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Theory of mind (ToM) is the ability to attribute mental states to oneself and others, and to

understand that others have beliefs that are different from one’s own. Although functional

neuroimaging techniques have been widely used to establish the neural correlates

implicated in ToM, the specific mechanisms are still not clear. We make our efforts

to integrate and adopt existing biological findings of ToM, bridging the gap through

computational modeling, to build a brain-inspired computational model for ToM. We

propose a Brain-inspired Model of Theory of Mind (Brain-ToM model), and the model

is applied to a humanoid robot to challenge the false belief tasks, two classical tasks

designed to understand the mechanisms of ToM from Cognitive Psychology. With this

model, the robot can learn to understand object permanence and visual access from

self-experience, then uses these learned experience to reason about other’s belief. We

computationally validated that the self-experience, maturation of correlate brain areas

(e.g., calculation capability) and their connections (e.g., inhibitory control) are essential

for ToM, and they have shown their influences on the performance of the participant

robot in false-belief task. The theoretic modeling and experimental validations indicate

that the model is biologically plausible, and computationally feasible as a foundation for

robot theory of mind.

Keywords: theory of mind, false-belief task, brain inspired model, self-experience, connection maturation,

inhibitory control

1. INTRODUCTION

Theory of Mind (ToM) is the ability to infer and understand other people’s mental states to
predict their behavior (Premack and Woodruff, 1978). It is a fundamental cognitive ability for the
social brain. One of the most critical milestones in the ToM development is gaining the ability
to attribute false belief: that is, to recognize that others can have beliefs about the world that are
diverging (Wimmer and Perner, 1983). There is a wide variety of false-belief task (Huang and
Liu, 2017; Scott and Baillargeon, 2017), but most of them can be divided into unexpected transfer
task (Wimmer and Perner, 1983), unexpected contents task (Perner et al., 1987), and appearance-
reality distinction (Flavell et al., 1983). Flavell et al. (1983) present a classical unexpected transfer
task, Sally-Anne Test: Sally first placed a marble into her basket; then, she left the scene, and
the marble was transferred by Anne and hidden in her box. Then Sally returned, and children
were asked a belief question “Where will Sally look for her marble?” If the children pointed
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to the previous location of the marble, it meant that the children
could understand that Sally held a false belief about the marble’s
location. Most 4-year-olds could point to the correct location,
but most 3-year-olds failed—they predict that Sally will find her
marble in the box.

As indicated in Asakura and Inui (2016), although ToM
research has made progress on empirical findings and theoretical
advances, relatively few efforts have been made from the
biological plausible computational models’ perspective, especially
for false belief understanding. Based on findings of neural
correlates and mechanisms of the false-belief task, we propose
and build a Brain-inspired model of Theory of Mind (Brain-ToM
model). And we challenge the false-belief task by incorporating
the proposed model to humanoid robots. In this paper, we
only focus on non-verbal unexpected transfer tasks as described
below, including how to learn to understand object permanence
and visual access from self-experience and use them to infer
other’s belief and predict their behavior. The object permanence
is the ability to understand that objects continue existence even it
cannot be perceived (Piaget and Cook, 1952).

From our point of view, self-experience in autobiographical
memory and its utilization to infer other’s belief or predict
other’s action is fundamental and crucial to the ToM. It is also
mentioned as self-projection in Buckner and Carroll (2007) or
using memories to understand others (Moreau et al., 2013).
It enables real understanding of the self and others as well as
their relationships, and utilize them to infer others’ mental states
based on personal experience from the self point of view. This
perspective seems somewhat missing in existing research about
the computational model.

In our opinion, an agent who can infer other’s belief and
predict their behavior should have the capability of self-other
distinction as the premise. So in Zeng et al. (2016, 2017),
we proposed a brain-inspired robot bodily self-model with the
neural mechanisms of bodily self-perception based on extensions
to primate mirror neuron system, and apply it to the humanoid
robot for self-recognition. In this paper, based on the related
findings for neural correlates and mechanisms of the ToM, we
propose a Brain-ToM model to make the humanoid robot learn
from self-experience. With the Brain-ToM model, the robot
can pass the non-verbal unexpected transfer tasks adapted from
Senju et al. (2011) and Southgate et al. (2007). The efforts may
also provide a possible computational model and hints on how
infant infers and understands other people’s beliefs. Compared
to the previous model, the characteristics of our model are
with relatively more solid details from the biological brain.
It explores the effect of self-experience as a core and is with
considerations on the maturation of correlated brain areas (e.g.,
calculation capability) and their connections (e.g., inhibitory
control). Besides, the model is naturally a brain-inspired spiking

Abbreviations: ToM, theory of mind; STS, superior temporal sulcus; TPJ,

temporo-parietal junction; IPL, inferior parietal lobule; pSTS, posterior superior

temporal sulcus; PCC, posterior cingulate cortex; ACC, anterior cingulate cortex;

mPFC,medial prefrontal cortex; vmPFC, ventral medial prefrontal cortex; dmPFC,

dorsal medial prefrontal cortex; IFG, inferior frontal gyrus; vPMC, ventral

premotor cortex; M1, primary motor cortex.

neural network model and is fundamentally based on brain
plasticity principles.

The rest of this paper is organized as follows: Section 2 reviews
the related work of computational models, the false belief tasks,
and the brain regions in the ToM. In section 3, the architecture of
the Brain-ToM model, the concrete neural network architecture,
the Voltage-driven Plasticity centric Spiking Neural Networks
(VPSNN), and the inhibitory control mechanism are introduced.
The experimental settings, the experimental results and analyses
are given in section 4. Some discussions and conclusions are
drawn in sections 5, 6, respectively.

2. RELATED WORKS

In this section, we briefly review several related works, including
the computational models, the false belief tasks, and the related
brain regions of ToM.

2.1. Computational Models
Berthiaume et al. (2013) presented a constructivist connectionist
model to simulate the false-belief task. The model encoded
the location of an object, whether an agent has observed the
object’s movement, and the location where the agent came
back to search. With the increased hidden units to improve
computational power, the model would predict the correct search
in two different false belief tasks—the approach task and the
avoidance task. Their model was the first computational model
to autonomously construct and transit between structures and to
cover the two major false-belief task transitions. They suggested
the view that the source of the transition is not developed in
the understanding of beliefs, but changes in auxiliary skills such
as: executive function, understanding and using representations,
working memory, or language. Goodman et al. (2006) built two
Bayesian models named CT model (copy theorist) and PT model
(perspective theorist). Beliefs were only correlated to the location
of the toy in the former model, and in the later model, the
belief was not only correlated to the toy’s location but also Sally’s
visual access, i.e., could Sally saw the toy moved or not. With
the increase of resources and complexity in the PT model, the
model could pass the false-belief task. Asakura and Inui (2016)
designed a Bayesian framework that integrates theory-theory and
simulation theory for false belief reasoning in the unexpected-
contents task. This framework predicted other’s belief by the self
model and others model which were responsible for simulation-
based and theory-based reasoning, respectively. In their opinion,
the multiplicative effect of the ability to understand diverse
beliefs and knowledge access could predict children’s false belief
ability. Their model provided good fits to a variety of ToM scale
data for preschool children. Rabinowitz et al. (2018) designed
a ToM neural network to learn how to model other agents by
meta-learning. They constructed an observer who could collect
agent’s behavioral traces, and its goal was to predict the agent’s
future behavior. They applied the proposed ToMnet model in
simple grid world environments, showing that the observer could
model agents effectively and passed Sally Anne Test. And the
observer needed not to be able to execute the behaviors itself.
O’Laughlin and Thagard (2000) built a connectionist network
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whose nodes represent the relevant event in the false-belief task,
and passed the false-belief task by modifying the connection
weight of excitatory links and inhibitory links.Milliez et al. (2014)
presented a spatio-temporal reasoning system SPARK, which
included a well-designed model of object position hypotheses
and generated beliefs. They enabled the robot to passed the
Sally-Anne test and performed well in dialog disambiguation.
Patacchiola and Cangelosi (2020) proposed a developmental
cognitive architecture for trust and ToM in humanoid robots.
This architecture was inspired by psychological and biological
observations. And it based on an actor-critic (AC) framework,
an epigenetic robotic architecture (ERA), and a Bayesian
network (BN). These modules represent the functions of the
corresponding brain regions in ToM, and they could uncover
the detailed mechanisms of trust-based learning in children and
robots. Finally, they reproduced psychological experiments with
the iCub humanoid robot, and the results are coherent with the
real experimental data from children.

2.2. False Belief Tasks
There is a wide variety of false-belief tasks, here we introduce
two non-verbal unexpected transfer tasks that will be adapted to
verify the validity of the model.

Senju et al. (2011) investigated whether 18-month-olds infants
would use their own past experience of visual access to attribute
perception and consequent beliefs to other people. Infants are
divided into two groups, one group wore opaque blindfolds, and
another wore trick blindfolds which looked opaque but were
actually transparent. The opaque blindfold and trick blindfold
looked identical. The test stage is the same as Southgate’s as
described below. The puppet hid an object in the left box. After
the actor wore the same blindfold, the puppet removed the object
from the scene. The opaque blindfold group expected the actor
to behave according to false belief, and the trick blindfolds did
not. Their results show that 18-month-olds used self-experience
with the blindfold to assess the actor’s visual access and predict
their behavior.

Southgate et al. (2007) used an anticipatory looking measure
to test whether 2-year-olds infants have the ability of false
belief understanding. In the familiarization trials, the puppet
hid an object in the left or right box, then left the scene. The
actor reached through the corresponding window after doors
illuminated with the simultaneous chime. Note that “doors
illuminated with simultaneous chime” indicated that the actor
was going to reach the object. In one test trial, the puppet hid the
object in the left box then move it to the right box. After the actor
turned around, the puppet removed the object from the scene.
In another test trial, the puppet hid the object in the left box,
then the actor turned around. The puppet moved the object to
the right box and hid it, then remove the object from the scene.
For both test trails, the actor turned back and doors illuminated
with simultaneous chime after the object was removed from the
scene. Most infants could gaze toward the correct window. Their
data demonstrated that 25-month-old infants had the ability of
false belief understanding. The details of this experiment were
illustrated in the figure of Southgate et al. (2007).

2.3. Brain Regions in Theory of Mind
Several brain regions, including the mPFC, bilateral TPJ, and
precuneus, have been consistently found to be activated in
various mentalizing tasks in healthy individuals (Green et al.,
2015). Schurz et al. (2014) meta-analyzed 757 activation foci
reported from 73 imaging studies of ToM that involved 1,241
participants, and their meta-analysis contained six different task
groups—False belief vs. photo, Trait judgments, Strategic games,
Social animations, Mind in the eyes, and rational actions. They
found the mPFC and bilateral posterior TPJ were activated in
all task groups. In false belief vs. photo stories task group, they
found TPJp, IPL, precuneus, posterior cingulate gyrus, mPFC
connectivity clusters 3 and 4, ventral parts of the mPFC, anterior
cingulate gyrus, right anterior temporal lobe, and adjacent parts
of the insula be activated. Molenberghs et al. (2016) conducted a
series of activation likelihood estimation (ALE) meta-analyses on
144 datasets (involving 3,150 participants) to address the brain
areas that implicated in specific types of ToM tasks. In terms of
commonalities, consistent activation was identified in the medial
prefrontal cortex and bilateral temporoparietal junction. Schurz
and Perner (2015) reviewed nine current neurocognitive theories
of how the ToMwas implemented in the brain and evaluate them
based on the results from a recent meta-analysis by Schurz et al.
(2014). From theories about cognitive processes being associated
with certain brain areas, they deduced predictions about which
areas should be engaged by the different types of ToM tasks.
These brain areas contain the mPFC, the pSTS, the TPJ, and
the IPL.

3. METHODS

3.1. Architecture of the Brain-ToM Model
The architecture of the Brain-ToM model is shown in Figure 1.

The STS is sensitive to biological motion, and in our
computational model, its function is to visually encode biological
motion (Grossman and Blake, 2002).

The TPJ is considered as a crucial area in self-other
distinction (Eddy, 2016; Bardi et al., 2017), controls
representations relating to the self and other (Eddy, 2016),
and involvement in self perspective-taking as well as other
perspective-taking (Vogeley et al., 2001; van der Meer et al.,
2011). There is no consensus on the anatomical definition of the
extent and precise location of the TPJ (Igelstrom and Graziano,
2017), but in general, the TPJ contains two anatomically distinct
regions including the IPL and pSTS (Abu-Akel and Shamay-
Tsoory, 2011; Schurz et al., 2014; Igelstrom and Graziano, 2017).
In our computational model, the TPJ is used to distinguish self
and others, store self and other-relevant stimuli, and decide the
output sequence of self and other-relevant stimuli.

The IPL is considered as a critical area in distinguishing
the self from others and identifying the body ownership in our
robot bodily self-model in Zeng et al. (2016, 2017), and some
studies have indicated that it will be activated during lower-
order self-perception (Schurz and Perner, 2015; Igelstrom and
Graziano, 2017). So in our computational model, the IPL is
used to store self-relevant stimuli. The pSTS (Frith and Frith,
1999; Schurz and Perner, 2015) is concerned with representing
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FIGURE 1 | The Brain-ToM model (including major functional brain areas, pathways, and their interactions).

the actions of others and perspective taking (Frith and Frith,
2006). In our computational model, the pSTS is used to store
other-relevant stimuli.

The precuneus is often activated during visuo-spatial
imagery, episodic memory retrieval, self- processing
operations (Cavanna and Trimble, 2006), and retrieving
previous experiences (Molenberghs et al., 2016). And a main
function of the precuneus in ToM is mental imagery to represent
the perspective of another person (Cavanna and Trimble,
2006; Schurz et al., 2013, 2014) or modeling other people’s
views (Vogeley et al., 2004). In our computational model, the
precuneus is the critical area for a machine to learn visual access
from its own experience and uses it to infer other people’s visual
access. The PCC is the caudal part of the cingulate cortex, and
the precuneus lies posterior and superior to the PCC (Leech and
Sharp, 2014). In our computational model, the PCC receives the
information from precuneus and sends it to ACC.

The anterior paracingulate cortex is often considered to be
a part of the ACC and is used for representing mental states
“decoupled” from reality (Gallagher and Frith, 2003). In our
computational model, the ACC is the critical area in acquiring the
ability of object permanence and then used it for belief reasoning.

The mPFC contains vmPFC and dmPFC. The vmPFC has
typically been associated with self-referential processing, and
the dmPFC has typically been associated with others-referential
processing (Abu-Akel and Shamay-Tsoory, 2011; Denny et al.,
2012; Jiang et al., 2016; Molenberghs et al., 2016). In our
computational model, the mPFC is used to store the result
of belief reasoning from ACC: the vmPFC stores the result
of self-belief reasoning, and the dmPFC stores the other’s
belief reasoning.

The IFG is a critical area for the inhibition process:
self-perspective inhibition and self-belief inhibition. The
IFG inhibits self-perspective when self perspective and

other-perspective are conflictive (Hartwright et al., 2012,
2015), and is suggested to inhibit self-belief to obtain correct
task performance in the false-belief task (Mossad et al.,
2016). Another function of IFG is encoding action goals
and responding to goal-driven motions (Hamzei et al.,
2016). The vPMC encodes kinematics based on motion
goals from IFG, the encoded information is sent to M1.
M1 encodes the strength and orientation of motion and
controls the concrete motion execution (Georgopoulos et al.,
1986).

As indicated in Green et al. (2015) and Jiang et al. (2016),
the specific roles that brain areas have in the mentalization
processes is not clear. Based on the neuroimaging studies as
described above, we propose four pathways for robots learning
from self-experience and uses it in the false-belief task, they
are self-experience learning pathway, motivation understanding
pathway, reasoning about one’s own belief pathway and reasoning
about other people’s belief pathway.

The self-experience learning pathways is consist of object
permanence learning pathway [Precuneus/PCC → ACC] and
the visual access learning pathway [STS → TPJ(IPL) →

Precuneus/PCC].
The test pathways are consist of motivation understanding

pathway, reasoning about one’s own belief pathway, and
reasoning about other people’s belief pathway.

The motivation understanding pathway is STS → pSTS →

TPJ(IPL)→ IFG.
The reasoning about one’s own belief pathway contains belief

reasoning pathway [STS → TPJ(IPL) → Precuneus/PCC →

ACC → MPFC(vMPFC)] and the motor response pathway
[MPFC(vMPFC)→ IFG→ vPMC→M1].

The reasoning about other people’s belief pathway
contains the true belief reasoning pathway and the false
belief reasoning pathway.
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The true belief reasoning pathway contains belief reasoning
pathway [STS → TPJ(pSTS) → Precuneus/PCC → ACC
→ MPFC(dMPFC)] and the motor response pathway
[MPFC(dMPFC)→ IFG→ vPMC→M1].

The false belief reasoning pathway contains the belief
reasoning pathway [STS → TPJ → IFG → TPJ(pSTS) →

Precuneus/PCC → ACC → MPFC(dMPFC)] and the motor
response pathway [MPFC → IFG → MPFC (dMPFC) → IFG
→ vPMC→M1].

In the reasoning about other people’s belief pathway of false
belief reasoning, the conflict between self-and-other perspective
in TPJ will activate IFG, then IFG will inhibit self-relevant stimuli
in IPL. So the others-relevant stimuli in pSTS will be the first
output of TPJ, then it sends to Precuneus/PCC. In the motor
response pathway of false belief reasoning, the conflict between
self-belief and other’s belief in mPFC will activate the IFG, then
the IFG inhibits self-belief in vmPFC. So the other’s belief in
dmPFC will be the output of mPFC, then it will be sent to IFG
for encoding action goals.

3.2. Concrete Neural Network Architecture
The concrete neural network architecture of the model is shown
as Figure 2, and it uses the leaky integrate-and-fire model
(LIF) neurons. This section describes (1) the input and output
encoding information of different brain areas, (2) the Voltage-
driven Plasticity-centric SpikingNeural Networks (VPSNN) used
in Precuneus/PCC and ACC for visual access learning and object
permanence learning respectively, and (3) the inhibitory control
mechanism which was used to select correct output information
of TPJ or mPFC.

3.2.1. STS
The STS encodes the processed results of visual perception and
body information of the self and others at time t.

STSt = [idt , objectt , boxt , blindfoldt , turnt]

We detect this information using traditional template matching
methods and represent the result by neurons with an input
synaptic current I of 1.0 or 0.0. The idt uses two neurons to
represent the identification of self or others. For the identification
of idt , we use the Fast R-CNN to recognize others at time t.
More details could be found in our previous work (Zeng et al.,
2017). The objectt and boxt are both tuples consist of object
or box identification information and its location information
respectively. For the identification of the objectt , boxt , blindfoldt ,
we first collect their image templates, and then use the traditional
template matching method to identify them at time t. The
location of objectt or boxt is calculated by the distance between
the center of the black rectangles and the center of the object
or box at time t. The blindfoldt uses two neurons to represent
the wearing state of the blindfold (wear or not wear) and uses
another two neurons to represent whether there is a blindfold at
time t. Here we define the state of self as wearing a blindfold if the
blindfold covers most areas of its visual field, and define the state
of others as wearing a blindfold if the blindfold covers the other’s
face. The turnt uses two neurons to represent the state of turning.

Here the turning-around state of the robot itself is detected by
the degree to which its head is twisted, and the turning-around
state of the other robot is detected by whether its face or back
is recognized.

3.2.2. TPJ
The input information of the TPJ is directly from STS, as

TPJinput = STSt

and the information is divided into self-relevant stimuli and
others-relevant stimuli by the idt , and then stored in IPL and
pSTS, respectively. The information in IPL, pSTS, and the output
of TPJ are encoded as.

IPL/pSTS/TPJoutput = [objectt , boxt , blindfoldt , turnt]

3.2.3. Precuneus/PCC
The Precuneus/PCC is used for visual access learning. Here we
use the VPSNN based on our previous work (Tielin et al., 2018)
to train the robot to learn visual access.

The input information of Precuneus/PCC contains
the current information from the output of TPJ and the
previous information from working memory, and it could be
represented as

Precuneus/PCCinputt = TPJoutputt +WMt

where

WMt = ζ × Precuneus/PCCinputt−1

The ζ is the forgetting factor. In the training stage, the target
output of Precuneus/PCC is the perceived location of the object
(active the unseen signal if no object is detected). The output of
Precuneus/PCC is encoded by the input synaptic current I of
either 1.0 or 0.0 in the perception neurons,

Precuneus/PCCoutputt = [location1, location2, unseen]

There are 160 trials in the training process. Each training trial
contains two images collected from the robot as shown in
Figure 4. The first image is collected when putting the various
objects in one location as shown in Figure 4a. The second
image is collected when the robot is asked “Where is the [object
label]?” in three scenes: (1) when the blindfold is interposed
(Figures 4b,c), (2) when the robot has turned around, (3) when
the object is moved to another location. For example, the first
image is collected at time t− 1, and the second image is collected
at time t. The input of the VPSNN is Precuneus/PCCinputt ,
and the target output of the VPSNN is Precuneus/PCCoutputt .
The Precuneus/PCCinputt receives two inputs: one is the raw
TPJoutputt and the other is the Precuneus/PCCinputt−1 with a
forgetting factor. In each training trial, there is no previous
information from working memory when collecting the first
image, so the Precuneus/PCCinputt−1 is equal to the TPJoutputt−1 .
The Precuneus/PCCoutputt is the perceived location of the object
at time t. The robot trains the self-experience of visual access to

Frontiers in Neurorobotics | www.frontiersin.org 5 August 2020 | Volume 14 | Article 609

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zeng et al. Brain-Inspired Theory of Mind Model

FIGURE 2 | The concrete neural network architecture of Brain-ToM model (WM denotes working memory).

the wearing of the blindfold or the turning around of the robot
in the process of visual access learning, then uses it to infer itself
and other robot’s visual access in the Opaque-and-Transparent
Blindfold Test and Turn Around Test.

3.2.4. ACC
The ACC is used for object permanence learning. Here we use
the VPSNN to train the robot to learn object permanence. The
input information of ACC contains the current information from
the output of Precuneus/PCC and the previous information from
working memory, and it could be represented as

ACCinputt = Precuneus/PCCoutputt +WMt

where

WMt = ζ × ACCoutputt−1

The ζ is the forgetting factor. In the training stage, the target
output of ACC is the location of the object. The output of ACC is

encoded by the input synaptic current I of either 1.0 or 0.0 in the
related neurons, i.e.,

ACCoutputt+1 = [belieflocation1 , belieflocation2 ]

There are 50 trials in the training process. Each training trial
contains three images collected from the visual sensor, when (1)
the various objects are put in one location (Figure 5b), (2) an
object is hidden in the box (Figure 5c), and (3) the box is moved
away (Figure 5d). For example, the first, second, third image is
collected at time t − 1, t, t + 1, respectively. The input of the
VPSNN is ACCinputt , and the target output of the VPSNN is
ACCoutputt+1 . The ACCinputt receives two inputs: one is the raw
Precuneus/PCCoutputt and the other is the ACCoutputt−1 with a
forgetting factor. TheACCoutputt−1 is the perceived location of the
object at time t − 1. To train the ability of object permanence
in the robot, we make the robot always perceive the location
of the object at the end of each training trial. The ACCoutputt+1

is the perceived location of the object at time t + 1. The robot
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trains itself a belief that objects are still where it has last located
them, even they are out of its field of visual perception, and then
uses it to infer itself and other robot’s belief in the Opaque-and-
Transparent Blindfold Test and Turn Around Test.

We train the visual access learning in Precuneus/PCC first,
then the object permanence learning in ACC.

3.2.5. mPFC
The input of mPFC is identical to the output of ACC and
distinguishes between the self-belief and other-belief by the
source of the information: IPL or pSTS. The vmPFC and dmPFC
both use two neurons to store the self-belief and other-belief
about the location of the object.

mPFCinputt = ACCoutputt

dmPFCt = mPFCinputt if the source is IPL

vmPFCt = mPFCinputt if the source is pSTS

The output of mPFC depends on the questions, which are set
as follows: if the question is “Where is the ladybird according
to the blue robot?” the other-belief stored in dmPFC tries to be
the output of mPFC; if the question is “Where is the ladybird
according to yourself?” the self-belief stored in vmPFC tries to
be the output of mPFC.

mPFCoutputt =



















dmPFCt if the question is “Where is the

ladybird according to the blue robot"

vmPFCt if the question is “Where is the

ladybird according to yourself ?"

3.2.6. IFG
In the proposed model, IFG receives inputs from three sources:
(1) the inhibit result neurons in TPJ that could stimulate IFG for
self-perception inhibition, (2) the inhibit result neurons in mPFC
that could stimulate IFG for self-belief inhibition, and (3) some
other neurons in mPFC that could stimulate IFG to encode the
action goal.

IFGinputt =







Iinhibit result neuron TPJ self − perception inhibition
Iinhibit result neuron mPFC self − belief inhibition

mPFC encode the action goal

IFG uses the same number of neurons as IPL and as vmPFC to
inhibit self-perception information and self-belief information,
respectively, and uses another two neurons to encode the action
goal, which is later sent to vPMC to control the robot’s actions.
The details of the inhibitory control mechanism of IFG could be
found in section 3.4.

With the exception in the above mentioned evaluation,
the synaptic plasticity only takes place in Precuneus/PCC and
ACC in the process of training, while the weights of the
other connections between various areas remain unchanged in
the experiment.

3.3. VPSNN
For the mathematically modeling of brain regions such as
Precuneus/PCC and ACC, here we select a standard VPSNN

model (Tielin et al., 2018), which is a shallow feed-forward SNN
and may well simulate input-output signals with the integration
of supervised learning (with an additional teaching signal given
directly to the output layer neurons) and unsupervised learning
(tuned with biologically plasticity principles, e.g., STDP, and
homeostatic membrane potential).

Two three-layer SNN architectures are designed for
Precuneus/PCC (with 24 input neurons, three hidden neurons,
and two output neurons) and ACC (with three input neurons,
three hidden neurons, and two output neurons), respectively,
as shown in Figure 2. The VPSNN includes four steps, namely:
feed-forward information (including both membrane potential
and spikes) propagation, unsupervised homeostatic state
learning, supervised last layer learning, and passively updating
synaptic weights based on STDP rules. In this paper, we take
advantage of these four steps for the fast network tuning and
update the methodologies of giving teaching signals from single
SNN to two SNNs together for the better model integration.

3.3.1. The LIF Neuron Model

τm
dV

dt
= − (V − VL) −

gE

gL
(V − VE) (1)

τE
dgE

dt
= −gE + η

∑

j∈NE

wj,iδt (2)

The basic neuron model in VPSNN is the LIF model, which
describes the dynamics of the membrane potential of V and
synaptic-weight-related gE, as shown in Equations (1) and
(2). Once the pre-synaptic neurons fire, there is a non-linear
increment of gE, which will then propagate intoV . The gL is leaky
conductance, VL is leaky potential, τm and τE are conductance
decay, η is the learning rate, and VE is reversal potential.

3.3.2. The Feed Forward Propagation
The information propagation in the LIF neuron is slower
compared with giving input directly into V . However, this is
a specially designed procedure that will make the network-
tuning focusing more on the homeostatic membrane potential
adjustment and STDP learning. The information (especially
the membrane potential) will be propagated from pre-synaptic
neurons (e.g., Vj) into the post-synaptic neurons (e.g., Vi), and
the whole feed-forward procedure VFF

i is shown in Equation (3),
in which the Vth is the firing threshold of the neurons.























τm
dVi
dt

= − (Vi − VL) −
gE
gL

(Vi − VE)

τE
dgE
dt

= −gE + η
∑N

j wj,iVj

Vi = VL,Tref = T0 if (Vi > Vth)

VFF
i = Vi

(3)

3.3.3. Unsupervised Homeostatic Membrane

Potential Learning
The basic homeostatic mechanism occurs in the input-output
balance of the single neuron, described as the Equation (4).
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1Ei = Vi −





N
∑

j

wj,iVj − Vth,i



 (4)

The entire network homeostatic state can be represented as the
addition of all of the neurons in each layer, i.e., 1E =

∑

i∈N 1Ei.
Moreover, after the calculation (the detailed methodologies are
shown in paper Tielin et al., 2018), the homeostatic membrane
potential VHomeo

i can be updated according to Equation (5). The
ηi is the learning rate.

