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Editorial on the Research Topic
Micro/nano materials for energy storage and conversion

The demand for energy is increasing dramatically at an alarming rate, resulting from
rapid economic development and the ever-increasing requirements of energy-based
appliances. With energy usage increasing, concerns about environmental Research Topic
and the social problems associated with the consumption of conventional fossil fuels are
becoming serious (Yu D. et al., 2014; Fang R. et al., 2017). As a cutting-edge approach,
nanotechnology has opened new frontiers in the field of materials science and engineering to
meet the challenge by designing novel materials, especially micronanometer, subnano, and
even atomic scale materials, for efficient energy storage and conversion. Recently, the
applications of micro/nano materials in energy storage and conversion fields, including
lithium batteries, metal-ion batteries, water splitting, photocatalytic reactions, and
electrochemical catalysis, have been widely investigated (Dai L. et al., 2015; Hao J. et al.,
2020; Zhang S. et al., 2022). However, the practical application of micro/nano materials is
still far from being satisfactory, as it is mainly impeded by costs and efficiency. Therefore, the
design of cost-saving and highly efficient micro/nano materials in the field of energy storage
and conversion is still very significant. Numerous papers have been reported in this Research
Topic, and herein we introduce the representative advances in the collected papers that
discuss how micro/nano materials work in the area of energy conversion and storage.

Currently, the highest energy density of lithium-ion batteries (LIBs) is approaching its
limitation but is still unable to satisfy the growing requirements of electric vehicles.
Furthermore, the high cost and safety Research Topic severely limit their large-scale
practical application for renewable energy storage systems. It is urgent to develop an
innovative and highly efficient battery system to meet the ever-increasing demands for
energy. Cao et al. reported one electrospinning approach to synthesize a novel
nanocompound, namely, the FeS2 nanoparticles encapsulated in S/N co-doped three-
dimensional multi-channel structural carbon nanofibers (FeS2@ CNFs). The FeS2@
CNFs electrode exhibited an excellent rate property and cyclic stability as cathode
materials for LIBs. The electrode also showed a high initial capacity of 1,336.7 mAh g−1,
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and it still had a capacity of 856.5 mAh g−1 remaining at 0.02A g−1

after 100 cycling tests. Li et al. fabricated a new ZnO@CZIF-
8 nanocompound comprising the hierarchical ZnO nanospheres
coated with inherently derived ZIF-8 porous carbon shells, which
could provide sufficient active sites, facilitate rapid electronic
migration, and effectively restrain the volume expansion of
electrode materials. Finally, the ZnO@CZIF-8 nanospheres
electrode exhibited a high capacity of 316 mAh g−1 at a current
density of 1 A g−1 after 50 cycles and a satisfactory rate capacity used
as the anode material for the Ni-Zn secondary battery using a
commercial Ni(OH)2 cathode. Iron–chromium redox flow
batteries (ICRFBs) possessed the advantages of long cycling
performance, flexible design, and high safety, as well as
affordable maintenance costs. Su et al. reported one method to
prepare an indium ions composite electrode by introducing the
indium ions into graphite felt surfaces, which exhibited dramatically
enhanced electrochemical properties after In3+ modification.

It is worth noting that the aqueous metal-ion batteries with high
safety and economical costs show promising opportunity for the
development of an efficient large-scale energy storage system. Gan
et al. summarized the main factors of the cyclic stability attenuation
of cathode materials and the strategies of how to optimize the
stability of cathode materials for aqueous zinc-ion batteries,
including introducing vacancy, doping, combination engineering,
and object modification. Besides these, the applicable material
system and corresponding mechanisms of the relevant
optimization strategies were provided, and finally, perspectives of
further research directions and development prospects were
proposed for practical industrial application. Sodium-ion batteries
(SIBs) have attracted much attention as potential alternatives to LIBs
owing to their high abundance, environmental friendliness, and low
cost. Wang et al. reviewed the significant research progress on Sb2S3-
based nanomaterials for SIB, mainly focusing on Sb2S3, Sb2S3/
carbon composites, Sb2S3/graphene composites, and the Sb2S3/
MxSy composites structure. Sb2S3-based micro/nano materials
displayed promising potential for developing high-
performance SIBs.

Besides the batteries energy system, supercapacitors are a
significant device because of their many advantages, such as high
power density, good charge/discharge rate performance, and long
cycling stability. Liu et al. synthesized a flower-like MnO2/G
microsphere by optimizing the TE-G/KMnO4 ratio of carbon and
KMnO4 in the redox reaction. The MnO2/G electrode demonstrated
a superior rate performance with a specific capacitance of
500 F g−1 at the current density of 1 A g−1, and the capacitance
retention was kept at 85.3% after 5,000 cycles tests, which was
much better than the optimized MnO2/rGO electrode. Wu et al.
reported a hybrid Ti3C2Tx/C nanosphere microsupercapacitor
structure through aerosol jet printing technology. The planar
devices were manufactured by the hybrid spherical
nanostructures, which showed excellent areal capacitance
performance. This design provided a straightforward and
effective technique on how to build up a 3D-structured MXene
with suppressed self-stacking in order to achieve microenergy
storage devices with high electrochemical performances.

Moreover, photocatalysis technology has attracted wide
attention recently due to its good performance in degrading
series of toxic compounds. It can provide an efficient approach

to solve environmental problems. Lu et al. synthesized a ZnO-
reduced graphene oxide (rGO) solid catalyst through a one-step
electrodeposition method, with lithium perchlorate (LiClO4) as the
supporting electrolyte on the FTO substrate. Thanks to the
cooperative effect between rGO and ZnO, the as-obtained ZnO-
rGO structure showed a much-enhanced photocatalytic degradation
performance. The degradation rate of methylene blue could reach up
to 99.1% in 2 h through optimizing the ZnO-rGO composite
structure by adjusting the electrodeposition process, which
confirmed the effectiveness of the hierarchical approach. Yin
et al. fabricated periodic epitaxial junctions utilizing Sb2Te3
nanoblades serialized by Te nanowires (Sb2Te3/Te) through a
one-step hydrothermal epitaxial growth method. The as-obtained
product possessed a good crystal shape and heterojunction
construction, resulting in a very fast photo response owing to the
efficient separation of photogenerated carriers. The responsivity and
detectivity were 9.5 × 1011 μAW−1 and 1.22 × 1011 Jones at 50 K,
respectively, thus exhibiting a better detection ability than other Te-
based photodetector devices.

Micro/nano materials also play a significant role in the field of
electrocatalysis. Zhang et al. reported one facile organic–inorganic
hybridization approach to synthesize Co-N-CX catalysts, which
showed excellent hydrogen evolution reaction (HER) performances,
achieving a low overpotential of 145 mV to reach 10 mA cm−2 in 0.5 M
sulfuric acid. This Co-N-C catalyst greatly facilitated the charge transfer
to enhance the HER kinetics, and it also improved the durability during
the long cycling tests. Cao et al. reported a feasible molecular self-
assembly method to fabricate Pt/Mo carbide/multi-walled carbon
nanotubes (Pt/MoCx/MWCNTs) as an active electrode for ethanol
electrooxidation reaction (EOR) in acid media. The composite catalyst
demonstrated high catalytic activity and a prominent anti-CO
poisoning ability. As described in the paper, the abundant exposure
of the active sites and the synergistic effect between Pt and MoC
contributed to the superior EOR performance.

Besides experimental methods, simulation and numerical
analysis are very powerful tools to design and develop a novel
energy storage and conversion system. Fahim et al. reported a
numerical analysis that was performed to enhance the heat
transmission in the receiver of a parabolic solar collector by
introducing perforated barriers. In this work, the flow and
thermal characteristics of a solar collector were investigated.
Moreover, it also analyzed the beneficial effects of using
perforated baffles to improve the heat transfer. The position and
perforation number were optimized to achieve the best heat transfer.
How to achieve efficient heat transfer and energy storage is still a key
problem for engineers and industrialists. Adnan et al. studied the
energy storage efficiency between (Al2O3-CuO-Cu/H2O)mhnf and
(Al2O3-CuO/H2O)hnf under the condition of novel viscous
dissipation effects. The results confirmed that the third
generation of heat transfer fluids (Al2O3-CuO-Cu/H2O)mhnf

possessed a much higher thermal energy storage efficiency than
that of the traditional nano and hybrid nanofluids. Overall, the new
insights in heat transfer are promising and could help deal with the
requirements of energy storage that must be met in the modern
technological world.

We sincerely hope that this Research Topic will inspire and provide
new ideas for the design and fabrication of novel micro/nano materials
for energy storage and conversion. All the collected works have
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contributed significantly to novel micro/nano materials design and
synthesis. Furthermore, all the manuscripts have innovatively provided
new approaches for the field of energy storage and conversion, covering
experimental and theoretical calculations. Moreover, some suggestions
have been provided with respect to the development of the field of
energy conversion and storage. The realization of a heterostructure is a
significant and promising means to improve the performance of
micronanostructures in energy storage and conversion; this deserves
more research efforts. This heterogeneous structure can achieve a good
synergistic effect, combining different performance advantages so as to
enhance the overall performance and open up different applications in
different fields. Finally, we sincerely thank all the authors, reviewers, and
editors who have highly contributed to this Research Topic.
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Stability Optimization Strategies of
Cathode Materials for Aqueous Zinc
Ion Batteries: A Mini Review
Yi Gan1,2, Cong Wang1,2, Jingying Li1,2, Junjie Zheng1,2, Ziang Wu1,2, Lin Lv1,2, Pei Liang3,
Houzhao Wan1,2*, Jun Zhang1,2* and Hao Wang1,2

1School of Microelectronics, Hubei University, Wuhan, China, 2Hubei Yangtze Memory Laboratories, Wuhan, China, 3College of
Optical and Electronic Technology, China Jiliang University, Hangzhou, China

Among the new energy storage devices, aqueous zinc ion batteries (AZIBs) have become
the current research hot spot with significant advantages of low cost, high safety, and
environmental protection. However, the cycle stability of cathode materials is
unsatisfactory, which leads to great obstacles in the practical application of AZIBs. In
recent years, a large number of studies have been carried out systematically and deeply
around the optimization strategy of cathode material stability of AZIBs. In this review, the
factors of cyclic stability attenuation of cathode materials and the strategies of optimizing
the stability of cathode materials for AZIBs by vacancy, doping, object modification, and
combination engineering were summarized. In addition, the mechanism and applicable
material system of relevant optimization strategies were put forward, and finally, the future
research direction was proposed in this article.

Keywords: aqueous zinc ion battery, cathode materials, cyclic stability, stability attenuation, optimization

INTRODUCTION

In response to the global climate crisis, the research of new energy storage devices has been widely
focused on expanding the application of renewable energy to replace fossil energy (Tan et al., 2020a;
Wang et al., 2020a; Gan et al., 2020; Cai et al., 2021a; Liu et al., 2021a; Cai et al., 2021b; Deng et al.,
2021; Zhao et al., 2021). In the field of new energy storage, lithium-ion batteries have been widely
used because of their high energy density and wide working voltage (Park et al., 2021; Xia et al., 2021;
Feng et al., 2022). However, the scarcity of lithium resources increases the cost of lithium batteries,
and the majority of the organic electrolyte used are poisonous or flammable, reducing the safety of
lithium batteries (Li et al., 2021a; Du et al., 2021; Hou et al., 2021). Comparatively, zinc metal has the
advantages of non-toxic, low cost, and redox potential, which is more suitable for aqueous
electrolytes (Yao et al., 2021). Moreover, the high density and multi-charge of zinc render
aqueous zinc ion batteries (AZIBs) with excellent energy density, which makes it have great
application prospects (Gao et al., 2021). However, the low cycle stability of AZIBs is an
inevitable problem. As one of the most core components, cathode materials for the
improvement of AZIB performance critically depend on the optimization of stability. The
storage mechanism and capacity attenuation of zinc ions in AZIBs system have not been fully
clarified. Thus, the latest research progress is necessary to be summarized, which is conducive to
providing the following research direction.

Herein, the primary factors causing the performance degradation of cathode materials for AZIBs
are summarized, and optimization strategies for the stability of cathode materials are introduced.
Finally, according to the optimization strategy introduced in the summary, some problems to be
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further studied will be put forward, and the subsequent
optimization research of stability will be prospected.

PERFORMANCE DEGRADATION OF
CATHODE MATERIALS

The strong electrostatic interaction and large steric effect between
divalent Zn2+ and the main structure of cathode materials in
AZIBs lead to poor cyclicity and very slow intercalation kinetics.
Meanwhile, the pH, additives, types, and concentrations of zinc
salts in the electrolyte will also affect the energy storage
characteristics of cathode materials. The attenuation of
cathode material performance is mainly divided into the
following situations:

Irreversible phase transition: During the charge–discharge
process of the battery, Zn2+ intercalation, ion/molecule co-
intercalation, and conversion reaction are likely to cause
irreversible damage to the structure of cathode materials
(Chen et al., 2020). For instance, ZnxMnO2 will be formed
when Zn2+ is inserted into the space of MnO2 with a layered
structure, while MnOOH with a tunnel structure will be formed
whenH+ is inserted into the material in solution (Liu et al., 2021b;
Ma et al., 2021). This phase transition in varying degrees will
destroy part of the original structure, resulting in the attenuation
of performance. Moreover, the H+ insertion process is usually
accompanied by-products [such as Zn4SO4(OH)6·5H2O] with the
change of pH, which will cause the adhesion of insulation
corrosion on the cathode surface and also continuously reduce
the electrochemical activity of the cathode (Li et al., 2019).

Cathodic dissolution: The dissolution and diffusion of cathode
materials in electrolytes are irreversible to a certain extent, which will
cause the instability of the material structure. For example, the
Jahn–Teller effect in high-valence manganese-based oxides induces
the irreversible transformation of someMn3+ toMn2+ in the process
of cathode discharge and then will destroy the main structure of
materials (Heo et al., 2021). In addition, for most material systems
such as vanadium-based compounds, Prussian blue and analogs, and
their structures are not stable in electrolytes, and irreversible
dissolution will occur when the cathode is discharged for a long
time (Wan and Niu, 2019; Li et al., 2021b).

In conclusion, the performance degradation of cathode
materials is not only due to the influence of the electrolyte
environment but also related to its own structural
characteristics and reaction mechanism. Moreover, according
to the research reported at present, the cycle stability of
cathode materials can be optimized from four aspects:
introduction of vacancy, substitution/gap doping, object
modification, and combination engineering.

STABILITY OPTIMIZATIONS FOR
CATHODE MATERIALS

Introduction of Vacancy
The introduction of an appropriate amount of vacancy
engineering (oxygen vacancy, metal vacancy, etc.) has been

confirmed that it not only can reduce the bandgap, improve
the conductivity, and promote the diffusion kinetics of H+/Zn2+

to improve the capacity but also enhance the structural stability to
inhibit its dissolution, so as to improve the cycle stability (Wang
et al., 2020b; Luo et al., 2020; Tan et al., 2020b; Cao et al., 2021;
Tong et al., 2021; Cui et al., 2022). Zhang et al. achieved the
doping of Cu2+ substituting Mn3+ by solvothermal and annealing
and synthesized oxygen-containing vacancy Mn2O3 (OCu-
Mn2O3) (Liu et al., 2020a). The uniform distribution of
oxygen vacancies can adjust the internal electric field and
crystal structure by compensating the non-zero dipole
moment (in Figure 1A), thereby promoting the reaction
kinetics and improving the stability of the crystal structure.
Unlike the rapid decline in the capacity of Zn||Mn2O3 battery
(capacity retention less than 50%), the capacity of Zn||OCu-
Mn2O3 battery still retains 88% of the initial capacity after 600
cycles at 1 Ag−1. In addition, Peng et al. prepared pristine V6O13

(p-VO) via electrodeposition and the self-assembly process, and
then, oxygen-deficient V6O13 cathode (Od-VO) was obtained by
annealing (Liao et al., 2020). Simulated results indicated that the
introduced oxygen vacancy can reduce the Gibbs desorption free
energy of Od-VO, which is more conducive to the desorption of
Zn2+ than p-VO (shown in Figure 1B). The prepared Od-VO
cathode has displayed roughly a capacity retention rate of 95%
after 200 cycles at 0.2 Ag−1, which is significantly higher than
p-VO cathode (collapsed within 180 cycles). Moreover, Kim et al.
synthesized in situ growth of ZnMn2O4@C with Mn deficiency
(Mn-d-ZMO@C) from the ZnO-MnO@C nanocomposite by
solvent dry process and annealing methods (Islam et al.,
2021). As shown in Figure 1C, ZnO-MnO@C transformed
into Mn-d-ZMO@C via an aging process in electrolytes, which
was along with the formation of Zn4(OH)6SO4·5H2O (ZBS) on
the surface. Furthermore, Mn-d-ZMO@C and by-products
realized reversible conversion by reacting with Zn2+ and Mn2+,
respectively. The Zn/Mn-d-ZMO@C cell still maintained 84% of
the highest capacity (98 mAh g−1) after 2000 cycles at 3 Ag−1.
Thus, it can be seen that some vacancy optimization strategies
reported recently have provided detailed analyses of the
concentration and location distribution of introduced
vacancies. However, more material systems need to be further
studied to verify the universality of the optimization mechanism
of this strategy.

Substitution/Gap Doping
As reported earlier, the vacancy defects caused by doping
modification have been confirmed stabilizing the crystal
structure of cathode materials. Besides, the substitution doping
of multivalent metal ions can effectively reduce the formation
energy of cathode materials, which can effectively inhibit the
collapse of crystal structure (Kim et al., 2021; Li et al., 2020). Ni
et al. synthesized Mn-substituted zinc hexacyanoferrate materials
(MZHCFs) using a simple precipitation method (Ni et al., 2021).
The substitution ofMn ions in the N-bonded sites can restrain the
cubic-rhombohedral phase transition and the dissolution of
active materials in electrolytes, resulting in improving the
structural stability. As shown in Figure 1D, the MZHCF
(MZHCF-7) with Mn content of 7% retained 94% of the
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initial capacity (far more than 17% of ZnHCF) after 500 cycles at
0.25 Ag−1, displaying a significant synergistic optimization effect.
In addition, the gap doping of heteroatoms (especially metals
with similar ion radius) has been proved to effectively stabilize the
phase transition structure and inhibit the dissolution of materials,
which contributes to improving the reversibility of cathodic
electrochemical reaction (Xu et al., 2021a; Chen et al., 2021).
Moreover, Wang et al. obtained multivalent cobalt (Co2+, Co3+)-
doped Mn3O4 nanosheets (Co-Mn3O4/CNA) based on carbon
nanosheets array by electrodeposition on the basis of Co-MOF
precursors prepared in water bath and annealing (Ji et al., 2021).
Doped Co2+ in the interlayer of initial phase change products δ-
MnO2 can play a supporting role due to strong adsorption energy
(in Figure 1E). Meanwhile, doped Co4+ in the [MnO6] octahedral
structure can improve the conductivity of Mn4+ and maintain a
high specific capacity, which is owing to its low energy bandgap.
In the subsequent charge–discharge process, cobalt with different
valence states not only plays a supporting role in the phase change
products but also can effectively inhibit the Jahn–Teller effect and
promote the diffusion of ions. The prepared Co-Mn3O4/CNA
cathode can still maintain 80% of the initial capacity after 1,100
cycles at 2 Ag−1. Nevertheless, the current research on doping

modification has not further analyzed the influence of doping
position and the proportion of different doping components on
the stability of optimized materials. Furthermore, the similarities
and differences of optimization mechanisms from different
doping elements still need to be further discussed.

Object Modification
The stability optimization strategy of cathode materials also
includes object modification methods such as intercalation and
surface coating. Moreover, object modification has been proved
to effectively promote the reversibility of the reaction process and
inhibit the dissolution of structures (Zhang et al., 2021). For
layered cathode materials, the insertion of highly stable objects
can promote the interlayer reversible transfer of Zn2+ (Liu et al.,
2020b; He et al., 2021a; He et al., 2021b; Li et al., 2021c). Li et al.
synthesized MoS2/graphene nanomaterials with a sandwich
interlayer structure by solution stirring in an argon
atmosphere at room temperature (Li et al., 2021d). Figures
2A–C show that reduced graphene oxide (rGO) was inserted
between MoS2 layers, resulting in the significant expansion of the
MoS2 layer spacing and the sharp decrease in the Zn2+ migration
barrier. In addition, the stable flow structure alleviates the

FIGURE 1 | Vacancies and doping modification of cathode materials. (A) Atomic structure models of a single layer height in Mn2O3 and Ocu-Mn2O3, respectively;
(B) illustrations of the Zn2+ storage/release for p-VO and Od-VO; (C) schematic illustration for the reaction mechanism of the in situ formed Zn/Mn-d-ZMO@C; (D)
schematic diagram of the reaction mechanism of MZHCFs; (E) schematic illustration of Zn|| Co-Mn3O4/CAN battery. Reproduced with permission (Liu et al., 2020a; Liao
et al., 2020; Islam et al., 2021; Ji et al., 2021; Ni et al., 2021).
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instability caused by interlayer stacking. The prepared cathode
has a capacity retention rate of 88.2% after 1,800 cycles at 1 Ag−1,
and its optimization effect is significantly outstanding compared
with the previously reported transition metal sulfide cathode.

In addition, the surface coating belongs to the modification of the
electrode/electrolyte interface, which is an effective strategy to inhibit
dissolution and phase transformation of cathode materials (Gao
et al., 2020). It has been confirmed that coating materials with high
stability and conductivity can effectively improve the specific
capacity and cycle stability of the cathode (Bin et al., 2021; Xu
et al., 2021b; Ren et al., 2021; Xing et al., 2021). Yang et al. prepared
an independent flexible membrane (CNT/MnO2-PPy) composed of
carbon nanotubes and polypyrrole (PPy)-coated MnO2 nanowires
through typical in situ reaction self-assembly and vacuum filtration
(Zhang et al., 2020a). MnO2 nanowires coated with PPy (about 5 nm
in thickness) are uniformly dispersed in highly conductive and
interconnected carbon nanotube networks, improving the
reaction kinetics and structural stability of the cathode (in
Figure 2D). After 1,000 cycles at 1 Ag−1, the optimized electrode
still maintained 87.4% of the initial capacity. Nevertheless, the range
of structural modification materials used at present is limited, and
the related synthesis processes still do not meet the needs of
economic efficiency. Then, there are still some challenges in
practical application.

Combination Engineering
The adjunction of materials with a high stability structure for
combination is also an exploration direction to improve the

stability of cathode (Zhang et al., 2020b; Shan et al., 2021).
The optimization strategy of combination engineering usually
includes carbon-based materials, which can improve the electron
transmission efficiency and structural stability of materials (Yang
et al., 2021; Zeng et al., 2021). Hou et al. synthesized a 3D reticular
graphene-based hydrated vanadium dioxide composite
(Od-HVO/rG) with abundant oxygen vacancies using the
solvothermal method (Huang et al., 2021). The research
confirmed that oxygen vacancy defects can provide more
active sites and promote the reversibility of the reaction, while
the highly conductive and robust rG sponge can promote electron
migration and reduce the accumulation of Od-HVO to improve
the conductivity and structural stability, as shown in Figure 2E.
Compared with HVO (capacity retention of 86.5%) andOd-HVO
(capacity retention of 93.6%), the Od-HVO/rG cathode expressed
scarcely any attenuation after 750 cycles at 5 Ag−1. Moreover, Li
et al. obtained a cathode material (CNT@KMO@GC) composed
of graphene (G), carbon black (CB), and K-sodium manganite
(KxMnO2·yH2O, KMO) based on core–shell carbon nanotube
(CNT) by hydrothermal and solution treatment (Wang et al.,
2021). In Figure 2F, KMO provides the main charge storage due
to the interlayer intercalation of K+ and H2O; CNT provides a
conductive framework for the loaded KMO owing to high
conductivity and structural stability; G and CB provide the
conductive network to reduce the accumulation of active
substances. The prepared cathode has a capacity retention rate
of 65.2% after 10,000 cycles at 5 Ag−1, which is significantly
higher than KMO (39.1% of the initial capacity) and CNT@

FIGURE 2 | Structural modification and composite of cathode materials: (A) Crystal structures of bulk MoS2 and MoS2/graphene; (B,C) the corresponding
migration energy barriers with the variation of the MoS2-to-graphene distance; (D) schematic illustration of freestanding CNT/MnO2-PPy; (E) schematic diagram of Zn2+

(de)intercalating mechanism in Od-HVO/rG; (F) illustration of electron/ion transport and ion diffusions across the electrodes of CNT@KMO@GC. Reproduced with
permission (Zhang et al., 2020a; Li et al., 2021d; Huang et al., 2021; Wang et al., 2021).
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KMO (51.5% of initial capacity). However, the influence of the
composite ratio on stability optimization has not been deeply
analyzed, and the composite research of non-carbon matrix
materials needs to be further explored. Chen et al. revealed the
performance attenuation mechanism of MnO2-based AZIBs by
contrasting with different polymorphs and found that the low
manganese dissolution of R-MnO2 inhibits the degradation of
performance (Liao et al., 2022). Therefore, the reasonable
composite design of MnO2 polymorphs with high initial
capacity and R-MnO2 may have certain advantages in capacity
and stability compared with single crystal form, which provides a
direction for the next optimization.

SUMMARY AND PERSPECTIVES

In summary, the progress of cathode stability optimization for
aqueous zinc ion batteries has been reviewed; the main of which
can be divided into four aspects, including the introduction of
vacancy, substitution/gap doping, object modification, and
combination engineering. Thus, cathode stability optimization
strategies can be designed from three aspects: inhibiting material
dissolution, improving reaction reversibility, and enhancing
structural stability.

However, there are several aspects to be further researched
in the aforementioned optimization schemes of cathode
materials. For quantitative analysis, most of the doping and
composite research studies lack exploring the relationship
between concentration/location and the optimization degree

of stability. For universality analysis, material systems
introduced into optimization research are still limited. For
practical application, some synthetic processes, such as surface
coating, still need to meet the demands of the economy,
efficiency, and safety. In addition, the realization of the
most stable cathode performance needs to eliminate the
factors that reduce the reversibility according to the
reaction mechanism of materials, such as inhibiting the
irreversible dissolution of materials and the formation of
inert by-products. Therefore, these fields to be explored can
be the focuses of stability optimization in the future.
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Impacts of Metal–Support Interaction
on Hydrogen Evolution Reaction of
Cobalt-Nitride-Carbide Catalyst
Xuan Zhang†, Yu-An Li†, Yaozhen Huang, Haiqiang Mu, Xiaofeng Gu, Feng Li*, Zheng Wang*
and Jing Li*

State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical
Engineering, Ningxia University, Yinchuan, China

Cobalt-nitride-carbide (Co-N-C) catalysts are promising cost-efficient transition metal
catalysts for electrocatalytic hydrogen evolution, but few works investigate the
metal–support interaction (MSI) effect on hydrogen evolution reaction (HER)
performance. Herein, efficient Co-N-CX catalysts with controllable MSI between
encapsulated Co nanoparticles and nitrogen-doped graphitic carbon nanosheets were
synthesized via a facile organic–inorganic hybridization method. Results demonstrate that
the Co-N-C0.025M catalyst with the coexistence of single-atom Co sites and Co
nanoparticles prepared by 0.025 M cobalt nitrate shows excellent HER performance,
achieving a low overpotential of 145mV to reach 10 mA cm−2 in 0.5 M sulfuric acid, which
is mainly because the optimal MSI, which leads to amoderate hydrogen adsorption energy
and improved electroactive sites, not only facilitates the charge transfer to improve the HER
kinetics, but also improves the durability of the catalyst by Co-N bond anchoring and
encapsulation of active Co species. This work provides guidance to further reveal the
influence of MSI on their catalytic activity.

Keywords: cobalt nanoparticles, green hydrogen, energy conversion, metal–support interaction, adsorption energy

INTRODUCTION

Hydrogen energy is believed to be an ideal energy source to counter climate-related environmental
degradation and mitigate energy crisis thanks to its renewability, high energy density, and the
absence of greenhouse gas emissions (Zhu et al., 2020). Additionally, hydrogen evolution reaction
(HER) through electrolytic water splitting has been considered as an efficient approach to transfer
intermittent energy sources such as solar or wind power to stable hydrogen energy (Li et al., 2020a).
The Pt-based catalysts are well known as the most ideal electrocatalytic materials for HER, but Pt
resources are scarce and expensive, which hinder its large-scale industrialization (Liu et al., 2019).
Therefore, it is indispensable to find non-precious metal alternatives with abundant resources and
outstanding catalytic activity for HER.

Transition metal compounds, such as metal oxides (CoOx, FeOx, and CuOx) (Ling et al., 2017;
Suryanto et al., 2019; Zhang et al., 2021), sulfides (MoSx and CuSx) (Guo et al., 2019a; Aslan et al.,
2019; Yang et al., 2021), phosphides (CoPx and WPx) (Du et al., 2018; Liu et al., 2021; Zhao et al.,
2021), nitrides (MoNx and CoNx) (Jin et al., 2018; Peng et al., 2019; Shu et al., 2020), carbides (Ni3C
andMo2C) (Li et al., 2016; Gao et al., 2019; Lu et al., 2019; Ma et al., 2020), and metal-nitride-carbide
(M-N-C, M = Fe, Co, Ni, etc.) (Liu et al., 2017; Roy et al., 2018; Jin et al., 2019; Shi et al., 2020), have
gradually attracted attention in electrocatalytic hydrogen production applications (Dinh et al., 2019).
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Among these transition metal electrocatalysts, the Co-based
electrocatalysts have been proposed as the ideal alternatives for
cost-efficient and highly active HER owing to their extensive
availability, high catalytic performance, and being environmental
friendly (Zhang et al., 2020).

In recent years, Co-N-C has attracted growing interest as a
highly efficient catalyst for HER (Deng et al., 2019; Sa et al., 2019).
Usually, single-atom Co sites are regarded as the most active sites
(Sun et al., 2018), and when the Co-N-C electrocatalysts are
synthesized, strong acid etching is used to remove Co
nanoparticles (NPs) agglomerated during thermal
polymerization. For example, Sun et al. (2018) compared the
HER performance of as-prepared cobalt based catalyst with
single-atom Co sites encapsulated in hierarchically ordered
porous nitrogen-doped carbon (Co-SAS/HOPNC) with the
acid-treated Co-NPs/HOPNC electrocatalyst to confirm that
atomically dispersed Co sites contribute to the enhanced HER
activity, and the overpotential of Co-SAS/HOPNC catalyst was
137 mV in 0.5 M sulfuric acid at the current density of
10 mA cm−2. However, numerous studies demonstrate that
hydrogen evolution activity not only depended on single-atom
Co sites, but also was affected by the interaction between
embedded metallic cobalt particles and nitrogen-doped carbon
supports (Wang et al., 2014; Guo et al., 2019b; Jia et al., 2019; van
Deelen et al., 2019; Zhang et al., 2019; Yang et al., 2020).
Benefiting from the strong synergy between Co NPs and
carbon supports, the hybrid Co-N-C catalysts showed excellent
HER activity. For instance, Chen et al. (2018) fabricated an
efficient electrocatalyst with ultrafine Co NPs embedded in
nitrogen-doped carbon nanotube grafted graphene nanosheets,
and the as-prepared composite catalyst exhibited remarkable
HER performance to reach 10 mA cm−2 at a low overpotential
of 87 mV in 0.5 M H2SO4. Additionally, Lyu et al. (2019)
prepared efficient Co-N-C catalysts with a hybrid structure
comprising Co-N species and Co NPs embedded in nitrogen-
doped carbon shell, which could achieve an overpotential of
180 mV to reach 10 mA cm−2 in 1.0 M KOH. Furthermore, Du
et al. (2020a) synthesized a uniform Co NP (about 7 nm in
diameter) embedded in nitrogen-doped carbon that exhibited
high HER activity with a stabilized overpotential of 180 mV at the
current density of 10 mA cm−2 in sulfuric acidmedium. However,
the synthesis procedures of these Co NPs-based Co-N-C catalysts
are usually complex and involve expensive modulator or template
agents, which is not appropriate for the extensive commercial
application.

Metal–support interaction (MSI) is of great importance for
heterogeneous catalysis, which is widely exploited as a
strategy to improve the catalytic activity, due to the
synergy effect on chemical bonding and electron transition,
where the chemical bonding at the interfacial provides a
bridge for the electron transition between the metal and
support, leading to a change of the charge distribution on
the metal surface and further on the adsorption energy. but a
full investigation of the nature of MSI has not been achieved
on the HER electrocatalysts.

Herein, a facile one-pot organic–inorganic hybridization
method was employed to synthesize Co-N-C hybrid catalysts

with single-atom Co sites and encapsulated Co NPs for HER,
which act as a model catalyst to investigate the influence of
MSI on the HER activity. The cobalt nitrate was employed as
the metal precursor, and glucose and dicyandiamide were
applied as the carbon and nitrogen precursors, respectively.
The concentration of cobalt nitrate was regulated to control
the diameter of the Co NPs, so as to adjust the interaction
between encapsulated Co NPs and nitrogen-doped carbon
supports to obtain optimized hydrogen evolution activity in
acid medium. Finally, the Co-N-C0.025M catalyst demonstrated
the best HER performance, which could achieve a low
overpotential of 145 mV to reach 10 mA cm−2 in 0.5 M
H2SO4. The remarkable hydrogen evolution activity and
good durability were attributable to the strong synergistic
effects between single-atom Co sites and embedded Co NPs
that had the suitable interaction with surrounding nitrogen-
doped carbon supports.

EXPERIMENTAL SECTION

Materials
Glucose (14431-43-7, 98%), dicyandiamide (461-58-5, 99%), Co
(NO3)2·6H2O (10026-22-9, 99.99% metals basis),
Fe(NO3)3·9H2O (7782-61-8, 99.999% metals basis), Cu
(NO3)2·3H2O (10031-43-3, 99.99% metals basis), and
(NH4)6H2W12O40·xH2O (12333-11-8, 99.5% metals basis) were
purchased from Aladdin Chemical Reagent Co., Ltd. H2SO4

(7664-93-9, AR 95.0%–98.0%), HCl (7647-01-0, AR
36.0%–38.0%), and C2H5OH (64-17-5, AR ≥ 99.5%) were
purchased from Sinopharm Chemical Reagent Co., Ltd. All
aqueous solutions were prepared with a Milli Q water
purification system (18.2 MΩ cm), and all the reagents and
solvents employed were commercially available and used as
received without further purification.

Synthesis of Co-N-CX
In general, 0.25 g glucose (14431-43-7, 98%) and 5 g
dicyandiamide (461-58-5, 99%) were dissolved in 200 ml of
deionized water, and 2 ml of Co (NO3)2·6H2O (10026-22-9,
99.99% metals basis) solution of certain concentration was
added dropwise to the above solution with vigorous stirring.
After stirring for 2 h, the solvent was evaporated under
reduced pressure, and the obtained solid was carbonized at
900°C for 2 h under an Argon atmosphere (ramp rate =
3°C min−1). The products were abbreviated as Co-N-CX,
where X was the concentration of Co (NO3)2·6H2O
solutions. Additionally, N-C was prepared for comparison,
using the same route as for Co-N-CX, except for the addition of
Co (NO3)2·6H2O solution.

Synthesis of Acid-Treated Co-N-CX
Twenty-five milligrams of each Co-N-CX catalyst was treated by
250 ml of 1 M HCl for 8 h at 80°C with reflux, respectively. Then,
the samples were vacuum-dried at 60°C overnight after washing
with deionized water, and the final products were abbreviated as
H-Co-N-CX.
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Synthesis of M-N-CX
M-N-CX samples were synthesized using the same method as for
Co-N-CX, where M was Mo, Fe, W, Ni, and Cu rather than Co.

Electrochemical Measurements
The electrochemical measurements were conducted on a CHI
760E electrochemical workstation (Shanghai Chenhua Co.,
Ltd., Shanghai, China) with a standard three-electrode
system. A graphite electrode was used as the counter
electrode, and an Ag/AgCl electrode (KCl-saturated) was
employed as the reference electrode. A glassy carbon
rotating disk electrode (RDE) (Model 636A, Princeton
Applied Research, Ametek Advanced Measurement
Technology Inc.) with coated electrocatalysts was used as
the working electrode, which was prepared as follows: 2 mg of
catalyst and 500 μl of 0.5% Nafion solution were
homogenously dispersed under ultrasound conditions in
1.5 ml of ethanol–water solution at room temperature (the
volume ratio between ethanol and deionized water was 2:1).
Then, 30 μl of catalyst ink was dropped onto the polished
glassy carbon surface (4 mm in diameter), leading to a
catalyst loading of 0.24 mg cm−2. The HER tests were
carried out with RDE at a rotation rate of 2,000 rpm, and
linear sweep voltammetry (LSV) measurements were
recorded at a scan rate of 10 mV s−1 in 0.5 M H2SO4

solution. Electrochemical impedance spectroscopy (EIS)
was performed over a frequency range from 0.1 MHz to
0.1 Hz with an amplitude of 5 mV. All the potentials in
this study were iR corrected and converted to the
reversible hydrogen electrode (RHE). The Ag/AgCl
electrode was calibrated with respect to RHE, using Pt as
working and counter electrodes, purged with high pure
hydrogen gas during the measurement (Supplementary
Figure S1) (Mukherjee et al., 2016). The calibration value
was: Evs. RHE = Evs. Ag/AgCl + 0.059pH + 0.285 V.

RESULTS AND DISCUSSION

The Co-N-CX catalysts were synthesized as follows (as shown
in Scheme 1): (1) The precursor solution was synthesized via a
one-pot reaction by just mixing dicyandiamide, glucose, and
cobalt nitrate solution with concentration X. (2) The
precursor solution was dried well under reduced pressure
and the remaining powder was then carbonized at high
temperature under an Argon atmosphere to obtain Co-N-
CX. In addition, the Co-N-CX catalysts were further heated
under reflux in hydrochloric acid to gain H-Co-N-CX for
comparison. This method was also used to prepare other
M-N-CX; however, the performance of the Co-N-C0.025M

catalyst was significantly better than other M-N-C0.025M

catalysts, and the Co-N-C0.025M prepared at 900°C was
found to yield the best HER activity, eventually (as shown
in Supplementary Figures S2, S3).

The morphologies of the Co-N-CX catalysts were
characterized through transmission electron microscopy
(TEM) linked to an x-ray energy dispersive spectrometer
(EDS). The TEM images (Figures 1A–D) showed that all the
Co-N-CX catalysts possessed transparent and wrinkled
characteristics, regarded as the structural features of ultrathin
graphene-like carbon nanosheets (Wang et al., 2019). Although it
was not very obvious, there were few small Co NPs presented in
Co-N-C0.0125M (Figure 1A). Aberration-corrected high-angle
annular dark-field scanning transmission electron microscopy
(HAADF-STEM) was applied to further investigate the structural
details of Co-N-C0.0125M, and single-atom Co sites, which were
distinguished as brighter spots in Figure 1E, were noted
homogeneously dispersed throughout the carbon supports in
Co-N-C0.0125M. In comparison with Co-N-C0.0125M, spherical
Co NPs were easily observed in Co-N-C0.025M, Co-N-C0.05M,
and Co-N-C0.075M, and the particle size gradually increased
from about 30 to 70 nm (Figures 1B–D) with the increase of

SCHEME 1 | The schematic illustration for the preparation of Co-N-CX.
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the cobalt precursor concentration. This phenomenon revealed
that the concentration of cobalt precursor used in the synthesis
could be regulated to adjust the diameter of the Co NPs to obtain
a hybrid catalyst with coexistence of single-atom Co sites and Co
NPs. In addition, the HRTEM image (inset of Figure 1B) showed
that Co nanoparticle was tightly encapsulated with several layers
of carbon nanosheets, and the lattice fringe of Co nanoparticle
was 0.21 nm, corresponding to the (111) crystal plane of β-Co
phase. Moreover, the lattice fringe of surrounding carbon
nanosheets was 0.35 nm, which was slightly larger than pure
graphitic carbon, on account of the successful doping of nitrogen
into the carbon matrix (Jia et al., 2019). Element mapping was
performed to analyze the element distribution, and the elements
Co, N, and C were found distributed uniformly on the carbon
supports (Figure 1F). Corresponding to the TEM image, the
nanosheet structure of the Co-N-C0.025M sample could also be
observed in the AFM image (Supplementary Figure S4), and the
thickness of the carbon nanosheet was about 3.42 nm. Thus, the
as-prepared Co-N-CX catalysts had a hybrid structure comprising
single-atom Co sites and embedded Co NPs, while Co NPs and

the nitrogen-doped carbon supports were in intimate contact.
The presence of encapsulated Co NPs would affect the features of
the surrounding carbon supports by altering the electron density.
This might boost the electron transfer from carbon supports to
Co NPs during the HER processes and was helpful in promoting
high catalytic performance.

The crystal phases of the as-prepared catalysts were analyzed
by x-ray powder diffraction (XRD), and the XRD patterns of N-C,
Co-N-CX, and H-Co-N-CX are presented in Figures 2A,B. As
shown in Figure 2A, the N-C sample displayed two broadening
diffraction peaks around 26.5° and 43.3°, which corresponded to
the (002) and (100) lattice planes of graphitic carbon, respectively
(Chen et al., 2018). As expected, for the Co-N-C0.0125M and Co-
N-C0.025M, there were two diffraction planes corresponding to
graphitic carbon, but no peaks related to the crystalline cobalt.
However, for the Co-N-C0.05M and Co-N-C0.075M, besides the
broadened peaks of graphitic carbon, additional sharp peaks
located at 44.2° [Co (111)] and 51.5° [Co (200)], which were
related to the β-Co phase (JCPDS No. 15-0806), were observed.
Interestingly, a broadening diffraction peak around 13.3°

FIGURE 1 | TEM images of the Co-N-CX catalysts: (A) Co-N-C0.0125M, (B) Co-N-C0.025M (Inset: HRTEM image of Co-N-C0.025M). (C) Co-N-C0.05M and (D) Co-N-
C0.075M. (E) HAADF-STEM image of Co-N-C0.0125M. (F) STEM image and corresponding element mapping of Co-N-C0.025M.
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appeared after acid treatment for each H-Co-N-CX sample, which
corresponded to the typical interplanar structural packing of the
graphitic-like carbon nitride and indicated that acid treatment
could destroy the interlayer stacking of the graphite-like
structure, making nitrogen-doped graphitic carbon become
more like the planar graphene structure with much sp2
hybridized carbon (Tian et al., 2013; Wu et al., 2015). The
structural changes of the nitrogen-doped carbon supports
might lead to changes of the MSI, and the Co NPs that had
weak interaction with the carbon supports might be etched off by
acid, while the well-encapsulated Co NPs that had strong MSI
were not affected, since the diffraction peaks of crystalline cobalt
did not change significantly for both H-Co-N-C0.05M and H-Co-
N-C0.075M (Figure 2B).

