased by TMAO. Increased GFAP expression
is a common feature of reactive/activated astrocytes in the
aged brain (Palmer and Ousman, 2018). In addition, we
found increased levels of inflammatory cytokines, IL-6, TNFα,
and IFNγ, in TMAO-treated organoids. Inflammation plays
an important role in neurodegeneration and induction of
aging-related mechanisms (Calabrese et al., 2018). The gut
microbiome has also attracted attention as one of the factors
involved in inflammaging (Franceschi et al., 2018). According
to our results, TMAO may play a role in astrocyte-mediated
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FIGURE 5

Parkinson’s disease (PD)-associated phenotypes in trimethylamine N-oxide (TMAO)-treated midbrain organoids. (A) Representative IF images
showing the microtubule-associated protein 2 (MAP2) and phosphorylated α-synuclein (ser129) in the indicated organoids (30WMs).
(B) Quantification of phosphorylated α-synuclein (ser129) accumulation in neurons. (C) Representative IF images showing the
phosphorylated-Tau (ser202/thr205) in the indicated organoids (30WMs). (D) Quantification of pTau accumulation in indicated organoids.
(E) Representative IF images showing the aggresome in the indicated organoids (30WMs). (F) Quantification of aggresome in indicated
organoids. Data are AVE ± SD [P < 0.05(*), P < 0.01(**), P < 0.001(***)]. (Scale bar = 20 µm).

inflammation response. However, since neurons, as well as
glial cells, can secrete the pro-inflammatory cytokine IL6
(Sun et al., 2017), it is still possible that the increase in
inflammatory cytokines by TMAO was caused by neurons, not
activated astrocytes.

Moreover, we observed increased production of
neuromelanin in TMAO-treated midbrain organoids.
Neuromelanin synthesized from L-dopa is only found in
primates, especially to be high in humans found in the
substantia nigra and locus coeruleus (Fedorow et al., 2005).
Considering the accumulation of neuromelanin in the elderly,
it is presumed to be related to aging (Zucca et al., 2017). The
increased accumulation of neuromelanin has been reported in
patients with PD. Still, its role has rarely been reported, and it
is also difficult to study due to the absence of neuromelanin in
experimental models. Therefore, a TMAO-treated midbrain
organoid model may be useful to study the role of neuromelanin
in brain aging and PD pathogenesis.

Typical histological phenotypes of PD, such as Lewy bodies,
were not observed in the TMAO-treated organoids. However,
some predispositions to PD have been identified. As mentioned
above, a decrease in the number and function of dopaminergic

neurons was confirmed, and the phosphorylation of α-synuclein
(Ser-129) was also increased in TMAO-treated organoids. In
addition, an increase in pTau and aggresome was confirmed in
our generated midbrain organoids. Although pTau has not been
considered a pathophysiological feature of PD, it has recently
been reported that pTau is increased in 50% of PD patients
(Zhang et al., 2018). In particular, it is associated with tauopathy
in sporadic PD. Also, an increase in pTau aggregation is a
representative pathophysiological feature of AD. Therefore, the
results of our study demonstrate the possibility of sporadic
neurodegenerative disease modeling related to aging.

Recently, it was reported that TMAO induces
CREB dephosphorylation via ER stress-mediated PERK
phosphorylation, which leads to deficits in synaptic plasticity in
an Alzheimer’s mouse model (Chen et al., 2019; Govindarajulu
et al., 2020; Yang and Zhang, 2021). In our midbrain organoid
models, we also found a significant decrease in the pCREB
levels in the TMAO treatment groups. In addition, the
ER stress markers, XBP1, and GRP78, were increased
by TMAO treatment. ER stress may play an important
role in the TMAO-mediated midbrain organoid aging-like
phenotype. Additionally, we newly demonstrated significant
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dephosphorylation of ERK and reduction of CaMKII, which
is known to play an important role in neuroprotection in a
BDNF-dependent manner (Palasz et al., 2020). These results
suggest that TMAO may have an important inhibitory effect
on BDNF signaling, which can induce neurodegeneration in
midbrain organoids. Further studies on the precise mechanisms
and epidemiology of this condition are needed.

Although brain organoids provide a research model similar
to the developing human brain, the aging signature remains a
major obstacle to degenerative disease research. Currently, the
most widely used method of inducing aging in organoids is long-
term culture, but there are issues such as an increase in the
study period, cost, labor and risk of contamination, and it also
causes considerable damage in healthy-donor organoids, such as
a massive increase in apoptosis. In this study, we suggest a novel
method to accelerate the aging signature in stem cell organoids,
especially midbrain organoid aging. We tried to recapitulate the
natural aging in midbrain organoids by mimicking the increased
gut metabolite TMAO in the elderly and diseased individuals.
This method has the advantage of being able to simply induce
the aging phenotypes without genetic modification, and it can
recapitulate the primate-specific feature of midbrain aging such
as the increase of neuromelanin. Thus, it will contribute to
understanding the degenerative changes and pathogenesis in
the human midbrain.

The application of TMAO-induced aging models in
patient-derived iPSCs could lead to the advance of degenerative
disease models. In our experiments, we generate midbrain
organoids from a PD patient-derived iPSCs harboring
LRRK2G2019S mutation and isogenic WT iPSCs by gene
correction (Supplementary Figure 3A). Unfortunately, because
of the difference in the initial size growth and the degree of
differentiation between mutant cells and correction cells, we
could not thoroughly analyze the effect of TMAO treatment
on PD pathogenesis (Supplementary Figures 3B–F). However,
it was confirmed that TMAO treatment in these iPSC-derived
organoids induced aging-related alteration of midbrain
organoids, including reduced TH+ cells, decreased dopamine
secretion, increased expression of p53 and p21, and decreased
pERK (Supplementary Figures 4A–F). Our preliminary
analysis with PD-patients iPSC has not shown an additional
role of TMAO in PD pathogenesis, but the detailed relevance of
PD and TMAO should be elucidated using more patient-based
midbrain organoids. It is very interesting to see whether typical
disease phenotypes such as Lewy body formation, which were
difficult to reproduce in existing models, can be reproduced in
TMAO-induced aging models.

It is also possible that TMAO is involved in midbrain
aging but does not play an important role in PD pathogenesis.
Considering that the role of TMAO in AD has been reported
in mouse experimental animal models, it will be interesting to
compare specific responses in various neuronal regions using
regional specific organoids. By analyzing the TMAO response

for each cell level, it is also possible to study the interaction
between each cell type and the relationship between cellular
senescence, neurodegeneration, and late-onset of disease. The
absence of cell types such as blood vessels and microglia in
current midbrain organoids will still act as a limitation in disease
models using TMAO-induced aging.

In conclusion, we developed a TMAO-treated midbrain
organoid model as a novel method to study midbrain
aging in humans. The aging-like phenotypes of midbrain
organoids were confirmed by increased expression of senescence
markers, decreased expression tendency of repressive histone
markers, neural degeneration, and neuromelanin accumulation.
Although the TMAO-treated midbrain organoid model has
limitations in reflecting all complex factors of natural aging, it
will be useful for studying the mechanisms of brain challenges
in the aged gut environment. Moreover, the combination of
TMAO-induced aging organoids with genetic PD modeling,
such as the LRRK2 mutation, would provide an opportunity to
study the role of TMAO in the pathogenesis of PD, which could
be an advanced human PD model.
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Background: Aspects of cognitive function decline with age. This

phenomenon is referred to as age-related cognitive decline (ARCD).

Improving the understanding of these changes that occur as part of the

ageing process can serve to enhance the detection of the more incapacitating

neurodegenerative disorders such as Alzheimer’s disease (AD). In this study,

we employ novel methods to assess ARCD by exploring the utility of the

alpha3/alpha2 electroencephalogram (EEG) power ratio – a marker of AD, and

a novel virtual reality (VR) functional cognition task – VStore, in discriminating

between young and ageing healthy adults.

Materials and methods: Twenty young individuals aged 20–30, and 20 older

adults aged 60–70 took part in the study. Participants underwent resting-

state EEG and completed VStore and the Cogstate Computerised Cognitive

Battery. The difference in alpha3/alpha2 power ratios between the age

groups was tested using t-test. In addition, the discriminatory accuracy of

VStore and Cogstate were compared using logistic regression and overlying

receiver operating characteristic (ROC) curves. Youden’s J statistic was used

to establish the optimal threshold for sensitivity and specificity and model

performance was evaluated with the DeLong’s test. Finally, alpha3/alpha2

power ratios were correlated with VStote and Cogstate performance.

Results: The difference in alpha3/alpha2 power ratios between age cohorts

was not statistically significant. On the other hand, VStore discriminated

between age groups with high sensitivity (94%) and specificity (95%) The

Cogstate Pre-clinical Alzheimer’s Battery achieved a sensitivity of 89% and

specificity of 60%, and Cogstate Composite Score achieved a sensitivity

of 83% and specificity of 85%. The differences between the discriminatory

accuracy of VStore and Cogstate models were statistically significant. Finally,

high alpha3/alpha2 power ratios correlated strongly with VStore (r = 0.73), the
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Cogstate Pre-clinical Alzheimer’s Battery (r = -0.67), and Cogstate Composite

Score (r = -0.76).

Conclusion: While we did not find evidence that the alpha3/alpha2 power

ratio is elevated in healthy ageing individuals compared to young individuals,

we demonstrated that VStore can classify age cohorts with high accuracy,

supporting its utility in the assessment of ARCD. In addition, we found

preliminary evidence that elevated alpha3/alpha2 power ratio may be linked

to lower cognitive performance.

KEYWORDS

virtual reality, cognition, neuropsychological testing, ageing, age-related cognitive
decline, electroencephalography, alpha rhythm, cognitive markers

Introduction

Aspects of cognitive function decline with age (Murman,
2015), and these changes are not uniform across cognitive
domains (Glisky, 2007). Crystallised intelligence (i.e.,
cumulative skills and acquired knowledge) improves with
age and remains largely intact until late adulthood, whilst fluid
intelligence (i.e., reasoning and problem solving) gradually
diminishes (Murman, 2015). Evidence suggests that some fluid
abilities (e.g., reasoning, spatial visualisation) begin to decline
when healthy adults reach their late twenties and early thirties
(Salthouse, 2009). This phenomenon is commonly referred
to as age-related cognitive decline (ARCD). Improving the
understanding of these cognitive changes that occur as part of
the normal ageing process can serve to enhance the detection of
the more incapacitating neurodegenerative conditions such as
Alzheimer’s disease (AD).

Despite increased knowledge of the brain mechanisms
underlying neurodegenerative disorders, they are still
primarily diagnosed using a combination of standardised
neuropsychological assessments and subjective reports of
cognitive decline (Stothart et al., 2021). This is because
the assessment of biological markers, such as blood-based and
image-based markers of beta-amyloid, tau, microglial activation,
or glucose hypometabolism, often require more invasive
procedures, and are high in cost and limited in availability
(Frisoni et al., 2017). One technique, electroencephalography
(EEG) provides a non-invasive and cost-effective approach to
studying potential biomarkers. Indeed, a decline in cognition
can be detected by rhythmic changes in frequency band power
at rest (Babiloni et al., 2006). One promising EEG marker is the
elevated relative power ratio of the high and lower alpha (α3/α2)
band (Moretti et al., 2007). Increased α3/α2 power ratio was
found in those patients with mild cognitive impairment (MCI)
who converted to AD, but not in those who converted to non-
AD dementias or did not convert during a 3-year retrospective

follow-up study (Moretti et al., 2011a). In addition, increased
α3/α2 power has been linked to hippocampal atrophy in
patients with AD (Moretti et al., 2011b, 2012), and cognitive
decline in patients with MCI (Moretti et al., 2013). The α3/α2
power ratio, however, has never been studied in a healthy ageing
population; thus, it is unclear whether it is present in ARCD or
specific to MCI and AD.

Existing neuropsychological measures also have several
shortcomings. Standard assessments are prone to cultural bias
and test-induced anxiety (Dorenkamp and Vik, 2018; Ng
et al., 2018), lack ecological validity (Chaytor and Schmitter-
Edgecombe, 2003), and insensitive to early stage cognitive
dysfunction (Stothart et al., 2021). The most widely used
screening tool for dementia, the Mini Mental State Examination
(MMSE) (Folstein et al., 1975), is susceptible to both ceiling
and floor effects; its outcome is influenced by education
level, language, and cultural factors; and has no utility in
the assessment of complex cognitive functions (Woodford
and George, 2007). Newer computerised neuropsychological
assessments may be more sensitive to early stage cognitive
decline. The Cogstate Pre-clinical Alzheimer’s Battery –
measuring attention, processing speed, visual learning, and
working memory – can reliably differentiate between healthy,
MCI, and AD populations; with greater decline observed in
those who carry the apolipoprotein E gene (APOE) ε4 allele,
conferring increased for AD (Lim et al., 2012, 2015). However,
the Cogstate Battery also has its limitations, with a recent
prospective follow-up study showing that a single Cogstate
assessment was not useful in predicting elevated beta-amyloid
and tau levels in cognitively intact ageing individuals, while
only achieving moderate diagnostic accuracy in predicting
conversion from normal cognition to MCI with 77% sensitivity,
61% specificity (Stricker et al., 2020).

Cognitive assessments embedded in virtual reality (VR)
may provide a solution to some of limitations associated with
traditional neuropsychological testing. VR technology allows
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for the development of three-dimensional (3D), interactive
environments that resemble real-life situations, enhancing
ecological validity and engagement (Bohil et al., 2011; Parsons,
2015). 3D spatial navigation is inherent to VR (Slater and
Sanchez-Vives, 2016), placing additional cognitive load on the
player similar to those elicited by real-life scenarios (Armougum
et al., 2019). Indeed, a meta-analytic review found that VR
tasks engage a greater range of cognitive domains compared
to standard measures due to their increased complexity (Negut
et al., 2016a). These attributes make VR-based tests sensitive to
the early detection of dysfunctions in Instrumental Activities
of Daily Living associated with cognitive decline (Romero-
Ayuso et al., 2021). VR tasks have also demonstrated increased
sensitivity in ageing healthy adults (Negut et al., 2016b).
For example, age was the strongest predictor of performance
on a recently developed VR test, ECO-VR, as opposed to
education level or vocabulary skills (Oliveira et al., 2018).
We recently reported that a novel VR shopping task, VStore,
engages cognitive domains implicated in ARCD and AD, and
is highly sensitive to predicting chronological age, both as
a continuous and dichotomous outcome in healthy adults
(Porffy et al., 2022a).

In this study, we employ novel methods to assess cognition
in young and ageing cohorts of healthy individuals. First,
we assess the utility of the α3/α2 power ratio EEG marker
in ARCD. We expect that ageing participants have a higher
α3/α2 ratio compared to young volunteers. Second, we aim
to confirm our previous findings by testing whether VStore
can discriminate between the two age cohorts and compare its
discriminatory accuracy to Cogstate. Finally, to establish the
relationship between these functional behavioural measures and
EEG marker of cognition, we assess whether participants with
a higher α3/α2 ratio have a lower performance on cognitive
measures assessed by VStore and Cogstate.

Materials and methods

Participants

A total of 40 healthy volunteers aged 20–30 (n = 20) and
60–70 (n = 20) completed the study. Participants were recruited
from South London via advertisements in local businesses, and
on social media and local community websites. Participants
were excluded if they had (1) a diagnosis of any Axis I disorder
(DSM-5) (American Psychiatric Association, 2013), (2) alcohol
and/or substance use disorder, (3) clinically significant motion
sickness, (4) a neurological illness, (5) mobility issues, or (6)
were pregnant. The sample size was determined based on the
difference in overall VStore performance in our previous study
(Porffy et al., 2022a) – see SupplementaryMaterial 1. Hence, we
decided to recruit 20 participant per age group. This sample size

would give a sensitivity to detect an effect size of 0.91 or greater
in α3/α2 ratio.

Behavioural measures

VStore
VStore is an immersive VR (IVR) assessment measuring

functional cognition. The task takes approximately 30 min to
complete including orientation (10 min), practice (10 min),
and testing (10 min). Practice takes place in a virtual
courtyard, where participants learn how to move around
and manipulate objects. Once confident in the VR space,
participants are teleported to a virtual minimarket where they
complete the assessment.

At the start, 12 items are read out from a shopping list
by a virtual avatar standing by the shop entrance (Table 1).
The first task is to memorise and recall as many items from
this list as possible. Following verbal recall, participants are
presented with the shopping list and instructed to move around
the minimarket and collect the items as fast and accurate as
possible. Once all the items are collected, they are required to
select and pay for them at a self-checkout machine, providing
the exact amount. The task is completed by ordering a hot
beverage from the coffee shop situated at the back of the store.
The flowchart below summarises the steps required to complete
VStore, its corresponding domains of cognition and outcome
variables (Figure 1). Detailed information on VStore including
development, feasibility, acceptability, tolerability, apparatus
and software description, movement specification, and visual
illustration has been published elsewhere (Porffy et al., 2022a,b).

Cogstate
Cogstate is a computerised cognitive battery designed to

assess cognition across multiple domains. Cogstate is simple
to use; therefore, it is deemed to be suitable for assessing
older adults (Zygouris and Tsolaki, 2015). For the purposes
of this study, eight tasks were selected measuring processing
speed, attention, working memory, visual and verbal learning,
executive functions, and paired associated learning (Table 2).
Four of these – Detection, Identification, One Card Learning,
One-back – have been validated as a Pre-clinical Alzheimer’s
Battery (Lim et al., 2012). We, therefore, used these tasks
to calculate the Pre-clinical Alzheimer’s Battery score by

TABLE 1 VStore shopping list.

