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The production of cellular oxidants such as reactive oxygen species (ROS) is an inevitable con-
sequence of redox cascades of aerobic metabolism in plants. This milieu is further aggravated 
by a myriad of adverse environmental conditions that plants, owing to their sessile life-style, 
have to cope with during their life cycle. Adverse conditions prevent plants reaching their full 
genetic potential in terms of growth and productivity mainly as a result of accelerated ROS 
generation-accrued redox imbalances and halted cellular metabolism. In order to sustain ROS-
accrued consequences, plants tend to manage a fine homeostasis between the generation and 
antioxidants-mediated metabolisms of ROS and its reaction products. 
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Well-known for their involvement in the regulation of several non-stress-related processes, redox 
related components such as proteinaceous thiol members such as thioredoxin, glutaredoxin, 
and peroxiredoxin proteins, and key soluble redox-compounds namely ascorbate (AsA) and 
glutathione (GSH) are also listed as efficient managers of cellular redox homeostasis in plants. 
The management of the cellular redox homeostasis is also contributed by electron carriers and 
energy metabolism mediators such as non-phosphorylated (NAD+) and the phosphorylated 
(NADP+) coenzyme forms and their redox couples DHA/AsA, GSSG/GSH, NAD+/NADH and 
NADP+/NADPH. Moreover, intracellular concentrations of these cellular redox homeostasis 
managers in plant cells fluctuate with the external environments and mediate dynamic signaling 
in pant stress responses.

This research topic aims to exemplify new information on how redox homeostasis managers 
are modulated by environmental cues and what potential strategies are useful for improving 
cellular concentrations of major redox homeostasis managers. Additionally, it also aims to pro-
vide readers detailed updates on specific topics, and to highlight so far unexplored aspects in 
the current context.
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The Editorial on the Research Topic

Redox Homeostasis Managers in Plants under Environmental Stresses

Environmental stresses, grouped broadly into abiotic (physical environment e.g., drought,
temperature regimes, UV-B radiation, salinity, and metals/metalloids) and biotic (e.g., pathogen,
herbivore) significantly modulate the survival, reproduction, and productivity of plants/crops
(Redondo-Gómez, 2013). In particular, environmental stresses caused by climate change, such
as drought, high salinity, and low and high temperatures are predicted to become more severe
and widespread (Osakabe et al., 2013). At cellular level, the sustenance of plant life under
stressful environment is controlled by homeostasis in the usual redox reactions. Redox reactions
can contribute various reactive oxygen species (ROS). One-, two-, and three-electron reduction
of O2 or excitation of triplet oxygen (3O2) can occur and cause the formation of superoxide
radical (O•−

2 ) or hydroperoxyl radical (HO•

2), hydrogen peroxide (H2O2), hydroxyl radical (
•OH),

and singlet oxygen (1O2), respectively. As integral signaling molecules, ROS regulate growth
and development of plants, and also modulate their responses to biotic and/or abiotic stimuli
(Baxter et al., 2014). However, beyond their steady-state cellular concentrations, ROS and their
reaction products can modulate plant stress responses and/or severely impair the cellular redox
homeostasis (Dietz, 2003; Oelze et al., 2008; Baxter et al., 2014; Juszczak et al.). Nevertheless,
extreme environmental conditions are inevitable for plants and can excessively over-reduce or over-
oxidize cellular environment. Previous conditions are likely to cause an imbalance in the generation
and metabolism of ROS (and their reaction products), loss in the cellular redox homeostasis and
finally the arrest in the cellular metabolism (Foyer and Noctor, 2009, 2012).

Plants are equipped with several strategies to efficiently metabolize and tightly regulate
the steady-state levels of cellular ROS (and its reaction products), and manage cellular redox
homeostasis at its optimum. The list of major cellular redox homeostasis managers includes redox-
related components such as proteinaceous thiol members such as thioredoxin, glutaredoxin, and
peroxiredoxin proteins, and key soluble redox-compounds such as ascorbate (AsA) and glutathione
(GSH). Electron carriers and energy metabolism mediators such as non-phosphorylated (NAD+)
and the phosphorylated (NADP+) coenzyme forms and their redox couples DHA/AsA,
GSSG/GSH, NAD+/NADH, and NADP+/NADPH also contribute to cellular redox homeostasis
(Schafer and Buettner, 2001; Anjum et al., 2010, 2012a,b; Foyer and Noctor, 2011, 2012; Suzuki
et al., 2012; Giordano, 2013). The cellular redox homeostasis has also been regarded as the
major “integrator” of information from metabolism and the plant–environment relationship

6
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(Foyer and Noctor, 2009). Hence, unveiling insights into the
role and underlying mechanisms of redox homeostasis in plants
under environmental stresses has been the major focus of current
plant research (Schafer and Buettner, 2001; Foyer and Noctor,
2009, 2011, 2012; Anjum et al., 2010, 2012a,b; Suzuki et al., 2012;
Giordano, 2013).

The present volume “Redox Homeostasis Managers in
Plants under Environmental Stresses” updates the readers
on the subject, and discusses research progress and current
understanding on the subject. Among the significant 17 article
types, original research reports exemplified new information
on how redox homeostasis managers are modulated by
environmental cues and what potential strategies are useful for
improving cellular concentrations of major redox homeostasis
managers. Additionally, detailed updates to specific topics
and so far unexplored aspects were highlighted by focused
review/mini-review articles.

Cellular redox homeostasis is impacted by abiotic factors that
can cause elevations in ROS (and their reaction products) at
varying levels in the major energy organelles, such as chloroplast
and mitochondria (Das et al.). Soil salinity is a serious threat to
crop productivity worldwide that causes oxidative stress through
imposing ion toxicity, osmotic stress, and metabolic imbalance
(Adem et al., 2014; Abd Elgawad et al.). Notably, salinity stress
significantly impacts electron flow in the electron transport chain
in these organelles, disturbs the status of adenine (ATP) and
pyridine nucleotides (NADH, NADPH), and eventually leads to
elevation in cellular ROS and lipid peroxidation (LPO; Srivastava
et al.). However, the extent of salinity-impact on ATP, NADH,
NADPH, cellular ROS, and LPO can be higher in glycophytes
(such as Brassica juncea; salt-sensitive) when compared with
halophytes (such as Sesuvium portulacastrum; salt-tolerant;
Srivastava et al.). Redox active compounds, AsA and GSH
can play a significant role in the protection of plants against a
number of abiotic stresses including temperature (low/chilling
and high) and drought (Anjum et al.; Awasthi et al.; Das and
Roychoudhury; Lukatkin et al.). Notably, the cellular level of AsA
and GSH can differ in Vigna radiata during its ontogeny under
drought exposure (Anjum et al.). In addition, sulfur nutrition
was revealed as a potential strategy for the management of
improved cellular pools of these redox active compounds. The
role of polyamines and brassinosteroids for the maintenance of
the cellular redox homeostasis in plants exposed to major abiotic
stresses was critically discussed by Saha et al. and Vardhini
and Anjum, respectively. Montero-Palmero et al. showed that
plant endogenous factors like ethylene can modulate the early
oxidative stress induced by mercury (Hg). Monoterpenoid indole
alkaloids and phenols can be used as a defense tool against stress
factors and can also benefit plants depleted in GSH (Vera-Reyes
et al.). Dehydrogenases involved in the regeneration of NADPH
such as glucose-6-phosphate dehydrogenase (G6PDH), 6-
phosphogluconate dehydrogenase (6PGDH), NADP-malic
enzyme (NADP-ME), and NADP-isocitrate dehydrogenase
(NADP-ICDH) can support the protection of plants against
nitro-oxidative stress induced by adverse environmental
conditions (Corpas and Barroso). Information is scanty in the
literature on the mechanisms involved in the control of each
mitochondrial enzyme at the post-translational level (Millar

et al., 2011; Nunes-Nesi et al., 2013). To this end, Yoshida and
Hisabori evidenced that oxidation can inactivate mitochondrial
isocitrate dehydrogenase; whereas, the later can be reactivated by
thioredoxin-dependent reduction in Arabidopsis.

Insights into the role of redox active compounds AsA
and GSH, proteinaceous thiol members such as thioredoxins,
peroxiredoxins, and glutaredoxins, electron carriers and energy
metabolism mediators phosphorylated (NADP) and non-
phosphorylated (NAD+) coenzyme in the ROS-metabolism
and the maintenance of redox homeostasis in abiotic stressed-
plants were also critically discussed (Kapoor et al.). Notably,
the enzymes of the AsA-GSH pathway, a key part of the
network of reactions involving enzymes and metabolites with
redox properties can have various subcellular isoforms, differ
from each other (with respect to their spatial and temporal
expression), and can also be differentially regulated by stress
types (Anjum et al., 2010, 2012a,b; Gill and Tuteja, 2010). The
knowledge gap available on the major mechanisms underlying
the regulation of major isoforms of the AsA-GSH pathway
enzymes was provided by Pandey et al. These authors provided
major insights into the gene families of the AsA-GSH pathway,
and also described their roles in the management of cellular
redox homeostasis in plants exposed to abiotic and biotic stress
conditions. Carvalho et al. elaborated the information available
on the main mechanisms underlying plant tolerance to stresses
(abiotic and biotic) via phenolic compounds (such as simple
flavonoids like anthocyanins). Furthermore, it has recently been
demonstrated that condensed proanthocyanidins (tannins) are
solubilized into the vacuole or linked to cell wall polysaccharides
and largely control the nutraceutical properties of the grape berry
and its derivatives such as wine (Tenore et al., 2011; De Nisco
et al., 2013).

An improved cellular redox homeostasis and plant-tolerance
to environmental challenges are also achieved by employing
several seed/plant-priming strategies (Tanou et al.; Bhanuprakash
and Yogeesha, 2016). Notably, extreme abiotic and biotic stresses
can severely impact or kill the organisms; whereas, low stress
levels can exhibit priming effects and benefit stressed-plants
(Hadacek and Bachmann). In an attempt to understand this
idiosyncratic phenomenon, Hadacek and Bachmann explored
the phenomenon of life from a more chemical perspective,
elaborated insights into chemical structure diversity and
recapitulated the basic reaction chemistry of low-molecular-
weight metabolites (LMWMs). Additionally, contributions of
LMWMs to a homeodynamic systems chemistry of living
organisms were also dissected. Non-metabolized and/or elevated
levels of ROS (and its reaction products) are the major violators
of cellular redox homeostasis in stressed plants. However, the
science of cellular redox homeostasis is lagging behind due to a
major problem related with the quantification ROS and also with
the identification of their short lifetime. Thus, the technique of
electron paramagnetic resonance (EPR) spectroscopy could be a
panacea to the said issue and can allow disentangling the origin
of specific ROS and transient alterations in their cellular levels
(Steffen-Heins and Steffens).

Herein, research reports discussing “cellular redox
homeostasis in plants” in context with stresses caused by
climatic changes (such as drought and salinity) and toxic
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chemicals (such as Hg) were least explored. Also, report is scanty
on the “cellular redox homeostasis in plants” vs. biotic factors.
However, contributions gathered herein concluded that the
“cellular redox homeostasis in plants” is central to the plant stress
defense, and the future investigations in this area can help in
dissecting more insights into plant responses to environmental
stresses. Recent advances in the subject were nicely presented
and elaborated, and also identified and listed important open
questions and challenges in the article types. Further, this
research topic advocates to intensify and integrate biochemical,
physiological and molecular-genetic studies on various aspects
of the “cellular redox homeostasis in plants.” Contributions
included in this e-book can be useful for budding scientists
working on the subject, and can also encourage further dialog,
research and development on the “cellular redox homeostasis in
plants.”
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Plant cells are often exposed to oxidative cellular environments which result in the
generation of toxic reactive oxygen species (ROS). In order to detoxify the harmful
ROS, plants have evolved various strategies including their scavenging and antioxidant
machinery. Plant cells contain many enzymatic and non-enzymatic antioxidants which aid
in removing the toxic oxygen molecules. Various antioxidant molecules localized within
different cellular compartments play crucial role(s) during this process, which includes
both redox-signaling and redox-homeostasis. The present review gives an overview of
cellular oxidative environment, redox signaling operative within a cell and contributions
of major cellular organelles toward maintaining the redox homeostasis. Additionally, the
importance of various antioxidant enzymes working in an orchestrated and coordinated
manner within a cell, to protect it from stress injury has been presented. We also present
the state-of-the-art where transgenic approach has been used to improve stress tolerance
in model and crop species by engineering one or more than one of these components of
the ROS scavenging machinery.

Keywords: redox homeostasis, reactive oxygen species, ascorbate peroxidase, catalase, superoxide dismutase,

abiotic stress

INTRODUCTION
Plants are obligate aerobic organisms like animals and
they require oxygen for mitochondrial energy production.
Furthermore, plants can deal with much higher concentration of
oxygen as the green tissues of plants continuously produce oxygen
through the process of photosynthesis during day time. In plants,
the green leaves contain 2.5 fold higher oxygen concentration
than the non-green parts like root. In both green and non-green
parts, the oxygen concentration is much higher than the oxygen
concentration found in animal cells (Vanderkooi et al., 1991).
Plant tissues experience wide oxygen fluctuations under abiotic
stress conditions, making the surroundings strongly hypoxic
(Bailey-Serres and Voesenek, 2008). Plant seeds also experience
huge oxygen variations. When green young seeds are photosyn-
thetically dynamic, the light-dark reaction generates large and
quick variations in the internal oxygen concentrations of Brassica
napus. The variation ranges from strong hyperoxia (>700 μM
in day) to severe hypoxia (<1mM in night). Similar situations
have also been observed in many other species (Borisjuk and
Rolletschesk, 2008).

As a natural result of the oxygen metabolism, plants con-
tinuously produce reactive oxygen molecules/species (ROS) like
superoxides and peroxides (Panda et al., 2013; Kangasjarvi and
Kangasjarvi, 2014; Vainonen and Kangasjarvi, 2014). Although,
high concentration of these ROS has negative effect on plants,
specific concentrations of ROS play vital roles in cell signaling.
Continual exposure to ROS creates an oxidative environment

which affects the redox balance of the cell. Alterations in redox
state in intracellular region also have a major consequence on
cell functions as various cellular signaling pathways regulating cell
division and stress reaction systems are sensitive to redox situa-
tion (Chiu and Dawes, 2012). Severe redox situation often leads
to senescence and death of the cell and ultimately the organism.

Antioxidants with low molecular weight like ascorbate, toco-
pherol and glutathione, are redox buffers which act as enzyme
cofactors and play crucial roles in defense, cell proliferation to
aging and death (Tokunaga et al., 2005). Antioxidants supply nec-
essary information on redox state of the cell, and they control the
expression of the genes linked with abiotic and biotic stresses to
increase stress defense. Maintaining the level of these ROS at a bal-
anced state is always crucial for plants and for this purpose, plants
have adopted various cellular mechanisms. Growing facts suggest
models for redox homeostasis where the antioxidant-ROS com-
munications play as a metabolic interface for signals derived from
metabolism and from the environment. Present topic talks about
the roles of various cellular organelles in maintaining the redox
homeostasis in plant cells and ultimately helping toward abiotic
stress tolerance in plant.

OXIDATIVE ENVIRONMENT, ANTIOXIDANT INTERACTIONS
AND REDOX SIGNALING IN PLANT CELL
Oxidative environment is generated when ROS is produced by
a specific or by combination of multiple stresses (Thorpe et al.,
2004). Process of generation of oxygen in cell has been mentioned
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or reviewed by many researchers (Aung-Htut et al., 2012; Kumar
et al., 2012; Khanna-Chopra et al., 2013; Ghosh et al., 2014).
The first product of specialized water producing reactions cat-
alyzed by oxidases is superoxide and from superoxide, other
ROS are produced subsequently. Singlet oxygen is also produced
while capturing of light and process of photochemistry is going
on. Numerous enzymatic processes generate superoxide (O−

2 )
or hyderogen peroxide (H2O2). Most of the cellular compart-
ments (chloroplast, mitochondria, peroxisome, and cytoplasm)
in higher plants participate in the generation of ROS inside the
cell (Figure 1).

Abiotic stresses like drought, salinity, low temperature or high
temperature often limit the CO2 fixation and reduce the genera-
tion of NADP+ through Calvin cycle. Therefore, over-reduction
of the photosynthetic electron transport chain (ETC) is occurred
which generates superoxide radicals and singlet oxygen in the
chloroplasts (Li and Jin, 2007). To avoid the over-reduction of
the ETC under stress conditions, higher plants modified the
pathway of photorespiration to regenerate NADP+ (Shao et al.,
2006). H2O2 is generated in the peroxisomes as a by-product of
photorespiratory pathway (Foyer and Noctor, 2005).

To control the production of the highly toxic ROS, higher
plants possess enzymatic and non-enzymatic antioxidant defense
systems that help in scavenging of ROS and protection of plant

cells from oxidative damage (Foyer and Noctor, 2005). High
accumulation of non-enzymatic ROS scavengers, and differ-
ent biochemical properties, different localization and differen-
tial inducibility at the transcript or protein level of antioxidant
enzymes provide the antioxidant systems, a very flexible unit that
can control ROS accumulation temporally and spatially (Foyer
and Noctor, 2005; Shao et al., 2006). The antioxidant enzymes
such as catalase (CAT), superoxide dismutase (SOD), glutathione
reductase (GR), ascorbate peroxidase (APX), GR and monodehy-
droascorbate reductase (MDAR) play major role in scavenging the
toxic ROS inside the plant cell along with the non-enzymatic ROS
scavengers like ascorbic acids and reduced glutathione (Figure 1).

Plants have evolved inbuilt mechanism to sense, transduce,
and translate ROS signals into appropriate cellular responses.
This particular process requires the existence of redox-sensitive
proteins that can take part both in oxidation and reduction
reactions and may regulate the switching-on or -off depending
upon the cellular redox state (Shao et al., 2006). The redox-
sensitive proteins are directly or indirectly oxidized by ROS
via the ubiquitous redox-sensitive molecules, such as thioredox-
ins (Trxs) or glutathione (Nakashima and Yamaguchi-Shinozaki,
2006). The cellular metabolism under oxidative stress is directly
modulated by redox-sensitive metabolic enzymes, but the redox-
sensitive signaling proteins complete their action via downstream

FIGURE 1 | Major sites of reactive oxygen species (ROS) production in

photosynthetic cells and involvement of major antioxidative enzymes.

GO, glycolate oxidase; 3PGA, 3-phosphoglycerate; RuBisCo, ribulose

1,5-bisphosphate carboxylase/oxygenase; RuBP, ribulose 1,5-bisphosphate;
SOD, superoxide dismutase; XO, xanthine oxidase; CAT, catalase; APX,
ascorbate peroxidase.
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signaling components, such as phosphatases, kinases and tran-
scription factors (Foyer and Noctor, 2005; Li and Jin, 2007).
Molecular mechanisms of redox-sensitive regulation of protein
have also been explained for plants and other living organ-
isms (Cvetkovska et al., 2005; Foyer and Noctor, 2005). ROS
mediated signaling involves hetero-trimeric G-proteins and MAP
kinase regulated protein phosphorylation and protein Tyr phos-
phatases (Pfannschmidt et al., 2003; Foyer and Noctor, 2005;
Kiffin et al., 2006). Mitogen-activated protein kinase (MAPK)
cascades are mainly engaged by eukaryotes which have got much
concentration for research since long years. The minimal signal
transduction unit is considered to have a stimulus-activatable
MAP kinase kinase kinase (MAPKKK), a MAP kinase kinase
(MAPKK), a MAP kinase (MAPK) and their downstream targets.
A chronological phosphorylation-activation process begins which
transmit the signal from the MAPKKK to the target, which may
be a transcription factor (TF) whose activity and localization is
influenced by phosphorylation. The proportions of phosphory-
lation activation and transmission indicate that MAPKKKs can
be activated by particular stimuli and the signaling pathways may
congregate at the MAPKK level of the cascade. A single MAPKK
could then phosphorylate several MAPKs. The signaling through
MAPKKKs and MAPKKs could continue through other mecha-
nisms as well besides phosphorylation of their direct downstream
targets (Figure 2). This occurs with the Arabidopsis MAPKKK,
MEKK1, which may phosphorylate the WRKY53 TF and addi-
tionally, bind to its promoter which functions as an activator
for transcription (Miao et al., 2007). Salinity and cold reactive
MEKK1-MKK1/2-MPK4/6 signaling cascade (Teige et al., 2004),
which appears to have a bi-directional communication with ROS:
the MEKK1 protein have been reported to be stimulated and
stabilize by H2O2 and also the MAPK components -MPK4 and
MPK6 have been found to be activated by ROS and various abiotic
stresses (Teige et al., 2004).

In higher plants, the biochemical and structural basis of kinase
pathway activation by ROS is yet to be established, but thiol oxi-
dation probably has a key contribution here (Yabuta et al., 2004;
Foyer and Noctor, 2005). Stromal ferredoxin-thioredoxin sys-
tem is the well-known redox signal transduction system in plants
which functions during photosynthetic metabolism of carbon.
Signal transmission occupies disulfide-thiol alteration in target
enzymes (Yabuta et al., 2004). Increasing authentication shows
that plant hormones are situated downstream of the ROS signal.
Induction in accumulation of stress hormone, such as salicylic
acid and ethylene, is caused by H2O2 (Kiffin et al., 2006). Plant
hormones are not only placed downstream to the ROS signal,
ROS also play a role as secondary messengers in many hormone
signaling pathways (Kwon et al., 2006). It indicates that backward
or forward interactions may possibly occur between different
hormones and ROS (Rio et al., 2006; Terman and Brunk, 2006).

REDOX HOMEOSTASIS IN PLANTS
Concurrent occurrence of both reduced and oxidized forms of
electron transporters is required for competent flux through elec-
tron transport cascades in plants. This condition is known as
redox poising and it involves an uninterrupted change of elec-
trons to oxygen molecule from diverse sites in the respiratory and
photosynthetic electron transport chains. The reactive character

FIGURE 2 | Schematic depiction of cellular ROS sensing and signaling

mechanisms through MAP kinase signaling pathway. Intracellular ROS
can also influence the ROS-induced mitogen-activated protein kinase
(MAPK) signaling pathway through inhibition of MAPK phosphatases
(PPases) or downstream transcription factors. Whereas, MAP kinases
regulate gene expression by altering transcription factor activity through
phosphorylation of serine and threonine residues, ROS regulation occurs by
oxidation of cysteine residues.
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of these ROS means not only that their increasing concentration
should be controlled but also that they are capable to play as sig-
naling molecules. The level of accretion of ROS is determined
by the antioxidative system which enables cells to preserve the
cellular components in an active state for metabolism.

Similar to many other aerobic animals, plants preserve
most cytoplasmic thiols in the reduced (2SH) condition, as
the low thiol disulfide redox potential imposed by millimolar
concentrations of glutathione is the thiol buffer. Nevertheless,
plant cells produce high concentrations of ascorbate, an added
hydrophilic redox buffer which gives strong defense against oxida-
tive stress. Redox homeostasis is directed by the large pools of
these antioxidants which maintain the level of reductants and
oxidants in a balanced state. Tochopherols (Vitamin E) are impor-
tant liposoluble redox buffers produced by the plants. Although,
tochopherol is known as a major singlet oxygen scavenger, it also
can efficiently scavenge other ROS (Foyer and Noctor, 2005).
Furthermore, as the tocopherol redox couple has an additional
constructive midpoint potential than the ascorbate pool, it fur-
ther amplifies the range of efficient superoxide scavenging. The
capacity of the glutathione, ascorbate and tocopherol pools, to
play as redox buffers in plant cells, is one of their significant
characteristics.

ROS signaling pathways are made achievable by homeostatic
regulation accomplished by antioxidant redox buffering. As the
antioxidants constantly process ROS, they decide the duration
and the specificity of the signal of ROS. Plant cells usually han-
dle the high rate of generation of ROS in a very careful way. Even
though, cellular oxidation is significant in all biotic and abiotic
stress reactions, the level and physiological consequence of oxida-
tive injury is arguable. For instance, plants with low cytosolic APX
and CAT activities show less severe stress indications than the
plants which require either one of these enzymes (Rizhsky et al.,
2002). It has also been established that cell death mediated by
singlet oxygen is not a direct consequence of damage per se but
somewhat is genetically programmed through the EXECUTOR1
pathway (Wagner et al., 2004). Moreover, plants adapt very well to
depletion of antioxidants by signaled induction of other defense
systems such as: tocopherol-deficient Arabidopsis vte mutant
seedlings have high amounts of lipid peroxides, but the mature
plants show slightly abnormal phenotype (Kanwischer et al.,
2005). Furthermore, it has been well-established that most of the
cellular organelles play important roles to maintain the redox
homeostasis in the plant cell (Andreev, 2012; Ferrández et al.,
2012; Lázaro et al., 2013). Following section describes the con-
tribution of major cell organelles toward maintaining cell redox
homeostasis under oxidative environment.

INVOLVEMENT OF MAJOR CELLULAR ORGANELLES IN
MAINTAINING REDOX HOMEOSTASIS IN PLANT CELL
CONTRIBUTION OF CHLOROPLAST
Dithiol-disulphide exchange based post translational alteration
comprises a fast and reversible mechanism of regulation in a
cell. Thus, it allows the competent adaptation of metabolism to
the ever-changing environmental conditions. Trxs with a pair of
cysteine residues at their active site act an important role in disul-
phide reduction of protein by using NADPH as reducing agent

(Jacquot et al., 2009). This reaction is catalyzed by NADPH-
dependent thioredoxin reductase (NTR). All the living organisms
(including Bacteria, animals, and plants) possess two compo-
nent NTR/Trx redox systems (Meyer et al., 2005). However, plant
chloroplasts have an intricate set of particular Trxs, which addi-
tionally utilize a chloroplast specific ferredoxin-dependent thiore-
doxin reductase (FTR), unlike the other heterotrophic organisms.
Hence, rather than the NADPH, the redox regulation of chloro-
plast is mainly dependent on photosynthetic electron transport
chain-reduced ferredoxin in the presence of light. It has been
reported that a unique NTR with a Trx domain at its C-terminus
(named as NTRC) is utilized in oxygenic photosynthetic organ-
isms and is localized in chloroplasts (Serrato et al., 2004). NTRC
is capable of reducing disulphides of the target proteins by using
NADPH and hence, it performs as NTR/Trs system in a single
polypeptide (Pérez-Ruiz and Cejudo, 2009). After discovery of
these results, a new picture appeared according to which both
NADPH and ferredoxin (FD) can be used for maintaining the
chloroplast redox homeostasis (Spínola et al., 2008). At night,
reduced FD become limiting and NADPH produced from the
sugar play as a major source of reducing power and thus, NTRC
play an essential role for maintaining the redox homeostasis.
It has also been reported that non-green plastids also have the
components of FTR/Trx system which suggests that the redox
regulation is also occurring in the non-photosynthesizing plant
parts (Balmer et al., 2006). The damage in the vital regulatory
enzymes of starch synthesis i.e., ADP-glucose pyrophosphorylase,
in the NTRC knock out mutant indicated that NTRC might play
important role in the redox homeostasis of non-green tissues. The
expression analysis of NTRC further showed that it is found in
both green chloroplasts and non-green plastids and it could regu-
late the redox homeostasis in the green and non-green plant parts
(Kirchsteiger et al., 2012). Taking together all the recent find-
ings, it can be concluded that redox regulation is an important
function of all the plastids (including green and non-green plas-
tids). However, in chloroplasts this depends on light or sugar and
in non-green plastids it depends entirely on the NADPH which
is generated from the metabolism of sucrose by the oxidative
pentose phosphate pathway (Figure 3).

CONTRIBUTION OF MITOCHONDRIA
Mitochondria also play important role in plant cell redox home-
ostasis. In the photosynthetic cells, the power house mitochondria
are the second key organelle after chloroplasts. Mitochondria
have a great contribution toward redox homeostasis during the
oxidative reactions operating in mitochondria and peroxisome
in the light. Plant mitochondria have specific ETC components
which functions in photorespiration process. In leaves, oxygenic
photosynthesis certify that mitochondria function in a carbo-
hydrate and oxygen loaded environment. This specific cellular
environmental condition ensures the existence of mitochon-
drial redox signaling and homeostasis. Malate and pyruvate are
imported to mitochondria and subsequently oxidized to produce
ATP. Another essential function of mitochondria is metabolism
of compounds like glutamate and other amino acids, and pro-
duction of precursors for biosynthetic processes (Ishizaki et al.,
2005). In these processes, the expression of the necessary proteins
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FIGURE 3 | Two operational pathways in chloroplasts of

photosynthetic tissues to maintain redox homeostasis. The FTR
(ferredoxin-dependent thioredoxinreductase)/TRx (thioredoxin) pathway,
which relies directly on light, and the NTRC (NADPH-dependent
thioredoxinreductase) pathway, which uses NADPH produced either from
sugars by the oxidative pentose phosphate pathway (OPPP), or from FD
(ferredoxin)/FNR (ferredoxin-NADP oxidoreductase). Both pathways may be
complementary because FNR activity allows interchange of reduced FD
and NADPH. In plastids of non-photosynthetic tissues the Ftr/trx and NTRC
pathways are also present but the only source of reducing power is NADPH
produced by the OPPP. The metabolism of both types of plastids is
interconnected by nutrients, such as sucrose, produced by photosynthesis
in green tissues.

depends upon the developmental stage of the plant and type of
the cell. Tricarboxylic acid (TCA) cycle is common to all plant
mitochondria but, here, the TCA cycle operates depending on
tissue type or environmental factors. Here, APX functions to dis-
sipate electrons without generation of ATP and thus, prevent
the formation of ROS during over reduction of the mitochon-
drial ETC (Vanlerberghe and McIntosh, 1992). Interestingly, APX
is a target of redox-modification via the mitochondrial thiore-
doxin system (Gray et al., 2004). Induction of APX transcrip-
tion is caused by abiotic stress factors such as low temperature
(Vanlerberghe and McIntosh, 1992). By using male sterile mutant
tobacco, the role of mitochondria in cellular homeostasis has
been shown (Dutilleul et al., 2003). These mutant plants do not
have the functional complex I, which is a key complex required
for maintaining the redox homeostasis in cell (Noctor et al.,
2004). It has also been reported that knockout plants lacking
type II peroxiredoxin F of mitochondria possess a strong phe-
notype, particularly under stress and when APX is inhibited
(Finkemeier et al., 2005). Ultimately, interruption of the TCA

cycle by decreasing the quantity of mitochondrial MDH (malate
dehdrogenase) had remarkable effect on photosynthesis and plant
growth (Nunes-Nesi et al., 2005).

CONTRIBUTION OF PEROXISOME
Peroxisome is contributing majorly in maintaining cellular redox
homeostasis by having the key enzyme CAT inside the peroxi-
somal boundary. CAT depletes the peroxisomal H2O2 generated
through photorespiratory glycolate oxidase pathway and main-
tains redox homeostasis of the cell. Plants deficient in CAT have
always accumulated high levels of H2O2. It has been reported
that cat2 mutants grown at relatively low light, possess increased
diaminobenzidine staining (Bueso et al., 2007). It has also been
reported that cat2 and cat2:cat3 knockout plants contains two
folds increase in extractable H2O2 (Hu et al., 2010). The CAT-
lacking tobacco plants are also more sensitive to diseases as they
are not altered in their protein, which is related to pathogenesis,
but the tobacco leaves show bleaching due to H2O2 accumu-
lation in peroxisomes (Chamnongpol et al., 1998). It has also
been reported that young leaves are less susceptible than the
older leaves, in Cat1 deficient tobacco plants, upon high light
exposure (Willekens et al., 1997). Remarkably, double antisense
plants deficient in both APX and CAT showed decreased pho-
tosynthesis. The reduction of photosynthetic activity is regarded
as an approach to avoid the formation of ROS (Rizhsky et al.,
2002). Tobacco mutants with increased CAT activity confirmed
higher photosynthesis rates under photorespiratory situations
than the control, probably because these plants are more toler-
ant to O2 inhibition of photosynthesis (Zelitch, 1990). Willekens
et al. (1997) also reported that Cat1 deficient tobacco plants
were unable to maintain ascorbate, particularly glutathione pools
in the reduced state when exposed to elevated light conditions.
Therefore, peroxisomal localized CAT is an essential enzyme
for protecting ascorbate and glutathione pools from oxidation.
Additionally, Willekens et al. (1997) also reported that glutathione
are the major sulfohydryl component in plants cells, for main-
taining the redox homeostasis in light stressed cells. Brisson et al.
(1998) have reported that increase in CAT activity reduces the
photorespiratory loss of CO2.

CONTRIBUTION OF VACUOLE
It has been known that the antioxidant system in the vacuolar
compartment is comprised of various components of enzymatic
and non-enzymatic origin. Apart from the cell wall, Class III per-
oxidases (POX) are also localized inside the vacuoles and play
significant role to quench ROS inside the vacuole, where the sec-
ondary metabolites accumulate. Although, the exact function of
vacuolar POX is not known, few recent reports show that the vac-
uolar POX control the level of H2O2 in photosynthesizing plant
cells at the time of oxidation of some vacuolar phenolic substrates
with H2O2 as an electron acceptor (Costa et al., 2008; Brunetti
et al., 2011). The presence of POX in the vacuole and the apoplast
is a feature of these subcellular compartments known to gather
the major part of secondary metabolites which serves as perox-
idase substrates (Idanheimo et al., 2014). It has been reported
that vacuoles can generate ROS by a mechanism comparable to
that in the plasmalemma-apoplast system. This mechanism is
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FIGURE 4 | Schematic representation of the vacuolar functioning of

redox active enzymes, as well as sugars, namely fructans, acting in

cooperation with peroxidases. T-tonoplast; POX-class III peroxidase;
NADPH-O-NADPH oxidase; SOD-superoxide dismutase; Functioning in the
vacuole of NADPH oxidase and superoxide dismutase is presently a
hypothetical possibility, and the validity of this hypothesis is still an open
question.

supported by operation of the tonoplast located NADPH oxi-
dase and the vacuolar or tonoplast-surface located superoxide
dismutase. These data were acquired from proteomic analysis of
the tonoplast membrane proteins and biochemical recognition of
the enzymes (Shi et al., 2007; Whiteman et al., 2008; Pradedova
et al., 2011). However, the convincing and direct experimental
confirmation for functioning of such enzymes in the vacuolar
compartment is not yet reported. The presence of superoxide pro-
ducing NADPH oxidase in membranes of animal phagocytes and
lysosomes cannot be taken as enough evidence for the presence of
a similar enzyme in the tonoplast of plant cell. The schematic rep-
resentation of mechanism of ROS quenching involving vacuolar
enzymes is shown in Figure 4.

CONTRIBUTION OF CELL WALL AND PLASMA MEMBRANE
Apart from the major cell organelles, cell wall also plays cru-
cial role in maintaining redox balance in the cell. Similar to the
other organelles, oxidative burst also occurs in the plant cell wall
where, molecular oxygen is reduced to O−

2 and then undergoes
spontaneous dismutation at a higher rate at acidic pH (O’Brien
et al., 2012). Class III POX present in the cell wall are able
to oxidize NADH and catalyze the formation of O−

2 . The cell
wall oxidases catalyze the oxidation of NADH to NAD+, which
in turn reduces oxygen to superoxide. This superoxide conse-
quently dismutated to produce H2O2 andO2 (Bhattachrjee, 2005;
O’Brien et al., 2012). Additionally, amine oxidases and oxalate
oxidases have been proposed to generate H2O2 in the apoplast
(Munné-Bosch et al., 2013). NADPH oxidase present in cell mem-
brane is another source of H2O2 for oxidative burst (O’Brien
et al., 2012). Aluminum, a soil pollutant, is also responsible for
oxidative burst through activating the cell wall-NADH peroxidase
and/or plasma membrane-associated NADPH oxidase (Achary
et al., 2012). However, it is evident that presence of SOD in the

cell wall is responsible for the efficient scavenging of the O−
2 (Apel

and Hirt, 2004). It has also been reported that along with class
III POX, APX is also present in cell wall and plasma membrane
which is responsible for depletion of H2O2 and helps in main-
taining cellular redox homeostasis (Apel and Hirt, 2004; O’Brien
et al., 2012).

CROSS TALK AMONG CELLULAR ORGANELLES
The peroxisomal extension, named peroxules, can expand over
the chloroplastic exterior and curl around it, in a very quick man-
ner and connect with other peroxisomes (Sinclair et al., 2009).
Morphology of peroxisome can modify under stress situations
which induce a quick key between spherical motile organelles
with extensive tubular-beaded shape with extended peroxules
(Sinclair et al., 2009). Stromules are stroma-filled tubules present
in chloroplasts, consisting of thin extensions of the stroma
(Hanson and Sattarzadeh, 2008) and these can often join together
and have been shown to enter into channels of the nucleus (Kwok
and Hanson, 2004). Chloroplasts, peroxisome and mitochon-
dria have high rates of ROS metabolism which vary with the
changing environmental conditions. Close interactions between
chloroplast, peroxisomes and mitochondria could enhance cel-
lular metabolic synchronization under stress situations and con-
tribute to plant stress acceptance/tolerance (Rivero et al., 2009).
Furthermore, increase of mitochondria and peroxisomes at the
diffusion/penetration site of a fungus has been shown which
probably occur for detoxification of the ROS at the infected site
of the fungus Erysiphe cichoracearum (Koh et al., 2005). Form the
above studies, it is quite convincing to state that that the cellular
organellar crosstalk play significant role in cell signaling, avoiding
stress situation and maintaining the cell redox homeostasis.

DEVELOPMENT OF TRANSGENIC PLANTS TOLERANT TO
ABIOTIC STRESS BY ENHANCING ROS DEFENSE
MECHANISMS
In past, researchers have developed several transgenic plants by
manipulating various genes involved in enzymatic and non-
enzymatic ROS scavenging mechanisms which have shown
increased tolerance to abiotic stresses (Table 1).

Over-expression of genes encoding ROS-scavenging enzymes
such as SOD (Prashanth et al., 2008), CAT (Al-Taweel et al., 2007),
APX (Kim et al., 2008), MDAR (Etrayeb et al., 2007), DHAR
(Ushimaru et al., 2006), GR (Kornyeyev et al., 2003) and GPX
(Gaber et al., 2006) in various plants isolated from same or dif-
ferent organisms were shown to possess higher tolerance to one
or more abiotic stresses by minimizing the oxidative damage.
Complete neutralization of ROS molecules involves more than
one enzymes localized in same or different sub cellular compart-
ments of cell. Transgenic Cassava (Manihot esculenta Crantz) has
also shown the increased level of other important ROS scavenging
enzymes such as MDR, DHAR, and GR.

Similarly, overexpression of critical enzymes involved in the
biosynthetic pathway of antioxidants play a significant role in
combating different abiotic stresses. Overexpression of P5CS
(Yamada et al., 2005; Vendruscolo et al., 2007), a key enzyme for
proline biosynthesis leads to increased tolerance to drought in
transgenic plants. Liu et al. (2008) generated tobacco transgenic
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Table 1 | Representative reports for raising transgenic plants by overexpressing enzymes involved in ROS scavenging, which show improved

tolerance to various abiotic stresses.

Gene Transgenic plant Gene source Stress tolerance References

SUPEROXIDE DISMUTASE (SOD)

Cu/Zn SOD Nicotiana tabacum Oryza sativa Salinity, drought Badawi et al., 2004

Cu/Zn SOD Oryza sativa L. Avicennia marina Salinity, drought, oxidative Prashanth et al., 2008

Mn SOD Triticum aestivum Nicotiana plumbaginifolia Oxidative, photo-oxidative Melchiorre et al., 2009

Mn SOD Populus davidiana X Populus bolleana Tamarix androssowii Salinity Wang et al., 2010

CATALASE (CAT)

CAT3 Nicotiana tabacum Brassica juncea Heavy metal Gichner et al., 2004

katE Nicotiana tabacum E. coli Salinity Al-Taweel et al., 2007

MONODEHYDROASCORBATE REDUCTASE (MDAR)

MDAR1 Nicotiana tabacum Arabidopsis thaliana Salinity, ozone, drought Etrayeb et al., 2007

ASCORBATE PEROXIDASE (APX)

cAPX Lycopersicon esculentum Pisum sativum Drought, heat, cold, UV light Wang et al., 2006

swpa4 Nicotiana tabacum Ipomoea batatas Salinity, osmotic, oxidative Kim et al., 2008

APX1 Arabidopsis thaliana Hordeum vulgare Salinity Xu et al., 2008

StAPX Nicotiana tabacum Solanum lycopersicum Salinity, drought Sun et al., 2010

OsAPXa Oryza sativa L. Oryza sativa L. Cold Sato et al., 2011

DEHYDROASCORBATE REDUCTASE (DHAR)

DHAR Arabidopsis thaliana Oryza sativa Salinity Chen and Gallie, 2005

DHAR Nicotiana tabacum Arabidopsis thaliana Drought, ozone Ushimaru et al., 2006

DHAR Nicotiana tabacum Arabidopsis thaliana Salinity, drought Etrayeb et al., 2007

GLUTATHIONE REDUCTASE (GR)

GR Gossypium hirsutum Arabidopsis thaliana Cold, photo-oxidative Kornyeyev et al., 2003

GLUTATHIONE PEROXIDASE (GPX)

GPX Nicotiana tabacum Chlamydomonas Salinity, cold, oxidative Yoshimura et al., 2004

GPX-2 Arabidopsis thaliana Synechocystis Salinity, drought, cold, heavy
metal, oxidative, methyl
viologen

Gaber et al., 2006

TOCOPHEROL CYCLASE

VTE1 Nicotiana tabacum Arabidopsis thaliana Drought Liu et al., 2008

PROLINE P5CS (D1-Pyrroline-5-carboxylate-synthetase)

P5CS Petunia hybrida Arabidopsis thaliana and Oryza sativa Drought Yamada et al., 2005

P5CS Triticum aestivum Vigna aconitifolia Drought Vendruscolo et al., 2007

plants by overexpressing VTE1 gene, encoding tocopherol cyclase
(VTE1), an important enzyme involved in tocopherol biosynthe-
sis. They have showed that the VTE1 overexpressing plants have
higher tolerance to drought. Increased accumulation of another
important antioxidant -ascorbic acid in AtERF98 TF overexpress-
ing transgenic arabidopsis, showed increased tolerance to salinity
(Zhang et al., 2012).

Apart from ROS-scavenging enzymes and non-enzymatic
antioxidants, over-expressing ROS-responsive signaling and reg-
ulatory genes also responsible for stress tolerance in plants. The
regulatory genes which regulate a large set of genes involved
in acclimation mechanisms, including ROS-scavenging enzymes
proved beneficial in enhancing tolerance to abiotic stresses such
as drought, salinity, oxidative, cold and heavy metal stress. In
Arabidopsis, over-expression of mitogen-activated kinase kinase
1 (MKK1) enhanced the activity of MAPK cascade, which is
also activated by ROS (Teige et al., 2004; Wrzaczek et al., 2013)
leads to increased tolerance to abiotic stresses by controlling

stress-associated ROS levels under abiotic stress (Xing et al.,
2008). Likewise, over-expression of transcription factors (Zat12
or JERF3, Zat10) control the expression of various ROS-
scavenging genes encoding enzymes showed higher tolerance to
salt, drought or osmotic stresses (Sakamoto et al., 2004; Davletova
et al., 2005). Rai et al. (2013) have reported that overexpres-
sion of AtDREB1A/CBF3 of Arabidopsis under the control of
stress inducible promoter (rd29A) in tomato (cv. Kashi Vishesh)
showed higher accumulation of ROS scavenging enzymes and
antioxidants with greater tolerance to drought-induced oxidative
stress.

It has been established that the transgenic plants produced
through gene pyramiding or co-expression of several antioxi-
dant genes could able to give better stress tolerance than the
plants overexpressing a single antioxidant gene (Table 2). It
has been reported that co-expression of Mn-SOD and APX
could able enhance multiple abiotic stress tolerance in Nicotiana
tabacum. Co-expression of maize ZmCu/ZnSOD and ZmCAT
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Table 2 | Representative reports for raising transgenic plants by co-expressing enzymes involved in ROS scavenging, which show improved

tolerance to various abiotic stresses.

Genes Transgenic plant Gene source Stress tolerance References

Mn SOD + APX Festuca arundinacea Nicotiana tabacum Multiple abiotic stresses, oxidative Lee et al., 2007

Cu/Zn SOD + CAT Brassica campestris Zea maize Salinity, SO2 Tseng et al., 2007

cytAPX + cytSOD Prunus domestica cytsod from spinach and
cytapx from pea

Salinity, oxidative Diaz-Vivancos et al., 2013

MeAPX2 + MeCu/ZnSOD Manihot esculenta Crantz Manihot esculenta Crantz Chilling, oxidative Xu et al., 2014

showed higher photosynthetic efficiency and salinity tolerance
ability of transgenic cabbage (Brassica campestris L.) better than
the independent ZmCu/ZnSOD and ZmCAT transgenic plant
(Tseng et al., 2007). Likewise, co-expression of MeAPX2 and
MeCu/ZnSOD in cassava (Manihot esculenta Crantz) showed
higher tolerance to MV mediated H2O2 stress as well as two fold
tolerance to chilling stress as compare to the wild type plants (Xu
et al., 2014).

CONCLUSION AND FUTURE PROSPECTS
Normally, ROS are generated by metabolic activity of the plants
and act as signaling molecules for activating plant metabolic path-
way. However, under environmental stresses, generation of ROS
increase in different compartments of the cell such as chloro-
plast, peroxisomes and mitochondria. Higher accumulation of
ROS leads to oxidative stress in plant causing damage to the cell
membranes (lipid peroxidation) and biomolecules like nucleic
acid, protein and lipid by oxidative damage. To combat the harm-
ful effect of increased ROS accumulation, plants are equipped
with effective ROS scavenging mechanisms. Plants have evolved
two types of scavenging tools (i) scavenging enzymes such as
SOD, CAT, MDAR, dehydroascorbate reductase (DHAR), GR and
glutathione peroxidase (GP) and (ii) antioxidant molecules like
ascorbic acid, α-tocopherols, glutathione, proline, flavonoids and
carotenoids. ROS are key signaling molecules interacting with
each other and with other cellular antioxidant systems to main-
tain proper balance between various cellular metabolic pathways,
which get disrupted under unfavorable environments. Therefore,
it is not the ROS, but their concentration in cell which decides
their good or bad effect on plant. A lot of information about the
ROS generation, role of free radicals in intra cellular communica-
tion and their effective scavenging have been accessible, but there
are gaps in our understanding of complete ROS scavenging and
signaling pathway. Future research in this area will be useful for
designing the strategy to achieve the potential yield under unfa-
vorable environments. Although, through transgenic technology
of ROS scavenging components, abiotic biotic stress tolerance in
various crop plants has been improved to some extent, this needs
to be improved further in future by gene pyramiding to achieve
the near potential yield of crops under rapidly changing climate.
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Salt stress reveals differential
antioxidant and energetics
responses in glycophyte (Brassica
juncea L.) and halophyte (Sesuvium
portulacastrum L.)
Ashish K. Srivastava*, Sudhakar Srivastava †, Vinayak H. Lokhande †,

Stanislaus F. D’Souza and Penna Suprasanna

Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic

Research Centre, Mumbai, India

Salt stress, considered as one of the major environmental factors, decreases crop

productivity world-wide and hence, investigations are being made to understand the

cellular basis of salt tolerance in plants. In our earlier studies, maintenance of redox

homeostasis and energetics were found as key determinants of salt tolerance in a

halophyte Sesuvium portulacastrum (high salt accumulator). The redox homeostasis

is defined as integrated ratio of different redox couples present inside the cell. In

recent years, it has also been proposed as general stress response regulator in

plants, bacteria as well as animals. In view of this, present study was performed to

compare responses of redox state and energetics of S. portulacastrumwith a glycophyte

Brassica juncea (low salt accumulator). The data revealed activation of antioxidant

defense in S. portulacastrum which either avoided or delayed the accumulation of

different reactive oxygen species (ROS). In contrast, due to the lack of co-ordination,

although the non-enzymatic antioxidants were increased, significant oxidative damage

was seen in B. juncea. Further, the decreased NADPH oxidase activity suggested

that basal redox signaling was also affected in B. juncea. In order to correlate these

changes with chloroplastic and mitochondrial electron transport chain, NADP/NADPH

and NAD/NADH ratios were measured. The NADP/NADPH ratio suggested that the

process of photosynthesis was minimally affected in S. portulacastrum which might

have contributed to its lower level of ROS under salt stress. The comparatively lower

NAD/NADH and ATP/ADP ratios in S. portulacastrum as compared toB. juncea indicated

the active and better utilization of energy generated to support different processes

associated with salt tolerance. Thus, the findings suggest that co-ordinated regulation of

antioxidant defense to avoid oxidative damage and proper utilization of energy are the

key determinants of salt-tolerance in plants.
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Introduction

A major challenge toward world agriculture involves produc-
tion of 70% more food crop for an additional 2.3 billion peo-
ple by 2050 (FAO, 2009). Salinity is a major stress limiting the
increase in the demand for food crops. More than 20% of cul-
tivated land worldwide (∼ about 45 hectares) is affected by salt
stress and the amount is increasing day by day. Plants on the
basis of adaptive evolution can be classified roughly into two
major types: the halophytes (that can withstand salinity) and
glycophytes (that cannot withstand salinity and eventually die).
Majority of crop species belong to this second category. Thus
salinity is considered as one of the most important stresses that
hamper crop productivity worldwide (Gupta and Huang, 2014).
During salinity stress, availability of atmospheric CO2 is reduced
because of an increased stomatal closure in order to avoid water
loss via transpiration and hence, consumption of NADPH by
the Calvin cycle is decreased. Due to the over-reduction of elec-
tron transport chain, electrons get misleaded from oxygen to
form reactive oxygen species (ROSs) like superoxide radicals
(O2-) and hydrogen peroxide (H2O2). Additionally, to meet the
increased energy demand of the cell which can support differ-
ent defense processes such as enhanced antioxidant capacity,
osmolytes biosynthesis, ion transport and vacuolar sequestration,
the activity of mitochondrial electron transport is also increased
which further contributes to the generation of ROSs (Munns and
Tester, 2008). Plants have complex antioxidant defense mech-
anisms including superoxide dismutase (SOD) and the ascor-
bate (ASC)-glutathione (GSH) cycle (Mittler, 2002). SOD con-
stitutes the first line of defense converting O•−

2 to hydrogen
peroxide (H2O2), which is further reduced to water and oxy-
gen by ascorbate peroxidase (APX) and catalase (CAT). APX
uses two molecules of ASC to reduce H2O2 to water, with the
concomitant generation of two molecules of monodehydroascor-
bate (MDHA), whereas CAT does not need any reductant for
action against H2O2. Regeneration of ASC from MDHA occurs
in sequential steps and utilizes GSH. This results in generation
of oxidized glutathione (GSSG), which is in turn, re-reduced to
GSH by NADPH, a reaction catalyzed by glutathione reductase
(GR). Ascorbate and GSH both can accumulate in millimolar
concentrations in cells and function as molecular antioxidants,
in addition to serving various other roles, reacting directly with
various ROS (Noctor and Foyer, 1998).

Among different experimental approaches adopted to under-
stand plant responses to salt stress, one of the strategies is to com-
pare halophytes and glycophytes. In this context, Thellungiella
salsuginea is widely used as halophytic model and its responses
are compared with its close relative Arabidopsis thaliana. The
lipidomic analysis has revealed that remodeling of plastidic lipids
is important for maintaining the integrity and fluidity of plastidic
membranes which contributes to PEG-induced osmotic tolerance
of T. salsuginea (Yu and Li, 2014). A proteomics study has been
done to identify novel proteins associated with high salt tolerance
of T. salsuginea (Vera-Estrella et al., 2014). The physiological
responses of T. salsuginea and A. thaliana have also been studied
to understand the mechanism of boron exclusion and tolerance
in plants (Lamdan et al., 2012). The species of Eutrema such as

Eutrema parvulum and E. salsugineum have been contrasted with
A. thaliana to understand the regulatory role of genes associated
with aldehyde dehydrogenase gene superfamily (Hou and Bartels,
2015). Using Mesembryanthemum crystallinum (halophyte) and
Brassica juncea, the mechanism of nickel accumulation and toler-
ance has been studied (Amari et al., 2014). The halophyte Cakile
maritima has been compared with Brassica juncea to understand
cadmium accumulation and tolerance (Taamalli et al., 2014). In
the same line, Sesuvium portulacastrum is a mangrove associate
which is known for its high capacity to accumulate salt. Its phys-
iological, redox, and energetics behavior toward salt stress has
been reported (Lokhande et al., 2011). In the present study, these
responses were compared with that of B. juncea which is a gly-
cophyte and low salt accumulator. The findings confirmed the
significance of co-ordinated antioxidant responses and effective
utilization of energy as important determinants of salt tolerance
in plants.

Materials and Methods

Plant Material and Treatment Conditions
The seeds of Indian mustard (B. juncea cv. TM- 2) were sur-
face sterilized with 30% ethanol for 3min and then washed thor-
oughly to remove any traces of ethanol. They were then allowed
to germinate in plastic pots containing sand: soil (1:1) mixture
at 25◦C under light providing 115µmol photons m−2s−1 illu-
mination, with 12 h photoperiod. After 6-days of germination,
water was changed with ½strength Murashige and Skoog’s (MS)
medium (Murashige and Skoog, 1962). After 15-days of germina-
tion, plants having secondary leaves were used for salt treatment.
The Sesuvium—MH clone (Lokhande et al., 2010) was used for
the present study. Four nodal sectors (∼4.0 cm) containing single
pre-existing axillary bud with two opposite leaves were planted
in the plastic pots containing sand: soil (1:1) mixture. The 45-
day-old plants were used for the present study. For salt treatment,
B. junceawas subjected to 250mMNaCl, while S. portulacastrum
was given two different NaCl concentrations (250 or 1000mM).
All the salt solutions were prepared in ½strength MS medium.
An independent set with no NaCl was maintained as control. At
2, 4, and 8-days after treatment, secondary leaves were harvested
and stored at -80◦C until further analyses. The NaCl concentra-
tions were selected on the basis of preliminary experiments to
assess plant tolerance in terms of growth to various NaCl con-
centrations (100–300mM for B. juncea and 200–1000mM for
S. portulacastrum).

Assay of Reactive Oxygen Species (Superoxide
radicals, Hydrogen Peroxide) and the Level of
Malondialdehyde
For the estimation of hydrogen peroxide (H2O2) levels, plant
samples were homogenized in 0.5% (w/v) trichloroacetic acid
(TCA) in an ice bath and centrifuged at 14,000 × g for 15min at
4◦C. For H2O2 determination, 0.5ml of supernatant was mixed
with 0.5ml 100mM potassium phosphate buffer (pH 7.0) and
1ml of freshly prepared 1M potassium iodide. Reaction was
allowed to develop for 1 h in dark and absorbance was mea-
sured at 390 nm (Alexieva et al., 2001). The amount of H2O2

Frontiers in Environmental Science | www.frontiersin.org March 2015 | Volume 3 | Article 19 | 21

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Srivastava et al. Salt stress responses in halophyte and glycophyte

was calculated from a standard curve prepared using the known
concentrations of H2O2. The rate of superoxide radicals (O•−

2 )
production was measured following the method of Chaitanya
and Naithani (1994). About 500mg of fresh plant samples were
homogenized under N2 atmosphere in cold (0-4◦C) in 100mM
sodium phosphate buffer (pH 7.2) containing 10mM sodium
azide to inhibit SOD activity. After centrifugation at 22,000 ×

g at 4◦C for 20min, the level of O•−

2 was measured in the
supernatant by its capacity to reduce NBT (extinction coeffi-
cient; ε = 12.8mM−1 cm−1). The reaction mixture (1ml) con-
tained 100mM sodium phosphate buffer (pH 7.8), 0.05% (w/v)
NBT (Nitro blue tetrazolium chloride), 10mM sodium azide and
0.2ml of extract. Absorbance was measured at 580 nm at 0 and
60min. The level of O•−

2 is expressed as an increase in absorbance
per min per gram fresh weight. Lipid peroxidation was deter-
mined by estimation of the malondialdehyde (MDA) content
following Heath and Packer (1968) as described previously (Sri-
vastava et al., 2006).

Assay of NADPH Oxidase Activity
Plants were homogenized in 20mMHEPES [4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid; pH 7.0] containing 1mM
EDTA, 1mM EGTA, 1mM phenylmethyl sulfonyl fluoride
(PMSF) and 2.5% polyvinylpyrrolidone (PVP) under chilled
conditions. Homogenate was squeezed through four layers of
cold cheese cloth and centrifuged at 12,000 × g for 15min
at 4◦C. Protein content of supernatant was measured follow-
ing the protocol of Lowry et al. (1951). NADPH-dependent
O•−

2 generation was measured using NBT as an electron
acceptor, whose reduction was monitored at 530 nm. Mono-
formazan concentrations (and therefore O•−

2 concentrations)
were calculated using ε of 12.8mM−1 cm−1. The reaction
mixture consisted of Tris buffer (50mM Tris-HCI, pH 7.4),
5mM NBT, 1mM MgCl2, 1mM CaCl2, 5mM NADPH and
a suitable aliquot of enzyme extract. The selective reduc-
tion of NBT by O•−

2 was calculated from the difference
in the NBT reduction rate in the presence and absence of
SOD (50–100 units ml−1; Sigma, USA). No NBT reduc-
tion with NADPH was observed in the absence of protein
fractions.

Assays of Enzymes of Antioxidant System
For the assay of antioxidant enzymes, plant samples (500 mg)
were homogenized in 100mM chilled potassium phosphate
buffer (pH 7.0) containing 1mM EDTA, 1mM PMSF and 1%
PVP (soluble, MW 3,60,000) at 4◦C. Homogenate was squeezed
through four layers of cold cheese cloth and the extract thus
obtained was centrifuged at 15,000 g for 15min at 4◦C. For all
enzyme assays, respective sample and reagent blanks were run
in duplicate. The activity of SOD (EC 1.15.1.1) was assayed fol-
lowing the method of Beauchamp and Fridovich (1971). The
reaction mixture for SOD activity assay contained 40mM phos-
phate buffer (pH 7.8), 13mM methionine, 75µM NBT, 2µM
riboflavin, 0.1mM EDTA and a suitable aliquot of enzyme
extract. After the reaction under light for 15min, the absorbance
was taken at 560 nm. One unit of activity is the amount of pro-
tein required to inhibit 50% initial reduction of NBT under light.

For measurement of the CAT (EC 1.11.1.6) activity, extraction
was done in the buffer containing 50mM Tris–HCl (pH 7.0),
0.1mM EDTA, 1mM PMSF and 0.3 g g−1 fw PVP. Activity
was measured by the method of Aebi (1974). The reaction mix-
ture comprised of 50mM sodium phosphate buffer (pH 7.0),
20mM H2O2 and suitable aliquot of enzyme. Decrease in the
absorbance was taken at 240 nm (molar extinction coefficient
of H2O2 was 0.04 cm

2
µmol−1). Enzyme activity was expressed

as units mg−1 protein. The activity of APX (EC 1.11.1.11) was
measured by estimating the rate of ascorbate oxidation (extinc-
tion coefficient 2.8mM−1cm−1). The reaction mixture contained
50mMphosphate buffer (pH 7.0), 0.1mMH2O2, 0.5mM sodium
ascorbate, 0.1mM EDTA and suitable aliquot of enzyme. The
change in absorbance was monitored at 290 nm (Nakano and

A

B

C

∆
µ

FIGURE 1 | Time dependent modulation of superoxide radicals (A),

hydrogen peroxide (B) and malondialdehyde (C) in NaCl-exposed

Sesuvium portulacastrum and Brassica juncea. All values represent the

mean of three replicates. Different letters indicate significantly different values

at a particular duration (DMRT, P = 0.01).
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Asada, 1981) and enzyme activity was expressed as units mg−1

protein. For the estimation of the GR (EC 1.6.4.2) activity plant
material was extracted in 0.1M potassium phosphate buffer (pH
7.5) containing 0.5mM EDTA. Activity was assayed by follow-
ing the method of Smith et al. (1988). The reaction was started
by adding following in order; 1.0ml of 0.2M potassium phos-
phate buffer (pH 7.5) containing 1mM EDTA, 500µl 3mM 5,5′-
dithiobis (2-nitrobenzoic acid) in 0.01M phosphate buffer (pH
7.5), 250µl H2O, 100µl 2mM NADPH, 50µl enzyme extract,
and 100µl 20mM GSSG. The increase in absorbance was mon-
itored for 5min at 412 nm. The rate of enzyme activity was cal-
culated using standard curve prepared by known amounts of GR
(Sigma, USA). Activity of enzyme was expressed as units mg−1

protein.

Estimation of Redox Couples (GSH/GSSG and
ASC/DHA Ratio)
The level of reduced (GSH) and oxidized (GSSG) glutathione was
determined fluorometrically using o–phthaldialdehyde (OPT) as
fluorophore (Hissin and Hilf, 1976). The level of total, reduced
and oxidized ascorbate (ASC) contents in plants was measured
following the protocol of Gillespie and Ainsworth (2007). Plant
samples (50mg) were homogenized in 1ml 6% trichloroacetic
acid (TCA) under chilled conditions and centrifuged at 13,000×
g for 5min at 4◦C. To 200µl of sample 100µl 75mM phosphate
buffer (pH 7.0) was added. In total ASC, 100µl DTT (dithio-
threitol; 10mM) was added and incubated for 10min at room
temperature to reduce the pool of oxidized ASC. Then, 100µl
NEM (N-ethylmaleimide; 0.5%) was added to remove excess
DTT. For reaction, 500µl 10% TCA, 400µl 43% orthophos-
phoric acid, 400µl 4% 2,2′-bipyridyl, and 200µl 3% FeCl3 were
added to all tubes. After incubation at 37◦C for 1 h, absorbance
was measured at 525 nm. The level of dehydroascorbate

(DHA) was calculated by subtracting ASC values from total
ASC.

Determination of Adenine and Pyridine
Nucleotides
The analysis of adenine and pyridine nucleotides was per-
formed by High Performance Liquid Chromatography (HPLC)
as described previously by Srivastava et al. (2011). In brief, sam-
ples (100 mg) were subjected to either acid extraction using 0.6M
perchloric acid (for the measurement of ATP, ADP, NADP, and
NAD) or alkaline extraction using 0.5M potassium hydroxide
(for the measurement of NADPH and NADH). The extract was
centrifuged at 14,000 × g at 4◦C for 10min followed by neu-
tralization with either 0.5M KOH or 1M KH2PO4, respectively
and re-centrifuged at 14,000× g at 4◦C for 10min to remove the
precipitate. Supernatant was filtered using 0.22µm syringe filters
and used for the HPLC injection. The mobile phase consisted of
0.1MKH2PO4 solution at pH 6.0 (Buffer A) and a 0.1MKH2PO4

solution at pH 6.0, containing 10% (v/v) of CH3OH (Buffer B).
The chromatographic conditions were as follows: 8min at 100%
of buffer A, 7min at up to 25% of buffer B, 2.5min at up to 90% of
buffer B, 2.5min at up to 100% of buffer B, held for 7min at 100%
B, 5min at up to 100% buffer A and held for 8min at 100% buffer
B to restore the initial condition. The flow rate was 1mL/min and
detection was performed at 254 nm (Waters 996, PDA detector).
Separation was performed on a 10µm C18 analytical column
(250 × 4.6mm) equipped with a guard column. The peaks were
identified using the standard samples. The analytical recovery
was tested by adding a known amount of standard compound
prior to extraction and recovery was found to be 94 to 100% for
different compounds. The data were analyzed using Empower
software.

FIGURE 2 | Time dependent modulation of NADPH oxidase activity in NaCl exposed Sesuvium portulacastrum and Brassica juncea. All values represent

the mean of three replicates. Different letters indicate significantly different values at a particular duration (DMRT, P = 0.01).
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Statistical Analysis
The experiments were carried out in a randomized block design.
One–Way analysis of variance (ANOVA) was done on all the data
to confirm the variability of data and validity of results and Dun-
can’s multiple range test (DMRT) was performed to determine
the significant difference between treatments using the statistical
software SPSS 10.0.

Results

Effect of Salinity Stress on the Level of Reactive
Oxygen Species and Lipid Peroxidation
In S. portulacastrum, no significant change in MDA level was
observed at any salt concentration and duration. The increase in
ROS levels was also limited to longer duration. At 8 d, H2O2 level
was increased under both 250 and 1000mM NaCl treatment;
while O•−

2 level was increased only under 1000mM NaCl treat-
ment as compared to that of control (Figures 1A–C). By contrast,
in B. juncea, time-dependent increase inMDA level was observed
(Figure 1C) and ROS levels also increased significantly. Themax-
imum increase of 2.5- and 4.8-fold in O•−

2 and H2O2 levels were
observed at 8 d after treatment, as compared to that of control
(Figures 1A–B).

Effect of Salinity Stress on the Activity of NADPH
Oxidase
The activity of NADPH oxidase was not affected significantly
in S. portulacastrum except for the 22% increase at 1000mM
NaCl after 2 d treatment. In B. juncea, NADPH oxidase activity
declined significantly at all the durations as compared to that of
control (Figure 2).

Effect of Salinity Stress on the Activities of
Antioxidant Enzymes
In S. portulacastrum, dose-dependent increase in SOD activ-
ity was observed until 4 d, with the maximum of 30% under
1000mM NaCl as compared to that of control. At 2 and 8 d
after treatment, SOD activity was almost unchanged, except at
1000mM at 2 d where it was increased by 20% as compared
to that of control (Figure 3A). Unlike SOD, CAT activity was
increased at all the durations, except at 8 d where the increase was
observed only at 1000mM NaCl concentration (Figure 3B). The
APX activity increased at both NaCl concentrations; however,
maximum of 2.8-fold was observed under 250mM at 2 d after
treatment as compared to that of control. At 4 and 8 d, compa-
rable increase in APX activity was observed under both 250 and
1000mM NaCl as compared to that of control (Figure 3C). The
GR activity was almost unchanged at both NaCl concentrations
and all durations (Figure 3D). In B. juncea, except for CAT,
activities of SOD, APX, and GR decreased at all the durations
(Figures 3A–D).

Effect of Salinity Stress on GSH and ASA Pools
and their Redox Couples (GSH/GSSG and
ASC/DHA Ratio)
In S. portulacastrum, GSH level was unaltered until 4 d; how-
ever; at 8 d it showed significant reduction with the maximum

A

B

C

D

FIGURE 3 | Time dependent modulation of activities of superoxide

dismutase (SOD; A), catalase (CAT; B), ascorbate peroxide (APX; C),

and glutathione reductase (GR; D) in NaCl exposed Sesuvium

portulacastrum and Brassica juncea. All values represent the mean of

three replicates. Different letters indicate significantly different values at a

particular duration (DMRT, P = 0.01).

of 40% under 1000mM NaCl as compared to that of control
(Figure 4A). The GSH/GSSG ratio showed an increase in com-
parison to control until 4 d at 250mM NaCl but was at par to
control at 1000mMNaCl. At 8 d, GSH/GSSG ratio was decreased
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µ
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FIGURE 4 | Time dependent modulation of reduced glutathione (GSH;

A), reduced and oxidized glutathione ratio (GSH/GSSG; B), ascorbate

(ASC; C), reduced and oxidized ascorbate ratio (ASC/DHA; D) in NaCl

exposed Sesuvium portulacastrum and Brassica juncea. All values

represent the mean of three replicates. Different letters indicate significantly

different values at a particular duration (DMRT, P = 0.01).

with the maximum of 66% under 1000mM NaCl as compared
to that of control (Figure 4B). In B. juncea, GSH level increased
beyond 2 d and at 8 d, it was 2.5-fold higher than that of control.
The GSH/GSSG ratio was at par with control till 4 d and at 8 d, it
was 1.8-fold higher than that of control.

Under NaCl stress, a distinct increase in ASC level was
observed in both S. portulacastrum and B. juncea, however,
the level of increase was comparatively higher in B. juncea
(Figure 4C). The ASC/DHA ratio was unchanged in S. portula-
castrum at 250mM NaCl; however, at 1000mM, it significantly
increased. In contrast, B. juncea showed a significant decrease of
ASC/DHA ratio at all the durations (Figure 4D).

Effect of Salinity Stress on the Level of Adenylate
and Pyridine Nucleotides
In S. portulacastrum, ATP level was declined at both 250 and
1000mM NaCl (Supplementary Figure 1A), hence, ATP/ADP
ratio declined significantly (Figure 5A). Similar profile was also
observed for NADP/NADPH andNAD/NADH ratios. Themaxi-
mum decrease in these ratios was observed under 1000mMNaCl
at 8 d after treatment (Figures 5B,C). In B. juncea, ATP/ADP
ratio remained at par with control, except at 4 d at which it was
increased by 1.5-fold as compared to that of control (Figure 5A).
The NADP and NADPH levels although increased (Supplemen-
tary Figures 2, 3), NADP/NADPH ratio was reduced with the
maximum of 60% at 8 d after treatment as compared to that
of control (Figure 5B). In contrast, the NAD/NADH ratio was
increased beyond 2 d of stress treatment (Figure 5C).

Discussion

The salinity stress in plants is known to drastically reduce its
growth and productivity (Gupta and Huang, 2014). Thus, in
order to maintain the crop productivity in saline affected regions,
it is essential to understand the mechanism of salt toxicity in
plants. Generally, most crop plants are glycophytes and can
withstand salt concentration in the range of 50–250mM; how-
ever, there are specific type of plants referred as halophytes
which can tolerate upto 1M salt concentration. In an earlier
study, physiological responses of a halophyte, S. portulacas-
trum have been reported and redox homeostasis and energet-
ics were found to be the key determinants of salt tolerance
(Lokhande et al., 2011). To further strengthen this hypothesis,
in the present work, similar responses were studied in B. juncea
(Indian mustard – a glycophyte) and compared with that of
S. portulacastrum.

In the presence of salt stress, series of events leading to pertur-
bation of cellular metabolism are: less water availability, stomata
closure, altered gaseous exchange, inhibition of photosynthesis,
effect on electron flow in ETC in chloroplast and mitochondria,
increase in the production of ROS and disturbed status of adenine
(ATP) and pyridine nucleotides (NADH, NADPH). Thus, the
oxidative damage and altered energetics are mainly responsible
for affecting the general metabolism and plant growth under salt
stress (Srivastava et al., 2011). In S. portulacastrum, the increase
in ROS levels was seen only at longer duration; however, in
B. juncea, the increase in ROS and MDA levels were seen as early
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FIGURE 5 | Time dependent modulation of ATP/ADP (A), NADP/NADPH

(B), NAD/NADH (C) ratios in NaCl exposed Sesuvium portulacastrum

and Brassica juncea. All values represent mean of three replicates.

as 2 d after treatment (Figures 1A–C). This clearly suggested that
S. portulacastrum has better ability to avoid or delay the oxidative
damage under salt stress conditions. In recent years, significant
progress has been made with respect to ROS function in plants
and they are now not seen as negative by-product of oxidative
metabolism but they are known to serve as important signaling
mediators under stress (Gilroy et al., 2014). The ROS based sig-
naling is termed as “redox signaling” and is important for growth
and survival of the plants under normal as well as salt stress con-
ditions (Srivastava and Suprasanna, in press). There are many
pro-oxidant enzymes in plants which are responsible for the ROS
formation. NADPH oxidase is one such pro-oxidant which is
an important regulator of calcium signaling and downstream
signal transduction associated with salt tolerance (Marino et al.,

2012; Drerup et al., 2013). The NADPH oxidase activity in S.
portulacastrum was unaffected while in B. juncea, it decreased
significantly (Figure 2). This indicates that apart from oxidative
damage, the basal ROS signaling is also disturbed in glycophytes
under salt stress. Thus, differential ability of halophytes and gly-
cophytes to perceive stress seems to be responsible for differential
stress response. The NADPH oxidase might be one of the pos-
sible candidates responsible for this; however, this needs to be
investigated further.

Significant research has been conducted to establish that
antioxidant defense is important for maintaining proper plant
growth under different abiotic stress conditions, especially halo-
phytes (Boestfleisch et al., 2014; Canalejo et al., 2014; Yildiztugay
et al., 2014). In the same line, to see how the stress imposition and
oxidative stress in two plant species (glycophytes and halophyte)
affected their antioxidant metabolism and vice versa, activities of
enzymatic antioxidant and levels of non-enzymatic antioxidants
were measured. The enzymatic antioxidants showed a significant
decline except CAT in B. juncea, whereas in S. portulacastrum,
there was either a increase or no change (Figures 3A–D). Apart
from suggesting the better ability of S. portulacastrum to acti-
vate its antioxidant defense under stress, this also indicated that
halophytic enzymes are comparably more robust and stable than
glycophytic enzymes. In recent years, various efforts have been
made where antioxidant gene from a halophyte has been used
to make transgenic glycophytes with higher salt tolerance. For
instance, cytosolic copper/zinc SOD from a mangrove plant Avi-
cennia marina has been used to increase the abiotic stress tol-
erance in rice (Prashanth et al., 2008). The peroxisomal APX
from halophyte Salicornia brachiata was used to confer salt and
drought tolerance in tobacco (Singh et al., 2014). Among molec-
ular antioxidants, ASC and GSH are involved in the function-
ing of ASC-GSH cycle and can also independently function as
antioxidants. Hence, maintenance of ASC/DHA and GSH/GSSG
ratio is necessary to allow antioxidant functions to operate prop-
erly. In B. juncea, the GSH/GSSG and ASC/DHA ratio was either
maintained or decreased which indicated plant’s inability to stim-
ulate their ASC and GSH regenerating systems as observed in
the case of GR. Thus, despite an increase in absolute ASC and
GSH, ROS levels continued to increase significantly. On the
contrary in S. portulacastrum, both ASC/DHA and GSH/GSSG
showed increasing trend; except for the decrease in GSH/GSSG
ratio at 1000mM NaCl which signifies the active utilization
of GSH to avoid the oxidative damage at such a higher salt
concentration.

Apart from the lack of co-ordinated activation of antioxidant
defense, the over-reduction of electron transport chain (ETC) is
also an important contributor of oxidative damage under stress.
The over-reduced ETC in chloroplasts and mitochondria appar-
ently result in significant decline in ratios of NADP/NADPH
and NAD/NADH, respectively (Munns and Tester, 2008). In
the present study, both the plants demonstrated the decreasing
trend in NADP/NADPH ratio; however the extent of decrease
was higher in B. juncea than S. portulacastrum. This sug-
gests two possibilities, first: either the photosynthesis was not
affected to a significant level in S. portulacastrum; second: there
might be the activation of alternative salvage pathway to utilize
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reducing equivalents, such as photorespiration. Although, com-
parison of glycophyte Arabidopsis and its halophytic relative
Thellungiella showed that photosynthesis and gas exchange in
halophyte is minimally affected under salt conditions (Stepien
and Johnson, 2009), the contribution of salvage pathway cannot
be completely ignored, however this needs further investiga-
tion. To see the effects on plant energetic, the levels of adeny-
late (ATP, ADP) and pyridine nucleotides (NAD, NADH) were
measured. In B. juncea, NaCl stress increases the NAD/NADH
ratio which signifies the effect on energy metabolism. However,
the ATP/ADP ratio remained unchanged which suggests that
ATP formed is not actively utilized. By contrast, in S. portula-
castrum, significant consumption of ATP and NADwas observed
which led to the decline in ATP/ADP and NAD/NADH ratios.
Thus, apart from the ATP and NAD generation, their proper
channelization or consumption is also important to activate

different mechanisms responsible for imparting salt tolerance in
plants.

In summary, two plant systems (S. portulacastrum – a halo-
phyte and B. juncea – a glycophyte) differing in their salt-
tolerance ability have been compared. The findings reveal better
antioxidant defense to avoid oxidative damage and proper energy
consumption as key determinants of salinity tolerance in these
two contrasting plants. The differential response of NADPH oxi-
dase is also seen which needs to be investigated further in the
context of stress perception and downstream signaling.

Supplementary Material

The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fenvs.
2015.00019/abstract
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Plants are exposed to a wide range of environmental conditions and one of the major
forces that shape the structure and function of plants are temperature stresses, which
include low and high temperature stresses and considered as major abiotic stresses
for crop plants. Due to global climate change, temperature stress is becoming the
major area of concern for the researchers worldwide. The reactions of plants to these
stresses are complex and have devastating effects on plant metabolism, disrupting cellular
homeostasis and uncoupling major physiological and biochemical processes. Temperature
stresses disrupt photosynthesis and increase photorespiration thereby altering the normal
homeostasis of plant cells. The constancy of temperature, among different metabolic
equilibria present in plant cells, depends to a certain extent on a homeostatically regulated
ratio of redox components, which are present virtually in all plant cells. Several pathways,
which are present in plant cells, enable correct equilibrium of the plant cellular redox state
and balance fluctuations in plant cells caused by changes in environment due to stressful
conditions. In temperature stresses, high temperature stress is considered to be one of
the major abiotic stresses for restricting crop production worldwide. The responses of
plants to heat stress vary with extent of temperature increase, its duration and the type
of plant. On other hand, low temperature as major environmental factor often affects
plant growth and crop productivity and leads to substantial crop loses. A direct result
of stress-induced cellular changes is overproduction of reactive oxygen species (ROS)
in plants which are produced in such a way that they are confined to a small area and
also in specific pattern in biological responses. ROS (superoxide; O−

2 , hydroxyl radicals;
OH−, alkoxyl radicals and non-radicals like hydrogen peroxide; H2O2 and singlet oxygen;
1O2) are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates
which ultimately results in oxidative stress. ROS may also serve as signaling molecules
in mediating important signal transduction pathways that coordinate an astonishing range
of diverse plant processes under temperature stress. To counter temperature induced
oxidative stress, plants upregulate a variety of enzymatic and non-enzymatic antioxidants
which are also information-rich redox buffers and important components of redox signaling
that interact with biomembrane-related compartments. They provide essential information
on cellular redox state, and regulate gene expression associated with stress responses to
optimize defense and survival, stress acclimation and tolerance. The work done by various
researchers has explored a direct link between ROS scavenging and plant tolerance
under temperature extremes in various crops which include legumes, cereals, oil crops
and vegetables. There is ample need to develop temperature tolerance in crop plants
by exploring suitable strategies to manage oxidative stress and maintain cellular redox
state. Here, we summarize the studies linking ROS and temperature stress in plants,
their generation and site of production, role of ROS as messengers as well as inducers
of oxidative damage and strategies for the development of temperature stress tolerance
involving redox homeostasis in various agricultural crops.

Keywords: temperature stress, oxidative damage, legumes, cereals, homeostasis

INTRODUCTION
Plants are constantly subjected to different environmental con-
ditions, which cause alterations in their metabolism in order
to maintain a steady-state balance between energy generation

and consumption and also in their redox state (Suzuki et al.,
2011). Several environmental conditions result in stress in
plants to adversely affect the metabolism, growth and develop-
ment and may even lead to death under long-term exposures
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(Boguszewska and Zagdanska, 2012). Various abiotic stresses
include drought, salt, low/high temperature, flooding and anaero-
bic conditions, which limit crop growth and productivity (Lawlor
and Cornic, 2002). Among all the stresses, temperature stresses
(cold or heat) can have devastating effects on plant growth and
metabolism, also leading to alterations in redox state of the plant
cell which is one of the important consequences of the fluctuating
environment conditions (Suzuki and Mittler, 2006; Suzuki et al.,
2011; Bita and Gerats, 2013). A delicate balance exists between
multiple pathways residing in different organelles of plant cells,
known as cellular homeostasis (Kocsy et al., 2013). This coor-
dination between different organelles may be disrupted during
temperature stresses due to variation in temperature optimum
in different pathways within cells (Hasanuzzaman et al., 2013a).
The constancy of temperature, among different metabolic equi-
libria present in plant cells, depends to a certain extent on a
homeostatically-regulated ratio of redox components, which are
present virtually in all plant cells (Suzuki et al., 2011). Several
pathways, which are present in plant cells enable correct equilib-
rium of the plant cellular redox state and balance fluctuations in
plant cells caused by changes in environment due to stressful con-
ditions which are otherwise sensitive to changes in environmental
conditions, especially temperature stresses (Foyer and Noctor,
2005, 2012; Suzuki et al., 2011). Plant Redox changes result
in modification or induction of various physiological and bio-
chemical processes through regulatory networks including ROS
and antioxidants by reprogramming transcriptome which include
the set of all RNA molecules, proteome including all proteins
expressed by genome and metabolome such as metabolic inter-
mediates, hormones and other signaling molecules etc. (Foyer
and Noctor, 2009). Furthermore, reactions of plants to tem-
perature stresses are complex and have adverse effects on plant
metabolism by disrupting cellular homeostasis and uncoupling
major physiological and biochemical processes (Hasanuzzaman
et al., 2013a; Hemantaranjan et al., 2014). These stresses alter
the normal homeostasis of plant cells by disrupting photosyn-
thesis and increasing photorespiration (Noctor et al., 2007). A
direct result of stress-induced cellular changes is overproduction
of reactive oxygen species (ROS) in plants which are produced
in such a way that they are confined to a small area and also in
specific pattern in biological responses. The production of ROS
is an inevitable consequence of aerobic metabolism during stress-
ful conditions (Bhattacharjee, 2012). ROS are highly reactive and
toxic, affecting various cellular functions in plant cells through
damage to nucleic acids, protein oxidation, and lipid peroxida-
tion, eventually resulting in cell death (Figure 1) (Bhattacharjee,
2005; Amirsadeghi et al., 2006; Suzuki et al., 2011; Tuteja et al.,
2012). ROS toxicity due to stresses is considered to be one of the
major causes of low crop productivity worldwide (Vadez et al.,
2012).

ROS system consists of both free radicals including superoxide
(O−

2 ), hydroxyl radicals (OH−), alkoxyl radicals and non-radicals
like hydrogen peroxide (H2O2) and singlet oxygen (1O2) (Gill
and Tuteja, 2010). During stress conditions, these species are
always formed by the leakage of electrons from the electron
transport activities of chloroplasts, mitochondria, and plasma
membranes or also as a by-product of various metabolic pathways

localized in different cellular compartments (Del Rio et al., 2006;
Gill and Tuteja, 2010; Sharma et al., 2012; Figure 2). Depending
upon their concentrations, ROS play dual role as both delete-
rious and beneficial species in plants (Kotchoni and Gachomo,
2006). At low/moderate concentrations, ROS act as second mes-
sengers in various intercellular signaling pathways that mediate
many responses in plants, thus regulating cellular redox state
whereas at higher concentrations they have detrimental effects
on plant growth (Mittler, 2002; Torres et al., 2002; Yan et al.,
2007; Miller et al., 2008; Sharma et al., 2012). Plants have var-
ious metabolic and developmental processes which are regu-
lated by cross-talk between ROS and hormones (Kocsy et al.,
2013). ROS can activate the synthesis of many plant hormones
such as brassinosteroids, ethylene, jasmonate and salicylic acid
(Ahmad et al., 2010). In contrast, some hormones such as
auxins, ABA, salicylic acid can also result in ROS generation
(Figure 3). The redox state of the cell may be affected by plant
hormones through transcriptional stimulation of genes cod-
ing for molecules involved in redox system (Laskowski et al.,
2002). Various metabolic and developmental processes which
involve interaction between ROS and hormones in plants include
stomatal closure (Yan et al., 2007; Neill et al., 2008), pro-
grammed cell death (Bethke and Jones, 2001), gravitropism
(Jung et al., 2001), control of root apical meristem organiza-
tion (Jiang and Feldman, 2003) and acquisition of tolerance to
both biotic and abiotic stresses (Torres et al., 2002; Miller et al.,
2008).

These ROS are continuously reduced/scavenged by plant
antioxidative defense systems which maintain them at cer-
tain steady-state levels under stressful conditions (Tuteja et al.,
2012). An efficient anti-oxidative system comprising of the non-
enzymatic as well as enzymatic antioxidants is involved in scav-
enging or detoxification of excess ROS (Noctor et al., 2007;
Sharma et al., 2012). Various enzymatic antioxidants comprise
of superoxide dismutase (SOD), catalase (CAT), glutathione per-
oxidase (GPX), enzymes of ascorbate-glutahione (AsA-GSH)
cycle such as ascorbate peroxidase (APX), monodehydroascor-
bate reductase (MDHAR), dehydroascorbate reductase (DHAR),
and glutathione reductase (GR) (Noctor and Foyer, 1998; Foyer
and Noctor, 2003) whereas Non-enzymatic antioxidants include
phenolics, ascorbate (AsA), glutathione (GSH), carotenoids,
and tocopherols (Apel and Hirt, 2004; Gill and Tuteja, 2010).
Increased activities of many antioxidant enzymes have been
observed in plants to combat oxidative stress induced by various
environmental stresses and also to maintain cellular homeostasis
(Blokhina et al., 2003; Almeselmani et al., 2006). Maintenance of
a high antioxidant capacity to scavenge the toxic ROS has been
linked to increase in tolerance of plants to these environmen-
tal stresses (Suzuki et al., 2011; Hasanuzzaman et al., 2013a).
Transgenic lines with altered levels of antioxidants have been
developed for improving stress-induced oxidative stress toler-
ance in various crop plants (Chen et al., 2010; Hasanuzzaman
et al., 2013b). Transgenics developed with concurrent expres-
sion of multiple antioxidant enzymes are found to have more
tolerance to multiple environmental stresses compared to those
transformed with one or two genes (Suzuki et al., 2011; Sharma
et al., 2012).
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FIGURE 1 | Reactive oxygen species induced oxidative damage to lipids,

proteins and nucleic acids. Oxidative stress, induced by the accumulation of
reactiveoxygenspecies (ROS)suchasO�−

2 ,H2O2 andOH�,whichcanbringouta

range of stress responses. Exposure of cells to severe oxidative stress can elicit
lethal response pathways such as apoptosis, necrosis, and possibly other forms
of cell death pathways which can ultimately lead to programmed cell death.