To analyze the structure of nitrogen-doped carbon
nanosheets, Raman spectroscopy was employed. As shown in
Figure 2C, the two strong peaks at about 1,349 and 1,590 cm−1

corresponded to the D and G bands, respectively, where the D
band was related to disordered carbon structure and the G band
was representative features of in-plane vibrations of sp2
hybridized carbon (Wang et al., 2014; Guo et al., 2019b). The
relative intensity ratios of D/G (ID/IG) calculated from the peak
intensity indicated the defect level and degree of graphitization of
carbon structure. Figure 2C demonstrates that the ID/IG value for
N-C was 1.11, and the ID/IG value of Co-N-C0.025M was 1.04,
which was higher than those of Co-N-C0.0125M (0.99), Co-N-
C0.05M (0.98), and Co-N-C0.075M (0.97). It suggested that Co-N-

C0.075M had a higher degree of graphitization, which was
consistent with the XRD results in which Co-N-C0.075M

exhibited a sharper diffraction peak of graphitic carbon
(Figure 2A). Compared with N-C, the addition of Co species
could affect the in situ nitrogen doping and carbonization
process, gaining higher degree of graphitization accordingly
(Jia et al., 2019). In addition, when the concentration of cobalt
precursor increased, the cobalt NPs agglomerated to form large
particles, which would change the interaction between Co species
and graphitic carbon supports; thus, ID/IG values of the
corresponding Co-N-CX catalyst showed a decreased trend,
except for Co-N-C0.025M. This exception indicated that Co-N-
C0.025M had the highest level of nitrogen-doped sites, which
enabled optimal MSI among the Co-N-CX catalysts. This
feature could have a great contribution to the HER
performance. Furthermore, the ID/IG values of the acid-treated
H-Co-N-CX samples were lower than that of the corresponding
Co-N-CX (Figure 2D), demonstrating again that acid treatment
would destroy the graphite-like stacking and recover the in-
planar structure (Wu et al., 2015).

The surface elemental composition and chemical states of the
Co-N-CX and H-Co-N-CX samples were verified by x-ray
photoelectron spectroscopy (XPS) (Supplementary Figure S5).
The high-resolution N 1s spectrum (Figure 3A) of Co-N-C0.0125M

indicated that pyridinic N, Co-Nx, pyrrolic N, graphitic N, and
oxidized N were located respectively at 398.4, 399.2, 400.7, 401.8,
and 405.5 eV. Compared with Co-N-C0.075M, there were slight

FIGURE 2 | XRD patterns of (A) N-C, Co-N-CX and (B) H-Co-N-CX, and Raman spectrum of (C) N-C, Co-N-CX, and (D) H-Co-N-CX.
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negative displacements of Co-Nx when the concentration of
cobalt precursor decreased, and Co-N-C0.0125M showed the
lowest binding energy of Co-Nx. This is mainly due to the
different electronegativity causing an electron transfer from Co
to N; thus the binding energy shift can be used as an indicator to
the MSI, because the strong MSI always leads to an obviously
electronic environment change of Co-Nx, and the same trend can
be observed for all H-Co-N-CX after acid treatment (Figure 3B).
Curve fitting of the high-resolution Co 2p peak spectrum of Co-
N-CX and H-Co-N-CX are shown in Figures 3C,D, respectively.
For Co-N-C0.0125M, two main peaks appeared at 780.0 and
795.8 eV, demonstrating that Co was mainly in divalent Co
state, which might be due to the strong interaction between
the Co species and nitrogen-doped carbon nanosheets (Song
et al., 2017; Guo et al., 2019b). Moreover, the peak at 781.7 eV
was ascribed to Co-Nx species. Low-intensity peak located at
778.0 eV could be attributed to metallic Co NPs. Aminor positive
shift of Co0, Co2+, and Co-Nx would be observed when compared
Co-N-C0.075M with other Co-N-CX. When the concentration of
cobalt precursor decreased, the binding energy of Co-Nx

gradually shifts to the positive direction and the fitting peak

area of metallic Co decreases obviously, and declines in
proportion, indicating that more metallic Co species are
encapsulated to weaken the MSI. Offset with moderate
binding energy of Co-N-C0.025M illustrated that there were
electron transfer processes between Co species and the
nitrogen-doped carbon supports, and the unique MSI of Co-
N-C0.025M might lead to outstanding catalytic performance for
HER (Hernandez Mejia et al., 2018). Compared with Co-N-CX,
there were obviously negative offset of Co0 and little positive
deviance of Co-Nx for all H-Co-N-CX; these changes
demonstrated that the interaction between Co species and
surrounding nitrogen-doped carbon supports might be
changed by acid etching, causing a decrease in HER catalytic
performance.

The electrocatalytic HER performance of the as-
synthesized catalysts was investigated using linear sweep
voltammetry (LSV) in 0.5 M H2SO4. The polarization
curves of Co-N-CX and H-Co-N-CX were compared in
Figures 4A,B, respectively. For the Co-N-CX catalysts, the
overpotential of Co-N-C0.0125M, Co-N-C0.025M, Co-N-C0.05M,
and Co-N-C0.075M at a current density of 10 mA cm−2 was 176,

FIGURE 3 | High-resolution N 1s spectra of (A) Co-N-CX and (B) H-Co-N-CX, and high-resolution Co 2 p spectra of (C) Co-N-CX and (D) H-Co-N-CX.
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145, 158, and 170 mV, respectively. In the series of H-Co-N-
CX samples, H-Co-N-C0.05M possessed much lower
overpotential (172 mV) than those of H-Co-N-C0.0125M

(198 mV), H-Co-N-C0.025M (191 mV), and H-Co-N-C0.075M

(182 mV). In addition, potassium thiocyanate (KSCN)
poisoning tests (Supplementary Figure S6A) were carried
out to confirm the important role of Co sites, and the results

showed that obvious recession occurred when 0.1 M KSCN
solution was added in the acid electrolyte. The significant
increase of the overpotential after KSCN treatment confirmed
that Co species were the catalytic active sites (Li et al., 2020b).
The Co-N-C0.025M on glass carbon electrode had the same
onset potential compared with RDE, which means an
excellent intrinsic HER activity of Co-N-C0.025M, but a

FIGURE 4 | LSV curves of (A)Co-N-CX and (B)H-Co-N-CX in 0.5 MH2SO4. Tafel plots of (C)Co-N-CX and (D)H-Co-N-CX in 0.5 M H2SO4. Cdl values of (E)Co-N-
CX and (F) H-Co-N-CX.
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decreased current density was possibly caused by the mass
transfer restriction (Supplementary Figure S6B). Moreover,
Tafel slopes of these electrocatalysts were calculated (Figures
4C,D) so as to investigate the mechanism of HER activity. The
lower Tafel slope of the Co-N-CX catalysts revealed that the
catalysts without acid etching possessed faster HER catalytic
kinetics. Interestingly, neither of the Co-N-C0.0125M catalyst
mainly based on single-atom Co sites and the Co-N-C0.075M

catalyst with the largest Co NPs yielded the best HER activity.
Both of the overpotential and Tafel slope of Co-N-C0.025M

were lowest among the Co-N-CX and H-Co-N-CX catalysts,
representing the best HER catalytic activity. Meanwhile, the
larger concentration of cobalt precursor catalysts possess
recession HER performance, further confirming that the
optimal MSI leads to a moderate hydrogen adsorption
energy and improved electroactive sites (Du et al., 2020b).
Furthermore, acid treatment could change the MSI, and the
HER activity was suppressed. However, the catalytic
performance of H-Co-N-C0.05M was even a little better
after acid etching, which might be due to the fact that the
acid treatment etched off some larger Co NPs and made the
MSI more appropriable for HER; this viewpoint can be proved
by the below electrochemical surface area measurement.

To further verify the HER catalytic performance of various
samples, cyclic voltammetry (CV) measurements with varying
scan rates (see Supplementary Figure S7) were performed to
explore the electrochemical double-layer capacitance (Cdl) of as-
prepared catalysts. The Cdl values were calculated to make an
estimate of the electrochemical surface area (ECSA) of the as-
synthesized catalysts (Figures 4E,F). Compared to other Co-N-
CX and N-C, Co-N-C0.025M exhibited the largest Cdl, suggesting
that the Co-N-C0.025M had more electroactive species. In
addition, corresponding H-Co-N-CX had larger ECSA but
poorer performance than Co-N-CX, attributed to the changes
of carbon stacking structure and MSI. Therefore, compared with
the ECSA, the MSI was the key factor in determining the catalytic
performance. Thus, the best HER activity for Co-N-C0.025M is

beneficial from the optimizing MSI due to the coexistence of
single-atom Co sites and Co NPs.

The HER catalytic kinetics was further investigated by
electrochemical impedance spectroscopy (EIS). The Nyquist
and Bode (Supplementary Figure S8) plots of Co-N-C0.025M,
H-Co-N-C0.025M, and N-C by applying an AC voltage with
varying frequencies (range from 0.1 MHz to 0.1 Hz; amplitude
5 mV) were recorded at −0.215 V vs. RHE in 0.5 M H2SO4. As
shown in Figure 5A, the H-Co-N-C0.025M exhibited larger
charge transfer resistance because of the larger arc radius in
the high-frequency region than Co-N-C0.025M, which was
attributed to the change in MSI caused by acid treatment. In
addition, the similar diffusion resistance for the H-Co-N-
C0.025M and Co-N-C0.025M in the low-frequency region
confirms that the use of rotating disk electrode effectively
reduces the resistance of mass transfer process. Both the
resistances of Co-N-C0.025M and H-Co-N-C0.025M were much
smaller than that of N-C, demonstrating that cobalt species
acted as active sites and interacted with the nitrogen-doped
carbon supports, which was beneficial to the adsorption of
reactants and would speed up the kinetic process of HER; the
Tafel slopes also proved this conclusion. Furthermore, a long-
term hydrogen evolution test was performed to investigate the
durability of Co-N-C0.025M. There was neither obvious
degradation in HER activity after 5,000 cycles (Figure 5B)
nor a significant decrease in current density after 15 h
continuously working at −145 mV vs. RHE (inset of
Figure 5B), suggesting that the stability of the Co-N-C0.025M

catalyst was remarkable.

CONCLUSION

In summary, the Co-N-CX catalysts with Co NPs encapsulated
in nitrogen-doped graphitic carbon nanosheets were
successfully synthesized via an organic–inorganic
hybridization method. The concentration of cobalt precursor

FIGURE 5 | (A) Nyquist plots of Co-N-C0.025M, H-Co-N-C0.025M, and N-C. (B) LSV curves of Co-N-C0.025M original and after 5,000 cycles; inset: time-dependent
current density curve of Co-N-C0.025M in 0.5 M H2SO4 under an overpotential of 145 mV.
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imposed a strong effect on the nanoparticle diameter andMSI of
the Co-N-CX catalysts. Meanwhile, encapsulated Co NPs
affected the features of the surrounding carbon supports by
means of altering the electron density and promoting electron
transfer from the carbon supports to embedded Co NPs, thus
generating a great synergic effect between encapsulated Co NPs
and single-atom Co sites to improve electrocatalytic HER
activity. The Co-N-C0.025M catalyst without acid etching
showed excellent catalytic performance for HER in acid
medium, which was ascribed to its composite structure
comprising single-atom Co sites and encapsulated Co NPs
that optimally interact with surrounding carbon supports.
This work may provide a potential approach for the design
and preparation of high activity non-precious metal hybrid
catalysts for electrocatalytic HER.
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Recently, sodium-ion batteries (SIBs) have attracted extensive attention as potential
alternatives to lithium-ion batteries (LIBs) due to the abundance, even distribution, low
cost, and environmentally friendly nature of sodium. However, sodium ions are larger than
lithium ions so that the anode materials of LIBs are not suitable for SIBs. Therefore, many
negative electrode materials have been investigated. Among them, Sb2S3-based
nanomaterials have gradually become a research focus due to their high theoretical
specific capacity, good thermal stability, simple preparation, and low price. In this
review, the research progress of Sb2S3-based nanomaterials in the SIB field in recent
years is summarized, including Sb2S3, Sb2S3/carbon composites, Sb2S3/graphene
composites, and Sb2S3/MxSy composites. Furthermore, the challenges and prospects
for the development of Sb2S3-based nanomaterials are also put forward. We hope this
review will contribute to the design and manufacture of high-performance SIBs and
promote its practical application.

Keywords: sodium-ion batteries, electrochemical performance, Sb2S3-based nanomaterials, anode materials,
composites

INTRODUCTION

Recently, lithium-ion batteries (LIBs) have developed rapidly and are extensively used in electronic
devices such as notebook computers, electric vehicles, and mobile phones (Qin et al., 2017; Chong
et al., 2018; Schmuch et al., 2018; Pang et al., 2019; Yuan et al., 2019; Wang et al., 2020; Tao et al.,
2022). Nevertheless, the distribution of lithium on earth is uneven, and its reserves are limited. In
addition, there are still some problems that need to be solved for LIBs, such as poor low-temperature
performance, safety problems, and high cost (Liu G. et al., 2018; Xing et al., 2020; Sui D. et al., 2021;
Wang et al., 2021c; Shi et al., 2021). As a potential substitute for LIBs in energy storage devices, SIBs
have attracted extensive attention because sodium is much cheaper than lithium, environmentally
friendly, and SIBs show the same energy storage mechanism as LIBs (Wang et al., 2018; Cao et al.,
2020; Sui et al., 2020). However, the ionic radius of sodium ion (Na+: 102 p.m.) is larger than that of
lithium ion (Li+: 76 p.m.), which will lead to difficulties in the sodiation/desodiation process
combined with a greater volume change. Consequently, electrode materials matched with LIBs are
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not suitable for SIBs (Zhao and Arumugam, 2015; Wang et al.,
2017; Liu Q. et al., 2019; Liu Y. et al., 2019; Hao et al., 2019; Sui
et al., 2020). Therefore, it is critical to investigate SIB electrode
materials with high reversible capacity and excellent cycle
stability.

As an important type of electrode material for SIBs, anode
materials have been widely studied (Tao et al., 2021). Until now,
considerable achievements have been made in the research of SIB
anode materials, such as layered transition metal oxides (Xiong
et al., 2011; Ma et al., 2020; Li Y. et al., 2020), polyanionic
compounds (Li et al., 2015; Yu et al., 2018; Guo et al., 2020;
Sui Y. et al., 2021), metal sulfide composites (Cui et al., 2018; Zhao
et al., 2020), or alloy composites (Liu et al., 2016; Tao et al., 2021).
Metal sulfide anodes have a higher sodium storage capacity, and
generally have lower redox potential, better electrochemical
reversibility, and longer cycle life than metal oxides in charge/
discharge reaction (Xie et al., 2018; Liu G. et al., 2019; Xu et al.,
2019; Yao et al., 2019; Shan et al., 2020). Among them, Sb2S3 has a
high theoretical capacity of 946 mA h g−1, and it is cheap and
harmless to the environment (Zhu et al., 2015; Xie F. et al., 2019).
Moreover, by combining the conversion reaction (Eq. 1) and
alloying reaction (Eq. 2) between Na and S, Sb2S3 can produce a
high-capacity anode and effectively play the role of S–Na and
Sb–Na nanocomposites in SIBs (Yu et al., 2013; Liu et al., 2017).
The following is the generally proposed electrochemical reaction
mechanism between Sb2S3 and Na+ (Liu et al., 2017; Xie F. et al.,
2019):

Conversion reaction : Sb2S3 + 6Na+ + 6e− → 2Sb + 3Na2S.

(1)
Alloying reaction : 2Sb + 6Na+ + 6e− → 2Na3S. (2)

Sb2S3-based anode materials, such as multi-shell hollow Sb2S3
(Xie F. et al., 2019), Sb2S3/graphene composites (Li C.-Y. et al.,
2017; Zhao et al., 2021), Sb2S3@FeS2/N-graphene (SFS/C) (Cao
et al., 2020), and L-Sb2S3/Ti3C2 composites (He et al., 2021), have
been reported in the application field of SIBs. For instance, Xiong
et al. reported about Sb2S3 with nanostructure on S-doped
graphene sheets for high-performance anode materials of SIBs
(Xiong et al., 2016). Based on the interaction of heterogeneous

interfaces between different components of metal sulfide, Cao
et al. reported Sb2S3@FeS2 with heteroatom-doped graphene as a
superior SIB anode material (Cao et al., 2020). Xu et al. (2019)
reviewed updated research on multiple phase transformation
mechanisms and strategies to improve the performance of Sb-
and Bi-based chalcogenides for SIBs. Liu et al. reviewed recent
studies on Sb-based electrode materials for applications, storage
mechanisms, and synthesis strategies in SIBs, LIBs, and LMBs
(liquid metal batteries) (Liu Z. et al., 2018). However, so far as we
know, critical reviews that focus on Sb2S3-based electrode
nanomaterials specifically for SIBs have rarely been reported.

Herein, the research achievements and progresses of Sb2S3-
based nanomaterials for SIBs in recent years are summarized (see
Figure 1). In addition, some rational suggestions on the research
and design of Sb2S3-based nanomaterials for SIBs in the future are
also presented. Finally, we hope that this review can attract more
attention and promote the practical applications of Sb2S3-based
nanomaterials in the SIB field.

RESEARCH PROGRESS OF SB2S3-BASED
NANOMATERIALS IN
HIGH-PERFORMANCE SIBS
Sb2S3 has advantages of low price, simple preparation, and good
thermal stability (Xie F. et al., 2019; Cao et al., 2020). It is
promising to be used as anode materials for high-capacity
SIBs. A variety of Sb2S3-based anode materials have been
reported. These are listed in Table 1.

Sb2S3
To obtain Sb2S3 anodes with high energy density and capacity in
SIBs, researchers prepared Sb2S3 with different morphologies,
such as amorphous Sb2S3 (Hwang et al., 2016), flower-like Sb2S3
(Zhu et al., 2015), multi-shell Sb2S3 (Xie F. et al., 2019), or Sb2S3
hollow microspheres (Xie et al., 2018).

For example, Hwang et al. (2016) synthesized aspherical,
amorphous α-Sb2S3 via a facile polyol route at room
temperature, which is different from the previous routes of
forming crystalline Sb2S3 at high temperature (mainly,
hydrothermal method) (Zhu et al., 2015). As shown in
Supplementary Figure S1A, α-Sb2S3 nanoparticles were
composed of spherical aggregates of sub-component
nanoparticles with diameters of 150–300 nm. When
investigated as SIB anodes, the α-Sb2S3 nanoparticle electrode
displayed a charge capacity of 512 mA h g−1 after 100 cycles at a
current density of 50 mA g−1, and showed a better cycle
performance and excellent rate performance, in contrast with
the commercial crystal Sb2S3 electrode (Supplementary
Figure S1B).

Moreover, two-dimensional (2D) nanomaterials with large
surface area and ultrafine thickness have attracted more and
more attention. For instance, Yao et al. (2019) designed 2D-Sb2S3
nanosheets by using a facile and scalable Li intercalation assisted
stripping method. The 2D-Sb2S3 nanosheets (2D-SS) showed a
good layered structure with a mean thickness of 3.8 nm
(Supplementary Figure S1C). The large pore volume and

FIGURE 1 | Bar chart of Sb2S3-based nanomaterials as anodes for SIBs
in recent years.
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TABLE 1 | Electrochemical performances of Sb2S3-based nanomaterials as anodes for SIBs.

Materials Initial Capacity [mAh g−1/
Cycles]

Rate
capability [mAh g−1]

Ref

Coulomb

Efficiency
[%]

Sb2S3

Sb2S3 72.4 195 (200) at 0.1 A g−1 − Fu et al. (2019)
Amorphous Sb2S3 65 512 (100) at 0.05 A g−1 534 at 3 A g−1 Hwang et al. (2016)
Sb2S3 micro tubes 37.1 201 (20) at 0.1 A g−1 286 at 0.2 A g−1 Jin Pan et al. (2017)
Colloidal Sb2S3 − 580 (100) at 0.3 A g−1 620 at 1.2 A g−1 Kravchyk et al. (2020)
Single crystal Sb2S3 50 579 (50) at 0.1 A g−1 358 at 1 A g−1 Pan et al. (2018a)
Sb2S3 hollow microspheres 62 384 (50) at 0.2 A g−1 386 at 2 A g−1, 314 at 3 A g−1 Xie et al. (2018)
Multi-shell Sb2S3 55 909 (50) at 0.1 A g−1 725 at 1 A g−1,604 at 2 A g−1 Xie et al. (2019a)
2D-Sb2S3 - 500 (100) at 0.2 A g−1 300 at 2 A g−1 Yao et al. (2019)
Sb2S3 77.6 38.6 (200) at 0.1 A g−1 109.5 at 1 A g−1, 95.1 at 2 A g−1 Zhao et al. (2020)
Flower-like Sb2S3 72.9 641.7 (100) at 0.2 A g−1 597.9 at 1A g−1, 554.6 at 2 A g−1 Zhu et al. (2015)

Sb2S3/carbon composites
Sb2S3@YP-43% 42.6 736.2 (100) at 0.23 A g−1 476.5 (1,000) at 1.2 A g−1 Chang et al. (2020b)
Sb2S3/P/C 79 611 (100) at 0.05 A g−1 390 at 2 A g−1 Choi et al. (2016)
Sb2S3/C 78 538 (100) at 0.2 A g−1 579 at 0.5A g−1, 557 at 1 A g−1 Choi et al. (2017)
Sb2S3@C 38.2 267 (100) at 0.1 A g−1 283 at 1 A g−1 Dashairya et al. (2021)
Sb2S3/SCS 68.8 455.8 (100) at 0.1 A g−1 392 (15) at 0.5 A g−1, 263 (20) at 1 A g−1 Deng et al. (2019)
Sb2S3@N-C 80 765 (10) at 0.1 A g−1 625 (1,000) at 1 A g−1 Dong et al. (2019)
Sb2S3@C rods 68.5 699.1 (100) at 0.1 A g−1 578 at 1.5A g−1, 429 at 3.2 A g−1 Hongshuai Hou et al. (2015)
Sb2S3/C − 545.6 (100) at 0.2 A g−1 550.8 (70) at 0.2 A g−1 Ge et al. (2018)
M-Sb2S3@DC − 326 (100) at 0.5 A g−1 451 at 1 A g−1,366 at 3 A g−1 Ge et al. (2020)
Sb2S3/CM 64.7 426 (150) at 0.1 A g−1 − Jaramillo-Quintero et al. (2021)
Sb2S3/Sb-CM 67.1 608 (150) at 0.1 A g−1 − Jaramillo-Quintero et al. (2021)
Sb2S3/S-CM 66.9 675 (150) at 0.1 A g−1 552 at 1 A g−1, 481 at 2 A g−1 Jaramillo-Quintero et al. (2021)
Sb2S3@CNTs 66.4 732 (110) at 0.05 A g−1 668 at 1 A g−1, 584 at 2 A g−1 Jiang et al. (2021)
Sb2S3@MWCNTs 79.2 412.3 (50) at 0.05 A g−1 368.8 at 0.5 A g−1, 339.1 at 1 A g−1 Li et al. (2017b)
Amorphous Sb2S3/CNT 77.8 704 (50) at 0.1 A g−1 601 at 2 A g−1,474 at 3 A g−1 Li et al. (2019)
Sb2S3/CFC 76 736 (650) at 0.5 A g−1 649 (400) at 2 A g−1, 585 (400) at 5 A g−1 Liu et al. (2017)
CPC/Sb2S3 80 443 at 0.1 A g−1 220 (200) at 1 A g−1 Mullaivananathan and Kalaiselvi,

(2019)
Sb2S3/CS 60 321 (200) at 0.2 A g−1 221 at 5 A g−1 Xie et al. (2019b)
Sb2S3@CNF 57.4 267.8 (100) at 0.1 A g−1 221 at 1 A g−1,178 at 5 A g−1 Zhai et al. (2020)
Sb2S3@NCFs 56.5 412 (50) at 0.05 A g−1 291 at 1 A g−1, 244 at 2 A g−1 Zhang et al. (2021b)
SS/Sb@C-1 70.9 171 (200) at 0.1 A g−1 253.2 at 1A g−1, 202.8 at 2 A g−1 Zhao et al. (2020)
SS/Sb@C-2 66.4 474.6 (200) at 0.1 A g−1 367 (150) at 1 A g−1,311.1 (150) at 2 A g−1 Zhao et al. (2020)
Sb2S3/graphite 84 733 at 0.1 A g−1 656 (100) at 1 A g−1, 495 (100) at 10 A g−1 Zhao. and Manthiram, (2015)

Sb2S3/graphene composites
SN-RGO/Sb2S3 57 507 (150) at 0.1 A g−1 443.46 at 1 A g−1, 364.89 at 2 A g−1 Bag et al. (2019)
Sb2S3/RGO 55.9 262 (100) at 0.1 A g−1 210 at 1 A g−1 Dashairya et al. (2021)
Sb2S3/RGO 75.6 220 (50) at 0.05 A g−1 − Dashairya and Saha, (2020)
Sn@Sb2S3-RGO 69.8 597.6 (60) at 0.2 A g−1 541 (70) at 0.5 A g−1 Deng et al. (2018)
Sb2S3/RGO 66.4 555 (70) at 0.1 A g−1 − Fan and Xie, (2019)
Sb2S3/graphene − 760 (100) at 0.05 A g−1 420 (100) at 1.5 A g−1 Li et al. (2017a)
Sb2S3/RGO − 687.7 (80) at 0.05 A g−1 495.1 (80) at 0.2 A g−1,414.8 (100) at

0.5 A g−1
Pan et al. (2018b)

Sb2S3/RGO 52.6 652 (60) at 0.1 A g−1 527 at 1 A g−1, 381 at 2 A g−1 Wen et al. (2019)
Sb2S3/RGO 85.7 581.2 (50) at 0.05 A g−1 309.8 (10) at 2 A g−1 Wu et al. (2017)
Sb2S3/SGS − 524.4 (900) at 2 A g−1 591.6 at 5 A g−1 Xiong et al. (2016)
RGO/Sb2S3 69.2 670 (50) at 0.05 A g−1 611 (5) at 1.5 A g−1, 520 (5) at 3 A g−1 Yu et al. (2013)
Sb2S3@N-C/RGO 57.6 368 (200) at 0.2 A g−1 338 at 1 A g−1, 253 at 5 A g−1 Zhan et al. (2021)
Sb2S3–graphene 55.9 881.2 (50) at 0.1 A g−1 536.4 at 1 A g−1 Zhao et al. (2021)
S-RGO/Sb2S3 63.9 509 (200) at 0.1 A g−1 239 (2000) at 5 A g−1 Zhou et al. (2020b)

Sb2S3/MxSy composites
Sb2S3@FeS2/N-graphene

(SFS/C)
82.4 725.4 at 0.1 A g−1 645.6 at 1A g−1, 564.3 at 5 A g−1 Cao et al. (2020)

Sb2S3-SnS2 77.9 616 (50) at 0.5 A g−1 510 at 10 A g−1 Fang et al. (2019)
In2S3-Sb2S3@MCNTs − 454 (40) at 0.2 A g−1 402 at 1.6 A g−1,355 at 3.2 A g−1 Huang et al. (2018)
Sb2S3/MoS2 NWs 82.9 800 at 0.1 A g−1 570 at 3.2 A g−1 Li P. et al. (2020)
Sb2S3-Bi2S3@C@RGO 68.1 600.7 (150) at 1 A g−1 514.5 at 5 A g−1, 485.8 at 8 A g−1 Li et al. (2021)
Sb2S3@SnS@C 79 516 (100) at 0.1 A g−1 442 (200) at 1 A g−1, 200 (1,300) at 5 A g−1 Lin et al. (2021)

(Continued on following page)

Frontiers in Chemistry | www.frontiersin.org April 2022 | Volume 10 | Article 8705643

Wang et al. Sb2S3-Based Nanomaterials for SIBs

27

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


large surface area of 2D-SS nanosheets are beneficial to the
electrolyte penetration and the volume change during cycles.
Therefore, 2D-SS nanosheet anodes showed remarkable rate
capability and stable cycle performance in both SIBs and LIBs.
When used in SIBs (Supplementary Figure S1D), the 2D-SS
anode displayed a superior capacity of ~500 mA h g−1 after 100
cycles at 200 mA g−1 current rate.

Recently, Sb2S3 materials with three-dimensional (3D)
hierarchical architecture were designed and synthesized to
expand the contact surface area of the electrode and
electrolyte and adapt it to volume expansion (Jin Pan et al.,
2017; Xie et al., 2018; Xie F. et al., 2019). Xie et al. (2018) used
SbCl3 and L-cysteine as raw materials and successfully
synthesized Sb2S3 hollow microspheres by a hydrothermal
method. The SEM image and cycling performance of Sb2S3
hollow microspheres are shown in Supplementary Figures
S1E,F. However, large internal voids in hollow structures can
greatly reduce bulk energy density. In order to obtain a high
volumetric energy density and maintain a high gravimetric
energy density, Xie F. et al. (2019) synthesized multi-shell
hollow Sb2S3 structures using the metal-organic framework
templates (MOFs) (Supplementary Figure S1G). Used as an
anode in SIBs (Supplementary Figure S1H), the multi-shell
Sb2S3 exhibited reversible capacities of 909, 806, 725, and
604 mA h g−1 at various currents of 100, 400, 1,000, and
2,000 mA g−1, respectively, higher than the single-shell Sb2S3
structure.

Sb2S3/Carbon Composites
Carbon materials have received considerable attention because of
their superior characteristics, such as large specific surface area,
high conductivity, excellent flexibility, and chemical stability (Tao
et al., 2021). During the use of SIBs, Sb2S3 will undergo

transformation and alloying reaction, which results in
excessive volume expansion/contraction of the material, and
hinders the application of Sb2S3 energy storage effect.
Therefore, Sb2S3 is usually combined with carbon materials to
inhibit the volume change, such as Sb2S3/carbon-rods
(Hongshuai Hou et al., 2015), Sb2S3/carbon-nanotubes (Li
J. et al., 2017; Li et al., 2019), Sb2S3/carbon-nanofiber (Zhai
et al., 2020; Zhang Q. et al., 2021), or Sb2S3/heteroatom-doped
carbon (Dong et al., 2019; Jaramillo-Quintero et al., 2021).

For instance, Hongshuai Hou et al. (2015) designed one-
dimensional (1D) Sb2S3@C rods as a distinctive anode
material to improve the electrochemical performance of SIBs
via a solvothermal method (Supplementary Figure S2A). The
Sb2S3@C rod electrode could deliver 699.1 mA h g−1 at a current
rate of 100 mA g−1 after 100 cycles (Supplementary Figure S2B).
Liu et al. (2017) reported a hydrothermal method for preparing
Sb2S3 micro-nanospheres loaded on carbon fiber cloth (CFC).
The obtained composite materials were denoted as SS/CFC. The
flexible carbon fiber cloth was completely covered by spherical
Sb2S3 in Supplementary Figure S2C, which could greatly
accommodate the volume change (Guo et al., 2019). When
used as electrodes for SIBs (Supplementary Figure S2D), SS/
CFC electrodes exhibited an excellent initial discharge capacity of
1,048 mA h g−1 at 0.5 A g−1, and displayed a reversible capacity of
736 mA h g−1 after 650 cycles in the voltage range of 0.01–2.00 V.
After two initial cycles, the corresponding Coulombic efficiency
of SS/CFC rapidly increased to ~100%.

To boost the storage performance of SIBs, Sb2S3 can be
combined with carbon doped with heteroatoms (e.g., N, S, P,
and Sb), thus improving the conductivity, the storage regions, and
the active sites (Choi et al., 2016; Dong et al., 2019; Zhai et al.,
2020; Jaramillo-Quintero et al., 2021). For instance, Zhao et al.
(2020) utilized the oxygen-function group of phenolic resin and

TABLE 1 | (Continued) Electrochemical performances of Sb2S3-based nanomaterials as anodes for SIBs.

Materials Initial Capacity [mAh g−1/
Cycles]

Rate
capability [mAh g−1]

Ref

Coulomb

Efficiency
[%]

ZnS-Sb2S3@C 61.4 630 (120) at 0.1 A g−1 390.6 at 0.8 A g−1 Dong et al. (2017)
SnS2/Sb2S3@RGO 82.3 642 (100) at 0.2 A g−1 593 at 2 A g−1, 567 at 4 A g−1 Wang et al. (2018)
Sb2S3/MoS2@C (SMS@C) 79.5 623.2 at 0.1 A g−1 465.6 (100) at 1 A g−1, 411.5 (650) at 5 A g−1 Wang et al. (2021a)
Sb2S3/MoS2 75.9 568.4 at 0.1 A g−1 423.2 (100) at 1 A g−1 Wang et al. (2021a)
Sb2S3/MoS2 48.5 561 (100) at 0.1 A g−1 628 at 1A g−1, 507 at 2 A g−1 Zhang et al. (2018)
α-Sb2S3@CuSbS2 82.2 506.7 (50) at 0.05 A g−1 293 at 3 A g−1 Zhou et al. (2020a)

Other composites
Sb2S3@SnO2 54.2 582.9 (100) at 0.05 A g−1 441.6 at 1A g−1, 237.1 at 5 A g−1 Chang et al. (2020a)
L-Sb2S3/Ti3C2 65.7 445.5 (100) at 0.1 A g−1 339.5 at 2 A g−1 He et al. (2021)
Sb2S3@Ti3C2Tx 329 (100) at 0.1 A g−1 118 (500) at 2 A g−1 Ren et al. (2021)
Sb2S3@PPy 63.7 881 (50) at 0.1 A g−1 390 (400) at 2 A g−1 Shi et al. (2019)
Sb2S3/MMCN@PPy − 446 (50) at 0.1 A g−1 269 (300) at 1 A g−1 Yin et al. (2019)
Sb2S3@m-Ti3C2Tx 51 156 (100) at 0.1 A g−1 72 (1000) at 2 A g−1 Zhang et al. (2021a)
Sb2S3/PPy 70 427 (50) at 0.1 A g−1 236 (50) at 0.5 A g−1 Zheng et al. (2018)

Notes: 2D-Sb2S3 = two-dimensional Sb2S3; Sb2S3@YP-43% = 43% contents Sb2S3 mixed with YP80F active carbon (YP); Sb2S3/SCS, stibnite/sulfur-doped carbon sheet; M-Sb2S3@
DC, metal-sulfides with double carbon; CM, carbon matrix; CNTs, carbon nanotubes; MWCNTs, multiwalled carbon nanotubes; CFC, carbon fiber cloth; CPC, coir pith derived carbon;
Sb2S3/CS, Sb2S3 embedded in carbon–silicon oxide nanofibers; CNF, multichannel N-doped carbon nanofiber; NCFs = N-doped 3D carbon nanofibers; RGO, reduced graphene oxide;
Sb2S3/SGS, Sb2S3/sulfur-doped graphene sheets; SN-RGO/Sb2S3 = sulfur, nitrogen dual doped RGO/Sb2S3; Sb2S3@N-C/RGO, Sb2S3/nitrogen-doped carbon/RGO; S-RGO/Sb2S3 =
sulfur-doped RGO/Sb2S3; MCNTs, multiwalled carbon nanotubes; Sb2S3/MoS2 NWs, Sb2S3/MoS2 core-shell nanowires; PPy, polypyrrole.
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FIGURE 2 | (A) Schematic illustration of the preparation process of the amorphous and crystalline Sb2S3/graphene composites; (B) TEM image of the amorphous
Sb2S3–graphene composites; (C) cycle performances of the pristine Sb2S3 and amorphous and crystalline Sb2S3–graphene electrodes (denoted as Sb2S3-G-A and
Sb2S3-G-C); (D) formation process of the Sb2S3/S-doped graphene nanocomposite (Sb2S3/SGS); (E) SEM and TEM images of the Sb2S3/SGS nanocomposite; (F) rate
performances of the Sb2S3/SGS electrode and Sb2S3–graphene electrode (Sb2S3/GS) under different current density; (G) cycle performances of three
experimental electrodes at 2 A g−1. (A–C)Reproduced with permission from Zhao et al. (2021). Copyright 2020, Elsevier. (D–G)Reproducedwith permission from Xiong
et al. (2016), Copyright 2016, American Chemical Society.
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constructed Sb2S3 with hierarchical interfaces (antimony and
sulfur-doped carbon) (Supplementary Figure S2E). The final
obtained composites were denoted as SS/Sb@C. When evaluated
as electrode materials for SIBs (Supplementary Figure S2F), SS/
Sb@C delivered a reversible capacity of 474.6 mA h g−1 and a
capacity retention rate of 97.1% after 200 cycles at 0.1 A g−1,
showing better cyclic stability and superior rate capability than
those of the Sb2S3 anodes without heteroatoms (38.6 mA h g−1).
This was due to the double control synergy of Sb-shell structure
and S-doped carbon structure, which effectively expanded the
polysulfide diffusion path, enhanced the reversibility of
conversion reaction, and thus improved the Na-storage
capacity of SIBs (Yu et al., 2020; Wang et al., 2021b). This
kind of reasonable design was expected to bring bright
prospects for the design of metal sulfides as advanced anodes
of SIBs.

Sb2S3/Graphene Composites
Graphene has high specific surface area, which is convenient for
constructing interconnected pore structures to form conductive
networks. In addition, it can also provide a platform for the
growth of active materials (Lv et al., 2016; Sui et al., 2020;Wang X.
et al., 2021; Liu et al., 2021). The combination of Sb2S3 with
graphene can provide excellent Na+ energy storage properties.
Therefore, many composites have been designed in recent years,
such as Sb2S3/RGO (RGO = reduced graphene oxide) (Yu et al.,
2013; Wen et al., 2019), Sn@Sb2S3-RGO (tin assisted Sb2S3
decorated on RGO) (Deng et al., 2018), S-RGO/Sb2S3 (sulfur-
doped RGO-based composite with Sb2S3) (Zhou X. et al., 2020),
and Sb2S3/N-C/RGO (Sb2S3@nitrogen-doped carbon decorated
on RGO) (Zhan et al., 2021), to improve the storage properties
of SIBs.

For example, Yu et al. (2013) received a uniform coating of
Sb2S3 on RGO (RGO/Sb2S3) through a solution-based synthesis
method and applied it as SIB anode materials. The RGO/Sb2S3
composite with a small particle size of 15–30 nm allows Na+ to
move in and out of the particles rapidly during charge and
discharge process. In addition, the 2D-layered structure of
graphene and Sb2S3 can form oriented layered composites
with excellent properties. Compared with traditional synthesis
techniques, the ultrasound sonochemical method can create
particular reaction conditions, and make it possible to prepare
nanostructured materials with special properties by acoustic
cavitation effects. Zhao et al. (2021) synthesized a special
amorphous nanostructure composite material of Sb2S3/
graphene by an ultrasound sonochemical synthesis technique
(Figure 2A). As can be seen from Figure 2B, Sb2S3 nanoparticles
were tightly covered on the graphene nanosheets and evenly
distributed on both sides. The Sb2S3/graphene nanocomposites
with amorphous structure had good tolerance and adaptability to
drastic volume changes. Compared to the crystalline counterpart
(Li C.-Y. et al., 2017), the amorphous Sb2S3/graphene
nanocomposite displayed a superior electrochemical property
with a higher reversible capacity of 881.2 mA h g−1 at 0.1 A g−1

after 50 cycles (Figure 2C).
Furthermore, doping heteroatoms (e.g., N, P, S, Sn) on

graphene-based materials by surface chemical modification can

effectively improve the properties of SIBs (Xiong et al., 2016;
Deng et al., 2018; Zhou X. et al., 2020; Zhan et al., 2021). For
example, Xiong et al. (2016) obtained a unique Sb2S3/S-doped
graphene anode material (denoted as Sb2S3/SGS) via firm
chemical binding of nano-Sb2S3 structure on S-doped
graphene nanosheets (SGS). Schematic illustration of the
preparation process of the Sb2S3/SGS composite is displayed in
Figure 2D. As shown in Figure 2E, Sb2S3 nanoparticles are
wrapped by flexible SGS and exhibit a size of 30–80 nm.
When tested at 0.05 A g−1 current rate, the Sb2S3/SGS anode
reaches a high specific capacity of 792.8 mA h g−1 after 90 cycles
(see Figure 2F). After 900 cycles at a higher current rate of 2 A g−1

(in Figure 2G), the Sb2S3/SGS anode still has an excellent cycle
life, and the capacity retention rate is ~83%.

Sb2S3/MxSy Composites
Most metal sulfides (MxSy) have hierarchical structures, and Na+

can easily move in the interlayers of metal sulfides without
damaging their hierarchical structures (Tao et al., 2021). Thus,
the use of binary metal sulfides to construct heterostructures to
reduce the huge internal stress of alloy-based anodes and
maintain the integrity of nanostructures has attracted
extensive attention (Wang et al., 2018; Lin et al., 2021; Wang
et al., 2019a). In this context, common metal sulfides (MxSy),
including SnS2 (Wang et al., 2018), ZnS (Dong et al., 2017), FeS2
(Cao et al., 2020), In2S3 (Huang et al., 2018), and Bi2S3 (Li et al.,
2021), have been combined with Sb2S3 as anode materials of SIBs.