1. Cornflakes 7. Colgate yoothpaste

2. Tropicana orange juice 8. Red apple

3. Coca cola 9. Raspberry jam

4. Full fat milk 10. Baked neans

5. Tuna sandwich 11. Orange

6. Head and shoulders 12. Brown bread
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FIGURE 1

Flowchart depicting the steps required to complete VStore, its corresponding cognitive domains, and outcome variables. © Porffy et al. (2022b).
Originally published in the Journal of Medical Internet Research (https://www.jmir.org), January 26, 2022. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

TABLE 2 List of cogstate tasks, corresponding cognitive domains, and main outcome measures.

Code Task name Cognitive domain Outcome (metric)

DET Detection Processing speed Reaction time (log 10 ms)

IDN Identification Attention Reaction time (log 10 ms)

OCL One Card Learning Visual learning Accuracy (arcsine proportion)

ONB One-Back Working memory Reaction time (log 10 ms)

TWO Two-Back Working memory Accuracy (arcsine proportion)

CPAL Continuous Paired Associate Learning Paired associate learning Total number of errors

GMLT Groton Maze Learning Task Executive functions Total number of errors

ISLT International Shopping List Verbal learning Number of correct responses

standardising individual task scores and then averaging them
within the whole sample including both young and ageing
cohorts. We also generated a Composite Cogstate Score with the
same procedure including all eight tasks.

Wechsler abbreviated scale of intelligence I
Intelligence quotient (IQ) was measured by the abbreviated

version of the Wechsler Adult Intelligence Scale – first
edition (Wechsler, 1999). The Wechsler Abbreviated Scale of
Intelligence I (WASI-I) combines crystallised and fluid abilities
to derive an age relative IQ score. The subtests used included the
matrix reasoning and vocabulary tests.

Technological familiarity questionnaire
We developed a short questionnaire assessing technological

familiarity (Porffy et al., 2022a,b). The Technological Familiarity
Questionnaire (TFQ) includes 13 questions ascertaining the
frequency, comfort, and ability in technology use on a 5-point
scale. Higher scores indicate greater technological familiarity.
In the present study, the TFQ total score was used to index
of overall technological ability, while the item “how often do
you use VR” was used to compare the frequency of VR use

between age cohorts. The questionnaire’s internal consistency
was adequate (α = 0.83, 95% CI = 0.82–0.89).

EEG resting-state recording

EEG recordings took place between 10:00–12:00 to control
for time dependent electromagnetic fluctuations (Croce et al.,
2018). Data was acquired using Compumedics Neuroscan
SynAmps 64-channel amplifier. Participants were seated in a
comfortable chair located in an unlit Faraday Cage with a
computer monitor – displaying a fixation cross – 75 cm from
their eyes. EEG measurements were taken using a 64 electrode
Easycap, grounded to the AFz electrode. The channels were
arranged according to the standard 10–10 system, except that
some of the central electrodes (FC1, FC2, C1, C2, CP1, and CP2)
were replaced by sub-temporal electrodes (FT9, FT10, P9, P10,
POO9, and POO10) to better capture inferior temporal signals.
All electrodes were referenced to the left mastoid. Vertical
and horizontal eye movements were accounted for using an
electrode above and below the right eye, and one on the outer
canthus of the left eye. Impedance levels were reduced below
5 k�. Total recording time reached 4 min 30 s consisting of
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eyes open and closed data. On average, 2 min 30 s of eyes
closed data were obtained per recording. Participants were
instructed through a headphone to open or close their eyes in
30 s intervals to reduce fatigue and the slowing of alpha waves
(Ranlund et al., 2014). Data were acquired using a band pass
filter of 0–1,000 Hz at a sampling rate of 5,000 Hz, and later
digitised using a band-pass filter of 0.3–70 Hz at a sampling
rate of 250 Hz as per previous studies in this frequency range
(Moretti et al., 2012).

Procedures

Potential participants were pre-screened over the phone.
Those eligible were invited for a single, 4-hour-long study
visit. Informed consent was obtained at the start, followed
by demographics and a brief mental and physical health
history. EEG recordings were taken first, and the TFQ was
completed during cap fitting. Upon acquisition of the EEG
recording, participants were given a break to wash their hair
and take lunch. Following the break, VStore and Cogstate were
administered in a counterbalanced fashion, to minimise order
effect. Finally, participants completed the WASI. Volunteers
were compensated for their time and reimbursed for their travel
and sustenance. Ethical approval was granted by the Psychiatry,
Nursing and Midwifery Research Ethics Committee, King’s
College London (HR-18/19-11868).

Analysis

Behavioural data
Prior to data analysis, VStore outcomes measured in seconds

were log transformed to stabilise variance. Outliers for all main
VStore and Cogstate outcomes were defined using 2.5 standard
deviations (SDs) above or below the sample mean as cut-off.
Two participants, both in the 60–70 group, with outlier values
on more than one VStore outcome were completely removed
from all analyses. Additionally, a single extreme outlier value
was removed from the Two-Back Cogstate task (x = 0.51, normal
range = 0.84–1.77). For that participant, the Cogstate Composite
Score was calculated based on average performance across the
remaining 7 tasks. Furthermore, we found 3 more outliers
among main outcome variables – one on VStore Pay, one on
Cogstate Detection, and one on Cogstate Groton Maze Learning
Task (Supplementary Material 2). For these, sensitivity analysis
was carried out to establish whether they had impacted results.
Descriptive statistics for VStore and Cogstate are presented in
the supplementary (Supplementary Material 3–5).

Differences in demographic characteristics between age
cohorts were tested using independent samples t-test and
Chi-square. Group differences in cognitive performance – as
measured by the Pre-Clinical Alzheimer’s Battery, Cogstate
Composite Score, and main VStore outcomes – were tested

using independent samples t-test. The alpha level was adjusted
using Bonferroni correction. Differences in VStore outcomes
were considered significant at α = 0.009, and at α = 0.025
for Cogstate. Bootstrapped effect sizes (nboot = 1000)
were calculated for each outcome using Hedges’s g. To
establish VStore’s discriminatory accuracy, we built a logistic
regression model using VStore Total Time as a predictor
of group status (GroupStatus ∼ VStore_T_Total). VStore
Total Time was selected to represent a composite measure
of overall performance. We repeated the procedure for the
Cogstate batteries (GroupStatus ∼ Cogstate_Alz; GroupStatus
∼ Cogstate_Comp) and generated three overlying ROC curves.
The analysis was repeated with the TFQ included to test its
influence on results. Youden’s J statistic was used to establish
the optimal threshold for sensitivity and specificity and model
performance was compared with the DeLong’s test.

EEG data
Pre-processing and spectral analysis were carried out

in EEGLAB and MATLAB (Delorme and Makeig, 2004;
MATLAB, 2021). We removed ocular and power-line noise
using independent component analysis. Next, we re-referenced
to the average of left and right mastoids, and manually
rejected any remaining artefacts and eyes open data. A Fast
Fourier Transform-based power spectrum analysis calculated
the spectral power density of the EEG rhythms with a frequency
range of 2–40 Hz and a 0.5 Hz frequency resolution. The
theta/alpha (θ/α) transition frequency (TF) and individual
α frequency (IAF) were used as anchors to identify the
subdivisions of the extended alpha spectrum (Klimesch, 1999).
TF was computed as the minimum power within the extended
α range (5–14 Hz) across all 64 channels. This identified where
the θ/α frequencies intersect. IAF was computed as the highest
averaged power, representing the “peak” within the same α

frequency range. Using the TF and IAF, we isolated the absolute
α3 and α2 band subdivisions. This was done by averaging the
power values between the IAF to IAF+ 2 hz for the α3 frequency
band and calculating the same average between the middle point
of the TF-IAF range to the IAF peak for the α2 frequency
band (Moretti et al., 2007). Finally, relative spectral power was
calculated for both for α3 and α2 band subdivisions by first,
using the ratio between the absolute power for each frequency
bin and mean spectra power from 2–45 hz, and then establishing
the mean relative band powers from each frequency bin in
that specific frequency band. The EEG dataset consisted of 35
participants. One participant was an outlier on both VStore and
α3/α2 spectral power ratio outcomes (i.e., negative value for
α3/α2), one person did not complete the EEG recording, and
further three participants were excluded based on poor EEG
data quality (i.e., no clear IAF peak). In total, 4 participants were
removed from the 60–70 cohort and 1 participant was removed
from the 20–30 cohort.

The remaining sample was assessed further for outliers.
Values for two participants were found to be 2.5 SDs above
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the group mean (Supplementary Material 2). Again, sensitivity
analysis was applied to establish their influence on results.
First, α3/α2 power ratios were compared between age cohorts
using independent samples t-test. The effect size was calculated
using Hedges’ g. Second, Pearson’s correlations were used to
assess the associations between the α3/α2 ratios and VStore
Total Time, and the Cogstate Pre-clinical Alzheimer’s Battery
and Composite Scores across the total sample. As per previous
research (Moretti et al., 2012, 2013; Moretti, 2015b), we then
grouped α3/α2 power ratios according to increasing tertiles. The
boundaries were selected to create three equal groups classified
as low (α3/α2 < 0.94, n = 12), mid (0.94≤ α3/α2≤ 1.02, n = 11),
and high (α3/α2 ≥ 1.02, n = 12) α ratio. Chi-square test was
used to assess the relationship between α3/α2 tertile groups and
age cohort status. Finally, grouped α3/α2 ratios were separately
correlated with VStote Total Time and the Cogstate batteries to
establish how they relate to cognitive performance.

Results

Demographics

Demographic information for both cohorts is presented
in Table 3. There was a significant difference in IQ and
technological familiarity between groups. However, the
frequency of past VR use was not higher in the 20–30 age cohort
(16 never used VR) compared to the 60–70 age cohort (15 never
used VR), X2

(1) = 0, p = 1. The 60–70 age group only included
people from a White ethnic background (n = 18, 100%), the
20–30 age group also included individuals from Asian (n = 5,
25%) and Mixed (n = 3, 15%) backgrounds.

Group differences in cognitive
performance

The 60–70 age cohort were significantly slower on VStore
outcomes Find, Select, Coffee, and Total Time compared to

TABLE 3 Sample characteristics.

20–30 60–70 Statistics

N, count (%) 20 (53%) 18 (47%) –

Age, mean (SD) 24.1 (3.0) 65.8 (2.4) –

Gender, count
(%)

10F (50%) 9F (50%) X2
(1) = 0, p = 1

IQ, mean (SD) 117.6 (8.2) 125.3 (7.1) t(35 .9) = –3.085, p = 0.004

Education years,
mean (SD)

16.1 (2.5) 16.2 (3.5) t(30 .1) = –0.172, p = 0.865

Technological
familiarity,
mean (SD)

45.9 (6.2) 39.1 (9.0) t(29 .8) = 2.570, p = 0.012

the 20–30 age cohort (Table 4). In addition, older volunteers
achieved a lower score on the Cogstate Pre-clinical Alzheimer’s
Battery and had a lower Cogstate Composite Score. Results were
unchanged following the removal of outliers. To further assess
how performance on VStore relates to age in the 60–70 cohort,
we run a Person’s correlation between age and VStore Total
Time (Supplementary Material 6).

Group differences in α3/α2 ratio

The α3/α2 power ratios in the 20–30 age cohort
(mean = 0.97, SD = 0.09) did not significantly differ from
α3/α2 power ratios in the 60–70 cohort (mean = 1.07,
SD = 0.26), t(18.3) = -1.514, p = 0.147 (Hedges’ g = -0.518,
95% = -1.14–0.12).

Age cohort classification

Figure 2 presents the discriminatory accuracy for VStore
and Cogstate. VStore achieved a sensitivity of 94% and
specificity of 95% at the optimal threshold of 0.47. The Cogstate
Pre-clinical Alzheimer’s Battery achieved a sensitivity of 89%
and specificity of 60% at the optimal threshold of 0.37. Finally,
the Cogstate Composite Score achieved a sensitivity of 83%
and specificity of 85% at the optimal threshold of 0.38. The
differences between the VStore model and both Cogstate models
were statistically significant (Pre-Clinical Alzheimer’s Battery:
z = 2.498, p-value = 0.013; Cogstate Composite Score: z = 2.020,
p-value = 0.043). Outliers did not have an impact on results, and
the inclusion of the TFQ did not alter VStore findings. However,
the TFQ decreased sensitivity (67%) and increased specificity
(85%) for the Cogstate Pre-clinical Alzheimer’s Battery, and
increased sensitivity (94%) and decreased specificity (70%) for
the Cogstate Composite Score. The AUC remained similar for
all 3 models (< 1% difference).

Relationship between α3/α2 power
ratios and cognitive performance

Across the complete sample, a significant positive
association was found between α3/α2 power ratios and
VStore Total Time; r = 0.35, p = 0.04. This finding was
primarily driven by the moderate association between VStore
Total Time and α3/α2 power ratios in the 60–70 cohort:
r = 0.36, p = 0.17 (Figure 3). The relationship between
VStore Total Time and α3/α2 power ratios; however, was
no longer significant following the removal of outlier values;
r = 0.16, p = 0.38. No correlation was found between α3/α2
power ratios and the Cogstate Composite Score; r = -0.14,
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TABLE 4 Group differences in cognitive performance between participants aged 20–30 vs. 60–70.

20–30
Mean

60–70
Mean

t p-value Hedges’ g
(95% CI)

VStore recall 6.25 5.50 1.103 0.278 0.35 (-0.40–0.99)

VStore find 5.84 6.27 7.189 < 0.001 2.29 (1.38–3.03)

VStore select 4.63 5.10 4.974 < 0.001 1.58 (0.55–2.38)

VStore pay 2.90 3.07 1.280 0.209 0.41 (-1.05–0.38)

VStore coffee 3.34 3.78 3.902 < 0.001 1.23 (0.40–1.93)

VStore total 6.21 6.64 7.841 < 0.001 2.48 (1.50–3.25)

Cogstate alzheimer 0.42 –0.41 3.689 < 0.001 1.19 (0.50–1.80)

Cogstate composite 0.47 –0.45 4.496 < 0.001 1.44 (0.54–2.17)

Recall is presented as the number of correct responses. Find, Select, Pay, Coffee, and Total are presented in log transformed seconds.

FIGURE 2

VStore and Cogstate models predicting age group belonging.

p = 0.43; or Cogstate Pre-clinical Alzheimer’s Battery; r = -0.13,
p = 0.45.

There was no relationship between α3/α2 ratio classification
and age cohort status, x2

(2) = 1.237, p = 0.538 (Table 5).
VStore Total Time showed a significant positive correlation
with α3/α2 power ratios classified as high (r = 0.73, p = 0.01),
but not with ratios in the mid (r = -0.32, p = 0.34), and
low (r = -0.46, p = 0.13) ranges (Figure 4). A similar

trend was observed with the Cogstate Pre-clinical Alzheimer’s
Battery, showing a significant association with high α3/α2
power ratios (r = -0.67, p = 0.02), but not with ratios
in the mid (r = -0.12, p = 0.72), and low (r = 0.13,
p = 0.69) ranges (Figure 5). The Cogstate Composite Score
also showed a significant relationship with high α3/α2 power
ratios (r = -0.76, p < 0.001), but not with mid (r = 0.08,
p = 0.82), and low (r = 0.19, p = 0.56) ratios (Figure 6).

Frontiers in Aging Neuroscience 07 frontiersin.org

123

https://doi.org/10.3389/fnagi.2022.876832
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-876832 September 16, 2022 Time: 16:18 # 8

Patchitt et al. 10.3389/fnagi.2022.876832

FIGURE 3

Correlations between VStore Total Time and α3/α2 ratios stratified by age group.

These results were somewhat altered following the removal of
outliers, showing that VStore Total Time had the strongest
association with the high α3/α2 power ratios (r = 0.74,
p = 0.01), followed by the Cogstate Pre-clinical Alzheimer’s
Battery (r = -0.64, p = 0.04), and Cogstate Composite Score
(r = -0.58, p = 0.06).

Discussion

To our knowledge, this is the first study to investigate
α3/α2 resting state spectral power ratios in a healthy ageing
cohort. Previous studies found elevated α3/α2 power ratios
in individuals diagnosed with MCI and AD (Moretti et al.,

TABLE 5 Frequency distributions of α3/2 power ratio
tertiles by age group.

Cohorts α3/2 tertiles

Low Medium High Total

20–30 7 7 5 19

60–70 5 4 7 16

Total 12 11 12 35

2011b). We were unable to replicate these findings in healthy
ageing adults. Previous, studies also showed that a high
α3/α2 spectral power ratio is related to hippocampal atrophy
(Moretti, 2015a). Given that participants in this study were
high functioning, healthy adults, age-related changes may
not have been pronounced enough to alter α3/α2 power.
It is possible that the association between ageing and the
high α3/α2 spectral power ratio is due to a degenerative
process and is a marker of disease (Moretti et al., 2011a).
Although to test this hypothesis, another sample of healthy
participants and patients with MCI and AD would have
to be tested on the EEG marker, hippocampal atrophy
(Frisoni et al., 2008), and cognitive outcomes. Alternatively,
negative findings could be due the lack of power to detect
a difference in α3/α2 power ratios between age cohorts. In
support, in healthy ageing individuals, evidence suggests that
clusterin (CLU) gene polymorphisms, which increases AD
risk, elevates α3 absolute power (Ponomareva et al., 2013).
In addition, ageing has been linked to a decrease in α2
frequency power in multiple regions including limbic areas
(Babiloni et al., 2006).