TEMPERATURE STRESSES
Temperature stress is becoming a major area of concern for
plant scientists due to climate change, affecting crop production
worldwide (Hasanuzzaman et al., 2013b). Every plant species has
optimum temperature limits for its growth and development and
abnormal temperatures have devastating effects on plant growth
and metabolism (Yadav, 2010; Suzuki et al., 2011; Hasanuzzaman
et al., 2012a, 2013b; Kumar et al., 2013a,b). According to global
climate change scenarios, high temperature stress is considered
as a critical factor for plant growth and productivity and the
plant responses to high temperature vary with the extent of tem-
perature increase, its duration and type of plant (Mittler, 2006;
Wahid et al., 2007; Hasanuzzaman et al., 2012a). High tem-
perature may adversely affect vital physiological processes like
photosynthesis, respiration, water relations and membrane stabil-
ity and also modulate levels of hormones, primary and secondary
metabolites (Hemantaranjan et al., 2014). Furthermore, for the
duration of plant ontogeny, enhanced expression of a variety of
heat shock and stress-related proteins and production of ROS
constitute the major plant responses to heat stress (Saidi et al.,
2011; Hasanuzzaman et al., 2013a; Hemantaranjan et al., 2014).
Higher ROS concentrations are associated with lipid peroxida-
tion; mainly cellular membranes are particularly susceptible to

oxidative damage (Sharkey, 2005; Suzuki and Mittler, 2006).
In addition, acquired thermotolerance, i.e., the ability of plants
to develop heat tolerance was shown to be mediated in plants
by enhancing cellular mechanisms that prevent oxidative dam-
age under high temperature conditions in crops (Larkindale
and Huang, 2004; Suzuki and Mittler, 2006). According to vari-
ous studies, different types of signal transduction pathways and
defense mechanisms due to heat stress are involved in sens-
ing of ROS and helpful in providing thermotolerance to crop
plants (Figure 4; Apel and Hirt, 2004; Kreslavski et al., 2012;
Hasanuzzaman et al., 2013b; Miura and Furumoto, 2013). In
contrast, low temperature stress or cold stress is another fac-
tor that often affects plant growth and productivity and leads
to substantial crop losses (Croser et al., 2003; Yadav et al., 2004;
Beck et al., 2007; Yadav, 2010; Sanghera et al., 2011; Miura and
Furumoto, 2013). Cold stress or low temperature, which includes
both chilling stress (<20◦C) and freezing stress (<0◦C) is one
of the most significant abiotic stresses of agricultural plants,
affecting plant development and yield and consequently reduc-
ing crop production (Lang et al., 2005; Thakur et al., 2010).
It results in micro-organelle disruption, phase transition in cell
membrane lipids and generation of ROS (Kim et al., 2013). It
also induces cascades of alterations in metabolic pathways which
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FIGURE 2 | Production of ROS in different organelles. During abiotic
stress conditions organelles with highly oxidizing metabolic activities such
as mitochondria, chloroplast and peroxisomes are major sites of ROS
production (Mittler et al., 2004). In mitochondria, ROS production is likely
to occur in complex I and Q zone (Blokhnia and Fagerstedt, 2006). In the
chloroplast, during photosynthesis, energy from sunlight is captured and
transferred to photoystem I (PS I) and photoystem II (PS II). O�−

2 , which is
produced mainly by electron leakage from Fe-S centers of PS I or reduced
ferredoxin (Fd) is then converted to H2O2 by SOD (Gechev et al., 2006).
Under excess light conditions, PS II is able to generate 1O2 by energy
transfer from the triplet state chlorophyll (Asada, 2006). In peroxisomes,
ROS is produced mainly during photorespiration and also during β-oxidation

of fatty acid. During carbon assimilation, carboxylation of
ribulose-1,5-bisphosphate (RuBP) by ribulose-1,5-bisphosphate
carboxylase/oxygenase (RuBisCO), can also use O2 to oxygenate
ribulose-1,5-bisphosphate. Under abiotic stress conditions, which impair
CO2 fixation in the chloroplast, the oxygenase activity of RuBisCO
increases and the glycolate that is produced moves from the chloroplast to
peroxisomes, where it is oxidized by glycolate oxidase (GO) forming H2O2

(Takahashi and Murata, 2008). In peroxisomes, H2O2 can also be formed
directly from O2 by enzyme systems such as xanthine oxidase (XO)
coupled to SOD (Mhamdi et al., 2010). Plasma membrane-bound NADPH
oxidases as well as cell-wall associated peroxidases are the main sources
of O�−

2 and H2O2 producing apoplastic enzymes (Mhamdi et al., 2010).

include changes in membrane fatty acid composition, activity of
antioxidant enzymes, gene regulation and changes in redox state
(Shahandashti et al., 2014). According to various reports, mech-
anisms governing the temperature response in higher plants are
being extensively probed to improve the cold tolerance in agricul-
tural crops (Chinnusamy et al., 2007; Thakur et al., 2010). Various
cellular changes, which are induced by either high temperature or
low temperature lead to the overproduction of toxic compounds,
especially ROS that result in oxidative stress (Mittler, 2002). ROS
have toxic potential effects as they can induce protein oxidation,
DNA damage, lipid peroxidation of membranes (malondialde-
hyde content) and destruction of pigments (Apel and Hirt, 2004;
Xu et al., 2006; Hasanuzzaman et al., 2012a), however plants have
evolved variety of responses to extreme temperatures that help

in minimizing damages and provide cellular homeostasis (Kotak
et al., 2007). Direct link exists between ROS scavenging and
plant stress tolerance under temperature stress conditions which
is often related to enhanced activities of antioxidative defense
enzymes that confers stress tolerance to either high temperature
or low temperature stress (Huang and Guo, 2005; Almeselmani
et al., 2009).

TEMPERATURE STRESSES AND OXIDATIVE DAMAGE IN
CROPS
LEGUMES
Grain legumes are important food commodities and also the
essential components of crop rotation throughout the world
(McDonald and Paulsen, 1997). High temperature stress is
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FIGURE 3 | Cross-talk between hormones and ROS during regulation of

redox environment. Various spatial and temporal changes in the levels of ROS
and hormones at various organizational levels are important in operation of
regulatory network. The concentration-dependent effects of ROS and their

interactions with hormones control the growth and development in general,
including both activation and inhibition of certain signaling pathways. This model
shows the interactions between various hormones and ROS. ABA, abscisic acid;
JA, jasmonate; ROS, reactive oxygen species; SA, salicylic acid; NO, nitric oxide.

predicted to occur more frequently further affecting various
aspects of leguminous crops (Hatfield et al., 2011; Ibrahim, 2011;
Reddy et al., 2012). ROS produced during extreme temperature
conditions have been demonstrated to cause oxidative damage
leading to cellular injury in legumes (Apel and Hirt, 2004). In
Phaseolus vulgaris, increased H2O2 content was observed at 46–
48◦C, which further led to lipid peroxidation in membranes and
accumulation of malondialdehyde (MDA) (Nagesh and Devaraj,
2008; Kumar et al., 2011). In chickpea (Cicer arietinum), at
40/30◦C (day/night) temperatures under controlled conditions,
symptoms of heat stress arise in the form of chlorosis of leaves,
membrane damage and loss of viability of tissues. The damage to
the plants becomes intensive at 45/35◦C (Kumar et al., 2011) that
was attributed to increased oxidative damage as lipid peroxidation
and H2O2 content, which was relatively greater in heat-sensitive
genotypes, especially at 40/30 and 45/35◦C. According to Kaushal
et al. (2011), oxidative damage, measured as lipid peroxidation
and hydrogen peroxide concentration, increased with heat stress
(45/40◦C), pertinently lipid peroxidation was found to increase
to a greater extent indicating membrane injury. Also, decrease in
the activities of enzymatic antioxidants (SOD, CAT, APX, GR)
was observed, which was due to their denaturation at higher
temperature, i.e., 45/40◦C. When compared with other grain

legumes such as pigeonpea, groundnut and soybean, chickpea was
the most sensitive in terms of oxidative damage, membrane ther-
mostability and PSII function (Srinivasan et al., 1999). In another
legume, Mungbean (Vigna radiata L), which is a summer-season
crop, the seedlings exposed to higher temperature of 50◦C for
2 h (lethal temperature) as well as pretreated with 40◦C for
1 h, were analyzed for MDA content and antioxidative enzymes.
The results showed that the growth in lethal temperature was
extremely poor which improved when pre-treatment of 40◦C was
applied before 50◦C. The content of MDA in seedlings treated
with lethal temperature was highest at any harvest, which reduced
when seedlings were pre-treated with 40◦C prior to lethal stress
(Mansoor and Naqvi, 2013). These observations were attributed
to heat acclimation, which improved the antioxidant defense. In
soybean, heat stress enhanced membrane permeability and elec-
trolyte leakage as a result of oxidative damage, which in turn
reduced the ability of the plasma membrane to retain solutes and
water (Lin et al., 1984). In another related study, increased mem-
brane lipid peroxidation due to heat stress was noticed which
aggravated the membrane injury in soybean (Glycine max) (Tan
et al., 2011). Also, the crop exposed to day/night temperature of
38/28◦C for 14 days at flowering stage showed damage to chloro-
plast and thylakoids membranes (Tan et al., 2011). Heat induced
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FIGURE 4 | Various signaling and defense pathways in response to

temperature stresses. Temperature stresses affect the plasma membrane
to activate calcium channels, which induces Ca2+ influx (Saidi et al., 2009),
thus the MAPK cascade leading to gene expression. Secondary signals like
ROS, H2O2, NO, and ABA lead to stress-tolerance (Hua, 2009; Mishkind

et al., 2009). Abbreviations: CaM3, Calmodulin; CDPKs, Calcium-dependent
protein kinases; MAPKs, Mitogen activated protein kinases; N0, Nitric
oxide; PLD, Phospholipase D; PIPK, Phosphadidylinositol-4,5-biphosphate
kinase; PA, Phosphatidic acid; IP3, D-myo-inositol-1,4,5-triphosphate; DAG,
Diacylglycerol.

membrane damage has been reported in broad bean (Hamada,
2001) and soybean (Djanaguiraman et al., 2011). ROS arising
out from heat stress were implicated as primary agents causing
oxidative injury in all these studies.

Many economically important legumes are sensitive to tem-
perature below 15◦C (Ouellet, 2007). Stressful low temperatures
lead to disruption of respiration by affecting respiratory rate
which may at first increase in response to chilling (Kaur et al.,
2008) but on continued exposure, it decreases (Munro et al.,
2004) or plants may resort to some alternative respiratory path-
way as found in case of mungbean (Vigna radiata) and pea leaves
(Gonzalez-Meler et al., 1999). Besides these implications, other
harmful effects of low temperature reported are loss of membrane
fluidity and rigidification (Vigh et al., 2007; Jewell et al., 2010),
generation of ROS (Wang et al., 2009a,b; Turan and Ekmekci,
2011). At metabolic levels, chilling stress negatively affects pho-
tosynthesis as described in pea (Pisum sativum; Guilioni et al.,
1997), mungbean (Vigna radiate; Gonzalez-Meler et al., 1999),

beans (Phaseolus vulgaris; Tsonev et al., 2003), chickpea (Cicer
arietinum; Nayyar et al., 2005b; Berger et al., 2006), pigeon pea
(Cajanus cajan; Sandhu et al., 2007), faba beans (Torres et al.,
2011), soybean (Ohnishi et al., 2010; Board and Kahlon, 2012).
The loss of membrane integrity is the primary damage of chilling
temperatures due to oxidative stress, which results in the pro-
duction of H2O2 and MDA content due to lipid peroxidation
(Nayyar and Chander, 2004; Tambussi et al., 2004; Nayyar et al.,
2005a,b,c,d). In mungbean, exposure of plants to low temperature
showed damage to PSII, further reducing photochemical effi-
ciency due to photoinhibition and damage to chloroplast (Saleh,
2007). It also resulted in swelling of plastids and accumulation of
lipid drops, ultimately leading to disorganization of entire plas-
tid (Ishikawa, 1996). In mungbean, 5 days old seedlings subjected
to stressful low temperature (4◦C for 2 days) showed irreversible
chilling injury as evident from increased electrolyte leakage con-
tents due to membrane damage (Chang et al., 2001). Chilling-
inflicted membrane damage was also reported in broad bean
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(Hamada, 2001). Chickpea is a chilling- sensitive crop and its pro-
ductivity is adversely affected by chilling temperatures as chilling
stress is the principal cause for crop reduction in chickpea (Nayyar
et al., 2005b). Increased electrolyte leakage was reported in chick-
pea under cold stress (5/13◦C mean min. and max. temperature),
thereby indicating altered membrane permeability, structural dis-
integration and membrane injury in chickpea (Croser et al., 2003;
Nayyar et al., 2005a). For chickpea, same results were observed in
various studies conducted by different researchers (Bakht et al.,
2006; Turan and Ekmekci, 2011; Shahandashti et al., 2014). The
decrease in photosynthetic capacity was observed in soybean
(Glycine max), which was partly due to chilling-associated oxida-
tive damage to chloroplast components. Also, the lipid peroxida-
tion and oxidative damage to thylakoid proteins were observed in
leaves of soybean exposed to chilling stress under light (Tambussi
et al., 2004). In another study of Glycine max, a much larger
reduction was observed in the speed of germination of radi-
cal length at chilling temperature, which was probably due to
decrease in activity of numerous enzymes involved in degrada-
tion of seed storage reserves, transport of degradation products
and their metabolism in the embryonic roots. This decrease in
enzymatic activity was resulted due to generation of ROS induced
by chilling stress (Borowski and Michalek, 2014).

CEREALS
High temperature stress is considered as a key stress factor with
high potential impact on crop yield of cereals (Hasanuzzaman
et al., 2013a). On the other hand, long term exposure of cereals
to low temperature showed reduction in photochemical effi-
ciency of PSII due to photoinhibition and damage to chloroplast
(Kratsch and Wise, 2000; Hasanuzzaman et al., 2013a). One of the
major consequences of high temperature stress in cereals is oxida-
tive damage caused by imbalance of metabolic processes such as
photosynthesis and respiration either by increasing the ROS or
by decreasing the oxygen radical scavenging ability in the cell
(Mittler, 2002; Wormuth et al., 2007; Barnabas et al., 2008). High
temperature stress leads to the peroxidation of membrane lipids
leading to the production of malondialdehyde (MDA), which
is a good indicator of free radical damage to cell membranes
(Hasanuzzaman et al., 2013a,b). Heat-stress-induced membrane
peroxidation and aggravated membrane injury was observed in
wheat (Savicka and Skute, 2010), rice and maize (Kumar et al.,
2012c) and sorghum (Tan et al., 2011). High temperature stress
in sorghum (Hordeum vulgare) resulted in lipid peroxidation
of membranes to cause membrane injury. Membrane damage
and MDA content increased by 110 and 75%, respectively which
was due to increased H2O2 and O−

2 content (Mohammed and
Tarpley, 2010). High temperature stress decreased antioxidant
enzyme activities and increased oxidant production in sorghum
(Djanaguiraman et al., 2010). In this study, SOD, CAT and POX
activities were decreased during heat stress (22, 15, and 25%
lower than control plants) and the inhibition of all antioxidant
enzymes in heat-stressed plants relative to control plants indi-
cated inactivation of all antioxidant enzymes by heat stress. In
wheat seedlings, gradual increase in H2O2 content was observed
(0.5, 0.58, 0.78, and 1.1 μmol g−1 FW) in response to differ-
ent heat shock treatments of 22, 30, 35, and 40◦C for the time

period of 2 h (Kumar et al., 2012a). Oxidative damage due to
ROS production during long term exposure to high tempera-
ture led to changes in MDA content and O−

2 production which
were observed at two growth stages, i.e., early stages (4-day-
old) and late stages (7-day-old) of wheat (Triticum aestivum)
seedlings development (Savicka and Skute, 2010; Cossani and
Reynolds, 2012). In another study on wheat, increased MDA con-
centration was observed in first leaf of wheat seedlings during
high temperature stress conditions, which is due to the increased
production of superoxide radical (O−

2 ) (Bohnert et al., 2006).
According to Kumar et al. (2012c), high temperature of 40/35◦C
(day/night temperature) resulted in 1.8-fold and 1.2- to 1.3-fold
increase of MDA content in rice and maize genotypes, respectively
over the control treatment. A further increase of MDA content
was observed at 45/40◦C, in both the crops, where an increase
of 2.2- to 2.4-fold was noticed in rice genotypes compared to
1.7-fold increase in maize genotypes. With rise in temperature
to 45/40◦C, oxidative damage increased further in rice geno-
types (Kumar et al., 2012c; Theocharis et al., 2012; Yang et al.,
2012).

Cold stress, especially the chilling stress in cereal crops, is
one major form of stress which affects the crop growth and
yield (Hasanuzzaman et al., 2013a). Cold stress-induced tissue
dehydration further leads to membrane disintegration, reduced
growth and development of plants in maize which was due
to the accumulation of MDA content as a result of lipid per-
oxidation in membranes (Farooq et al., 2009; Yadav, 2010).
According to Yordanova and Popova (2007), exposure of wheat
plants to low temperature (3◦C) for 48 and 72 h resulted in
decreased levels of chlorophyll, CO2 assimilation, transpirations
rates and photosynthesis due to the reduced activities of ATP
synthase, which further restricted RuBisCo regeneration and
limited photophosphorylation (Allen and Ort, 2001). Physio-
biochemical responses to cold stress in tetraploid and hexaploid
wheat were studied where, the elevated levels of electrolyte leakage
index, H2O2 and MDA content were observed in stressed plants
(Nejadsadeghi et al., 2014).

According to some previous reports, oxidative stress as a result
of chilling stress has been observed in some other crops also
(Turan and Ekmekci, 2011). Cold stress adversely affected mem-
brane properties and enzymatic activities leading to plant and
tissue necrosis, as observed in banana (Musa spp.) (Chinnusamy
et al., 2007). Some other crops, which are chilling-sensitive and
have been studied for the adverse effects on growth and develop-
ment include Coffee plant (Coffea Arabica; Alonso et al., 1997),
tomato (Lycopersicum esculentum; Starck et al., 2000) and its wild
varieties, potato (Solanum spp.; Svensson et al., 2002), Citrus
plant (Hara et al., 2003), muskmelons (Cucumis melo; Wang et al.,
2004), cotton (Gossipium hirusutum; Zhao et al., 2012), and sug-
arcane (Saccharum officinarum L; Badea and Basu, 2009; Thakur
et al., 2010; Aghaee et al., 2011; Anjum et al., 2011; Zhu et al.,
2013).

Some other crops, where damage due to ROS in response to
heat stress has been reported are Gossipium hirsutum (Crafts-
Brandner and Law, 2000; Snider et al., 2009), Lycopersicon escu-
lentum (Willits and Peet, 2001; Rivero et al., 2004; Wahid et al.,
2007), Nicotiana tabacum (Wang et al., 2006; Tan et al., 2011),
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Malus domestica (Ma et al., 2008), Brassica juncea (Rani et al.,
2013; Wilson et al., 2014), and Cucurbita sp. (Ara et al., 2013).

REDOX HOMEOSTASIS IN TEMPERATURE-STRESSED CROPS
HIGH TEMPERATURE STRESS
Plants tend to combat ROS production by inducing an antiox-
idant system consisting of enzymatic and non-enzymatic

components under extreme temperature conditions as their
defense system and also maintain their redox homeostasis
(Sairam and Tyagi, 2004; Wahid et al., 2007; Hasanuzzaman
et al., 2013a) (Figure 5). Various studies on plants are available
which indicate tolerance to temperature stress with an increase
in antioxidants (Gill and Tuteja, 2010; Kaushal et al., 2011;
Kumar et al., 2011, 2012b, 2013a; Hasanuzzaman et al., 2012a).

FIGURE 5 | ROS and redox homeostasis in temperature stress. ROS
production in plant cells is a consequence of various stimuli due to
abiotic stress, and modulation by antioxidants, as well as cell metabolism
(Suzuki and Mittler, 2006). During stress, ROS overproduction can pose a
threat to plant cells, and many stress conditions can enhance the
expression of ROS-scavenging enzymes (De Gara et al., 2010). ROS are
actively produced by cells (e.g., by NADPH oxidase in membranes) in

stressful condition, and act as signals for the induction of defense
pathways and eliciting specific cellular responses (Wahid et al., 2007).
The influence of these molecules on cellular processes is mediated by
both the perpetuation of their production and their scavenging by
enzymes such as CAT, catalase; APX, ascorbate peroxidase; GPX,
guaiacol peroxidase; SOD, superoxide dismutase, and GR, glutathione
reductase (Alscher et al., 2002; Suzuki et al., 2011).
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Though all the reports indicate to up-regulation of similar
types of enzymatic and non-enzymatic antioxidants, their
degree and type of expression varies depending upon the plant
type, duration and intensity of the stress. Nagesh and Devaraj
(2008) observed increased activities of glutathione reductase
(GR), peroxidase (POX) and ascorbic acid content in Phaseolus
vulgaris plants during high temperature stress. Increased levels
of sugars, proline, glutathione and ascorbate and activities of
peroxidase (POX), glutathione reductase (GR) and ascorbate
peroxidase (APX) were observed in lablab (Dolichos lablab)
seedlings (D’Souza and Devaraj, 2013). In lentil, Chakraborty
and Pradhan (2011) observed initial increase in CAT, APX, and
SOD activities as temperature increased from 20 to 50◦C before
declining at 50◦C. Likewise, in chickpea, the oxidative stress
assessed by measuring the activity of enzymatic antioxidants such
as CAT, SOD, APX, and GR elevated in plants grown at 40/35◦C
but decreased at 45/40◦C (Kaushal et al., 2011). To cope up the
oxidative stress, increased levels of antioxidants were observed at
40/30◦C, which decreased markedly at 45/35◦C suggesting their
impairment. Heat-tolerant genotypes possessed greater activities
of ascorbate peroxidase (APX) and glutathione reductase (GR),
which possibly influenced the heat tolerance (Kumar et al.,
2011). Seedlings of soybean (Glycine max) exposed to high
temperature at 45◦C showed increased activities of peroxidases
(POX), glutathione reductase (GR) and ascorbate peroxidase
(APX) (D’Souza, 2013); similar findings have been observed in
sorghum (Djanaguiraman et al., 2010). The activity of SOD,
APX, CAT, GR, and POX increased significantly at all stages of
growth in wheat cultivar C306 (heat-toelrant) while the PBW 343
(heat-sensitive) genotype showed a significant reduction in CAT,
GR, and POX activities in response to high temperature stress in
wheat (Almeselmani et al., 2009). Thermotolerance acquired in
a set of wheat (Triticum aestivum) genotypes was correlated with
higher activities of antioxidants such as catalase and superoxide
dismutase, higher ascorbic acid concentration and less oxidative
damage (Sairam et al., 2000; Almeselmani et al., 2006). A study
conducted on wheat by Baldawi et al. (2007) showed heat tol-
erance to be associated with higher activities of SOD, APX, GR,
GST, and CAT. In an another study conducted by Kumar et al.
(2012c), comparative responses of Oryza sativa and Zea mays
revealed the higher expression of enzymatic and non-enzymatic
antioxidants. In enzymatic oxidants CAT, APX, and GR were
found to be significantly higher in Zea mays compared to Oryza
sativa while no variations existed for superoxide dismutase at
the highest temperature applied (45/40◦C), whereas the non-
enzymatic antioxidants (AsA and GSH) were also maintained
significantly at greater levels at 45/40◦C in maize than in Oryza
sativa genotypes. Therefore, Zea mays genotypes were able to
retain their growth under heat stress partly due to their superior
ability to cope up with oxidative damage by heat stress compared
to Oryza sativa genotypes as suggested by these findings. The
relative sensitivity of these plant groups to heat stress may also
be reflected from the observation that Zea mays and Oryza sativa
belong to C4 and C3 plant groups, respectively (Kumar et al.,
2012c). Pearl millet plantlets showed significant increase in SOD,
CAT and peroxidase activities during heat stress (Tikhomirova,
1985). In a similar fashion, exposure of a thermo-tolerant

(BPR5426) and thermo-sensitive (NPJ119) Indian mustard
(Brassica juncea) genotype to high temperature (45◦C) revealed
higher SOD, CAT, APX and GR activities in tolerant genotypes
(Rani et al., 2013). Under heat stress conditions, activity of
antioxidant enzymes such as SOD, APX, POX, CAT increased,
while H2O2 and MDA decreased, which increased shoot weight in
tomato (Ogweno et al., 2008). According to these various studies,
maintaining the redox state is vital to tolerate mild heat stress
while severe stress, even for short periods, impairs this ability.
Therefore, understanding of the expression of antioxidants in
heat-stressed plants of various crops may be a significant step
toward improving redox state and heat tolerance in crop plants.

LOW TEMPERATURE STRESS
Low temperature stress was shown to enhance the transcript, pro-
tein, and activity of different ROS scavenging enzymes of antiox-
idative machinery which is linked to acquisition of stress tolerance
(Saito et al., 2001; Posmyk et al., 2005; Morsy et al., 2007; Janska
et al., 2009; Figure 5). Higher cold tolerance was observed in
plants having enhanced activities of anti-oxidative enzymes in
chickpea (Kumar et al., 2011). The chilling experiments car-
ried out by Wang et al. (2009b) on alfalfa (Medicago sativa)
genotypes with different chilling sensitivities showed that the
chilling tolerant-genotypes had high anti-oxidative activity over
the chilling-sensitive ones. The pod walls in chickpea exposed to
cold stress upregulated the anti-oxidative enzymes to protect pods
and developing seeds from chilling injury (Kaur et al., 2008). Cold
acclimation in chickpea imparted cold tolerance at 2 and 4◦C,
which was attributed to enhanced activities of SOD, APX, GR,
and POX (Turan and Ekmekci, 2011). CAT, SOD and GR rep-
resent first lines of antioxidant defense which prevent formation
of more toxic ROS and play essential role in cellular H2O2 sig-
naling in chickpea (Shahandashti et al., 2014). In a subsequent
study in chickpea, Turan and Ekmekci (2011) exposed the chick-
pea cultivars to chilling treatment and reported the enhanced
activities of PSII and anti-oxidative enzymes in acclimated plants.
Higher activities of CAT, APX and GR were found in pod walls
of tolerant genotypes of chickpea which led to increased translo-
cation of GSH from pod wall to seeds and contribute to ROS
scavenging and tolerance to pod wall against low temperature
stress (Kaur et al., 2009). Soybean seedlings exposed to very low
temperature treatments (1◦C) resulted in increased activities of
anti-oxidative enzymes (Posmyk et al., 2001, 2005; Borowski and
Michalek, 2014). The tolerant genotypes of some cereals grow-
ing under cold stress showed higher expression of antioxidants
implicating their role in governing the cold tolerance. In chilling-
tolerant winter rye leaves, the contents of ascorbic acid and
α-tocopherol were found to be increased appreciable than the sen-
sitive genotype. Three antioxidant enzymes were studied in two
wheat cultivars, winter wheat and spring wheat, under low tem-
perature stress conditions. The levels of endogenous peroxides
were strongly increased in spring cultivar and to lesser extent in
winter wheat (Apostolova et al., 2008) at low temperature (Streb
and Feierabend, 1999). In rice, higher activities of antioxidant
enzymes (CAT, SOD, APX) and higher AsA content was recorded
which possibly provided cold tolerance (Huang and Guo,
2005; Guo et al., 2006). Antioxidant enzymes have significant
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importance in providing chilling tolerance in cold-stressed Zea
mays where levels of APX, MDHAR, DHAR, GR and SOD were
found to be elevated (Hasanuzzaman et al., 2013a). There are
some examples of other crops such as Coffea sp. (Hasanuzzaman
et al., 2013a), tomato (Zhao et al., 2009), Cucumber (Yang et al.,
2011), grapes (Wang and Li, 2006), Medicago sativa (Ibrahim and
Bafeel, 2008) where cold tolerance has been reported to be linked
to upregulation of various antioxidants.

PLANT ACCLIMATION TO TEMPERATURE STRESSES AND
REDOX HOMEOSTASIS
HIGH TEMPERATURE STRESS
Plants acclimate rapidly to different environmental conditions
and manifest different mechanisms for surviving under extreme
temperature conditions, together with long-term evolutionary
adaptations at morphological and phonological level, involving
changes in membrane lipid compositions, leaf orientation and
transpirational cooling or short-term avoidance or acclimation
mechanisms (Wahid et al., 2007; Larkindale and Vierling, 2008;
Bita and Gerats, 2013). The acclimation of plants to moderately
high temperature plays an important role in inducing plant tol-
erance to subsequent lethal high temperatures (He et al., 2003).
Under high temperature conditions, many crop plants undergo
early maturation, which is strongly related to decreased yield
and may occur as a result of involvement of escape mechanism
(Adams et al., 2001). Among general heat acclimation mecha-
nisms involving various stress proteins, osmo-protectants, antiox-
idant enzymes, ion transporters and factors involved in signaling
cascades and transcriptional control are essential to counteract
stress effects (Wang et al., 2004; Bita and Gerats, 2013). During
stress conditions, the initial stress signals arise in the form of
osmotic or ionic effects or changes in temperature or membrane
fluidity would trigger downstream signaling processes and tran-
scription controls. This further activates various stress-responsive
genes and mechanisms to re-establish homeostasis and protect
and repair damaged proteins and membranes in plants during
stressful conditions (Bohnert et al., 2006). Plants may experience
high temperatures even in their natural distribution which would
be lethal in the absence of this rapid acclimation response (Wahid
et al., 2007). In addition, plants can experience major tempera-
ture fluctuations, leading to the acquisition of thermotolerance
which may induce more general and variety of mechanisms
that contribute to redox control of homeostasis of metabolism
on a daily basis (Hong et al., 2003). During high temperature
stress, the primary effects are on the plasmalemma, resulting in
increased fluidity of lipid bilayer thereby leading to Ca2+ influx,
cytoskeleton reorganization, which results in the up regulation of
mitogen activated protein kinases (MAPK) and calcium depen-
dent protein kinases (CDPK), heat shock element (HSE), heat
shock proteins (HSPs) and histidine kinase (HSK) (Sung et al.,
2003). These different signaling cascades lead to the production of
antioxidants and compatible osmolytes for cell water balance and
osmotic adjustment, which also maintain redox homeostasis in
plant cells (Bohnert et al., 2006). Osmoprotectants accumulation
is one of an important adaptive mechanism in plants subjected
to extreme temperature conditions (Sakamoto et al., 2000). The
accumulation of different osmoprotectants like proline, glycine

betaine and soluble sugars is necessary to regulate osmotic
activities and protect various cellular structures from tempera-
ture stresses by maintaining the cell-water balance, membrane
stability and by buffering the cellular redox potential (Farooq
et al., 2008). According to studies, higher availability of carbo-
hydrates such as glucose and sucrose during heat stress represents
an important physiological trait associated with stress tolerance
and acclimation (Liu and Huang, 2000). Also, sugars have been
shown to act as antioxidants in plants (Lang-Mladek et al., 2010).
However, at lower concentrations, they act as signaling molecules,
but at higher concentrations these act as ROS scavengers also
(Sugio et al., 2009). For instance, in tomato, the high cell wall
and vacuolar invertases activities and increased sucrose import
into young fruit contribute to high temperature tolerance through
increasing sink strength and sugar signaling activities (Li et al.,
2012). Furthermore, secondary metabolites like anthocyanins and
carotenoids also help in plant acclimation responses by enhancing
their synthesis and by decreasing leaf osmotic potential, resulting
in an increased uptake and reduced transpirational loss of water
under stress conditions (Wahid et al., 2007). Plants may accumu-
late phenolics by stimulation of their biosynthesis and inhibition
of their catabolism as one of the acclimation mechanisms against
temperature stress, as indicated by several studies in tomato and
watermelon (Rivero et al., 2001; Wahid et al., 2007). The ability of
plants to withstand or to acclimate to extreme temperature con-
ditions results from repair of their heat-sensitive components and
also the prevention of further heat injury and redox homeostasis
being also maintained during stress (Kaya et al., 2001).

LOW TEMPERATURE STRESS
In cold acclimation, plants acquire stress tolerance on prior expo-
sure to suboptimal, low and non-freezing temperatures however;
various plant species differ in their ability to face cold stress,
which is governed by appropriate changes in gene expression
to alter their metabolism, physiology and growth (Chinnusamy
et al., 2010). Plant species acclimate during cold stress, by syn-
thesis of cryoprotective molecules such as soluble sugars (sac-
charose, raffinose, stachyose, trehalose), sugar alcohols (sorbitol,
ribitol, inositol) and low-molecular weight nitrogenous com-
pounds (proline, glycine betaine) (Janska et al., 2009). These
molecules stabilize both membrane phospholipids and proteins,
and cytoplasmic proteins in conjunction with dehydrin proteins
(DHNs), cold-regulated proteins (CORs) and heat-shock pro-
teins (HSPs). Cryoprotective solutes are also involved in main-
tenance of hydrophobic interactions, homeostasis of ions, protec-
tion of the plasma membrane from adhesion of ice, scavenging
ROS and consequent damage to cells (Iba, 2002; Wang et al., 2003;
Gusta et al., 2004, 2005; Chen and Murata, 2008; Janska et al.,
2009).

Also, the increased activity of the antioxidative enzymes such
as superoxide dismutase, glutathione peroxidase, glutathione
reductase, ascorbate peroxidase and catalase, as well as the
presence of a series of non-enzymatic antioxidants, such as
tripeptidthiol, glutathione, ascorbic acid (vitamin C) and alpha-
tocopherol (vitamin E) play important role in cold acclimation
and maintanance of cellular redox homeostasis (Chen and Li,
2002). Cold acclimation also affects cell lipid composition by
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increasing the proportion of unsaturated fatty acids making up
the phospholipids, which is necessary for the maintenance of
plasma membrane functionality (Rajashekar, 2000; De Palma
et al., 2008). Cold-acclimation induced chilling tolerance in
chickpea was found to be associated with marked increase in
endogenous ABA, cryoprotective solutes, antioxidative enzymes
like ascorbate, glutathione, superoxide dismutase and catalase,
relative growth rate of roots and significant decrease in elec-
trolyte leakage and oxidative damage (Nayyar et al., 2005a). Some
previous observations on this aspect also related higher chilling
tolerance imparted by cold acclimation to elevated endogenous
ABA (Janowiak et al., 2003), calcium (Knight et al., 1996), car-
bohydrates (Thomashow, 1999), and proline (Xin and Browse,
1998). During cold acclimation, changes in H2O2 concentrations
and GSH/GSSG ratio alter the redox state of cells and activate
special defense mechanisms through redox signaling chain (Kocsy
et al., 2001). H2O2 generated by NADPH oxidase in the apoplast
of plant cells plays a crucial role in cold acclimation induced chill-
ing tolerance in tomato (Lycopersicon esculentum; Zhou et al.,
2012). Some plants modulate their antifreeze activity by Ca2+,
which is either released from pectin or bound to specific pro-
teins and enhance the synthesis of proteins that inhibit the activity
of ice nucleators in response to cold stress (Moffatt et al., 2006;
Janska et al., 2009). An altered ratio of abscisic acid (ABA) to
gibberellin content, in favor of ABA, results in the retardation
of growth required for cold acclimation (Juntilla et al., 2002).
Gibberellin content is regulated by a family of nuclear growth-
repressing proteins called DELLAs, and these are components
of the C-repeat (CRT) binding factor 1 (CBF1)-mediated cold
stress response. However, the degradation of DELLAs is stimu-
lated by gibberellins (Achard et al., 2008). Various cellular changes
induced by temperature stress and metabolic homeostasis are
shown in model (Figure 6).

STRATEGIES FOR THE DEVELOPMENT OF TEMPERATURE
STRESS TOLERANCE INVOLVING REDOX HOMEOSTASIS
EXOGENOUS MOLECULES IN REDOX HOMEOSTASIS IN PLANTS
UNDER TEMPERATURE REGIMES
Some molecules have the potential to protect the plants from
the harmful and adverse effects of temperature stresses (Kaushal
et al., 2011; Sharma et al., 2012) and these impart protection by
managing the ROS. There are several reports where exogenous
application of molecules such as proline (Pro), glycine betaine
(GB), trehalose (Tre), brassiosteroids (Brs), polyamines (PAs),
salicylic acid (SA), nitric oxide (NO), abscisic acid (ABA) and
some trace elements like selenium etc. has shown beneficial effects
on plant growth and development under stressful conditions by
upregulation of antioxidant capacity (Tausz et al., 2004; Hefny
and Abdel-Kader, 2009). Proline (Pro), a non-essential amino
acid, is one of the most studied and extensively-reported ther-
moprotectant. Many studies have indicated a positive relationship
between the accumulation of Pro and plant stress tolerance.
Chickpea plants grown with exogenous Pro showed less injury
to membranes, improved chlorophyll and water contents espe-
cially at 45/40◦C due to protection of vital enzymes of antioxidant
metabolism under heat stress (Kaushal et al., 2011). Proline,
when exogenously applied to tobacco culture cells resulted in

decreased lipid peroxidation but increased SOD and catalase
activities (Islam et al., 2009). Supplementation with Pro and GB
considerably reduced H2O2 production and showed decrease in
oxidative injury coupled to elevated levels of antioxidants in sug-
arcane (Rasheed et al., 2011). According to Gao et al. (2013),
under heat stress, pre-treatment with trehalose (Tre) protected
proteins in the thylakoid membranes and the photosynthetic
capacity, reduced electrolyte leakage, MDA content and hydro-
gen peroxide levels due to elevated levels of antioxidants. The
potential of Tre to induce heat tolerance in other crops needs to
be examined as has been reported for inducing cold tolerance.
Likewise, induction of cold tolerance by glycine beatine was found
to be associated with increase in leaf water content, chlorophyll
and sucrose concentrations, reduction in ABA and oxidative dam-
age (Nayyar et al., 2005d). When supplied with exogenous glycine
betaine, cold-stressed cucumber plants showed better survival,
enhanced photosynthetic efficiency, and reduced MDA content
and ROS (Li et al., 2004). Similar cryoprotective effects of exoge-
nously applied GB were also confirmed when applied to Medicago
seedlings (Zhao et al., 1992), potato (Somersalo et al., 1996),
strawberry (Rajashekar et al., 1999), maize (Farooq et al., 2008),
and tomato (Park et al., 2006). Foliar application of GB has
resulted in induction of tolerance against cold stress in Medicago
sativa (Zhao et al., 1992), wheat (Allard et al., 1998), strawberry
(Rajashekar et al., 1999), and chickpea (Nayyar et al., 2005d).

Abscisic acid (ABA) is a naturally-occurring compound that
helps to regulate plant growth and development (Pospisilova
et al., 2009). A significant increase in free and conjugated ABA
was observed in tomato seedlings at 45/35◦C compared to control
plants (25/15◦C), which increased plant tolerance to temperature
stress (Daie and Campbell, 1981). Likewise, ABA levels increased
in response to heat treatment in tobacco (Teplova et al., 2000),
which possibly is linked to redox homeostasis. There are reports
where exogenous application of 10 μM ABA alleviated heat stress
symptoms by increasing SOD, CAT, APX, POX and decreasing
H2O2 and MDA contents (Ding et al., 2010). In heat-stressed
chickpea, exogenous application of 2.5 μM ABA increased growth
which was associated with enhanced endogenous ABA levels
(Kumar et al., 2012b). Maize seedlings grown for 1–4 days in
the presence of ABA were better able to withstand the effects of
3 h sub-lethal (40◦C) and lethal (45◦C) heat shocks to roots and
shoots (Bonham-Smith et al., 1988). Pre-treatment of maize with
0.3 mML−1 ABA at 46◦C improved the thermotolerance under
heat stress (Gong et al., 1998). Heat tolerance increased signifi-
cantly within 24 h of ABA application at 7.6 or 9.5 μM in leaves
and cell tissue culture in grapes (Abass and Rajshekhar, 1993).
An ABA concentration of 10−5 M inhibited heat-induced effects
and enhanced thermostability of thylakoid organization in barley
in response to heat stress (Ivanov et al., 1992). In cold-stressed
plants too, ABA-treated plants showed significantly less oxidative
damage, which was attributed to enhanced activities of various
enzymatic and non-enzymatic antioxidants. The studies indicated
that these plants showed improved cold tolerance as a result of
increase in leaf water content and decrease in oxidative stress
(Kumar et al., 2008).

Brassinosteroids (BRs) have a protective function under var-
ious abiotic stresses (Vardhini and Rao, 2003), which includes
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FIGURE 6 | Temperature stress and metabolic homeostasis. Temperature stress acclimation induces changes in many different cellular processes, provides
stress tolerance and maintains the cellular redox state in plants.

enhancement of antioxidants. Exogenous application of BR has
a promotory effect on the growth of wheat (Shahbaz et al., 2008),
French bean (Upreti and Murti, 2004) and is involved in stim-
ulating cell elongation under water stress conditions (Salchert
et al., 1998). Supplementation with exogenous 24-BR’s in tomato
plants showed better responses under heat stress (40/30◦C).
Activity of antioxidant enzymes such as SOD, APX, CAT were
found to be increased, resulting in increase of shoot weight
(Ogweno et al., 2008). A significant increase in net photosyn-
thetic rate was reported by epibrassinosteroid (EBR) application
to cucumber (Cucumis sativum L.; Yu et al., 2004) and tomato
(Singh and Shono, 2005). The treatment of rapeseed and tomato
seedlings with 24-epibrassinolide (a type of brassionosteroid)
increased their basic thermotolerance (Dhaubhadel et al., 1999).
In Indian mustard, application of different concentrations of 24-
epibrassinolide (0, 10−6, 10−8, 10−10 M) on 10-day-old seedlings
at 40◦C identified that 10−8 M was most effective for temperature
amelioration due to enhanced activity of antioxidant enzymes
(SOD, CAT, APX; Kumar et al., 2012c). Exogenous application
of BRs retarded the rate of chlorophyll degradation and proteins
associated with these pigments particularly those associated with
chloroplast thylakoid membranes (Hola, 2011). In cold-stressed
plants too, BRs conferred protection by reducing the oxidative
damage. Foliar application of 24-epibrassinolide reduced oxida-
tive damage and accelerated recovery from photoinhibition of
PSII by activation of enzymes in Calvin cycle and increased the

antioxidant capacity in cucumber during cold stress (10/7◦C)
(Jiang et al., 2013).

Salicylic acid is an important signaling molecule in plant
defense responses (Yuan et al., 2008). Exogenous application of
SA mitigates the effects of heat stress (Dat et al., 1998; Senaratna
et al., 2003). In grape plants, exogenous pre-treatment with
0.1 mM SA maintained relatively higher activities of POX, SOD,
APX, GR, and MDHAR indicating that SA can induce intrin-
sic heat tolerance in grapevines (Wang and Li, 2006). In another
study on grapes treated with 100 μM SA, exposure to 43◦C
resulted in higher RUBISCO activity, increased PSII function and
hence photosynthesis (Wang et al., 2010). Likewise, 10−5 M SA
significantly increased all growth parameters, antioxidant activity
and Pro levels in Indian mustard growing under heat stress (30◦C
and 40◦C) (Hayat et al., 2009). The results were confirmed by
Kaur et al. (2009) who reported improved antioxidative abilities
of CAT and POX in Brasscia species after exogenous applica-
tion of 10 and 20 μM SA at high temperatures (40–55◦C). SA
application enhanced SOD activity significantly at 2 and 12 h
heat stress and increased CAT activity within 12 h (He et al.,
2003). In a study on six chickpea genotypes, seedlings were
sprayed with 100 μM L−1 SA at 46◦C significantly reduced mem-
brane injury, and enhanced protein and Pro contents which were
accompanied by increased POX and APX activities (Chakraborty
and Tongden, 2005). Pre-treatment of heat-stressed mungbean
seedlings with SA reduced lipid peroxidation but improved
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membrane thermostability and antioxidant activity (Saleh, 2007).
In cucumber, 1 mM SA foliar spray reduced electrolyte leakage
and H2O2 level, and increased catalase activity (Shi et al., 2006).
SA application has been found to be effective for improving cold
tolerance (Tuteja et al., 2013). For instance, SA can induce cold
tolerance in barley (Hordeum vulgare) by regulating activities of
apoplastic antioxidative enzymes (Mutlu et al., 2013).

Nitric oxide (NO) is considered a signaling molecule involved
in the regulation of physiological processes and stress responses
in plants (Hasanuzzaman et al., 2013b). NO is a highly reactive,
membrane permeant free radical which plays a crucial role in
many physiological processes such as seed germination, reduction
of seed dormancy, leaf expansion, regulation of plant matura-
tion and senescence (Mishina et al., 2007), suppression of floral
transition (He et al., 2004), ethylene emission and stomatal clo-
sure (Garcia-Mata and Lamattina, 2002; Neill et al., 2002; Guo
et al., 2003), programmed cell death and light-mediated green-
ing (Zhang et al., 2006). Recently, it has attracted wide attention
due to its protective role in stress responses in different plant
species (Hasanuzzaman et al., 2013b). In wheat, application of
50 and 100 μM SNP on two cultivars C306 (heat-tolerant) and
PBW550 (heat-sensitive) growing at 33◦C increased the activi-
ties of all antioxidant enzymes along with increased membrane
thermostability and cellular viability (Bavita et al., 2012). In
Mungbean, exogenous NO in the form of SNP during heat shock
maintained the stability of chlorophyll a fluorescence, membrane
integrity, H2O2 content and antioxidant enzyme activity (Yang
et al., 2006). Similarly, exogenous application of 0.5 mM SNP on
8-day-old heat-treated seedlings (38◦C) of wheat for 24 and 48 h
significantly reduced the high-temperature-induced lipid peroxi-
dation and H2O2 content but increased the chlorophyll content,
ascorbic acid, reduced glutathione (GSH) and the oxidized glu-
tathione (GSSG) ratio (Hasanuzzaman et al., 2012a,b). The pro-
tective effect was linked to up-regulation of the antioxidant and
glyoxalase system (Hasanuzzaman et al., 2012a,b, 2013b). SNP
pre-treatment reduced the heat-induced damage in rice seedlings
(Uchida et al., 2002) and increased the survival rate of wheat
leaves and maize seedlings (Lamattina et al., 2001) thus validating
its role in thermotolerance.

Ascorbic acid (AsA) is the most abundant and low molecular
weight potential antioxidant having key role in defense against
oxidative stress caused by enhanced level of ROS (Horemans
et al., 2000; Athar et al., 2008). It can directly quench superoxide
(O−

2 ), hydroxyl radicals (OH.), and singlet oxygen (1O2) thereby
providing membrane protection and regenerating α-tocopherols
from tocopheroxyl radical, thereby, providing protection to mem-
branes (Sharma et al., 2012). According to some reports, over-
expression of enzymes involved in AsA biosynthesis confers
temperature stress tolerance, as observed in some plants such
as Lycopersicum esculentum, Solanum tuberosum (Chaves et al.,
2002; Hemavathi et al., 2010; Radyuk et al., 2010), strawberry
(Hemavathi et al., 2009). In Mungbean, plants treated with 50 μM
ascorbic acid exhibited significant enhancement in germination
and growth of seedlings, pertinently under heat stress. AsA-
treated plants showed less damage to membranes, cellular res-
piration, chlorophyll concentration and water status. Moreover,
the oxidative stress was significantly reduced as a result of ASA

application. Also, the increased activities of SOD, CAT and ascor-
bate peroxidase were found in AsA treated plants at 40/30 and
45/35◦C (Kumar et al., 2011).

Various signaling molecules providing stress tolerance are
shown in Figure 7. Some other examples of crops with protective
effects of exogenous molecules under stress conditions are shown
in Table 1.

TRANSGENICS
Plants can sense, transduce and translate the signals associated
with ROS into appropriate cellular response depending on cel-
lular redox state (Bhattacharjee, 2005). ROS/redox signaling net-
works in chloroplast and mitrochondria have important roles in
plant adaptations to stresses (Mittler, 2002; Hemantaranjan et al.,
2014). These various signals help the plant in cellular homeosta-
sis under stressful conditions by controlling essential processes
like transcription, translation, energy metabolism and protein
phosphorylation (Mittler et al., 2011; Bita and Gerats, 2013).
Various molecular approaches are assisting to understand the
concept of temperature stress tolerance in plants (Wang et al.,
2003; Hemantaranjan et al., 2014). Plants tolerate stress by modu-
lating multiple genes and by coordinating the expression of genes
in different pathways (Vinocur and Altman, 2005; Hasanuzzaman
et al., 2013b). The adverse effects of temperature stresses can be
mitigated by developing crop plants with improved stress toler-
ance using various transgenic approaches (Rodriguez et al., 2005).
Among different defensive mechanisms, expression of some spe-
cial types of proteins called heat shock proteins (HSPs) appears to
be universal in lower and higher organism (Wahid et al., 2007;
Suzuki et al., 2011). Temperature stress-response signal trans-
duction pathways and various defense mechanisms, involving
heat shock transcription factors (HSFs) and heat shock proteins
(HSPs) are thought to be intimately associated with ROS and
help in defense mechanisms in plants by providing stress toler-
ance (Pnueli et al., 2003; Suzuki and Mittler, 2006; Zhang et al.,
2008). According to various studies, an intimate relationship
appears to exist between oxidative stress and heat shock response
(Pucciariello et al., 2012). HSF’s possibly act as direct sensors of
ROS, as evidenced by earlier studies on mammals, Drosophila
and yeast (Ritossa, 1962). HSP’s act as molecular chaperones and
stabilize several cellular proteins under temperature stress, which
has been reported to be a highly conserved response (Ahn and
Thiele, 2003; Suzuki and Mittler, 2006). ROS production leads to
the transduction of signals and the expression of heat shock genes
in tobacco (Konigshofer et al., 2008). Heat shock proteins (HSP)
are present under normal conditions but their expression level
increases when the cell is under stress or shock (Robert, 2003).
In normal growth conditions, HSPs control cellular signaling,
protein folding, translocation and degradation but under high
temperature stress they prevent protein misfolding and aggrega-
tion, and also protect membranes in plants and maintain redox
homeostasis (Bita and Gerats, 2013). These proteins function as
molecular chaperones and play crucial role in protecting plants
against stress and maintaining homeostasis in cell and helps in its
survival during heat stress (Feder and Hofmann, 1999). In addi-
tion to the studies concerning expression of sHSPs/chaperones
and manipulation of HSF gene expression, transgenic plants
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FIGURE 7 | A combined model showing the involvement of various

signaling molecules and phytohormones under temperature stresses.

Compatible solutes Pro, GB, and Tre mitigate stress by osmoregulation
and production of antioxidants. BRs, PAs, SA, ABA, and other signaling
molecules such as NO activate the MAPK cascade leading to regulation

of transcription factors which further results in expression of specific
genes and elevation of antioxidants providing stress tolerance.
Abbreviations: BRs, Brassinosteroids; Pas, Polyamines; SA, Salicylic acid;
ABA, Abscisic acid; NO, Nitric oxide; MAPK, Mitogen-activated protein
kinase.

modified with other genes related to heat tolerance have been
produced with varied success. Genetic improvement of proteins
involved in osmotic adjustments, ROS detoxification, photosyn-
thetic reactions and protein biosynthesis have showed positive
results in developing transgenic plants with thermotolerance as
shown in Table 2.

Diverse crop species tolerate low temperature to a vary-
ing degree, which depends on re-programming gene expression
to modify their physiology, metabolism and growth (Sanghera
et al., 2011). According to various studies, over-expression of
combinations of antioxidant enzymes in transgenic plants has
synergistic effect on stress tolerance (Kwon et al., 2003). Some
of the stress-inducible genes especially encoding proteins which
involve detoxification enzymes such as CAT, SOD, APX, GR etc.
have been overexpressed in transgenic plants, further producing
stress-tolerant phenotypes (Shinozaki et al., 2003). Simultaneous
expression of multiple antioxidant enzymes, such as Cu/Zn-SOD,

APX, and DHAR in chloroplast has shown to be more effective
than single or double expression for developing transgenic plants
with enhanced tolerance to multiple environmental stresses (Lee
et al., 2007). Low temperature limitations have been overcome by
the identification of cold- tolerant genes for transfer to genet-
ically transformed crops. Therefore, transgenic plants overex-
pressing multiple antioxidants have increased emphasis in order
to achieve cold tolerance (Sharma et al., 2012). Overexpresson
of GR in Nicotiana tabacum and Populus plants leads to higher
foliar AsA contents and improved tolerance to oxidative stress
(Aono et al., 1993; Foyer et al., 1995) due to chilling injury.
Tobacco plants genetically engineered to over-express chloro-
plast glycerol-3-phosphate acyltransferase (GPAT) gene (involved
in phosphatidyl glycerol fatty acid desaturation), taken from
Arabidopsis and Cucurbita maxima, were found to have enhanced
cold tolerance, which was attributed to increase in number of
unsaturated fatty acids. Higher lipid de-saturation of membranes
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Table 1 | Effects of some exogenous molecules involving antioxidants in various crops under temperature stress conditions.

Crop Treatment Molecules Effects References

Vitis vinifera 42◦C, 12 and 18 h 50 μM JA, 6 h Upregulation of the activities of antioxidant
enzymes

Chen et al., 2006

Phaseolus radiates 45◦C, 90 min 150 μM SNP, 60 min Increased the activities of CAT, SOD and
POD

Yang et al., 2006

Triticum aestivum 35 ± 2◦C, 4 or 8 h Arginine or Put (0.0, 1.25,
and 2.5 mM), 4 or 8 h

Increased SOD and CAT activities,
increased DNA and RNA contents, reduced
MDA level

Khalil et al., 2009

Oryza sativa 35◦C, 48 h 0.5 mM SA, 24 h Decreased electrolyte osmosis Reduced
MDA content and O−

2 production rate
Lu et al., 2009

Sorghum bicolor 40/30◦C, 45 days 75 mg L-1 Na2SeO4 foliar
spray

Decreased membrane damage Enhanced
antioxidant defense Increased grain yield

Mohammed and
Tarpley, 2010

Cicer arietinum 45/40◦C, 10 days 10 μM Pro, 10 days Enhanced activities of antioxidants and
carbon metabolism enzymes

Kaushal et al., 2011

Phaseolus aureus Roxb. 35/25, 45/35 as
(day/night 12 h/12 h)

50 μM ABA Increased activities of antioxidants,
glutathione and proline

Kumar et al., 2011

Triticum aestivum 45◦C in germinated
seeds, 2 h

Put, 10 μM Elevated activities of enzymatic and
non-enzymatic antioxidants

Asthir et al., 2012

Phaseolus vulgaris 34.7 to 35.2◦C 25, 50 mg L-1 BRs spray Increased growth Less oxidative damages El-Bassiony et al.,
2012

Cicer arietinum 35/30, 40/35 and 45/40◦C
as day/night

10 μM Pro, GB and Tre Increased growth Less oxidative damages
Decreased MDA and H2O2 contents

Kumar et al., 2012b

Phaseolus aureus Roxb. As 2.5, 5.0, 10 μM Se 2.5, 5.0 μM Elevated levels of antioxidants,
metallothioneins, thiols and GST which
antagonizes As toxicity

Malik et al., 2012

Triticum aestivum L. 35◦C for 7 days 5 μM
α-tocopherol

Improved levels of enzymatic an
non-enzymatic antioxidants

Kumar et al., 2013c

Oryza sativa L. 42/37◦C light/dark 15/9 h 1 mM GABA Reduced membrane and oxidative damage,
elevated levels of antioxidants

Nayyar et al., 2013

Table 2 | Transgenic plants having heat tolerance in various plant species and their responses to ROS scavenging.

Transgene Source Transgenic plant Functions References

ANP1/NPK1 N. tabacum N. tabacum H2O2 responsive MAPK kinase (MAPKKK)
production to protect against the
lethality in HT

Murakami et al.,
2000

Dnak1 Aphanothece halophytica N. tabacum Thermotolerance Ono et al., 2001

APX1/HvAPX1(Ascorbate
peroxidase)

P. sativum/
H. vulgare

A. thaliana H2O2 detoxification and conferred heat
tolerance

Shi et al., 2001

TLHS1 N. tabacum N. tabacum Synthesis of sHSP and stress tolerance Park and Hong, 2002

Hsp100, Hsp101 A. thaliana Z. mays,O. sativa HSP synthesis for HT tolerance Katiyar-Agarwal
et al., 2003

Hsp17.7 D. carota Daucus carota Synthesis of sHsp,
thermotolerance

Murakami et al.,
2004

MT-sHSP L. esculentum N. tabacum Molecular chaperone function in vitro Sanmiya et al., 2004

BADH (betaine aldehyde
dehydrogenase)

Spinacia oleracea N. tabacum Over-production of GB osmolyte that will
enhance the heat tolerance

Yang et al., 2005

Fad 7 N. tabacum
O. sativa

N. tabacum De-saturation of fatty acids that increased level
of unsaturated fatty acids and provide
HT tolerance

Sohn and Back, 2007

is crucial for optimum membrane function in plants (Sanghera
et al., 2011). In Nicotiana tabacum, chilling tolerance at 1◦C
for 7 days was achieved by over-expression of genes encoding

chloroplast omega-3-fatty acid desaturase (Kodama et al., 1994).
Transgenic rice seedlings overexpressing OsNAC5 (encodes for
transcription factor to regulate stress response) or suppression
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of OsNAC5 expression by RNAi provided low temperature tol-
erance (Song et al., 2011). Also, the transgenic rice overexpressing
Sod1 (encoding Cu/Zn superoxide dismutase) were produced to
obtain plants with improved tolerance to oxidative and cold stress
(Cruz et al., 2013). Various crops have been genetically engineered
to obtain plants with improved low temperature tolerance, which
also involves reduction in oxidative stress (Table 3).

CONCLUSION AND FUTURE PERSPECTIVES
Extreme temperatures are considered as major abiotic stresses
for crop plants and also they are the causes of consequences of
present day climate change. Plants growing in temperature range
exceeding their limits of adaptation have substantial influence on
their metabolism, physiology and yield. A common response in
the form of oxidative stress is often showed by plants exposed to
extreme temperature conditions (Hasanuzzaman et al., 2013b).
During temperature stresses, overproduction of ROS can be a
major risk factor to plant cells and also enhance the expres-
sion of ROS detoxifying and scavenging enzymes (Hossain
and Fujita, 2011). ROS scavenging enzymes or antioxidants
form the network, having important roles in redox signaling
in chloroplast and mitochondria. This redox signaling main-
tains a delicate balance of homeostasis between different cellular
components and within each organelle (Suzuki and Mittler, 2006;

Suzuki et al., 2011). Under stress conditions, various important
biological pathways such as regulation of gene expression, energy
metabolism and protein phosphorylation are regulated by the
cross-talk between different cellular components and redox sig-
naling, further providing essential information on cellular redox
state, associated with abiotic stress responses to optimize defense
and survival (Foyer and Noctor, 2005, 2009). However, the
extent of oxidative damage due to extreme temperature condi-
tions depends largely on the duration of the adverse temperature,
exposure of plant and their stage of growth. Therefore, there is
need to develop the crop plants with temperature stress tolerance
by exploring suitable and necessary strategies to manage oxida-
tive stress. The use of the various exogenous molecules and the
development of plants with different transgenes are important
strategies to manage oxidative stress and maintain redox cellular
state in plants. The ROS networks are interlinked with different
networks in plants and control the temperature stress acclimation
and tolerance. Various components involved in redox signaling
networks may have individual signaling tasks within a given cel-
lular compartment (Foyer and Noctor, 2003). Although in recent
studies, the role of ROS and antioxidants in maintaining redox
state has been intensively studied, but still there are open ques-
tions in this field. Therefore, it needs attention to study in detail
the redox changes during cell growth, differentiation and division

Table 3 | Transgenics for cold tolerance and involvement of ROS scavenging mechanisms.

Transgene Host plant Functions References

Glycerol-3-phosphate acyltransferase
(gpat)

Nicotiana tabacum Fatty acid unsaturation Murata et al., 1992

Superoxide dismutase (SOD) Nicotiana tabacum Dismutation of toxic ROS intermediates Gupta et al., 1993

mn-SOD cDNA
(Mn-Superoxide dismutase)

Medicago sativa Dismutation of ROS intermediates in
mitrochondria, freezing tolerance

McKersie et al., 1996

gst/gpx
(Glutathione-S-transferase/Gluthathione
peroxidase)

Nicitiana tabacum Detoxification of toxic substances and chilling
tolerance

Roxas et al., 1997

WSC120/COR39 CCGAC sequences
like CRT/DREs in promoter

Triticum aestivum Low temperature tolerance Ouellet et al., 1998

SCOF1
(Cold inducible Zn finger protein)

Glycine max Activate COR gene expression, increased
freezing tolerance

Kim et al., 2001;
Kumar et al., 2012b,
2013a

CAT (Catalase) Oryza sativa L. Cv. Yuukara or
Matsumae

Low temperature stress tolerance due to
effective detoxification of H2O2 by CAT

Matsumura et al.,
2002

CuCOR19
(Citrus dehydrin)

Nicotiana tabacum Inhibition of lipid peroxidation and increased
cold tolerance

Hara et al., 2003

GR (Glutathione reductase) Gossipium hirsutum L.
Cv.Coker 312

Chilling stress tolerance and photoprotection Kornyeyev et al., 2003

DHAR (Dehydroascorbate reductase) Nicotiana Tabacum cv.Xanthi Detoxification of H2O2 Kwon et al., 2003

Glutathione peroxidase (GPX) Nicotiana Tabacum cv.Xanthi Chilling stress under high light intensity and
antioxidative defense

Yoshimura et al., 2004

HOS10 (Encodesan R2R3 type protein) Oryza sativa Chilling and freezing tolerance Zhu et al., 2005

ScTPS1-ScTPS2 Medicago sativa Freezing tolerant Saurez et al., 2009

DREB1C Medicago truncatula Freezing tolerance Chen et al., 2010

CBF1CRT/DRE binding factor 1 Solanum lycopersicum Higher SOD activity, lower MDA content and
cold tolerance

Zhang et al., 2010

MfGolS1 Medicago falcata Raffinose accumulation
Cold tolerant

Zhao et al., 2012
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and also the specificity of the individual ROS and antioxidants
and their interactions with hormone and secondary messengers
during temperature-stress conditions. New insights into converg-
ing and diverging redox signaling pathways would be provided
by the description of the redox-dependent spatial and tempo-
ral changes at various organization levels during plant growth
and development and evaluation processes. Therefore, it could
be useful for the better agriculture to clearly understand the
redox control of plant growth, development and flowering. There
are numerous research findings which support the notion that
induction and regulation of antioxidant defenses are necessary
for obtaining substantial tolerance against temperature stresses.
Based on the various studies on redox environment, the modifi-
cation of the cellular redox state may be used to increase the yield
and stress tolerance in plants and to improve agriculture.
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Reactive oxygen species (ROS) were initially recognized as toxic by-products of aerobic
metabolism. In recent years, it has become apparent that ROS plays an important signaling
role in plants, controlling processes such as growth, development and especially response
to biotic and abiotic environmental stimuli. The major members of the ROS family include
free radicals like O•−

2 , OH• and non-radicals like H2O2 and 1O2. The ROS production
in plants is mainly localized in the chloroplast, mitochondria and peroxisomes. There
are secondary sites as well like the endoplasmic reticulum, cell membrane, cell wall
and the apoplast. The role of the ROS family is that of a double edged sword; while
they act as secondary messengers in various key physiological phenomena, they also
induce oxidative damages under several environmental stress conditions like salinity,
drought, cold, heavy metals, UV irradiation etc., when the delicate balance between
ROS production and elimination, necessary for normal cellular homeostasis, is disturbed.
The cellular damages are manifested in the form of degradation of biomolecules like
pigments, proteins, lipids, carbohydrates, and DNA, which ultimately amalgamate in plant
cellular death. To ensure survival, plants have developed efficient antioxidant machinery
having two arms, (i) enzymatic components like superoxide dismutase (SOD), catalase
(CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), glutathione reductase
(GR), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase
(DHAR); (ii) non-enzymatic antioxidants like ascorbic acid (AA), reduced glutathione (GSH),
α-tocopherol, carotenoids, flavonoids, and the osmolyte proline. These two components
work hand in hand to scavenge ROS. In this review, we emphasize on the different types
of ROS, their cellular production sites, their targets, and their scavenging mechanism
mediated by both the branches of the antioxidant systems, highlighting the potential role
of antioxidants in abiotic stress tolerance and cellular survival. Such a comprehensive
knowledge of ROS action and their regulation on antioxidants will enable us to develop
strategies to genetically engineer stress-tolerant plants.

Keywords: antioxidants, oxidative damages, reactive oxygen species, plant redox homeostasis, environmental

stress

INTRODUCTION
Molecular oxygen was introduced to the early reducing atmo-
sphere of the Earth about 2.7 billion years ago by O2- evolving
photosynthetic organisms, causing the advent of the reactive oxy-
gen species (ROS) as unwanted byproducts (Halliwell, 2006).
Aerobic metabolism constantly generates ROS which are confined
to the different plant cellular compartments, like the chloroplast,
mitochondria and peroxisomes. Recent findings also shed light
on the role of apoplast as a site for ROS generation (Jubany-Marí
et al., 2009; Roychoudhury and Basu, 2012). Under favorable
conditions, ROS is constantly being generated at basal levels.
However, they are unable to cause damage, as they are being scav-
enged by different antioxidant mechanisms (Foyer and Noctor,
2005). The delicate balance between ROS generation and ROS
scavenging is disturbed by the different types of stress factors

like salinity, drought, extreme temperatures, heavy metals, pol-
lution, high irradiance, pathogen infection, etc (Figure 1). The
survival of the plants, therefore depends on many important fac-
tors like change in growth conditions, severity and duration of
stress conditions and the capacity of the plants to quickly adapt
to changing energy equation (Miller et al., 2010). Estimates show
that only 1–2% of the O2 consumption by plant tissues, leads to
the formation of ROS.

The ROS mainly comprise of 1O2, H2O2, O•−
2 , and OH•.

These are very lethal and causes extensive damage to protein,
DNA and lipids and thereby affects normal cellular functioning
(Apel and Hirt, 2004; Foyer and Noctor, 2005). Redox home-
ostasis in plants during stressful conditions, is maintained by two
arms of the antioxidant machinery—the enzymatic components
comprising of the superoxide dismutase (SOD), ascorbate
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peroxidase (APX), guaiacol peroxidase (GPX), glutathione-S-
transferase (GST), and catalase (CAT), and the non-enzymatic
low molecular compounds like ascorbic acid (AA), reduced
glutathione (GSH), α-tocopherol, carotenoids, phenolics,
flavonoids, and proline (Gill and Tuteja, 2010; Miller et al., 2010;
Gill et al., 2011). The omnipresent nature of both arms of the
antioxidant machinery underlies the necessity of detoxification of
ROS for cellular survival (Gill et al., 2011). In this review, we will
primarily delve deeper into the domains of ROS, the antioxidant
machinery and how they synergistically counteract the effects of
environmental stress.

TYPES OF ROS
Phototrophs convert light energy from the sun into biochemical
energy and therefore are crucial for sustaining life on Earth. The

FIGURE 1 | Various causes responsible for the generation of ROS.

price they have to pay for this is to face the risk of oxidative dam-
ages, because of the different types of ROS, namely, 1O2(singlet
oxygen), H2O2(hydrogen peroxide), O•−

2 (superoxide radical),
and OH• (hydroxyl radical), generated as unwanted byproducts
(Table 1). These are generated from only 1–2% of total O2 con-
sumed by plants (Bhattacharjee, 2005). The reactions generating
the different ROS members are shown (Figure 2).

SUPEROXIDE RADICAL (O•−
2

)
The ROS is being constantly generated in the chloroplasts due to
partial reduction of O2 or as a result of transfer of energy to O2.
The superoxide radical (O•−

2 ) is formed mainly in the thylakoid-
localized PSI during non-cyclic electron transport chain (ETC), as
well as other cellular compartments. Normally, H2O is generated
when cytochrome c oxidase interacts with O2. Occasionally, O2

reacts with the different ETC components to give rise to the O•−
2 .

It is usually the first ROS to be formed. Superoxide radical (O•−
2 )

can also undergo further reactions to generate other members of
the ROS family.

O•−
2 + Fe3+ → 1O2 + Fe2+

2O•−
2 + 2H+ → O2 + H2O2Fe3+

Fe2+ + H2O2 + Fe3+ → Fe3+ + OH− + OH•

(Fenton Reaction)

O•−
2 being moderately reactive with a short half-life of 2–4 μs,

does not cause extensive damage by itself. Instead, it undergoes
transformation into more reactive and toxic OH• and 1O2 and
cause membrane lipid peroxidation (Halliwell, 2006).

SINGLET OXYGEN (1O2)
Singlet Oxygen is an atypical ROS which is generated not by elec-
tron transfer to O2, but rather by the reaction of chlorophyll (Chl)

Table 1 | Different members of the ROS family and their attributes.

ROS t1/2 Migration Sources Mode of action Reaction Reaction Reaction Scavenging

distance with DNA with protein with DNA systems

Superoxide
(O•−

2 )
1–4 μs 30 nm Membranes,

Chloroplasts,
Mitochondria

Reacts with
double bond
containing
compounds such
as (Fe-S)
proteins

No Via the Fe-center Extremely low SOD

Hydroxyl radical
(OH•)

1 μs 1 nm Membranes,
Chloroplasts,
Mitochondria

Extremely
reactive with all
biomolecules

Rapidly reacting Rapidly reacting Rapidly reacting Flavonoids and
Proline

Hydrogen
Peroxide (H2O2)

1 ms 1 μm Membranes,
Chloroplasts,
Mitochondria,
Peroxisomes

Oxidizes
proteins and
forms OH• via
O•−

2

No Attacks the Cys
residue

Extremely low CAT, POXs and
Flavonoids

Singlet Oxygen
(1O2)

1–4 μs 30 nm Membranes,
Chloroplasts,
Mitochondria

Oxidizes
proteins, PUFAs
and DNA

Reacts with G
residue

Attacks Trp, His,
Tyr, Met and Cys
residues

PUFA Carotenoids
and
α -Tocopherol
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FIGURE 2 | Generation of ROS by energy transfer.

triplet state in the antenna system with O2.

Chl →3Chl
3Chl +3O2 → Chl +1O2

Environmental stresses like salinity, drought and heavy metals
cause stomatal closure, leading to insufficient intracellular CO2

concentration. This favors the formation of 1O2. Singlet oxy-
gen can cause severe damages to both the photosystems, PSI and
PSII, and puts the entire photosynthetic machinery into jeop-
ardy. Even though 1O2 has a short half-life of about 3 μs (Hatz
et al., 2007), it can manage to diffuse some 100 nanometers and
causes damage to wide range of targets. These include molecules
like proteins, pigments, nucleic acids and lipids (Wagner et al.,
2004; Krieger-Liszkay et al., 2008), and is the major ROS respon-
sible for light-induced loss of PSII activity, eliciting cellular death.
Plants have managed to efficiently scavenge 1O2 with the help of
β-carotene, tocopherol, plastoquinone, and can also react with the
DI protein of PSII. Alternatively, singlet oxygen plays a role in up
regulating genes which are responsible for providing protection
against photo-oxidative stress (Krieger-Liszkay et al., 2008).

HYDROGEN PEROXIDE (H2O2)
Hydrogen peroxide, a moderately reactive ROS is formed when
O•−

2 undergoes both univalent reduction as well as protonation. It
can occur both non-enzymatically by being dismutated to H2O2

under low pH conditions, or mostly by a reaction catalyzed by
SOD.

2O•−
2 + 2H+ → H2O2 + O2

2O•−
2 + 2H+ → H2O2 + O2

H2O2 is produced in plant cells not only under normal condi-
tions, but also by oxidative stress, caused by factors like drought,
chilling, intense light, UV radiation, wounding, and pathogen
infection (Sharma et al., 2012). Due to stomatal closure and
low availability of CO2 and its limited fixation, Ribulose 1,

5-bisphosphate (RuBP) oxygenation is favored and thus pho-
torespiration is enhanced. This accounts for more than 70% of
the H2O2 produced as a result of drought stress (Noctor et al.,
2002). The major sources of H2O2 production in plant cells
include the ETC in the chloroplast, mitochondria, ER, cell mem-
brane, β-oxidation of fatty acid and photorespiration. Additional
sources comprise of different reactions involving photo-oxidation
by NADPH oxidase and xanthine oxidase (XOD).

H2O2 in plants behaves like double-edged sword; it is benefi-
cial at low concentrations, but damaging at higher concentrations
in the cell. At low intracellular concentrations, it acts as a regu-
latory signal for essential physiological processes like senescence
(Peng et al., 2005), photorespiration and photosynthesis (Noctor
et al., 2002), stomatal movement (Bright et al., 2006), cell cycle
and growth and development (Tanou et al., 2009a,b). Due to
its significantly longer half-life of 1 ms, compared to other ROS
members, it can traverse longer distances and cross plant cell
membranes. It can cross membranes via aquaporins and cover
considerable lengths within the cell (Bienert et al., 2007) and
cause oxidative damage. H2O2 at high intracellular concentration
oxidizes both cysteine (-SH) and methionine (-SCH3) residues
and inactivates Calvin cycle enzymes, Cu/Zn SOD and Fe-SOD by
oxidizing their thiol groups (Halliwell, 2006). It causes 50% loss
in activity of different enzymes like fructose 1, 6 bisphosphatase,
sedoheptulose 1, 7 bisphosphatase and phosphoribulokinase, at
concentrations of 10 μM H2O2 and is also responsible for pro-
grammed cell death at high cellular concentrations (Dat et al.,
2000). However, like O•−

2 , H2O2 is moderately reactive; therefore,
its damage is fully realized only when it is converted into more
reactive species.

HYDROXYL RADICAL (OH•)
Among its family members, hydroxyl radical (OH•) is the most
reactive and the most toxic ROS known. It is generated at neutral
pH by the Fenton reaction between H2O2 and O•−

2 catalyzed by
transition metals like Fe (Fe2+, Fe3+).

H2O2 + O•−
2 → OH− + O2 + OH•

It has the capability to damage different cellular components
by lipid peroxidation (LPO), protein damage and membrane
destruction. Since there is no existing enzymatic system to scav-
enge this toxic radical, excess accumulation of OH• causes the
cellular death (Pinto et al., 2003).

SITES OF ROS PRODUCTION IN PLANT CELLS
The ROS is being produced under both normal and stressful con-
ditions at various locations in the chloroplasts, mitochondria,
peroxisomes, plasma membranes, ER and the cell wall. In pres-
ence of light, chloroplasts and peroxisomes are the major sources
of ROS production, while the mitochondrion is the leading pro-
ducer of ROS under dark conditions (Choudhury et al., 2013).

CHLOROPLAST
The chloroplast comprises of an extremely ordered system
of thylakoid membranes which houses the light capturing
photosynthetic machinery as well as anatomical requirements for
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efficient light harvesting (Pfannschmidt, 2003). The photosys-
tems, PSI and PSII which form the core of the light harvesting
system in the thylakoids are the major sources of ROS production.
Abiotic stress factors like drought, salinity, temperature extremes,
all of which cause water stress and limit CO2 concentrations, cou-
pled with excess light, leads to the formation of O•−

2 at the PS, via
the Mehler reaction.

2O2 + 2Fdred → 2O•−
2 + 2Fdox

Subsequently, a membrane-bound Cu/Zn SOD at the PSI con-
verts O•−

2 into H2O2 (Miller et al., 2010). The other accomplices
of leaking electrons from the ETC of PSI are the 2Fe-2S and the
4Fe-4S clusters. In the PSII, seepage of electrons occurs, via the
QA and QB electron acceptors and is responsible for the gener-
ation of O•−

2 . The superoxide radical then goes onto converting
itself into more toxic ROS like OH• via H2O2 intermediate by the
Fenton reaction at the Fe-S centers. The PSII is also responsible
for the generation of 1O2 and this occurs in two ways. Firstly,
when environmental stress upsets the delicate balance between
light harvesting and energy utilization, it leads to the formation
of triplet Chl (3Chl∗) which on reacting with dioxygen (3O2)
liberates singlet oxygen (1O2) (Karuppanapandian et al., 2011).
Secondly, when the ETC is over reduced, the light harvesting
complex (LHC) at the PSII generates 1O2 (Asada, 2006). The
1O2 accumulating in the chloroplast causes peroxidation of mem-
brane lipids, and especially Polyunsaturated Fatty Acids (PUFA)
and damages membrane proteins which put the P680 reaction
center of PSII at risk. It could also directly lead to cell death
(Møller et al., 2007; Triantaphylidès et al., 2008). The involve-
ment of the chloroplast in oxidative stress-induced programmed
cell death was revealed when animal anti-apoptotic Bcl-2 was
expressed in transgenic tobacco (Chen and Dickman, 2004). The
1O2 can also initiate a genetic program, via the EXECUTOR1 and
EXECUTOR2 pathways and lead to growth inhibition in plants
(Lee et al., 2007). Thus, the chloroplast is a major source of ROS
production in plants. To ensure the continual survival of plants
under stress, controlling and scavenging the ROS in the chloro-
plast is very essential, as shown in transgenic plants, as well in
stress-tolerant cultivars (Tseng et al., 2007).

MITOCHONDRIA
Mitochondria are also the site of generation of harmful ROS, like
H2O2 and O•−

2 (Navrot et al., 2007), though in a smaller scale.
Plant mitochondria differ from animal counterparts in having
O2 and carbohydrate-rich environment (Rhoads et al., 2006) and
also being involved in photorespiration. The mitochondrial ETC
(mtETC) is the major culprit as it houses sufficiently energized
electrons to reduce O2 to form the ROS. The two major compo-
nents of the mtETC responsible for producing ROS are Complex I
and Complex III (Møller et al., 2007; Noctor et al., 2007). The
NADH Dehydrogenase or Complex I directly reduces O2 to O•−

2
in its flavoprotein region. The ROS production at Complex I
is further enhanced when there is reverse electron flow from
Complex III to Complex I due to lack of NAD+-linked substrates.
This reverse flow of electrons is controlled by ATP hydrolysis
(Turrens, 2003). In Complex III, ubiquinone in its fully reduced

form donates an electron to Cytochrome c1 leaving behind an
unstable ubisemiquinone semi-radical which favors leakage of
electrons to O2, thereby generating O•−

2 (Murphy, 2009). Other
sources of ROS production in the mitochondria are the vari-
ous enzymes present in the mitochondrial matrix. This include
enzymes like aconitase which directly produces ROS and others
like 1-Galactono-γ-lactone dehydrogenase (GAL) which indi-
rectly produce ROS by feeding electrons to the ETC (Rasmusson
et al., 2008). Even though O•−

2 is the leading ROS in the mito-
chondria, it is converted to H2O2 by the Mn-SOD and the APX
(Sharma et al., 2012). Estimates show that 1–5% of the total O2

consumption by the mitochondria is diverted toward production
of H2O2. Mitochondrion generally produces ROS during nor-
mal conditions, but is greatly boosted at times of abiotic stress
conditions (Pastore et al., 2007). Such stressful conditions affect
the tight coupling of ETC and ATP synthesis, leading to over
reduction of electron carriers like ubiquinone (UQ) pool, thereby
generating ROS (Rhoads et al., 2006; Blokhina and Fagerstedt,
2010). Since respiratory rate increases during drought, the mito-
chondrial ATP synthesis increases to compensate for the lower
rate of chloroplast ATP synthesis, enhancing the mitochondrial
ROS production (Atkin and Macherel, 2009). To counteract this
oxidative stress in the mitochondria, two enzymes, Mitochondrial
Alternative Oxidase (AOX) and Mitochondrial SOD (Mn-SOD)
are very crucial. The AOX maintains the reduced state of the UQ
pool and cuts down the ROS production. Its importance is evi-
dent from the fact that Arabidopsis lacking a functional AOX is
sensitive to drought stress and has altered transcription profiles
of different components of the antioxidant machinery (Ho et al.,
2008). On the other hand, the higher activity of Mn-SOD clearly
made the difference between a salt-tolerant cultivar and a salt-
sensitive cultivar of tomato under salinity stress (Mittova et al.,
2003).

PEROXISOMES
Peroxisomes are single-membrane-bound spherical microbodies
and are the major sites of intracellular H2O2 production due
to their integral oxidative metabolism (Luis et al., 2006; Palma
et al., 2009). They also produce O•−

2 , like chloroplasts and mito-
chondria during the course of various metabolic process. The
O•−

2 is generated at two different locations. The Xanthine oxidase
(E.C.1.17.3.2), located in the peroxisomal matrix, metabolizes
both xanthine and hypoxanthine into uric acid and generate
O•−

2 as a by-product. Second is the NADPH-dependent small
ETC, composed of NADH and Cyt b localized in the perox-
isomal membrane which utilizes O2 as the electron acceptor
and releases O•−

2 into the cytosol. Additionally, Peroxisomal
Membrane Polypeptides (PMPs) of molecular masses 18, 29, and
132 kDa are the three integral membrane proteins responsible
for O•−

2 production. The NADH acts as the electron donor of
the 18 and 32 kDa PMPs, whereas the 29 kDa PMP uses the
NADPH as the electron donor to reduce Cytochrome c. During
stressful conditions, when the availability of water is low and
stomata remains closed, the ratio of CO2 to O2 reduces consider-
ably which causes increased photorespiration leading to glycolate
formation. This glycolate is oxidized by the glycolate oxidase
in peroxisome to release H2O2, making it the leading producer
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of H2O2 during photorespiration (Noctor et al., 2002). Besides,
there are other supplemental metabolic processes like β-oxidation
of fatty acids, flavin oxidase pathway and the disproportionation
of O•−

2 radicals for peroxisomal ROS production.

APOPLAST
Apoplast, the diffusible space around the plant cell membrane
is responsible for converting the incoming CO2 into a soluble,
diffusible form which enters the cytosol to undergo photosynthe-
sis. At times of adverse environmental conditions, stress signals
combined with abscisic acid (ABA) make the apoplast a promi-
nent site for H2O2 production (Hu et al., 2006). The NADPH
oxidases expressed by the AtRbohD and AtRbohF in the guard
cells and the mesophyll cells of Arabidopsis, account for generating
the apoplastic ROS which is required for ABA-induced stomatal
closure (Kwak et al., 2003). Besides these enzymes, there are addi-
tional ROS-generating enzymes which comprise of pH dependent
peroxidases (POXs), cell wall-linked oxidases, germin-like oxalate
oxidases and polyamine oxidases, all of which mainly produce
H2O2.

PLASMA MEMBRANES
Plasma membrane which surrounds the entire plant cell plays
an important role in interacting with the ever changing envi-
ronmental conditions and provides information necessary for the
continual survival of the cell. The NADPH-dependent-oxidases
which are localized in the plasma membrane are in the spotlight
due to their gene expression and presence of different homologs
during different stress conditions (Apel and Hirt, 2004). The
NADPH oxidase produces O•−

2 by transferring electrons from
cytosolic NADPH to O2, which either spontaneously dismutates
to H2O2 or is catalyzed by SOD. The fact that NADPH oxi-
dase plays an important role in plant defense against pathogenic
infection and abiotic stress conditions (Kwak et al., 2003) is well
supported.

CELL WALLS
During stress, the cell wall-localized lipoxygenase (LOX) causes
hydroperoxidation of polyunsaturated fatty acids (PUFA) making
it active source of ROS like OH•, O•−

2 , H2O2, and 1O2. The cell
wall-localized diamine oxidases utilize diamines or polyamines
to generate ROS in the cell wall. During pathogen attack, lignin
precursors undergo extensive cross-linking, via H2O2-mediated
pathways to reinforce the cell wall with lignin (Higuchi, 2006).

ENDOPLASMIC RETICULUM (ER)
The NADPH-mediated electron transport involving CytP450,
localized in the ER generates O•−

2 (Mittler, 2002). Organic sub-
strate, RH interacts with the CytP450 followed by reduction by a
flavoprotein to give rise to a free radical intermediate (Cyt P450

R−). This intermediate promptly reacts with triplet oxygen (3O2)
to form an oxygenated complex (Cyt P450-ROO−). The complex
may occasionally decompose to Cyt P450-Rh by generating O•−

2
as byproduct.

TARGETS OF ROS
ROS is known to cause damages to biomolecules such as lipids,
proteins and DNA (Figure 3).

FIGURE 3 | Various targets of ROS.

LIPIDS
Lipids form a major portion of the plasma membrane which
envelopes the cell and helps it to adapt to the changing environ-
ment. However, under stressful conditions, when the level of ROS
rise above the threshold value, LPO becomes so damaging that it
is often considered as the single parameter to gauge lipid destruc-
tion. LPO starts a chain reaction and further exacerbates oxidative
stress by creating lipid radicals which damages proteins and DNA.
The two main targets of the ROS in membrane phospholipids are
the double bond between C-atoms and the ester linkage between
glycerol and fatty acids. The PUFA which are important compo-
nents of the plasma membrane are the hotspots for ROS damage.
PUFAs like linoleic and linolenic acid are specifically prone to
attack by ROS like 1O2 and OH•. The hydroxyl radical (OH•) is
the most damaging member as it has the ability to trigger a cyclic
chain reaction and cause further peroxidation of other PUFAs.