1VHomeo
i = −ηi

Vi −

(

∑N
j wj,iVj −

∑N
j Vth,i

)

− (Vi − VL) −
gE
gL

(Vi − VE)
(5)

With the integration of Equations (3) and (5), the update rule
of each neuron state Vi is shown in Equation (6). The t is the
training time slot and T is the total training time in SNN learning.

1Vi =
t

T
1VFF

i +

(

1−
t

T

)

1VHomeo
i (6)

3.3.4. Supervised Last Layer Learning and

STDP-Based Weights Consolidation
An additional teaching signal will be given to the network for
guiding the proper network output. Here we add teaching signals
into the last layer of SNN in the training procedure, as shown
in Equation (7), in which VT is teacher signal state, ηc is the
learning rate.

dVi = −ηc (Vi − VT) (7)

STDP rules (Bi and Poo, 2001; Dan and Poo, 2004; Bengio et al.,
2015a,b) are further used for the knowledge consolidation from
the membrane potential to synaptic weights, e.g., the synaptic
weights could be passively updated by the changes of the pre- and
post-synaptic neuron states. The function is as shown in Equation

(8), in which the V
′

i is the derivative value of Vi.

1wj,i ∝ VjV
′

i (8)

3.4. Inhibitory Control Mechanism
The inhibitory control is used to select correct output
information of TPJ or mPFC, and it can be divide into inner
and outside inhibitory control. The inner inhibitory control
cannot inhibit predominant information from self when the
related information of self and others is conflictive, so we use the
outside inhibitory control from IFG to inhibit the predominant
information. Inhibitory control of one single neuron is shown
in Figure 3. The IPL neurons (or vmPFC neurons) and pSTS
neurons (or dmPFC neurons) receive electrovital currents of
self-relevant stimuli and other-relevant stimuli, respectively.
The input of inhibit neurons and temporary neurons depend
on reasoning about other’s belief (contains self-perspective
inhibition and self-belief inhibition) or self-belief (contains

FIGURE 3 | Inhibitory control of one single neuron in reasoning about other’s

belief. At time t1, t2, and t3, the firing pattern of pSTS and IPL are identical,

which means that the other-relevant stimuli and self-relevant stimuli are

identical. The inhibitory neurons can inhibit self-relevant stimuli successfully.

But at time t4 and t5, the other-relevant stimuli and self-relevant stimuli are in

conflict with each other, and the inhibitory neurons cannot inhibit self-relevant

stimuli. The inhibit result neurons will fire and stimulate IFG activation, while IFG

activation will inhibit the firing of inhibit result neuron. The inhibit result neurons

will combine with neurons in pSTS to generate other-relevant stimuli output

firstly. Then the temporary neuron stimulates IPL, because the electrovital

currents in pSTS and the inhibitory neuron is zero at this moment, self-relevant

stimuli will be the second output of TPJ. Compared to the process of

self-perspective inhibition, the only difference is that the inhibitory control in

TPJ is used to decide the sequence of information output, and the inhibitory

control in mPFC is used to decide which belief to export. Therefore, the

process of self-belief inhibition does not require the involvement of temporary

neuron.

other-perspective inhibition and other-belief inhibition), and the
former is used to inhibit stimuli, the later is used to temporarily
store uninhibited stimuli. In the process of self-perspective
inhibition or self-belief inhibition, the input electrovital currents
of inhibit neuron are equal to other-relevant stimuli, and the
temporary neuron is equal to self-relevant stimuli (only in TPJ).
So other-relevant stimuli will be the first output, and self-relevant
stimuli will be the second output in TPJ, and other’s belief will be
exported in mPFC. In the process of other-perspective inhibition
and other-belief inhibition, the inhibit electrovital currents are
very big that it can completely inhibit other-relevant stimuli, and
the temporary neuron is equal to other-relevant stimuli (only in
TPJ). Therefore, in TPJ, self-related stimulus will be output first,
other-related stimulus will be output second, and then self-belief
will be output in mPFC.

4. EXPERIMENTS

In this section, we introduce the experimental settings and the
result of our proposed model.

4.1. Experimental Settings
We deploy the computational model to humanoid robotics
and use the Opaque-and-Transparent Blindfold Test and Turn
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Around Test to validate the Brain-ToM model. Furthermore, we
test the effect of self-experience, maturation of correlate brain
areas (e.g., calculation capability) and their connections (e.g.,
inhibitory control) on the performance of participant robot in
Opaque-and-Transparent Blindfold Test.

4.1.1. Opaque-and-Transparent Blindfold Test
The Opaque-and-Transparent Blindfold Test is adapted from
Senju et al. (2011).

We enable all the robots to learn the visual access of
blindfold from self experiences, as the infants’ experience in
Senju’s experiment. In the proposed model, this process takes
place in Precuneus (Vogeley et al., 2004; Cavanna and Trimble,
2006; Schurz et al., 2013, 2014). The robots are divided into
two groups—the opaque blindfold group and the transparent
blindfold group. The opaque blindfold and transparent blindfold
look identical, at least the robot cannot distinguish them from
appearance, but the transparent blindfold can make the robot
who wears it see through, and the opaque blindfold cannot.
Figure 4 presents the visual inputs of the robot in the opaque
blindfold group (with Movie S1) and the transparent blindfold
group (withMovie S2). In this stage, the robots could not observe
other robots wearing the blindfold, as the infants in Senju’s
experiment, so they have no opportunity to learn the property
of the blindfold from the third-person point of view.

We suggest that the ability of learning object permanence is
the prerequisite for the ToM. As indicated in Piaget and Cook
(1952) and Bruce and Muhammad (2009), Piaget defined six
developmental stages of object permanence. During the early
stages (Stage I, Stage II, Stage III), children failed to find a hidden
object. During Stage IV (8–12 months) children can retrieve an
object when its concealment is observed. But they cannot find
the object when it is continuously moving. During Stage V (12–
18 months), the children can retrieve an object when it is hidden
several times within his or her view. In summary, when an object
was hidden in location A and then hidden in location B, the
children would try to find the object in location A during Stage IV
and would try to find it in location B during Stage V.With similar
principles, here we enable all of the robots in the experiment
acquire the ability of learning object permanence from their own
self experiences, and in our model, ACC acts as a central role
to realize this cognitive function (Gallagher and Frith, 2003).
Figure 5 shows the visual inputs of the robots in this process.

In the test stage, participant robots use the Brain-inspired
Robot Bodily Self Model which we proposed in Zeng et al. (2016,
2017) to distinguish self and others. As in the experiment of Senju
et al. (2011), the actor robot will try to find the hidden object in
the box before the final test. By this way, the participant robot
could understand that the actor has the same cognitive ability
(e.g., visual ability) and the goal of the actor robot (Movie S3).
In the final test, the opaque blindfold group and the transparent
blindfold group are tested with the same process as shown in
Figure 6. Then the participant robot be asked two questions:
“Where is the ladybird according to the blue robot?” and “Where
is the ladybird according to yourself?” We determine whether the
robot can pass the task by detecting the direction of the finger
which makes the results more intuitive.

4.1.2. Turn Around Test
The Turn Around Test is adapted from Southgate et al. (2007).

The robot learns the visual access of turning around from
self-experience. The Turn Around Test is similar to the Opaque-
and-Transparent Blindfold Test. The diversity of belief is caused
by different blindfolds in the Opaque-and-Transparent Blindfold
Test, and in Turn Around Test, it is caused by the behavior of
turn around. The visual inputs of the participant robot are shown
in Figure 7. As with the Opaque-and-Transparent Blindfold Test,
the participant robot also be asked two questions: “Where is the
ladybird according to the blue robot?” and “Where is the ladybird
according to yourself?” And we determine whether the robot can
pass the task by detecting the direction of the finger.

4.1.3. Maturation Test
The ability for the ToM comes with individual development
process (Grosse Wiesmann et al., 2017). Grosse Wiesmann et al.
(2017) discussed the influence of white matter structure on
ToM by tract-based spatial statistics analysis and probabilistic
tractography. They found that “the developmental breakthrough
in false belief understanding is associated with age-related
changes in local white matter structure in temporoparietal
regions, the precuneus, and medial prefrontal cortex, and
with increased dorsal white matter connectivity between
temporoparietal and inferior frontal regions.” And they thought
“the emergence of mental state representation is related to the
maturation of core belief processing regions and their connection
to the prefrontal cortex” (GrosseWiesmann et al., 2017). But their
research focused on the 3- and 4-year-old children in the explicit
false-belief tasks, and did not include younger infants who cannot
pass the implicit false-belief task. They did not test whether this
finding is also associated with an implicit task, because of the
difficulties in performing MRI with toddlers.

Although the developmental neural basis for the implicit
false-belief task is still not very clear, we hypothesize that the
developmental process in implicit false belief understanding
is relevant with explicit one, and will also be associated with
the maturation of correlate brain areas and their connections.
We aim to test this hypothesis by our computation model,
and apply it to the Brain-ToM model that we developed for
machine intelligence.

The maturation of correlate brain areas could be regarded as
calculation capability in our model, and the calculation capability
increases with the maturation of brain areas. The calculation
capability in this model is proportional to the number of neurons
in the hidden layer. We simulate immature Precuneus/PCC by
reducing the number of the neurons in its own hidden layer,
then verify the effect of this condition on the performance of the
participant robot.

The maturation of the connection between brain areas
is critical for information transmission and information
integration, especially inhibitory connection and control. The
inhibitory control is generally considered as a key mechanism in
false-belief task (Leslie and Polizzi, 1998; Scott and Baillargeon,
2017), and we think that the maturation of connections between
IFG and TPJ, IFG and vmPFC are the neural basis of self-
perspective inhibition and self-belief inhibition, respectively. We
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FIGURE 4 | Visual access learning of blindfold from self-experience. (a) An object is put on either of the black rectangles. (b) Visual inputs of the opaque blindfold

group (with Movie S1). We interpose blindfold between the eyes of the robot and the object, then ask it “Where is the [object label]?” The robot will reply with the

location of the object or with the fact that it did not see it. (c) Visual inputs of the transparent blindfold group (with Movie S2). The process is the same as the opaque

blindfold group.

FIGURE 5 | Object permanence learning from self-experience. (a) The black rectangles are used to indicate the candidate positions of the object. (b) An object is put

on either of the black rectangles, the robot can detect the location of the object—left side or right side. (c) The yellow box and the green box are used to hide the

object. The robot cannot perceive the object in its visual field, hence cannot find it. It is similar to the early stages in Piaget’s Stages of Object Permanence. (d) The

boxes are removed, and the robot can perceive the object’s location in its visual field.

FIGURE 6 | Visual inputs of participant robot in the test stage. (a) The blue robot in the left is the actor, and the red robot in right is the participant who should infer the

actor’s belief. The middle screen in the (a), and the remaining figures are the visual inputs of the participant robot. (b) An object (ladybird) is put on the left black

rectangle. (c) The ladybird is hidden in the yellow box. (d) The blindfold is interposed between the actor (the blue robot) and the object (ladybird), and the object is

moved to the right side. (e) The ladybird is hidden in the green box. (f) Finally, the blindfold is removed.

Frontiers in Neurorobotics | www.frontiersin.org 10 August 2020 | Volume 14 | Article 6014

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zeng et al. Brain-Inspired Theory of Mind Model

FIGURE 7 | Turn Around Test. An object (ladybird) is put on the left black rectangle and hidden it in the yellow box firstly. In the false belief condition, the object was

moved to the other box when the actor robot turned around (Movie S6). And in true belief task, the actor robot did not turn around when the object was moved to the

other box (Movie S7).

simulate immature connections between IFG and TPJ, IFG and
vmPFC by set the synaptic weights as 0, then verify the effect of
this condition on the performance of the participant robot.

4.2. Experimental Results and Analyses
In this section, we present the results of our model. Besides,
we analyze the temporal and spatial activation of different
brain areas during different tasks, the effect of self-experience,
maturation of correlate brain areas (e.g., calculation capability)
and their connections (e.g., inhibitory control) on the
performance of participant robot in Opaque-and-Transparent
Blindfold Test.

4.2.1. Opaque-and-Transparent Blindfold Test
The opaque blindfold group can be regarded as the false belief
condition, as the actor robot’s belief is inconsistent with the
representations of reality. When asking the participant robot
“Where is the ladybird according to the blue robot?” the
participant robot will point to the yellow box on the left side.
And when asking the participant robot “Where is the ladybird
according to yourself?” the participant robot will point to the
green box on the right side (Movie S4).

The transparent blindfold group can be regarded as the true
belief condition, as the actor robot’s belief is consistent with the
representations of reality. When asking the participant robot the
upper two questions, for both of them, the participant robot will
point to the green box on the right side (Movie S5).

We repeat this experiment 20 times, the robot could pass the
task every time, and we calculate the mean value and standard
deviation of time consumption in different brain areas. To
make the results more visible and clear, the data from STS,
Precuneus/PCC, ACC, vPMC/M1 are excluded, because their
time consumption is similar in different tasks. We select the
time consumption in TPJ, IFG, and mPFC as examples. The time
consumption of false belief reasoning (87.7 ms) is longer than
true belief reasoning (69.8 ms). And the time consumption of
reasoning about other’s belief (78.8 ms) is longer than self-belief

(15.2 ms). In the process of reasoning about self-belief, the time
consumption of false belief condition (15.4 ms) and true belief
condition (15 ms) are similar. In traditional true belief task,
the time consumption will be shorter. The perception in TPJ is
identical, hence the IFG will not be activated in this task and the
time consumption is reduced.

Here we provide the time consumption in different tasks.
Based on the belief about the object location, the task can
be divided into reasoning about actor robot’s false-belief task
(other-incongruent condition) and true belief task (other-
congruent condition), reasoning about participant robot’s own
belief task which contains self-incongruent condition (self-belief
is divergent from other’s) and self-congruent condition (self-
belief is corresponding with other’s). Figure 8 shows the temporal
and spatial activation of different brain areas during different
tasks. This process only contains the perception conflict stage
(as shown in Figure 6d) and motion response stage which have
critical differences in different tasks. The time consumptions in
STS and vPMC of different tasks are similar, about 448 and 500
ms, respectively. So we select 400-900 ms to show the process and
the difference in different tasks. Reasoning about other’s belief in
the transparent group can be regarded as true belief task, but it
must be noted that, the information from self-perspective and
other-perspective are identical in tradition true belief task, while
they conflict with each other in this task which is originally from
Senju et al. (2011) based on human studies of 18-month-olds.
For example, in the transparent blindfold task, the participant
robot perceived from self-perspective that “I (participant robot)
saw the object moved to the green box without blindfold”

and the participant robot perceived from other-perspective that

“the actor robot saw the object moved to the green box with

blindfold,” so the information is conflictive in this task. And

in traditional true belief task, the information is identified as

“I (participant robot) saw the object was moved to the green

box” and “the actor saw the object was moved to the green box”
without the difference caused by the transparent blindfold.
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FIGURE 8 | The temporal and spatial activation of different brain areas during different tasks. The time consumption in STS (visually encoding biological motion),

Precuneus/PCC (inferring visual access), ACC (belief reasoning), IFG (encoding action goals), and vPMC/M1 (encoding kinematics/motion execution) are similar in

different tasks. In the process of TPJ activation (deciding the output sequence of self and other-relevant stimuli) in other-incongruent condition (red line) and

other-congruent condition (green line), IFG is activated to inhibit self-perspective. In the process of mPFC activation (deciding belief for motor response) in

other-incongruent condition, IFG is activated to inhibit self-belief. In the tasks of self-incongruent condition (black line) and self-congruent condition (blue line), the IFG

is only activated in the process of encoding action goals. The value of total time consumption is self-congruent condition < self-incongruent condition <

other-congruent condition < other-incongruent condition. To show the function of IFG easily, we make the arrow mark in the figure.

Our focus is the activation sequence of brain areas and
reaction time in the various task, such as the other-incongruent
condition spendsmore time than self-congruent condition rather
than the numerical value of time consumption, these result is
consistent with the functional neuroimaging studies in Mossad
et al. (2016) and Dohnel et al. (2012).

In the process of inferring visual access which corresponds
to Figure 6d, even though the visual inputs in both groups
are identical, the output is different when the participant robot
infer other’s visual access with different self-experience. In other
words, when inferring visual access of another person by self-
experience, the opaque blindfold group will know the actor
cannot see the moving object, and the transparent blindfold
group will know the actor can. When inferring self visual access,
the perception of visual inputs and the result of precuneus are
identical in both groups.

In the process of inferring other’s visual access, the IFG will
not be activated when self-perspective and other-perspective is
identical, as shown in Figures 6b,c,f. If the self-perspective and
other-perspective are in conflict with each other in the process of
reasoning about other’s belief, the IFG will be activated to inhibit
the information of self-perspective, as shown in Figures 6d,e.

In the process of motor response in reasoning about other’s
belief, the IFG will inhibit self-belief if the beliefs are conflictive.
So the other’s belief in dmPFC will be the output of mPFC.
Then IFG receives input from mPFC and encodes action goals
to control vPMC to action.

In addition, we also test the effect of blindfold position in
this task. In the visual access of blindfold learning stage, we add
a new phase: we put the blindfold on the desk or interpose it
at others position to make that both the blindfold and object
can be perceived by the participant robot, and we also ask the

question “Where is the [object label]?” In the test stage, we put
the blindfold on the desk or interpose it at other positions where
the actor’s visual inputs are not blocked. Both of the groups can
infer the visual access of actor robot correctly, and conclude that
the actor robot could see the object move to the right side. And
self-belief is corresponding to other’s belief in both groups. This
additional test could prove that the actor robot does not use low-
level features such as whether the blindfold exists when inferring
other’s mental state, and it also proves the effect of the bodily
model in this task.

4.2.2. Turn Around Test
In the false belief condition, the actor robot’s belief is inconsistent
with the representations of reality. When asking the participant
robot “Where is the ladybird according to the blue robot?” the
participant robot will point to the yellow box on the left side.
And when asking the participant robot “Where is the ladybird
according to yourself?” the participant robot will point to the
green box on the right side (Movie S6).

In the true belief condition, the actor robot’s belief is consistent
with the representations of reality. When asking the participant
robot the upper two questions, for both of them, the participant
robot will point to the green box on the right side (Movie S7).

We repeat this experiment 20 times, the robot could pass
the task every time. The mechanism of Turn Around Test is
similar to the Opaque-and-Transparent Blindfold Test, the only
difference is that the self-perspective and other-perspective are
identical in true belief task of Turn Around Test. So IFG was
not activated in this stage. We select the time consumption in
TPJ, IFG, and mPFC as examples. The time consumption of false
belief reasoning (87.3 ms) is longer than true belief reasoning
(16.1 ms). And the time consumption of reasoning about other’s
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belief (51.7 ms) is longer than self-belief (15.3 ms). In the process
of reasoning about self-belief, the time consumption of false
belief condition (15.4 ms) and true belief condition (15.2 ms)
are similar.

4.2.3. Maturation Test
The maturation of correlate brain areas will be regarded as
calculation capability in our model, and the calculation capability
increases with the maturation of brain areas. The calculation
capability in this model is proportional to the number of neurons
in the hidden layer. For example, If the neuron number involved
in the calculation of the hidden layer in Precuneus/PCC is
two or fewer, even though participant robot can learn visual
access of blindfold, it failed in inferring other’s visual access.
As indicated in Myowa-Yamakoshi et al. (2011), 8-month-
old infants and 12-month-old infants had experienced being
blindfolded, when they saw a blindfolded actor did a successful
goal-directed action which normally could not succeed with
a blindfold, 12-month-old infants will look longer, but 8-
month-old infants will not. We think that with the maturation
of correlate brain areas as well as their connections, more
neurons and synaptic connections will be included in the
task processing.

The maturation of the connection between brain areas
is critical for information transmission and information
integration, especially inhibitory connection and control. The
inhibitory control is generally considered as a key mechanism in
false-belief task (Leslie and Polizzi, 1998; Scott and Baillargeon,
2017), and we think that the maturation of connections between
IFG and TPJ, IFG and vmPFC are the neural basis of self-
perspective inhibition and self-belief inhibition respectively.
As shown in Figure 9, the inhibitory control uses inhibitory
neurons and temporary neurons which store information
temporarily for the selection of correct output information of
TPJ or mPFC. In the process of reasoning about other’s belief,
the inhibitory neurons in TPJ and mPFC receive other-relevant
information from STS or ACC, respectively. The information
of inhibitory neurons in TPJ is identical with the information
of other-relevant stimuli in pSTS, and the information of
inhibitory neurons in mPFC is identical with the information
of other’s belief in dmPFC. The temporary neurons in TPJ
receive self-relevant information from STS, and the temporary
neurons’ information is identical with the information of
self-relevant stimuli in IPL. The self-perspective inhibition takes
place in TPJ and the self-belief inhibition takes place in mPFC.
Then we test the effect of these connections in the false-belief
task, and observe that the different maturation of connections
leads to different permanence in the task. In this figure, the
inhibitory neurons (In) are used to inhibit information in
IPL or vmPFC, and the inhibitory result (InR) is the result
of their interaction. If the connections between IFG and TPJ,
IFG and vmPFC are mature, the activated neurons of InR will
activate IFG to inhibit the information in InR neurons, and then
make the correct information as the output of TPJ and mPFC.
These connections will not influence the process of reasoning
about self-belief.

5. DISCUSSION

In this section, we will discuss the characteristics of the model,
the reasons why robot experiments and cognitive experiments are
not completely consistent, and the possible mechanisms of why
toddlers fail in high inhibition tasks.

Compared to the previous models which we introduce in
the related works, our model explores and is fundamentally
based on the role of self-experience. In our model, robots
learn to understand object permanence and visual access of
blindfold or turn around from self-experience, then use it to
infer other’s belief and predict their actions. All of the participant
robots learn the ability of understanding object permanence
from the same experience. In the Opaque-and-Transparent
Blindfold Test, they are divided into opaque blindfold group
and transparent blindfold group. Even though the visual inputs
of both groups in the test stage are identical, the different
experience with an opaque blindfold or transparent blindfold
leads to different performances. In Turn Around Test, the
different behaviors of the actor robot in the test stage result in
different performances. Compared with the recently published
work from Patacchiola and Cangelosi (2020): (1) Our model
is based on spiking neural networks, and just uses the STDP
to successfully reproduce the complex cognitive function of
ToM, hence more biological plausible. And their model is
based on an actor-critic (AC) framework, an epigenetic robotic
architecture (ERA) and a Bayesian network (BN). (2) Our model
considered more brain regions that have been consistently found
in many experimental paradigms of ToM, such as the TPJ
that used for self-other distinction, the IFG that used for self-
perspective inhibition and self-belief inhibition, etc. (3) Our
model is used for the false belief task, which is one of the
most classical and widely used experimental paradigms of ToM,
and their model challenges a different task. The two studies
have complementary contributions to the ToM models through
bio-inspired mechanisms.

Through the integration of biological inspirations and
computational modeling, we suggest that the self-experience,
maturation of correlated brain areas (e.g., calculation capability)
and connection between brain areas (e.g., inhibitory control)
will have great influence on the participant’s performance in the
false-belief task.

As indicated in Scott and Baillargeon (2017), the false belief
tasks contain spontaneous-response and elicited-response tasks
that belong to the implicit task and explicit task, respectively.
The difference in spontaneous-response and elicited-response
tasks is that the former investigates the capacity of false belief
understanding by spontaneous behavior such as anticipatory-
looking, preferential-looking, etc with a non-verbal task, and the
latter investigates this capacity by answering direct questions
that predict agent’s behavior who has a false belief with the
verbal task. Children can pass the spontaneous-response task
before 2 years old, but they can not pass the elicited-response
tasks until about 4 years old. Our tasks on robots are not
completely consisted with Senju et al. (2011) on 18-month-
olds infants and Southgate et al. (2007) on 2-year-olds infants.
Both of them used spontaneous-response to test the infants
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FIGURE 9 | The effect of IFG connection in the false-belief task. The solid circles indicate that the neurons have been activated. “No IFG” means the connection

between IFG and TPJ or IFG and vmPFC is immature, and ‘With IFG’ means the connection between IFG and TPJ or IFG and vmPFC is mature. (A) Both of the

connections between IFG and TPJ, IFG and vmPFC are immature. The first output of TPJ (TPJ_1) is different from IPL or pSTS because the self-perspective inhibition

failed which caused by the immature connection between IFG and TPJ, and the second output (TPJ_2) is identical with IPL. The inferring visual access result of PC_1

and PC_2 in Precuneus/PCC are identical, and the belief reasoning result of ACC_1 and ACC_2 in ACC are identical. In the process of motor response, the InR

neurons have not been activated because the belief in dmPFC and vmPFC are identical, so the output of mPFC is identical with dmPFC. The behavior of the

participant robot to predict the actor robot’s action is the same as the action caused by self-belief, so it failed in the false-belief task. (B) The connection between IFG

and TPJ is immature, and the connection between IFG and vmPFC is mature. The participant robot also failed in this task because the result of inferring other’s visual

access is wrong which causes by the immature connection between IFG and TPJ. (C) The connection between IFG and TPJ is mature, and the connection between

IFG and vmPFC is immature. The activated InR neurons activate IFG to inhibit self-perspective. The TPJ_1 and TPJ_2 could be output correctly. The participant robot

could infer other’s belief correctly, but it cannot inhibit the effect of self-belief without IFG. Both of the two candidate responses are activated when asked the question

“Where is the ladybird according to the blue robot.” The participant robot will tend to select action directed by self-belief and failed in the false-belief task. (D) Both of

the connections between IFG and TPJ, IFG, and vmPFC are mature. With the connection to IFG, the participant robot will inhibit self-perspective in TPJ and inhibit

self-belief in mPFC, then succeed in this task.

on whether they can pass the task. And in the test trial, they
removed the object from the scene to make infants pass the task
easier. In our task, we determine whether the robot can pass the
task by detecting the direction of the finger which makes the
results more intuitive. And in the test trial, we move the object
to the other box. Setoh et al. (2016) found that 2.5-year-olds
toddlers could succeeded in a traditional false-belief task with
reduced processing demands. Toddlers could pass the elicited-
intervention and low inhibition task (removing object from the
scene) which is described by language and picture, but would
fail in high inhibition task (moving the object to another box).
They thought the reason why toddlers failed in high inhibition
task is that toddlers cannot inhibit the response of the actual
location of the object. We suppose that the core mechanism of
belief reasoning is identical in both tasks, and the only difference
should be in the process ofmotor response. In themotor response
process of the elicited-intervention task, it may use the brain
areas which control the hand movement. And in spontaneous-
response task, it may use the brain areas which control the eye
movement. The main reason why we use high inhibition task

to replace low inhibition task is that the behavior of the robots
in the true belief task is more intuitive to be understood (for
the high inhibition task, the robot can point to the position
of the object, while for the low inhibition task, the objects
are removed outside the scene, and the robot cannot point to
their positions).

And we suppose that the reason why toddlers failed in
high inhibition task should be related to the lack of motor
response ability rather than ToM (e.g., understanding that others
have beliefs that are different from one’s own). As shown in
Figure 9, the connection between IFG and TPJ are matured
but the connection between IFG and vmPFC are not, both of
the two candidate responses are activated when the participant
robot is asked “Where is the ladybird according to the blue
robot.” The participant robot will tend to select action directed
by self-belief rather than randomly, as the result of behavior
data shown in Setoh et al. (2016) and Samson et al. (2005).
In the low inhibition task, the participant has no idea about
the object’s location and one of the two candidate motor
responses are activated, so the participant robot can succeed
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in this task. And in Samson et al. (2005), the participant
who has a lesion of the right inferior and middle frontal gyri
performed well in low-inhibition false-belief task but failed in the
high-inhibition task.

Here we don’t attempt to compare our model with the
traditional Theories of ToM as Theory Theory (Gopnik and
Wellman, 1994), Simulation Theory (Gallese, 1998), etc., because
what we focus on in this paper is to build a computationally
feasible model which could uncover the detailed mechanisms of
ToM and enhance our understanding of how the self-experience,
maturation of correlated brain areas and connection between
brain areas affect the participant’s performance in the false-
belief task.

6. CONCLUSION

The computational model for the robotic ToM is regarded
as one of the Grand Challenges for Artificial Intelligence and
Robotics (Yang et al., 2018). Here we proposed a Brain-ToM
model based on existing biological findings of ToM, and this
model shows its relevance to ToMof human from themechanism
and behavior perspectives.