Receiver operating characteristic curve analysis revealed
that VStore is highly sensitive and specific to the classification
of the two age cohorts, more so than Cogstate, supporting
its potential utility in the assessment of ARCD. These
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FIGURE 4

Correlations between VStore Total Time and α3/α2 ratios stratified by tertiles.

results confirm our previous findings (Porffy et al., 2022a),
adding to a body of evidence that VR assessments may
have an increased sensitivity in ageing healthy adults
(Negut et al., 2016b). Indeed, the older cohort were slower
to complete all VStore tasks, except making the payment.
The VStore Pay outcome – engaging working memory,
executive functions, verbal learning, and requiring fast
processing speed – was amongst the weakest predictors of
age as a continuous outcome in the previous study (Porffy
et al., 2022a). This outcome, therefore, is likely to be less
sensitive in ARCD. Interestingly, there was no marked
difference between age cohorts in the number of VStore
items correctly recalled. This is somewhat unexpected as
verbal episodic memory tends to decline with age (Celsis,
2000). The lack of significant finding may be explained
by the fact that the older cohort had a high verbal IQ on
average, which may protect against memory decline (Boyle
et al., 2021). Alternatively, immediate recall may not be as
sensitive to cognitive decline as delayed recall (Gomar et al.,
2011). Taken together, these findings suggest that assessments
embedded in VR are sensitive to cognitive decline associated
with ageing (Negut et al., 2016b; Oliveira et al., 2018; Porffy
et al., 2022a), and also potentially provide valid concurrent

measurement of everyday functioning (Romero-Ayuso et al.,
2021); therefore, utilising this technology may enhance the
early detection of subtle changes in cognition and related
functional decline.

When we combined the EEG data from both cohorts,
α3/α2 power ratios classified as high (≥ 1.02) showed a
strong positive correlation with VStore Total Time, and
strong negative associations with the Cogstate Pre-clinical
Alzheimer’s Battery and Composite Score. This suggests that
elevated α3/α2 power ratios may be related to poorer cognitive
performance. The relationship between α3/α2 power ratios
and cognition has not been directly investigated in healthy
individuals. However, in MCI those with a high α3/α2
power ratio, cognitive test performance correlates with cortical
thickness (Moretti et al., 2013), providing indirect evidence that
increased α3/α2 power may relate to a decline in cognition.
Generally, changes in alpha power are linked to ageing as
well as neurogenerative disorders, and lower alpha frequency
correlates with poor memory and slow speed of processing
(Klimesch, 1999). Alpha oscillation has also been linked to
cognitive test performance on tasks probing attention, episodic
memory, and executive functions in subjective and MCI
(Babiloni et al., 2010). These domains are engaged during
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FIGURE 5

Correlations between the Pre-clinical Alzheimer’s Battery and α3/α2 ratios stratified by tertiles.

VStore (Porffy et al., 2022a), which may explain the strong
relationship between the EEG marker and VStore performance.
Taken together, these findings suggest that VStore may be a
useful screening tool for those whose α3/α2 power ratios may
be elevated due hippocampal atrophy. However, this theory
would have to tested.

There are some limitations to consider. VStore’s high
discriminatory accuracy may partly be due lower levels of
technological proficiency in ageing adults (Olson et al., 2011).
Indeed, ageing participants scored lower on technological
familiarity. We tried to attenuate any potential confounding
effects by providing sufficient practice time prior to assessment.
In addition, we reran discriminatory models with the TFQ
included. The addition of the TFQ did not have an impact
on VStore results, suggesting that the high discriminatory
accuracy was not simply due to differences in technological
familiarity. This is in line with our previous findings
indicating that the variance associated with technological
familiarity is already captured in statistical models of VStore
(Porffy et al., 2022a). In addition, we reported that past
VR use was not more frequent in the young age group
relative to the ageing cohort. Nonetheless, we cannot rule
out that VStore, like any other digital assessment, may

potentially underestimate the cognitive abilities of older
adults. Furthermore, the sample included self-selecting ageing
individuals and young students and professionals; therefore, it
may not be completely representative of the general population.
Opportunistic sampling tends to capture volunteers who are
physically and mentally capable of attending and likely to
exclude low functioning agers. Such problems are pervasive
in this type of research (Murman, 2015), and could have
affected EEG findings.

In conclusion, we did not find evidence that the α3/α2
spectral power ratio is elevated in healthy ageing individuals
compared to young individuals. However, this may be due
to the lack of sufficient statistical power, or the relatively
high functioning of our volunteers. Further studies comparing
cognitively intact young and ageing adults to patients with
MCI and AD are needed to establish whether an increase
in α3/α2 spectral power ratio is present in healthy ageing,
supplemented with the measurement of hippocampal volumes.
Despite these limitations, we confirmed previous findings
showing that VStore can classify age cohorts with high accuracy,
further supporting its utility in the assessment of ARCD.
High-quality prospective studies are needed to establish whether
VStore and other similar IVR assessments can detect early
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FIGURE 6

Correlations between the Cogstate Composite Score and α3/α2 ratios stratified by tertiles.

stage cognitive decline and provide a prognostic value in
predicating transition to MCI and AD. Finally, we were able
to establish that an increase in α3/α2 power ratio has a strong
association to lower cognitive performance, suggesting that
the marker may generally be useful in assessing cognitive
decline.
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Electrophysiological and behavioral alterations, including sleep and

cognitive impairments, are critical components of age-related decline

and neurodegenerative diseases. In preclinical investigation, many refined

techniques are employed to probe these phenotypes, but they are often

conducted separately. Herein, we provide a protocol for one-time surgical

implantation of EMG wires in the nuchal muscle and a skull-surface EEG

headcap in mice, capable of 9-to-12-month recording longevity. All data

acquisitions are wireless, making them compatible with simultaneous EEG

recording coupled to multiple behavioral tasks, as we demonstrate with

locomotion/sleep staging during home-cage video assessments, cognitive

testing in the Barnes maze, and sleep disruption. Time-course EEG and

EMG data can be accurately mapped to the behavioral phenotype and

synchronized with neuronal frequencies for movement and the location to

target in the Barnes maze. We discuss critical steps for optimizing headcap

surgery and alternative approaches, including increasing the number of

EEG channels or utilizing depth electrodes with the system. Combining

electrophysiological and behavioral measurements in preclinical models of

aging and neurodegeneration has great potential for improving mechanistic

and therapeutic assessments and determining early markers of brain disorders.

KEYWORDS

electroencephalogram (EEG), mouse behavior, PhenoTyper, sleep, Barnes maze,
wireless, aging
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1. Introduction

Electrophysiological changes and disruptions in brain
networking are associated with age-related cognitive
decline and the development of neurodegenerative diseases
(López-Sanz et al., 2019; McMackin et al., 2019; Saxena
and Liebscher, 2020). Oscillatory signals captured by
electroencephalography (EEG) correlate with behavioral
deficits in patients with dementia and Alzheimer’s disease
(AD), and in animal models, and include alterations in
neuronal frequency activity and power, cross-frequency
coupling, and lagged-phase synchronization (Jeong, 2004;
Canolty and Knight, 2010; Hamm et al., 2015; Hata
et al., 2016). Impairments in EEG signals can even be
observed in people with mild cognitive impairment, a
precursor to dementias like Alzheimer’s disease, making
this a potentially useful tool for the early detection of
dementia and neurodegeneration where subtle perturbations
precede canonical disease neuropathology (Nakamura
et al., 2018; Gaubert et al., 2019; van der Zande et al.,
2020; Meghdadi et al., 2021). Despite the mounting
evidence of neuronal network dysfunction affecting
learning and memory in neurological and psychiatric
disorders, preclinical techniques for longitudinal in vivo
electrophysiological and behavioral assessments in freely
moving animals are under utilized. This limits the ability
to identify multimodal, synchronous changes such as
electrophysiology and behavior affected by age and disease
progression.

One such prominent contributor to, and the outcome
of, neuronal network dysfunction is sleep abnormalities,
which have long been known to occur (∼50–60 years) in
brain disorders (Ginzberg, 1955; Kupfer and Foster, 1972;
Wang et al., 2015). Normal aging is associated with sleep
disturbances in the daily sleep–wake cycle; however, the sleep
loss associated with AD appears to be an exacerbation of
these changes (Vitiello and Borson, 2001). Dementias are
associated with hyperarousal states, including increased night-
time awakenings, decreased rapid eye movement (REM), and
non-REM (NREM) sleep, in particular, delta-wave-dominant
slow wave sleep or NREM stage 3 (Vitiello et al., 1991;
Vitiello and Borson, 2001; Carter et al., 2010). These stages
are normally critical for the cognitive and restorative benefits
of sleep (Walker and Stickgold, 2004; Brown et al., 2012;
Tononi and Cirelli, 2014). In fact, over 60% of patients
with mild cognitive impairment or dementia report sleep
disruptions, including a ∼45–50% prevalence of insomnia
(Guarnieri et al., 2012). The presence of sleep impairments
confers a high risk for mild cognitive impairment and AD,

Abbreviations: AD, Alzheimer’s disease; EEG, electroencephalography;
EMG, electromyography; NREM, non-rapid eye movement; REM, rapid
eye movement; SD, sleep disruption; TTL, transistor-transistor logic.

notably in the development of AD biomarkers, 3.78× (Bubu
et al., 2017), adding to the importance of investigating early
EEG changes as it relates to behavioral changes. The correlative
relationship between sleep and neurodegenerative disease may
reciprocally drive disease progression, in which loss of sleep can
exacerbate neurodegenerative processes, and the accumulation
of proteinopathy can contribute to sleep impairments (Musiek
and Holtzman, 2016; Minakawa et al., 2019). Critically, sleep
disruption and hyperarousal are associated with aging and
contribute to impaired cognitive performance in an array
of neurodegenerative (i.e., AD, frontotemporal dementia, and
Parkinson’s disease) and psychiatric disorders (i.e., depression
and schizophrenia) (Liu et al., 2004; Ju et al., 2014; Chahine
et al., 2017; Fang et al., 2019; Waite et al., 2020; Wainberg et al.,
2021).

Electroencephalography and behavioral testing have
been frequently employed to research many disorders
pre-clinically (Hamm et al., 2015; Pinnell et al., 2015,
2016; Xu et al., 2015; Kent et al., 2018; Medlej et al.,
2019; Vorobyov et al., 2019; Buenrostro-Jáuregui et al.,
2020; Garcia-Cortadella et al., 2021). Yet, in the study
of aging and neurodegenerative disease, improving these
techniques to preserve signal consistency over long periods
of time is desirable. Furthermore, there is a need for
these EEG recordings to be conducted in freely moving
animals, facilitating a multitude of small and large arena
behavioral tasks (i.e., Barnes maze) and providing a strong
correlate of clinical assessments (Helfrich and Knight,
2019; Beppi et al., 2021). Herein, we employ a wireless
EEG/EMG electrode headcap system to obtain high-
quality longitudinal (up to 12 months post-surgery) EEG
data from mice and describe the utility of combinatorial
recordings during sleep, behavioral, and cognitive paradigms
(Figure 1).

2. Materials and equipment

2.1. EEG headcap surgery

1. 2EEG/1EMG (stainless steel leads) headcaps (8201,
Pinnacle Technology Inc.) – x1/mouse.

2. Anterior stainless steel electrode screws 0.10′′ (Pinnacle
Technology Inc.) – x2/mouse.

3. Posterior stainless steel electrode screws 0.12′′ (Pinnacle
Technology Inc.) – x2/mouse.

4. Flathead screwdriver, 1-mm head-size (available from
Pinnacle Technology Inc.).

5. Stereotaxic frame, with nose cone for isoflurane and
blunted ear bars.

6. Surgical tools (autoclaved or hot bead sterilized): scalpel
handle and type #11 blade, fine forceps x3, curved forceps,
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iris scissors, syringes (1 and 3 mL), and needles (23 and
30 g), hemostat, cotton swab x3–5/mouse.

7. Adhesives: cyanoacrylate Vetbond (various suppliers), 2-
part epoxy (Pinnacle Technology Inc.), dental acrylic
powder and jet liquid OR other dental cement (various
suppliers); weigh boats and paintbrushes.

8. Animal care: Systane Gel lubricant eye gel (Alcon),
fur clippers, ethanol (70%), Betadine scrub, Betadine
solution, heat pad for mice, Dermachlor Rinse (Butler),
sutures, recovery cage, alcohol wipes, and weighing scale;
anesthetic: isoflurane; analgesic: Metacam, 5 mg/kg [dilute
1:10; the quantity injected is mouse weight (g) divided
by 100]; local anesthetic: Bupivacaine, 1–2 mg/kg 0.125%
(dilute 1:2; 0.1 mL injections along incision site); sterile
gauze x3/mouse and sterile saline.

2.2. EEG recording equipment

1. Reusable potentiostat, Bluetooth USB dongle, battery caps
(8274, Pinnacle Technology Inc.). We have tested up to 4
simultaneous 8274 recordings, with a potential for upward
of 16 on one computer depending on Bluetooth traffic.

2. Zinc air batteries (Size 13, PR48, 1.45V; available from
Pinnacle Technology Inc.).

3. Sirenia R© Acquisition software (Pinnacle Technology Inc.).
4. Sirenia R© Sleep Pro (Pinnacle Technology Inc.).

2.3. Behavioral equipment

1. PhenoTyper home cage and computer (Noldus).
2. Barnes maze (Maze Engineers): spatial cues, escape box,

overhead light (LED; 5000K, 4000 lumen), camera, and
computer (Noldus).

3. EthoVision XT15 software (Noldus).

3. Methods

3.1. Animals

All animal experiments were conducted in accordance
with the ethical standards of the Canadian Council on
Animal Care guidelines and approved by the Animal Care
Committee of CAMH (Protocol #850). Mice were housed
in a 12-h light:dark-cycle with ad libitum access to chow
and water. For longevity analysis, 12 C57bl/6J mice (sex-
balanced) underwent headcap surgery at 3.5 months of
age. Of the 12, 6 were transgenic AppNL−F/NL−F knock-
in mice bred in-house (Saito et al., 2014) and 6 were
non-transgenic mice (Jackson Laboratory). Ordered mice

were allowed to habituate to the facility for 1.5 months
prior to data collection. Four additional C57bl/6J female
mice bred in-house were utilized for the optimization
and validation of the EEG/EMG surgical technique
and data analysis. To compare dark-cycle mobility
without headcap and potentiostat, one additional non-
transgenic mouse was utilized (female; bred in-house).
Surgical implantation was successful in transgenic and
non-transgenic, for both female and male mice; no sex
differences were reported for frequency distribution or
longevity of signal (refer to results section 4.1). Table 1
summarizes mouse groupings utilized herein and the
current surgical attrition rate (4.76%) for experiments
following technical optimization and the completion
of the present study. We report results with sex and
genotype grouped together as our objective was to assess
the longevity and viability of combining headcap recordings
with behavior.

3.2. EEG headcap surgical procedure

Objective: 2EEG/1EMG headcap implantation allowing
longitudinal recordings. Note: The surgical procedure was
adapted from the information made available by Pinnacle
Technologies Inc.

1. Ensure surgical equipment is sterilized and proper aseptic
technique is followed.

2. Anesthetize the mouse in an isoflurane chamber (5%
induction, 1% oxygen) and then transfer them to
nosecone delivery.

3. Lower isoflurane to 3% and monitor the depth of
anesthesia (i.e., toe pinch and breathing); isoflurane can
now be adjusted downward in 0.25% intervals while
maintaining the anesthetic plane. Once on the stereotaxic
frame, maintain isoflurane at 1.25–2% while monitoring
for the depth of anesthesia. Alternate anesthetics may be
utilized but were not tested herein.

4. Weigh the mouse and then inject analgesic Metacam,
5 mg/kg (diluted 1:10), and saline (0.5 mL) subcutaneously.

5. Apply Systane Gel ointment on the eyes.
6. Inject local anesthetic Marcaine (bupivacaine), 1–2 mg/kg

0.125% (diluted 1:2); subcutaneously at the incision site
(∼0.1–0.2 mL).

7. Using the clippers, shave away the fur on the
top of the head.

8. Align the mouse in the stereotaxic frame, ensure the
skull top is flat, and use a heat pad to maintain body
temperature.

9. Clean the incision site with betadine scrub, then 70%
ethanol, and then betadine solution.
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10. Make a ∼1.5-cm incision using the scalpel blade
along the skull midline, starting posterior to eyes until
just past lambda.

11. Using a cotton swab, pull the skin to the sides to reveal the
skull surface to avoid curling.

12. Dip another cotton swab in 70% ethanol to dry the
skull surface (this ensures a strong adhesion of Vet Bond
with potentiostat).

13. CRITICAL STEP: To align the placement of the headcap,
use forceps to position the headcap with anterior screws
to be embedded in the skull on top of the prefrontal
cortex [(Bregma −2–2.5 mm AP, 1.5 ML (over both
hemispheres)] and posterior screws to be anterior to
lambda [(Bregma 3.5–4 mm AP, 1.5 ML (over both
hemispheres)] above the retrosplenial and visual cortices
(see Figure 1). A dye can be used to help landmark screw
placement. Note: when the mice are small (20–25 g) it is
advantageous to place the headcap as anterior as possible
(before the skull becomes too narrow) to ensure that
both anterior and posterior screws are above the cortex.
If the posterior screws are further back where the cortex
falls away and/or above the cerebellum, EEG activity on
these channels will be too low in amplitude. Note: right
hemisphere anterior and posterior screws confer signal for
EEG2 and EEG1 channels, respectively; left hemisphere
anterior and posterior screws confer signal for ground
and EEG common (for reducing noise in the EEG1 and 2
channels), respectively.

14. Apply 1–2 drops of Vet Bond to the underside of the
headcap once positioning is landmarked. Try to use as little
as possible in order not to cover the screw holes, and leave
it for 10 min for drying/curing.

15. CRITICAL STEP: Tap electrode screw holes with a 23 g
needle, gently pushing down through the headcap holes
to partially penetrate the skull surface. Rotate the needle
lightly until there is mild resistance to create a pilot hole
for the screw. Insert one screw at a time into the hole with
fine forceps and use a 1-mm screwdriver to lower it into the
hole. If it grips the skull (should feel minor resistance), then
lower it until the screwhead is approximately halfway to the
base of the headcap. If the screw is not gripping, continue
to tap the hole with a needle and re-attempt the placement
of the screw. Repeat for each screw until all 4 (2 anterior
and 2 posterior) are in place.