The entire process of LPO can be divided into three dis-
tinct phases, Initiation, Progression, and Termination. Initiation
involves energizing the O2 (a rate limiting step) to give rise to
radicals like O•−

2 and OH•. These ROS react with the methy-
lene groups of the PUFA, yielding conjugated dienes, lipid peroxyl
radicals and hydroperoxides (Smirnoff, 2000).

PUFA-H + OH• → PUFA•(PUFA alkyl radical) + H2O

PUFA• + O2 → PUFA-OO•(Peroxyl radical)

The PUFA peroxyl radical once formed possesses the ability
to further propagate the LPO by extracting one H-atom from
adjoining PUFA side chains.

PUFA-OO• + PUFA − H → PUFA − OOH + PUFA•
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The lipid hydroperoxide (PUFA-OOH) undergoes cleavage by
reacting with reduced metals such as Fe2+.

PUFA-OOH + Fe2+ → PUFA- O• + Fe3+

The lipid hydroperoxides can also undergo decomposition to
form different reactive species such as lipid alkoxyl radicals, alde-
hydes, alkanes, lipid epoxides, and alcohols. LPO terminates with
the formation of different lipid dimers caused by different lipid
derived radicals.

PUFA• + PUFA• → PUFA + PUFA

(Fatty Acid Dimer)

PUFA• + PUFA-OO• → PUFA-OO-PUFA

(Peroxide bridged Dimer)

PUFA-OO• + PUFA-OO• → PUFA-OO-PUFA + O2

(Peroxide bridged Dimer)

Overall, the LPO increases membrane fluidity causing the mem-
brane to be leaky to substances which otherwise enter the cell
through special channels, damage the membrane proteins, deacti-
vate the membrane receptors, membrane-localized enzymes and
ion-channels.

PROTEINS
The ROS produced during stress conditions causes the oxidation
of proteins. The protein undergoes different types of modifi-
cations which may either be direct or indirect. During direct
modifications, the activity of the protein becomes varied as a
result of different chemical modifications such as nitrosylation,
carboxylation, disulfide bond formation, and glutathionylation.
Protein carbonylation is often used as a marker for evaluating
protein oxidation (Møller et al., 2007). Indirect modification of
proteins can occur as a result of interaction with the products
of LPO. The ROS concentration, on crossing its threshold value,
leads to the site-specific modification of amino acids like Arg,
Lys, Pro, Thr, and Trp, and increased susceptibility to prote-
olytic degradation (Møller et al., 2007). The amino acids differ
in their susceptibility to ROS attack. Amino acids containing
thiol groups and sulfur are the most vulnerable. The Cys and
Met are both prone to damage by the reactive 1O2 and OH•.
The enzymes containing iron-sulfur centers are irreversibly inac-
tivated on getting oxidized by O•−

2 . The oxidized proteins thus
become better targets for proteolytic digestion by getting primed
for ubiquitination-mediated proteosomal degradation.

DNA
Since the plant nuclear DNA is well protected by histones and
associated proteins, both mitochondrial and chloroplastic DNA
bears the brunt of the ROS attack due to lack of protective his-
tones as well as the close proximity to ROS production machinery.
Oxidative damage of DNA as a result of ROS occurs at multiple
levels which include oxidation of the deoxyribose sugar residue,
modification of the nucleotide base, abstraction of a nucleotide,
breaks in either DNA strand, and cross-linking of the DNA and

protein. The hydroxyl radical not only damages the deoxyribose
sugar backbone by extracting H-atom, but also reacts with dou-
ble bonds of the purine and pyrimidine bases (Halliwell, 2006).
The ROS abstracts the C-4 H-atom of the deoxyribose sugar and
forms a deoxyribose radical which reacts further to cause sin-
gle strand breaks in the DNA (Evans et al., 2004). The damaged
products as a result of base oxidation include the most com-
mon 8-hydroxyquinine and other less common ones like hydroxyl
methyl urea, dehydro-2′-deoxyguanosine, thymine glycol, and
thymine and adenine ring opened. The OH• is also notorious for
creating DNA-protein cross-links when it reacts with either DNA
or associated proteins. These cross-links are not easily reparable
and may be lethal to the plant cell, if not repaired in time before
commencement of critical cellular processes like replication or
transcription.

ROS DEFENSE MACHINERY
The ROS defense mechanism consists of the antioxidant machin-
ery which helps to mitigate the above mentioned oxidative
stress-induced damages. The antioxidant machinery has two arms
with the enzymatic components and non-enzymatic antioxidants
(Table 2).

ENZYMATIC ANTIOXIDANTS
The enzymes localized in the different subcellular compartments
and comprising the antioxidant machinery include Superoxide
Dismutase (SOD), Catalase (CAT), Ascorbate Peroxidase (APX),
Monodehydroascorbate reductase (MDHAR), Dehydroascorbate
reductase (DHAR), Glutathione Reductase (GR), and Guaiacol
Peroxidase (GPX).

Superoxide Dismutase (SOD)
SOD (E.C.1.15.1.1) belongs to the family of metalloenzymes
omnipresent in all aerobic organisms. Under environmental
stresses, SOD forms the first line of defense against ROS-induced
damages. The SOD catalyzes the removal of O•−

2 by dismutat-
ing it into O2 and H2O2. This removes the possibility of OH•
formation by the Haber-Weiss reaction. SODs are classified into
three isozymes based on the metal ion it binds, Mn-SOD (local-
ized in mitochondria), Fe-SOD (localized in chloroplasts), and
Cu/Zn-SOD (localized in cytosol, peroxisomes, and chloroplasts)
(Mittler, 2002). SOD has been found to be up regulated by abiotic
stress conditions (Boguszewska et al., 2010).

O•−
2 + O•−

2 + 2H+ → 2H2O2 + O2

Catalase (CAT)
CAT (E.C.1.11.1.6) is a tetrameric heme-containing enzyme
responsible for catalyzing the dismutation of H2O2 into H2O
and O2. It has high affinity for H2O2, but lesser specificity for
organic peroxides (R-O-O-R). It has a very high turnover rate
(6 × 106 molecules of H2O2 to H2O and O2 min−1) and is
unique amongst antioxidant enzymes in not requiring a reducing
equivalent. Peroxisomes are the hotspots of H2O2 production due
to β-oxidation of fatty acids, photorespiration, purine catabolism
and oxidative stress (Mittler, 2002). However, recent reports sug-
gest that CAT is also found in other subcellular compartments
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Table 2 | List of all the enzymatic and non-enzymatic antioxidants along with their functions and cellular localization.

Enzymatic antioxidants Enzyme code Reaction catalyzed Subcellular location

Superoxide dismutase (SOD) 1.15.1.1 O•−+
2 O•−

2 + 2H+ → 2H2O2 + O2 Peroxisomes, Mitochondria, Cytosol, and Chloroplast

Catalase (CAT) 1.11.1.6 2H2O2 → O2+ 2H2O Peroxisome and Mitochondria

Ascorbate peroxidase (APX) 1.11.1.11 H2O2+ AA → 2H2O + DHA Peroxisomes, Mitochondria, Cytosol, and Chloroplast

Monodehydroascorbate reductase
(MDHAR)

1.6.5.4 2MDHA + NADH → 2AA + NAD Mitochondria, Cytoplasm, and Chloroplast

Dehydroascorbate reductase
(DHAR)

1.8.5.1 DHA + 2GSH → AA + GSSG Mitochondria, Cytoplasm, and Chloroplast

Glutathione reductase (GR) 1.6.4.2 GSSG + NADPH → 2GSH +
NADP+

Mitochondria, Cytoplasm, and Chloroplast

Guaiacol peroxidase (GPX) 1.11.1.7 H2O2 + DHA → 2H2O + GSSG Mitochondria, Cytoplasm, Chloroplast, and ER

Non-enzymatic Antioxidants Function Subcellular location

Ascorbic Acid (AA) Detoxifies H2O2 via action of APX Cytosol, Chloroplast, Mitochondria, Peroxisome,
Vacuole, and Apoplast

Reduced Glutathione (GSH) Acts as a detoxifying co-substrate for enzymes like
peroxidases, GR and GST

Cytosol, Chloroplast, Mitochondria, Peroxisome,
Vacuole, and Apoplast

α -Tocopherol Guards against and detoxifies products of membrane
LPO

Mostly in membranes

Carotenoids Quenches excess energy from the photosystems, LHCs Chloroplasts and other non-green plastids

Flavonoids Direct scavengers of H2O2 and 1O2 and OH• Vacuole

Proline Efficient scavenger of OH• and 1O2 and prevent
damages due to LPO

Mitochondria, Cytosol, and Chloroplast

such as the cytosol, chloroplast and the mitochondria, though
significant CAT activity is yet to be seen (Mhamdi et al., 2010).
Angiosperms have been reported to have three CAT genes. CAT1
is expressed in pollens and seeds (localized in peroxisomes and
cytosol), CAT2 predominantly expressed in photosynthetic tissues
but also in roots and seeds (localized in peroxisomes and cytosol)
and finally CAT3 is found to be expressed in leaves and vascu-
lar tissues (localized in the mitochondria). Stressful conditions
demand greater energy generation and expenditure of the cell.
This is fulfilled by increased catabolism which generates H2O2.
CAT removes the H2O2 in an energy efficient way.

H2O2 → H2O + (1/2)O2

Ascorbate peroxidase (APX)
APX (E.C.1.1.11.1) is an integral component of the Ascorbate-
Glutathione (ASC-GSH) cycle. While CAT predominantly scav-
enges H2O2 in the peroxisomes, APX performs the same function
in the cytosol and the chloroplast. The APX reduces H2O2 to H2O
and DHA, using Ascorbic acid (AA) as a reducing agent.

H2O2 + AA → 2H2O + DHA

The APX family comprises of five isoforms based on different
amino acids and locations, viz., cytosolic, mitochondrial, peroxi-
somal, and chloroplastid (stromal and thylakoidal) (Sharma and
Dubey, 2004). Since APX is widely distributed and has a better
affinity for H2O2 than CAT, it is a more efficient scavenger of
H2O2 at times of stress.

Monodehydroascorbate reductase (MDHAR)
MDHAR (E.C.1.6.5.4) is responsible for regenerating AA from
the short-lived MDHA, using NADPH as a reducing agent, ulti-
mately replenishing the cellular AA pool. Since it regenerates AA,
it is co-localized with the APX in the peroxisomes and mito-
chondria, where APX scavenges H2O2 and oxidizes AA in the
process (Mittler, 2002). MDHAR has several isozymes which are
confined in chloroplast, mitochondria, peroxisomes, cytosol, and
glyoxysomes.

MDHA + NADPH → AA + NADP+

Dehydroascorbate reductase (DHAR)
DHAR (M.C.1.8.5.1) reduces dehydroascorbate (DHA) to AA
using Reduced Glutathione (GSH) as an electron donor (Eltayeb
et al., 2007). This makes it another agent, apart from MDHAR,
which regenerates the cellular AA pool. It is critical in regulating
the AA pool size in both symplast and apoplast, thus maintaining
the redox state of the plant cell (Chen and Gallie, 2006). DHAR
is found abundantly in seeds, roots and both green and etiolated
shoots.

DHA + 2GSH → AA + GSSG

Glutathione Reductase (GR)
GR (E.C.1.6.4.2) is a flavoprotein oxidoreductase which uses
NADPH as a reductant to reduce GSSG to GSH. Reduced glu-
tathione (GSH) is used up to regenerate AA from MDHA and
DHA, and as a result is converted to its oxidized form (GSSG).
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GR, a crucial enzyme of ASC-GSH cycle catalyzes the forma-
tion of a disulfide bond in glutathione disulfide to maintain
a high cellular GSH/GSSG ratio. It is predominantly found in
chloroplasts with small amounts occurring in the mitochondria
and cytosol. GSH is a low molecular weight compound which
plays the role of a reductant to prevent thiol groups from get-
ting oxidized, and react with detrimental ROS members like 1O2

and OH•.

GSSG + NADPH → 2GSH + NADP+

Guaiacol peroxidase (GPX)
GPX (E.C.1.11.1.7) is a heme-containing enzyme composed of
40–50 kDa monomers, which eliminates excess H2O2 both dur-
ing normal metabolism as well as during stress. It plays a vital
role in the biosynthesis of lignin as well as defends against biotic
stress by degrading indole acetic acid (IAA) and utilizing H2O2

in the process. GPX prefers aromatic compounds like guaiacol
and pyragallol (Asada, 1999) as electron donors. Since GPX is
active intracellularly (cytosol, vacuole), in the cell wall and extra-
cellularly, it is considered as the key enzyme in the removal of
H2O2.

H2O2 + GSH → H2O + GSSG

NON-ENZYMATIC ANTIOXIDANTS
The non-enzymatic antioxidants form the other half of the
antioxidant machinery, comprising of AA, GSH, α-tocopherol,
carotenoids, phenolics, flavonoids, and amino acid cum osmolyte
proline. They not only protect different components of the cell
from damage, but also play a vital role in plant growth and devel-
opment by tweaking cellular process like mitosis, cell elongation,
senescence and cell death (de Pinto and De Gara, 2004).

Ascorbic Acid (AA)
AA is the most abundant and the most extensively studied antiox-
idant compound. It is considered powerful as it can donate elec-
trons to a wide range of enzymatic and non-enzymatic reactions.
Majority of AA in plant cells is the result of Smirnoff-Wheeler
pathway, catalyzed by L-galactano-γ-lactone dehydrogenase in
the plant mitochondria, with the remaining being generated from
D-galacturonic acid. 90% of the AA pool is concentrated not
only in the cytosol, but also substantially in apoplast, thus mak-
ing it the first line of defense against ROS attack (Barnes et al.,
2002). AA is oxidized in two successive steps, starting with oxida-
tion into MDHA, which if not reduced immediately to ascorbate,
disproportionates to AA and DHA. It reacts with H2O2, OH•,
O•−

2 , and regenerates α-tocopherol from tocopheroxyl radical,
thereby protecting the membranes from oxidative damage (Shao
et al., 2005). It also protects and preserves the activities of metal-
binding enzymes. AA in its reduced state acts as the cofactor
of violaxanthine de-epoxidase and maintains the dissipation of
the excess excitation energy (Smirnoff, 2000). AA has also been
reported to be involved in preventing photo-oxidation by pH-
mediated modulation of PSII activity and its down regulation,
associated with zeaxanthine formation.

Reduced glutathione (GSH)
Glutathione is a low molecular weight thiol tripeptide
(γ-glutamyl-cysteinyl-glycine) abundantly found in almost
all cellular compartments like cytosol, ER, mitochondria,
chloroplasts, vacuoles, peroxisomes, and even the apoplast. It
is involved in a wide range of processes like cell differentiation,
cell growth/division, cell death and senescence, regulation of
sulfate transport, detoxification of xenobiotics, conjugation
of metabolites, regulation of enzymatic activity, synthesis of
proteins and nucleotides, synthesis of phytochelatins and finally
expression of stress responsive genes (Mullineaux and Rausch,
2005). This versatility of GSH is all due to its high reductive
potential. A central cysteine residue with nucleophilic character
is the source of its reducing power. GSH scavenges H2O2,
1O2, OH•, and O•−

2 and protects the different biomolecules
by forming adducts (glutathiolated) or by reducing them in
presence of ROS or organic free radicals and generating GSSG
as a by-product. GSH also plays a vital role in regenerating AA
to yield GSSG. The GSSG thus generated is converted back to
GSH, either by de novo synthesis or enzymatically by GR. This
ultimately replenishes the cellular GSH pool. GSH also helps
in the formation of phytochelatins via phytochelatin synthase
(Roychoudhury et al., 2012a), which helps to chelate heavy
metal ions and thus scavenges another potential source of ROS
formation in plants (Roy Choudhury et al., 2012b). Therefore,
the delicate balance between GSH and GSSG is necessary for
maintaining the redox state of the cell.

α-Tocopherol
The α-tocopherol belongs to a family of lipophilic antioxidants
which are efficient scavengers of ROS and lipid radicals, making
them indispensable protectors and essential components of bio-
logical membranes (Holländer-Czytko et al., 2005; Kiffin et al.,
2006). The α-tocopherol has the highest antioxidant capability
among the four isomers (α-, β-, γ-, δ-). The tocopherols are syn-
thesized only by photosynthetic organisms and thus only present
in green tissues of plants. The α-tocopherol is synthesized from γ-
tocopherol by γ- tocopherol-methyl-transferase (γ-TMT encoded
by VTE4). Tocopherols are known for their ability to protect lipids
and other membrane constituents of the chloroplasts by reacting
with O2 and quenching its excess energy, thus protecting the PSII,
both structurally and functionally. Tocopherol also serves as an
effective free radical trap by halting the chain propagation step
of the LPO cycle. It reacts with the lipid radicals RO•, ROO•,
and RO∗ at the membrane-water interface, where α-tocopherol
reduces them and itself gets converted into TOH•. The TOH• rad-
ical undergoes recycling to its reduced form by interacting with
GSH and AA (Igamberdiev et al., 2004).

Carotenoids
Carotenoids belong to family of lipophilic antioxidants which
are localized in the plastids of both photosynthetic and non-
photosynthetic plant tissues. They are found not only in plants,
but also in micro-organisms. They belong to a group of antennae
molecules which absorbs light in the 450–570 nm and transfers
the energy to the chlorophyll molecule. Carotenoids exhibit their
antioxidative activity by protecting the photosynthetic machinery
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in four ways, (a) reacting with LPO products to end the chain
reactions, (b) scavenging 1O2 and generating heat as a by-
product, (c) preventing the formation of 1O2 by reacting with
3Chl∗ and excited chlorophyll (Chl∗), and (d) dissipating the
excess excitation energy, via the xanthophyll cycle.

Flavonoids
Flavonoids are widely found in the plant kingdom occurring com-
monly in the leaves, floral organs and pollen grains. Flavonoids
can be classified into four classes on the basis of their struc-
ture, flavonols, flavones, isoflavones, and anthocyanins. They have
diverse roles in providing pigmentation in flowers, fruits and
seeds involved in plant fertility and germination of pollen and
defense against plant pathogens. Flavonoids have been consid-
ered as a secondary ROS scavenging system in plants experiencing
damage to the photosynthetic apparatus, due to the excess excita-
tion energy (Fini et al., 2011). They also have a role in scavenging
1O2 and alleviate the damages caused to the outer envelope of the
chloroplastic membrane (Agati et al., 2012).

Proline
Proline, an osmolyte is also regarded as a powerful antioxi-
dant. It is widely used across the different kingdoms as a non-
enzymatic antioxidant to counteract the damaging effects of
different ROS members. Proline is synthesized using glutamic
acid as a substrate, via a pyrroline 5-carboxylate (P5C) inter-
mediate. This pathway in plants is catalyzed by two enzymes,
ð1-pyrroline-5-carboxylate synthetase (P5CS) and Pyrroline-5-
carboxylate reductase (P5CR). It is an efficient scavenger of OH•
and 1O2 and can inhibit the damages due to LPO. During stress,
proline accumulates in plants in large amounts which is either
due to enhanced synthesis or reduced degradation (Verbruggen
and Hermans, 2008).

ANTIOXIDANT REGULATION FOR ENVIRONMENTAL STRESS
TOLERANCE
Increased SOD activity in response to drought stress was detected
in three different cultivars of Phaseolus vulgaris (Zlatev et al.,
2006) and Oryza sativa (Sharma and Dubey, 2005a,b). The SOD
activity was found to be heightened during drought stress in the
leaves of white clover, viz., Trifolium repens L. (Chang-Quan and
Rui-Chang, 2008). The SOD activity was found to be up regu-
lated during salt stress in many plants like chickpea (Kukreja et al.,
2005) and tomato (Gapiñska et al., 2008). All three isoforms of
SOD have been found to be expressed in chickpea in response to
salinity stress (Eyidogan and Öz, 2007). Transgenic Arabidopsis
overexpressing Mn-SOD was found to have enhanced salt toler-
ance (Wang et al., 2004). SOD activity was increased by UV-B
radiation in pea, wheat, Arabidopsis and rice, but not affected in
barley and soybean. In a field study, supplemental UV-B increased
SOD activity in wheat and mungbean, and caused differential
responses among soybean cultivars (Agrawal et al., 2009). The
CAT activity was found to increase especially in drought-sensitive
varieties of wheat (Simova-Stoilova et al., 2010). Cicer ariet-
inum under salt stress also have increased CAT activity in both
leaves (Eyidogan and Öz, 2007) and roots (Kukreja et al., 2005).
Increased CAT activity under cadmium stress has been reported

in Phaseolus aureus, Pisum sativum, Lemna minor, barley and
sunflower (Sreedevi and Krishnan, 2012). When the antioxidant
profile of drought-tolerant and drought-susceptible genotypes of
wheat were compared, it was found out that the drought-tolerant
genotype C306 showed higher APX and CAT activity, and AA
content with lower H2O2 and MDA content than the drought-
susceptible genotype, HD2329 (Sairam et al., 1998). When APX
was overexpressed in the chloroplasts of Nicotiana tabacum, it
reduced the toxic effects of H2O2 and generated drought toler-
ance (Badawi et al., 2004). There was also an enhancement in
their tolerance to salt stress. UV-B radiation increased APX activ-
ity in Arabidopsis thaliana (Rao et al., 1996). The activity of APX
positively correlated with Pb treatment in Eichhornia crassipes
(water hyacinth) seedlings (Malar et al., 2014). Roychoudhury
et al. (2012c) reported that the activities of antioxidative enzymes
like GPX and APX increased both in IR-29 (salt-sensitive) and
Nonabokra (salt-tolerant) rice varieties during CdCl2 stress; how-
ever, the activity was more enhanced in Nonabokra. The CAT
activity during Cd stress showed a different trend, with a marked
decrease in IR-29, while marked increase in Nonabokra at higher
Cd concentration. The activity of peroxidase and CAT increased
progressively with the increase in CdCl2 concentration in Vigna
radiata (Roychoudhury and Ghosh, 2013). Vaccinium myrtillus
L. is regarded as a species which is a successful colonist of acid-
and heavy metal-contaminated soil. Upon analysis of the antioxi-
dant response of this plant from heavily polluted sites (immediate
vicinity of zinc smelter, iron smelter and power plant), it was
found that the contents of GSH, non-protein thiols, proline
and activity of GPX were elevated. The GPX activity seemed
to be universal, sensitive and correlated well with heavy metal
stress (Kandziora-Ciupa et al., 2013). Overexpression of MDHAR
in tobacco (Eltayeb et al., 2007) and DHAR in Arabidopsis
(Ushimaru et al., 2006) resulted in improved salt tolerance.
Stressed rice seedlings displayed increased activity of the enzymes
MDHAR, DHAR and GR, all of which are involved in the regener-
ation of AA (Sharma and Dubey, 2005a,b). Under salt stress, APX
and GR activities were found to be higher in salt-tolerant cultivars
of potato, while being markedly diminished in salt-sensitive vari-
eties. This sensitivity was attributed to the reduction of APX and
GR activity during saline conditions (Aghaei et al., 2009). Marked
drought-induced increase in GPX activity was noted in both the
sensitive rice varieties IR-29 and Pusa Basmati (Basu et al., 2010a).
Exogenous application of AA to wheat cultivars resulted in higher
chlorophyll contents, net photosynthesis and growth, compared
to the non-treated plants challenged with drought stress (Malik
and Ashraf, 2012). It has also been seen that priming Carthamus
tinctorius seeds with AA significantly relieved the harsh effects
of drought stress on seedling growth (Razaji et al., 2012). When
AA was exogenously applied, prior to and during salt stress in
tomato seedlings, it helped expedite the recovery process and
ensured long-term survival (Shalata and Neumann, 2001). AA
also helped to relieve oxidative damage in wheat, by improving
photosynthetic capacity and sustaining ion homeostasis (Athar
et al., 2008). The greater susceptibility of the sensitive varieties
IR-29 and Pusa Basmati to water scarcity was also reflected by
considerable decrease in GSH/GSSG ratio, as compared to the tol-
erant variety Pokkali (Basu et al., 2010b). Both AA and GSH were
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found to have enhanced levels in salt-tolerant cultivar Pokkali
than in the sensitive cultivar Pusa Basmati (Vaidyanathan et al.,
2003). Arsenic (III) significantly decreased the GSH content in
rice roots, due to its conversion to phytochelatins. The GSH sup-
plementation resulted in partial protection against arsenic stress,
reducing the MDA content and restoring the seedling growth of
arsenic (V) exposed seedlings (Roychoudhury and Basu, 2012).
GSH was also found to lessen the oxidative damage in rice chloro-
plasts caused due to salinity stress (Wang et al., 2014). Under low
UV-B doses, increases in AA and GSH pools, as well as AA regen-
eration ability functioned to keep the balance of cellular H2O2

(Roychoudhury and Basu, 2012). Studies on heat-acclimated vs.
non-acclimated cool season turfgrass species suggested that the
former had lower production of ROS, as a result of enhanced
synthesis of AA and GSH. In wheat, it was established that heat
stress induced the accumulation of GSH levels and increased
the activity of the enzymes involved in GSH synthesis and the
GSH/GSSG ratio (Hasanuzzaman et al., 2013). When transgenic
tobacco overexpressing Arabidopsis VTE1 (encoding tocopherol
biosynthesis enzyme) were subjected to drought conditions, they
showed decreased LPO, electrolyte leakage and H2O2 content,
but had increased chlorophyll compared with the wild type
(Liu et al., 2008). Arabidopsis vte1 and vte4 mutants lacking
α-tocopherol are particularly sensitive to salt stress, as evident
by their reduced growth and increased oxidative stress. This is
because α-tocopherol maintains the cellular Na+/K+ homeosta-
sis and hormonal balance (Ellouzi et al., 2013). Acute exposure
of UV-B leads to decrease in α-tocopherol levels in plants, pos-
sibly reflecting reactions with lipid radicals (Jain et al., 2003).
In drought-resistant plants, the number of carotenoid molecules
per chlorophyll unit increased under drought stress, thus pro-
viding photo-protection from oxidative damages (Munné-Bosch
and Alegre, 2000). Water deficit, induced by 20% polyethylene
glycol (PEG 6000) treatment to rice seedlings led to increment
in antioxidants like flavonoids and phenolics, which were sev-
eral folds higher in the tolerant cultivar Pokkali, as compared to
the sensitive varieties like IR-29 and Pusa Basmati (Basu et al.,
2010a). The two isolines of soybean cv. Clark, the normal line
with moderate levels of flavonoids and the magenta line with
reduced flavonoid levels, were grown in the field with or with-
out natural levels of UV-B. Solar UV-B radiation caused oxidative
stress in both the lines and altered ROS metabolism, primarily by
decreasing SOD activity and increasing the activities of APX, CAT,
and GR. This resulted in decreased AA content and increased
DHA content. The magenta line had greater oxidative stress than
the normal line, in spite of its enhanced oxidative defense capac-
ity as compared to the normal line, even under UV-B exclusion.
These results indicate enhanced sensitivity in the magenta line,
especially under UV-B exclusion that was likely due to the absence
of flavonoid epidermal screening compounds and subsequent
increased penetration of solar ultraviolet radiation into the leaf
(Xu et al., 2008). Proline, an osmoprotectant as well as a sink for
energy to regulate redox potentials, was found to have increased
accumulation in drought-tolerant cultivars of chickpea than sen-
sitive cultivars under both control and drought stress conditions
(Mafakheri et al., 2010). In case of rice seedlings, exposed to
high salt stress (200 mM NaCl), the antioxidants like anthocyanin

and proline showed the highest level in the salt-tolerant culti-
var Nonabokra, as compared to the salt-sensitive cultivars like
M-1-48 and Gobindobhog (Roychoudhury et al., 2008). The con-
tent of flavonoids and proline were also found to be enhanced in
salt-tolerant cultivars of indica rice than in the salt-sensitive culti-
vars, as evident by the reduced membrane damage caused by LPO
(Chutipaijit et al., 2009).

CONCLUSION
The ROS plays the double role of being the inevitable by-product
of aerobic metabolism on one hand and serving as a marker
during stressful conditions on the other hand. They not only
serve as agents of damages in plants, but also trigger stress-
signaling components to prevent further damages. ROS synthesis
is widespread, with production sites being present in both intra-
cellular and extracellular locations. The damage caused by ROS
is extensive and the targets include all biomolecules like lipids,
proteins and DNA, damaging the integrity of the cell and ulti-
mately leading to its death. However, evolution has equipped
plants with a wider range of defense measures which include
changes at the morphological, metabolic and genetic level to
adapt to the adverse environmental conditions. This review gives
an insight into how both arms of the antioxidant machinery;
the antioxidant enzymes and the non-antioxidant metabolites,
work in conjunction to alleviate the damaging effects of ROS
and develop tolerance against various environmental stress con-
ditions. Although significant progress has been achieved in recent
years, there are still ambiguities and gaps in our understand-
ing of ROS formation and how they affect plants, primarily due
to their short half-life and highly reactive nature. Although the
highly compartmentalized nature of antioxidants is well defined,
the sensing and response mechanism as well as the control of
the delicate balance between production and scavenging need
to be better explored. Several issues remain unanswered, like
the interaction between ROS and calcium signaling and the
regulation of ROS during multiple environmental stresses. In
future, advanced imaging techniques like the markers for Ca2+
imaging can lead to better understanding of ROS metabolism.
Advanced functional genomics, coupled with proteomics and
metabolomics will offer detailed insights into ROS network
and its related responses. There is no doubt that transgenic
approach for overexpression of antioxidant gene cassettes can
lead to enhanced tolerance to multiple stresses in future (Oztetik,
2012).
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Chilling temperatures (1–10◦C) are known to disturb cellular physiology, cause oxidative
stress via creating imbalance between generation and metabolism of reactive oxygen
species (ROS) leading finally to cell and/or plant death. Owing to known significance
of low molecular antioxidants—ascorbic acid (AsA) and glutathione (GSH) in plant
stress-tolerance, this work analyzes the role of exogenously applied AsA and GSH in the
alleviation of chilling stress (3◦C)-impact in cucumber (Cucumis sativus L. cv. Vjaznikowskij
37) plants. Results revealed AsA and GSH concentration dependent metabolism of ROS
such as superoxide (O2•−) and the mitigation of ROS-effects such as lipid peroxidation
(LPO) as well as membrane permeability (measured as electrolyte leakage) in C. sativus
leaf discs. AsA concentration (750 µM) and GSH (100 µM) exhibited maximum reduction in
O2•− generation, LPO intensity as well as electrolyte leakage, all of these were increased
in cold water (3 and 25◦C)-treated leaf discs. However, AsA, in particular, had a pronounced
antioxidative effect, more expressed in case of leaf discs during chilling (3◦C); whereas,
at temperature 25◦C, some AsA concentrations (such as 50 and 100 mM AsA) exhibited a
prooxidative effect that requires molecular-genetic studies. Overall, it is inferred that AsA
and GSH have high potential for sustainably increasing chilling-resistance in plants.

Keywords: chilling stress, oxidative stress, ascorbic acid, glutathione, Cucumis sativus L., tolerance

INTRODUCTION
Sub-optimal (low non-freezing/chilling) temperatures are among
the major environmental factors known to impact crop produc-
tivity via affecting growth, development and metabolism espe-
cially in the tropics and subtropics (Lukatkin et al., 2012; Li et al.,
2014). Plant species may exhibit their differential sensitivity to
chilling stress, where the exhibition of their incapability to with-
stand potential impacts of low temperatures has been extensively
reported in chilling-sensitive/ non-tolerant plants (reviewed by
Lukatkin et al., 2012). At temperatures above the freezing point
of tissues but lower than 10◦C (chilling temperature), a range of
chilling-sensitive crop plants (such as maize, rice, cotton, tomato,
cucumber, and soybeans) may develop external symptoms of
injury and/or may succumbed to death (reviewed by Lukatkin
et al., 2012). In chilling-sensitive plants, visible symptoms of
injury may include wilting leaves and hypocotyls, the appear-
ance of surface pits and large cavities, discoloration of leaves
and internal tissues, and leaf necrosis and plants death (Tsuda
et al., 2003; reviewed by Lukatkin et al., 2012). At cellular level,
chilling-sensitive plant genotypes may exhibit: impaired cell cycle
progression (Rymen et al., 2007), multiple disorganizations of the
cells’ ultrastructure, such as disturbed the formation of chloro-
plasts, caused destruction of chloroplasts membranes (Gutierrez
et al., 1992; Kratsch and Wise, 2000), shift in intracellular pH, and
an increase in cell membrane permeability (Kasamo et al., 2000;
reviewed by Lukatkin et al., 2012).

Oxidative stress, a physiological condition, where occurs an
imbalance between the generation of reactive oxygen species
(ROS; such as singlet oxygen, 1O2•−; superoxide anion, O2•−;
hydroxyl radical, HO•; hydrogen peroxide, H2O2) and their
and metabolism via enzymatic and non-enzymatic antioxi-
dants, may also occur in chilling-sensitive plants (Lukatkin,
2002a,b; Xiong et al., 2002; Gill and Tuteja, 2010; Anjum et al.,
2012). Non-metabolized ROS may cause considerable damages
to membrane lipids (lipid peroxidation, LPO) and other cellu-
lar components, and also increase electrolyte leakage (Lukatkin,
2003; Suzuki and Mittler, 2006; Anjum et al., 2010, 2012,
2014a; Gill and Tuteja, 2010; Popov et al., 2010). To efficiently
counteract ROS-mediated potential consequences, plants employ
enzymatic (SOD, superoxide dismutase; CAT, catalase; GPX,
guaiacol peroxidase; GST, glutathione sulfo-transferase; APX,
ascorbate peroxidase; MDHAR, monodehydroascorbate reduc-
tase; DHAR, dehydroascorbate reductase; GR, glutathione reduc-
tase) and non-enzymatic (ascorbic acid, AsA; glutathione, GSH;
carotenoids; tocopherols; phenolics) antioxidants-based defense
system (Anjum et al., 2010, 2012, 2014b; Gill and Tuteja, 2010).

Though the role of AsA and GSH in plant stress-tolerance has
been emphasized (Anjum et al., 2010; Noctor et al., 2012), and
the literature is full on the significance of AsA (Dolatabadian
et al., 2008; Kumar et al., 2011b; Zhang et al., 2011), and also
that of GSH (Anjum et al., 2010; Cai et al., 2010), reports on a
comparative account of AsA and GSH in chilling exposed plants
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are rare and/or unsubstantiated. Therefore, this work analyzes
the role of exogenously applied AsA and GSH in the allevia-
tion of chilling stress-impact in cucumber (Cucumis sativus L. cv.
Vjaznikowskij 37) plants.

MATERIALS AND METHODS
PLANT CULTURE AND TREATMENTS
Cucumber (Cucumis sativus L. cv. Vjaznikowskij 37) seeds were
surface sterilized with 0.5% KMnO4 for 20 min, 6% chloramines
for 10 min and 70% ethanol for 1 min then rinsed with sterile
water. Sterilized seeds were sown in pots containing 2.0 kg of soil
(median-loamy degraded chernozem) at 22–24◦C, 60–80% of full
soil water capacity, and with illumination about 200 µM photons
m−2 s−1) photosynthetic photon flux density (PPFD) and 12 h
light day. Leaves were isolated from 18 to 20 day old plants and
leaf discs (8 mm in diameter) were punched with a cork-borer.
Subsequently, leaf discs were immersed in Petri dishes (about
300 mg leaves discs per 10 ml of water or antioxidant solution
(AsA: 0.5, 0.75, 1.5, 10, 50, 100 mM; or GSH: 50, 100, 150 µM),
all with temperature 25 or 3◦C) and kept from 0.5 to 2 h at these
temperatures. The control leaf discs were kept at 25◦C.

BIOASSAYS
The methods adopted and described by Lukatkin (2002a) were
employed to estimate O2•− generation (based on oxidation of
adrenaline), and membrane lipid peroxidation (LPO) (measured
as the level of MDA). In brief, homogenate obtained by the
homogenization of leaf discs (0.3 g) in distilled was centrifuged
for 15 min at 4000 g. To 3.0 ml of supernatant, 100 µl of 0.01%
adrenaline (epinephrine) solution was added, and the tube was
incubated for 45 min at room temperature and 80 µM pho-
tons m−2 s−1 PPFD. Immediately at the end of incubation,
optical density of the adrenochrome formed (as a measure of
estimate O2•−) was read against homogenate with water on a UV-
visible spectrophotometer (SF-46, LOMO, St. Petersburg, Russia)
at 480 nm. For LPO estimation, 10 ml of isolation medium
(0.1 M Tris-HCl buffer pH 7.6, containing 0.35 M NaCl) was
used to homogenize leaf discs (1.0 g). To 3.0 ml of the obtained

homogenate, 2.0 ml of thiobarbituric acid (TBA) (prepared in
20% trichloracetic acid, TCA) was added, and the solution was
heated in a boiling water bath for 30 min, filtered and ice-cooled
and centrifuged at 1000 × g for 10 min at 4◦C. Reading in the
supernatant was recorded at 532 nm in the UV-Vis spectropho-
tometer. The rate of LPO was expressed as µmole MDA g−1 tissue
wet weight using a molar extinction coefficient of 1.56 × 105 M−1

cm−1. Additionally, index of chilling injury (ICI) was assessed by
measuring electrolyte leakage employing the formula: Injury cof-
ficient = Ld – Lo/100 - Lo× 100 (Lukatkin, 2003). Where, Ld and
Lo denote electrolyte losses, respectively from damaged/treated
and untreated/control leaf discs. Injury cofficient reflects the
electrolyte efflux and was expressed in percent of total loss.

STATISTICAL ANALYSES
All experiments were repeated three-six times in 4–6 biologi-
cal replicates. The figures and tables represent the means of all
experimental data and their standard errors. The significance of
differences between treatments was evaluated by Student’s t-test.

RESULTS
The results presented below describe the significant responses of
O2•− generation, LPO and electrolyte leakage considering AsA
followed by GSH in chilling experiments with leaf discs.

SUPEROXIDE ION STATUS IN LEAF DISCS UNDER TEMPERATURE
REGIMES (25 AND 3◦C), AND WITH ASCORBIC ACID AND
GLUTATHIONE
The pattern of AsA effect on O2•− generation exhibited its depen-
dency on AsA concentration and temperature regimes (Table 1).
Leaf discs incubated in the distilled water at 25◦C showed a
monotonous increase of O2•− generation, indicating a grad-
uate intensification of oxidative stress induced by mechanical
injuries in leaf disc cells. Though O2•− generation in the leaf disc
immersed in AsA solutions at 25◦C was enhanced too but almost
all concentrations of AsA exhibited their tendency to lowering
of O2•− generation when compared with leaf discs immersed
in water. The best mitigating effect of AsA on O2•− was with

Table 1 | Effect of ascorbic acid (AsA) concentrations on O2•− generation (µM g−1 min−1) in the leaf discs of Cucumis sativus at 3 and 25◦C

temperatures.

Duration of incubation, h AsA concentrations (mM)

0 (H2O) 0.5 0.75 1.5 10 50 100

TEMPERATURE 25◦C

0 0.12 ± 0.02

0.5 0.15 ± 0.02 0.13 ± 0.03 0.12 ± 0.01 0.12 ± 0.02 0.14 ± 0.03 0.19 ± 0.04 0.23 ± 0.04

1 0.20 ± 0.03 0.18 ± 0.03 0.13 ± 0.02 0.14 ± 0.03 0.16 ± 0.02 0.22 ± 0.04 0.37 ± 0.06

1.5 0.24 ± 0.03 0.19 ± 0.03 0.13 ± 0.02 0.15 ± 0.02 0.21 ± 0.04 0.27 ± 0.05 0.20 ± 0.05

2 0.25 ± 0.02 0.21 ± 0.03 0.15 ± 0.02 0.19 ± 0.03 0.26 ± 0.04 0.29 ± 0.06 0.27 ± 0.04

TEMPERATURE 3◦C

0 0.12 ± 0.02

0.5 0.29 ± 0.04 0.14 ± 0.02 0.11 ± 0.03 0.12 ± 0.02 0.15 ± 0.03 0.17 ± 0.02 0.10 ± 0.01

1 0.30 ± 0.03 0.17 ± 0.02 0.15 ± 0.02 0.16 ± 0.02 0.21 ± 0.04 0.19 ± 0.02 0.12 ± 0.02

1.5 0.37 ± 0.04 0.22 ± 0.03 0.21 ± 0.04 0.23 ± 0.03 0.28 ± 0.05 0.27 ± 0.04 0.28 ± 0.08

2 0.45 ± 0.06 0.26 ± 0.04 0.19 ± 0.03 0.24 ± 0.03 0.27 ± 0.04 0.31 ± 0.05 0.25 ± 0.04
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750 µM AsA solution, where a reduction of 40% in the O2•−
level was evidenced. However, a comparison among the used AsA
concentrations revealed a prooxidative effect of the highest AsA
concentrations (50 and 100 mM). On the other hand, incuba-
tion of leaf discs in water at 3◦C lead to more intensive increase
of O2•− generation as compared with temperature 25◦C. The
rate of O2•− generation was most prominent after 2 h of immer-
sion of leaf discs in cold water, where increase of 3.75 times was
noted when compared to initial point. Here also, all the used
AsA concentrations lead to diminishing of oxidative stress caused
by O2•− elevation when compared with distilled water. Among
the AsA concentrations used, 0.75 mM AsA exhibited the highest
O2•−-decreasing effect. Interestingly, the highest concentration
of AsA (100 mM) had the best effect in first 0.5 and 1 h of chilling,
with sharp increase of O−

2 generation in next hour.
Experiments considering another non-enzymatic

antioxidant—GSH, showed different pattern of O2•− gen-
eration (Figure 1). Here also, leaf discs incubated in the water
with 25◦C, as at 3◦C temperatures exhibited an enhanced rate of
O2•− generation, where all the used GSH concentrations effec-
tively lowered the O2•− generation rate almost similarly at both
25 and 3◦C. Notably, GSH at 100 µM most effectively lowered
O2•− generation rate when comparison was made among the
used GSH concentrations. In the experiments, where leaf discs
were incubated for 4 h in solutions with different GSH con-
centrations, 100 µM GSH was found as the most effective GSH
concentration in decreasing the O2•− generation rate (Figure 2).

ELECTROLYTE LEAKAGE AND LIPID PEROXIDATION STATUS IN LEAF
DISCS WITH ASCORBIC ACID AND GLUTATHIONE
Electrolyte leakage from leaf discs was used as criterion of cell
membrane damage (Figure 2B). At 25◦C, incubation of C. sativus

leaf discs in AsA solution lead to lowering of electrolyte leak-
age, but GSH enhanced this parameter. Leaf discs incubated
at 3◦C showed a significant increase in the electrolyte leakage
when compared to leaf discs incubated in distilled water. The
lowest electrolyte leakage was revealed in the case of AsA and
GSH-supplemented solutions. Considering LPO, a 3◦C caused
a significant increase in leaf disc-LPO level (measured as MDA
content) when compared to LPO in leaf discs incubated at 25◦C
(Figure 2A). However, leaf discs incubated in antioxidant solu-
tion at 25◦C exhibited a lower LPO intensity, where decreases of
7.8 and 18.8% were displayed, respectively with GSH and AsA.

DISCUSSION
The current test plant, C. sativus is a warm-season vegetable and
is known for its susceptibility to low temperatures throughout its
growth cycle (Kuk and San Shin, 2007). Therefore, this study was
performed to assess the role of major non-enzymatic antioxidants
such as AsA and GSH in the control of O2•− generation and its
consequence (measured herein as LPO and electrolyte leakage).
In the present study, temperature regimes (3 and 25◦C) with-
out AsA or GSH differentially impacted leaf discs by significantly
enhancing the content of O2•− when compared with the control
leaf discs. Nevertheless, a gradual time-dependent intensification
of oxidative stress (in terms of elevated O2•− generation) was
perceptible when incubation of leaf discs was done in water at
3◦C (vs. 25◦C). The detailed above observation coincides well
with the earlier studies where, chilling stress enhanced the gen-
eration of ROS (such as superoxide, O2·) (Lukatkin, 2002a,b,
2003; Popov et al., 2010). Low temperature-mediated differen-
tial enhancements in the generation of O−

2 have been evidenced
earlier in the leaves of a number of plants including cucum-
ber, maize and millet (Lukatkin, 2002a). If not metabolized, ROS

FIGURE 1 | Effects of glutathione (GSH) concentrations on rate of O2•− generation in the leaf discs of Cucumis sativus at 3 and 25◦C temperatures.
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FIGURE 2 | Effect of ascorbic acid (AsA) and glutathione (GSH)

concentrations on lipid peroxidation (LPO) intensity (A) and electrolyte

leakage (B) in the leaf discs of Cucumis sativus incubated for 4 h at 3

and 25◦C temperatures.

can initiate damaging cellular membrane by oxidizing membrane
biomolecules such as lipids and proteins (Anjum et al., 2010,
2012, 2014a; Gill and Tuteja, 2010; Popov et al., 2010; Lukatkin
et al., 2012). To this end, electrolyte leakage and lipid peroxida-
tion are among the major consequences of O2•−-accrued impact
on cell membrane (Halliwell and Gutteridge, 2000; Anjum et al.,
2014a). This is also true in the present study, where leaf discs
incubated at 3◦C exhibited significantly increased electrolyte leak-
age as well as the content of MDA (a well-known indicator of
membrane lipid peroxidation). Nevertheless, enhanced LPO was
reported earlier, where the extent of LPO elevation was shown
to correlate with species and cultivar sensitivity to chilling, and,
therefore, it is believed to be a measure for cold-induced dam-
age to chilling-sensitive plants (Lukatkin, 2002a; reviewed by
Lukatkin et al., 2012).

Efficiency of antioxidant defense system to scavenge ROS such
as O2•− largely decides the plant’s sensitivity to various stress fac-
tors including chilling (Lukatkin, 2002a,b; Xiong et al., 2002; Gill
and Tuteja, 2010; Anjum et al., 2012). AsA and GSH are the most
abundant low molecular weight non-enzymatic antioxidants in
plant cells participating in ROS scavenging (Anjum et al., 2010;
Gill and Tuteja, 2010). In the present study, AsA and GSH con-
centrations differentially controlled the rate of O2•− generation
in the leaf discs incubated in solutions with 3 and 25◦C temper-
atures. In particular, AsA concentration (750 µM; 0.75 mM) and

GSH (100 µM) exhibited maximum reduction in the O2•− gen-
eration and its consequence measures herein as LPO as well as
electrolyte leakage. In fact, apart from the enzymatic antioxidants
(such as SOD, CAT, GPX, GST, APX, MDHAR, DHAR, GR), the
non-enzymes such as AsA and GSH are among the major non-
enzymatic antioxidants significant for efficiently metabolizing
major ROS and also for counteracting their consequences (such
as electrolyte leakage and LPO) in abiotic stressed plants (Anjum
et al., 2010, 2012, 2014b; Gill and Tuteja, 2010). However, AsA, in
particular, had a pronounced antioxidative effect, more expressed
in case of leaf discs during chilling (3◦C); whereas, at temperature
25◦C, some AsA concentrations (such as 50 and 100 mM AsA)
exhibited a prooxidative effect. The observed noticeable result
may be a consequence of an interactive effect of exogenous AsA
with endogenous Fe or Cu (data not shown) that are known to
increase of ROS generation via Fenton reaction.

AsA is widely distributed in plant tissues and is used as a sub-
strate by APX (a major ROS-metabolizing enzyme); therefore,
reduced AsA significantly controls of the cellular reducing envi-
ronment (Davey et al., 2000; Anjum et al., 2010, 2014b). Many
environmental stresses including chilling conditions can induce
an increase of endogenous AsA (Wang et al., 2004). The AsA
contents was more in tolerant to chilling stress chickpea (Cicer
arietinum) genotypes after chilling at reproductive phase (Kumar
et al., 2011a). Overexpression of SIGMEs (Solnaum lycopersicon
GDP-Mannose 3′,5′-epimerase) was reported to cause AsA accu-
mulation with enhanced cold tolerance in tomato (Zhang et al.,
2011). On the other hand, GHS is a crucial antioxidant associ-
ated with regenerating AsA in the AsA-GSH cycle, and thus GSH
is also involved in the regulation of ROS (such as H2O2) (Anjum
et al., 2010). Based on its redox buffering action and abundance in
cells, reduced form of GSH is considered to protect the cell against
elevated ROS-mediated oxidative damages (Anjum et al., 2010;
Noctor et al., 2012). Extensive reports have revealsed that the GSH
pool size in plants and the status of its oxidation and reduction
are associated highly with plant resistance to stressed environ-
ments (Kumar et al., 2008; Xu et al., 2008; Anjum et al., 2010).
A differential elevation in GSH has been reported in a number of
chilling exposed plants including cucumber genotypes (Xu et al.,
2008) and C. arietinum (Kumar et al., 2008). The AsA-GSH cycle
is highly related to plant antioxidant defense, and the metabolic
intensity of the cycle is directly associated with the capacity of
plant resistance to stress. The oxidative and reductive status of
AsA and GSH are closely related to the adaptation of plants to
stressed environments, and the accomplishment of AsA function
depends largely on the available GSH supply and the conditions
of oxidation and reduction in cells (Anjum et al., 2010). Lowered
extent of oxidative stress and enhanced stress resistance in plants
has also been reported with exogenous application (seed treat-
ment, soil influx or foliar spraying) of AsA (Dolatabadian et al.,
2008; Dolatabadian and Saleh, 2009; Al-Hakimi and Hamada,
2011; Kumar et al., 2011b) or GSH (Cai et al., 2010; Teh et al.,
2014).

CONCLUSIONS
C. sativus responded to chilling conditions by exhibiting duration
of exposure and temperature level-dependent elevations in O2•−
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and its consequences measured as electrolyte leakage and LPO.
Exogenous supply of AsA and GSH to chilling stressed plants can
be beneficial in improving plant health and productivity. AsA
concentration (750 µM) and GSH (100 µM) exhibited maximum
reduction in the O2•− generation, LPO intensity as well as mem-
brane permeability. It can be said that AsA and GSH have high
potential in increase of chilling-resistance in plants. However,
molecular-genetic research is required to unveil the exact mech-
anisms underlying the reported herein peroxidative effect of 50
and 100 mM AsA at temperature 25◦C that was not displayed
at 3◦C.
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The balance between accumulation of stress-induced polyamines and reactive oxygen

species (ROS) is arguably a critical factor in plant tolerance to salt stress. Polyamines

are compounds, which accumulate in plants under salt stress and help maintain cellular

ROS homeostasis. In this review we first outline the role of polyamines in mediating salt

stress responses through their modulation of redox homeostasis. The two proposed

roles of polyamines in regulating ROS—as antioxidative molecules and source of ROS

synthesis—are discussed and exemplified with recent studies. Second, the proposed

function of polyamines as modulators of ion transport is discussed in the context

of plant salt stress. Finally, we highlight the apparent connection between polyamine

accumulation and programmed cell death induction during stress. Thus, polyamines have

a complex functional role in regulating cellular signaling and metabolism during stress.

By focusing future efforts on how polyamine accumulation and turnover is regulated,

research in this area may provide novel targets for developing stress tolerance.

Keywords: polyamine signaling, ROS, plant abiotic stress, salinity stress, redox homeostasis

Introduction

Global climate change and agronomic practices have contributed to increased soil salinity, which
currently affects an estimated 45 million hectares of irrigated land (Rengasamy, 2010). Salt stress
limits crop productivity and is imposed by an accumulation of cations (Na+, K+, Mg2+, Ca2+)
and anions (Cl−, SO2−

4 , HCO−

3 ) originating from water-soluble salts such as Na2SO4, NaHCO3,
NaCl, and MgCl2 as well as less water-soluble salts including CaSO4, MgSO4, and CaCO3.These
salts accumulate due to factors such as mineral erosion and crop irrigation with mineralized water
or ocean water (Todorova et al., 2013).

High salt concentrations in soil cause both hyperionic and hyperosmotic stress in the intracel-
lular environment. During the initial stages of salt stress, the high external solute concentration
decreases the cellular water potential, which eventually imposes turgor loss and pleiotropic physio-
logical responses including stomatal closure, growth inhibition, reduced pollen viability, inhibition
of photosynthetic enzyme activity, sucrose accumulation, and inactivation of photosynthetic elec-
tron transport (Munns and Tester, 2008; Chaves et al., 2009; Biswal et al., 2011; Silva et al., 2011;
Mittal et al., 2012; Shu et al., 2012; Jajoo, 2013). Long-term salt stress results in hyperaccumula-
tion of Na+ leading to suppression of enzymatic activity, increased H2O2 and lipid peroxidation
that ultimately causes leaf senescence (Sairam et al., 2002; Chinnusamy and Zhu, 2003; Allu et al.,
2014).

Under normal conditions, the cytosol contains 100–200mM of K+ and 1–10mM of Na+ (Taiz
and Zeiger, 2002). Excess NaCl is the most common cause of salt stress in plants and induces
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overaccumulation of Na+ and Cl− and depletion of K+ ions in
the cell. This imbalance in the Na+:K+ ratio is a result of the
competition between the ions for transport into the cell and is
thought to produce detrimental effects due to changes in osmotic
potential, nutrient limitation and ionic toxicity. Plants counter-
act these effects using multiple strategies including: (i) producing
osmolytes like soluble sugars, organic acids, free amino acids, and
accumulating potassium ions (Ahmad and Sharma, 2008; Ahmad
et al., 2012), (ii) activating transporters that export sodium from
the cell, (iii) limiting Na+ uptake into roots and leaves, (iv)
sequestering Na+ ions into subcellular compartments, (v) alter-
ing photosynthetic rates, (vi) changing membrane structure, (vii)
inducing antioxidative enzymes, and (viii) decreasing stomatal
conductance (Jithesh et al., 2006; Ozgur et al., 2013). In addi-
tion, plant cells rapidly accumulate reactive oxygen species (ROS)
in response to salt and other stresses, a response widely known
as the “oxidative burst” (Mittler, 2002; Miller et al., 2008). The
oxidative burst has an important role in inducing signaling events
and is dependent on enzymes located in several subcellular com-
partments (Foyer and Noctor, 2005; Baxter et al., 2014). How-
ever, it is essential that ROS production be regulated, as excess
ROS accumulation results in membrane lipid peroxidation, DNA
damage, protein denaturation, carbohydrate oxidation, pigment
breakdown, and ultimately leads to cell death (Scandalios, 1993;
Noctor and Foyer, 1998). To counteract the potentially damag-
ing effects of the oxidative burst, plants produce a diverse set of
antioxidants whose regulation is not yet fully understood. While
the interplay between ROS turnover and antioxidant accumula-
tion during stress is quite complex, it is essential to understand
how this system works for its potential in enhancing plant stress
tolerance (Noctor and Foyer, 1998).

Mechanisms of ROS Production During Salt
Stress
ROS are highly reactive forms of molecular oxygen and include
the hydroxyl radical (HO.), superoxide (O2.−), hydrogen perox-
ide (H2O2), and singlet oxygen (1O2) (Dowling and Simmons,
2009; Shapiguzov et al., 2012). The reactivity and half-life of dif-
ferent ROS species are correlated to their mobility and diffusion
distance in the cellular space. Among the ROS species present in
plants, hydrogen peroxide is the most stable having a half-life
of 1ms, whereas singlet oxygen (1O2), superoxide (O2

.−) and
hydroxyl radicals (OH•) are short-lived species with half-lives
of 1–4µs to 1 nanosecond (Gechev et al., 2006; Moller et al.,
2007). Although numerous subcellular compartments contribute
to ROS production, the major sites of ROS generation include
the chloroplast, mitochondria, and peroxisome (Figure 1) (Foyer
et al., 2003; Mittler et al., 2004; Asada, 2006; Rhoads et al., 2006).

The chloroplast produces the highest levels of ROS under
both normal conditions and salt stress. ROS generation occurs
within both Photosystem I (PSI) and Photosystem II (PSII) reac-
tion centers in the thylakoid membrane. During salt stress, ROS
production is enhanced due to changes in membrane fluidity
and protein complex formation, blocking the electron transfer
from water to PSII (Chaves et al., 2009; Biswal et al., 2011; Silva
et al., 2011; Jajoo, 2013). Another important site for ROS pro-
duction is the mitochondria. During salt stress, mitochondrial

respiration is disrupted; over-reduction of the ubiquinone pool
facilitate the leakage of electrons from complexes I and III of
the mitochondrial electron transport chain to molecular oxygen,
resulting in O·−

2 production (Noctor et al., 2007; Miller et al.,
2010). Excess O2in the cell also increases the photorespiration
rate, which produces O·−

2 and 1O2 as by products (Allakhverdiev
et al., 2002; Foyer and Noctor, 2003). Peroxisomes, which cater as
a site for numerousmetabolic processes such as photorespiration,
β-oxidation of fatty acid, flavin oxidase pathway, dismutation of
superoxide radicals and polyamine catabolism, also contribute
significantly to ROS accumulation in plants subjected to salin-
ity stress (Moschou et al., 2008a,b; Mohapatra et al., 2009). The
effects of salt stress on peroxisomes and chloroplasts are intercon-
nected. Reduced water availability and stomatal closure during
salt stress causes reduction in the CO2 to O2 ratio in mesophyll
cells. This facilitates the affinity of Rubisco to O2, thus increasing
photorespiration and production of glycolate in chloroplasts. The
end product of chloroplasts (glycolate) is oxidized by glycolate-
oxidase in peroxisomes—a major pathway of H2O2 produc-
tion (Noctor et al., 2002; Karpinski et al., 2003). In addition to
organelles, enzymes localized in other cellular compartments,
including the cytosolic polyamine oxidase (PAO) and diamine
oxidase (DAO), plasma membrane NADPH oxidases, cell wall-
associated peroxidases (POXs) and oxalate oxidases participate
in ROS synthesis and may play a minor role in ROS production
during salt stress (Kawano, 2003; Parida and Das, 2005; Ahmad
and Sharma, 2008).

Enzymatic and Non-Enzymatic Regulation of
ROS in Plants
High levels of ROS can damage the cell by inactivating enzymes,
initiating lipid oxidation of membranes, and breaking DNA
strands (Van Breusegem et al., 2001; Halliwell, 2006). Plants
modulate ROS accumulation during salinity stress via enzymatic
and non-enzymatic pathways. The cytosolic enzymatic antiox-
idants include superoxide dismutase (SOD), catalase (CAT),
ascorbate peroxidase (APX), glutathione reductase (GR), and
enzymes that participate in the ascorbate-glutathione cycle
(Figure 2). Non-enzymatic antioxidants include the lipid-soluble
membrane-associated α-tocopherol, and β-carotene, which are
products of lipid peroxidation. Polyamines belong to the cat-
egory of water-soluble compounds with antioxidative proper-
ties alongside glutathione (GSH), ascorbate (ASC), polyphenols
(flavonoids, tannins, and anthocyanins), proteinaceous thiols,
proline, and glycine-betaine (Mittler, 2002; Ozgur et al., 2013;
Todorova et al., 2013). Glycine-betaine is a key regulator in ROS
homeostasis, which stabilizes PSII by preventing high salt (Na+

and Cl−)-induced dissociation of the regulatory extrinsic pro-
teins (Papageorgiou and Murata, 1995). Some plants also use
the alternative oxidase enzyme (AOX) to remove electrons from
the ubiquinone pool and transfer them to oxygen to form water,
thus preventing the over-reduction of ubiquinones and result-
ing in decrease of salt-induced ROS production in mitochondria
(Smith et al., 2009; Miller et al., 2010). Unlike metazoans, plant
cells do not have a mechanism to detoxify OH· enzymatically
and to regulate the accumulation of OH·, rely on non-enzymatic
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FIGURE 1 | Location of ROS and polyamine production in the cell.

AOX, Alternative oxidase; ADC, Arginine decarboxylase; ASC, Ascorbate;
APX, Ascorbate peroxidase; CAT, Catalase; DAO, Diamine oxidases; ETS,

Electron transport chain; GSH, Glutathione; ODC, Ornithine decarboxylase;
PA, Polyamine; PAO, Polyamine oxidases; SPDS, Spermidine synthase;
SPMS, Spermine synthase; SOD, Superoxide dismutase.

antioxidants, and various mechanisms to prevent OH· formation
(Bose et al., 2014).

Numerous studies have shown a correlation between antioxi-
dant accumulation and plant salt stress tolerance; however recent
evidence hints that this relationship is more complex than pre-
viously thought. Several polyols accumulating during salt stress
(sorbitol, mannitol, myo-inositol, pinitol, and others) may be
involved in scavenging hydroxyl radicals (Williamson et al.,
2002). In particular, the osmolyte proline seems to be asso-
ciated with the activation of ROS-scavenging enzymes during
salt stress (Saradhi and Mohanty, 1997; Szabados and Savouré,
2010; Gupta and Huang, 2014). For example, exogenous appli-
cation of proline improves salt tolerance in melon, and was
associated with increased chlorophyll content, photosynthetic
rate, reduced O·−

2 , and H2O2 accumulation, and increased lev-
els of antioxidants (SOD, POD, CAT, APX, DHAR, and GR)
(Yan et al., 2011). In addition, heightened levels of proline
were observed in salt-tolerant transgenic rice overexpressing
the DEAD-box helicase PDH45 which correlated with increased
activation of antioxidant enzymes including SOD, APX, GPX,
and GR under salt stress (Gill et al., 2013). It has also been

shown that exogenous application of compatible solutes like
glycine betaine, proline, mannitol, trehalose or myo-inositol,
considerably reduced OH·− generated K+ efflux during salt
stress through an unknown mechanism (Cuin and Shabala,
2007).

Thus, ROS production and detoxification during salt stress
appears to involve multiple cellular locations and molecular
mechanisms. While polyamines are only one of several com-
pounds with antioxidative properties that accumulate in stressed
plants, they seem to play a significant role in regulating stress
tolerance as outlined below.

Polyamines

Overview
Polyamines, small aliphatic amines with proposed antioxidant
effect, are ubiquitous across all living organisms (Hussain et al.,
2011; Gupta et al., 2013). Endogenous levels of polyamines
increase during exposure to abiotic stresses such as drought,
salinity, chilling, heat, hypoxia, ozone, UV, and heavy metal
exposure and are ubiquitously produced in all cells and tissues
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FIGURE 2 | ROS detoxification mediated by ASC-GSHcycle. ASC,
Ascorbate; APX, Ascorbate peroxidase; CAT, Catalase; DHA,
Dehydroascorbate; GSH, Glutathione; GR, Glutathione reductase;

GSSG, glutathione disulphide; MDHA, Monodehydroascorbate;
MDHAR, NAD(P)H-dependent oxido-reductase; SOD, Superoxide
dismutase.

(Alcázar et al., 2010; Gill and Tuteja, 2010). The most abundant
plant polyamines include putrescine (Put, 1, 4- diaminobutane),
spermidine (Spd, N -3-aminopropyl-1, 4-diaminobutane) and
spermine (Spm, bis (N -3-aminopropyl)-1,4-diaminobutane).
Beside these, cadaverine (Cad, 1, 5-diaminopentane) has also
been detected in several plant species, in particular inGramineae,
Leguminoseae and Solanaceae (Lutts et al., 2013). Another
polyamine, thermospermine—a structural isomer of spermine—
is synthesized by the action of thermospermine synthase (Takano
et al., 2012). Putrescine (Put) is primarily synthesized by
ornithine decarboxylase using ornithine as a substrate (Figure 1).
Another alternative pathway for Put synthesis occurs through
the action of arginine decarboxylase (ADC) followed by two suc-
cessive steps catalyzed by agmatine iminohydrolase (AIH) and
N-carbamoyl-Put amidohydrolase (CPA) (Fuell et al., 2010). Put
can be used as a substrate to generate Spd by spermidine synthase
(SPDS) and Spd can then converted to Spm by spermine synthase
(SPMS). Other polyamine oxidation products include hydrogen
peroxide and γ-aminobutyric acid, which are involved in plant
development and stress responses (Tiburcio et al., 2014). The

unique polycationic structure of polyamines suggest that they
may be free radical scavengers, in line with some observations
that their accumulation correlates with plant tolerance to biotic
and abiotic stresses (Mehta et al., 2002; Walters, 2003; Groppa
and Benavides, 2008; Gill and Tuteja, 2010; Gupta et al., 2013).

The interactions between polyamines, ROS and antioxidants
are complex and induce diverse and apparently contradictory
physiological effects during stress (Bhattacharjee, 2005; Gill and
Tuteja, 2010; Pottosin et al., 2012, 2014; Velarde-Buendia et al.,
2012). In particular, increased levels of cellular polyamines dur-
ing abiotic stress (e.g., salinity) have shown dual effects. On
one hand, exogenous polyamine application was correlated with
higher plant tolerance to abiotic stress, partly due to the increased
ability to inactivate oxidative radicals. On the other hand,
polyamines were reported to decrease plant’s capacity to with-
stand stress, possibly due to the increased levels of H2O2 resulted
from polyamines’ catabolism (Minocha et al., 2014). Indeed, both
the anabolism and catabolism of the polyamine species were
reported to increase during abiotic stress, with the net effect of
raised cellular levels of ROS as well as antioxidant enzymes and
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metabolites (Pottosin et al., 2012, 2014; Minocha et al., 2014). In
this review we have attempted to clarify the complex relationship
between polyamines and ROS, focusing on the potential role of
polyamine as a redox homeostasis manager during plant abiotic
stress response.

Polyamines: One of the Prominent Regulators in
ROS Homeostasis during Salt Stress
Plant polyamines are thought to contribute to cellular responses
during salt stress through modulation of ROS homeostasis via
two distinct mechanisms (Takahashi and Kakehi, 2010). First,
polyamines promote ROS degradation by scavenging free radi-
cals and activating antioxidant enzymes during stress conditions
(Gupta et al., 2013). Free polyamines are responsible for the
detoxification of superoxide anions and hydrogen peroxide, while
the conjugated polyamines are involved in scavenging other
ROS (Langebartels et al., 1991; Kubis, 2005). Kuznetsov and
Shevyakova (2007) have reported that conjugated polyamines
show more antioxidant ability than free polyamines. Sec-
ond, polyamines promote ROS production through polyamine
catabolism in the apoplast (Yoda et al., 2006; Marina et al.,
2008; Mohapatra et al., 2009; Campestre et al., 2011). While
it is difficult to determine which of these mechanisms is most
important during salt stress, manipulation of the polyamine
biosynthetic pathways is correlated to abiotic stress resistance
in several studies. For example, impaired expression of ADC1
or ADC2 significantly decreased Put levels and increased sus-
ceptibility to salt stress (Urano et al., 2004). When mouse
ornithine decarboxylase (ODC) was introduced in Nicotiana
tabacum, free polyamine content increased by 2-4 fold and ger-
mination increased by 33–45% on high salt medium (Kum-
ria and Rajam, 2002). Transgenic Nicotiana tabacum plants
overexpressing a S-adenosylmethionine decarboxylase (SAMDC)
gene also demonstrated enhanced of soluble polyamines as
well as increased seed weight, photosynthetic rate and expres-
sion of antioxidant enzymes (APX, MnSOD, and glutathione
S-transferase) relative to untransformed lines (Wi et al., 2006).
Increased polyamine accumulation (4–7%) was also observed in
tobacco plants expressing the S-adenosylmethionine synthetase
(SsSAMS2) gene, which supported up to 20% higher photosyn-
thetic rates and biomass accumulation compared to the control
(Qi et al., 2010). Similarly, introduction of SAMDC cDNA from
Tritordeum into Oryza sativa produced higher free polyamine
content (Put, Spd, Spm), and a reduction in salt-induced shoot
growth repression compared to non-transgenic rice plants (Roy
and Wu, 2002). Ectopic expression of SPDS orthologs from dif-
ferent source plants also improved growth and survival of young
plants in Arabidopsis, European pear (Pyrus communis L.) and
tomato suggesting the importance of this enzyme to cope up
with saline environmental condition across diverse plant species
(Kasukabe et al., 2004; Wen et al., 2008; Neily et al., 2011). Exoge-
nous application of polyamines has also been shown to have a sig-
nificant effect on the plant, and has been suggested to be a poten-
tial strategy to increase plant survival during salt stress. For exam-
ple, Spm application promoted osmotic and salt stress tolerance
in Arabidopsis and rice, which was thought to be due to enhanced
polyphenol accumulation, CAT, and SOD enzyme activities

(Sreenivasulu et al., 2000; Cheruiyot et al., 2007; Roychoudhury
et al., 2011; Zrig et al., 2011; Radhakrishnan and Lee, 2013). In
cucumber, Spm treatment enhanced salt tolerance (growth, pho-
tosynthetic rates) in a salt-sensitive cultivar, which was correlated
to higher antioxidative enzyme activity and proline accumula-
tion (Duan et al., 2008). Put application also increased the activ-
ity of antioxidant enzymes and carotenoids in leaf tissues of salt
stressed Brassica juncea seedlings and enhanced seedling growth
relative to the untreated controls (Verma and Mishra, 2005).
Together, these studies indicate that altering polyamine accumu-
lation through manipulation of biosynthetic pathways or direct
application could have an effect on physiological responses to salt
stress.Table 1 summarizes the effect of endogenously formed and
exogenously applied polyamines in alleviating salt resistance via
the modulation of cellular antioxidative components (enzymatic
or non-enzymatic).

Engineering consistent polyamine accumulation may not be
so simple however, as plants also exhibit increased polyamine
degradation during salt stress and thus polyamine turnover
appears to be highly regulated. During salt stress, intracellular
polyamines are exported from the cytosol to the apoplast, against
the electrochemical gradient, and oxidized by DAO and/or PAO
to generate hydrogen peroxide that is further converted to OH.

via the Fenton reaction (Pottosin et al., 2014). For example,
polyamine degradation occurs through oxidative deamination
catalyzed by aminooxidases such as the copper-containing DAO
and flavoprotein-containing PAO. DAO exhibits high affinity
for diamines, while PAO oxidizes secondary amine groups from
Spd and Spm (Alcazar et al., 2006). While dicotyledonous plants
predominantly accumulate DAO, monocotyledonous plants usu-
ally accumulate more PAO than DAO (Šebela et al., 2001; Cona
et al., 2006). The oxidative deamination of Put produces 1 1-
pyrroline, H2O2, and NH3 by DAO whereas activity of PAO
resulted in the formation of 11–pyrroline (from Spd oxidation)
or 1-(3-aminopropyl)-pyrroline (from Spm oxidation), along
with 1, 3-diaminopropane and H2O2 (Federico and Angelini,
1991). Both DAO and PAO are localized to the cytoplasm and
cell wall and are involved in production of the hydrogen peroxide
required for cell wall stiffening (Cona et al., 2003; Kuznetsov and
Shevyakova, 2007) (Figure 1). These enzymes seem to contribute
to changes in growth during salt stress since increased PAO
accumulation in the expansion zone of maize leaves enhanced
both ROS accumulation and elongation (Rodríguez et al., 2009;
Shoresh et al., 2011). Moreover, high salt (400mMNaCl) or ROS
application induces DAO activity in the leaves and roots of the
halophyte Mesembryanthemum crystallinum further implicating
that these enzymes play a role in salt stress (Shevyakova et al.,
2006).

Polyamines as Modulators of Ion Homeostasis
Polyamines are also hypothesized to promote salt stress tol-
erance through their direct or indirect effects on ion trans-
port (Figure 3) (Demidchik and Maathuis, 2007; Pandolfi et al.,
2010; Bose et al., 2011). For instance, polyamines including Spd,
Spm, and Put affect ion transport indirectly by interacting with
plasma membrane phospholipids and enhancing membrane sta-
bility. Polyamine-enhanced membrane stability has been shown
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TABLE 1 | Effect of polyamines in the regulation of various enzymatic and non-enzymatic antioxidant components in salt stressed plants.

Polyamines Transgenic gene name Traits studied References

Spd, Spm – GPX, CAT, APX Roychoudhury et al., 2011

Put – GPX, CAT, GR Ghosh et al., 2012

Put, Spd, Spm Spermidine synthase SOD, APX, MDHAR, GR He et al., 2008

Put, Spd, Spm S-adenosylmethionine decarboxylase APX, MnSOD, GST Wi et al., 2006

Spd Spermidine synthase 1 APX Neily et al., 2011

Cadaverine – Peroxidase Kuznetsov et al., 2007

Put – SOD, CAT, POD, APX, GR Verma and Mishra, 2005

Spd – SOD, POD, CAT Duan et al., 2008

Put, Spd, Spm – APX, GR, SOD Tang and Newton, 2005

Spm – APX, DHAR, MDAR, GR, POD, SOD Shu et al., 2013

Put, Spd, Spm – SOD, POD, CAT, GR, MDHAR, DHAR, APX Tanou et al., 2013

Spm – Proline, CAT, MDA, POX, GR Chai et al., 2010

Put – CAT, POX, SOD, APX, GR, DHAR Sheokand et al., 2008

Put – POD, CAT, Proline Öztürk and Demir, 2003

Spd – CAT, POD, superoxide, reduced glutathione, total polyphenol content Radhakrishnan and Lee, 2014

Put, Spd, Spm – Mn-SOD, CAT, APX Sudhakar et al., 2015

Put – SOD, POX, CAT Fariduddin et al., 2014

Put, Spd – SOD, POX, CAT Ghahremani et al., 2014

to have a significant effect on both H+/ATPase and Ca2+/ATPase
transporters during salinity stress (Roy et al., 2005; Pottosin and
Shabala, 2014). Ca2+ channel regulation mediated by polyamines
and H2O2 in response to salt stress leads to the rapid rise in the
intracellular concentration of Ca2+ that, subsequently, enforces
a positive feedback on the ROS production via the membrane-
localized NADPH-oxidase (Takeda et al., 2008; Bose et al., 2014).
Sudden exposure to salt stress is reflected in the alterations of tur-
gor that is sensed by rapid increase in cellular cGMP, produced
by the action of receptor kinase cyclase. This in turn activates
the root-localized cyclic nucleotide-gated channels allowing the
inward flow of Ca2+, thus cGMP signal is converted to Ca2+

signal during salinity (Demidchik and Maathuis, 2007). On the
other hand, a rise in cGMP can directly inactivate root voltage-
independent non-selective cation channels (VI-NSCC) by reduc-
ing the influx of toxic Na+ (Rubio et al., 2003). Salt-stress elicited
Ca2+ signals activate signaling molecules including the SOS3
calcium-binding protein and the serine/threonine protein kinase
SOS2 which in turn activate the membrane Na+/H+ antiporter
SOS1 leading to Na+ efflux (Zhu, 2003). If we consider the above
mentioned reports, one can easily observe an indirect cumu-
lative effect of polyamines and ROS in regulating the cellular
Ca2+ that is important for salt response. In contrast, Spm may
directly affect ion transport during salt stress by blocking inward-
rectifying K+ channels (KIRC) and non-selective cation channels
(NSCCs), limitingNa+ influx, and K+ efflux (Liu et al., 2000; Sha-
bala et al., 2007; Zhao et al., 2007; Zepeda-Jazo et al., 2008). Put
and Spm have shown strong potential in reducing the hydroxyl
radical-induced K(+) efflux and the respective non-selective cur-
rent. This synergistic effect between ROS and polyamines was
much more pronounced in a salt-sensitive barley variety than

salt-tolerant one (Velarde-Buendia et al., 2012). Subsequently,
an increased external [Ca2+] activated depolarization-activated
NSCCs (DA-NSCCs), inhibited Na+ -induced K+ efflux, thus
ameliorating Na+ toxicity in plants (Shabala et al., 2006). Dur-
ing salinity, exogenous application of spermidine has been found
to block VI-NSCC reducing the inward flow of Ca2+ and Na+

and the outward flow of K+ in barley seedlings (Zhao et al.,
2007). It has been reported that polyamine accumulation under
salt stress has a tendency to make the overall tonoplast cation
conductance more K+ selective, thus considered to lead to higher
vacuolar Na+ sequestration and an improved cytosolic K+/Na+

homeostasis (Zepeda-Jazo et al., 2008). Absence of Spm causes an
imbalance in Ca2+ homeostasis in the Arabidopsis mutant plant
and showed hypersensitivity to salinity, suggesting its involve-
ment inmodulating the activity of certain Ca2+- permeable chan-
nels and changes in Ca2+ allocation compared to unstressed state,
which may prevent Na+ and K+ entry into the cytosol, enhance
Na+ and K+ influx into the vacuole, or suppress Na+ and K+

release from the vacuole (Yamaguchi et al., 2006). Moreover,
vacuolar Cation/H+ Exchangers (CAX) are found to be over-
expressed and both FV and SV channels (FV, fact-activating vac-
uolar channel; SV, slow-activating vacuolar channel) suppressed
during salinity, resulting into an overall increase in vacuolar Ca2+

(Cheng et al., 2004; Pottosin et al., 2004). Dobrovinskaya et al.
(1999) reported that cellular polyamines strongly inhibited FV
and SV channels whose reduced activity is essential for confer-
ring salinity tolerance in the facultative halophyte Chenopodium
quinoa (Bonales-Alatorre et al., 2013). However, more research
is required to understand this interaction as well as the putative
interactions between polyamines and vacuolar transport systems
(Pottosin and Shabala, 2014).
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FIGURE 3 | Relationship between polyamines and ROS during salinity

in the context of ion transport regulation at plasma membrane and

vacuole. ANN, Annexin-formed channel; CAX, Cation/H+ exchangers;
CNGCs, Cyclic nucleotide-gated channels; cGMP, cyclic guanyl cyclase;
DA-NSCCs, Depolarization-activated NSCCs; DAO, Diamine oxidases; FV,
Fast vacuolar channel; HACC, Hyperpolarization-activated Ca2+ influx

channel; KIRC, K+ inward-rectifying; KORC, K+ outward rectifying; VK,
K+-selective channels; ROSIC, Non-selective voltage-independent
conductance; NHX, Na+/H+ antiporters; PA, Polyamine; PAO, Polyamine
oxidases; ROS-NSCC, ROS activated Non-selective cation channel; SOS1,
SOS2, SOS3, respectively, Salt overly sensitive 1,2,3; SV, Slow vacuolar
channel; VI-NSCCs, Voltage-independent nonselective cation channels.

Cross Talk between Polyamines, ROS, NO, and
ABA
Plants employ multi-level signal transduction to induce stress
responses. The coordinated actions of hormones such as abscisic
acid (ABA), ethylene, jasmonate, and auxin along with other sig-
naling molecules like Ca2+, cyclic nucleotides, ROS and reac-
tive nitrogen species such as NO form a complex signaling
network (Neill et al., 2003; Tuteja and Sopory, 2008). Inter-
estingly, ABA was found to be involved in regulating both
biosynthetic and catabolic pathways for polyamines in Ara-
bidopsis (Urano et al., 2004; Hussain et al., 2011). For example,
exogenous application of ABA has been found to modu-
late the transcription and biosynthesis of polyamine metabolic
enzymes such as ADC2, SPDS, and SPMS during stress (Alcazar
et al., 2006; Hussain et al., 2011). On the other hand Put
has been found to serve as a modulator of indispensable ABA
increase under cold stress thus representing and reciprocal
relationship between Put and ABA biosynthesis during the
period of stress in order to increase plant adaptive potential
(Cuevas et al., 2008, 2009; Urano et al., 2009). The transgenic

tobacco plants overexpressing the ABA-biosynthetic enzyme
9-cis-epoxycarotenoid dioxygenase is associated with the ABA-
induced production of H2O2, NO, and the subsequent induc-
tion of antioxidant enzymes conferring salt tolerance (Zhang
et al., 2009). Recently, it has been shown that polyamines can
induce the production of NO that serves as a signal-inducing
salt resistance by increasing the K+ to Na+ ratio by stimulat-
ing the expression of the plasma membrane H+-ATPase and
Na+/H+ antiport in the tonoplast (Zhao et al., 2004; Tun et al.,
2006; Yamasaki and Cohen, 2006; Zhang et al., 2006). It was
suggested that NO production induced by polyamines could
be mediated either by H2O2, one reaction product of oxida-
tion of polyamines by DAO and PAO, or by unknown mecha-
nisms involving polyamines, DAO and PAO (Wimalasekera et al.,

2011). Pre-treatment with H2O2 or sodium nitroprusside (NO

donor) induced major antioxidant defense (SOD, catalase, APX,
and GR), reduced protein carbonylation and accumulated leaf
S-nitrosylated proteins, suggesting an overlap relation between

NO and H2O2 signaling pathways in salinity acclimation (Tanou
et al., 2009a,b).
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In the light of these observations we have made an attempt to
explore the interconnection(s) between polyamines, NO, ABA,
and ROS as potential mediator(s) of stress responses. More
research is needed to determine the exact nature of these intricate
connections in the context of salt stress.

Polyamines and Programmed Cell Death
Plant cells employ dynamic activation of ROS production to
regulate defense responses during stress. When ROS accumu-
lation crosses a threshold value, cells enter into a genetically
programmed necrotic process that leads to cellular suicide,
which restricts the oxidative damage to a controlled number
of cells and triggers pathways for nutrient recycling (de Pinto
et al., 2006; Stowe and Camara, 2009). The key regulator of
the switch between the cellular endurance and programmed
cell death (PCD) under salt stress could be controlled by the
interplay between polyamine and ROS homeostasis; specifi-
cally, the precise modulation of polyamine levels by the shift
between polyamine anabolism and catabolism may result a lower

polyamine concentration which, in turn may facilitate PCD
(Moschou et al., 2008a; Toumi et al., 2010).

We have already discussed in our previous section that
polyamines act as important regulators of ion homeostasis
during salt stress. Modulation of the cellular K+ and Ca2+

concentrations regulate stress-related PCD pathways in plants
(Moschou and Roubelakis-Angelakis, 2014). Plant polyamines
are found to affect intracellular dynamics of both ions, thus
suggesting their direct involvement in PCD (Wu et al., 2010;
Zepeda-Jazo et al., 2011). Low cellular concentrations of K+ were
shown to increase the activity of metacaspases and nucleases,
thus promoting ROS- and salt-induced PCD (Demidchik et al.,
2010). Salt stress led to high cytosolic [Ca2+] which promoted
the opening of mitochondrial permeability transition pore
(MPTP) and PCD induction in tobacco protoplasts (Lin et al.,
2005). Mitochondrial depolarization and cytochrome-c release
is a hallmark event during the PCD (Logan, 2008; Andronis
and Roubelakis-Angelakis, 2010). Takahashi’s group showed
that 0.5mM Spm pretreatment of tobacco leaf discs induced
expression of the Salicylic acid (SA)-induced Protein Kinase

FIGURE 4 | Schematic diagram showing the role of endogenous and exogenous polyamines in maintaining redox homeostasis during salinity stress.
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(SIPK) and Wound-Induced Protein Kinase (WIPK) and caused
mitochondrial dysfunction similar to the one observed during
PCD in tobacco leaves (Takahashi et al., 2003).

Accumulation of metabolic derivatives of polyamines may
also indirectly control PCD pathways (Moschou and Roubelakis-
Angelakis, 2014). For example, tobacco plants with reduced
or increased PAO expression demonstrated increased salt tol-
erance or PCD depending on the availability of intracellu-
lar polyamines (Moschou et al., 2008c). Expression of the
Spm Oxidase (SMO) can also be linked to hydrogen perox-
ide production and PCD, providing additional support to the
above presented view of PAO-induced PCD (Moschou and
Roubelakis-Angelakis, 2014). It has also been reported that over-
expression of PAO activates mitogen-activated protein kinases
(MAPK)-mediated pathways during biotic stress (Moschou et al.,
2009).

In sum, a connection between polyamine metabolism
and PCD can be inferred, but more work is needed to
determine the molecular mechanisms underlying this
relationship.

Conclusions and Future Prospects

This review outlines our current understanding of polyamines
and their contributions to ROS homeostasis during salt stress,
summarized in Figure 4. The figure depicts the possible cellular
pathways by which polyamines modulate ROS homeostasis dur-
ing salinity and the probable mode of action of endogenous and
exogenous PAs into a single frame, so that one can easily view the
current state of the field.

Our literature review suggests that the regulation of polyamine
metabolism is a complex process where the exact roles of
polyamines in regulating ROS, ion transport and PCD are still to
be discovered. For the field to progress there is a need to address
several important aspects: (i) The identity of the cellular compo-
nents thatmediate the link between ROS synthesis, ROS signaling
and polyamines; (ii) The mechanisms that these mediator com-
ponents employ; and (iii) The potential organ- or tissue-specific
differences in the composition and regulation of polyamine-ROS
networks.

To solve these questions one should focus on several rele-
vant processes including polyamine biosynthesis, transport and
catabolism in parallel with the tissue-, species-, and salt stress
dependent expression of various ion channels and transporters.
Additionally, one should consider the nature of various ROS and
polyamine species that accumulate in plants under stress and
the sites of their subcellular synthesis, alongside changes in the
polyamine and ROS scavenging systems.

