About this Research Topic
Yet, in the real world, almost every network is dynamic, its connectivity topology does change over time, following a rule whether stochastic or deterministic. Therefore, any static understanding would not be able to capture nor represent the truly dynamic nature of network connectivity patterns and its temporal evolution. Recent evidence suggests that brain networks are not static, but neuronal connectivity is instead a dynamic phenomenon, both during task related activity and during resting state, which is not surprising if we take into account the omnipresent dynamical variations across brain's structural and functional levels, Further, the temporal evolution of the network structure might reveal new details about the pathological brain.
Therefore, we believe it is time to inject 'time' into the immensely influential research field of complex brain network. Submissions are therefore sought that explore the dynamical aspects of functional and effective brain connectivity at different time scales (from sub-seconds in MEG/EEG or LFP to seconds, minutes or beyond with these same techniques in fMRI) by applying the paradigm of temporal and adaptive networks, and the role of this dynamics in normal and pathological brain function. Likewise, contributions proposing new methods for the analysis of such networks with a clear applicability to multivariate neuroimage data are also welcome. It is fervently hoped that the contributions will help an enhanced understanding of the interaction between the temporal evolution of the network structure and the overall network dynamics, but also facilitate designing more optimized intervention paradigms including brain stimulation.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.