In summary, we propose a Brain-ToM model to enable
machines to acquire the ability of ToM through learning
and inferring based on self-experience. We validate the
model by deploying it on humanoid robots. Our model
successfully enabled the robot to pass the false-belief task,
which is a classical task designed to understand the nature
and mechanisms of ToM from Cognitive Psychology. The
model and its application on robots show that current
understanding on the mechanisms of the ToM can be
computationally unified into a consistent framework and enable
the robots to be equipped with the initial cognitive ability
of ToM.
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Movie S1 | Visual access learning of blindfold from self-experience (opaque

blindfold group). This process enables the participant robot understand that other

robots wearing a blindfold cannot see.

Movie S2 | Visual access learning of blindfold from self-experience (transparent

blindfold group). This process enables the participant robot understand that other

robots wearing a blindfold can see.

Movie S3 | Familiarization phase. This process enables the participant robot

understand the goal of the actor robot.

Movie S4 | Opaque-and-transparent blindfold test (opaque blindfold group). The

details in opaque blindfold group of blindfold test.

Movie S5 | Opaque-and-transparent blindfold test (transparent blindfold group).

The details in transparent blindfold group of blindfold test.

Movie S6 | Turn around test (false-belief task). The details in false-belief task of

turn around test.

Movie S7 | Turn around test (true belief task). The details in true belief task of turn

around test.
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Visual-guided locomotion for snake-like robots is a challenging task, since it involves not

only the complex body undulation with many joints, but also a joint pipeline that connects

the vision and the locomotion. Meanwhile, it is usually difficult to jointly coordinate these

two separate sub-tasks as this requires time-consuming and trial-and-error tuning. In this

paper, we introduce a novel approach for solving target tracking tasks for a snake-like

robot as a whole using a model-free reinforcement learning (RL) algorithm. This RL-based

controller directly maps the visual observations to the joint positions of the snake-like

robot in an end-to-end fashion instead of dividing the process into a series of sub-tasks.

With a novel customized reward function, our RL controller is trained in a dynamically

changing track scenario. The controller is evaluated in four different tracking scenarios

and the results show excellent adaptive locomotion ability to the unpredictable behavior

of the target. Meanwhile, the results also prove that the RL-based controller outperforms

the traditional model-based controller in terms of tracking accuracy.

Keywords: snake robot, target tracking, reinforcement learning, motion planning, visual perception

1. INTRODUCTION

Inspired by real snakes, snake-like robots are designed as a class of hyper-redundant mechanisms in
order to achieve the agility and adaptability of their biological counterparts. Their long and narrow
bodies with many degrees of freedom (DOF) enable them to perform diverse tasks that could never
be carried out by other kinds of mobile robots, such as search and rescue in disaster scenes (Evan,
2017), complex teleoperation in space (Walker and Hannan, 1999), and even minimally invasive
cardiac surgery (Webster et al., 2006). However, this high level of flexibility also corresponds to
a complex control task involving the internal regulation of body joints and external interaction
with the ground, in which model-based methods usually fail to control the robots adaptively in a
dynamically changing environment.

Vision-guided locomotion, as one of the essential skills for moving in changeable scenarios,
is a must-have capability for snake-like robots, to ensure that they can be deployed in an
unattended environment by human operators. With the help of the visual information, the
snake-like robots can solve more complex and realistic tasks, such as target tracking and obstacle
avoidance. Especially in field operations, such as disaster rescue tasks and surveillance tasks,
the target tracking capability can greatly improve the performances of the snake-like robots.
Yet this kind of locomotion control still remains a challenging task for snake-like robots, since
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it involves not only the locomotion but also the target
information obtained by cameras. For controlling the
locomotion, different types of methods have been studied
including the sinusoid-based methods (Hirose, 1993), CPG-
based methods (Bing et al., 2017), and the dynamics-based
methods (Miller, 1988). However, none of these methods can
be used directly to perform vision-based tracking tasks. Such
tracking tasks require the robot to be agile and adapt to their
target trajectories with unpredictable changes in velocity or
direction of travel, which is extremely challenging for traditional
model-based methods. Our proposal is completely different as
it tackles the object tracking and camera control pipeline in an
end-to-end manner, based on reinforcement learning.

Strategies based on Reinforcement Learning (RL) are
promising solutions for performing target tracking for a snake-
like robot. This is because a RL-trained controller can take
the visual image directly as the input, while simultaneously
fully exploring the locomotion capabilities compared with
model-based methods. This is particularly suitable for snake-
like robots with redundant degrees of freedom. Although RL-
based methods have been adopted to control mobile vehicle
platforms (Morbidi and Mariottini, 2013; Yun et al., 2018; Luo
et al., 2019), the effectiveness of such methods for generating
agile steering motions for snake-like robots has, nevertheless, not
yet been studied extensively, especially when interacting with the
environment. The reasons are 2-fold. First, the steering control
for snake-like robots is complex, especially when it comes to the
sudden change in velocity or direction of travel, as this requires
the coordination of bodies with redundant degrees of freedom
from one moving pattern to another in a short time. Second,
when traditional methods are used on mobile platforms, target
tracking is usually divided into tracking and control sub-tasks,
which makes it difficult to tune the pipeline jointly, especially
considering the aforementioned motion barrier for snake-like
robots. To cope with this hard-to-predict tracking andmovement
complexity, the RL-based control strategies need to map the
visual inputs to the joint space directly, in order to perform
the corresponding motions, and must operate with adequately
defined reward functions to train a policy successfully. Hence, the
design of a target tracking controller for snake-like robots based
on RL is challenging.

To design a target tracking controller for snake-like robots,
this paper proposes a RL-based strategy. Our main contributions
to the literature are summarized as follows. First, we offer
a novel alternative to solving the target tracking task for a
snake-like robot via reinforcement learning. The learned policy
directly transforms the external and internal observations to a
sophisticated motion pattern for performing perception-action
coupling tasks. It is worth to note that this RL-based method
can be applied in different types of snake-like robots instead
of designed solely for the one used in this work. Second, we
propose a customized reward function that takes contiguous
distances into calculation. With this reward design, the learned
locomotion successfully solves adaptive target tracking tasks,
and, more surprisingly it also learns the ability to keep
the target within its visual field, even though this behavior
is not specifically rewarded. Third, we propose a tracking

accuracy metric that takes both the distance and direction into
consideration. Based on this metric, we demonstrate that the
learned locomotion outperforms the model-based locomotion in
terms of tracking accuracy.

2. RELATED WORK

As our work is related to the perception-driven locomotion of
snake-like robots and perception-driven algorithms based on
reinforcement learning, we briefly review the state-of-the-art
research on both aspects in the following.

2.1. Vision-Based Snake-Like Locomotion
Trajectory or target tracking of snake-like robots is important
and operators usually control their locomotion by indicating the
expected direction of its head module (Kamegawa et al., 2004;
Fukushima et al., 2012; Yamada et al., 2013; Tanaka and Tanaka,
2015). Under the velocity constraints, which prevent the body
from slipping sideways, trajectory tracking locomotion control
of snake-like robots has been investigated (Matsuno and Mogi,
2000; Prautsch et al., 2000; Transeth et al., 2007; Ishikawa et al.,
2009; Tanaka and Matsuno, 2014). Liljeback proposed a straight
line path-following controller of a planar snake-like robot under
the Line-of-Sight (LOS) guidance law, but the robot’s head could
not track the desired trajectory (Liljeback et al., 2011). Matsuno
derived a dynamic model to avoid the singular configuration
of the robot body. Using this control law, their snake robot
can accomplish trajectory tracking of the head module without
converging to a singular configuration (Matsuno and Sato, 2005).
However, their results were only tested on a sinusoid-like track
and this dynamics-based method may not adapt to unknown
scenarios with changing dynamics. Similar ideas can also be
found in Tanaka et al. (2015) and Huang et al. (2017). Xiao
performed autonomous locomotion in a known scene and the
positions of the snake-like robot and the obstacles were acquired
from external web cameras (Xiao et al., 2015). This method,
in fact, is a trade-off idea since they could not use the built-in
camera in the snake-like robot due to its undulating locomotion
pattern. In fact, there are few research efforts about the onboard
vision-based locomotion control of snake-like robots, since the
undulation of the body cannot provide a stable base for vision
sensors. Bing et al. (2019a) proposed an end-to-end target
tracking for snake-like robots based on spiking neural network.
However, the network controller only outputs the steering signals
and the locomotion itself is further generated with model-
based methods. The robot “IRS Souryu” equipped with a ToF
camera and 3D range sensors performs real-time localization and
mapping tasks in a rubble environment (Ohno et al., 2006). A
semi-auto snake-like robot with a B/W camera and a structured
light sensor was investigated to perform a localization task
of a pole, navigate and then climb it (Ponte et al., 2014). A
slithering gait that specially designed for snake-like robots to
perform target tracking tasks is introduced in Bing et al. (2017).
A detailed survey about perception-driven and obstacle-aided
locomotion for snake robots can be found in Sanfilippo et al.
(2017).
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2.2. RL-Based Tracking
As a principle approach to temporal decision-making problems,
RL-based approaches have been used for solving visual object
tracking tasks that aim at finding the target position in
contiguous frames and whereby steering the locomotion of an
mobile agent. Gaskett designed a mobile robot that can perform
visual servoing and wandering behaviors through a Q-learning
method (Gaskett et al., 2000; Garcia-Aracil et al., 2011). The
work clearly demonstrated that a direct mapping from image
space to actuator command using RL is a promising method.
Similar work is also given in Asada et al. (1996), Takahashi et al.
(1999), Busquets et al. (2002), and Hafner and Riedmiller (2003).
Miljkovic presented a novel intelligent visual servo controller
for a robot manipulator using RL (Miljković et al., 2013).
Based on their control scheme, the performance of the robot is

FIGURE 1 | Target tracking scene for a snake-like robot.

improved and is able to adapt to the changing environment. In
the recent ViZDoom platform for visual reinforcement learning,
they provided two basic scenarios: a basic move-and-shoot bot
and a maze-navigation bot. Yun developed a reinforcement
learning scheme to utilize labeled video sequences for training
their action-driven tracker (Yun et al., 2018). In Ding et al.
(2018), a partial RL based tracking algorithm was proposed to
achieve adaptive control of a wheeled mobile robotic system
working in highly complex and unpredictable environment. The
controller required less calculation time than other optimization
technologies and exhibited higher accuracy at the same time.
As far as we are aware, to date, there have been no studies
that employ reinforcement algorithm to control snake-like robots
for performing vision-based locomotion, except for one of
our previous research that used RL to design energy-efficient
gaits (Bing et al., 2019b).

3. MODELS AND TASKS

This section first introduces the models of the snake-like
robot. Then, the target tracking task is presented, together with
the target tracking metric for evaluating the performances of
different algorithms.

3.1. Models
The target tracking scene is modeled and simulated in
MuJoCo (Todorov et al., 2012), in which a red ball is used as the
target and a snake-like robot is the tracker (see Figure 1). The
easily detectable sphere has a radius of 0.2 m and is placed in
front of the snake at the distance of 4m. The robot is inspired by
the ACM snake-like robot (Hirose, 1993), which uses eight joints
and nine identical modules. A head camera is used as the visual
system for the snake-like robot, which is positioned in the center

FIGURE 2 | Each of these four diagrams visualizes one of the testing tracks. The tracks define the trajectory of the target. The black dots indicate the start positions

of the track. Only a limited length is displayed because the tracks are continuing. The first three figures show the line, zigzag, and sine track, respectively. The last

sub-figure gives an example of a random track.
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of the first head module. Due to the camera position and view
volume, the ground area in front of the robot is clipped during
rendering. The purpose of this camera is to obtain information
of the moving target. More details about the model of the robot
can be found in Bing et al. (2019b).

3.2. Tasks Description
In our target tracking task, the snake-like robot has to follow a
target while maintaining a certain distance from it. The target
moves with a specified velocity vt = 0.3 m/s on the trajectories
of random tracks with constrained conditions. The random-
tracks consists of short straight forward sections linked by abrupt
random direction changes with angles between −60◦ and 60◦. A
random seed is used to generate arbitrarily random tracks during
the training process.

For evaluating the performances of the controller, we also
design four predefined tracks for testing as shown in Figure 2.
The line track is used to test a simple forward locomotion and is
therefore the easiest. For testing the steering behavior, the wave
track offers a continuous curve where the robot has to alternately
change its steering direction. A modified sinus wave defines the
wave track. The zigzag and random track scenarios test the robot’s
capability to handle abrupt directional changes. The zigzag track
is defined by alternating abrupt left and right turns of 60◦. The
random track consists of short straight forward sections linked by
abrupt random direction changes with angles between −60◦ and
60◦. Heess et al. (2017) described that starting with easier tasks
for training supports a faster learning process in RL. Thus, all

the tracks have a short straight segment at the beginning, which
enhances the learning process because it is easier to move straight
forward at the beginning of a training process.

3.3. Tracking Metrics
As illustrated in Figure 3, the location of the target at time t can
be represented as XT(t) = (xT(t), yT(t)) in the global frame of
reference RG . Similarly, let the position of the snake-like robot
at time t be denoted by XF(t) = (xF(t), yF(t)). For simplicity, we
discretize the time with steps of δt = 0.01ms and use the notation
n to refer to the nth time step. Let d(n) = ||XT(n) − XF(n)||2
be the distance between the target and the robot at time-slot n,

where || · ||2 denotes the L2 norm. In addition, θT = arctan
yT (t)
xT (t)

represents the global angle of the target and θF = arctan
yF(t)
xF(t)

is

the angle of the head module in RG . Then, the absolute relative
angle between the head and the target φt can be calculated as

φt = |θT − θF| (1)

An expected tracking is to minimize the distance difference from
d(n) to desired distance dt and aims at the target in the middle
of the field of view (FoV) to greatest extent. Thus, the Averaged
Tracking Error (ATE) is defined as

ATE =

N
∑

i=0

(

|d(n)− dt|

dt
×

φt(n)

φtmax

)

×
1

N
, (2)

FIGURE 3 | An overview of the used angles between the camera and the target. It shows the first module and the target with their corresponding relative angles from

a top view perspective. Here, the head to target angle φt has a value of 30◦. The global angle of the head θF is 10◦. The target position is at (xT , yT ) and has a

Euclidean distance d to the camera position (xF , yF ).
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FIGURE 4 | The overall architecture of the RL controller with the details of the observation space and the action space.

FIGURE 5 | This figure shows the visual information of the target at the distance of 4.0 m with 30◦ on the left. The left figure is the original image with 1, 685× 1, 050

from the sensor. The middle figure is rendered with 32× 20 pixels. The right array of pixels from the 10th row is used to estimate the relative position and distance of

the target.

TABLE 1 | The observation space oti of the controller.

Symbols Descriptions

α1−8 Relative joint angular positions

α̇1−8 Relative joint angular velocity

v1 Absolute head module linear velocity

p10,1−32 Pixel 1–32 of the 10th row of the camera image

where N is the amount of the time steps. |d(n) − dt| calculates
the absolute distance error in the normal direction. 1

dt
is used to

calculate the error ratio against the desired target. φt(n)
φtmax

indicates

the target’s deviation in the FoV, where φtmax = 60◦.
It should be noted that the tracking metric ATE is not used

the reward function for our RL controller, since the reward signal
only depicts a desired behavior that keeps a distance with the
target while the trackingmetric specifically measures the tracking
accuracy. For RL tasks, it is more realistic to simply use an
intuitive reward instead of regularizing it with a specific metric.

4. BASELINE EXAMPLE

This section briefly explains the start-of-the-art and widely used
method for controlling the locomotion of snake-like robots,
which is the model-based gait equation controller.

The gait equationmethod is a kinematic locomotion controller
that describes the gaits using a sinusoid-like wave. This method
was first proposed as the serpentine curve (Hirose, 1993) by
Hirose who gained inspiration from real snakes. In this work,
an undulation gait equation developed in Tesch et al. (2009) is
used for the purpose of comparison. The gait equation controller
is modeled as

α(m, t) = (
m

M
x+ y)× A× sin(ωt + λm)+ C . (3)

α(m, t) presents the joint angle value at time t, where m
is the joint index and M is the joint amount. λ and ω

are the spatial and temporal frequency of the movement,
respectively. The spatial frequency represents the cycle numbers
of the wave and the temporal frequency represents the
traveling speed of the wave. A is the serpentine amplitude
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and x and y are the constants for shaping the body curve.
C is the amplitude bias for steering the direction of a
slithering locomotion.

The target tracking locomotion for the gait equation controller
is divided into two sub-tasks, namely, lateral localization and
speed control. Similar ideas can be also found in Bing et al.
(2017) and Bing et al. (2019a). In the FoV of the robot, the
target will be identified as a group of red pixels. For the
lateral localization control, the moment of the red pixels is
calculated and then used as the control target for a proportional
integral (PI) controller, since it indicates the relative position
of the target in the FoV of the robot. For the speed control,
the number of the red pixels are counted to represent the
distance from the robot to the target. In order to have a
more accurate estimation, the visual image is rendered with
a higher resolution 128 × 80 × 3. This is because a higher
resolution can generate more amounts of red pixels for the same
target and then result in a more accurate control performance.
Due to the page limit, the implementation details of the gait
equation controller will not be further explained. To ensure
a fair comparison, we make many attempts to find the best
control parameters to optimize the performance. But only the
best tracking results are selected as the baseline example for
further usage.

5. PROPOSED RL-BASED CONTROLLER

This section presents the details of the proposed RL-based
controller, including the construction of the network and the
training configuration and results.

5.1. Reinforcement Learning Setup
The most important components of a RL controller are the
observation space, the action space, and the reward function. The
overall architecture is shown in Figure 4.

5.1.1. Observation Space

The snake-like robot solely use a RGB vision sensor to track the
target. Due to the undulation of the locomotion, the rendered
image from the robot keeps shifting in the horizontal direction.
In order to reduce unnecessary dimensions and enhance the
computing efficiency, the following steps describe the image
processing pipeline:

1. The image is directly rendered with 32 × 20 × 3 pixels. The
middle figure in Figure 5 shows an example of the rendered
RBG image with 32× 20× 3 resolution.

2. The 10th row is extracted from the rendered image, since this
line contains the pixels at which the target is located, as shown
at the top right of Figure 5.

3. The color space is then transformed from RGB to gray with
values in the range of [0, 1] based on the intensity of the red
pixel, as shown at the bottom right of Figure 5.

The resulting 32 pixels p10,1−32 contain information about
the target’s relative position. Furthermore, its distance can
also be estimated by the gray value intensities of the target’s
corresponding pixels. This value increases when the target is
closer and decreases when the target is further away. These
changes are caused by the illumination of the bright background.
The further away the target is, the smaller it is rendered, resulting
in a lower pixel count.

The controller also has to control the locomotion of the snake-
like robot. To be able to propel forward, it performs a lateral

FIGURE 6 | The learning curve of the autonomous target tracking model. It is trained with 3 million time steps with 1,000 time steps per episode and 1,024 time steps

per update.
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FIGURE 7 | The trajectories of the snake-like robot and the testing tracks. In addition, the body curve of the snake-like robot and the target position are added and

captured every 1,000 time step.
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FIGURE 8 | The performance of the RL and gait equation controller in maintaining a certain distance from the target is shown in this figure. Each diagram represents

one episode run on a track with 3,000 time steps. The target distance is set to 4.0 m and the range limits are set at 2.0 and 6.0 m. The histogram on the right of each

diagram shows the distance distribution of the RL controller. Overall the distance varies in an adequate range around the target distance.
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undulation motion pattern with its joints. At each time step, it
receives the current joint angular positions α1−8 and the angular
joint velocities α̇1−8 to learn the locomotion and represent the
proprioceptive awareness of the robot. In addition to these
parameters, the controller also receives the global head module
velocity along the moving direction v1. It has been observed that
this helps it to estimate its global velocity. This is required to
control the velocity of the robot. In summary, an overall 49-DOF
observation space is used in this work, as shown in Table 1.

5.1.2. Action Space

The action space ati of the RL controller corresponds to the eight
joint positions of the robot, which linearly map finite continuous
values in the range of [−1.5, 1.5] to [−90◦, 90◦].

5.1.3. Reward Function

In the target tracking task, the snake-like robot follows a
moving target while maintaining a specified distance dt from
it. Meanwhile, the robot should also try to maintain the target
in the center of its FoV. Therefore, the distance-keeping and
lateral localization in the FoV are the two criteria to find a
successful behavior.

Thus, a distance-keeping reward is designed. Let dr = 2 m
define the distance radius from td = 4 m to its maximum
distance dmax = 6 m and minimum distance dmin = 2 m. In this
approach, the reward represents the distance change between the
head module and the target. The less distance changed toward
the target distance dt , the higher the reward. Similarly, the lower
reward is received by increasing or decreasing the distance from
the target distance dt . The reward function is defined as follows:

rd = (1−

∣

∣dt − dafter
∣

∣

dr
)− (1−

∣

∣dt − dbefore
∣

∣

dr
)

=

∣

∣dt − dbefore
∣

∣ −

∣

∣dt − dafter
∣

∣

dr

Here, dbefore defines the distance before the action, whereby the
distance after the action is defined as dafter. Note that the distance
change can also be denoted as velocity, since the measurements
are time dependent. The term |dt − d| calculates the absolute
distance difference between dt and the current head position. The

resulting normalization |dt−d|
dr

is 0, if d = dt and 1 if d = dt ± dr .

This effect is inverted by 1 −
|dt−d|
dr

. As a result, the maximum

reward of 1 is achieved if d = dt .
In the task of autonomous target tracking, it is important to

maintain vision of the target in order to react to its movement
changes. It is worth noting, different from the evaluation metric
defined in (2), that the reward function does not explicitly reward
that behavior. The agent has to learn independently that it must
observe the target’s position in order to follow it.

5.2. Training
In order to map the input (observation oti) and the output
(action ati), a fully connected 2-hidden-layer neural network is
constructed as an approximator to the policy πθ . The input
layer and the output layer share the same dimensions as
the observation space oti and action space ati . The proximal

policy optimization (PPO) algorithm adapted from is used to
train the network, since PPO performs better on continuous
action space tasks while being much simpler to implement and
tune (Schulman et al., 2017). We train our policy network on a
computer with an i7-9750H CPU and a Nvidia RTX 2070 GPU.

The model is trained by using the random track with a
changing random seed for every episode. Therefore, a variety of
tracks are generated and the model will not overfit to a specific
track. This is necessary because it has been observed that the
model tended to overfit while training on unvarying trajectories.
As result for overfitting, the controller was not be able to adapt to
other trajectory patterns. Based on the learning curve, a total of 3
million time steps (about 3,000 updates) were used for training
(see Figure 6). The training process will terminate itself either
when the target is out of view or reaching the end of the total
time-steps. The mean reward gradually increases and levels up at
around 2.4 with some fluctuation. This is because performance
of the controller varies from the randomly changing track for
each episode. The model at update 2,900 was selected for the
further usage.

6. RESULTS AND DISCUSSIONS

This section will first describe the performance of the gaits
generated by the RL controller in testing tracks. Then, we
compare our gaits to the gaits generated from traditional model-
based method in terms of tracking accuracy. Finally, we will give
the limitation of the simulated results.

6.1. Results
The performance of the RL controller was tested on four different
tracks (see Figure 2). For evaluation, the episode length is set
to 3, 000 time steps. The trajectories of the head module of
robot during the evaluation are shown using red solid lines in
Figure 7, together with its corresponding track pattern (blue
dash lines). In addition, the body curves are plotted every
1, 000 time step with the target position at that time using
green lines and dots. For all four tracks, the RL controller was
able to successfully follow the target. By comparing the trace
of the snake-like robot and the track, a variation is observed
in which the trajectories are not matched to each other. In
some sections, they go in parallel or cross each other. This
indicates that the snake-like robot is not heading directly for
the target’s position. In some cases, the head module’s trace
takes a shortcut in the curves of the target’s track. However,
the trace of the head module is maintaining a visible minimum
distance. We can thus conclude that the controller performs a

TABLE 2 | The statistics for the head to target distances (unit: meters).

Track Mean Std Min Max

Line 3.99 0.18 3.60 4.49

Random 3.96 0.24 3.48 4.43

Wave 3.99 0.24 3.46 4.85

Zigzag 3.88 0.22 3.40 4.46
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FIGURE 9 | The tracking metric curves of the RL controller and gait equation controller over the elapsed time (3,000 timestep in total) in four scenes. The tracking

metric is defined in (2).
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successful path-following behavior. Besides, the controller had
to maintain a certain distance to the target. The red lines and
the histogram in Figure 8 show the distance distribution of
runs on all tracks. In all runs, the distance varies around the
target of 4.0 m which is measured at the center of the head.
The oscillation movement of the head causes constant minimal
distance changes. Table 2 shows the statistics of the runs. As
result, the controller was able to maintain the distance from the
target with an adequate variance.

6.2. Comparisons
In order to evaluate the performances of the RL controller against
the model-based method, the gait equation controller (section 4)
was also executed on those four testing tracks.

We first compare the performance of the tracking accuracy.
Figure 8 shows the traces of the distance between the target
and the robot for both controllers. In general, we can observe
that the RL controller has a better tracking accuracy than the
gait equation controller. For the RL controller, it exhibits better
performances at the beginning process on all different tracks and
keeps the distance very close to the desired value. Then with the
accumulated error, all these four figures reach a relatively large
error at some point, but then correct its direction to the right
course. For the RL controller, the lag of tracking is much more
smaller. After the starting of the movement, RL-based controller
also exhibits better tracking accuracy. For the gait equation
controller, it deviates most at the beginning of the movement for
all four tracks. This is because the controller needs to response
to the changing visual information and the effect will only show
after the error has been accumulated for a period of time.

The second performance indicator is the tracking metric ATE
defined in (2). The ATE is plotted over time steps in Figure 9. It
can be observed that for both controllers, the metric curve gets
higher due to the accumulated error with time passing by. But for
all four scenes, the RL controller outperforms the gait equation
controller: by around 50% in the simple line and wave scene
and by 70% in the other difficult scenes. In conclusion, the RL
controller outperform the gait equation controller both in terms
of distance tracking accuracy and the averaged tracking error.

Since our training will terminate itself once the robot lose sight
of the target, there will be no target recovery behavior obtained
during training, such as retaining. In fact, the target recovery
behavior is associated with some memory-like function that can
predict the motion tendency of a moving object.

6.3. Limitations
It is worth noting that, our RL-based controller is demonstrated
by simulations now and has not been support with results of
physical snake-like robot yet. In order to ensure the validity
of the simulated results, we first try to close the simulation-
to-reality gap by setting simulation parameters with real-world
properties (e.g., dimension, density, friction, etc.). Second, all the
methods implemented in simulation can also be produced in a
real-world setup.

For prototype experiments, the main challenge is how to train
the RL controller in a real-world setup, which usually requires

millions of episodes. Different from a robotic arm that can
be set to its initial condition easily, there is no good way to
reset the training scene for mobile robots in real world. Some
algorithms (Fu et al., 2017; Hwangbo et al., 2019) may directly
transfer the learned policy from simulation and implement it in
real-world scenario. But this is out of the scope of this paper.

7. CONCLUSION

Performing target-tracking tasks for snake-like robots is a
challenging task, since it not only involves designing agile
locomotion patterns for the robot, but also overcoming
difficulties to obtain stable visual information due to the inherent
undulatory motions. In this paper, we try to solve this complex
perception-to-action control task by using reinforcement
learning, which directly maps the vision space to the joint
space and reduces the computational complexity of dealing
with object tracking and robot motion control in separate
components. In our test scenarios, the learned gait shows
much better tracking performances than the model-based
method. Our work contributes to designing sophisticated and
efficient moving patterns for perception-driven tasks with a
snake-like robot.

Our future work will aim at performing tracking tasks with
more complex visual information. For instance, the perception of
the visual information can be replaced with more sophisticated
technologies. To improve the adaptability of our RL controller,
we will further investigate locomotion skills for more challenging
scenarios, such as in a obstacle surrounding environment and
the capability to recover tracking when the target runs out of the
visual field of the robot.
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The fault safety monitoring of hydrogen sensors is very important for their practical

application. The precondition of traditional machine learning methods for sensor fault

diagnosis is that enough fault data with the same distribution and feature space under

the same working environment must exist. Widely used fault diagnosis methods are

not suitable for real working environments because they are easily complicated by

environmental conditions such as temperature, humidity, shock, and vibration. Under

the influence of such complex conditions, the acquisition of sensor fault data is limited.