Salt stress constitutes a serious challenge to overcome in the
quest of global increase in crop productivity. Understanding the
underlying molecular mechanism of salt stress adaptation is the
key to successful crop biotechnology.
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Various abiotic stress factors significantly contribute to major worldwide-losses in crop
productivity by mainly impacting plant’s stress tolerance/adaptive capacity. The latter is
largely governed by the efficiency of antioxidant defense system for the metabolism
of elevated reactive oxygen species (ROS), caused by different abiotic stresses. Plant
antioxidant defense system includes both enzymatic (such as superoxide dismutase,
SOD, E.C. 1.15.1.1; catalase, CAT, E.C. 1.11.1.6; glutathione reductase, GR, E.C. 1.6.4.2;
peroxidase, POD, E.C. 1.11.1.7; ascorbate peroxidase, APX, E.C. 1.11.1.11; guaiacol
peroxidase, GPX, E.C. 1.11.1.7) and non-enzymatic (such as ascorbic acid, AsA; glutathione,
GSH; tocopherols; phenolics, proline etc.) components. Research reports on the status of
various abiotic stresses and their impact on plant growth, development and productivity
are extensive. However, least information is available on sustainable strategies for the
mitigation of abiotic stress-mediated major consequences in plants. Brassinosteroids
(BRs) are a novel group of phytohormones with significant growth promoting nature. BRs
are considered as growth regulators with pleiotropic effects, as they influence diverse
physiological processes like growth, germination of seeds, rhizogenesis, senescence etc.
and also confer abiotic stress resistance in plants. In the light of recent reports this
paper: (a) overviews major abiotic stresses and plant antioxidant defense system, (b)
introduces BRs and highlights their significance in general plant growth and development,
and (c) appraises recent literature available on BRs mediated modulation of various
components of antioxidant defense system in plants under major abiotic stresses including
metals/metalloids, drought, salinity, and temperature regimes. The outcome can be
significant in devising future research in the current direction.

Keywords: abiotic stress, reactive oxygen species, antioxidant defense system, tolerance, brassinosteroids

INTRODUCTION
ABIOTIC STRESSES AND PLANT ANTIOXIDANT DEFENSE SYSTEM
Plants are inevitably exposed to various environmental stress fac-
tors of like abiotic and biotic types. In particular, abiotic stresses
such as temperature (heat, chilling, and freezing), water (drought,
water logging), salt, heavy metals, light (intense and weak), radi-
ation (UV-A/B) etc. are serious threats to agriculture worldwide
(Bray et al., 2000). Elevation in the generation of various reactive
oxygen species (ROS; such as superoxide radicals, O2−; hydroxyl
radicals, OH−; perhydroxyl radicals, HO2−; alkoxy radicals, RO−;
hydrogen peroxide, H2O2; singlet oxygen, 1O2.) is a common
consequence in plants growing under abiotic stresses (Anjum
et al., 2010, 2012, 2014; Gill and Tuteja, 2010). Important sig-
nal transduction functions and triggering and/or orchestration of
plant responses to varied (abiotic) stresses can be possible with
minimal levels of ROS. However, major ROS and their reaction
products that escape antioxidant-mediated scavenging can dis-
turb the ROS/antioxidant homeostasis in plant cells, cause oxida-
tive stress, bring critical damages to the primary metabolites of

plants viz., proteins, lipids, carbohydrates and DNA and halt cel-
lular metabolism (Anjum et al., 2010, 2012, 2014; Gill and Tuteja,
2010). To survive such stresses, plants have evolved many intricate
defense mechanisms to increase their tolerance and survive under
such extreme environmental conditions. Plant stress tolerance
requires the activation of complex metabolic activities including
antioxidative pathways, especially ROS-scavenging systems within
the cells that in turn can contribute to continued plant growth
under stress conditions (El-Mashad and Mohamed, 2012). Plant
antioxidant defense system consists of the enzymes such as super-
oxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6),
peroxidase (POD: EC 1.11.1.11), ascorbate peroxidase (APX:
E.C. 1.11.1.11), glutathione reductase (GR: EC 1.6.4.2), glu-
tathione sulfo-transferase (GST: EC), polyphenol oxidase (PPO:
E.C. 1.14.18.1), guaiacol peroxidase (GPX: EC 1.11.1.7), monode-
hydroascorbate reductase (MDHAR: EC 1.1.5.4), dehydroascor-
bate reductase (DHAR: EC 1.8.5.1) etc. Whereas, non-enzymatic
components may include osmolytes like proline, glycine betaine,
sorbital, mannitol etc., and reduced glutathione (GSH), ascorbic
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acid (AsA) that are needed for osmotic adjustment, stabilization
of membranes, and ROS-scavenging (Anjum et al., 2010, 2012,
2014; Gill and Tuteja, 2010) (Figure 1).

BRASSINOSTEROIDS
OVERVIEW
Brassinosteroids (BRs) are a new type of polyhydroxy steroidal
phytohormones with significant growth-promoting influence
(Vardhini, 2012a,b; Bajguz and Piotrowska-Niczyporuk, 2014).
Mitchell et al. (1970) discovered BRs which were later extracted
from the pollen of Brassica napus by Grove et al. (1979). BRs can
be classified as C27, C28 or C29 BRs according to the number of
carbons in their structure (Vardhini, 2013a,b). Sixty BRs related

FIGURE 1 | Schematic representation of major abiotic stresses, their

consequences and the components of plant antioxidant defense

system. (CAT, catalase; APX, ascorbate peroxidase; GR, glutathione
reductase; GPX, glutathione peroxidase; GST, glutathione sulfo-transferase;
SOD, superoxide dismutase; PPO, polyphenol oxidase; AsA, reduced
ascorbic acid; GSH, reduced glutathione; Pro, proline; Man, mannitol; Sorb,
sorbitol; GlyBet, glycine betaine; PGRs, plant growth regulators; ROS,
reactive oxygen species) (Modified after Anjum et al., 2014).

compounds have also been identified (Haubrick and Assmann,
2006). However, brassinolide (BL), 28-homobrassinolide (28-
HomoBL) and 24-epibrassinolide (24-EpiBL) are the three bioac-
tive BRs those are widely used in most physiological and exper-
imental studies (Vardhini et al., 2006) (Figure 2). BRs are con-
sidered ubiquitous in plant kingdom as they are found in almost
all the phyla of the plant kingdom like alga, pteridophyte, gym-
nosperms, dicots and monocots (Bajguz, 2009). BRs are consid-
ered also as a new group of plant growth hormones that perform
a variety of physiological roles like growth, seed germination,
rhizogenesis, senescence, and resistance to plants against various
abiotic stresses (Rao et al., 2002).

SIGNIFICANCE IN GENERAL PLANT GROWTH AND DEVELOPMENT
BRs have to their credit a host of roles in general plant growth
and development. BRs can activate the cell cycle during seed ger-
mination (Zadvornova et al., 2005), control progression of cell
cycle (González-Garcia et al., 2011), induce exaggerated growth
in hydroponically grown plants (Arteca and Arteca, 2001), and
also control proliferation of leaf cells (Nakaya et al., 2002). In
addition, reports are also available on the role of BRs in growth
promotion of apical meristems in potato tubers (Meudt et al.,
1983), acceleration of rate of cell division in isolated protoplasts
of Petunia hybrida (Ho, 2003) and cell division and leaf expan-
sion (Zhiponova et al., 2013). Initially BRs were identified based
on their growth promoting activities; however, subsequent phys-
iological and genetic studies revealed additional functions of BRs
in regulating a wide range of processes, including source/sink

FIGURE 2 | Examples of commonly used bioactive brassinosteroids.
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relationships, seed germination, photosynthesis, senescence, pho-
tomorphogenesis, flowering and responses to different abiotic
and biotic stresses (Deng et al., 2007). The work with BR biosyn-
thetic mutants in Arabidopsis thaliana (Tao et al., 2004) and
Pisum sativum (Nomura et al., 1997) have provided strong evi-
dences that BRs are essential for plant growth and development
and BR- signaling plays a positive in plant growth and develop-
ment (Fábregas and Caño-Delgado, 2014). A simple BR- analog
2α, 3α-dihydroxy-17β-(3-methyl butynyloxyl) 7-oxa-B-homo-5α

androstan-6-one induces bean second node splitting which is
considered as the prominent physiological feature of BRs (Strnad
and Kohout, 2003). Dwarf and de-etiolated phenotypes and BR—
deficient species of some Arabidopsis mutants were rescued by
application of BRs (Bishop and Yakota, 2001). Even Pharbitis nil,
Uzukobito was a defective BR- biosynthetic dwarf mutant strain
(Suzuki et al., 2003) which emphasized that BR-deficient and
defective BR-biosynthetic species exhibited abnormal growth.
Friedrichsen et al. (2002) also reported that three redundant BR
genes encode transcription factors which are required for nor-
mal growth, indicating the necessity of BRs for normal growth.
Similarly, the inhibition of growth (Asami et al., 2000) and sec-
ondary xylem development (Nagata et al., 2001) of cress (Lepidius
sativus) by brassinozole, a specific inhibitor of BL synthesis was
reversed by the exogenous application of BL, further emphasizing
the necessity of BRs for normal plant growth.

BRs also exhibit synergistic effect with other phyohormones
in regulating the plant growth and metabolism. BRs interact
with auxins, cytokinins, gibberellins (Domagalska et al., 2010),
abscisic acid (ABA) (Domagalska et al., 2010), ethylene (ET)
(Manzano et al., 2011) salicylic acid (SA) (Divi et al., 2010) and
jasmonic acid (JA) (Creelman and Mullet, 1997; Peng et al., 2011)
to promote plant growth and metabolism. Ability of 24-EpiBL
to control the basic thermotolerance and salt tolerance of the
mutants has been evidenced (Divi et al., 2010). In addition, these
authors also reported synergistic role of 24-EpiBL, where treat-
ment with 24-EpiBL increased expression of various hormone
marker genes in both wild type and mutant Arabidopsis seedlings
those were either deficient in or insensitive to ABA, ET, JA, and
SA. Notably, BRs may be applied/supplied to plants at different
stages of their life cycle viz., vegetative stage (Vardhini and Rao,
1998), flowering stage (Vardhini, 2012a, 2013a), meiosis stage
(Saka et al., 2003), grain filling stage (Vardhini, 2012a), anthesis
stage (Liu et al., 2006) etc. as foliar spray (Vardhini et al., 2008),
seed treatment (Zhang et al., 2007; Kartal et al., 2009), root appli-
cation (Shang et al., 2006; Song et al., 2006) and even as shot gun
approach (Hayat et al., 2010a). Examples of a range of other major
functions of BRs and related compounds reported in different
plants can be found in Figure 3.

BRASSINOSTEROIDS-MEDIATED MODULATION OF PLANT
ANTIOXIDANT DEFENSE SYSTEM UNDER MAJOR ABIOTIC
STRESS
Extensive research over the years’ has established stress-impact-
mitigating role of BRs and associated compounds in different
plants exposed to various abiotic stresses such as high temper-
ature (Zhou et al., 2004; Kurepin et al., 2008; Janeczko et al.,
2011), low temperature in terms of chilling (Divi and Krishna,

2010; Liu et al., 2011; Wang et al., 2014) as well as freezing
(Janeczko et al., 2009). Reports are available on the significance
of BRs and associated compounds in different plants exposed to
salinity (Avalbaev et al., 2010; Abbas et al., 2013), light (Wang
et al., 2010, 2012; Kurepin et al., 2012; Li et al., 2012a), drought
(Anjum et al., 2011; Li et al., 2012b; Mahesh et al., 2013), flood-
ing (Lu et al., 2006; Liang and Liang, 2009), metals/metalloids
(Arora et al., 2010a,b; Ashraf et al., 2010; Bajguz, 2010), herbicides
(Sharma et al., 2013a), pesticides (Xia et al., 2006), insecticides
(Xia et al., 2009b, 2011), organic pollutants (Ahammed et al.,
2012a, 2013a), newly reclaimed sandy soil (Ahmed and Shalaby,
2013) and preservatives (Hu et al., 2014).

Hereunder, recent reports on the role of BRs (and associ-
ated compounds) in the modulation of both enzymatic and
non-enzymatic components of antioxidant defense system in abi-
otic stressed plants are critically appraised. The discussion will
consider primarily metals/metalloids followed by temperature
regimes (high and low), drought, salinity and other major abiotic
stresses.

METAL/METALLOID STRESS
Foliar application of homoBL was reported to improve Cd-
tolerance in Brassica juncea through increasing activity of antiox-
idative enzymes (such as CAT, POD, SOD) and the content of
osmolyte (such as proline) (Hayat et al., 2007). Improved Cd-
tolerance in Phaseolus vulgaris was possible as a result of 24-epiBL
(5 μM)-mediated increased activity of antioxidative enzymes, and
proline content and subsequent improvements in the membrane
stability index (MSI), relative leaf water content (RLWC) (Rady,
2011). Nullification of the damaging effect of Cd was reported
in totamato cultivars (K-25 and Sarvodya) as a result of 28-
homoBL/24-epiBL (10(−8) M)-mediated improvement in pho-
tosynthetic machinery and antioxidant defense system (Hasan
et al., 2011). Application of BRs (10−8 M) to Cd (3.0, 6.0, 9.0,
and 12 mg kg−1) stressed Solanum lycopersicum plants enhanced
antioxidant system activity and improved fruit yield and qual-
ity (Hayat et al., 2012). Cd-impact-ameliorative role of 24-epiBL
and 28-homoBL (3.0 μM) was evidenced in Raphanus sativus,
where these BRs enhanced levels of free proline, antioxidant
enzymes CAT, SOD, APX, GPX, and also reduced the activity
of POD and AAO (Anuradha and Rao, 2007b). In Cd (0.5, 1.0,
and 1.5 mM)-exposed Raphanus sativus, a diminished oxidative
stress via 24-epiBL (10−7, 10−9, and 10−11 M)-supplementation-
mediated elevation in the activity of GST and PPO enzymes was
reported (Sharma et al., 2012). Earlier, these authors evidenced
28-homoBL (10−11, 10−9, and 10−7 M)-assisted amelioration of
Cd (0.5, 1.0, and 1.5 mM) impacts in Raphanus sativus, where
improved biomass and seedling growth was argued as a result of
28-homoBL-mediated regulation of the activity of APX, CAT, GR,
POD, and SOD (Sharma et al., 2010). Hasan et al. (2008) also
reported 28- homoBL-mediated elevated activity of CAT, POD,
and SOD and the protection of Cicer arietinum against Cd (50,
100, or 150 μM).

Application of 24-epiBL ameliorated Ni-stress in Brassica
juncea by enhancing mainly the activity of antioxidant enzymes
(Kanwar et al., 2013). Earlier, these authors reported BRs (24-
EpiBL, CS, dolicholide and typhasterole)-mediated significant
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FIGURE 3 | Summarized roles of brassinosteroids and related

compounds reported in plants. 1Zadvornova et al., 2005;
2González-Garcia et al., 2011; 3Hartwig et al., 2011; 4Manzano et al.,
2011; 5Yamamoto et al., 2001; 6Jin et al., 2014; 7Carange et al., 2011;
8Pokotylo et al., 2014; 9Vardhini and Rao, 1999; 10Upreti and Murti,

2004; 11Arteca and Arteca, 2001; 12Lu et al., 2003; 13Borcioni and
Bonato-Negrelle, 2012; 14Vardhini and Rao, 2002; 15Weng et al., 2007;
16Vogler et al., 2014; 17Nakaya et al., 2002; 18Zhiponova et al., 2013;
19Malabadi and Nataraja, 2007; 20Aydin et al., 2006; 21Cheng et al.,
2014; 22Haubrick et al., 2006; 23Xia et al., 2014.

mitigation of Ni (0.2, 0.4, and 0.6 mM)-stress in Brassica juncea
plants by elevating the activity of ROS-metabolizing enzymes
(and also via lowering the metal uptake) (Kanwar et al., 2012).
Significantly elevated activity of antioxidant enzymes (such as
GPX, CAT, GR, APX, and SOD) in Brassica juncea seedlings
emerged from the homoBL (0.01, 1.0,and 100 nM)-treated seeds
was argued to provide tolerance of this plant to Ni concen-
trations (25, 50, and 100 mg dm−3) (Sharma et al., 2008). In
Brassica juncea, the spraying of homoBL was evidenced to par-
tially neutralize the toxic effect of 50 or 100 μM Ni, where elevated
activity of POD and CAT, and content of proline was observed
in leaves and roots (Alam et al., 2007). Spraying of 24-epiBL
(1.0 μM) to Ni-exposed Brassica juncea was reported to detox-
ify Ni-impacts (Ali et al., 2008a). Elevated CAT, POD, and SOD
activity via the spray of 0.01 μM of 28-homoBL was argued
to protect five wheat (Triticum aestivum) cultivars (PBW-373,
UP-2338, DL-LOK-01, DL-373, and HD-2338) against Ni con-
centrations (50 and 100 μM) (Yusuf et al., 2011b). Raphanus
sativus seedlings emerged from seeds pre-soaked in 24-epiBL,

exhibited elevated activity of APX, SOD, CAT, GPX, MDHAR,
DHAR, and GR; that eventually resulted in reducing lipid per-
oxidation, enhanced proline and protein contents, and improved
enhancing the root/shoot length, fresh biomass under Ni expo-
sure (Sharma et al., 2011a). Application of 10−6 M 24-epiBL as
shotgun approach (pre-sowing seed soaking) to the Ni-stressed
T-44 (Ni-tolerant) and PDM-139 (Ni-sensitive) varieties of Vigna
radiata plants improved biological yield, number of nodules,
leghemoglobin content, and the activity of CAT, POD, and SOD
enzymes. The 24-epiBL-mediated up-regulation of antioxidant
enzyme activity and the elevated level of proline (osmolyte) were
argued to confer Ni-tolerance and improve growth, nodulation
and yield attributes (Yusuf et al., 2012). Recently, these authors
reported BRs-mediated improved antioxidant defense (and also
nitrogen metabolism) in two contrasting cultivars of Vigna radi-
ata under different levels of Ni (Yusuf et al., 2014).

The role of BRs and associated compounds in the mitigation
of elevated levels of Cu has also been reported in plants. To this
end, treatment of Brassica juncea seedlings with 10−10, 10−8, and
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10−6 M homoBL improved growth and photosynthetic traits via
decreased H2O2 and elevated activity of CAT, POD, and SOD
(Fariduddin et al., 2009b). Recently, these authors reported an
improved growth of NaCl+Cu (100 mg kg−1) stressed Cucumis
sativus via epiBL-mediated enhancements in the activity of CAT,
POD, and SOD (Fariduddin et al., 2013a). Supplemantation of
10−7, 10−9, and 10−11 M 24-epiBL to Raphanus sativus amelio-
rated the oxidative stress caused by Hg (0.5, 1.0, and 1.5 mM)
by enhancing the activity of ROS-metabolizing enzymes such
as GST and PPO (Sharma et al., 2012). Recently, 24-epiBL
(10−7, 10−9, 10−11 M)-mediated increased activity of antiox-
idative enzymes such as SOD, CAT, APOX, GPX, GR, MDHAR
and DHAR, and also the contents of GSH were argued to help
radish plants to counteract the consequences of Hg (Kapoor et al.,
2014).

Supplementation of 24-epiBL reduced Pb toxicity and
enhanced the growth in radish (Raphanus sativus L.) seedlings
by increasing the activities of antioxidant enzymes like CAT,
APX, GPX, SOD and reducing POD activity (Anuradha and Rao,
2007a). Mitigation of the consequences of Pb (100 or 200 μM)
was reported in tomato plants as a result of 24-epiBL-mediated
increases in the activities of SOD, CAT, APX and GR, and the
contents of AsA and GSH (Rady and Osman, 2012). 24-epiBL
ameliorated Cr (VI) stress in 7-d old Raphanus sativus L. cv.
“Pusa chetki” seedlings by enhancing the pools of reduced GSH
and AsA, the activity of GR, SOD, and APX enzymes, and
also the contents of phytochelatins, proline, and glycinebetaine
(Choudhary et al., 2011). Co-application of epiBL and spermi-
dine (polyamine) was also evidenced to remarkably enhance the
titers of antioxidants (GSH, AsA, proline, glycine betaine and total
phenols) and the activity of GPX, SOD, and GR) in Cr-stressed
Raphanus sativus (Choudhary et al., 2011). Seed pre-soaking
treatment of 28-homoBL at 10(−7) M was effective in ameliorat-
ing Cr(VI) stress in Raphanus sativus L. (Pusa Chetaki), where
an increased activity of antioxidative enzymes (except GPX) and
the contents of proline and proteins but reduced lipid peroxida-
tion were evidenced (Sharma et al., 2011b). 24-EpiBL-mediated
diminution of Cr-toxicity in Brassica juncea was reported, where
increased activity of GPX, CAT, GR, APX, SOD, MDHAR, and
DHAR was argued to improve plant health (Arora et al., 2010b).
Amelioration of Al-impacts was evidenced through epiBL or
homoBL spraying to mung bean (Vigna radiata), where these
BRs increased RLWC, water use efficiency, photosynthetic rate
via enhancing the activity of antioxidative enzymes such as CAT,
POD, and SOD in leaves (Ali et al., 2008b). Plant tolerance to Pb
(and also to Cu and Cr) is possible via BL-mediated significant
activation of enzymes (such as SOD, CAT, APX, and GR) and
non-enzymes (such as reduced GSH, total AsA) (Bajguz, 2010)
(Table 1).

Least reports are available on the role of BRs in plants under
Zn, Bo, Co, Mn, and As stress. Supplementation of 28-homoBL
to Raphanus sativus seedlings was reported to help this plant to
tolerate Zn toxicity by enhancing antioxidative enzyme activities,
strengthening GSH metabolism and redox status, and improv-
ing the contents of non-enzymatic antioxidants and proteins
(Ramakrishna and Rao, 2013). The role of 28-homoBL (Arora
et al., 2008b) and that of 24-epiBL (Arora et al., 2010a) was

reported respectively in Zea mays and Brassica juncea under Zn
stress. In the previous studies, increased activity of SOD, CAT,
APOX, GPX, GR, MDHAR and DHAR and the contents of
GSH were reported to control Zn-accrued lipid peroxidation.
Application of 28-homoBL (10(−8) M) to Bo (0.50, 1.0, and
2.0 mM)-exposed Vigna radiata improved the growth, water rela-
tions, photosynthesis by enhancing antioxidant enzymes (such as
CAT, POD and SOD) (Yusuf et al., 2011a). Foliar spray treatment
with 24-epiBL (0, 10−10, 10−8, and 10−6 M) alleviated the stress
generated by Co (0, 5 × 10−4, 10−3, 1.5 × 10−3, and 2 × 10−3

M) ion in Brassica juncea through significantly improving the
activities of SOD, CAT, POD, GR, APOX, MDHAR, and DHAR
enzymes (Arora et al., 2012). Under elevated lelevs of Mn, epiBL
application was reported to enhance the activities of SOD, POD,
CAT, APX, DHAR, and GR, and the contents of AsA, and GSH
that eventually controlled lipid peroxidation and metabolized
superoxide radical and H2O2 in Zea mays (Wang et al., 2009).
Recently, Raghu et al. (2014) reported BRs-mediated improved
As-tolerance in Raphanus sativus as a result of increased activity
of SOD and CAT.

TEMPERATURE REGIMES
BRs and associated compounds have been extensively reported
to modulate different components of antioxidant defense system
and to play a positive role in the mitigation of the consequences
in different plants exposed to both high (Mazorra et al., 2002,
2011; Zhou et al., 2004; Cao and Zhao, 2007; Ogweno et al., 2008;
Hayat et al., 2010b) and low (Janeczko et al., 2007; Liu et al., 2009;
Kumar et al., 2010; Aghdam et al., 2012; Wang et al., 2012; Hu
et al., 2013; Xi et al., 2013; Aghdam and Mohammadkhani, 2014)
temperatures (Table 1).

Young seedlings of two Indica rice (Oryza sativa) cultivars
namely Xieqingzao B (heat-sensitive) and 082 (heat-tolerant),
subjected to high temperature; sprayed with 0.005 mg L−1 of
BR exhibited significant enhancement in activities of POD and
SOD isozyme expression levels, reduction in MDA level and leak-
age of leaf electrolytes (Cao and Zhao, 2007). Supplementation
with 28-homoBL to Vigna radiata c.v. T-44 plants detoxified the
stress generated by high temperature by improving the mem-
brane stability index (MSI), leaf water potential (ψ) via increased
the activities of antioxidative enzymes and the level of proline
(Hayat et al., 2010b). Pre-treatment of 24-epiBL to Lycopersicon
esculentum Mill. cv. 9021 plants exposed to high temperature
(40/30◦C; for 8 days) significantly alleviated high-temperature-
caused inhibition of photosynthesis by increasing the activities of
SOD, APX, GPX, and CAT, and reducing total H2O2 and MDA
contents (Ogweno et al., 2008). Pre-incubation of tomato leaf
discs with 24-epiBL or MH5 (polyhydroxylated spirostanic analog
of BR) (for 24 h) stimulated the activities of CAT, POD and SOD,
controlled cell damage under heat stress (40◦C) (Mazorra et al.,
2002). EpiBL-induced tolerance to heat shock (HS) in tomato
seedlings (BR-deficient mutant, extreme dwarf d(x)), a partially
BR-insensitive mutant curl3(-abs) allele (curl3 altered brassinolide
sensitivity; and a line overexpressing the dwarf, BR-biosynthesis
gene, 35SD) was argued as a result of reduced ion leakage,
lipid peroxidation through enhanced activities of antioxidative
enzymes (Mazorra et al., 2011).
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Table 1 | Summary of representative studies on brassinosteroids (BRs) and related compounds in the mitigation of major abiotic

stress-impacts in different plant species.

Brassinosteroids and related compounds Abiotic stresses Plant species References

BRs Cd Raphanus sativus Anuradha and Rao, 2007b

Brassica juncea Hayat et al., 2007

Lycopersicon esculentum Hayat et al., 2010a

Lycopersicon esculentum Hasan et al., 2011

Triticum aestivum Kroutil et al., 2010

Solanum lycopersicum Hayat et al., 2012

Helianthus annuus Filova et al., 2013

Helianthus tuberosus Gao et al., 2013

Solatium nigrum Zhao et al., 2013

Al Vigna radiata Ali et al., 2008b

Glycine max Dong et al., 2008

Ni Brassica juncea Kanwar et al., 2012

24-epiBL Cd Brassica napus Janeczko et al., 2005

Raphanus sativus Anuradha and Rao, 2009

Phaseolus vulgaris Rady, 2011

Ni Brassica juncea Kanwar et al., 2013

Raphanus sativus Sharma et al., 2011a

Cu Cucumis sativus Fariduddin et al., 2013a

Co Brassica juncea Arora et al., 2012

Zn Brassica juncea Arora et al., 2010a

Pb Raphanus sativus Anuradha and Rao, 2007a

24-EpiBL and 28-HomoBL Ni Brassica juncea Ali et al., 2008a; Sharma et al.,
2008

28-HomoBL Cd Cicer arietinum Hasan et al., 2008

Raphanus sativus Sharma et al., 2010

Cu Brassica juncea Fariduddin et al., 2009b

Cr Raphanus sativus Sharma et al., 2011b

Bo Raphanus sativus Yusuf et al., 2011a

Zn Raphanus sativus Ramakrishna and Rao, 2013

BRs High temperature Lycopersicon esculentum Ogweno et al., 2008

Low temperature Vigna radiata Huang et al., 2006

Brassica napus Janeczko et al., 2007

Solanum lycopersicum Aghdam et al., 2012

Cucumis sativus Jiang et al., 2013

Brassica napus Ma et al., 2009

24-epiBL High temperature Solanum lycopersicum Singh and Shono, 2005

Hordeum vulgare Janeczko et al., 2011

Cucumis melo Zhang et al., 2013

Low temperature Cucumis sativus Hu et al., 2010

Brassica juncea Kumar et al., 2010

Vitis vinifera Xi et al., 2013

28-HomoBL Cucumis sativus Fariduddin et al., 2011

BL Low temp Campsicum annum Wang et al., 2012

Solanum lycopersicum Aghdam and Mohammadkhani,
2014

Oryza sativa Wang et al., 2014

High temp Brassica napus Kurepin et al., 2008

(Continued)
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Table 1 | Continued

Brassinosteroids and related compounds Abiotic stresses Plant species References

BRs Drought Phaseolus vulgaris Upreti and Murti, 2004

Sorghum vulgare Vardhini and Rao, 2005

Lycopersicon esculentum Behnamnia et al., 2009

Solanum lycopersicum Yuan et al., 2010

Carica papaya Gomes et al., 2013

Raphanus sativus Mahesh et al., 2013

Flooding Brassica napus Liang and Liang, 2009

BL Drought Robinia pseudoacacia Li et al., 2008

Glycine max Zhang et al., 2008

Xanthoceras sorbifolia Li and Feng, 2011

Arachis hypogaea Savaliya et al., 2013

Flooding Cucumis sativus

Glycine max Lu et al., 2006

24-EpiBL Drought Capsicum annuum Hu et al., 2013

Brassica napus Mousavi et al., 2009

Cucumis sativus Kang et al., 2009

28-homoBL Drought Brassica juncea Fariduddin et al., 2009a

BRs Salinity Lycopersicon esculentum Ali et al., 2006

Cucumis sativus seedlings Shang et al., 2006

Cucumber seedlings Song et al., 2006

Triticum aestivum Shahbaz and Ashraf, 2007

Cucumber Wang et al., 2011

Trifolium alexandrinum Daur and Tatar, 2013

Oryza sativa Sharma et al., 2013b

BL Salinity Medicago sativa Zhang et al., 2007

Zea mays El-Khallal et al., 2009

Vigna unguiculata El-Mashad and Mohamed, 2012

Oryza sativa Das et al., 2013

Cucumis sativus Lu and Yang, 2013

24-EpiBL Salinity Triticum aestivum Talaat and Shawky, 2013

Pisum sativum Fedina, 2013

Cucumis sativus Fariduddin et al., 2013a

Cajanus cajan Dalio et al., 2013

Capsicum annuum Abbas et al., 2013

Lactuca sativa Ekinci et al., 2012

Solanum melongena Ding et al., 2012

Phaseolus vulgaris Rady, 2011

Pisum sativum Shahid et al., 2011

Cajanus cajan Durigan et al., 2011

Fragaria x ananassa Karlidag et al., 2011

Triticum aestivum Avalbaev et al., 2010

Hordeum vulgare Tabur and Demir, 2009

Triticum aestivum Shahbaz et al., 2008

28-HomoBL Salinity Cicer arietinum Ali et al., 2007

Zea mays Arora et al., 2008a

Vigna radiata Hayat et al., 2010b

Triticum aestivum Yusuf et al., 2011b

Brassica juncea Alyemeni et al., 2013
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Literature is full also on the role of BRs in plants under
low temperature stress. BR infiltration prior to cold treatment
can reduce the ion leakage in chilling-exposed rape plants
(Janeczko et al., 2007); whereas, 24-epiBL can increase the
antioxidant defense (and also osmoregulation) in chilling
stressed young grapevines (Xi et al., 2013). Application of 24-
EpiBL to suspension cultured cells of low temperature (4 and
0◦C)-exposed Chorispora bungeana alleviated oxidative damage
through enhancing the activity of ROS-metabolizing enzymes
such as APX, CAT, POD and SOD and the content of AsA (Liu
et al., 2009). In chilling (4◦C) exposed Brassica juncea seedlings,
exogeniously applied 24-epiBL alleviated the toxic effect of H2O2

through increasing the activities of various enzymes involved in
antioxidant defense system like CAT, APX, and SOD (Kumar
et al., 2010). Hu et al. (2010) reported that exogenous applica-
tion of 24-epiBL alleviated the 12/8◦C chilling-induced inhibition
of photosynthesis in cucumber (Cucumis sativus) by reducing
ROS generation and accumulation through increasing the activi-
ties of SOD, APX. In another study on cucumber pretreated with
24-epiBL (0.3 and 1.0 mmol·L−1 chlorpyrifos) and exposed to
chilling stress, these authors reported elevations in the activities
of APX, GR, CAT, and GPX that eventually alleviated the chilling-
accrued phytotoxicity (Hu et al., 2013). 28-homoBL (10−8, or
10−6 M)-mediated significantly increased activities of antioxidant
enzymes like CAT, POD, and SOD (and also the elevated con-
tent of proline) in cucumber (Cucumis sativus) were reported to
improve tolerance of this plant to chilling temperatures (10/8◦C,
5/3◦C) (Fariduddin et al., 2011; BRs 5, 10, and 15 μM) effectively
reduced chilling injury of pepper fruit during 18-day storage at
3◦C by reducing the electrolyte leakage, MDA content; increasing
the activities of antioxidant enzymes including CAT, POD, APX,
and GR (Wang et al., 2012). Aghdam et al. (2012) reported that
treatments with 3.0 and 6.0 μM BRs to tomato fruits stored at
1◦C for 21 days reduced the chilling injury, electrolyte leakage,
MDA content; enhanced proline, total phenol contents, pheny-
lalanine ammonia-lyase (PAL) activity and maintained mem-
brane integrity. In a recent work, these authors reported that
application of 0, 3 and 6 μM BL to tomato fruits subjected to 1◦C
chilling stress can inhibit the activities of phospholipase D (PLD)
and lipoxygenase (LOX), major causes of chilling injury induction
in tomato fruits (Aghdam and Mohammadkhani, 2014). BRs pro-
tected the photosynthetic apparatus from cold-induced damage
in Cucumis sativus plants by activating the enzymes of Calvin cycle
and increasing the antioxidant capacity, which in turn mitigated
the photo-oxidative stress and plant growth inhibition during the
recovery of chilling injury (Jiang et al., 2013).

DROUGHT STRESS
Reports are extensive on the role of BRs and related compounds
in plant drought tolerance (Li and Van Staden, 1998a,b; Li et al.,
1998, 2008, 2012b; El-Khallal, 2002; Vardhini and Rao, 2003a,b,
2005; Zhang et al., 2008; Behnamnia et al., 2009; Fariduddin et al.,
2009a; Farooq et al., 2010; Yuan et al., 2010; Anjum et al., 2011;
Mahesh et al., 2013). Field and pot experiments of 0.2 mg L−1 BL
application to 1-year-old Robinia pseudoacacia seedlings grown
under drought stress increased the activity of SOD, POD and
CAT, and the contents of soluble sugars and free proline (Li et al.,

2008). Application of 0.1 μM 24-epiBL increased the resistance
in drought-stressed Chorispora bungeana by reducing the lipid
peroxidation (measured in terms of MDA content), membrane
permeability as a result of increased activities of antioxidative
enzymes and the pools of non-enzymatic antioxidants such as
AsA and GSH (Li et al., 2012b). BL ameliortaed the negative
effect water stress (Poly Ethylene Glycol:PEG for 24 h) on cal-
lus tissues of drought-resistant (PAN 6043) and drought-sensitive
(SC 701) cultivars of Zea mays by enhancing the activities of
SOD, CAT, APX, POD, and GR (Li and Van Staden, 1998a,b).
Earlier also, BL was reported to increase the activities of SOD,
CAT, and APX eznymes, and the contents of AsA and total
carotenoids in seedlings of drought-resistant (PAN 6043) and
drought-sensitive (SC 701) cultivars of Zea mays under water
stress (−1.0 MPa PEG 6000) (Li et al., 1998). Exogenous appli-
cation of BL alleviated the detrimental effects of drought in Zea
mays by enhancing enzymatic antioxidant enzyme activities and
the contents of proteins, relative leaf water and proline (Anjum
et al., 2011). 28-HomoBL and 24-epiBL ameliorated the negative
impact of PEG-imposed osmotic/water stress in CSH-14, ICSV
(Vardhini and Rao, 2003a) and CSH-15 (Vardhini and Rao, 2005)
varieties of Sorghum vulgare seedlings by increasing the activity of
CAT and the contents of free proline and nucleic acids. Seedlings
of Triticum cultivars Sakha 69 (drought-resistant) and Giza 164
(drought-sensitive) subjected to water stress (by soaking the roots
for 48 h in 30% PEG 6000; −0.9 MPa) and BR treatment, exhib-
ited higher RWLC, MSI, proline, regulation of expression of water
stress-inducible proteins as well as induced de-novo synthesis of
specific polypeptides (El-Khallal, 2002). Exogenously applied 24-
epiBL (0.01 μM) improved the drought tolerance in rice (Oryza
sativa) cultivar Super-Basmati which was sturdily associated with
the greater tissue water potential, increased synthesis of metabo-
lites and enhanced capacity of antioxidant system (Farooq et al.,
2010). Spraying with HBL (0.01 μM) to 30-day stage seedlings of
Brassica juncea subjected to drought stress (for 7 days at the 8–14
(DS1)/15–21 (DS2) days stage of growth) improved the activi-
ties of antioxidant enzymes such as CAT, POD and SOD, and
the content of proline (Fariduddin et al., 2009a). Foliar applica-
tion of BRs elevated the activities of POD and SOD, increased
the concentrations of soluble sugars and proline that eventualy
resulted into decreased MDA concentration and electrical con-
ductivity in the leaves of drought exposed Glycine max (Zhang
et al., 2008). Lycopersicon esculentum, subjected to drought stress
and pretreated with BR showed increased activities of POD, SOD,
CAT and APX, and the contents of non-enzymatic antioxidants
such as AsA and proline (Behnamnia et al., 2009). Yuan et al.
(2010) also reported that 1.0 μM 24-epiBL treatment significantly
alleviated water stress and increased the activities of antioxidant
enzymes such as CAT, APX, and SOD that decresaed the levels of
H2O2 and MDA in two Lycopersicon esculentum genotypes viz.,
Mill. cv. Ailsa Craig (AC) and its ABA-deficient mutant nota-
bilis (not). 24-epiBL and 28-homoBL-mediated reduction in the
inhibitory effect of water stress on seed germination and seedling
growth of radish (Raphanus sativus) subjected to water stress
(imposed by 15% (w/v) PEG) was a result of elevated levels of
SOD, CAT and APX and the free proline content (Mahesh et al.,
2013) (Table 1).
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SALINITY STRESS
Modulation of various components of antioxidant defense sys-
tem via BRs and associated compounds in salinity exposed plants
has been extensively reported (Nunez et al., 2003; Özdemir et al.,
2004; Song et al., 2006; Shahbaz and Ashraf, 2007; Zhang et al.,
2007; Ali et al., 2008b; Arora et al., 2008a; El-Khallal et al.,
2009; Hayat et al., 2010b; Rady, 2011; Vardhini, 2011; Ding
et al., 2012; El-Mashad and Mohamed, 2012; Abbas et al., 2013;
Fariduddin et al., 2013b; Lu and Yang, 2013; Sharma et al.,
2013b) (Table 1). BL mitigated the negative impact of salt stress
in Zea mays by inducing the activities of different antioxidant
enzymes (El-Khallal et al., 2009). Application of 28-homoBL
(10−7, 10−9, and 10−11 M) for 7 days improved seedling growth,
lipid peroxidation via elevating antioxidative enzyme activities
(SOD, CAT, GR, APX, and GPX) in the seedlings of Zea mays
(var. Partap-1) subjected to salt (25, 50, 75, and 100 mM NaCl)
stress (Arora et al., 2008a). 24-EpiBL applied as a foliar spray
could alleviate the adverse effects of salt on two hexaploid wheat
(Triticum aestivum) cultivars, S-24 (salt tolerant) and MH-97
(moderately salt sensitive), grown in saline conditions (150 mM
of NaCl) by enhancing the activity of POD and CAT (Shahbaz
and Ashraf, 2007). BL treatment increased the activities of CAT,
SOD and GR; reduced the activities of POD and PPO of two vari-
eties of sorghum plants (“CSH-5” and “CSH-6”) grown in two
saline experimental sites of Karaikal (Varchikudy and Mallavur),
thus indicating its ability to counteract the negative impact of
saline stress (Vardhini, 2011). Exogenous BL (0. 01 mg × L
(−1)) markedly decreased the salt stress index, mortality rate,
MDA, electrolyte leakage via enhancing the activities of SOD,
POD, and CAT in Cucumis sativus seedlings (Song et al., 2006).
Exogenous BR (0.005, 0.01, 0.05, 0.1, and 0.2 mg/L−1) protected
Cucumis sativus seedlings against salt stress by elevating the activ-
ity of SOD, POD and CAT, and that in turn distinctly lowered
the salt injured index (40.2%) and increased the contents of
free-proline, soluble sugars (Shang et al., 2006). Application of
epiBL to salinity-exposed Cucumis sativus seedlings decreased leaf
superoxide anion production rate, H2O2, MDA, cell membrane
permeability, improved seedlings growth as a result of increased
the activities of SOD, POD, CAT (Lu and Yang, 2013). Application
of epiBL to the Cu+NaCl (150 mM) stressed seeds of two cultivars
(Rocket and Jumbo) of Cucumis sativus plant enhanced the activ-
ities of various antioxidant enzymes viz., CAT, POD, SOD, that
eventually improved growth, carbonic anhydrase activity, photo-
synthetic efficiency (Fariduddin et al., 2013b). Seed priming with
5.0 μM L−1 BL was reported to improve the seed germination
and seedling growth of 3 lucerne (Medicago sativa L.) varieties,
viz., Victoria, Golden Empress, and Victor by significantly increas-
ing the activities of POD, SOD, and CAT under salt stress (13.6
dS/m NaCl solution) (Zhang et al., 2007).

In salinity (120 mM NaCl) exposed IR-28 Oryza sativa
seedlings, 24-EpiBL considerably alleviated oxidative damage and
improved seedling growth by increasing APX activity and reduc-
ing lipid peroxidation (Özdemir et al., 2004). A polyhydroxy-
lated spirostanic brassinosteroid analog (BB-16; 0.001 or 0.01 mg
dm−3) application to salinity (75 m NaCl)-exposed O. sativa
seedlings showed significant increases in the activities of CAT,
SOD, and GR (Nunez et al., 2003). Exogenous application of

24-epiBL to Oryza sativa var Pusa Basmati-1, grown under salt
stress conditions exhibited improvement in growth, levels of pro-
tein, proline contents and antioxidant enzymes activities through
expression of various BRs (OsBRI1, OsDWF4) and salt (SalT)
responsive genes (Sharma et al., 2013b). Eggplant seedlings, when
exposed to 90 mM NaCl with 0, 0.025, 0.05, 0.10, and 0.20 mg
dm−3 of epiBL for 10 days exhibited decreased electrolyte leak-
age, superoxide production, MDA, H2O2 probably as a result of
increased activities of SOD, GPX, CAT and APX enzymes and
the contents of non-enzymatic antioxidants such as AsA and
GSH (Ding et al., 2012). 24-epiBL decreased the adverse effects
of salinity stress on two varieties of pepper (Capsicum annuum)
arguably by increasing the activities of antioxidative enzymes and
the contents of proline, total anthocyanins and minerals (Abbas
et al., 2013). Spraying of 1.0 μM of 24-epiBL to NaCl-exposed
Brassica junceadetoxified the stress generated by NaCl by enhanc-
ing antioxidative enzymes and the level of proline (Ali et al.,
2008b). Supplementation of Vigna radiata c.v. T-44 plants with
28-homoBL detoxified the stress generated by NaCl by elevating
the activities of antioxidative enzymes and the proline content
that in turn improved the MSI, leaf water potential (ψ) (Hayat
et al., 2010b). In a similar study, Rady (2011) reported that
spraying 5 μM of 24-epiBL to NaCl-exposed Phaseolus vulgaris
improved the MSI, RLWC as a result of significant elevations
in the activities of antioxidative enzymes and proline content.
Imbibition with 24-epiBL to pea (Pisum sativum L.) cv. climax
seeds, subjected to sodium chloride stress significantly elevated
the activity of SOD, POD, and CAT enzymes the helped plants to
improve fresh and dry biomass, seedling height, photosynthetic
rate, stomatal conductance, and the total chlorophyll content
(Shahid et al., 2011). Treatment with 0.05 ppm BL as foliar spray
mitigated salt stress-impacts in cowpea (Vigna sinensis) by induc-
ing the activities of antioxidant enzymes such as SOD, POD, PPO
and GR and the contents of AsA (El-Mashad and Mohamed,
2012).

OTHER ABIOTIC STRESSES
Apart from the discussed above major abiotic factors, BRs and
associated compounds can also play significant roles in plants
under a range of other abiotic stress factors such as pho-
toinhibition/light stress, waterlogging/flooding stress, pesticides,
neonicotinoid insecticide, imidacloprid (IMI) etc. (Kang et al.,
2006, 2009; Lu et al., 2006; Xia et al., 2006, 2009a,b; Liang and
Liang, 2009; Hayat et al., 2010c; Ogweno et al., 2010; Ahammed
et al., 2012c; Lu and Guo, 2013; Sharma et al., 2013a,b). 24-BL
(0.01 mg l−1) has been benefitted tomato (Lycopersicon esculen-
tum Mill.) to maintain net photosynthetic rate (Pn), quantum
efficiency of PSII (�PSII) and photochemical quenching (qP)
under photoinhibition/light stress by decreasing lipid peroxi-
dation as a result of efficient ROS-metabolism via enhanced
activity of SOD, GPX, CAT, and APX enzymes (Ogweno et al.,
2010). In another study, exogenous application of 24-epiBL was
reported to enhance the tolerance of elite Indica O. sativa variety
(Pusa Basmati-1 seedlings) to stress generated by neonicotinoid
insecticide, imidacloprid (IMI) by elevating the activity of antiox-
idative enzyme such as SOD, APX, CAT, GR and MDHAR, up-
regulating the expression of most of the genes like Cu/Zn-SOD,
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Fe-SOD, Mn-SOD, APX, CAT and GR, and decreasing lipid per-
oxidation (Sharma et al., 2013a). In 80 mM Ca(NO3)2-exposed
Cucumis sativus cv. Jinyou No. 4, EpiBL (0.1 μM) protected the
photosynthetic membrane system by up-regulating the ROS-
scavenging capacity of the antioxidant system (Yuan et al., 2012).
Folair spray of epiBL or homoBL to Lycopersicon esculentum
Mill. cv. K-21 showed lowered sodium nitroprusside (SNP)
concentration (10−5 M) and improved growth and the con-
tent of pigment contents via strengthning antioxidant system
(Hayat et al., 2010c). Application of 24-epiBL-mediated increased
H2O2-metabolism and decreased lipid peroxidation via enhanced
activity of GST and the content of GSH were argued to help
Solanum lycopersicum seedlings to counteract three-ringed PAH
(phenanthrene-PHE)-accrued consequences (Ahammed et al.,
2012a,c). Alleviation of impacts caused by phenanthrene and
pyrene phytotoxicity in tomato plants has been evidenced as a
result of 24-epiBL-mediated increased activities of GPX, CAT,
APX and GR and decreased content of MDA) (Ahammed
et al., 2012b). Recently, these authors reported that 24-epiBL
(100 μM) can alleviate PCB (polychlorinated biphenyls)-induced
oxidative stress in tomato plants by enhancing the activities of
antioxidant enzymes, and maintaining photochemical efficiency
of PSII Fv/Fm), the quantum efficiency of PSII photochem-
istry [�(PSII)] and photochemical quenching coefficient (Pq)
(Ahammed et al., 2013b). The 24-epiBL-mediated strengthning
of antioxidant defense system and eventually decreased mem-
brane lipid peroxidation was reported in plants exposed to
phenanthrene + Cd co-contamination (Ahammed et al., 2013a).
Pretreatment of Cucumis sativus with 24-epiBL alleviated the
phytotoxicities of nine pesticides (paraquat, fluazifop-p-butyl,
haloxyfop, flusilazole, cuproxat, cyazofamid, imidacloprid, chlor-
pyrifos, and abamectin) by increasing the activities of antioxi-
dant enzymes, and CO2 assimilation capacity (Xia et al., 2006).
Significant role of 24-epiBL was also reported in plants exposed to
Chlorpyrifos (a widely used insecticide), where elevated activity
of GST, POD, and GR was argued to regulate net photosynthetic
rate and quantum yield of PSII [Phi(PSII)] (Xia et al., 2009a).
BRs and associated compounds were reported to provide toler-
ance to waterlogging/flooding stress in different crops including
soybean (Lu et al., 2006), cucumber (Kang et al., 2006, 2009; Lu
and Guo, 2013) and oilseed rape (Liang and Liang, 2009) mainly
as a result of decreased oxidative damage via enhanced activities
of SOD and POD.

CONCLUSION AND FUTURE PROSPECTS
It is a well-established fact that environmental stresses are the
primary cause of crop loss worldwide, reducing average yields
for most major crop plants adversely affecting the global crop
production and the adverse impacts are getting more serious
in the past few decades. Environmental stresses induce the pro-
duction of ROS, alter the activity of antioxidant system and
adversely affect the process of photosynthesis. The crop physi-
ologists and scientists have employed strategies to mitigate the
elevated ROS (and their reaction products)-accrued oxidative
stresses/damages via strengthening antioxidant defense system in
plants exposed to various abiotic/stress factors. In this regard,
the use of different plant growth regulators (PGRs) has been

considered as a better sustainable alternative, and also as a tech-
nically simpler approach (Khan et al., 2012; Iqbal et al., 2013;
Asgher et al., 2014). To this end, in addition to playing significant
roles under general plant growth, development and metabolism,
BRs and associated compounds have been extensively reported
to counteract consequences of various abiotic stresses includ-
ing temperature (heat, chilling, and freezing), water (drought,
water logging), salt, heavy metals, light (intense and weak) and
radiation (UV-A/B). Though much has been achieved in the cur-
rent context, integrated approach is required to investigate more
insights into molecular-genetic mechanisms of BRs and associ-
ated compounds-mediated modulation of various components
of antioxidant defense system and subsequently the control of
abiotic stress-consequences in plants.
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Impacts of increasing environmental stresses (such as drought) on crop productivity
can be sustainably minimized by using plant-beneficial mineral nutrients (such as sulfur,
S). This study, based on a pot-culture experiment conducted in greenhouse condition,
investigates S-mediated influence of drought stress (imposed at pre-flowering, flowering,
and pod-filling stages) on growth, photosynthesis and tolerance of mungbean (Vigna
radiata L.) plants. Drought stress alone hampered photosynthesis functions, enhanced
oxidative stress [measured in terms of H2O2; lipid peroxidation (LPO); electrolyte
leakage (EL)] and decreased the pools of cellular redox buffers (namely ascorbate (AsA);
glutathione (GSH)], and the overall plant growth (measured as leaf area and plant dry
mass), maximally at flowering stage, followed by pre-flowering and pod-filling stages.
Contrarily, S-supplementation to drought-affected plants (particularly at flowering stage)
improved the growth- and photosynthesis-related parameters considerably. This may be
ascribed to S-induced enhancements in the pools of reduced AsA and GSH, which jointly
manage the balance between the production and scavenging of H2O2 and stabilize cell
membrane by decreasing LPO and EL. It is inferred that alleviation of drought-caused
oxidative stress depends largely on the status of AsA and GSH via S-supplementation to
drought-stressed V. radiata at an appropriate stage of plant growth, when this nutrient is
maximally or efficiently utilized.

Keywords: cellular buffers, drought stress, mungbean ontogeny, oxidative stress, sulfur, Vigna radiata

INTRODUCTION
Recognized as one of the major environmental stress factors, and
as a main constraint for crop production worldwide, drought
affects virtually every aspect of plant growth, physiology and
metabolism (Harb et al., 2010). In particular, at the whole-
plant level, drought stress affects mainly the plant photosynthetic
functions, causing imbalance in “CO2 fixation and electron trans-
port.” This facilitates transfer of electrons to reactive oxygen
species (ROS), including H2O2, as a result of over-reduction of
the electron-transport-chain components (Anjum et al., 2008a;
Lawlor and Tezara, 2009). Additionally, high concentration of
ROS causes oxidative damage to photosynthetic pigments, bio-
molecules such as lipids, proteins and nucleic acids, and leakage
of electrolytes via lipid peroxidation (LPO), leading to cessa-
tion of normal plant cellular metabolism (Anjum et al., 2012a).
The ascorbate-glutathione (AsA-GSH) pathway constitutes the
major part of antioxidant defense system in plants where a
number of ROS are effectively metabolized and/or detoxified
by a network of reactions involving enzymes and metabolites
with redox properties. Both AsA and GSH (tripeptide GSH;

γ-glutamate-cysteine-glycine) are cellular redox buffers closely
linked in major physiological functions. Nevertheless, in conjunc-
tion with other components of AsA-GSH pathway, both AsA and
GSH together determine the lifetime of varied ROS and their reac-
tion products within the cellular environment and provide crucial
protection against oxidative damage (Anjum et al., 2010, 2012a,
2013). In recent studies, exogenous application of AsA or GSH
was reported to help plants to withstand consequences caused by
a range of abiotic stresses including Cd (Cai et al., 2011; Son et al.,
2014), salinity (Wang et al., 2014) and high temperature (Nahar
et al., 2015).

Maintenance of the status of mineral nutrients in plants is
important for increasing the crop productivity and plant resis-
tance to environmental stress (Cakmak, 2005; Anjum et al.,
2008b, 2012b). The cumulative role of mineral nutrients in mod-
ulating cellular levels of AsA and GSH, and in strengthening
the plant antioxidant defense system has been discussed exten-
sively (Anjum et al., 2010, 2012a, 2013; Gill et al., 2011). Sulfur
(S) is the fourth essential macronutrient for plants, after N, P
and K, and plays a vital role in the regulation of plant growth,
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development and productivity (Hawkesford, 2000), via affect-
ing leaf chlorophyll, N content and photosynthetic enzymes.
Sulfur is required for protein synthesis, incorporated into organic
molecules in plants, and is located in thiol (−SH) groups in
proteins (cysteine-residues) or non-protein thiols (glutathione,
GSH), the potential modulators of stress response (Anjum et al.,
2008b; Lunde et al., 2008). Significance of plant ontogeny in
the modulation of plant responses to abiotic stress factors such
as drought (Anjum et al., 2008a) and heavy metals (Anjum
et al., 2008c) has been reported. Also, considering a single
plant growth-stage, the role of S nutrition in the improvement
of plant growth, development and yield (Ahmad et al., 2005),
and tolerance to stresses (such as Cd; Anjum et al., 2008b)
has been evidenced. However, information is meager on the S-
mediated control of plant responses to drought stress during plant
ontogeny.

Given the paucity of information on drought sensitivity
of legume crops, and on the physiological basis of mineral-
nutrient-(like S)-assisted management of crop growth and pro-
ductivity, the current study was undertaken (i) to screen the
drought-sensitive stage(s) during plant ontogeny, (ii) to iden-
tify the plant-growth stage when S helps plants maximally to
improve the pools of both cellular redox buffers (AsA, GSH)
and mineral-nutrients (K, S, and Mg) in order to counteract the
drought-accrued oxidative stress (measured as electrolyte leakage
(EL), membrane lipid peroxidation and H2O2 levels). Mungbean
(Vigna radiata L. Wilczek) was chosen as a model plant sys-
tem for the current study, because it is a potential pulse crop in
the Indian sub-continent due to its ready market, N2-fixation
capability, early maturity and the ability to fit well in crop-
rotation program (Anjum, 2006). Additionally, S-requirement
of the pulse crops, for maintaining their normal growth and
development, stands just second to that of the oil-yielding
crops.

MATERIALS AND METHODS
EXPERIMENTAL MATERIALS, PROCEDURE AND SOIL
CHARACTERISTICS
Seeds of mungbean (Vigna radiata L. Wilczek) cultivar Pusa 9531
were sown in 30-cm-diameter earthen pots filled with 8 kg soil.
The soil was sandy loam in texture, with 7.8 pH 7.8, 0.38 dsm
electrical conductivity, 0.43% organic carbon, 70 mg kg−1 soil
available K and 5 mg kg−1 soil available S. Nitrogen (N; 120 mg
kg−1 soil) and phosphorus (P; 30 mg kg−1 soil) were applied at
the time of sowing. S was applied to V. radiata plants at the rate of
40 mg kg−1 soil, in the form of solution, 5 days before drought-
stress imposition at various growth stages. The sources of N, P,
K, and S were urea, single super phosphate, gypsum, and muri-
ate of potash, respectively. After germination, three plants per
pot were maintained until harvest. The pots were kept in green
house under semi-controlled condition. A polythene plastic film
was used to thwart the effects of rainfall, which allowed transmit-
tance of 90% of visible wavelength (400–700 nm) under natural
day and night conditions with a day/night temperature 25/20 ±
4◦C and relative humidity of 70 ± 5%. All experiments were
performed using completely expanded leaves from the second
youngest nodes from the top of the plants.

DROUGHT STRESS IMPOSITION AND SULFUR (S) APPLICATION
SCHEDULE
Drought was imposed at pre-flowering (15 d after sowing) (group
1), flowering (30 d after sowing) (group 2) and at pod filling (50 d
after sowing) (group 3) by withholding water for 5 days; this was
followed by normal watering (without S). Other three groups (4–
6) as well as the controls were supplied with an equal amount
of S solution (40 mg S kg−1). All these (1–6) plant groups, and
the control group, were maintained until harvest, and watered
on alternate days. Soil moisture content was measured gravimet-
rically on dry weight basis at the time of pre-flowering, flower-
ing, and post-flowering (pod-filling) stages (Table 1). Samplings
were done after re-watering the drought-exposed plants for 5
days at the given growth stage i.e., at 25, 40, and 60 days
after sowing. The treatments were arranged in a randomized
complete block design, and each treatment was replicated five
times.

PLANT GROWTH, PHOTOSYNTHESIS AND BIOCHEMICAL
ESTIMATIONS
Leaf area was measured with a leaf area meter (LI-3000A, LI-
COR, Lincoln, NE). Plant dry mass was determined after drying
the plant at 80◦C to a constant weight with the help of an elec-
tronic balance (SD-300). Net photosynthetic rate (Pn), stomatal
conductance (Gs) and intercellular CO2 concentration (Ci) were
recorded in fully expanded leaves of second youngest nodes, using
infra-red gas analyzer (IRGA, LI-COR, 6400, Lincoln, NE) on a
sunny day between 10:00 and 11:00 h. Chlorophyll content was
estimated in fully expanded young leaves at each stage using the
method given by Hiscox and Israelstam (1979). Estimation of sol-
uble protein content was done according to Bradford (1976) using
bovine serum albumin as standard.

OXIDATIVE STRESS TRAITS
We considered electrolyte leakage (EL), membrane lipid perox-
idation and H2O2 levels as the biomarkers of oxidative stress.
Cellular membrane integrity in leaves was assayed by measuring
the EL according to Anjum et al. (2013). In brief, fresh leaves
(1.0 g) were kept in glass vials containing 10 ml deionized water.

Table 1 | Soil moisture content (%) measured in the control and

drought-stressed conditions [with and without sulfur (S) supply], at

pre-flowering, flowering and pod-filling stages of mungbean (Vigna

radiata) plants. Values are the means of five replicates ± standard

deviation.

Growth stage treatment Soil moisture content (%)

Control 20.7 ± 1.0

Pre-flowering Drought 15.3 ± 0.7a

Drought + S 15.5 ± 0.9b

Flowering Drought 13.2 ± 0.6ab

Drought + S 16.1 ± 0.8ab

Pod-filling Drought 10.0 ± 0.5abc

Drought + S 11.03 ± 0.6ac

Significant differences are: avs. Control; bvs. Drought (pre-flowering); cvs.

Drought (flowering).
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The vials, covered with plastic caps, were placed in a shaking incu-
bator at a constant temperature of 25◦C for 6 h and the electrical
conductivity (EC) of the solution was measured (EC1) using an
electrical conductivity meter (WTW Cond 330i/SET, Weilheim,
Germany). Subsequently, the same vials were kept in water bath
shaker at 90◦C for 2 h, cooled and EC2 was measured. EL was
expressed following the formula EL = EC1/EC2 × 100.

Membrane lipid peroxidation was estimated in terms of thio-
barbituric acid reactive substances (TBARS) contents adopting
the method of Dhindsa et al. (1981) as described by Anjum et al.
(2013). Briefly, fresh leaves (1.0 g) were ground in liquid nitrogen,
mixed with 0.73% 2-thiobarbituric acid in 12% trichloroacetic
acid, incubated for 30 min in boiling water, ice-cooled, cen-
trifuged at 1000×g for 10 min at 4◦C and the absorbance mea-
sured in the supernatant at 532 nm. The rate of lipid peroxidation
was expressed as nmoles of TBARS formed per gram of fresh
weight, using a molar extinction coefficient of 1.55 × 105 M−1

cm−1. Leaf-H2O2 content was determined following the method
of Loreto and Velikova (2001) as adopted and described by
Dipierro et al. (2005). In brief, leaf tissues (1.0 g) were homog-
enized in 2 ml of 0.1% (w/v) TCA. The homogenate was cen-
trifuged at 12,000×g for 15 min and 0.5 ml of the supernatant
were mixed with 0.5 ml of 10 mM K-phosphate buffer pH 7.0
and 1 ml of 1 M KI. The H2O2 content of the supernatant was
evaluated by comparing its absorbance at 390 nm with a standard
calibration curve.

DETERMINATION OF CELLULAR BUFFERS
Both reduced GSH and AsA were considered as representa-
tive cellular redox buffers. The content of reduced glutathione
(GSH) was estimated following the method of Anderson (1985).
Fresh leaf tissues (1.0 g) were homogenized in 2 ml of 5% (w/v)
sulphosalicylic acid at 4◦C. The homogenate was centrifuged at
10,000×g for 10 min. To a 0.5 ml of supernatant, 0.6 ml of K-
phosphate buffer (100 mM, pH 7.0) and 40 μl of 5′5′-dithiobis-
2-nitrobenzoic acid (DTNB) were added, and absorbance was
recorded after 2 min at 412 nm on a UV-VIS spectrophotome-
ter (Lambda Bio 20, Perkin Elmer, MA, USA). The method
of Law et al. (1983) was followed for estimation of reduced
ascorbate (AsA). In brief, fresh leaf (0.5 g) was homogenized
in 2.0 ml of K-phosphate buffer (100 mM, pH 7.0) contain-
ing 1 mM EDTA and centrifuged at 10,000×g for 10 min. To
a 1.0 ml of supernatant, 0.5 ml of 10% (w/v) trichloroactetic
acid (TCA) was added, thoroughly mixed and incubated for
5 min at 4◦C. Then, 0.5 ml of NaOH (0.1 M) was mixed with
1.5 ml of the above solution and centrifuged at 5000×g for
10 min at 20◦C. The aliquot thus obtained was equally distributed
into two separate microfuge tubes (750 μl each). For estima-
tion of AsA, 200 μl of K-phosphate buffer (150 mM, pH 7.4)
was added to 750 μl of aliquot. For DHA estimation, 750 μl of
aliquot was added to 100 μl of 1,4-dithiothreitol (DTT), fol-
lowed by vortex-mixing, incubation for 15 min at 20◦C, and
addition of 100 μl of 0.5% (w/v) NEM. Both the microfuge
tubes were then incubated for 30 s at room temperature. To
each sample tube, 400 μl of 10% (w/v) TCA, 400 μl of H3PO4,
400 μl of 4% (w/v) bipyridyl dye (N’N-dimethyl bipyridyl) and
200 μl of 3% (w/v) FeCl3 were added and thoroughly mixed.

Absorbance was recorded at 525 nm after incubation for 1 h
at 37◦C.

K, S, AND Mg CONTENT DETERMINATIONS
The method of Lindner (1944) was followed to estimate K con-
tent in digested samples using flame photometry; whereas, for S
determination, 100 mg of dried fine powder of leaf was digested
in a mixture of concentrated HNO3 and 60% HClO4 (85:1, v/v)
and the content of sulfate was estimated using the turbidimet-
ric method of Chesnin and Yien (1950). Leaf Mg content was
determined by digesting samples in 5 ml of 96% H2SO4 and 3 ml
of 30% H2O2 at 270◦C; thereafter, Mg content was assayed by
atomic absorption spectrometry at 285.2 nm wavelengths.

DATA ANALYSIS
SPSS (PASW statistics 18, Chicago, IL, USA) for Windows
was used for statistical analysis. One-Way analysis of variance
(ANOVA) was performed, followed by all pairwise multiple
comparison procedures (Tukey test). Mann-Whitney U-test and
Levene’s test were performed in order to check the normal distri-
bution and the homogeneity of variances, respectively. The data
are expressed as mean values ± SD of five independent experi-
ments with at least five replicates for each. The significance level
was set at P ≤ 0.05.

RESULTS
Significant results related to plant growth, photosynthetic func-
tions, soluble-protein content, oxidative stress, cellular reducing
buffers, plant mineral nutrients, and yield attributes are presented
here, highlighting the significant changes observed at different
(pre-flowering, flowering, and pod-filling) stages of plant growth.

PLANT GROWTH AND PHOTOSYNTHETIC FUNCTIONS
Under drought stress, plant growth, in terms of leaf area and
plant dry mass, decreased significantly at pre-flowering stage (vs.
control, C). On application of S, significant change was noted
in the drought-induced reduction in leaf area only. Drought
stress imposed during pre-flowering stage also caused significant
decrease in photosynthetic functions (viz., photosynthetic rate,
Pn; stomatal conductance, Gs; intercellular CO2, Ci; chlorophyll
content), as compared with the control. Supplementation of S
significantly increased the drought-induced reductions in Pn, Gs,
and Ci (Tables 2, 3).

During the flowering/reproductive stage, significant decrease
in leaf area and plant dry mass was perceptible under drought
stress alone (vs. C), whereas S application significantly increased
the drought-induced reductions in these parameters. Pn, Gs, Ci
and the chlorophyll content displayed significant decreases due to
drought stress (vs. C); whereas, supplementation of S improved
these traits (vs. drought at flowering). During the pod-filling
stage, leaf area and plant dry mass decreased significantly due
to imposition of drought stress (vs. C) and S application deep-
ened the decline in leaf area and plant dry mass. Likewise, Pn,
Gs and Ci and chlorophyll content displayed significant decreases
due to drought stress imposed at the pod-filling stage (vs. C). The
decrease in Pn, Ci and chlorophyll was significantly ameliorated
with S supplementation (Tables 2, 3).
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OXIDATIVE STRESS AND MODULATION OF THE POOLS OF CELLULAR
REDOX BUFFERS
With-holding water for 5-days during pre-flowering stage led to
significant increases in electrolyte leakage (EL) and in the contents
of thiobarbituric-acid-reactive substances (TBARS) and H2O2

(vs. C). However, S-application significantly decreased the impact
of drought stress-impact at pre-flowering by reducing EL and the
contents of TBARS and H2O2 (Figure 1). The pools of cellular
redox buffers namely reduced ascorbate (AsA) and glutathione
(GSH) declined significantly due to pre-flowering drought stress
(vs. C); S-supplementation was insignificant to mitigate these
declines. Oxidative stress traits such as EL, and the contents of
TBARS and H2O2 significantly increased due to drought stress
created at flowering stage (vs. C); however, S-application signifi-
cantly decreased this drought-caused oxidative stress. In contrast,

Table 2 | Leaf area (cm2 plant−1) and plant dry mass (g plant−1) in

mungbean (Vigna radiata) as influenced by drought stress and by

drought + sulfur (S) application (mg kg−1 soil) at pre-flowering,

flowering, and pod-filling stages.

Growth stage Treatment Leaf area Plant dry mass

Pre-flowering Control 147.0 ± 10.1 1.8 ± 0.3

Drought 87.02 ± 9.1a 1.0 ± 0.2a

Drought + S 140.6 ± 9.3b 1.3 ± 0.4

Flowering Control 362.5 ± 14.5 9.2 ± 0.6

Drought 291.8 ± 13.2a 6.2 ± 0.3a

Drought + S 360.6 ± 14.4c 8.02 ± 0.6ac

Pod-filling Control 303.1 ± 10.6 16.6 ± 1.02

Drought 192.2 ± 8.5a 10.6 ± 0.8a

Drought + S 185.2 ± 7.9ad 16.1 ± 0.8d

Values are the means of five replicates ± standard deviation. Significant

differences within the same growth stage are: avs. Control; bvs. Drought

(pre-flowering); cvs. Drought (flowering); d vs. Drought (pod-filling).

the contents of reduced AsA and GSH contents declined signifi-
cantly (vs. C) due to drought stress at this stage, and supplemen-
tation of S significantly ameliorated these declines. Drought stress
imposed at pod-filling stage significantly increased EL and the
contents of TBARS and H2O2 (vs. C); whereas S-application sig-
nificantly reduced the levels of H2O2 and EL elevated by drought
at this stage. The reductions in AsA and GSH contents due to the
drought stress imposed at pod-filling stage were insignificant (vs.
C), and the effect of S supplementation in mitigating the impact
of drought stress was also insignificant (Figure 2).

MINERAL NUTRIENTS
Plant nutrients, such as K, S, and Mg, displayed significant reduc-
tions due to drought stress imposed at pre-flowering stage (vs. C);
however, no significant difference was observed when drought-
stressed plants were supplemented with S. Drought imposition
during flowering stage caused significant reduction in K, S, and
Mg levels in the leaf tissue (vs. C); whereas their contents signif-
icantly increased when plants facing drought at flowering stage
were supplemented with S. Among the plant nutrients studied,
only K content displayed a significant reduction due to drought at
pod-filling stage (vs. C); whereas S and Mg contents did not dif-
fer significantly under the stress of drought alone or drought +
S imposed at pod-filling stage (vs. C). Moreover, the K con-
tent significantly increased when drought-stressed plants were
supplemented with S (Table 4).

DISCUSSION
PLANT GROWTH AND PHOTOSYNTHETIC FUNCTIONS
Plant growth is the outcome of coordination of major physiolog-
ical/biochemical processes in plants. In the present study, plant
dry mass and leaf area showed a significant relationship with the
severity of water deficit stress, irrespective of the phase of plant
ontogeny. Earlier, plant growth in terms of dry mass accumula-
tion and leaf area has been used as a tool for the assessment of
crop productivity (Sundaravalli et al., 2005; Anjum et al., 2008a).
Cell division, enlargement and differentiation and also the plant

Table 3 | Net photosynthetic rate (Pn; μmol CO2 m−1 s−1), stomatal conductance (Gs; mol m−2 s−1), intercellular CO2 concentration (Ci ; μmol

mol−1), chlorophyll (Chl) content (mg g−1 fresh weight, f.w.) and soluble protein content (mg g−1 f.w.) in mungbean (Vigna radiata), as

influenced by drought stress and by drought + sulfur (S) application (mg kg−1 soil) at pre-flowering, flowering, and pod-filling stages.

Growth stage Treatment Pn Gs Ci Chl

Pre-flowering Control 13.2 ± 1.0 0.38 ± 0.07 192.6 ± 36.6 1.17 ± 0.2

Drought 9.6 ± 1.3a 0.25 ± 0.05a 174.0 ± 33.1a 0.76 ± 0.1a

Drought + S 10.5 ± 2.2ab 0.50 ± 0.09ab 185.0 ± 35.2ab 0.9 ± 0.1a

Flowering Control 20.0 ± 3.4 0.70 ± 0.2 206.9 ± 39.3 1.4 ± 0.2

Drought 10.7 ± 3.2a 0.48 ± 0.1a 154.9 ± 29.4a 0.8 ± 0.07a

Drought + S 13.3 ± 2.8ac 1.0 ± 0.17ac 198.4 ± 37.7ac 1.2 ± 0.13ac

Pod-filling Control 14.8 ± 4.4 0.47 ± 0.1 189.4 ± 36.0 1.3 ± 0.2

Drought 10.2 ± 3.5a 0.4 ± 0.1 178.3 ± 34.0a 0.7 ± 0.06a

Drought + S 11.6 ± 4.3ad 0.6 ± 0.1ad 195.2 ± 37.0ad 1.03 ± 0.1d

Values are the means of five replicates ± standard deviation. Significant differences within the same growth stage are: avs. Control; bvs. Drought (pre-flowering);
cvs. Drought (flowering); d vs. Drought (pod-filling).
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FIGURE 1 | Levels of H2O2 (nmol g−1 fresh weight, f.w.) (A), lipid

peroxidation (LPO; nmol thiobarbituric acid reactive substances,

TBARS g−1 f.w.) (B) and electrolyte leakage (%) (C) in the mungbean

(Vigna radiata) leaf as influenced by drought stress and by drought +
sulfur (S) application (mg kg−1 soil) at pre-flowering, flowering, and

pod-filling stages of plant growth. Values are the means of five
replicates ± standard deviation. Significant differences within the same
growth stage are: avs. Control; bvs. Drought (pre-flowering); cvs. Drought
(flowering); and dvs. Drought (pod-filling).

genetic make-up are significantly influenced by water-deficit
stress, which in turn affects plant growth (Aref et al., 2013). In the
present study, previously mentioned processes might be impacted
by drought tress severely during vegetative/flowering stage which
coincides with drought-mediated considerable decreases in leaf
area and photosynthesis, as observed earlier also (Sundaravalli
et al., 2005; Anjum et al., 2008a; Husen et al., 2014). However, the

FIGURE 2 | The reduced ascorbate (AsA) (A) and reduced glutathione

(GSH) (B) contents (nmol g−1 fresh weight) in the mungbean (Vigna

radiata) leaf as influenced by drought stress and sulfur (S) application

(mg kg−1 soil) at pre-flowering, flowering, and pod-filling stages of

plant growth. Values are the means of five replicates ± standard
deviation. Significant differences within same growth stage are: avs.
Control; bvs. Drought (pre-flowering); cvs. Drought (flowering); and dvs.
Drought (pod-filling).

drought-induced huge reduction in leaf area (a major component
of plant growth) may be a strategy that plants adopt to adjust with
water-deficit stress. Earlier, the reduced leaf-expansion/area was
evidenced to conserve the internal water/moisture through the
reduced rate of transpiration (reviewed by Mahajan and Tuteja,
2005).

Photosynthesis (Pn) and its related variables (Gs, Ci, chloro-
phyll content) are highly regulated multi-step processes and
exhibit great sensitivity to drought stress (Zlatev et al., 2006;
Lawlor and Tezara, 2009; Husen et al., 2014). In the current
study, drought stress alone significantly decreased Pn, Gs, Ci and
chlorophyll content irrespective of the plant ontogenetic stages.
In fact, photosynthesis and its related variables are tightly inter-
woven and hence changes in one component significantly affect
the performance of others (Lawlor and Tezara, 2009). Our find-
ings on the drought stress-accrued reductions in Gs and leaf Ci
coincide with those of Zlatev et al. (2006) and Meyer and Genty
(1998), who considered Gs as the major factor for controlling
Ci and hence the Pn. Additionally, unavailability of chlorophyll
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Table 4 | Potassium (K), sulfur (S), and magnesium (Mg) contents

(µmol g−1 dry weight) in mungbean (Vigna radiata) leaves as

influenced by drought stress and by drought +S application (mg

kg−1 soil) at pre-flowering, flowering, and pod-filling stages.

Growth stage Treatment K S Mg

Pre-Flowering Control 3.3 ± 0.3 1.6 ± 0.2 1.6 ± 0.2
Drought 2.2 ± 0.2a 1.2 ± 0.1a 0.7 ± 0.1a

Drought + S 2.4 ± 0.2a 1.6 ± 0.2 0.9 ± 0.1a

Flowering Control 5.6 ± 0.5 2.45 ± 0.2 2.1 ± 0.2
Drought 3.0 ± 0.3a 0.2 ± 0.02a 0.8 ± 0.1a

Drought + S 5.2 ± 0.4c 1.7 ± 0.13c 2.0 ± 0.2c

Pod-filling Control 3.1 ± 0.3 1.3 ± 0.1 1.8 ± 0.2
Drought 2.4 ± 0.2a 1.1 ± 0.1 1.4 ± 0.2
Drought + S 3.0 ± 0.3d 1.3 ± 0.1 1.8 ± 0.2

Values are the means of five replicates ± standard deviation. Significant differ-

ences within same growth stage are: avs. Control; bvs. Drought (pre-flowering);
cvs. Drought (flowering); d vs. Drought (pod-filling).

also contributes to drought-induced decrease in Pn (Lawlor and
Tezara, 2009). The drought-induced decrease in chlorophyll con-
tent has been reported earlier also due to reduction in the lamellar
content of the light-harvesting chlorophyll a/b protein, inhibi-
tion in biosynthesis of chlorophyll-precursors and/or degradation
of chlorophyll (Khanna-Chopra et al., 1980). Our findings on
drought-mediated decrease in Pn, Gs, Ci and the content of
chlorophyll confirm some earlier reports (Khanna-Chopra et al.,
1980; Anjum et al., 2008a; Husen et al., 2014).

Regardless of irrigation treatments, our results also revealed
that S-application significantly increased the growth and chloro-
phyll content and Pn. It was more effective when applied at
flowering stage of the plant. The adequate and balanced supply
of mineral nutrients has been shown to play a vital role in sus-
taining food security (Cakmak, 2005). S is involved in the light
reaction of photosynthesis as an integral part of ferredoxin, a
non-haem iron-sulfur protein (Marschner, 1995). Additionally, it
plays essential roles in mechanisms like vitamin co-factors, GSH
in redox homeostasis, and detoxification of xenobiotics (Anjum
et al., 2012b). The S requirement by plants varies with growth
stage and with species, varying normally between 0.1 and 1.5%
of dry weight. Anjum et al. (2008b) suggested that adequate S
supply may improve the pools of these compounds in plants to a
great extent that may lead to increased photosynthetic efficiency,
dry mass and crop yield. Sufficient S supplies improved pho-
tosynthesis and growth of Brassica juncea through regulating N
assimilation (Khan et al., 2005). The maximum utilization of S
in Brassica campestris crop takes place when applied at flower-
ing stage (Ahmad et al., 2005; Anjum, 2006). Application of S
increased the seed yield and attributing characters in other crops
also (Anjum et al., 2012b).

OXIDATIVE STRESS AND MODULATION OF THE POOLS OF CELLULAR
REDOX BUFFERS AND MINERAL NUTRIENTS
Production of ROS, such as H2O2, is mediated by O2 reduction
and subsequent oxidative damages in drought-exposed plants

(Khanna-Chopra and Selote, 2007; Anjum et al., 2012a). Plant
membrane is regarded as the first target of many plant stresses due
to increase in its permeability and loss of integrity under environ-
mental stresses including the drought stress (Candan and Tarhan,
2003). In the present study, the drought-stress sensitivity of the
reproductive phase of drought-exposed V. radiata was evidenced
by significantly high levels of H2O2, the content of TBARS (the
cytotoxic products of lipid peroxidation and indicator of extent
of stress-led ROS-mediated high oxidative stress) and the EL (the
measure of stress-mediated changes in membrane leakage and
injury) at flowering stage, followed by pre-flowering and post-
flowering stages. These results are in close agreement with the
findings of Qureshi et al. (2007). Earlier, the least peroxidation of
membrane lipids and the ability of cell membranes to tightly con-
trol the rate of ion movement in and out of cells have been used
as tests of damage to a great range of tissues (Candan and Tarhan,
2003). However, the drought-stressed plants exhibited least con-
tents of H2O2, TBARS and percent EL, when supplemented with
S at their flowering and pod-filling stages. These results sug-
gested that the S-mediated decrease in contents of H2O2, TBARS
and percent EL depends on application of S to drought-stressed
plants at appropriate growth stage when S is efficiently and differ-
entially utilized to strengthen plants to withstand the enhanced
lipid peroxidation and subsequent leakage of electrolytes due to
elevated levels of H2O2. Thus, S-application protected differen-
tially the drought-stressed plants against H2O2-mediated local-
ized oxidative damage, disruption of metabolic functions, LPO
and leakage of electrolytes (Zlatev et al., 2006). Our observations
on drought alone-mediated significant increases in H2O2 content,
lipid peroxidation (in terms of TBARS content) and percent EL in
V. radiata plants coincide with the findings of Sreenivasulu et al.
(2000) and Selote and Khanna-Chopra (2006) on different crop
plants.

Plant resistance to stresses is closely associated with the effi-
ciency of the antioxidant defense system (comprising both enzy-
matic and non-enzymatic components of AsA-GSH pathway)
in the maintenance of the balance between the basal produc-
tion of ROS and their elimination (Anjum et al., 2010, 2012c).
In this perspective, AsA and GSH are important water-soluble
non-enzymatic antioxidants and major cellular redox buffers in
plants (Anjum et al., 2010, 2012c, 2014). Both are interlinked in
terms of their physiological role in AsA-GSH pathway for effec-
tive elimination of ROS (such as H2O2) in plant cells (Anjum
et al., 2010, 2012a,c). Contrary to an earlier report (Shehab et al.,
2010) on drought-induced increase in AsA and GSH levels in dif-
ferent plant species, our study revealed a significant decrease in
the contents of both AsA and GSH in V. radiata, irrespective of the
growth stage at which the drought stress was imposed. However,
our findings are in conformity with those of Khanna-Chopra and
Selote (2007) on drought-exposed Triticum aestivum. The appli-
cation of S improved the AsA and GSH contents and was thus
beneficial when applied to drought-stressed plants at their flow-
ering or post-flowering stages. It was, therefore, significant for
protection of V. radiata against ROS-mediated oxidative stress.
This substantiates our earlier report suggesting improved AsA and
GSH contents in Cd-stressed Brassica campestris plants by S sup-
plementation (Anjum et al., 2008b). However, it is imperative to
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mention here that exhibition of higher levels of AsA and GSH in
plants receiving drought stress + S supply at pod-filling stage may
be due to S-mediated maintenance of elevated activities of AsA-
GSH-regenerating enzymes such as dehydroascorbate reductase,
monodehydroascorbate reductase, and GSH reductase (Eltayeb
et al., 2007; Anjum et al., 2008b). Moreover, as AsA and GSH
are key players in cellular redox homeostasis; the S-mediated
improvement in their reduced pools must help plants to run nor-
mally the ascorbate peroxide-dependent H2O2 metabolism under
drought-stress conditions. Therefore, S application mitigated,
although partially, the drought-induced decrease in AsA content
by maintaining elevated activities of dehydroascorbate reductase
and monodehydroascorbate reductase (data not shown)—the
key components in maintaining the reduced pool of AsA and
hence the plant tolerance to oxidative stress (Eltayeb et al., 2007).
Considering K, S, and Mg responses to drought and S, the uptake
of the available nutrient ions dissolved in the soil solution by

FIGURE 3 | Schematic representation of drought stress impacts and

the role of sulfur (S) in mungbean (Vigna radiata) during its ontogeny.

Complete and broken lines indicate respectively drought alone and
drought + S conditions; whereas, increase and decrease have been
indicated by the up and down arrows respectively.

plants depends upon water flow through the soil-root-shoot path-
way. It also depends on root growth and nutrient mobility in the
soil (Fageria et al., 2002). In this study, drought stress signifi-
cantly impacted the contents of K, S, and Mg in leaves contingent
upon the plant-growth stage exposed. However, as reported also
in earlier studies (Abdin et al., 2003; Malvi, 2011), a synergistic
interaction of S with K and Mg was revealed herein, where S-
application ameliorated drought-induced reductions in the leaf
K, S, and Mg contents, maximally when applied at reproductive
stage.

CONCLUSIONS
Drought stress in isolation enhanced ROS generation and
decreased the cellular redox buffers (AsA and GSH) and even-
tually hampered photosynthetic functions. These results were
significant at flowering stage, followed by the pre-flowering and
post-flowering (pod-filling) stages (Figure 3). However, improve-
ments in these parameters due to S application was appar-
ent (at the flowering/reproductive stage), which enhanced the
pools of cellular redox buffers (AsA and GSH), which in turn
managed a balance between the production and scavenging of
H2O2 and stabilized the cell membrane by decreasing LPO
(Figure 3). Overall, the study inferred that supplementation of S
to drought-exposed plants at their flowering stage can improve
their growth, photosynthesis and related variables via efficiently
being utilized, and in turn managing the pools of AsA and GSH,
and subsequently controlling the drought-accrued oxidative
stress.
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The induction of oxidative stress is one of the quickest symptoms appearing in plants
subjected to metal stress. A transcriptional analysis of the early responses of alfalfa
(Medicago sativa) seedlings to mercury (Hg; 3 µM for 3, 6 and 24 h) showed that
up-regulation of genes responding to ethylene were up-regulated, a phytohormone known
to mediate in the cellular redox homeostasis. In this mini-review we have compared
these quick responses with two other concurrent transcriptomic analysis in Barrel medic
(Medicago truncatula) and barley (Hordeum vulgare) under Hg stress. Besides ethylene,
ABA, and jasmonate related genes were up-regulated, all of them are endogenous
factors known to intervene in oxidative stress responses. The information obtained may
target future work to understand the cellular mechanisms triggered by Hg, enabling
biotechnological approaches to diminish Hg-induced phytotoxicity.

Keywords: ethylene, homeostasis, hormones, mercury, oxidative stress, transcription

BACKGROUND
Mercury (Hg) is a natural component of the Earth crust that
is released by mainly geothermal activity, but accumulates in
land and water ecosystems, mainly as a consequence of differ-
ent human activities, such as mining and industry (Nriagu, 1996;
Järup, 2003). This represents a serious problem to the environ-
ment and risks for human health (Tchounwou et al., 2012) as
occurs in the mining district of Almadén (Spain), which con-
tains the largest deposits of Hg in the World, with soils heavily
polluted which require in situ and economically feasible cleaning
procedures (Millán et al., 2006). Different strategies to clean-up
metal polluted soils have been developed; among them, phytore-
mediation is considered one of the most economic and environ-
mental friendly procedures to restore soil fertility (Alkorta et al.,
2004). This biotechnical approach relies on the innate capabil-
ity of plants to uptake and to accumulate metals from the soil,
but it requires plants able to tolerate Hg accumulation in their
organs and to prevent the general oxidative damage induced
by this metal (Cho and Park, 2000; Patra et al., 2004; Ortega-
Villasante et al., 2005). The maintenance of the cellular redox
homeostasis in cells, where antioxidant enzymes and metabo-
lites ameliorate the accumulation of oxidant Reactive Oxygen
Species (ROS), would modulate the final tolerance response to
Hg (Rellán-Álvarez et al., 2006; Zhou et al., 2008; Sobrino-Plata
et al., 2009). Cross-talk of oxidative stress signaling cascades and
endogenous factors, like ethylene, jasmonate, auxin, or abscisic
acid, is pivotal for plant acclimation to stress and development
(Potters et al., 2007), where antioxidants modulate ROS produc-
tion (Considine and Foyer, 2014). In particular, ethylene through
the family of APETALA 2/Ethylene Response Element Binding
Protein (AP2/EREBP) transcription factors is known to medi-
ate in hormone and redox signaling processes in context of

abiotic stresses (Dietz et al., 2010). Understanding the mecha-
nisms controlling acclimation to hazardous environmental will
help to optimize tolerance to Hg in plant cells, knowledge that
has been elusive (Chen and Yang, 2012). However, recent research
using improved transcriptomics is now paving the way to iden-
tify mechanisms involved in the early responses to Hg, putatively
involved in the tolerance to this toxic metal, in particular with
regards to redox homeostasis.