For example, a composite of multiwalled carbon nanotubes
(MCNTs) and In2S3-Sb2S3 particles (denoted as I-S@MCNTs)
with a uniquemorphology of formicary microspheres was formed
to solve the poor cycling stability and rate performance of SIBs
(Huang et al., 2018). As shown in Supplementary Figure S3A,
the hierarchical spheres are assembled by crumpled nanosheets
(5–8 nm), which significantly shorten the diffusion path and
accelerate the transport rate of Na+. Similarly, Wang D. et al.
(2021) designed an armored hydrangea-like Sb2S3/MoS2
heterostructure composite (denoted as SMS@C) as a superior
SIB anode material (Supplementary Figure S3B). After 650
cycles at a higher current density of 5 A g−1, the SMS@C
anode exhibited an enhanced cycling performance of
411.5 mA h g−1 (Supplementary Figure S3E). Additionally,
Dong et al. (2017) designed a polyhedron composite (~1.5 μm)
with a ZnS inner-core structure and Sb2S3/C double-shell
structure (ZnS-Sb2S3@C), capitalizing on full advantages of the
zeolitic imidazolate framework (ZIF-8). The structure of ZnS-
Sb2S3@C core-double shell composites had enough space to
greatly adapt to the volume expansion during the repeated
insertion/extraction of Na+, and exhibited a superior reversible
capacity of 630 mA h g−1 at a current density of 0.1 A g−1 after 120
cycles with a high Coulombic efficiency of ~100%
(Supplementary Figures S3C,F).

Recently, a breakthrough about Sb2S3@FeS2 hollow nanorods
used as high-performance SIB electrode materials was reported.
Cao et al. (2020) embedded Sb2S3@FeS2 hollow nanorods (SFS)
into a nitrogen-doped graphene matrix, and synthesized Sb2S3@
FeS2/N-doped graphene composite (denoted as SFS/C) via a
simple two-step solvothermal synthesis technique
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(Supplementary Figures S3D,G). The clever design of the
heterostructure extremely accelerated the Na+ transport, and
greatly alleviated the volume expansion under long-period
performance (1,000 cycles) (Wu et al., 2019a; Wu et al.,
2019b; Liu et al., 2022). The SFS/C anode displayed a superior
reversible capacity of 725.4 mA h g−1 after 90 cycles at 0.1 A g−1

(see Supplementary Figure S3H). When tested even at 5 A g−1,
the SFS/C anode had an excellent cycle performance with a
capacity retention of ~85.7% after 1,000 cycles
(Supplementary Figure S3I).

Other Composites
In addition to the aforementioned Sb2S3-based nanomaterials,
polypyrrole (PPy) (Wang et al., 2016; Zheng et al., 2018), MXene
(Mn+1XnTx, where M is the early transition metal, X represents
C/N, and Tx is the surface functional group (-O, -OH or -F), n =
0,1,2,3,4. e.g., Ti3C2Tx, Ti3C2) (Wang et al., 2019b; Zhang H. et al.,
2021; He et al., 2021), and metal oxides (e.g., SnO2) (Chang et al.,
2020a) can also be combined with Sb2S3 to fabricate better SIB
anodes.

For instance, Shi et al. (Yin et al., 2019) prepared Sb2S3/meso@
microporous carbon nanofibers@polypyrrole composites
(denoted as Sb2S3/MMCN@PPy) though a novel multi-step
method combining polymerization, sulfidation and
solvothermal process (Supplementary Figure S4A). SEM
image of Sb2S3/MMCN@PPy composites is shown in
Supplementary Figure S4B. When investigated as SIB anode,
Sb2S3/MMCN@PPy composite exhibited a discharge capacity of
535.3 mA h g−1 at a current density of 100 mA g−1, and the
discharge specific capacity could recover to 446 mA h g−1 after
50 cycles when returned to 100 mA g−1 current rate
(Supplementary Figure S4C). Shi et al. (2019) synthesized
Sb2S3@PPy coaxial nanorods via a hydrothermal method.
When tested at 100 mA g−1, it showed a superior reversible
capacity as high as 881 mA h g−1 after 50 cycles, which was
higher than those reported of MWNTs@Sb2S3@PPy composites
(Wang et al., 2016), flower-like Sb2S3/PPy microspheres (Zheng
et al., 2018), and Sb2S3/MMCN@PPy composites (Yin et al.,
2019).

Furthermore, MXene is considered as an outstanding matrix
because of the effective diffusion and mobility for Na+ and
excellent electronic conductivity. Ti3C2Tx is one of the most
studied MXene materials, and the theoretical capacity is
352 mA h g−1 when used as the anode of SIBs (Zhang H.
et al., 2021; He et al., 2021; Ren et al., 2021). For instance,
Zhang H. et al. (2021); Ren et al. (2021) prepared Sb2S3@
Ti3C2Tx composite and Sb2S3@m-Ti3C2Tx composite by a wet
chemical method, in which Sb2S3 nanoparticles were in situ
nucleated and grown uniformly on the surface of Ti3C2Tx

nanosheets. It was found that Ti3C2Tx, as a conductive
skeleton, could effectively alleviate the volume expansion of
Sb2S3 during charge/discharge progress. In 2021, inspired by
the stomatal structure from natural leaves, He et al. (2021)
successfully synthesized Sb2S3/nitrogen-doped Ti3C2

composites (denoted as L-Sb2S3/Ti3C2) via a solvothermal
method (Supplementary Figure S4D). L-Sb2S3/Ti3C2

composite showed a unique elm leaf-like morphology in

Supplementary Figure S4E, with a length of 60–80 nm and a
width of 30–40 nm, respectively. When used as SIB anode,
L-Sb2S3/Ti3C2 composite displayed a high capacity of
502.2 mA h g−1 at a current rate of 100 mA g−1 from 0.01 to
3 V (Supplementary Figure S4F).

CONCLUSION AND OUTLOOK

In this review, we briefly summarize the applications of Sb2S3-
based nanomaterials for high-performance SIBs, mainly
including Sb2S3, Sb2S3/carbon composites, Sb2S3/graphene
composites, Sb2S3/MxSy composites, and other related
composites. Although many significant works have been made
in SIBs, there are still some problems that need to be solved, and
we propose some possible directions for the anode research of
SIBs in the future:

1) During the charge/discharge cycles, Sb2S3 nanoparticles are
easy to accumulate because of their high surface activity energy.
This results in a significant volume change and capacity declining.
Therefore, it is necessary to design and fabricate more reasonable
nanostructures, such as hierarchical hollow nanotubes or
hierarchical spheres (Xie F. et al., 2019), to fully buffer the
strain of volume change and further improve the cycling
performance. In addition, some soft materials could be added
to improve the flexibility, so as to avoid the collapse of the anode
due to the volume expansion.

2) Carbonaceous materials are often the main choice to
combine with Sb2S3 to build dense conductive physical
barriers. However, the content of Sb2S3 and the corresponding
specific capacity of composite materials are reduced. Therefore,
the carbon content should be optimized so that the Sb2S3-based
materials achieve better electrochemical performance. In
addition, Sb2S3/carbonaceous composites fabricated by
traditional synthesis techniques suffer from the poor
mechanical adhesion and high interface resistance between
Sb2S3 and carbonaceous materials. It is highly desirable to
optimize the preparation methods and explore more
carbonaceous materials (e.g., biochar, amorphous carbon) to
establish compact conductive physical barriers to further
enhance the electrochemical performance of Sb2S3-based
materials.

3) Until now, the cycle lives of many Sb2S3-based materials
have been tested at room temperature. In order to satisfy the
demands of different applications, it is very urgent to explore
Sb2S3-based anode materials that can cycle under either higher
temperature (up to 60 °C) or lower (−20°C).

4) The mechanism of Na+ storage in Sb2S3-based
nanomaterials and the phase changes during repeated
charging/discharging still need to be explored. Operating
technologies, such as in situ X-ray technology, in situ scanning
probe microscopy, technologies based on synchronized X-rays, as
well as in situ electron microscopy, are very helpful in acquiring
time-related information and studying the mechanism of Na+

storage of Sb2S3-based nanomaterials. Therefore, more research
using operating technology is needed to deeply understand Sb2S3-
based electrode nanomaterials used in SIBs.
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Supplementary Figure S1 | (A) SEM image of α-Sb2S3 nanoparticles; (B) cycle
performance of α-Sb2S3 at 0.05 A g−1; (C) SEM image of the few-layer 2D-Sb2S3

nanosheets; (D) cyclic capacity of 2D-SS measured at 0.2 A g−1; (E) SEM image of
Sb2S3 hollow microspheres; (F) cycling performances of three experimental Sb2S3

electrodes at 1A g−1; (g) SEM and TEM images of multi-shell Sb2S3; (H) comparison
of the rate performance of multi-shell Sb2S3, single-shell Sb2S3, and pristine Sb2S3.
(A,B) Adapted with permission from Hwang et al. (2016). Copyright 2013, The Royal
Society of Chemistry. (C,D) Adapted with permission from Yao et al. (2019).
Copyright 2018, Elsevier. (E,F) Adapted with permission from Xie et al. (2018).

Copyright 2018, Springer. (G,H) Adapted with permission from Xie et al. (2019a).
Copyright 2019, Elsevier.

Supplementary Figure S2 | (A) SEM image of Sb2S3@C rods; (B) cycle
performance of Sb2S3@C rods at 0.1 A g−1; (C) SEM image of SS/CFC; (D)
cycle performances of SS/CFC and SS powder at 0.5 A g−1; (E) SEM image of
SS/Sb@C nanocomposites; (F) cycling performances of SS/Sb@C and Sb2S3

nanocomposites at 0.1 A g−1. (A,B) Adapted with permission from Hongshuai
Hou et al. (2015). Copyright 2015, American Chemical Society. (C,D) Adapted
with permission from Liu et al. (2017). Copyright 2017, The Royal Society of
Chemistry. (E,F) Adapted with permission from Zhao et al. (2020). Copyright
2020, The Royal Society of Chemistry.

Supplementary Figure S3 | SEM images: (A) In2S3-Sb2S3@MCNTs microsphere,
(B) Sb2S3/MoS2@C composite (SMS@C), (C) ZnS-Sb2S3@C polyhedron, and (D)
Sb2S3@FeS2/N-graphene composite (SFS/C); (E) sodium storage properties of the
SMS@C and SMS heterostructure at 5 A g−1; (F) rate capability of ZnS-Sb2S3@C
core-shell SIB anode; (G) schematic illustration of the fabrication process of the SFS/
C composite; (h) charge capability of the SFS/C anode at various rates; (I) cycle
performances of Sb2S3, SFS, and SFS/C composites at a high rate of 5 A g−1. (A)
Adapted with permission from Huang et al. (2018). Copyright 2018, Wiley-VCH. (B,
E) Adapted with permission fromWang et al. (2021a). Copyright 2021, Elsevier. (c,f)
Adapted with permission from Dong et al. (2017). Copyright 2017, American
Chemical Society. (D,G–I) Adapted with permission from Cao et al. (2020).
Copyright 2020, American Chemical Society.

Supplementary Figure S4 | (A) Schematic diagram of the formation process of the
Sb2S3/MMCN@PPy composite; (B) SEM image of Sb2S3/MMCN@PPy composite;
(C) rate capability performances of pure Sb2S3 and Sb2S3/MMCN@PPy composite;
(D) schematic illustration of the synthetic process of L-Sb2S3/Ti3C2 composite; (E)
SEM image of L-Sb2S3/Ti3C2 composite; (F) Rate capability performances of Sb2S3,
Sb2S3/Ti3C2, and L-Sb2S3/Ti3C2. (A–C) Adapted with permission from Yin et al.
(2019). Copyright 2019, Elsevier. (D–F) Adapted with permission from He et al.
(2021). Copyright 2021, Science China Press and Springer-Verlag GmbH Germany,
part of Springer Nature.
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Electrochemical Performance of
MnO2/Graphene Flower-like
Microspheres Prepared by
Thermally-Exfoliated Graphite
Xuyue Liu1, Bing Liang1*, Xiaodong Hong2 and Jiapeng Long1

1School of Material Science and Technology, Shenyang University of Chemical Technology, Shenyang, China, 2School of
Materials Science and Energy Engineering, Foshan University, Foshan, China

To enhance the electrochemical performance of MnO2/graphene composite, herein,
thermally-exfoliated graphite (TE-G) is adopted as a raw material, and a hydrothermal
reaction is conducted to achieve the exfoliation of TE-G and the loading of MnO2

nanosheets. Through optimizing the TE-G/KMnO4 ratio in the redox reaction between
carbon and KMnO4, flower-like MnO2/G microspheres (MnO2/G-10) are obtained with
83.2% MnO2 and 16.8% residual graphene. Meanwhile, corresponding MnO2/rGO
composites are prepared by using rGO as raw materials. Serving as a working
electrode in a three-electrode system, MnO2/G-10 composite displays a specific
capacitance of 500 F g−1 at 1 A g−1, outstanding rate performance, and capacitance
retention of 85.3% for 5,000 cycles. The performance is much better than that of
optimized MnO2/rGO composite. We ascribe this to the high carbon fraction in TE-G
resulting in a high fraction of MnO2 in composite, and the oxygen-containing groups in rGO
reduce the resulting MnO2 fraction in the composite. The superior electrochemical
performance of MnO2/G-10 is dependent on the hierarchical porous structure
constructed by MnO2 nanosheet arrays and the residual graphene layer in the
composite. In addition, a supercapacitor assembled by TE-G negative electrode and
MnO2/G positive electrode also exhibits superior performance. In consideration of the low
cost of rawmaterials, the MnO2/G composite exhibits great application potential in the field
of supercapacitors.

Keywords: MnO2, thermally-exfoliated graphite, supercapacitors, electrochemical performance, flower-like
microspheres

INTRODUCTION

Among the existing energy storage devices, the supercapacitor is an important device for high power
density, rapid charge/discharge, and long cycling life. The fabrication of electrodematerials is a major
task for developing high-performance supercapacitors (Raj et al., 2020; Oncu et al., 2021; Zhang et al.,
2021). To achieve the rapid transport and transfer of ions/electrons, various carbon materials have
been developed in the field of supercapacitors, including carbon nanotubes (Lei et al., 2020),
graphene (Sha et al., 2021), carbon nanosheets (Sevilla and Fuertes, 2014), porous carbon (Zhao et al.,
2020), carbon fibers (Srimuk et al., 2015), and so on. Nevertheless, the poor specific capacitance of
these carbon materials affects their wide application in supercapacitors, due to the electrical double
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layer capacitance (EDLC) feature (Sevilla and Fuertes, 2014;
Ferrero et al., 2015). To enhance the specific capacitance,
carbon materials have been hybridized with various metal
oxides for introducing high pseudocapacitance (Yan et al.,
2014, 2021). Among those transition metal oxides, MnO2 has
been regarded as the most promising electrode material, due to
the large theoretical specific capacitance of 1370 F g−1, natural
abundance, and low price (Xu et al., 2007, 2018; Zhang et al.,
2020c).

Lots of methods have been reported to prepare MnO2/rGO
composites, such as the chemical precipitation method (Gong
et al., 2021), alcohol infiltrated substrate method (Zhang et al.,
2020b), and hydrothermal route (Liu et al., 2015). Among these
methods, the hydrothermal method is the most convenient way
for synthesizing MnO2/rGO composites. During a hydrothermal
process, a redox reaction takes place between carbon and KMnO4,
and MnO2 nanostructures are uniformly generated on graphene
nanosheets, with the consumption of a certain amount of carbon
(Ping et al., 2019, 2; Hong et al., 2021;Wang T. et al., 2021). In this
respect, by using sulfur-reduced graphene oxide (RGO-S) as raw
materials, Tarimo et al. (Tarimo et al., 2020) synthesized RGO-S/
MnO2 composite via a hydrothermal method, and the optimized
RGO-S/MnO2 composites had a low capacitance (180.4 F g−1).
Yang et al. (Yang et al., 2012) prepared rGO firstly by using
graphene oxide (GO) and then synthesized urchin-like MnO2 on
rGO nanosheet through a hydrothermal reaction under the
presence of KMnO4. The optimized rGO/MnO2 composites
exhibited a high capacitance of 263 F g−1. Moreover, Liu et al.
(Liu et al., 2014) prepared GO firstly by Hummers method and
then synthesized MnO2-GO composites via hydrothermal
reaction. The MnO2-GO composite presented a capacitance of
213 F g−1 at 0.1 A g−1. From these works about MnO2/graphene
composites, the graphene in composites is usually derived from
GO prepared by Hummers method (Vimuna et al., 2020). In
addition, the resulting MnO2/rGO composites deliver the specific
capacitance of less than 300 F g−1, which further limits the
development of high-performance supercapacitors. Up to now,
there is no report about MnO2/graphene composites prepared by
using expandable graphite as raw materials.

In view of the larger specific surface area, lower oxygen
content, more complete lamellar structure, and low cost and
easy preparation of thermally-exfoliated graphite (TE-G), herein,
TE-G was adopted as raw materials, and a hydrothermal reaction
was performed to fabricate MnO2/graphene composite through a
redox reaction between KMnO4 and C. Most importantly, the
hydrothermal reaction achieves the exfoliation of TE-G. As a
result, flower-like MnO2/graphene microspheres were produced,
in which, the residual graphene layer was wrapped by abundant
thin MnO2 nanosheets. The optimized MnO2/graphene
microspheres exhibited excellent electrochemical performance
in supercapacitors. To verify the performance advantage of
TE-G in preparing MnO2/graphene composite, various MnO2/
rGO composites were fabricated by using GO as reactants, and
corresponding electrochemical performance was investigated.
Compared with rGO, the MnO2/G composite prepared with
TE-G as raw material shows better performance and a more
convenient method.

EXPERIMENT

Materials
Potassium chloride (KCl), Expandable graphite (EG, 80 mesh),
and potassium permanganate (KMnO4) were obtained from
Tianjin Damao Chemical Reagent Factory.

Preparation of Thermally-Exfoliated
Graphene
Thermally-exfoliated graphite (TE-G) was synthesized according
to our previous work (Liu et al., 2021). Specifically, EG was heated
at 500°C for 100 min under N2 to obtain thermally-exfoliated
graphene (TE-G).

Preparation of MnO2/Graphene (MnO2/G)
Composites
In a typical synthesis, 1.0 g KMnO4 was put into deionized water
(80 ml) and stirred for 30 min to produce a uniform solution.
Meanwhile, different amounts of TE-G powders were put into the
KMnO4 solution and stirred for 30 min, and then, the mixture
was put into a stainless-steel autoclave. The hydrothermal
reaction was conducted at 180°C for 15 h. The production was
filtered, rinsed repeatedly by deionized water, and dried at 60°C
for 12 h to obtain MnO2/G composites. The redox reaction
equation of C and KMnO4 can be described as: 4MnO4

− + 3C
+H2O→ 4MnO2 + CO3

2− + 2HCO3
−. According to the equation,

the theoretical mass ratio of KMnO4 and C can be calculated as 1/
17.7. Therefore, to change the MnO2 fraction in the MnO2/G
composite, the KMnO4/TE-G mass ratio was set as 5, 10, and 20,
and the resulting composites were coded asMnO2/G-5, MnO2/G-
10, and MnO2/G-20. In addition, the hydrothermal reaction of
TE-G in deionized water and in KCl solution was carried out
under the same condition, and the resulting samples were coded
as TE-G-H2O and TE-G-KCl, respectively. The rGO was used to
prepare MnO2/rGO composites. The ratio of KMnO4/rGO was
kept the same as the ratio of KMnO4/TE-G composites, and the
sample was named MnO2/rGO-5, MnO2/rGO-10, and MnO2/
rGO-20.

Testing and Characterization
The field-emission scanning electron microscopy (FE-SEM;
SU8010) and transmission electron microscopy (TEM; JEM-
2100) were used to observe the morphologies of samples. The
crystallographic feature was performed by X-ray diffraction
(XRD; D8-Advance) with Cu Kα radiation source. X-ray
photoelectron spectra (XPS) were recorded by using a Thermo
Scientific K-Alpha XPS spectrometer. The working voltage was
12 kV, and the X-Ray source was Al Kα. Pore size distribution and
the specific surface area were tested by using the SSA-7000 device,
according to the BJH model and BET method.

Electrochemical Performance
A three-electrode system was used to test the electrochemical
performance of samples in an electrolyte of 6 M KOH. The poly
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(vinylidene fluoride)/acetylene black/active materials were
weighed at the ratio of 5:10:85, and dissolved in N-methyl-2-
pyrrolidone (NMP) to prepare a slurry. Foam nickel (1 × 1 cm2)
was used to support the slurry and served as the working
electrode. The platinum sheet was acted as the counter
electrode, and the saturated calomel electrode (SCE) was used
as the reference electrode. A CHI 660E electrochemical
workstation (Shanghai Chenhua Co. Ltd.) was used to test
electrochemical impedance spectroscopy (EIS), galvanostatic
charge/discharge curves (GCD), cycling stability, and cyclic
voltammetry (CV) curves. Asymmetric supercapacitor (ASCs)
devices were assembled by using TE-G as the negative electrode
and MnO2/G composite as a positive electrode with 6 M KOH
electrolyte. The separator was glass fiber filter paper. In the ASCs
device, Formula I (Wang et al., 2018): R = m+/m−=(C−×ΔV−/
(C+×ΔV+) can be applied to obtain the ratio of positive/negative
electrode material. Formula II (Brousse et al., 2007; Hong et al.,
2021): C=I×Δt/ΔV, was employed in calculating the specific
capacitance (C) in a three-electrode system. Formula III
(Brousse et al., 2007): Cs = 4C/M, Formula IV (Li et al.,
2021): E = 0.5C (ΔV)2/3.6 and Formula V (Brousse et al.,
2007): P = E/Δt can be applied to obtain specific capacitance
(Cs), the energy density (E) and power density (P) of the ASCs,
respectively.

RESULTS AND DISCUSSION

Preparation Process of MnO2/G Composite
Figure 1 exhibits the preparation process of flower-like MnO2/G
microspheres. Firstly, under the presence of N2, the expandable
graphite (EG) was heated at 500°C to prepare TE-G. Under a high
temperature, the intercalation agent in EG expands and violently
decomposes, resulting in a large amount of gas spilling and
forming micropores, mesopores, and macropores. As shown in
Figure 1, TE-G shows an accordion structure with a thick lamella.
Moreover, abundant cavity structures can be observed on TE-G.
Secondly, under a hydrothermal process, KMnO4 reacts with C to

generate MnO2, in which, each single-layer of graphene in TE-G
reacts with KMnO4 and is then wrapped by abundant MnO2

nanosheets. The loading of MnO2 thick nanosheets on graphene
layers leads to the exfoliation of TE-G. From the inset SEM image,
after the redox reaction, graphene nanosheets were wrapped by
MnO2 nanosheet arrays in different directions to produce flower-
like microspheres. Compared with rGO, the consumption of
graphene nanosheets and the generation of thick MnO2 layers
lead to the delamination of TE-G. In order to confirm the
advantage of MnO2/G composite, corresponding MnO2/rGO
composites were prepared, and the microstructure and
electrochemical performance were investigated.

Microstructure of MnO2/G Composites
The morphologies of TE-G and different MnO2/G composites
samples were characterized by using TEM and SEM. From
Figure 2A,B, pure TE-G presents an accordion structure with a
large number of holes, and Figure 2C indicates the stacking
structure of abundant graphene nanosheets. From these MnO2/
G samples, under a low ratio of KMnO4/TE-G, a few graphene
sheets in TE-G participate in the redox reaction with KMnO4.
Hence, a few MnO2 nanosheets are generated on the graphene
surface (Figure 2D). When the ratio of KMnO4/TE-G increases to
10, dense MnO2 nanosheet arrays are generated in all directions of
graphene nanosheets, presenting a flower spherical structure
(Figure 2F). From the high magnification SEM in Figure 2F,
the resulting MnO2 nanosheets arrays exhibit a honeycomb-like
structure. The results show that the redox reaction between carbon
and KMnO4 produces MnO2 nanosheets on graphene, which
achieves the delamination of TE-G. From Figure 2G,H, there
are dense MnO2 nanosheets arrays dispersed on the graphene
surface. Moreover, the TEM image also shows the connection of
different MnO2/G flower spheres, which may be resulted from the
fracture of large graphene nanosheets during the high-temperature
hydrothermal reaction process. As shown in Figure 2I, we can
observe the diffraction fringes of MnO2 on the graphene surface.
The fringe spacing of ~0.8 nm corresponds to the (001) facet of δ-
MnO2 (Wang J. et al., 2021). When the ratio of KMnO4/TE-G

FIGURE 1 | Schematic presentation of the preparation of accordion structure TE-G and flower-like MnO2/G microspheres, and the inset SEM images presenting
the morphology of TE-G and MnO2/G composites respectively.
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reaches 20, excessive MnO2 nanosheets are generated and piled up
on the surface of the MnO2/G composite (Figure 2E).

In order to prove that the exfoliating of TE-G is related to the
KMnO4-assisted hydrothermal reaction, two controls are
designed by using only deionized water and KCl solution,
respectively. In the absence of KMnO4, the hydrothermal
reaction cannot exfoliate the TE-G. As shown in Figure 3A,
the accordion structure is kept the same as pure TE-G
(Figure 2A). Under the presence of K+ derived from KCl, the
resulting TE-G also keeps the same structure with pure TE-G in
Figure 2A. Therefore, the exfoliation of TE-G is dependent on
KMnO4-assisted hydrothermal reaction, and the in-situ reaction
between graphene nanosheet and KMnO4 consumes carbon and
introduces MnO2 nanosheet arrays, which effectively exfoliate
TE-G. To disclose the advantage of TE-G in preparing MnO2/G
composites, rGO was used as reductants, and resulting MnO2/
rGO composites were shown in Figure 3C,D. The MnO2/rGO
composite shows the same flower spheres as MnO2/G composite
(Figure 2D–F). The result indicates that the reaction between
rGO and KMnO4 is kept the same as the reaction between TE-G
and KMnO4, that is, the redox reaction of graphene nanosheets
and KMnO4. However, the major difference between the two
reactions is the carbon precursors. TE-G has condensed graphene
nanosheets with no oxygen-containing groups, while rGO is the
exfoliated graphene containing oxygen-containing groups.
Compared with rGO, TE-G has a low cost and high carbon
content, which would consume more KMnO4 and introduce

much more MnO2, while some rGO nanosheets are not
wrapped by MnO2 nanosheets arrays (Figure 3C), and much
more MnO2 nanosheets would enhance the electrochemical
performance of MnO2/G composites, which will be discussed
further.

Elemental Distribution of MnO2/G
Composites
Elemental mapping and EDS were conducted to verify residual
graphene in MnO2/G composite. MnO2 nanosheets (Figure 4A)
keep the same with the SEM morphology (Figure 2F). The
distribution of O is in accordance with the Mn (Figure 4C),
which reflects the generation of MnO2. In addition, the dispersed
C signals verify the residual graphene in the MnO2/G composite.
From Figure 4E, the C content is at 35.31%, further
demonstrating the residual carbon derived from graphene. To
detect the precise carbon content in composite, TG curves of TE-
G, MnO2/G-5, MnO2/G-10, and MnO2/G-20 are given in
Figure 4F. When the temperature is higher than 600°C, TE-G
begins to decompose, and no residual carbon remains at 800°C.
Compared with TE-G, the residual fractions of three composites
are 72.5, 75.5, and 81.0% at 800°C in air. Based on the principle in
Ref. (Wang J. et al., 2021), the final product of MnO2/G
composite is Mn2O3 at 800°C. According to the same Mn
content, we can calculate the fraction of MnO2, that is, 80.0,
83.2, and 89.3%, respectively. The residual carbon fractions in

FIGURE 2 | The microstructure of pure TE-G (A–C) and the composites with the KMnO4/TE-G ratio of 5 (D), 20 (E), and 10 (F–I) by SEM and TEM.
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MnO2/G-5, MnO2/G-10, and MnO2/G-20 are 20.0, 16.8, and
10.7%, respectively. Therefore, the TG result affirms the
incomplete reaction of carbon (TE-G), and residual graphene
nanosheet still exists in the MnO2/G composite.

Fourier transform infra-red (FTIR) was provided in
Supplementary Figure S1, the peak at ~3,425 cm−1 is
attributed to the O-H vibration of GO or rGO. The peaks
of ~1,633 cm−1 and 1,313 cm−1 correspond to the stretching

FIGURE 3 | The microstructure of TE-G-H2O (A), TE-G-KCl (B), and MnO2/rGO composites (C,D).

FIGURE 4 | The microstructure of the MnO2/G-10 composite observed by STEM (A), the elemental mapping of O (B), Mn (C), and C (D), corresponding elemental
fraction (E), and thermogravimetric curves of TE-G and MnO2/G composites (F).
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and bending vibration of C-O, respectively. Compared with
GO or rGO, there are a few oxygen-containing groups in TE-G,
which is conducive to the redox reaction between TE-G and
KMnO4, and a high fraction of carbon would consume a large
amount of KMnO4 and generate many more MnO2

nanosheets. To verify the high fraction of MnO2 in MnO2/
G composites, the TG curves of MnO2/rGO-5 and MnO2/rGO-
20 were measured to obtain the content of MnO2 in MnO2/
rGO composites. As given in Supplementary Figure S2, the
residual fractions of MnO2/rGO-5 and MnO2/rGO-20 are 57.7
and 67.0%, respectively. Therefore, the fraction of MnO2 can
be calculated as 63.6 and 73.8%, respectively. The result shows
that the MnO2 content of MnO2/rGO is much lower than that
of the corresponding MnO2/G composite. The reason can be
ascribed to the low C fraction in rGO, resulting in fewer MnO2

nanosheets.

Crystal Structure and Surface Chemistry of
TE-G and MnO2/G
In order to analyze the crystal structure of samples, XRD testing
was performed. As given in Figure 5A sharp diffraction peak at
26.4° is attributed to the (002) crystal plane of TE-G (Thommes
and Cychosz, 2014). According to the Bragg equation: 2dsinθ =
nλ, the layer spacing d is calculated as 0.34 nm. After reacted with
KMnO4, four peaks can be observed at 12.2°, 24.7°, 36.6°, and
65.6°, these peaks correspond to the (001), (002), (100), and (110)
facets of δ-MnO2 (JCPDS # 80–1098) (Wei et al., 2012; Zhu et al.,
2017). When the amount of KMnO4 increased, the (002) peak of
carbon (TE-G) at 26.4° disappears, which is assigned to the
loading of MnO2 thick nanosheets on graphene layers leads to
the exfoliation of TE-G. This phenomenon indicates the
consumption of TE-G and results in a low fraction of carbon

in MnO2/G composites. Compared with MnO2/G composite,
hydrothermally-treated TE-G samples under deionized water or
KCl both show a sharp diffraction peak at 26.4° (as shown in
Supplementary Figure S3), which confirms that the TE-G
cannot be exfoliated by H2O or KCl under hydrothermal
reaction. Therefore, the exfoliation of TE-G is dependent on
KMnO4. In addition, the chemical bonds and valance state of TE-
G and MnO2/G-10 samples were characterized by XPS. From the
general spectra in Figure 5B. The TE-G spectrum shows the
peaks of C and O elements. After reacting with KMnO4, the peak
of C weakens, and the peaks of O and Mn elements are stronger
obviously, due to the generation ofMnO2 and the consumption of
TE-G nanosheets. Figure 5C–E shows the magnified C, O, and
Mn spectrum. From Figure 5C, the magnified C 1s spectrum can
be divided into two peaks at 284.3 and 285.9 eV, which are
attributed to the C-C/C=C bond and C=O bond (Yang et al.,
2020), respectively. The high-resolution O 1s can be convoluted
into two main peaks at 532.0 and 529.5 eV (Figure 5D)
corresponding to the bond of C-O-Mn generated between
graphene and MnO2, and the bond of Mn-O-Mn in MnO2

(Yang and Park, 2018; Yang et al., 2020). From the magnified
Mn 2p spectrum (Figure 5E), the 2p orbital of Mn has two major
peaks at 642.1 and 653.8 eV, corresponding to Mn 2p3/2 and Mn
2p1/2. The distance of the two peaks is around 11.7 eV, which
reflects the +4 valence of the Mn element (Yang and Park, 2018;
Li et al., 2020). Hence, the MnO2 in the composite is further
proved by XPS.

BET Analysis
Figure 6 shows the N2 adsorption-desorption isotherms curves
and pore distribution of different samples according to the BJH
model and BET method. TE-G exhibits a high adsorption
capacity and a big specific surface area at low pressure. The

FIGURE 5 | The XRD patterns (A) and XPS survey spectra (B) of pure TE-G and MnO2/G-10 sample, and the magnified C (C), O (D), and Mn (E) XPS spectrum.
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specific surface area of TE-G is 1055.7 m2 g−1, and a big specific
surface area facilitates the infiltration and stripping of TE-G.
When increased the amount of KMnO4, abundant MnO2

nanosheets loading on graphene surface decreases the
specific surface area. The specific surfaces of MnO2/G-5,
MnO2/G-10, and MnO2/G-20 are 252.3 m2 g−1, 76.1 m2 g−1,

and 39.4 m2 g−1. From Figure 6B, TE-G has much more
micropores and mesopores. The loading of MnO2 on
graphene decreases the fraction of micropores and
mesopores. However, the macroporous structure of MnO2/
G composite would accelerate the charge transfer and ion
diffusion, further improving the electrochemical performance.

Electrochemical Performance
A three-electrode system was used to investigate the
electrochemical performance of different samples, by using
6 M KOH electrolyte. Figure 7A presents the CV curves of
TE-G and different MnO2/G composites at 20 mV s−1. The CV
curve of TE-G displays a quasi-rectangular shape, reflecting the
EDLC characteristic of TE-G. When introducing MnO2, the
resulting MnO2/G composites show two pseudocapacitive
peaks of MnO2 corresponding to the faradic redox reaction of
MnO2. The faradic redox reaction mechanism ofMnO2 is verified
as the valence shift between Mn4+/Mn3+ and Mn3+/Mn2+ (Zhou
et al., 2015; Xie et al., 2019). The redox peaks centered at ~0.1 and

FIGURE 6 | N2 adsorption-desorption isotherms (A) and pore size distribution (B) of pure TE-G, MnO2/G-5, MnO2/G-10, and MnO2/G-10 composite.

FIGURE 7 | Electrochemical performance of TE-G and different MnO2/G composites in a three-electrode cell (A) CV curves tested at 20 mV s−1 (B) the charge-
discharge curves tested at 1 A g−1 (C) the specific capacitance (D) EIS plots, equivalent circuit and fitting curves (solid line).
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~0.4 V (vs Hg/HgO) can be assigned to the reversible redox
reaction: Mn4+ ↔Mn3+ + e−, while the other pair of redox peaks
around ~0.3 and ~0.6 V (vs Hg/HgO) originate from the faradic
redox reactions related to Mn3+↔Mn2+ + e− (Toupin et al., 2004;
Zhou et al., 2015; Xie et al., 2019), corresponding to the two
faradic redox peaks in CV curve further reflecting the
pseudocapacitance characteristics from MnO2. In addition, the
CV curve of the MnO2/G-10 sample has the largest area among
these samples, revealing the maximum specific capacitance.
Figure 7B exhibits the GCD curves of TE-G and different
MnO2/G samples. TE-G shows a linear symmetrical triangle,
reflecting a typical EDLCs feature related to the adsorption and
desorption of ions. When increased the amount of KMnO4, the
pseudocapacitive feature can be verified by the shape of GCD
curves. The MnO2/G-10 composite exhibits the longest discharge
time of 250.0 s, much longer than that of pure TE-G (53.8s). On
the basis of the equation of SC = I·Δt/(mV), the specific
capacitance would be obtained. From Figure 7C, TE-G has a
specific capacitance of 107.6 F g−1 at 1 A g−1. When hybridizing
with MnO2, MnO2/G composites show high specific
capacitances. Among these composites, the MnO2/G-10
sample has the maximum specific capacitance of 500 F g−1 at
1 A g−1. Even operated at 10 A g−1, the capacitance is 314 F g−1,
which is assigned to a large number of MnO2 nanosheets with
high capacitance content loaded to the surface of graphene. In
comparison with MnO2/G-10, the MnO2/G-20 composite has a
capacitance of 158 F g−1, because of the stacked MnO2

aggregation on graphene (Figure 2E). The MnO2 aggregations
obstruct the fast transfer of charges/ions, further decreasing the
capacitance. Therefore, the MnO2/G-20 composite exhibit a
lower specific capacitance and poor electrochemical performance.

Figure.7D shows the EIS plots of different samples. Each EIS
curve consists of an oblique line in the low-frequency range and a
hemisphere in the high-frequency range. The Warburg
impedance (W1) can be reflected by an oblique line, which
reflects the diffusive resistance of the electrode in the
electrolyte. The intercept in the X-axis and the diameter of the
hemisphere reflect the internal resistance (R1) and charge
transfer resistance (R2), respectively. ZView software was used
to obtain the fitting curves (solid line) in Figure.7D. The fitting
data were listed in Supplementary Table S1. The R1 values of
TE-G,MnO2/G-5, MnO2/G-10, andMnO2/G-20 are 0.484, 0.480,
0.213, and 0.217 Ω, respectively. In addition, the R2 values are
0.341, 0.669, 0.332 and 0.379 Ω, respectively. Therefore, the
MnO2/G-10 composite exhibits the minimum value of R1 and
R2 among these samples, which indicates the minimum internal
resistance and charge transfer resistance. The reason can be
explained as the residual graphene in composite enhances the
electronic conductivity. Moreover, hierarchical porous flower
spheres of MnO2 promote the fast transfer of charges/ions,
which facilitate the pseudocapacitive reaction of MnO2 in the
electrolyte. Unfortunately, abundant MnO2 aggregated clusters
impede the rapid transfer of charges/ions, increase the internal
resistance, which leads to the poor electrochemical performance
of KMnO4/G-20 composite.

To further verify the performance advantage of MnO2/G
composite, the electrochemical performance of MnO2/rGO

composites are given in Supplementary Figure S4. Both CV
curves and GCD curves of different MnO2/rGO composites show
the pseudocapacitive feature of MnO2, the area of MnO2/rGO
composites enclosed by the CV curve is much smaller than that of
the MnO2/G-10 composite. In addition, the maximum discharge
time of MnO2/rGO-20 is 64.7 s, the specific capacitance can be
calculated as 129.4 F g−1, much lower than that of the MnO2/G
composite. The reason is the less carbon fraction in rGO limits
the redox reaction with KMnO4, resulting in less MnO2

nanosheets loading on rGO (in Supplementary Figure S2).
Therefore, TE-G shows an obvious performance advantage to
high-cost rGO.

The cycling stability of TE-G, MnO2/G-10, and MnO2/rGO-
20 composite was tested at a current density of 5 A g−1. As given
in Figure 8, the specific capacitance of TE-G increases and then
decreases during the first 500 cycles, which is assigned to poor
wettability between TE-G and the electrolyte. As TE-G only
contains a small amount of oxygen-containing groups, the
wettability between TE-G and the electrolyte is poor. With the
progress of the charge-discharge cycle, the wettability between
TE-G and the electrolyte is improved, and the specific capacitance
gradually increases. However, due to the limitation of the material
itself, the specific capacitance content of TE-G decreases
gradually with the increase of the cycle numbers. The specific
capacitance of TE-G declines from the original 87.0 F g−1 to
78.6 F g−1 after 5,000 cycles. The capacitance retention rate is
90.4%, for the EDLC feature. The capacitance of MnO2/rGO
composites decreases from an initial 108.6 F g−1–94.1 F g−1, and
the capacitance retention rate is 86.6%, which was attributed to
the lower content of MnO2 and more graphene lamellar residues
(as shown in Supplementary Figure S2). In comparison with
MnO2/rGO, the MnO2/G-10 composite has a low capacitance
retention rate of 85.3%, and the capacitance decreases to
307.0 F g−1 from 340.1 F g−1. The low capacitance retention of
the MnO2/G-10 sample is attributed to a high fraction of MnO2

nanosheets in the composite. However, considering the high
specific capacitance, MnO2/G-10 composite still presents

FIGURE 8 | Cycling stability of TE-G, MnO2/G-10and MnO2/rGO-20
composites electrode tested in three-electrode system.
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outstanding cycling stability, which is attributed to the residual
graphene layer remaining in the flower spherical structure.

To testify the outstanding performance of MnO2/G composite
with a flower spherical structure, we list the capacitance and long-
term cycling performance of reported MnO2/graphene in
Table 1. Considering the difference in testing conditions, the
MnO2/C electrode material has the largest specific capacitance of
480.3 F g−1 (Jeong et al., 2021). The maximum capacitance
retention is 99.4% for 5,000 cycles (Vimuna et al., 2020).
Although our MnO2/G composite (MnO2/G-10) has a low
capacitance retention rate of 85.3%. Particularly, the specific
capacitance of our MnO2/G composite is 500 F g−1, much
higher than reported samples. Therefore, the MnO2/G
composite with flower spheres structure displays an excellent
electrochemical performance, which can be ascribed to two
aspects. First of all, a large amount of MnO2 nanosheets
arrays loading on graphene constructs a homogeneous
hierarchical porous structure, which promotes the transport of

electrons and ions, and reduces the charge transfer resistance.
Moreover, the special microstructure facilitates the interface
contact between MnO2 nanosheets and electrolyte and releases
a high specific capacitance. Secondly, TE-G is composed of
stacking graphene layers, which facilitates the redox reaction
between KMnO4 and C, resulting in a high fraction of MnO2

in composite, which increases the pseudocapacitance. Moreover,
the residual graphene layer in composite improves the
conductivity of electrode material and decreases the internal
resistance, which enables an outstanding rate capability and
cycling performance.

In addition, we assembled an asymmetric supercapacitor
(ASC) with TE-G negative electrode and MnO2/G-10 positive
electrode. From Figure 9A, the CV curves show quasi-
rectangular shapes. With an increase of scan rate, the area of
the CV curve increases, with a shape of quasi-rectangular, further
indicating the EDLC feature. The ASC can be operated stably
under a broad voltage window of 0–1.0 V (Figure 9B). From

TABLE 1 | Summary of the electrochemical performance of existing C/MnO2 composites.