16. Prepare epoxy fresh each time: mix 2 parts in a weigh
boat with a paintbrush, stirring vigorously for 1 min. Note:
Ensure epoxy is ready, this may require mixing or agitation
of syringes first prior to application.

17. CRITICAL STEP: Apply a very small amount of epoxy
to the screws using a fine gauge needle (e.g., 30 g needle
on a 3-mL syringe as an applicator) on the outermost
corner of the screw hole on the headcap so that it touches
the threaded shank of the screw and connect the epoxy

on the base of the headcap to the screwhead, ensuring a
continuous seal. Repeat for each screw. Allow the epoxy
to set for 15 min before applying dental acrylic. Note:
do not let the epoxy from one screw contact another;
a very minimal amount of epoxy is applied to not
impede the signal.

18. Tighten screws so that the screwhead rests
on the board base.

19. Placement of EMG wires in nuchal muscles: bend wires
gently with fine forceps approximately half to two-thirds
up so that the tip half is angled down (in line with
how the neck is positioned in the stereotaxic frame) and
laterally. With curved forceps make a pocket in the nuchal
muscle and with fine forceps place the wire inside the
pocket, ensuring that majority of the wire is within and
covered by the muscle and not just under the skin. Repeat
for the other wire.

20. CRITICAL STEP: Prepare dental acrylic/cement to apply
to and insulate and protect screw electrodes: dip a small
paintbrush in jet liquid and use a wet brush to pick up a
small ball of acrylic powder, repeat dipping and picking up
powder until the powder forms a gelatinous/viscous liquid
ball for easier application. Apply to cover the screws and
the base of the headcap, shaping it to continuously cover
these parts and seal them to the skull.
(a) Note: do NOT get acrylic on the top of the headcap
(will block plugging-in of the potentiostat) or to the sides
(will make it more difficult to grip the headcap when
restraining the mice).
(b) Note: covering the exposed edges of the EMG wires can
help secure the wires and the headcap.
(c) Note: over time (5+ months), the dental cement can
wear away, so applying a full amount and ensuring the
headcap is secured at the onset can help maintain the
headcap placement. It is recommended to check every
3 months post-surgery and re-apply cement at least 1 week
prior to collecting recordings.
(d) Note: pull the skin away from cement to
prevent it from fusing.

21. Suture the edges of the incision (typically only 1 suture is
needed near the ears to close the skin above the back of the
skull and the edges of EMG wires, check if an additional
suture is necessary here and/or at the rostral end of the
incision near the eyes).

22. Remove the mouse from the isoflurane and the stereotaxic
frame and place them in a heated, clean cage for recovery.

23. During recovery: provide an additional injection of saline
(0.5 mL) and Metacam analgesic [5 mg/kg (diluted 1:10)].
Use Dermachlor rinse or other topical antiseptics along the
incision site and apply dropwise with minimal amounts.

24. Monitor recovery and post-op (additional analgesic
as needed). Most mice recover within 30–45 min
and exhibit normal behavior/are fully adapted
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FIGURE 1

Concurrent EEG/EMG recordings with behavioral testing in mice. Schematic of the method employed. Mice underwent stereotaxic surgery to
implant a headcap with two EEG channels and EMG wires in the nuchal muscle. EEG signal was derived from four stainless steel screw
electrodes implanted at Bregma –2–2.5 mm AP, 1.5 ML, and Bregma 3.5–4 mm AP, 1.5 ML, as approximately indicated by the red ×markings.
A lightweight and small headcap was connected to the screws on the skull top and secured with dental cement. At the time of recording, a
wireless potentiostat was plugged-in to acquire oscillatory signals. The EEG and EMG data can be utilized to assess alterations in neuronal
frequency and sleep staging. Critically, the EEG/EMG system exhibits 9-to-12-month longevity and does not impede mice movement, allowing
simultaneous electrophysiological and behavioral testing. In the present study, we demonstrate a combination of EEG/EMG recordings with
home-cage locomotion, sleep assessments at baseline and after disruption, nesting, and, notably, during cognitive testing in the Barnes maze.
We propose this system is feasible for concurrent recordings in a multitude of behavioral tasks beyond those investigated in the current study.
Created with BioRender.com.

to the headcap at 24 h. Wait 5–7 days before
handling and recording.

3.3. EEG/EMG recording and alignment
with behavioral assessments

Objective: To set up recordings in time with behavioral
assays and ensure the quality of the signal.

1. CRITICAL STEP: Pre-handling of mice is highly
recommended to habituate the mouse and reduce stress
when the experimenter must restrain it to plug-in
potentiostats. Place the mouse on a cloth and keep a light
grip on the base of the tail. After a few seconds, grip
the sides of the headcap with a straight hemostat while
maintaining a grip on the base of the tail. Practice letting
go of the tail and keeping the mouse restrained via the
grip on the headcap. This is when the potentiostat would
be plugged in. Repeat for 3–5 days, 1–2× per day. Note:
if the mouse is aggressive and/or repetitively jerking their
head, release until agitation has lowered and try again.

2. On the day of recording, prepare for recording: connect
USB dongles to the computer and open Sirenia R©

Acquisition software.
3. CRITICAL STEP: Remove the cover from the zinc

batteries and let it sit for 5 min. Put the batteries in a
potentiostat and cover it with the battery cap positioned
with holes allowing airflow to the zinc batteries. Battery life

allows upward of 72-h of recording at 1,024 samples/s. It is
advantageous to set up a potentiostat Bluetooth connection
early in case there is battery failure;∼1-h before plugging-
in the mouse.

4. Restrain mice as described in step 1 and plug them in
the potentiostat.

5. Connect the potentiostat to the Bluetooth USB dongle
receiver in Sirenia R© Acquisition software. All data were
sampled at 1,024 samples/s. EEG and EMG signals were
acquired, digitized, and amplified at the potentiostat before
being sent via Bluetooth to the USB receiver. Data were
acquired at 100× gain and with 0.5 Hz (EEG1 and 2) and
10 Hz (EMG) high-pass filters, and a 500 Hz low-pass filter.
EEG1 and 2 data were normalized to the EEG common
electrode (left posterior screw), and the EMG signal was
generated via the difference between the two wire leads.

6. CRITICAL STEP: Check the amplitude range [50–
250 µV is an ideal range for EEG and EMG channels,
depending on wake vs. sleep: EEG has higher amplitude
during sleep, especially NREM, and EMG has higher
amplitude during wake and variable], especially on first
recording post-surgery to determine any issues with the
electrode and wire placement.

7. Sirenia R© Acquisition software encodes computer time
within the file, allowing alignment with Noldus EthoVision
XT software. EthoVision does not encode computer time
but can be accurately controlled by the computer clock
as set in the Trial Control Settings. For example, an
experiment can be set to start accurately at a computer time
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TABLE 1 Mouse groups utilized for optimization and analysis, and current attrition rates.

Mouse grouping N Sex Analyses/Figures Implant/Surgical
concerns

Health/Aging
concerns

Longevity
(EEG/EMG headcap)

12
(50%

AppNL−F/NL−F)
transgenic, 50%
non-transgenic).

6M
6F

8/12 mice: Figures 3A–D and
sex differences analysis (4M
and 4F);
7/12 mice: Figures 3E–H;
Other four mice used for
further testing (see below).

1 headcap dislodged @ 5-months
post-surgery due to worn-away
cement (see section “4.5 Pitfalls,
limitations, troubleshooting, and
alternatives”).

1 malocclusion; 2 found
dead; 1 sacrificed because
skin grew under headcap.

Testing + young mice
(4–5 months)
(EEG/EMG headcap)

4
(extra from

longevity; all
non-transgenic)

2M
2F

4 mice: Figures 4, 6, 7;
3 mice: Figure 5;
Supplementary data

None See above; malocclusion
endpoint before Barnes

maze.

Testing + aged mice
(9–10 months)
(EEG/EMG headcap)

4 4F 4 mice: Figures 4–6;
2 mice: Figure 7
Supplementary data

Improper EMG placement on 2
mice (EMG data omitted; see
section “3.2 EEG headcap surgical
procedure,” step 19 for tips); 1
headcap dislodged @ 8-months
post-surgery (after data collection)
due to worn-away cement (see
section “4.5 Pitfalls, limitations,
troubleshooting, and alternatives”);
2 omitted from sleep disruption
analysis due to battery issue.

None

Assessing mobility
(no headcap)

1 1F Supplementary data only N/A N/A

Other mice used in
optimization of the
current study

6 3M
3F

N/A 3 died in surgery; 1 sacrificed
post-surgery (poor recovery).

N/A

Current attrition rates
(for additional surgeries
since completion of the
current study)

Total: 3/42 mice
(7.14%).

Surgery-related:
2/42 mice (4.76%).

1M
2F

N/A Surgery related endpoint.
1 died in surgery.
1 poor recovery.

Non-Surgery related
endpoint.

1 weight loss.

The first five groupings document mice utilized in the present study to optimize this technique and assess its applications. The final row documents current attrition rates for experiments
and surgeries conducted since the completion of this study (independent of the previous five groupings; no data shown from these mice), to provide an aid for experimental design.

of 12:00 in EthoVision, and by calculating the acquisition
time, it can be linked to computer time as encoded by
EEG/EMG data in Sirenia

R©

.
8. Noldus PhenoTypers are home cages equipped with

an overhead camera to monitor a variety of freely
moving mouse behavior without the need for continued
operator intervention. In the current application, this
facilitated assessment of locomotion across a full circadian
rhythm, collected in EthoVision XT. This provides a
comprehensive sleep assessment in combination with
EEG/EMG recordings. Other home-cage behaviors can be
monitored alongside, including nesting as a measure of
activities of daily living.

3.4. Barnes maze

Objective: To train mice to the location of the
escape box (spatial learning) and assess their memory
and neuronal activity during a probe recall trial (spatial

memory). Seven mice were included in this analysis.
Barnes maze was conducted similarly to what has been
previously reported (Morrone et al., 2022; Xhima et al.,
2022).

1. Around 1–2 weeks of mouse handling prior to Barnes maze
assessment. For EEG/EMG mice, handle to familiarize
the experimenter and mice, and utilize the technique
described above to habituate the mice to plugging-in to
the potentiostat.

2. A circular Barnes maze field (diameter: 92 cm; Maze
Engineers; 20 holes) was utilized in a behavioral suite with
an overhead camera connected to EthoVision XT15.

3. Testing Day 1: Mice were habituated to the Barnes maze
and escape box, without spatial cues or the overhead light.

4. Overhead aversive light (brightness: 4,000 lumens; color
range: 5,000 K) and spatial cues were included in all
subsequent trials.

5. Testing Days 2–5: Mice were tested for learning in 2 trials
per day (3-min trials with a 2-h inter-trial-interval). Once
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the mouse enters the escape box, the light was turned off
and the trial ended. The latency to find the escape box (s)
and the number of errors were calculated in EthoVision to
assess learning.

6. Testing Day 6: Following a 2-day break, mice were
tested for 5 min in a probe trial in which the escape
box was blocked. Thirty minutes prior to the probe,
the potentiostat was plugged-in to allow habituation
before being placed in the Barnes maze. As described
above for the PhenoTypers, Sirenia R© Acquisition and
EthoVision software were run simultaneously. EEG/EMG
data acquisition was started first (1 file per mouse) and
later aligned to the clock start-time for the Barnes maze
in the EthoVision raw data. The percentage of time
spent searching in the correct quadrant was quantified
in EthoVision.

3.5. Data analysis – Generating power
and matching to the behavioral
phenotype

Acquired EEG/EMG data was opened in Sirenia R© Sleep
Pro and exported by mouse and the time segment to be
analyzed. A 50–60 Hz digital filter (band-stop filter) was applied
to sampled raw EEG and EMG signals to remove potential
electrical interference in the generated power data as well as
for sleep staging. Power (µVˆ2/Hz) data was then generated
by filtering out low- and high-band frequencies to capture the
following neuronal waves: alpha (8–13 Hz), beta (13–30 Hz),
delta (0.5–4 Hz), theta (5.5–8.5 Hz), and gamma (35–44 Hz);
EMG: 50–150 Hz. These are the default frequency bins in
Sirenia

R©

Sleep Pro software which worked well for sleep staging
in the present study, though there are options for adjusting these
values (refer to section “4.5 Pitfalls, limitations, troubleshooting,
and alternatives,” point #7 for further discussion). The full
range was analyzed for each channel as well in 0.5–500 Hz
(EEG1 and 2) and 10–500 Hz (EMG). Power was generated in
10-s intervals for assessing longevity and matching neuronal
frequency to locomotion, and in 2-s intervals for matching
neuronal frequency to performance in the Barnes maze. Power
data for longevity analysis is presented as an average of power
(generated in 10-s intervals) within a 30-min period or split by
wake and sleep state then averaged.

Power data was exported as a .tsv file and imported into
Excel for further analyses and synchronization with behavioral
readouts. Specifically, this involved alignment of data by
computer clock time embedded in both datasets allowing direct
comparison of electrophysiological and behavioral parameters
at set times. Note: this requires both Sirenia R© Acquisition and
EthoVision XT to run simultaneously on the same computer.

The EEG2 neuronal power and EMG in 10-s epochs were
averaged in 10-min bins to align to velocity (cm/s; velocity

calculated in EthoVision as a 10-min average) for locomotor
analyses; data were exported by mouse and the time segment
to be analyzed: 7 p.m.–7 a.m. for locomotion dark cycle, 7 a.m.–
7 p.m. for locomotion light-cycle.

For the Barnes maze, the entire recording was analyzed (5-
min trial with ∼1 min of data preceding and following the test)
and power was generated in 2-s intervals. EEG2 banded power
was calculated as a percentage of full channel power and binned
as target vs. non-target quadrants (based on location calculated
in EthoVision), as well as 30-s baseline activity sampled from
before and after the task. Data was further compared as power
per band (alpha, beta, delta, theta, and EMG 50–150 Hz)
between the target quadrant and non-target zones. Barnes maze
power × location heat maps were generated in a representative
mouse by first exporting raw positional data from EthoVision
and averaging the 0.1-s xy data into 2-s intervals. The range of
alpha and theta power was calculated to bin each 2-s interval
as a proportion (0–10, 10–20, 20–30, 30–40, 40–50, 50–60, 60–
70, 70–80, 80–90, and 90–100%) of total power. The location
data was then graphed with the neuronal power indicated
by size and color.

3.6. Generating representative data –
EEG/EMG recordings to assess
age-effects and response to
PhenoTyper-mediated sleep disruption

Objective: To record EEG/EMG signal at baseline, during
sleep disruption, and in a post-sleep disruption recovery period.

Young (4–5 months) and aged (9–10 months;
refer to Table 1) mice underwent 24-h observation
to capture a baseline circadian cycle of EEG/EMG
recording. Mice were placed in PhenoTypers at 4 p.m.
on the first day to allow habituation before recording
onset at 7 p.m. (beginning of dark cycle). Video and
EEG/EMG recordings occurred over 24 h (7 p.m. Day
1 – 7 p.m. Day 2), and mice were removed from the
cage at 10 a.m. on the third day (after 42 h). Note: Both
PhenoTyper and EEG systems allow recording up to 72 h,
although only one full day was recorded herein. Nest
images were captured at 18, 24, and 42 h and scored
on a 1–5 scale (low-high complexity), as per Deacon
(2006).

One week later, this paradigm was repeated with the
addition of a 6-h sleep disruption (SD) period immediately
before (12–6 p.m.). The top unit of PhenoTypers is additionally
equipped with a white light and a speaker to elicit a tone
(2,300 Hz, 80 dB). We used randomized white light and
tone intervals as stimuli to reliably disrupt sleep, without
direct handling of mice (Colavito et al., 2013). Specifically,
every 30 s–3 min, the white light would turn on for a 20-
s–1-min duration, and every 30 s–3 min, the tone would
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play for 10–30 s, for the 6-h SD period. These settings are
applied in the Trial Control Settings in EthoVision, under
Action: Top Unit (hardware control); refer to Supplementary
Figure 2 for detailed settings. Notably, utilizing a home-
cage environment with freely moving mice reduces stress,
and PhenoTypers have built-in light and tone within each
cage to increase reproducibility between animals and across
studies.

Following SD, mice were immediately recorded by video and
EEG/EMG for 24 h, and the nestlets scored, as in the baseline,
facilitated a comparison of baseline and recovery after SD, as
well as the effect of age. Nestlets were added part-way through
the SD paradigm (4 p.m.). Figure 2 depicts the timeline of these
experiments.

3.7. Data analysis: Sleep staging

Epochs were scored as REM sleep, NREM sleep, or wake
in 10-s intervals by cluster scoring in Sirenia R© Sleep Pro;

refer to Supplementary Figure 1 for representative stages
and cluster scoring, similar to previously described methods
(Kent et al., 2018). Theta/delta ratio was utilized to distinguish
REM (high theta/delta ratio and low EMG) and NREM (low
theta/delta ratio, high delta power, and low EMG) from wake
(high and variable EMG). EEG2 theta power was divided
by EEG2 delta power and graphed × EMG signal in the
50–150 Hz band to elucidate clusters of REM, NREM, and
wake epochs. The remaining transitional epochs were scored
manually. The accuracy of cluster scoring was validated per
animal manually.

For longevity: 12-month post-surgical mice were scored in
a 30-min period during the light cycle (∼3 p.m.) and utilized to
bin power data by wake vs. sleep vigilance state.