EARLY OXIDATIVE STRESS INDUCED BY METAL TOXCITY
In spite of high concentration of Hg in polluted soils, only a
modest amount is taken up by plants, a function of the predom-
inant edaphic conditions (Xuexum and Linhai, 1991). Moreover,
Hg translocation from roots to shoots occurs normally at low
rates, and most toxic effects are found in roots (Boening, 2000).
Mercury reduces dramatically the root growth, diminishes the
nutrients uptake rates and enhances cell death, and induces an
early oxidative burst (Cho and Park, 2000; Patra and Sharma,
2000; Patra et al., 2004; Ortega-Villasante et al., 2005). A strong
lipid peroxidation and protein oxidation occurred after short-
term exposure to Hg in maize (Rellán-Álvarez et al., 2006) and pea
plants (Cho and Park, 2000), which represent chronic toxic effects
with several alterations in cellular functions, such as cross-linking
at the cell wall that may led to its stiffening and cell growth inhibi-
tion (Cargnelutti et al., 2006). Localization of Hg in plant tissues
using X-ray synchrotron imaging showed that this metal enter
the plant at the root tip, and accumulates in the vascular bundle,
where vascular parenchyma cells showed corrugated morphol-
ogy probably due to water balance alteration (Carrasco-Gil et al.,
2013).

The knowledge about physiological responses of plants
exposed to Hg has increased in the last few years as Hg, which has
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been compared frequently with the phytotoxicity caused by other
toxic elements like Cd (Gallego et al., 2012). With regard to the
induction of the oxidative burst, several authors observed alter-
ations in antioxidant enzymes activities such as catalase (CAT),
ascorbate peroxidase (APX), or superoxide dismutase (SOD)
mainly in roots (Rellán-Álvarez et al., 2006; Zhou et al., 2008).
Interestingly, Hg-specific responses were found in the activity of
glutathione reductase (GR), key enzyme to maintain the redox
balance of glutathione (GSH) that is strongly inhibited by Hg,
while under Cd or As it is induced (Sobrino-Plata et al., 2009,
2013); enzyme that has been suggested recently as a biomarker
of Hg accumulation (Sobrino-Plata et al., 2013). A significant
and early induction of ROS, such as superoxide anion (O−

2 ) and
hydrogen peroxide (H2O2), has been observed in Brassica juncea
plants exposed to Hg (Meng et al., 2011). Microscale experiments
with alfalfa seedlings showed that the generation of ROS by Hg
occurs within minutes (Ortega-Villasante et al., 2007), possibly
associated with the induction of plasma membrane NADPH-
oxidases responsible of the accumulation of H2O2 in the root
apoplast (Montero-Palmero et al., 2014). This mechanism of
ROS production may differ from that of triggered by Cd, pos-
sibly more related with mitochondrial electron transfer chain
malfunction (Heyno et al., 2008). The Respiratory Burst Oxidase
Homolog (Rboh)/NADPH-oxidases in plants has been reported
as regulatory mechanisms of biotic and abiotic stress mediating
in ROS production. Recently, the characterization of Arabidopsis
RbohD, RbohF, and RbohC family members has been useful to
understand better their role under stress conditions using atr-
bohD/atrbohF and atrbohC mutant plants, which demonstrated
their relevance in the signaling network involved in stress cellular
homeostasis (Torres and Dangl, 2005). In this sense, Arabidopsis
atrbohD/atrbohF mutants and a 35S::AtrbohD overexpressor sug-
gest the involvement of Rboh/NADPH-oxidases in the generation
of H2O2 under Hg stress (Montero-Palmero et al., 2014).

ROS are considered as components of a signal cascade capable
of triggering the induction of defense genes to cope with abiotic
and biotic stresses. For example, Mittler et al. (2004) reviewed a
list of more than 150 genes in Arabidopsis that participate in a
complex network to regulate ROS levels after an oxidative burst.
The identification of common components in the stress responses
as key factors of cell homeostasis has been a major research effort
recently (Kreps et al., 2002). Among others, the zinc-finger super-
family of transcription factors are one of the best functionally
characterized group, which mediates in both biotic and abiotic
stresses (Kodaira et al., 2011; Figueiredo et al., 2012). In this sense,
the transcription factor Zat12 may canalize the oxidative burst
signaling in Arabidopsis, as was observed when the tolerance was
altered by interfering the expression of genes regulated by Zat12
(Davletova et al., 2005b). This regulatory role was shared with
WRKY transcription factors, which are thought to regulate the
expression of several stress-related genes, such as those encoding
several APXs (Davletova et al., 2005a; Vanderauwera et al., 2005;
Miao and Zentgraf, 2007; Chen et al., 2012).

Consistent with some physiological symptoms of Hg stress,
changes in the transcription of genes needed for the regeneration
of the photosynthetic apparatus and antioxidant enzymes were
detected in Arabidopsis thaliana and tomato seedlings exposed to

Hg (Cho and Park, 2000; Heidenreich et al., 2001). Similarly, there
was an up-regulation of genes encoding peroxidases, NADH-
dehydrogeneases and enzymes of the sulfur assimilatory path-
way, as well as genes involved in secondary metabolism in Hg-
treated pea plants (i.e., biosynthesis of salicylic acid (SA) and
isoflavonoids; Sävenstrand and Strid, 2004). Additionally, heme
oxygenases (HOs) may mediate in the Hg-related responses in
Brassica napus (Shen et al., 2011), which are related with patho-
genesis related proteins or small heat shock proteins (SHSPs)
(Didierjean et al., 1996; Wollgiehn and Neumann, 1999).

Recent evidences suggest that metal homeostasis depend
on a complex crosstalk between different signaling processes,
where ROS signals are integrated with phytohormones signaling.
Therefore, ROS are considered as important clues for develop-
ment and ontogeny of plant cells (Mittler et al., 2011). It is
possible that hormone and ROS signaling are playing their role
at the same level in the stress response (Fujita et al., 2006), but
they could also be involved in different steps of signaling cas-
cade. Thus, phytohormones could alter ROS production or, in
the contrary, ROS could be promoting the hormone cascade acti-
vation (Bartoli et al., 2013). Therefore, more complete studies
of massive transcriptional analysis are required to understand
the complex levels of responses normally studied using a heuris-
tic incomplete approach, which has been recently undertaken as
discussed below.

CHARACTERIZATION OF THE MASSIVE TRANSCRIPTIONAL
PATTERN UNDER Hg STRESS
Recent bioinformatics and technological advances based on
“omics” research have revitalized the integration at the transcrip-
tional level of many physiological processes in plants (Mochida
and Shinozaki, 2011). In this sense, DNA microarrays technol-
ogy is a powerful tool used widely in the last decades after
genome sequencing projects, that are enabling a more complete
understanding of the global transcriptional changes under differ-
ent environmental conditions and effectors, endogenous signals,
interaction with pathogens, and so on (Amaratunga et al., 2014).
With regard to metal homeostasis, a substantial effort has been
done to characterize the primary cellular mechanisms involved
in the heavy metal stress perception and defense mechanisms
using different RNA-DNA microarray technologies. Arabidopsis
DNA chips have been used to identify global transcriptional pat-
tern in response to metals such as Zn (Becher et al., 2004), As
(Abercrombie et al., 2008) or Cd (Herbette et al., 2006; Weber
et al., 2006); where in most cases the transcriptional response of
Arabidopsis thaliana has been compared with that of the metal-
liferous Arabidopsis halleri. Transcriptional activity of the metal
Zn/Cd accumulator Noccaea (Thlaspi) caerulescens has also been
compared with Arabidopsis in response to Cd (Van De Mortel
et al., 2008). Apart from Arabidopsis, sensitive and tolerant cul-
tivars of rice (Oryza sativa) have been used to assess their tran-
scriptional response to As (Norton et al., 2008; Chakrabarty et al.,
2009; Huang et al., 2012; Yu et al., 2012), Cu (Sudo et al., 2008)
using different DNA microarray platforms. In addition, the tran-
scriptional responses of Cd were compared with those of essential
trace micronutrients like Cu in Arabidopsis (Zhao et al., 2009) or
in rice roots (Lin et al., 2013).
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With respect to Hg, three very recent concurrent studies
were completed to characterize the massive transcriptional pro-
file in seedlings of Medicago sativa (Montero-Palmero et al.,
2014), Medicago truncatula (Zhou et al., 2013), and Hordeum
vulgare (Lopes et al., 2013). The main purpose of these tran-
scriptional studies was to obtain a comprehensive understanding
of the metabolic pathways involved in the Hg-stress response,
which would shed light in the tolerance mechanisms involved.
Genes encoding enzymes of the plant secondary metabolism, and
other known to participate in biotic and abiotic stresses genes
were differently expressed in the three transcriptomic studies
performed with different plant species. For example, there was
a clear up-regulation of genes encoding enzymes of the lignin
biosynthesis pathway, such as those producing lignin precur-
sors like coumarins, caffeoyl, and other monolignols (Table 1).
It is known that lignin polymerization promotes cell wall stiff-
ening (Passardi et al., 2004); lignin cross-linking reactions that
may be responsible of the observed rapid root growth inhibition

under Hg stress (Ortega-Villasante et al., 2007; Montero-Palmero
et al., 2014). In addition, these phenolic metabolites are known
antioxidants under metal stress conditions (Van De Mortel et al.,
2008), which would counteract the rapid ROS induction by Hg
Moreover observed in our experiments (Ortega-Villasante et al.,
2007; Montero-Palmero et al., 2014). Other strongly regulated
genes, common to all three plant species, fall in several stress-
related categories such as glutathione-S-transferases, heat shock
proteins or pathogenesis related proteins (Table 1). It is thought
that toxic metabolites, protein instability and other alterations in
the cellular components may compromise cell survival in plants
subjected to different types of environmental stresses (Mittler
et al., 2011), indicating that a general unspecific response is also
triggered by Hg. Interestingly, several phytohormone signaling
pathways seemed to operate under Hg stress: ethylene, ABA and
auxin related genes are among those significantly up-regulated
after a short-term treatment (Table 1), which may be key players
in metal perception and homeostasis.

Table 1 | Number of DEGs and percentages obtained from the total DEGs number in different functional categories.

Functional categories M. sativa M. truncatula H. vulgare

No DEG %DEG No DEG %DEG No DEG %DEG

Stress Glutathione/ascorbate cycle 6 0.66 3 0.12 2 0.14

Sulfate transporters 1 0.11 2 0.08 1 0.07

S-assimilation (APS-APR) 3 0.33 2 0.08 4 0.27

Glutathione S-transferases 19 2.09 12 0.46 25 1.71

Small heat shock proteins 9 0.99 6 0.23 4 0.27

Heat shock proteins 14 1.54 11 0.43 5 0.34

Heat shock factors 4 0.44 3 0.12 4 0.27

Pathogenesis related proteins 34 3.74 8 0.31 22 1.50

Fungal elicitor proteins 1 0.11 2 0.08 2 0.14

Chitinases 4 0.44 2 0.08 9 0.61

Subtotal DEGs 95 10.44 51 1.98 78 5.32

Phytohormones Ethylene metabolism 4 0.44 3 0.12 3 0.20

Ethylene responsive factors 10 1.10 9 0.35 3 0.20

ABA responsive genes 2 0.22 2 0.08 7 0.48

Jasmonate metabolism 10 1.10 7 0.27 4 0.27

Jasmonate responsive genes 1 0.07

Auxin metabolism 3 0.33

Auxin responsive genes 8 0.88 13 0.50 11 0.75

Subtotal DEGs 37 4.07 34 1.32 29 1.98

Second. Met. Lignins 23 2.53 15 0.58 10 0.68

Phenylpropanoids 19 2.09 4 0.15 11 0.75

Anthocyanins 6 0.66 1 0.04 3 0.20

Chalcones 22 2.42 24 0.93 1 0.07

Other flavonoids 15 1.65 10 0.39 5 0.34

Subtotal DEGs 85 9.34 54 2.09 30 2.05

Total DEGs number 910 2582 1466

Differential expressed genes (DEGs) from the microarray of Medicago sativa root-seedlings exposed to 3 µM Hg during 3, 6, or 24 h (FDR < 0.01), compared to

the transcriptomics analyses made in Medicago truncatula seedlings treated with 10 µM HgCl2 during 6, 12, 24, and 48 h (FDR < 0.001; Fold Change over 1) and

in Hordeum vulgare root-seedlings exposed to approximately 300 µM Hgin sand semi-hydroponics for 15 days (P < 0.05), and classified into the main functional

MapMan categories.
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INVOLVEMENT OF ETHYLENE IN THE OXIDATIVE BURST
INDUCED BY Hg
Plant cells exposed to toxic metals experience drastic metabolic
changes, ranging from primary signaling events, biochemical and
metabolic responses to transcriptional activation, as outlined in
Figure 1A. An important feature of the early responses to toxic
metals is the induction of ROS accumulation and oxidative stress
(Baier et al., 2005), which occur minutes after the exposure of
root epidermal cells to Cd and Hg (Hernández et al., 2012). Metal
perception by plant cells is normally accomplished by a stress sig-
naling network that would involve the activation of a Ca-signaling
cascade (DalCorso et al., 2010), accumulation of ROS and reac-
tive nitrogen species (RNS; i.e., nitric oxide or NO), or with the
accumulation of certain stress-related phytohormones like sali-
cylic, jasmonate and oxylipins (Rodríguez-Serrano et al., 2009;
Tamás et al., 2010). Downstream signaling events include changes
in the activity of several antioxidant enzymes, such as APX,
GR, or SOD, along with modified concentration of antioxidant
metabolites, such as ascorbate and GSH (Jozefczak et al., 2012),
activation of Ca-dependent calmodulins, and mitogen-activated
protein kinases (MAPKs; Jonak et al., 2004; Ye et al., 2013).
Ethylene accumulated in Brassica juncea leaves when exposed to
Ni and Zn, phytohormone that promoted the activation of APX
and GR enzymatic activities and augmented the pool of reduced
GSH, conceivably required to enhance the antioxidant defensive
barriers against metal stress (Khan and Khan, 2014). On the other
hand, ethylene mediates in the assimilation process and the nutri-
tion balance of sulfur, a fundamental macronutrient for plant
acclimation to stress via GSH metabolism (Iqbal et al., 2013). The
defenses to metal stress also comprise transcriptional changes,
necessarily orchestrated by certain families of transcription fac-
tors, in particular some responding to ethylene, ABA, jasmonate,
or auxin (i.e., ERF/AP2, WRKY, MYB, and ARF, respectively), that
would recognize different cis-DNA regulatory motifs to control
the transcription of genes involved in metal detoxification and
tolerance (Thapa et al., 2012; Figure 1B). Expression of different
metal transporters (for example the HMA1-4 and CDF families),
enzymes of sulfur metabolism and GSH biosynthesis, and SHSPs
are among the cellular defenses activated upon the commented
transcriptional activation (Gallego et al., 2012; Figure 1).

Stress related phytohormones like SA or jamonate (derived
from oxylipins) are known effectors that modulate responses to
toxic metals (Xiang and Oliver, 1998; Zhou et al., 2009). In fact,
several hormone responsive genes and genes involved in hor-
mones synthesis are up-regulated, indicating that phytohormones
play an important role in the Hg-induced response (Table 1).
SA, brassinosteroids, cyotokinins, gibberellins, or IAA have been
described stimulating the antioxidant response in terrestrial and
aquatic plants exposed to Cd, Cu, or Pb (Hayat et al., 2007;
Noriega et al., 2012; Piotrowska-Niczyporuk et al., 2012). On
the contrary, jasmonate is known to trigger ROS production
under metal stress (Maksymiec and Krupa, 2006), and accumu-
lated in leaves of Arabidopsis and Phaseolous coccineus under Cu
and Cd stress (Maksymiec et al., 2005). Interestingly, jasmonate-
induced ROS is mediated by the oxidative status of GSH, as has
been shown in GR defective mutants (Mhamdi et al., 2010).
Subsequently, the transcriptional activity due to jasmonate has

been recently associated with the oxidative burst led by changes
in the redox potential of GSH in plant cells (Han et al., 2013).
In addition, jasmonate entwines with ethylene in a complex sig-
naling cascade that results in ROS production (Mittler, 2006).
The stress response induced by ethylene may be associated with
the jasmonate pathway, mediated by the COI1-jasmonate recep-
tor as was shown in the root meristematic activity (Adams and
Turner, 2010). This draws a rather complex picture where redox
unbalance in the cell is required in turn for cysteine and GSH syn-
thesis, possibly as part of a positive feedback mechanism where
jasmonate or ethylene may intervene (Queval et al., 2009).

Ethylene plays also a complex role along with ROS in the
defense responses to biotic and abiotic stresses (Mittler et al.,
2011). Insensitive plants to ethylene, such as Arabidopsis ein2-
5, were unable to promote the oxidative burst after a pathogen
elicited response (De Jong et al., 2002), highlighting the contri-
bution of this phytohormone in the oxidative burst that precedes
plant immune responses (Mersmann et al., 2010). This hormone
could also interfere in the ROS signaling in Arabidopsis exposed
to Cu and Cd (Arteca and Arteca, 2007) and Al (Sun et al.,
2010). Moreover, the Hg-induced release of H2O2 by roots was
attenuated when the ethylene perception was blocked in alfalfa
and Arabidopsis seedlings, implying that ethylene is required by
the activation of NADPH-oxidases to generate ROS under metal
stress (Montero-Palmero et al., 2014).

Ethylene is also a phytohormone that determines root archi-
tecture and controls defense responses of plants to stress (Swarup
et al., 2007). The rapid root growth inhibition observed under
Hg (Ortega-Villasante et al., 2007) was counteracted when ethy-
lene perception was blocked in alfalfa and Arabidopsis, imply-
ing a direct relationship between this phytohormone and the
root architecture (Montero-Palmero et al., 2014). It is feasible
that this role occurs under other metal stress conditions, as it
was shown that ethylene synthesis antagonists alleviated the Al-
induced arrest of root elongation (Tian et al., 2014). This control
is exerted in combination of other hormones like auxins, salicylic
acid, jasmonate, ABA, or strigolactones, contributing to a gen-
eral mechanism of tolerance and resistance to a wide range of
biotic and abiotic stresses (Bari and Jones, 2009). For instance, a
downstream regulation of auxin-related genes (such as YUCCA,
PIN, or ARF), and cell cycle related-genes (CDKs and cyclins),
are also interconnected with a H2O2 signaling cascade under Cd
stress in rice plants (Zhao et al., 2012) and barley roots (Liptakova
et al., 2012). Interestingly, there are clear evidences that auxins
accumulation in roots depends partially on ethylene metabolism,
which may affect ultimately the architecture of roots by pro-
moting the appearance of secondary roots emergence (Ruzicka
et al., 2007; Swarup et al., 2007). Uptake of mineral nutrients
and exudation of malate could be also modulated by ethylene
and auxin, possibly via a transcriptional regulation, which could
be related with root architecture under metal stress (Tian et al.,
2014). Similarly, jasmonate mediates in ASA1 expression, a pro-
tein involved in auxin synthesis and distribution-related, which
also modulates root development (Wasternack and Hause, 2013).
All these endogenous factors would interact with oxidative stress
promoted signaling, composing a complex transduction net-
work that regulates cell division, expansion, and ultimately root
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FIGURE 1 | (A) Sequence of events occurring upon metal exposure. Known
events that appeared in plants treated with metals, with emphasis in those
triggered by Hg (shaded boxes). For more information, refer to the following
literature: (1) Lin et al., 2013; (2) Zhou et al., 2007, 2008; (3) Sobrino-Plata et al.,
2009; Sobrino-Plata et al., 2014a,b; (4) Lopes et al., 2013; (5) Zhou et al., 2013;
(6) Montero-Palmero et al., 2014. (B) Cellular responses in plants treated with
metals (divalent toxic metal cation; HM2+). Metal cations can interact with cell
wall components and then enter the cytoplasm via ion Ca2+ channels or active
transporters (HMA). Once inside the cell, ROS production (H2O2 or O−

2 ) is
induced possibly by NADPH-oxidases, in addition with electron transfer

reactions in the chloroplast and mitochondria. Metals may be chelated with
phytochelatins (PC) before are transferred to the vacuole. Antioxidant enzymes,
such as catalase (CAT), superoxide dismutase (SOD), and ascorbate
peroxidases (APX), are activated to maintain the cellular redox homeostasis. At
the transcriptional level, the expression of certain stress genes (i.e., heat shock
proteins, pathogen related proteins, or cell wall stiffening) is up-regulated,
including stress-related transcription factors, antioxidantant proteins,
microRNAs, and sulfur metabolism related genes. ROS/phytohormones
crosstalk in response to metal stress would modulate the overall transcriptional
profile, promoting the expression of the corresponding transcription factors.
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architecture (Considine and Foyer, 2014), which would be altered
in plants exposed to toxic metals.

FUTURE PERSPECTIVES AND CHALLENGES
Current evidences support the concept that phytohormones are
playing a significant role in the perception and response to
toxic metals, possibly by interacting with a ROS-dependent sig-
naling pathway. Being said that, the current understanding of
the crosstalk between phytohormones and ROS networks is
still obscure and very limited. Thus, future work should be
directed to describe in detail the genetic network that regulates
the perception of the stress induced by metals, and how dif-
ferent phytohormones and signaling components interact using
the available collection of mutants with inhibited or blocked
receptors, together with current massive transcriptomic profile
analyses, and bioinformatic tools to obtain an integrated pic-
ture. This will allow the development of biotechnical strategies
to enhance tolerance of plants to metal toxicity.
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Plants cells sense their environment through oxidative signaling responses and make

appropriate adjustments to gene expression, physiology and metabolic defense. Root

cultures of Uncaria tomentosa, a native plant of the Amazon rainforest, were exposed

to stressful conditions by combined addition of the glutathione inhibitor, buthionine

sulfoximine (0.8mM) and 0.2mM jasmonic acid. This procedure induced a synchronized

two-fold increase of hydrogen peroxide and guaiacol peroxidases, while the glutathione

content and glutathione reductase activity were reduced. Likewise, in elicited cultures,

production of the antioxidant secondary metabolites, monoterpenoid oxindole, and

glucoindole alkaloids, were 2.1 and 5.5-fold stimulated (704.0 ± 14.9 and 845.5 ±

13.0µg/g DW, respectively) after 12 h, while phenols were three times increased. Upon

elicitation, the activities and mRNA transcript levels of two enzymes involved in the

alkaloid biosynthesis, strictosidine synthase and strictosidine β-glucosidase, were also

enhanced. Differential proteome analysis performed by two-dimensional polyacrylamide

gel electrophoresis of elicited and control root cultures showed that after elicitation

several new protein spots appeared. Two of them were identified as thiol-related

enzymes, namely cysteine synthase and methionine synthase. Proteins associated with

antioxidant and stress responses, including two strictosidine synthase isoforms, were

identified as well, together with others as caffeic acid O-methyltransferase. Our results

propose that in U. tomentosa roots a signaling network involving hydrogen peroxide and

jasmonate derivatives coordinately regulates the antioxidant response and secondary

metabolic defense via transcriptional and protein activation.

Keywords: oxidative stress, Uncaria tomentosa, proteome, antioxidant responses, glutathione

Introduction

Oxidative stress arises from disruption in redox balance due that the amount of reactive
oxygen species (ROS) exceeds the ability of the cell to accomplish an effective antioxidant
response. Unlike other ROS, hydrogen peroxide (H2O2) is a non-radical species, containing no
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net charge, with a relatively long half-life. Because of these prop-
erties, H2O2 acts as a long-distance signaling molecule and is
a physiological indicator of the intensity of biotic and/or abi-
otic stress (Apel and Hirt, 2004). In turn, to prevent the harm-
ful effects of ROS, plants have evolved coordinate antioxidant
mechanisms that include superoxide dismutase, peroxidases,
the ascorbate-glutathione cycle, and other antioxidant responses
(Noctor and Foyer, 1998).

Glutathione is a lowmolecular weight tripeptide useful in pro-
tecting plant cells from oxidative injury due to its redox buffering
capacity and relative abundance. In response to environmen-
tal stress through the ascorbate–glutathione pathway, the redox
potential of the reduced glutathione (GSH) pool is altered and
converted to the disulfide form (GSSG) without net consumption
(Meyer and Fricker, 2002). It has been reported that H2O2, pro-
duced in response against various stimuli, would be acting as a
signaling molecule, regulating the expression of selected genes,
including those involved in the defense pathways and partici-
pating in the crosstalk between other metabolic signals (Quan
et al., 2008). Several studies suggest that, as the result of adap-
tation responses of plants to oxidative stress, changes occur not
only in the primary defense mechanisms but also in the profile of
secondary metabolism (Apel and Hirt, 2004).

Alkaloids represent one of the most active natural product
groups against a wide range of organisms. The main role of
these substances is generally linked to plant defense mechanisms
from predators, besides the important ecological factors associ-
ated to them. However, the close relationship between alkaloids
and the oxido-reduction processes in plants containing them
strongly suggests that these compounds play a fundamental role
in protecting plants when they are subjected to oxidative stress
(Ramos-Valdivia et al., 2012). Furthermore, polyphenols are the
most abundant and widely distributed group of naturally occur-
ring compounds. Their functions are critical to the maintenance
of the plant, being relevant in the defense against herbivores, for
protection to different types of biotic or abiotic stress, as well as
signals in interactions either with other plants or with microbes
(Buer et al., 2010).

GSH deficit may occur in plants as a consequence of
increased cellular consumption and/or due to biosynthetic dis-
orders. However, GSH depletion of GSH can occur by addition
of L-buthionine-(S,R)-sulphoximine (BSO). This nontoxic sub-
stance is a specific inhibitor of γ-glutamylcysteine synthetase
(Ruegsegger et al., 1990; May and Leaver, 1993). Treatment of
plant tissue with BSO has been used as an elicitor of secondary
metabolites since this substance weakens the antioxidant defense
mechanisms, provoking endogenous accumulation of H2O2 and
oxidative stress (Berglund and Ohlsson, 1993; Guo et al., 1993;
Vera-Reyes et al., 2013).

Uncaria tomentosa, which belongs to the Rubiaceae family,
is an Amazon rainforest species known as cat’s claw. This
plant produces the highly oxidized monoterpenoid oxindole
alkaloids (MOA) isopteropodine, mitraphylline, isomitraphylline
and rhynchophylline, which exhibits immunomodulatory, anti-
AIDS, cytotoxic, and antileukemic properties (Laus, 2004). In
previous work, it was found that root suspension cultures of this
species produced MOA and accumulated 3α-dihydrocadambine

(Huerta-Heredia et al., 2009), a glucoindole alkaloid with
hypotensive and antioxidant activities (Endo et al., 1983) and
dolichantoside (Luna-Palencia et al., 2013), a N-β-methylated
strictosidine with potent anti-malarial effect (Frédérich et al.,
2000). Moreover, the antioxidant response and alkaloid pro-
duction stimulation have been correlated with oxidative stress
(Trejo-Tapia et al., 2007) triggered by H2O2 treatment (Huerta-
Heredia et al., 2009; Vera-Reyes et al., 2013) and by combined
addition of the glutathione inhibitor, buthionine sulfoximine and
jasmonic acid (Vera-Reyes et al., 2013). It has been suggested that
monoterpenoid indole alkaloids (MIA) are precursors of MOA
whose transformation may take place through oxidation of the
indole ring system. The central precursor of the MIA pathway
is the glycosylated indole alkaloid strictosidine, which is formed
through the condensation of the indole precursor tryptamine
with secologanin catalyzed by the enzyme strictosidine synthase
(STR; EC 4.3.3.2). Then, strictosidine β-D-glucosidase (SGD; EC
3.2.1.105) hydrolyzes the glucose moiety present in strictosidine
forming an aglycone, which is rapidly converted to a dialdehyde
intermediate. In some plants such as Catharanthus roseus, this
substance is reduced by NADPH to ajmalicine or their isomers
through cathenamine (Kutchan, 1995). Strictosidine also partic-
ipates in the biosynthesis of other glucoindole alkaloids char-
acteristic of the Rubiaceae family such as isodihydrocadambine
(Szabó, 2008).

Both STR and SGD are encoded by single genes (McK-
night et al., 1990), even though the STR from C. roseus has
shown several isoforms due to post-translational modifications
(De Waal et al., 1995; Jacobs et al., 2005). Vera-Reyes et al.
(2013) reported that in U. tomentosa root cultures, the increase
of oxindole and glucoindole alkaloids observed under oxida-
tive stress, is provoked by the regulatory mechanisms at the
level of enzyme activities and gene expression of STR and SGD.
Thus, proteomics provides a promising approach for the study
of the protein response to oxidative stress in general and its rela-
tion with the secondary metabolism production (Ramos-Valdivia
et al., 2012). Particularly, comparative proteomic studies based
on contrasting plant cultures on stressed and non-stressed con-
ditions are essential for understanding the stress-related defense
mechanisms.

In order the study the regulatory mechanisms functioning
in the monoterpenoid indole alkaloid production in U. tomen-
tosa root cultures, activities and mRNA transcript levels of two
enzymes involved its alkaloid biosynthesis, antioxidant defense
and comparative proteome analysis in response to oxidative
stress were examined.

Materials and Methods

Root Cultures and Elicitation
Root cultures of U. tomentosa (line Utr-3) arising from micro-
propagated plantlets (Luna-Palencia et al., 2013) were grown in
250-mL Erlenmeyer flasks (covered with aluminum foil) with
100-mL ofMSmedium (Murashige and Skoog, 1962), 2% sucrose
without plant growth regulators and pH 6.4 adjusted prior to
sterilization. The cultures were incubated at 25 ± 2◦C, using
orbital agitation at 110 rpm, and under continuous light intensity
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13µmol m−2 s−1. The cultures were sub-cultivated every 20 days
and uniform inocula for the experiments were developed in 1000-
mL Erlenmeyer flasks containing 400-mL of culture medium.
A selection of 20-days-old roots were cut in pieces of ∼5 cm
length and kept in deionized water until they were inoculated
(2 g FW) into 250-mL shaken flasks containing 100-mL culture
medium. Roots were elicited at day 13 with simultaneous addi-
tion of 0.8mM BSO and 0.2mM jasmonic acid (BSO-JA) and
were incubated as indicated above. Three control cultures and
three elicited flask cultures were harvested after 12 h.

Extraction of Total Proteins for 2D SDS-PAGE
Ten grams of frozen roots were ground using a mortar and a pes-
tle and were cooled with liquid N2. A solution (20mL) of cold
(−20◦C) 10% TCA in acetone with 0.07% β-mercaptoethanol
was poured over the sample (Jacobs et al., 2005). The mixture
was kept at 20◦C overnight to enable a complete precipitation.
After centrifugation for 15min at 3000 g, samples were washed
twice with a cold solution (−20◦C) of acetone and 0.07% β-
mercaptoethanol for removing TCA. The precipitate was solubi-
lized in ReadyPrep rehydration/sample buffer BioRad [8M urea,
2% CHAPS, 50mM dithiothreitol (DTT), 0.2% (w/v) Bio-Lyte R©

3/10 ampholytes, and bromophenol blue (trace)] completed with
2M thiourea. The mixture was vortexed and centrifuged (5min,
16,000 g) several times during 1 h. The supernatant was recovered
and cleaned up using a Micro Bio-Spin R© column (BioRad, USA)
and stored at−80◦C. The concentration of protein was measured
with a 2D Quant kit (Amersham Biosciences, USA).

2D-PAGE
About 250µg of protein was loaded into 11-cm strips with a
pH gradient between 4 and 7 (IPG, immobilized pH gradient,
Bio-Rad) by in-gel rehydration during 12 h. Isoelectric focusing
(IEF) was carried out on a Protean IEF apparatus (Bio-Rad, USA)
at 20◦C by application of a voltage gradient from 0 to 250V
for 1 h, 250 to 500V for 1 h, 1000 to 8000V for 1 h, from 8000
to 20,000V for 2 h, and 500V for 2 h. The protein IPG strips
were equilibrated before applying a sodium dodecyl sulfate (SDS)
polyacrylamide gel electrophoresis (PAGE) procedure using an
equilibration buffer I (50mM Tris HCl [pH 8], 8M urea, 30%
glycerol, 2% SDS, and 0.3% DTT) for 10min. The strips were
then soaked for 10min in the equilibration buffer II containing
50mM Tris HCl (pH 8), 8M urea, 30% glycerol, 2% SDS, and
4.5% iodoacetamide. SDS-PAGE was done using polyacrylamide
12% acrylamide gels. Electrophoresis was carried out at 25mA
for 45min and 35mA for 2.5 h (SE 600 Ruby™; GE Healthcare
Life Science, USA). Protein samples were visualized by staining
with Sypro Ruby (BioRad, USA).

Gel Analysis
At least three independent 2-D experiments were repeated at
minimum four times to confirm reproducibility. Image analysis
was achieved by visual inspection and the observed changes were
qualitative using Melanie 7.0 gel analysis platform (GE Health-
care). The volume of each spot was normalized as a relative vol-
ume to compensate for the variability in gel staining. Manual
editing was carried out after the automated detection and match-
ing for each spot, achieving this procedure with a minimum of

four gels for each sample. Only those spots that showed signifi-
cant and reproducible changes (at least 1.3-fold) were taken in to
account as differentially expressed proteins, ANOVA (p < 0.05).
The Scaffold program (version 4.0.6.1 from Proteome Software
Inc., Portland, OR) was employed for protein identification. The
validation was done if the probability was greater than 99.0% and
contained at least 2 identified peptides. Protein probabilities were
allocated by the Protein Prophet algorithm (Nesvizhskii et al.,
2003). Proteins that could not be differentiated based on MS/MS
analysis were grouped to satisfy the principles of parsimony. The
estimated experimentalMr/pI was useful to rise the identification
confidence.

In-Gel Digestion, MALDI-TOF MS and Database
Search
Excised SYPRO R©Ruby (BioRad)-stained protein gel spots fol-
lowing 2D SDS-PAGE were digested with trypsin (10µg/mL)
at 37◦C for 12 h. Tandem mass spectrometry coupled to liquid
chromatography (LC-MS/MS) analysis of in-gel trypsin digested-
proteins (Shevchenko et al., 1996) was performed in a LTQ Orbi-
trap Velosmass spectrometer (Thermo Fisher Scientific, San Jose,
CA) furnished with an Advion nanomate ESI source (Advion,
Ithaca, NY). ZipTip (Millipore, Billerica, MA) C18 sample clean-
up was achieved as indicated in the manufacturer’s instructions.
The peptide fraction was eluted from a C18 precolumn of 100-
µm id × 2 cm (Thermo Fisher Scientific) and loaded onto an
analytical C18 column of 75-µm ID× 10 cmC18 (Thermo Fisher
Scientific) eluting with solvent A (water and 0.1% formic acid)
and a 5–10% gradient of solvent B (acetonitrile, 0.1% formic
acid) for 5min, followed by a 10–35% gradient of solvent B
for 35min, 35–50% gradient of solvent B for 20min, 50–95%
gradient of solvent B for 5min, and 95% solvent B for 5min,
all elutions were run at a flow rate of 400 nl/min. Data depen-
dent scanning (m/z 400–1600) was carried out in the Orbitrap
analyzer, followed by collision-induced dissociation (CID) tan-
dem mass spectrometry (MS/MS) of the 14 most intense ions in
the linear ion trap analyzer using the Xcalibur v 2.1.0 software
(Andon et al., 2002) and a mass scan of 60,000 resolution. The
precursor ions were chosen by the monoisotopic precursor selec-
tion (MIPS) setting the acceptance or rejection of ions thought
a ±10 ppm window. Dynamic exclusion was established to place
any selected m/z peak on an exclusion list for 45 s after a single
MS/MS. All MS/MS spectra were explored against asterids pro-
teins downloaded from Uniprot or from NCBI on October 09,
2012 or June 20, 2013, respectively, using Thermo Proteome Dis-
coverer 1.3 (Thermo Fisher Scientific). The UniprotKB protein
database of all species was also used in searching the data inde-
pendently. Variable modifications considered during the search
included methionine oxidation, adding 15.995 Da, and/or cys-
teine carbamidomethylation, adding 57.021Da. At the time of the
search, asterids database fromUniprot or NCBI contained 65,406
and 102,843 entries, respectively (UniprotKB database contained
452,768 entries as of October 10, 2012). Proteins were identi-
fied with a confidence level of 99% with XCorr score cut-offs
(Qian et al., 2005) as determined by a reversed database search.
The results were displayed with the Scaffold program v 3.6.1
(Proteome Software Inc., Portland OR) that depends on various
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search engines (Sequest, X!Tandem, MASCOT) using Bayesian
statistics (Keller et al., 2002; Nesvizhskii et al., 2003).

Quantification of Phenolic Compounds
Powdered roots (0.20 g) were frozen in liquid N2, pulverized
and sonically extracted with 5mL of methanol-water (8:2 v/v)
and centrifuged. A supernatant aliquot of 0.2mL was mixed
with 0.2-mL Folin-Ciocalteu reagent diluted 1:1 (v/v) with water,
0.6mL of sodium carbonate (Na2CO3) saturated solution and
4mL of deionized water. The mixture was intensively shaken,
left at room temperature for 25min, and centrifuged at 5000 rpm
for 10min. The absorbance of supernatant was registered at
725 nm in a Genesys 10V spectrophotometer (Thermo Scien-
tific). Total phenols were expressed in terms of D-catechin equiv-
alents. Quantification of individual phenols was done by HPLC
analysis according (Pavei et al., 2010) using a 3-caffeoylquinic
acid (chlorogenic acid) calibration curve.

Extraction and Quantification of Alkaloids
Alkaloid extraction and quantification were performed as
described previously (Vera-Reyes et al., 2013). Briefly, frozen
roots (liquid N2) were pulverized and sonically extracted with
5% hydrochloric acid. Alkaloids from the acid-solutions or cul-
ture media were extracted twice with chloroform adjusting the
pH to 8-9 using a NH4OH solution. The organic layer was vac-
uum evaporated and the solid residue was dissolved in a 9:11
mixture of acetonitrile and 10mM phosphate buffer at pH 7.
The solutions were filtered and injected into a Varian ProStar
333 HPLC system equipped with a photodiode array detector
(Varian, Walnut Creek, CA) using a reverse-phase C18 column
(Waters Spherisorb 5mm ODS2 of 250mm length 4.6mm i.d.).
Elution was carried out with the same 9:11 mixture of acetoni-
trile and phosphate buffer at 0.7mL/min flow rate and detecting
at 244 nm. For quantification of MOA and glucoindole alkaloids,
mitraphylline and 3α-dihydrocadambine respectively, were used
as the standard compound to determine the calibration curve.

Statistical Analysis
All measurements were done in triplicate and the statistical
evaluation was achieved with Anova, taking p ≤ 0.05 as
significant.

Protein Extracts and Enzyme Assays
Roots (1 g) were homogenized in a pre-chilled mortar under liq-
uid N2 with 1–2% (w/w) polyvinylpyrrolidone. Extraction buffer
(0.1M potassium phosphate pH 6.3, containing 3mM EDTA and
6mM DTT) was added in a 1:1 ratio (v/w) shaking to obtain a
homogeneous mixture. For GR assay, the extraction buffer was
0.1M potassium phosphate pH 7.5, with 1mM EDTA. Centrifu-
gation at 18,000 g was done for 10min at 4◦C and the supernatant
was collected and desalted on Bio-Rad Micro Bio-Spin R© P-30
columns. The eluted samples were employed for the enzymatic
assays.

The protein fractions were kept frozen at −20◦C until use.
The total protein content was determined following the proce-
dure described by Peterson (1977) with bovine serum albumin as
the standard.

Antioxidant Enzyme Assays
Guaiacol peroxidases were measured as oxidation of guaiacol
(8.26mM, ∈ = 26.6mM−1 cm−1) according to Pütter (1974).
Enzyme extract was incubated in 100mM phosphate buffer pH
6.0 containing 3mM H2O2. The reaction was started by addi-
tion of 15mM guaiacol and the absorption was measured for
2min at 470 nmusing a Beckmann spectrophotometer (DU 7500,
Munich). Rates were corrected by chemical control experiments.
Peroxide activity was determined as the amount of protein that
produces 1µmol of oxidized guaiacol. The activity of glutathione
reductase was measured using the Glutathione Reductase Assay
Kit (Sigma-Aldrich, St. Louis, USA), which was determined by
the absorbance decrease caused by NADPH oxidation at 340 nm.
One enzyme unit (U) catalyzes the oxidation of 1µmol of
NADPH per min at 25◦C.

Strictosidine-Related Enzyme Assays
The assay of strictosidine synthase (STR) activity depends on
the enzymatic condensation of secologanin and tryptamine to
produce strictosidine. Strictosidine formation was quantified by
HPLC using a strictosidine standard (Phytoconsult, The Nether-
lands) for constructing the calibration curve. Strictosidine glu-
cosidase (SGD) activity was determined bymeasuring the glucose
release using Amplex Red R© (Invitrogen) assay kit. Both enzyme
assays were previously described (Vera-Reyes et al., 2013).

mRNA Extraction, cDNA Synthesis and
Semiquantitative RT-PCR Analysis
RNA isolation, DNA treatment, reverse transcription, and
semiquantitative-PCR amplification were achieves as reported
previously (Vera-Reyes et al., 2013), as well as the primers used
for the genes: STR (strictosidine synthase), SGD (strictosidine
glucosidase and the control 18S rRNA. The relative gene expres-
sion was analyzed using a Kodak Image Station 2200R, DU R© 730
equipped with Molecular Imaging Software version 1.4 (Kodak)
on a 1.2% agarose gel. The gene expression analysis is represented
in arbitrary units employing average values of semi-quantitative
RT-PCR assays in triplicate with respect to the corresponding
non-treated cultures.

Determination of H2O2
Roots (500mg) were frozen and pulverized under liquid N2. The
powder was extracted with 5mL of 0.1% TCA (w/v), mixed with
ice for 5min, and pelleted by centrifugation at 10,000 g at 4◦C
for 10min. The supernatant was neutralized with 0.2M NH4OH
to pH 8.0 and was centrifuged at 3000 g for 2min to sediment
the insoluble material. The quantification of H2O2 in the extracts
was done with the Amplex Red Hydrogen Peroxide Assay kit
(Molecular Probes, Invitrogen), according to the manufacturer
instructions. A total of 50µL of extract was combined with an
equal volume of 50mM sodium phosphate buffer pH 7.4 con-
taining 0.1 U/mL of horseradish peroxidase and incubated for
1 h at room temperature, measuring the absorbance at 560 nm.
The H2O2 concentration for each sample was determined with a
standard curve obtained with known concentrations of H2O2.
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Glutathione Assay
The levels of total glutathione (GSH + GSSG) were determined
with a glutathione assay kit (Sigma) following the manufacturer’s
protocol. Roots were frozen in liquid N2 and pulverized until
obtaining fine particles. A solution of 5% 5-sulfosalicylic acid
(500µL) was added to 0.1 g of the powder to deproteinize the
sample. Glutathione was measured in a kinetic assay based on the
reduction of 5,5-dithiobis(2-nitrobenzoic acid) (DTNB) to yellow
TNB, which was spectrophotometrically measured at 412 nm.
The amount of total glutathione was determined with a standard
curve of reduced glutathione.

Results

Hydrogen Peroxide and Antioxidant Response to
BSO-JA Elicitation
U. tomentosa roots induce their antioxidant defense to scavenge
excess of ROS in response to combined addition of BSO-JA.
After 12 h of elicitation, a two-fold increase of H2O2 concen-
tration (from 0.48 ± 0.05 to 0.96 ± 0.03µmol/g FW) and POD
activity (from 243.9 ± 15.4 to 370.8 ± 8.9µM/mg.min protein)
were found (Figures 1A,C). In these elicited cultures, glutathione

concentration was significantly reduced in a 55%, while the
GR activity was slightly lower (17%) than non-treated roots
(Figures 1B,D). Noteworthy, biomass concentration (6.33 ±

0.20 g DW/L) and viability of roots after the elicitation remained
essentially the same as in controls.

Activities of Strictosidine-Related Enzymes,
mRNA Expression Levels, and Production of
Phenols and Alkaloids in Response to BSO-JA
Elicitation
After 12 h of elicitor treatment, MOA, 3α-dihydrocadambine and
dolichantoside production (Figure 2A) were rapidly increased by
2.1-, 5.5-, and 2.6-fold, respectively, compared with control cul-
tures (329.7 ± 39.8µg/g DW; 152.4 ± 27.9µg/g DW; 14.0 ±

1.8µg/g DW). Concurrently, BSO-JA treatment increased STR
activity by three times in relation to untreated roots (38.7 ± 4.0
pKat/mg protein), while SGD activity had 4.2 times more activ-
ity than the control (65.8 ± 2.9 pKat/mg protein) (Figure 2B).
Upon elicitation, STR and SGD transcripts increased during
the first 12 h after treatment reaching 5.8- and 9.7-fold higher,
respectively, compared to the control levels (Figures 2C,D).

FIGURE 1 | Responses of Uncaria tomentosa root cultures after 12h

of BSO-JA elicitor addition, (A) Changes in peroxide hydrogen (B)

glutathione concentration. Antioxidant enzyme activities of (C) guaiacol

peroxidase (POD) and (D) glutathione reductase (GR). The elicitor was added

to 13 days-old root cultures (exponential growth phase). Error bars indicate

standard deviation from the mean (n = 3).
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FIGURE 2 | Effect of BSO-JA elicitation on U. tomentosa root

cultures growing in Erlenmeyer flasks after elicitor addition (black

bars). (A) Production of MOA, DHC, and dolichantoside. (B) Specific

activities of strictosidine synthase (STR) and strictosidine β-glucosidase

(SGD). Error bars indicate standard deviation from the mean (n = 3).

Semiquantitative RT-PCR analysis of the elicitor effects in the STR and

SGD mRNA transcript levels (C) Representative expression profile (The

amplification products were analyzed by agarose gel electrophoresis

(lane 1 control, lane 2 elicited) stained with ethidium bromide, and

visualized by UV transillumination (306 nm). An inverse image of the

stained gel is shown. (D) Schematic presentation of the RT-PCR results

in arbitrary units. The analysis of gene expression is represented in the

bar chart using average values of semiquantitative RT-PCR triplicate

analysis. The results are relative to non-treated root cultures.

TABLE 1 | Polyphenols accumulation in Uncaria tomentosa root cultures

growing in Erlenmeyer flasks 12h after BSO-JA elicitor addition.

Compound Control* Elicited*

µg/g DW µg/g DW

3-Caffeoylquinic acid 315.1 ± 14.7 978.7 ± 44.7

Caffeic acid 38.0 ± 4.6 57.4 ± 6.8

Catechin 123.9 ± 4.7 150.8 ± 8.0

Epicatechin 189.8 ± 8.6 301.5 ± 19.1

*Values are the mean of three replicates ± standard error of means.

In correlation with the alkaloid induction after BSO-JA addi-
tion, total polyphenol content in U. tomentosa root cultures
increased from 3.40 ± 0.12mg/g to 11.45 ± 0.02mg/g DW. In
these elicited roots, the content of 3-caffeoylquinic acid, caffeic
acid, catechin, and epicatechin were increased by 210.5, 50.8,
21.7, and 58.8%, respectively (Table 1).

Detection of Differentially Expressed Proteins
after BSO-JA Elicitation
One of the key approaches of proteomic analysis is to identify
differential protein expression between control and experimental
samples. Hence, four replicate gels of U. tomentosa protein

extracts from 12 h after BSO-JA addition were compared with the
same number of replicates from non-treated root cultures.

Although the gels showed the same profile, the control gels
exhibited more proteins than the elicited ones. The control gel
with higher protein spots (480) was used for the analysis as stan-
dard reference gel. An 87% of the protein spots on the other
three gels from untreated roots coincided with those found in the
reference gel, whereas those from elicited extracts were 85% coin-
cident. The new proteins that appeared after elicitation and those
proteins from the region pI 5–6 and 30–35 kDa (Figure 3) that, as
previously reported correspond to alkaloid biosynthesis enzymes
(Jacobs, 2005), were selected for sequenciation. The 14 identified
proteins (Table 2 and Supplementary Table 1) can be classified
into several functional categories, including energy metabolism
and photosynthesis: two triosephosphate isomerases (chloroplas-
tic and cytoplasmic; spots 1, 2, and 8), as the same protein in mul-
tiple spots differing in pI and Mr, and ribulose 1,5-bisphosphate
carboxylase (Rubisco) large chain (spot 4). Protein synthesis:
some proteins involved in the sulpur amino acid biosynthesis
such as cysteine synthase (spot 11) and methionine synthase
(spot 10) were up-regulated in BSO-JA conditions. Secondary
metabolism: oxidative stress increased the expression of protein
spots 7 and 9, identified as strictosidine synthase (STR) isoforms,
and spot 12 identified as caffeic acid O-methyltransferase. ROS
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FIGURE 3 | Representation of two-dimensional electrophoresis (2-D

SDS-PAGE) profiles of the soluble proteins extracted from Uncaria

tomentosa root cultures (250 µg). The proteins were separated on a pH 4-7

linear IPG strip, followed by 12% SDS-PAGE. The gel was visualized by Sypro

Ruby staining. Number indicates the protein spots identified by MS analysis.

scavenging, defense and stress: abundance of defense-related pro-
teins as ascorbate peroxidase (spot 3), proteasome alpha subunit
(spot 6), universal stress protein (spot 13), and pathogenesis-
related protein (spot 14) were altered during oxidative stress
condition.

Discussion

Induction of Hydrogen Peroxide and Antioxidant
Responses by BSO-JA Elicitation
The high increase in H2O2 combined with reduction of glu-
tathione concentration in U. tomentosa roots 12 h after addi-
tion of BSO-JA may reflect that oxidative stress conditions were
present. The plant cell protection of reduced glutathione (GSH)
against the oxidative injury is established by its redox buffering
activity and abundance. Therefore, treatment of plant cell or tis-
sue with the glutathione biosynthesis inhibitor BSO can lead to
weakened antioxidative defenses; an increase in the concentra-
tion of endogenousH2O2; and secondarymetabolites stimulation
(Berglund and Ohlsson, 1993; Guo and Ohta, 1993; Guo et al.,
1993). Furthermore, H2O2 is a secondary messenger that medi-
ates hormonal responses, biotic/abiotic environmental stresses,
and developmental signals (Neill et al., 2002). Thus, the jas-
monate signaling is mediated by H2O2 (Orozco-Cárdenas et al.,
2001), and is controlled via a suitable antioxidant response to
neutralize its adverse effects. The increase of peroxidase activity
in elicited cell and plant cultures has been found as a primary
response to oxidative stress (Quan et al., 2008), whereas glu-
tathione reductase plays a key role in the antioxidant defense pro-
cesses by reducing oxidized glutathione (GSSG) to glutathione
(GSH), thus allowing the maintenance of a high GSH/GSSG
ratio (Foyer and Noctor, 2005). Roots grown in the presence
of BSO would be unprotected by the glutathione diminution.

Nevertheless, the non-induction of GR activity at 12 h after elic-
itation could be caused by the increase in polyphenol content as
previously reported (Zhang et al., 1997).

Under the assayed conditions, BSO-JA addition did not affect
the biomass concentration and root viability, probably because
jasmonic acid would be inducing the biosynthesis and activity of
other defense responses (Sasaki-Sekimoto et al., 2005) offsetting
the antioxidant diminishing caused by BSO.

Relations among Activities of
Strictosidine-Related Enzymes, mRNA
Expression Levels, and Production of Phenols
and Alkaloids in BSO-JA Elicited Roots
In cell or plant cultures, a synergistic effect of elicitors on sec-
ondary metabolites production may occur (Zhao et al., 2005). It
has been reported that BSO induces oxidative stress by deple-
tion of glutathione (Noctor and Foyer, 1998), JA can induce ROS
production, and JA signaling is important for oxidative stress
tolerance (Sasaki-Sekimoto et al., 2005; Pauwels et al., 2008). Sep-
arate application of JA or BSO in U. tomentosa roots also elicited
the production of alkaloids but in smaller quantities (Vera-Reyes
et al., 2013). An increase in secondary metabolite production was
also obtained in carrot cells when BSO was used alone or in com-
bination with a yeast glucan elicitor, stimulating an increase in
the H2O2 at cellular level (Guo and Ohta, 1993). In U. tomen-
tosa cell cultures growing in bioreactors, a positive correlation
among the increment of endogenous H2O2 level, activities of
NAD(P)H oxidase and peroxidases, and MOA production was
reported (Trejo-Tapia et al., 2007). Moreover, H2O2 treatment
induced oxidative stress and alkaloid production in U. tomentosa
roots (Huerta-Heredia et al., 2009; Vera-Reyes et al., 2013).

In C. roseus, STR and strictosidine are confined inside the vac-
uole (McKnight et al., 1990) separated from the activity of the
nuclear localized SGD (Guirimand et al., 2010). In U. tomentosa
root cultures, a probable cell compartmentalization for alkaloids
has been suggested (Vera-Reyes et al., 2013) asMOAweremainly
found in the culture medium, while the glucoindole alkaloids 3α-
dihydrocadambine and dolichantoside were always found inside
the roots. Furthermore, alkaloid biosynthesis includes multiple
oxidations catalyzed in a stereo- and regiospecific fashion, indi-
cating that specific oxidases are involved in the in vivo biosynthe-
sis. It has been found that peroxidases, microsomal cytochrome
P-450-dependent enzymes, 2-oxoglutarate dependent dioxyge-
nases and flavoproteins catalyze some of these oxidations with
high substrate specificity enzymes (Kutchan, 1995). However,
in vitro studies have revealed the ability of plant peroxidases
to accept alkaloids as substrates as well as a number of vac-
uolar metabolites, such as phenols and flavonoids (Sottomayor
et al., 2004; Takahama, 2004). In response to the BSO-JA elic-
itation, polyphenols production in U. tomentosa root cultures,
mainly 3-O-caffeoylquinic acid and catechins, was highly stim-
ulated due to the prevailing oxidative stress. Therefore, polyphe-
nols, as flavonols and phenylpropanoids present in vacuoles and
the apoplast, can metabolize H2O2 as an electron donor for
phenol peroxidases. This change results in the formation of the
respective phenoxyl radicals, which can be regenerated by a non-
enzymatic reaction with ascorbate (Figure 4). Thus, inC. roseus it
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TABLE 2 | Protein identification through MALDI-TOF from Uncaria tomentosa root cultures under BSO-JA treatment.

Spot no. Identified protein Organism Accession no.

ENERGY METABOLISM

1 Triosephosphate isomerase chloroplastic Secale cereale P46225

2 Triosephosphate isomerase cytosolic Oryza sativa subsp. japonica P48494

8 Triosephosphate isomerase Solanum tuberosum Q3HRV9

PHOTOSYNTHESIS

4 Rubisco large chain Uncaria tomentosa D8V9G4

PROTEIN SYNTHESIS

5 Putative glycine-rich RNA binding protein Catharanthus roseus Q9M6A1

10 Methionine synthase Solanum tuberosum Q9LM03

11 Cluster of putative chloroplast cysteine synthase Nicotiana tabacum Q3LAG6

SECONDARY METABOLISM

7 Strictosidine synthase Ophiorrhiza pumila Q94LW9

9 Strictosidine synthase Mitragyna speciosa B7SFV7

12 Caffeic acid O-methyltransferase Coffea canephora Q8LL87

ROS SCAVENGING, DEFENSE, STRESS RELATED

3 Ascorbate peroxidase Nicotiana tabacum Q40589

6 Proteasome alpha subunit Solanum tuberosum Q38HT0

13 Universal stress protein Salvia miltiorrhiza KOA1Y2

14 Pathogenesis-related protein Olea europea J7FNN9

has been suggested that vacuolar alkaloids, peroxidases, and phe-
nolic derivatives can function as a hydrogen peroxide scavenging
system (Ferreres et al., 2011).

Differentially Expressed Proteins after BSO-JA
Elicitation
Identification of proteins that differ in stressed and control plants
has revealed groups of proteins that respond to oxidative stress
conditions with different roles. Nevertheless, the crucial limita-
tion for protein identification using mass spectrometry analysis is
the lack of the sequence data of genes and proteins of U. tomen-
tosa. The SWISS-PROT database (November 2014) only contains
five protein entries for this species. Consequently, identification
of proteins from 2D-gels requires the knowledge of the sequence
data and not relying solely on peptide masses. Several studies
reported that oxidative stress provoked different responses such
as induction or more often repression of the enzymes involved in
carbon metabolism. Therefore, plants must be required to make
an economical use of their metabolites and energy to deal with
adverse environments (Zhang et al., 2012).

It has also been reported that under conditions of oxidative
stress, Rubisco was differentially regulated even though its activ-
ity decreased having transcriptional and translational repression
thereof caused by jasmonates (Weidhase et al., 1987). Moreover,
JA stimulates the glutathione, ascorbate and cysteine accumula-
tion while increases dehydroascorbate reductase activity. This last
is a relevant enzyme involved in the ascorbate recycling system
(Sasaki-Sekimoto et al., 2005). Cysteine synthase is a key enzyme
in cysteine biosynthesis, which constitutes one of the significant
factors limiting GSH biosynthesis in plants (Vierling, 1991).

Proteolysis-related proteins like proteasome alpha subunit
were also more abundant in stressed conditions because they are

necessary for degradation of damaged proteins and for maintain-
ing cellular protein homeostasis (Kurepa et al., 2009). Evidence
obtained inU. tomentosa BSO-JA elicited cultures indicates post-
translational modifications of STR proteins in correlation with
the three times increase in the STR enzyme activity. Six isoforms
of the glycosylated enzyme STR have been detected in C. roseus
(De Waal et al., 1995), while in these cell cultures five STR
isoforms were induced after elicitation with P. aphanidermun
(Jacobs et al., 2005). It is known that jasmonic acid acts as a signal
for the biosynthesis of MIA, and is involved in the activation of
transcription factors such as ORCA, which have shown to activate
transcription of the STR (Peebles et al., 2009). Another interest-
ing protein identified as up-accumulated in the present study was
caffeic acid-O-methyl transferase, one of the key enzymes that
catalyzes O-methylation of the hydroxyl group at C5 in phenolic
rings (Tu et al., 2010). In general, most methyltransferases pos-
sess a broad substrate permissiveness, which also includes several
alkaloid N-methyltransferases (Zubieta et al., 2003; Nomura and
Kutchan, 2010).

The ascorbate peroxidase, which constitutes one of the most
important antioxidant systems for removal of H2O2 generated in
the cell, was also up-expressed by BSO-JA addition. Deficiency
of cytosolic ascorbate peroxidase occasioned accumulation of
H2O2 and consequently damage in specific proteins of leaf cells
(Davletova et al., 2005).

In U. tomentosa root cultures, BSO-JA elicitation induced
intracellular JA and H2O2 accumulation by glutathione deple-
tion (Figure 4). They act as a signal transducers and secondary
messengers, triggering signaling cascades and activating cer-
tain late genes that regulate the activity of detoxifying enzymes
associated with antioxidant compounds. Therefore, production
of alkaloids and specific phenylpropanoids is also activated,
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FIGURE 4 | Schematic network of alkaloid and polyphenol

activation through signal transduction caused by oxidative stress

in Uncaria tomentosa root cultures. The elicitation with BSO-JA

activates a signal cascade into the cell which include Ca2+ influx,

cytosolic free Ca2+, stimulation of peroxidases, NADPH oxidases, and

phospholipases, which further generates other signaling messengers,

such as ROS (Quan et al., 2008) and JA together with inducible

secondary metabolites production (Zhao et al., 2005; Peebles et al.,

2009). *Inhibition of GSH biosynthesis by BSO could provoke an

increase in ROS (H2O2) due to non-enzymatic scavengers such as

ascorbate or GSH are unable to be regenerated into the cell (Guo and

Ohta, 1993). In order to maintain the redox equilibrium in the cell,

production of antioxidant compounds as polyphenols and alkaloids

(secondary metabolites) could be induced (Ramos-Valdivia et al., 2012).

Polyphenols (Ph) can detoxify H2O2 as electron donors by peroxidases

(PDO), which results in formation of the respective phenolic radical

(Ph•). This species can be regenerated by a non-enzymatic reaction

with ascorbate. Dehydroascorbate (DHA) may be reduced back to

ascorbate by a dehydroascorbic acid reductase (DHAR) (Ferreres et al.,

2011). Superoxide dismutase (SOD); glutathione peroxidase (GPx).

protecting roots from oxidative stress damage. Identification of
proteins with diverse roles that are present in oxidative stress con-
ditions evidences the complexity of the responses. This approach
contributes to the understanding of the metabolic mechanisms
operating in U. tomentosa subjected to oxidative stress and the
manner how this plant produces the appropriate adjustments for
tolerating them.
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NADPH is an essential reductive coenzyme in biosynthetic processes such as cell growth,
proliferation, and detoxification in eukaryotic cells. It is required by antioxidative systems
such as the ascorbate-glutathione cycle and is also necessary for the generation of
superoxide radicals by plant NADPH oxidases and for the generation of nitric oxide (NO) by
L-arginine-dependent nitric oxide synthase. This coenzyme is principally re-generated by a
group of NADP-dehydrogenases enzymes including glucose-6-phosphate dehydrogenase
(G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH), both belonging to the
pentose phosphate pathway, the NADP-malic enzyme (NADP-ME), and NADP-isocitrate
dehydrogenase (NADP-ICDH). In this study, current perspectives on these enzymes in
higher plants under different stress situations are reviewed and it is also pointed out
that this group of NADPH-generating dehydrogenases is a key element in supporting the
mechanism of response to nitro-oxidative stress situations.

Keywords: G6PDH, 6PGDH, ICDH, NAPDH, NADP-ME, nitric oxide, nitrosative stress, oxidative stress

INTRODUCTION
The supply of reducing equivalents in the form of NADPH (the
reduced form of the nicotinamide adenine dinucleotide phos-
phate) is essential in all living organisms (Pandolfi et al., 1995;
Barroso et al., 1998; Ying, 2008). Thus, NADPH is required
for cell growth and proliferation which are necessary in several
metabolic pathways including fatty acid biosynthesis, biosynthesis
of sugars in the Calvin cycle, biosynthesis of carotenoids, con-
version of ribonucleotide (RNA) to deoxy-ribonucleotide (DNA)
and regulation of chloroplast protein import via the metabolic
redox status of the chloroplast, specifically in the Tic62, (a com-
ponent of the translocon at the inner envelope of chloroplasts,
Tic complex) (Stengel et al., 2008; Kovács-Bogdán et al., 2010).
NADPH is also required by NADPH-cytochrome P450 reduc-
tases (Ro et al., 2002), the generation of superoxide radicals by
the NADPH oxidase (NOX) (Sagi and Fluhr, 2006) and is a
necessary cofactor for the generation of nitric oxide (NO) by L-
arginine-dependent nitric oxide synthase (NOS) activity (Corpas
et al., 2009). NADPH is also essential by different antioxidative
systems including the activity of glutathione reductase (GR), a
key enzyme in the ascorbate-glutathione cycle to protect against
oxidative damage (Noctor et al., 2006; Gill et al., 2013), and by

Abbreviations: FNR, ferrodoxin-NADP reductase (FNR ferrodoxin-NADP reduc-
tase); G6PDH, glucose-6-phosphate dehydrogenase; GR, glutathione reductase;
NADKs, NAD kinases; NADP-ICDH, NADP-isocitrate dehydrogenase; NADP-ME,
NADP-malic enzyme; NO, nitric oxide; NOS, nitric oxide synthase; NOX, NADPH
oxidase; NTRs, NADPH-dependent thioredoxin reductases; ONOO−, peroxyni-
trite; 6PGDH, 6-phosphogluconate dehydrogenase; ROS, reactive oxygen species;
RNS, reactive nitrogen species; Tic, The Inner envelope of Chloroplasts.

NADPH-dependent thioredoxin reductases (NTRs) in the reg-
ulation of metabolic pathways through thiol group reduction
(Spinola et al., 2008; Cha et al., 2014). Curiously, in this last
case it has been reported that the chloroplastic G6PDH activ-
ity can undergo a redox regulation by thioredoxin (Née et al.,
2014) which suggests a complex interaction between the source
of NADPH and the NTR system. In consequence, the ultimate
antioxidant capacity of the cell must be determined by the avail-
ability of reducing equivalents. Figure 1 summarizes the main
pathways in plant cells where NADPH is required.

There are several enzymatic components involved in the
maintenance of the pool of NADP and NADPH. NAD kinases
(NADKs) catalyze the direct phosphorylation of NAD to NADP
and therefore contribute to the generation of the cellular NADP
pool (Pollak et al., 2007; Agledal et al., 2010). On the other
hand, ferrodoxin-NADP reductase (FNR) in photosynthetic cells
during the light phase is recognized as a principal source of
NADPH. However, in non-photosynthetic cells during the dark
phase of photosynthesis, the main enzymes capable of generat-
ing power reduction in the form of NADPH are the following:
glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) and
6-phosphogluconate dehydrogenase (6PGDH, EC 1.1.1.44) (both
belonging to the pentose phosphate pathway), NADP-isocitrate
dehydrogenase (NADP-ICDH, EC 1.1.1.42) and NADP-malic
enzyme (NADP-ME, EC 1.1.1.40), also known as NADP-malate
dehydrogenase. This mini-review will focus on these groups
of NADPH recycling dehydrogenases, principally in relation to
their role as second lines of defense against nitro-oxidative
stress.
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FIGURE 1 | NADP-dehydrogenases as enzymatic sources of NAPDH in

plant cells and its implications in cellular detoxification, cell growth

and development.

SUBCELLULAR NADP-DEHYDROGENASE
COMPARTMENTALIZATION AS A NADPH SUPPLY
REGULATION MECHANISM
The NADPH pool is required in many processes while the con-
tribution of each NADP-dehydrogenase in specific situations is
difficult to determine. However, cell compartmentalization is
required as an additional control mechanism in order to keep
the NADPH supply close to the system when required, partic-
ularly given that NADPH is part of a network containing other
energy-rich molecules such as NADH and ATP (Scheibe and
Dietz, 2012). In addition, given that NADPH is not easily trans-
ported across membranes but, rather, operates through indirect
shuttle systems, all these NADP-dehydrogenases usually have dif-
ferent isozymes which are localized in the different subcellular
compartments. Although the localization of some of these NADP-
dehydrogenases in the different organelles has been described in
different plant species (Gálvez and Gadal, 1995; Corpas et al.,
1998, 1999; Debnam and Emes, 1999; Hodges et al., 2003; Kruger
and von Schaewen, 2003; Leterrier et al., 2007), the availabil-
ity of genomes in higher plants such as Arabidopsis thaliana and
Oryza sativa has facilitated a more systematic analysis of differ-
ent NADP-dehydrogenases (Chi et al., 2004; Wakao and Benning,
2005; Wheeler et al., 2005).

FUNCTION OF NADP-DEHYDROGENASES UNDER
ENVIRONMENTAL STRESS CONDITIONS
Under diverse biotic and abiotic stress conditions, plants have
developed a whole battery of response mechanisms in order to
overcome any potential cellular damage. In many cases, these
processes could be accompanied by an uncontrolled increase in
reactive oxygen and nitrogen species (ROS and RNS) which might

generate nitro-oxidative stress (Corpas et al., 2007; Corpas and
Barroso, 2013). As all these processes usually involve a redox
response, an additional NADPH supply may be required for all
the pathways using it.

To support this hypothesis, there is a body of evidence to
show that, under specific stress conditions, one or more NADP-
dehydrogenases are regulated at the level of activity and pro-
tein/gene expression (Valderrama et al., 2006; Liu et al., 2007,
2013; Marino et al., 2007; Mhamdi et al., 2010; Airaki et al.,
2012). Moreover, the importance of some of these NADP-
dehydrogenases has been confirmed by reverse genetic studies
(Scharte et al., 2009; Dal Santo et al., 2012; Voll et al., 2012;
Siddappaji et al., 2013).

In olive plants (Olea europaea) under salinity-induced nitro-
oxidative stress, a general increase in the activity of the
main antioxidative systems (catalase, superoxide dismutase and
enzymes of the ascorbate-glutathione cycle) was accompanied
by a significant increase in the activity and protein expression
of G6PDH, NADP-ME, and NADP-ICDH (Valderrama et al.,
2006, 2007). Similar behavior has been reported in leaves from
pepper plants (Capsicum annum) exposed to cadmium stress
which generates oxidative stress and a concomitant increase in the
activity of all NADP-dehydrogenases (G6PDH, 6PGDH, NADP-
ME, and NADP-ICDH) (León et al., 2002). In pepper plant
leaves exposed to low temperatures (8◦C) for different periods
of time (1–3 d) after 24 h treatments, we observed alterations
in the metabolism of ROS and RNS (an increase in lipid oxi-
dation and protein nitration) and a general rise in the activity
of the main NADPH-generating enzymes (G6PDH, 6PGDH,
NADP-ME, and NADP-ICDH) which appeared to contribute
to cold acclimation (Airaki et al., 2012). Arabidopsis seedlings
grown under salinity conditions (100 mM NaCl) also displayed
nitro-oxidative stress. Among the NADPH-generating dehydro-
genases (G6PDH, 6PGDH, NADP-ME, and NADP-ICDH) ana-
lyzed under these conditions, NADP-ICDH showed maximum
activity levels, mainly attributable to the root NADP-ICDH
(Leterrier et al., 2012c). Another study of NADP-ICDH activ-
ity in Arabidopsis has demonstrated that this enzyme’s kinetic
parameters vary depending on the organ involved, being the spe-
cific activity much higher in roots than in leaves. In vitro analysis
of NADP-ICDH activity in the presence of different ROS and
RNS showed that H2O2 does not affect this activity in either
organ; however, reduced glutathione (GSH) inhibited activity in
leaves but not in roots. On the other hand, S-nitrosoglutathione,
a cellular S-nitrosothiol used as a NO donor, and peroxynitrite
(ONOO−) depressed NADP-ICDH activity in leaves and roots
(Leterrier et al., 2012b). Modulation of NADP-ICDH activity by
RNS was also observed in pea roots (Pisum sativum) during nat-
ural senescence which is associated with nitro-oxidative stress
since there are increases in the ONOO− levels and in the num-
ber of nitrated proteins. Thus, cytosolic NADP-ICDH activity was
shown to be inhibited by nitration at Tyr392 during senescence in
a process mediated by peroxynitrite (Begara-Morales et al., 2013).

Depending on the plant species involved, the organs ana-
lyzed and the intensity of stress, the response of the NAPD-
dehydrogenases could also be vary. Thus, in tomato roots
(Solanum lycopersicum) under salinity conditions (120 mM
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NaCl) accompanied by oxidative stress, an overall decrease
in NADPH content and the enzymatic activities of the main
NADPH-generating dehydrogenases has been reported, especially
NADP-ICDH activity which recorded a drastic reduction of 94%
(Manai et al., 2014). This could be explained by the sensi-
tivity of this enzyme to post-translational modification medi-
ated by ONOO− as observed in pea roots during senescence
(Begara-Morales et al., 2013). However, in Arabidopsis thaliana
seedlings exposed to arsenic (1 mM KH2AsO4) which also gen-
erates nitro-oxidative stress based in the concomitant increase of
tyrosine-nitration and lipid peroxidation, the activity of NADP-
dehydrogenases (G6PDH, 6PGDH, and NADP-ICDH) did not
vary significantly, suggesting that the supply of NAPDH was suffi-
cient to withstand this stress (Leterrier et al., 2012a). Alternatively,
the involvement of Arabidopsis cytosolic NADP-ICDH in leaves
has been demonstrated to contribute to the maintenance of
redox homeostasis under biotic stress caused by Pseudomonas
syringe (Mhamdi et al., 2010). In the leaves of tobacco plants
(Nicotiana tabacum), NADP-ME activity increased significantly
in response to drought (Doubnerová-Hısková et al., 2014). On
the other hand, in Lotus japonicus exposed to water stress, differ-
ential and spatially distributed nitro-oxidative stress was reported
in roots and leaves. Analysis of NADP-dehydrogenase activities in
roots revealed that, whereas G6PDH and NADP-ICDH activity
decreased 6.5- and 1.5-fold, respectively, 6PGDH and NADP-
ME increased 1.5- and 1.3-fold, respectively. However, no leaf
NADP-dehydrogenase appeared to be affected, except for G6PDH
which decreased by around 50% under water stress conditions
(Signorelli et al., 2013). Table 1 summarizes some examples of
the response of NADP-dehydrogenases to nitro-oxidative stresses
generated by different abiotic stresses.

As mentioned above, certain post-translation modifications
could negatively affect activity under stress conditions although
up-regulation has also been reported. For example, in Arabidopsis

thaliana under salinity (150 mM NaCl) stress conditions, the
cytosolic G6PDH isozyme (G6PD6) is targeted by phosphory-
lation at Thr-467 whose activity increased. The important role
played by this dehydrogenase was corroborated using Arabidopsis
thaliana knockout mutants of cytosolic G6PDH (G6PD6) where
the cellular redox state was altered and plants were more sensitive
to salt stress (Dal Santo et al., 2012). The importance of cytoso-
lic G6PDH in the leaves of tobacco plants (Nicotiana tabacum)
at an early stage of defense against the Phytophthora nicotianae
pathogen which is accompanied by oxidative burst has also been
reported. This was demonstrated using a genetic approach involv-
ing over-expression of this G6PDH isozyme which improved
NADPH provision for pathogen-activated NOXs at the plasma
membrane during early oxidative burst (Scharte et al., 2009).
In addition, these tobacco plants showed heightened resistance
to drought stress. In the same way, transgenic tobacco plants
over-expressing the cytosolic G6PDH from Populus suaveolens
have enhanced cold (4◦C) tolerance. Beside of the increased
G6PDH activity, these transgenic plants showed lower level of
lipid oxidation and higher activity of antioxidant enzymes such
as superoxide dismutase and peroxidase. Moreover, these plants
have activated the expression of stress-related genes. Therefore,
these data clearly show the regulatory function of G6PDH during
low temperature stress (Lin et al., 2013).

There are other examples of certain specific NADP-
dehydrogenases being regulated at the level of activity and
gene expression under diverse stress conditions. For instance,
G6PDH mRNA expression in wheat seedlings under salt stress
conditions of 150 mM NaCl reached a maximum level at 12 h
of the treatment (Nemoto and Sasakuma, 2000). A similar
response was observed in the expression of the 6PGDH gene
which was up-regulated in rice shoots under salt stress (150 mM
NaCl) (Huang et al., 2003). By using the Arabidopsis cytosolic
NADP-ICDH knockout mutant, it has been reported that the

Table 1 | Examples of the response of NADP-dehydrogenases to nitro-oxidative stresses generated by different abiotic stresses.

Stress Plant specie Organs Response of NADP-dehydrogenases References

Salinity

NaCl (100 mM) Arabidopsis thaliana Roots Increase activity of NADP-ICDH Leterrier et al., 2012c
NaCl (120 mM) Tomato (Solanum lycopersicum) Roots Decrease activity of NADP-ICDH Manai et al., 2014
NaCl (200 mM) Olive (Olea europaea) Leaves Increase activity and protein expression of

G6PDH, NADP-ME and NADP-ICDH
Valderrama et al.,
2006

Drought

Drought Tobacco (Nicotiana tabacum) Leaves Increase activity of NADP-ME Doubnerová-Hısková
et al., 2014

Drought Lotus japonicus Roots Decrease activity of G6PDH and NADP-ICDH
but increase activity of 6PGDH and NADP-ME

Signorelli et al., 2013

Heavy metal and metalloids

CdCl2 (0.5 mM) Pepper (Capsicum annum cv Abdera) Leaves Increase activity of G6PDH, 6PGDH,
NADP-ME and NADP-ICDH

León et al., 2002

Arsenic (1 mM) Arabidopsis thaliana Seedlings G6PDH, 6PGDH and NADP-ICDH activities do
not change

Leterrier et al., 2012a

Atmospheric factors

Low temperature
(8◦C)

Pepper (Capsicum annum) Leaves Increase activity of G6PDH, 6PGDH,
NADP-ME and NADP-ICDH

Airaki et al., 2012

Ozone Hybrid poplar Leaves Increase activity of G6PDH and NADP-ME Dghim et al., 2013b
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loss of this isozyme function does not markedly affect the
response of Arabidopsis to ozone. However, other cytosolic
NADPH-producing enzymes (G6PDH and NADP-ME) showed
a significant increase which contributed to maintaining the status
of NADPH redox (Dghim et al., 2013a). A similar increase in
G6PDH and NADP-ME has also been reported in hybrid poplar
leaves in response to ozone (Dghim et al., 2013b).

CONCLUSIONS
Together with NADH, NADPH participates in the equilibrium of
cellular redox homeostasis and also maintains certain antioxidant
systems such as the ascorbate-glutathione cycle and NTRs. Thus,
NADP-dehydrogenase systems should be regarded as a second
line of defense in order to maintain the effective functioning of the
main antioxidative systems. Biochemical and genetic approaches
provide a strong data basis to confirm the essential involve-
ment of NADP-dehydrogenases in the mechanism of response to
nitro-oxidative stress situations. Organ distribution and subcel-
lular compartmentalization are regarded as additional regulatory
mechanisms of these systems to ensure that the NADPH supply is
at the required location. Future research will be essential to iden-
tify the specific involvement of each NADP-dehydrogenase in the
different organs and cellular compartments supporting a particu-
lar pathway as all these enzymes are also involved in nitrogen and
carbohydrate metabolisms.
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Regulation of mitochondrial metabolism is essential for ensuring cellular growth and
maintenance in plants. Based on redox-proteomics analysis, several proteins involved in
diverse mitochondrial reactions have been identified as potential redox-regulated proteins.
NAD+-dependent isocitrate dehydrogenase (IDH), a key enzyme in the tricarboxylic acid
(TCA) cycle, is one such candidate. In this study, we investigated the redox regulation
mechanisms of IDH by biochemical procedures. In contrast to mammalian and yeast
counterparts reported to date, recombinant IDH in Arabidopsis mitochondria did not
show adenylate-dependent changes in enzymatic activity. Instead, IDH was inactivated
by oxidation treatment and partially reactivated by subsequent reduction. Functional
IDH forms a heterodimer comprising regulatory (IDH-r) and catalytic (IDH-c) subunits.
IDH-r was determined to be the target of oxidative modifications forming an oligomer
via intermolecular disulfide bonds. Mass spectrometric analysis combined with tryptic
digestion of IDH-r indicated that Cys128 and Cys216 are involved in intermolecular disulfide
bond formation. Furthermore, we showed that mitochondria-localized o-type thioredoxin
(Trx-o) promotes the reduction of oxidized IDH-r. These results suggest that IDH-r is
susceptible to oxidative stress, and Trx-o serves to convert oxidized IDH-r to the reduced
form that is necessary for active IDH complex.

Keywords: Arabidopsis, isocitrate dehydrogenase, mitochondria, redox regulation, thioredoxin

INTRODUCTION
Mitochondria play a pivotal role in providing ATP required for
various cellular events in all eukaryotes. In mitochondrial res-
piration, the tricarboxylic acid (TCA) cycle generates NADH
and FADH2 by metabolizing organic acids. These products are
then used to drive electron transport in the respiratory chain
and coupled ATP production. In addition to this fundamental
energy conversion process, mitochondria host a large number
of metabolic pathways. Flexible regulation of these mitochon-
drial reactions is important for ensuring proper cellular function,
particularly in plants, which cannot escape exposure to adverse
environmental conditions. Although our knowledge of the reg-
ulatory mechanisms of plant mitochondria has advanced, much
still remains to be solved, particularly the question of how each
mitochondrial enzyme is controlled at the post-translational level
(Millar et al., 2011; Tcherkez et al., 2012; Lázaro et al., 2013;
Nunes-Nesi et al., 2013).

In the last decade, the progress of redox-proteomics analy-
sis has provided hints that a wide variety of biological processes
are governed by the redox state of their responsible enzymes
(Hisabori et al., 2007; Montrichard et al., 2009; Lindahl et al.,
2011). Thioredoxin (Trx), a small ubiquitous protein, plays a
crucial role in redox regulation. Trx has a conserved WCGPC
motif at an active site, enabling a dithiol–disulfide exchange

reaction with the target enzyme. Based on the subcellular local-
ization and sequence similarity, plant Trxs are classified into
seven subtypes (f -, m-, h-, o-, x-, y-, and z-type). Although it
has been recognized that the Trx-o resides in plant mitochon-
dria (Laloi et al., 2001), information about the target proteins
of Trx-o is limited to date. Using Trx affinity chromatography
(Motohashi et al., 2001), we recently performed the systematic
screening of Trx-targeted proteins in plant mitochondria and
identified a list of target candidates (Yoshida et al., 2013). Redox-
proteomics studies by other groups have also suggested that
diverse proteins involved in manifold mitochondrial processes
are redox-regulated via the interaction with Trx (Balmer et al.,
2004; Winger et al., 2007). However, careful biochemical study is
needed to determine whether these candidate proteins are actually
redox-regulated.

NAD+-dependent isocitrate dehydrogenase (IDH) is one of
the proteins that were captured by Trx affinity chromatography
(Yoshida et al., 2013). IDH catalyzes the oxidative decarboxyla-
tion of isocitrate to 2-oxoglutarate coupled to NADH generation,
and thus supports the TCA cycle flux. In yeast, it is well estab-
lished that the minimal functional unit of IDH is a heterodimer
comprising regulatory (IDH-r) and catalytic (IDH-c) subunits
(Panisko and McAlister-Henn, 2001). Furthermore, detailed bio-
chemical and structural analyses have provided evidence that
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yeast IDH is allosterically activated by AMP and inactivated by
intermolecular disulfide bond formation between IDH-c subunits
(Lin and McAlister-Henn, 2003; Taylor et al., 2008; Garcia et al.,
2009). In contrast, to our knowledge, there are few reports on
the biochemical analysis of plant IDH, although plant IDH has
been also suggested to be active in a heterodimeric form based
on sequence comparison with its yeast counterpart and the com-
plementation test of yeast IDH mutants with plant IDH genes
(Lancien et al., 1998; Lemaitre and Hodges, 2006). The regula-
tory mechanism of plant mitochondrial IDH thus remains poorly
characterized.

In this study, we focused on the molecular basis for con-
trolling IDH activity in Arabidopsis mitochondria with special
attention to redox regulation. The results indicate that IDH-r
forms intermolecular disulfide bonds upon oxidation, leading to
a drastic decrease in IDH activity. We also showed that Trx-o
assists in the reduction of oxidized IDH-r. Based on these find-
ings, a novel regulatory mode of plant mitochondrial IDH is
discussed.

MATERIALS AND METHODS
PREPARATION OF EXPRESSION PLASMIDS FOR IDH-r AND IDH-c
Total RNA was isolated from Arabidopsis thaliana as described
in Yoshida and Noguchi (2009) and used as a template
for RT-PCR. The IDH1 (At4g35260, encoding IDH-r) and
IDH5 (At5g03290, encoding IDH-c) gene fragments encod-
ing the mature protein region (Val26-Asp367 and Ile44-Leu374,
respectively) were amplified with the following oligonucleotide
primer combination; 5′-AACTGCAGCATATGGTGACTTACAT
GCCCAGACC-3′ (NdeI) and 5′- GCGAATTCAGTCTAGTTTTG
CAATGA-3′ (EcoRI) for IDH1, 5′- AACTGCAGCATATGATCA
CCGCAACTCTCTTCCCT-3′ (NdeI) and 5′-AAGGATCCTCAG
AGATGATCACAGATTG-3′ (BamHI) for IDH5. The restriction
sites for the enzyme shown in parentheses are underlined. Each of
the amplified DNA was ligated into the pET23c expression vector
(Novagen). The sequences were confirmed by DNA sequencing
(3730xl DNA Analyzer; Applied Biosystems).

PROTEIN EXPRESSION AND PURIFICATION
The IDH1 and IDH5 expression plasmids described above were
transformed into E. coli strain BL21 (DE3) to express IDH-r and
IDH-c proteins, respectively. The transformed cells were grown
at 37◦C until A600 = 0.4–0.8. Expression was induced by adding
0.5 mM IPTG, followed by further culture at 21◦C overnight.
The E. coli cells were disrupted by sonication. After centrifuga-
tion (125,000 ×g for 40 min), the resulting supernatant was used
to purify the protein of interest. Each protein was purified by a
combination of anion exchange chromatography, using a DEAE-
Toyopearl 650M column (Tosoh) and Q-Toyopearl 600C column
(Tosoh), and hydrophobic interaction chromatography, using a
Butyl-Toyopearl 650M column (Tosoh), as described in Yoshida
et al. (2013). Purification was performed in a medium containing
25 mM Tris-HCl (pH 7.5–8.1), 1 mM EDTA, and 0.5 mM DTT,
but EDTA and DTT were removed by dialysis after purification.
All of the procedures during purification were carried out at 4◦C.
The protein concentration was determined with a BCA protein
assay (Pierce).