Electrode materials Electrolyte Capacitance (F·g−1) Cycling stability Ref

MnO2/RGO 1 M Na2SO4 467 at 1 A g−1 93.1%-2500 cycle Zhang et al. (2020b)
MnO2/rGO (NMG) 1M Na2SO4 140.3 at 1 mA 99.4%-5,000 cycle Vimuna et al. (2020)
MnO2@PCN 1 M Na2SO4 225 at 0.5 A g−1 — Yang et al. (2020)
MnO2/C 1M Na2SO4 480.3 at 0.5 mAcm−2 71%-10000 cycle Jeong et al. (2021)
PWC/MnO2/GQDs 1 M Na2SO4 188.4 at 1 mA cm−2 95.3%-2000 cycle Zhang et al. (2020d)
RGO-S/MnO2 2.5 MKNO3 180.4 at 1 A g-1 — Tarimo et al. (2020)
MnO2/GH 1 M KOH 445.7 at 0.5 A g−1 82.4%-5000cycle Zhang et al. (2016)
MnO2/PC-Cs/MnO2 1 M KOH 397 at 1 A g−1 93.1%-5,000 cycles Hong et al. (2021)
rGO/C/MnO2 3 M KOH 215.2 at 0.15 A g−1 72%-2500 cycles Zhang et al. (2020a)
MnO2/G 6 M KOH 500 at 1 A g−1 85.3%-5,000 cycles This work

FIGURE 9 | Electrochemical performance of the asymmetric supercapacitor tested in 6 M KOH electrolyte (A) CV curves at different scan rates (B) CV curves at
different potential ranges (C)GCD curves at different current densities (D)GCD curves at different potential ranges (E)Ragone plots of the asymmetric supercapacitor (F)
cycling stability tested at 5 A g−1.
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Figure 9C, the longest discharge time reaches 201.6 s,
corresponding to the maximum specific capacitance of
100.8 F g−1 at 0.5 A g−1. The capacitance reduces to 78.8 F g−1

at a large current density of 5 A g−1, indicating an excellent rate
capability. Figure 9E provides the energy density (E) and power
density (P) at different current densities. The energy density is
14.0 Wh kg−1 at the power density of 250.0 W kg−1. With an
increase of power density, the energy density drops to 10.94 Wh
kg−1 (2500W kg−1), further reflecting the excellent power/energy
combination. Figure 9F shows the cycling stability of ASC. When
measured at 5 A g−1, the capacitance retention rate is 98.4% after
5,000 cycles, reflecting the superior cycling stability. Therefore,
flower-like MnO2/G microspheres exhibit outstanding
performance in ASC.

CONCLUSION

To hybridize thermally-exfoliated graphite (TE-G) and MnO2, a
KMnO4-assisted hydrothermal method was adopted to achieve
the exfoliation of TE-G and the loading of MnO2 nanosheets.
Through changing the ratio of TE-G and KMnO4, flower-like
MnO2/G microspheres (MnO2/G-10) were fabricated containing
83.2% MnO2 and 16.8% residual graphene layer. To confirm the
advantage of TE-G reactants, corresponding MnO2/rGO
composites were prepared by using rGO as raw materials.
When tested in a three-electrode system, the MnO2/G-10
sample displays a maximum specific capacitance of 500 F g−1,
an outstanding rate of performance, and a high capacitance
retention rate (85.3% for 5,000 cycles). The performance is
much better than that of the optimized MnO2/rGO composite.
The reason can be explained as the high carbon fraction in TE-G
resulting in a high fraction of MnO2 in flower-like MnO2/G
microspheres, and the oxygen-containing groups in rGO reduce
the effective redox reaction between KMnO4 and carbon. The
superior electrochemical performance of MnO2/G-10 is related to
the hierarchical porous structure constructed byMnO2 nanosheet
arrays and conductive graphene in the composite. Moreover, the
ASC consisted of MnO2/G positive electrode and TE-G negative
electrode has a capacitance of 100.8 F g−1 at 0.5A g−1, with a high

capacitance retention of 98.6% for 5,000 cycles. The energy
density is 14.0 Wh kg−1 at the power density of 250.0 W kg−1.
In consideration of the low cost of raw materials, the MnO2/G
composite shows great application potential in the
supercapacitors field.
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Direct ethanol fuel cells (DEFCs) have attracted more and more attention because of their
unique advantages such as low cost and low toxicity. However, sluggish C-C bond
cleavage during the ethanol electrooxidation reaction (EOR) in acidic media results in a
lower energy yield and gravely hinders the commercialization of DEFCs. Therefore, it is very
necessary to develop an anode catalyst with high performance, high stability and low cost
to solve this problem. In this paper, Pt/MoCx/MWCNTs nanocomposites with different
mass ratios of PtMo were obtained through a molecular self-assembly technology. The
structure and morphology of Pt/MoCx/MWCNTs nanocomposites were characterized by
several techniques such as XRD, FESEM, XPS, etc. The electrochemical performance and
stability of Pt/WCx/MWCNTs electrocatalysts toward EOR were investigated in acid
electrolytes. The results show that PtMo exists in the form of alloy. The size of Pt/
MoCx nanoparticles is very uniform with an average size of ~24 nm. The Pt/MoC0.25/
MWCNTs exhibits excellent electrocatalytic activities with an electrochemically active
surface area of 37.1 m2 g−1, a peak current density of 610.4 mAmgPt

−1 and a steady-
state current density of 39.8 mAmgPt

−1 after 7,200 s, suggesting that the Pt/MoC0.25/
MWCNTs is a very promising candidate for application in EOR of DEFCs.

Keywords: direct ethanol fuel cell, electrocatalyst, platinum, self-assembly, molybdenum carbon

INTRODUCTION

Direct ethanol fuel cells (DEFCs) have many advantages such as high power density, environmental
friendliness, rapid start-up and mobility, so they are believed as the most promising high energy
conversion system for practical applications in mobile devices such as automotive and portable power
(Singla et al., 2017; Jiang et al., 2018; Oh et al., 2019; Wang et al., 2022). However, there are still many
challenges in the energy conversion processes of DEFCs, such as the difficulty in splitting the C-C bond of
ethanol and the sluggish kinetics of electrocatalytic oxidation (Du et al., 2017; Zamanzad Ghavidel et al.,
2017; Zhang et al., 2018). Reasonable use of catalysts can improve the energy output efficiency and overall
performance of fuel cells, the problem of incomplete oxidation of ethanol can be effectively solved in
DEFCs (Corradini et al., 2015; Huang et al., 2015; Bach Delpeuch et al., 2016). At present, the most
promising and active catalysts for EOR are Pt in acid media of DEFCs. However, the high price, rare
reserve and its low tolerance to CO severely limit its extensive commercialization (Pech-Rodríguez et al.,
2017; Yang et al., 2019; Zhu et al., 2021). Therefore, it is significant and urgent to fabricate Pt-based
nanocatalysts with active C-C bond cleavage ability and enhanced CO tolerance for efficient EOR.

Transition metal carbides (TMC) with high metal conductivity, strong corrosion-resistance, high
stability and rich sources have a similar catalytic activity to platinum group metals (PGMs) (Hamo
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et al., 2019; Zhang et al., 2019; Jiang et al., 2020; Fang et al., 2021).
They have been widely concerned and applied as catalysts for
fuel cells, such as WC (Hunt et al., 2014; Kelly et al., 2014; Oh
et al., 2014), TaC (Myochi et al., 2018; Gao et al., 2020a), TiC
(Hunt et al., 2016), Mo2C (Lin et al., 2017; Hassan and
Ticianelli, 2018). The WC/p-CNFs composite catalyst was
prepared and used in alkaline media (Oh et al., 2014). Due to
the unique structure of p-CNFs and the synergistic effect
between WC and p-CNFs, WC/p-CNFs composite catalyst
increased the electrocatalytic performance for ethanol
oxidation in DEFCs. Hunt et al. (2014) synthesized WC
nanoparticles through a multi-step method. WC
nanoparticles showed high electrocatalytic activity and
stability under acid conditions. However, compared with
Pt, TMC has lower catalytic activity for EOR, but it shows
strong stability and anti-poisoning ability. Therefore, the Pt
and TMC composite catalysts have been widely studied to
reduce costs and further improve performance. Kelly et al.
(2014) investigated ethanol electrooxidation of Pt/WC by
density functional theory (DFT) and surface science
experiments. The results showed that Pt/WC could oxidize
ethanol to CO2 more effectively than Pt and improve the
output power of DEFCs. Subsequently, Pt/TaC electrocatalyst
was prepared by the wet impregnation method (Jiang et al.,
2018). The results showed that 1.5 wt% Pt/TaC demonstrated
higher activity and stability for EOR than 40 wt% Pt/C. For
1.5 wt% Pt/TaC, the Pt surface was less poisoned by EOR
intermediates and had a higher CO selectivity. Besides, the
DFT study showed that the binding energy of EOR
intermediates on Pt (111) surface was higher than that on
Pt/TaC (111) surface, which further proved that the poison
tolerance of Pt/TaC was increased. Pt/Mo2C/C-cp catalyst was
synthesized by a coprecipitation method (Li et al., 2015; Lin
et al., 2017; Hassan and Ticianelli, 2018). The direct chemical
bonding of Pt and MoC in Pt/Mo2C/C-cp catalyst significantly
reduced the onset CO oxidation potential and anti-CO
poisoning ability to intermediates species. The above
results show that the addition of TMC to Pt nanocatalysts
can diminish the overpotentials, partially facilitate the C-C
bond cleavage towards CO2 and increase EOR activity.
However, the synthesis of Pt/TMC catalyst usually requires
multiple steps. TMC nanoparticles are easy to agglomerate,
resulting in the reduction of specific surface area and catalytic
activity.

In this work, we designed a simple molecular self-assembly
technology to synthesize platinum/molybdenum carbide/multi-
walled carbon nanotubes (Pt/MoCx/MWCNTs) as active
electrocatalysts for EOR in acid media. MWCNTs have a
high specific surface area and excellent electrical properties at
room temperature, which are especially suitable for high-
performance catalysts (Lu et al., 2012; Nie et al., 2012; Sabnis
et al., 2015). Pt/MoCx/MWCNTs catalyst exhibits high catalytic
activity and anti-CO poisoning ability. The outstanding
performance of the catalyst is attributed to the complete
exposure of the active sites and the synergistic effect between
Pt and MoC.

EXPERIMENT

Materials
Hexachloroplatinic acid (H2PtCl6·6H2O), MWCNTs, sodium
molybdate dihydrate (Na2MoO3·2H2O) were purchased from
Shanghai Micklin Biochemical Co. Ltd. PDDA [(C8H16CIN)n],
ethanol (CH3CH2OH), concentrated sulfuric acid (H2SO4) were
purchased from AiKe reagent. Concentrated nitric acid (HNO3),
Nafion solution (5 wt% in isopropanol and water) was purchased
from Shanghai Aladdin Biochemical Technology Co. Ltd. All
reagents were used in this work without further treatment.

Synthesis of Pt/MoCx/MWCNTs
The samples of Pt/MoCx/MWCNTs were obtained by adjusting
the addition amount of sodium molybdate. First, MWCNTs were
treated in acid solution (90 ml H2SO4 and 30 ml HNO3) by
stirring for 60 min and ultrasound for 60 min to form a
homogeneous solution. This slurry was centrifuged and
washed three times with deionized water to obtain acid-
MWCNTs. Then acid-MWCNTs and PDDA were dissolved in
200 ml deionized water by ultrasonic treatment for 60 min. The
mixed solution was filtered and dispersed with deionized water.
Second, 0.1 mmol sodium molybdate and 0.4 mmol
chloroplatinic acids were added to the above solution under
magnetic stirring for 40 min. The nanopowder was obtained
by freeze-drying overnight. Subsequently, the powder were
sintered under Ar/H2 atmosphere at 1,200°C for 180 min at
2°C min−1. Finally, the Pt/MoC0.25/MWCNTs was recieved
after cooling to room temperature.

Characterization
The crystal structures were characterized by X-ray diffraction
(XRD, PANalytical B.V) patterns. The data was collected from 10°

to 90° at a scan speed of 15 min−1. The morphology and the size of
Pt/MoCx/MWCNTs were observed by transmission electron
microscopy (TEM, JEOL 2010) operating at 200 kV. The
three-dimensional structure, distribution and element
composition of nanoparticles on MWCNTs were observed by
field emission scanning electron microscope (FESEM, JEOL JSM-
6340F, 5 kV) in combination with energy-dispersive X-ray
spectroscopy (EDS). The surface elemental composition and
valence analysis of spherical nanoparticles were measured by
X-ray photoelectron spectroscopy (XPS, PHI-5702) with a
monochromatized Al Ka X-ray source (1,486.6 eV photons)
and pass energy of 40 eV. The anode voltage was 15 mV with
a current of 10 mA. To compensate for the effects of surface
charging, all core-level spectra were referenced to the C1s
hydrocarbon peak at 284.8 eV. The Raman spectrum of
spherical nanoparticles was obtained by using a Renishaw
RW1000 Raman spectroscope.

The electrochemical tests were performed on Autolab
(PGSTAT 302N) at room temperature. The counter electrode
is made of the platinum sheet with a size of 7 mm × 15 mm. For
the reference electrode silver chloride (Ag/AgCl) is selected in this
work. Glassy carbon electrode (GCE) with a diameter of 5 mm is
used for the working electrode (WE). Catalyst inks were produced
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by mixing 5 mg Pt/MoCx/MWCNTs nanoparticles with 1 ml
0.5 wt% Nafion/isopropanol. Then, the catalyst ink was
ultrasound for 20 min. Finally, 10 μl catalyst ink was dropped
on the surface of GCE and dried in air. The ECSA of ETEK and
Pt/MoCx/MWCNTs electrocatalysts was measured in a nitrogen-
saturated 0.5 M H2SO4 solution at a scan rate of 50 mV s−1. The
electrocatalytic activity for EOR was characterized by the CV
measurements in a nitrogen-purged 0.5 M H2SO4 + 1.0 M
ethanol solution at a scan rate of 50 mV s−1. Te stability was
examined by CA tests at a constant potential of 0.6 V vs. Ag/AgCl.

RESULTS AND DISCUSSION

The synthesis route of Pt/MoCx/MWCNTs nanoparticles by
molecular self-assembly is illustrated in Figure 1. Negative
charges (−OH, −COOH), strong cationic polyelectrolyte
PDDA, PtCl6

2− and MoO4
2− were adsorbed on MWCNTs

through electrostatic adsorption to realize layer-by-layer
assembly. Then, the precursors were dried under freeze-drying
conditions and calcined in a weak reducing atmosphere to obtain
Pt/MoCx/MWCNTs nanoparticles.

The XRD spectra of ETEK and Pt/MoCx/MWCNTs are
shown in Figure 2A. The diffraction peaks at 39.44°, 46.56°,
67.98°, and 81.91° closely matched with standard values of
diffraction peaks for Pt (PDF#03-065-5035) (Sabnis et al.,
2015), which indicates that H2PtCl6 has been successfully
reduced to Pt. However, not only the characteristic peaks of
Pt but also the diffraction peaks at 34.34°, 37.98°, 39.42°, 52.14°,
61.5°, 69.56°, and 74.73° are very consistent with the standard
values of Mo2C (PDF#00-035-0787) in the Pt/MoC0.25/
MWCNTs (Li et al., 2019). When the content of Mo
continues to increase, Mo forms PtMo alloy and Mo2C. The
average diameters of PtMo alloy nanoparticles are calculated by
the Scherrer equation, as shown in Table 1. The Scherrer
constant is 0.9 and the wavelength is 1.54 Å in this case for
Cu Kα radiation in the Scherrer equation. The grain sizes of Pt/
MoC0.05/MWCNTs, Pt/MoC0.15/MWCNTs and Pt/MoC0.25/
MWCNTs are about 23.72, 23.82 and 23.84 nm. Because the
radius of doping Mo4+ ionic is large than Pt6+, the lattice
constant of Mo doped all increase to some extent in Pt/
MoCx/MWCNTs, compared to ETEK. These results indicate
that Pt/MoCx/MWCNTs can be directly prepared by using the
molecular self-assembly method.

FIGURE 1 | Schematic diagram for synthesizing Pt/MoCx/MWCNTs.

FIGURE 2 | (A) Wide-angle XRD patterns and (B) Raman spectra of ETEK and Pt/MoCx/MWCNTs.
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There are two main peaks at about 1,580 cm−1 (G band,
represents E2g vibration) and 1,343 cm−1 (D band, represents
A1g vibration). The graphitization degree of MWCNTs is
expressed by the relative strength of D-band (ID) and G-band
(IG) (Dietrich et al., 2014). The IG/ID ratios of ETEK, Pt/MoC0.05/
MWCNTs, Pt/MoC0.15/MWCNTs and Pt/MoC0.25/MWCNTs
are 0.9, 0.8, 0.9, and 0.9, respectively. The corresponding
results indicate that the graphitization degrees of ETEK and
Pt/MoCx/MWCNTs are similar.

The SEM images of MWCNTs before and after treatment in
mixed acid solution are shown in Figure 3. It can be seen that
the MWCNTs have no fracture and the diameter and
morphology do not change significantly after ultrasonic and
mixed acid treatment. The FESEM images of Pt/MoC0.05/
MWCNTs, Pt/MoC0.15/MWCNTs and Pt/MoC0.25/MWCNTs

are shown in Figure 4. As a support material, the morphology of
MWCNTs has no obvious change after composite with MoxC
nanoparticles, indicating that its structure has not been
damaged in the synthesis process (Wang et al., 2019). Pt/Mox
nanoparticles are uniformly dispersed on the surface of
MWCNTs without agglomeration. The size of Pt/Mox is
uniform and its particle size is about 24 nm, which is
consistent with Scherrer’s calculation results. The successful
preparation of Pt/Mox nanoparticles is closely related to the
addition of ionic surfactant PDDA. PDDA is hydrolyzed in the
precursor solution to form ion pairs. The existence of ion pairs
slows down the reduction process and controls the growth rate
of nanoparticles.

Figure 5 shows the EDS results of Pt/MoCx/MWCNTs
samples. There are characteristic peaks of C, Pt and Mo in Pt/

TABLE 1 | Physicochemical parameters of different sample.

Samples Average diameter (nm) Lattice parameters (nm) Pt: Mo ratio (at %)

ETEK 4.36 0.389 100:0
Pt/MoC0.05/MWCNTs 23.72 0.391 95:5
Pt/MoC0.15/MWCNTs 23.82 0.391 85:15
Pt/MoC0.25/MWCNTs 23.84 0.391 75:25

FIGURE 3 | FESEM images of (A) MWCNTs and (B) acid-treated MWCNTs.

FIGURE 4 | FESEM images of (A) Pt/MoC0.05/MWCNTs, (B) Pt/MoC0.15/MWCNTs and (C) Pt/MoC0.25/MWCNTs.
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MoCx/MWCNTs composites and no other element peaks.
Figure 6 investigates the surface elements and chemical states
of Pt/MoCx/MWCNTs composites by XPS. The characteristic
peaks of C, Pt and Mo were observed in Pt/MoCx/MWCNTs
composites and the intensities of characteristic peaks for Mo 3d
and Mo 3p gradually increased with the increase of Mo element
content as shown in Figure 6A. The surface valence state of Pt in
Pt/MoCx/MWCNTs composites is shown in Figure 6B. The Pt 4f
spectra of Pt/MoCx/MWCNTs show two peaks of Pt 4f7/2 and Pt

4f5/2 and can be further divided into two doublet peaks, which
associates with metal Pt and Pt oxide. It is worth noting that,
compared with ETEK, the bond energy of Pt 4f in Pt/MoCx/
MWCNTs shifts slightly to the negative phase and the peak
binding energy is shown in Table 2. The shift of bond energy is
caused by the electronegativity of Pt, which may cause the more
charges transformation from Mo to Pt. The decrease of Pt bond
energy will weaken the adsorption energy of Pt and COads,
promote the removal of COads and promote the breaking of
C-H (Lu et al., 2016; Gao et al., 2020b).

The electrocatalytic activity of Pt/MoCx/MWCNTs
composites catalyst in acid medium is shown in Figure 7.
Figure 7A shows the cyclic voltammetry (CV) curves of
ETEK, Pt/MoC0.05/MWCNTs, Pt/MoC0.15/MWCNTs and Pt/
MoC0.25/MWCNTs catalysts in a N2-saturated 0.5 M H2SO4

solution. In Figure 7B, the electrochemically active surface
area (ECSA) can be obtained from the hydrogen adsorption/
desorption region in a 0.5 MH2SO4 solution. The specific value of
ECSA for the Pt/MoC0.25/MWCNTs is 37.1 m2 g−1, which is

FIGURE 5 | EDX analysis of (A) Pt/MoC0.05/MWCNTs, (B) Pt/MoC0.15/MWCNTs and (C) Pt/MoC0.25/MWCNTs.

FIGURE 6 | (A) Survey scanned XPS spectrum and (B) high-resolution Pt 4f spectra of ETEK, Pt/MoCx/MWCNTs.

TABLE 2 | Binding energies of XPS spectra of Pt in ETEK and Pt/MoCx/MWCNTs.

Sample Species

Pt0 4f7/2 Pt2+ 4f7/2 Pt0 4f5/2 Pt2+ 4f5/2

ETEK 71.55 73.05 74.85 76.35
Pt/MoC0.05/MWCNTs 71.47 74.2 74.77 77.5
Pt/MoC0.15/MWCNTs 71.45 74.39 74.75 77.69
Pt/MoC0.25/MWCNTs 71.42 74.47 74.72 77.77
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slightly higher than that commercial TETK electrocatalyst
(20.8 m2 g−1). Due to the uniform distribution of Pt/MoC
nanoparticles and the electronic structure change caused by
the introduction of Mo, the ECSA area is increasing. These
results indicate that more Pt active sites on Pt/MoC0.25/
MWCNTs are exposed for EOR (Dai et al., 2020).

In Figure 7C, the electrocatalytic activities of Pt/MoCx/
MWCNTs and ETEK for EOR were tested in a N2-saturated
0.5 H2SO4 with 1.0 M CH3CH2OH solution. During the EOR
forward scanning of Pt/MoCx/MWCNTs electrocatalysts, there is
one peak at 0.65 V, which is caused by the fracture of the C-C or
C-O bond (ethanol oxidations to acetaldehyde, acetic acid and
CO2). During the reverse scanning, the peak current appeared at

0.38 V related to the oxidation of intermediates from ethanol
dissociative adsorption (e.g., CO). It is known that the excessive
accumulation of intermediates leads to catalyst poisoning.
Therefore, the current density ratio between peak f and b (If/
Ib) has been used to evaluate the anti-poison capability of
electrocatalysts. According to the calculation results, the
surface of Pt/MoCx/MWCNTs shows higher anti-CO
poisoning ability than ETEK. As can be seen from Figure 7C,
the peak current densities of Pt/MoC0.25/MWCNTs is
610.4 mAmgPt

−1, which is about 1.4 times that of ETEK
(449.2 mAmgPt

−1). Due to the synergistic effect between Pt
and MoC and the promotion of MoC in the adsorption of
reaction and the desorption of products, the EOR activity of

FIGURE 7 | CV of the catalysts (A) in a N2-saturated 0.5 M H2SO4 solution, (B) ECSA, (C) in a N2-saturated 0.5 M H2SO4 + 1 M CH3CH2OH solution, (D) CO
stripping voltammograms in a 0.5 M H2SO4 solution at 25°C with a scan rate of 50 mV s−1 and (E) CA curves of the catalysts in a N2-saturated 0.5 M H2SO4 + 1 M
CH3CH2OH solution at 25°C.

TABLE 3 | Comparisons of the EOR performance for Pt based catalysts in recently published papers.

Refs. Catalyst ECSA (m2 g−1
Pt ) Electrolyte Mass activity

(mA mg−1
Pt)

Methods

13 Pt/BC 52.7 0.5 M H2SO4 + 770 Solvent heating method
1.0 M CH3CH2OH

30 Rh@Pt d-CNCs 34.65 0.1 M HClO4 + 860 Solvent heating method
0.2 M CH3CH2OH

34 PtCo@N-GNS-3 — 0.5 M H2SO4 + 196 Hydrolysis-pyrolysis method
0.5 M CH3CH2OH

35 Pt-AuSnOx 44.1 0.5 M H2SO4 + 305 Improved impregnation method
1.0 M CH3CH2OH

37 Pt/α-PtOx/WO3 151.6 0.1 M NaOH + 2,760 One-pot solvothermal method
1.0 M CH3CH2OH

This work Pt/MoCx/MWCNTs 37.1 0.5 M H2SO4 + 610.4 Molecular self-assembly method
1.0 M CH3CH2OH

Frontiers in Chemistry | www.frontiersin.org April 2022 | Volume 10 | Article 8916406

Cao et al. Self-Assembled Pt/MoCx/MWCNT’s Nano Catalyst

53

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


the composite catalyst is significantly increased (Robinson et al.,
2016; Xiao et al., 2021). EOR performance and the synthesis
method of the current work were compared to relevant reports, as
shown in Table 3.

The anti-poisoning of Pt/MoCx/MWCNTs catalyst is a very
important parameter in practical application. The CO stripping
voltammetry curve was tested in 0.5 M H2SO4, as shown in
Figure 7D. The onset potentials of CO for ETEK, Pt/MoC0.05/
MWCNTs, Pt/MoC0.15/MWCNTs and Pt/MoC0.25/MWCNTs
were 0.58, 0.45, 0.57, and 0.48 V, respectively. The Pt/MoCx/
MWCNTs catalyst can oxidize CO at low potential, which makes
CO easier to desorb from the surface of nanoparticles, releases
more active sites and improves the performance of Pt/MoCx/
MWCNTs catalyst. In addition, the peak voltage of Pt/MoC0.25/
MWCNTs is about 80 mV lower than ETEK, indicating that Pt/
MoC0.25/MWCNTs catalyst has higher CO oxidation activity.

In Figure 7E, the stability of Pt/MoCx/MWCNTs catalyst is
tested by the chronoamperometric (CA) method at a constant
potential of 0.6 V for 7,200 s. As shown in the current-time
curves, the initial current values of ETEK, Pt/MoC0.05/
MWCNTs, Pt/MoC0.15/MWCNTs and Pt/MoC0.25/MWCNTs
catalysts are 404.6, 85.8, 268.9 and 820.2 mAmgPt

−1,
respectively. The polarization current of all catalysts decreases
sharply within 200 s, which is caused by the poisoning of Pt/
MoCx and the reduction of catalytic active sites caused by the
intermediates during the electrooxidation of ethanol (Mao et al.,
2017). In the following time, the current gradually reaches a plateau
due to the established balance between the adsorption and
oxidation of the intermediates. After 7,200 s, the current of Pt/
MoC0.25/MWCNTs still reached 139.8 mAmgPt

−1, which is higher
than that of ETEK. MoC can significantly improve the stability of
Pt/MoC0.25/MWCNTs catalyst and reduce the adsorption of
intermediate products on the catalyst surface. The higher
stability current achieved on Pt/MoC0.25/MWCNTs compared
to ETEK, together with the results from the above CV tests,
confirms the best EOR performance of Pt/MoC0.25/MWCNTs.

CONCLUSION

In summary, Pt/MoCx/MWCNTs nanocomposites were
successfully synthesized by the molecular self-assembly
technology. The structural characterization shows that Pt/

MoCx nanoparticles are evenly dispersed and anchored on
MWCNTs. The structure of MWCNTs is not significantly
damaged during the synthesis process. The electrochemical
measurement results show that Pt/MoC0.25/MWCNTs
electrocatalyst has the highest catalytic activity and the best
stability. The significant improvement of electrochemical
performance is attributed to the introduction of MoC, which
changes the electronic structure of Pt/MoCx, provides more active
sites for the EOR, enhancing the electrocatalytic activity. The
synergistic effect between Pt and MoC provides more active sites
for intermediates and improves the catalytic activity. And the
MoC interface is beneficial to the adsorption of reaction products
and the desorption of intermediate products, which improves the
catalytic activity of the composite catalyst. The newly developed
self-assembly technique has a great deal of potential for
synthesizing Pt/carbide nanocomposite electrocatalysts and the
as-prepared Pt/MoC0.25/MWCNTs demonstrates a promising
prospect as anode catalyst for applying in DEFCs.
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Iron-chromium redox flow batteries (ICRFBs) have the advantages of high safety, long
cycle life, flexible design, and low maintenance costs. Polyacrylonitrile-based graphite felt
composite material has good temperature resistance, corrosion resistance, large surface
area and excellent electrical conductivity, and is often used as the electrode material of
ICRFB, but its chemical activity is poor. In order to improve the activity of the graphite felt
electrode, In3+ was used for modification in this paper, and the modified graphite felt was
used as the electrode material for iron-chromium batteries. The structure and surface
morphology of the modified graphite felt were analyzed by the specific surface area
analyzer and scanning electron microscope; the electrochemical impedance
spectroscopy and cyclic voltammetry experiments were carried out on the
electrochemical workstation to study the electro catalytic activity of In3+ modified
graphite felt and its performance in ICRFBS. The results show that the graphite felt
electrodemodifiedwith a concentration of 0.2 M In3+ was activated at 400°C for 2 h, and its
surface showed a lot of grooves, and the specific surface area reached 3.889m2/g, while
the specific surface area of the untreated graphite felt was only 0.995 m2/g significantly
improved. Electrochemical tests show that the electrochemical properties of graphite felt
electrodes are improved after In3+ modification. Therefore, the In3+ modified graphite felt
electrode can improve the performance of ICRFB battery, and also make it possible to
realize the engineering application of ICRFB battery.

Keywords: iron-chromium flow battery, graphite felt, indium ion, specific surface area, electrochemical
performance

INTRODUCTION

In recent years, with the depletion of non-renewable resources such as coal, oil, and natural gas,
renewable energy such as wind, hydro, and tidal energy has developed rapidly (Mankge et al., 2021;
Hargreaves et al., 2020). Therefore, it is very important to develop large-scale and high-efficiency
energy storage systems (Ani 2021; Züttel et al., 2022). As a large-scale power storage system, flow
batteries have the characteristics of high capacity and wide application fields (environments), and
will usher in a period of rapid development (Yang et al., 2021; Sankaralingam et al., 2021; Huang
et al., 2021). In most flow batteries, iron-chromium flow batteries use low-cost Cr3+/Cr2+ pairs to
reduce Cr2+ and Fe3+/Fe2+ pairs to oxidize Fe3+, respectively. Electrochemical redox reaction is
carried out in Cr3+ electrolyte and acidic Fe2+ electrolyte (Zhang et al., 2020; Wu et al., 2021; Ahn
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et al., 2021). A typical iron-chromium flow battery system is
shown in Figure 1, which consists of a point stack unit, an
electrolyte, electrolyte storage and supply unit, and a
management and control unit (Chen et al., 2020).

The key materials of flow batteries include electrodes,
membranes, electrolytes, etc. Among them, graphite felt is the
most commonly used electrode material in flow batteries (Zhang
et al., 2017; Yue et al., 2010). At present, the activation methods of
graphite felt are generally divided into twomethods: adding oxygen-
containing functional groups on the surface and introducing surface
catalytic substances (Zhang et al., 2019). In terms of increasing the
oxygen-containing functional groups on the surface, methods such
as acidified K2Cr2O7 solution (Hassan et al., 2019), KMnO4 solution
(Hassan et al., 2020), and laser coating modification (Daugherty
et al., 2020) and aerogel modification (Jiang et al., 2019) are generally
used. The introduction of oxygen-containing functional groups can
not only increase the carbon and oxygen sites of the graphite felt
modified electrode, increase the electrode activity, but also accelerate
the charge transfer speed and improve the dynamic performance of
the electrode (Na et al., 2018). The specific surface area of the felt
(Jiang et al., 2019). In terms of introducing surface catalytic
substances, electrostatic spraying graphene oxide coating
(Anantha et al., 2021), rare earth composite oxide (Wang et al.,
2020). and noble metal particles such as Pt and Ag are generally used
as the main decoration (Xia et al., 2020; Lou et al., 2021), which can
increase the current density and improve the current efficiency.

Indium and indium oxide are promising oxides (Xinyuan et al.,
2021), and current research ismainly focused on the fact that indium
and indium oxide can inhibit the hydrogen evolution reaction of the
anode and improve the Coulombic efficiency of the battery. Leung
et al. deposited zinc on a carbon composite electrode in a methane
sulfonic acid medium and added 2 × 10−3 moldm−3 indium oxide as
a hydrogen suppressor, and the energy efficiency was increased from

62 to 73% (Leung et al., 2011).Wang et al. used In3+ as an additive to
improve the stability and performance of ICFBS, and their studies
showed that In3+ can not only effectively inhibit the hydrogen
evolution reaction, but also promote the reaction kinetics to a
certain extent (Wang et al., 2021). The research on In3+ modified
graphite felt electrodes has not been reported in detail. Therefore, it is
of great significance to study the electro catalytic activity of In3+

modified graphite felt and its performance in ICRFBS.

EXPERIMENT

Preparation of Graphite Felt Electrodes
Graphite felt (GF, 5 mm, Gansu Haoshi Carbon Fiber Co.,
Ltd.) was heat-treated at 400°C for 2 h as the base material.
Take three appropriate amounts of In2O3 powder and add
them to a beaker of 3 M dilute hydrochloric acid respectively to
prepare a 0.1, 0.2, and 0.3 M InCl3 solution. The following
chemical reactions mainly take place in this process:

In2O3 + 6HCl � 2InCl3 + 3H2O

Three groups of graphite felts of the same size were immersed in
0.1, 0.2, and 0.3M InCl3 solutions for 8 h, respectively. Then it was
dried in a drying oven at 80°C for 15 h. The dried graphite felt was
thermally activated in amedium-temperature experimental furnace at
400°C for 2 h. That is, the active graphite felt electrode for iron-
chromium flowbatterywhose surface is coatedwith InCl3 is prepared.

Characterization of Graphite Felt
Electrodes
Scanning electron microscope (SEM) was used to observe the
microscopic morphology of graphite felt, and X-ray energy

FIGURE 1 | Composition diagram of iron-chromium flow battery.
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dispersive spectroscopy (EDS) was used to determine the types
and contents of elements on the surface of the samples. The N2

adsorption and desorption isotherms and the specific surface
area (BET) and pore size distribution of each sample were
measured by a specific surface area and pore size tester, and the
pore size distribution was compared and analyzed by the BJH
method (Chen et al., 2020).

Electrochemical Measurements
Electrochemical performance was measured at room
temperature using Wuhan Koster electrochemical
workstation, and the flow battery electrolyte solution
consisted of 1.0 M CrCl3 + 1.0 M FeCl2 + 3.0 M HCl
solution. A three-electrode system was used for
electrochemical measurement, 0.4 cm2 graphite felt was used
as the working electrode, 1.0 cm2 platinum sheet was used as
the counter electrode, and the reference electrode was a
calomel electrode. Cyclic voltammetry tests were performed
at a scan rate of 5 mV/s and a voltage range of −0.8–0.8 V.
Electrochemical impedance measurements were performed in
the frequency range from 0.01Hz to 100 kHz with an AC
voltage amplitude of 5 mV and polarization potentials of
0.4V and −0.5 V, respectively.

RESULTS AND DISCUSSION

Characterization of Physical Properties
The surface morphology of graphite felt electrode observed by
scanning electron microscope is shown in Figure 2. A small

amount of impurities attached to the surface is the untreated
graphite felt (Figure 2A), and a large number of deep “grooves”
appeared along the fiber axis on the surface of the heat-treated
graphite felt (Figure 2B). Figures 2C–E show the heat-treated
graphite felt electrodes impregnated with InCl3 solutions of
different concentrations, respectively. It can be seen that after
immersion in the InCl3 solution, the depth of the “grooves”
increases on the surface and is accompanied by the generation of
irregular holes. When the concentration of InCl3 solution was
0.2 M (Figure 2D), the specific surface area of the graphite felt
increased significantly to 3.889 m2/g, while the specific surface
area of the untreated graphite felt was only 0.995 m2/g. In
addition to the increase in the specific surface area of the
graphite felt electrode, the EDS test results (Figure 3) showed
that InCl3 was successfully coated on the fiber surface with
uniform distribution, which may increase the activation point
of the graphite felt electrode, which is beneficial to improve the
performance of the electrode.

Take five pieces of graphite felt of the same size and put it into
the electrolyte at the same time, observe its falling speed and
position in three time periods of instant, 10 and 30 min, and judge
its wettability.

It can be seen from Figure 4 that when the graphite felt is
impregnated with InCl3 solution, its lipophilicity is significantly
improved, and it will quickly sink into the electrolyte at the
moment of contact, and the sinking speed of graphite felt
impregnated with 0.2 M InCl3 solution will be slightly faster
than Graphite felt impregnated with other concentrations of
InCl3 solution. This method can measure the hydrophilicity of
graphite felt, but the error is large. It can also be proved that the

FIGURE 2 | 5.00 KX Scanning Electron Micrograph (SEM) (A), untreated graphite felt (B), heat treated graphite felt (C), heat treated graphite felt impregnated with
0.1 M InCl3 solution (D), heat treated graphite felt impregnated with 0.2 M InCl3 solution (E), heat treated graphite felt impregnated with 0.3 M InCl3 solution.
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hydrophilicity of graphite felt is enhanced after being
impregnated with InCl3 solution.

In order to better understand the properties of graphite felt
after immersion in InCl3 solution, we measured the resistance of
each sample. Figure 5 shows the change of the line resistance
value of each sample.

It can be seen from Figure 5 that the line resistance of GF is
the largest, while the line resistance of TGF is slightly lower
than that of GF, from 0.17 Ω/cm to 0.1 Ω/cm, and the
reduction range is 41.17%. All have decreased, the decrease
range is 17.64, 35.29, 17.65%, and it can be seen that the
graphite felt impregnated with 0.2 M InCl3 solution has the
lowest resistance.

FIGURE 3 | EDS analysis diagram of heat-treated graphite felt after immersion in InCl3 solution.

FIGURE 4 | Samples from left to right are untreated graphite felt, heat-
treated graphite felt, heat-treated graphite felt after immersion in 0.1 M InCl3
solution, heat-treated graphite felt after immersion in 0.2 M InCl3 solution, and
heat-treated graphite felt after immersion in 0.3 M InCl3 solution, (A),
momentary Contact; (B), soak for 10 min; (C), soak for 30 min.

FIGURE 5 | respectively GF; TGF; 0.1 M InCl3 solution impregnated
heat-treated graphite felt; 0.2 M InCl3 solution impregnated heat-treated
graphite felt; 0.3 M InCl3 solution impregnated heat-treated graphite felt line
resistance.
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Electrochemical Characterization
As shown in Figure 6, the redox peak intensity of the cyclic
voltammetry of the untreated graphite felt electrode is small,
indicating that its electrochemical activity is low, and it is not
suitable for direct use as an electrode material for iron-chromium
batteries. The heat-treated graphite felt electrodes showed more
obvious redox peaks after heat treatment and InCl3 solution
immersion, indicating that the electrochemical performance of
the heat-treated graphite felt electrodes was significantly
improved compared with the untreated ones. Among them,
the electrochemical performance of graphite felt electrode (d)
after impregnation with InCl3 solution concentration of 0.2 M is
the best, and the peak value of its wave peak is also stronger. It can
be observed from Figure 6 that the peak current values of the
positive electrode of the heat-treated graphite felt electrode and
the graphite felt after being impregnated with InCl3 solution and
then heat-treated are 587 mA, 642 mA, 692 mA, and 644 mA, all
of which are greater than 524 mA. It can be proved that heat
treatment after immersion in InCl3 solution can improve the
electrochemical activity of the redox pair in Fe-Cr batteries.

Electrochemical impedance spectroscopy further analyzed the
effect of heat treatment after immersion in InCl3 solution on the
electrochemical performance of iron-chromium batteries.
Figure 7 shows the Nyquist plots of a-e graphite felt
electrodes. It can be observed from the figure that in all
Nyquist diagrams, the semicircular part exists in the high
frequency region, and the linear part exists in the low
frequency region, which can indicate the interaction between
iron ions and chromium ions on the graphite felt electrode. Redox
reactions are affected by both the rate of charge transfer and the
rate of diffusion. In Figure 7, when the electron transfer step at
the electrode/electrolyte interface is the control step, the electrode
process is corresponding to the semicircle arc located in the high

frequency region, and the difficulty of the electron transfer is
determined by the semicircle arc. Reflected by the radius of the
arc (Rct), the smaller the resistance, the less difficult the transfer
of electrons will be, and the smaller the radius will be; the
diffusion coefficient of the reaction particles in the solution is
the control step. Corresponding to the slash (Rs). Observing
Figure 7, it can be seen that heat treatment after immersion in
InCl3 solution can significantly reduce the charge transfer
resistance of the iron-chromium redox couple, and the high-
frequency arc radius is significantly smaller than that before
treatment, indicating that heat treatment after immersion in
InCl3 solution can accelerate the redox couple of iron-
chromium. Reaction and charge transfer rates. However, it is
easier for electrons to transfer on the graphite felt after being
immersed in InCl3 solution and then heat-treated, that is, and the
charge transfer resistance of the graphite felt is greatly reduced at
this time, which further indicates that the heat-treated graphite
felt electrode after being immersed in InCl3 solution is in iron.
The electrochemical performance of chromium flow batteries has
been greatly improved.

CONCLUSION

In this paper, the graphite felt was immersed in InCl3 solution and
then heat treated, so that indium ions were successfully
introduced into the surface of the graphite felt to prepare an
active electrode. The comprehensive SEM, EDS, BET, resistance,
lipophilicity, and electrochemical test results can get conclusion:

FIGURE 6 | how’s samples (a), GF; (b), TGF; (c), heat-treated graphite
felt after immersion in 0.1 M InCl3 solution; (d), heat-treated graphite felt after
immersion in 0.2 M InCl3 solution; (e), heat-treated graphite felt after
immersion in 0.3 M InCl3 solution, cycle Voltammetry curve.

FIGURE 7 | Samples (a), GF; (b), TGF; (c), heat-treated graphite felt
after immersion in 0.1 MM InCl3 solution; (d), heat-treated graphite felt after
immersion in 0.2 MM InCl3 solution; (e), heat-treated graphite felt after
immersion in 0.3 MM InCl3 solution, electrochemical impedance
Diagram and Equivalent Circuit Diagram.
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1) In3+ was successfully coated on the surface of the fiber, and the
distribution was uniform, which increased the activation point
of the graphite felt electrode, which was beneficial to improve
the performance of the electrode. When the In3+ concentration
was 0.2 M, the specific surface area of the graphite felt increased
significantly to 3.889 m2/g, while the specific surface area of the
untreated graphite felt is only 0.995 m2/g.

2) The hydrophilicity of graphite felt impregnatedwith InCl3 solution
is obviously enhanced, and it can be seen that the graphite felt
impregnated with 0.2M InCl3 solution has the lowest resistance.