For representative data (baseline vs. recovery): full 12-h
dark cycle (7 p.m. –7 a.m.) and light cycle (7 a.m.–7 p.m.) data
were scored for REM, NREM, and wake stages from both the
baseline and recovery after SD recordings. The proportion of
epochs per stage was calculated for the full 12-h recordings, as
well as in 2-h bins. Arousals [1–2 wake epochs (10–20 s) during

FIGURE 2

Timeline for representative data experiments. Young (n = 4) and aged (n = 4) mice underwent EEG/EMG recordings in PhenoTyper home cages
to assess dark and light cycle sleep patterns and nesting. (A) 24-h baseline recordings were conducted, with 3 h of habituation prior to
recording onset at 7 p.m. At 10 a.m. on the third day, mice were removed from the cage and potentiostats were unplugged. Nesting timepoints
were 18, 24, and 42 h. (B) One week later, mice were tested again in the same paradigm with the addition of a 6-h sleep disruption (SD) prior to
the recording. This SD was conducted in the home cages with aversive stimuli. Mice were plugged into potentiostats and habituated 1-h before
the onset of SD (12–6 p.m.). The nestlet was added at 4 p.m. to keep nesting time points consistent. The immediate recovery period was
recorded for 24-h to compare to baseline sleep patterns. The results of these experiments are presented as representative data of the utility of
the concurrent electrophysiological and behavioral technique for age assessments (refer to Figures 6, 7). Created with BioRender.com.
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sleep bouts] and micro-sleep shifts [1–2 sleep epochs (10–20 s)
during wake bouts] were quantified during light-cycle baseline
and recovery recordings and normalized to the sum of sleep and
wake bouts, respectively. A bout was defined as 3+ continuous
epochs, and the occurrence of 3+ continuous epochs of the
opposite stage indicated the end of the current bout. NREM and
REM were grouped for the calculation of sleep bouts.

For SD: the 6-h recording was scored, the proportion
of epochs per stage calculated, and REM, NREM, and wake
data were compared to the equivalent timespan during the
baseline recording.

3.8. Statistical analysis

GraphPad Prism 9 was utilized for the generation of graphs
and statistical analyses. Data are presented as mean ± SEM
and best-fit line as ±95% CIs. Repeated measures of ANOVA
and paired t-tests were utilized to assess longevity, Barnes
maze analyses, nesting, sleep disruption, and movement with
potentiostats. Unpaired t-test was utilized for comparing
arousals and stage shifts across age. Where necessary, multiple
comparisons were controlled for with Tukey (F-test statistics)
and with Holm–Šídák (T-test statistics) post hoc tests. Linear
and non-linear regression (exponential one-phase decay,
least squares fit) were utilized to fit lines for neuronal
frequency × locomotion. Two mice were graphed, but were
omitted from the 12-month post-surgery statistical analysis due
to the inability to distinguish sleep vs. wake; explained further
in results text. In the neuronal frequency X locomotion dark-
cycle data, 16 data points (out of 576 total) were excluded due
to abnormally high EEG amplitudes in one mouse near the
onset of recording; this did not persist. Two mice used in initial
optimization were omitted from locomotion- and Barnes maze-
associated EMG analyses, due to EMG signal degradation; the
EEG2 signal reported was not affected. All values reported in the
text (i.e., effect sizes) are mean± SEM. Exact statistical tests and
the number of individuals are reported in the results section and
figure legends.

4. Results

We tested the application of in vivo wireless EEG/EMG
recording during behavioral testing in mice as a proof-of-
concept for assessing simultaneous electrophysiological and
behavioral changes critical in aging and neurodegenerative
research. Herein, we demonstrate the viability of recordings
longitudinally, as well as during a variety of behavioral tasks
and interventions, including home-cage locomotor assessment,
activities of daily living, cognitive testing in the Barnes maze,
and sleep staging at baseline and after automated sleep
disruption (Figure 1).

4.1. Advantage #1: Quality signal can
be ensured for longitudinal recordings
up to 9 months post-surgery, with the
potential for 12-month post-surgical
sleep staging

Twelve 3.5-month-old mice were implanted with EEG/EMG
headcaps to assess the potential for longitudinal recordings with
the system. Locomotor home cage and EEG/EMG recordings
were collected from 8 mice at 1, 5, and 9 months post-surgery,
and 7 mice at the 12-month post-surgery at approximately
4-5, 8, 12, and 16 months of age, respectively (Figure 3).
Four mice died from health-related issues (one was excluded
only from the 12-month post-surgical analyses), and 1 had an
issue with headcap stability after 8-month post-surgery testing,
which could have been circumvented with re-application of
cement. Table 1 annotates these details, and section “4.5 Pitfalls,
limitations, troubleshooting, and alternatives” provides tips to
improve stability/longevity. During recordings, mice adjusted
well to the added weight of the potentiostat plugged in (∼3.4 g),
exhibiting no differences in mobility when compared to mice
without the potentiostat (refer to Supplementary Figure 3A).

The EEG power by frequency was generated on the anterior
electrode for alpha (8–13 Hz), beta (13–30 Hz), gamma (35–
44 Hz), delta (0.5–4 Hz), and theta (5.5–8.5 Hz) waveforms
and normalized to the full channel signal during a predominant
wake-period (Figure 3A). No overall significant differences were
detected by 1, 5, and 9 months post-surgical time: F = 0.14, DFn,
DFd = 1.55, 10.87, P = 0.82. Frequencies significantly differed
from each other (F = 31.79, DFn, DFd = 1.15, 8.06, P = 0.0004),
with no frequency × post-surgery interaction effect [F = 2.54,
DFn, DFd = 1.80, 12.62, P = 0.12 (two-way repeated measures
ANOVA)]. The post hoc analysis determined a significantly
lower percentage of alpha power at 9 vs. 1 month post-surgery
time (P = 0.014); no other comparisons differed (controlled
for multiple comparisons with Tukey post hoc test; Figure 3A).
No sex differences were detected in EEG frequency distribution
at each post-surgery assessment (1 month: F = 0.045, DFn,
DFd = 1, 6, P = 0.84; 5 months: F = 0.26, DFn, DFd = 1, 6,
P = 0.63; 9 months: F = 0.023, DFn, DFd = 1, 6, P = 0.88; two-way
repeated measures ANOVA; Figure 3A).

The full power for EEG2 (anterior electrode; F = 1.06,
DFn, DFd = 1.28, 8.94, P = 0.35; Figure 3B), EEG1 (posterior
electrode; F = 0.64, DFn, DFd = 1.31, 9.19, P = 0.49;
Figure 3C), and EMG (F = 0.00038, DFn, DFd = 1.74, 12.17,
P = 0.99; Figure 3D) were assessed (one-way repeated measures
ANOVA), also distributing no significant differences at 1, 5,
and 9-months post-surgery. No sex differences were detected
for full power measures either (EEG2: F = 0.15, DFn, DFd = 1,
6, P = 0.71; EEG1: F = 0.28, DFn, DFd = 1, 6, P = 0.62; and
EMG: F = 0.39, DFn, DFd = 1, 6, P = 0.56; two-way repeated
measures ANOVA; Figures 3B–D). These data demonstrate
the preservation of headcap signal integrity up to 9 months
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FIGURE 3

Longevity of EEG signal integrity until 9 to 12 months post-implantation. Mice were implanted with EEG/EMG headcaps, and recordings were
collected at 1, 5, and 9 months post-surgery (PS) to look at signal longevity (n = 8), and sleep was staged at 12 months post-surgery (PS) (n = 7).
Power was generated in alpha (8–13 Hz), beta (13–30 Hz), delta (0.5–4 Hz), theta (5.5–8.5 Hz), and gamma (35–44 Hz) bands for the anterior
EEG electrode (EEG2), as well as full range (0.5–500 Hz) for EEG2, EEG1 (posterior) and EMG. (A) No overall effects of post-surgical time were
detected on the proportion of neuronal frequency bands; differences between bands were significant on ANOVA. One significant post hoc
comparison was detected between alpha banded power at 9 vs. 1-month post-surgery (P = 0.014). The full power of EEG2 (B), EEG1 (C), and
EMG (D) channels did not significantly change between 1, 5, and 9 months post-surgery. At 12 months post-surgery, power was split by
vigilance state for wake vs. sleep. (E) During sleep, there were proportionally fewer beta and gamma waves, and more delta than wake. Full
EEG2 power was significantly increased (F), EEG1 trended (P = 0.055) to increase (G), and EMG trended (P = 0.097) to decrease (H), in sleep
compared to wake. Sleep was difficult to detect in two mice by cluster or manual staging (marked by red triangles), likely due to consistently
low EMG. (I,J) Representative frequency distribution of wake and NREM sleep in 10 s epochs, with the corresponding EEG and EMG traces,
demonstrate low amplitude/mixed frequency and high amplitude delta waves, respectively. Supplementary Figure 4 documents raw traces for
REM, NREM, and wake and epoch frequency distribution for REM. Data are mean ± SEM. Two-way (A) and one-way (B–D) repeated measures
ANOVA, multiple comparisons controlled for with Tukey post hoc test; multiple paired t-test with multiple comparisons controlled for with
Holm–Šídák method (E), paired t-test (F–H). *P < 0.05, **P < 0.01.
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post-surgery. However, the loss of EMG signal is observed
with increasing post-surgical time as the EMG leads can lose
signal integrity due to the wear and tear of not being fixed in
place, resting in the nuchal muscles. This does not necessarily
preclude the differentiation of sleep and wake stages, which we
demonstrate can be reliably measured at 12 months post-surgery
in the same mice (Figures 3E–I).

Utilizing EEG and EMG signals, sleep vs. wake stages
were identified in 10-s epochs for a 30-min period during the
light-cycle, in 7 mice at 12 months post-surgery. Sleep was
associated with significant reductions in the proportion of beta
and gamma EEG2 signal (t = 7.43, df = 4, P = 0.0070 and
t = 6.62, df = 4, P = 0.0081, respectively), increased delta
(t = 9.58, df = 4, P = 0.0033), and no changes in alpha or theta
(t = 0.92, df = 4, P = 0.65 and t = 0.84, df = 4, P = 0.65,
respectively; Figure 3E) by multiple paired t-test (controlled
for multiple comparisons with Holm–Šídák). Notably, increased
delta frequency is characteristic of sleep (Brown et al., 2012).
The full power of EEG2 significantly increased in sleep vs. wake
(paired t-test: t = 4.30, df = 4, P = 0.013; Figure 3F), likely due
to high amplitude delta waves, with a trend to increase in EEG1
full power (paired t-test: t = 2.68, df = 4, P = 0.055; Figure 3G).
EMG full power trended to decrease in sleep vs. wake (paired
t-test: t = 2.16, df = 4, P = 0.097; Figure 3H). Two of the mice,
indicated by red triangles in Figures 3E–H, had no detectable
sleep stages, which we concluded was due to the degradation of
the EMG signal, and because the signal was consistently low (see
Figure 3H), we were unable to differentiate sleep from wake and
these mice were omitted from the paired statistical analyses in
Figures 3E–H.

Using the actigraphy-like locomotion data collected in the
PhenoTypers, we can differentiate sleep and wake stages by
velocity (≤0. 1 cm/s for sleep) with 86.39 ± 3.35% (n = 2)
accuracy to EMG, demonstrating the utility of acquiring
locomotor and EEG data, as well as an alternative staging
method to ensure the longevity of recordings.

Representative frequency distribution of wake and NREM
sleep epochs at 12 months post-surgery demonstrate mixed
frequency low-amplitude EEG signal and high-amplitude, low-
frequency EEG signal, respectively (Figures 3I, J). REM sleep
(high theta:delta ratio and low EMG) is also detectable at
12 months post-surgery (refer to Supplementary Figure 4A
for representative EEG and EMG traces for all three stages
and Supplementary Figure 4B for REM epoch frequency
distribution).

When comparing neuronal power between animals, it may
be best to plan for consistent post-surgery times and with
normalization of power with another readout (i.e., as a percent
of total EEG power, to locomotion or another behavioral
readout). However, this data demonstrates that up to 9 months
post-surgery, the quality of EEG and EMG signals was not
significantly degraded and was sufficient for sleep staging, and
can be successfully extended to 12 months post-surgery with

proper troubleshooting (see section “4.5 Pitfalls, limitations,
troubleshooting, and alternatives”).

For the EEG/EMG analyses in sections 4.2, 4.3, and 4.4, data
from the four mice dropped from the longevity analyses was
utilized along with 4 additional mice from our optimization and
pilot studies (refer to Table 1). In light of no post-surgical or
sex differences determined in signal longevity, female and male
mice, and those with different post-surgical times were grouped
together.

4.2. Advantage #2: Association of
neuronal frequency with locomotor
activity

We next binned neuronal power by frequency for delta
(0.5–4 Hz), theta (5.5–8.5 Hz), alpha (8–13 Hz), and beta
(13–30 Hz) waves, to assess for potential relationships with
locomotion in PhenoTyper home-cage recordings in 8 mice;
2 mice were omitted from EMG analyses (refer to Table 1).
Time-matched neuronal power (% of full power range)
and velocity were graphed during sleep-dominant light-cycle
and wake-dominant dark-cycle (Figure 4). Linear and non-
linear regressions were conducted to fit power × locomotion
relationships. An exponential one-phase relationship was
observed with delta power and velocity during both light
and dark cycles (df = 573, R2 = 0.17, Y0 = 38.02,
plateau = 28.83, K = 1.78 and df = 557, R2 = 0.52,
Y0 = 43.10, plateau = 22.56, K = 1.62, respectively; Figure 4A),
demonstrating high delta power during periods of low velocity
(likely sleep) and tapering off at higher velocities, especially
during the dark-cycle. Delta waves are dominant during
NREM and slow wave sleep (Figure 4I) (Brown et al.,
2012).

No velocity × theta relationship was observed during
the light cycle. We fit a one-phase line during the dark
cycle (df = 557, R2 = 0.11, Y0 = 18.20, plateau = 21.44,
K = 1.85; Figure 4B); a slight increase in the dark cycle perhaps
demonstrated the relevance of theta waves in REM as well as
wake-associated memory processes (Figure 4I) (Brown et al.,
2012). Alpha power did not alter with velocity in the light cycle;
yet, interestingly, exhibits a positive linear relationship during
the dark cycle (R2 = 0.11, slope = 2.87, Y-intercept = 13.39,
F = 501.4, DFn, DFd = 1, 558, P < 0.0001 for slope significantly
non-zero; Figure 4C). This is likely a result of lower delta
power and lesser sleep states in these higher velocity data points
during the dark cycle, leading to a higher proportion of alpha,
but not higher total alpha power. No linear relationship was
observed between locomotion and total alpha power during the
dark cycle (R2 = 0.00012, slope = −4.81, Y-intercept = 1151,
F = 0.067, DFn, DFd = 1, 558, P = 0.80). Alpha waves
are increased during wakefulness and thought processes and,
therefore, indicative of greater activity. They can also associate
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FIGURE 4

Relationship of neuronal frequency with locomotor activity. Mice were assessed in PhenoTypers with concurrent EEG/EMG recordings over 24 h
in the light and dark cycles. Velocity was aligned with relative EEG frequency bands (normalized to full power) in 10-min bins to assess
relationships between locomotion and sleep behavior with neuronal power. (A) Delta power was negatively associated with movement in light
and dark cycles, demonstrating notably high delta during low-velocity recordings indicative of NREM and slow wave sleep, and a taper from
delta power with high locomotion. (B) Theta power demonstrated a slight relationship in the dark cycle only. (C) A linear velocity × alpha
relationship was detected in the dark-cycle only. (D) No velocity × beta relationships were observed. (E) EMG (50–150 Hz) exhibits a positive
relationship with velocity in both light and dark cycles. (F) Light-cycle graph of velocity and delta power over time in a representative mouse
demonstrates the increased delta power during sleep bouts (red arrowheads), and decreased delta power during movement (red arrows).
(G) PhenoTyper heatmap of movement in the light and dark cycle. (H) Mice with EEG/EMG headcap and potentiostat exhibit normal exploratory
and locomotor behavior in PhenoTyper (refer to Supplementary Figure 3A). (I) EEG frequency bins are listed with relationships to behavior. Data
are 10-min bins of power and locomotor activity, with the line of best fit ±95% CIs, from n = 8 mice (A–D) or n = 6 mice (E). Linear and
non-linear regression (exponential one-phase decay, least squares fit).

with quiet wakefulness in which there is rest and reduced
movement but not sleep (Figure 4I) (Brown et al., 2012),
perhaps contributing to differing alpha × velocity correlations
in the light- and dark cycles.

Beta power had no association during the light- or dark
cycle (Figure 4D), indicative of the bimodal function of beta for
movement inhibition, as would be observed with sleep onset,
compared with attention and planning during wakefulness
(Figure 4I) (Brown et al., 2012; Kropotov, 2016). Finally, we fit a

one-phase decay line of EMG with velocity during the light and
dark cycles (df = 429, R2 = 0.53, Y0 = 73.88, plateau = 2,149,
K = 2.18 and df = 413, R2 = 0.39, Y0 = 82.20, plateau = 1554,
K = 3.08, respectively; Figure 4E).