IDH ACTIVITY MEASUREMENT
Prior to the assay, 2 μM IDH-r and 2 μM IDH-c were mixed in
a medium containing 25 mM Tris-HCl (pH 7.5), 5 mM MgCl2,
and 20 mM isocitrate. After incubation at 25◦C for 30 min, the
mixed solution was used for activity measurement. IDH activ-
ity was monitored as an increase in absorbance at 340 nm due to
NAD+ reduction. The molar extinction coefficient for NADH of
6.22 mM−1 was used for calculation of the amounts of generated
NADH. Assays were performed at 25◦C in a medium containing
25 mM Tris-HCl (pH 7.5), 5 mM MgCl2, 2 mM NAD+, and indi-
cated concentrations of isocitrate. IDH-r and IDH-c were added
at 40 nM each.

To test the adenylate effects on IDH activity, each adenylate
(AMP, ADP, and ATP) was added at 1 mM to the media described
above.

PEPTIDE MAPPING ANALYSIS
After separation by non-reducing SDS-PAGE, stained protein
bands of interest were excised from the gel and fully destained

FIGURE 1 | Activity measurements of Arabidopsis IDH recombinant

protein. (A) SDS-PAGE profiles of purified recombinant IDH-r and IDH-c.
(B) Monitoring of NAD+-reducing activity of IDH. Time course of
absorbance change at 340 nm (Abs340) is shown. IDH-r and/or IDH-c (40 nM
each) were added to a reaction medium. Isocitrate concentration was
5.4 mM. The reaction was initiated by the addition of NAD+ (2 mM) at the
time point indicated by arrow. See Materials and Methods for details. (C)

The effect of adenylate on IDH activity under several concentrations of
isocitrate. Each adenylate (AMP, ADP, ATP) was added at 1 mM. Each value
represents the mean ± SD (n = 3).
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with 50 mM NH4HCO3 and 50% (v/v) acetonitrile. The gel
slice was then incubated in 55 mM iodoacetamide and 100 mM
NH4HCO3 for protecting free Cys residues. The gel slice was
dried completely and then incubated with 50 mM NH4HCO3

containing 20 ng μl−1 trypsin at 37◦C overnight. Tryptic pep-
tides were extracted from the gel with 0.1% (v/v) trifluoroacetic
acid with 50 and 75% (v/v) acetonitrile, continuously. Whole
extracts were concentrated using a centrifugal concentrator and
desalted using Solid Phase Extraction C-TIP (Nikkyo Technos).
The peptide sample was spotted onto the matrix (α-cyano-4-
hydroxycinnamic acid) and air-dried on a MALDI plate (MTP
384 target plate ground steel BC, Bruker Daltonics). MALDI mass
spectra were obtained using an UltrafleXtreme-TK2 spectrometer
(Bruker Daltonics). Results were queried with the Mascot search
engine (http://www.matrixscience.com/) to identify matched
peptides.

Trx-DEPENDENT REDUCTION OF OXIDIZED IDH-r
For oxidation treatment, IDH-r was incubated in 50 μM CuCl2
for 15 min at 25◦C. After dialysis for the removal of CuCl2, the
oxidized IDH-r was incubated in a medium containing 25 mM
Tris-HCl (pH 7.5), indicated concentrations of DTT, and indi-
cated concentrations of Trx-o1 for 30 min at 25◦C. The IDH-
r redox state was assayed by non-reducing SDS-PAGE. IDH-r
equivalent to 1 μg was loaded into each lane. The Arabidopsis
recombinant Trx-o1 protein was prepared and confirmed to be
efficient in dithiol–disulfide exchange reaction in our previous
study (Yoshida et al., 2013).

RESULTS
ARABIDOPSIS IDH IS INSENSITIVE TO ADENYLATES
In Arabidopsis, there are five genes encoding mitochondrial IDH
subunits. Based on the similarity with yeast IDH, three genes
(IDH1, IDH2, and IDH3) are regarded as the genes encoding
the IDH-r subunit, whereas two genes (IDH5 and IDH6) encode
the IDH-c subunit (Supplementary Fig. S1). Primary amino acid
sequences of these gene products show high identity among each
isoform (IDH1-3; >84%, IDH5-6; 90%, mature protein region
except for targeting peptide). Given that IDH1 and IDH5 gene
products appear to be more abundantly expressed in Arabidopsis
(Yoshida et al., 2013), we prepared recombinant proteins from
these genes as representative IDH-r and IDH-c, respectively

Table 1 | Effects of adenylates on kinetic parameters of Arabidopsis

IDH recombinant protein.

Km
a (mM) V max

a (µmol/min/mg protein)

Control 0.30 ± 0.05 27.9 ± 1.9

+ AMPb 0.33 ± 0.07 29.6 ± 0.8

+ ADPb 0.23 ± 0.02 27.7 ± 1.3

+ ATPb 0.30 ± 0.12 28.7 ± 2.9

aThe Km and Vmax values for isocitrate were calculated using a Hanes–Woolf

plot.
bEach adenylate was added at 1 mM.

Each value represents the mean ± SD (n = 3).

(Figure 1A). NAD+-reducing activity was observed in the pres-
ence of both subunits, whereas neither subunit alone showed any
catalytic activity (Figure 1B). This finding clearly shows that both
IDH-r and IDH-c are essential for functional IDH in Arabidopsis.

It has been well documented that ADP and AMP act as
allosteric activators of IDH in mammal and yeast (Nunes-Nesi
et al., 2013). For example, the Km value for isocitrate in yeast
IDH is drastically lowered in the presence of AMP (Lin and
McAlister-Henn, 2003). However, it remains unclear whether this
regulatory mechanism is common for plant IDH. We accord-
ingly investigated the effects of adenylates on IDH activity. No
adenylates (AMP, ADP, and ATP) affected the saturation veloc-
ity curve (Figure 1C) or correspondingly the Km and Vmax values
(Table 1) for isocitrate. These results imply that changes in the
mitochondrial adenylate energy charge have no direct impact on
IDH activity in Arabidopsis.

IDH-r FORMS INTERMOLECULAR DISULFIDES, LEADING TO A LOSS OF
IDH CATALYTIC ACTIVITY
We next investigated whether IDH activity is controlled by
the redox state of the enzyme molecule itself. Prior to the

FIGURE 2 | Redox regulation of Arabidopsis IDH recombinant protein.

(A) Redox-dependent change in IDH activity. For oxidation (Ox) treatment,
IDH-r or IDH-c was incubated in 50 μM CuCl2 for 15 min. For re-reduction
(Ox → Red) treatment, IDH-r after Ox treatment was incubated in 50 mM
DTT for 30 min. Each value represents the mean ± SD (n = 4). (B)

Non-reducing SDS-PAGE profiles of IDH-r after reduction (Red) treatment
(5 mM DTT for 15 min) or Ox treatment. (C) Non-reducing SDS-PAGE
profiles of IDH-r after Ox → Red treatment.
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assay, IDH-r or IDH-c was incubated in the presence of
50 μM CuCl2 to oxidize the possible thiols on the protein
molecule. While the oxidation treatment of IDH-c exerted
no significant effect, the IDH-r oxidation nearly completely
suppressed enzymatic activity when the oxidized IDH-r was
mixed with untreated IDH-c (Figure 2A). As revealed by non-
reducing SDS-PAGE, IDH-r was shifted to dimeric, trimeric,
and higher-order oligomeric forms mediated by intermolecu-
lar disulfide bonds under oxidative conditions (Figure 2B). The
reduction of oxidized IDH-r restored IDH activity to approx-
imately half of the control level (Figure 2A), accompanied by
the cleavage of the intermolecular disulfide bonds (Figure 2C).
It thus appeared that Arabidopsis IDH is reversibly inacti-
vated in response to oxidative stress via oligomer formation
of IDH-r.

Cys128 AND Cys216 CONSERVED IN IDH-r PLAY A CRITICAL ROLE IN
THE REDOX REGULATION OF IDH
In plant IDH-r, six Cys residues are commonly conserved
(Supplementary Fig. S1). We attempted to identify the Cys
residues involved in intermolecular disulfide bond formation of
IDH-r. For this purpose, proteins in the reduced monomeric
and the oxidized trimeric forms (the prevalent form of IDH-r
oligomer) were in-gel digested using trypsin after non-reducing
SDS-PAGE (Figure 2B). Mass spectra of the resulting peptides

were then acquired (Figure 3). Three major peptides (m/z:
1280.6, 2276.2, and 2404.3) were specifically detected in the
reduced monomeric form but not in the oxidized trimeric form.
By searching for matching peptides using Mascot, the peptides
were determined to correspond to Leu207-Arg217, Glu118-Arg137,
and Lys117-Arg137 (calculated masses: 1279.6, 2275.2, and 2403.3,
respectively) in IDH-r, respectively. The peptide Leu207-Arg217

contained Cys216, whereas Glu118-Arg137 and Lys117-Arg137 con-
tained Cys128. These Cys residues are thus likely to be pri-
marily involved in redox changes in the Arabidopsis IDH-r
molecule.

Trx-o PROMOTES THE REDUCTION OF OXIDIZED IDH-r
Finally, we addressed the involvement of Trx-o in redox regulation
of IDH-r (Figure 4). The reduction patterns of oxidized IDH-r
under several concentrations of DTT (0–500 μM) were com-
pared in the presence and absence of 5 μM Trx-o1 (an isoform
of Trx-o). When Trx-o1 was added to a reaction medium, IDH-
r was reduced back to monomer even at lower concentrations of
DTT (Figure 4A). We further analyzed the reduction of oxidized
IDH-r with varying Trx-o1 concentration (0–5 μM) under low
concentration of DTT (50 μM). The efficiency of IDH-r reduc-
tion was highly dependent on Trx-o1 concentration (Figure 4B).
These findings suggest that Trx-o1 can efficiently reduce oxidized
IDH-r.

FIGURE 3 | Mass spectrometry of IDH-r tryptic peptides. The reduced
monomeric form (Upper panel) and the oxidized trimeric form (Lower

panel) were analyzed. The specific signals for monomeric form are

indicated by arrows and the corresponding peptides are shown.
Experiments were repeated five times and representative results are
shown.
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FIGURE 4 | Trx-dependent reduction of oxidized IDH-r. (A) Oxidized
IDH-r was incubated in several concentrations of DTT in the absence (upper
panel) or presence (lower panel) of 5 μM Trx-o1 for 30 min. (B) Oxidized
IDH-r was incubated in several concentrations of Trx-o1 in the presence of
50 μM DTT for 30 min. The redox state of IDH-r was assayed by
non-reducing SDS-PAGE.

DISCUSSION
Mitochondrial respiration is controlled at multiple levels from
transcriptional to post-translational to enzyme function levels
(Millar et al., 2011). It has been reported that several TCA cycle
enzymes are regulated by mitochondrial NAD(P)H/NAD(P)+
ratio, adenylate energy charge, and TCA cycle intermediates
(Noctor et al., 2007; Nunes-Nesi et al., 2013). Using partially
purified IDH from pea leaves, Igamberdiev and Gardeström
(2003) demonstrated that IDH activity is negatively regulated by
NAD(P)H. However, further biochemical studies of plant IDH

FIGURE 5 | Possible scheme of IDH redox regulation. IDH-r forms
oligomer mediated by intermolecular disulfide bonds upon oxidation.
Oxidized IDH-r can be reduced back to the monomer by Trx-o, which is
essential for forming functional IDH complex (see the main text for details).

have not been performed to date, and accordingly the regula-
tory mechanisms of this enzyme at the molecular level remain
to be fully characterized. Previous studies using Trx affinity
chromatography have raised the possibility that IDH activity is
redox-regulated via the Trx system in plant mitochondria (Balmer
et al., 2004; Yoshida et al., 2013). Based on this research back-
ground, we addressed in this study the biochemical characteristics
of Arabidopsis IDH, focusing particularly on redox regulation.

The biochemical properties of IDH, including action mech-
anisms and regulatory factors, have been best characterized in
yeast (Panisko and McAlister-Henn, 2001; Lin and McAlister-
Henn, 2003; Taylor et al., 2008; Garcia et al., 2009). The minimal
functional unit of yeast IDH is reported to be a heterodimer
comprising IDH-r and IDH-c. This form is considered to be
common in plant IDH, but there has been only indirect sup-
porting evidence to date in the form of growth restoration of
yeast IDH mutants by complementation with plant IDH genes
(Lancien et al., 1998; Lemaitre and Hodges, 2006). By using
the recombinant subunits, we clearly showed that both IDH-
r and IDH-c are essential for ensuring the catalytic activity of
Arabidopsis IDH (Figure 1B). An intriguing finding is that, in
contrast to the animal and yeast counterparts, Arabidopsis IDH
activity is unaffected by any adenylates (Figure 1C, Table 1). In
yeast IDH, critical residues for allosteric activation by AMP have
been determined by a survey using site-directed mutagenesis (Lin
and McAlister-Henn, 2003). Alignment between plant and yeast
IDH indicated that plant IDH does not conserve some of these
residues (Supplementary Fig. S1), and the lack of these critical
residues may account for the insensitivity of Arabidopsis IDH to
adenylates.

Redox-proteomics studies using Trx affinity chromatography
have provided a comprehensive list of potentially redox-regulated

www.frontiersin.org September 2014 | Volume 2 | Article 38 | 138

http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Toxicology/archive


Yoshida and Hisabori Redox regulation of IDH

proteins in plant mitochondria (Balmer et al., 2004; Yoshida et al.,
2013). It has been shown that, among these candidate proteins,
two stress-related proteins, namely alternative oxidase and per-
oxiredoxin IIF, are reduced and activated in a Trx-o-dependent
manner (Barranco-Medina et al., 2008; Martí et al., 2009; Yoshida
et al., 2013). In addition, the TCA cycle enzyme citrate syn-
thase has recently been reported to be redox-regulated by Trx-o
(Schmidtmann et al., 2014). However, most plant mitochondrial
proteins suggested as Trx targets remain to be further analyzed
by detailed biochemical assays. In the present study, IDH was
newly confirmed to be a Trx-o-targeted redox-regulated protein in
Arabidopsis mitochondria. Upon oxidation of IDH-r, IDH activ-
ity was largely diminished via intermolecular disulfide-mediated
oligomer formation of IDH-r (Figures 2A,B). Trx-o was effective
in the reduction of oxidized IDH-r, likely leading to a recovery of
IDH activity (Figures 2, 4). It should be noted that IDH activity
was restored to only half of the control level, even after the reduc-
tion and monomerization of oxidized IDH-r (Figure 2). This
result implies that IDH-r also undergoes irreversible oxidative
modifications, which could not be revealed in the present study.
Further investigation is required for concluding this possibility.

Yeast IDH activity is also controlled in a redox-dependent
manner (Garcia et al., 2009). However, the molecular basis of
IDH redox regulation is different between Arabidopsis and yeast.
In the case of yeast IDH, IDH-c forms intermolecular disulfide
bonds under oxidative conditions, leading to the inactivation
of IDH (Garcia et al., 2009). The critical Cys residue for the
intermolecular disulfide bond formation of yeast IDH-c is not
conserved in plant IDH-c (Supplementary Fig. S1). In contrast,
we identified Cys128 and Cys216 as the Cys residues responsible
for oxidative modification of Arabidopsis IDH-r (Figure 3). These
Cys residues are highly conserved in the plant kingdom but not in
yeast (Supplementary Fig. S1). This fact implies that the mode of
IDH redox regulation disclosed in this study is unique to plants.

As summarized in Figure 5, our biochemical analysis sug-
gested that IDH-r is a redox-sensitive protein and that the redox
change affects IDH activity. This finding implies the signifi-
cance of the mitochondrial Trx system for the regulation of TCA
cycle performance. However, for several redox-regulated pro-
tein candidates identified by redox-proteomics studies, it remains
to be determined whether they are “pseudo” or “true” redox-
regulated proteins. In order to understand the mitochondrial
redox network in more detail, biochemical studies of the individ-
ual enzymes should be performed one by one. Another key step in
dissecting the mitochondrial redox regulation system is the eluci-
dation of the working dynamics or biological significance of the
mitochondrial Trx system in living plants. Future studies address-
ing the visualization of in vivo redox states of redox-regulated
proteins, as shown in our recent study (Yoshida et al., 2014),
and effects of Trx-o deficiency on mitochondrial performance
will provide physiological insights into the mitochondrial redox
regulation system in plants.
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Contemporaneous presence of both oxidized and reduced forms of electron carriers
is mandatory in efficient flux by plant electron transport cascades. This requirement
is considered as redox poising that involves the movement of electron from multiple
sites in respiratory and photosynthetic electron transport chains to molecular oxygen.
This flux triggers the formation of superoxide, consequently give rise to other reactive
oxygen species (ROS) under adverse environmental conditions like drought, high, or
low temperature, heavy metal stress etc. . . that plants owing during their life span.
Plant cells synthesize ascorbate, an additional hydrophilic redox buffer, which protect
the plants against oxidative challenge. Large pools of antioxidants also preside over the
redox homeostasis. Besides, tocopherol is a liposoluble redox buffer, which efficiently
scavenges the ROS like singlet oxygen. In addition, proteinaceous thiol members such
as thioredoxin, peroxiredoxin, and glutaredoxin, electron carriers and energy metabolism
mediators phosphorylated (NADP) and non-phosphorylated (NAD+) coenzyme forms
interact with ROS, metabolize and maintain redox homeostasis.

Keywords: abiotic stress, reactive oxygen species, ascorbate, tocopherol, glutathione

INTRODUCTION
During cellular respiration, the accretion of molecular oxygen
(O2) in earth’s environment allows aerobic organisms to uti-
lize O2 as the terminal electron acceptor that gives a higher
amount of energy than fermentation (Dismukes et al., 2001).
O2 gives rise to prolific reactive excited states, like reactive
oxygen species (ROS) and their derivatives during normal
metabolic activity as a consequence of various environmental
perturbations (Scandalios, 2005). ROS is a product of cellular
metabolism; however, the balance between the generation and
removal of ROS is disturbed in cellular components of plants
under stress conditions (Karuppanapandian et al., 2011). ROS
like hydroxyl radical (OH·), superoxide radical (O·−

2 ), hydro-
gen peroxide (H2O2), hydroperoxyl radical (HO·

2), alkoxy rad-
ical (RO·), peroxy radical (ROO·), singlet oxygen (1O2) and
excited carbonyl (RO∗), are cytotoxic to plants (Vellosillo et al.,
2010). Attack of ROS may results in serious damage to cel-
lular components, DNA lesions and mutations and this fre-
quently leads to irretrievable metabolic dysfunction and cell death
(Karuppanapandian et al., 2011). ROS are scavenged by vari-
ous antioxidative defense systems under steady state conditions
(Navrot et al., 2007).

Overproduction of ROS in plants is induced by various envi-
ronmental perturbations like drought, heat, high light inten-
sity (HL), salinity, chilling, herbicides, heavy metals, pathogens,
wounding, ozone (O3), atmospheric pollutants, and pho-
tosensitizing toxins which causes oxidative cellular damage

(Karuppanapandian and Manoharan, 2008; Mafakheri et al.,
2010). Reduction of a single electron from O2 results in the pro-
duction of the superoxide radicals (O·−

2 ), which is quite reactive.
Consequently, it cannot cross biomembranes and may readily
dismutated to H2O2. O·−

2 also react with NO·, another very
dominant signaling free radical species that gives rise to per-
oxynitrite (OONO−). O·−

2 leads to the formation of HO·
2 by

protonation in aqueous solutions that can cross biomembranes
and subtract hydrogen atoms from polyunsaturated fatty acids
(PUFAs) and lipid hydroperoxides, therefore initiating lipid auto-
oxidation (Halliwell and Gutteridge, 2000). H2O2 is a relatively
long-lived molecule and moderately reactive, which can dissem-
inate short distances away from its production site. H2O2 causes
inactivation of enzymes by oxidizing their thiol groups. H2O2

enables it to diffuse the damage and also act as a messenger in the
stress signaling response and thus can travel freely across mem-
branes (Moller et al., 2007). It may also trigger the production
of OH·, the most reactive oxidant in the ROS family and also
considered as one of initiation radicals for lipid peroxidation, via
Haber-Weiss/Fenton reactions that utilize the suitable transition
metals, especially, iron (Fe) (Lee et al., 2007). The products of OH·
reactions may extract signaling responses and cells sequester the
catalytic metals to metallochaperones efficiently avoiding OH·,
though it does not have signaling function (Moller et al., 2007).
It can potentially react with all biomolecules like, proteins, lipids,
pigments and DNA and almost all constituent of cells. Excess pro-
duction of ROS leads to programmed cell death (PCD), as plant
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cells are not capable to scavenge these ROS (Manoharan et al.,
2005).

CONCEPT OF REDOX HOMEOSTASIS
Contemporaneous presence of both oxidized and reduced forms
of electron carriers are required by competent flux through elec-
tron transport cascades of plant. In photosynthetic and respira-
tory electron transport chains, the requirement of regular flux of
electrons to molecular oxygen from multiple sites is known as
redox poising. Despite specific oxidases catalyze the specialized
water producing reactions. Primary product of this flux is super-
oxide and other ROS are produced consequently. Superoxide
or H2O2 are generated by various enzyme systems. Due to the
reactive nature of these intermediates they are able to act as
signaling molecules; therefore their accumulation must be reg-
ulated. Accumulation of ROS is resoluted by the antioxidative
system, which further balance the metabolism of organism by
maintaining the proteins and other cellular components in an
active state (Foyer et al., 2005). Large pools of these antioxi-
dants govern the redox homeostasis, which absorb the reductants
and oxidants. ROS signaling pathways are generated by homeo-
static regulation that is achieved by antioxidant redox buffering.
Antioxidants determine the lifetime and the specificity of the ROS
signal. Generation of superoxide, H2O2 and even singlet oxygen
are coped by plant cells (Wagner et al., 2004). Moreover, due to
signaled induction of other defense systems, plants adapt very
well for the depletion of antioxidants. Cytoplasmic thiols in the
reduced state are balanced in the plants because of the low thiol-
disulfide redox potential, which is imposed by the thiol buffer,
glutathione. Though, plant cells make an additional hydrophilic
redox buffer namely ascorbate (vitamin C), which provides strong
protection against oxidative damage. However, plants also syn-
thesize tocopherols (vitamin E) that perform as key liposoluble
redox buffers. Tocopherol is considered as an effective scavenger
of other ROS including singlet oxygen species and in this case
the reduced scavenging form is regenerated by ascorbate (Foyer
et al., 2005). Moreover, it raises the array of efficient superoxide
scavenging as the tocopherol redox couple acts as affirmative mid-
point potential than that of the ascorbate pool. In plant cells, the
capability of glutathione, tocopherol and ascorbate pools to act
as redox buffers is one of significant attributes. Low activities of
ascorbate peroxidase and catalase in plants show less harsh symp-
toms of stress than those plants which lack either one of these
enzymes (Rizhsky et al., 2002). For example, tocopherol-deficient
Arabidopsis vte mutant seedlings possess large amounts of lipid
peroxides, whereas mature plants show slightly abnormal pheno-
type (Kanwischer et al., 2005). It is estimated that DNA repair and
rapid protein turnover is enhanced to recompense for improved
oxidation or loss of antioxidants.

ROLE OF REDOX-HOMEOSTASIS MANAGERS AGAINST
VARIOUS ABIOTIC STRESSES
ASCORBATE
Ascorbate (L- Ascorbic Acid/Vitamin C/AsA), a water soluble
antioxidant of universal distribution in higher plants, has been
studied for its biosynthesis, localization and presence within plant
cells, metabolic involvement and biochemistry with respect to

other antioxidants (Khan et al., 2011; Szarka et al., 2012; Gallie,
2013; Lisko et al., 2014; Venkatesh and Park, 2014; Foyer, 2015).
AsA is concentrated in photosynthetic tissues, meristematic tis-
sues, flowers, young fruits, root tips etc. . . (Gest et al., 2013). The
AsA biosynthetic pathway considers D-mannose and L- galac-
tose as primary substrates through various enzymatic reactions
(Müller-Moulé, 2008). In addition to this being the main scheme
of ascorbate generation (Smirnoff-Wheeler pathway), three other
pathways namely the L-gulose (Gul) shunt, the D-galacturonate
(GalU) pathway, and the myo-inositol (MI) route have also been
identified in plants (Venkatesh and Park, 2014). AsA is generated
on the inner mitochondrial membrane; and further transported
to different cellular components including the apoplast for con-
sumption, degeneration, and recycling (Green and Fry, 2005)
(Figure 1). Its transport within the plant system is mediated by
facilitated diffusion or active transport systems (Ishikawa et al.,
2006). Since this is such a ubiquitous antioxidant present in
plant system, it plays a wide array of roles such as scaveng-
ing of deleterious ROS produced during all sorts of abiotic and
biotic stress (Teixeira et al., 2004), central role in photosynthe-
sis (Smirnoff, 1996), as a major participant in detoxification
mechanisms focused in chloroplasts such as the water-water
cycle—WWC or the Mehler peroxidase reaction (Neubauer and
Yamamoto, 1992) and the xanthophyll cycle (Yabuta et al., 2007).

The hydrogen peroxide and superoxide radicals generated in
this reaction are reduced to water by AsA in the presence of ascor-
bate peroxidase (APX). MDA is a by-product released in this
reaction and is further converted to ascorbate either by reduced
ferredoxin of PSI (photosystem I) or by MDHA reductase using
NADH or NADPH as electron donor (Sano et al., 2005). AsA
has also been identified as an alternative electron donor of PSII;
thereby retarding the photo inactivation and ROS activity in the
thylakoid and providing protection to the entire photosynthetic
machinery (Tóth et al., 2011; Gururani et al., 2012). In addi-
tion to all this, AsA participates in the regeneration of vitamin
E and acts as a substrate for synthesis of important organic acids
such as; L-glyceric, L-oxalic acids, L-tartaric, and L-threonic acid
(Debolt et al., 2007). AsA however plays the most important

FIGURE 1 | Ascorbate metabolism in plants.
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role of guarding cells and organelles against oxidative damage by
eliminating ROS which are produced by aerobic metabolic pro-
cesses such as photosynthesis and respiration or by environmental
stresses like salt, drought, cold, and excess light; hence becoming
an imperative molecule for overall plant health and well-being.
Although there are many experimental and factual evidences
from various mutant and transgenic studies for the same, here
we discuss the relevant ones with special reference to abiotic
stresses. Elevated AsA levels and induction of cytosolic APX have
been reported in plants subjected to high light oxidative stress
(Yabuta et al., 2007). Many cytosolic and chloroplast centered
APX genes have been identified in Arabidopsis spp, Oryza spp
,Lycopersican spp. etc. . . (Koussevitzky et al., 2008; Najami et al.,
2008; Lazzarotto et al., 2011; Pang et al., 2011). Similarly, plants
under water deficit stress also over produce ascorbate to counter
fall of physiological parameters and plant survival (Dolatabadian
et al., 2009). Sesame seeds coated with AsA–PEG were subjected
to drought stress and surprisingly, recorded for a good germi-
nation percentage and index, dry weight and seedling length
(Tabatabaei and Naghibalghora, 2013). Another stress countered
by AsA is the ozone stress resulting from industrial activities
causing extensive leaf damage, fallen stomatal conductance and
photosynthesis rates in plants (Sanmartin et al., 2003). The ROS
accumulation caused due to ozone entering the apoplastic and
symplastic components through stomata leads to severe damage
to the photosynthetic machinery (Cho et al., 2011). Apoplastic
AsA forms the primal barrier against this stress by direct reac-
tion with free radicals formed by ozone (Chen and Gallie, 2005).
Ozone resistant plant species showed enhanced apoplastic ascor-
bate levels (Feng et al., 2010). Exogenously applied AsA prevented
chances of foliar injury and checked loss of photosynthetic activ-
ity caused by ozone stress (Zheng et al., 2000; Maddison et al.,
2002). Similarly, plants with over expressing DHAR genes also
showed an increased ozone tolerance and higher level of photo-
synthetic activity (Chen and Gallie, 2005). ROS generated due
to high/low temperature is also well balanced by AsA metabolic
responses in many transgenic plants such as potato, tomato, rice,
etc. . . (Tang et al., 2006; Sato et al., 2011). Increased tolerance to
temperature stress was also observed in transgenic tobacco plants
over expressing the thylakoid-bound APX gene from tomato
(Sun et al., 2010). During chilling and heat stresses, the photo-
chemical/oxidative efficiency of PSII in the transgenic lines was
observed to be higher than that of non-transformed/wild-type
plants (Wang et al., 2011), Arabidopsis spp. despite showing a

small increase in Asc content, over expressed rice DHAR gene
and showed more salt tolerance (Ushimaru et al., 2006). Tomato
seedlings over expressing a chloroplast-targeted tomato MDHAR
gene reduced membrane damage and resulted in a higher net
photosynthetic rate, higher maximal PSII photochemical effi-
ciency and increased fresh weight when subjected to low or high
temperatures (Li et al., 2010). The role of AsA in countering
metal stress is well confirmed by transgenic and mutant studies.
AsA and related enzymes such as DHAR have been expressed by
genes from Arabidopsis in tobacco for inducing greater tolerance
to aluminum and thus resulting in elevated AsA concentration in
roots after exposure to Al toxicity (Yin et al., 2010). Similarly, co-
expression of a Cu-Zn SOD and APX gene lead to an enhanced
tolerance to metal and salt stress localized within the chloroplast
of tobacco transgene constructs (Lee et al., 2007; Le Martret et al.,
2011), indicating that the beneficial effect of increasing DHAR
expression can be used in a combinatorial approach with other
enzymes involved in oxidative stress. The adverse effects of Cu
toxicity treatments on root and shoot growth was partially allevi-
ated by the treatment of test plants with AsA, thiamine (vitamin
B1) and salicylic acid (Al-Hakimi and Hamada, 2011).

GLUTATHIONE
Glutathione (GSH), a low molecular weight thiol (γ-
glutamylcysteinylglycine) is one of the most important
metabolites of the living systems (Gill and Tuteja, 2010;
Noctor et al., 2012). It has a vital role in sulfur metabolism and
translocation (Hell, 1997). It is also reported to play a significant
role in cellular metabolism and as a reductant in scavenging of
radicals in intracellular environment (Gill and Tuteja, 2010).
GSH also functions as reactive nucleophiles which help in detoxi-
fication of toxins of electrophilic nature. It is also reported to have
signaling function which responds to changes in extracellular
environment and is known for its role in regulation of gene
expression (Sanchez-Fernandez et al., 1997). It is also involved in
synthesis of phytochelatins in which it acts a precursor and aids
in binding heavy metals (Grill et al., 1989).

Biosynthesis of GSH occurs in two step process. In
first reaction, L-glutamate and L-cysteine are converted
to γ-glutamylcysteine (γ-EC) with the help of enzyme γ-
glutamylcysteine synthase (γ-ECS). γ-EC is further converted
to GSH by addition of glycine by enzyme glutathione synthase
(Figure 2). Both these reactions are carried in the presence of
ATP (Meister, 1988). Inside the cell, GSH is localized usually

FIGURE 2 | Schematic representation of GSH biosynthesis. Cys, L-cysteine; Glu, L-glutamate; γ-Glu-Cys, γ-glutamylcysteine; γ-EC synthase,
γ-glutamylcysteine synthase.
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in cytoplasm, endoplasmic reticulum, vacuoles, mitochondria,
chloroplasts and peroxisomes (Mittler and Zilinskas, 1992;
Jimenez et al., 1998). In cellular environment, glutathione is
mainly present in reduced state. Hence, oxidized form of glu-
tathione (GSSG) is present in very low proportions. Therefore,
under optimum conditions, a high GSH:GSSG ratio is main-
tained (Mhamdi et al., 2010; Noctor et al., 2011). In stressed
conditions, GSH along with ascorbate (AsA) plays a central role
in scavenging of ROS.

Many studies have indicated a correlation between levels of
H2O2 and glutathione (Noctor et al., 2012). H2O2 metabolism
via GSH involves three types of peroxidases which are ascor-
bate peroxidase (APOX), peroxiredoxin (PRX) and glutathione-
S-transferases (GSTs). APOX is a class I heme based peroxidase
and is specific to H2O2. It is involved in AsA-GSH radical scav-
enging pathway that uses NADPH to reduce H2O2 via AsA-GSH
pools (Noctor et al., 2012). In this process, APOX reduces H2O2

to H2O and AsA acts as a reductant which changes to monode-
hydroascobate (MDHA). MDHA is unstable and is converted to
AsA in the presence of enzyme monodehydroascobate reductase
(MDHAR) and NADPH. MDHA can also lead to the formation
of dehydroascobate (DHA) which further gets reduced to AsA
with the help of the enzyme dehydroascobate reductase (DHAR)
(Winkler, 1992). The reductant is this case is GSH which gets
oxidized to GSSG thereby indicating that GSH has an impera-
tive role in maintaining AsA pool in the cellular environment
(Noctor et al., 1998). GSSG is reduced back to GSH by glutathione
reductase (GR) in presence of NADPH.

The second type of peroxidases i.e., peroxiredoxins (PRX) are
thiol peroxidases which can reduce H2O2 as well as other perox-
ides thereby indicating their low specificity to H2O2 (Dietz, 2003;
Tripathi et al., 2009). PRXs are of four types and out of these, PRX
II uses GSH as a reductant while other three either use thiore-
doxin (TRX) or NADPH-thioredoxin reductase (NTR) (Pulido
et al., 2010). Glutathione peroxidases (GPX) are also included in
PRXs as they TRX-dependent peroxiredoxins (Iqbal et al., 2006;
Navrot et al., 2006). In plants, GPXs are less likely to be involved
in peroxide mediated oxidation of GSH and it is suggested that
peroxidation could be carried out by GST (Wagner et al., 2002;
Dixon et al., 2009). Many GSTs found in plants have been shown
to possess GPX like activity. Type I and type III class of GSTs
have been identified in many plants and have been reported to
actively respond to oxidative stress (Dixon et al., 1998). Some
other enzymes such as methionine sulphoxide reductase (MSR)
are also reported to carry out ROS-stimulated oxidation of GSH
(Tarrago et al., 2009). Hence, reduction of H2O2 and other perox-
ides by GSH occurs by both AsA-GSH radical scavenging pathway
and AsA independent pathway (Figure 3).

One of the important roles of GSH is synthesis of phy-
tochelatins. These are organic ligands that have the ability to
bind heavy metals and then these metal complexes are trans-
ported to vacuole (Cobbett and Goldsbrough, 2002). Enzyme
phytochelatin synthase (PCS) catalyzes the formation of phy-
tochelatins either from GSH or homologous bithiols (Ha et al.,
1999; Vatamaniuk et al., 1999). During increased concentra-
tions of heavy metals, γ-glutamylcysteine moiety from one GSH
molecule and glutamic acid from another GSH molecule are

condensed by PCS thereby releasing glycine as residue and form-
ing phytochelatin molecule which are then able to form metal
complexes (Clemens, 2006). Hence, GSH and related enzymes
play a crucial role in maintaining the homeostasis of cellular envi-
ronment and protect the plant system from adverse effects of
various stresses.

TOCOPHEROL
Tocopherol is found ubiquitously in the plant kingdom and
occurs in all the plant parts. It plays a key role in signal transduc-
tion pathways and in the gene expression regulation in different
processes such as plant defense and export of photoassimilates
(Falk and Munne-Bosch, 2010). It acts as a key lipid soluble
redox buffer. It is an important scavenger of singlet oxygen species
and also scavenges other ROS (Foyer et al., 2005). Tocopherol
role is important under the conditions of severe stress (Havaux
et al., 2005) and when stress conditions are not severe, other
antioxidants play their protective roles. Tocopherol antioxidant
activity depends on its ability of donation of its phenolic hydro-
gen to free radicals. The α-tocopherol has the highest antiox-
idant activity of all the tocopherol types, the δ-tocopherol has
the lowest and the β- and γ-tocopherols has the intermediate
activity (Kamal-Eldin and Appelqvist, 1996; Evans et al., 2002).
Tocopherol amount is tightly controlled in the photosynthetic
membranes to properly regulate the membrane stability. Role of
tocopherol in preventing lipid peroxidation has been noticed in
many reports. Lipid peroxyl radicals, which are involved in the
propagation of lipid peroxidation, are scavenged by tocopherol
(Liebler, 1993). It regulates the expression of genes involved in
lipid peroxidation (Sattler et al., 2006). Tocopherol deficiency led
to an enhancement in the lipid peroxidation in the transgenic
tobacco leaves (Abbasi et al., 2009). It was estimated that the
one molecule of tocopherol by using resonance energy transfer
could degrade 120 singlet oxygen molecules (Fahrenholzt et al.,
1974). Hydroperoxydienone intermediates this reaction, which
further gives rise to tocopherol quinone and tocopherol quinol
epoxides (Murkovic et al., 1997; Kobayashi and Dellapenna,
2008). Oxidized tocopherol can be recycled back to its reduced
form. α-tocopherol quinone has been shown to convert back
to α-tocopherol in Arabidopsis thaliana chloroplasts (Kobayashi
and Dellapenna, 2008). Interaction between carotenoids and
α-tocopherol also plays significant role during photooxidative
stress in plants. Their interaction was shown to protect the
photosystem—II of Chlamydomonas reinhardtii from the dam-
age of singlet oxygen species under herbicides stress (Trebst et al.,
2002). In the membranes, tocopherol can form complexes with
polyunsaturated fatty acid (PUFA). OH• oxidizes PUFA and form
lipid peroxyl radical from superoxide. Tocopherol gives rise to the
formation of lipid hydroperoxide from lipid peroxyl radicals. It is
efficient in breaking the chain reactions of free radicals of PUFA
produced by lipid peroxidation (Havaux et al., 2005).

Tocopherol works cooperatively with the other antioxidants
such as glutathione, ascorbate, carotenoids etc. . . and helps in
the maintenance of appropriate redox state inside the chloroplast
under various adverse environmental conditions (Munne-Bosch,
2005). Low molecular weight antioxidants such as tocopherol,
glutathione, and ascorbate form a triad and provide protection
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FIGURE 3 | Role of GSH in maintaining H2O2 homeostasis via APOX, peroxiredoxins and GST.

against abiotic stresses (Szarka et al., 2012). The increase in the
amount of these antioxidants can be achieved in two ways i.e., by
increasing their biosynthesis or by increasing their biological effi-
cacy by increasing their redox recycling. Their interdependency
plays an important role during the electron transfer step inside
a cell (Ahmad et al., 2010; Gill and Tuteja, 2010). The increase
in the α-tocopherol occurred with the increase in the ascorbate
content under the conditions of Cu stress (Collin et al., 2008).
Simultaneous loss of glutathione and α-tocopherol more severely
affected the photosynthetic apparatus stability and efficiency in
A. thaliana plants (Kanwischer et al., 2005). Coordinated action
of these three antioxidants helps in the maintenance of the redox
homeostasis in a more efficient way.

THIOREDOXIN
Thioredoxins are small (12–14 kDa) and low molecular mass
proteins, which are involved in cell redox regulation and are
ubiquitously present in all organisms from prokaryotes to eukary-
otes (Schurmann and Jacquot, 2000). These were firstly discov-
ered in Escherichia coli as an electron donor for ribonucleotide

reductase, an enzyme required for DNA synthesis (Moore, 1967).
There are two distinct families (family I and II) of thiore-
doxin which are distinguished on the basis of their amino acid
sequences. Family I includes proteins that consist of one dis-
tinct thioredoxin domain, whereas family II is composed of
proteins with one or more thioredoxin domains coupled to
additional domains (Gelhaye et al., 2004). Plants contain a com-
prehensive thioredoxin system and it is divided into six major
groups: thioredoxin f, h, m, o, x, and y on the basis of their
sequence and are localized in chloroplast, mitochondria, cytosol
and even in the nucleus. Among these thioredoxin m, x, and y are
related to prokaryotic thioredoxin and f, h, and o are specific to
eukaryotic organisms (Gelhaye et al., 2005; Collet and Messens,
2010).

Thioredoxin plays important role in plants as they are involved
in multiple processes, such as photorespiration, lipid metabolism,
membrane transport, hormone metabolism, and ATP synthe-
sis (Balmer et al., 2004). They also play important role against
various environmental stresses and also protects proteins from
oxidative aggregation and inactivation (Holmgren, 1995). A
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Thioredoxin “h” is required during nodule development to
reduce the ROS level in soybean roots (Lee et al., 2005).

Role of mitochondrial thioredoxin PsTrxo1 was reported in
providing tolerance against the salt stress (Marti et al., 2011).
Plants respond against salinity stress by increasing the mito-
chondrial thioredoxin activity and protect the mitochondria
from oxidative stress by stimulating the activities of antioxidative
enzymes. Thioredoxin “h” promote the mobilization of carbon
and nitrogen of the endosperm early in grain germination (Wong
et al., 2002; Shahpiri et al., 2009). Abiotic stresses elevate thiore-
doxins either on the gene level or on protein level. Data on
proteomics study showed that thioredoxins genes were upregu-
lated in rice under Cu stress (Song et al., 2013). Genomic study
of rice, revealed the significant differences in the gene expres-
sion of thioredoxin under biotic and abiotic stress conditions
(Nuruzzaman et al., 2012).

Thioredoxins play fundamental role in plant tolerance of
oxidative stress. They are involved in combating the oxidative
damage by transferring reducing power to reductases for the
detoxification of lipid hydroperoxides and thus repairing the oxi-
dized proteins (Santos and Rey, 2006). They scavenge the ROS
by modulating the antioxidative enzymes and also involved in
oxidative stress associated signaling pathway through the control
of glutathione peroxidase (Vivancos et al., 2005). Further Serrato
et al. (2004) reported a role of NADPH thioredoxin reductase
(NTR) in plant protection against oxidative stress. Deficiency of
NTR caused growth inhibition and hypersensitivity in reponse to
salinity stress, whereas NTRC knock-out mutant in Arabidopsis
expressed the role of thioredoxins against salt stress. Thus, thiore-
doxins protect the plants from oxidative damage and indicate that
thioredoxins involves in antioxidative defense system.

PEROXIREDOXINS
Peroxiredoxins (Prxs) are a group of antioxidative enzymes
including catalase, superoxide dismutase, ascorbate peroxidase,
and glutathione peroxidase. These were found firstly in barley
plants when genes Hv-1-CysPrx and Hv-2-CysPrx were cloned
from the plant (Stacy et al., 1996). Later on it was cloned in
various other plants such as Arabidopsis, Oryza sativa, Riccia flui-
tans, Spinacia oleracea, Populus spp., Nicotiana tabacum and Secale
cereal. Prxs show alike structure with basic protein and a thiore-
doxin fold, and have molecular mass ranging from 17 to 22 kDa.
On the basis of sequence similarity and catalytic mechanisms Prx
proteins are classified into four categories- (a) 1-Cys Prx, (b) Prx
II, (c) 2-Cys Prx and (d) PrxQ (Rouhier and Jacquot, 2002, 2005;
Dietz, 2003).

Abiotic stresses (drought stress, salinity stress, heavy metals
etc. . . ) are the prime threat found these days to the plants due
to changing climate and industrial revolution. During abiotic
stress, ROS production increases and represents a fundamen-
tal problem for the regular metabolism of plants. PrxQ, a type
of peroxiredoxins have been identified in photosynthetic cells,
and was noted to be participating in protection of plants against
ROS (Foyer and Noctor, 2005). Decrease in chlorophyll in PrxQ
knockout of A. thaliana was observed, suggesting its role in pro-
tection of photosynthetic enzymes (Lamkemeyer et al., 2006).
The expression profile of four Prx genes were observed under

various stresses such as NaCl, NaHCO3, PEG, CdCl2, and abscisic
acid in roots, stems and leaves of Tamarix hispida. Enhanced
expression of all the ThPrx was reported under both NaCl and
NaHCO3. Temporal and spatial specificity expression patterns
were observed under PEG and CdCl2 stress. ABA treatment has
showed different expression of ThPrxs, and it point that these
Prxs are involved in the ABA signaling pathway (Gao et al., 2012).
Genes have been identified and characterized by Vidigal et al.
(2013) encoding for Prxs in Vitis vinifera using quantitative real
time PCR under irradiance, heat and water stress. Seven vvprx
genes were identified, out of which two were more responsive
toward water stress, followed by heat stress and without major
change under high irradiance. The vvprxII-2, a recognized PrxII
was most responsive toward the heat stress. It was targeted in
the chloroplasts and thought to be correlated with abscisic acid-
dependent thermotolerance. Similarly, vvprxIIF was identified
and targeted to mitochondria and was responsive to water stress
and supposed to involve in drought tolerance through H2O2 sig-
naling. Guan et al. (2014) tried to investigate the protective role
of PrxQ during abiotic stress in Eustoma grandiflorum Shinn. The
capacity of biosynthesis of PrxQ was increased in plant by using
the overexpression of the PrxQ gene (SsPrxQ) from Suaeda salsa.
This SsPrxQ gene was expressed in E. grandiflorum. Enhanced
antioxidant activity and thioredoxin dependent peroxidase activ-
ity was shown by rPrx proteins. Improved tolerance to salt and
high light intensity was also noticed due to overexpression of
SsPrxQ. It has been reported that in Chinese cabbage under heat
shock and oxidative stress, 2-Cys Prx change its protein struc-
ture from a low molecular weight to high molecular weight (Kim
et al., 2009). Enhanced tolerance to methyl viologen-mediated
oxidative stress and high temperature was observed by the over-
expression of At2-cys Prx in potato (Solanum tuberosum) (Kim
et al., 2011). It has been observed by Jing et al. (2006) that
tolerance to the salt and cold stress improves with the overex-
pression of PrxQ from S. salsa in A. thaliana. Overexpression
of PrxQ in transgenic maize indicated the increased stress tol-
erance against oxidative stress and fungal diseases (Kiba et al.,
2005). Similarly, overexpression of an Arabidopsis 2-Cys Prx in
transgenic tall fescue (Festuca arundinacea) showed more resis-
tance against heat and methyl viologen stress in comparison to
control plants. In these plants, less electrolyte leakage and thio-
barbituric acid-reactive substances (TBARS) were also observed
(Kim et al., 2010). A gene VrPrx which encodes for the 2-Cys
Prx has been isolated from the mungbean and studied for the
antioxidant activity in vitro. Overexpression of VrPrx in trans-
genic Arabidopsis showed enhanced antioxidant activities and
photosynthetic efficiency under abiotic stress (Cho et al., 2012).

GLUTAREDOXIN
Glutaredoxins (GRX) are omnipresent proteins of approximately
100 amino-acid residues (Fernandes et al., 2005). Glutaredoxins
act as redox enzymes to catalyze the reduction of disulfides
by using reduced glutathione (GSH) as a cofactor (Holmgren,
1988, 1989; Holmgren and Gleason, 1988). Glutaredoxins get
oxidized by substrates, and are reduced non-enzymatically by
glutathione. There is no explicit oxidoreductase to reduce glutare-
doxins therefore; oxidation of glutathione is required to reduce
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the glutaredoxins. The oxidized glutathione is then renewed by
GR and these mechanisms collectively make up the glutathione
system (Holmgren and Fernandes, 2004). The line of function of
glutaredoxin is analogous to thioredoxin. GRX holds an active
center disulfide bond. According to their redox-active center,
they are subgrouped in six classes of the CSY[C/S]-, CGFS-,
CC-type, and three groups with additional domain of unknown
function. The CC-type GRXs are only found in higher plants
(Nilsson and Foloppe, 2004). In A. thaliana, about 30 GRX iso-
forms are discovered whereas 48 are discovered in O. sativa L.
(Rouhier et al., 2008). GRX operates in antioxidant defense by
reducing dehydroascorbate, peroxiredoxins, and methionine sul-
foxide reductase. The glutathione/glutaredoxin system is one of
the important cellular factors that have been implicated in the
regulation of redox homeostasis (Grant, 2001).

GRX can be engineered to attain enhanced oxidative stress
tolerance in plants and using the transgenic plants to inves-
tigate redox-controlled processes in temperature stress toler-
ance. Transgenic expression of fern Pteris vittata glutaredoxin
PvGrx5 in A. thaliana increases plant tolerance to high temper-
ature stress and reduces oxidative damage to proteins (Sundaram
and Rathinasabapathi, 2010). It is observed that homozygous
lines expressing PvGRX5 possess considerably better tolerance to
high temperature stress than the vector control and wild-type,
and this is related to leaf glutaredoxin specific activities. Cheng
et al. (2011) reported that Arabidopsis monothiol glutaredoxin,
AtGRXS17, is critical for temperature-dependent postembryonic
growth and development via modulating auxin response. Further,
AtGRXS17 has played role in anti-oxidative stress and thermo-
tolerance in both yeast and plants (Wu et al., 2012). Ectopic
expression of Arabidopsis glutaredoxin AtGRXS17 increases
thermotolerance in tomato. Ectopic expression of AtGRXS17
in tomato plants reduces photo-oxidation of chlorophyll and
decrease oxidative injury of cell membrane systems under heat
stress (Wu et al., 2012).

A glutaredoxin gene SlGRX1 regulates plant responses to
oxidative, drought and salt stresses in tomato (Guo et al., 2010).
A novel cDNA fragment (SlGRX1) from tomato was isolated and
characterized. This fragment encoded a protein containing the
consensus GRX family domain with a CGFS active site. SlGRX1
was articulated in all places in tomato including root, stem, leaf,
and flower. The expression of SlGRX1 could be induced by oxida-
tive, drought, and salt stresses. Enhancement in sensitivity to
oxidative and salt stresses with reduced relative chlorophyll con-
tent, and decreased tolerance to drought stress with decreased
relative water content were observed after applying virus-induced
gene silencing of SlGRX1 in tomato. Quite the opposite, resis-
tance of plants to oxidative, drought, and salt stresses increased
considerably by over-expression of SlGRX1 in Arabidopsis plants.
The study clearly suggested that the glutaredoxin gene SlGRX1
plays an important role in regulating abiotic tolerance against
oxidative, drought, and salt stresses. GRXs also attribute to the
high tolerance of in Caulobacter crescentus to heavy metals specif-
ically cadmium and chromate (Hu et al., 2005). A GRX of the
fern P. vittata PvGRX5 is involved in arsenic tolerance (Sundaram
and Rathinasabapathi, 2010). It acts as a sensor of oxidative stress
mediated by H2O2 (Song et al., 2002).Glutaredoxin GRXS13

plays a key role in protection against photo-oxidative stress in
Arabidopsis as its expression reduces the photo-oxidative stress
generated free radicals (Laporte et al., 2012).

NAD/NAD(P)
Nicotinamide adenine dinucleotide (NAD) and its derivative
nicotinamide adenine dinucleotide phosphate (NADP) are pyri-
dine nucleotide coenzymes that act as cardinal metabolites
involved in plant cellular redox homeostasis (Hashida et al.,
2009). They occur ubiquitously in all living cells (Noctor et al.,
2006). These coenzymes occur as redox couples, NAD+/NADP+
are oxidized forms and there counter reduced forms are
NADH/NADPH. The ratio of oxidized to reduced form i.e.,
NAD(P)+/NAD(P)H is known as redox state of a cell and
is important signal connecting metabolic state of cell and
its gene expression (Schafer and Buettner, 2001; Jambunathan
et al., 2010). NADH plays central role as electron shuttle
between TCA cycle and mitochondrial electron transport chain.
NADP+/NADPH acts as important energy storage and trans-
ferring molecule in light and dark photosynthetic reactions.
NADH and NADPH also act as reducing equivalents in vari-
ous catabolic and anabolic processes like nucleic acid and lipid
synthesis (Potters et al., 2010). Besides their role as cofactors in
energy producing and other metabolic reaction they play key
role in redox signaling associated with stress and development by
modulating both ROS generation and ROS scavanging (Noctor
et al., 2006; Hashida et al., 2009). ROS scavenging is also partly
maintained by ascorbate-glutathione cycle and NADP(H) main-
tains redox flux in this cycle (Noctor et al., 2006). NAD also
regulates cellular processes like calcium signaling via NAD derived
cyclic ADP-ribose and transcription and microtubule metabolism
via deacetylation and/or mono/poly(ADP-ribosy)lation (Hashida
et al., 2009).

As, NAD(H) and NADP(H) play discrete physiological roles,
maintenance of balance between NAD(H)/NADP(H) is essential
for cell survival under normal and stress conditions (Takahara
et al., 2010). NADP is generated by adenosine triphosphate (ATP)
dependent phosphorylation of NAD catalyzed by NAD kinases
(NADK). Decline in levels of pyridine nucleotide as caused under
stress induces NAPK which in turn increases NADP(H) levels at
expense of NAD(H) (Grose et al., 2006). In Arabidopsis, oxida-
tive stress caused by stressed environmental conditions induces
expression of NADK1 and NADK3 gene (Berrin et al., 2005; Chai
et al., 2005).

Biotic and abiotic stresses cause oxidative stress in plants
due to over accumulation of ROS. Oxidative stress may cause
damage to organelles, lower antioxidant levels, oxidize pro-
teins, DNA nicking, and ultimately leading to cell death. Among
various defense responses against ROS is plants is poly(ADP-
ribosyl)ation (PAR) reaction (Ishikawa et al., 2009). PAR is a
post-translational protein modification catalyzed by poly(ADP-
Rib)polymerase (PARP) utilizing NAD+ and ATP. PARP cat-
alyzes addition of branched polymers of ADP-Rib on a target
protein synthesizing a protein-bound poly(ADP-ribose). These
PARP proteins confers resistance to oxidative stress by regu-
lating important cellular processes such as DNA synthesis and
repair, chromatin synthesis, cell death, and stress responses to
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genotoxic stress (Noctor et al., 2006; Ogawa et al., 2009). One of
the early responses toward DNA damage caused due to oxidative
stress is activation of PARP (Ame et al., 1999). Plant possesses
two PARP genes; parp1 and parp2 are induced under oxida-
tive stress (Block et al., 2005). Level of PARP induced in plants
under stress is directly proportional to severity of stress (Ha and
Snyder, 1999). Since these defense responses like PAR over con-
sumes NAD(P), they lead to depletion of NAD concentration.
Inhibition of PARP alleviates NAD depletion and ATP consump-
tion diminishing cell death and enhanced tolerance to abiotic
stresses (Noctor et al., 2006). Silencing of PARP in Arabidopsis
and oil seed produced lines that were resistant to broad spectrum
of abiotic stresses due to reduce NAD+ consumption and alter-
ation in abscisic levels (Block et al., 2005; Vanderauwera et al.,
2007).

Nudix (nucleoside diphosphates linked to some moiety X)
hydrolases, hydrolyse nucleoside diphosphate derivates. They act
house-cleaning enzymes and play role in maintains PAR and
NAD(H) homeostasis (Ge and Xia, 2008). Twenty nine hydro-
lases have been identified in A. thaliana (Kraszewska, 2008).
In A. thaliana overexpression of AtNUDX2 enhanced tolerance
toward oxidative stress by hydrolyzation of ADP-ribose thereby
maintaining NAD+ and ATP levels (Ogawa et al., 2009). Similarly
AtNUDT7 is found to play an important role in maintain-
ing redox homeostasis by regulating balance between NADH
and NAD+ via modulating PAR reaction. Thus, it regulates
defense/stress signaling and cell death pathways under oxida-
tive stress (Ishikawa et al., 2009; Jambunathan et al., 2010).
In conclusion, NAD/NADP are involved in several signaling
pathways that are colligative with stress tolerance and defense
reactions.

CONCLUSION
Aerobic life possesses a worldwide characteristics of redox signal
transduction honed through evolution to poise information from
metabolism and the environment. Information regarding plant
health, principally in terms of strength for defense is fulfilled by
both oxidants and antioxidants signaling. Between plant cell stress
perception and physiological responses, antioxidants play signifi-
cant role as a signaling compounds as they also possess a vibrant
metabolic interface. Redox homeostasis managers set thresholds
for apoplastic and cytoplasmic signaling also act as intermediary
of the intracellular redox potential.
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The imposition of environmental stresses on plants brings about disturbance in their

metabolism thereby negatively affecting their growth and development and leading to

reduction in the productivity. One of the manifestations of different abiotic and biotic

stress conditions in plants is the enhanced production of reactive oxygen species (ROS)

which can be hazardous to cells. Therefore, in order to protect themselves against toxic

ROS, plant cells employ the anti-oxidant defense system. The ascorbate-glutathione

pathway (Halliwell-Asada cycle) is an indispensible component of the ROS homeostasis

mechanism of plants. This pathway entails the antioxidant metabolites: ascorbate,

glutathione and NADPH along with the enzymes linking them. The ascorbate-glutathione

pathway is functional in different subcellular compartments and all the enzymes of this

pathway exist as multiple isoforms. The expression of different isoforms of the enzymes

of ascorbate-glutathione pathway is developmentally as well as spatially regulated.

Moreover, various abiotic and biotic stress conditions modulate the expression of the

enzyme- isoforms differently. It is the intricate regulation of expression of different isoforms

of the ascorbate-glutathione pathway enzymes that helps in the maintenance of redox

balance in plants under various abiotic and biotic stress conditions. The present review

provides an insight into the gene families of the ascorbate-glutathione pathway, shedding

light on their role in different abiotic and biotic stress conditions as well as in the growth

and development of plants.

Keywords: reactive oxygen species, abiotic stress, redox homeostasis, ascorbate-glutathione pathway, isoforms,

gene families

Introduction

When plants are exposed to various biotic and abiotic stresses, they exhibit characteristic increase
in the production of reactive oxygen species (ROS) like singlet oxygen (1O2), superoxide (O

•−

2 ),
hydrogen peroxide (H2O2) and hydroxyl radical (OH•) (Mittler et al., 2004). These ROS are
capable of causing uncontrolled oxidation of various cellular components that can lead to oxida-
tive damage of the cell (Asada, 1999; Dat et al., 2000). Thus, enhanced production of ROS
during stress can be hazardous to cells. ROS have also been acknowledged as central play-
ers in complex signaling cascades as they act as signals for the activation of various stress-
responsive and defense pathways (Knight and Knight, 2001; Mittler et al., 2011). Apart from
playing important roles in stress signaling, ROS like H2O2 are also involved in plants’ growth
and developmental processes like differentiation of cellulose rich cell wall, mediation of aleuronic
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cell death and stimulation of somatic embryogenesis (Neill et al.,
2002; Slesak et al., 2007). Additionally, the transient accumu-
lation of H2O2 following pathogen infection leads to localized
programmed cell death or hypersensitive (HR) response and
stimulates crosslinking of cell wall proteins, thereby preventing
pathogen spread in the plant (Grant and Loake, 2000; Kuzniak
and Skłodowska, 2005). Considering the ambivalent role of ROS,
a delicate balance between their production and scavenging is
of utmost importance for proper growth and development of
plants.

Plants have an efficient anti-oxidant defense system which
scavenges the excess ROS produced in the cell under different
oxidative stress conditions. The anti-oxidant safe guard system
in plants comprises of non-enzymatic and enzymatic compo-
nents (Noctor and Foyer, 1998; Scandalios, 2005). The non-
enzymatic components include the major cellular redox buffers:
ascorbate (AsA) and glutathione (γ-glutamyl-cysteinyl-glycine,
GSH) as well as tocopherol, flavonoids, alkaloids, and carotenoids
(Arora et al., 2000; Grace and Logan, 2000; Foyer and Noctor,
2003; Gomathi and Rakkiyapan, 2011). The enzymatic compo-
nents of the anti-oxidative defense system consist of a number
of anti-oxidant enzymes such as superoxide dismutase (SOD),
catalase (CAT), guaiacol peroxidase (GPX) and the enzymes of
ascorbate-glutathione (AsA-GSH) cycle namely, ascorbate per-
oxidase (APX), monodehydroascorbate reductase (MDHAR),
dehydroascorbate reductase (DHAR), and glutathione reductase
(GR) (Mittler et al., 2004; Scandalios, 2005). AsA-GSH cycle
forms the main H2O2-detoxification system operating in cytosol,
chloroplasts and mitochondria of plant cells (Noctor and Foyer,
1998; Shigeoka et al., 2002; Mittler et al., 2004). Since the discov-
ery of the AsA-GSH cycle in themid-1970s, the enzyme-catalyzed
reactions of this pathway have been studied intensively (Noctor
and Foyer, 1998; Asada, 1999; Polle, 2001). Studies with mutants
and transgenic plants over- or under-expressing enzymes or
metabolites of the AsA-GSH pathway have proved very well the

FIGURE 1 | Schematic representation of the AsA-GSH pathway.

The first step of the pathway is the detoxification of H2O2 by APX

catalyzed peroxidation of AsA which generates MDHA. MDHA is either

reduced back to AsA by MDHAR or it undergoes non-enzymatic

disproportionation to AsA and dehydroascorbate (DHA). The DHA

molecules are reduced to AsA by DHAR using GSH as the reductant.

GSH is regenerated from the oxidized glutathione dimers (GSSG) by

NADPH-dependent GR. The green ovals indicate the various enzymes

catalyzing the different steps of the pathways (indicated by the blue

arrows). APX, Ascorbate peroxidase; MDHAR, Monodehydroascorbate

reductase; DHAR, Dehydroascorbate reductase; GR, Glutathione

reducatse, AsA, Ascorbic acid; GSH, Glutathione; GSSG, oxidized

glutathione dimer; MDHA, Monodehydroascorbate; DHA,

Dehydroascorbate.

co-relation between this pathway and stress tolerance (Gill and
Tuteja, 2010). The AsA-GSH cycle not only combats oxidative
stress, but also plays an important role in other plant develop-
mental processes (Chen and Gallie, 2006; Eastmond, 2007).

Each enzyme of the AsA-GSH pathway has various sub-
cellular isoforms, which differ from each other with respect
to their spatial and temporal expression. Moreover, these iso-
forms are differentially regulated by different types of stresses.
For example, it has been found that under salt stress, vari-
ous Oryza sativa APX (OsAPX) isoforms are differentially reg-
ulated. While some of them are characteristically up-regulated,
the others are down-regulated at the same time (Texeira et al.,
2006; Yamane et al., 2010). This suggests that the expression
of different isoforms of the AsA-GSH pathway enzymes is
under intricate regulation. However, the mechanisms underly-
ing the regulation of these isoforms are not completely under-
stood. The present review provides an overview of gene families
encoding AsA-GSH pathway in plants and imparts an insight
into their role in conferring tolerance to various abiotic and
biotic stresses. A brief discussion on the functional importance
of this pathway in growth and development of plants is also
provided.

The Ascorbate-Glutathione (AsA-GSH)
Pathway

The AsA-GSH pathway is composed of four enzymes namely,
APX,MDHAR, DHAR and GR (Figure 1) and two anti-oxidants,
AsA and GSH. APX, which is the first enzyme of the cycle,
detoxifies H2O2 by bringing about the peroxidation of AsA
and yielding monodehydroascorbate radical (MDHA). MDHA is
either directly reduced back to AsA by MDHAR or undergoes
non-enzymatic disproportionation to AsA and dehydroascorbate
(DHA). The next step of the cycle involves DHAR mediated
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reduction of DHA into AsA using GSH as the reductant
(Figure 1). DHA can undergo irreversible hydrolysis to 2, 3-
diketogulonic acid, if not reduced by DHAR. Thus, DHAR helps
in regeneration of AsA and plays an important role in maintain-
ing the cellular AsA pool (Gallie, 2012). Like AsA, the regen-
eration of GSH is also important. GSH is regenerated from the
oxidized glutathione dimers (GSSG) by NADPH-dependent GR
(Gill and Tuteja, 2010). The concentration of AsA and GSH
varies in different subcellular compartments of the cell (Table 1).
Both the redox buffers are known to accumulate in certain cellu-
lar compartments under different abiotic stress conditions. The
compartment specific role of both the buffers under abiotic stress
conditions has been discussed exhaustively in recent reviews
(Foyer and Noctor, 2011; Gest et al., 2013; Zechmann, 2014), and
we do not focus on this aspect in the present review. The AsA-
GSH cycle not only detoxifies toxic H2O2 but also contributes
toward the maintenance of cellular AsA and GSH pools in dif-
ferent compartments of the cell. Existing in all the organelles, the
AsA-GSH pathway protects the cell from the toxic effects of ROS
generated under a variety of abiotic and biotic stresses (Anjum
et al., 2010, 2014; Gill and Tuteja, 2010) (Figure 2).

Ascorbate Peroxidase

APX (EC 1.11.1.11) is the first enzyme of the AsA-GSH path-
way. It catalyzes the conversion of H2O2 to H2O and O2 using
AsA as specific electron donor (Asada, 1999). APX, thus, pre-
vents the accumulation of toxic levels of H2O2 in the cell.
APX belongs to class I peroxidase family of proteins which are
characterized by the presence of heme prosthetic groups. APXs
are extremely sensitive to the concentration of AsA, which is
reflected by the rapid decline in their activity at very low con-
centration (less than 20µM) of AsA (Shigeoka et al., 2002).
The enzyme has been identified in a number of higher plants,
algae and cyanobacteria (reviewed in Caverzan et al., 2012).
APX gene family comprises of different isoenzymes with differ-
ent characteristics. Till date, five APX isoforms namely, cytoso-
lic, mitochondrial, peroxisomal/glyoxysomal and chloroplastic
have been identified in plants (Dąbrowska et al., 2007). In
Arabidopsis thaliana, the reported eight isoenzymes of APX can
be categorized into three groups: soluble cytosolic (APX1, APX2,

TABLE 1 | Concentrations of AsA and GSH in different subcellular

compartments of cell.

Organelles [Ascorbate] (mM) [Glutathione] (mM)

Mitochondrion 10.4 14.9

Chloroplast 10.8 1.2

Nucleus 16.3 6.4

Peroxisome 22.8 4.4

Cytosol 21.7 4.5

Vacuole 2.3 0.08

The intracellular AsA and GSH levels in young rosette leaves of Arabidopsis thaliana

plants determined using AsA and GSH specific immunogold labeling (Gest et al., 2013;

Zechmann, 2014).

and APX6), microsome–membrane bound (APX3, APX4, and
APX5) and chloroplastic (sAPX and tAPX) (Dąbrowska et al.,
2007; Panchuk et al., 2002) (Table 2). Similarly, the identifica-
tion of APX gene family in Lycopersicum esculentum revealed the
presence of seven APX genes: three cytosolic, two peroxisomal,
and two chloroplastic (Najami et al., 2008). In O. sativa, eight
members of the APX gene family have been reported; encod-
ing two cytosolic, two peroxisomal, three chloroplastic, and one
mitochondrial isoforms (Texeira et al., 2004, 2006). Mitochon-
drial APX isoforms have also been reported in Solanum tubero-
sum and Pisum sativum (Jimenez et al., 1997; Leonardis et al.,
2000).

The APX isoforms are stress sensitive and are regulated by
nearly all kinds of abiotic and biotic stress conditions (Shigeoka
et al., 2002). The expression of APX isoforms can be activated
by specific factors such as pathogen attack, mechanical pressure,
injury, ultraviolet (UVB) radiation, water deficiency, salt stress,
low or high temperature, atmospheric pollution, and excess metal
ions (reviewed in Shigeoka et al., 2002; Dąbrowska et al., 2007).
The stress conditions also modulate the kinetic properties of the
enzyme. For example, the exposure of A. thaliana wild type and
flavonoidmutant (tt5) plants to UVB radiation led to a significant
decrease in KAsA

m as well as synthesis of new isoforms of cytoso-
lic APX (Rao et al., 1996). The over-expression of APX has been
shown to confer tolerance to various abiotic stresses (Xu et al.,
2008; Sun et al., 2010; Sato et al., 2011). For example, Jatropha
curcas plants over-expressing a chloroplastic APX were found
to be salt tolerant (Liu et al., 2014). Similarly, over-expression
of the peroxisomal APX from the halophyte Salicornia brachiata
conferred salt and drought stress tolerance to transgenic Arachis
hypogea plants (Singh et al., 2014). Transgenic L. esculentum
plants over-expressing cytosolic APX exhibited improved toler-
ance to chilling, salinity, heat and UVB stress (Wang et al., 2005,
2006). A. thaliana vtcmutants deficient in AsA are reported to be
hypersensitive to drought stress (Pastori et al., 2003; Faize et al.,
2011).

Monodehydroascorbate Reductase

MDHAR (EC 1.6.5.4) recycles MDHA molecules into AsA. The
exposure of plants to environmental stress conditions like high
light leads to very quick oxidation of AsA to MDHA in chloro-
plast (Polle, 2001). It is, therefore, necessary for the survival
of plants that MDHA is reduced back to regenerate AsA. In
chloroplast, MDHA is reduced to AsA by photoreduced ferre-
doxin at a high rate and this is likely to constitute the main
pathway of AsA regeneration in the vicinity of the thylakoid
membrane. Away from the thylakoid membrane, reduction of
MDHA can occur via two enzymes in the AsA-GSH pathway;
DHAR and MDHAR (Asada, 1999). MDHAR reduces MDHA
directly by using NAD(P)H as an electron donor. Alterna-
tively, two molecules of MDHA can react non-enzymatically to
generate AsA and DHA. The majority of MDHA is, however,
found to be reduced by MDHAR (Polle, 2001). MDHAR enzyme
activity is found across the entire plant and animal kingdom.
Plant MDHARs exhibit high level of sequence similarity with
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FIGURE 2 | Schematic representation of the AsA-GSH pathway in

different sub-cellular compartments. cAPX, cMDHAR, cDHAR, and

cGR represent the chloroplastic isoforms; ctAPX, ctMDHAR, ctDHAR,

and ctGR stand for the cytoplasmic, mAPX, mDHAR, and mGR

indicate the mitochondrial isoforms and pAPX, pMDHAR, pDHAR, and

pGR represent the peroxisomal isoforms. H2O2 can freely diffuse

between the different organelle as indicated by broken arrows. ETC,

Electron transport chain; AsA, Ascorbic acid; GSH, Glutathione; GSSG,

oxidized glutathione dimer; MDHA, Monodehydroascorbate; DHA,

Dehydroascorbate.

prokaryotic flavoenzymes. MDHAR activities are reported to
be present in algae (Haghjou et al., 2009), bryophytes (Lunde
et al., 2006) and in all higher plants (Yoon et al., 2004; Leter-
rier et al., 2005). Higher plants’ MDHARs belong to a multi-
gene family constituting several sub-cellular isoforms. MDHAR
activity has been detected in several cell compartments, such as
chloroplasts, mitochondria, peroxisomes and cytosol (Jimenez
et al., 1997; López-Huertas et al., 1999; Mittova et al., 2003;
Kavitha et al., 2010). In A. thaliana, six isoforms of MDHAR
are present among which two are peroxisomal, two are cytosolic
and one is dually targeted chloroplastic/mitochondrial isoform
(Lisenbee et al., 2005) (Table 2). The L. esculentumMDHAR fam-
ily consists of three isoforms (Stevens et al., 2007). A total of
three cytosolic isoforms of MDHARs have been reported in the
moss Physcomitrella patens (Lunde et al., 2006). Physcomitrella
apparently lacks any chloroplastic isoform indicating that

AsA reduction in the plant exclusively occurs in cytosol
(Drew et al., 2007).

In order to protect against the deleterious effects of ROS, the
AsA pools are required to be maintained in a reduced state.
Thus, ascorbate reductases like MDHARs, which are responsi-
ble for the reduction of AsA have considerable roles in stress
tolerance. The activity of MDHAR proteins as well as MDHAR
gene expression has been found to be differentially affected by
various stress conditions. The increase in MDHAR activity has
been reported in stress conditions like salinity, high light, UV
radiation, boron toxicity and low temperature (Mittova et al.,
2003; Cervilla et al., 2007). Transgenic studies have also con-
firmed the vital role of this enzyme in conferring tolerance to var-
ious abiotic stresses. For example, over-expression of A. thaliana
MDHAR in Nicotiana tabacum enhanced tolerance of trans-
genic plants to ozone, salt and dehydration stress (Eltayeb et al.,
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TABLE 2 | AsA-GSH pathway gene families in A. thaliana and O.sativa and their role in abiotic and biotic stress tolerance.

Gene Localization O. sativa A. thaliana Role in abiotic and biotic stress References

APX Cytoplasm LOC_Os03g17690

LOC_Os07g49400

At1g07890

At 3g09640

Over expression confers tolerance to

cold, salt stress and bacterial wild fire

disease. Knockdown causes

hyper-responsiveness to pathogen

attack

Mittler et al., 1999; Wang et al.,

2005; Faize et al., 2012

Peroxisome LOC_Os04g14680

LOC_Os08g43560

LOC_Os09g36750

At4g35000 Over expression confers salt and

drought tolerance

Singh et al., 2014

Chloroplast Stroma LOC_Os12g07830

LOC_Os12g07820

LOC_Os04g035520

At4g08390 Over expression

confers salt tolerance

Liu et al., 2014

Thylakoid LOC_Os02g34810 At1g77490

MDHAR Peroxisome LOC_Os02g47790

LOC_Os09g39380

LOC_Os02g47800

At3g27820

At3g52880

Knockdown leads to enhanced

resistance to P. stritiformis

Feng et al., 2014

Chloroplast

stroma/Mitochondria

LOC_Os08g05570 At1g63940 Over expression confers heat, salt

and oxidative stress tolerance

Li et al., 2010; Eltelib et al., 2012

Cytoplasm LOC_Os08g44340 At5g03630

At3g09940

Over expression

confers salt tolerance

Sultana et al., 2012

DHAR Chloroplast LOC_Os06g12630 At5g16710 Over expression confers salt and cold

stress tolerance

Li et al., 2012

Cytoplasm LOC_Os05g02530 At1g75270 Over expression confers aluminum

stress tolerance

Yin et al., 2010

GR Cytoplasm LOC_Os02g56850 At3g24170 Over expression confers oxidative

stress tolerance

Aono et al., 1991

Chloroplast/Mitochondria LOC_Os03g06740

LOC_Os10g28000

At3g54660 Over expression confers oxidative

and cold stress tolerance

Aono et al., 1991; Foyer et al.,

1995

The table enlists the representative members of the gene families encoding AsA-GSH pathway with their corresponding locus names, localization details and role in abiotic and biotic

stress tolerance.

2007). The over-expression of Acanthus ebracteatus cytoplasmic
andMalpighia glabra chloroplastic MDHAR genes improved salt
stress tolerance in O. sativa and N. tabacum, respectively (Eltelib
et al., 2012; Sultana et al., 2012). Similarly, over-expression of
chloroplasticMDHAR from L. esculentum andAvicenniamarina,
respectively, was shown to confer resistance to high temperature
and methyl viologen-mediated oxidative stress in transgenic L.
esculentum (Li et al., 2010) and to salt stress in transgenic N.
tabacum plants (Kavitha et al., 2010).

Dehydroascorbate Reductase

AsA, which is a major anti-oxidant in plants, is oxidized to
DHA via successive reversible electron transfers with MDHA as
a free radical intermediate. DHA, so produced, is reduced to AsA
by DHAR with GSH as an electron donor (EC 1.8.5.1). DHAR
is the key enzyme to regenerate AsA. DHARs have been iso-
lated and characterized from higher plants like A. thaliana, N.
tabacum and agricultural crops such as oleracea, O. sativa and
Pennisetum glaucum (Urano et al., 2000; Shimaoka et al., 2000;

Ushimaru et al., 2006; Pandey et al., 2014). In A. thaliana five dif-
ferent DHARs (At1g19550, At1g19570, At1g75270, At5g36270,
At5g16710) have been identified, with their presence either in an
organelle (chloroplast or mitochondrion) or in the cytosol (Chew
et al., 2003) (Table 2). Recently the At1g19570 isoform has been
found to be associated with peroxisomes (Kataya and Reumann,
2010). Two different DHAR isoforms have been discovered in
Spinacia oleracea leaves with one isoform located in chloroplasts
whereas the other being present in the sub-cellular compartment
other than chloroplasts (Shimaoka et al., 2000). DHAR activity
has also been found in mitochondria, chloroplasts and peroxi-
somes of both leaf and root cells of the cultivated L. esculentum
(M82) and its wild salt-tolerant relative, L. pennellii (Lpa) (Mit-
tova et al., 2000). Two DHAR genes encoding for cytosolic and
chloroplastic DHARs have also been identified in Eucalyptus spp.
(Teixeira et al., 2005).

DHAR also plays an important role in abiotic stress tolerance
and its expression is activated by a number of abiotic stress fac-
tors (Ali et al., 2005; Lu et al., 2008; Fan et al., 2014). Moreover,
enhanced tolerance to various abiotic stresses was observed in
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plants over-expressing DHAR (Kwon et al., 2003; Ushimaru et al.,
2006; Wang et al., 2010). For example, the over-expression of A.
thaliana cytosolic DHAR has been shown to impart tolerance
to aluminum stress in transgenic N. tabacum plants (Yin et al.,
2010). In yet another report, it was shown that the over expres-
sion of DHAR which led to enhanced AsA accumulation con-
ferred oxidative and salt stress tolerance to L. esculentum plants
(Li et al., 2012). The simultaneous expression of chloroplastic O.
sativa DHAR and E. coli GR in N. tabacum plants resulted in
enhanced tolerance to salt and cold stress (LeMartret et al., 2011).

Additionally, DHAR plays an important role in plant growth
and development (Chen and Gallie, 2006). The lack of DHAR
resulted in the quick loss of AsA from O. sativa plants and led to
slower rate of leaf expansion consequently affecting plant growth
and development (Ye et al., 2000).

Glutathione Reductase

GR (NADPH: oxidized glutathione oxidoreductase; EC 1.6.4.2)
maintains the cellular redox state by regenerating the reduced
form of GSH, thereby, maintaining the balance between
reduced GSH and AsA pools (Noctor and Foyer, 1998; Reddy
and Raghavendra, 2006). GR is a flavo-protein oxidoreduc-
tase ubiquitously present in both prokaryotes and eukaryotes
(Romeo-Puertas et al., 2006). The protein has been purified and
characterized from a variety of organisms (Rao and Reddy, 2008;
Achary et al., 2014). Although localized mainly in the chloro-
plasts, the enzyme is also found in cytosol (Edwards et al., 1990),
mitochondria and peroxisomes (Jimenez et al., 1997; Romeo-
Puertas et al., 2006).

Multiple isoforms of GR have been reported in a num-
ber of plants (Edwards et al., 1990; Lascano et al., 2001;
Contour-Ansel et al., 2006; Rao and Reddy, 2008; Trivedi et al.,
2013). Modulation in the expression profile of various GR iso-
forms have been known to occur under various stress con-
ditions (reviewed in Yousuf et al., 2012; Gill et al., 2013).
Transgenic N. tabacum plants over-expressing E. coli GR in
the cytoplasm and chloroplast exhibited enhanced GR activ-
ity and tolerance to methyl viologen-mediated oxidative stress
(Aono et al., 1991, 1993). Similarly, the over-expression of GR
in chloroplasts of N. tabacum plants led to enhanced accu-
mulation of GSH and AsA and the transgenic plants were
found to be more tolerant to high light and chilling stress
(Foyer et al., 1995). Overproduction of chloroplastic GR led
to reduced photoinhibition under chilling stress in transgenic
Gossypium hirsutum plants (Kornyeyev et al., 2003). Transgenic
N. tabacum plants with reduced expression of GR were shown
to display enhanced sensitivity to oxidative stress (Ding et al.,
2009).

AsA-GSH Pathway in Chloroplasts

The AsA-GSH cycle plays a critical role in maintaining ROS
homeostasis in chloroplasts. These organelles are devoid of cata-
lases and the AsA-GSH cycle acts as themajorH2O2 metabolizing
pathway in these photosynthetic organelles. The photoreduc-
tion of O2 in chloroplast via photosystem–I (PSI) leads to the

formation of superoxide ions, which rapidly dismutate to H2O2

spontaneously or by the action of superoxide dismutases (Asada,
1999). Chloroplasts contain relatively higher levels of AsA and
GSH as compared to the other sub cellular organelles (Noctor
and Foyer, 1998; Gest et al., 2013; Zechmann, 2014). Thus, the
AsA-GSH pathway in chloroplast is imperative in protecting it
from the deleterious effects of excess ROS production. Among
the four enzymes of the AsA-GSH pathway in chloroplasts, the
chloroplastic APX (chAPX) which consists of thylakoid (tAPX)
and stromal (sAPX) isoforms scavenges the H2O2 generated dur-
ing photosynthesis. The stromal and thylakoid-bound APXs have
been identified and purified from several plant species (Ishikawa
et al., 1996, 1998). tAPX is characterized by the presence of an
extended C-terminal sequence that makes it 5 KDa larger than
the sAPX (Asada, 1999). This sequence is responsible for bind-
ing of the protein to the membrane. sAPX has been shown to be
predominantly important for photo-protection in young leaves.
tAPX and sAPX isoforms are apparently functionally redundant
and contribute to oxidative stress tolerance in chloroplasts. A
sudden exposure to high light stress in tapx and sapx double
mutant of A. thaliana led to a characteristic decline in the photo-
chemical efficiency of PSII (Kangasjärvi et al., 2008). Likewise, the
over-expression of tAPX in N. tabacum plants helped in main-
taining photosynthetic efficiency of plants under high light and
low temperature stress, thereby, substantiating the role of chloro-
plastic APX in stress resistance (Yabuta et al., 2002). The MDHA
formed in the lumen by the oxidation of AsA disproportionates
to DHA and moves into the stroma through the thylakoid mem-
brane. MDHA produced by both stromal and thylakoid bound
APX isoforms is reduced by stromal MDHAR. MDHAR has not
been reported in the lumen of chloroplast (Obara et al., 2002).
Along with the regeneration of AsA from MDHA, chloroplastic
MDHAR also brings about the photo-reduction of dioxygen to
O•−

2 in absence of MDHA (Miyake et al., 1998; López-Huertas
et al., 1999). DHAR and GR activities convert the DHA translo-
cated from the lumen and the DHA generated in the stroma to
AsA (Asada, 1999).

AsA-GSH Pathway in Mitochondria

The presence and activity of AsA-GSH cycle enzymes in mito-
chondria of plant cells have been established, and this cycle plays
an important role in protecting mitochondrion against the toxic
ROS regularly produced in respiratory chain reactions (Leonardis
et al., 2000; Chew et al., 2003; Mittova et al., 2004; Lázaro et al.,
2013). The mitochondrial AsA-GSH cycle deals with both photo-
synthetic as well as stress-induced oxidative stress (Jimenez et al.,
1997). Themitochondrial AsA-GSH cycle also plays an important
role in eliminating the mitochondrial-derived radicals, thereby
protecting the heme of leghemoglobin in N2-fixing legume root
nodules (Iturbe-Ormaetxe et al., 2001; Loscos et al., 2008). The
mitochondrial APX is known to be membrane-localized in plants
(Leonardis et al., 2000; Iturbe-Ormaetxe et al., 2001). The best
collective evidence for the presence of MDHAR, DHAR, and
GR in mitochondria is from P. sativum leaves (Jimenez et al.,
1997) and Phaseolus valgaris nodules (Iturbe-Ormaetxe et al.,
2001).
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AsA-GSH Pathway in Cytoplasm

In A. thaliana, the cytosolic AsA-GSH pathway is characterized
by the presence of one cytosolic APX (APX1), with an addi-
tional stress inducible APX (APX2) (Panchuk et al., 2002), along
with the other enzymes (Mittler et al., 2004). It has been shown
that the cytosolic APX imparts cross compartment protection of
the other sub-cellular organellar APXs like mitochondrial APX,
thylakoidal and stromal APXs hinting toward the fact that cytoso-
lic AsA-GSH pathway plays an important role in protecting the
other organelles during periods of stress (Davletova et al., 2005).
Notably, cytosolic APX accounts for up to 0.9% of the total sol-
uble protein of nodules and is particularly abundant in infected
cells and nodule parenchyma of Medicago sativa (Dalton et al.,
1998).

AsA-GSH Pathway in Peroxisome

Peroxisomes are single membrane-bound subcellular organelles
being involved in production as well as the degradation of H2O2

and are sites for photorespiration, fatty acid β-oxidation, glyoxy-
late cycle and ureide metabolism (Corpas et al., 2001; Mano and
Nishimura, 2005). The four enzymes of the AsA-GSH cycle, APX,
MDHAR, DHAR and GR have been reported to be expressed in
peroxisomes of roots and leaves of P. sativum and L. esculen-
tum (Jimenez et al., 1997; Mittova et al., 2000; Leterrier et al.,
2005). The presence of reduced AsA and GSH, and their oxidized
forms, DHA and GSSG, respectively, was demonstrated by high
performance liquid chromatography (HPLC) analysis in intact
peroxisomes of P. sativum leaves (Jimenez et al., 1997). cDNAs
encoding peroxisomal APX have been isolated from Gossypium
spp. (Bunkelmann and Trelease, 1996), A. thaliana (Zhang et al.,
1997) and S. oleracea (Ishikawa et al., 1998). The deduced amino
acid sequence of peroxisomal APX has a high degree of identity
with cytosolic APX, but it has a C-terminal amino acid exten-
sion containing a single, putative membrane−spanning region
(Mullen et al., 1999). DHAR and GR were also found in the sol-
uble fraction of peroxisomes, whereas membrane bound APX
proteins have been shown to be present in P. sativum, Cucurbita
maxima, and L. esculentum (Yamaguchi et al., 1995; Bunkelmann
and Trelease, 1996; López-Huertas et al., 1999).