In order to improve fault diagnosis accuracy under complex environmental conditions,

a novel method of transfer learning (TL) with LeNet-5 is proposed in this paper. Firstly,

LeNet-5 is applied to learn the features of the data-rich datasets of gas sensor faults in

a normal environment and to adjust the parameters accordingly. The parameters of the

LeNet-5 are transferred from the task in the normal environment to a task in a complex

environment by using the TL method. Then, the migrated LeNet-5 is used for the fault

diagnosis of gas sensors with a small amount of fault data in a complex environment.

Finally, a prototype hydrogen sensor array is designed and implemented for experimental

verification. The gas sensor fault diagnosis accuracy of the traditional LeNet-5 was 88.48

± 1.04%, while the fault diagnosis accuracy of TL with LeNet-5 was 92.49± 1.28%. The

experimental results show that the method adopted presents an excellent solution for the

fault diagnosis of a hydrogen sensor using a small quantity of fault data obtained under

complex environmental conditions.

Keywords: hydrogen sensor, fault diagnosis, transfer learning, LeNet-5, machine learning

INTRODUCTION

With the gradual depletion of traditional energy sources and the development of clean fuel, clean
fuel plays a prominent role throughout many fields (Tsujita et al., 2005; Brown et al., 2015). As
hydrogen is a clean fuel, its application range is therefore rapidly expanding (Chalk and Miller,
2006). It is widely used in meteorological science, aerospace technology, the metallurgical industry,
the electronics industry, national defense, the chemical industry, and so on, and its consumption
is also increasing rapidly (Poirier and Sapundzhiev, 1997; Winter, 2005; Staffell et al., 2019).
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Hydrogen is a colorless, odorless, flammable, and explosive
gas. It is necessary to monitor hydrogen concentrations using
hydrogen sensors because it is considered a dangerous chemical
(Song et al., 2019).

Semiconductor gas sensors have been widely used in hydrogen
detection based on SnO2-sensitive materials (Fedorenko et al.,
2017; Zhang Q. et al., 2018). However, they can be hindered
by sensor aging, environmental temperature and humidity,
sensitive material falling off the sensor, gas adsorption poisoning,
and other factors that could affect the reliability of the
sensors. Hydrogen sensors are prone to failure in its hydrogen
safety detection function, which may lead to combustion and
explosion. Therefore, hydrogen sensors’ fault diagnosis is of
great importance. Ingimundarson et al. proposed model-based
detection of hydrogen leaks in 2008 (Ingimundarson et al., 2008).
Ma et al. proposed hydrogen sensor for fault detection of power
transformer in 2012 (Ma et al., 2012). Song et al. proposed a
fault diagnosis and reconfiguration strategy for hydrogen sensor
array in 2019 (Song et al., 2019). Sun et al. proposed a new
convolutional neural network method for hydrogen sensor fault
diagnosis in 2020 (Sun et al., 2020).

Recently, traditional machine learning (ML) methods have
been widely used for fault diagnoses, such as the extreme
learning machine (ELM) (Song et al., 2019), empirical mode
decomposition (Chen Y. S. et al., 2016), support vector machines
(SVM) (Hu et al., 2005), KNN (Yang et al., 2016b), non-negative
matrix factorization (Yang et al., 2016a), gray forecasting (Chen
Y. et al., 2016), learning vector quantization (LVQ) (Bassiuny
et al., 2007), random forest (RF) (Mohapatra et al., 2020),
and kernel principal component analysis (KPCA) (Navi et al.,
2018). These methods can effectively extract fault features to
a certain extent, but there are some limitations. ML methods
are unable to generate discriminative features of fault signal
data, there methods always combined with the signal features
extraction process, the features should be predesigned. However,
predesigning handcrafted features is difficult. The features
extraction process of fault signal is an exhausted work and
impacts the fault diagnosis result. These methods require experts
to have a rich mathematical knowledge about manual feature
extraction, and the degree of automation of feature extraction is
greatly limited. Themethod selected by the experts directly affects
the diagnosis results.

As a branch of ML, deep learning (DL) has powerful
functionality and flexibility. DL does not need to rely on expert
experience andmanual feature extraction (ZhangW. et al., 2018),
so many scholars have gradually introduced DL methods, such
as the deep belief network (Shao et al., 2018; Wang et al., 2020),
sparse autoencoders, and convolution neural networks (CNNs)
(Wen et al., 2018; Wu and Zhao, 2018; Gou et al., 2020; Sun et al.,
2020) into fault diagnosis processes. These methods can improve
the accuracy of fault diagnosis, but there are some limitations.
These methods require certain preconditions: sufficient sample
data are required, and the training and test samples need to have
the same data distribution. When the distributions of sample
data are different, the performances of the above methods would
drop. They does not consider the use of fault data under different
environments for fault diagnosis.

The concept of transfer Learning (TL) was first proposed in
1995 at a conference on neural information processing systems
(Thrun, 1995). TL is adopted to improve the performance of the
current task by using data, models, or tasks from the source task
that are different from (but similar to) the target task (Pan and
Yang, 2009; Chen et al., 2019). When the data attributes and
feature spaces in the source domain and the target domain are
similar but not identical, previous learning experience is used to
solve the crossing domain problem (Pan and Yang, 2009; Wen
et al., 2017a). There are many scenarios of TL, such as multi-
task learning (Caruan, 1997) and domain adaptation (Saenko
et al., 2010). Model-based TL can use the pre training knowledge
acquired in the source domain to transform and summarize the
deep model (Donahue et al., 2014). As a new ML method, many
scholars have started to introduce the TLmethod into the process
of fault diagnosis under variable conditions (Wen et al., 2017b;
Wu et al., 2020). However, this method is rarely used in gas sensor
fault diagnosis.

In this paper, a gas sensor fault diagnosis method based on
TL with LeNet-5 in a complex environment is proposed. A large
set of gas sensor fault signal data under normal environmental
conditions is adopted to train the traditional LeNet-5 model until
an excellent performance is observed. However, it is difficult
to obtain an amount of fault signal data due to the limitation
of experimental conditions under complex environment, so
the fault signal data is limited. The traditional model and
parameters of the LeNet-5 can transfer to a new target task with
a small amount of fault data using the TL method. The TL
with LeNet-5 method could make use of gas sensor fault data
from different environments, resulting in a better performance
in complex environments. The benefits of this novel method
improve the accuracy of fault diagnosis in complex environments
by utilizing gas sensor fault signal data from normal and
complex environments when only a small quantity of target fault
data exists.

The remainder of this article is organized as follows. The
second section introduces the theoretical fundamentals. In the
third section, a novel model based on TL with LeNet-5 for
hydrogen sensor fault diagnosis is introduced. The fourth section
verifies the performance of the proposed method. The fifth
section contains the conclusions and future researches.

THEORETICAL FUNDAMENTALS

CNNs and LeNet-5
CNNs are widely used in image processing. They consist
of a convolutional layer, pooling layer, and full connection
(FC) layer. The convolutional layer can extract features via
a convolutional operation on the previous layers of different
convolutional kernels. More features can be extracted by using
multiple convolutional kernels. The pooling layer can sample the
features extracted from the convolutional layer. The sampling
method can be divided into two parts: maximum sampling and
mean sampling. In this paper, the maximum sampling method
is adopted. Each node of the FC layer is connected with all
nodes of the previous layer, which are used to integrate the
features extracted from the front edge (Wu and Zhao, 2018). The

Frontiers in Neurorobotics | www.frontiersin.org 2 May 2021 | Volume 15 | Article 66413536

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Sun et al. New Sensor Fault Diagnosis Method

mathematical model of the CNN follows Equation (1).

xlj = f (
∑

i∈Mj
xl−1
j × klij + blj) (1)

where Mj denotes the input characteristic graph, k denotes the
convolution kernel, b denotes the network bias, x1j denotes the l

layer output, and xl−1
j denotes the l layer input. The calculation

method for subsampling layer neurons follows Equation (2):

xlj = f (β l
jdown(x

l−1
i )+ blj) (2)

where down(xl−1
i ) denotes the subsampling function and β

denotes the network multiplicative bias. The CNN’s output layer
model follows Equation (3):

O = (bo + wofv) (3)

where fv denotes the eigenvector, bo, wo denotes the deviation
vector and the weight matrix.

There are many CNN models; for example, GoogLeNet
(Szegedy et al., 2015), AlexNet (Krizhevsky et al., 2017), and
LeNet-5 (LeCun, 2015). As a classic CNN, LeNet-5 is widely
used for handwritten digital character recognition (Tivive and
Bouzerdoum, 2005) and fault diagnosis (Wen et al., 2018; Sun
et al., 2020). LeNet-5 is a CNN with a gradient-based learning
structure, and its input layer is an image with a size of 32× 32
pixels. The typical LeNet-5 structure consists of two alternating
convolutional layers, two pooling layers, and the two-layer FC
artificial neural network. Compared with Alenet, GoogLenet,
VGG16, and other CNN algorithms, LeNet-5 method has simple
structure and high accuracy (Wen et al., 2018; Lu et al., 2019), and
has achieved good results in hydrogen sensor fault diagnosis (Sun
et al., 2020). Therefore, this study adpots LeNet-5 as classifier.

Transfer Learning
TL is committed to transferring information of knowledge
obtained on sufficient labeled data of a source domain to a small
amount of data of a target domain. From the data volume, the
source domain data are easy to obtain, the data samples are
sufficient, the target domain data are difficult to obtain, and the
data samples are very limited. When the content of previous
learning and the content of new problems are similar, and the
potential data share some common characteristics, the migration
effect is significant. For example, it is easier for a person to learn
to ride a motorcycle after learning to ride a bicycle. The domain
and task follow Equations (4) and (5)

D = {X, P(X)} (4)

T = {Y , P(Y/X)} (5)

where D denotes the domain and T denotes the task. X, Y
are the feature space and category space, respectively, and
P(X), P(Y/X) are the marginal probability distribution and
the conditional probability density, respectively. TL based on
parameters migration is adopted in this paper; that is, some
parameters are shared between the target domain model and

the source domain model. Its purpose is to mine the prior
distributions or parameters shared between the source domain
and target domain.

PROPOSED MODEL FOR FAULT
DIAGNOSIS OF HYDROGEN SENSORS
BASED ON TL WITH LENET-5

In this section, a novel model of TL with LeNet-5 is proposed
for the fault diagnosis of hydrogen sensors. Firstly, a method
for preprocessing the raw signal of hydrogen sensors is adopted.
Secondly, TL with the LeNet-5 method is proposed for gas sensor
fault diagnosis.

Hydrogen Sensor Fault Signal
Pre-treatment
In this paper, the data preprocessing method we adopted
changes the raw fault signal into a two-dimensional gray image
conversion (Sun et al., 2020). We normalized the fault data. This
method could not only realize end-to-end data conversion, but
also eliminate the influence of expert experiences as much as
possible without any predefined parameters. Supposing that the
sensor fault signal is L(n), it follows Equation (6)

L(n), n = 1, 2, · · · · ·,N ×M (6)

and the resolution of the two-dimensional gray image is N ×

M pixels, where N is the width and M is the height. To ensure
the symmetry of L[i], the MOL as the matrix of L[i] follows
Equation (7)

MOL =







L(1) · · · L(N)
...

. . .
...

L((M − 1)N + 1) · · · L(NM)






(7)

The process of sensor fault signal pretreatment is shown in
Figure 1.

The Proposed Method of the TL With
LeNet-5
Many CNN models have been proposed in recent years. This
paper adopts the classic LeNet-5 model, which has been applied
in many fields. The proposed LeNet-5 method consists of two
parts: feature extraction and fault classification. It requires an
image size of 32× 32 pixels as the input; however, in order
to improve the results of the gas sensor fault classification, we
changed the size of the LeNet-5 input image. The revised width
N of the gray image is 50 pixels, and the height M is 40 pixels.
These adjustments depend on the volume of the raw fault signal
and the architecture of feature extraction. The LeNet-5 consists
of two convolution layers, two pooling layers, and two FC layers
with two strategies: dropout and batch normalization (BN). The
LeNet-5 structure proposed in this paper is shown in Figure 2.

This paper proposes TL with LeNet-5 method for gas sensor
fault diagnosis in a complex environment, which involves two
domains: the source domain and task domain. The source
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FIGURE 1 | The process of gas sensor fault signal pretreatment. (A) One dimensional time domain gas sensor fault signal, (B) Two dimensional gray image.

FIGURE 2 | The LeNet-5 structure proposed in this paper.

domain contains S kinds of gas sensor signal modes with
sufficient fault data under a normal environment. The target
domain contains T kinds of gas sensor signal modes with a small
amount of fault data under a complex environment. The process
of fault diagnosis is presented in six steps.

(1) S kinds of signal mode data in the source domain
are preprocessed and converted into two-dimensional
gray images.

(2) The images of source domain are input into the LeNet-5
model for training.

(3) The trained LeNet-5 model and parameters are transferred
to the target domain.

(4) T kinds of signal mode data in the task domain
are preprocessed and converted into two-dimensional
gray images.

(5) The images of task domain are placed into the TL with

LeNet-5 model for training, and the model parameters are

fine tuned.
(6) The test sample data are adopted to test the trained model

in order to verify the accuracy of the proposed method. The

detailed process of the TL with LeNet-5-based gas sensor
fault diagnosis model described in this paper is shown in
Figure 3.

EXPERIMENT AND VALIDATION OF THE
PROPOSED METHOD

Experimental Setup
Based on the environmental adaptability, reliability, and
performance tests, together with the related literature, several
typical fault signal modes of the SnO2 sensors are summarized
in this study. These include heating wire disconnection (HWD),
aging of the heating wire (AHW), aging of the sensitive body
(ASB), exfoliation of the sensitive body (ESB), and false welding
of the sensitive body (FWSB) (Sun et al., 2020). In order to
obtain the data from five modes of fault signals under normal
and complex environments, we collected fault data through
a self-made special gas sensor test system. The test system
is composed of a constant temperature and humidity box, a
shaking table, an electric fan, a standard hydrogen concentration
bottle, a standard air bottle, a gas molecular flow meter, a gas
mixer, a bidirectional regulated power supply, a data collector,
a computer, a temperature sensor, a humidity sensor, a sensor
chamber, and six SnO2 sensor arrays.

The constant temperature and humidity box provided the
test environment for temperature and humidity changes, the
shaking table provided the test environment for vibration
changes, and the electric fan provided the test environment
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FIGURE 3 | A detailed process of transfer learning with the LeNet-5-based gas sensor fault diagnosis model.

FIGURE 4 | A system diagram of hydrogen sensor arrays.

for wind changes. The hydrogen sensor array system diagram
is shown in Figure 4. A sensor array and gas chamber were
placed into the constant temperature and humidity box and
vibration table, respectively, to simulate temperature, humidity,
and vibration variations in the environment. The fan was
placed in the gas chamber to simulate wind changes in the
test environment.

The structure of the SnO2 sensor model (MQ-8) is shown
in Figure 5. It is composed of a four-leg plastic base, nickel-
plated copper column, stainless steel explosion-proof net, metal
buckle ring, nickel-chromium heating wire, gas-sensitive body,
gold lead, and porcelain tube carrier. The gold lead and the
porcelain tube carrier were connected via gold slurry sintering
welding, the nickel-chromium heating wire and the gold lead
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FIGURE 5 | The MQ-8 sensor structure diagram.

FIGURE 6 | The experimental setup of MQ-8 gas sensor array.

were connected via tin welding with the nickel-copper column,
and the nickel-chromium heating wire and the gas-sensitive body
were the key components of the hydrogen sensors. The nickel-
chromium heating wire can provide a high-temperature working
environment for the sensors. The function of the sensitive
body was to detect the concentration of hydrogen and convert
the value of the concentration into the resistance change. The
function of the gold lead wire was to pass the information of
the resistance change to the outside of the sensors through the
nickel-copper column. The functional components of the gas
sensormentioned above are themain factors leading to the failure
of the MQ-8 sensor. These variables keep constant during the
experiment. The process of data acquisition is listed as follows:
in the sensor array, each sensor has a separate power supply and
a separate voltage divider. When the signals of the six sensors
are collected, they are input to the single-chip microcomputer,
integrated into the data acquisition card, and finally uploaded
to the upper computer. The experimental device (the MQ-8
sensor array) is shown in Figure 6. The DL program was run
on a 3.0 GHz Intel CPU and 8 GB RAM with Python 3.7.4 and
TensorFlow 1.15.0 running Windows 10.

The general static calibration method of gas sensor is used to
put the sensor into a standard gas box, and inject pure measured

gas on the basis of the known space structure volume of the gas
tank. After conversion, the standard gas concentration can be
obtained. The standard gas concentration is placed on the sensor,
and the sensor has output, then the standard gas concentration
can be established the corresponding relationship with output
can achieve the purpose of sensor calibration.

In this study, the normal environmental conditions are
defined as a standard atmospheric pressure, temperature range
between 17 to 23◦C, humidity concentration range from 30 to
60%. The complex environmental conditions are defined as high
humidity concentration range from 90 to 95%, low humidity
concentration range from 10 to 20%, low temperature range from
−10 to −30◦C, high temperature range from 40 to 60◦C. The
wind is five meters per second, and it vibrates. The concentration
range of hydrogen is 0.1–1%.

The data from six signal modes (i.e., without fault and the
five fault types) were obtained through the instrument and
equipment we set up. We obtained the six signal modes of the
MQ-8 sensor under a normal environment, as shown in Figure 7.
The fault signal data were stable, so we used Matlab to simulate
the six signal modes under a normal environment and increased
the fault signal data number of the six signal modes. The sample
data includes real samples and Matlab simulation samples under
normal environment. The simulation data under different fault
modes were obtained by the following ways: (1) The HWD fault
was a linear signal with a larger slope which was superimposed
on the normal output signal from a certain moment. The signal
was stable at a certain value and at a certain moment. (2) The
AHW fault was a linear signal with small slope superimposed at a
certain moment of the normal output signal. (3) The aging cycle
of ASB fault was long, so the aging process is accelerated in the
simulation for the convenience of research, a linear signal with
very small slope was superimposed on the normal signal from a
certain time. (4) The ESB fault was to add a constant deviation
data on the normal output signal from a certain time. (5) The
output signal of the FWSB fault was 0 at a random time, and the
output was normal at a certain time. On this basis, the white noise
signal was superimposed.

Gas sensors often encounter complex environments in
practice. In order to observe gas sensor fault signals in
complex environments, we changed the temperature and
humidity of a constant humidity incubator to increase the
noise interference. The vibration noise interference could be
increased by changing the vibration spectrum of the shaking
table; the wind speed noise interference could be increased by
the wind force generated by the electric fan in the gas chamber.
In the end, the fault signals were obtained under complex
environmental conditions. Therefore, the experiment under
complex environment constructs a transformation environment,
but carries on the measurement under the stable situation. Due
to the complexity of the test conditions, we only get twenty-nine
fault data for each fault type.

The six signal modes of the MQ-8 sensor under a
complex environment are shown in Figure 7. As shown, the
collected gas sensor fault signal changed greatly and was
complex, so it was difficult to obtain these data through the
Matlab simulation.
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FIGURE 7 | Six signal modes of MQ-8 gas sensor under a normal environment and complex environment. (A) Normal signal; (B) The signal including heating wire

disconnection (HWD) fault; (C) The signal including aging of the heating wire (AHW) fault; (D) The signal including aging of the sensitive body (ASB) fault; (E) The signal

including exfoliation of the sensitive body (ESB) fault; (F) The signal including false welding of the sensitive body (FWSB) fault.

TABLE 1 | Signal mode types and samples of every type under normal and

complex environments using transfer learning with LeNet-5.

Source task Target task

Working environments Normal environment Complex environment

Signal mode types 6 6

Samples of every type 100 29

Through the experiments, the MQ-8 gas sensor signal mode
types and samples of every type (i.e., the five fault types and
without fault) under normal and complex environments were
obtained to verify the effectiveness of TL with LeNet-5, as shown
in Table 1.

Validation of the TL With LeNet-5 Method
To validate the advantages of the proposed model in the fault
diagnosis of a hydrogen sensor, tests were performed. The results
of TL with LeNet-5 training and inference are presented in
this section.

TL With LeNet-5 Training

There are data-rich sensor fault training samples under a
normal environment in the source data compared with the
target data under a complex environment. The LeNet-5 was
trained and transferred from a normal environment to a complex
environment. 100 samples of fault signal modes for each type in
the source task were used to train the traditional LeNet-5. In the
target task, only 20 samples of signal modes for each type were
obtained to train the transferred LeNet-5. Nine samples of signal
modes for each type in the target task were obtained for the test.
The details of the labels and samples under normal and complex
environmental conditions are shown in Table 2.

As shown in Figures 8, 9, the six sensor signal modes under
normal and complex environments were converted into two-
dimensional gray images, and the size of each image was 50×
40 pixels.

The two-dimensional gray images under a normal
environment were input into the traditional LeNet-5 for
training, and the number of experimental samples was 100 sets.
The traditional LeNet-5 was trained for 500 iterations. As can be

TABLE 2 | Labels and samples under normal and complex

environmental conditions.

Label Signals

modes

description

Normal

environment

conditions

Complex environmental conditions

Number of

training

samples

Number of

training

samples

Number of test

samples

1 Normal

signal

100 20 9

2 HWD signal 100 20 9

3 AHW signal 100 20 9

4 ASB signal 100 20 9

5 ESB signal 100 20 9

6 FWSB signal 100 20 9

The gas sensor signal data of six modes under normal environmental conditions were

the source data of the transfer learning with LeNet-5 method. The data under complex

environmental conditions were the target data of the transfer learning with LeNet-

5 method. They were also the training data for other methods without transfer in

the experiment.

seen from Figure 10, the training accuracy reached 100%, and
the training loss was close to 0 after about 50 iterations.

In order to verify the effectiveness of TL with LeNet-5 method,
two methods were used to train the gray images. As shown in
Figure 11, firstly, the traditional LeNet-5 model and parameters,
which were trained in the source task, were transferred to the
target task. The two-dimensional gray images under a complex
environment were used as the target domain data for retraining.
The TL with LeNet-5 method was trained for 500 iterations. The
training accuracy reached 100%, and the training loss was close
to 0 after about 150 iterations. Secondly, the two-dimensional
gray images under a complex environment were input into the
traditional LeNet-5 directly. The traditional LeNet-5 was trained
for 500 iterations. The training accuracy reached 100%, and the
training loss was close to 0 after about 200 iterations. The two
methods both used 20 sets of experimental samples.

TL With LeNet-5 Inference

To obtain better results, the TL with LeNet-5 used cross-
validation method. The experiments repeated 30 times. The
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FIGURE 8 | Converted two-dimensional gray images of the gas sensor signals

of six modes under a normal environment. (A) Normal signal; (B) The signal

including heating wire disconnection (HWD) fault; (C) The signal including aging

of the heating wire (AHW) fault; (D) The signal including aging of the sensitive

body (ASB) fault; (E) The signal including exfoliation of the sensitive body (ESB)

fault; (F) The signal including false welding of the sensitive body (FWSB) fault.

FIGURE 9 | Converted two-dimensional gray images of the gas sensor signals

of six modes under a complex environment. (A) Normal signal; (B) The signal

including heating wire disconnection (HWD) fault; (C) The signal including aging

of the heating wire (AHW) fault; (D) The signal including aging of the sensitive

body (ASB) fault; (E) The signal including exfoliation of the sensitive body (ESB)

fault; (F) The signal including false welding of the sensitive body (FWSB) fault.

diagnosis results of TL with LeNet-5 compared with the results
of the traditional LeNet-5 without transfer, compared under a
complex environment (in terms of accuracy). The total fault
diagnosis accuracy of the traditional LeNet-5 was 88.48± 1.04%,
while the total fault diagnosis accuracy of TL with LeNet-5 was
92.49 ± 1.28%. All the results of the fault diagnosis accuracy for
different signal modes are shown in Table 3. The boxplot of total
fault diagnosis accuracy is shown in Figure 12.

Discussion
In this study, the experimental conditions are limited, and only
twenty-nine fault data are available for each fault under complex
environment. The accuracy of fault diagnosis can be improved
by using TL with LeNet-5 method. As shown in Figure 11, the
convergence of the accuracy and the loss of the TL with LeNet-
5 training were faster compared with the traditional LeNet-5

FIGURE 10 | The LeNet-5 method’s training accuracy and loss from the

source task under a normal environment.

FIGURE 11 | Training accuracy and loss of transfer learning with the LeNet-5

method and the traditional LeNet-5 method under a complex environment for

the target task.

method without transfer. As can be seen in Table 3, transferring
to different target task results in different performance. That is to
say, the similarities of source task and target task could affect the
performance of transfer learning.

Two other methods (Zhang P. et al., 2018) were added
to comprehensively evaluate the performance: (1) using only
the samples from normal environment to train the LeNet-5
model, and the same testing data as in the TL method were
tested. (2) Using both the samples from the normal environment
and the complex environment to directly train the LeNet-5
model (Without TL), and the same testing data as in the TL
method were tested. The diagnostic results were 87.05% and
90.75%, respectively.

We also compared the TL with LeNet-5 method to traditional
ML methods, such as LVQ (Bassiuny et al., 2007), ELM
(the kernels is 116) (Song et al., 2019), SVM (the gamma
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TABLE 3 | Fault diagnosis accuracy of the different methods.

Signals

modes

description

From normal environment to complex environment

Without

transfer (%)*

Transfer

learning (%)*

Improvements

(%)*

Normal signal 100.00 ± 0.00 100.00 ± 0.00 0.00 ± 0.00

HWD signal 88.53 ± 2.03 98.89 ± 3.39 10.36 ± 4.05

AHW signal 87.42 ± 4.82 88.90 ± 2.92 1.48 ± 3.84

ASB signal 88.16 ± 2.82 89.64 ± 2.82 1.48 ± 4.82

ESB signal 77.43 ± 2.03 78.54 ± 2.82 1.11 ± 3.39

FWSB signal 89.27 ± 2.03 99.26 ± 2.82 9.99 ± 3.39

Total 88.48 ± 1.04 92.49 ± 1.28 4.01 ± 1.61

*X ± SD.

FIGURE 12 | Boxplot of fault diagnosis accuracy of the different methods.

value of polynomial kernel is 2) (Hu et al., 2005), KNN
(Yang et al., 2016b), and RF (Mohapatra et al., 2020). All
the experiments repeated 30 times, respectively, and all the
results are presented in Table 4. The novel method had
a higher accuracy than the traditional ML methods in a
complex environment.

CONCLUSIONS AND FUTURE
RESEARCHES

In this paper, a novel TL with LeNet-5 method was proposed for
gas sensor fault diagnosis. The novel method has been validated

TABLE 4 | Diagnosis accuracy based on seven different methods under a

complex environment.

Methods Accuracy (%)

LVQ 77.48 ± 1.12

ELM 79.50 ± 0.48

SVM 87.10 ± 0.92

KNN 85.19 ± 0.50

RF 88.01 ± 0.58

LeNet-5 88.48 ± 1.04

TL with LeNet-5 92.49 ± 1.28

by our self-made experimental system dataset. Traditional LeNet-
5 without TL and other traditional ML methods were adopted
for comparison.

In practice, there are usually abundant fault signal data under
normal environmental conditions and limited fault signal data
under complex environmental conditions. Furthermore, fault
signal data in normal and complex environments might have
different distributions. LeNet-5 improves the fault diagnosis
accuracy of gas sensors in the same environment where the
training data are abundant; however, it is not suitable for fault
diagnosis in complex environments with limited training data.
The experimental results show that the TL with LeNet-5 method
could improve the accuracy of the fault diagnosis compared
with the LeNet-5 without TL method and other traditional ML
methods, which cannot take advantage of fault signal data in
different distributions. The proposed method can provide a good
fault diagnosis scheme for hydrogen sensors when only a small
amount of fault data existing under complex environment.