3) Heat treatment after immersion in InCl3 solution can accelerate
the redox reaction and charge transfer rate of iron-chromium
charge, and the charge transfer resistance of the graphite felt
after immersion in InCl3 solution is greatly reduced, thereby
further improving its electrochemical performance.
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Porous ZnO Nanosphere Inherently
Encapsulated in Carbon Framework
as a High-Performance Anode For
Ni–Zn Secondary Batteries
Zhuo Li1, Xianwei Hu1*, Jian Kang2, Xiaoli Wang1, Lingyu Kong1, Zhongning Shi2 and
Zhaowen Wang1

1Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern
University, Shenyang, China, 2State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, China

Nickel–zinc (Ni-Zn) secondary battery that is environmentally friendly and inexpensive has
been regarded as a promising rechargeable battery system. However, the generation of
deformation and dendrites of the traditional zinc anode during the cycling can cause
capacity degradation and impede its practical application. Herein, we design a hierarchical
ZnO nanosphere coated with an inherently derived ZIF-8 porous carbon shell (ZnO@CZIF-8)
using a simple controllable method. The conductive carbon shell and porous ZnO core can
provide more active sites, allow the fast transfer of electrons, and buffer the volume
expansion of the electrode effectively. Benefiting from the synergistic effect amid the
inherently ZIF-8–derived carbon shell and ZnO core, ZnO@CZIF-8 nanospheres exhibit a
satisfying capacity of 316mAh g−1 at a current density of 1 A g−1 after 50 cycles and an
outstanding rate capacity when acting as the anode for a Ni-Zn secondary battery with
merchant agglomerative Ni(OH)2 as the cathode. These results imply that the ZnO@CZIF-8

nanosphere is a hopeful anode for a high-energy Ni-Zn secondary battery.

Keywords: intrinsic regulation, porous carbon shell, zinc oxide, anode, Ni-Zn batteries

INTRODUCTION

Energy demand is increasing as societies continue to develop. Fossil fuels have caused severe pollution of
the environment, so the development of environmentally friendly and renewable rechargeable battery
systems is becoming increasingly important (Lund, 2007; Dunn et al., 2011; Wang et al., 2016).
Rechargeable battery systems such as lithium-ion and nickel–hydrogen have received extensive
attention because they are environment friendly and have considerable capacity (Yu et al., 2008; Lu
et al., 2015; Xu et al., 2016). However, most existing rechargeable battery systems have limitations that
hinder their further development. For example, the operating temperature range of the nickel–hydrogen
battery is limited, and it often confronts a low operating voltage (Li et al., 2018). Lithium-ion batteries have
highmanufacturing costs, and thematched organic electrolyte has serious safety problems, such as toxicity
and possibility of explosion (Stock et al., 2018; Yan et al., 2018). Compared with these battery systems, the
nickel–zinc (Ni-Zn) secondary battery is a better alternative energy storage system with great prospects
because of advantages such as cheap cost, safety, environmental friendliness, and outstanding specific
energy density (Li and Dai, 2014; Yuan et al., 2014; Sun et al., 2016).

The anode is an important part of the nickel–zinc battery. However, the traditional zinc anode
used in the Ni-Zn secondary battery suffers from deformation, dendrite, and corrosion during the
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charge and discharge processes. This results in capacity
degradation, which severely limits the development of the Ni-
Zn secondary battery (Lan et al., 2007; Wu et al., 2009; Nakata
et al., 2015; Guo et al., 2017; Chen et al., 2021). Researchers have
performed many studies to solve problems including surface
modification (Park et al., 2018; He et al., 2021), structural
optimization (Zeng et al., 2019a), and the use of active
additives to improve the performance of zinc anode (Xie et al.,
2015; Yi et al., 2021). Among them, carbon-shell–coated zinc
oxide (ZnO) materials have shown great application potential.
The carbon layer is coated on the surface of ZnO, which not only
inhibits the dissolution of ZnO but also improves the conductivity
of the base material and results in a symmetrical dispersion of
electrons on the surface of the ZnO particles (Feng et al., 2015; Xia
et al., 2019; Zhou et al., 2020). Long’s group prepared carbon-
coated ZnO through the ball-milling pattern using glucose as the
carbon source (Long et al., 2013). The material exhibited great
cycling performance when used as an anode for Ni-Zn secondary
battery. Other researchers prepared the ZnO/carbon nanotube
composites by controlling the vertical growth of ZnO on carbon
nanotubes (Cui et al., 2019). The unique heterostructure can
efficiently improve the contact surface between the electrode and
electrolyte to promote ion transport (Huang et al., 2014; Li et al.,
2017a; Zeng et al., 2020). However, these strategies are only
applied to modify the surface of ZnO by directly introducing
the carbon source, which decreases the contact surface between
the carbon material and ZnO and incompletely restrains the
growth of dendrites. Therefore, it is necessary to realize a carbon-
coating strategy that inherently evolves on the surface of ZnO to
further enhance the electrochemical performance of zinc anode
materials.

Zeolitic-imidazolate frameworks (ZIFs) are novel 3D
framework materials that have received wide attention due to
their well-designed morphology, ordered pore structure, and high
stability (Lin et al., 2020; Huo et al., 2021; Xu et al., 2022). The
pyrolysis product of ZIFs is a porous carbon material with a
considerable specific area and conductivity under anaerobic
conditions (Jiang et al., 2017; Li et al., 2020). Based on the
aforementioned summary, we successfully synthesized a
unique hierarchical ZnO nanosphere coated with ZIF-8
inherently derived porous carbon shell (ZnO@CZIF-8) by using
a simple hydrothermal method following pyrolysis. The
electrochemical properties of ZnO@CZIF-8 employed as an
anode for the Ni-Zn secondary battery were investigated.
Benefiting from the unique core-shell heterostructure
consisting of the ZIF-8 inherently derived carbon shell and
porous ZnO core with abundant active sites, the ZnO@CZIF-8

nanocomposites present a stable base structure and improved
cycling stability.

EXPERIMENT

Synthesis of ZIF-8
Zn (NO3)2·6H2O (1.1158 g) was dissolved in 30 ml methanol
under ultrasonic treatment. 2-Methylimidazole (1.2337 g) was
dissolved in 30 ml methanol. Then, the aforementioned solutions

were mixed. The mixed solution was continuously stirred for
20 h. After that, the white precipitate was washed with methanol
3 times and vacuum dried.

Synthesis of ZnO@ZIF-8
Zn (CH3COO)2 (6.5 g) was first hemolyzed in 300 ml diethylene
glycol under ultrasonication for half of an hour to obtain a clear
solution and then transferred into a flask. This mixture was
heated at 150°C in an oil slot with continuous stirring for
0.5 h. During this step, the solution gradually changed from
colorless to a milky white color. After the solution cooled to
indoor temperature, the ZnO nanospheres were obtained and
dried at 60°C for 10 h. The as-prepared ZnO nanospheres were
dispersed in 30 ml methanol with 1.2337 g 2-methylimidazole
and stirred for 0.5 h. The aforementioned mixture was poured
into a reaction still and held at 70°C for 20 h. Then, ZnO@ZIF-8
was obtained by centrifugation at 8,000 rpm for 5 min, washed
with methanol, and dried at 60°C.

Synthesis of ZnO@CZIF-8
The ZnO@ZIF-8 powders were annealed in an Ar atmosphere at
600°C for 3 h at a heating rate of 3°C min−1. After cooling to
indoor temperature, ZnO@CZIF-8 was obtained. For comparison,
ZnO was prepared by the same process using a single ZIF-8 as a
precursor, marked as ZnO (ZIF-8).

Material Characterization
The crystalline structural characterization of the samples was
investigated by X-ray diffraction (XRD, D8). Transmission
electron microscopy (TEM, FEI Talos-F200S) and scanning
electron microscopy (SEM, Zeiss Sigma 300) were used to
observe the morphology and microstructure of the samples.
Raman spectra were performed using an HR800
spectrophotometer with 633 nm laser excitation. The carbon
content in the product was confirmed with thermogravimetric
analysis (TGA) under an air atmosphere from 20 to 700°C. The
specific area and porous property were measured via N2

adsorption/desorption isotherms (Quantachrome Autosorb-
IQ3). The surface element component of the sample was
determined via X-ray photoelectron spectroscopy (XPS,
Thermo Scientific K-Alpha).

Electrochemical Measurements
The ZnO@CZIF-8 (active material, 80%), polyvinylidene fluoride
(PVDF, 10%), and conductive carbon (10%) in N-methyl-2-
pyrrolidone (NMP) solvent were mixed to obtain a mixed
slurry. The as-prepared mixture was pasted on tinfoil and
dried at 70°C in vacuum. The ZnO@CZIF-8 anode was
punched into a wafer (diameter of 10 mm). The loading mass
of the electrode was 0.8~1.0 mg. The electrochemical
performances of ZnO@CZIF-8 were determined by assembling
CR2032 coin cells using agglomerative Ni(OH)2 as the cathode
and a mixed solution (4 M KOH, 2 M K2CO3, and 2 M KF) as the
electrolyte. A galvanostatic charge and discharge test was
performed on the LAND-CT2001 batter-testing system. The
cell was charged to 1.9 V and discharged to 1.5 V for a certain
time. Cycle voltammogram (CV 1 mV s−1, voltage ambit between

Frontiers in Chemistry | www.frontiersin.org June 2022 | Volume 10 | Article 9366792

Li et al. Porous ZnO Nanosphere Anode

64

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


−1.9~−1.0 V), electrochemical impedance spectroscopy (EIS,
10 kHz to 0.1 Hz), and Tafel plots were obtained by using an
electrochemical workstation (CHI660D).

RESULTS AND DISCUSSION

The core-shell structural ZnO@CZIF-8 nanospheres were
prepared as shown schematically in Figure 1A. First, a ZnO
nanosphere precursor with a diameter range between 300 and
500 nm is synthesized by heating in an oil bath (Figures 1E,F).
Second, a shell layer of ZIF-8 is intrinsically grown and coated on
the surface of the nanosphere precursor by the solvothermal
method. It can be observed that the ZIF-8 layer forms a coating
shell on the nanosphere surface, and the obtained ZnO@ZIF-8 is
uniform with a diameter size of about 600 nm (Figures 1G,H).
Moreover, ZIF-8 and ZnO (pyrolysis treatment of ZIF-8) were
prepared, as presented in Figures 1B–D. The ZIF-8 nanoparticles
presented a rhombic dodecahedron morphology with a size of
about 100 nm, and the framework structure can be maintained

after the pyrolysis process. Finally, the well-designed carbon shell
derived from the ZIF-8 layer can be generated and coated on the
surface of the ZnO core. The inherently derived porous ZIF-8
carbon shell plays a vital role in the construction of ZnO@CZIF-8.
Figures 1I,J show the morphology of ZnO@CZIF-8. After
pyrolysis treatment, the spherical structure was preserved, and
the surface became rougher, which is ascribed to the
decomposition of the organic-functional groups in ZIF-8 (Li
et al., 2020). The average size of ZnO@CZIF-8 is about 600 nm.

In Figure 2A, the XRD pattern of ZIF-8 is consistent with the
ZIF-8 crystal reported in the literature (Zhang et al., 2017) and the
diffraction peaks are sharp, which indicate the high purity and
great crystallinity of the material. Furthermore, the characteristic
peaks of ZnO can be detected in the curve of ZnO@ZIF-8. This
result confirms that the ZIF-8 layer can inherently form on the
external surface of the ZnO nanosphere. All diffraction peaks of
ZnO (ZIF-8) and ZnO@CZIF-8 can be well matched to hexagonal
ZnO (PDF#70-2551). The peaks at 31.8°, 34.3°, 36.6°, 47.7°, 56.5°,
62.7°, and 68.1° for ZnO (ZIF-8) and ZnO@CZIF-8 were associated
with the (100), (002), (101), (102), (110), (103), and (112) planes

FIGURE 1 | (A) The preparation process of core-shell ZnO@CZIF-8. SEM images of (B) ZIF-8, (C,D) ZnO (ZIF-8), (E,F) ZnO nanosphere, (G,H) ZnO@ZIF-8, and (I,J)
ZnO@CZIF-8.
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of ZnO, respectively. The Zn species in ZIF-8 can be oxidized to
the metal oxide (ZnO) during pyrolysis. This is ascribed to the
oxygen released from the decomposition of organic-functional
groups in ZIF-8. In addition, the peaks of ZnO@CZIF-8 are
sharper than those of ZnO (ZIF-8), exhibiting the high
crystallinity of ZnO@CZIF-8.

To further inquire about the constituents and pore diameter
size of the samples, Raman, TGA, and BET tests were measured.
The Raman spectra for ZnO (ZIF-8) and ZnO@CZIF-8 both
present two distinct peaks at 1,322 cm−1 (D-band) and
1,575 cm−1 (G-band). These peaks are ascribed to disordered
carbon and graphitic carbon, respectively, confirming the
presence of a carbon shell (Li et al., 2017b). Figure 2A shows
the TGA curves of ZnO@CZIF-8 in an air atmosphere. For ZnO@
CZIF-8, a major weight loss appeared at 300°C due to the pyrolysis
of the coated carbon shell. The carbon content in ZnO@CZIF-8 is
estimated to be 29.7%. Figures 2E,F present the BET curves and
the pore diameter size of ZnO (ZIF-8) and ZnO@CZIF-8,
respectively. The specific surface areas for ZnO (ZIF-8) and
ZnO@CZIF-8 (Figure 2E) are estimated to be 30.5 and
69.6 m2g−1, respectively. As shown in Figure 2F, the pore
diameter distributions are mostly centered at 2~10 nm for
ZnO (ZIF-8) and ZnO@CZIF-8. The result indicates that the
samples mainly comprise a mesoporous structure (2–50 nm).
The formation of mesoporous structure for ZnO@CZIF-8 is
ascribed to the release of gas-phase compounds in the ZIF-8
during the carbonization (Li et al., 2020). The structural
characteristics of mesoporous are helpful for the
transportation of Li+ ions and the improvement of the active site.

The microstructure of the products were also investigated by
TEM. The ZIF-8 particles display a uniform rhombic
dodecahedron (Figure 3A). Compared with ZIF-8, the surface

of ZnO (ZIF-8) is sunken and shrunken after carbonization
(Figure 3B), and the particle size is slightly reduced.
Agglomeration occurs between the particles for both ZIF-8
and ZnO (ZIF-8). As presented in Figure 3C, ZnO@ZIF-8
exhibits a sphere-shaped heterostructure coated with a ~50 nm
inherent growth of the ZIF-8 shell, and the particle size of ZnO@
ZIF-8 is ~700 nm. Figures 3D,E show the TEM images of ZnO@
CZIF-8. The microsphere structure can be maintained after
carbonization. The carbon-shell–derived ZIF-8 layer is coated
on the external face of the ZnO core. Furthermore, the pyrolysis
of the coated ZIF-8 layer can cause volume contraction of ZnO@
CZIF-8. Thus, the external shell of ZnO@CZIF-8 becomes rough,
and the particle size decreases. Agglomeration can be controlled,
owing to the preservation of the carbon shell. The HRTEM image
of ZnO@CZIF-8 (Figure 3F) presents lattice fringes with an
interplanar spacing of 0.26 nm, matching the (002) plane of ZnO.

The surface element compositions and valences of the as-
prepared ZnO@CZIF-8 were analyzed using XPS. The full
spectrum in Figure 4A shows the presence of Zn, N, O, and
C elements in ZnO@CZIF-8. The Zn 2p spectrum of ZnO@CZIF-8

contains two characteristic peaks at 1,043.8 and 1,022.1 eV,
matching Zn 2p1/2 and Zn 2p2/3, respectively. This result
reveals the existence of a Zn (II) oxidation state in ZnO@CZIF-

8. For the O 1s spectrum of ZnO@CZIF-8 (Figure 4D), the peak is
fitted for three peaks at 533.1, 531.7, and 530.1 eV, respectively.
The characteristic peak at 530.1 eV is matched to the lattice
oxygen of ZnO, and the other two peaks at 533.1 and 531.7 eV are
derived from the C-OH and C=O in the carbon shell, respectively
(Zeng et al., 2019b). The N 1s spectrum of the ZnO@CZIF-8 is
presented in Figure 4D. The broadband is fitted into three peaks,
which are ascribed to graphitic-N (400.5 eV), pyrrolic-N
(399.7 eV), and pyridinic-N (298.1 eV), respectively, derived

FIGURE 2 | XRD patterns of (A) ZIF-8 and ZnO@ZIF-8, (B) ZnO (ZIF-8), and ZnO@CZIF-8. (C) The Raman spectra of ZnO (ZIF-8) and ZnO@CZIF-8. (D) The TGA
curve of ZnO@CZIF-8. (E) N2 adsorption–desorption isotherms and (F) pore size distribution curves of ZnO (ZIF-8) and ZnO@CZIF-8.
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from the splitting decomposition of the organic-functional group
in the ZIF-8 layer during carbonization. As is well known,
N-doped graphitized carbon can be used as additional active
sites to improve zinc storage (Xu et al., 2022). The C 1s spectrum
of ZnO@CZIF-8 is also given (Figure 4C). The C 1s spectrum can
be fitted into three spectral peaks, assigned to C-O (288.1 eV),
C-N (285.9 eV), and C-C (284.6 eV). The formation of C-N
bands reveals that N-atoms are anchored on the carbon shell.
Moreover, the existence of N-doped carbon can also enhance the
electrical conductivity of the base material (Xu et al., 2022).

The electrochemical performances of the as-prepared samples
were tested by constructing a button cell using commercial
sintered Ni (OH)2 as the cathode, as shown in Figure 5. To

confirm the related electrochemical behaviors during the
discharge–charge processes, a cycling voltammogram (CV) was
tested with a voltage window amid −1.9 and −1.0 V at a scan rate
of 1 mV s−1. It can be observed that all electrodes show similar CV
curves, which include the reduction peaks for ZnO@CZIF-8

(−1.37 V) and ZnO (ZIF-8) (−1.34 V) and the oxidation peaks
for ZnO@CZIF-8 (−1.35 V) and ZnO (ZIF-8) (−1.29 V). The
potential intervals between the oxidation peak and the
reduction peak of ZnO (ZIF-8) and ZnO@CZIF-8 are 0.046
and 0.03 V, respectively. The lower potential interval implies
that the ZnO@CZIF-8 anode presents better reversibility (Yan
et al., 2018). The electrochemical reactions can be presented as
follows:

FIGURE 3 | TEM images of (A) ZIF-8, (B) ZnO (ZIF-8), (C) ZnO@ZIF-8, (D,E) ZnO@CZIF-8, and (F) HRTEM of ZnO@CZIF-8.

FIGURE 4 | (A) The Survey XPS spectrum of ZnO@CZIF-8 microsphere. (B–E) High-resolution XPS spectra of Zn 2p, C 1s, O 1s, and N 1s.
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Charge process : ZnO + 2OH− +H2O → Zn(OH)2−4 , (1)
Zn(OH)2−4 + 2e− → Zn + 4OH−, (2)

Discharge process : Zn + 4OH− → Zn(OH)2−4 + 2e−, (3)
Zn(OH)2−4 → Zno + 2OH− +H2O. (4)

Figures 5B,C show the discharge and charge curves of ZnO
(ZIF-8) and ZnO@CZIF-8 at different cycles (1st, 3rd, and 10th
cycles). The discharge specific capacities of ZnO@CZIF-8 are 777,
820, and 601 mAh g−1 at the 1st, 3rd, and 10th cycles, respectively,
which are larger than those of ZnO (ZIF-8) (223, 507, and 401mAh
g−1 at the first, third, and 10th cycles). For comparison, the cycling
performances of ZnO@CZIF-8, ZnO (ZIF-8), and ZnO (nanosphere)
are presented in Figure 5D. The specific capacity of ZnO
(nanosphere) declined seriously and depleted after 20 cycles. The
ZnO (ZIF-8) anode suffers the same experience. In contrast, the
cycling performance of ZnO@CZIF-8 remained steady, and the
discharge capacity reached 316mAh g−1 after 50 cycles. This
benefit stemmed from the synergistic effect of the carbon shell
derived from the inherent ZIF-8 layer and ZnO nanoparticle core.

Figures 6A–C present the rate stabilities of ZnO (ZIF-8) and
ZnO@CZIF-8 at various current densities. The discharge
specific capacities of ZnO@CZIF-8 at 1, 1.5, and 2 A g−1 are
821, 562, and 396 mAh g−1, respectively, which are larger than
those of ZnO (ZIF-8) (536, 477, and 312 mAh g−1 at 1, 1.5, and
2 A g−1). Figure 6D displays the midpoint discharge voltage
charts of ZnO (ZIF-8) and ZnO@CZIF-8, which is also a
significant argument for rechargeable batteries. The better
the stability and higher the midpoint discharge voltage, the
higher the specific energy and the greater the electrochemical
property. ZnO@CZIF-8 exhibits a stable and high midpoint

discharge voltage during cycling. However, the midpoint
discharge voltage of ZnO (ZIF-8) markedly decreases after
18 cycles. The Tafel plot curves (Figure 6E) of ZnO (ZIF-8)
and ZnO@CZIF-8 are exhibited to investigate the anticorrosion
performance of the electrode in alkaline solution, assessed
using corrosion potential (Ecorr) (Li et al., 2017a). We observed
that the value of Ecorr for ZnO@CZIF-8 (−1.115) was more
positive than that of ZnO (ZIF-8) (−1.167). This indicates that
the ZnO@CZIF-8 electrode exhibits better corrosion resistance.
The mainspring was that the coated carbon shell can control
the corrosion of ZnO. Nyquist plots of the ZnO (ZIF-8) and
ZnO@CZIF-8 electrodes are exhibited in Figure 6F. All plots are
semi-circular in the high-frequency region and show an
oblique stroke in the low-frequency region. These are
related to charge transfer and ion diffusion in the electrode.
Obviously, the semi-circular diameter of ZnO@CZIF-8 is
smaller than that of ZnO (ZIF-8), implying that the coated
carbon shell enhances the electronic conductivity of the base
material. The morphological changes of ZnO and ZnO@CZIF-8

after the cycles are presented in Figure 6G. The ZnO (ZIF-8)
suffers an inevitable volume increase during cycling, causing
fracture of the material. By constructing the inherently derived
core-shell structure, the ZIF-8–derived carbon shell restricts
the volume expansion of the ZnO core during the cycling
process. This indicates that the inherently derived carbon shell clings
to the surface of ZnO and effectively ensnares the volume expansion
of the active material, thereby increasing the cycling performance.
The superior electrochemical performances of ZnO@CZIF-8 can be
ascribed to its unique hierarchical structure. First, the microsize of
ZnO@CZIF-8 guarantees more efficient infiltration between the
electrolyte and the electrode. Second, the existence of a carbon

FIGURE 5 | (A) Cyclic voltammogram curves of ZnO (ZIF-8) and ZnO@CZIF-8. Galvanostatic charge and discharge curves of (B) ZnO (ZIF-8) and (C) ZnO@CZIF-8 at
1st, 3rd, and 10th cycles. (D) Cycling performance of ZnO microsphere, ZnO (ZIF-8), and ZnO@CZIF-8 at 1 A g−1.
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shell derived from the inherent ZIF-8 layer can not only weaken the
dissolution of ZnO and be the detriment of zinc dendrites but can also
increase the electronic conductivity of the electrode.

CONCLUSION

In summary, a unique core-shell ZnO@CZIF-8 nanocomposite
was successfully synthesized using a ZnO nanosphere as the
core and an inherent ZIF-8 layer as the coated carbon source
by using a simple hydrothermal method and subsequent
pyrolysis process. The inherent ZIF-8–derived carbon shell
with N-doping can improve the electronic conductivity and
offer abundant active sites. Meanwhile, this hierarchical
structure provides an extreme self-adaptive framework that
can efficiently control the volume expansion of the electrode.

Benefiting from the unique hierarchical structure, the ZnO@
CZIF-8 nanocomposite exhibits superior electrochemical
properties when used as anode material in the Ni-Zn
secondary battery. In particular, the ZnO@CZIF-8 electrode
presents a discharge-specific capacity of 820mAh g−1, which is
larger than that of the ZnO (ZIF-8) (507mAh g−1) and ZnO
(nanosphere) precursor (410mAh g−1). In addition, the ZnO@
CZIF-8 presents remarkable cycling stability and outstanding rate
stability. The advanced electrochemical performances of the
ZnO@CZIF-8 electrode can be attributed to the conductivity
improvement, structure stability, anticorrosion property, and
reaction reversibility of the inherent combination between the
carbon shell and ZnO core. Therefore, this study offers a guide to
constructing hierarchical inherent carbon-coated ZnO with
outstanding electrochemical performances.

FIGURE 6 | Rate performance of ZnO (ZIF-8) and ZnO@CZIF-8 electrodes at different current densities: (A) 1 A g−1, (B) 1.5 A g−1, and (C) 2 A g−1. (D) Midpoint
discharge voltage curves of the Ni-Zn batteries with different anodes of ZnO (ZIF-8) and ZnO@CZIF-8. (E) The Tafel plot of ZnO (ZIF-8) and ZnO@CZIF-8 electrodes. (F)
Nyquist plots of ZnO (ZIF-8) and ZnO@CZIF-8 electrodes. (G) Morphological changes after the charge/discharge processes.
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Aerosol Jet Printing of Hybrid Ti3C2Tx/
C Nanospheres for Planar
Micro-supercapacitors
Yu Wu1†, Aiping Lin1†, Jidi Zhang2, Danjiao Zhao1, Lanlan Fan1, Cheng Lu2, Shufen Wang1,
Lei Cao1 and Feng Gu1,2,3*
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and Technology, Nanchang, China, 2Institute for Process Modelling and Optimization, Jiangsu Industrial Technology Research
Institute, Suzhou, China, 3School of Energy and Environment, Southeast University, Nanjing, China

When utilized in energy devices, the restacking tendency of MXene Ti3C2Tx inhibits its
electrochemical performance. Using aerosol jet printing (AJP) technology, hybrid Ti3C2Tx/
C nanospheres are synthesized with C nanoparticle-bonded MXene nanosheets, and the
restacking of MXene nanosheets is blocked efficiently. The formationmechanism for hybrid
Ti3C2Tx/C nanospheres has been hypothesized, and the Ti3C2Tx/C is anticipated to
assemble and shape along the droplet surface in tandem with the Marangoni flow
within the droplet. The planar microsupercapacitor devices generated from these
hybrid spherical nanostructures with increased interlayer spacing exhibit exceptional
areal capacitance performance. This concept offers a straightforward and effective
method for constructing 3D-structured MXene with suppressed self-stacking for
diverse high-performance micro energy storage devices.

Keywords: aerosol jet printing, hybrid structure, nanosphere, MXene, restacking behavior

1 INTRODUCTION

MXene has been attracting increasing attention because of its good metallicity, relatively large
accessible surface area, and the availability of more active sites, endowing it with great potential for
applications in energy storage (Ling et al., 2014; Naguib et al., 2014; Cao et al., 2021a; Cao et al.,
2021b). However, MXene has a pronounced restacking characteristic with close contact between
layers, which greatly reduces the exposed specific surface area and active sites (Xia et al., 2018; Fang
et al., 2020; Cao et al., 2021c; Yang et al., 2021). Over the past few years, intensive efforts have been
exerted to address this issue. Among them, three-dimensional (3D) structured MXene are expected
to expose more active sites with facilitated ion transportation, which is essential for embodying the
prominent electrochemical feature of MXene when developing future-related high-performance
energy devices (Orangi and Beidaghi, 2020). By applying spherical poly(methyl methacrylate)
(PMMA) as a template, a macroporous film of MXene has been developed with a significant
increase in specific capacitance performance (200Fg−1 at 10Vs−1) (Lukatskaya et al., 2017). A similar
method of sacrificing templates has also been applied to sodium ion storage (Zhao et al., 2017).
However, these methods suffer from tedious procedures and time/energy consuming, while residuals
are still in a difficult stage to be removed.

Basically, hybridization can be considered as an effective strategy to suppress MXene restacking.
For example, knotted carbon nanotubes (CNTs) were developed to support the Ti3C2 network and
restacking could be effectively avoided with enhanced ion accessibility (Gao et al., 2020). Graphene
was embedded between Ti3C2Tx nanosheets to form a high nanopore connectivity network to
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facilitate ion transport (Fan et al., 2018). These protocols
effectively suppressed the restacking behavior of MXene with
enlarged interlayer spacing; however, the resultant hybrid
structure was still in a facial form.

Aerosol jet printing (AJP) is a new type of additive
manufacturing technology with industrialization prospects. As
a non-contact, programmable, and versatile printing technique,
the feature size of AJP could reach ~10 μm (Secor, 2018;Wu et al.,
2021), implying the potential for precise preparation of
individualized, batched, and miniaturized devices (Mahajan
et al., 2013; Jabari and Toyserkani, 2015; Deiner and Reitz,
2017). Currently, AJP has been applied in the fabrication of
integrated circuits (Skarzynski et al., 2021), transistors (Cao et al.,
2017), memristor (Feng et al., 2019), ring oscillators (Ha et al.,
2013), etc. Actually, during the AJP process, the atomized aerosol
droplet could be developed as a microreactor mediating the
solvent evaporation and solute migration for precisely
constructing 3D nanostructures during deposition (Ha et al.,
2013). Recently, our group developed a convenient AJP approach
for in situ synthesis of MXene nanospheres with crumpled and
eccentric characteristics (Wu et al., 2022). The shell of the
nanosphere was still composed of densely stacked Ti3C2Tx

nanosheets.
Herein, we developed an effective AJP process for MXene

hybrid nanospheres by introducing nanoscale carbon particles
(Ti3C2Tx/C) inhibiting restacking and anchoring neighbouring
nanosheets for integrity. The carbon nanoparticles were simply
formulated with MXene for the precursor ink. The formation
mechanism for the hybrid nanospheres has been proposed
tentatively by considering the evaporation-induced migration
and assembly process. The derived microsupercapacitor (MSC)
device of MXene hybrid nanospheres shows excellent areal
capacitance performance of 64.58 mF cm−2. This work

highlights the great potential of AJP for developing complex
nanostructures and broadens the applications of additive
manufacturing techniques for miniaturized and intelligent
microelectronics.

2 RESULTS AND DISCUSSION

The precursor ink was simply formulated by mixing delaminated
Ti3C2Tx nanosheets and carbon nanoparticles (commercial
carbon paint) of different mass ratios in deionized water. The
synthesis of the delaminated Ti3C2Tx refers previously reported
methods, and the details are given in the experimental section
(Lukatskaya et al., 2017; Eom et al., 2020; Li et al., 2020). The
morphology of the delaminated Ti3C2Tx nanosheets is shown in
Supplementary Figure S1 (Supporting Information), indicating
the MAX phase (Ti3AlC2) was well etched to a single layer or few-
layered nanosheets. Figure 1A shows the transmission electron
microscopy (TEM) image of the carbon nanoparticles with a
lateral size of 20–30 nm and thickness of 2–3 nm. The X-ray
diffraction (XRD) pattern (Supplementary Figure S2,
Supporting Information) further verified the carbon of
graphite matching information with PDF card 41–1487.
Figure 1B show the TEM image of the precursor ink,
indicating that the carbon nanoparticles distribute uniformly
on the MXene nanosheet surface, which can be further
verified by the element mapping results (Supplementary
Figure S3, Supporting Information). In our work, the relative
mass ratio of Ti3C2Tx and C was set at 0:1, 1:0, 1:0.5, 1:1, and 1:2,
respectively. Figure 1C schematically illustrates the AJP
procedure to fabricate hybrid Ti3C2Tx/C nanospheres. In case
of the aerosol jet printing process, the precursor ink was atomized
by an ultrasonic atomizer (1.7 MHz). The generated mist of

FIGURE 1 | (A,B) TEM images of the carbon nanoparticles and Ti3C2Tx/C ink; (C) schematic illustration of the AJP process for fabrication of hybrid Ti3C2Tx/C
nanospheres.
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aerosol droplets (less than 10 μm) was transmitted to the nozzle
by a carrier gas of N2 and then shaped by a sheath gas of N2 jetting
out of the nozzle. By confining in the microscale regime of the
sheath gas, the mist of aerosol droplets was tremendously focused
into a microscale mist jet. The focus ration (FR), which is defined
by the sheath gas rate to the carrier flow rate, determines the
printing quality. In this work, the FR was fixed at 3 without
obvious overspray phenomenon observed. The focused aerosol jet
was subjected on the oxygen plasma–treated polyethylene
terephthalate (PET) surface. The deposition temperature was
100°C for accelerating the solute migration.

The morphology and microstructure of the printed patterns
were characterized by SEM and TEM, indicating the formation of
crumpled nanospheres with ridges or wrinkles while the pristine
facial MXene nanosheets were not detected (Figures 2A,B). The
size of the formed spheres is ~500 nm, independent of carbon
nanoparticles added. With the introduction of carbon
nanoparticles, the spheres surface become rough and the

carbon nanoparticles could be clearly observed (Figures
2C–F). When excessive carbon nanoparticles added (mass
ratio of 1:2), a rather dense film composed of closely bonded
nanospheres were formed (Figure 2G). It is found that the carbon
nanoparticles are distributed homogeneously in the resultant
hybrid products in case of the formulation of the precursor
ink by simply mixing these two components. Due to the
hydrophilic nature, the Ti3C2Tx nanosheets could be dispersed
in the solvent of water homogeneously. The negatively charged
surface of MXene is assumed as the main reason for absorbing the
carbon nanoparticles for formation of the hybrid structure.
Under the ultrasonic condition for atomization, the dispersed
carbon nanoparticles are prone to be adsorbed on the MXene
nanosheets surface. During the assembly of Ti3C2Tx/C for the
resultant spherical nanostructure, the adsorbed carbon
nanoparticles could effectively inhibit the closely restacking
tendency of MXene nanosheets. From Figure 3B, the
embedded carbon nanoparticles could be clearly observed and

FIGURE 2 | SEM images of the printed hybrid Ti3C2Tx/C nanospheres with different mass ratios of MXene and carbon nanoparticles. (A,B) Pristine MXene
nanospheres; (C,D) hybrid MXene nanospheres with mass ratio of 1:0.5; (E,F) hybrid MXene nanospheres with mass ratio of 1:1; (G,H) hybrid MXene nanospheres with
mass ratio of 1:2.

FIGURE 3 | HRTEM images of the printed hybrid Ti3C2Tx/C nanospheres showing the enlarged interlayer distance. The yellow circles mark the embedded carbon
nanoparticles.
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the interlayer distance is enlarged greatly up to 2–3 nm,
consistent with the size of the carbon nanoparticles. The
interlayer distance is obviously larger than its pristine MXene
counterpart (less than 1 nm) (Supplementary Figure S4,
Supporting Information). Here, the adsorbed carbon
nanoparticles could also function as binders to bridge
neighbouring nanosheets for integrity, which is particularly
important for optimizing the electrochemical performance.

For a microscale droplet containing Ti3C2Tx/C components
depositing on the heat PET surface, which is supposed to offer an
isotropical evaporation regime, the temperature gradient along
the liquid-vapor interface between the apex and the bottom of the
drop causes a Marangoni flow inside the droplet (Girard et al.,
2008). The evaporation of water from the edge is replenished by
water from the interior, carrying Ti3C2Tx/C toward the edge by
the Marangoni flows. As the evaporation progresses, the liquid/
solid/gas three phase contact line (TCL) gradually recedes. The
transmitting Ti3C2Tx/C are easily precipitated on the substrate
surface at the edge and further shaped along the droplet surface
during solvent evaporation to form a spherical structure with
eccentric features by referring velocity field analysis of sessile
water droplets on heat substrate, although Ti3C2Tx MXene is
generally resistant to bending due to high bending rigidity (Wu
et al., 2021). The bending of Ti3C2Tx nanosheets are expected to
be triggered by the sonication for the aerosol droplets generation
with stress inequality, which has been evidenced during the
synthesis of graphene nanoscrolls previously reported
(Savoskin et al., 2007). Moreover, Laplace pressure, which is
correlated to the curvature radius (R) of the droplet, (Wu et al.,
2022), increased greatly along with the decreasing droplet size on
the heat substrate due to solvent evaporation for further bending
the MXene nanosheets. With the formation of eccentric
nanospheres, the anchored carbon nanoparticles are liable to
bond neighbouring nanosheets with favorable interlayer
distances. The formation mechanism of the hybrid Ti3C2Tx/C
nanospheres is schematically illustrated in Figure 4.

The electrochemical performance of the hybrid MXene/C
nanospheres was tentatively investigated by printing
interdigital microelectrodes via the AJP process. The
interdigital microelectrode was realized by multiple printing
passes of feature size of 200 μm. In view of the influence of
electrode configuration (e.g., line length, width, thickness and gap
distance) on the electrochemical performance, in this work, the
interdigital microelectrodes of hybrid MXene/C nanospheres
were printed with line width of 200 μm, thickness of 95 μm,
and gap distance of 170 μm, respectively, after 50-time printing

passes and the working area was estimated to be 3.7 mm ×
3.8 mm (Supplementary Figure S5, Supporting Information).
The MSC devices were fabricated by applying a gel electrolyte
based on poly (vinyl alcohol) (PVA)/H2SO4 onto the interdigital
microelectrodes with labeling as MSC-n, where n designates the
relative mass ratio of carbon nanoparticles (Supplementary
Figure S6, Supporting Information). Figure 5A shows the
cyclic voltammogram (CV) curves of the MSC devices at n
values of 0 and 0.5. The quasi-rectangular CV curves indicate
that the presence of pseudocapacitance and electric double layer
capacitance behavior (Cao et al., 2018; Cao et al., 2019; Das et al.,
2020). Figure 5B shows the GCD curves of the MSC devices at a
current density of 0.2 mA cm−2 and the approximately
symmetrical curves indicates good reversibility and the non-
linear curves in the potential during both charge and
discharge half-cycles shows a typical feature of a hybrid
supercapacitor (Yu et al., 2020). The areal capacitance was
estimated to be 33.14 mF cm−2, for MSC-0.5 device, obviously
larger than the pristine MXene device. The addition of carbon
nanoparticles is clear to greatly enhance the electrochemical
performance of MXene-based devices. Noted that although the
quantity of carbon nanoparticles is comparable to the MXene
when formulating the precursor inks, actually the atomized
aerosol droplets contain minimal carbon nanoparticles due to
the fact that only the supernatant of the ink containing MXene
nanosheet of suitable lateral size (less than the aerosol droplet
size) could be successfully atomized and large quantity of carbon
nanoparticles were captured by large MXene nanosheets or
agglomerated under the sonication. The TEM and SEM
images shown in Figures 1–3 could verify this conjecture with
dotted carbon nanoparticles present. Therefore, the contribution
of carbon nanoparticles on the areal capacitance of the hybrid
system could be neglected. The improved areal capacitance
mainly arises from the spherical nanostructures with
broadened interlayer distances, which is expected to favor the
ionic transportation for a promising electrochemical
performance. By optimizing the mass ratio of carbon
nanoparticles (n = 1), the assembled device exhibited an
optimal areal capacitance of 46.95 mF cm−2, exceeding the
values of microscale devices fabricated by other additive
manufacturing techniques, e.g., direct writing and inkjet
printing reported previously (Quain et al., 2019; Zhang et al.,
2019). The electrochemical impedance spectroscopy (EIS)
measurements were applied to explore the electronic/ionic
transport behaviors of the microelectrodes. As shown in
Figure 5C, the Nyquist plot at the high-frequency region of

FIGURE 4 | Schematic illustration of the formation mechanism of hybrid MXene/C nanospheres. (A) Marangoni flow occurs in the deposited droplet due to the
temperature gradient on heat substrate. (B)Carbon nanoparticles-anchored MXene nanosheets migrating from the interior to the edge; (C)MXene/C precipitating at the
edge and shaping along the droplet surface for a spherical structure.
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the hybrid microelectrode indicates a faster ion diffusion in
comparison to pristine MXene electrode. The results
demonstrate that the hybrid microelectrode could
accommodate more electrochemically active sites and enable
the electrolyte to permeate more readily, enhancing the
capacitive performance.

3 CONCLUSION

In conclusion, hybrid Ti3C2Tx/C nanospheres with crumpled
and eccentric features have been successfully developed by a
convenient AJP approach. The addition of carbon
nanoparticles could effectively inhibit the closely restacking
of MXene nanosheets during the assembly process.
Meanwhile, the anchored carbon nanoparticles could act as
binder to bridge neighbouring nanosheets and nanospheres for
integrity. Arising from the temperate gradient-derived
Marangoni flow, the Ti3C2Tx/C could be easily transported
and further shaped along the droplet surface with the solvent
evaporation. Due to the special hybrid spherical characteristic,
the fabricated MSC devices derived from the hybrid Ti3C2Tx/C
nanospheres demonstrate faster ion diffusion and excellent
areal capacitance. Accordingly, the areal capacitance is greatly
enhanced in comparison to Ti3C2Tx counterpart. The AJP
approach developed in this work highlight its potential for
developing future high-performance microdevices with
capabilities of structure modulation at multiscale.

4 MATERIALS AND METHODS

Preparation of delaminated Ti3C2Tx nanosheets: Typically, LiF
(0.5 g, Aladdin) was dissolved in HCl (9 M, 10 ml, Aladdin)
and stirred until completely clear at room temperature.
Ti3AlC2 powder (0.5 g, 11 Technology) was slowly added to
the aforementioned solution accompanied by vigorous stirring
in an ice bath. After being stirred at 40 °C for 48 h, the mixture
was washed with deionized water and centrifuged at 7500 rpm
for 5 min until the pH of the supernatant was ~6.
Subsequently, the obtained sediment was dispersed in
deionized water, shaken vigorously, and then sonicated for

1 h. The resulting mixture was centrifuged at 3500 rpm for 1 h,
and the supernatant was transferred for freeze-drying to obtain
the delaminated Ti3C2Tx nanosheets.

Preparation of Ti3C2Tx/C ink: The precursor ink was
formulated by mixing delaminated Ti3C2Tx nanosheets and
carbon nanoparticles (Bare Conductive Ltd.) of different
mass ratios in deionized water. After shaking vigorously,
the Ti3C2Tx/C ink is ready for printing.