Role of Gene Families of AsA-GSH
Pathway in Abiotic Stresses

Drought Stress
Drought stress leads to the production of ROS (mainly H2O2)
in chloroplasts and mitochondria of plant cells (Dat et al., 2000).
Drought stress causes varied effects on the enzymes of the AsA-
GSH cycle, the response being dependent on the plant species,
the developmental and metabolic state of plant, and the duration
and intensity of the stress (Sofo et al., 2010). In majority of cases,
drought stress led to an increase in the activity of enzymes of
AsA-GSH cycle (Reddy et al., 2004; Sofo et al., 2005; Pukacka and
Ratajczak, 2006; Bian and Jiang, 2009). For example, desiccation
of recalcitrant seeds of Acer saccharinum was characterized by

increased O−

2 and H2O2 production, elevation in AsA and GSH
contents as well as increased activity of the AsA-GSH enzymes
(Pukacka and Ratajczak, 2006). Similarly, subjecting five Morus
alba cultivars to drought stress led to an increase in the activity of
AsA-GSH cycle enzymes (Reddy et al., 2004). During prolonged
drought treatment in Prunus spp, the activities of the AsA-GSH
enzymes were up-regulated, AsA/DHA ratio was decreased and
the ratio of GSH/GSSG was increased suggesting an important
role of the AsA-GSH pathway in combating drought stress (Sofo
et al., 2005). Polyethylene glycol (PEG) induced drought stress to
Cucumis sativus seedling roots led to increased activity of APX.
However, the activities of DHAR and MDHAR first decreased
(24 h) and then increased. The activity of GR was found to
decrease at all time points (Fan et al., 2014). Drought stress
differentially affected the antioxidant levels in the genotypes of
plants which were contrasting with respect to drought tolerance.
For example, the drought tolerant cultivars exhibited enhanced
antioxidant enzyme activity under drought stress in compari-
son with sensitive cultivars of Dendranthema grandiflorum (Sun
et al., 2013). The effect of drought stress on different isoforms of
AsA-GSH cycle genes is extremely variable among different plant
species. For example, drought stress was shown to decrease the
activity of cytosolic isoform of APX whereas it led to increased
activity of the chloroplastic isoform in Helianthus annuus. In the
same study, it was shown that drought stress did not affect the
activity of both the cytosolic and chloroplastic isoforms of APX
in Sorghum bicolor (Zhang and Kirkham, 1996).

Salt Stress
In plants, salinity stress leads to cellular dehydration, which
enhances the production of ROS causing oxidative stress and
thereby leading to enhanced expression of ROS scavenging
enzymes. The expression levels of all enzymes of AsA-GSH path-
way have been shown to be affected by salt stress (Mittova et al.,
2004; Jebara et al., 2005). However, activities of AsA-GSH path-
way enzymes were found to be differentially altered by salinity
stress in the salt tolerant and sensitive varieties. For example, O.
sativa L. cv. Pokkali which is a salt-tolerant genotype, showed
enhanced activity of AsA-GSH cycle enzymes, whereas, the salt-
sensitive, O. sativa L. cv. BRRI dhan 29 exhibited decreased APX
activity, increased DHAR activity and unchanged MDHAR and
GR activity (Hossain et al., 2013). However, salinity stress in
Triticum aestivum and O. sativa resulted in increased activities of
MDHAR (Sairam et al., 2002; Vaidyanathan et al., 2003). All the
isoforms of MDHAR, viz. mitochondrial, peroxisomal, chloro-
plastic, and cytosolic have been found to be sensitive to salt stress.
For instance, salinity stress leads to increased activities of mito-
chondrial and peroxisomal MDHARs in Lycopersicon pennellii,
which is a salt tolerant wild variety (Mittova et al., 2003). An
increased GR activity has been reported in the roots and leaf of
Cicer arientinum under salt stress (Eyidogan and Oz, 2005).

Temperature Stress
High temperature in plants enhances the generation of ROS,
consequently inducing oxidative stress (Yin et al., 2008). Under
high temperature, RuBisCO can lead to the enhanced production
of H2O2 as a result of its oxygenase reaction (Kim and Portis,

Frontiers in Environmental Science | www.frontiersin.org March 2015 | Volume 3 | Article 25 | 159

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Pandey et al. Ascorbate-glutathione pathway and stress tolerance

2004). Tolerance to heat stress has been ascribed to elevated
antioxidant enzymes’ activity in many crop plants (Rainwater
et al., 1996; Sairam et al., 2000; Sato et al., 2001; Rizhsky et al.,
2002; Vacca et al., 2004; Almeselmani et al., 2006). The AsA-
GSH pathway was found to be upregulated in response to heat
stress in Malus domestica as reflected by increased gene expres-
sion and activities of APX, DHAR and GR enzymes (Ma et al.,
2008). Under heat stress, the response of antioxidant enzymes
activity varied amongst different genotypes of plants. For exam-
ple, the analysis of gene expression of APX in a thermo-tolerant
and thermo-susceptible variety of Brassica spp, T. aestivum, and
Vigna radiata revealed increased activity of the enzyme under
heat stress in all the genotypes. However, the elevation in tran-
script level was found to be higher in case of thermo-tolerant
genotypes (Almeselmani et al., 2006; Rani et al., 2013). Heat
stress induced elevation in transcript level of APX has also been
reported in Poa pratensis by He and Huang (2007). Similar to
APX, GR activity was also found to be enhanced by 50% in
thermo-tolerant and 33% in thermo-susceptible genotypes of
Brassica spp under heat stress (Rani et al., 2013). Exposure of
N. tabacum cell suspension to elevated temperature (55◦C) also
resulted in increased GR activity (Locatto et al., 2009). However,
Ma et al. (2008) reported the initial increase and then decrease in
GR activity inM. domestica leaves during prolonged exposure to
heat stress. The activities of DHAR and GR were also found to be
increased under heat stress in temperature sensitive orchid Pha-
laenopsis (Ali et al., 2005). The activity of MDHAR was found to
be repressed under heat stress in the same study. This study also
indicated a differential effect of heat on the activity of the antioxi-
dant enzymes in roots and shoots. For example, the activity of GR
was doubled at 40◦C in leaf but was drastically reduced in roots
at the same temperature. The authors attributed the decrease in
GR activity in roots to reduced availability of NADPH (Ali et al.,
2005).

Similar to heat stress, low temperature stress also induces
H2O2 production in cells (Suzuki and Mittler, 2006) and is
known to up-regulate transcripts, protein level and activities of
different ROS-scavenging enzymes (Prasad et al., 1994; Saruyama

and Tanida, 1995; Sato et al., 2001). In Pinus spp, enhanced
freezing tolerance during cold acclimation was characterized by
elevated levels of APX, GR, MDHAR, and DHAR (Tao et al.,
1998). In leaves of Eupatorium adenophorum, the activity of
APX and GR increased with decreasing temperatures. However,
upon cold stress treatment to leaves of thermo-tolerant E. odor-
atum, the activity of APX reached a peak value at 15◦C and then
declined, whereas GR activity was not affected. MDHAR activity
in leaves of the cold-treated E. adenophorumwas not significantly
different from the controls, whereas the activity was found to be
decreased in leaves of E. odoratum. DHAR activity in leaves of the
two species was found to increase with both heat and cold stresses
(Lu et al., 2008).

Role of Gene Families of AsA-GSH Pathway in
Biotic Stress
The production of ROS constitutes one of the first responses
of plant cells to infection (Torres et al., 2006). The apoplastic
generation of ROS occurs mainly by enzymes like membrane
NADPH-dependent oxidase, cell wall peroxidase or polyamine
oxidases (Bolwell et al., 2002). ROS generated upon pathogen
attack can either enhance the harmful effect of infection or may
contribute to plant defense by causing hypersensitive response
(Levine et al., 1994). ROS can also serve as signal molecules for
the activation of local and systemic resistance (Grant and Loake,
2000; Kuzniak and Skłodowska, 2005). The ROS-mediated plant
defense response is further more complex and is dependent on
factors like the life style of pathogen (biotrophy/necrotrophy),
the type of plant–pathogen interaction (compatible/incompatible
interactions) and the stage of plant development (Govrin and
Levine, 2000; Huckelhoven and Kogel, 2003). For maintaining
ROS homeostasis, it becomes important to have an intricate and
tightly regulated balance between ROS production and removal.
Pathogen induced changes in antioxidant enzyme levels have
been shown in a number of plants (Table 3). For example, in
Hordeum vulgare leaves challenged with the powdery mildew
fungus, Blumeria graminis, the fungal infection led to a signif-
icant decrease in APX and GR activity in whole-leaf extracts

TABLE 3 | Representative examples of modulation of plant antioxidant activities by different pathogens.

Pathogen Plant Effect of pathogen infection on the

enzymes of AsA-GSH cycle

References

Blumeria graminis Hordeum vulgare APX, GR activity decreased while MDHAR and

DHAR unaffected

Vanacker et al., 1998

Botrytis cinerea Lycopersicon

esculentum

Activity of chloroplastic APX, GR increased and

that of mitochondrial and peroxisomal isoforms

decreased

Kuzniak and Skłodowska, 2005

Alternaria sesami Sesamum

orientale

Activity of APX, MDHAR, and GR initial

increased and then decreased

Shereefa and Kumaraswamy, 2014

Piriformospora indica Arabidopsis

thaliana

Activity of cytosolic MDHAR and DHAR

increased

Vadassery et al., 2009

Mycosphaerella fragariae Fragaria ananassa Activity of APX, MDHAR, and GR increased. Ding et al., 2011

Fusarium oxysporum Cicer arientinum Increased activities of APX and GR Limones et al., 2002

Erwinia amylovora Malus domestica Decreased APX activity in chloroplasts Viljevac et al., 2009

Frontiers in Environmental Science | www.frontiersin.org March 2015 | Volume 3 | Article 25 | 160

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Pandey et al. Ascorbate-glutathione pathway and stress tolerance

of resistant variety but caused no significant change in the sus-
ceptible one. However, there was no change in the activities
of MDHAR and DHAR (Vanacker et al., 1998). Kuzniak and
Skłodowska (2005) showed that Botrytis cinerea infection differ-
entially affected the AsA-GSH gene families in L. esculentum.
Upon infection, APX activity was found to increase in chloro-
plasts and decrease in mitochondria and peroxisomes 2 days after
infection (dpi). The activity of peroxisomal MDHAR increased
considerably at 1 dpi followed by subsequent decrease in activities
of all MDHAR isoforms. A significant reduction in the activity
of DHAR was observed in whole leaf extract at all time points.
The chloroplastic DHAR activity was not affected, whereas the
mitochondrial and peroxisomal DHAR activities were distinctly
decreased starting from the third day after pathogen challenge.
The GR activity on the other hand was found to increase in the
chloroplasts. The peroxisomal and mitochondrial GR activities
were repressed in response to infection by the pathogen. The
decline in the activity of mitochondrial and peroxisomal isoforms
points toward the “fungus-promoted precocious senescence” that
led to the disease development (Kuzniak and Skłodowska, 2005).
Similarly, Sesamum orientale plants, upon infection with the fun-
gus Alternaria sesami displayed an initial increase in the activity
of APX, MDHAR, and GR followed by a gradual decrease in
the corresponding activities (Shereefa and Kumaraswamy, 2014).
The expression of cytosolic MDHAR and DHAR was shown
to be upregulated in A. thaliana seedlings co-cultivated with
the root-colonizing endophytic fungus Piriformospora indica
suggesting an important role of the enzyme in the mainte-
nance of mutualistic plant- fungal interaction (Vadassery et al.,
2009). However, knockdown of T. aestivum MDHAR resulted
in improved resistance to Puccinia striiformis in wheat (Feng
et al., 2014) suggesting that plants with compromised activity
of the antioxidant enzymes have improved resistance against
pathogens.

Role of Gene Families of AsA-GSH Pathway in
Physiological and Developmental Processes of
Plants
Apart from the important role in protecting the plants from the
stress induced ROS, the enzymes of AsA-GSH pathway also play
a part in growth and development of plants. AsA and GSH have
been known to play important roles in organ developmental pro-
cesses of plants (Arrigoni and De Tullio, 2002). The peroxiso-
mal MDHAR in A. thaliana has been shown to be important
in mobilization of lipid reserves during early growth following
germination by removing H2O2 generated by β-oxidation (East-
mond, 2007). The transcript profiles of certain enzymes of the
pathway are known to be spatially and developmentally regu-
lated. Expression of A. thaliana cytosolic APX (APX1) in leaves
and roots is relatively high as compared to the cytosolic APX2
isoforms (Panchuk et al., 2005; Hruz et al., 2008). A. thaliana
apx1 mutant plants exhibit delayed development, late flowering

and altered stomatal responses (Pnueli et al., 2003). The study
of Correa-Aragunde et al. (2013) suggests the participation of
APX1 in the redistribution of H2O2 accumulation during root
growth and lateral root development in A. thaliana. The tran-
scripts of APX1 in Ipomoea batatawere detected clearly in leaves,

weakly in stems, and not in non-storage and storage roots. The
expression level appeared to be higher in mature leaves than in
immature leaves, suggesting its growth-stage specific expression
(Park et al., 2004). Expression of APX2, another cytosolic iso-
form was found to be limited to bundle sheath cells in leaves
exposed to excess light (Fryer et al., 2003). Like APX, DHAR also
plays an important role in developmental processes. It has been
reported that suppression of DHAR expression results in a pref-
erential loss of chlorophyll a and less CO2 assimilation, resulting
in decreased rate of leaf expansion, reduced foliar dry weight
and premature leaf aging. Furthermore, the over-expression of
DHAR which led to reduced lipid peroxidation in the transgenic
plants led to delayed leaf aging in O. sativa (Chen and Gallie,
2006).

Summary and Perspectives

Despite their deleterious effects, ROS at low concentrations play
crucial roles in stress perception, regulation of photosynthesis,
pathogen recognition, programmed cell death, and plant devel-
opment. The antioxidant enzymes of AsA-GSH pathway help in
maintaining ROS homeostasis in cells by avoiding the poten-
tial cytotoxicity of ROS and allowing them to function as sig-
nal molecules. Considering the different levels and intensities
of AsA and GSH production in the different organelles of cell
under normal and stress conditions, the regulation of antioxidant
enzymes also differs. There are different subcellular isoforms of
each of the antioxidant enzymes and each isoform differentially
responds to different stress and developmental cues. The mech-
anism of regulation of each isoforms by different stresses and
developmental stages is yet to be completely understood. Further
studies are required to decipher the complex regulation of expres-
sion of different isoforms of the AsA-GSH pathway enzymes in
order to bolster our understanding of ROS homeostasis in plants.
Understanding the intricate regulation of the various isoforms
under various stress conditions can facilitate deeper insights into
the stress tolerance mechanism of plants. This will also help in
designing better strategies for the development of plants with
improved abiotic and biotic stress tolerance.
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Plants can maintain growth and reproductive success by sensing changes in the

environment and reacting through mechanisms at molecular, cellular, physiological, and

developmental levels. Each stress condition prompts a unique response although some

overlap between the reactions to abiotic stress (drought, heat, cold, salt or high light)

and to biotic stress (pathogens) does occur. A common feature in the response to all

stresses is the onset of oxidative stress, through the production of reactive oxygen

species (ROS). As hydrogen peroxide and superoxide are involved in stress signaling,

a tight control in ROS homeostasis requires a delicate balance of systems involved in

their generation and degradation. If the plant lacks the capacity to generate scavenging

potential, this can ultimately lead to death. In grapevine, antioxidant homeostasis can be

considered at whole plant levels and during the development cycle. The most striking

example lies in berries and their derivatives, such as wine, with nutraceutical properties

associated with their antioxidant capacity. Antioxidant homeostasis is tightly regulated in

leaves, assuring a positive balance between photosynthesis and respiration, explaining

the tolerance of many grapevine varieties to extreme environments. In this review we

will focus on antioxidant metabolites, antioxidant enzymes, transcriptional regulation and

cross-talk with hormones prompted by abiotic stress conditions. We will also discuss

three situations that require specific homeostasis balance: biotic stress, the oxidative

burst in berries at veraison and in vitro systems. The genetic plasticity of the antioxidant

homeostasis response put in evidence by the different levels of tolerance to stress

presented by grapevine varieties will be addressed. The gathered information is relevant

to foster varietal adaptation to impending climate changes, to assist breeders in choosing

the more adapted varieties and suitable viticulture practices.

Keywords: ROS, ascorbate-glutathione cycle, oxidative burst, peroxiredoxins, hormone stress signals, in vitro

stress, biotic stress

Introduction

Plants are able to maintain growth and reproductive success by sensing changes in the sur-
rounding environment and reacting through mechanisms at the molecular, cellular, physio-
logical, and developmental levels. These response mechanisms enable plants to react rapidly,
within hours or days, to extreme environmental conditions that could otherwise be injur-
ing or lethal. Understanding stress responses is one of the most important issues in plant
research nowadays. Both biotic and abiotic stresses can promote the onset of oxidative stress
through the accumulation of reactive oxygen species (ROS). Worldwide, extensive agricultural
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losses are attributed to drought, often in combination with heat
(Mittler, 2006). The available scenarios for climate change sug-
gest increases in aridity in Mediterranean climate regions (Jones
et al., 2005), where grapevine traditionally grows. This species
is an extremely important crop worldwide, at the economic and
cultural levels. In Southern Europe, post flowering phases of the
growth cycle usually occur under high temperatures, excessive
light and drought conditions at soil and/or atmospheric level. In
such situations plants are affected by a combination of abiotic and
biotic stresses, triggering synergistic or antagonistic physiologi-
cal, metabolic or transcriptomic responses unique to each stress
combination. Oxidative stress also arises in in vitro propagation
commonly applied to ornamental species, also used to rapidly
propagate grapevine scions for grafting (Carvalho and Amâncio,
2002).

The ultimate “price” to pay for photosynthetic O2 release and
plant aerobic metabolism is the production of ROS. ROS pro-
duction can also be increased by stress conditions (Apel and
Hirt, 2004).When photosynthesis is inhibited, absorption of light
energy can be in excess to what can be used by the photosyn-
thetic processes, resulting in ROS production and accumulation.
The same is true when stress induced slowdown of other ROS
processing metabolic mechanisms results in ROS accumulation.
Climate change forecasts indicate a high probability of extreme
temperature episodes, both high and low, a decrease in water
availability as well as increases in carbon oxide and ozone in the
atmosphere. All these factors impact plant growth and develop-
ment by negatively affecting antioxidant homeostasis, hampering
the adaptation to environmental stressors (Munné-Bosch et al.,
2013).

A molecule is classified as “antioxidant” when it is able
to quench ROS without itself undergoing conversion into a
destructive radical, thus interrupting the cascades of uncon-
trolled oxidation. In that category are included, among oth-
ers, the metabolites ascorbic acid (AsA, also termed vitamin
C), glutathione (GSH), and carotenoid pigments. The ROS sig-
naling or degradation pathways depend on antioxidant redox
buffering enzymes such as superoxide dismutase (SOD), catalase
(CAT), peroxiredoxins (Prx), ascorbate peroxidase (APX), and
glutathione reductase (GOR) (Carvalho et al., 2006; Vidigal et al.,
2013).

Upon abiotic stress gene expression profiles are altered and
usually genes assigned to the functional categories “protein
metabolism and modification,” “signaling” and “antioxidative
response” undergo significant changes (Carvalho et al., 2011;
Rocheta et al., 2014), thus enhancing the common attributes of
abiotic stress defense pathways.

The nutraceutical properties of the grape berry and its
derivatives, namely wine, are commonly associated with the
antioxidant properties of the phenolic compounds they con-
tain (Tenore et al., 2011; De Nisco et al., 2013), from
simple flavonoids like anthocyanins to condensed proantho-
cyanidins (PAs, tannins), which can be solubilized into the
vacuole or linked to cell wall polysaccharides, so, it is of
great interest to understand their antioxidant mechanisms in
planta.

Metabolites Involved in Antioxidant
Homeostasis: ROS, AsA, GSH, Pigments,
and Proline

The different levels of tolerance to stress presented by grapevine
varieties relates directly to the genetic plasticity of the antioxidant
homeostasis. Some varieties keep low basal levels of antioxidant
metabolites thus having to synthesize them at the onset of stress.
Such varieties have a slower response than those with higher basal
levels of antioxidant metabolites (Carvalho et al., 2014). This is
put in evidence by the different pattern of antioxidantmetabolites
in normal growth conditions, as shown in Table 1.

ROS
The first players in antioxidant homeostasis, which in normal
conditions induce the need for detoxification/scavenging, are
ROS themselves. In chloroplasts O−

2 produced in the Mehler
reaction occurs in normal conditions, commonly increasing
upon stress. It is now believed that O−

2 formation is the first step
in a chain reaction leading to the control and regulation of several
cellular processes (Apel andHirt, 2004), with ROS integrated into
signaling pathways (Mullineaux et al., 2006), often in crosstalk
with hormonal regulation (Fujita et al., 2006). A mechanism of
acclimation ofNicotiana benthamiana to high light, driven by the
hormone abscisic acid (ABA) and by the accumulation of H2O2,
also involving Prxs was recently described in Vidigal et al. (2014).

When the energy from triplet excited chlorophylls is trans-
ferred to molecular oxygen, 1O2 is formed. This ROS is a strong
electrophile agent that can react with lipids, proteins, and DNA
(Triantaphylidès and Havaux, 2009). However, 1O2 also reacts
with target mediator molecules which trigger signaling cascades
that lead either to programmed cell death or to acclimation
(Ramel et al., 2012). In grapevine leaves, 1O2 and also H2O2 are
generated in trace-element stress, such as that caused by boron in
excess (Gunes et al., 2006).

Peroxisomes are probably themajor sites of intracellular H2O2

production, although O−

2 and nitric oxide radicals (NO·) are also
produced in peroxisomes. The photoinhibition that is verified in
grapevine leaves upon drought and salinity stress is accompanied
of an increase in transcription of genes coding for peroxisome
glycolate oxidase, catalase and several photorespiratory enzymes
(Cramer et al., 2007).

AsA and GSH
L-ascorbic acid (AsA) is an abundant metabolite playing impor-
tant roles in plant stress physiology as well as in growth and
development. AsA is a key antioxidant (Conklin and Loewus,
2001), able to directly eliminate several different ROS (Pot-
ters et al., 2002). Both the chloroplastic lipophilic antioxidant
α-tocopherol (vitamin E) and carotenoid pigments (carotenes
and xanthophylls) depend on AsA for regeneration from oxi-
dized radicals (Potters et al., 2002). AsA is also the most impor-
tant H2O2 reducing substrate, acting together with glutathione
(GSH, γ-L-Glu-L-Cys-Gly) in the ascorbate-glutathione cycle
(see Section The Ascorbate-Glutathione Cycle) (Noctor and
Foyer, 1998). GSH is amultifunctional metabolite in plants, being
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a major reservoir of non-protein reduced sulfur, and a crucial
element in cellular defense and protection, preventing the denat-
uration of proteins caused by oxidation of thiol groups during
stress, reacting chemically with a wide range of ROS (Noctor
et al., 2002). In grapevine, AsA and GSH pools and their adjust-
ments upon stress seem to be variety dependent and under tight
control (Carvalho et al., 2014). In cv. “Touriga Nacional” fac-
ing oxidative stress the existing AsA and GSH pools assure the
cell buffering capacity while in cv. “Trincadeira” AsA and GSH
need to be synthesized de novo, leading to a slower response that
may be insufficient to maintain the redox pool at working levels
(Table 1).

Carotenoids
Carotenoids protect the photosynthetic apparatus against photo-
oxidative damage not only by quenching the triplet states of
chlorophyll molecules (Koyama, 1991) but also by scaveng-
ing ROS, protecting pigments and unsaturated fatty acids from
oxidative damage (Edge et al., 1997). In the grapevine variety
“Trincadeira” subjected to heat stress, carotenoids play an impor-
tant role in leaf ROS scavenging, in tandem with ascorbate and
glutathione, the usual first line of antioxidative defense in plants
(Carvalho et al., 2014, Table 1).

Proline
The metabolism of proline, including proline oxidation, is
extremely important in the response to stress, as it is one of the
most widespread osmoprotectants (Kiyosue et al., 1996), increas-
ing in conditions of water deficit, as shown in the grapevine cv.
Riesling (Bertamini et al., 2006). Also in grapevine, ROS gener-
ated by salinity stress signal the expression of GDH α-subunit,
GDH acting as an anti-stress enzyme not only by detoxifying
ammonia but also by producing glutamate which is channeled
to proline synthesis (Skopelitis et al., 2006). Artificially increased
proline levels also lead to the decrease of H2O2 and malondi-
aldehyde. It was thus suggested that the crosstalk between pro-
line and H2O2 could play an important role in the response to
oxidative stress in grapevine leaves (Ozden et al., 2009, Table 1).
Proline accumulation increased by two-fold upon salinity stress
and by three-fold after water stress, and was accompanied by an
increase in transcript abundance of plasma membrane proline
transporters and of pyrroline-5-carboxylate synthetase (P5CS),
the enzyme that catalyzes the first two steps in proline biosyn-
thesis (Cramer et al., 2007). In parallel, there was an increased
transcript abundance of proline dehydrogenase, presumably to
enable the removal of excess proline, which can be toxic if allowed
to over accumulate (Cramer et al., 2007). Different types of stress
can reduce proline levels as it happens in excess boron, leading to
an increased lipid peroxidation and APX depletion (Gunes et al.,
2006).

Key Enzymes for Antioxidant Homeostasis

Redox homeostasis comprises the interaction of ROS with
antioxidant molecules forming an interface for metabolic and
environmental signals, thus modulating the induction of appro-
priate acclimation processes or cell death programs. In the

chloroplasts, a decrease of CO2 fixation together with an over-
reduction of the ETC is the foremost source of ROS production
during stress; in mitochondria over-reduction of the respective
ETC is also a chief mechanism of ROS generation (Yoshida et al.,
2007) and in peroxisomes, H2O2 is produced when glycolate is
oxidized to glyoxylic acid during photorespiration (Mittler et al.,
2004).

ROS signaling pathways depend upon a strict homeostatic
regulation accomplished through antioxidant redox buffering.
Antioxidants determine the lifetime and the specificity of the
ROS signal or processing products. In this process, enzymes
such as SOD, CAT, Prx, APX, and GOR are the key play-
ers in antioxidant homeostasis (Carvalho et al., 2006; Vidigal
et al., 2013). See Table 1 for reference values of enzyme activ-
ity in different grapevine varieties. A thorough search of the
genes coding for these enzymes in grapevine was performed in
NCBI (http://www.ncbi.nlm.nih.gov/) and 297 sequences were
retrieved, including 109 peroxidases (Supplementary Table 1).
Functional annotation is still incomplete and many of those
sequences are redundant.

Phylogenetic dendrograms of grapevine non-redundant
sequences of APX, SOD, CAT, GOR, and Prx gene families were
generated based on themembers annotated so far ofVitis vinifera,
Arabidopsis thaliana, Populus trichocarpa, and Oryza sativa (var.
japonica) retrieved from NCBI (Supplementary Figure 1). From
the analysis of those dendrograms it was observed thatV. vinifera
has as many isoforms as A. thaliana and also has the highest
sequence homology with this species. However, further anno-
tation is still necessary such as in the case of GOR, for which
no records of peroxisome and/or mitochondria isoforms are
available (Figure 1).

Enzymes of the Water-Water Cycles
Under normal conditions, electrons obtained from the splitting
of water molecules at PS II are channeled through the photo-
synthetic apparatus and transferred to molecular oxygen by PS
I. Under stress conditions that decrease CO2 availability due
to stomata closure or increase exposure to continuous exces-
sive light there is an excess of electron transfer toward molec-
ular oxygen, generating O−

2 ions in PS I, through the Mehler
reaction (Asada, 2006). In this situation, redox homeostasis can
be guaranteed in two consecutive steps, the membrane attached
copper/zinc superoxide dismutase (CZSOD) which converts O−

2
into H2O2 that is redirected to the ascorbate-glutathione cycle,
where it is converted to water. This whole process is referred
to as the water–water cycle (Rizhsky et al., 2003) as depicted in
Figure 1. In “Trincadeira” grapevines submitted to heat stress
both CZSOD and FeSOD are induced to scavenge plastidial O−

2
and the resulting H2O2 is scavenged by theMDHAR-GOR branch
of the ascorbate-glutathione cycle (Carvalho et al., 2014).

Catalase
Peroxisomes are subcellular organelles with a single membrane
that exist in almost all eukaryotic cells, containing as basic enzy-
matic constituents CAT and H2O2-producing flavin oxidases
(Corpas et al., 2001; Figure 1). Despite their simplicity, they per-
form essential functions (Del Río et al., 2006); namely in the
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FIGURE 1 | Localization of reactive oxygen species (ROS) scavenging
pathways in different cellular compartments. ROS: 1O2, hydroxyl

radical; H2O2, hydrogen peroxide; O−

2 , superoxide. Water-water cycle and

ascorbate-glutathione cycle: APX, ascorbate peroxide; GOR, glutathione

reductase; SOD, superoxide dismutase; CAT, catalase; DHAR,

dehydroascorbate reductase; MDHAR, monodehydroascorbate reductase.

Peroxiredoxin-mediated alternative water–water cycle: 1CysPrx,

(Continued)
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FIGURE 1 | Continued
1-cysteine peroxiredoxin; 2CysPrx, 2-cysteine peroxiredoxin; PrxII; Type

II-peroxiredoxin; PrxQ, peroxiredoxin Q. ABA, abscisic acid; AOX,

alternative oxidase; AsA, ascorbate; Cytc, cytochrome c; DHA,

dehydroascorbate; ETC; electron transport chain; Fd, ferredoxin; FTR,

ferredoxin-thioredoxin reductase; GLDH, L-galactono-1,4-lactone

dehydrogenase; GOX, glycolate oxidase; GPX, glutathione peroxidase;

GSH, reduced glutathione; GSSG, oxidized glutathione; GST, glutathione

S-transferase; MDA, monodehydroascorbate; NCED,

9-cis-epoxycarotenoid dioxygenase; PSI and II, photosysthem I and II; Q,

Coenzyme Q; XO, xanthine oxidase. Numbers in black circles indicate

known isoforms in V. vinifera. The question marks indicate uncertainty on

the actual number of isoforms, based in NCBI records; the given number

is the most likely value.

antioxidative metabolism. They have an essentially oxidative type
of metabolism, and great metabolic plasticity, as their enzymatic
content varies with the organism, cell/tissue-type and environ-
mental conditions (Baker and Graham, 2002). Upon photo-
oxidative stress the peroxisomal CAT is the most responsive
of catalases in grapevine (Carvalho et al., 2011; Vidigal et al.,
2013) and it was recently shown that peroxisomal CAT influ-
ences Prx activity in the cytosol of N. benthamiana (Vidigal et al.,
2014).

Peroxidases
Peroxidases are a large family of ubiquitous enzymes that have
numerous roles in plant metabolism (For review, Passardi et al.,
2005), including that of removing the H2O2 formed as a con-
sequence of stress. In the grapevine genome 109 peroxidases
were found (Supplementary Table 1). They use different elec-
tron donors, such as AsA, in the case of APX in the ascorbate-
glutathione cycle; glutathione peroxidase (GPX) uses GSH as
its reductant and the generically termed “peroxidases” use phe-
nolic compounds (able to use guaiacol as substrate sometimes
they are called “guaiacol-peroxidases”). In grapevine, GPX has
been implicated in stress responses against Elsinoe ampelina and
Rhizobium vitis and GPX is up-regulated in response to abiotic
stresses such as drought and salinity (Cramer et al., 2007).

The main role of APX is the scavenging of H2O2 in the
ascorbate-glutathione cycle, keeping its levels tightly controlled
in order to maintain redox homeostasis, a similar role as that of
GPX (Asada, 2006). Conversely, peroxidases oxidize a large vari-
ety of organic substrates and the resulting products are involved
in important biosynthetic processes, such as lignification of the
cell wall, degradation of IAA, biosynthesis of ethylene, wound
healing, and defense against pathogens (Kvaratskhelia et al.,
1997).

The Ascorbate-Glutathione Cycle
The reduction of H2O2 undertaken by AsA is only possible due
to the activity of APX, an enzyme that uses two molecules of
AsA to reduce H2O2 to water. AsA itself is oxidized to mon-
odehydroascorbate (MDHA), an unstable compound that suffers
spontaneous disproportionation to AsA and dehydroascorbate
(DHA) (Potters et al., 2002). Monodehydroascorbate reductase
(MDHAR) regenerates AsA from MDHA, using NADPH as a
reducing agent and DHA is reduced to AsA through the action
of dehydroascorbate reductase (DHAR), using GSH as the reduc-
ing agent. In this reaction GSH is oxidized to GSSG that, in turn
is reduced back to GSH using NADPH as reducing potential. This
is the ascorbate-glutathione cycle, also called Foyer-Halliwell-
Asada cycle (Figure 1), where AsA and GSH act together to
detoxify H2O2 in a cycle of oxidation-reduction, without being

consumed and using electrons derived from NAD(P)H (Noctor
and Foyer, 1998).

In grapevine, function of the ascorbate-glutathione cycle and
its contribution to the detoxification process depend upon several
factors, namely, the type, intensity and duration of the stress and
the genotype under study. This became quite evident in a study
comparing two greenhouse-grown genotypes (“Trincadeira” and
“Touriga Nacional”) subjected to heat stress with previous accli-
mation to moderate heat stress (Carvalho et al., 2014). The levels
of expression of the plastidial SOD genes (CZSOD and FeSOD)
were induced, mostly in “Trincadeira,” suggesting the scavenge
of chloroplast O−

2 as a consequence of over-reduction of the
ETC, while in “Touriga Nacional” only an increase of O−

2 scav-
enging in the mitochondria (through MnSOD) was observed.
H2O2 accumulation induced the expression of CAT, APX1, and
APX3, together with the MDHAR-GOR branch of the ascorbate-
glutathione cycle in both genotypes. This, together with similar
results obtained for micropropagated grapevine subjected to high
light (Carvalho et al., 2006) and of plants under viral infection
(Sgherri et al., 2013) shows that, upon a severe stress, MDHAR
alone is unable of maintaining the AsA pool in the reduced form,
thus calling for the function of the whole ascorbate-glutathione
cycle. After 3 days of acclimation to high light (Carvalho et al.,
2006) or 24 h after the end of heat stress (Carvalho et al., 2014),
the MDHAR branch of the cycle can keep the ascorbate pool
reduced. However, the activation of the ascorbate-glutathione
cycle is not, on its own, a trustworthy indicator of oxidative stress,
as its activity can be triggered by differentiation of emerging
structures in developing plants (Carvalho and Amâncio, 2002;
Carvalho et al., 2006).

Glutathione S-Transferases
Glutathione S-transferases (GSTs) are enzymes that detox-
ify cytotoxic compounds by conjugation of GSH to several
hydrophobic, electrophilic substrates (Marrs, 1996). Plant GSTs
have been intensively studied because of their ability to detoxify
herbicides, and several GSTs conferring herbicide tolerance have
been characterized in many major crop species. Another plant
GST subclass is implicated in stress responses, including those
arising from pathogen attack, oxidative stress, and heavy-metal
toxicity. In grapevine, the induction of GSTs upon pathogen
attack occurs in parallel with that of phenylalanine ammonia-
lyase (PAL) and stilbene synthase (STS) (Aziz et al., 2004). GSTs
also play a role in the cellular response to auxins and during
the normal metabolism of plant secondary products like antho-
cyanins and cinnamic acid. In grapevine, 107 GST isoforms were
found (Supplementary Table 1) and seven genes belonging to
the phi class and 57 belonging to the tau class, the two most
important classes of plant-specific GSTs (Edwards et al., 2000),
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are implicated in anthocyanin metabolism during berry develop-
ment (Zenoni et al., 2010), GST1 and GST4 being implicated in
anthocyanin transport to the vacuole (Conn et al., 2008). Also in
grapevine, the expression of several GSTs genes was affected by
defoliation (Pastore et al., 2013).

Peroxiredoxins
Prxs catalyze the reduction of H2O2, alkylhydroperoxides, and
peroxynitrite to water, alcohols, or nitrite, respectively (for
review, Dietz, 2011; Figure 1). Prxs are redox sensitive proteins
that can undergo reversible oxidation–reduction and as a result,
switch “on” and “off” depending on the redox state of the cell. In
V.vinifera, under conditions of light and heat stress, Prx activ-
ity decreased as a result of the decrease in H2O2 levels while,
under water stress, Prx activity increased, mirroring the increase
in H2O2 (Vidigal et al., 2013).

2CysPrx is the most abundant stromal protein, protecting the
photosynthetic apparatus against oxidative stress (König et al.,
2003). When in deficiency leads to inhibition of photosynthe-
sis, decrease in chlorophyll and impaired grapevine development
(Vidigal et al., 2013). In light of its function in photosynthesis,
Vv2CysPrx01 (Vidigal et al., 2013), and Vv2CysPrxB were up-
regulated in grapevine under light stress while Vv2CysPrxA was
down-regulated under similar light stress conditions (Carvalho
et al., 2011). These results were different from those obtained in
A. thaliana, where an increase in light intensity resulted in little
consequence to the expression of 2CysPrxA and 2CysPrxB (Hor-
ling et al., 2003). Transcription of 2CysPrxA is induced by H2O2

and repressed by ABA (Baier et al., 2004). In grapevine several
ABA-responsive-genes were consistently up-regulated (Carvalho
et al., 2011), which could be an explanation for the discrepancy
in Prx expression between these studies. The other possibility
could be connected to the dual function of Prx, both in antiox-
idant defense and in signaling (Dietz, 2003). Vv2CysPrx01 was
up-regulated in grapevine under heat and water stress (Vidigal
et al., 2013) a result that could be related with the chaperone
function of 2CysPrx (Kim et al., 2010) and its role in drought
tolerance (Rey et al., 2005).

PrxQ has a specific function in protecting photosynthesis,
different from that of 2CysPrx (Lamkemeyer et al., 2006). In
grapevine under abiotic stresses, VvPrxQ was either repressed or
unresponsive (Vidigal et al., 2013), the same result as after 24 h
of high light in in vitro propagated plants (Carvalho et al., 2011).
However, in the same work, after 48 h, PrxQ transcripts increased
significantly, pointing to a delayed transcription response. PrxQ
is responsive to H2O2 and ABA (Guo et al., 2004), and in
grapevine, neither H2O2 nor ABA increased upon light stress,
another explanation for the verified discrepancies.

1CysPrx is a seed specific Prx that is targeted to the cytosol
(Dietz, 2011). In grapevine leaves Vv1CysPrx03 is located in the
cytosol and is connected to drought and heat tolerance (Vidigal
et al., 2013).

PrxIIC was very responsive to light stress in grapevine, with
the tendency to increase with time (Carvalho et al., 2011). In
A. thaliana, PrxIIE expression was highly induced by light stress
(Horling et al., 2003), while in grapevine it was down-regulated
(Carvalho et al., 2011; Vidigal et al., 2013). However, the

up-regulation of PrxIIE in grapevine under water stress, correlat-
ing well with the increase in H2O2, suggests a role in drought tol-
erance (Vidigal et al., 2013). The expression of the mitochondrial
isoform,VvPrxIIF,was unaltered upon high light (Carvalho et al.,
2011; Vidigal et al., 2013), in agreement with results obtained in
poplar under photo-oxidative conditions or heavy-metal treat-
ments (Gama et al., 2007). Conversely, it was up-regulated in
grapevine under heat and water stress, with strong correlation
with H2O2 and ABA (Vidigal et al., 2013) suggesting a role for
VvPrxIIF under light independent stress conditions.

Two new possible chloroplast Prx genes were identified in
grapevine, VvPrxII-1 and VvPrxII-2 (Vidigal et al., 2013). Tran-
script levels of VvPrxII-2 showed a strong response to heat stress
and an analysis of its promoter region revealed the presence of the
ABA-responsive element ABRE. Furthermore, the up-regulation
of VvPrxII-2 was positively correlated with ABA concentration,
suggesting that this Prx gene may play a role in ABA-mediated
heat tolerance (Vidigal et al., 2013) while VvPrxII-1 transcripts
were down-regulated under light stress and significantly up-
regulated under water stress.

Crosstalk with Hormone Signals

Phytohormones are essential for the ability of plants to adapt to
stresses by mediating a wide range of adaptive responses often
by the regulation of gene expression mediated by the ubiquitin–
proteasome degradation of transcriptional regulators (Santner
and Estelle, 2009). One of the key players in the response of
plants to abiotic stress, especially when involving water short-
age, is ABA. However, other hormones such as cytokinins (CK),
salicylic acid (SA), ethylene (ET), and jasmonic acid (JA) play sig-
nificant roles in keeping cell homeostasis under oxidative stress,
and their interactions are schematized in Figure 2.

Abscisic Acid
Drought and high salinity result in strong increases of plant ABA
levels, accompanied by major changes in gene expression and in

FIGURE 2 | Crosstalk with hormone signals. ROS, reactive oxygen

species; ABA, abscisic acid; CK, cytokinins; SA, salicylic acid; JA, jasmonic

acid; ET, ethylene; IAA, auxins.
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adaptive physiological responses (Seki et al., 2002; Rabbani et al.,
2003). The expression of ABA-inducible genes that leads to stom-
atal closure, thus reducing water loss through transpiration and
eventually restricting cellular growth, occurs promptly upon the
sensing of stress (Peleg and Blumwald, 2011). Several loss of func-
tion mutants for genes related to de novo ABA synthesis, to ABA
receptors and to downstream signaling are now available in sev-
eral species (Fang et al., 2008; Cutler et al., 2010). In grapevine
however, such tools are not available, thus ABA research has been
taking place in a more classical approach.

To improve plant water status and decrease leaf tempera-
ture of grapevine plants different irrigation regimes are applied
in Mediterranean vineyards (Costa et al., 2012). One method
of applying regulated irrigation is by partial root-zone drying
(PRD). The main rationale to use PRD in grapevine is the action
of ABA in modeling stomatal conductance and the demonstra-
tion that, by keeping some root areas dry and others wet, the
necessary hormonal signals to regulate stomatal conductance are
provided by the dry root-zones and the water needed to pre-
vent severe water deficit is delivered by the wet root-zones (Stoll
et al., 2000). ABA accumulation depends both on an acceler-
ated ABA biosynthesis under water deficit, and on the rate of
ABA catabolism and conjugation, which is quite fast, and is the
main factor controlling the disappearance of ABA signal (Jia and
Zhang, 1997). Thus, the accumulation of this so-called stress ABA
is controlled by a dynamic equilibrium between ABA biosyn-
thesis at the level of NCED (9-cis-epoxycarotenoid dioxygenase)
transcription and its catabolism and conjugation.

In berries, the onset of ripening (veraison) when anthocyanin
accumulation begins in red varieties, is accompanied by amarked
increase in ABA concentration (Deluc et al., 2009; Gambetta
et al., 2010) and correlates well with sugar accumulation (Gam-
betta et al., 2010). ABA has been shown to activate antho-
cyanin biosynthetic genes and the anthocyanin-synthesis related
VvmybA1 transcription factor (Jeong et al., 2004), and to induce
the delay of expression of proanthocyanidin biosynthetic genes
(VvANR and VvLAR2) (Lacampagne et al., 2009).

Cytokinins
CK exert an opposite function as ABA, and CK levels decrease
upon water shortage (Peleg and Blumwald, 2011). In grapevine
the effect of ABA on root growth may be augmented by a reduc-
tion in CK concentration in the roots that leads to the enhanced
ABA to CK ratios obtained in PRD irrigation cycles (Stoll et al.,
2000), since it is known that root growth is inhibited by increased
endogenous CK (Werner and Schmülling, 2009). In fact, it is pos-
sible to reverse the effects of PRD in stomatal conductance by
exogenous application of benzyladenine, that also leads to lat-
eral shoot development (Stoll et al., 2000). Also, when comparing
fully irrigated and PRD vines a significant decrease in zeatin and
zeatin riboside concentration in shoot tips and axillary buds is
observed (Dry and Loveys, 1999).

Salicylic Acid
SA is a phenolic plant growth regulator, with several physio-
logical and biochemical functions (Raskin, 1992) under normal
conditions and, especially, in the response to abiotic stresses,

namely heat stress. SA is known to counteract the effects of heat
stress by up-regulating the antioxidative system. The treatment
of grapevine leaves with SA before, during and after heat stress
maintained photosynthesis rates high, chiefly by keeping high
levels of Rubisco activation state, and also accelerated the recov-
ery of photosynthesis through effects on PS II function. These
effects may be partially related to the presence of a heat shock
protein, HSP21, during the recovery period in SA-treated leaves
(Wang et al., 2010). Treatment with SA also protects mesophyll
cells against cold and heat stress in leaves of young grape plants,
affecting Ca2+ homeostasis, and enzymatic and non-enzymatic
components of the ascorbate-glutathione cycle (Wang and Li,
2006). SA treatment also induced the expression of PAL and
the synthesis of new PAL protein and increased its activity in
grape berries (Wen et al., 2005). PAL is a crucial enzyme of
the phenylpropanoid metabolism, catalyzing the formation of
trans-cinnamic acid. Its induction results in the accumulation
of phenolic acids and flavonoids, thus enhancing the quality of
berries.

Jasmonates
JA and their derivatives are known to play important roles in
activating genes coding for proteins involved in the defense
against abiotic (drought, salt, and ozone) and biotic (insects and
microbial pathogens) stresses. The activity of JA responses can
be regulated by antagonistic cross-talk with SA signaling (for
review, Balbi and Devoto, 2008). In fact, SA can suppress the JA-
dependent response to wounding and pathogen or insect attack
(Leon-Reyes et al., 2010).

In grapevine, salt stress and biotic defense signaling share
common pathways, e.g., the activity of a gadolinium-sensitive
calcium influx channel and transient induction of JAZ/TIFY
transcripts. Exogenous JA application can rescue growth in salt-
sensitiveVitis riparia (Ismail et al., 2012). In line of these data, the
authors proposed a model where the default pathway is salt stress
signaling that is modulated by a parallel signal chain triggered by
biotic factors downstream of JA signaling.

JAs are also described as promoting the synthesis and accumu-
lation of the stilbene compound resveratrol in grapevine berries
(Tassoni et al., 2005). A transcriptional study of the different
berry tissues during development revealed that JA signaling genes
are preferentially expressed in the pericarp while JA-biosynthesis
genes have differential expressions, lipoxigenase-related genes in
the pericarp while the conversion of linoleic acid to jasmonic
acid appears to be seed-exclusive (Grimplet et al., 2007). Recently,
high levels of expression of both JA and ethylene signaling related
genes was reported in berries before veraison (Fasoli et al., 2012).

Ethylene
ET biosynthesis is induced in response to abiotic stresses and
this hormone affects membrane permeability, osmotic potential
(sugar and proline accumulation) and the control of cell water
potential. Together with H2O2, ET acts as a signaling molecule in
the response of grapevine buds to hypoxia, leading to the acti-
vation of antioxidative stress genes (Vergara et al., 2012). The
oxidation of 1-aminocyclopropane-1-carboxylic acid (ACC) to
ET is catalyzed by the membrane associated ACC oxidase. ACC

Frontiers in Environmental Science | www.frontiersin.org March 2015 | Volume 3 | Article 20 | 174

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Carvalho et al. Antioxidant homeostasis in grapevine

oxidase has been reported to increase in response to cold in
grapevine (Tattersall, 2006).

Auxins
Auxins play an important role in fruit development, and the
grape berry is no exception. Indole-3-acetic acid (IAA) content
is high from anthesis to veraison, then declines to very low levels
at maturation (Conde et al., 2007). Amidase (AMI1), responsi-
ble for the synthesis of IAA from indole-3-acetamide decreases
its levels of gene expression during ripening (Pilati et al., 2007),
in tandem with the decline of IAA levels.

Auxins have been implicated in the response to UV-
acclimation in grapevine, genes belonging to auxin responsive
SAUR and Aux/IAA family, auxin response factors and auxin
transporter-like proteins are down-regulated in grapevine leaves
exposed to low UV-B, supporting evidence for a role in the
response to low UV-B fluence light (Pontin et al., 2010).

Oxidative Stress in In Vitro Systems

In vitro systems offer a practical and easily manipulated method
for studying oxidative stress. In vitro cultures are usually grown
in contained environments with low photon flux density and
high relative humidity. Culture media contain high quantities
of an organic carbon source and growth regulators, contribut-
ing to the development of characteristic features such as abnor-
mal leaf anatomy, poor development of grana (Wetztein and
Sommer, 1982) and low photosynthesis rates (Chaves, 1994).
Oxidative stress due to photoinhibition is prone to occur upon
transplantation to in vivo conditions. The extent in which pho-
toinhibition affects the survival of the plant depends on its
physiological status dictated by the prevailing environmental
conditions, the efficiency of protectivemechanisms against excess
energy and the repair processes to restore normal photosynthesis
(Krause and Weis, 1991). Nitro-oxidative abiotic stress can also
cause damage to in vitro cultures and, in grapevine, procyani-
dins were shown to have a protective action against the damage
caused by peroxisome peroxynitrite thus formed (Aldini et al.,
2003).

Immediately after transplantation to ex vitro, in vitro propa-
gated grapevine plants showed severely affected photosynthetic
capacity, that recovered after 1 week (Carvalho et al., 2001) as
clearly seen in the heat map of Figure 3. ROS concentration is
maximal on the first 2 days after transfer while chlorophyll flu-
orescence indicators show symptoms of photoinhibition and the
ROS scavenging machinery is activated. Photoinhibition symp-
toms are less severe when the first stages of in vivo growth
are conducted at CO2 concentrations double the normal atmo-
spheric values and light intensities six-fold higher than in vitro
(Carvalho and Amâncio, 2002).

In the early stages of ex vitro growth a stabilization of Rubisco
is observed (Carvalho et al., 2005), allowing photosynthesis to
regain normal levels. In parallel, the activation of the ascorbate-
glutathione cycle after 24 h of ex vitro growth helps to maintain
cell redox homeostasis and regulates the antioxidative response
(Carvalho et al., 2006). When the transcriptome of grapevine

FIGURE 3 | Monitoring changes in antioxidant homeostasis of in vitro

propagated grapevine plants during the first 7 days of growth in ex

vitro conditions. H2O2 was quantified inµmol g−1 FW; O−

2 was visualized

through nitroblue tetrazolium staining, Fv/Fm (maximum efficiency of PSII

photochemistry in dark-adapted leaves), and Y (maximum quantum efficiency

of PSII in light adapted leaves) were both measured using a Fluorimager

chlorophyll fluorescence imaging system (Technologica Lda. Colchester, UK)

and the Fluorchart software to isolate the individual leaves and calculate the

values of the parameters, GSH and AsA were both quantified inµmol g−1 FW;

CAT, SOD, APX, GOR, DHAR, and MDHAR expression was quantified through

RT qPCR and ABA was quantified in nmol g−1 DW. The heat map represents

the differences between the values measured at the moment of transfer to ex

vitro (control) and those monitored for 7 days of ex vitro growth: dark green,

very significant increase from the control; light green, significant increase from

the control; gray, no significant differences to the control; orange, significant

decrease from the control; red, very significant decrease from the control.

Values were retrieved from Carvalho et al. (2006) and Vilela et al. (2007).

plants after transplantation was scanned an activation of sig-
naling pathways up to 48 h was reported together with the
up-regulation of the protein rescuing mechanism that involves
the cooperation of HSP100 and HSP70, two ATP-dependent
chaperone systems that remove non-functional and potentially
harmful polypeptides deriving from misfolding, denaturation, or
aggregation caused by stress (Carvalho et al., 2011). This was an
unusually late and time-prolonged reaction when compared with
“typical” abiotic stress responses (Mittler, 2006; Cramer, 2010).
During this short period, H2O2 is accumulating and is used as a
second messenger to trigger the pathways that are essential for
plant survival at this delicate developmental phase (Vilela et al.,
2008), as confirmed by the activation of genes related to stress
defense pathways, hormones and protein metabolism in the same
timeframe (Carvalho et al., 2011).
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After overcoming the initial stress of transfer, plants undergo a
new cycle of up-regulation of the antioxidative machinery, which
reaches a maximum on day 6, and is not accompanied by photo-
oxidative stress symptoms or increase in GSH/AsA pools (Car-
valho et al., 2006). This coincides with the protrusion of new roots
and the expansion of the first ex vitro leaf and culminates with a
peak of ABA and H2O2 concentration on the seventh day after
transfer, both produced in the newly-expanded and functional
roots (Figure 3; Neves et al., 1998; Vilela et al., 2007). At this
point, acclimatization to ex vitro is not yet complete but photo-
oxidative stress is no longer a problem for the growing grapevine
plants.

Response to Biotic Stress

One of the first attempts at “cataloging” biotic stress response
genes in grapevine was undertaken with the aid of the Map-
Man onthology, adjusted to encompass a few pathways in detail,
such as phenylpropanoid, terpenoid, and carotenoid biosynthe-
sis, very responsive upon biotic stress, with a marked effect on
wine production and quality (Rotter et al., 2009). The authors
describe an overview of transcriptional changes after the interac-
tion of a susceptible grapevine with Eutypa lata, and show that
the responsive genes belong to families known to take part in
plant biotic stress defense, such as PR-proteins and enzymes of
the phenylpropanoid pathway (Rotter et al., 2009).

Several stress response processes are common between biotic
and abiotic stresses, exerting either synergistic or antagonistic
actions, depending upon the specific stress combination that the
plant is facing. One example is the role of dehydrins (DHNs) in
the protection of plant cells from drought and also in host resis-
tance to various pathogens. In the genus Vitis, the wild V. yesha-
nensis is tolerant to both drought and cold, and moderately
resistant to powdery mildew due to the precocious induction of
DHN1, occurring earlier in drought conditions than inV. vinifera
and having more than one up-regulation peak during the infec-
tion with Erysiphe necator as compared to V. vinifera (Yang et al.,
2012).

ROS signaling seems to have an important role in Plasmopara
viticola resistance, as resistant varieties display a specific chrono-
logical set of events upon infection, that is not observed in sus-
ceptible genotypes, beginning with an increase in O−

2 , followed
by a hypersensitive response, an increase in peroxidase activity in
cells flanking the infection area and finally, an increased accumu-
lation of phenolic compounds (Kortekamp and Zyprian, 2003).
Specifically, the peroxidase activity after an infection with P. viti-
cola is strongly correlated with resistance to P. viticola in field
plants (Kortekamp and Zyprian, 2003).

In grapevine, the most ubiquitous reaction to fungal infec-
tion is the accumulation of phytoalexins. Since the 1970s that
it is known that grapevine synthesizes resveratrol in response
to fungal attacks (Peter and Pryce, 1977). Viniferins, prod-
ucts of resveratrol oxidation, are also produced in response to
biotic and abiotic stresses, and also classified as phytoalexins.
These compounds present biological activity against a wide range
of pathogens and are considered as markers for plant disease
resistance (Pezet et al., 2004b). Resveratrol is synthesized from

coumaroyl CoA and malonyl CoA by STS (Figure 4). STS is
closely related to chalcone synthase (CHS), the key enzyme in
flavonoid-type compound biosynthesis leading to the produc-
tion of chalcones while STS leads to the production of stilbenes
(Figure 4). Indeed, under certain conditions, such as oxidative
stress, the transcriptional response of VvSTS and VvCHS genes
appears to be diametrically opposed suggesting that under those
conditions, the plant refocuses its metabolism on stilbene biosyn-
thesis, taking precedence over flavonol biosynthesis, as schema-
tized in Figure 4, the pathway highlighted in red (Vannozzi et al.,
2012).

Resistant grape genotypes artificially inoculated with P. viti-
cola show very high amounts of stilbenes at the site of infec-
tion, that actively inhibit the motility of P. viticola zoospores
and subsequent disease development (Pezet et al., 2004a). Inter-
estingly, PAL seems to be constitutively expressed in resistant
and susceptible genotypes, but was totally repressed in tissues
after mock inoculation using the non-host pathogen Pseudoper-
onospora Cubensis. CHS and STS, however, had their expression
increased after inoculation with P. viticola, indicating an activa-
tion of the resistance response, in accordance with the increase of
stilbenes (Kortekamp, 2006).

The antioxidative response of the grapevine genotype “Treb-
biano” when infected by the grapevine fanleaf virus was thor-
oughly scrutinized. At the early stages of infection, increases in
H2O2 were observed and probably due to enhanced dismuta-
tion of O−

2 by SOD, whereas, toward the late phase of infection,
increases in AsA, GSH, and APX activity might be the reasons for
H2O2 to regain control levels (Sgherri et al., 2013).

Upon infection by necrotrophic pathogens, which need to
kill their host cells to gain access to nutrients, an activation of
JA-dependent defense mechanisms takes place (Avanci et al.,
2010). Many plant pathogens can either produce auxins them-
selves or manipulate host auxin biosynthesis to interfere with the
host’s normal developmental processes. In response, plants have
evolved mechanisms to repress auxin signaling during infection
as a defense strategy, mediated by the accumulation of SA. In
grapevine, auxin responsive genes (including SAUR, Aux/IAA,
auxin importer AUX1, auxin exporter PIN7) are also significantly
repressed in pathogen resistance responses (Wang et al., 2007),
supporting the hypothesis that down-regulation of auxin signal-
ing contributes to induce immune responses in plants (Bari and
Jonathan, 2009).

Oxidative Burst

Plant species such as pear, tomato, strawberry, and pineapple
show a specific oxidative stress response during fruit develop-
ment, termed oxidative burst. The respective fruits are them-
selves named “climacteric.” As grapevine is not amongst them, it
came somewhat as a surprise when Pilati et al. (2007) reported
an oxidative burst in cv. “Pinot Noir” that began at veraison
and was characterized by rapid accumulation of H2O2 and by
the modulation of many ROS scavenging enzymes, previously
thought not to be up-regulated in this species. This work com-
prised a thorough transcriptomic analysis of the grape berry in
the stages close to veraison and the quantification of H2O2. The
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FIGURE 4 | The phenylpropanoid pathway is part of the secondary
metabolism and it is responsible for the synthesis of different classes
of metabolites, such as lignins, flavonoids and stilbenoids. The first

step is the deamination of phenylalanine to cinnamate by the action of

phenylalanine ammonia lyase (PAL). Cinnamic acid is then hydroxylated by

cinnamate-4-hydroxylase (C4H) to 4-coumarate, which is then activated to

4-coumaroyl-coenzyme A (CoA) by 4-coumaroyl—CoA ligase (4CL). After

this reaction the main pathway is divided into two major branches: the

flavonoid biosynthesis pathway and the lignin biosynthetic pathway.

However, under stress the balance between the transcription rates of VvSTS

and VvCHS appears to shift dramatically suggesting that the plant refocuses

its metabolism on stilbene biosynthesis, taking precedence over flavonol

biosynthesis. H2O2, hydrogen peroxide; ANR, anthocyanidin reductase;

ANS, anthocyanidin synthase; C3H, coumaroyl 3-hydrolase; CHI, chalcone

isomerase; COMT, caffeic acid/5-hydroxyferulic acid

3/5-O-methyltransferase; F3T, flavanone 3-hydroxylase; FLS, Flavonol

synthase; FLS, flavonol synthase; FNS, flavone synthase; IFS, isoflavone

synthase; LAR, leucoanthocyanidin reductase; ROS, reactive oxygen

species; UFGT, UDP-glucose:flavonoid 3-O-glucosyl transferase; VvCHS,

Vitis vinifera chalcone synthase; VvSTS, Vitis vinifera stilbene synthase.

latter increased at the moment of veraison, reaching its maximum
1–2 weeks after, and then decreasing at a slower pace toward
ripening. In tandem, transcripts coding APX, GPX, Prxs, Trxs,
glutaredoxins, GSTs and metallothioneins were up-regulated, in
accordance with the onset of a well-orchestrated antioxidative
response. Shortly after, grape’s oxidative burst was again reported
and associated with high sugar content that impairs photosyn-
thesis in the berries, possibly through ABA signaling (Lijavetzky
et al., 2012). It must be referred that high levels of ACC oxi-
dase transcript accumulation have been reported immediately
preceding veraison, together with a peak in ACC accumulation
and ET emission (Chervin et al., 2004). Proteomics studies also
reported an increase in ROS scavenging enzymes toward ripening
(Giribaldi et al., 2007; Negri et al., 2008). The subject remained

wrapped in controversy because other authors did not obtain the
same results (Terrier et al., 2005), until Rienth et al. (2014) shed
some light onto what might be causing such disparity of results.
The authors, in yet another transcriptomic assay of grape berries,
found that the oxidative burst occurs markedly during the night,
at ripening, following the same trend as sugar transport and phy-
toalexin synthesis. Together with H2O2,

1O2 was also found to
increase in chloroplasts together with enzymatic peroxidation of
membrane galactolipids (Pilati et al., 2014).

Concluding Remarks

Grapevine can be considered a model for fruit species. Sev-
eral transcriptomic studies are now complementing the existing
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information on abiotic stress responses of many grapevine vari-
eties, previously described at the physiological level. Knowledge
of gene expression patterns points to specific varietal responses
and to different levels of stress tolerance, confirming the high
phenotypic plasticity of this species. The results obtained so far
suggest that some varieties keep redox homeostasis without an
apparent boost in their antioxidant pool, just adjusting the activ-
ities of antioxidant enzymes and/or the accumulation of antioxi-
dant molecules, while others need to synthesize those antioxidant
molecules de novo. The former demonstrate a well-timed and effi-
cient ROS removal and a broad plasticity in adapting to environ-
mental shifts. At the genomic level, for instance, grapevine Prx
isoforms are specifically targeted and highly responsive to major
abiotic stresses. Examples are the gene expression of cytosol
PrxIIE apparently with a role in grapevine drought tolerance,
while in other species it was reported as only responding to light;
and the identification of two new possible chloroplast Prx genes,
VvPrxII-1, and VvPrxII-2, the former down-regulated by light
stress and up-regulated by water stress, the latter induced by heat
stress in tandem with increased ABA concentration and with an
ABRE sequence in its promoter.

Specific development processes can shift redox homeostasis.
An obvious example is the oxidative burst in berries, a sin-
gular feature occurring in this non-climacteric species during
veraison, mostly during the night. Specifically, this metabolic
event is accompanied by sugar transport and resveratrol synthe-
sis. Reports from in vitro grapevine systems reveal stress and
developmental-related signaling mediated by ROS in growing
leaves and roots.

As a whole, the phenotypic plasticity of different grapevine
varieties which behave as more tolerant to environmental

aggressions that cause oxidative stress can improve crop yield and
quality, and thus the species economic value.
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Low-molecular-weight metabolites (LMWMs) comprise primary or central and a plethora
of intermediary or secondary metabolites, all of which are characterized by a molecular
weight below 900 Dalton. The latter are especially prominent in sessile higher organisms,
such as plants, corals, sponges and fungi, but are produced by all types of microbial
organisms too. Common to all of these carbon molecules are oxygen, nitrogen and, to
a lesser extent, sulfur, as heteroatoms. The latter can contribute as electron donators or
acceptors to cellular redox chemistry and define the potential of the molecule to enter
charge-transfer complexes. Furthermore, they allow LMWMs to serve as organic ligands
in coordination complexes with various inorganic metals as central atoms. Especially
the transition metals Fe, Cu, and Mn can catalyze one electron reduction of molecular
oxygen, which results in formation of free radical species and reactive follow-up reaction
products. As antioxidants LMWMs can scavenge free radicals. Depending on the chemical
environment, the same LMWMs can act as pro-oxidants by reducing molecular oxygen.
The cellular regulation of redox homeostasis, a balance between oxidation and reduction,
is still far from being understood. Charge-transfer and coordination complex formation
with metals shapes LMWMs into gel-like matrices in the cytosol. The quasi-polymer
structure is lost usually during the isolation procedure. In the gel state, LMWMs possess
semiconductor properties. Also proteins and membranes are semiconductors. Together
they can represent biotransistor components that can be part of a chemoelectrical
signaling system that coordinates systems chemistry by initiating cell differentiation or
tissue homeostasis, the activated and the resting cell state, when it is required. This
concept is not new and dates back to Albert Szent-Györgyi.

Keywords: primary metabolism, secondary metabolism, redox chemistry, charge-transfer complexes, coordination

complexes, semiconductors, biotransistors, chemoelectrical signaling system

INTRODUCTION
Low-molecular-weight metabolites (LMWMs) are known to us
as nutrients, hormones, vitamins, poisons, chemical weapons,
spices, perfume aromas, antioxidants, medicines and biopolymer
precursors. The question about their raison d’être, especially for
secondary LMWMs, is far from satisfactorily answered (Fraenkel,
1959; Hadacek et al., 2011). From focusing on particular aspects,
such as central metabolism and chemical defense, the challenge
of gaining insights into LMWM systemic functions increasingly
becomes more important. All living organisms can synthetize
LMWMs albeit not all accumulate them in amounts that are
sufficient enough to stimulate attempts of isolation and struc-
ture elucidation. In plants they are especially prominent. Plants
have evolved a multitude of storage compartments that range
from microscopic glandular hairs to prominent lactifers and resin
channels (Gershenzon, 2002; Langenheim, 2003)

The big exploratory era of LMWM structure diversity was in
the second half of the former century and mainly carried out
by organic chemists and pharmacists. In the last two decades,
huge screening programs were started by the pharmaceutical
industry to identify new antibiotic and drug candidates and
when naturally occurring LMWMs from increasingly exotic and

difficult-to-access sources did not suffice, synthetic combinato-
rial chemistry libraries were added. The problem with many
identified candidates is and was: activity is usually accompa-
nied by one or several undesired side effects. Consequently,
there exists an undeniable challenge to understand their mode of
action.

Surviving in a changing environment successfully represents
the major challenge to all living organisms. Whereas high stress
from the abiotic and biotic environment kills the organism,
low stress levels can cause a priming effect. In attempts to
understand this idiosyncratic phenomenon, we should perhaps
explore the phenomenon of life from a more chemical perspec-
tive. The organic chemist Addy Pross suggested that systems
biology actually is systems chemistry (Pross, 2012). Accordingly,
Section LMWMs in Living Organisms is providing an overview of
LMWM chemical structure diversity and recapitulates their basic
reaction chemistry. Section LMWM Coordination Chemistry
introduces important aspects of coordination chemistry, which
extends the chemical exploration to inorganic chemistry. In
Section System Chemistry and Bioelectricity we will attempt to
outline bioelectricity as an important physiochemical regulatory
component and, based on this, in Section Outlook: LMWMs in
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Chemical Systems Regulated by Electricity propose a concept how
LMWMs can contribute to a homeodynamic systems chemistry of
living organisms.

LMWMs IN LIVING ORGANISMS
DEFINITION, BIOSYNTHESIS, AND ORGANIC CHEMISTRY
LMWM include all those organic compounds of biological ori-
gin with a molecular weight below 900 Dalton (Macielag, 2011).
Confusingly, different terminology is used to address them.
Pharmaceutical and medicinal researchers call them natural prod-
ucts, or in case of a proven antibacterial activity, antibiotics.
Biologists differentiate between primary or central and secondary
metabolites, the former being indispensable for growth and devel-
opment, and the latter essential to survive in the ecosystem.
Ecologists call them allelochemicals if they have been identi-
fied them as monitoring components of interactions between
organisms. Nutritional scientist use the terms antioxidants or
nutraceuticals to denote those LMWMS with more or less
proven beneficial health effects. Hormones are universal signaling
compounds. Vitamins are, by the majority, plant or microbial
metabolites that are required by animals for maintaining of their
metabolism. Pathologists and food scientists preferentially use the
terms bacterial toxins and mycotoxins to point out bacterial and
fungal metabolites that can harm human health if occurring in
too high concentrations in our food stuffs. Depending on molec-
ular size and the presence and absence of polar functional groups
LMWMs are either volatile or non-volatile. There exist numer-
ous review articles and books on LMWMs that focus on one or
more of the above mentioned aspects, the cited ones just repre-
senting a subjective selection (Betina, 1989; Gräfe, 1992; Seigler,
1998; Reese et al., 2000; Dixon, 2001; Hadacek, 2002; Crozier,
2006; Hedden and Thomas, 2006; Hartmann, 2007; Bednarek
and Osbourn, 2009; Buchanan et al., 2009; Greenstein and Wood,
2011; Bräse et al., 2013).

LMWM structural diversity will be illustrated by selected
examples in the on-going text (Figures 1–4). One of the basic
biosynthetic building blocks to secondary LMWMs is a C2 unit,
usually a coenzyme A-bonded acetate. Derivatives from this path-
way are called polyketides if ring-shaped, or fatty acids, if open
chained. A further biosynthetic building block is a C5 unit, iso-
prene, that can arise either from the mevalonate pathway or from
the later discovered deoxyxylulose phosphate pathway. It repre-
sents the precursor to the terpenoids, the second large structural
class within secondary LMWMs. Amino acids introduce nitrogen
into their structures and the amino acids cysteine and methionine
sulfur. Aromatic structures can be formed either by the polyketide
or the shikimic acid pathway, the latter also being a prerequisite to
synthetize aromatic amino acids. More information is available in
the literature (Rohmer, 1999; Romeo et al., 2000; Hadacek, 2002;
Buchanan et al., 2009; Weng and Noel, 2012; Anarat-Cappillino
and Sattely, 2014).

LWMWs are characterized by different combinations of func-
tional groups, unsaturated bonds and/or heteroatoms. These
characteristics define their chemical properties. Two-electron
transfers underpin chemical reactions that result in the chang-
ing of covalent bonds in a LMWM substrate or product. The
chemical textbook structures exclusively show structures with

covalent bonds, in which one or more pairs of electrons are shared
by two atomic nuclei. In inorganic chemistry, by contrast, ionic
bonds prevail that are formed between attracting positively and
negatively charged ions, in which one or more electrons from one
nucleus are removed and attached to another. Oxidoreductions,
the classical redox reactions, in which one molecule, the reduc-
tant, becomes oxidized, and the other molecule, the oxidant,
reduced, are common. According to molecular orbital (MO)
theory, the inherent electron transfer reaction occurs from the
highest occupied molecular orbital (HOMO) of the reductant (D,
donor) to the lowest unoccupied molecular orbital (LUMO) of
the oxidant (A, acceptor). Marcus theory predicts that an electron
transfer reaction (1) involves a precursor complex that changes
into a successor complex resulting in the formation of radicals,
highly reactive molecular species, in which an orbital of one of its
atoms is occupied by an unpaired electron (Eberson, 1987; Pross,
1995).

D + A → [D A] → [D+•A−•] → D+ + A− (1)

A combination of various factors, (I) strong D−A pairing, (II)
steric interactions that decrease the coupling between D+• and
A−•, (III) low D+−A− bond strength, and (IV) strong delocal-
ization of D+• and A−• radical centers, creates a one-electron
transfer scenario. Such charge-transfers complexes (2) are char-
acterized more aptly by the configuration mixing model (CFM)
(Pross, 1985, 1995; Eberson, 1987).

D + A ↔ [D+• + A−• + D A] (2)

Charge-transfer complex formation occurs when orbitals of
adjacent biomolecules, LMWM and/or proteins, overlap (Szent-
Györgyi, 1960, 1968). In protein chemistry, charge-transfer
complex formation is viewed as a variant of dipol–dipol
interactions. These weak non-covalent bonding forms further
include hydrogen bonding, van der Waals forces and hydropho-
bic interactions. They are generally characterized by locally
asymmetric electron distributions (Silverman, 2002). Charge-
transfer complexes might also be viewed as a mosaic stone to
understand drug-receptor interactions and they are also likely
to occur in the gel-like cytosol, the structure of which resem-
bles more a solid than a liquid solution (Doukas, 1975). In
attempts to point to potential donor (D) and acceptor (A)
atoms that can enter charge-transfer complexes in the illus-
trated molecule structures, corresponding signatures have been
added tentatively into Figures 1–4. The assignments are based
either on known redox chemistry or hints from literature (Szent-
Györgyi, 1957, 1960; Doukas, 1975). Charge-transfer complexes
facilitate electronic mobility and, as a consequence, short-
range metallic conductivity within molecules. Here we take up
Albert Szent-Györgyi’s suggestion that conjugated π-electron sys-
tems more or less represent electric extension cords because
charge-transfer complex formation can induce an electric field
(Figures 1–4). More contemporarily, a USB cable would be
appropriate.
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PRIMARY OR CENTRAL LMWMs
Primary or central carbon metabolism converts sugars into a wide
range of precursors that generate the entire cell biomass by using
the shortest possible enzymatic pathways (Noor et al., 2010).
Figure 1 presents exemplary structures of sugars, amino, tricar-
boxylic (organic), and fatty acids. These metabolites are more or
less shared by all extant pro- and eukaryotic organisms with few
exceptions; e.g., Archaea possess lipids that are comprised of iso-
prene chain glycerol ethers instead of fatty acid glycerol esters (De
Rosa et al., 1986). Specific combinations of functional element
groups in the molecules, alcohols and acids with oxygen, amino
groups with nitrogen, and thiol groups with sulfur, occur in the
various molecules (Figure 1). By far, the amino acids are the most
heterogeneous molecule class. Figure 1 omits nucleobases, which
form RNA and DNA.

Central metabolites have been suggested as components of
a metabolic chemical system with evolved potential to opti-
mize itself (Pross, 2005, 2012; Shapiro, 2011). Most, tricarboxylic

acids being the exception, can serve as building blocks for
polymer structures, which not only organize the cell’s com-
partmental structure but also that of tissues of multicellular
organisms.

HORMONES AND NEUROTRANSMITTERS
The illustrated hormones (Figure 2) represent a group of live-
sustaining metabolites that can regulate the activities of genes,
proteins and other cellular metabolites and thus exert major
effects on many physiological and ontogenetic processes within
and across tissues (Heyland et al., 2005). Hormones, however, are
more specific for particular organismic kingdoms. The illustrated
derivatives have been chosen not only to exemplify structural
diversity but also to illustrate their occurrence in different liv-
ing organisms. Proteobacteria use acylated homoserine lactones
(AHL, 2.1) and Actinobacteria butyrolactones, both fatty acid
derivatives, for quorum sensing. Both compound classes were
shown to facilitate coordination of metabolic activities within

FIGURE 1 | Primary or central LMWMs. Exemplary structures that
occur in the life-sustaining metabolic cycles of all living organisms;
(A) electron acceptors, (D) electron donors in charge-transfer

complexes; electric extension cord symbols indicate π-electron
systems with potential to develop weak localized electromagnetic
fields.
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FIGURE 2 | Hormones and neurotransmitters. Exemplary structures from
microorganisms, plants and animals; the numbering reflects their appearance
in the text, the arrangement follows common biosynthetic pathways; (A)

electron acceptors, (D) electron donors in charge-transfer complexes; electric
extension cord symbols indicate π-electron systems with potential to develop
weak localized electromagnetic fields.

bacterial populations (López-Lara and Geiger, 2010). Rhizobia,
but also Alpha- and Beta-proteobacteria, can cause the formation
of root nodules in legumes. They use lipo-chitooligosaccharidic
nodulation (Nod) factors (2.2). These glycolipids have been iden-
tified as initiators of host plant root hair formation and defor-
mation, intra- and extracellular alkalization, membrane potential
depolarization, ion flux changes, nodulin gene expression and
formation of nodule primordia (D’Haeze and Holsters, 2002).
Trisporic acid (2.3) induces spore formation in zygomycete fungi;
its mode of action, however, is extracellular similar to that of bac-
terial acylated homoserine lactones (Gooday, 1978). Interestingly,
a prominent plant hormone that stimulates germination, cell dif-
ferentiation and flowering in plants, gibberellic acid (GA, 2.4),
was identified first as a metabolite of the fungus Gibberella
fujikuroi (teleomorph Fusarium moniliforme). This fungus utilizes
it as a toxin to cause bakanae disease in rice seedlings (Curtis and
Cross, 1954; Bartoli et al., 2013). Another structurally strikingly
similar plant hormone is abscisic acid (ABA, 2.5), a carotenoid
cleavage product (apocarotinoid) that is involved in coordinating
responses to various forms of abiotic stress and leaf senescence

(Bartoli et al., 2013). Strigolactones, such as strigol (2.6), another
group of apocarotinoids, are believed to be commonly exuded
by plant roots. Originally, it was assumed that these compounds
facilitate the establishment of parasitic plant haustoria in host tis-
sues, later the discovery of their involvement in facilitating arbus-
cular mycorrhizal colonization of plant roots provided a more
feasible hypothesis for their existence. Recently, also endoge-
nous signaling roles have been suggested (Waldie et al., 2014).
Brassinosteroids (2.7) represent a further class of plant growth
hormones (Clouse and Sasse, 1998). A volatile plant hormone
that can regulate diverse processes is ethylene (2.8) (Bleecker and
Kende, 2000). Salicylic acid (2.9), an aromatic amino acid deriva-
tive, and jasmonic acid (2.10), a derivative of the unsaturated fatty
acid linolenic acid, an oxylipin, represent plant hormones that are
involved in resistance against pathogens and herbivores (Fujita
et al., 2006). One of the most essential hormones for plant devel-
opment is the tryptophan derivative auxin (2.11), also known as
3-indol-actic acid (Woodward and Bartel, 2005). The majority of
plant hormones have been detected also in green, red, and brown
algae (Tarakhovskaya et al., 2007).
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In animals, the term hormones is reserved for metabolites
that are produced by highly specialized endocrine tissues and
transported by the circulatory system to their distant targets
in the body (Jerzmanowski and Archacki, 2013). Among them,
three classes resemble LMWM plant hormones, the amino acid-
derived, the steroid hormones and the eicosanoids. The latter
are not synthetized by specific glands and not well soluble in
aqueous solutions and therefore fail to fulfill two major clas-
sification criterions for animal hormones; as a result they are
designated as hormone-like substances in the literature although,
in terms of their evolved functionality, they represent hormones.
Other animal hormones, polypeptides and small proteins, are
outside of the focus of this review. Eicosanoids are derivatives
of arachidonic acid, an unsaturated C20 fatty acid, and com-
prise prostaglandins (2.12) and leukotrienes, both of which are
involved in numerous homeostatic functions and inflammation
(Funk, 2001). They resemble plant oxylipins, derivatives of the
unsaturated C18 fatty acid linolenic acid, and can disturb tissue
homeostasis. Epinephrine (adrenaline, 2.13) and norepinephrine
(noradrenaline) are tyrosine derivatives that are secreted by the
medulla of the adrenal glands. The former modulates cardio-
vascular and metabolic response to stress, the latter acts more
as a neurotransmitter (Greenstein and Wood, 2011). A further
neurotransmitter that occurs in many organisms is acetylcholine
(2.14) (Preston and Wilson, 2013). The tryptophan derivative
melatonin (2.15) is a highly interesting hormone; it can be syn-
thetized by Bacteria, Plants, and Animals and modulates circadian
rhythms (Hardeland, 2008). Steroid hormones are also involved
in stress regulation; cortisol (2.16) is produced by the adrenal
glands and stimulates gluconeogenesis and activates anti-stress
and anti-inflammatory pathways (Greenstein and Wood, 2011).
Steroid hormones comprise sex hormones, estrogens, such as
estradiol (2.17), that regulate menstrual and estrous reproduc-
tive cycles, and testosterone (2.18), a hormone that occurs in both
sexes but acts differently (Greenstein and Wood, 2011). Another
steroid hormone, ecdysone (2.19), regulates insect developmental
transitions (Yamanaka et al., 2013). Notably, ecdysones, can also
be synthetized in significant amounts by plants (Williams et al.,
1989).

A structural comparison of the various hormones reveals sim-
ilarities and differences. Some of them are efficient electron dona-
tors, some strong acceptors, some both. Some possess metal-like
conductivity due to π-electrons, others not. Probably, these dif-
ferent chemical properties not only facilitate diverse interactions
with proteins (Doukas, 1975) but may facilitate also crosstalk-like
actions between hormones (Pieterse et al., 2009; Spindler et al.,
2009).

VITAMINS AND ENZYME COFACTORS
Biochemical reactions require specific metabolites that provide
either energy equivalents or electrons. For plants, the term
“supportive metabolites” was suggested (Firn and Jones, 2009).
Higher animals cannot synthetize them and thus require them
as vitamins. The majority of vitamins are enzyme cofactors or
precursors of them (Michal, 1999). Figure 3 exemplifies struc-
tures. For example, carotenoids (3.1) represent terpenoid pig-
ments that protect chloroplasts from the reactive oxygen species

singlet oxygen that can be formed by energy transfer from relax-
ing chlorophyll pigments (Ramel et al., 2012). All animals that
are endowed with the ability of sight absorb, transport and
metabolize carotenoids into retinoids (3.2) (von Lintig, 2012).
Tocopherols (3.3) represent further terpenoid antioxidants in
the chloroplast and as vitamin E derivatives protect membrane
lipids in animals (Denisov and Denisova, 2009). Phylloquinone
(3.4) is an important electron acceptor in photosystem I and,
concomitantly, represents an important antioxidant of the vita-
min K group for animals (Asensi-Fabado and Munné-Bosch,
2010). An exception to the rule are the vitamin D forms; ergo-
calciferol is synthetized from ergosterol and cholecalciferol from
cholesterol, the former a triterpene alcohol that confers sta-
bility to fungal membranes, the latter to animal membranes.
Cholecalciferol is a precursor of calcitriol (3.5), which regu-
lates calcium concentrations in the blood (Asensi-Fabado and
Munné-Bosch, 2010).

Cobalamine (3.6), vitamin B12, represents one of the largest
LMWMs; its porphyrine ring forms a coordination complex (see
Section LMWM Coordination Chemistry) with the rare transi-
tion metal cobalt as central atom. Besides acting as an important
cofactor, cobalamine also possesses notable antioxidant activ-
ity. Only Archaea and Bacteria can synthetize it (Michal, 1999;
Asensi-Fabado and Munné-Bosch, 2010). Other important vita-
mins include thiamine (3.7), vitamin B1, which is important for
oxidative decarboxylation and also can act as antioxidant (Michal,
1999; Jung and Kim, 2003); carboxylation reactions depend on
biotin (3.8); pyridoxal phosphate (3.9) is involved in various
modifications at the carbon atom 2 of amino acids (Michal, 1999;
Ferrier and Harvey, 2014). Ascorbic acid (3.10), also known as
vitamin C, confers protection against oxidative stress by acting
as antioxidant. Furthermore, ascorbic acid can donate electrons
to a wide range of enzymes (De Tullio, 2012). The most com-
mon cofactor systems in living organisms that are involved in
redox reactions comprise NAD+/NADP (mitochondria) (3.11),
NADP+/NADPH (photosynthesis, pentose phosphate cycle), and
FAD/FADH2 (oxidative phosphorylation) (3.12). All of them
contain the nucleobase adenine as moiety. The former addi-
tionally contains nicotine amide, the latter riboflavin. Energy
equivalents are provided by ATP (3.13) (Torssell, 1993; Buchanan
et al., 2009; Ferrier and Harvey, 2014) that also contains an ade-
nine moiety. The biosynthesis of most cofactors is rather complex
and difficult to elucidate due to the low available amounts of these
LMWMs (Webb et al., 2007).

Comparing the chemical structures of diverse vitamins
(3.1–3.13) with those of hormones (2.1–2.18), the more diverse
polarity is notable; 3.1–3.4 are rather unpolar and localized in
membranes, 3.5–3.13 are definitely more polar and optimized
for a cytosolic environment. The presence of negative charges
in the phosphoester moieties specifically enhances affinity to
proteins. Apart from the latter, the functional groups are sim-
ilar to those of the hormones and not as uniform as in some
central metabolites, such as sugars and tricarboxylic acids. The
numerous donor (D) and acceptor (A) sites provide a basis
for forming charge-transfer complexes with proteins. Frequent
conjugated unsaturated bonds facilitate the local buildup of
electric fields.
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FIGURE 3 | Vitamins and enzyme cofactors. Exemplary structures; the
numbering reflects their appearance in the text, the arrangement follows
common biosynthetic pathways; (A) electron acceptors, (D) electron donors

in charge-transfer complexes; electric extension cord symbols indicate
π-electron systems with potential to develop weak localized electromagnetic
fields.

SECONDARY LMWMs
All LMWM that are deemed dispensable for life-sustaining pro-
cesses are classified as so-called secondary metabolites, which
represent the greatest known LMWM structural diversity by
far; their numbers in plants are estimated to exceed 500,000
alone (Mendelsohn and Balick, 1995). Most of them show a
highly restricted occurrence, sometimes even limited to a sin-
gle species. A recently suggested alternative term is “speculative
metabolism” (Firn and Jones, 2009). The main difference between
Plants and Animals on one hand, and Bacteria and Fungi on the
other hand, is that the former accumulate secondary LMWMs
in specifically adapted compartments whereas the latter secrete
them into their environment (Demain, 1996; Hadacek et al.,
2011). Their classifications follows characteristic combinations
of biosynthetic building blocks, acetate (C2) or isoprene (C5)
units. All organisms, which are capable of synthetizing the aro-
matic amino acids phenylalanine and tyrosine and possess the
enzyme phenylalanine ammonium lyase (PAL), can synthetize

cinnamic acid derivatives, the main precursors for aromatic sec-
ondary metabolites in photosynthetic Bacteria, Algae and Plants.
In heterotrophic organisms, aromatic structures are formed via
the polyketide pathway. Combinatorial synthesis that utilizes pre-
cursors from various of the mentioned pathways together with
variable modification of the base skeletons, which is caused
by the low substrate specificity of the involved enzymes, yields
the huge structural diversity (Gräfe, 1992; Seigler, 1998; Romeo
et al., 2000; Hadacek, 2002; Weng and Noel, 2012). Figure 4
presents an overview of structures that are mentioned in the
ongoing text.