The limitations of the proposed method is that, the common
hydrogen sensor signal modes are needed to be represented in
the dictionary list type. Otherwise the signal modes which have
not been learned would be misclassified to be the known ones.
Based on the limitation, the method can be modified to find an
unknown signal mode in our future research work.
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At present, there are many kinds of intelligent training equipment in tennis sports, but

they all need human control. If a single tennis player uses the robot to return the ball,

it will save some human resources. This study aims to improve the recognition rate of

tennis sports robots in the return action and the return strategy. The human-oriented

motion recognition of the tennis sports robot is taken as the starting point to recognize

and analyze the return action of the tennis sports robot. The OpenPose traversal dataset

is used to recognize and extract human motion features of tennis sports robots under

different classifications. According to the return characteristics of the tennis sports robot,

the method of tennis return strategy based on the support vector machine (SVM) is

established, and the SVM algorithm in machine learning is optimized. Finally, the return

strategy of tennis sports robots under eight return actions is analyzed and studied. The

results reveal that the tennis sports robot based on the SVM-Optimization (SVM-O)

algorithm has the highest return recognition rate, and the average return recognition

rate is 88.61%. The error rates of the backswing, forward swing, and volatilization are

high in the return strategy of tennis sports robots. The preparation action, backswing,

and volatilization can achieve more objective results in the analysis of the return strategy,

which is more than 90%. With the increase of iteration times, the effect of the model

simulation experiment based on SVM-O is the best. It suggests that the algorithm

proposed has a reliable accuracy of the return strategy of tennis sports robots, which

meets the research requirements. Human motion recognition is integrated with the return

motion of tennis sports robots. The application of the SVM-O algorithm to the return

action recognition of tennis sports robots has good practicability in the return action

recognition of tennis sports robot and solves the problem that the optimization algorithm

cannot be applied to the real-time requirements. It has important research significance

for the application of an optimized SVM algorithm in sports action recognition.

Keywords: OpenPose traversal dataset, humanmotion characteristics, machine learning, support vector machine

algorithm, human motion recognition
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RESEARCH PURPOSE AND CURRENT
SITUATION

With the progress of computer technology and its wide
application in life practice, behavior detection and action
recognition projects based on various algorithms are being
applied and studied in related fields (Aslan and Durdu,
2020). Behavior monitoring includes bee colony behavior and
human behavior monitoring through graphics, temperature,
humidity, sound, and other information (Jalal and Kamal, 2019).
Introducing human motion recognition and motion intention
prediction into the machine can bring the users a better sense
of experience. People and robots coexist or work together. On
the premise of ensuring that robots do not harm humans, it
is necessary to explore efficient human–machine cooperation
schemes to complement the advantages of humans and robots
(Kahanowich, 2021). Generally, human motion is obtained in
the form of a video or image and then recognized. With
the development of science and technology and the electronic
industry, wearable sensor devices are being used to recognize
human actions (Hou et al., 2019; Jalal and Quaid, 2019; Zhao,
2020). With the growth of wireless technology and the expansion
of coverage, wireless fidelity (WiFi) signal is being used to
recognize human motion, and good results have been achieved,
which is also the latest research trend (Zhao et al., 2019; Zhu
et al., 2021). Generally, data are first collected, then denoised,
and processed in human motion recognition. Then, feature
quantity is extracted, trained, and classified to realize the final
recognition. Almost all research teams achieve human motion
recognition according to this general process. In these five parts,
data denoising and feature extraction are the two key links
(Gurbuz, 2019; Wang and Zhang, 2019; Xiong et al., 2020).
Researchers are deeply improving and developing these two links
to improve recognition accuracy.

The training law of tennis strategy and tactics is a difficult
work faced by coaches and players. In the evaluation study of
tennis serve and return practice, Krause et al. (2019) found
that every hitting technique and step running position of the
opponent could determine the return quality. Athletes also
need to combine their own playing characteristics and styles in
peacetime training to figure out every technical detail of the
opponent to benefit from it (Krause et al., 2019). People hope
to find a method that can be applied to all players to make
them adopt strategies and tactics in a broader range and find
weaknesses through analysis. Human motion recognition is a
new human–computer interactionmode. It extracts and classifies
human action features through computer vision technology,
identifies human actions, obtains action information, and makes
the machine “read” human body language (Oudah and Al-
Naji, 2020; Pourdarbani et al., 2020; Yang et al., 2021). At
present, significant progress has been made in the research and
application of machine learning represented by deep learning
(DL), which has effectively promoted the development of
artificial intelligence. DL is a method of machine learning. In
2010, a large image dataset named ImageNet appeared. DL
requires a lot of computational power, so some researchers
combine the central processing unit (CPU) to train the DL

model, which has been integrated into the current research
method. Multiple researchers do various experiments through
the standard datasets of machine learning and promote the
research process by comparing the different methods. Giles and
Kovalchik (2020) studied the direction change in the tracking
data of professional tennis players and found that the support
vector machine (SVM) algorithm tested the non-linear kernel
method. The nearest neighbor method was used to test the simple
neural network. It was usually recommended to experiment
with the data of some shapes (Giles and Kovalchik, 2020;
Kunze et al., 2020). ImageNet is one of the most influential
datasets, which effectively promotes the development of the DL
model (Alexopoulos and Nikolakis, 2020). Moreover, according
to the tennis sports robots’ return action selection and return
strategy characteristics, there are many other datasets besides
the ImageNet dataset. Based on that, many researchers also
put forward new questions. These datasets also promote the
development of relevant research (Liu et al., 2019).

For the problem of reduced human resources in tennis
training, the robot can return the ball according to human
actions. With the human motion recognition in the return
strategy of tennis sports robots as the main starting point,
this study extracts the human motion features through the
tennis sports information under different classifications and the
OpenPose traversal dataset. The return strategy of tennis sports
robots is studied through machine learning. Besides, this study
also focuses on the SVM algorithm optimization in machine
learning. The return strategy of the tennis sports robot is
optimized by the SVM-optimization (SVM-O) algorithm. This
study provides a reference basis for robot return strategy in tennis
sports and has crucial research significance.

Section Research Purpose and Current Situation introduces
the research background of the machine learning algorithm
of tennis robots for human motion recognition, which paves
the way for the development of the SVM algorithm. Section
Literature Review discusses the worldwide research on ball
return strategy and human motion recognition. Section Research
on Machine Learning and Related Sports Robots introduces
machine learning and robots on the playground. Section Design
of the SVM-O Model introduces the SVM algorithm and the
optimization process of SVM. Section Research Model and
Framework mainly aims at the ball return action recognition and
ball return strategy design of the tennis robot. Section Results and
Discussion analyzes the regression error rate, regression accuracy
rate, regression recall rate, regression score rate, and regression
recognition rate of eight actions in the tennis robot regression
strategy and compares the regression accuracy rate of tennis
robot under different model training. Finally, the whole research
is summarized and analyzed, and the research limitations are
put forward.

LITERATURE REVIEW

According to the research on the return strategy, Sharma
and Kumar (2021) designed the badminton robot through the
learning method of the database and obtained the movement
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track of badminton through the binocular camera. However,
due to the fixed base and position of the robot, the receiving
distance was short when returning the ball. Yunardi et al. (2021)
designed an omnidirectional mobile tennis robot. Through the
design of a robot manipulator, the robot could return the ball
at different angles and forces and could move in any direction
and return the ball at different angles on the playground. Based
on the fully connected neural network, the return strategy of the
badminton robot was studied. The neural network was optimized
through the activation function and residual connection of the
neurons. The training was designed according to the return point
of badminton as the input value. However, only the coordinates
of the return point of the badminton in returning the ball were
researched. The return type and the return action of the opponent
were not taken into account, so it was difficult to return the
ball for the action of the robot facing the human body (Gao
et al., 2020). In the data-processing stage, three-dimensional
(3D) is much more complex than two-dimensional (2D). The
2D human pose recognition is more mature than 3D in terms
of data and models. The 2D models also have a lot of outdoor
and natural data, but almost all 3D data have indoor data.
Because of the complexity of the 3D annotation and recognition,
massive sensors and cameras are needed to collect data. Before
2015, the regression method was widely used to confirm the
coordinates of human-joint points. Its innovation was to extract
them from the 3 and 7 layers of convolutional neural network
(CNN) and then conduct the convolution operation, which is
called the spatial fusion model. Faisal et al. (2019) used the spatial
fusion model to extract the internal relationship between joint
points, but this method was difficult to expand in the model.
The critical path method (CPM) proposed in 2016 has strong
robustness, and many subsequent methods are improvements
based on this method.

The contribution of the CPM is to use sequential convolution
architecture to express spatial and texture information. The
network is divided into several stages, and each stage has a
part in supervision and training. The previous stage uses the
original image as the input. The latter uses the feature image
of the previous stage as the input, mainly to integrate spatial
information, texture information, and center constraints. In
addition, Li et al. (2020) simultaneously used multiple scales
to process the input characteristics and responses for the same
convolution architecture, ensuring accuracy and considering the
distance relationship between the various components. Fine-
tuning was conducted based on CNN. Its innovation lies in the
use of a geometric transformation kernel in the convolution
layer, which can model the dependence between the joint
points. Moreover, a bidirectional tree model was proposed,
so that the feature channel of each joint could receive the
information of the other joints, which was called information
transmission. This tree structure can also estimate the attitude
of multiple people. However, the accuracy of this multi-person
attitude estimation is not high, and the method based on a
single person is better. OpenPose is a framework for real-time
estimation of the human body, face, and hand morphology
proposed by the cognitive computing laboratory of Carnegie
Mellon University (Jaruenpunyasak et al., 2022). It provides

2D and 3D multi-person keypoint detection and a calibration
toolbox for estimating specific area parameters. It can accept
many kinds of input, including images, videos, and webcams.
Similarly, the output of OpenPose is also diverse. The input and
output parameters can also be adjusted according to different
needs. At present, the sensor technology of human motion
recognition takes the human motion posture database as the
action classifier, obtains the image of human motion through the
sensor, subdivides it according to the motion angle and speed,
and finally classifies the information with the classifier.

This thesis uses the OpenPose traversal dataset to extract
the information features of human motion recognition nodes
and extracts human motion features through tennis motion
information under different classifications and the OpenPose
traversal dataset. The return strategy of the tennis robot is studied
by machine learning and optimized by the SVM-O algorithm.

RESEARCH ON MACHINE LEARNING AND
RELATED SPORTS ROBOTS

Algorithm Design of Machine Learning
Machine learning is the general name of a class of algorithms.
These algorithms intend to mine the hidden laws from massive
historical data and use them for prediction or classification.
More specifically, machine learning can be seen as looking for
a function, whose input is the sample data and the output is
the expected result. However, this function is too complex to be
expressed formally (Mohabatkar and Ebrahimi, 2021). It should
be noted that the goal of machine learning is to make the learned
functions well applicable to the new sample data, not just perform
well on the training samples (Ghorbanzadeh et al., 2019). The
ability of the learned function to apply to new samples is called
generalization ability. Figure 1 shows the specific algorithm steps
of machine learning.

The machine learning steps in Figure 1 are divided into the
following three steps. First, an appropriate model is selected,
which usually depends on the actual problem. Suitable models
need to be selected for different problems and tasks. The model
is a set of functions. Next, the quality of a function is judged,
which needs to determine a measurement standard, that is, the
loss function. The determination of loss function also depends on
specific problems. For example, Euclidean distance is generally
used in regression problems, and the cross-entropy cost function
is generally used in classification problems. Finally, the “best”
function is found. The commonly used methods include gradient
descent algorithm, ordinary least squares, and other tricks. The
“best” function needs to be tested on a new sample after it is
learned. It is a good function only if it performs well on the
new sample. Machine learning is a huge family system, involving
multiple algorithms, tasks, and learning theories. Figure 2 is the
learning roadmap of machine learning.

In Figure 2, different colors represent different learning
theories—orange represents tasks and green represents methods.
According to the task types, machine learning models can
be divided into regression, classification, and structure. The
regression model is also called the prediction model. The
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FIGURE 1 | Machine learning steps.

output is a numerical value that cannot be enumerated. The
classification models are divided into binary classification and
multi-classification. The common binary classification problems
are spam filtering, and the commonmulti-classification problems
are automatic document classification. The output of the
structured learning model is no longer a value with the fixed
length, but the text description of the figure. From the perspective
of the method, it can be divided into linear and non-linear
models. The linear model is relatively simple, but its role cannot
be ignored. It is the basis of the non-linear model. Many non-
linear models are transformed from the linear model. The non-
linear models can be divided into traditional machine learning
models, such as SVM, K-nearest Neighbor (KNN), decision tree,
and DL model. According to the learning theory, the machine
learning model can be divided into supervised, semi-supervised,
unsupervised, transfer, and reinforcement learning. When the
training sample is labeled, it is supervised learning. When part
of the training sample is labeled and part of the training sample
is not labeled, it is semi-supervised learning. When all training
samples are unlabeled, it is unsupervised learning. Transfer
learning is to transfer the trained model parameters to the
new model to help in the new model training. Reinforcement
learning is to learn the optimal policy, which enables an agent

to act according to the current state in a specific environment
to obtain the maximum reward. The most significant difference
between reinforcement learning and supervised learning is that
each decision in reinforcement learning does not define right or
wrong, but aims to get the most cumulative rewards.

Robots on the Playground
Robot technology became the hottest topic in the investment
circle together with unmanned aerial vehicle technology as early
as 5 years ago. However, this topic was not pushed to the sports
world until the “human–machine war” between Google AlphaGo
and South Korean chess player Li Shishi.

The Japanese Volleyball Association uses robots to practice
with athletes to improve the level of the athletes. This “defense
robot” has three pairs of mechanical arms, which can move from
one end to the other in front of the net to imitate the action
of defense when smashing the attacker. The defensive robot is
studied by the Japanese Volleyball Association and the University
of Tsukuba. The coach can manipulate the robot arm back and
forth according to the training needs. If the coach thinks the team
can perform better in a past game, the robot can reproduce the
game’s situation at that time. The robot can imitate the possible
actions of the opponent on the field in the future according to the
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FIGURE 2 | Roadmap for machine learning.

strategic style of the opponent in the future. After the training
starts, the coach only needs to press a button, and the robot’s
mechanical arm will quickly reach the designated position. The
moving speed of this robot can reach 3.7 m/s, which is faster than
that of the ordinary athletes running on the field.

Robomintoner, developed by Chengdu Electric Technology
Chuangpin Robot Technology Co., Ltd., has reached the level of
ordinary badminton lovers. Its technical core is the positioning
and navigation of the whole field, the visual tracking and
recognition of high-speed moving objects, and the control of
the motion system. The robot mainly recognizes the trajectory
of the badminton through binocular vision and predicts the
landing point. It will tell the motion system the landing point
of the badminton through Bluetooth communication, and the
robot will move to the position where the badminton will land
in advance.

The track and field training robots have a speed of 44.6 km/h,
which is comparable to the world record of Usain Bolt in 2009.
The main function is to see the difference between the user’s
current performance and the previous performance in real-time
by simulating the runner’s previous best performance during

training to help the runner improve the performance. In terms
of configuration, this small remote-controlled machine car has
nine infrared sensors, drives small wheels through an Arduino
board, and is equipped with a light-emitting diode (LED) light
and a GoPro camera on the body.

The table tennis serving robot users can control the five
built-in motors of the equipment in the supporting application
of Trainerbot and set the serving into the up rotation, down
rotation, side rotation, and random modes. The Trainerbot
table tennis robot is 32 cm high and weighs only 1.2 kg. It can
accommodate up to 30 table tennis balls. It can serve one ball
every 0.5 s at the fastest and every 3 s at the slowest. Moreover,
the table tennis coach robot can be used to recognize the ball’s
movement. The camera can track the position of table tennis
80 times per s, including ball speed, rotation speed, rotation
direction, and other data. The sensor can analyze the speed of
the ball 1,000 times per s and predict where the ball will land.
Forpheus can calculate the angle and point at which the racket
should hit back, with an error of <5 cm. Of course, the goal of
Forpheus is to help mankind improve the level of table tennis.
Therefore, in addition to tracking the table tennis ball, the landing
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FIGURE 3 | SVM regression model.

point of the table tennis ball will be displayed by projection to
help the athletes adjust their movements.

The tennis collection robot itself is equipped with advanced
sensors. It detects, locates, and collects tennis balls by using the
onboard computer to analyze the collected information and a
wide-angle camera. In addition to the configured sensors, it also
has a “Tennibot site” installed on the tennis net post. The site is
a camera used to track the robot’s position, which is connected
with the robot through wireless communication. With the site
to detect the robot’s position, the robot’s supporting iPhone
Operating System (iOS) and Android application (APP) can be
used to control which area of the playground it drives, set specific
routes, or manual control. It can even be operated on an Apple
watch, which users can choose. It is to avoid the robot appearing
at the foot and affecting the playing when the user plays. The
speed of collecting the tennis balls is 1.4 miles/h, about 38m/min.
A basket can collect 80 tennis balls, with a battery life of 4–
5 h and only 90min of charging each time, which can meet the
needs of long-term practice. After use, the robot can be lifted and
transported away through the handle like a suitcase.

DESIGN OF THE SVM-O MODEL

Support vector machine is a binary classification model, which
is initially used in the case of linear separability. According to
the diversity of the human actions studied, more action samples

can be classified reasonably and as quickly as possible. This thesis
optimizes the SVM sample classification process.

Given the training samples, the basic idea of the SVM
algorithm classification learning is to find a partition hyperplane
in the sample space based on the training samples to separate
the samples of different categories. However, many partition
hyperplanes can separate the training samples, and the most
reliable one needs to be found (Shi, 2020). Intuitively, the one
in the middle of the training sample should be found, because
the partition hyperplane has the best tolerance to the local
disturbance of the training sample. It means that the classification
result of the partition hyperplane is the most robust and has the
strongest generalization ability to the unseen examples. Figure 3
shows the SVM regression model.

In Figure 3, the hyperplane in the sample space can be divided
by a linear equationw ·x+b = 0, wherew is the normal vector of
the hyperplane partition, which determines the direction of the
hyperplane; b is the displacement term, which determines the
distance between the hyperplane and the origin. The partition
hyperplane can be determined by w and b. The interval between
two heterogeneous support vectors and the hyperplane is γ =
2

‖w‖ . In tennis sports, the robot return sample can be mapped

from the original to a high-dimensional feature space, so that
the sample can be linearly separable in this feature space. If the
original space has a finite number of attributes, there must be
a high-dimensional feature space to divide the return samples.
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φ(x) is set as the feature vector after x is mapped to the high
dimension. Then, the model corresponding to φ(x) dividing the
hyperplane in the feature space can be expressed as:

f (x) = wTφ(x)+ b (1)

w and b are model parameters. There is

min(w,b)
1

2
‖w‖2, st, yi(w

Tφ(xi)+ b) ≥ 1, i = 1, 2, ...,m (2)

Equation (3) is a dual problem.

maxα





m
∑

i=1

ai −
1

2

m
∑

i=1

m
∑

j=1

αiαjyiyjφ(xi)
Tφ(xj)





s.t.

m
∑

i=1

αiyi = 0,αi ≥ 0, i = 1, 2, ...,m (3)

φ(xi)
Tφ(xj) is the inner product after the training samples xi and

xj are mapped to the feature space. The dimension of the feature
space may be very high or even infinite. Therefore, the direct
calculation is difficult, and a kernel function can be envisaged:

k(xi, xj) ≤ φ(xi),φ(xj) ≥ φ(xi)
Tφ(xj) (4)

Equation (4) is the inner product of xi and xj in feature space. It is
equal to their calculation by function k (·, ·) in the original sample
space. Equation (4) is solved to obtain the following:

f (x) = wTφ(x)+ b =

m
∑

i=1

αiyiφ(xi)
Tφ(x)+ b

=

m
∑

i=1

αiyik(x, xj)+ b (5)

Common kernel function: Equation (6) is the Gaussian kernel
function; σ is the bandwidth of the Gaussian kernel.

k(xi, xj) = exp(−

∥

∥xi − xj
∥

∥

2σ 2
), σ > 0 (6)

Equation (7) is the Laplace kernel function:

k(xi, xj) = exp(−

∥

∥xi − xj
∥

∥

σ
), σ > 0 (7)

Equation (8) is the Sigmoid kernel function; tanh is a hyperbolic
tangent function.

k(xi, xj) = tanh(βxTi xj + θ),β > 0, θ < 0 (8)

All of the above samples must be divided correctly. The
samples that do not meet the constraints can be optimized

FIGURE 4 | Regression curve of SVM-O.
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while maximizing the interval to reduce the error. The most
commonly used error function is the least square sum error
function. Figure 4 shows the optimization effect of the SVM
regression curve.

In Figure 4, the regression curve of the SVM in Figure 3 is
optimized. C is the regularization coefficient and the relaxation
variable ξ is introduced. In the regression problem, each data
point xn needs two relaxation variables ξn ≥ 0 and ξ̂n ≥ 0. ξn ≥ 0
corresponds to tn > y(xn)+ ε (above the curve in Figure 4) and
corresponds to tn < y(xn) + ε (below the curve in Figure 4).
Equation (9) is a function that minimizes the regularization error.
Equations (10) and (11) are the corresponding conditions.

C

N
∑

n=1

Eε(y(x)− tn)+
1

2
‖w‖2 (9)

tn ≤ y(xn)+ ε + ξ̂n

tn ≥ y(xn)− ε − ξ̂n (10)

The updated error function is as follows:

C

N
∑

n=1

(ξn + ξ̂n)+
1

2
‖w‖2 (11)

The Lagrange multiplier method is introduced to optimize the
equation with constraints and minimize the error function:

L = C
N
∑

n=1
(ξn + ξ̂n)+

1
2‖w‖

2
−

∑

n=1
N(µnξn + µ̂nξ̂n)

−

N
∑

n=1
an(ε+ξn + yn − tn)−

N
∑

n=1
ân(ε+ξ̂n − yn + tn)

(12)

By finding the derivative of the Lagrange function forw, b, ξn and
ξ̂n as 0, it can be obtained that

δL
δw = 0 ⇒

N
∑

n=1
(an − ãn)φ(xn)

δL
δb

= 0 ⇒

N
∑

n=1
(an − ãn) = 0

δL
δξn

= 0 ⇒ an + µn = C, δL

δξ̃n
= 0 ⇒ ãn + µ̃n = C

(13)

The new input variable can be obtained by using the
equation below:

y(x) =

N
∑

n=1

(an − ãn)φ(xn)φ(x)+ b

=

N
∑

n=1

(an − ãn)k(xn, x)+ b (14)

The value of b in Equation (1) can be obtained from
Equation (15):

b = tn − ε − wTφ(xn) = tn − ε −

N
∑

m=1

(am − ãm)k(xn, xm)

(15)

TABLE 1 | Analysis of tactical action characteristics of return ball of tennis sports

robot.

Return strategy Characteristic Optimization objectives

Continuous return Continuity Change different ball

speeds, forces and

directions

Return with more

strengths

Depth continuity,

velocity

Return quickly

Moving return Continuous power Improve return accuracy

and continuity

Return with

endurance and

defense

High endurance Slash and straight ball

Changeable return Change the speed,

direction and kinetic

energy of the ball

Optimize the rotation and

direction of the shot

Attack front court Aggressive Return forehand, backhand

Another method for SVM regression does not fix the width of
the insensitive area ε but fixes the proportion v of the data
points outside the pipeline. The maximization equation can
prove that at most vN data points fall outside the insensitive
pipeline, and at least vN data points are support vectors on or
outside the pipeline. The value of vC is generally determined
by cross-validation.

L̃(a, ãn) = −
1
2

N
∑

n=1

N
∑

m=1
(an − ãn)(am,−ãm)k(xn, xm)+

N
∑

n=1
(an − ãn)tn

0 ≤ an ≤
C
N , 0 ≤ ãn ≤

C
N ,

N
∑

n=1
(an − ãn) = 0,

N
∑

n=1
(an + ãn) ≤ vC

(16)

RESEARCH MODEL AND FRAMEWORK

Recognition of Return Motion of Tennis
Sports Robot
The robot return in tennis sports cannot be realized only with
a heavy swing. It needs to study the combination of human
action routines and constantly return the ball to the other party.
For example, in diagonal backhand, the robot needs to catch
the opportunity ball that the opponent’s oblique return angle
is not good, the ball speed is not fast, and the ball falls in
the center of the court or in a comfortable position in front
of the body. The robot’s backhand position can be changed
to the forehand to play the diagonal ball and return the ball
effectively. These return methods provide the structure of tennis
return tactics and can be used to teach tennis sports robot
return. Table 1 is the analysis of the return tactics of tennis
sports robot.

According to Table 1 and the high-performance camera
processing of the tennis robot, the robot responds to the
falling point of the opponent’s returning the ball. The
tennis movement is set as the return movement of 8
tennis sports robots, which are preparation action, swing,
preparation position, backswing, forward swing, hitting, follow-
up swing, and return to preparation position (Haryanto,
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FIGURE 5 | Motion recognition of tennis sports robots.

2020). In tennis robots’ data-processing stage of return motion
recognition, 3D human motion recognition is much more
complex than 2D. Two-dimensional human motion recognition
is more mature than 3D in terms of data and models.
2D models also have many outdoor and natural datasets.
However, almost all 3D human motion recognition datasets
are indoor. Because of the complexity of 3D annotation and
recognition, many sensors and cameras are needed to collect
data. Figure 5 is a motion recognition system of a tennis
sports robot.

Figure 5 is the dataset feature extraction of the return strategy
of tennis sports robots for human motion recognition. First,
human motion recognition is carried out, followed by the
extraction of motion features. The collected serving action
images of the human body in tennis sports are put into the
OpenPose skeleton extraction network to extract the keypoint
coordinate data of human action. Then, the human action
information under different classifications is extracted as action
features and saved as the corresponding text (TXT) documents
(Neff et al., 2019). Then, the features are integrated. The extracted
feature information is integrated with the corresponding images
in a TXT file, and the useless and redundant datasets are removed
simultaneously. Finally, the TXT information is integrated
as input and output tag comma-separated value (CSV) files,
respectively. Among them, the input features include the key
points of human service and the line features connected by
different bone points and the surface features formed by the
combination of different lines. These features will be extracted
and learned through different classification algorithms.

In a convolutional neural network, the human motion figures
are put into the network in the matrix form. The x, y, and z
axes are taken as red, green, blue (RGB)—three channels of the
figures. Then, the data are arranged in a row to get a vector with
n columns. However, for convenience, n is decomposed. Every
100 groups of data form a return action figure of a tennis sports
robot, that is, 1∗100∗3 represents a return action figure of a tennis
sports robot. Of course, if the input is modified, the label file
should also be modified accordingly. Before modification, each
piece of data will have a label. However, after modification, every

TABLE 2 | Recognition and evaluation results of the return motion of the tennis

sports robot under different classifiers.

Evaluation

parameters

SVM

classifier

Decision

tree

classifier

Random

forest

classifier

Multi-layer

perceptron

(MLP)

classifier

Accuracy 0.99 0.73 0.99 0.99

Recall 0.99 0.72 0.99 0.98

f1 score 0.99 0.72 0.99 0.98

Model call time 0.00015 0.00001 0.00002 0.00001

100 pieces of data only need to output one label. Shell is adopted
to process label files. Finally, the eight return motions in the
label file are replaced with numbers from 1 to 8. The human
bone information read from the input CSV is taken as the input
and the CSV file of the Y label as the output. The training and
verification sets are divided according to the proportion of 0.3.
Then, they are converted into a NumPy matrix to participate in
the operation. The decision tree, random forest, neural network,
and SVM are selected as the machine learning model classifiers to
test the model effect. The evaluation of the model is mainly based
on the confusion matrix, accuracy, recall, and f1 score. Table 2
shows the recognition and evaluation results of the returnmotion
of the tennis sports robot under different classifiers.

Table 2 shows that the SVM classifier is superior to the
decision tree classifier, random classifier, and MLP classifier
in action recognition of the tennis sports robot in the
accuracy, recall rate, f1 score, and model call time. It has
high accuracy and meets the tennis sports robot’s return action
recognition requirements.

Design of Return Strategy Algorithm for
Tennis Sports Robot
The landing areas of the tennis serve are two diagonally opposite
areas. Before serving, it is essential to stand in the area behind
the end line and between the midpoint and the hypothetical
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FIGURE 6 | Return state of the tennis sports robot.