A representative time-based graph of velocity and delta
power in the light cycle demonstrates increased delta during
sleep bouts (low velocity) and vice versa (Figure 4F). When
undisturbed, mice spend most of the light cycle in their nest
(red–yellow hot-spot in the light cycle heat map), compared

Frontiers in Aging Neuroscience 12 frontiersin.org

141

https://doi.org/10.3389/fnagi.2022.952101
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-952101 January 12, 2023 Time: 20:55 # 13

Morrone et al. 10.3389/fnagi.2022.952101

FIGURE 5

Relationship of the neuronal frequency with Barnes maze performance. EEG/EMG mice (n = 7) were tested in the Barnes maze as a
proof-of-concept of combining recordings with cognitive testing. Mice learned the task successfully (refer to Supplementary Figures 5A,B)
across four trial days (two trials per day) and were tested for spatial memory 2 days later in a probe trial in which the previously acquired escape
location was blocked. (A) Mice with the potentiostat plugged-in navigate the Barnes maze successfully (refer to Supplementary Figure 3B),
demonstrated here in the target quadrant (green outline) approaching the target zone (green arrowhead). (B) Neuronal power was generated in
2-s intervals, normalized to full EEG signal, and binned by mouse location in the Barnes maze (non-target and target quadrant), as well as at
baseline (not performing task). While searching for the escape in the target quadrant, mice exhibit significantly lower delta power and
significantly greater theta power than at baseline. Paired power comparisons of non-target vs. target quadrant determined significantly greater
alpha power (C) in the target zone, and no differences for beta (D), delta (E), theta (F), and EMG (refer to Supplementary Figure 5C) during the
task. (G,H) Alpha and theta power were binned as a proportion (10% intervals) of the total power range recorded at each 2-s interval and
graphed by size, color, and xy location in the Barnes maze. These heatmaps demonstrate higher alpha power in the target quadrant (green), and
high theta throughout the maze. Representative heatmaps were generated in the same mice; positional data is the same for both. Data are
mean ± SEM (B) or paired before-after comparisons (C–F). Multiple paired t-tests with multiple comparisons were controlled for with the
Holm–Šídák method. *P < 0.05.

to high activity during the dark-cycle (broader heat map
distribution in blue) (Figure 4G). PhenoTypers facilitate
a controlled environment for consistent locomotor and
EEG/EMG recordings, in which the mice are comfortable
and have ad libitum access to food and water (Figure 4H).
Preferably, these recordings are conducted in a dedicated
testing room as the additional noise, vibrations, and
electrical/Bluetooth interference from traffic in normal
housing rooms can interfere with EEG/EMG signals.

4.3. Advantage #3: Association of
neuronal activity with cognitive
performance in the Barnes maze

To probe the viability of the wireless EEG/EMG system
with additional behavioral assays, we assessed headcap mice
in the Barnes maze, a test of spatial learning and memory
(Figure 5). Mice successfully learned the location of the
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escape box based on spatial cues around the room (refer to
Supplementary Figures 5A,B). Potentiostats were not plugged-
in during learning trials in the present study because we
anticipated the escape hole was not large enough (5 cm
diameter) to accommodate the potentiostat. Utilizing larger
escape holes or additional training time to help guide mice
into the hole may facilitate EEG/EMG data collection during all
trials. Three days following the last learning trial, potentiostats
were plugged into mice headcaps, and mice were tested in a
spatial memory probe in which the escape box was blocked.
In this trial, mice were assessed for the percentage of time
spent searching in the target quadrant during the 5-min trial
(35.78 ± 4.10%; n = 7). Potentiostats did not affect mobility
in the Barnes maze (refer to Supplementary Figure 3B).
Representative image of a mouse with wireless EEG/EMG unit
in the Barnes maze headed toward the escape location with
target quadrant (green outline) and zone (green arrowhead)
indicated in Figure 5A.

Neuronal power was analyzed by frequency in 2-s bins
and aligned with the location in the Barnes maze in 7 mice.
Frequency distribution was generated for neuronal power when
mice were in the Barnes maze searching in non-target zones,
in the target quadrant, and baseline activity before and after
the task (Figure 5B). Target quadrant vs. baseline comparisons
determined significantly less slow wave sleep-associated delta
waves (t = 3.32, df = 6, P = 0.047) and greater theta power
(t = 3.84, df = 6, P = 0.034) when mice were searching
for the escape; alpha (t = 0.81, df = 6, P = 0.70) and beta
(t = 0.76, df = 6, P = 0.70) waveforms did not change (multiple
paired t-test; controlled for multiple comparisons with Holm–
Šídák).

We assessed total power by frequency to further probe the
potential relationship of neuronal power with performance in
the Barnes maze. We observed a significant increase in alpha
power in the target compared to non-target zones (t = 4.59,
df = 6, P = 0.015; Figure 5C), but not in beta (t = 0.086,
df = 6, P = 0.93; Figure 5D), delta (t = 0.80, df = 6,
P = 0.84; Figure 5E) or theta (t = 0.50, df = 6, P = 0.87;
Figure 5F) waves (multiple paired t-test; controlled for multiple
comparisons with Holm–Šídák). EMG power (in 50–150 Hz)
did not change in the target quadrant vs. non-target (n = 5;
t = 1.36, df = 4, P = 0.25; paired t-test; refer to Supplementary
Figure 5C).

In sum, higher alpha power was observed when mice were
in the target quadrant and close to checking the correct hole,
and higher theta power was observed throughout the task;
these frequencies are associated with memory, thought, and
attention (Figure 4I) (Brown et al., 2012; Kropotov, 2016). To
visualize the association of neuronal frequency with the location
in the Barnes maze, the power range of alpha and theta waves
were separated into 10% bins and graphed by the xy location
(Figures 5G, H). These representative images demonstrate
higher selectivity of increased alpha neuronal power closer to the

escape location, whereas theta power was less discriminate but
high throughout the task. These data demonstrate the feasibility
of EEG/EMG recordings simultaneous to behavioral testing in
rodents. We anticipate that the combination of these techniques
can help pinpoint electrophysiological alterations as they relate
to cognitive decline and behavioral alterations across age and
during the course of neurodegenerative disease progression.

4.4. Representative data: Sleep staging
in young vs. aged mice at baseline and
following sleep disruption

We assessed young (4–5 months) and aged (9–10 months)
mice with EEG/EMG headcaps to measure neuronal activity
and locomotion in Noldus PhenoTypers across a full circadian
cycle (24 h) at a baseline starting from the onset of their
dark cycle (7 p.m.). One week later, the same mice were
subjected to a 6-h sleep disruption (SD; 12–6 p.m.) via a
loud tone and bright light inside each PhenoTyper cage, set
on a procedurally randomized timer. Mice were measured for
the next 24-h cycle after SD to assess the recovery period
(refer to Figure 2 for timeline). Sleep was staged across
the entire recording at baseline and in the recovery period
as a representative of alterations across age and after SD
(Figure 6).

At baseline during the dark cycle, young and aged mice
spend the majority of time awake and start to sleep more as
the onset of the light cycle approaches (7 a.m.; Figure 6A).
During the baseline light cycle, mice sleep approximately 60%
of the time, and young mice trend to more REM and less
NREM sleep than aged mice (Figures 6B, C). Immediately
following SD, mice were tested again to assess their sleep activity
during the recovery period. More variability between sleep and
wake states was observed during the recovery dark cycle, and
young mice trended to sleep more compared with the baseline
(Figure 6D). Slight decreases in sleep time were observed in the
recovery period for young and aged mice, with less REM sleep
in young mice (Figures 6E, F). Figures 6G, H summarizes these
trends.

We analyzed for wake arousals detected during sleep-
dominant periods in the light cycle at baseline and in the
recovery period. Arousals did not significantly differ between
young and aged mice at baseline (t = 0.86, df = 6, P = 0.60) or
recovery (t = 0.97, df = 6, P = 0.60; multiple unpaired t-tests
with multiple comparisons controlled for with Holm–Šídák
method; Figure 6I), though it may increase in aged mice after SD
(t = 1.84, df = 3, P = 0.16, paired t-test; effect size: 2.05× ± 0.59
increase). We then analyzed for micro-sleep episodes detected
during wake-dominant periods in the light cycle, which were
determined to be significantly more in aged mice at baseline
(t = 3.63, df = 6, P = 0.022), but there were no differences
in the recovery period (t = 0.34, df = 6, P = 0.75; Figure 6J).
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FIGURE 6

Representative data for aging studies on sleep and home-cage assessments. Young (4–5 months; n = 4) and aged (9–10 months; n = 4) mice
were recorded for a full circadian cycle in PhenoTyper home cages with EEG/EMG recording from wireless headcaps. Recordings were
conducted at a baseline, and in a recovery period immediately following 6-h sleep disruption (SD), 1 week later (refer to Figure 2 for timeline).
Sleep was staged as wake, NREM, and REM in 10-s epochs from EEG/EMG recordings, split into 12-h dark and light cycles and analyzed in 2-h
intervals. (A) During the baseline dark cycle, young and aged mice spend a majority of their time awake, and start to sleep more near the onset
of the light cycle. (B,C) During the baseline light cycle, young mice trend to less NREM and more REM sleep than aged mice. (D–F) In the
recording period immediately following SD (indicated here as recovery), all mice trend to more sleep during dark-cycle, and young mice trend
to more NREM and less REM sleep during light cycle, compared to baseline. (G,H) Summary of the distribution of wake (yellow), NREM (blue),
and REM (red) in young and aged mice in baseline (B) and recovery (R) recordings, for dark- and light-cycles. (I) During light-cycle, no
significant differences in sleep arousals were detected between young and aged mice at baseline and recovery; (J) however, aged mice
exhibited significantly more sleep epochs during periods of wakefulness at baseline (P = 0.022), indicating increased sleep fragmentation with
age. (K,L) Nest building was scored at 18, 24, and 42 h as a measure of activities of daily living during baseline and in the post-SD recovery
period, demonstrating the trend to reduced nest complexity in aged mice in the recovery period, compared with young mice (P = 0.081). Data
are mean ± SEM (A–F,I,J,L) and mean (G,H). Multiple unpaired t-tests with multiple comparisons controlled with the Holm–Šídák method (I,J);
two-way repeated measures ANOVA (L). *P < 0.05.

These data demonstrate increased sleep fragmentation with
age.

Nesting was assessed during circadian recordings as a
measure of activities of daily living. A representative image
demonstrates a mouse with a headcap and potentiostat in the

PhenoTyper home cage with a complex nest built (score: 4.5/5;
Figure 6K). Nest complexity was scored at 18, 24, and 42 h
during baseline and post-sleep disruption (recovery) recordings
in young and aged mice. At baseline, young and aged mice trend
to higher nest scores over time (F = 4.59, DFn, DFd = 1.27, 7.62,
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FIGURE 7

Confirmation of PhenoTyper-mediated sleep disruption in EEG. Mice (n = 6) underwent a baseline recording and an acute, 6-h sleep disruption
(SD; 12–6 p.m.) 1 week later (refer to Figure 2 for timeline). SD involved an intermittent tone and light from the top-unit of the PhenoTyper so
that each mouse was exposed to the same stimuli. The interval between both tone and light was procedurally randomized to prevent
habituation. (A) Neuronal activity was recorded by EEG/EMG headcaps during SD and resembles wakefulness, with higher frequency EEG and
EMG than sleep (baseline). Heartbeat can be detected in EMG when the mice are at rest [as in the baseline EMG in panel (A)], but is not always
present. (B) EEG/EMG data was staged as NREM, REM, and wake in the same time frame at baseline and SD, demonstrating a reduction in the
time spent asleep and a significant increase in wakefulness (P = 0.022). Data are mean ± SEM. Multiple paired t-tests with multiple comparisons
were controlled for with the Holm–Šídák method. *P < 0.05.

P = 0.060), with no differences between ages (F = 0.30, DFn,
DFd = 1, 6, P = 0.60). During the recovery period, aged mice
trend to lower nest complexity than young mice (F = 4.39, DFn,
DFd = 1, 6, P = 0.081; two-way repeated measures ANOVA;
Figure 6L). We anticipate that this is indicative of a loss of
activities of daily living after lifestyle stressors, and how over-
age these stressors and a diminished ability to compensate for
them can potentially exacerbate behavioral deficits (Webb et al.,
2018).

We next confirmed in EEG that sleep was disrupted utilizing
the tone and bright light in the PhenoTypers (Figure 7).
Representative 5-s EEG and EMG traces demonstrate high
amplitude slow waves during sleep (baseline) with tonic and
low EMG amplitude, in contrast to the higher frequency, lower
amplitude neuronal activity, and high EMG signal during SD,
indicative of wakefulness (Figure 7A). Six out of the eight
mice in Figure 6 were utilized for SD confirmation; the other
2 mice had battery issue causing data loss for half of the SD
period, though they still exhibited disrupted sleep (refer to
section “3.3 EEG/EMG recording and alignment with behavioral
assessments,” step 3 for tips on ensuring battery quality).
Assessment of REM, NREM, and wake staging during the 6-
h SD, compared with time-matched baseline (multiple paired
t-test with multiple comparisons controlled for with Holm–
Šídák method), indicates significantly more wakefulness during
the PhenoTyper-mediated SD (t = 4.34, df = 5, p = 0.022), with
55.29± 10.10% (n = 6) less time spent asleep (Figure 7B). Time
in the REM (t = 2.10, df = 5, p = 0.17) and NREM (t = 1.79,
df = 5, p = 0.17) stages trended to less during SD compared with
baseline (Figure 7B).

These data indicate that randomized auditory and light
stimuli in PhenoTyper cages are sufficient to disrupt sleep.

We propose this method of sleep disruption recapitulates
fragmenting of sleep that occurs with age (Scullin and
Bliwise, 2015), instead of complete deprivation, and that
an impaired ability to recover after sleep loss is a critical
readout to understand how mounting sleep deficits may
impact neurodegenerative diseases (Musiek and Holtzman,
2016).

4.5. Pitfalls, limitations,
troubleshooting, and alternatives

1. The headcap procedure is feasible but is more challenging
in female mice and mice under 3 months due to
size. Consequently, the placement of the headcap needs
greater precision to ensure that the anterior and posterior
electrode screws are above the cortex.

2. We have observed 2 mice (out of 58 successful
implantations; 3.45%) lose a headcap, at 5 and 9 months
post-surgery. Both were identified as having reduced
dental cement securing the headcap compared with mice
that had surgeries at the same time. Dental cement can
degrade over time, so it is critical to ensure coverage
of screws and the base of the headcap at the time of
surgery. A potential re-application of dental cement (every
3–6 months) applied under anesthesia may be necessary
for longitudinal experiments in mice to prevent the
headcap from getting displaced, or if EMG wires become
exposed (re-cover connection to headcap to prevent
further damage). This is quick (5–10 min/mouse), yet
will depend on the time for the cement to set. Silicone
coating of the exposed screwheads before dental cement
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re-application may also preserve signal longevity, although
this was not tested herein.

3. For longitudinal experiments, it is important to consider
attrition of animals via death from non-headcap-related
causes, when considering sample size, in addition to the
potential loss or displacement of the headcap.

4. To help preserve EEG signal quality over time (refer to
Figure 3), an alternative method is to utilize screws with
a wire attached (8403, Pinnacle Technology Inc.), allowing
soldering of the electrode to the headcap.

5. If there are issues in restraining the mice by the headcap
for plugging-in in the potentiostat (i.e., trouble gripping
the headcap from dental cement, agitated mice), a fast-
acting and clearing inhalational anesthetic can be used.
The investigator can utilize isoflurane restraint (5%) for 1–
2 min, just for induction. Mice recover quickly but should
be given∼1-h post-anesthesia prior to data collection.

6. Utilizing the cluster scoring method in Sirenia R© Sleep
Pro leaves a few unscored transition epochs (refer
to Supplementary Figure 1). Therefore, some manual
scoring is necessary, but is quick.

7. The power data in the present study were generated
utilizing the default frequency bins in Sirenia R© Sleep Pro,
which were well-aligned to behavioral and vigilance states,
and advantageous for separating NREM and REM sleep
epochs. However, an overlap exists between 8 and 8.5 Hz in
our theta and alpha frequency bins, and there is potential
for biologically relevant neuronal activity between 4 and
5.5 Hz being missed in the present analyses. Frequency
binning can be edited in the software, allowing additional
bands such as sigma [prominent in sleep spindles; 12–
16 Hz (Holz et al., 2012)] and gamma (included by default;
35–44 Hz); albeit, the power of this low gamma range
was low in our longevity analysis during wake and sleep
states (refer to Figures 3A, E), and was hence omitted
for subsequent analyses. Sirenia

R©

Sleep Pro also allows
manually defined sleep staging, which, for example, can
allow the identification of slow wave sleep (by breaking
down NREM by delta power) and quiet wakefulness (low
EMG, low delta, and high alpha). This can be accomplished
with manual, cluster, or threshold scoring, which allows
users to define rules for scoring based on neuronal
frequency power and EMG.

8. Alternatively, Freyburger et al. (2016) utilized shorter
epochs (i.e., 4 s compared to 10 s in the present study) and
analyzed power spectra by vigilance/sleep stages (REM,
NREM, and wake) (McShane et al., 2010), which is
advantageous in detecting short arousals and neuronal
frequency changes by stage, respectively.

9. The exported data can be utilized to align other
electrophysiological readouts to the behavioral phenotype,
including coherence between the two EEG channels,
phase synchronization, and cross-frequency coupling

(Tort et al., 2009; Canolty and Knight, 2010; Hata et al.,
2016). An alternative is to export EEG/EMG data acquired
in Sirenia

R©

as a .edf file for analysis in other software.
10. Alternate headcap systems: (1) Pinnacle offers the option

for depth electrodes, advantageous in adding regional
field potential recordings (i.e., from the hippocampus).
(2) Spike Gadgets offers headcaps with a 32-channel
capacity. (3) For other EEG systems, refer to Pinnell
et al. (2015, 2016), Zayachkivsky et al. (2015), Vogler
et al. (2017), Kent et al. (2018), Crouch et al. (2019),
Medlej et al. (2019), Buenrostro-Jáuregui et al. (2020).
A recent study conducted by Crouch et al. (2019)
demonstrated the utility of combined EEG and behavioral
assessments in phenotyping mouse models of AD. This
technique provides greater temporal resolution than
what we demonstrate herein; however, the possibility
for longitudinal-based recordings as we describe is
advantageous.

11. Chronic PhenoTyper-mediated sleep disruption was not
tested with EEG/EMG recording. It is possible that
mice adjust to the randomized tone and light stressors
after continued exposure, in which case shorter intervals
and longer tone/light lengths could reduce habituation,
or alternatively, the usage of different sleep disruption
techniques might be preferable (i.e., rotating bar and gentle
handling) (Colavito et al., 2013).