Printing of Ti3C2Tx/C interdigital microelectrodes: A
commercial aerosol jet printer (WE-HMP, WE Electronics)
was applied for the printing process. The interdigital patterns
were designed by CAD software, which can be readable by the
printer. The Ti3C2Tx/C ink was atomized into droplets with
the aid of an ultrasonic atomizer (1.7 MHz). The nozzle
diameter was 500 μm and the stand-off height was ~8 mm.
When the carrier gas (N2) and the sheath gas (N2) were set to
50 and 150 sccm, respectively, the aerosol beam was focused
without obvious overspray. The substrate, polyethylene
terephthalate (PET), was cleaned with ethanol, dried by,
and then plasma-treated for 400 s (VP-R, SunJune) before
use. The printing speed was fixed at 10 mm s−1. The
deposition temperature was set to 100 °C. All the
interdigital microelectrodes were obtained after 50-time
printing passes.

Fabrication of Ti3C2Tx/C MSCs: The poly(vinyl alcohol)
(PVA)/H2SO4 electrolyte was prepared by dissolving 3 g of
PVA (87–89% alcohol solubility) in 15 mL deionized water.
After being stirred at 60 °C for 15 min, another 15 mL of
deionized water was added, accompanied by being stirred at
85 °C for 3 h until the solution was completely clear and
transparent. After cooling to room temperature, 3 mL of
sulfuric acid (98%, Aladdin) was added dropwise for 1 h.
In addition, two silver wires were connected separately with
two electrodes by conductive silver enamel. After the enamel
dried absolutely, the electrolyte gel was coated onto the
interdigital electrodes.

Materials Characterizations: The morphologies and
microstructures were characterized by a transmission
microscope (TEM, Titan G260-300) and a scanning
electron microscopy (SEM, Zeiss Gemini 300) together
with an energy-dispersive X-ray spectroscope (EDX, Zeiss
Smart). X-ray diffraction patterns (XRD) were obtained by

FIGURE 5 | (A) CV curves of the MSC devices of hybrid MXene/C nanospheres with different mass ratios at a scan rate of 20 mV s−1. (B)GCD profiles at a current
density of 0.2 mA cm−2. (C) EIS of the microdevice of hybrid MXene/C and its pristine MXene counterpart.
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using a PIGAKV Ultima IV X-ray diffractometer with a Cu Kα
radiation source (λ = 0.15418 nm).

Electrochemical Measurement: Cyclic voltammetry (CV),
galvanostatic charging/discharging (GCD), and spectroscopy
(EIS) were conducted on an electrochemical workstation
(Princeton, Versa STAT 4). The areal capacitance of the
MSCs was calculated based on the GCD results as
following: CA = It/(SΔV), where CA (mF cm−2) refers to
the areal capacitance, I (A) refers to the discharge current,
t (s) refers to the discharge time, S (cm2) refers to the
geometric area of the electrode, and ΔV (V) refers to the
working potential window.
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FeS2 Nanoparticles Encapsulated in
S/N Co-Doped Carbon Nanofibers
With a Three-Dimensional
Multi-Channel Structure for
Lithium-Ion Batteries
Xiaochang Cao1,2, Yi Zhang3, Chujiang Luo3, Yansheng Yin3 and Yingying Huang3*

1College of Mechanical Engineering, Dongguan University of Technology, Dongguan, China, 2Institute of Science and Technology
Innovation, Dongguan University of Technology, Dongguan, China, 3Research Center for Corrosion and Erosion Process Control
of Equipment and Material in Marine Harsh Environment, Guangzhou Maritime University, Guangzhou, China

Pyrite (FeS2) is one of the potential candidates for advanced rechargeable Li-ion batteries
(LIBs) owing to its inherent capacity (849 mAh g−1), environmental friendliness, and
abundant natural resources. However, the volume expansion of FeS2 and the
dissolution of polysulfide in the electrochemical reaction severely limit its application in
the field of energy conversion and storage. Herein, FeS2 nanoparticles are encapsulated in
S/N co-doped three-dimensional multi-channel structural carbon nanofibers (FeS2@
CNFs) through the electrospinning method. As a cathode material for LIBs, FeS2@
CNFs demonstrated excellent rate property and cyclic stability. The 3FeS2@CNFs
(weight ratio of FeS2 is 30%) present the initial capacity of 1,336.7 mAh g−1 and the
remaining 856.5 mAh g−1 at 0.02A g−1 after 100 circles. The favorable electrochemical
properties have confirmed that carbon nanofibers can enhance the electroconductivity of
electrodes, reduce the volume collapse of FeS2, and remit the dissolution of polysulfide
during the Li+ ions insertion/de-insertion process. In addition, co-doped S/N can supply
abundant active sites for electrochemical reactions, providing enough space for Li+ ion
storage. The results indicate that 3FeS2@CNFs is a cathode with a developmental
prospect for LIBs.

Keywords: FeS2, carbon nanofibers, three-dimensional multi-channel structure, cathode material, lithium-ion
batteries

1 INTRODUCTION

As the population continues to increase, the energy demand is also growing rapidly (Zhao et al., 2015;
Chi et al., 2018; Teng et al., 2019; Kesavan et al., 2020). The overexploitation of non-renewable fossil
fuels has seriously polluted the environment (Zhang et al., 2019; Fang et al., 2021; Yang et al., 2021).
Compared to traditional fossil fuels, electricity is a green, low-carbon, environment-friendly, and
efficient energy system. To date, researchers have conducted numerous studies on electric energy
storage. The common commercial electronic storage devices currently used contain nickel–cadmium
batteries, lead–acid batteries, nickel–metal hydride batteries, Li-ion batteries (LIBs), fuel cells, etc.
Among them, LIBs have been universally used in various fields such as manned crafts and small
equipment because of their advantages of high energy density, excellent cyclic stability, and low self-
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discharge. Therefore, LIBs have attracted great attention. For
instance, Gou et al. (2021) prepared Li3VO4/C through a facile
agitation–drying method combined with subsequent calcination.
The as-prepared composites were used as anode materials for
LIBs and exhibited outstanding electrochemical properties.
Zhong et al. (2018) synthesized a sandwich-type sulfur@Co/
N-doped carbon ternary composite for Li–S batteries. The
assembled Li–S batteries display excellent energy storage
performance and provide the possibility of realizing
industrially practical energy. Jiang et al. (2020) encapsulated
NaTi2(PO4)3 nanoparticles in N/S dual-doped carbon (NTP@
CNS) as the anode for LIBs via the sol–gel method followed by
calcination treatment. The NTP@CNS shows excellent
electrochemical property. According to daily needs and the
rate of production, various types of LIBs are prepared.
Recently, Li–FeS2 batteries are considered to be one of the
power batteries having the most potential. However, the
volume expansion of FeS2 during the intercalation and de-
intercalation of Li+ ions lead to a structural collapse, reducing
the cycle life of LIBs (Zhang et al., 2016; Wang et al., 2021).
Meanwhile, the conversion process is accompanied by accessory
substances such as lithium polysulfides (Li2Sx, 2 < x < 8). These
accessory substances can make the conductivity between the
anode and current collector worse. In addition, the lithium
polysulfides also dissolve in the electrolyte and can gradually
migrate to the cathode, leading to an increase in the impedance of
the cathode (Wang et al., 2019; Li et al., 2021).

To overcome these existing issues, researchers have also
attempted to nanosize FeS2. Nanocrystallization can effectively
alleviate the damage caused by Li+ ions insertion/de-insertion of
active materials during the charge and discharge processes,

improving the cyclic stability (Lei et al., 2016). Meanwhile, the
nanoscale of active substances also effectively shortens the ion
transmission path, accelerates the Li+ ions diffusion rate, and
improves the rate property (Polishchuk et al., 2019). Li et al.
(2014) reported the synthesis of phase-pure FeS2 nanowires
through thermal vulcanization of the precursor α-FeF3 3H2O
nanowires. The nano-FeS2 cathode retained 350 mAh g−1 after
50 circles at 0.1°C. Liao et al. (2013) fabricated macroporous FeS2
nanotubes through a solvothermal method. The macroporous FeS2
nanotubes exhibited 925.2 mAh g−1 and retained 439 mAh g−1 at
0.2°C after 60 cycles. Nevertheless, the preparation of
nanostructured single-phase FeS2 has long-term challenges due
to the presence of many substoichiometric Fe–S phases and
orthorhombic FeS2 (Ennaoui et al., 1993). Therefore, researchers
began to attempt to hybrid nanostructured FeS2 with carbon
materials. Carbon materials can not only improve the electrical
conductivity and relieve the volume expansion of electrodes but
also delay the damage of polysulfides during charge and discharge
processes (Xu et al., 2016; He et al., 2017). For instance, Xu et al.
(2016) synthesized a FeS2@HPC composite through the formation
of FeS2 nanocrystals in hierarchical porous carbon. The as-
fabricated FeS2@HPC presented 907 mAh g−1 and maintained
720mAh g−1 after 100 circles at 1°C. XuQ.-T. et al. (2018) prepared
the biomass-carbon@FeS2 composites from auricularia auricula
after the carbonization and sulfidation procedure. The as-
synthesized composite demonstrated 850 mAh g−1 after
80 circles at 0.5°C. Wang et al. (2021) reported a raspberry-like
hierarchical-structured FeS2 cathode modified by the dual-carbon
framework. The as-prepared cathode delivered 566 mAh g−1 and
maintained a capacity reduction rate of 0.014% for each circle at
1°C. These studies demonstrate that the development of

GRAPHICAL ABSTRACT | Graphical Abstract Novel FeS2@CNFs nanocomposites with the multi-channel structure were successfully prepared using the
electrospinning method. The three-dimensional interlinked multi-channel carbon nanofibers can facilitate the diffusion of Li+ ions and electrons. Meanwhile, the FeS2

nanoparticles are distributed on the inner wall of the carbon nanofibers, improving the phenomenon of volume expansion for FeS2 and preventing the dissolution of
polysulfide during the cycling process. In addition, co-doped S/N can supply abundant active sites for electrochemical reactions, providing enough space for Li+ ion
storage. The FeS2@CNFs and the preparation method have exceptional applications in the field of energy storage.
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nanocomposites combining FeS2 with carbon can improve the
electrochemical properties of electrodes.

Herein, a type of FeS2@carbon nanofiber (FeS2@CNF)
nanocomposites with a multi-channel structure was
successfully prepared using the electrospinning method. The
three-dimensional interlinked multi-channel and S/N co-doped
carbon nanofibers can improve the electroconductivity of
cathodes. Meanwhile, the lotus-like structure can ameliorate
the phenomenon of volume expansion for FeS2 and prevent
the dissolution of polysulfide during the cycling process. The
effect of the FeS2 content on properties was studied through
examining the performances of FeS2@CNFs nanocomposites
with different contents of FeS2. The application feasibility of
FeS2@CNFs as cathodes for LIBs was also explored in detail.

2 EXPERIMENT

2.1 Material Preparation
A total of 340mg iron acetate, 400mg polystyrene, and 500mg
polyacrylonitrile (PAN) were poured into 5mlN,
N-dimethylformamide and mixed at 65°C for 12 h. The
aforementioned mixture was then electrospun with a single
nozzle (21 gauge needle). The distance between the syringe and
the receiver was 15 cm, the voltage was 17 kV, and the injection rate
was 1 mlh−1. The as-prepared precursor film was stabilized at 200°C
for 2 h and then calcined at 800°Cwith 5°Cmin−1 for 4 h in anAr/H2

atmosphere. After reducing to 30°C, the film was sealed with sulfur
powder in a quartz tube (Vproduct: Vsulfur = 1:2). Subsequently, the
quartz tube was heated to 600°C and kept for 6 h. After that, the
product was dissolved in CS2 to eliminate redundant sulfur. Finally,
it was dried in vacuum at 100°C to obtain a lotus root–like FeS2@
CNFs with many channels. The preparation process of FeS2@CNF
nanocomposites based on the electrospinning approach is illustrated
in Figure 1. The content of FeS2 in FeS2@CNFs nanocomposites
prepared by this process was 20 wt%, which was named 2FeS2@
CNFs. Samples with contents of 30, 40, and 50 wt% were also
synthesized in the same way and named 2FeS2@CNFs, 3FeS2@
CNFs, 4FeS2@CNFs, and 5FeS2@CNFs, respectively.

2.2 Characterization
The crystal structure information was obtained on a Rigaku
diffractometer with Cu Kα radiation (λ = 1.5418) within
10–90°. Raman measurements were performed on an
HR800 spectrophotometer from 400 cm−1 to 2400 cm−1. The
information of the valence states was acquired using a Thermo
ESCALAB 250 X-ray photoelectron spectrometer (XPS) with
monochromatic Al Kα (1486.6 eV). The surface morphologies
were observed using scanning and transmission electron
microscopes (SEM, Ultra Plus, ZEISS and TEM, Talos F200X).
The SEM was obtained at 10 kV. TEM was acquired at 200 kV
accelerating voltage.

2.3 Electrochemical Measurements
The synthesized FeS2@CNFs nanocomposites were directly used
as the cathodes of LIBs without any conductive agent, binder, and
metal collector. The film of FeS2@CNFs was cut into a circle with
a diameter of 1 cm. The mass of each cathode was about
1 mg cm−2. A total of 1 M LiPF6 in a mixture of vinyl
carbonate/dimethyl carbonate (1:1 in volume) was used
directly as the electrolyte. Lithium disks were used as the
anode, and the Celgard 2400 microporous polypropylene
membrane was employed as the separator. The
aforementioned materials were assembled into CR2032 coin-
type cells in an argon-filled glovebox and tested for
electrochemical properties. The electrochemical properties
were tested by using a CHI760E workstation and a Land CT
2001A battery testing system. The cyclic voltammetry (CV) and
the galvanostatic charge and discharge (GCD) performances were
determined between 1.0 and 3.0 V. Electrochemical impedance
spectroscopy (EIS) was conducted at the frequency of
105–10–2 Hz.

3 RESULTS AND DISCUSSION

The structures and phase purities of FeS2@CNFs were
characterized by XRD patterns, as presented in Figure 2A.
The diffraction peaks of FeS2@CNFs were consistent with the

FIGURE 1 | Illustration of the procedure for the preparation of FeS2@CNFs.
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FIGURE 2 | (A) XRD patterns and (B) Raman spectra.

FIGURE 3 | XPS of 3FeS2@CNFs: (A) survey spectra, (B) Fe 2p, (C) S 2p, (D) C1s, and (E) N1s.
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pure phase of pyrite FeS2 (JCPDS Card No. 65-3321). No
diffraction peaks of the marcasite FeS2 and other impurities
were observed. There is no diffraction peak of CNFs, indicating
the formation of disordered layered graphite structures during
the carbonization of PAN. This structure is composed of tiny

crystals of layered graphite. The chemical composition of
different FeS2@CNFs nanocomposites was determined using
the Raman spectrum (Figure 2B). Two notable peaks at
1,352 cm−1 and 1,594 cm−1 in each spectrum match well
with the D band and G band, respectively (Lu et al., 2020).

FIGURE 4 | FESEM images of (A) 2FeS2@CNFs, (B) 3FeS2@CNFs, (C) 4FeS2@CNFs, and (D) 5FeS2@CNFs (The figure is a high-magnification image).

FIGURE 5 | Elemental mapping and distribution of (A) 2FeS2@CNFs, (B) 3FeS2@CNFs, (C) 4FeS2@CNFs, and (D) 5FeS2@CNFs.
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The D band illustrates the defects of the carbon atom lattice,
and the G band indicates the first-order scattered E2g vibration
mode (Xu X. et al., 2018). The ratio (ID/IG) is higher suggesting
that there are more defects on the surface of CNFs (Huang
et al., 2018). The values of ID/IG for 2FeS2@CNFs, 3FeS2@
CNFs, 4FeS2@CNFs, and 5FeS2@CNFs were calculated to be
1.36, 1.35, 1.33, and 1.27, respectively. As the content of FeS2
increases, the value of ID/IG gradually decreases, indicating
that the FeS2@CNFs composites transform from a disordered
structure to an ordered structure. The chemical composition of
3FeS2@CNFs was analyzed using the XPS spectrum (Figure 3).
The survey spectrum (Figure 3A) displays four typical peaks of
Fe2p, O1s, C1s, and S2p, respectively. The high-resolution
spectrum of Fe2p is demonstrated in Figure 3B, the two
feature peaks at 707.2 and 720.3 eV belong to Fe2p3/2 and
Fe2p1/2 of pyrite FeS2, while the two peaks at 712.3 and
725.4 eV belong to slight Fe3+-S or Fe3+-O on the surface of
FeS2@CNFs (Chen et al., 2019). The XPS spectra of S displayed
in Figure 3C are fit into six peaks. The peaks at 163.8 and
165.1 eV match well with the S2p3/2 and S2p1/2 of FeS2, the
binding energy at 164.1 and 165.3 eV are assigned to S2p3/2
and S2p1/2 of S

2-, and the higher binding energy at 168.7 and
169.9 eV match well with S2p3/2 and S2p1/2 of SO4

2- (Zhao
et al., 2017; Lin et al., 2019). In the high-resolution spectrum of
C 1s (Figure 3D), C-N, C=C/C-C, and C = N peaks are
displayed (Ma et al., 2018). The production of C=N and
C-N bonds is due to the addition of PAN in the
electrospinning process (Huang et al., 2020). The S/N co-
doped FeS2@CNFs can provide abundant active sites for

redox reactions, improving the electronic conductivity of
FeS2@CNFs (Lu et al., 2018).

The morphology characterizations of different FeS2@CNFs
were carried out by SEM and TEM. Figure 4A displays the
SEM image of 2FeS2@CNFs. There are many pore channels in
the CNFs (the inset of Figure 4A) and Figure 5A. As the
content of FeS2 increases to 30%, there are many pore channels
with different diameters inside the nanofibers parallel to the
radial direction of the nanofibers. Meanwhile, many holes
appear on the surface of the CNFs, as demonstrated in
Figure 4B and Figure 5B. This structure can reduce
diffusion resistance and facilitate the diffusion of Li+ ions.
At the same time, FeS2 nanoparticles can be firmly loaded on
the inner wall of the CNFs to prevent the structure from
collapsing caused by volume expansion during cycling. This
multi-channel structure can also effectively prevent the
dissolution of intermediate products generated during
electrochemical reactions (Li et al., 2015). In the SEM and
TEM images of 4FeS2@CNFs (Figure 4C and Figure 5C), it
can be observed that the shape of CNFs becomes irregular and
the phenomenon of bending and entanglement bonding
appears. Furthermore, the pores inside the nanofibers are
also significantly reduced. When the FeS2 content is 50%,
the shape of CNFs is more irregular and the agglomeration
phenomenon is more serious. There are no obvious pores
inside the CNFs (Figures 4D, 5D). In summary, as the
proportion of FeS2 increases, the structure of CNFs changes.
This phenomenon can be attributed to the growth and
aggregation of FeS2 particles during the reaction of iron and

FIGURE 6 | TEM images of (A) 2FeS2@CNFs, (B) 3FeS2@CNFs, (C) 4FeS2@CNFs, and (D) 5FeS2@CNFs.
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sulfur to form FeS2, occupying the space of the pores in the
nanofibers. EDS measurements of the samples were
investigated, as shown in Figure 6. EDS mappings present
that Fe, S, C, and N are evenly distributed on their inherent
positions. The Fe element originates from the addition of iron
acetate during the process of experiment. The C and N
elements come from PAN. The presence of S element is due
to the addition of sulfur powder.

CV is an important method to study the lithium storage
behavior of FeS2@CNF cathodes. As shown in Figures 7A–D,
CV tests were carried out for different FeS2@CNF cathodes at
0.5 mV s−1 within 1–3 V. The CV curves of 2FeS2@CNFs show
two oxidation peaks at 2.0 and 2.6 V, and two reduction peaks
at 2.1 and 1.8 V. There are two oxidation peaks at 2.1 and
2.7 V and a reduction peak at 1.8 V in the CV curves of
3FeS2@CNFs and 4FeS2@CNFs. However, no notable redox

peaks can be observed in the CV curves of 5FeS2@CNFs.
Figure 7E shows the CV curves of the first cycle for different
FeS2@CNFs cathodes. Taking the CV curve of the 3FeS2@
CNFs cathode as an example, the electrochemical is analyzed.
The reduction peak at about 1.8 V can correspond to the
below formula:

FeS2 + 2Li++ 2e− → Li2FeS2 (1)
Li2FeS2+ 2Li+ + 2e− → 2Li2S + Fe (2)

The aforementioned reactions are conducted simultaneously
with reaction (3). But reaction (3) can be attributed to the fact that
Li+ ions show relatively slow diffusion in pyrite FeS2 at room
temperature.

FeS2 + 4Li++4e+ → Fe + 2Li2S (3)

FIGURE 7 | CV curves of (A) 2FeS2@CNFs, (B) 3FeS2@CNFs, (C) 4FeS2@CNFs, and (D) 5FeS2@CNFs in the initial 3 cycles at 0.5 mV s−1; (E) CV curves of the
first cycle for different electrodes at 0.5 mV s−1.
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The oxidation peak at around 2.0 V is related to the generation
of Li2-xFeS2 according to reactions (4) and (5).

2Li2S + Fe → Li2FeS2 + 2Li+ + 2e− (4)
Li2FeS2 → Li2−xFeS2 + xLi+ + xe− (5)

The peak at around 2.6 V can be put down to the generation of
FeSy and S according to formula (6).

Li2−xFeS2 → FeSy + (2 − y)S + (2 − x)Li+ + (2 − x)e− (6)

Figures 8A–D are the GCD curves of the first three circles for
different FeS2@CNFs cathodes at 20 mA g−1. It can be observed
that the charge and discharge platforms of each cathode are
matched well with the CV curves. Figure 8E shows the GCD
profiles of the initial cycle for different cathodes at 0.02 A g−1. The
initial discharge capacity of 2FeS2@CNFs, 3FeS2@CNFs, 4FeS2@
CNFs, and 5FeS2@CNFs is 905.8, 1,336.7, 520.3, and 400.9 mAh
g−1, respectively. It is obvious that 3FeS2@CNFs composites show
a relatively high specific capacity. This is mainly because CNFs
can not only improve the conductivity of the electrodes, but its

internal pores can also facilitate the reversible embed/de-embed
of Li+ ions. In addition, FeS2 nanoparticles can be uniformly
distributed in the pores, increasing the contact area between the
FeS2 and Li+ ions, and effectively prevent the dissolution of
polysulfides generated during the discharge process (Li et al.,
2020). 2FeS2@CNFs also have many pores, but the content of
FeS2 is relatively low, so the specific capacity is less than that of
3FeS2@CNFs. As the content of FeS2 increases, the resistance of
4FeS2@CNFs and 5FeS2@CNFs increases, so their specific
capacitances decrease.

The cyclic performance of the samples was also determined, as
presented in Figure 9A. The specific capacity of 2FeS2@CNFs,
3FeS2@CNFs, 4FeS2@CNFs, and 5FeS2@CNFs is 674.6, 856.5,
440, and 370 mAh g−1 at 20 mA g−1 after 100 cycles. The specific
capacities of 2FeS2@CNFs and 3FeS2@CNFs decay during the
cycling, which can be attributed to the dissolution of polysulfides
during the electrochemical reaction and leading to the loss of
active materials. As the proportion of FeS2 increases, the FeS2 in
the pores of carbon fibers can build up and agglomerate.
Therefore, the space of the pores becomes less and less,

FIGURE 8 | Discharge–charge profiles of (A) 2FeS2@CNFs, (B) 3FeS2@CNFs, (C) 4FeS2@CNFs, and (D) 5FeS2@CNFs 20 mA g−1 between 1 and 3 V; (E) the
initial discharge-charge profiles of different electrodes at 20 mA g−1.
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resulting in a reduction in the contact area between Li+ ions and
active materials so that the phenomena of 4FeS2@CNFs and
5FeS2@CNFs are not obvious. Figure 9B shows the rate
performance curves of different samples at 20, 40, 80, 100, and
200 mA g−1, respectively. It is evident that the 3FeS2@CNFs
cathode exhibits the highest rate performance at various
current densities among the four cathodes. The excellent
electrochemical performances of the 3FeS2@CNF cathode can
be attributed to the multi-channel structure of CNFs, which can
supply abundant paths for ion and charge transfers. The EIS of
2FeS2@CNFs, 3FeS2@CNFs, 4FeS2@CNFs, and 5FeS2@CNFs was
confirmed, as displayed in Figure 9C. The values of the
equivalent series resistance and the charge transfer resistance
for 3FeS2@CNFs are the smallest. The results indicate that the
ratio of FeS2 and CNFs is appropriate, which allows the cathode
materials possess more three-dimensional hollow channels.
Therefore, numerous paths are provided to promote the
transport of Li+ ions and electrons, improving the
electroconductivity of the cathodes.

4 CONCLUSION

In summary, the novel FeS2@CNFs nanocomposites with the
multi-channel structure are successfully prepared by the
electrospinning method. The 3FeS2@CNFs cathode exhibits
an admirable capacity of 856.5 mAh g−1 at 20 mA g−1 after
100 cycles. The excellent electrochemical properties can be
attributed to the right ratio of FeS2 and carbon nanofibers

that can produce lots of hollow channels. The three-
dimensional interlinked multi-channel carbon nanofibers can
facilitate the diffusion of Li+ ions and electrons, improving the
electroconductivity of cathodes. Meanwhile, the FeS2
nanoparticles are distributed on the inner wall of the carbon
nanofibers, improving the phenomenon of the volume
expansion for FeS2 and preventing the dissolution of
polysulfides during the cycling process. In addition, S/N co-
doped FeS2@CNFs can supply abundant active sites for
electrochemical reactions, providing enough space for Li+ ion
storage. Thus, the as-prepared 3FeS2@CNFs are a splendid
cathode material for lithium-ion batteries, and it can be one
of the promising candidates for next-generation secondary
batteries.
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channel with viscous dissipation
function: Numerical analysis

Adnan1*, Kamel Guedri2, Zehba Raizah3, Elsayed Tag-Eldin4,
Waqas Ashraf5, Umar Khan6 and Ahmed M. Galal7,8

1Department of Mathematics, Mohi-ud-Din Islamic University, Nerian Sharif, AJ&K, Pakistan,
2Mechanical Engineering Department, College of Engineering and Islamic Architecture, UmmAl-Qura
University, Makkah, Saudi Arabia, 3Department of Mathematics, College of Science, King Khalid
University, Abha, Saudi Arabia, 4Faculty of Engineering and Technology, Future University in Egypt New
Cairo, Mansoura, Egypt, 5Departmment of Applied Mathematics and Statistics (AM&S), Institute of
Space Technology (IST), Islamabad, Pakistan, 6Department of Mathematics and Statistics, Hazara
University Mansehra, Islamabad, Pakistan, 7Mechanical Engineering Department, College of
Engineering, Prince Sattam Bin Abdulaziz University, Wadi Addawaser, Saudi Arabia, 8Production
Engineering and Mechanical Design Department, Faculty of Engineering, Mansoura University,
Mansoura, Egypt

Heat transfer and energy storage remain a core problem for industrialists and

engineers. So, the concept of new heat transfer fluids, namely, nanofluids and

hybrid nanofluids, has been introduced so far. Recently, a new third generation

of heat transfer fluids has been developed known as modified hybrid nanofluids

(MHNs), synthesized by ternary nanomaterials and the host fluid. Therefore, the

study was conducted to investigate the energy storage efficiency between

(Al2O3-CuO-Cu/H2O)mhnf and (Al2O3-CuO/H2O)hnf in the presence of novel

viscous dissipation effects. The problem is developed for a channel with

stretchable walls via thermophysical attributes of binary and ternary guest

nanomaterials and the host liquid. The model is tackled numerically and

furnished results for the dynamics, most specifically energy storage

efficiency in (Al2O3-CuO-Cu/H2O)mhnf. It is examined that the third

generation of heat transfer fluids (Al2O3-CuO-Cu/H2O)mhnf has high thermal

energy storage efficiency than traditional nano and hybrid nanofluids.

Therefore, these new insights in heat transfer would be beneficial and cope

with the problems of energy storage in the modern technological world.

KEYWORDS

thermal energy storage, hybrid and modified hybrid nanofluids, thermophysical
attributes, engineering applications, mathematical analysis, local energy storage
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Introduction

The significance of heat transport in the modern

technological world is unavoidable due to its remarkable

applications. It is a bitter truth that conventional liquids have

very limited thermal performance; therefore, these fluids have

very limited applications in the modern world era. However,

scientists and fluid dynamists thought that how to cope with this

core problem. Finally, they introduced the concept of nanofluids.

These fluids are the composition of host liquid and guest

nanoparticles. The nanoparticles are stably suspended in the

liquid and thermally compatible. The majority of issues of the

modern world were tackled after the development of nanofluids.

However, researchers did not stop their efforts and moved

toward the second generation of nanofluids called hybrid

nanofluids.

Lately, a superior class of hybrid nanofluids has developed

called modified hybrid nanofluid. In this case, further

nanoparticles of third guest metals were added to the

conventional hybrid nanofluid. The newly suspended additives

make the resultant suspension more efficient than hybrid

nanofluid. These fluids attained much fame from fluid

dynamists and industrialists because of their ultra-high

thermal performance than conventional nano and hybrid

nanofluids. However, we can categorize the heat transfer

fluids into three categories to cope with the heat transfer

problems of the modern technological world. These are:

Nanofluids (Choi, 1995) or first-generation heat transfer

fluids.

Hybrid nanofluids (Ahmed et al., 2020; Mohyud-Din et al.,

2020) or second-generation heat transfer fluids.

Modified hybrid Nanofluids (Abbasi et al., 2021) or third-

generation heat transfer fluids.

The synthetization process of the aforementioned classes is

depicted in Figures 1–3 for nano, hybrid, and modified hybrid

nanofluids, respectively.

The newly developed generation (first, second, and third

generations) of the fluids strengthen their roots in modern world

applications. These could be found in biomedical engineering,

electronics, and cooling of the systems to save the drugs and

different medicines from moisture in the stores, to check the

interaction of biofluids in the human veins and arteries by

injecting the hybrid and modified hybrid mixture of

nanoparticles, aerodynamics, in the study of chemotherapy, to

diagnose cancer symptoms, paint industries, and manufacturing

of home appliances. Therefore, the study of heat transfer in

nanofluids is significant to accomplish many industrial and

engineering processes. In view of such a significant motive,

the researchers and fluid dynamists started working in this

direction with all of their potential.

The investigation of heat and mass transport mechanisms in

opening/narrowing channel is of much interest owing to its

applications in medical sciences and engineering as well.

Therefore, fluid dynamists focused their attention on

exploring the behavior of heat and mass transfer under

certain flow assumptions. Such flows extensively appeared in

different engineering systems and the flow of blood in human

bodies. More specifically, these flows were named Jeffery–Hamel

flows after the untiring efforts of Jeffery (1915) and Hamel (1916)

during the era of 1915 and 1916, respectively. This concept of

flow configuration became very prevalent and conferred the

attention of researchers in this direction.

The exploration of thermal performance in the nanofluid

under the impacts of internal heat generation/absorption source

and viscous dissipation is reported in Akinshilo et al. (2020). The

authors organized the study in converging/diverging walls by

imposing Lorentz forces on them. The problem is modeled in a

cylindrical polar frame, and a dimensionless version is attained

via feasible similarity transforms. The mathematical section of

the work is organized by using the homotopy perturbation

method (HPM) and then plotting the results for the

concerned flow parameters such as magnetic, Darcy, and

Reynolds numbers. It is reported that by increasing the

strength of Re, the fluid velocity drops and heat transfer

declines at the high Darcy parameter. Although the study is

fascinating, researchers performed the results with full

consideration; however, it could be prolonged to the next

nanofluid generation (hybrid nanofluids) by inducing the

influences of Joule heating and thermal radiations.

An analytical study of JH flow for regular liquid is conducted

by Patel and Meher (2018). They prolonged the concept of the

traditional Adomian decomposition method (ADM) technique

to modified Adomian decomposition method (MADM) and

solved the problem and found satisfactory results regarding

the implementation of the technique. The graphical results

were explored and discussed in detail. From the critical review

of the article, it is understood that the work has its own

significance, but it lacks the important concept of nanofluids

and other physical conditions such as slip, thermal jump, and

Biot effects. Therefore, more interesting and novel results could

be achieved by prolonging the work for hybrid and modified

hybrid nanofluids. Further studies on JH flows by taking different

physical conditions are reported in Sushila and Shishodia (2014)

FIGURE 1
First-generation heat transfer fluids.
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and Kumbinarasaiah and Raghunatha (2022), and the relevant

studies are cited therein.

The applications of nanofluids and hybrid nanofluids

attracted researchers and scientists to analyze these fluids for

thermal performance, which is a primary element of the modern

world. Therefore, numerous studies in this regard have been

reported under different flow conditions by using nanofluids

synthesized by various base liquids and multiple nano-additives,

for instance, the studies by Turkyilmazoglu (2014), Zangooee

et al. (2019); Kumar et al. (2021), and Rout et al. (2021).

Furthermore, some significant studies related to hybrid

nanofluids were reported in Ahmed et al. (2017), Khan et al.

(2021) Kumar (2021), Saeed et al. (2021), and Shanmugapriya

et al. (2021).

The careful literature survey reveals that comparative heat

transfer efficiency of second-generation (Al2O3-CuO/H2O)hnf and

third-generation (Al2O3-CuO-Cu/H2O)mhnf nanofluids between

opening/narrowing walls subject to the stretching and shrinking

conditions has not been reported so far. This type of flow has

numerous applications in different engineering systems, most

specifically in biomedical engineering. The blood flow at the

junction of veins and arteries works under the principle of

Jeffery–Hamel (JH) flow. Therefore, the study is organized to

explore the velocity, heat transport mechanism, trends in shear

stresses, and thermal conductivity in (Al2O3-CuO/H2O)hnf and

(Al2O3-CuO-Cu/H2O)mhnf against various parameters,

particularly the volumetric fraction. The efficiency of the studied

nanofluids can be compared with other reported nanofluids.

FIGURE 3
Third-generation heat transfer fluids.

FIGURE 2
Second-generation heat transfer fluids.
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Development of third-generation
nanofluid model

Flow configuration

The flow of (Al2O3-CuO/H2O)hnf and (Al2O3-CuO-Cu/

H2O)mhnf subject to viscous dissipation and flexible channel

walls is organized between two non-parallel walls. It is

supposed that the fluid flow is due to a source/sink positioned

at the junction of these two walls. The walls are separated by an

angle 2α is placed in a cylindrical polar frame. The flow is along

the only direction with the velocity component V � (�ur, 0, 0) .
Furthermore, the velocity at the walls is subject to �ur � �Uw � s

�r,

where s is the stretching/shrinking rate of the walls. The

nanofluids synthesized are subject to the following assumptions:

• The guest hybrid nanomaterials Al2O3-CuO and H2O are

thermally compatible.

• The guest hybrid nanomaterial Al2O3-CuO is uniformly

suspended in H2O.

• The guest modified hybrid nanomaterials Al2O3-CuO-Cu

and H2O are thermally compatible.

• The guest modified hybrid nanomaterial Al2O3-CuO-Cu is

uniformly suspended in H2O.

The physical setup of the flow configuration is depicted in

Figure 4.

Empirical correlations

The nanoparticles of aluminum oxide, copper oxide, and

copper are used to synthesize the desired nanofluid (nf), hybrid

nanofluid (hnf), and modified hybrid nanofluid (mhnf) in the

presence of host liquid water. The empirical correlations for

nanofluids, hybrid nanofluids, and modified hybrid nanofluids

are given in Tables 1–3, respectively, whereas the shape factor is

given in Table 4.

The values of guest nanoparticles (Al2O3, CuO, and Cu) and

the host liquid (water) are key ingredients in the study of newly

generated heat transfer fluids. These attributes are given in

Table 5 for the guest nanoparticles and the host liquid.

Development of modified hybrid
nanofluid

The development of the model is based on well-known mass,

momentum, and energy constitutive relations in a cylindrical

polar frame. For the particular study, these relations are given as

follows:

FIGURE 4
Flow scenario of (Al2O3-CuO-Cu/H2O)mhnf.

TABLE 1 Empirical correlations for first-generation heat transfer
fluids.

Characteristics Empirical correlation

Dynamic viscosity �μnf
�μf

� 1
(1−ϕ)25/10

Effective density �ρnf � �ρf(1 − ϕ) + �ρsϕ

Heat capacity ( �ρcp)nf � ( �ρcp)f(1 − ϕ) + ϕ( �ρcp)s
Thermal conductivity �k

nf
�kf
�

�ks+(�n−1)�kf−(�n−1)ϕs(�kf−�ks )
�ks+(�n−1)�kf+ϕs(�kf−�ks )

Electrical conductivity �σnf
�σf

� 1 + 3( �σs
�σf
−1)ϕ

( �σs
�σf
+2 )−( �σs

�σf
−1)ϕ

Thermal expansion (ρβ)nf � (1 − ϕ)(ρβ)s + ϕ(ρβ)f
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1
�r

z(�r�ur)

z�r
� 0, (1) �ρmhnf

⎛⎜⎜⎜⎜⎜⎜⎜⎝�ur

z(�ur)

z�r
⎞⎟⎟⎟⎟⎟⎟⎟⎠ + z�p

z�r
− �μmhnf

⎛⎝z2�ur

z�r2
+ 1
�r

z�ur

z�r
+ 1

�r2
z2�ur

z�θ
2 − �ur

�r2
⎞⎠

� 0,

(2)

− 1
�ρmhnf

z�p

z�θ
+ 2�μmhnf

�r2�ρmhnf

z�ur

z�θ
� 0, (3)

�ur
z�T

z�r
−

�kmhnf

(ρcp)mhnf

⎛⎜⎜⎜⎝
z2 �T

z�r2
+ 1
�r

z�T

z�r
+ 1

�r2
z2 �T

z�θ
2
⎞⎟⎟⎟⎠

− �μmhnf

(ρcp)mhnf

⎛⎜⎝4⎛⎝
z�ur

z�r
⎞⎠

2

+ 1

�r2
⎛⎝z�ur

z�θ
⎞⎠

2

⎞⎟⎠ � 0.

(4)

TABLE 2 Empirical correlations for second-generation heat transfer fluids (hybrid nanofluids) (Ahmed et al., 2021).

Characteristics Empirical correlation

Dynamic viscosity �μ(Al2O3−CuO)water
�μwater

� 1
(1−ϕ1 )25/10(1−ϕ2 )25/10

Effective density �ρ(Al2O3−CuO)water � ((1 − ϕ2)((1 − ϕ1)ρwater + ϕ1ρAl2O3
)) + ϕ2ρCuO

Heat capacity ( (ρcp)(Al2O3−CuO)water � (1 − ϕ2)((1 − ϕ1)( (ρcp)water + ϕ1( (ρcp)Al2O3
) + ϕ2( (ρcp)CuO

Thermal conductivity �k(Al2O3−CuO)water
�knf

� �kCuO+(�n−1)�knf−(�n−1)ϕCuO(�knf−�kCuO)
�kCuO+(�n−1)�knf+ϕCuO(�knf−�kCuO )

, where

k
nf
kf
�

�kAl2O3
+(�n−1)�kwater−(�n−1)ϕAl2O3 (

�kwater−�kAl2O3 )
�kAl2O3

+(�n−1)�kwater+ϕAl2O3 (�kwater−�kAl2O3 )
;

ϕAl2O3�ϕ1 ; ϕCuO�ϕ2

Electrical conductivity �σ(Al2O3−CuO)water
�σnf

� σCuO+2σnf−2ϕCuO(σnf−σCuO )
σCuO+2σnf+ϕCuO(σnf−σCuO) , where

σnf
σwater

� σAl2O3+2σwater−2ϕAl2O3(σwater−σAl2O3 )
σAl2O3+2σwater+ϕAl2O3(σwater−σAl2O3 )

Thermal expansion (ρβ)(Al2O3−CuO)water � (1 − ϕCuO)[(1 − ϕAl2O3
)(ρβ)water + ϕAl2O3

(ρβ)Al2O3
] + ϕAl2O3

(ρβ)CuO,
where ϕAl2O3

� ϕ1 , ϕCuO � ϕ2

TABLE 3 Empirical correlations for third-generation heat transfer fluids (modified hybrid nanofluids).

Characteristics Empirical correlation

Dynamic viscosity �μ(Al2O3−CuO−Cu)water
�μwater

� 1
(1−ϕAl2O3 )25/10(1−ϕCuO )25/10(1−ϕCu)25/10

ϕAl2O3
� ϕ1 , ϕCuO � ϕ2 , ϕCu � ϕ3

Effective density �ρ(Al2O3−CuO−Cu)water � (1 − ϕCu)[(1 − ϕCuO){(1 − ϕAl2O3
)ρwater + ϕAl2O3

ρAl2O3
} + ϕCuOρCuO] + ϕCuρCu,

where ρAl2O3
� ϕ1 , ϕCuO � ϕ2 , ϕCu � ϕ3

Heat capacity ( (ρcp)(Al2O3−CuO−Cu)water � (1 − ϕCu)[(1 − ϕCuO){(1 − ϕAl2O3
)(ρcp)water + ϕAl2O3

(ρcp)Al2O3
} + ϕCuO(ρcp)CuO] + ρCu(ρcp)Cu

Thermal conductivity �k(Al2O3−CuO−Cuwater)
�k(Al2O3−CuO)water

� �kCu+(�n−1)�k(Al2O3−CuO)water−(�n−1)ϕCu(�k(Al2O3−CuO)water−�kCu)
�kCu+(�n−1)�k(Al2O3−CuO)water+ϕCu(�k(Al2O3−CuO)water−�kCu)

k(Al2O3−CuO)water
knf

� �kCuO+(�n−1)�knf−(�n−1)ϕCuO(�knf−�kCu)
�kCuO+(�n−1)�knf+ϕCuO(�knf−�kCu)

knf
kf

� �kAl2O3+(�n−1)�kwater−(�n−1)ϕAl2O3(�kwater−�kAl2O3 )
�kAl2O3+(�n−1)�kwater+ϕAl2O3(�kwater−�kAl2O3 )

ϕAl2O3�ϕ1 ; ϕCuO�ϕ2 , ϕCu�ϕ3 , �k(Al2O3−CuO)water��khnf

Electrical conductivity �σ(Al2O3−CuO−Cu)water
�σ(Al2O3−CuO)water

� �σCu+2�σ(Al2O3−CuO)water−2ϕCu(�σ(Al2O3−CuO)water−�σCu )
�σCu+2�σ(Al2O3−CuO)water+ϕCu(�σ(Al2O3−CuO)water−�σCu) , where

�σ(Al2O3−CuO)water
�σnf

� �σCuO+2�σnf−2ϕCuO(�σnf−�σCuO )
�σCuO+2�σnf+ϕCuO(�σnf−�σCuO)

�σnf
�σwater

� �σAl2O3+2�σwater−2ϕAl2O3(�σwater−�σAl2O3 )
�σAl2O3+2�σwater+ϕAl2O3(�σwater−�σAl2O3 )

�σ(Al2O3−CuO−Cu)water � �σmhnf, �σ(Al2O3−CuO)water � �σhnf
�σAl2O3 � �σs1 , �σCuO � �σs2 , �σCu � �σs3

TABLE 4 Attributes for different shape factors.