To start with, the flavonoid catechin (4.1) and stilbene resver-
atrol (4.2) represent characteristic phenolic cinnamic acid deriva-
tives from plants that can arise from the shikimic acid pathway
(Seigler, 1998; Hadacek, 2002). Both are renowned antioxidant
constituents of wine grapes (Burns et al., 2000). Small molecules
are volatile and characteristic fragrance components of spices,
such as anethole (4.3) in fennel (Shahat et al., 2011). Bacteria

Frontiers in Environmental Science | Environmental Toxicology March 2015 | Volume 3 | Article 12 | 187

http://www.frontiersin.org/Environmental_Toxicology
http://www.frontiersin.org/Environmental_Toxicology
http://www.frontiersin.org/Environmental_Toxicology/archive


Hadacek and Bachmann Low-molecular-weight metabolite systems chemistry

FIGURE 4 | Secondary LMWMs. Exemplary structures from
microorganisms, plants, and animals; the numbering reflects their
appearance in the text, the arrangement follows common biosynthetic

pathways; (A) electron acceptors, (D) electron donors in charge-transfer
complexes; electric extension cord symbols indicate π-electron systems with
potential to develop weak localized electromagnetic fields.

are also able to produce such volatile metabolites; p-cresol (4.4)
is responsible for the feces odor and a metabolite of colonic
bacteria (Smith and Macfarlane, 1996). Another group of antiox-
idant phenols are coumarins, e.g., esculetin (4.5) (Hiramoto
et al., 1996). Recent studies have pointed out that esculetin
and its methoxylated derivative scopoletin can contribute pro-
foundly to iron uptake capabilities of Arabidopsis (Schmid et al.,
2014). This points to complex coordination chemistry that com-
bines organic with inorganic chemistry, and which will be
discussed later in more detail (Section LMWM Coordination
Chemistry). The anthraquinone aloe emodin (4.6) is a polyketide

albeit structurally similar to the shikimic acid-pathway derived
LMWMs. It possesses both laxative properties and redox chem-
ical activity (Tian and Hua, 2005). Hypericin (4.7) is a dimeric
anthraquinone that attracted attention because of its phototoxic
effects on grazing animals and, out of context with the former
activity, potential usage as antidepressant for humans (Barnes
et al., 2001). The tyrosine derivative mescaline (4.8), a metabo-
lite from the peyote cactus, Lophophora williamsii, was used
as traditional medicine and hallucinogenic sacrament by North
American Indians; recently, a universal redox chemical reaction
mechanisms for its effect on the central nervous system has been
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proposed (Kovacic and Somanathan, 2009). A structurally simi-
lar compound, aaptamine (4.9) has also been isolated from the
sea sponge Aaptos aaptos (Nakamura et al., 1982). Morphine
(4.10) is a prominent opioid analgesic drug from the latex of
unripe seedpods of the poppy Papaver somniferum. The same
compound, however, yielded also positive results in antioxidant
assays (Gülçın et al., 2004). Colchicine (4.11) is a tropolone
alkaloid that is formed from both phenylalanine and tyrosin;
it is known to cause lethal poisoning in humans who mistake
meadow saffron leaves for wild garlic, but it also proved to be
an efficient antioxidant (Modriansky et al., 2002). The glucosi-
nolate sinigrin (4.12) is a highly water-soluble metabolite that
can be converted into thiohydroximate-O-sulfate intermediates.
Depending on pH, ferrous iron and the presence of myrosinase
interacting enzymes, glucosinolates can be converted enzymat-
ically and non-enzymatically into a variety of volatile degrada-
tion products, including isothiocyanates and nitriles amongst
others, all of which are characteristic for vegetables of the mus-
tard family (Brassicaceae) (Grubb and Abel, 2006). Both the
precursor glucosinolates and their volatile degradation prod-
ucts possess antioxidant activity (Cabello-Hurtado et al., 2012).
Amphidinolide N (4.13) is a polyketide that is produced by
the flat worm symbiotic dinoflagellate Amphidinium (Ishibashi
et al., 1994). The structure shows no aromatic rings and thus
resembles more a terpenoid. This compound class provides pre-
dominantly aliphatic structures. Terpenoids can, however, still
combine with units from other biosynthetic pathways, e.g., the
shikimic acid pathway as in veratridine (4.14). This LMWM
belongs to a series of highly neurotoxic terpene alkaloids that
are synthtized by the Liliaceae s.l. Veratridine and similar com-
pounds efficiently inactivate the regulation of the Na+ channels
(Greenhill and Grayshan, 1992). Terpenoids are classified on
basis of C5 isoprene unit numbers: Monoterpenes are formed
by two, sesquiterpenes by three, diterpenes by four, triterpenes
by six and tetraterpenes by eight isoprene units (Seigler, 1998).
The latter predominantly comprise chloroplastic pigments with
vitamin character (Figure 3). Cucurbitacin E (4.15) and gly-
cyrrhicic acid (4.16) represent two examples with contrasting
structures, taste, the former bitter and the latter sweet (Seigler,
1998). One of the most prominent of all diterpene derivatives is
taxol, which has gained a reputation in breast cancer chemother-
apy; its diterpene precursor, baccatin III (4.17), occurs in the
stem bark of the American yew tree Taxus brevifolia (Wall and
Wani, 1995). Bacteria also can synthetize diterpene derivatives;
the recently discovered antibiotic platenmycin (4.18) represents
a notable example (Wang et al., 2006). Drimane sesquiterpenes,
such as polygodial (4.19), show a restricted occurrence in a
few rather unrelated lower and higher plants. Some fungi, how-
ever, are also able to synthetize drimane sesquiterpenes (Jansen
and de Groot, 2004). If fungal metabolites accumulate in our
foods stuffs, especially in the cereal crops maize and wheat, they
are designated as mycotoxins. Among the most prominent and
deleterious of them we find trichothecene sesquiterpenes. An
often mentioned compound is deoxynivaleol (DON, 4.20), which
affects the functioning of ribosomes (ribotoxic stress response)
and can cause oxidative stress (Wu et al., 2014). Monoterpenes,
in addition to phenylpropenes, represent the major plant odor

components; derivatives such as myrcene (4.21) occur in espe-
cially large amounts in conifer resin. Bark beetles attacking these
trees, in some years with devastating consequences, can uti-
lize monoterpenes that are thought to constitute some kind of
chemical defense against them as precursors for pheromones,
such as ipsdienol (4.22). These volatile compounds help bark
beetles to coordinate their behavior; some species have been
found to be capable of synthetize these monoterpenes even by
themselves (Seybold et al., 2006). Monoterpens, as all other ter-
penoid types, can be produced by many different organisms; for
example, marine red algae synthetize heavily halogenated deriva-
tives (4.23) (Fusetani, 2012). Iridoids, such as aucubin (4.24),
are irregular monoterpenes and thus not easily recognizable
as terpenoids. They occur in the plant families Plantaginaceae,
Scrophulariaceae, and Gentianaceae, where they contribute to
rapid browning during the drying process and bitter taste; they
are, however, also produced by insects, e.g. iridodial (4.25) by
the ant Iridomyrmex (Seigler, 1998). Finally, fatty acids also can
act as precursors for secondary metabolites. Polyactylenes have
similar chain-like structures with a high proportion of unsatu-
rated double and often also triple bonds albeit without nitrogen.
Falcarindiol (4.26) and related structures have been identified as
neurotoxins and antifungals (Christensen and Brandt, 2006).The
fatty acid amide capsaicin (4.27) is the pungent principle of red
chili, but was also shown to be an antioxidant (Srinivasan, 2014).
Volatiles fatty acid derivatives play an important role as intraspe-
cific insect pheromones by facilitating the location of females by
males. The first one elucidated was bombykol (4.28) that is pro-
duced by the domesticated silk moth Bombyx mori. Males possess
two receptors in adjacent pheromone-sensitive neurons in their
antennae, one for bombykol and another, interestingly, for its
oxidized form, bombykal (Nakagawa et al., 2005).

The presented secondary LMWM examples illustrate the dif-
ficulty of assigning specific structures to specific organisms
and specific biological activities to specific structures. One of
the more important factors that determines LMWM benefi-
cial and toxic effects is their concentration. Often the same
compound can exert beneficial effects in low concentration
and toxic in higher, a phenomenon that is known as horme-
sis (Calabrese, 2005). Generally, organic compounds are not
well soluble in aqueous solutions. However, the cytosol is not
an aqueous solution but has a mysterious gel-like structure
(Pollack, 2001). Its mystery is caused also by its in accessibil-
ity to standard analytical methods due to the colloidal matrix
structure that is formed by LMWMs and proteins. For cer-
tain, strong electron acceptor and donor properties contribute
to biological activity, but not all strong electron acceptors
are necessarily pro-oxidant toxins and not all strong electron
donators antioxidants or hormones. Aromaticity is often con-
nected with biological activity, but not exclusively so. Basically,
in terms of functional groups, aromaticity, electron donor
and acceptor capabilities, a comparison of hormones, most
vitamins and secondary LMWM does not reveal any fun-
damental differences. Solubility and the potential of forming
charge-transfer complexes with protein functional groups may
constitute essential factors that affect their biological activity, but
not exclusively so.
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LMWM STRUCTURE–ACTIVITY CONSIDERATIONS
Comparing the structures of different LMWMs in Figures 1–4, it
becomes apparent that only the different types of primary, basic,
or central metabolites, such as amino acids, organic acids, sug-
ars and fatty acids, are characterized by specific combinations
of unsaturated bonds and heteroatoms. Others, hormones, vita-
mins, and secondary LMWMs lack this characteristic. In evolv-
ing as components of the general metabolic pathways, central
LMWM structures most probably oblige to the specific chem-
istry that is required of them to contribute accordingly to the
metabolic pathways of which they have evolved to be a part of
(Bar-Even et al., 2012). Starting from partially enzymatic or non-
enzymatic reaction cascades, gene and operon duplication events
and gene elongation contributed fundamentally to the evolution
of a set of specific enzymes that controls the chemistry of the
extant metabolic pathways (Fani and Fondi, 2009).

Other LMWM groups, hormones, vitamins, and coenzymes
and secondary LMWMs, however, do not share comparable
structural characteristics, similarly as their distribution is not
as widespread as that of central metabolites. Their currently
attributed functions are also not as clear-cut. For example, several
nitrogen-containing secondary LMWM can interact with major
neuroreceptors, such as cholinergic, adrenergic, serotonergic and
GABAergic neuroreceptors (GABA, γ-aminobutyric acid), and
Na+, K+, Cl−, and Ca+-channels. This explains why the intake of
larger dosages inevitably causes substantial physiological and psy-
chological disturbances (Wink and van Wyk, 2008). In the past,
conversely, certain nitrogen-containing LMWMs were regarded
just to serve as simple nitrogen storage intermediaries (Rosenthal,
1982). The currently must broadly accepted concept posits that
the major cellular targets of LMWMs are proteins, specifically
the three-dimensional structure of proteins, including receptors,
enzymes, ion channels, transporters, hormones, transcription
factors, regulatory and cytoskeletal proteins. Membrane fluidity
and permeability represents a further target area and, last but
not least, LMWMs can react directly with both DNA and RNA
(Wink and Schimmer, 2010). Non-covalent complex formation,
especially that of the charge-transfer type, may contribute as an
important mosaic stone to the required specificity of LMWMs
(Szent-Györgyi, 1960, 1968; Doukas, 1975). But to obtain more
detailed insights into LMWM chemistry, we have to consider
oxygen and coordination chemistry, both of which form the
boundary between organic and inorganic chemistry.

LMWM COORDINATION CHEMISTRY
CHEMISTRY OF LIFE
Predominantly, LMWM chemistry is viewed as organic chemistry.
In this section, the focus, however, is set on selected inorganic
elements, whose changing availability and adopted utilization has
shaped the evolution of living organisms besides organic chem-
istry. Life started with anaerobic prokaryotes, in which the earliest
organic chemistry formed DNA itself in a reductive milieu that
required hydrogen input from water. As a result, about 3 bil-
lion years (bya) ago, the environment changed to more oxidized
conditions. These processes are thought to have facilitated the
development of protection mechanisms against oxygen and, sub-
sequently, the development of aerobic prokaryotes. The second

most important chemical change in evolution was the appear-
ance of eukaryotic cells, which is assumed to be facilitated by
a sequence of events that led to a systematic development of
the combined inorganic/organic chemistry in attempts to sep-
arate the unavoidable oxidative from the reductive chemistry.
Among novel structures we find membranes, the capture of
bacteria as organelles (chloroplasts and mitochondria) and the
calcium messenger system. During the period of two to one
bya less changes occurred. Shortly after one bya, oxygen con-
centration began rising again leading to unavoidable changes in
the environmental chemistry. In parallel, the cellular oxidative
chemistry evolved to produce multicellular eukaryotes, the third
very important chemical change. Protecting the cellular reductive
chemistry from the increasingly diverse oxidative chemistry out-
side of the cell increased the demand for developing additional
compartments, the realization of which was only possible in mul-
ticellular eukaryotes. Oxidative extracellular and vesicle chemistry
led to crosslinking of connective structures by restricting their
movement and creating organs of differentiated cells. Especially
copper enzymes helped connective tissues to grow and in the
synthesis of many LMWM messengers that facilitated communi-
cation between cells and organs. Concomitantly, hydrolytic zinc
proteins managed cleavage of these tissues. The same element
proved essential in the development of zinc finger transcription
factors that help relating hormone information to gene expres-
sion. Connective tissues and messengers for the control of the
whole organism with outer skin layers enabled the evolution
of huge plants and animals. The latter developed fast Na+/K+
exchange currents in nerves, which resulted in the evolution of
brains. Both the nerves and the brain utilize the potential of
Na+/K+ gradients that have been developed by the earliest cells by
excluding Na+. Brain development enabled man finally to under-
stand the chemistry and physics behind it. Between 600 and 400
million years ago (mya), oxygen levels ceased to rise and environ-
mental changes decreased, which implies that no cellular chemical
changes occurred from this time point onward and only muta-
tions could change DNA to produce species variants. This topic
is covered in much detail by two excellent books (Williams and
Fraústo da Silva, 2006; Williams and Rickaby, 2012).

OXYGEN AND OTHER REACTIVE SPECIES
Today’s oxygen-rich atmosphere makes oxidative stress unavoid-
able. Aerobic metabolism and the exposure to various forms of
abiotic and biotic stress creates the so-called “Oxygen Paradox.”
On the one hand, aerobic life’s energy supply depends on the
reduction of molecular oxygen, on the other hand, oxygen is
toxic to life in higher concentrations (Davies, 2000). In tissues,
therefore, oxygen concentration usually rises only to one fifth
of that which is found in ambient air. One factor that makes
oxygen dangerous is its incomplete reduction by accidental one-
electron transfers, which do not yield water but various reactive
oxygen species (ROS). These include superoxide anion radical
(O•−

2 ), hydrogen peroxide (H2O2) and hydroxyl radical (•OH)
(Figure 5) (Demidchik, 2015). Another reactive oxygen species is
singlet oxygen (1O2), a dangerous byproduct of photosynthesis in
plants. Insufficient energy dissipation results in the formation of
an excited triplet state chlorophyll that can transfer its energy on
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FIGURE 5 | Redox and coordination chemistry of LMWMs. Reactive species chemistry is marked in red and coordination chemistry in blue (exception bar
graph); subtitles explain the details; chl, chlorophyll; n, variable oxidation states.

ground-state oxygen (3O2) (Triantaphylidès and Havaux, 2009).
In attempts of keeping the threat of the high ROS reactivity
at minimum, various LMWM antioxidants and enzymes have
evolved (Fridovich, 1998; Apel and Hirt, 2004; Halliwell and
Gutteridge, 2007).

Besides reactive oxygen species, we also know reactive nitro-
gen species (RNS), for example nitric oxide (•NO), and sulfur
reactive species, for example thiols, disulfides, sulfenic acid
derivatives, thio-sulfinates and -sulfonates, and thiyl radicals,
the latter presently being less in the research focus compared to
RNS (Giles and Jacob, 2002; Gruhlke and Slusarenko, 2012; Groß
et al., 2013). The radical •NO can arise by the following routes:
(I) by compartment-specific reactions; (II) in chloroplasts and
plant mitochondria from nitrite (NO2) reduction by electron
transport chain deficient processes (accidental one-electron
transfers); (III) in plant peroxisomes from nitrite reduction by
xanthine oxidoreductase; (IV) in the plant cytoplasm by nitrite
reduction; (V) in the plant apoplast spontaneously at low pH
by membrane-bound nitrite and nitrate reductases; and (VI) in
mammalian cells nitric oxide synthase (NOS, Figure 5) oxidizes
the amino acid arginine. The latter enzyme has not yet been
identified in plants although being suspected to be involved

in most of its formation processes. Nitric oxide can be highly
toxic because it can more or less react with ROS, for example
with peroxynitrite (Figure 5) and also every pro-and antioxidant
LMWM (Groß et al., 2013). Furthermore, proteome wide-scale
analyses revealed that nitric oxide can nitrosylate sulfur groups
besides of cysteine in proteins, which has a fundamental effect on
their functions (Astier et al., 2012).

Complex formation, short half-lives and high reactivity char-
acterize the various reactive species of oxygen, nitrogen and sul-
fur. This supports increasingly the notion that reactive oxygen and
nitrogen species signaling, antioxidants and thioredoxin medi-
ated redox regulation just represent parts of the more or less same
broad concept. The integration of different redox inputs could
represent a system that regulates proteolysis, gene expression and
functioning of specific metabolic pathways in a more graded
fashion and functions independently of a binary “yes or no”
response (De Tullio, 2010). Figure 5 presents a summary of the
various oxygen, nitrogen and sulfur reactive species, and chemi-
cal reactions involved in their formation. The various radicals can
readily react with each other, as well as with LMWMs, proteins
and membranes in the cell (Giles and Jacob, 2002; Halliwell,
2006; Møller et al., 2007; Groß et al., 2013). The ability of some
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LMWMs to reduce molecular oxygen by one-electron transfers is
regarded as the major mechanism contributing to their cytotoxi-
city (Kappus and Sies, 1981). This pro-oxidant mode of action is
utilized by nearly all efficient anti-cancer drugs (Watson, 2013).

BIOINORGANIC OR COORDINATION CHEMISTRY OF LMWM
LMWM contain more or less the same elements as proteins.
They can be divided in non-metals and metals. The latter dif-
fer from the former in their ability of conducting electricity in
the condensed state. Among non-metals we typically find C, N,
O, S, P, Cl, as well as H, but also B and Se. The fact that met-
als of the first two periods possess less than three electrons in
their outer scale contributes significantly to their ability to form
cations (Mn+). This is especially easy for metals of the groups 1,
2, 3, 12, and 13, among which we find Na, Mg, Al, K, and Ca.
Transition metals from the groups 4–11, however, are less prone
to behave like this. Fe, the most common transition metal in the
Earth’s crust, Mn, Cu, Zn, V, and in sea water additionally Co, Ni,
and Mo, are among the most abundant and/or available (Fraústo
da Silva and Williams, 2001; Williams and Fraústo da Silva,
2006; Crichton, 2008; Ochiai, 2008; Marschner, 2012). Table 1
presents a compact summary of known biochemical functions
of the various elements. Metals can serve as essential catalysts,
either in acid/base and/or in electron transfer reactions. Those
metals that lack good cation formation properties depend on
forming coordination complexes with either organic or inorganic

ligands (Figure 5). The metal central atom is a Lewis acid and
the organic or inorganic ligand a Lewis base. In terms of bond
strength, the coordination bond resembles a covalent bond but
stability decreases with low pH. Coordination complexes can be
of tetrahedral, trigonal, linear, trigonal bipyramid, or octahedral
geometry, which means that one central atom can coordinate
various ligands. Depending on the nature of the ligand and the
stereochemistry of the central atom the standard redox poten-
tials of CuII/Cu, FeIII/FeII, MnIII/MnII, CoIII/CoII can be altered
by more than 1.0 V (Crichton, 2008).

Generally we know LMWMs as simple, uncoordinated com-
pounds because in attempts to isolate them from their sources
the complexes are usually destroyed. Nearly all LMWMs with
oxygen, nitrogen and sulfur can act as Lewis bases and thus par-
ticipate as ligands in coordination chemistry. Depending on their
actual state as uncoordinated molecule or ligand in a coordi-
nation complex, LMWMs can act as catalysts. Figure 5 presents
an example: Hydroxyl radicals are among the most aggressive
reactive oxygen species with the exclusive ability to trigger chain
oxidations on nearly every biomolecule (Voeikov, 2001; Halliwell
and Gutteridge, 2007; Demidchik, 2015). The deoxyribose degra-
dation assay allows assessment of their iron-catalyzed forma-
tion rate from hydrogen peroxide by quantification of deoxyri-
bose oxidation products as thiobarbituric acid-reactive species.
The naphthoquinone juglone, an allegedly allelopathic secondary
LMWM of the walnut tree, can form coordination complexes

Table 1 | Main biochemical functions of elements (Fraústo da Silva and Williams, 2001; Crichton, 2008; Marschner, 2012; Williams and Rickaby,

2012).

General Elements Chemical form Uptake Specific functions (examples)

NON-METALS

Major cell constituents,
LMWMs and proteins

C, H, O, N, S
(Se)

Lipo- and hydrophylic
molecules

CO2, HCO3−, H2O, O2,
NO3−, SO42−, SO2 (SeO42−)

Essential elements involved in
enzymatic reactions, low- and
high-molecular-weight metabolites,
polymers

P Phosphate esters Phosphates Energy transfer
Amorphous hard structures B Esters with polyhydroxy

compounds
Boric acid Cell wall component, essential for

plants but not animals
Si Coordination complex Silicic acid Major element in plants, minor in

animals (shells of lower animals)
Non-specific Cl Anion Cl− Ionic messenger, ion balance
METALS

Structural Ca, Mg Sparingly soluble
inorganic compounds

As ions Skeleton, shells, teeth,
membranes, muscles

Electrochemistry K, Na (Ca, Mg) Free cations As ions Nerves, metabolic energy
Electrolytic equilibria and currents

Acid-base catalysis Zn (Ni, Mn) Coordination complex Predominantly as
coordination complex

Food digestion (Zn), Urea hydrolysis
(Ni) Water splitting (Mn)

Redox catalysis Fe, Cu, Mn,
Mo, (Co, Ni, V)

Coordination complex Predominantly as
coordination complex

Oxygen reaction (Fe, Cu, Mn),
Oxygen production (Mn), Oxidation
outside cytoplasm (Cu), Nitrogen
fixation (Mo), Nucleotide reduction
(Co)

Signaling to DNA Ca, Cu, Fe,
Mg, Zn

Coordination complex Ca as ion; all others as
coordination complexes

Binding to transcription factors (Zn)

Various specific functions Mg Coordination complex Ion, Chlorophyll, phosphate metabolism
Fe, Cu Oxygen transport Coordination complex Proteins
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with Fe ions only if iron is not complexed by EDTA. If iron is
added as EDTA complex to the reaction mixture, juglone remains
a free molecule. Figure 5 illustrates the dramatic difference
between the two scenarios in terms of hydroxyl radical formation
(Fenton chemistry) catalysis (Chobot and Hadacek, 2009). The
only difference is the presence and absence of EDTA, ascorbic acid
is present in identical amounts in all tested concentrations of the
two setups. The results from this experiment provide us with a
faint idea of the difficile effects ligand identity can exert on metal
catalysts. Even in haem iron (Figure 5), still two coordination sites
remain free to catalytic activity-modifying ligands.

ROS CHEMISTRY IN WATER
One puzzling fact is that half-lives of ROS are assumed to be
extremely short in the cytosol, for 1O2 1 μs, O•−

2 1 μs, H2O2

1 ms, and •OH 1 ns (Møller et al., 2007). The notion about the
potential role of ROS has changed in the last decades. What was
originally considered a toxic byproduct is now seen as essential
component of cellular information signaling, especially in case
of H2O2. In this context, the mechanism how ROS may be effi-
ciently involved in long distance signaling is still under debate.
A recent study summarized the problems: whilst H2O2 signaling
based on pure diffusion without relaying stations is theoreti-
cally possible, the experimentally observed cellular background
H2O2 concentrations are too high and enzymatic degradation too
slow (Vestergaard et al., 2012). If catalytic formation, enzymatic
or non-enzymatic, does not correspond to the observed H2O2

concentrations, the question about their source still remains
unanswered.

Research on water has a turbulent history (Pollack, 2013).
Actually, the idea that water gets more structured near the freez-
ing point is not a new one (Szent-Györgyi, 1957), and several
authors have suggested that this happens to water in the vicinity
of hydrophilic and charged surfaces (Ling, 2001; Pollack, 2013).
This proposed concept is not generally accepted (Ball, 2008), but
the simple experiment that fluorescent dyes change the qual-
ity of their emitted light in liquid and freezing water provides
us with some food for thought (Szent-Györgyi, 1957). It also
creates a novel scenario for ROS (Figure 5). Vladimir Voeikov
proposes that the formation of reactive oxygen species is more
likely to occur in a structured water environment; experimen-
tal evidence is provided by ultraweak photon emission studies
(Hercules, 1969; Voeikov, 2001, 2006). The possible proposed
reactions include the hydrolytic cleavage of a water molecule in
hydroxyl and hydrogen radical and the oxidation (burning) of
water by molecular oxygen that is entering the aqueous solution
by diffusion (Figure 5). Furthermore, these reactions are assumed
to occur perpetually in an oscillatory mode. One tempting aspect
of this proposed concept is that LMWMs can affect the speed of
these reactions and thus not only change the intensity but also the
frequency of the oscillation (Voeikov, 2001, 2006).

SYSTEM CHEMISTRY AND BIOELECTRICITY
SYSTEMS BIOLOGY OR SYSTEMS CHEMISTRY
During the last decade the term systems biology became more
and more prominent. The goals of this emerging field are
best described by Denis Noble, one of its pioneers: “Systems

biology . . . is about putting together rather than taking apart, inte-
gration rather than reduction. It requires that we develop ways of
thinking about integration that are as rigorous as our reductionist
programs, but different . . . It means changing our philosophy, in
the full sense of the term” (Noble, 2006). Undoubtedly, our view
on LMWMs would also benefit from such an approach. In Section
LMWM Coordination Chemistry we have provided an overview
in terms of which chemistry LMWMs can cause. It can happen
already on the pre-receptor level; steroid hormones represent an
example (Mindnich et al., 2004). Most likely, LMWMs represent
an important system component besides proteins and DNA.

In recent years, another new field, systems chemistry has taken
shape (Kindermann et al., 2005). It is aimed at understand-
ing the chemical origins of biological organization (Ruiz-Mirazo
et al., 2014). As a consequence, Addy Pross suggested to incor-
porate Darwinian biological theory as replicative chemistry into
a more general chemical theory of matter (Pross, 2012). Any
chemical system, however, that is part of a biological system
requires coordination mechanisms, some kind of cooperative-
ness. How this cooperativeness can work is perfectly outlined in
Albert Szent-Györgyi’s book “Bioenergetics”: Chemical structures
are comprised of letters and dashes, and biochemistry, follow-
ing chemistry, has excelled similarly in describing structures and
reactions by letter-dash-letter symbols (Figures 1–5). Quantum
physics turned atoms into probability densities of electrons that
build molecules of fantastic and changing shape. Accordingly,
biological phenomena represent subtle changes in the shape that
take place in dimensions still unknown to classical chemistry.
One problem for quantum physics is that models with more than
two electrons create unsurmountable mathematical difficulties.
Classical biochemistry assumes that no interaction can take place
between two molecules without touching one another but— as
Szent-Györgyi points out—manifold interactions can take place
through energy bands and the electromagnetic fields, which occur
in water and its structure as the matrix of biological reactions
(Szent-Györgyi, 1957).

BIOELECTRICITY
At the end of the 18th century electrical phenomena in plants
became known a couple of years earlier than in animals, but stud-
ies in the former have been eclipsed by those of neurons until
recently (Niklas and Spatz, 2012). Electroneutrality requires equal
numbers of anions and cations, and even if they differ slightly, an
electric potential difference �� develops. In cells with an approx-
imate radius of 30 μm, �� of membranes lies in the 100 mV
range. Cell membranes are semipermeable. In aqueous solutions,
all electrically charged molecules exist in form of hydrated ions,
and because of the differences in charge and size, their hydration
spheres, exclusion zones, they differ in volume. Semipermeable
membranes are assumed to use dialysis to restrict the permeabil-
ity according to the hydrated ion size. A permeation equilibrium
constitutes as a result of the osmotic pressure and the electric field
potential (Figure 6A). Ions that fail permeating a membrane start
accumulating on one side of the membrane and accordingly build
up an electric charge (Diamond and Wright, 1969; Hille, 2001;
Niklas and Spatz, 2012). The resting �� between the interior and
exterior of a biological cell is −40 to −80 mV. If �� is shifted
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FIGURE 6 | Bioelectric system components in living organisms. (A)

Semipermeable membranes develop a resting potential by selectively
allowing diffusion of K+ and Cl− until the Coulomb force halts further
transfer; (B) particles with hydrophilic surfaces stimulate the development
of an exclusion zone with negatively charged more ice-like structured
water; (C) peptides can self-assemble into peptide nanotubes with
semiconductor properties (Hauser and Zhang, 2010, with permission); (D)

protein complexes in photosystem I and II and other protein complexes
in the chloroplast can act as light-sensitive and non-light-sensitive diodes

during photosynthesis; (E) (1) neurons represent the best explored
biotransistors, (2) signaling in the myelin sheath depends on
depolarization by Na+ influx; (3) the Na+ channels are regulated by a
system combining a membrane capacitor and a channel transistor
(Farquhar and Hasler, 2005, with permission); (F) biopolymer piezoelectric
field electron transistor: voltage in biopolymers, such as membranes, cell
walls and their associated mucous matrices, can be affected by LMWM
chemical activity (for example, increased metal-catalyzed free radical
production) in concert with hydrostatic pressure.
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more into the positive (influx of Na+ or Ca+), we speak of depo-
larization, if �� is shifted to a more negative value (efflux of K+
and/or influx of Cl−) of hyperpolarization (Hille, 2001; Carlson,
2014). This potential, again, blocks other similarly charged ions
and creates an electrostatic resistance to ion and electron trans-
fer. Thus, although there exist no specific high resistance insulator
materials in organisms, substantial electric resistance can form.
Consequently, electric charges can arise in many biological com-
partments. If this happens in a serial cascade, the formed charges
may reach a quite substantial amplitude, the most spectacular
example being the electric organs of fishes, e.g., those of the elec-
tric eel, Electrophorus electricus, with a �� of up to 600 V (Gotter
et al., 1998).

Gerald Pollack proposed that water that is close to hydrophilic
structures, resembles more the honeycomb structure of ice with
a ratio of hydrogen:water of 2:1 (Figure 6B). Water in this exclu-
sion zone has a negative charge (−1). The adjacent bulk water
reacts by forming hydronium ions (H3O+) and thus has a pos-
itive charge. Charged entities, such as membranes, proteins, and
DNA interact and interface with water. The forming �� is the-
oretically available to drive various cellular processes and would
also offer an explanation for the negative potential of the cytosol
(Pollack, 2013).

PIEZOELECTRICITY
Endothermic reactions depend on energy availability. In this con-
text, we should specifically consider biological piezoelectricity.
The piezoelectric effect is described as the accumulation of an
electrical charge by application of mechanical stress to a crys-
tal (Martin, 1972), but it is known also to occur in certain solid
materials of biological origin. Thus, piezoelectricity can cause
changes of the membrane potential, the electrostatic fields of the
tissue as well as its form (inverse piezoelectric effect). This can
happen also in solid biological structures that maintain their spe-
cific inner organization and physicochemistry in living tissues.
These structures comprise cell walls made of muramic acid, chitin
and cellulose, colloidal mucins, phospholipid bilayers in bio-
membranes, fascia made of collagen, hyaline cartilage and bones
(Fukada, 1984; Kim et al., 2010; Cheng and Qian, 2012). Mucus
material and plant and bacterial mucilage can form colloid-like
matrices on the surface of intra- and extracellular solid structures,
thereby acting as interface to various cell- and tissue-specific
liquids, such as cytoplasm, lymph and blood. Likewise, depend-
ing on water availability, organs are covered by mucus layers
of variable depth, which can lubricate the surface, maintain the
functional hydration state, and protect against invading microbes
(Leppard, 1995; Boyton, 2002; Evert et al., 2009).

METAL-ORGANIC FRAMEWORKS (MOFs)
The generally accepted notion is that proteins with their sur-
faces determine the milieu for the majority of chemical reactions.
This somehow obscures the fact that LMWMs can form com-
plex ions with a wide range of metals (see Section Bioinorganic or
Coordination Chemistry of LMWM), which enables them more
or less to act as comparable catalysts to enzymes in terms of
potential chemical reactions catalysis though but less on terms of
efficiency. A general idea how this can work is illustrated by one

of the most-exciting, high profile developments in nanotechnol-
ogy. Metal-organic frameworks (MOFs) are porous coordination
polymers of mucus-like nature that contain metal-containing
nodes and organic linker molecules. They are developed currently
to serve as drug carriers in form of nanoencapsulators (McKinlay
et al., 2010). Owing to their structural regularity and synthetic
tunability, considerable hopes are directed at MOFs as platform
to hierarchically organize synthetic light-harvesting antennae and
catalytic centers to achieve solar energy conversion similarly as
in photosynthesis (Zhang and Lin, 2014). Conversely, chloro-
plastic chlorophyll stacks somehow may be viewed as BioMOFs.
LMWM can structure such BioMOFs as organic linker molecules
and specifically affect chemical cell processes by regulating sub-
strate availability and catalysis, comparably to and in concert with
proteins. Both proteins and BioMOFs cannot avoid being affected
by piezoelectric effects.

BIOELECTRIC SYSTEM COMPONENTS
Some cell structures show striking similarities to basic electronic
components (Figure 6). Some examples are presented in the
ongoing text.

Biocapacitors
A capacitor (originally known as a condenser) is a passive two-
terminal electrical component used to store energy electrostati-
cally in an electric field (Dorf and Svoboda, 2001). Traditional
paper capacitors consist of cellulose layers positioned around
a dielectricum in order to store a defined amount of electric
charge to facilitate smooth power supply conditioning. A similar
structure is found in the intermembraneous space of phospho-
lipid bilayer membranes that surround cell nuclei, chloroplasts,
mitochondria and between the cellulose fiber layers of plant cell
walls (Figure 6A). Biomembranes show the unique feature of dis-
playing phase transitions (melting) in a physiologically relevant
regime (Heimburg, 2012).

Biosemiconductors
A semiconductor is a material which possesses electrical con-
ductivity between that of a conductor, for example any metal,
and that of an insulator, such as glass or silicon. The conduc-
tivity of a semiconductor is augmented by “doping.” Doping
consists of the addition of electron donators to the insulator. In
case of silicon, most commonly coordination complex formation
with transition metals of the groups III and V is used. In con-
trast to metals, the conductivity of semiconductors increases with
elevated temperature, and also with increased photon radiation
(photovoltaic effect). Mucous colloids with complexed metals
or hyaline cartilage can possess semiconductor properties (Sze,
1981). Recently, nanotechnology research revealed that peptides
can self-assemble into peptide nanotubes by a mechanism that is
not yet understood fully. These peptide nanotubes can be compo-
nents of metallic/semiconductor-organic frameworks (BioMOFs)
(Figure 6C) (Amdursky et al., 2010). Consequently, we may
assume that peptides can form biosemiconductors in vivo too.

Biodiodes and biotransistors
A diode is a serial combination of a doped (n) and an unchanged
(p) semiconductor. An applied potential may only result in a
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current flow if the cathode is placed at the doped part of the
diode. Diodes consisting of semiconductors are also sensitive to
light by increasing their conductivity, and may emit light when
high potentials are applied (light emitting diode, LED). The pho-
tosystems in photoautotrophic organisms can be seen as an array
of biodiodes (Figure 6D).

Transistors are serial combinations of three doped and/or
unchanged semiconductor elements (npn, pnp). The complete
combination is rendered electrically conductive by applying a
potential, placing the cathode at the doped element. The base cur-
rent is applied at the first (emitter) and the middle (base) part.
If this is high enough, conductivity between the first (emitter)
and the third part (collector) is established. Thus, in essence a
transistor represents an electronic switch depending on charge
thresholds.

In biosensor development, different types of biologically sen-
sitive field-effect transistors (BioFET) exist, in which whole cells
are used to detect changes in extracellular pH, ion concentra-
tion, CO2 production, redox potential and metabolic products
such as glucose and lactic acid. A special development repre-
sents the “beetle/chip” FET that is used to analyze pheromone
perception of insects in electroantennogram studies (Schöning
and Poghossian, 2002). The physical principles governing ion
flow in neurons resemble electron flow through a metal-oxide-
semiconductor field-effect transistors (MOSFET) (Figure 6E)
(Farquhar and Hasler, 2005).

Apart from neurons, bioelectrical transistor elements have
not been investigated intensively so far. The following scenario,
however, is feasible: Biopolymer compression (mechanical stress)
and/or oxidative (chemical stress) can increase electron avail-
ability by piezoelectricity. Mucoproteids with metall–LMWM
complexes, especially of iron and copper, can serve as electron
accepting “doping” agents. Transition metal-catalyzed electron
transfers to molecular oxygen can increase free radicals and
other reactive species (Section Oxygen and Other Reactive Species
and Bioinorganic or Coordination Chemistry of LMWM). The
cytosol is rich in various solutes. Oxidative stress increases
LMWM amounts as it triggers antioxidant defenses. As argued
by the structured water hypothesis (Ling, 2001; Voeikov, 2001,
2006; Pollack, 2013), structured water zones on hydrophilic and
charged surfaces can increase reaction rates of this chemistry
by providing more energy due to their battery-like nature and
affect the conductivity of a particular tissue region by mod-
ulation of the electromagnetic fields in the present biopoly-
mers, such as membrane lipids, cellulose, chitin or collagen and
their associated mucous matrices. LMWMs interact with con-
centrations of reactive species because of their redox chemical
properties and affect a multitude of reaction cascades that con-
tribute to the phenomenon of oxidative stress. Such an effect
on voltage-sensitive K+ channels is documented and accepted as
given in a recent critical review (Sahoo et al., 2014), irrespec-
tive of any contributions of structured water to this effect and
despite the experimental difficulties. Numerous studies document
LMWM effects on various membranous ion channels, amongst
others by phenols (Ishimaru et al., 2012), peptides (Maischak
et al., 2010), and terpenoid LMWMs (Marrè, 1979; Zimmermann
and Mithöfer, 2013). Electrical signals can trigger the same

downstream responses as chemical ones, only faster. This has
been impressively demonstrated for the wound-induced methyl
jasmonate-systemin signal cascade, in which an electrical long-
distance signal, probably a system potential (see for more details
Section Bioelectric Studies) leads to proteinase inhibitor accumu-
lation as systemic response in damaged tomato plants (Wildon
et al., 1992). A substantial component of this signal cascade
represent changes in xylem hydrostatic pressure (Farmer et al.,
2014). Consequently, the scenario of a “biopolymer piezoelectric
field electron transistor (BIOPFET)” as suggested by Figure 6F is
quite feasible despite of the fact that many details request further
exploration and clarification.

BIOELECTRIC STUDIES
Searching the literature for the term “bioelectricity” yields a lot of
papers about bioenergy but fewer on physiology. The most cited
one dealing with the bioelectricity is a more or less 10 year old
review that attempts to clarify several misconceptions that have
arisen in connection with physiological bioelectricity (McCaig
et al., 2005). The most promising application is the clinical poten-
tial of electric field treatment of damaged tissues of epithelia and
the nervous system. An important insight from animal studies
was that electrical fields exist intra- and extracellularly: (I) Voltage
gradients exist within the extracellular spaces underneath the frog
skin; (II) disruption of the natural electric fields in amphibians
disrupts development; (III) endogenous currents and voltage gra-
dients are present in chick embryos, disrupting them also disrupts
development; and (IV) a voltage gradient exists across the neu-
ral tube; neuroblasts, the precursor cells of neurons, differentiate
in this gradient. Another important insight concerned electrical
fields that are generated by healing epithelia, which control the
healing process: (I) Rat cornea wound healing is controlled by
an electrical field and, specifically—LMWM drugs were shown to
affect the cornea’s �� (Song et al., 2002); (II) epithelial cell pro-
liferation and the cell division axis are regulated by a physiological
electrical field; (III) and nerve growth is regulated by an electrical
field. Transcellular signals can regulate the spatial expression of
genes that control left/right organ symmetry (Levin et al., 2002).
Furthermore, supporting data emerged for the notion that intra-
cellular gradients of potential segregate charged proteins within
the cytoplasm, a kind of electrophoresis along cell membranes
(Jaffe, 1977).

A genetic study on the role of G protein-coupled receptor
signaling in originally as chemotactic identified aggregation of
the model slime mold Dictyostelium discoideum suggested that
chemo- and electrotaxis share a similar signaling mechanism
(Zhao et al., 2002). However, later studies confirmed this only for
the most downstream elements (McCaig et al., 2005). Given the
high parallels of electro- and chemotactical phenomena, the lack
of shared recognition mechanisms still remains enigmatic.

Whereas in animals only one genuine electrical signal is rec-
ognized, the action potential, in plants two more can be found,
the variation and system potential (Zimmermann and Mithöfer,
2013). The action potential results from a transient depolariza-
tion from the plasma membrane (Davies, 1987). Within plants,
they are especially evident in those with rapid (nyctinastic) leaf
movement, the best known being touch-me-not (Mimosa pudica)
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(Volkov et al., 2010) and the Venus flytrap (Dionaea muscipula)
(Volkov et al., 2008).

Variation potentials, sometimes also known as low-wave
potentials, represent transient depolarizations of the plasma
membrane with variable shape, amplitude and time frame with
downstream effects on gene expression (Davies, 1993). They can
be elicited by diverse mechanical and physical stimuli, such as
heat, wounding, pressure, but also by chemical factors.

Systems potentials, by contrast, reflect a systemic self-
propagating hyperpolarization of the plasma membrane or
depolarization of the voltage of the apoplastic colloidal matrix
(Zimmermann et al., 2009). The participation of proton pumps in
generating these potentials is suggested by triggering activity via
the terpenoid LMWM fusicoccin, a toxin of the phytopathogenic
fungus Fusicoccum amygdali (Marrè, 1979).

Apart from rapid leaf movement, electrical signals have been
shown to be involved in plant root-to-shoot communication,
fertilization, photosynthesis regulation, gene expression, long-
distance signaling in woody plants, and root growth coordination
(Fromm and Lautner, 2012). Moreover, experimental evidence
documents that action and variation potentials can affect light
and dark reactions of photosynthesis as well as respiration in
above- and belowground organs (Pavlovič, 2012). Sessile plants
never have developed the same degree of neuronal network com-
plexity as scavenging animals even though electricity also con-
stitutes an important component of their signaling that enables
them to survive in changing environments. Long-distance signal-
ing suggests the existence of biocircuits, in plants these might be
xylem and phloem vascular bundles, in animals connective tis-
sues (fascia), the latter showing functional conformity with the
meridians in Traditional Chinese Medicine (Keown, 2014).

OUTLOOK: LMWMs IN CHEMICAL SYSTEMS REGULATED BY
ELECTRICITY
Systems, biological and chemical, represent huge crossword puz-
zles waiting to be resolved and there probably exists only one
possible solution that facilitates understanding, a simple unify-
ing concept. Today, discipline fragmentation contributes a lot to
impeding us finding it (Ling, 2001; Firn, 2010). Such a possible
unifying concept could look like the following one:

The Russian cell physiologist Dimitrii Nasonov described the
fundamental phenomenon of the universal cell response, UCR,
a biphasic response, resting or activated, to external stimuli
(stress). The two states differ in terms of protein structure folding
(Nasonov, 1962; Ling, 2001; Matveev, 2010). The resting state is a
coherent meta-stable low entropy state with water and K+ bound
to proteins and the active state a higher-entropy state because
water and K+ are free (Jaeken and Matveev, 2012). The thought-
ful reader will now argue that the described cytosolic scenarios
contradict the generally favored membrane pump hypothesis
(Figure 6A). This is true. But in an attempt to provide a syn-
thesis for all the focused chemical detail mechanisms in terms
of a chemical system, we have to adopt a view that considers
the phenomenon of cooperativeness as a major component of
this chemical system. In biological terminology, cooperativeness
could be called symbiosis. Consequently, a focus on membrane
potentials is perhaps too reductionist.

The second important phenomenon that is inherent to life
is replicative chemistry because it facilitates the required orga-
nization for the concomitantly running chemical reactions. If
an organism loses that, it’s unorganized decomposition starts
and the chemistry that accompanies the development of diseases
resembles that of organic matter decomposition which exactly
follows the second law of thermodynamics by increasing the
entropy of the involved systems. In his booklet “What is Life,”
Erwin Schrödinger stated that life feeds on negative entropy
(Schrödinger, 1944), or better Gibbs free energy. Coupling energy
input from sunlight and exothermic reactions with endergonic
reactions that are not entropically favored defines metabolism in
living cells.

The requirements for life chemistry have never been sum-
marized more aptly as by the organic chemist Addy Pross:
“a self-sustaining kinetically stable dynamic reaction network
derived from replication reaction” (Pross, 2012). In his tanta-
lizing book, though, Addy Pross does not offer examples for
the chemical reaction network apart from template availability
facilitating nucleotide replication as example for autocatalysis.
In attempts to find an approach to deal with LMWM chemical
complexity, another author merits mentioning, Bruce B. Jarvis.
He regards LMWM as molecular communities that self-assemble
into structures that can support complexity when a series of
interconnected events occur (Jarvis and Miller, 1996). These com-
plexity events “are characterized by participation in complex
interlocked cycles involving feedback mechanisms controlled by
an elaborate chemical signaling system, a unicellular organism—
life.” Unicellular organisms develop into multicellular, the latter
organize themselves in communities, and these yield societies.

At this point we want to look at the signaling system in partic-
ular and question the statement that a chemical reaction system
can be controlled by chemicals. What do chemical reactions
require? Electrons and energy. Both is provided by electricity, fast,
and universal. Microorganisms can directly accept electrons from
electrodes to reduce carbon dioxide, nitrate, metals, organic acids,
protons and oxygen (Lovley, 2011). The bacterium Geobacter
sulfurreducens masters long-range electrons transport along its
pili, so-called microbial nanowires that have the same metal-
like conductivity as synthetic conducting polymers. Pili networks
facilitate biofilm conductivity with supercapacitor and transistor
properties (Lovley, 2012). Similarly, proteins and membranes of
cellular organelles also represent biotransistors (Figure 7A). Both
are biopolymers and are doped with oxygen, nitrogen and sulfur
functions that can act as electron donors or acceptors or facili-
tate metal complexation. In membranes, the lipid bilayer acts as
insulator but the glycerol esters, sphingolipid and ceramide func-
tions, for example, can contribute to semiconductor properties.
LMWMs can form various non-covalent bonds, charge-transfer
or coordination complexes, which contribute to the formation of
gel-like biopolymers. Similarly to proteins, these gel biopolymers
can contain coordination complexes with metals that can act as
catalysts of acid–base or electron transfers. Depending on the oxi-
dation/reduction state of contacting functional groups and the
electrical field of the biopolymer complex, electrons and energy
are either transferred from or to the protein. As a component of
a chemoelectrical signaling system (CSS) biotransistors can act
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FIGURE 7 | A chemoelectrical signaling system (CSS) allows conversion

of chemical into electrical information that again can act as feedback

loop on the chemical reactions. (A) “Short-range CSS”: LMWMs are
organized as metal complexes, non-covalent charge-transfer bonding can also
structure the complexes that contribute to the gel-like state of the cytosol;
these complexes can act as semiconductors together with membranes and
proteins; together they act as a biotransistor in the CS. (B) “Long-range CSS”:

The occurring chemical reactions cause emission of photons in low
concentrations that are still detectable by aromatic structures in remote
LMWMs and proteins as feedback mechanism. Covalent bonds are marked in
full lines, non-covalent bonds in dotted lines; (A) electron acceptors, (D)
electron donors in charge-transfer complexes; electric extension cord symbols
indicate π-electron systems with potential to develop weak localized
electromagnetic fields.

as a local short-distance signaling mechanism. Structured sur-
face water most likely enhances than impedes its functioning. In
colloidal matrix organized LMWMs somehow represent “small
coins” that an organism is in constant need of in order to maintain
its homeodynamics in a changing environment (Kinzel, 1989).

Ultraweak photon emission denotes the low-intensity sponta-
neous or inducible photon emission that accompanies chemical
reactions (electron transfers). It is emitted both by abiotic mat-
ter and living cells and tissues, whole organs and organisms.
Research on it was mainly carried out in Eastern Europe, but it
is known to increase in response to oxidative stress and thought

to originate from 1O2, triplet excited states (e.g., carbonyls), per-
oxynitrite reactions, lipoxygenase activity, haem protein/peroxide
reactions and Fenton chemistry, the transition metal catalyzed
reduction of H2O2 to •OH (Halliwell and Gutteridge, 2007),
as well as in structured water zones close to LMWMs, proteins
and other hydrophilic surfaces (Voeikov, 2001, 2006) (Figure 5).
Vladimir Voeikov suggests that it can be absorbed by aromatic
structures that represent a common element in many LMWMs
and nucleobases. This property can enable ultraweak photon
emission to act as long distance feedback component in the CSS
(Figure 7B).
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This herein proposed concept of a chemoelectrical signal-
ing system (CSS) (Figures 7A,B) could serve as a candidate for
the self-sustaining kinetically stable dynamic reaction network
derived from replication reaction that represents the systems
chemistry of a living organisms (Pross, 2012). It also has the
potential to regulate its replication by affecting known and hith-
erto unknown epigenetic control mechanisms of gene expression
(Shapiro, 2011). Changes in electrical field intensity and fre-
quency in connected biotransistors could characterize the resting
and the active cell state. The CSS can monitor and coordinate the
many physiotypes or better physiolomes that cells, tissues and
organisms can develop. It provides a concept that can be use-
ful in tackling many still idiosyncratic and enigmatic phenomena
in biological sciences. Most of all, it reminds us that we should
not loose ourselves in LMWM structural diversity but focus on
how the LMWMs cooperate within the CSS they are a part of.
Otherwise, we risk not recognizing the forest behind the trees. In
the opinion of the authors there exists sufficient compelling evi-
dence for the existence of a CSS in the literature. Last but not least,
our conclusions have been already voiced by Albert Szent-Györgyi
(Szent-Györgyi, 1960, 1968) and thus are not new. Furthermore,
they are aimed at complementing but not at challenging approved
paradigms.
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and a chemical raison d’ětre for secondary plant metabolites. Dose-Response 9,
79–116. doi: 10.2203/dose-response.09-028.Hadacek

Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is
a fundamental theme of aerobic life. Plant Physiol. 141, 312–322. doi:
10.1104/pp.106.077073

Halliwell, B., and Gutteridge, J. M. C. (2007). Free Radicals in Biology and Medicine.
Oxford: Oxford University Press.

Hardeland, R. (2008). Melatonin, hormone of darkness and more - occurrence,
control mechanisms, actions and bioactive metabolites. Cell. Mol. Life Sci. 65,
2001–2018. doi: 10.1007/s00018-008-8001-x

Hartmann, T. (2007). From waste products to ecochemicals. Fifty years
research of plant secondary metabolism. Phytochemistry 68, 2831–2846. doi:
10.1016/j.phytochem.2007.09.017

Hauser, C. A. E., and Zhang, S. (2010). Peptides as biological semiconductors.
Nature 468, 516–517. doi: 10.1038/468516a

Hedden, P., and Thomas, S. (eds.). (2006). Plant Hormone Signaling. Oxford, UK:
Blackwell.

Heimburg, T. (2012). The capacitance and electromechanical coupling of lipid
membranes close to transitions: the effect of electrostriction. Biophys. J. 103,
918–929. doi: 10.1016/j.bpj.2012.07.010

Hercules, D. M. (1969). Chemiluminescence from electron-transfer reactions. Acc.
Chem. Res. 2, 301–307. doi: 10.1021/ar50022a003

Heyland, A., Hodin, J., and Reitzel, A. M. (2005). Hormone signaling in evolu-
tion and development: a non-model system approach. BioEssays 27, 64–75. doi:
10.1002/bies.20136

Hille, B. (2001). Ion Channels of Excitable Membranes. Sunderland, MS: Sinauer.
Hiramoto, K., Ojima, N., Sako, K., and Kikugawa, K. (1996). Effect of plant

phenolics on the formation of the spin-adduct of hydroxyl radical and the
DNA strand breaking by hydroxyl radical. Biol. Pharm. Bull. 19, 558–563. doi:
10.1248/bpb.19.558

Ishibashi, M., Yamaguchi, N., Sasaki, T., and Kobayashi, J. (1994). Amphidinolide
N, a novel 26-membered macrolide with remarkably potent cytotoxicity from
the cultured marine dinoflagellate Amphidinium sp. J. Chem. Soc. Chem.
Commun. 12, 1455–1456. doi: 10.1039/c39940001455

Ishimaru, Y., Hamamoto, S., Uozumi, N., and Ueda, M. (2012). “Regulatory mech-
anism of plant nyctinastic movement: an ion channel-related plant behavior,”
in Plant Electrophysiology: Signaling and Responses, ed A. G. Volkov (Berlin:
Springer), 125–142.

Jaeken, L., and Matveev, V. V. (2012). Coherent behavior and the bound
state of water and K+ imply another model of bioenergetics: negative
entropy instead of high-energy bonds. Open Biochem. J. 6, 139–159. doi:
10.2174/1874091X01206010139

Jaffe, L. F. (1977). Electrophoresis along cell membranes. Nature 265, 600–602. doi:
10.1038/265600a0

Jansen, B. J., and de Groot, A. (2004). Occurrence, biological activity and
synthesis of drimane sesquiterpenoids. Nat. Prod. Rep. 21, 449–477. doi:
10.1039/b311170a

Jarvis, B. B., and Miller, J. D. (1996). “Natural products, complexity and evolu-
tion,” in Phytochemical Diversity and Redundancy in Ecological Interactions, eds
J. T. Romeo, J. A. Saunders, and P. Barbosa (New York, NY: Plenum Press),
265–294.

Jerzmanowski, A., and Archacki, R. (2013). “Hormonal signaling in plants and ani-
mals: an epigenetic viewpoint,” in Epigenetic Memory and Control in Plants, eds
G. Grafi and N. Ohad (Berlin, New York: Springer), 107–125.

Jung, I. L., and Kim, I. G. (2003). Thiamine protects against paraquat-induced
damage: scavenging activity of reactive oxygen species. Environ. Toxicol.
Pharmacol. 15, 19–26. doi: 10.1016/j.etap.2003.08.001

www.frontiersin.org March 2015 | Volume 3 | Article 12 | 200

http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Toxicology/archive


Hadacek and Bachmann Low-molecular-weight metabolite systems chemistry

Kappus, H., and Sies, H. (1981). Toxic drug effects associated with oxygen
metabolism: redox cycling and lipid peroxidation. Experientia 37, 1233–1241.
doi: 10.1007/BF01948335

Keown, D. (2014). The Spark in the Machine. How the Science of Acupuncture
Explains the Mysteries of Western Medicine. London; Philadelphia: Singing
Dragon.

Kim, J., Yun, S., Mahadeva, S. K., Yun, K., Yang, S. Y., and Maniruzzaman, M.
(2010). Paper actuators made with cellulose and hybrid materials. Sensors 10,
1473–1485. doi: 10.3390/s100301473

Kindermann, M., Stahl, I., Reimold, M., Pankau, W. M., and von Kiedrowski,
G. (2005). Systems chemistry. Kinetic and computational analysis of a nearly
exponential organic replicator. Angew. Chem. Int. Ed. 44, 6750–6755. doi:
10.1002/anie.200501527

Kinzel, H. (1989). Stoffwechsel der Zelle. Die zentralen Vorgänge des Stoffwechsels mit
ihren physikalisch-chemischen Grundlagen. Stuttgart: Ulmer.

Kovacic, P., and Somanathan, R. (2009). Novel, unifying mechanism for mesca-
line in the central nervous system. Electrochemistry, catechol redox metabolite,
receptor, cell signaling and structure activity relationships. Oxid. Med. Cell.
Longev. 2, 181–190. doi: 10.4161/oxim.2.4.9380

Langenheim, J. H. (2003). Plant Resins. Chemistry, Evolution, Ecology, and
Ethnobotany. Portland, OR: Timber Press.

Leppard, G. G. (1995). The characterization of algal and microbial mucilages and
their aggregates in aquatic ecosystems. Sci. Total Environ. 165, 103–131. doi:
10.1016/0048-9697(95)04546-D

Levin, M., Thorlin, T., Robinson, K. R., Nogi, T., and Mercola, M. (2002).
Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a
very early step in left-right patterning. Cell 111, 77–89. doi: 10.1016/S0092-
8674(02)00939-X

Ling, G. N. (2001). Life at the Cell and Below-Cell Level. The Hidden History of a
Fundamental Revolution in Biology. Melville, NY: Pacific Press.

López-Lara, I. M., and Geiger, O. (2010). “Formation of fatty acids,” in Handbook
of Hydrocarbon and Lipid Microbiology, ed K. N. Timmis (Berlin: Springer),
385–395.

Lovley, D. R. (2011). Powering microbes with electricity: direct electron trans-
fer from electrodes to microbes. Environ. Microbiol. Rep. 3, 27–35. doi:
10.1111/j.1758-2229.2010.00211.x

Lovley, D. R. (2012). Electromicrobiology. Annu. Rev. Microbiol. 66, 391–409. doi:
10.1146/annurev-micro-092611-150104

Macielag, M. J. (2011). “Chemical properties of antimicrobials and their unique-
ness,” in Antibiotic Discovery and Development, eds T. J. Dougherty and M. J.
Pucci (New York, NY: Springer), 793–820.

Maischak, H., Zimmermann, M. R., Felle, H. H., Boland, W., and Mithöfer, A.
(2010). Alamethicin-induced electrical long distance signaling in plants. Plant
Signal. Behav. 5, 988–990. doi: 10.4161/psb.5.8.12223

Marrè, E. (1979). Fusicoccin: a tool in plant physiology. Annu. Rev. Plant. Physiol.
30, 273–288. doi: 10.1146/annurev.pp.30.060179.001421

Marschner, P. (ed). (2012). Marschner’s Mineral Nutrition of Higher Plants.
Amsterdam: Elsevier.

Martin, R. (1972). Piezoelectricity. Phys. Rev. B 5, 1607–1613. doi:
10.1103/PhysRevB.5.1607

Matveev, V. V. (2010). Native aggregation as a cause of origin of temporary cellular
structures needed for all forms of cellular activity, signaling and transforma-
tions. Theor. Biol. Med. Model. 7:19. doi: 10.1186/1742-4682-7-19

McCaig, C. D., Rajnicek, A. M., Song, B., and Zhao, M. (2005). Controlling
cell behavior electrically: current views and future potential. Physiol. Rev. 85,
943–978. doi: 10.1152/physrev.00020.2004

McKinlay, A. C., Morris, R. E., Horcajada, P., Férey, G., Gref, R., Couvreur, P.,
et al. (2010). BioMOFs: metal-organic frameworks for biological and medi-
cal applications. Angew. Chem. Int. Ed. 49, 6260–6266. doi: 10.1002/anie.2010
00048

Mendelsohn, R., and Balick, M. J. (1995). The value of undiscovered pharmaceuti-
cals in tropical forests. Econ. Bot. 49, 223–228. doi: 10.1007/BF02862929

Michal, G. (ed.). (1999). Biochemical Pathways. New York, NY: Wiley.
Mindnich, R., Möller, G., and Adamski, J. (2004). The role of 17 beta-

hydroxysteroid dehydrogenases. Mol. Cell. Endocrinol. 218, 7–20. doi:
10.1016/j.mce.2003.12.006

Modriansky, M., Tyurina, Y. Y., Tyurin, V. A., Matsura, T., Shvedova, A. A.,
Yalowich, J. C., et al. (2002). Anti-/pro-oxidant effects of phenolic compounds

in cells: are colchicine metabolites chain-breaking antioxidants? Toxicology 177,
105–117. doi: 10.1016/S0300-483X(02)00199-3

Møller, I. M., Jensen, P. E., and Hansson, A. (2007). Oxidative modifications
to cellular components in plants. Annu. Rev. Plant Biol. 58, 459–481. doi:
10.1146/annurev.arplant.58.032806.103946

Nakagawa, T., Sakurai, T., Nishioka, T., and Touhara, K. (2005). Insect sex-
pheromone signals mediated by specific combinations of olfactory receptors.
Science 307, 1638–1642. doi: 10.1126/science.1106267

Nakamura, H., Kobayashi, J., Ohizumi, Y., and Hirata, Y. (1982). Isolation and
structure of aaptamine a novel heteroaromatic substance possessing α-blocking
activity from the sea sponge Aaptos aaptos. Tetrahedr. Lett. 23, 5555–5558. doi:
10.1016/S0040-4039(00)85893-1

Nasonov, D. N. (1962). Local Reaction of Protoplasm and Gradual Excitation.
(Mestnaya Reaktsiya Protoplazmy I Rasprostranyayushcheesya Vozbuzhdenie).
Jerusalem: Published for the National Science Foundation, Washington, by the
Israel Program for Scientific Translations; (available from the Office of Technical
Services, U.S. Dept. of Commerce, Washington).

Niklas, K. J., and Spatz, H.-C. (2012). Plant Physics. Chicago, IL: The University of
Chicago Press.

Noble, D. (2006). The Music of Life: Biology Beyond Genes. Oxford, UK: Oxford
University Press.

Noor, E., Eden, E., Milo, R., and Alon, U. (2010). Central carbon metabolism as
a minimal biochemical walk between precursors for biomass and energy. Mol.
Cell 39, 809–820. doi: 10.1016/j.molcel.2010.08.031

Ochiai, E.-I. (2008). Bioorganic Chemistry. A Survey. Amsterdam: Elsevier.
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While it is widely accepted that reactive oxygen species (ROS) are common players in
developmental processes and a large number of adaptations to abiotic and biotic stresses
in plants, we still do not know a lot about ROS level control at cellular or organelle level.
One major problem that makes ROS hard to quantify and even to identify is their short
lifetime. A promising technique that helps to understand ROS level control in planta is
the electron paramagnetic resonance (EPR) spectroscopy. Application of the spin trapping
method and the spin probe technique by this advanced method enables the quantification
and identification of specific ROS in different plant tissues, cells or organelles or under
different conditions. This mini review summarizes the knowledge using EPR spectroscopy
as a method for ROS detection in plants under different stress conditions or during
development. This technique allows disentangling the origin of specific ROS and transient
alteration in ROS levels that occur by changes in ROS production and scavenging.

Keywords: electron paramagnetic resonance (EPR) spectroscopy, reactive oxygen species (ROS), ROS detection,

spin probe, spin trap

INTRODUCTION
Reactive oxygen species (ROS) are derivatives of molecular oxy-
gen. The term “ROS” combines non-radical forms of oxygen such
as hydrogen peroxide (H2O2), singlet oxygen (1O2) or ozone
(O3), and oxygen-centred radicals such as superoxide anion rad-
icals (O −

2 ) and hydroxyl radicals ( OH). All these kinds of ROS
are generated in plants during development or different stresses.
The primary ROS is often O −

2 that is produced either by plasma
membrane-located NADPH oxidase or in electron transfer chains
of mitochondria (Torres et al., 1998; Blokhina and Fagerstedt,
2010; Shapiguzov et al., 2012). ROS such as H2O2 are converted
in enzymatic or non-enzymatic steps. All ROS are highly active
in terms of oxidative modification of lipids, proteins, DNA and
RNA. Also, ROS are indispensable in cellular signaling processes.

ROS are involved in the regulation of many internal plant pro-
cesses such as growth (e.g., Schopfer et al., 2002) and death of
specific cells (e.g., Steffens and Sauter, 2009; Steffens et al., 2011,
2012), to name only two. It is therefore indispensable to find out
about ROS levels as well as specific ROS in organs, tissues or even
cells, and organelles. ROS are however highly reactive and exhibit
very short lifetimes that vary from nanoseconds to seconds. OH,
for example, reacts with most organic compounds by electron
addition or electron transfer (Renew et al., 2005) and has a life-
time of about 10 ns. O −

2 exhibits a low steady state concentration
of around 10−10 M in different cell or organelle types (Gardner,
2002). The half-life of O −

2 depends on its concentration. At a
concentration of 10 μM O −

2 exhibits a half-life time of 0.2 ms
in water, whereas at a lower concentration of 1 μM half-life rises
to 20 ms. 1O2 exhibits a lifetime of 2.7 μs (Karonen et al., 2014).
Effort has been made to develop in planta ROS detection methods
that are suitable to identify specific ROS and to quantify them in

order to understand ROS signaling and ROS level control. These
spectrophotometrical techniques, histochemical or live cell imag-
ing approaches have unfortunately tremendous disadvantages;
chlorophyll has to be removed from the tissue for histochemi-
cal ROS detection. Quantification of ROS is neither possible with
histochemical methods nor with the use of small-molecule fluo-
rescent probes (for review see Steffens et al., 2013). Fluorescent
probes, however, benefit from their ability to detect ROS in living
cells by confocal laser scanning microscopy.

Electron paramagnetic resonance (EPR; also termed electron
spin resonance, ESR) spectroscopy is a widely used method for
detecting the presence of unpaired electrons, such as ROS. Using
the X-band, EPR is the most specific and even sensitive technique
to identify, quantify and visualize the short-lived ROS (Bačić et al.,
2008). Nevertheless, it is very challenging to monitor ROS suc-
cessfully in biological systems due to their very low concentration,
the enzymatic defense systems and the different compartments of
the living cell. A way to make short-lived ROS detectable by EPR
is the application of spin traps or spin probes. In this mini review
we will focus on these two methods of ROS detection by EPR in
planta.

ROS DETECTION IN PLANTA BY THE SPIN TRAPPING
METHOD
Spin traps are stable, diamagnetic compounds that form longer-
lived radical species with transient, very reactive radicals with low
half-lives of only 10−9 to 10−1 s. The paramagnetic spin adducts
are stable for minutes or even hours, accumulate in the tissue and
reach a sufficient concentration for detection by EPR (Mojovié
et al., 2005). The prerequisites for suitable spin traps are defined
by their ability either to exclusively trap one radical species or to
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lead to different specific signature EPR spectra. The sensitivity of
the trapping technique depends on the local spin trap concen-
tration, the concentration of the transient radical, the reaction
kinetic to form adducts and the stability of these adducts (Bačić
et al., 2008). Properties of the spin traps, such as lipophilicity are
also crucial for an effective detection of radicals. The trapping
technique benefits from the fingerprint spectra of the adducts,
allowing identification of the trapped radical species and even
quantification by double integration of the whole spectra or the
low-field signal by using a calibration curve.

Various radical specific spin traps such as Tiron and 4-POBN
are available. Tiron was applied for specific O −

2 detection in
microsomal membranes of Dianthus caryophyllus or roots of
Triticum spp. (Mayak et al., 1983; Vylegzhanina et al., 2001; Taiwo,
2008; Table 1). 4-POBN solved in ethanol exclusively detects OH
(Renew et al., 2005; Table 1) by forming a 4-POBN/hydroxyethyl
radical adduct generated from oxidation of ethanol by OH. This
spin adduct is stable for hours. Renew et al. (2005) used 4-POBN
to perform a region-specific OH profiling in roots of Cucumis
sativus by detecting individual spin adduct spectra in distinct
regions of the root. With this EPR spectroscopy analysis, the
growth zone of the root was identified as site of OH production
(Renew et al., 2005). A couple of studies were done specifically
detecting OH with 4-POBN in surrounding medium of growing
Zea mays coleoptiles (Schopfer et al., 2002; Liszkay et al., 2003) or
in roots of Zea mays and Arabidopsis thaliana (Liszkay et al., 2004;
Renew et al., 2005; Table 1). In addition, 4-POBN was applicable
to analyze OH in single cells of Oryza sativa suspension cultures
(Kuchitsu et al., 1995) or even in membranes of Spinacia oler-
acea and Pisum sativum thylakoids (Borisova et al., 2012). Both
spin traps however do not seem to be the best choice in biolog-
ical systems. The 4-POBN/OH adduct may be converted into a
4-POBN/4-POBN spin adduct during the reaction of peroxidases,
whereas Tiron is acidic which decreases intra- and extracellu-
lar pH value and may alter O −

2 production (Bačić and Mojovic̀,
2005).

One of the first descriptions of O −
2 detection with the spin trap

technique using EPR spectroscopy in planta was given by Habour
and Bolton (1975). Harbour and Bolton detected O −

2 produc-
tion in chloroplasts of Spinacia oleracea with an O −

2 adduct of
DMPO; this spin trap was also used to detect O −

2 in thylakoid
membranes about 20 years later ((Hideg et al., 1994); Table 1).
Since then improvement of spin traps with longer lifetime, less
degradation of the spin adducts and a faster reaction kinetic, such
as the DMPO analogs DEPMPO, EMPO and BMPO, led to a suc-
cessful trapping of both, O −

2 and OH (Figure 1A). DEPMPO
is the phosphorylated analog of DMPO. DEPMPO adducts are
stable for 22.3 min and exhibit a lifetime 10 times longer than
DMPO adducts. EPR spectroscopy was used to analyze oxygen-
centered radicals of OH with DEPMPO in apoplastic fluid of Zea
mays roots (Dragišic̀ Maksimovic̀ et al., 2014). During growth,
cell wall loosening is facilitated by OH. DEPMPO was effec-
tively used to detect ROS in root cells of Pisum sativum with EPR
and to differentiate between O −

2 and OH (Veljovic̀-Jovanovic̀
et al., 2005; Kukavica et al., 2009). Unfortunately, there are
four DEPMPO/OOH species, and DEPMPO/OH shows diastere-
omers (Dikalov et al., 2005), making the identification of radical

species more complicated. Both DMPO and DEPMPO lead to
the conversion of the O −

2 -adduct into the OH-adduct which
underestimates the O −

2 detection (Figure 1A). Transformation of
DEPMPO occurs at a slower rate. To avoid the problem of trans-
formation, the carboxylated DMPO analog EMPO and an analog
with a large butoxycarbonyl group, BMPO, were developed (Bačić
et al., 2008). Both radical specific spin traps are able to exclusively
detect O −

2 (Figure 1A). The EMPO/OOH adduct is eight times
more stable than the DMPO/OOH adduct. BMPO/OOH adducts
are slightly more stable than the EMPO/OOH adducts because
of the large butoxycarbonyl group. Other analogs of the DMPO
group, such as DPPMPO, DBPMPO, and DEHPMPO, possess a
higher lipophilicity and allow measurements in lipophilic media
(Bačić et al., 2008).

Spin traps specific for 1O2 are TEMP and TMPD. TEMP
was used to specifically detect 1O2 in thylakoid membranes of
Spinacia oleracea (Fischer et al., 2006), and the more hydrophilic
spin trap TMPD was used for 1O2 detection in thylakoid and
plasma membranes of Spinacia oleracea, Chlamydomonas rein-
hardtii, or Triticum spp., respectively (Qiu et al., 1995; Fischer
et al., 2007; Yadev et al., 2010). 1O2 is one important reactive
species generated under high light conditions in chloroplasts. It
is scavenged by tocopherol and plastochromanol in Arabidopsis
thaliana, as was shown by using a tocopherol cyclase-deficient
vte1 mutant (Rastogi et al., 2014). The spin trap TMPD was
used to analyze the production of 1O2 in Arabidopsis thaliana
under high light conditions at 1000 μmol photons m−2 s−1 with
EPR spectroscopy. In vte1 mutant plants 1O2 production was
enhanced under high light, as was shown by using EPR spec-
troscopy (Rastogi et al., 2014). Combining mutant analysis and
ROS detection by EPR spectroscopy will help to understand ROS
effects and ROS signaling in planta.

Although spin traps benefit from their ROS specificity, with
some of them detecting exclusively one ROS intermediate, high
spin trap concentrations between 10 and 100 mM have to be used
to reach an adequate sensitivity (Dikalov et al., 2011). Potential
toxic effects, for example inhibition of photosynthesis, might
occur at concentrations of more than 25 mM. Spin traps are often
solved in ethanol; hence they are unsuited for the use in planta or
other biological systems. Adducts may be transformed into other
products (Figure 1A) or they may be reduced by plant metabolites
into molecules without EPR activity.

SPIN PROBE TECHNIQUE—A BETTER CHOICE FOR ROS
DETECTION IN PLANTA?
To circumvent the drawbacks of spin trapping technique the use
of spin probes for ROS detection by EPR spectroscopy is favored.
There are two possibilities of the use of spin probes. Commonly
used spin probes are, on the one hand, endogenous nitroxides that
are reduced by ROS to EPR-silent hydroxylamines. On the other
hand, endogenous cyclic hydroxylamines (CHAs) are oxidized by
ROS to EPR-active nitroxides (Figure 1B). Nitroxide radicals are
stable products of CHAs that are much more stable than other
known spin adducts. The three types of rings commonly used for
nitroxide spin-probes are piperidine, pyrrolidine (e.g., DCP-H;
Table 1) and doxyl (doxyl stearates). Nitroxides offer different
properties and are more or less stable and reactive. In addition,
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Table 1 | EPR technique used for detection of •OH, O•−
2

, and 1O2 in planta.

ROS Spin probe/spin trap Characteristics of spin

probe/spin trap

Species Organ/organelle/

membrane

References

•OH 4-POBN

α-(4-pyridyl-1-oxide)-N-
tert-butylnitrone
Spin trap
Nitrone

Soluble in ethanol (170 mM up to
850 mM)

Oryza sativa Suspension cells Kuchitsu et al., 1995

Zea mays Coleoptile Schopfer et al., 2002;
Liszkay et al., 2003

50 mM 4-POBN is requird for •OH
detection

Zea mays Root Liszkay et al., 2004

High rate of transformation by
peroxidases

Arabidopsis thaliana,
Cucumis sativus

Roots Renew et al., 2005

Spinacia oleracea,
Pisum sativum

Thylakoid membrane Borisova et al., 2012

O•−
2 PTM-TC

Perchlorotriphenylmethyl
radical-tricarboxylic acid
spin probe

Water soluble
Rate constant: 8.3 × 108 M−1s−1

Arabidopsis thaliana Whole plant, root Warwar et al., 2011

DEPMPO

5-(diethoxyphosphoryl)-5-
methyl-1-pyrroline
N-oxide
Spin trap
Nitrone phosphorylated

DEPMPO adducts exhibit a
lifetime 10 times longer than
DMPO adducts
Lower rate of transformation than
DMPO

Pisum sativum Root/ cell wall Veljovic̀-Jovanovic̀ et al.,
2005

Pisum sativum Root/ cell wall Kukavica et al., 2009

Pisum sativum Plasma membrane Mojovic̀ et al., 2004

Zea mays Root/ apoplastic fluid Dragišic̀ Maksimovic̀
et al., 2014

Purification prior to use Pisum sativum Thylakoid membrane Kozuleva et al., 2011

TMT-H

1-hydroxy-4-
isobutyramido-2,2,6,6-
tetramethyl-piperidinium
CHA

Lipophilic
EPR-silent
1 mM are sufficient for O•−

2
detection is reduced equimolarly
Rate constant: 4.9 × 103 M−1s−1

Spinacia oleracea,
Pisum sativum

Thylakoid membrane Borisova et al., 2012

Oryza sativa Internode Steffens et al., 2013

Pisum sativum Thylakoid membrane Kozuleva et al., 2011

DCP-H

1-hydroxy-2,2,5,5-
tetramethylpyrrolidine-
3,4-dicarboxylic acid
CHA

Hydrophilic
EPR-silent
1 mM are sufficient for O•−

2
detection is reduced equimolarly
Rate constant: 3.2 x 103 M−1s−1

Dianthus
caryophyllus

Microsomal membrane Mayak et al., 1983

Tiron

1,2-dihydroxy-3,5-
benzene-disulfonic acid
Spin trap

May alter O•−
2 production Triticum spp. Root Vylegzhanina et al., 2001

Spinacia oleracea Chloroplasts, thylakoid
membrane

Habour and Bolton, 1975;
Hideg et al., 1994

O•−
2 /•OH DMPO

5,5-dimethyl-1-pyrroline
1-oxide
Spin trap
Nitrone

High rate of transformation
Purification prior to use
Rate constant: 35–75
M−1s−1/∼103 M−1s−1

Spinacia oleracea Thylakoid membrane Fischer et al., 2006

Zea mays Plasma membrane Mojovic̀ et al., 2004

1O2 TEMP

2,2,6,6-tetramethyl-
piperidine
Spin trap

Specific 1O2 detection soluble in
methanol

Chlamydomonas
reinhardtii

Thylakoid membrane Fischer et al., 2007

(Continued)
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Table 1 | Continued

ROS Spin probe/spin trap Characteristics of spin

probe/spin trap

Species Organ/organelle/

membrane

References

TEMPD/TMPD

2,2,6,6-tetramethyl-4-
piperidone
Spin trap

Hydrophilic Spinacia oleracea Thylakoid membrane Yadev et al., 2010

Arabidopsis thaliana
(wild type, vte1)

Chloroplasts Rastogi et al., 2014

Triticum spp. Plasma membrane Qiu et al., 1995

Commonly used spin traps or probes proper to detect ROS in different species, organs, organelles or membrane fractions. If available, rate constants of spin traps

or probes toward specific ROS. Characteristics of each spin probe/spin trap summarized. This table gives a broad overview of EPR measurements in planta.

FIGURE 1 | Principles of spin trapping and spin probe method. (A) Spin
trap DMPO and its analogs DEPMPO, EMPO, and BMPO are differentially
used for detection of specific ROS via EPR in planta. Detailed description in
text. (B) Interconversion of nitroxyl radical allows two principles of the spin
probe technique using endogenous nitroxides or cyclic hydroxylamines for
EPR analysis. Detailed description in text.

nitroxides are hydrophilic or lipophilic, charged or neutral and
hence applicable to various EPR spin-probing experiments in
redox research (Kocherginsky and Swartz, 1995).

Endogenous nitroxides may be reduced by several enzymatic
processes such as ascorbate or glutathione relating to the antiox-
idative status of the organism and therefore to its oxidative status
(Valgimigli et al., 2001). A recent study demonstrates that the
nitroxide TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl) and its
derivates react with oxygen-centered radicals under acidic con-
ditions as well (Amorati et al., 2010), being a most effective
antioxidant. Spin probes can be reduced by OH and O −

2 without
processes analogous to OOH/OH adduct transformation. They
exhibit an intense EPR signal allowing quantitative analysis due
to the high signal-to-noise ratio. Localization of free radical gen-
eration is possible, since spin probes located in or excluded from
the membranes are available.

The spin probe technique does however not provide any infor-
mation to identify specific radical species. Apart from the redox
status and ROS detection spin probes offer, via their EPR spectra,

information on their mobility and different characteristics of
their environment such as viscosity, pH, pO2, and tempera-
ture (Kocherginsky and Swartz, 1995). Bačić and Mojovic̀ (2005)
therefore recommended combining the spin-probe and spin-trap
technique to study free radical species produced in biological
systems effectively.

CHAs, such as TMT-H and DCP-H, become paramagnetic
after oxidation, are EPR-silent and are reduced equimolarly by
several ROS into EPR-active nitroxides. The very fast reaction
between ROS and hydroxylamine is a major advantage compared
with spin traps. For example, the rate constant of the spin trap
DMPO to form the O −

2 -adduct DMPO/OOH is 35–75 M−1 s−1

(Dikalov et al., 2002), whereas the rate constant of the CHA
TEMPO-H to form the O −

2 -adduct is 103–104 M−1s−1 (Dikalov
et al., 2011). The efficiency of CHAs to detect O −

2 is therefore
very high; hence very low concentrations of CHAs are necessary
to detect O −

2 , and side effects can be minimized. For example,
1 mM CHAs are sufficient for O −

2 detection whereas concentra-
tions of 10–50 mM of spin traps are needed. One disadvantage is
the presence of Cu2+ and Fe3+ in biological systems leading to
autoxidation of CHAs. This problem is decreased by the use of
metal chelators (Dikalov et al., 1999). Since the reaction of CHAs
toward ROS is unspecific, control experiments with supplements
of ROS-scavenging enzymes, such as superoxide dismutase or
catalase, or other non-enzymatic scavengers have to be performed
for the identification of specific ROS (Dikalov et al., 2011).

The lipophilic spin probe TMT-H was applied to analyze
whether ethylene influences ROS levels in internodes of Oryza
sativa (Steffens et al., 2013). Using the spin-trapping method
showed that ethylene enhances ROS levels in the rice intern-
ode. ROS were identified as signals that induce parenchymal
cell death resulting in aerenchyma formation in specific regions
of the rice internodes (Steffens et al., 2011). The paramagnetic,
water-soluble spin probe PTM-TC was used to detect O −

2 via
a one-dimensional (1D) imaging method in whole Arabidopsis
thaliana plants or roots after injury of the apex (Warwar et al.,
2011). Negatively charged PTM-TC does not penetrate mem-
branes, is very specific for O −

2 detection and grants a distinct
single-line EPR spectrum. After reaction of paramagnetic spin
probes with ROS the signal is lost, and the loss of signal indi-
cates the presence of ROS. The spin probe method can be used
for in planta O −

2 detection with an adequate temporal and spa-
tial resolution. The authors conclude that the wound signal in the
Arabidopsis root is transmitted at a rate of around 1–3 cm/min.
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By these high resolution scans, the authors show that the root tip
at around 0.7 mm possesses more ROS than the part at around
2.2 mm. In addition, during injury ROS levels change within the
whole plant. Leaf injury, for example, results in O −

2 production
in roots. This was also shown by the use of the stable spin probe
that possesses a relatively sharp and strong signal of around 1 G
(Warwar et al., 2011).

DISENTANGLING OF SPECIFIC ROS LEVELS AND ROS
SIGNALING VIA EPR SPECTROSCOPY IN PLANTS
Despite the abovementioned issues, EPR spectroscopy is an excel-
lent method for analyzing levels of ROS and for identifying
specific ROS. In complex biological systems such as plant cells,
compartmentation impedes the possibility of ROS detection and
quantification. Fortunately, spin probes of different polarities and
charges resulting in different cell permeability are available. These
properties allow site-specific ROS detection with a higher sen-
sitivity than nitrone spin traps. This is mainly due to the high
reactivity of radicals. The reaction site of radicals and radical
spin probes is very close to their generation or solubilisation
site (Heins et al., 2007). The compartments in plant cells, in
particularly the membranes, are comparable to simple model
systems where the compartments act as barriers for stable radi-
cals. It is therefore crucial for an efficient detection to define the
solubilisation site of the spin probe close to the site of radical
generation.

Detection of different ROS in membrane fractions, such as
thylakoids (e.g., Hideg et al., 1994; Table 1) and plasma mem-
branes (Qiu et al., 1995; Mojovic̀ et al., 2004; for details: Table 1)
have been performed over the years using spin traps. A more
sophisticated approach was used to analyze production of ROS in
the photosynthetic electron transport chain in chloroplasts under
high light with CHAs with different lipophilicities (Kozuleva
et al., 2011; Borisova et al., 2012). Even in membrane systems,
such as thylakoids, ROS production within or without the thy-
lakoid membranes could be distinguished. As the spin probe
TMT-H exhibits a high lipophilicity, O −

2 measurements within
thylakoid membranes are possible (Kozuleva et al., 2011; Borisova
et al., 2012), while the hydrophilic spin probe DCP-H allows mea-
surement of O −

2 outside the membranes (Kozuleva et al., 2011).
At pH 7, DCP-H is negatively charged and hence excluded from
membranes. These CHAs are excellent tools for ROS detection
with high spatial resolution.

To visualize the distribution of free radicals in tissues or cell
compartments with a high spectral resolution, 1D- to 3D-X-
band EPR imaging (EPRI) experiments are an excellent choice.
The application of spin traps for EPRI experiments in planta is
limited due to solvent compatibility with living tissue, high con-
centrations of spin traps needed and a multiple signal spectrum
(Warwar et al., 2011). The use of stable exogenous spin probes
that possess a relatively sharp and strong signal of around 1 G
enable the acquisition of EPRI images (Yan et al., 2008). In par-
ticular, the application of 15N spin probes with a lower linewidth
and a lower detection limit enhances spatial resolution (Yan et al.,
2008). There are few successful 2D- or 3D-spectral-spatial EPRI
applications found for herbal foodstuff such as seeds of Sesamum
indicum (Nakagawa and Hara, 2015), Piper nigrum (Nakagawa

and Epel, 2014) and Helianthus annus (Levêque et al., 2008)
and coffee beans (Levêque et al., 2008); however, there are not
many examples for in planta ROS imaging. Possibly, the different
strategies that will be followed to reduce biological responsibil-
ity of spin probes in living tissues focusing on narrow EPR lines,
tissue-targeting specificity and high stability (Yan et al., 2008)
will improve the possibilities for EPRI application in planta. The
visualization of spatiotemporal intracellular ROS dynamics by
time-laps imaging in intact plants, organs, organelles, or even dif-
ferent membrane systems by EPRI would provide new insights
into the ROS production, their scavenging and possibly into the
ROS signaling during plant development and different stresses
occurring in a plants’ life.
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