12. The synchronization of behavioral and
electrophysiological data herein was conducted utilizing
the computer clock, with both software running on
the same computer, and was accurate to the second.
Higher precision can be attained with alternative methods:
transistor–transistor logic (TTL) signals for data alignment
are possible with both systems.

13. Though we observe no significant technical differences up
to 9 months post-surgery, it is recommended to consider
consistent post-surgical time in the study design.

5. Discussion

Herein, we extensively describe and vet a method for
concurrent wireless EEG/EMG recording with untethered,
freely moving testing, including alignment of neuronal
oscillatory signals to the behavioral phenotype. A one-time
headcap surgery provides sustained signal longevity of at
least 9 months, with a high potential for 12-month post-
surgery that would be useful for experimental modeling
of sleep staging, especially for facilitating longitudinal
experimentation, critical in aging and neurodegenerative
disease research. We found that the headcap and the wireless
potentiostat recording unit did not impede mouse locomotion,
allowing synchronization with a variety of behavioral assays,
which we demonstrate for locomotion and home-cage
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PhenoTyper assessment, as well as cognitive performance in
the Barnes maze.

We anticipate this procedure could be used in a majority of
rodent behavioral tasks without the need to adapt the task to
accommodate a tethered system, particularly advantageous in
large arena assays (Barnes maze, open field), and without the
concern of wire entanglement in walled assays (elevated plus
maze, shelter/cognitive choice hole entries in PhenoTypers).
However, some minor physical constraints exist with the
wireless system, such as the size of the potentiostat impeding
entry into the hole. This can be accommodated by using larger
entry holes or longer training periods. Caution should also
be considered in water-based assays, such as the Morris water
maze as the device may not be waterproof (Pinnell et al.,
2016).

For home-cage assessments, this system is particularly
advantageous in that a full circadian rhythm could be
captured in a single recording (with upward of 72 h
before changing batteries), allowing the possibility for the
recording of multiple days of sleep staging in one subject
without intervention. This, paired with the consistent
PhenoTyper-mediated sleep disruption paradigm we describe,
can help elucidate sleep resilience in response to stress
and deprivation, as well as how this is altered with disease
and age (Brieva et al., 2021; Cai et al., 2021; Casale et al.,
2021).

We identified suggestive relationships between neuronal
frequency bins with locomotion and cognitive performance,
which warrant further investigation. Delta power was
associated with sleep bouts as evidenced by negative non-
linear relationships with locomotion in light and dark cycles,
and the proportion of alpha power was more dominant
compared to other frequencies at higher locomotion states
in the dark cycle, likely due to the reduced power of sleep-
associated delta waves (Brown et al., 2012). While conducting
the Barnes maze cognitive task, mice exhibited decreased delta
and increased theta power compared to the baseline activity,
indicative of a higher activity/vigilance state (Brown et al.,
2012), and of memory and navigation (Buzsáki and Draguhn,
2004; Buzsáki and Moser, 2013; Jung and Carlén, 2021),
respectively. Hippocampal and entorhinal cortical theta is
typically associated with spatial memory performance, though
the contribution of widespread cortical theta oscillations,
including the prefrontal cortex (under our anterior electrodes),
contribute to this cognitive processing (Buzsáki and Draguhn,
2004; Buzsáki and Moser, 2013; Jung and Carlén, 2021).
Our results also suggest higher alpha power occurs near the
target zone in the Barnes maze, which may relate to internally
directed thought processes (Brown et al., 2012), as the mice
search more precisely near where it anticipates the escape
box. The contributions of EEG and neuronal waveforms to
behavior have been previously reviewed (Brown et al., 2012;
Kropotov, 2016; Helfrich and Knight, 2019; Beppi et al., 2021),

whereas our results indicate the utility of acquiring oscillatory
signals during behavioral testing in rodents. Notably, this
technique facilitates the identification of electrophysiological
alterations as they directly relate to the cognitive/behavioral
phenotype in aging and neurodegenerative preclinical models,
which may elucidate subtle or early markers of disease. The
robustness of these observations could be important for
future research, especially for predicting disease onset or
progression.

The use of EEG as a physiological biomarker for clinical
diagnosis and prognosis has become increasingly popular in
recent years (Keizer, 2021). Significant differences in EEG
activity have been described in neurodegenerative conditions
such as AD, Parkinson’s, and frontotemporal lobe dementia
(Babiloni et al., 2011, 2020; Garn et al., 2015; Goossens et al.,
2017). Specific EEG markers have been shown to correlate
with AD severity and provide differential dementia diagnosis
(Garn et al., 2015; Goossens et al., 2017). The value of EEG
biomarkers extends to mood disorders such as depression
(Kaiser et al., 2018; Dev et al., 2022), anxiety disorders (Pavlenko
et al., 2009; Al-Ezzi et al., 2021), and neurodevelopmental
disorders such as Attention-Deficit/Hyperactivity Disorder
and Autism Spectrum Disorder (Wang et al., 2013; Matlis
et al., 2015; Angelidis et al., 2016). The use of EEG
in brain disorders may complement traditional diagnostic
methods of structured interviews and questionnaires (Snyder
et al., 2015; Keizer, 2021), and the ability to detect and
characterize these biomarkers may prove essential for preclinical
research.

Finally, EEG is frequently employed as a tool to understand
human cognition (Helfrich and Knight, 2019; Beppi et al.,
2021), indicating the importance of preclinical correlates to
understand cognitive and electrophysiological impairments
in both healthy aging and disordered brain states. We
propose that the full cognitive assessments and freely moving
electrophysiological data documented herein will improve
the validity of research into a majority of brain disorders.
A description of limitations and alternative approaches is
included in section “4.5 Pitfalls, limitations, troubleshooting,
and alternatives.”

We anticipate the method described herein for concurrent
EEG and behavioral testing in mice will be highly advantageous
in preclinical research in a multitude of aging, neurological,
and psychiatric disorders, including Alzheimer’s and
Parkinson’s diseases, frontotemporal dementia, depression,
and schizophrenia, all of which involve neuronal dysfunction
and sleep dysregulation (Liu et al., 2004; Ju et al., 2014;
Chahine et al., 2017; Fang et al., 2019; Waite et al., 2020;
Wainberg et al., 2021), and will benefit from the alignment
of neuronal oscillatory-to-behavioral deficits. Finally, the
advent of investigating longitudinal readouts can help in the
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identification of predictive EEG biomarkers of cognitive decline
and the pathophysiology of diseases like Alzheimer’s.
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Glossary

Barnes maze: a cognitive task for spatial learning and memory in mice; Bout: a period of time spent asleep or awake, defined herein
as three continuous 10-second epochs; EDF: European Data Format; a standard time series file format commonly used for wave-
form data such as EEG and EMG; Epoch: period of time of wave-form data utilized to stage sleep (10-seconds herein); EthoVision
XT: Noldus behavior acquisition and analysis software; Non-rapid eye movement (NREM) sleep: sleep stages including restorative
slow wave sleep, characterized by delta waves in EEG; PhenoTyper: a home-cage designed for continuous video assessment of mice;
Potentiostat: recording device connected to the headcaps to wirelessly acquire and transmit EEG and EMG data; Rapid eye movement
(REM) sleep: sleep stage involved in memory consolidation and dreaming, distinguished from NREM by increased theta and reduced
delta waves in EEG; Sirenia

R©

: Pinnacle acquisition and analysis software for EEG and EMG data; Transistor-transistor logic (TTL): for
circuit integration, can be used to align electrical signal within multiple software; tsv: tab-separated values text file.
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Introduction: Aging is accompanied by physiological changes in cardiovascular 

regulation that can be evaluated using a variety of metrics. In this study, we 

employ machine learning on autonomic cardiovascular indices in order to 

estimate participants’ age.

Methods: We analyzed a database including resting state electrocardiogram 

and continuous blood pressure recordings of healthy volunteers. A total of 

884 data sets met the inclusion criteria. Data of 72 other participants with an 

BMI indicating obesity (>30 kg/m²) were withheld as an evaluation sample. For 

all participants, 29 different cardiovascular indices were calculated including 

heart rate variability, blood pressure variability, baroreflex function, pulse wave 

dynamics, and QT interval characteristics. Based on cardiovascular indices, 

sex and device, four different approaches were applied in order to estimate 

the calendar age of healthy subjects, i.e., relevance vector regression (RVR), 

Gaussian process regression (GPR), support vector regression (SVR), and linear 

regression (LR). To estimate age in the obese group, we drew normal-weight 

controls from the large sample to build a training set and a validation set that 

had an age distribution similar to the obesity test sample.

Results: In a five-fold cross validation scheme, we found the GPR model to be 

suited best to estimate calendar age, with a correlation of r=0.81 and a mean 

absolute error of MAE=5.6 years. In men, the error (MAE=5.4 years) seemed 

to be lower than that in women (MAE=6.0 years). In comparison to normal-

weight subjects, GPR and SVR significantly overestimated the age of obese 

participants compared with controls. The highest age gap indicated advanced 

cardiovascular aging by 5.7 years in obese participants.

Discussion: In conclusion, machine learning can be used to estimate age on 

cardiovascular function in a healthy population when considering previous 

models of biological aging. The estimated age might serve as a comprehensive 

and readily interpretable marker of cardiovascular function. Whether it is a 

useful risk predictor should be investigated in future studies.
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Introduction

Maintaining a healthy cardiovascular system is one of the 
most important goals of modern health policy (Mendis et al., 
2011). Factors elevating cardiovascular risk include physical 
inactivity and an unhealthy diet. In addition, age is an independent 
risk factor for the development of cardiovascular disease (CVD)—
the leading cause of death worldwide.

The cardiovascular system is a complex structure that 
comprises the heart and vasculature that are not under voluntary 
control. Instead, the autonomic nervous system adapts the activity 
of the heart and vascular tone to changing environmental 
demands. To assess the state of the cardiovascular system, 
physicians usually estimate blood pressure and record 
electrocardiograms (ECGs). Several indicators of cardiovascular 
risk can be determined from these data.

Heart rate and its variability (HRV) are established markers of 
cardiac fitness (Jensen et al., 2013; Nanchen et al., 2013). A natural 
decay in HRV during the course of aging is a consistent finding of 
several studies (Reardon and Malik, 1996; Fukusaki et al., 2000; 
Boettger et al., 2010; Voss et al., 2012, 2015). Lower levels of HRV 
have been associated with increased cardiovascular morbidity and 
mortality in the elderly (Tsuji et al., 1996). The feedback loop that 
adapts heart rate to changes in blood pressure, that is, baroreflex 
function, is progressively diminished with increasing age (Laitinen 
et al., 2004). Various factors such as endothelial dysfunction or 
oxidative stress result in the stiffening of large arteries, which is a 
condition promoting sustained hypertension, atherosclerosis, and 
thrombosis (Dai et al., 2015). Indicators of age-related vascular 
changes are broad pulse waves, elevated pulse wave velocity, and 
increased systolic blood pressure. Considering the widespread 
effects of aging on the cardiovascular system, it seems useful to 
combine different established indices into one comprehensive 
marker of cardiovascular health.

Estimating age based on biological data is a widely used 
concept in other medical disciplines, for instance, to evaluate 
brain health (Gialluisi et al., 2019). Aging affects different aspects 
of brain structure and function that can be summarized as the 
estimated age of the brain (Franke and Ten Gaser, 2019; Dafflon 
et al., 2020; Jiang et al., 2020). Using this framework, scientists 
were able to trace brain development and to assess the risk of 
developing neurodegenerative diseases and general mortality in 
older adults (see Cole and Franke, 2017).

Recently, machine learning (ML) methods have gained a lot 
of attention in efforts to improve risk prediction and clinical 
outcomes in patients with cardiovascular (see Sevakula et al., 
2020, for review). ML algorithms can be used to automatically 
identify information that will help solve a given problem. 

Supervised learning methods build an analytical model based 
on a set of training samples containing input and related output 
values. Applying this model to a test set of input data without 
knowing the desired output reveals the accuracy of the 
automatic solution. For regression problems, an output function 
is obtained by fitting a line to the data points in a high-
dimensional space built from available input variables (feature 
space; Bennett and Campbell, 2000; Schölkopf and Smola, 
2002). Assessing cardiovascular risk by ML has been 
demonstrated to be  more accurate than conventional 
approaches (Kakadiaris et  al., 2018) with a lower bias than 
non-ML methods (Suri et al., 2022).

In this study, we aimed to estimate age based on cardiovascular 
data by applying ML. Input features were extracted from 
simultaneous resting recordings of ECG and continuous blood 
pressure in healthy individuals. We compared different approaches 
to solve regression problems, namely, support vector regression, 
relevance vector regression, Gaussian process regression, and a 
linear regression model. In a proof-of-concept application, 
we  compared age estimates in obese but otherwise healthy 
individuals and normal-weight controls. As obesity is related to an 
impairment of cardiovascular function and elevated cardiovascular 
risk, we  assumed systematically higher age estimates when 
compared to normal-weight controls. Thus, we  derived three 
age-matched subsamples from our database. We trained all ML 
models on normal-weight controls and applied them to a sample 
of obese individuals and an independent sample of normal-
weight controls.

Materials and methods

Database

Resting-state physiological recordings of 1,121 healthy 
volunteers were obtained. None of the subjects had any history 
of neurological or psychiatric disorders. Exclusion criteria were 
any medical conditions, illegal drugs, or medication potentially 
influencing cardiovascular function. Thorough physical 
examination, resting electrocardiography (ECG), and routine 
laboratory parameters (electrolytes, basic metabolic panel, and 
blood count) had to be without any pathological finding. All 
participants provided written informed consent before 
participating in the study. The study protocol was approved by 
the Ethics Committee of the University Hospital of Jena 
(#5423-01/18, 4,940-10/16). Data sets have been made publicly 
available at PhysioNet (Goldberger et al., 2000; Schumann and 
Bär, 2022).
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From the original database, 31 subjects were excluded due to 
missing or invalid information regarding age, gender, or BMI. A 
total of 118 recordings were excluded due to incomplete or 
missing blood pressure recordings. A set comprising data from 72 
obese participants (body mass index (BMI) > 30) was excluded 
from the main set but used for additional assessments during a 
later stage. Cardiovascular indices were estimated for the 884 
healthy subjects from the main set (59% females, age: 
31.3 ± 13.6 years, BMI: 22.8 ± 2.8 kg/m2, see Table 1) and for the 72 
obese participants.

Data recordings

Continuous non-invasive blood pressure and ECG were 
acquired simultaneously over 20 min in the supine position using 
either a Task Force Monitor® (TFM, CNSystems Medizintechnik 
GmbH, Graz, Austria) or MP150 (BIOPAC Systems Inc., Goleta, 
CA, United States). First 5 min were excluded from the analysis. 
R-waves and systolic and diastolic blood pressure values were 
extracted from the data using automatic detection algorithms 
delivered with the devices (Task Force® Monitor, CNSystems or 
AcqKnowledge 4.1, BIOPAC Systems). An adaptive filter 
procedure was applied to identify and substitute premature 
ventricular beats and artifacts based on the heart beat intervals 
(Wessel et al., 2000). Data sets with an artifact rate larger than 5% 
of all intervals were excluded from the analysis.

Estimation of cardiovascular indices

From the ECG-derived heart beat interval time series (BBI), 
we calculated the mean heart rate (HR), root-mean-square of 
successive BBI (RMSSD), the standard deviation of BBI (SDNN), 
low- and high-frequency power and their ratio (Malik et  al., 
1996), deceleration capacity (Bauer et al., 2006), Renyi entropy 
(base 1/4; Renyi, 1961), sample entropy (Richman and Moorman, 
2000), and compression entropy (Baumert et al., 2004). The mean 
and standard deviation of corrected QT intervals (Hodges et al., 
1983) and the QT variability index (QTVI) were estimated 
(Berger, 2003).

From continuous blood pressure, the mean and standard 
deviation of systolic blood pressure (SBP) and diastolic blood 
pressure (DBP) values per heart beat interval were extracted 
(Floras, 2013). Pulse pressure was calculated as differences 
between SBP and DBP. Using the dual sequence method, 
baroreflex sensitivity was calculated as a marker of bradycardic 
and tachycardic changes due to blood pressure alterations 
(Malberg et al., 1999). Mean values and standard deviation of 
the pulse transit time, pulse rise time, pulse wave duration, 
pulse wave velocity, and time delay of the dicrotic notch were 
estimated on blood pressure signals (Fischer et  al., 2017; 
Table 2).

Age estimation

Four different ML approaches were applied to estimate 
calendar age based on 29 cardiovascular indices and the two 
categorial variables sex and recording device. The algorithms have 
been implemented in Python version 3.8.3 using the toolbox 
scikit-learn version 0.24.1 (Pedregosa et al., 2011).

Gaussian process regression (GPR) models use a kernel to 
define the covariance of a distribution over the target functions 
and observed training data to define a likelihood function 
(Schulz et al., 2018). We used a combination of a constant kernel 
with a radial basis function (RBF). Support vector regression 
(SVR) models offer the flexibility to define how much error is 
acceptable in finding an appropriate fit to the input data (Vapnik, 
1995; Schölkopf and Smola, 2002). An RBF kernel and 
regularization index C = 30 were used. Relevance vector 
regression (RVR) models use Bayesian inference to obtain 
parsimonious solutions for regression (Tipping, 2000). Here, 
we also used an RBF kernel. Hyperparameters of GPR, SVR, and 
RVR estimation were optimized using grid search. The 
performance of these approaches was compared to a linear 
regression (LR) model that estimates age as a linear combination 
of the input variables.