FIGURE 7 | Return strategy model of the tennis sports robot based on SVM.

extension line of the sideline, throw the tennis ball into the air,
hit the ball with the racket before the ball touches the ground,
and complete the sending of the ball when the racket contacts the
ball. When facing a tennis player serving, the tennis sports robot
cannot change the position of the original station by walking or

running. It is best to stand in the specified position and not touch
other areas. The player serves from the end line of the right area
at the beginning of each game and then changes to the left area
to serve after they score or lose points. In serving, the ball should
cross the net and fall on the opposite service area in the opposite
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FIGURE 8 | Implementation framework of the return strategy of the tennis sports robot.

corner, or it can fall on the surrounding line. However, another
service is required if the ball touches the net and falls into the
opponent’s service area during the service, and the tennis sports
robot is not ready to return. Figure 6 shows the return state of
the tennis sports robot.

In Figure 6, after the ball rebounds, the tennis sports robot
starts to stare at the ball, which is the same as the ball pressure
with a deep landing point. The reason is that the backswing is
too late. If the human movement causes the ball speed to reach
260 km/h, the tennis compression is more obvious. The tennis
ball forms the incident angle and exit angle with the ground in
returning the ball. In a tennis sports robot, the average serving
speed of the human body is 150–250 km/h. According to different
return points, the opponent serves within a certain speed range
no matter how fast the service is. Through the ball return and
landing points in different speed ranges, the robot can aim at the
other party’s ball return and landing point area to return the ball.
The tennis sports robot can use SVM to get the optimal return
strategy. Figure 7 is the return strategy model of a tennis sports
robot based on SVM.

Figure 7 is a multivariable SVM learning based on eight ball
return actions of a tennis sports robot. However, the maximum
interval characterizes the boundary between the current classifier
and the dataset because the model is linearly separable from the
2D traditional model. The data volume is modeled and classified
based on the feature extraction of human motion recognition
images. With the two classifiers in Figures 3, 4 as examples,
the maximum interval of blue lines in the curve is greater than
that of the black lines. Therefore, the blue line is selected as the
classifier. Machine learning is carried out for the return motion
of the tennis sports robot, and the probability value is the output
through the probability estimation of accuracy. Figure 8 is the
implementation framework of the return strategy of the tennis
sports robot.

In Figure 8, the algorithm design of the tennis sports robot’s
return strategy is carried out using machine learning and the
SVM-O algorithm. Feature extraction is carried out through
the motion characteristics of human motion recognition,
and the SVM algorithm is designed and studied for the
return ball strategy of the tennis sports robots. Finally, the
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FIGURE 9 | Error rate analysis of 8 kinds of return movements of tennis sports robot based on SVM-O.

accuracy of the return strategy of the tennis sports robot
is simulated.

RESULTS AND DISCUSSION

Return Analysis of the Tennis Sports Robot
To optimize machine learning, the return error rate, return

accuracy, return recall rate, return score rate, and return

recognition rate of eight actions in the return strategy of a tennis
sports robot are analyzed through the optimization analysis of
the SVM algorithm. Figure 9 displays the analysis results of the

error rate of different return actions of tennis sports robots based
on SVM-O.

In Figure 9, the average error rates of preparation, swing,

ready posture, backswing, forward swing, hitting, volatilization,

and returning to the ready position are 0, 0.21, 0.32, 2.12, 4.3,
0.26, 3.75, and 0%, respectively. The error rate of the backswing,

forward swing, and volatilization in the return strategy of the
tennis sports robot are high. The return accuracy, return recall,
and return score of eight return actions are analyzed in varying

degrees to further analyze the return strategy of the tennis sports
robots. Figure 10 shows the analysis of different return strategies
of the tennis sports robots.

Figure 10 shows that in the ball return strategy of the tennis
sports robots after optimization, the action with the highest
accuracy rate of machine learning is swing, 94%. The action
with the highest recall rate is the preparation action, 98.21%,
and the action with the highest-scoring rate is volatilization,
96.79%. Regarding the return accuracy, return recall, and return
score, the average values of preparation, swing, ready posture,
backswing, forward swing, hitting, volatilization, and returning
to the ready position are 93.38, 89, 86.93, 90.10, 86.28, 85.84,
90, and 86.73%. It reveals that in the return strategy of the
tennis sports robots, preparation, backswing, and volatilization
can achieve more objective results in the analysis of the return
strategy. CNN, SVM-Linear Discriminant Analysis (SVM-LDA)
algorithm, and SVM—common spatial pattern (SVM-CSP)
algorithm are compared and analyzed to study the superiority of
the SVM-O algorithm in the ball return recognition rate of the
tennis sports robot. Figure 11 shows the return recognition rate
of the tennis sports robots under different models.
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FIGURE 10 | Analysis of different return strategies of the tennis sports robot.

Figure 11 shows that the tennis sports robot based on
the SVM-O algorithm has the highest return recognition
rate, with an average return recognition rate of 88.61%.
Then, the average return recognition rates of the tennis
sports robot based on the SVM-LDA algorithm, SVM-CSP
algorithm, and CNN algorithm are 85.49, 85.49, and
83.82%.

Simulation Effect of the Return Accuracy
of the Tennis Sports Robot Under Different
Model Training
The maximum number of iterations is set to 1 million times
in the whole robot return strategy to refer to the final accuracy
of the tennis sports robot return. In the simulation process,
different models are simulated with different iteration times
to simulate the return accuracy of the tennis robot. Figure 12

is the simulation effect of the return accuracy of the tennis
sports robot.

Figure 12 shows that when the base number of simulation
times is small, there is little difference between the four models
for the return accuracy of the tennis robot. With the increase of
the iteration times, the effect of the model simulation experiment
based on SVM-O is the best, followed by SVM-LDA, SVM-CSP,
and finally CNN.

Discussion
First, the OpenPose traversal dataset was used to extract the
information features of the human motion recognition nodes.
Then, 8 kinds of tennis robots’ returnmovements were integrated
with the human motion characteristics, and the 8 kinds of
tennis robots were used to analyze the return movements. By
selecting these 8 basic return movements, the complexity of
the human motion recognition process in tennis sports robots
is reduced. The results show that when the number of return
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FIGURE 11 | Return recognition rate of the tennis sports robot under different models.

actions of the robot is set to 1 million, the recognition accuracy
of the tennis sports robot to the CNN model is too small, and
it is not easy to distinguish the return actions of the tennis
sports robot. The smaller the number of iterations, the greater
the impact on the recognition accuracy. The automatic ball-
picking robot operates on the image data according to the
previous tennis movement. The eagle eye system is composed of
multiple high-speed cameras. Through the application of image
recognition, image fusion, and 3D reconstruction technology, the
configuration of the tennis robot is too high, and the return action
of the tennis robot is not fully realized. The exploration is done to
analyze the return action of the tennis sports robots based on the
hitting strength and predicted landing point of the tennis sports
robot. It is not easy to distinguish the characteristics of human
motion by recognizing and analyzing human motion through
the image obtained by the camera. However, the recognition
of these feature points is significant. The image acquisition
of the robot camera improves the efficiency of computational
image recognition. However, when these human action feature
points greatly impact the recognition results, this method is
not desirable. Therefore, the return strategy of tennis robots is

studied and analyzed by combining human motion recognition
and robot return action.

CONCLUSION

Research and analysis show that there is almost no error rate
in the preparation and return to the ready position of return
strategy of the tennis robot. The error rate of the backswing,
forward swing, and volatilization is higher than that of the
other movements. Through the optimized SVM, the accuracy
of the swing motion is as high as 94.00%. The action with the
highest recall rate is preparation, 98.21%. The action with the
highest score is swing, 96.79%. Regarding the return accuracy,
return recall, and return score, the average values of preparation
action, return action, and volatilization action are higher than
the other return actions, which are 93.38, 90.10, and 90%,
respectively. The research on the return ball recognition rate
of the tennis robots under different models shows that the
tennis robots’ return ball recognition rate based on the SVM-
O algorithm is higher than that of the SVM-LDA algorithm,
SVM-CSP algorithm, and CNN algorithm. Its average return
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FIGURE 12 | Simulation effect of the return accuracy of the tennis sports robot.

ball recognition rate is 88.61%. To sum up, the simulation effect
of the tennis robot’s return strategy model based on SVM-
O is the best, improving the diversity of the tennis robot’s
return strategies.

The required operations such as picking up, putting, and
collecting balls in the tennis court are completed through the
previous research on the design of the robot arm of the automatic
ball-picking robot in tennis sports. The tennis robot’s return
strategy implementationmodel based on the SVM-O is proposed.
It can integrate human action recognition with the return action
of the tennis sports robot. Applying the SVM-O algorithm to
the tennis sports robot’s return action recognition solves the
problem that the optimization algorithm cannot be applied to
real-time requirements. It has important research significance
for the application of an optimized SVM algorithm in sports
action recognition. Tennis robots can combine different return
strategies according to the recognition rate and accuracy of the
return action. However, according to the work of the tennis
robot, its internal structure will delay the operation of the system.
Due to the complexity of human motion recognition, the robot
cannot quickly launch the ball return according to the ball
return strategy. In the follow-up research, more details can be
considered to improve the autonomy of the tennis robot.
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The present work aims to accelerate sports development in China and promote

technological innovation in the artificial intelligence (AI) field. After analyzing the application

and development of AI, it is introduced into sports and applied to table tennis

competitions and training. The principle of the trajectory prediction of the table

tennis ball (TTB) based on AI is briefly introduced. It is found that the difficulty

of predicting TTB trajectories lies in rotation measurement. Accordingly, the rotation

and trajectory of TTB are predicted using some AI algorithms. Specifically, a TTB

detection algorithm is designed based on the Feature Fusion Network (FFN). For

feature exaction, the cross-layer connection network is used to strengthen the learning

ability of convolutional neural networks (CNNs) and streamline network parameters to

improve the network detection response. The experimental results demonstrate that the

trained CNN can reach a detection accuracy of over 98%, with a detection response

within 5.3ms, meeting the requirements of the robot vision system of the table tennis

robot. By comparison, the traditional Color Segmentation Algorithm has advantages

in detection response, with unsatisfactory detection accuracy, especially against TTB’s

color changes. Thus, the algorithm reported here can immediately hit the ball with high

accuracy. The research content provides a reference for applying AI to TTB trajectory

and rotation prediction and has significant value in popularizing table tennis.

Keywords: artificial intelligence, machine learning, track recognition of table tennis, human motion recognition,

support vector machines algorithm

INTRODUCTION

Modern technologies like artificial intelligence (AI) have become the forefront of research with
continuous science and technological advancement. AI is also known as machine intelligence and
computer intelligence. As the name implies, this technology aims to intellectualize machines or
computers like humans (Hu, 2020).

Artificial intelligence has seen two significant elements: summarization and logical deduction,
regarded as the connectionism approach and the symbolism approach, respectively (Riguzzi et al.,
2019; Park and Hainaut, 2020). Human beings process audio-visual signals based on cortical
neural networks without thinking. This learning method is called the connectionism approach.
Accordingly, connectionism scholars do not investigate the deep-seated learning process in their
research but obtain the final result through machine learning algorithms learning a large number
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of data and methods autonomously. Human’s mathematical
derivation and proving theorem are based on solid subjective
consciousness and axiomatic system, requiring conscious
thinking and symbolic calculus. This learning method is
called the symbolism approach (Lin et al., 2020). Symbolism
scholars tend to design formulas to solve problems based on
this definition. They investigate the deep-seated calculation
process and obtain the final result through the complete
process of machine learning (Al-Mukhtar and Al-Yaseen, 2020;
Gomez-Gonzalez et al., 2020). The connectionism approach
and symbolism approach are most common in the current AI
field. Other algorithms are based on the extension of the two
methods in all directions. A table tennis robot (TTR) is an
advanced intelligent robot (IR) with comprehensive solid quality,
consisting of vision, decision-making, and control systems.
These robots can respond to external stimuli, thereby realizing
man-machine confrontation in various scenes. TTR can assist
professional player training well (Likitha, 2021) and is significant
in popularizing table tennis sports. Additionally, IR is also of
great significance (Carreras et al., 2020).

The innovation of this paper lies in the following aspects.
First, the IR is used in table tennis training, and the table
tennis ball (TTB) trajectory is predicted and calculated based
on a deep learning algorithm. Secondly, a machine learning
algorithm is proposed to identify motion states and the rotation
and orbit of TTB. In short, AI technology is applied to table
tennis training and competition to predict and determine the
TTB trajectory accurately.

RELEVANT THEORIES AND METHODS

The Application of AI in the Field of Sports
With the continuous development of AI technology, IRs
have been multi-functionalized and highly intellectualized. In
particular, IRs have been extensively applied in many sports,
including table tennis, badminton, basketball, and football.
Among those sports IRs, TTR has some unique and delicate
features worthy of in-depth exploration. For example, the TTB
is very light and moves extremely fast, up to 5–20 m/s. Therefore,
the TTR must be sensitive, accurate, and robust to lend itself well
to train or play with professional players (Steiner et al., 2020).
Thus, target identification and trajectory prediction of the table
tennis ball (TTB) are incredibly complicated, becoming the key
points and difficulties in the current research field (Zhang et al.,
2020). The TTR-based TTB recognition depends on a vision
system to analyze the hitting actions of the table tennis player
and predict the real-time position andmotion state of TTB. Thus,
the TTR’s vision systemmust have the ability to predict trajectory
and plan actions for the target to ensure detection accuracy and
real-time motion recognition (Zhao et al., 2021).

This paper studies the TTR from three aspects (Forghani,
2020): vision, decision-making, and control systems. Among
them, the vision system distinguishes TTR from other sports
IRs. The three procedures are interdependent and work
collaboratively, each with different target detection and trajectory
prediction tasks. First, the vision system of the TTR is an
upgraded version of general machine learning vision systems and

the eye to detect and track the real-time position and dynamic
states of TTB. The vision system has a solid ability to track
high-speed moving objects (Li, 2021; Zhang, 2021). Second,
the decision-making system is the instruction-distributor of
the three systems. After receiving the information transmitted
by the vision system, the decision-making system needs to
respond accordingly to predict the TTB trajectory (Gomis-Fons
et al., 2021). Moreover, the vision system is also responsible
for selecting the optimal hitting plan by screening TTB-hitting
actions. Third, the control system or execution system is
accountable for executing the instructions issued by the decision-
making system (Oliveira et al., 2021; Payedimarri et al., 2021).
Strength, speed, and accuracy are essential for TTB to be served
or returned; thus, the trajectory prediction and timing must
be precise.

Summing up, the research of TTR involves many fields, such
as visual inspection (VI), intelligent decision-making, DL, and
servo control. The present work mainly examines the software
system of TTR to identify the motion state and trajectory of the
TTB accurately.

Related Research on Table Tennis Robots
The research of table tennis robots originated in the 1980s.
The first table tennis robot developed can only serve and does
not have the function of confrontation with human beings.
Therefore, the table tennis robot could only serve as a companion
for athletes to send different trackballs. In the future, with the
progress of research and technology, a table tennis robot that can
catch the ball will be developed gradually.

The robot table tennis game rules were first formulated by the
University of Portsmouth in the United Kingdom in 1983. The
rules stipulated that the table tennis table was 2 meters long and
0.5m wide, slightly smaller than the usual table tennis table. The
robot developed by Gerhard Schweitzer of a Robotics Institute in
Zurich, Switzerland, won the championship of the competition in
1988 and the Hong-Kong Robot Ping Pong Competition in 1992.

In 1987, the Alcatel-Lucent Bell Labs of AT&T Inc. in the
United States intensively studied the mechanical system, vision
system, and control system of the table tennis robot. They
adopted a PUMA 260 manipulator with six-Degree-of-Freedom
(DOF) in a robot, which is more flexible when hitting the ball. It
is a real table tennis robot because it can use the vision system
to judge the position of table tennis. It has successfully realized a
man-machine match for nearly 20 rounds.

The Toshiba Corporation of Japan has developed a seven-
DOF manipulator that can hit a table tennis ball against the wall
by itself. Picasso, a robot developed by the Rochester Institute of
Technology in the United States, uses a five-DOF manipulator.
However, the visual system cannot quickly capture the trajectory
of the TTB to meet the requirements of the man-machine rally
because the robot uses a series manipulator. The University of
Adelaide in Australia designed a six-DOF series manipulator by
imitating PUMA. Although it is more flexible than the previous
TTR, it can move in a relatively small range.

In Japan, Fumio Miyazaki of Osaka University has developed
a four-DOF table tennis robot based on binocular vision. Sensors
are installed on the opponent’s racket and elbow to detect
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the rotation direction of the ball, which enables the robot to
receive the ball from different angles. A bipedal humanoid robot
developed by TOSY Robotics JSC in Vietnam participated in the
Tokyo International Robot Exhibition in 2007. It can play table
tennis against a human being with flexible and accurate actions,
which has become the focus of public attention.

Most of the existing manipulator systems adopt a series
structure characterized by significant moments of inertia
and relatively strong design load. The manipulator is often
designed to adapt to the corresponding industrial production
environment. Although it is convenient for research to use this
industrial manipulator as the hitting execution system of table
tennis robots, its shortcomings are also evident. The real-time
playing of table tennis against humans requires a high response
speed from the robot. The robot needs to recognize and predict
the trajectory of the TTB in a short time and then order the
manipulator to hit the ball quickly. Series manipulators cannot
meet this requirement. Scholars employ the parallel robot as the
actuator of the table tennis robot system because of its flexible
dynamic performance. The parallel manipulator reduces the
moment of inertia of the manipulator and improves its flexibility.

In the robot system, the operation of the inverse solution of
the hitting point is cumbersome, bringing a significant challenge
to the operation speed of the whole system. After obtaining
the three-dimensional coordinate information of the table tennis
ball, the vision system predicts the coordinates of the hitting
point. The table tennis system needs to carry out the inverse
solution according to this coordinate and calculate the rotation
angle of each joint point. The manipulator has countless postures
to strike a certain point. The inverse solution process aims to find
the most reasonable hitting method with a particular scheme.
The actuator of the seven-DOF manipulator needs to calculate
the rotation angles of the seven joints, respectively, requiring
a tremendous amount of calculation. Therefore, many scholars
choose a relatively simple mobile guide rail to avoid this problem.
This actuator has a larger hitting space than the industrial
manipulator, simplifying the calculation and the cumbersome
trajectory planning process.

RESEARCH MODEL AND FRAMEWORK

AI-Based TTB Trajectory Prediction
A table tennis ball has the characteristics of high speed,
small volume, light weight, and fast rotation, resulting in high
requirements for the real-time capability and accuracy of the
vision system. Traditional target detection for TTBmainly adopts
color segmentation, contour search, or multi-sensor methods.
They can quickly respond to detection with simple calculations.
However, the surrounding environment quickly affects the
detection accuracy, such as illumination and background, leading
to low detection accuracy. For example, the color segmentation
algorithm sets the detection threshold according to the TTB
color. Trajectory prediction tasks are mainly completed through
physical modeling. The TTB rotation model features high-order
non-linearity. Traditionally, the linear approximation algorithm
is often used for modeling, with a relatively large deviation

accumulating with the iteration, resulting in low prediction
accuracy and less extendibility.

Under the current AI era, fusing AI, and robotics is the
general trend to extend the development space and research
value of robots while bringing more research possibilities to the
TTR. In particular, the DL methods can exert their advantages
against the existing problems in traditional ways. Yet, DL-based
detection networks involve vast amounts of calculation and
training data, thus complicating the issues. Therefore, aiming at
the shortcomings of conventional TTB detection and trajectory
prediction methods, this study integrates a DL method with
strong generalization ability and anti-interference ability with
the vision system to study the TTB rotation and predict its
trajectory explicitly.

As a cutting-edge technology in the AI field, intelligent TTR
is a scorching research topic worldwide (Nataraj et al., 2021;
Sun, 2021). The ultimate task of an intelligent TTR is to play
table tennis with people and even assist in professional training.
According to the above analysis, the vision, decision-making, and
control systems are subsystems of the intelligent TTR. Given
that TTB is small and fly fast, the vision system shoulders the
primary task of recognizing the TTB’s dynamic state quickly and
accurately. In some high-level competitions worldwide, many
top table tennis players play at speeds up to over 20 m/s, and
the rate of 5 m/s in general. The length of an ordinary table
is 2.74m, so it takes <0.5 s for a TTB to fly across the table
(Pezzo and Beckstead, 2020). Thus, a TTR must detect and
analyze the TTB dynamic state within 0.5 s, including TTB
identification, trajectory prediction, and action planning. A TTR
should have high-speed processing and calculation capability.
Image recognition and trajectory prediction become the primary
tasks of the vision system. In short, the main research goal and
difficulty of the vision system of TTR are to capture and analyze
TTB accurately and in time.

In addition to real-time trajectory prediction and target
recognition, the vision system needs to provide a timely
and reasonable response for the subsequent decision-
making and control systems. According to international
research, most visual systems can be divided into monocular
visual systems and binocular visual systems based on the
camera number (Geffen et al., 2020; Muto et al., 2021).
According to the installation position, visual systems can
be divided into ontological and external systems. As their
names suggest, ontological systems install the camera
inside the robot, which moves with the robot (Tomasevic
et al., 2019). The outward vision system fixes the camera
outside the robot so that the camera can only be calibrated
without moving.

Most TTRs employ the binocular vision system because
it can determine the target’s spatial position. Compared with
the binocular system, the monocular vision system has lower
costs and lower calibration difficulty. Still, it needs to project a
target to determine the target’s spatial position (Tkatek et al.,
2020; Jammeli et al., 2021). To some extent, it increases the
difficulty of the algorithm and increases the requirements for
the environment. Therefore, monocular vision systems are not
as common as binocular vision systems.
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Humanoid robots usually put the camera of their vision
system inside. In contrast, other robots with robotic arms put the
visual systems outside because it is difficult to use the ontology
vision system; after all, the vision system will change with the
robot’s movement, and the camera needs to be recalibrated.
Such a dynamic process makes algorithm implementation more
difficult. Therefore, robots with good market influence usually
choose an external vision system.

The primary function of robot servo planning is to identify the
TTB and predict its trajectory by positioning the dynamic TTB
according to the characteristics of a TTB using the camera.

Here, the position-based visual servo control system is
selected for TBR, as shown in Figure 1.

In Figure 1, the visual servo control system adjusts the
internal and external parameters of the camera. The target’s
spatial pose is calculated according to the camera image. Another
camera can photograph the TTB’s edge, calculate the edge pose
of the TTB through feature extraction and other operations, and
compare it with the expected posture. The pose deviation of the
TTB edge is calculated through two differentiations. Then, the
pose deviation of each side of the TTB is transformed into the
base coordinate system.

Correlation Between TTB Rotation and
Trajectory Based on Neural Network
In a competition, TTB is often rotating. Thus, the critical point
of trajectory prediction of the TTB lies in choosing prediction
methods. Here, the rotating state of TTB is divided into two
categories for detection. The first category is identifying the TTB
by marking TTB. Once labeled, the system can directly calculate
the rotation of TTB by calculating the movement relative to the
center of TTB (Salvatore et al., 2021). In the second category,
the TTB trajectory will be collected and analyzed, and then the
dynamic state of TTB is reversed according to the trajectory.
However, the research in this field is only based on the TTB
rotation to judge its trajectory. Such technology is impossible
to accurately judge the exact amplitude, direction, pose, and
rotation speed (Lin et al., 2021).

The trajectory of the table tennis ball in the air is expressed
by three kinematic parameters: spatial coordinates, velocity, and
acceleration. In the whole process of ball movement, these
parameters will change from time to time according to the
different movement times of the ball (Glassman et al., 2021).
Then, a trained deep neural network (DNN) is selected here.
Nine TTB parameters are input into DNN to output the TTB
landing point. In actual competitions, the player’s prediction
based on TTB trajectory is also the primary determinant of the
ball’s landing point. Accordingly, the DNN aims to calculate the
landing point data.

The TTB trajectory analysis is mainly carried out through
SIMI Motion in this experiment. This software system can
analyze various sports and movements based on three-
dimensional (3D) video, typical in sports technology analysis and
teaching. SIMI Motion uses multiple cameras to synchronize the
target motion, the multi-dimensional 3D frame for calibration,
and manually marks the joint points. Meanwhile, SIMI Motion

can obtain the moving object’s two-dimensional (2D) and 3D
data to calculate the coordinate, speed, acceleration, and angle
between the marked points. This experiment uses SIMI Motion
to synchronize two cameras to obtain the TTB trajectory data.
First, the calibration is completed by photographing the multi-
dimensional 3D frame of two cameras and manually marking the
white dots on the 3D structure. Then, the synchronization light
is used to synchronize the time of the two videos. Afterward,
the SIMI Motion is used to manually mark and determine the
spatial position of the TTB in each frame, thereby obtaining the
3D data of the TTB trajectory to calculate the TTB rotation speed,
a vector with size and direction. Precisely, the high-speed camera
captures the initial rotation track of the TTB transmitted by the
TTR’s serving module and calculates the number of image frames
required for the LOGO to rotate one circle to determine the
rotation speed of the TTB. The TTB’s initial state (when TTR
fires TTB) is recorded as the frame n1 in the video, and the
TTB state after one-circle rotation is denoted as the frame n2.
The frame rate of the high-speed camera is 3,000 frames/s; thus,
the TTB rotation speed is 3000

n2−n1
R/S. Subsequently, the rotation

direction data is obtained through the TTR’s service module. The
TTR’s service module serves the rotating ball through two pulleys
and controls the size and direction of rotation by controlling
the speed and direction of the upper and lower pulleys. This
experiment tests the rotation type of service from the service
modules. There are nine rotation types of service: topspin,
backspin, left-sidespin, right-sidespin, left-side topspin, right-
side topspin, left-side backspin, right-side backspin, and without
spin, as detailed in Table 1.

As listed in Table 1, the TTR can only implement nine types
of service due to the limitations of the service module. The
horizontal angle of the pulley determines the TTB rotation
direction. Because the outlet of the service module is horizontal,
the fired TTB’s initial velocity is in the horizontal direction.
Then, the TTB speed can be obtained through SIMI Motion
analysis. Additionally, the initial position of the ball outlet is
known. Then, nine accurate initial values can be obtained,
including the initial position x with direction coordinate (x);
initial position y with direction coordinate (y); initial position
z with direction coordinate (z); initial position x with direction
velocity (vx); initial position y with direction velocity (vy), initial
position z with direction velocity (vz); initial position x with
direction rotation size (ωx); initial position y with direction
rotation size ωy; initial position z with direction rotation size
ωz . The origin of the coordinate system is set at the table
tennis table’s midpoint, where the service module is located. The
abscissa extends along with the table horizontally, the vertical
coordinate extends longitudinally, and the vertical coordinate
is perpendicular to the table. A total of 171 effective balls are
served by the service module, covering nine types of service, and
nine initial and landing point values of all balls are obtained.
The falling point data are the coordinates on the table, so
the ordinate is 0. Through the experimental data collection,
to get the accurate initial position coordinates, the accurate
initial velocity (including speed and direction), and the accurate
rotation velocity, the nine initial data are input into the DNN
to output the precise landing point coordinates. Finally, the
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FIGURE 1 | Visual servo control system based on position.
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TABLE 1 | Description of the table tennis robot (TTR)’s serve.

Type of service Speed of upper and lower pulleys Horizontal angle of the pulley

Topspin The upper pulley is fast and the lower pulley is slow 90◦

Backspin The upper pulley is slow and the lower pulley is fast 90◦

Without spin The speed of the upper and lower pulleys are the same 90◦

Left-Sidespin The upper pulley is fast and the lower pulley is slow 0◦

Right-Sidespin The upper pulley is slow and the lower pulley is fast 0◦

Left-Side topspin The upper pulley is fast and the lower pulley is slow −45◦

Left-Side backspin The upper pulley is slow and the lower pulley is fast 45◦

Right-Side topspin The upper pulley is fast and the lower pulley is slow. 45◦

Right-Side backspin The upper pulley is slow and the lower pulley is fast. −45◦

DNN algorithm explores the correlation between the input and
output information.

In this experiment, Matlab pattern recognition is adapted
for the trajectory prediction of TTB with different velocities
and rotations.

The neuron nodes in the input layer have nine dimensions
marked as “a.” Neural nodes in the output layer have two
numerical dimensions marked as “b.” These are the abscissa
and ordinate of TTB. The number of nodes in the hidden layer
is determined after confirming the input and output neurons
according to Equation (1).

F =

√

0.43ab+ 0.12b2 + 2.54a+ 0.77b+ 0.35+ 0.51 (1)

The values of ab are substituted into Equation (1) to solve the
number of hidden nodes as 6.