Nanomaterial’s shape Attribute

Bricks 3.7

Cylinders 4.9

Platelets 5.7

Blades 8.6
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The flow conditions that are fixed on the flexible walls are

described in the following expressions:

�ur �
�Uc

�r
↓θ�0,

z�ur

z�θ
↓θ�0 � 0,

z�T

z�θ
↓θ�0 � 0 , (5)

�ur↓θ�±α � �Uw � s

�r
, �T↓θ�±α �

�Tw

�r2
. (6)

In the constitutive relations, �Uc, �Uw, �Tw, andmhnf stands for velocity

at the central line, velocity atflexiblewalls,wall temperature, andmodified

hybrid nanofluid, respectively. The simplification ofmass conservation in

a cylindrical polar frame is reduced to the following version:

f(�θ) � �r�ur . (7)
Furthermore, for non-dimensionalization of the model, the

following similarity relations are introduced:

F(η) �
f(�θ)

�Uc

, η �
�θ

α
, β � �T

�Tw

�r2. (8)
In the implementation of desired partial differentiation from

Eq. 8, in the constitutive model, the following dimensionless

model is acquired:

F‴ +
2αRe[(1 − ϕAl2O3

)
25
10(1 − ϕCuO)

25
10(1 − ϕCu)

25
10 ]

((1 − ϕCu)[(1 − ϕCuO){(1 − ϕAl2O3
) + ϕAl2O3

ρAl2O3
ρwater

} + ϕCuOρ CuO
ρwater

] + ϕCuρCu
ρwater

)
−1 FF′

+ 4α2F′ � 0,

(9)
β″ + 4α2β

+
[(1 − ϕCu)[(1 − ϕCuO){(1 − ϕAl2O3

) +
ϕAl2O3

(ρcp)Al2O3

(ρcp)water

⎫⎪⎬
⎪⎭

+ ϕCuO(ρcp)CuO
(ρcp)water

⎤⎥⎥⎥⎦ + ρCu(ρcp)Cu
(ρcp)water

⎤⎥⎥⎥⎦

�kCu + (�n − 1)�k(Al2O3−CuO)water − (�n − 1)ϕCu(
�k(Al2O3−CuO)water − �kCu)

�kCu + (�n − 1)�k(Al2O3−CuO)water + ϕCu(
�k(Al2O3−CuO)water − �kCu)

⎛⎜⎜⎜⎝2Prα2Fβ + PrEc

Re[(1 − ϕAl2O3
)
25
10(1 − ϕCuO)

25
10(1 − ϕCu)

25
10]

(4α2F2 + F′2)⎞⎟⎟⎟⎠ � 0. (10)

The functions F and β in the abovementioned model depend on

the variable η. Furthermore, the conditions imposed on the

channel walls transformed in the following version after

utilizing the similarity equations:

F(η�0 ) � 1, F′(η�0) � 0, β′(η�0) � 0

F(η�1) � S, β(η�1) � 1

The parameters involved in the model are summarized in

Table 6 with mathematical expressions.

Shear stresses and local energy storage

The investigation of shear stresses and local energy storage

capability in (Al2O3-CuO-Cu/H2O)mhnf under multiple flow

conditions is very imperative from an industrial and

engineering point of view. The quantities can be described by

the following mathematical formula in the dimensional form:

CF �
�μ(Al2O3−CuO−Cu)water(τ�r�θ)

�ρ(Al2O3−CuO−Cu)water
↓η�1, (11)

Nu � −
l�kf(�qw)

k�Tw

. (12)

By endorsing the attributes of (Al2O3-CuO-Cu/H2O)mhnf

and performing the calculation, the following version is obtained:

RerCF �
[(1 − ϕAl2O3

)
25
10(1 − ϕCuO)

25
10(1 − ϕCu)

25
10]

−1
F′(1)

[(1 − ϕCu)[(1 − ϕCuO){(1 − ϕAl2O3
) + ϕAl2O3(ρAl2O3)

ρwater
} + ϕCuO(ρCuO)

ρwater
] + ϕCu(ρCu)

ρwater
]

,

(13)

αNu � −
�kCu + (�n − 1)�k(Al2O3−CuO)water − (�n − 1)ϕCu(

�k(Al2O3−CuO)water − �kCu)

�kCu + (�n − 1)�k(Al2O3−CuO)water + ϕCu(
�k(Al2O3−CuO)water − �kCu)

β′(1).

(14)

Mathematical investigation of
[(Al2O3-CuO-Cu)/water]mhnf

The mathematical models appearing in the fields of medical

sciences, engineering (deflection of beams, load over the bridge,

TABLE 5 Thermophysical values of the guest nanoparticles and the host liquid.

Properties ρ̂(kg/m3) ĉp(J/KgK) k̂(W/mk) �σ(Ωm)−1

Pure water (H2O) 997.1 4180 0.6071 5.5 × 10−6

Al2O3 3,970 765 40 35 × 106

Cu 8,933 385 400 59.6 × 106

CuO 6,500 540 18 6.9 × 10−2

TABLE 6 Parameters ingrained in the model with expressions and
physical ranges.

Parameter Name Expression Ranges

Reynolds number Re �Ucα
�]f

Within laminar regimes

Prandtl number Pr (ρcp )f �Uc

�khnf

6.2

Eckert number Ec Ec � �U
2
c α

�khnf

Within physical domain
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etc.), and biomedical engineering are highly nonlinear in nature.

For such models, it is almost impossible to handle the model in

the form of an exact solution. However, numerical techniques are

best suited to solve and analyze the impacts of various parameters

on the dynamics of the model.

The under consideration model is very tedious due to the

induction of ternary nanoparticles and their thermophysical

attributes; therefore, the numerical technique is helpful to

tackle the model and explore the results by altering the flow

parameters. For said purpose, we adopted a numerical

technique coupled with a shooting algorithm. Primarily, the

setup of this technique is based on the development of a first-

order initial value problem (IVP) from the higher-order

model by means of feasible transformations. After that, the

model is then solved by implementing the aforementioned

algorithm. The calculation in the under consideration model

is very lengthy; therefore, we omit the mathematical

procedure. However, the results are plotted against various

ranges of the flow parameters and discussed in the next

section.

Results with discussion

(Al2O3-CuO-Cu/water)mhnf flow
against Re

The Reynolds number, which is a quotient of viscous and

inertial forces, is a significant parameter in the study of channel

flow. The influences of this parameter on the flow behavior

of (Al2O3-CuO/H2O)hnf and (Al2O3-CuO-Cu/H2O)mhnf in

stretching/shrinking and opening/narrowing channels are

pictured in Figure 2. It is worthy to mention that the values

of the opening/narrowing parameter α are taken in degree.

The analysis of Figures 5A and B ensures that the fluid

motion drops in a divergent channel for both stretching and

shrinking walls. It is noticeable that a backflow phenomenon

occurs near the walls because by increasing the Reynolds number,

the fluid reverses its motion along the wall instead of mainstream

(η � 0). For smaller ranges of Re, the backflow reduces toward

the mainstream flow. The maximum fluid motion occurs along

the central line for both (Al2O3-CuO/H2O)hnf and (Al2O3-CuO-

FIGURE 5
F(η) against Re (A) stretching and divergent, (B) shrinking and divergent, (C) stretching and convergent, and (D) shrinking and convergent.

Frontiers in Chemistry frontiersin.org07

Adnan et al. 10.3389/fchem.2022.960369

96

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.960369


Cu/H2O)mhnf. Furthermore, shrinking of the walls leads to

reduced backflow as well.

Figures 5C and D elaborate on the behavior of (Al2O3-CuO/

H2O)hnf and (Al2O3-CuO-Cu/H2O)mhnf in the narrowing

channel. Physically, the flowing area reduces in the narrowing

channel due to which force per unit area enhances which leads to

an increment in the motion. The flow profile becomes more

flattened at the central position due to the higher strength of Re

and narrowing parameter α. The maximum fluid motion is

observed near the vicinity of the central portion, and it

gradually slows down toward the channel walls.

(Al2O3-CuO-Cu/water)mhnf thermal
behavior against Ec

The viscous dissipation is an important physical phenomenon

regarding the energy storage in (Al2O3-CuO/H2O)hnf and (Al2O3-

CuO-Cu/H2O)mhnf. The Eckert number is a parameter that

appeared due to viscous dissipation. Therefore, Figures 3A–D are

organized to explore the influences of Ec on the thermal behavior

β(η) of (Al2O3-CuO/H2O)hnf and (Al2O3-CuO-Cu/H2O)mhnf.

From the analysis of Figure 6, it is found that the temperature

rises significantly in both sorts of heat transfer fluids for stretching/

shrinking and opening/narrowing channels. Physically, the

appearance of viscous dissipation enhances the internal energy of

the liquids due to which the temperature rises significantly.

The nanofluid containing ternary nanoparticles (Al2O3-

CuO-Cu/H2O)mhnf has more capability to store energy than

binary-based (Al2O3-CuO/H2O)hnf heat transfer fluids.

Physically, the thermal conductivity of (Al2O3-CuO-Cu/

H2O)mhnf becomes greater than (Al2O3-CuO/H2O)hnf which

increases its energy storage ability. The maximum increasing

behavior of binary- and ternary-based nanomaterial liquids is

observed along the central line.

(Al2O3-CuO-Cu/water)mhnf thermal
behavior against Re

The set of Figures 7A–D elaborates the thermal behavior

of (Al2O3-CuO/H2O)hnf and (Al2O3-CuO-Cu/H2O)mhnf

FIGURE 6
β(η) against Ec (A) stretching and divergent, (B) shrinking and divergent, (C) stretching and convergent, and (D) shrinking and convergent.
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against Re. The keen study of Figure 7 reveals that the fluid

temperature declines by strengthening Re within the

physical domain. The temperature in (Al2O3-CuO/

H2O)hnf reduces more abruptly than in (Al2O3-CuO-Cu/

H2O)mhnf for both stretching/shrinking and opening/

narrowing walls. Physically, (Al2O3-CuO-Cu/H2O)mhnf

has high thermal conductivity due to the addition of the

third additive Cu due to which its energy storage ability

becomes maximum than (Al2O3-CuO/H2O)hnf. All these

effects are elaborated in Figures 7A–D in both opening

and narrowing channels.

Local energy storage in (Al2O3-CuO/
water)hnf and (Al2O3-CuO-Cu/water)mhnf

This subsection is devoted to analyzing the local energy storage

in (Al2O3-CuO/H2O)hnf and (Al2O3-CuO-Cu/H2O)mhnf for

varying flow parameters such as Ec, Re, and α. For said

purpose, Figures 8 and 9 displayed over the region of interest.

From Figures 8A–D, it is evident that the local energy storage

in (Al2O3-CuO-Cu/H2O)mhnf is higher than that in (Al2O3-CuO/

H2O)hnf. Physically, the ternary mixture of Al2O3, CuO, and Cu

increases the thermal conductivity of (Al2O3-CuO-Cu/H2O)mhnf,

while (Al2O3-CuO/H2O)hnf has low thermal conductivity due to

the binary mixture of Al2O3 and CuO. Due to the high thermal

conductance of (Al2O3-CuO-Cu/H2O)mhnf, the temperature

increases rapidly. Moreover, imposed viscous dissipation

effects provide extra energy to the fluid, which ultimately

boosts the energy ability of (Al2O3-CuO-Cu/H2O)mhnf than

(Al2O3-CuO/H2O)hnf. Similarly, from Figure 9, it can be seen

that drops in the local energy storage in (Al2O3-CuO-Cu/

H2O)mhnf is slower than (Al2O3-CuO/H2O)hnf. Therefore,

modified hybrid nanofluids will be very effective for industrial

and engineering applications because of their high energy storage

capability.

The streamlines pattern due to α is furnished in Figure 10. It

is noted that the streamlines pattern becomes more parabolic

shapes for smaller values of α, while it becomes flattened by

increasing the value of α.

FIGURE 7
β(η) against Re (A) stretching and divergent, (B) shrinking and divergent, (C) stretching and convergent, and (D) shrinking and convergent.
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Concluding remarks

The study of (Al2O3-CuO/H2O)hnf and (Al2O3-CuO-Cu/

H2O)mhnf heat transfer fluids is organized between opening/

narrowing channels. The channel walls are allowed to stretch/

shrink to some physical extent. The model is developed via

similarity and NS equations and then solved numerically. The

results against the parameters that appeared due to physical

phenomena are furnished and discussed deeply in the view of

physics behind them. It is found that

FIGURE 8
Local energy storage against (A) stretching and Ec, (B) shrinking and Ec, (C) stretching and α, and (D) shrinking and α.

FIGURE 9
Local energy storage against (A) stretching and Re and (B) shrinking and Re.
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• High Reynolds number causes backflow phenomena in the

locality of channel walls, and maximum fluid motion is

pointed out along the central line.

• The energy storage improved by strengthening viscous

dissipation effects and reduces for multiple Re in the model.

• Ternary hybrid nanofluid (Al2O3-CuO-Cu/H2O)mhnf has

outstanding heat transport than conventional hybrid due

to the addition of the third particle’s volume concentration

(ϕ3%).
• The optimum thermal behavior in both hybrid and ternary

hybrid nanofluids is noticed for shrinking walls, and

(Al2O3-CuO-Cu/H2O)mhnf is dominant over (Al2O3-

CuO/H2O)hnf.

• The local Nusselt number is very high for ternary hybrid

nanofluid at various locations inside the channel, and

ultra-high thermal conductivity of trihybrid

nanoparticles is a key element for this situation.

The presented study revealed that ternary hybrid nanofluid

(Al2O3-CuO-Cu/H2O)mhnf has a high temperature featuring an

under dissipation function and Reynolds number. Therefore,

this class would play a vital role rather than normal hybrid and

mono nanofluids in various industries to accomplish the

products.
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One-step electrodeposition of
ZnO/graphene composites with
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photocatalytic degradation of
organic dyes
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Zinc oxide is a popular semiconductor used in catalysts due to its wide bandgap

and high exciton binding energy. However, the photocatalytic performance of

ZnO was compromised by its insufficient electron-hole separation efficiency

and electron transfer rate. Herein, ZnO-reduced graphene oxide (rGO)

composite solid catalyst was synthesized by one-step electrodeposition

method on FTO substrate using lithium perchlorate (LiClO4) as the

supporting electrolyte. Scanning electron microscopy, Raman, Fourier

Transform Infrared, and XRD characterizations confirmed the deposition of

ZnO and the reduction of graphene oxide Owing to the cooperative effect

between rGO and ZnO, the as-prepared ZnO-rGO composites show much

enhanced photocatalytic degradation ability compared with pure ZnO

nanorods. By optimizing the conditions of electrodeposition of ZnO-rGO

composites, the degradation rate of methylene blue can reach 99.1% within

120min. Thus, the simple preparation and the excellent performance could

endow the ZnO-rGO composites with promising application in practical dye-

polluted water treatment.

KEYWORDS

ZnO, graphene oxide, electrodeposition, electrolyte, solid catalyst

Introduction

The growing water contamination has become a serious problem with the

development of industrialization and urbanization (Liras et al., 2019; Abdel-Karim

et al., 2021). As a kind of staining materials, dyes are widely used in pollution-

intensive industries such as textile, rubber, papermaking, plastics, and printing

(Mansor et al., 2020; Nasir et al., 2021). Untreated dye-containing industrial

wastewater produces severe pollution and threatens the ecological environment and

human health. In addition, the organic dye pollutants in the wastewater are hard to be

decomposed naturally. Among various dye-removal techniques, the degradation of
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organic dyes using highly efficient photocatalysts has become the

most promising due to its high efficiency, fast reaction, and easy

operation (Garg et al., 2020).

Until now, many low-priced, high-performance, and

consistent photocatalysts have been produced and used in

wastewater treatment, such as, metal oxides (TiO2 and ZnO)

(Roshni and Thambidurai, 2022; Umadevi et al., 2022),

sulfides (Luan et al., 2020; Ren et al., 2021), and nitrogen

oxides (Niu et al., 2012). Among them, ZnO, an n-type

semiconductor material of the group II-VI has been widely

used in recent years because of its wider bandgap and higher

exciton binding energy (Dehghan Nayeri et al., 2013).

However, the deficiencies of ZnO including high resistivity,

and easy recombination of photogenerated electron-hole pairs

seriously hinders the improvement of its photochemical

catalysis performance (Anandan et al., 2010). To overcome

these shortcomings and improve the photochemical catalysis

performance, the ZnO composite materials have been widely

investigated (Lonkar et al., 2018). As a two-dimensional

carbon nanomaterial with zero bandgap, graphene has the

advantages of high electron mobility and excellent

conductivity at room temperature, making it a candidate

for enhancing the performance of various catalysts (Imran

et al., 2021; Kharatzadeh et al., 2021; Moradi et al., 2021). For

these reasons, ZnO-rGO composite photocatalysts with better

optical and electrical properties were synthesized. The

addition of rGO can promote the separation of electron-

hole pairs and reduce the recombination rate, and increase

the light absorption capacity (Abdelsamad et al., 2018).

Therefore, the ZnO-rGO composite can obtain better

photocatalytic degradation performance than ZnO. Until

now, various techniques for synthesizing ZnO-rGO

composites have been exploited. For instance, Azaranga

et al. fabricated nanocomposites of ZnO NPs and rGO by

sol-gel method, and the ZnO-rGO nanocomposites achieved a

degradation efficiency of about 92.5% for methylene blue

(MB) within 120 min (Azarang et al., 2015). Tuan et al.

prepared ZnO/rGO nanocomposites by hydrothermal

method, which can only degrade 60% MB in 60 min (Van

Tuan et al., 2020). However, most methods suffer from

complex preparation process, high temperature and

pressure conditions, difficult recycling and other problems,

which limits their practical application.

In this paper, we developed a simple, low-cost, controllable

method to synthesize ZnO-rGO composite by one-step

electrochemical deposition using GO, zinc nitrate (Zn(NO3)2)

and lithium perchlorate (LiClO4) solution as electrolyte. The use

of LiClO4 as supporting electrolyte is conducive to the growth of

ZnO and the uniform coverage of rGO nanosheets onto the

surface of ZnO nanorods. Since the deposition of ZnO and the

reduction of GO were carried out concurrently, the removal of

GO with toxic reductants was avoided. Due to the combined

effect between rGO and ZnO, the photochemical catalytic activity

of ZnO-rGO composites was significantly improved compared

with that of pure ZnO nanorods. After optimizing the GO

concentration in electrolyte, the photocatalytic degradation

rate of MB by ZnO-rGO composites reached 99.1% within

120 min.

Experimental

Materials

FTO coated glass (13 ± 1.5 ohm) was purchased from Dalian

Qiseguang Solar Technology Development Co., Ltd. Zinc nitrate

(Zn(NO3)2, AR), potassium chloride (KCl, AR) and lithium

perchlorate (LiClO4, AR) were purchased from Shanghai

Aladdin Biochemical Technology Co., Ltd. The graphene

oxide (GO) aqueous solution was provided by Suzhou Carbon

Fung Technology Co., Ltd.

Electrodeposition of ZnO-rGO composite
materials

All electrodeposition processes were implemented on a

CHI660E electrochemical workstation (Chenhua

Instruments, China) using three-electrode system

comprised of FTO, Pt wire, and Ag/AgCl as the working

electrode, counter electrode, and reference electrode,

respectively. The FTO conductive glasses were cleaned with

ultrasonic oscillation with the glass cleaning agent, deionized

water, and ethanol for 30 min successively. ZnO and ZnO-

rGO films were electrochemical deposited on FTO substrates

by potentiostatic method at 80 °C with electrodeposition

potentials and time of −1.1 V and 600 s, respectively. The

electrolyte for ZnO nanomaterials was 10 mM Zn(NO3)2 and

0.1 M LiClO4 aqueous solution, whereas the ZnO-rGO was

deposited with an electrolyte containing 10 mM Zn(NO3)2,

0.1 M LiClO4, and 5 mg L−1 GO. For comparison, ZnO-rGO

composite prepared without LiClO4 as supporting electrolytes

was named as ZnO-rGO-N. To study the effect of GO

concentration on the photochemical degradation of the

synthesized ZnO-rGO, the ZnO-rGO composites were

prepared with GO concentration of 2, 5, and 8 mg L−1,

which were named ZnO-2rGO, ZnO-5rGO, and ZnO-

8rGO, respectively.

Characterization

Scanning electron microscopy (SEM) and energy dispersion

spectroscopy (EDS) mapping were carried out on a Zeiss Sigma

600 field emission scanning electron microscope. X-ray

diffraction (XRD) test was conducted on a Rigaku Dmax-
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2500. X-ray photoelectron spectroscopy (XPS) was performed on

an ESCALAB Xi + X-ray photoelectron spectrometer. The

ultraviolet-visible spectra were measured by using an

ultraviolet-visible (UV-vis) spectrophotometer (Beijing Puxi

TU-1901). Raman spectra were measured by HORIBA

LabRAM micro-Raman microscope irradiated with a 514 nm

laser. Fourier Transform Infrared (FTIR) spectra were recorded

by Thermo Scientific Nicolet iS5 FTIR Spectrometer.

Photocatalytic tests

Organic dyes including MB, Rhodamine B (RhB), and

Methylene orange (MO) were used as organic pollutants to

measure photocatalytic activity, respectively. Three pieces of

FTO (1.5 cm × 1.5 cm) coated with ZnO or ZnO-rGO

composite materials were immersed into 30 ml organic

dyestuff solution with a concentration of 10 mg L−1. To

achieve the balance of adsorption/desorption, the solution

was placed in the dark for 30 min before measurement.

Afterwards, the dyestuff solution was irradiated with a

mercury lamp (300 W) from a distance of 10 cm for

photodegradation. 3 ml of the dye solution was taken to

test its absorbance with an UV-vis spectrophotometer every

20 min and returned to the solution after the test. The

degradation efficiency was calculated according to the

variation of the maximum characteristic absorption peaks.

Transient photocurrent tests were performed in a KCl

electrolyte with a bias voltage of 0.5 V and

0.1 mol L−11 mmol L−1 of BQ, 10 mmol L−1 of IPA and

10 mmol L−1 of EDTA-2Na were used as trapping agents

for O2
−, ·OH and h+, respectively, and the reaction

mechanism was tested according to the steps of

photocatalytic degradation to analyze the reaction

mechanism.

Results and discussion

In the process of preparing ZnO-rGO composite materials

by one-step electrochemical deposition, the choice of

supporting electrolytes determines the quality of the

deposited film, which is the key to the photocatalytic

performance. Figure 1 shows the Chronoamperometry (CA)

curves for electrochemical deposition of ZnO and ZnO-rGO

nanocomposites using potentiostatic method. These curves

have a similar trend: The rapid decrease of current at the

initial deposition ascribed to the rapid adsorption of the

charge in the electrolyte on the electrode surface, then the

increase of current corresponds to the nucleation process, and

the subsequent current stabilization stage is the growth of

crystal nuclei. The cathode current for depositing ZnO

stabilized at -1.4 mA cm−2, whereas the stabilized current

was increased to −2.1 mA cm−2 with the addition of GO to

the electrolyte for preparing ZnO-rGO composite, suggesting

that GO promoted the growth rate. It is well-known that GO

can be reduced under negative potential (Yang et al., 2014).

Thus, the deoxidation of GO and the electrodeposition of ZnO

should proceed concurrently. As a comparison, the deposition

without adding LiClO4 as the supporting electrolyte, the

current was steadied at −1.7 mA cm−2. This result suggests

that the supporting electrolyte will increase the conductivity

of the electrolyte, which is beneficial to the growth of the ZnO-

rGO composite.

Figure 2 displays the SEM micrographs of the ZnO, ZnO-

rGO-N, and ZnO-rGO deposited on FTO substrates. As seen

from Figure 2A, the pure ZnO has a uniform and dense

hexagonal rod structure and completely covers the conductive

substrate. As for ZnO-rGO-N deposited without supporting

electrolyte, the morphology of the electrodeposited ZnO

changed to a pencil shape with a larger size (Figure 2B),

corresponding to a smaller specific surface area. In addition,

rGO sheets were coated on ZnO nanorods due to the addition of

GO. With the addition of LiClO4 as a supporting electrolyte, the

diameter of ZnO nanorods in the ZnO-rGO composite material

becomes smaller in diameter but larger in density (Figure 2C),

leading to much larger surface area. The elemental mapping of

ZnO-rGO displayed in Figure 2D proves the uniform

distribution of C and O on the top of ZnO-rGO, suggesting

the uniform coverage of rGO nanosheets on the top of ZnO

nanorods.

Figure 3 shows the XRD patterns of ZnO and ZnO-rGO. In

the pattern of ZnO, the high crystallinity ZnO with hexagonal

wurtzite phase (JCPDS 361–451) was confirmed by the 31.78°,

34.4°, and 36.2° characteristic peaks except the peaks of FTO

FIGURE 1
CA curves for the electrodeposition of ZnO, ZnO-rGO-N,
and ZnO-rGO at a potential of -1.1 V.
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corresponding to the planes (100) (002) and (101) respectively.

As for ZnO-rGO, the intensities of ZnO peaks decrease due to the

coverage of rGO nanosheets. However, the diffraction peaks of

rGO cannot be observed, which is probably because that the rGO

nanosheets is too thin to be detected by XRD signal.

Figure 3B shows the XPS survey scan spectra of ZnO and

ZnO-rGO composite material. The wide range analysis pattern of

ZnO-rGO consist of C1s, O1s, and Zn2p. The XPS Zn2p spectra

of the ZnO and ZnO-rGO are presented in Figure 3C. The

binding energy positions of 1045.1 and 1021.9 eV accord with the

two atomic states of Zn2p 1/2 and Zn2p 3/2, confirming the

+2 oxidation states of Zn atoms. The binding energy of the two

Zn2p peaks shifted slightly, which is due to the hybridization

with GO, resulting in the change of the electronic band structure

of ZnO. In Figure 3D the C1s scan spectrum of Zn-rGO can be

deconvoluted into three peaks centered at the binding energies of

284.3, 286.4 and 288.8 eV, which can be assigned to the carbon

atoms of C–C, C–O, and C=O bonds of rGO respectively.

Compared with the spectrum of GO Supplementary Figure

S1, the intensity of C-O and C=O peaks reduced, indicating

that most oxygen-containing groups were removed upon

reduction.

The Raman spectra of GO, ZnO and ZnO-rGO composite

are shown in Figure 3E. In the spectrum of ZnO-rGO two typical

bands corresponding to wurtzite-type ZnO were observed, in

consistence with the spectrum of ZnO. The non-polar optical

phonon E2Hmode can be revealed by a band at 440 cm−1, and the

band at 580 cm−1 is ascribed to the existence of oxygen vacancies,

zinc interstitials and defect complexes (Chaudhary et al., 2018;

Erdogan et al., 2021). In the higher wavenumber range, the G

(1591 cm−1) and D peaks (1340 cm−1) respectively

corresponding to graphitic domains and lattice defects of

rGO can be observed (Agarwal and Zetterlund, 2020).

Compared with GO, the D to G band intensity ratio of ZnO-

rGO increases, suggesting the decrease of average size of the sp2

carbon domains caused by the generation of more vacant lattice

sites through the removal of carbon atom accompanied with the

oxygenated groups removal.

Figure 3F shows the FTIR spectra of GO, ZnO, and ZnO-

rGO composite materials. The wide and high-strength band at

3400 cm−1 is attributed to the O-H stretching vibration of water

molecules adsorbed on the sample. The peak at 1630 cm−1 is

ascribed to the C-C/C=C stretching of sp2 carbon domains. The

band near 500 cm−1 is originated from the vibration absorption

FIGURE 2
SEM micrographs of ZnO (A), ZnO-rGO-N (B), and ZnO-rGO (C) deposited on the FTO substrates, EDS elemental mapping of ZnO-rGO
composite (D).
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peak of the Zn-O bond. The stretching vibration absorption peak

of the carbonyl group (C=O) in the carboxyl group (-COOH) of

GO at 1738 cm−1 vanished in ZnO-rGO, proving that GO was

reduced in this process (Lu et al., 2021).

The UV-visible absorption spectra of ZnO and ZnO-rGO

composite materials are described in Figure 4A. ZnO has obvious

absorption in the UV region of 300–400 nm. As for ZnO-rGO-N,

the absorbance in UV region increased slightly. In comparison,

the absorbance of the ZnO-rGO composite materials enhanced

significantly, especially in the area close to visible light (Vanitha

et al., 2015). Besides, the absorption edge moves slightly towards

the visible light region. The above outcomes indicate that more

light can be absorbed for photocatalytic reaction due to the

synergistic effect of rGO and ZnO.

FIGURE 3
XRD patterns of ZnO and ZnO-rGO (A); XPS survey spectra of ZnO and ZnO-rGO photoanodes (B), Zn2p high-resolution spectra of ZnO and
ZnO-rGO (C), C1s scan spectrum of ZnO-rGO photoanode (D); Raman spectra of ZnO-rGO and GOcompositematerials (E) and FTIR spectra of GO,
ZnO and ZnO-rGO composites (F).

FIGURE 4
UV-vis absorption spectroscopy of ZnO, ZnO-rGO-N and ZnO-rGO composite materials (A) and the corresponding curves of (αhv)2 versus the
hv (B).
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According to the plots of (αhυ)2vs hυ displayed in

Figure 4B, the bandgap can be calculated by the Kubelka-

Munk method:

αhv � A(h] − Eg)
η

where h, A, υ, and Eg are Planck constant, absorption constant

of direct transition, frequency of light, and the bandgap value,

respectively. As we all know, η is an index that characterizes

the light absorption process, and it is 1/2 for the of ZnO and

ZnO-rGO composites with direct bandgap (Lupan et al.,

2010). The calculated energy bandgap of ZnO is 3.29 eV.

However, the bandgap of ZnO-rGO-N was reduced to

3.27 eV and further decreased to 3.21 eV for ZnO-rGO,

which is beneficial to the absorption of photons with lower

energy.

To assess the photocatalytic performance, ZnO, ZnO-rGO-N

and ZnO-rGO composites were used to degrade methylene blue

(MB) under mercury lamp irradiation. Figures 5A–C exhibits the

variation of the UV-Vis absorption spectrum of the ZnO, ZnO-

rGO-N and ZnO-rGO degraded MB solution with irradiation

time. Compared with ZnO and ZnO-rGO-N, the absorption

peaks of ZnO-rGO shrank rapidly with the largest extent as the

extension of the irradiation time, and the absorption peak almost

disappeared in 120 min. Figure 5D shows the variation of the MB

concentrations by the degradation of different samples under a

mercury lamp. The degradation rate can be calculated by

Lambert-Beer law:

Degradation rate � C0 − C

C0
× 100% � A0 − A

A0
× 100%

where C0 is the initial concentration of MB, C is the

concentration of MB at time t, A0 is the initial absorbance of

MB solution, and A is the absorbance of MB solution at time t. As

seen from Figure 5D, the MB degradation rate without using

photocatalyst was only 7% under irradiation for 120 min,

suggesting the MB can hardly be degraded without the aid of

photocatalyst. As for ZnO catalyst, it can only degrade 32% of the

MB dye within 120 min. After the incorporation of rGO

nanosheets, the degradation rates of MB can reach about

77.5%, and 99.1% for MB dye in 120 min by the catalysis of

ZnO-rGO-N and ZnO-rGO composites. This result suggests that

the photocatalytic performance of ZnO can be significantly

improved by the addition of rGO, probably be owing to that

the presence of rGO reduced the recombination speed of

electron-hole pairs and enhanced the absorption of MB

(Kwon et al., 2017). Concurrently, the improvement of

photocatalytic degradation efficiency of ZnO-rGO compared

with ZnO-rGO-N should be attributed to the finer and more

uniform ZnO nanorods (Figure 2), the increase of absorbance in

visible region as well as the decrease of band gap width

(Figures 4A,B).

FIGURE 5
The changes of UV-vis spectra of dye degraded by ZnO (A), ZnO-rGO-N (B) and ZnO-rGO (C) composites as interval illumination times,
variation ratios of the concentrations of the MB degraded by different catalysts versus irradiation time (D), and the corresponding kinetic curves (E).
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According to the above results, the process of degradation

of organic dyestuff by ZnO, ZnO-rGO-N and ZnO-rGO

composite materials conformed to the first-order reaction

kinetics:

−dC
dt

� k × C

−ln(C

C0
) � k × t

ln(
C0

C
) � kt

Here, k (min−1) represents the first-order rate constant, and t

is the irradiation time. Figure 5E shows the first-order kinetic

fitting results of these photodegradation, from which it can be

distinctly found that the degradation rates follow the sequence:

ZnO < ZnO-rGO-N < ZnO-rGO.

The separation of photogenerated carriers during the

photocatalytic process was demonstrated by the transient

photocurrent curves of the electrochemically tested samples.

In transient photocurrent curves, the carrier separation

efficiency of the photocatalyst is proportional to the

photocurrent corresponding. As can be seen in Figure 6, the

photocurrent density of the photocatalyst in the absence of light

is located at zero, and the photocurrent density rises rapidly after

light exposure and stabilizes at a maximum point with good

stability of the cycle within 500 s of discontinuous irradiation.

The ZnO-rGO sample shows the maximum photocurrent

stability density compared to ZnO and ZnO-rGO-N, which is

due to the fact that the addition of rGO can effectively increase

the conductivity, improve the electron transfer rate, and promote

the separation of photogenerated electron-hole pairs.

The morphologies of the ZnO-rGO composites prepared

with electrolytes of different GO concentrations are depicted

in Figure 7. In Figure 7A and 7B, the diameter of the ZnO

nanorods reduced from 148.49 to 93.3 nm as the GO

concentration was raised from 2 to 5 mg L−1. When the

concentration was further raised to 8 mg L−1, the top of the

ZnO nanorods was destroyed and the distribution of the

nanorods became sparser, leading to the exposure of the

substrate (Figure 7C).

Figure 8 exhibits the XRD spectra of pure ZnO and ZnO-rGO

composites prepared with various GO concentrations. It can be

seen that the characteristic peaks of ZnO and FTO decrease with

the increase of GO concentration, which is because of the

increased thickness of the rGO nanosheets covering the top of

the ZnO nanorods in the ZnO-rGO composite material

deposited on the FTO surface, in consistence with the results

in Figure 7.

The UV-visible absorption spectra of ZnO-2rGO, ZnO-5rGO

and ZnO-8rGO composite materials and corresponding curves of

(αhv)2 versus the hv are described in Figures 9A,B. Compared with

ZnO-2rGO, the absorbance of ZnO-5rGO and ZnO-8rGO

increased significantly in the visible region, which was

conducive to improving the photocatalytic degradation

efficiency (Figure 9A). The calculated energy bandgaps of ZnO-

2rGO, ZnO-5rGO and ZnO-8rGO fromFigure 9B by the Kubelka-

Munk formula are 3.29, 3.22, and 3.26 eV respectively.

FIGURE 7
SEM micrographs ZnO-2rGO (A), ZnO-5rGO (B), and ZnO-8rGO (C).

FIGURE 6
Transient photocurrent curves of ZnO, ZnO-rGO-N and
ZnO-rGO.
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FIGURE 8
XRD spectra of ZnO-rGO composite prepared with different GO concentration (A) and partially enlarged pattern (B).

FIGURE 9
UV-vis absorption spectroscopy of ZnO-2rGO, ZnO-5rGO and ZnO-8rGO composite materials (A) and the corresponding curves of (αhv)2

versus the hv (B); variation ratios of the concentrations of the MB degraded by different catalysts versus irradiation time (C), and the corresponding
kinetic curves (D).
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Figure 9C shows the variation of the MB concentrations by

the degradation of different samples under a mercury lamp,

and the absorption spectra are shown in SupplementaryFigure

S2. The degradation rates of MB dye by ZnO-2rGO, ZnO-

5rGO and ZnO-8rGO composites can reach 60%, 99.1%, and

75% within 120 min. The ZnO-5rGO composites exhibit the

best photocatalytic activity, which is ascribable to the largest

surface area caused by the dense distribution of the ZnO

nanorods with small diameter. The degradation rate of

99.1% for MB in 120 min is larger than previously reported

ZnO-rGO composites, such as, ZnO/graphene composite

prepared by surfactant-assisted simple hydrothermal

method (90% in 130 min) (Zhou et al., 2012), ZnO-rGO

composites fabricated by an easy one-step low-temperature

chemical etching route (97% in 140 min) (Zhao et al., 2017),

and ZnO/GO nanocomposite powder synthesized by novel

flame transport approach (60% in 120 min) (Reimer et al.,

2014).

The photocurrent test can further illustrate the separation

efficiency of photogenerated carriers during the reaction

process. Figure 10 shows the transient photocurrent curves

with ZnO-2rGO, ZnO-5rGO and ZnO-8rGO as

photocatalysts. The degree of photocurrent response of

ZnO-2rGO, ZnO-5rGO and ZnO-8rGO was different under

500 s intermittent irradiation. It indicates that the addition of

different concentrations of GO in the precursor solution has

an effect on the photocatalytic performance of the prepared

ZnO-rGO samples, further verifying that the introduction of

rGO with higher conductivity and larger specific surface area

can be used as the acceptor and emitter of electrons to improve

the conductivity and reduce the complexation of

photogenerated carriers, resulting in improved

photocatalytic performance. The photocurrent intensity of

ZnO-5rGO is the largest compared with other samples,

indicating that it has the best photocatalytic degradation

performance.

For further study the recyclability of ZnO-5rGO as a

photocatalytic material, the degradation efficiency of

repeatedly used ZnO-5rGO for MB was studied. After each

cycle of degradation, the ZnO-5rGO coated FTO was washed

with deionized water and then dried. As shown in Figure 11

and S3, the degradation efficiencies of the five cycles for MB

are 99.1, 97.6, 95.4, 93.6, and 91.5%, respectively, suggesting

the excellent reusability and light stability of the ZnO-rGO

composite.

To prove the universal application of ZnO-rGO composite

for the degradation of dyestuffs, the degradation of RhB and MO

solutions using ZnO-5rGO composites was studied, and the

outcomes are presented in Figure 12. It can be observed from

Figure 12A and 12B that absorption peaks of both RhB and MO

decreased quickly under the irradiation of a mercury lamp. The

photocatalytic degradation rate of MO and RhB solutions can be

achieved to 90.3% and 93.2% in 120 min, respectively

(Figure 12C). Combined with the first-order kinetic fitting

results of photodegradation in Figure 12D, it can be

concluded that ZnO-rGO composite also has excellent

photocatalytic performance for other dyes.

To understand the main active species during the reaction

of ZnO-rGO photocatalytic degradation of target degraded

organics, the main active species during the photocatalytic

reaction of ZnO, ZnO-rGO-N and ZnO-rGO photocatalysts

FIGURE 11
The photostability of ZnO-5rGO composite to MB
degradation.

FIGURE 10
Transient photocurrent curves of ZnO-rGO prepared by
different concentrations of precursors.
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for MB degradation without the addition of active species

trapping agents and with EDTA-2Na, IPA and BQ as active

species trapping agents are shown in Figure 13. The

degradation rate of the target degradants after the addition

of active species trapping agents was inversely proportional to

the role played by the active species during the reaction. In

Figure 13, the degradation rate of ZnO-rGO as a photocatalyst

for MB was 99.1% without the addition of active species

trapping agent, which changed to 70% with the addition of

EDTA-2Na, 48% with the addition of IPA, and 61% with the

addition of BQ. The changes in degradation rates after the

addition of active species trapping agents indicate that OH is

the active species that plays a major role in the photocatalytic

degradation of MB.

In this paper, there are many reasons why the

photocatalytic degradation rate of ZnO-rGO composite was

improved compared with that of ZnO. First, the ZnO

nanorods of the synthesized ZnO-rGO composites are

lower in diameter but higher in density compared with the

pure ZnO, leading to a larger surface area. This will promote

the spread and mass transfer of dye and oxygen species in

photochemical reactions (Wei et al., 2013). Secondly, as

shown in Figure 14, the coverage of rGO nanosheets on the

top of ZnO nanorods can receive photo-generated electrons

and accelerate charge separation through the charge transfer

process. In addition, the generated charge can be quickly

transferred, which is beneficial to the degradation of the

dye (Kang et al., 2016).

FIGURE 13
Degradation rate of MB degraded by ZnO, ZnO-rGO-N and
ZnO-rGO Photocatalysts in the presence of capture agent.

FIGURE 12
The absorption spectra of RhB (A) and MO (B) solutions that were photocatalytic degraded by ZnO-5rGO composites under mercury lamp
irradiation; photocatalytic degradation of RhB and MO by the ZnO-5rGO composites (C) and the corresponding kinetic curves (D).
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Conclusion

The ZnO-rGO photocatalyst was synthesized on the FTO

substrate by a one-step electrochemical deposition method.

After the incorporation of rGO into ZnO, the photocatalytic

performance of the ZnO-rGO was significantly improved. The

degradation of MB dye by ZnO-rGO composites synthesized

with different concentrations of GO in electrolyte was also

studied. The ZnO-rGO prepared with electrolyte containing

5 mg L−1 GO achieved the best photodegradation efficiency of

99.1% for degrading MB within 120 min. These outcomes

indicate that the ZnO-rGO composites could be an

excellent candidate material for photodegradation of

organic dyes.
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Design of Sb2Te3 nanoblades
serialized by Te nanowires for a
low-temperature near-infrared
photodetector
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The dangling bond on the surface of bulk materials makes it difficult for a

physically contacted heterojunction to form an ideal contact. Thus, periodic

epitaxial junctions based on Sb2Te3 nanoblades serialized by Te nanowires

(Sb2Te3/Te) were fabricated using a one-step hydrothermal epitaxial growth

method. X-ray diffraction and electron microscopy reveal that the as-prepared

product has a good crystal shape and heterojunction construction, which are

beneficial for a fast photoresponse due to the efficient separation of

photogenerated carriers. When the Sb2Te3/Te composite is denoted as a

photodetector, it shows superior light response performance. Electrical

analysis showed that the photocurrent of the as-fabricated device declined

with temperatures rising from 10K to 300K at 980 nm. The responsivity and

detectivity were 9.5 × 1011 μAW−1 and 1.22 × 1011 Jones at 50 K, respectively,

which shows better detection performance than those of other Te-based

photodetector devices. Results suggest that the as-constructed near-

infrared photodetector may exhibit prospective application in low-

temperature photodetector devices.