Model performance

In a 5-fold cross-validation scheme, one-fifth of the main 
set was randomly assigned to a test set, while the model was 
trained on the remaining four-fifths of the data. In each of the 
five runs, another fifth of the data served as test data. After the 
five runs, the empiric means (± standard error) of the evaluation 
metrics are reported as the final ones. The cross-validation was 
repeated 20 times with a randomized order of input data. Again, 
the metrics were averaged over all repetitions. We standardized 
all input data before using training and test data during the 
cross-validation procedure (StandardScaler implemented 
in sklearn).

TABLE 1 Sample characteristics separated by recording device.

TFM MP150

Age [y] 31.9 ± 14.3 30.5 ± 12.6

N 18–92 18–82

Sex (f/m) 283/205 240/156

BMI [kg/m2] 22.7 ± 2.9 22.8 ± 2.7

Age and BMI are given in mean value ± standard deviation. Data have been recorded 
using two different devices (see the Data Recordings section, for more details). TFM, 
Recorded by CNSystems Task Force Monitor; MP150, Recorded by BIOPAC Systems 
MP150; BMI, body mass index.
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The quality of age estimation was evaluated by the mean 
absolute error (MAE), root-mean-squared error (RMSE), and 
Pearson’s correlation (r) of estimated ∧

iY  and the actual  
age yi.

 

∧ 
∑ −  

=
ii iY Y

MAE
N

 

2∧ 
∑ −  

=
i i iY Y

RMSE
N

Comparison of weight groups

In a second experiment, we aimed to compare age estimates in 
obese participants (BMI > 30 kg/m2) with normal-weight peers. 
Therefore, we  draw two subsamples from our normal-weight 
population that served as training and test data. The calendar age of 
these data should match our obese sample. Therefore, we categorized 
participants into age groups of 10 years (see Table 3) and estimated 
the relative distribution of obese participants across these age groups. 
Then, we randomly assigned normal-weight participants from each 
age group to training and a test set to match the age distribution of the 
obese sample. Finally, we trained all ML models on 197 normal-
weight individuals (101 women, 96 men, 41.4 ± 14.9 years, BMI: 
23.4 ± 2.2 kg/m2) to estimate age in the obese test sample of 72 
individuals (44 women, 28 men, age: 42.9 ± 15.5 years, BMI: 
34.8 ± 5.8 kg/m2) in a normal test sample of 72 normal-weight controls 
(37 women, 35 men, age: 42.1 ± 15.8 years, BMI: 23.3 ± 2.4 kg/m2). 
We used mean values and standard deviation of training data to 
standardize the training, normal and obese test sets (StandardScaler, 
sklearn). The age gap (deviation between estimated and calendar age) 
was calculated and compared between the normal-weight and the 
obese test set using the one-sided Wilcoxon rank-sum test.

Results

The final sample under investigation included 884 healthy 
individuals. In Table 3, sample characteristics are depicted within 
different age ranges.

A number of relevant autonomic cardiovascular indices are 
depicted in Figure 1. It seems obvious from these plots that age 
has a different effect on each of those measures. For instance, 
systolic blood pressure seems to increase almost linearly with age, 
while HRV decreases with age rather exponentially. In total, 29 
different indices together with sex and device served as input 
features for age prediction models.

In Figure 2, we plotted the age estimated by Gaussian process 
regression (GPR) against the calendar age for one cross-validation 
run (Figure 2; r = 0.81, MAE = 5.62 years, RMSE = 8.00 years). In 
this scatter plot, it becomes clear that most of the data sets are in 
the lower age range. At a higher age (over 70 years), the model 
tends to underestimate the individual age.

TABLE 2 Indices included in age estimation.

Index Explanation

Standard heart rate variability (HRV)

HR [min−1] Mean heart rate

SDNN [ms] Standard deviation of heart beat intervals (BBI)

RMSSD [ms] Root-mean-square of successive BBI differences

DC [ms] Deceleration capacity

Spectral HRV

LF [ms2] Low frequency spectral power of BBI

HF [ms2] High-frequency spectral power of BBI

LF/HF [a.u.] Low-to-high frequency spectral power ratio

Nonlinear HRV

CompEn [a.u.] Compression entropy

SampEn [a.u.] Sample entropy

RenyiEn [bit] Renyi entropy

Cardiovascular regulation

BRS [ms/mmHg] Baroreflex sensitivity

LFalpha [ms/mmHg] Low frequency cardiovascular coherence

HFalpha [ms/mmHg] High-frequency cardiovascular coherence

JSDsym [a.u.] Symmetric joint symbolic dynamics

SBP [mmHg] Mean systolic blood pressure

sd_SBP [mmHg] Standard deviation of systolic blood pressure

DBP [mmHg] Mean diastolic blood pressure

sd_DBP [mmHg] Standard deviation of diastolic blood pressure

PP [mmHg] Pulse pressure

Pulse wave dynamics

PTT [ms] Mean pulse transit time

sdPTT [ms] Standard deviation of PTT

PRT [ms] Mean pulse rise time

sdPRT [ms] Standard deviation of PRT

PWV [mmHg/ms] Mean pulse wave velocity

sdPWV [mmHg/ms] Standard deviation of PWV

SIT [ms] Mean delay of dicrotic notch to pulse maximum

QT interval characteristics

meanQTc [ms] Mean corrected QT interval

sdQTc [ms] Standard deviation of QT interval

QTVI [a.u.] QT variability index

Additional info

Sex [0/1] Participant gender

Device [0/1] Recording device
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Comparison of methods

After 20 runs of the 5-fold cross-validation, we compared 
performance measures of age prediction by four different 
mathematical models (see Table 4). Lowest error estimates were 
achieved using GPR to estimate age (MAE = 5.6 years and 
RMSE = 8.0 years). The highest correlation was also calculated 
between GPR estimates and underlying calendar age. Overall 
performance tended to be better in men compared to women. 
However, in women and men, GPR was the most accurate 

approach to estimate age in terms of errors and correlation to 
underlying calendar age.

Age gap estimation

Figure  3 shows the estimated autonomic indices for the 
normal-weight train group (normal train), the normal-weight test 
group (normal test), and the obese test group (obese test). Results 
from the group comparison between the two test sets are shown 
in Supplementary Table S1. Compared to normal participants, 
obese individuals showed alterations in a number of autonomic 
indices, including elevated heart rates, reduced vagal heart rate 
variability (RMSSD) and baroreflex sensitivity, and increased 
blood pressure (see Figure 3). The two normal-weight groups did 
not seem to differ significantly from one another except for the 
probability of symmetric symbolic dynamics of blood pressure 
and heart rate (JSDsym, see Supplementary Table S1).

All four methods were used to estimate the age gap between 
normal-weight healthy individuals (N = 72) and obese but 
apparently healthy individuals (N = 72). In Figure 4, deviations 
between calendar age and ML estimates per method are 
illustrated. The average errors of age estimation were higher in 
obese participants for all four methods. The Wilcoxon rank-sum 

TABLE 3 Sample description in different age ranges.

Healthy participants in age groups

<30 
years

30–39 
years

40–49 
years

50–59 
years

≥60 
years

Age [y] 23.7 ± 2.7 33.6 ± 2.9 44.4 ± 2.8 53.5 ± 2.7 70.1 ± 9

N 585 123 75 47 54

Sex (f/m) 386/199 54/69 30/45 16/31 38/16

BMI  

[kg/m2]

22.1 ± 2.6 23.2 ± 2.7 24.3 ± 2.9 25.2 ± 2.7 24.8 ± 2.5

Results are given in mean values ± standard deviation. BMI: body mass index.

FIGURE 1

Age dependency of autonomic cardiovascular indices. Mean values and 95% confidence intervals are depicted. RMSSD, vagal heart rate variability 
(root-mean-square of successive heart beat intervals).
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test revealed a significantly increased age estimation error in 
obese participants by 5.4 years (interquartile range IQR = [−7.2; 
13.1]; z = −1.744, p = 0.0406) when using GPR and 5.7 years 
(IQR = [−7.2;13.6]; z = −2.148; p = 0.0159) when using SVR.

Discussion

As artificial intelligence has entered most aspects of our daily 
life, it is not surprising that machine learning (ML) is about to 
revolutionize the medical sector and healthcare industry  

(Chen et al., 2017; Koch, 2018). ML offers great opportunities to 
improve risk stratification, diagnostic classification, clustering for 
the identification of patient subgroups, and many more (Sevakula 
et al., 2020). One popular application is the quantification of aging 
effects based on biological information (Al Zoubi et al., 2018; 
Dafflon et  al., 2020; Jiang et  al., 2020). To the best of our 
knowledge, this is the first study to use autonomic markers from 
cardiovascular recordings to predict chronological age in healthy 
subjects using ML.

Estimated age was strongly correlated with actual age with an 
error of MAE = 5.6 years, RMSE = 8.0 years, and r = 0.81 when GPR 
was used. However, the accuracy of age estimation was lower in 
older participants. For instance, age was underestimated in 
participants over 70 years of age by the GPR model (Figure 2). As 
data sets used in our study are concentrated at a younger age 
(<40 years), models are primarily trained on young individuals. 
This makes the prediction of age more difficult in the elderly. The 
accuracy of the models was higher in men than in women. This 
might be due to the fact that some age-related changes are more 
pronounced in men than in women. Especially, blood pressure 
and vascular indicators of arterial stiffening have been reported to 
correlate stronger with age in men (AlGhatrif et al., 2013). Maybe 
an additional influence of the menstrual cycle may have increased 
the variance of estimated features in women that we were not able 
to account for (Schmalenberger et al., 2020).

Considering state-of-the-art approaches to estimate age based 
on biological information, as reviewed by Gialluisi et al. (2019), 
the accuracy of our models was quite high. According to their 
summary, brain data and blood markers have been more widely 
used to estimate age, with MAEs ranging between 4.2 and 
11.8 years. Only five of the 14 studies that have been reviewed 
achieved MAEs below 5 years—all based on brain data. Analyzing 
blood values, the most accurate model had an MAE of 5.6 years. 
In contrast, ML approaches to evaluate the aging of the 
cardiovascular system are rare. Using linear regression models, 
few studies have already attempted to estimate age based on HRV 
and ECG. Colosimo (1997) used a linear model to estimate age 
that correlated with calendar age with r = 0.71 in 141 subjects. 
More recently, Starc et al. (2012) predicted age using HRV and a 
multiple linear regression model with a high correlation of 
r = 0.87 in 377 subjects. Unlike those approaches, ML techniques 
automatically determine a numerical solution from a variety of 
input data through the learning process. Input features can be of 
different types (scalar values, signals, and images), and finally, 
they can contribute in a nonlinear fashion to this solution. 
Therefore, ML strategies often improve the accuracy of 
mathematical models in several applications (e.g., Acevedo et al., 
2009; Ren et al., 2020).

In this study, we used a variety of established cardiovascular 
indices as input features. However, there are countless measures of 
heart rate variability alone. Instead of calculating these variables on 
physiological recordings, the recorded signals themselves can 
be  entered into the models. Relevant signal segments then 
contribute to the estimation of age, avoiding the selection of suitable 
cardiovascular indices. Via methods of deep learning,  

FIGURE 2

Relation of individual age estimated by GPR and calendar age. 
Dashed gray line indicates perfect concordance.

TABLE 4 Performance scores of age prediction after 20 repetitions of 
cross-validation.

Performance 
scores

Regression approach

LR GPR SVR RVR

MAE [y] 6.39 ± 0.36 5.64 ± 0.33 6.45 ± 0.33 6.15 ± 0.8

RMSE [y] 8.67 ± 0.06 8.03 ± 0.08 8.86 ± 0.13 8.71 ± 0.27

r 0.77 ± 0.01 0.81 ± 0.01 0.77 ± 0.01 0.77 ± 0.01

Performance scores in women (N = 523)

MAE [y] 6.47 ± 0.06 6.01 ± 0.1 6.96 ± 0.15 6.5 ± 0.3

RMSE [y] 8.53 ± 0.09 8.37 ± 0.13 9.48 ± 0.2 9.06 ± 0.37

r 0.73 ± 0.01 0.74 ± 0.01 0.68 ± 0.01 0.7 ± 0.02

Performance scores in men (N = 361)

MAE [y] 6.33 ± 0.05 5.38 ± 0.06 6.09 ± 0.1 5.91 ± 0.23

RMSE [y] 8.76 ± 0.08 7.79 ± 0.09 8.4 ± 0.13 8.46 ± 0.27

r 0.79 ± 0.01 0.83 ± 0.01 0.81 ± 0.01 0.8 ± 0.01

The lowest error estimates and highest correlation coefficient are written in bold. LR, 
linear regression; GPR, Gaussian process regression; SVR, support vector regression; 
RVR, relevance vector regression; r, Pearson’s correlation coefficient; MAE, mean 
absolute error; RMSE, root-mean-squared error.

157

https://doi.org/10.3389/fnagi.2022.899249
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Schumann et al. 10.3389/fnagi.2022.899249

Frontiers in Aging Neuroscience 07 frontiersin.org

FIGURE 3

Autonomic cardiovascular indices in two subsets of normal-weight participants (training data in gray, test data in cyan) and obese participants 
(orange). The median is depicted together with the lower quartile and the upper quartile. The two test sets were compared using the Wilcoxon 
rank-sum test with p-values indicated in the figure [p < 0.05 (*); p < 0.001 (***); p > 0.05 (n.s.)]. RMSSD, vagal heart rate variability (root-mean-square 
of successive heart beat intervals).

FIGURE 4

Deviation of estimated age from calendar age in a sample of obese participants (orange) and an independent set of matched normal-weight 
controls (cyan). The median is depicted together with the lower quartile and the upper quartile. Four different models, namely linear regression 
(LR), Gaussian process regression (GPR), support vector regression (SVR), and relevance vector regression (RVR), were trained on matched normal-
weight individuals. The age estimation errors were compared between the normal-weight and obese test set using the Wilcoxon rank-sum test 
with p-values indicated in the figure [p < 0.05 (*); p > 0.05 (n.s.)].
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Attia et al. (2019) estimated the calendar age from short 12-lead 
ECG signals. A convolutional neural network led to an error of 
MAE = 6.9 years and r = 0.84. Those patients, whose predicted age 
was more than 7 years higher than their calendar age, were more 
likely to be  diagnosed with cardiovascular diseases, such as 
hypertension or coronary disease. The authors acknowledged that 
one key limitation to the findings in their study was the fact that the 
large underlying sample of 774,783 subjects included only patients 
who had their ECG recorded for some clinical indication. Similarly, 
Strodthoff et  al. (2021) estimated calendar age based on short 
12-lead ECG records using different neural networks. For age 
estimation, a feedforward residual neural network performed best 
with an error of MAE = 6.86 years and r = 0.85. Their database 
included a total of 21,837 both normal and abnormal clinical ECG 
recordings of 18,885 patients.

In our study, we estimated the deviation from normal healthy 
aging in a sample of obese but otherwise healthy participants as 
proof-of-concept. All four models were trained on normal-weight 
controls and then used to estimate age in a normal-weight and an 
obese test set. Calendar age distribution was matched across 
subsets. Using GPR and SVR, the age gap between estimated age 
and calendar age was significantly higher in obese participants 
than in normal-weight controls. This means that there was a 
systematic overestimation of age in obese participants. At least 
some differences in cardiovascular indices between obese and 
normal-weight participants are similar to changes that occur 
during aging. We observed elevated systolic blood pressure and 
pulse pressure as well as lower vagal HRV and baroreflex 
sensitivity in obese individuals and in older age groups of normal-
weight participants (Figure  3). These alterations are signs of 
arterial stiffening and a loss of cardiovagal control that can 
be  observed in elderly individuals (Pinto, 2007). Advanced 
cardiovascular aging was suggested by an age gap over 5 years 
when compared to matched normal-weight controls.

The relationship between body mass index (BMI) and 
mortality is well documented (see review by Aune et al., 2016). 
While increased BMI raises mortality risk (Chen et al., 2019), a 
large population-based study has recently demonstrated that 
weight loss can prevent premature death in later life (Xie et al., 
2020). Participants who reduced their BMIs below the obese range 
between early adulthood through midlife halved their mortality 
risk compared with those remaining obese, suggesting that the 
physiological effects of obesity may be reversible to some extent. 
Expressing cardiovascular impairment in terms of advanced age 
might help to convince those individuals at risk to adopt a 
healthier lifestyle (Cuende, 2016).

Limitations

The current study relies on physically and mentally healthy 
subjects who were recruited for resting physiological recordings 
under standardized conditions. However, the size of the sample is, 
therefore, rather small. Although we investigated over a thousand 
subjects, the number of data sets actually included in the analysis 

was reduced by quality control. Especially at older ages, a rather 
small amount of data was available. The recruitment of participants 
of an advanced age without being affected by cardiovascular, 
neurological, or psychiatric disorders is very complicated. Further 
cognitive impairment, sensory loss, and changes in mobility might 
introduce a selection bias (Young and Vitaliano, 2006).

Another limitation of our database is that there is no 
information on general health in order to account for it in our 
analysis, such as metabolic markers, smoking or drinking habits, or 
mental health. Because we also lack longitudinal data, we are unable 
to evaluate how autonomic status continues to change. Aging of the 
cardiovascular system is, most probably, not an entirely linear 
process. Intercurrent life events might moderate the rate of 
age-related changes. An intriguing line of further research is to 
assess the potential of the estimated age to predict cardiovascular  
risk.

Conclusion

In this study, we  estimated age based on autonomic 
cardiovascular indices with high accuracy in healthy controls. The 
Gaussian process regression model led to the best concordance of 
estimated and calendar age. Using this framework, it seems 
possible to quantify deviations from healthy autonomic aging. In 
this study, cardiovascular changes in obese but otherwise healthy 
individuals led to an advanced age of more than 5 years compared 
with normal-weight controls. In future studies, the clinical value 
of the gap between the individual calendar and the estimated 
autonomic age to indicate diseases of the circulatory system or its 
potential to predict cardiovascular risk needs to be explored.
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