Then, the Non-linear Neural Network algorithms, such
as Levenberg-Marquard (LM), Budgeted Rooted (BR),
Backpropagation Neural Network, and Scaled Convergence
Gradient (SCG) are used to fit the data using the Matlbe neural
network toolkit, as displayed in Figure 2.

TTB Test Experiment Based on DL
The experiment begins after the preliminary preparations
(Hildebrand et al., 2021; Zhang et al., 2021). The DNN used in the
experiment is designed by Matlab toolkit, specified as follows.

Step 1. Collect data and import the input and output data into
the database.
Step 2. Conduct simple data processing, including
normalization, adjustment, and reconstruction. The
regularization equation is:

M =
m−mmin

mmax −mmin
(2)

The input data is disturbed before input to improve the
generalization ability of neural networks and avoid the relative
concentration of data in the same service spin mode.

Step 3. Construct the initial structures of input, output, hidden
layer nodes, and the transfer function of the neural network.

Step 4. Set training time, target, error, and other parameters.
Start training. Add weight correction parameters.
Step 5. Input the data to be tested after training.

Figure 3 illustrates the experimental process.

TTB Detection Based on Feature Fusion
Network
FFN

The deeper a neural work is, the more times it scales down
the original input image; thus, when locating small targets,
some DNNs might get awkward performance, such as very low
detection accuracy. In other words, every time the convolution
kernel extracts image features, the feature map will shrink down
by some ratio while the rich semantic information continues to
be strengthened. Such operation is conducive to object detection
and classification tasks, but the object’s location information
will be gradually discarded. Therefore, fusing the underlying
feature information in the convolution downsampling process is
necessary to enhance the network’s ability to detect and locate
small targets.

Earlier, neural networks need to input fixed-size images.
Such operations as folding and flipping are often used in
detecting photos with changed sizes, leading to information loss,
which limits the accuracy of network recognition. In particular,
feature pyramid networks (FPNs) can combine humble features
lost in the original downsampling process. FPN will not
increase model calculation substantially. On the contrary, it
downsamples the semantically-rich upper feature layer in the
top-down hierarchical network structure and then stacks and
fuses the sampling results with the feature map of the same size,
significantly improving the model’s performance in small objects
detection. Each layers’ output can detect the type and position of
objects. Figure 4 displays the structure of FPN.

Two horizontally linked processes go through the FPN
structure: bottom-up and top-down approaches. The bottom-
up process is the forward propagation process when the feature
map gradually shrinks with convolution kernel calculation. In
contrast, the top-down process upsamples the feature map, and
the horizontal link uses a 1∗1 convolution kernel to fuse the
feature map of the same size generated by bottom-up and top-
down processes. In this way, the position details at the network
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FIGURE 2 | Fitting process of neural networks.

FIGURE 3 | Table tennis ball (TTB) test based on DL algorithm.

FIGURE 4 | Feature pyramid networks (FPN) structure.

bottom can train the network with accurate location information
while simultaneously learning the target features, especially for
small object detections. This paper improves FPN by adding a
bottom-up connection, as shown in Figure 5.

A convolutional neural network (CNN) usually uses a single
random feature layer (sometimes the last) to detect and locate

targets. Each feature layer has its unique function for the target
detection task. In Figure 5, the feature layer is followed by
the adaptive pooling layer in area C. Then, the feature layers
in B are merged into a feature layer of the same size. Then,
the final feature layer of target detection is obtained by max-
pooling feature fusion. Such a design can combine the feature
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FIGURE 5 | Feature fusion network (FFN)’s structure.

FIGURE 6 | Convolutional neural network (CNN)’s structure.

information of each feature map to significantly improve the
position detection ability of the network to small targets.

Target Detection Network

Convolutional neural network is a supervised learning DNN,
including convolution and pooling layers to extract input image
features, an activation function to increase the non-linear ability
of the network, and a fully connected layer to realize target
detection and classification. At the same time, CNN can share

weights, simplify network parameters, and avoid overfitting.
Figure 6 shows the structure of CNN.

The convolution layer is the most critical structure of CNN.

It comprises convolution kernels of various sizes and depths.
The network depth mainly refers to the number of convolution
layers. During network initialization, the size and depth of the

convolution layer will be set. Afterward, during network training,
the network parameters repeatedly learn the data features, and

backpropagation is used to optimize these parameters. The image
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RGB value is constantly multiplied by the network weights to
extract the image features during network transmission. The
convolution layer can extract features and reduce the image
dimensions. CNN employs valid padding (set to zero) to output
images with the same dimensions as the original image. Different
sliding steps can be set to reduce the image dimension. The
smaller the sliding step size is, the fewer characteristic images
are obtained. Generally, the richer the features to be extracted,
the smaller the sliding step. Equation (3) indicates the output
dimension of the convolution layer.

W2 = (W1 − F + 2P)/S+ 1
H2 = (H1 − F + 2P)
D2 = K

(3)

In Equation (3),W1 andH1 represent the height and width of the
input image. F is the size of the convolution kernel. P denotes the
value of padding. S indicates the step size when the convolution
kernel performs convolution operation. H2 and are the length
and width of the output dimension.

Following the convolution layer is generally the pooling
layer whose scanning process is the same as that of
the convolution layer. The pooling layer can reduce the
resolution of the feature map, thereby simplifying the network
parameters. Generally speaking, the pooling layer involves
two operations: max pooling based on operation and mean
pooling based on average. Max pooling is most commonly
used and realized by taking a receiving domain’s maximum
value. Mean pooling adds all selected pixel values and then
averages them.

FIGURE 7 | Network structure diagram.
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A normalization operation often follows the pooling layer to
avoid the impact of nodes with large data values on classification.
The purpose of normalization is to contain the input within an
acceptable range [0, 1]. In CNN, the data normalization can be
conducted before or after the fully connected layer or elsewhere,
depending on the network structure.

Finally, the classification task is realized by the fully connected
layer, which is mainly composed of convolution kernels of
different sizes. The softmax layer can classify the fully connected
layer’s output. Additionally, a fully connected layer needs to
optimize a substantial number of parameters, accounting for
almost 80% of the network parameters. Some scholars have used
the global average pooling to replace the fully connected layer,
enhancing the network detection ability.

The first research on CNN can be traced back to the twentieth
century. Common CNN structures include convolution, pooling,
activation, and fully connected layers. Previous feature extraction
networks mainly reduce the data dimension through a series
of convolution downsampling and extract or sort out valuable
features for subsequent use. In downsampling, the model
captures and learns the object features. These semantically rich
feature layers can enable the model to judge the image types. Still,
the increase of the network depth also trades off the position

information of the object in the original image, thus bringing
great difficulties to the detection of small entities.

In the forward propagation of the network,Mean Square Error
(MSE) is generally used to measure network loss. Suppose c
classes andN training samples for a classification problem. Then,
Equation (4) holds.

EN =
1

2

N
∑

n=1

c
∑

k=1

(tnk − ynk )
2 (4)

In Equation (4), tn
k
represents the dimension k of the sample

n. yn
k
means the k-th output of the network. The production

of the multi-classification task often differs according to the
different activation functions. Generally, only the output node
corresponding to the input is positive, and the bits or nodes
of other classes are 0 or negative. In the backpropagation of
a sample, the error of the sample n is calculated according to
Equation (5).

En =
1

2

c
∑

k=1

(tnk − ynk )
2
=

1

2

∥

∥tn − yn
∥

∥

2

2
(5)

FIGURE 8 | Cross-layer link structure.
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In the traditional fully connected neural network, it is necessary
to calculate the partial derivative of the loss function about each
weight of the network according to the rule of backpropagation.
Here, I represents the current layer. Equation (6) describes the
output of the current layer:

xl = f (ul), ul = W lxl−1
+ bl (6)

There are various output activation functions, such as Sigmoid or
Tanh. Sigmoid compresses the output to [0, 1], so the final output
average∼0. Therefore, if the mean of training data is normalized
to 0 with variance 1, the convergence can be accelerated.

The backpropagation of CNN can be called the sensitivity
basis of each neuron, meaning that the error changes as much
as the basis changes. Equation (7) expresses the sensitivity basis.

∂E

∂b
=

∂E

∂u

∂u

∂b
= δ (7)

When ∂u
∂b

= 1, there is Equation (7); in other words, the sensitivity

and error of the basis are equal to the derivative ( ∂E
∂u ) of all

inputs of a node. This reciprocal transformation allows errors
in the upper layer to propagate back to the lower layer. The
backpropagation process can be described as Equation (8).

δl = (W l+1)
T
δl+1Of ′(ul) (8)

In Equation (8), O is to multiply each corresponding element in
the matrix. Equation (9) expresses the sensitivity of neurons.

δL = f ′(uL)O(yn − tn) (9)

Delta rule is generally used in weight updating. The input
delta is used for amplification and contraction for each neuron
input. Then, the input and the sensitivity of the l-th layer are
cross-multiplied to represent the derivative of the error to the
weight matrix of the l-th layer network. The final weight update

FIGURE 9 | Hitting flow of the table tennis robot (TTR) system.
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FIGURE 10 | Physical system of the 7-DOF table tennis robot.

FIGURE 11 | MSE of fitting training based on LM algorithm.
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needs to be multiplied by a negative learning rate, as shown in
Equation (10):

∂E
∂W l = xl−1(δl)

T

1W l
= −η ∂E

∂W l

(10)

In Equation (10), η is the specific learning rate corresponding to
each weight. The operation of the convolution layer is generally
referred to as downsampling. During downsampling, the image
size is continuously reduced to make the abstract features of
classification tasks more evident. Compared with downsampling,
upsampling can enlarge the image resolution, and the resolution-
enlarged image can exceed the original image in quality.

Interpolation is usually used for upsampling the input
image, that is, inserting some new elements into the original
image. The implementation methods are mainly divided into
three categories.

(1) The nearest neighbor interpolation, also known as zero-
order interpolation, uses the gray value of the image for
interpolation. For a pixel in the original image, the gray value
of the nearest input pixel value is inserted into the transformed
image. The advantage of this method is that the calculation is
simple and easy to implement, but the accuracy is low. It will
cause contour or texture blurring.

(2) Deconvolution transforms the input low-dimensional
features into high-dimensional features. However, deconvolution
mainly restores the size of the image without completely restoring
the original quality. For example, under a step size of 1, to convert
a 2∗2 feature image into its original 4∗4 quality, zero padding will
be performed on elements with padding= 2. Then a convolution
kernel of 3∗3 will be used for convolution operation. Finally, a
4∗4 image is generated. Zero padding will be performed around

each element when the step size is >1; then, the same operation
with a step size of 1 will be served.

(3) Reverse pooling is mainly divided into max pooling and
average pooling. The former needs to record the maximum value
position in the feature map, and the other positions are filled
with 0. The average pooling generally uses adjacent elements
for padding.

The CNN-based target detection algorithms are mainly
divided into candidate box-based two-stage and regression-
based one-stage networks. In the two-stage network, candidate
frame extraction and target detection are divided into two parts.
Specifically, the target’s candidate box needs to be extracted,
based upon which the target detection is carried out. One-
stage network cancels the target candidate box extraction of the
two-stage network and features a single-step prediction. The
one-stage network outputs a five-dimensional prediction result,
including the object category, the center point position of the
object, and the size of the prediction box, with a faster detection
speed than a two-stage network.

Then, this study combines CNN with cross-layer link
structures in the feature extraction network to solve the existing
problems in the above methods. It constructs an FFN, as
demonstrated in Figure 7.

The complex and extensive parameters result in the slow
detection speed of neural networks. Therefore, reasonably
lightening the network structure and streamlining network
parameters is the key to improving the network detection
speed. Accordingly, the present work combines the CNN
and cross-layer link network in the feature extraction design.
The input feature map is divided into two parts. One part
is extracted through the residual network. The other part
is directly concatenated and stacked with the output of

FIGURE 12 | Training state of neural network based on LM algorithm.
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the residual network after feature integration through a 1∗1
convolution kernel. In this way, a large concatenation residual
network is constructed. Due to information loss during feature
extraction by convolution kernel with a deepening network
structure, such concatenation residual network can recover
the lost information during network learning and strengthen
feature extraction. The concatenated feature map will pass
through a transition layer to prevent the network from
learning repeated gradient information during backpropagation,
optimizes the network gradient propagation, and reduces the
convergence time of the network. Figure 8 details the cross-layer
link network.

The convolution kernel is set as follows. Res block_body
is composed of 1∗1 and 3∗3 convolution kernels. The
1∗1 convolution kernel reduces the network parameters by
compressing (reducing) the dimensionality of the feature map,
and the convolution kernel of 3∗3 is used for feature extraction.
Such a design can effectively streamline network parameters

and increase its nonlinear ability. In forward propagation,
each Res block stacks the input of this layer with the twice-
convolutioned output. If the input is x, x + Res block(x)
is the output. Such a structure constructs a basic residual
block. Res block_body is the core part of building the whole
network. Ordinary residual networks simply stack Res block.
By comparison, the cross-layer link networks introduce an
enormous residual edge Part 1 in the stacking process of fast
residual. Part 2 continuously extracts the features of the input
image, while Part 1 directly connects the input to the output of
Part 2 with a small amount of processing.

Common activation functions include sigmoid, ReLU, tanh,
leakyReLU, and Mish; Sigmoid can easily lead to gradient
dispersion. When the ReLU is negative, the network neurons
stop learning, and Mish will increase computation significantly.
By contrast, leakyReLU is much more robust against these
shortcomings. Therefore, this section adopts the leakyReLU
as the activation function to simple calculation, preventing

FIGURE 13 | LM algorithm fitting results: (A) training set, (B) verification set, (C) test set, and (D) total input set.
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gradient explosion and dispersion. Equation (11) indicates
the leakyReLU:

f (x) = max(ax, x) (11)

Design of the Physical Robot System
The seven-DOF KUKA manipulator system adopts a
communication module of a 32-bit system. The vision system

used here is designed in the 64-bit operating system. Therefore,
the programs of the two parts should be designed into
two modules separately. On the contrary, the two modules
need to be connected to realize signal transmission in
practice. The abstract layer encapsulates the Transmission
Control Protocol/Internet Protocol (TCP/IP) family and only
provides several interfaces to the application layer. It only
needs to call these interfaces to realize real-time information

FIGURE 14 | Fitting comparison results.

FIGURE 15 | Accuracy comparison after data enhancement.
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communication when in use. Figure 9 displays the TTR system
designed here.

Figure 10 illustrates the physical design of the 7-DOF robot
established here.

RESULTS AND DISCUSSION

Results of the Performance of DL-Based
TTR
Figure 11 reveals the results of MSE of fitting training based on
the LM algorithm.

The three curves in Figure 11 represent the verification
performance after different data sets are input into the model.
The training time is 20, and the MSE of the test data set reaches
the minimum (0.057) when trained 14 times. Overall, the error of
the test set is smaller than the training set and the verification set.

Figure 12 displays the training state of the neural network
based on the LM algorithm.

As shown in Figure 12, there are two indexes to judge the
training state of neural networks, namely, the training gradient
of the LM algorithm and Mu value. Obviously, with the increase
of training times, the overall training gradient of neural networks
tends to decline. After 20 times of training, the gradient comes to
0.001598. The second index is the Mu value, a parameter in the
training model algorithm. According to the Mu value, the overall
trend first increases with the training times and then declines.
After 20 times of training, the Mu value is 0.001.

Figure 13 shows the fitting results of the LM algorithm.
In Figure 13, R represents the correlation coefficient (CC)

between the expected and fitting results, and the value R ranges
as 0 < R < 1. Generally speaking, the closer the R-value is

to 1, the closer the fitting result is to the expected result. The
R values of the experimental training and test training results
are 0.957 and 0.931, respectively, which shows that the ball
landing point’s initial velocity, rotation, and coordinates have a
significant correlation.

BR algorithm and SCG algorithm are used for comparison to
verify the superiority of the LM algorithm. Figure 14 displays the
comparison results.

Figure 14 illustrates that the fitting results of the LM
algorithm are 0.95, while the fitting results of the BR algorithm
and SCG algorithm are only 0.89 and 0.86. According to the test
results, the R-value of the LM algorithm reaches 0.93, while the
R values of the BR algorithm and SCG algorithm are only 0.84
and 0.85. Thus, no matter the training results or tests, the fitting
condition of the LM algorithm is better than the BR algorithm
and SCG algorithm. From the overall fitting situation, the fitting
results of the three methods all exceeded 0.84. Therefore, even
if different fitting algorithms are chosen, the CC between the
expected and fitting results is very high, further showing that
initial velocity, rotation, and coordinates of ball landing point
have a solid correlation.

Experimental Results of TTB Detection
Based on FFN
Subsequently, the experiment first uses Mosaic for data
enhancement. Four images are spliced into one picture during
network training and sent to network training. However, the
detection effect of TTB is reduced rather than being improved
as expected. The reason is probably that the size of TTB is
scaled down after splicing, thus becoming more difficult for the
network to obtain the TTB location and the decline of positioning
accuracy. The TTB in each image is expanded three times without

FIGURE 16 | Network loss comparison.

Frontiers in Neurorobotics | www.frontiersin.org 16 May 2022 | Volume 16 | Article 82002877

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Liu and Ding Table Tennis Track Capture

FIGURE 17 | Experimental results comparison.

changing the image resolution and diversified training samples
inspired by Mosaic enhancement and combined with the target
features and subject requirements of TTB. Figure 15 illustrates
the accuracy comparison after data enhancement.

This section builds a TTB-oriented target detection network
using the Pytorch framework and Cuda to accelerate training.
The dynamic calculation chart adopted by Pytorch can be
changed and adjusted in real-time according to the actual
calculation. At the same time, Pytorch also provides a toolkit
for building a DL network with a clear and concise structure.
It is a practical and efficient learning framework. In more
than 8,000 data sets, this paper selects 7,000 images as the
training set and the other 1,000 images as the test set. Then,
Figure 16 compares the network losses of the training and
test sets.

After training, the network detection accuracy can reach
over 98%, and the detection response can be down to 5.3ms,
thus meeting the requirements of the table tennis vision
system. First, the experiment compares some of the latest
one-stage target detection networks, YOLOv3, YOLOv3-tiny,
and YOLOv4, using the same laboratory equipment and the
same training data set and test set. Figure 17 unveils the
experimental results.

Figure 17 suggests that although the latest one-stage Yolo
series models have achieved high accuracy in the TTB-oriented
target detection task, the detection response is insufficient.
Their network depth is more profound, and the amount of

calculation and parameters are also more considerable, so
they are not suitable for the research task of this study. The
traditional color segmentation algorithm has advantages in
detection response and can detect the target quickly, but the
detection accuracy is not ideal. In particular, when the color of
TTB changes, the detection ability will decline again. Therefore,
the proposed TTB-oriented target detection network meets
the table tennis real-time hitting and has very high accuracy.

Experimental Results of the 7-DOF Table
Tennis Robot System
Based on the physical system, this study has carried out the
hitting experiments of different rotating balls, including the ball
without spin, topspin, backspin, left-sidespin, and right-sidespin.
The ball speed is slow (4 m/s) and fast (6 m/s). Table 2 provides
the experimental results to analyze the feasibility and accuracy of
this method in the physical system of TTR.

In Table 2, A represents the comparative experiment, 0
represents the ball without spin, 1 denotes topspin, 2 signifies left-
sidespin, 3 represents backspin, and 4 represents right-sidespin.
In the case of a fast ball (6 m/s), the success rate of hitting the
ball without spin can reach 68.5%. It can still ensure a specific
success rate in receiving slow table tennis with spin. The results
prove that the rotating ball discrimination method based on
human experience reported here can take into account the spin
characteristics of table tennis and guarantee the hitting attitude
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TABLE 2 | Hitting test results.

Low speed Fast speed

Type 0 1 2 3 4 0 1 2 3 4

Number of trails 200 50 50 50 50 200 50 50 50 50

A success times 97 – – – – 69 – – – –

A success rate/% 48.5 – – – – 34.5 – – – –

B success times 158 36 34 37 29 137 24 21 24 20

B success rate/% 79 72 68 74 58 68.5 48 42 48 40

choice of the manipulator. However, the success rate of hitting
the fast ball significantly decreases. Considering that the physical
system of the seven-DOF KUKA mechanical arm used here has
a slow control speed, the control system can only control the
robotic arm to hit the ball through the slow mode. Consequently,
the mechanical arm can only make effective hitting action after
fast balls fly away from the table. Therefore, it is essential to
improve the success rate of all kinds of balls in the rapid mode
of a mechanical arm.

CONCLUSION

This study mainly calculates and predicts the rotation, trajectory,
and velocity of TTB using several AI algorithms. Experiments
have proved a close correlation among speed, spin, and
landing point of TTB, which provides a solid foundation
for the reverse rotation of the TTB trajectory. Specifically,
the experiment compares the kernel function difference of
several Machine Learning algorithms on the model prediction
performance. Finally, the optimal fitting method and kernel
function is determined. Additionally, the algorithm based on
Kinect depth camera plans the player’s hitting action and
predicts the rotation and trajectory of TTB by identifying and
classifying the dynamic state of TTB. The results demonstrate
that Kinect and SVM algorithms can achieve satisfying
recognition results and high recognition accuracy in TTB-
oriented target recognition, trajectory prediction, and rotation
prediction. The network structure reported here has an excellent
performance in predicting TTB motion state and player
motion recognition.

Still, there are some challenges and problems in the process.
First, most experiments are still in the laboratory environment.
Follow-up research will focus on live games and use camera
videos to enhance the recognition accuracy of TTB rotation.
Second, there are many interference factors in real competition
applications. Solving the interference of external factors is a
crucial problem to be solved in future research. Third, the
experiment uses insufficient samples and a single experimental
environment. Thus, it is necessary to add more examples from
other environments to calculate the rotation more accurately and
improve the recognition accuracy of TTB.
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Neuromorphic computing is a recent class of brain-inspired high-performance computer

platforms and algorithms involving biologically-inspired models adopting hardware

implementation in integrated circuits. The neuromorphic computing applications have

provoked the rise of highly connected neurons and synapses in analog circuit systems

that can be used to solve today’s challenging machine learning problems. In conjunction

with biologically plausible learning rules, such as the Hebbian learning and memristive

devices, biologically-inspired spiking neural networks are considered the next-generation

neuromorphic hardware construction blocks that will enable the deployment of new

analog in situ learning capable and energetic efficient brain-like devices. These features

are envisioned for modern mobile robotic implementations, currently challenging to

overcome the pervasive von Neumann computer architecture. This study proposes a

new neural architecture using the spike-time-dependent plasticity learning method and

step-forward encoding algorithm for a self tuning neural control of motion in a joint robotic

arm subjected to dynamic modifications. Simulations were conducted to demonstrate

the proposed neural architecture’s feasibility as the network successfully compensates

for changing dynamics at each simulation run.

Keywords: neuromorphic, robotics, reinforcement learning, STDP, rewardmodulation, control theory, applications

1. INTRODUCTION

Spiking neural networks (SNNs), also called the third generation of neural networks, represent
a new design paradigm where some biological neural dynamics are replicated, with similar
energy efficiency and in situ learning capabilities, as seen in living organisms, whereas hardware
miniaturization is feasible. Neuromorphic computing (Saxena et al., 2018; Kendall and Kumar,
2020) emerges as an effort to create built-in neural hardware, emulating the neuronal impulsive-like
electrical activity and in-situ synaptic learning in analog devices. Therefore, neuron dynamics have
to be translated into circuit proposals to achieve these behaviors. As for the synapses, where learning
occurs in biological brains, memristors are taking their role as the electrical element counterpart
(Zhang et al., 2021). These devices, theorized by Leon Chua, relate flux with charge, resulting in a
variable resistor. The conductivity is given by how much current has flowed between its ports in
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a determined period. Therefore, its conductance serves as the
synaptic weight which can be tuned by applying current (Yue and
Parker, 2019). At Zamarreño-Ramos et al. (2011), an exploration
into how neurons and memristors can be interconnected
as an array scheme to achieve large scale spiking systems,
using synaptic time-dependant plasticity (STDP), is presented.
Since then, several proposals have been presented. Recently, a
memristor analog crossbar circuit is used to emulate a single layer
perceptron for the MNIST image classification problem (Kim
et al., 2021). In Shi et al. (2021), a circuit proposed to manage
reward modulation is presented, setting the building blocks for
implementation.

Cutting-edge neuromorphic implementations still demand
going deeper into studying the neuron dynamics and plausible
learning methods since the non-differentiable nature of the
neuron dynamic doesn’t allow the use of the well-known
backpropagation synaptic weight adjustment; widely employed
in ordinary artificial neural networks (ANN). Therefore, there
are some open challenges to address before constructing high-
performance neuromorphic devices, as well as encoding and
decoding information techniques. According to Hu et al. (2022),
learning algorithms used in SNNs are summarized in:

• Modified gradient-descendent-based algorithms: As neuron
models are non-differentiable, some modifications are
pertinent to achieve the classical backpropagation learning
rule, employed in most of the ANNs, i.e., SpikeProp
(Kheradpisheh and Masquelier, 2020).

• Algorithms using a spike train kernel:Where an error function
is used to compute and update synaptic weights, using a spike
train kernel, i.e., SPAN (Mohemmed et al., 2012).

• Algorithms using synaptic plasticity: Based on Hebbian
learning, the synaptic weights tuning is given by the
correlation of pre and post-synaptic spikes. In STDP, the
modification of the neural strength connections is performed
as the learning process occurs, as in biological brains (Hao
et al., 2020).

Synaptic plasticity phenomena explain how learning is conducted
in biological brains, enhancing conductivity between neurons
that fire together, wire together, and deprecating those unused
connections.

On other hand, information, usually shaped as an analog
signal, has to be encoded into the neuron spike domain. The
scientific community is still debating how information from
the environment is converted into electrical neural activity.
According to Dupeyroux et al. (2021), neuron spike coding
methods can be classified into three categories.

• Population encoding: A group of n neurons, each one with
different characterization (i.e., different τm,Rm,Cm), is set to
be excited about an input current. As a result, at a given
time-step, some neurons will spike faster than others. The
characterization of neurons is made in such a way the domain
of the input signal is distributed between the n neurons, using
tuning curves (Voelker and Eliasmith, 2020).

• Rate-based encoding: One neuron is used to encode the
variation of the input signal ∈ [Imin, Imax]. As larger an input

signal gets, the spiking frequency of the neuron increases.
A minimal input current traduces into a minimum spike
frequency, inside a frequency interval ∈ [fmin, fmax].

• Temporal encoding: Also called pulse coding, produces spikes
according to a temporal change of the input signal. This is, if
an input signal is constant, no spikes are produced, even if the
signal is large. As soon the signal increases or decreases, spikes
will be emitted.

While population encoding reaches the best performance, its
efficiency is reduced, as it needs a huge amount of resources
(neurons) in order to be implemented. Rate-based encoding has
become the standard, but it presents the need to spike even
with a zero input signal, increasing the power consumption.
Besides, it can’t encode negative values, as seen in Bing et al.
(2019a), where a negative input signal has to be fed as its absolute
value. The temporal encoding provides a time-based method,
providing more information capacity per synaptic event, and it
is supported by neurophysiological studies in auditory and visual
processing in the brain (Guo et al., 2021). SNNs can send data
encoded as the timing of spikes occurrences, allowing fast and
low energy consumption hardware implementation, applicable
to real-world robotics problems. Furthermore, SNNs are more
prominent than non-spiking ANN as they profit from temporal
stimulus information, referring to the precise timing of events
that allows obtaining and processing of information.

Spiking neural networks on robotic design systems are
a promising research topic as online learning, and huge
computational capacities are commonly required in this field.
For instance, at Chen et al. (2020), an SNN controls a 4-
DOF (Degree of Freedom) manipulator arm using population
encoding and a proposed learning rule. Bing et al. (2019b)
use a reward-modulation learning rule to teach a differential
robot how to track a path, using rate-based encoding to do
conversion of visual input into spiking activity. A similar task is
studied numerically by Bing et al. (2019b), controlling a snake’s
movement instead. Lu et al. (2021) achieve obstacle avoidance
for an Ackerman-type mobile robot, using two neurons and
two synapses, implemented on a digital development board.
Bing et al. (2019a) achieve obstacle avoidance and goal-reaching
for a differential robot, implementing separate neural control
structures for each task. Over these articles, while control is
achieved based on interaction with the environment, changing
dynamics in the robot produced by weathering in the joints
or unknown environmental perturbances are not addressed. A
typical control strategy for a robotic open-chain manipulator
requires re-tuning each time friction or mass on the robot
changes, affecting performance. This article proposes an SNN
architecture that learns how to reconstruct an input signal.
Inspired by control theory, this structure is then used in a
control loop, using the same input signals in a PID, but fed into
the structure in order for the synaptic weights to evolve over
changing dynamics on a 1-DOF robotic arm.