KEYWORDS

photodetector, responsivity and detectivity, low-temperature, heterojunction,
epitaxial growth

Introduction

Topological insulators have been experiencing new grading of quantum matter

consisting of a bulk gap and Dirac-like surface states (Fu et al., 2007; Xia et al.,

2009). These materials were considered using a robust spin-orbit interaction that

leads to surface states bridging the bulk band gap. More importantly, the carriers on

the surface states of topological insulators have low energy dissipation because of the time-

reversal symmetry and spin-orbit coupling (Yu et al., 2018). Moreover, angle-resolved

photoemission spectroscopy (ARPES) analysis indicates that the surface states consist of

an odd number of helical spin-momentum textured Dirac cones (Pradhan et al., 2017; Sun

et al., 2017). Therefore, methods have been developed to synthesize various topological
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insulator materials, for example, metal-organic chemical vapor

deposition (MOCVD), pulsed-laser deposition (PLD), and

physical vapor deposition (PVD) (Jiang et al., 2005; Jin et al.,

2005; Matsunaga et al., 2006; Ikeda et al., 2007). Due to unique

physical properties and potential applications in more and more

fields, such as quantum computing, photodetection, and

superconductors, topological insulator materials have been the

focus of tremendous recent attention (Duan et al., 2015; Yu et al.,

2017). In these devices, photodetectors have gained special

attention because of their widespread applications in many

areas, such as industrial automatic control, infrared remote

sensing, image sensors, and target detection (Yang et al., 2000;

Matsunaga et al., 2004; Zhong et al., 2017; Wang et al., 2022). For

example, a photoconductor based on topological insulator

(Sb2Te3) film has been prepared, and the device has the

ability to detect the 980 nm near-infrared light (Zheng et al.,

2015). Zhang et al. reported a polycrystalline Bi2Te3 film

topological insulator for a near-infrared (NIR) photodetector

and revealed that the as-prepared device is sensitive to visible and

NIR light and the responsivity and gain are 3.3 × 10−5 A W−1 and

3.85 × 10−5, respectively (Wesolowski et al., 2014). In addition, a

series of photovoltaic detectors based on topological insulators,

such as SnTe/Si and Sb2Te3/STO, were prepared and exhibited

excellent performance (Tominaga et al., 2014; Sun et al., 2017).

However, these devices exhibit a large dark current and the very

low carrier lifetime of the photoconductor based on one

component leads to a slower response speed and little

photocurrent.

Sb2Te3, as a narrow bandgap semiconductor (~0.23 eV), is

considered a rhombohedral crystal showing a bulky periodicity

along its c-axis (aSb2Te3 = 4.26 Å, cSb2Te3 = 30.46 Å). Additionally,

Tellurium is a key semiconductor and its bandgap is

approximately 0.35 eV (Cheng et al., 2013; Li et al., 2015).

Therefore, Sb2Te3 and Te nanostructures can be epitaxially

grown together to form heterojunctions due to the similarity

of lattice spacings. Factually, the enhanced concentration of

interfaces can strongly boost the formation of the built-in

field. The effect is beneficial for separating photon-induced

carriers (Lee et al., 2008; Tominaga et al., 2008; Sosso et al.,

2009; Dong et al., 2010). Consequently, photodetection

performances would be enhanced due to the quantum size

effects by forming heterojunctions (Chen et al., 2003; Cozzoli

et al., 2006).

Although the synthesis of various Sb2Te3-Te heterojunctions

has been executed and performance has been estimated, the

complex and energy-intensive fabrication process of the

heterojunction, such as CVD and MBE, seriously restricts

their large-scale application. Herein, we settled on a facile

one-step hydrothermal method to prepare T-shaped epitaxial

Sb2Te3/Te heterojunctions with feature sizes of hundreds of

nanometers. The morphologies and structures of the product

were carefully characterized by an electron microscope and X-ray

diffraction, respectively. The length of a nanostructure is

approximately 10 μm, which is very beneficial in fabricating

the photodetector by convenient photolithography processing.

The as-fabricated Sb2Te3/Te photodetector device shows a

superior photovoltaic effect because of the superior built-in

electric field within the hetero-interface. The responsivity and

photoconductivity are estimated as 9.5 × 1011 μAW−1 and 1.22 ×

1011 Jones at 50 K, respectively, which is more prior than those

previously reported. This study proposes that the T-shaped

epitaxial Sb2Te3/Te heterojunctions show great promise for

future optoelectronic device applications.

Experimental section

Material synthesis

An eco-friendly hydrothermal method was used to synthesize

Sb2Te3/Te heterostructure nanostrings. In a typical synthesis,

2 mmol L-antimony potassium tartrate (C8H4K2O12Sb2, AR,

99%), 3 mmol sodium selenite (AR, 99%), and 0.3 g polyvinyl

pyrrolidone (PVP, 130000, AR, 99%) were dissolved in 40 ml of

ethylene glycol (AR, 99%). After vigorous stirring for 10 min, the

mixture was put into a 100 ml Teflon-lined stainless-steel

autoclave. The autoclave was treated at 180 °C and maintained

for 48 h before being cooled in air. The precipitates were isolated

by centrifugation, washed with distilled absolute ethanol and

water several times to remove possible residues, and dried in a

vacuum. Lastly, to improve the degree of crystallinity, the Sb2Te3/

Te composite was placed in a tube and annealed to 300 °C for 2 h

in argon.

Material characterization

Morphological characterizations of the Sb2Te3/Te

nanostrings were performed using scanning electron

microscopy (SEM, NOVA 450, FEI) and transmission electron

microscopy (TEM, G2 FEI). The crystalline structures of the as-

prepared nanofibers were characterized by X-ray diffraction

(XRD, Shimadzu XRD-6000). The valence state analysis of the

Sb2Te3/Te nanostrings was performed with an X-ray electron

spectrometer (XPS, AXIS-ULTRA DLD-600W).

Device construction and analysis

The topological insulator Sb2Te3/Te heteronanostructures

are sensitive to acetone, which is usually used to remove the

photoresistor during the photolithography process. A focused

ion beam (FIB) was employed to define the metal electrode

during the fabrication of the NIR photodetector. Briefly, a micro-

electrode on SiO2 (300 nm)/Si substrate was fabricated using

conventional photolithography, followed by the deposition of
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25 nm titanium and 35 nm gold films by high vacuum electron

beam evaporation. Then, the dispersed Sb2Te3/Te nanostrings

were dropped on the micro-electrode and deposited as 50 nm

platinum films by FIB. The device characteristics of the

topological insulator Sb2Te3/Te heterostructure are measured

using a semiconductor characterization system (Keithley 4200-

SCS). The test system was equipped with an automatic cooling

system named CCS-350, which was a slow-temperature cycle

refrigeration system. For the optoelectronic study, the 980 nm

laser (CEL-PF300-T9) is employed as the monochromatic light,

which is equipped with an attenuator guided to the NIR device.

Results and discussion

The proof-of-concept photodetection device (Figure 1A)

based on Sb2Te3/Te nanostrings was fabricated on an SiO2

substrate and the trench width was approximately 5 μm. The

Te nanowire is separated by a periodically arranged Sb2Te3
nanoplate, which formed distinctive p-p heterojunctions. The

unique nanostring structure leads to a higher photoelectric

conversion efficiency. Figure 1B shows the crystal structure

models of Sb2Te3 and Te. The Sb2Te3 crystal structure

consists of approximately five-atom layers along the

c-direction, which are known as quintuple layers. Each layer

consists of five atoms in order as follows:

Te1–Sb–Te2–Sb0–Te10. Furthermore, Te is a hexagonal

crystal formed by the accumulation of helical chains through

van derWaals interactions. The band structures of Sb2Te3 and Te

are depicted in Figure 1C, respectively. Sb2Te3 is a p-type

topological insulator with a Femi level located in the valance

band. The Te is also a p-type semiconductor whose band gap is

larger than Sb2Te3. After combination, a heterojunction can be

formed at the interface between Sb2Te3 and Te. As the work

function of Sb2Te3 is smaller than Te, its electrons will flow into

Te and this charge transfer process will form a built-in potential

field at the interface. Under infrared light illumination, electron-

hole pairs can be generated in Sb2Te3 and holes will be

transferred to Te by built-in potential. These carrier

generations and transfers will lead to a detectable photocurrent.

The Sb2Te3/Te nanostrings are characterized by XRD.

Figure 2A (turquoise line) shows the XRD pattern of the

Sb2Te3/Te nanostrings. All peak positions in Figure 2A are

indexed to the rhombohedral Sb2Te3 (JCPDS No. 71-0393)

and the hexagonal Te (JCPDS No. 89-4899). The

characteristic peaks of Sb2Te3 and Te are exhibited in

Figure 2A such as (015), (110), (205), (101), (012), and (110)

planes, which suggest that the as-prepared product is composed

of rhombohedral Sb2Te3 and hexagonal Te. In addition, the

diffraction intensities of Sb2Te3 (006) and (1010) planes are

FIGURE 1
(A) Schematic illustration of the Sb2Te3/Te nanostring NIR photodetector. (B) Schematic illustration of the crystal structure of the Sb2Te3
nanosheet and Te nanowire. (C) Energy band diagram of the Sb2Te3/Te nanostring photodetector without and with NIR light illumination.
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extremely sharp; however, those of the (101) and (107) planes are

distinctly weak, showing that the (hk0) planes in the Sb2Te3
nanostructure grew faster than the (hkl, l ≠ 0) planes. Therefore,

the Sb2Te3 crystallization is preferentially grown along with the a

or b axle instead of the c axle. As a result, ultrathin Sb2Te3
nanosheets can be generated in the final products. It is

remarkable that the crystallinity is scored as 91.67% after

refining (Supplementary Figure S1).

The X-ray photoelectron spectroscopy (XPS) spectra further

clarify the structure of Sb2Te3/Te nanostrings. The sharp peaks of

Te (3d) and broad peaks of Sb (3d, 4d) can be clearly separated

(Supplementary Figure S2). Figures 2B and C reveal that the

electron-binding energies of Te 3d3/2 and Te 3d5/2 located at

586.3 eV and at 575.9 eV, respectively, which corresponds to the

valence of Sb-Te. The binding energies located at 583.0 and

572.6 eV can be ascribed to the 3d3/2 and 3d5/2 of Te-Te valence.

The Raman spectra can also confirm the existence of Te and

Sb2Te3. Two typical characteristic peaks are located at 179 and

235 cm−1, which can actually be assigned to Te (Yin et al., 2018)

(Supplementary Figure S3). The representative signals of Sb2Te3
are located at 309 and 343 cm−1. All facts confirm that the as-

synthesis product exhibits a fine crystallinity with definite

constitution and structure.

Figures 3A–C reveal the morphologies of the nanostrings at

different magnifications by field-emission scanning electron

microscopy (FESEM). The nanostrings are composed of

multiple nanosheets that are strung together through the

center by Te nanowires. The length of the Te nanostructure is

approximately 10 μm (Supplementary Figure S4), which is

beneficial for the photodetection device fabrication by

conventional photolithography. Figure 3D demonstrates that

the Sb2Te3 nanosheets are embedded in the Te nanowire and

the diameter is approximately 300 nm. HRTEM pattern analysis

effectively indicates the monocrystalline texture of Sb2Te3/Te

nanostrings (Figures 3E and F). The lattice fringes are noticeable

and the d-spacings are 0.2375 and 0.25 nm, which correspond

well to the Tellurium (012) and Sb2Te3 (110) lattice planes,

respectively. The selected area electron diffraction (SAED)

pattern (Supplementary Figure S5) is well indexed to the

hexagonal phase of Tellurium, and corresponding to the

diffraction peaks of (012), (101), and (110) planes shown in

the XRD pattern. Energy dispersive spectrometer (EDS) spectra

confirmed that the nanostrings are composed of Sb and Te

elements (Figures 3G–I). Figures 3G–I exhibit the TEM

elemental mapping images of the Sb2Te3/Te nanostring, which

further confirms that the as-prepared product is only composed

of Te and Sb elements.

The temperature-dependent current-voltage (I-V) curves of

the as-fabricated device are studied to disclose its electrical

transportation characteristics. Figures 4A and B demonstrate

the I-V characteristics from 10 to 300 K in the dark and under

980 nm light illumination (0.5 mW cm−2). The dark current

increases with falling temperature. This can be attributed to

the unique electronic construction, particularly when the Fermi

FIGURE 2
(A) X-ray diffraction (XRD) pattern of the Sb2Te3/Te nanostrings. (B,C) XPS spectra of Te (3d) and Sb (4d).
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level is close to the Dirac point. The I-V curves are virtually linear

when illuminated by 980 nm light and show that the Te nanowire

and Pt-Ti/Au electrode can form a contact form with Ohmic

contact.

Considering the temperature-dependent electrical properties of

the Sb2Te3/Te nanostrings, the photoresponse characteristics at

different temperatures were studied. Figure 5 shows the temporal

photoresponse properties of the device at 10K, 50K, 100K, 200K,

273K, and 300K with periodic irradiation of 980 nm at a bias voltage

of 1 V. The figure shows that when the bias voltage is kept unchanged,

the change of the current is consistent with the changes of the

temperatures. The dark current can decrease to the lowest value of

8.5 μA at 100K and the photocurrent can reach its highest value of

79.5 μA at 10K under the 1 V bias voltage and on/off illumination of

FIGURE 3
(A–C) SEM images of the Sb2Te3/Te nanostrings at different magnifications. (C) TEM image of the Sb2Te3/Te nanostrings. (D) TEM image of the
Sb2Te3/Te nanostrings. (E,F) HRTEM images of the Sb2Te3/Te nanostrings (G–I) and elemental mapping images of Sb2Te3/Te nanostrings.

FIGURE 4
I-V curves of the Sb2Te3/Te nanostrings in the dark (A) and under illumination (B) at various temperatures from 10 to 300 K.
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980 nm light. Additionally, the photoresponse characteristics of the as-

constructed photodevice are homologous at temperatures of 273 and

300 K due to the temperature effect (Qi et al., 2018). The optical

switching behavior of this photodetector is highly reversible with good

stability and reproducibility. There is no significant degradation in its

switching behavior even after multiple periodic optical switching

changes. It is worth noting that different from the conventional

photodetectors with a very fast response speed based on

semiconductor nanostructures, the as-fabricated device has a

moderately (several hundred seconds) slow rising and falling time

(Cai et al., 2022). The difference in the response speed is possible due

to their distinction of the band structures.

FIGURE 5
Time-resolved photoresponse of the Sb2Te3/Te nanostring photodetector under different temperatures at 1 V bias voltage: (A) 10 K, (B) 50 K,
(C) 100 K, (D) 200 K, (E) 273 K, and (F) 300 K.

FIGURE 6
Responsivity (R) and detectivity (D*) of a selenium self-supporting film photodetector under different light intensities.
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The responsivity ® and detectivity (D*) are also two key index
factors of photodetectors. “R” is the photocurrent per unit

incident light power on the calculating device, which can

reflect the sensitivity of the device to the intensity of incident

light. “D*” shows the performance of detecting weak light (Yu

et al., 2018). These two key parameters can be derived according

to the following equations:

R � Iph − Id
PS

(1)

D* � RS1/2

(2eId)1/2 (2)

where Iph is the photocurrent, Id is the dark current, P is the

incident light power density (0.5 mW cm2), S is the effective

area of the device receiving light (~1.5 × 10−8 cm2), and e is

the fundamental charge (1.6 × 10−19 C) (Xu et al., 2022;

Zhang et al., 2022). According to Eqs 1, 2, the “R” and

“D*” of the detector under 3 V bias voltage and different

illumination intensities are shown in Figure 6. The results

show that the detector has a photoresponsive®(R) of

approximately 9.5 × 1011 μA W−1 and a detectable rate

(D*) of approximately 1.3×1017 Jones under 1 V bias

voltage and 50 K with the light irradiation of 980 nm.

Conclusion

We report a near NIR photodetector based on a topological

insulator antimony telluride (Sb2Te3) and tellurium (Te)

heterostructure, which are prepared by controllable

hydrothermal and photolithography methods. The elaborately

constructed device exhibits topological insulator properties, and

the resistance especially decreases with increasing temperature in

the range of 10–300 K. Further optoelectronic characterization

shows that the as-fabricated photodetector delivers obvious

sensitivity to 980 nm light illumination. The performance of

responsivity and detectivity are remarkable and are much

better than those of other Te-based topological insulator

photodetector devices. The research suggests that the as-

constructed NIR photodetector may have great potential in

low-temperature optoelectronic devices.
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The current work presents and discusses a numerical analysis of improving heat
transmission in the receiver of a parabolic trough solar collector by introducing
perforated barriers. While the proposed approach to enhance the collector’s
performance is promising, the use of obstacles results in increased pressure loss.
The Computational Fluid Dynamics (CFD) model analysis is conducted based on the
renormalization-group (RNG) k-ε turbulent model associated with standard wall
function using thermal oil D12 as working fluid The thermo-hydraulic analysis of the
receiver tube with perforated obstacles is taken for various configurations and
Reynolds number ranging from 18,860 to 81,728. The results are compared with
that of the receiver without perforated obstacles. The receiver tube with three holes
(PO3) showed better heat transfer characteristics. In addition, the Nusselt number
(Nu) increases about 115% with the increase of friction factor 5–6.5 times and the
performance evaluation criteria (PEC) changes from 1.22 to 1.24. The temperature of
thermal oil fluid attains its maximum value at the exit, and higher temperatures
(462.1 K) are found in the absorber tube with perforated obstacles with three holes
(PO3). Accordingly, using perforated obstacles receiver for parabolic trough
concentrator is highly recommended where significant enhancement of system’s
performance is achieved.

KEYWORDS

nanofluid, parabolic trough solar collector, Nusselt number, perforated obstacles,
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Highlights

- The flow and thermal characteristics of through solar collector was examined.
- The benefits effects of using perforated baffles to enhance heat transfer was analyzed.
- The position and number of perforations was optimized to obtain the best heat transfer.
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Introduction

Growth in global energy demand and the overuse of non-
renewable energy sources such as petrol and natural gas have
reduced these resources’ availability and resulted in harmful severe
environmental consequences such as air pollution and global warming
(Jamshed et al., 2021; Wu et al., 2021; Zandalinas et al., 2021).
Researchers focused on improving technologies involved in
renewable energy sources such as solar to address these issues.
Solar collectorsuse a heat-exchanging fluid to convert solar power
to thermal power. In fact, using the absorber tube absorbs solar light
and transfers heat to the absorber fluid. Therefore, the solar collector
increases its internal energy, which may be utilized for other purposes
(Sayed et al., 2020; Pandey et al., 2021; Shahzad et al., 2021).

Changing traditional working fluids in solar collectors to
nanofluids is one of the activities that has gotten a lot of attention
in recent years to improve their thermal performance (Aman et al.,
2015; Fares et al., 2020; Mourad et al., 2021; Hassan et al., 2022; Khalid
et al., 2022). Dehaj et al. (2021) designed and developed an
experimental test bench to examine the parabolic trough solar
collector (PTSC) efficiency using NiFe2O4/Water nanofluid as a
working fluid. They used a U-shaped absorber tube. Their results
show that the PTSC was more effective when the Nickel Ferrite
nanofiuid was introduced. In fact, for a volumetric fraction of .05%
and a fiow rate of 3 L/min, an efficiency of 51% can be achieved.
Farhana et al. (Farhana et al., 2021)investigated the flat plate solar
collector efficiency with crystal nano-cellulose (CNC) nanofluid
through an experiment. They revealed that the efficiency of the
FPSC was enhanced by 2.48% and 8.46% when .5% Al2O3 and .5%
CNC nanofluids were used, respectively.

Hosseini et al. (Hosseini Seyed and Shafiey Dehaj, 2021) calculated
the energetic performance of a PTSC working with Al2O3 and GO
nanofiuid with a .2% volume fraction. They found that the thermal
efficiency of the PTSC was improved by 63.2% and 32.1% when the
GO nanofiuid and the Al2O3 nanofiuid were used, respectively.
Vahidinia et al. (Vahidinia et al., 2021) valued the thermal
performance of the PTSC using three types of Syltherm 800 based
nanofluids. The first two are Al2O3 and SiO2, and the third is a hybrid
nanofluid merging the above two. They illustrated that the exergy and
energy performance of the hybrid nanofluid is always the highest. Vital
et al. (Vital Caio. et al., 2021) evaluated the thermo-optical properties
of TMN nanofluids such as TiN, ZrN, and HfN in an aqueous medium
where the nanofluids were used as working fluids for a direct
absorption solar collector (DASC). According to their results, the
efficiencies of DASC employing TiN, ZrN, and HfN NF are 6.3%,
5.2%, and 5.6%, respectively. They also stated that these enhancements
could be achieved without increasing the demands of pumping power
by using a low-concentration regime. Ould-Lahoucine et al. (Ould-
Lahoucine et al., 2021) proposed a novel technique to identify the ideal
height of the rectangular cooling channel for photovoltaic/thermal
(PV/T) collector system employing TiO2-water nanofluid. Before that,
they discussed this nanofluid’s energy and exergy performances inside
the PV/T.

Some researchers focused on nanofluid flow through the absorber
tube, which is essentially a channel. Esmaeili et al. (Esmaeili et al.,
2019) applied a two-phase model to inspect turbulent flow with both
forced and free convection of nanofluid within a 3D rectangular
channel (Ajeel Raheem et al, 2022). numerically analyzedthe flow
pattern and heat transfer properties of ZnO-water nanofluid within a

new channel, where both curved and corrugated profiles for the walls
and E-shaped baffles. Berrehal et al. (Berrehal and Sowmya, 2021)
analyzed nanofluid flow between two inclined walls using the optimal
homotopy asymptotic technique. Ajeel et al. (Ajeel Raheem. et al.,
2021) utilized the multi-phase mixture model to evaluate the thermal-
hydraulic performance of binary hybrid nanofiuid flowing within a
curved-corrugated channel. The results show that using the binary
hybrid nanoparticles enhanced the thermal characteristics of the base
fluid, thus improving the heat transfer rate in the system. This effect
can be furthered by raising the volume fraction or the blockage ratio
and reducing the pitch angle.

Recently, a new technique has been employed to enhance
nanofluid’s heat transport and flow inside channels. It consists of
inserting a vortex generator of various shapes and sizes. Their primary
purpose is to increase the flow turbulence intensity and eliminate the
laminar boundary layer near the walls of the channels. Maadi et al.
(Seyed Reza et al., 2021) attempted to enhance the performance of a
photovoltaic-thermal system (PV/T) by employing nanofiuid and a
wavy-strip insert. The outcomes show that using Al2O3water-based
nanofiuid and wavy-strip inserts improved the PVT system’s thermal
efficiency by 12.06% compared to typical PVT. Mashayekhi et al.
(Ramin et al., 2020) analyzed the impact of two rows of twisted conical
strip inserts on the flow of a water-Al2O3 nanofluid in an oval tube.
Their study illustrated that inward Co-Conical inserts provide the
highest value of heat transport rate, as it can reach 17% higher than
tube without inserts. Hamid et al. (Hamid et al., 2019) performed
experiments to study the combined impacts of using TiO2–SiO2

nanofluids and wire coil inserts on a tube’s flow and heat transfer.
Chadi et al. (Kamel et al., 2021) studied a diamond-water nanofluid’s
heat transfer and flow through micro-channels fitted with
parallelogram ribs and pie-shaped ribs. The outcomes show that
the heat transfer rate was highest when the parallelogram ribs were
used. Jing et al. (Jing et al., 2020) underlined the significance of the
magnetic field and the shape of heating fins on the flow and heat
transport in a rectangular enclosure loaded with nanofluid. Azmi et al.
(Azmi et al., 2021) scrutinized the performance of TiO2–SiO2/water
hybrid nanofluid with various composition ratios flowing inside a tube
equipped with wire coil inserts. The outcomes showed that the highest
thermal performance factor reached (1.72) with a composition ratio
R = .2. In addition, the wire coils can enhance the heat transfer of
TiO2–SiO2nanofluids by up to 211.75%. Rathnakumar et al.
(Rathnakumar et al., 2014) considered improving heat transport
turbulent fiow in a tube by equipping it with helical screw louvered
rod inserts and employing (CNT)/water nanofiuids at various volume
concentrations. The calculations indicated that the helical louvered
rod inserts cause augmentation in heat transfer for a certain Reynolds
number compared to a plain tube, whereas the friction factor also
increased. Kumar et al. (Kumar et al., 2018) and Sundar et al. (Syam
et al., 2020) explored the effect of twisted tape and wire coil with core-
rod inserts on the heat transport, the friction factor of Fe3O4/water
nanofiuid fiow inside a double pipe U-bend heat exchanger. Sundar
et al. (Syam, Said, Saleh, Singh, Antonio Sousa) calculated the thermal-
hydraulic performance of rGO/Co3O4 hybrid nanofluid in a plain
horizontal tube and another one fitted with longitudinal strip inserts.
Their findings indicate that the Nusselt number is boosted by 25.65%
when the concentration of hybrid nanoparticles in water is .2%. It is
further improved by 110.56% when a straight strip is inserted.
However, employing linear strip inserts and hybrid nanofluids
results in aninsignificantdrawback in fluid friction. Alnaqi et al.
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(Abdulwahab et al., 2021)examined the performance of a solar
collector fitted with two twisted tape inserts and loaded with MgO-
MWCNT thermal oil-based hybrid nanofluid. Mohammed et al.
(Hussein et al., 2019) studied numerically the overall thermo-
hydraulic performance of nanofiuids in forced convection fiow
inside circular tubes fitted with divergent and convergent conical
rings inserts. According to their results, the divergent ring inserts
produced a 365% enhancement in the performance criteria, making
them the best option. Sheikhzadeh et al. (Ghanbar et al., 2019)
examined an ethylene-glycol-based hybrid nanofluid’s
thermodynamic and flow properties in a rectangular channel with
turbulators with various wing forms. The result shows that the
trapezoidal wings with a volume fraction of .6% provide the best
heat transfer performance considering fluid flow.

In recent years, various combinations of nanofluids as well as
affecting parameters on the different structures are taken for analysis-
oriented with the thermal application such as solar collectors. They
have been considered and developed, as a result, effective
enhancement of heat transfer achieved by many research works
(Rathnakumar et al., 2014; Kumar et al., 2018; Ghanbar et al.,
2019; Hamid et al., 2019; Hussein et al., 2019; Jing et al., 2020;
Ramin et al., 2020; Syam et al., 2020; Syam, Said, Saleh, Singh,
Antonio Sousa; Abdulwahab et al., 2021; Azmi et al., 2021; Kamel
et al., 2021; Seyed Reza et al., 2021). To the authors’ knowledge, no
research has been done on the examination of the position and
number of perforations to optimize and to enhance the
performance of a photovoltaic-thermal system (PV/T) by
employing nanofiuid and a wavy-strip insert. Accordingly, the aim
of this study is to improve heat transfer inside parabolic through solar
receiver using two different passive methods, perforated obstacles and
nanoparticles. This work also investigates the effects of perforated
obstacles inserted centrally inside the absorber of a PTC for various
cases. Inserts are placed centrally, the diameters of the perforations are
large, they are fixed to the top surface of the receiver tube, and their
dimensions are much smaller than those found in the literature. In
reality, inserting holes in obstacles aids fluid mixing by breaking the
thermal boundary layer and aids fluid mixing due to the non-uniform
circumferential heat flow profile on the receiver; hence the thermal
performance is remarkably improved. The motivated work aims to
answer to the following research questions.

- What is the effect of the perforated obstacles on heat transfer in a
solar parabolic trough collector using nanofluids?

- What is the impact of the position and number of these
perforations on the temperature of thermal oil fluid used?

- What are the benefits effects of using perforated baffles to
enhance heat the performance evaluation criteria.

- How friction factor values decrease with the increase in the
number of these holes?

Model description

Physical model

Figure 1 depicts the solar parabolic system’s schematic and the
collector’s receiver. The parabolic trough collector (PTC)
concentrates the direct sunlight on the bottom perimeter of the
parabolic trough receiver (PTR). In contrast, the top perimeter of
the PTR is exposed to non-concentrated solar irradiation
(Figure 1A). Figure 1 shows a cross-section drawing of the PTR
(b). A glass cover protects the stainless-steel absorber tube. The
space between the metal tube and the glass cover is constantly
vacuumed to reduce heat loss. The focused solar energy travels
through the glass cover and lands on the metal tube’s outer surface.
The concentrated solar energy is absorbed and transformed into
heat by the metal tube. The heat is conveyed to the heat transfer
fluid by conduction and convection modes. The receiver model
employed in this study intends to improve the heat transmission
performance of PTR by introducing absorber tubes with perforated
barriers (Figures 2, 3). Table 1 shows the geometrical
characteristics of PTR and perforated barriers. Table 2 also
depicts the thermophysical parameters of the working fluid
(Thermal oil D12), perforated barriers, and absorber tube.

Boundary conditions

The boundary conditions are as follows.

• Fluid inlet:

Vx�Vin, Vy�Vz � 0m/s, (1)
Tf � Tin � 400K (L � 0, 000 ≤φ≤ 360° (2)

• At the walls

FIGURE 1
(A) Parabolic trough collector (PTC). (B) Cross-sectional diagram of the parabolic trough receiver (PTR) (Wang et al., 2015).
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The upper half perimeter of the metal tube is exposed to the
uniform heat flux qt, which is calculated as:

qt � DNI × TGE × AMT � 1000 × 0.95 × 0.96

� 912W/m2 0≤ L≤ 4.06m, 0⁰≤φ≤ 180⁰( ) (3)

Where DNI, TGE, and AMT are the solar irradiation, the glass
envelope transmissivity, and the metal tube absorptivity,
respectively. The concentrated solar irradiation qcal was
computed by. (Kamel et al., 2021) (Figure 4). The lower half
perimeter of the metal tube is subjected to the heat flux qb,
which is calculated as:

qb � qcal ; 0≤ L≤ 4.06m, 180°≤φ≤ 360°( ) (4)

• Fully formed conditions are enforced at the fluid outflow.
• In this study, the outer absorber wall is subjected to a non-
uniform heat flux estimated using the Monte Carlo Ray Tracing
(MCR) method and a DNI of 1000 W/m2. Figure 4 depicts the
variation of the heat flux distribution along the bottom-half
perimeter of the absorber tube for present and Hachicha et al.
(Hachicha et al., 2013)models. Using the current calculation, the
heat flux distribution pattern of the absorber tube is plotted in
Figure 5.

Numerical model

Numerical method

The computational fluid dynamics (CFD) modeling technique
was used in this work. The finite volume technique (FVM) is used
to discretize the equations. The resulted equations system is solved
numerically by employing the commercial package software
ANSYS-FLUENT (Release 17.1). The RNG k-ε turbulence model
is employed to simulate the turbulent flow of Thermal oil D12 in
the solar collector’s absorber tube. Second-order UPWIND and
QUICK methods are used for discretizing the convective
components in momentum and energy equations. For dealing
with pressure-velocity coupling, the SIMPLEC method is

FIGURE 2
The receiver’s longitudinal segment with perforated obstruction
inserts.

FIGURE 3
Cross-section of the receiver tube with perforated obstacles and smooth absorber.
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utilized. For all equations, the convergence threshold is 10–6.
GAMBIT version 2.2 is used to generate and the mesh of the
physical model (Figure 6).

Governing equations

The instantaneous Navier Stokes equation is used to generate
the RNG k-turbulent model by using a mathematical approach
known as “renormalization group” (RNG) methods (Gnielinski,
1976; Yakhot et al., 1992). The values of k (turbulent kinetic
energy) and ε (turbulent dissipation rate) are determined by
equations:

ρ
zk
zt

+ uj
zk
zxj

( ) � z

zxj
μ + μt

σk RNG( )
( )

zk
zxj

[ ] + Pk − ρε (5)

ρ
zε

zt
+ ui

zε

zxi
( ) � z

zxj
μ + μt

σε RNG( )
( )

zε

zxj
[ ]

+ ε

k
C1ε RNG( )Pk − C2ε RNG( )ρ

ε

k
( ) (6)

Where

Pk � −ρui′uj′
zui

zxj
(7)

C2ε RNG( ) �
C2ε + Cμη3 1 − η

η0
( )

1 + βη3 (8)

η � k

ε
2SijSij( )

1/2
(9)

The turbulent viscosity μt is calcluated as:

μt � ρCμ
k2

ε
(10)

Where the parameter ρ represents the fluid’s density.
Sij denotes the strain tensor rate and is defined as:

Sij � 1
2

zui
zxj

+ zuj
zxi

( ) (11)

Table 3 summarizes the model constants used.

Results and discussion

Grid independency

Numerous calculations were undertaken to determine the total
number of grid points required to create an array adequate for
measuring flux and thermal field in order to justify the simulation
solution’s accuracy and consistency. Table 4 illustrates the
evolution of the average Nusselt number as a cell number
function for Reynolds numbers ranging from 104 to 106.

TABLE 1 The PTR model parameters and perforated obstacles.

Parameter Values Reference

Length of the absorber (m) 4.06 Wu et al., 2014a, Wu
et al., 2014b

Internal diameter of the metal tube (m) .064

External diameter of the metal tube (m) .07

Internal diameter of the Glass cover (m) .117

External diameter of the Glass cover (m) .12

Glass envelope transmissivity .95

Metal tube absorptivity .96

Obstacle diameter (mm) 46

Perforated obstaclesthickness (mm) 2

Diameter of the perforation (mm) 10

Distance between two consecutive perforated
obstacles (mm)

128

Number of perforated obstacles in the
absorber tube

25

TABLE 2 Thermophysical properties of the working fluid, perforated obstacles, and absorber tube.

Working fluid (thermal oil D12) Perforated obstacles and absorber tube (stainless steel) Reference

Density (Kg/m3) 679 8,027 Solutia, (1998)

Specific heat (J/Kg.K) 2,571 500

Thermal conductivity (W/m.K) .091 20

Viscosity (N.s/m2) .000346 —

FIGURE 4
Heat flux distribution variation along the bottom half perimeter of
the absorber tube.
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Code validation

To determine the validity and correctness of themodel and numerical
solution used in this inquiry, theNusselt number generated in this study is
compared to the Nusselt number computed using the Gnielinski
correlation (Petukhov et al., 1970). Gnielinski devised the following
equation to get the Nusselt number of a smooth tube:

NuD� f/8( ) ReD−1000( )Pr
1+12.7 f/8( )

1/2 Pr2/3 −1( )
;For3000≤Re≤5×106and0.5≤Pr≤2000

(12)
Where the Petukhov friction correlation is as used in (Gee and Webb,
1980):

f � 0.790 ln ReD − 1.64( )−2 ; For 3000≤Re≤ 5 × 106 (13)
By flowing the PTR heat transfer fluid through a metal tube, the

heat transfer properties of the fluid are studied. The Nuavg, Re, and
heat transfer coefficient (h) read are as follows:

Nuavg � h.D
λ

(14)

Re � D.v
]

(15)

h � q″
Tt,a − Tf ,a

(16)

The Darcy friction factor in turbulent flow regime is as defined in
(Amina et al., 2017):

f � 2.ΔP.D
L.ρ.v2 (17)

Using the relation between the pressure and shear forces, the
above expression can be written as:

f � 8.τw
ρ.v2 (18)

To verify the quality of the computational model employed in this
study, the Gnielinski and Petukhov correlations for the Nusselt
number and friction factor are utilized to evaluate the simulation
of heat transfer and flow properties of the thermal oil D12 in the
absorber tube. Figure 7 and Figure 8 show the friction factor and
Nusselt number comparisons between the numerical results and the
correlations for smooth absorber, respectively. The maximum
deviation value of the numerical results was found to be around
7.8% and 15%, and the minimum deviation equals 18% and 11% for
the Nusselt number and friction factor, respectively. The heat transfer
and flow properties are clearly in agreement with the correlations.

Effect of perforated obstacles on heat transfer

As seen in Figure 9, changes in Reynolds number (Re) generate
fluctuations in Nusselt number, which has values of 18860 (v = 15 m/
s), 44007 (v = 35 m/s), and 81728 (v = 65 m/s) when using thermal oil
D12 as working fluid. The Nusselt number approximately linearly rises
in proportion to the Reynolds number; this enhancement is caused by
introducing perforated barriers, which improve the heat transfer area.
The vortex flow was caused by fluid mixing given by the perforated
barriers, and enhanced turbulent intensity at high values of Re leads
the thermal boundary layer to be destroyed. The highest gain is seen in
absorber tubes with three holes and perforated barriers (PO3). The
average Nusselt number improves by 115 percent compared to the
standard case with the smooth absorber. Perforated barriers with one
hole (PO1) are the second most successful example, with an average
Nusselt number enhancement of 108 percent.

In contrast, perforated barriers with nine holes (PO9) have the
smallest Nusselt number enhancement, which equals 54 percent.
From Figure 10, it can be observed that the smooth case has the

FIGURE 5
Heat flux distribution on the absorber tube surface (current study).

FIGURE 6
3D mesh of the computational domain.
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smallest friction factor of all the cases investigated in this study.
The largest friction factor is obtained when perforated barriers with
one hole (PO1) are used, followed by perforated barriers with three
holes (PO3) and perforated barriers with nine holes (PO9) in the
second and third cases, respectively. These higher values are caused
by the whirling flow generated by the inserts that function as an
obstruction. Figure 11 displays the heat transfer fluid average
temperature distribution on sectional planes (y-axis and z-axis)
along the entire length of the absorber tube with and without
impediments. At the exit, the temperature reaches its peak. Higher
temperatures (462.1 K) are achieved in the absorber tube with
perforated barriers with three holes (PO3), followed by (461.56 K)
for perforated barriers with one hole (PO1), and 454.92 K for perforated
barriers with nine holes (PO9). Figure 12 shows the temperature
distributions of the PTR absorber tube on two distinct cross-sections
with Re = 81728 for various scenarios.

FIGURE 7
Nussle number with Gnielinski correlation.

FIGURE 8
Friction factor with Petukhov correlation.

FIGURE 9
Nu variation in the absorber vs. Reynolds number (P/D = 2).

TABLE 3 Model constants.

Cμ C1ε(RNG) C2ε(RNG) σk (RNG) σε (RNG) η0 β

.0845 1.42 1.68 .7194 .7194 4.38 .012

TABLE 4 Mesh effect on the average Nusselt number.

Ncells

294600 307200 330400 354400

Re Nu |δmax|

104 148.123 150.021 149.613 150.461 1.57%

105 222.104 226.371 226.719 229.004 3.10%

106 259.121 258.223 259.942 260.781 .64%

FIGURE 10
Variation in absorber tube’s friction factor vs. Reynoldsnumber (P/D=2).
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Thermal performance analysis

To enhance heat transfer efficiency, it is required to assess
both heat transfer and flow resistance concurrently. As a result,

as stated below (Xiangtao et al., 2017), the performance
evaluation criteria (PEC) are universal assessment tools that
reflect a heat transfer unit’s overall performance. The thermal
performance criterion was calculated as the ratio of the

FIGURE 11
Variation in absorber tube’s average temperature and without
perforated obstacles (Re = 81728, v = .65 m/s).

FIGURE 12
Temperature distribution of absorber tube of PTR at cross-sections with Re = 81728.

FIGURE 13
Performance evaluation criteria variation vs. Re number.
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dimensionless Nusselt number to the dimensionless friction
factor.

PEC � Nu/Nu0
f/f 0( )

1/3 (19)

where (Nu0) and (Nu1) represent the smooth absorber case (f0).
Figure 13 illustrates the fluctuation of performance evaluation

criteria (PEC); when the PEC values exceed one, it indicates that the
inserts have a favorable influence on heat transfer. It is notable that the
perforated barriers give a heat transfer boost over the smooth tube.
The perforated barriers with three holes had the greatest PEC
value (PO3).

Table 5 includes the obtained increase in the Nusselt number
(Nu) and in the performance evaluation criteria (PEC). Data has
been estimated according to the results of these papers. Moreover,
this table shows the method of every study. These studies more
specifically, present lower performance evaluation criteria (PEC)
compared to the present study. According to the final results, the
use of perforated obstacles leads to 1.24% performance evaluation
criteria (PEC) enhancement.

Conclusion

The effect of utilizing varied perforated barriers on the thermal
performance of parabolic through the solar receiver is computationally
investigated in this work. The following observations could be drawn
from this work.

• In comparison to the reference case (smooth absorber), the
greatest increase in Nusselt number was 115%, and it was
attained by the perforated obstacles with three holes (PO3),
followed by 108% for the perforated obstacles with one hole
(PO1), while the perforated obstacles with nine holes (PO9)
achieved the minimum enhancement of 54%.

• Friction factor values decrease with the increase in the number
of holes on obstacles. In the case of the tube without perforated
obstacles, friction factor values are less than all the friction factor
values with perforated obstacles inserts.

• The perforated barriers in the absorber tube increase the Nusselt
number while decreasing the friction factor.

• The highest PEC value was obtained for the perforated obstacles
with three holes (PO3).

• The temperature of the heat transfer fluid reaches its maximum
value near the exit, while temperatures as high as 462.1 K are

obtained in the absorber tube with perforated barriers with three
holes (PO3).
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TABLE 5 Comparison with literature studies with inserts in the receiver of a parabolic trough solar collector and the present study.

Cas Insert type Increase (%)
Nu

PEC Method Reference

Present study Perforated obstacles 115 1,24 CFD

Gong Xiangtao Pin fin arrays 9 1.12 CFD Mwesigye et al. (2016)

Aggrey Mwesigye Twisted tape 58.8 1.02 CFD Mwesigye et al. (2014)

Aggrey Mwesigye Perforated plate 8–133.5 .44–1.05 CFD
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