About this Research Topic
Although the vestibular system is phylogenetically old and highly conserved during evolution, it shows a remarkable capacity to adapt to changing environmental demands, to developmental changes, and in response to pathologies affecting the peripheral vestibular receptors. This adaptability, termed neural plasticity, is defined as long-lived changes in neuron structure or function, which affect behavior. Thus, the vestibular system offers an important model to study functional and postlesional brain plasticity. Peripheral vestibular lesions can precipitate a complex and debilitating syndrome of oculomotor and postural deficits with diverse symptoms including vertigo, nystagmus, head and body tilt, ataxia, imbalance, nausea and vomiting. Labyrinthine dysfunctions may be partial or complete, fluctuating or constant, progressive or recovering. Many consequences of a lesion diminish or disappear rapidly due to an adaptive process called vestibular compensation. The symptoms can be detected by behavioral testing in humans and experimental animals, while at the cellular/molecular level changes may include synaptic reorganization, long-term potentiation or depression of synaptic transmission, changes in synaptic efficacy, or changes in the active and passive membrane properties of neurons.
The study of the vestibular system is important to society, since vestibular function is often impaired with age resulting in deterioration of postural control and falls, a leading cause of death and institutionalization in senior citizens. Therefore, understanding the function of the vestibular system not only paves the way for new medications and rehabilitation procedures, but contributes to the design of better tests to measure gaze and balance deficits. These topics are directed toward clinicians who want to bridge the gap between new basic science concepts of vestibular function and treating patients for vestibular disorders, vestibular neuroscientists using structural and functional approaches to understand the labyrinth and its central pathways involved in motor control and neuronal plasticity, and sensory system neuroscientists intrigued by similarities and differences among the sensory systems. The six sections composing the topic are: (1) plasticity of peripheral vestibular receptors, (2) plasticity in vestibular nuclei neurons studied in vitro, (3) plasticity in central vestibular networks studied in vivo, (4) plasticity in vestibular networks forming vestibuloautonomic connections, (5) plasticity and testing gaze stabilization, and (6) plasticity and testing stabil
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.