The document is structured as follows: Section 2 describes the
control problem to be tackled, neuron and synapse dynamics,
and how these are ensembled for a controlling proposal.
Section 3 shows the simulation results of the proposed SNN
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FIGURE 1 | LIF model (A) diagram of a spiking LIF neuron. (B) Spiking activity

for a LIF neuron with Isyn = 1.51 nA. (C) Tuning curve of the neuron model.

Neuron parameters are in Table 1.

implemented in 1-link. Section 4 discusses results, advantages,
and drawbacks, while at last, Section 5 is devoted to conclusion
and future study.

2. MATERIALS AND METHODS

2.1. Control Problematic
According to Craig (1986), Lynch (2017), the dynamics of an
open chain robotic manipulator can be written in joint space as:

τ = M(q)q̈+ C(q, q̇)q̇+ g(q) (1)

Where q = [θ1, θ2, ..., θn]
T are the joint angles of the robotic

arm with n DOFs, M(·) stands for inertia matrix terms, C(·)
is the Coriolis’s matrix and friction dynamics, g(·) are gravity
compensation terms and τ = [τ 1, τ 2, ..., τn]T means the torque
control for each joint. Typically, PID control strategies are the
standard. Based on the desired state xd(t), a tracking error qe =

qd − q is defined, setting the control input τ (t) as:

TABLE 1 | Neuron and synapse modeling parameters.

Model Parameters Value

LIF neuron Membrane resistance Rm = 10 M�

Membrane’s capacitance Cm = 1 nF

Time decay membrane τm = 0.010 s

Resting voltage El = −70 mV

Reset voltage Vreset = −75 mV

Spike voltage Vspike = 20 mV

Threshold voltage Vth = −55 mV

RSTDP synapse LTP scaling A+ = 1

LTD scaling A− = −1

Elegibity trace scale τE = 0.010 s

Min. Synaptic weight wmin = 1

Max. Synaptic weight wmax = 1,000

τ (t) = KPθe + Ki

∫

θe(t)dt + Kdθ̇e (2)

At Equation (2), KP ∈ Rn×n,Kd ∈ Rn×n,Ki ∈ Rn×n are the gain
matrix for proportional, derivative, and integral control, which
elements are zeros except in the diagonal. This strategy is the
function of the tracking error, which on zero, there will be no
control output. Consider:

τ = M̃(q)q̈+ C̃(q, q̇)+ g̃(q) (3)

Here, M̃, C̃, g̃ represents our model representation of the plant,
and it is perfect if M̃(q̈) = M(q̈), C̃(q, q̇) = C(q, q̇), and g̃(q) =
g(q). Therefore, if the control loop works on the estimation,
it would work for the real model. Usually, in the development
process of a robot controller, Kp,Ki, and Kd are tuned for initial

M̃, C̃, and g̃. This becomes a problem as the robot’s weathering
modifies its dynamic properties, such as friction. Or perhaps,
mass changes over time, as seen in biological limbs in living
creatures.

2.2. Spiking Neural Network Modeling
In order to describe the proposed structure, a review of how a
neuron generates spikes, how synapses store learning, and how
to generate reward signals is presented.

2.2.1. Neuron Modeling

As an input stimulus is provided to the neuron cell, shaped as
an input current, the membrane’s potential vm increases. Once
it overpasses a threshold voltage vth, the neuron produces a
spike, and then it immediately resets its membrane potential to
a reset voltage vreset . The neuron cannot fire again until a certain
refractory period has elapsed. Some differential equation models
illustrate these neural dynamics with high biological plausibility
but prohibitive computational cost such as Hodgin and Huxley
or Izhikevich models (Izhikevich, 2004; Valadez-Godínez et al.,
2020). Nonetheless, others with a lesser plausibility can compute
the membrane potential with less effort degrading the accuracy,
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FIGURE 2 | Step Forward + STDP Neural structure. (A) Schematic of the structure. (B) Sinusoidal Signal sin = sin(ωt)+ cos(3ωt) being reconstructed. (C) Synaptic

Weight evolution. (D) Gaussian noise with σ = 0.01 was added to foster synaptic update. (E) Synaptic Weight evolution with added noise. Simulation Parameters are

available at Table 2.

TABLE 2 | Step Foward + STDP Encoding simulation.

Model Parameters Value

Simulation parameters Time step dt = 0.1ms

Signal angular velocity ω = 2rad/s

Total time simulation 10s

SF encoder Threshold sth = 0.02

Initial base value sb = 0

SF decoder Threshold sth = 0.02

Initial base value sb = 0

but are still useful as a goodmodel approximation, due that spikes
generation with the same characteristics as biological neurons
might not be necessary for circuit implementations, such as the
Leaky Integrate and Fire (LIF) (Lu et al., 2021) model, given by:

τm
dvm(t)

dt
= −vm(t)+ El + RmIsyn (4)

At Equation (4), vm(t) represents the neuron’s membrane
potential, El is the resting potential of the neuron, Rm membrane
resistance, τm = RmCm is the decay time for vm(t), being Cm

the neuron’s membrane capacitance. Isyn stands for the injected
current to the neuron. Each time a spike arrives at the neuron,
Isyn increases. On the other hand, if no spikes arrive at the
neuron, the current decays. This phenomenon is described by
LIF conductance-based model (Hao et al., 2020; Lu et al., 2021),
composed of Equations (4 and 5):

τm
dIsyn

dt
= −Isyn + Cm

N
∑

i

wijδ(t − t
f
i ) (5)
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FIGURE 3 | Modified Step Forward + STDP Neural structure. (A) Schematic of the structure. (B) Sinusoidal Signal sin = sin(ωt)+ cos(3ωt) being reconstructed.

(C) Synaptic Weight evolution. (D) Gaussian noise with σ = 0.3 was added to foster synaptic update. (E) Synaptic Weight evolution with added noise. Simulation

parameters are available at Table 3.

In Equation (5), wij is the synapse strength value between a
presynaptic, i− th, neuron and a postsynaptic, j− th, neuron. As
for each postsynaptic neuron, there can beN presynaptic neurons

connected, t
f
i is then a vector with firing times from each of theN

presynaptic neurons. δ is the Kronedecker delta function, which
δ(x) = 1 for x = 0 and δ(x) = 0 for x 6= 0. Equation (5) assumes
all presynaptic spikes have been produced at time t. For each time

a new spike happens, t
f
i = t, therefore, δ(t − t

f
i ) = 1. Once the

neuron threshold voltage vth is over-passed, the neuron spikes,
emitting a pulse of magnitude vspike, then, the neuron resets to a
reset potential v = vreset and it starts integrating again. Figure 1A
shows the LIF structure model, while its spiking activity for a
given fixed and variable input current is shown at Figures 1B,C,
respectively.

2.2.2. Synaptic Modeling

Once we define how neurons produce spikes, we will expose
how synaptic strength is adjusted. STDP (Bing et al., 2019b)

TABLE 3 | Modified Step Foward + STDP Encoding simulation.

Model Parameters Value

Simulation parameters Time step dt = 0.1 ms

Signal angular velocity ω = 2 rad/s

Added gaussian noise 10%

Total time simulation 10 s

SF encoder Threshold sth = 0.0005

Initial base value sb = 0

Current output Ic = 4.6 nA

SF decoder Threshold sth = 0.025

Initial base value sb = 0

is an unsupervised learning algorithm (based on the Hebbian
learning rule) for SNN. It describes how synaptic weights are
strengthened or weakened according to neural spike activity, and
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FIGURE 4 | SNN-PID control proposal flow chart showing steps for implementation.

FIGURE 5 | SNN-PID controller neural structure for 1-DOF robot pendulum.

it has demonstrated plausibility over conducted experiments in
biological systems. First, a synaptic weight value is randomly
assigned for each defined synapse. Then, the time difference
between pre and post-synaptic firing times 1t = tpost − tpre
is computed and it determines the rate of change 1w on the
synaptic weight w as:

STDP(1t) =

{

A+e
−1t/τpost 1t ≥ 0

A−e
−1t/τpre 1t < 0

(6)

ẇ =

∑

tpre

∑

tpost

STDP(1t) (7)

Here, A+,A− are scaling constants depicting whether our
synaptic weight has been incremented (Long Term Potentiation
LTP) or decremented (Long Term Depression LTD). τpre, τpost are
positive and negative constants representing decay time. Once
again, these equations imply all spikes have been produced. Since
neurons do not have a memory of all their fired spikes (Bing et al.,

2019a), Equation (6) can be rewritten in the function of the last
firing time (Morrison et al., 2008; Gerstner et al., 2018). This
results in the following expressions:

STDP(t − tpre/post) =

{

A+δ(t − tpre)
A−δ(t − tpost)

(8)

As each time a presynaptic spike tpre is produced, tpre = t and
δ(t − tpre) = 1. With each postsynaptic spike, tpost = t and
δ(t − tpost) = 1. Next, we define an eligibility trace Ejk for
each synapse between a presynaptic neuron j and a post-synaptic
neuron k as:

Ėjk(t) = −
Ejk

τE
+ STDP(t − tpre/post) (9)

This expression computes synaptic weight changing history,
generated by the collected spikes. To control the sensitivity
of the plasticity to delayed reward, an exponential τE =

τpre = τpost constant for Ejk(t) is defined. This implies a
symmetric learning rate for LTD and LTP (Taherkhani et al.,
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FIGURE 6 | 1-Link robot controller performance comparison. (A) Robot Angle evolution for each robot, SNN-RSTDP: with Rjk = tanh q̈e (Yellow), SNN-STDP:

proposal with Rjk = 1 (Blue), PID-Controller tuned with Ziegler Nichols (Green), compared against reference (Red). (B) Control output of each controller. (C) Error

position: difference against the reference. (D) Synaptic weights evolution for constant reward robot (SNN-STDP). (E) Synaptic weight evolution for the rewarded robot

(SNN-RSTDP). (F) Reward signal for both SNN proposals.

2020). Change in synaptic weights is obtained by integrating
(Equation 9). The reward modulated STDP, or R-STDP learning
rule model, integrates the reinforcement learning paradigm in
SNNs, modifying the STDP algorithm based on dopamine effects
for learning in biological brains (Framaux and Gerstner, 2016).
Consider:

ẇjk(t) = Rjk(t)× Ejk(t) (10)

Here, Rjk(t) ∈ Rn×1 is a reward signal for the synapses between

layer a j − th and k − th layer in a network, bounded inside

[−1, 1], which enables or disables synaptic modification (called

learning), and it is defined by interaction with the environment as

a function of an objective (i.e., the desired path, desired position,

desired action). It is worth mentioning that, when Rjk = 1, the

R-STDP rule equals STDP, as Equation (7) equals Equation (10).
When Rjk is equal to 0, learning is inhibited.
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Algorithm 1:Modified step forward encoding algorithm.

Data: input, threshold, base
Result: Out+(i), Out−(i)
L = length(input);
for i = 2:L do

if input(i) > base + threshold then
base = base + threshold
Out+(i) = 1 ;
Out−(i) = 0 ;

else if input(i) < base + threshold then
base = base - threshold
Out+(i) = 0 ;
Out−(i) = 1 ;

end

TABLE 4 | RMSE analysis result comparison for STDP-SNN, RSTDP-SNN, and

PID controllers.

Signal RSTDP STDP PID

Position 0.101231 0.12089 0.116812

Velocity 0.116812 0.21960 0.33481

Acceleration 0.43922 0.400311 1.49198

Best cases are in bold.

2.2.3. Encoding and Decoding Between Continuous

and Spike Domains

Step forward encoding (SF henceforth), described in Kasabov
et al. (2016) and Dupeyroux et al. (2021), is considered a
temporal encoding algorithm, as it converts the variation of
an input signal to spikes. The module for the step forward
encoding contains two outputs ports Out+,Out−, and an
input port, sin, which is compared with a baseline value sb.
If the incoming signal is bigger than a certain predefined
threshold value sth (this is: sin > sb + sth), then a spike
will be produced over Out+. On the contrary, if the signal
has decreased (sin < sb − sth), a spike will be produced in
Out−. As the spike’s domain is always positive, the emitted
spikes can be processed by SNNs representing positive and
negative changes in value. The procedure herein is shown
in Algorithm 1.

A neural structure proposal for exploiting SF encoding
with SNN and STDP is shown in Figure 2A. An input signal
is fed to an encoder and the decoded output signal tends
to match the original, as the synaptic weights get updated
(Figure 2B). For signal growth, learning in the w+ synapse
occurs. Once the signal decreases, an update for negative synapse
w− begins (Figure 2C). In order to foster a quick synaptic
weight adjustment in both synapses, Gaussian noise was added
to the input signal sin (Figure 2D), with a SD of σ = 0.01.
As a secondary effect, accumulation in the decoder’s output
signal takes place, as seen in Figure 2E. In order to harness
the low-pass filter dynamics of the LIF neuron model, a slight
modification is proposed. Instead of spikes, a given current Ic

is sent as the encoder outputs. Figure 3 shows the same signal
reconstruction obtained with the proposed modifications, setting
Ic = 4.6 nA as current input to a LIF neuron which, according
to its tuning curve (refer to Figure 1C), it would produce spikes
at a frequency of 200 Hz. Signal reconstruction is achieved.
Moreover, Gaussian noise with σ = 0.3 is added to the input
signal, achieving signal reconstruction and filtering, as seen
in Figure 3D.

2.3. Self Tuning SNN Controller Proposal
The objective is to create an SNN structure that enables the
learning of the robot’s dynamics and reconstructs the necessary
torque control output based on Equation (2). In order to take
advantage of synaptic plasticity properties, tuning PID control
parameters K on the fly is performed. The procedure steps are
shown in Figure 4 and described in detail upnext. First, a module
computes the desired path, using a cubic polynomial trajectory
planning generation Algorithm (Craig, 1986; Spong et al., 2005),
with initial and final points randomly defined between the
joint’s boundaries, and initial and final desired velocities set to
zero. Next, qe,

∫

qedt, q̇e are computed and added; then, they
are applied to an SF encoder module, which out is sent to an
SNN processing positive changes (called SNN+), and another
for negative changes (called SNN-). Both networks share the
same structure, as SNN+ and SNN- are intended to process
the necessary signal increments and decrements, respectively.
These networks are composed of two layers j − th and k −

th composed of n LIF neurons each (same amount of DOFs
in the robot), modeled by Equations (4), (5). Between j − th
and k − th layers, there are wjk ∈ Rn×n synapse matrices
with randomly initialized weight values between minimum and
maximum synaptic values [wmin,wmax]. For all synapses, its value
will be modified accordingly to Equations (8–10). Each output
spike from the neurons of the k − th layer in SNN+ and SNN-
serves as input for the n SF decoders, which output corresponds
to each torque input signal for the robot. The proposed structure
is shown in Figure 5.

3. RESULTS

3.1. 1-DOF SNN Simulation Implementation
For a 1-link robot (a pendulum), its non-linear model has a shape
like in Equation (1) and is given by:

τ = ml2θ̈ +mgl sin(θ)+ml2kθ̇ (11)

Where m stands for the arm’s weight, l its length, g is the gravity
acceleration term, k is the viscous friction in the joint, θ ∈

[θmax, θmin] is the joint angle, τ represents torque in the robot’s
joint, acting as the input control signal to the system.

Figure 6 shows simulation results comparing performance
between three controllers:

• SNN-STDP: proposed model with fixed reward signal Rjk = 1.
• SNN-RSTDP: proposed model with reward signal Rjk given as

a function of acceleration error q̈e.
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FIGURE 7 | Neuron activity for 1-link controller pendulum. First, t = 100s of the entire control execution is shown, for SNN-STDP (Up) and SNN-RSTDP (down).

A zoom at t = 0ms− 250ms is shown at the highest neuron activity.

• Amanually tuned PID controller, tuned by the Ziegler Nichols
technique (Ogata, 2010)

For the SNN-RSTDP controller, a bounded reward signal
delimited by [−1, 1], is given next:

Rjk = tanh(q̈e) (12)

For each episode of length 15s, the desired path is computed,
selecting initial and final positions randomly, but setting the final
position of the current episode as the initial position for the next

episode. The proposed SNN quickly tunes itself. At t = 45s (refer
to red dotted vertical line), the link’s joint friction coefficient k
and weight m increase to a new knew and mnew values. From
t = 90s to t = 100s, qd = constant, q̇d = 0.

In Figures 6A,B, it can be seen that robot angle runs evolve

smoothly on both RSTDP and STDP controlled robots, in

contradistinction from PID controlled robots, in which evolution

oscillates more. Besides, in Figure 6C, it can be seen at the output

control for the PID presents jittering, which in real scenarios
would produce fatigue on the motor, decreasing its lifespan. In
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TABLE 5 | 1-link robot simulation parameters.

Model Parameters Value

1-DOF robot Joint angle boundaries [θmax , θmin] = [0,2π ]

parameters Mass M = 1 kg

New mass at 45s Mnew = 3 kg

Longitude L = 2.5 m

Gravity acceleration g = 9.8 m/s2

Initial viscous friction constant k 0.1 kg/s

New viscous friction constant at 45s knew 0.5 kg/s

PID controller Proportional gain kp = 180

Integral gain ki = 50

Derivative gain kd = 12.5

Simulation Time step dt = 0.1 ms

parameters Number of episodes 6

Length of an episode 15s

Total time simulation 100s

SF encoder Threshold sth = 0.001

Initial base value sb = 0

Output current Ic = 140nA

SF decoder Threshold sth = 0.2

Initial base value sb = 0

order to analyze the variance of the tracking task, a root mean
squared error (RMSE) metric signal (Petro et al., 2020), which is
intended to be minimized, is defined as:

RMSEq =

√

∑N
t=1(q− qd)2

N
(13)

Where N is the number of all timesteps along with the
experiment. Similar values RMSEq̇, RMSEq̈ can be obtained using
velocities q̇ and accelerations q̈ instead. Table 4 shows the mean
RMSE values for a hundred iterations with random desired
trajectories, comparing the position, velocity, and acceleration
for each of the three used controllers. It can be seen that RSTDP
and STDP controllers achieve better performance, having lower
RMSE values. RMSEq̈ presents the worst metrics for the PID
controller, explaining the jittering for the torque output, which
is the function of the acceleration of the robot.

Figure 7 shows the spiking frequency of each neuron
for both STDP and RTDP controllers. It can be seen
that for the first 200ms (Refer to zoomed section), the
frequency grows and drops quickly, as decoders send current
to each input neuron according to the sensibility sth. All
the values used for RSTDP synapses, LIF neuron model,
and SF encoding and decoding are depicted in Table 1. 1-
link Robot simulation parameters are shown in Table 5. The
simulation has been performed using Python3 scripts.

4. DISCUSSION

The utility of a neuromorphic controller operation for a 1-
DOF robot capable of learning the changing dynamics has

been experimentally demonstrated with results comparable with
a standard control technique. The PID used for comparison
is tuned using a pretty standard and popular procedure for
industrial applications. It is an iterative process that intends
to eliminate response oscillations based on select proper gains
throughout multiple testing executions in the plant. The
procedure ends when the responsible technician is pleased with
the performance, making it as precise as its interpretation, and
it has to be re-tuned each time the dynamics of the plant
change.

Unlike the PID, our proposal eliminates the need for tuning
procedures. Nonetheless, some issues have to be addressed. First,
SNN parameters were selected to mimic biological brain systems,
which can bemodified to fit actual electrical circuit standards. For
example, values of wmin and wmax were chosen arbitrarily, while
they should be scaled to fit actual memristor conductance limit
values.

A+, A−, which control LTD and LTP, play an important
role in stability, as they control the learning rate of the
system. Small values will result in slow convergence, while
larger values will overshoot the output control signal. Value
sth for SF encoding will determine its sensitivity against the
input signal, setting the amount of neural activity (spikes) as
the response. For decoding, sth determines output modification,
as it has to be sufficiently large to scale the outgoing signal
and sufficiently small to avoid overshoot and under-damping
behavior. SF encoding also shows no neural activity for the
SNN- stage for always increasing signals. Ic modules spiking
frequency, as for higher values, output signal amplitude is
affected too.

A stability analysis to determine proper LTD, LTP values,
thresholds, and current inputs for encoding/decoding and
learning rate values is needed. While it is a pending task,
some challenges arise, as some system dynamics are not
differentiable (LIF, SF models). Therefore, Lyapunov asymptotic
stability analysis cannot be performed. However, some possible
alternatives are proposing differentiable models of the neuron
dynamics, defining the system on the frequency domain, or
conducting Von Neumann stability studies.

On the other hand, noise then allows to update synaptic
weights constantly, but the sensibility of the encoding is crucial,
as for small sth values, signal variation produces redundant neural
activity, generating an accumulative error for decoding. Our
proposal effectively used neuron dynamics as a filter, in an open
loop. A possible alternative to use or implement alongside would
be to use the Moving-Window SF algorithm instead. Similar to
SF, starting from an initial baseline and threshold values, the
baseline is updated differently as an average input signal for a
time window. This corresponds to a median filter.

As this scheme proposal tackles fully actuated 1-DOF robotic
manipulators, its usage in N-DOF has to be studied. SNN
structuremight be usable in under-actuated systems, but the SNN
architecture must be modified. Hyper-redundant manipulators
present a similar problem, as flexible robotic arms can be
considered like infinite DOF systems. An infinite neural structure
generation is problematic. Therefore, modifications have to be
proposed in the future.
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5. CONCLUSION

A self-tuning SNN architecture for a 1-DOF manipulator
robot arm is proposed, based on a typical control scheme.
Numerical simulation shows the feasibility and, in some
cases, outperforms PID performance. The architecture
also shows self-tuning properties on changing dynamics.
From the control theory point of view, a neural structure
with similar PID performance is described. Nevertheless,
stability analysis is still pending, describing the relationship
between spiking activity, current injection, learning rate, and
coding velocity. Besides, explainable neural networks are
possible, considering control loop architectures. However,
neuron models, synapses, and coding/decoding modules
should be implemented in analog circuit counterparts to
achieve real-time computing scenarios with efficient energy
consumption.
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To study the influence of Artificial Intelligence (AI) on dancing robots in choreography, this

paper introduces the biped-humanoid robot-imagined choreography model alongside

the Psychological Space Construction (Psychological Construct) and Human–Computer

Interaction (HCI). The proposed model is based on deep learning and imitating human

thinking and is capable of imagining new dance elements. Finally, simulation experiments

are designed to verify the model’s effectiveness. Dance professionals are invited to

evaluate the robot-imagined dance posture. The results show that the proposed model

can vividly imitate human dancers and imagine and create new dance movements.

The average basic feature retention and innovation scores of 30 new dance elements

imagined on the L1 (head) are 7.29 and 7.64, respectively. By comparison, similar scores

on 30 new elements in L2 (upper-body) are 7.73 and 7.40, respectively. Therefore, the

proposed intelligent robot-imagined choreography model can help the dancing robot

choreograph more finely and improve the choreography efficiency. The research results

have significant practical value for dance teaching.

Keywords: dance creation, Human–Computer Interaction, Artificial Intelligence, deep learning, dancing robot

INTRODUCTION

Dance, as an art, conveys people’s emotional and ideal aesthetics through the relationship
between body and spirit (Li, 2020). In the art of choreography, to pursue a better theme,
the artistic works must appeal to choreographers’ thoughts and emotions through a vague
mental state in the psychological space. From the perspective of art, the Psychological Space
Construction (Psychological Construct) is mainly affected by personal life experience, inner
emotional experience, and cognitive activities. Meanwhile, dance is one of the art categories closest
to psychology and linguistics. It takes the body as the material medium and entirely plays the role of
body language through imagination and technical skills and connects human emotions. Besides, the
body and psychology relationship is one of the most basic but delicate relations. Body language can
convey and visualize psychological information through specific actions, the basic body language
unit. Every action stirs a response from an individual’s cognition. The image mapping in the human
mind based on instantaneous thinking is an imaginary experience. As art forms flourish and human
cognition deepens, new elements are constantly being injected into the psychological space and
thus, enrich the source of chorographical innovation (Lei and Rau, 2021). Biped robot research
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involves multidisciplinary, including machinery, electronics,
automation, control technology, and bionics. It has made
high achievements in mechatronics. In particular, the gait
analysis of the biped dancing robot can provide technical
support for human research and prosthetics development when
constructing a stable biped gait model. Dancing robots can also
arouse teenagers’ curiosity and enthusiasm for learning new
technology by showing a stable gait and planning sports in the
entertainment industry.

The technical level of biped robot gait research is not
mature. Its stable gait and balance ability are still the research
focus. Control and planning the robot’s gait so that the robot’s
walking motion is always stable is of great practical importance.
Barnes et al. (2021) observed that using robots to treat children
with autism spectrum was promising and aroused interest in
the research community. Children could interact with robots,
such as dancing with robots and improve their concentration
abilities. Kobayashi et al. (2022) proposed an exploratory study
based on impromptu dance to explore the interaction between
human dancers and mobile robots. A basic improvisation action
algorithm was developed after many iterations with professional
dancers. The robot trained in different dance styles created three
unique original performances. Hua et al. (2021) researched the
dancing robot, inputted the video content of dancing, estimated
the human posture in the video with the help of the deep learning
method, and obtained the coordinates and positions of the main
points of the human body. Although there are many studies on
dancing robots, there is a lack of research on humanoid dancing
robots that can choreograph independently. Accordingly, the
present work presents a method to provide a new direction for
robot choreography.

The main contribution is to study the impact of Artificial
Intelligence (AI) on dancing robots in choreography by
introducing robot choreography and Psychological Construct.
Most of the existing research focuses on robot dance’s action
design and research direction. Compared with the existing
research, the innovation lies in establishing a choreography
model that enables a bipedal humanoid robot to choreograph
by imitating human thinking actively. Being able to choreograph
beautiful dance moves using robots opens up new ideas for future
research on dance creation.

RESEARCH METHODS

Robot Choreography and Psychological
Construct
Dance experts often use familiar dance postures in choreography.
Even similar dance postures exert different artistic tastes
due to human dancers’ individual charisma. Nevertheless,
those uniformly programmed dancing robots’ monotonous
movements might easily get people disinterested after a few
tryouts (Dong et al., 2021). Human–Computer Interaction
(HCI) refers to the information exchange process between
people and computers using a machine-understandable language
to complete specific tasks in a certain interactive way. HCI
studies the interactive relationship between system and user.

The system can be machines or computerized systems and
software. The HCI is realized through the external equipment
with input/output functions or the corresponding software.
Therefore, designers should give full play to the HCI of
dancing robots to refine robot movements. The dancing robot-
imagined choreographymethods include random generation and
mapping rules. In particular, the dancing robot-imagined model
incorporates robot–human cooperation, dance posture learning,
and robot-imagined choreography (Samosir and Widodo, 2020).
Here, robot-imagined choreography refers to independently
choreographing high-quality dance postures by the robot or
through synchronized human–robot interaction. It is essentially
the robot’s intelligent behavior. High-quality dance can be
defined explicitly through three features: maintaining the basic
characteristics of human dance, innovation, and conforming to
human aesthetics. The principle of robot-imagined interactive
choreography is shown in Figure 1.

Figure 1 shows the choreography principle of the dancing
robot with enhanced interactive learning. The system is
constructed based on interactive Reinforcement Learning (RL).
Then, by selecting dance actions with a high return, the robot
will choreograph different dance moves considering human
preferences. The Sarsa RL algorithm is used to update the
dance action database in the choreograph system. Each action
is given a unique cumulative return, and the Softmax action
selection algorithm is used to select the appropriate dance
actions to form dance works. At the same time, robots are
encouraged to choose dance movements with higher returns
over lower returns. Apparently, the Psychological Construct in
choreography is a natural and intangible process of imaginative
dance ideas. It is the psychological factory for processing dance
works (Dou et al., 2021).

Personal experience, skills, cognition, and educational levels
all contribute to artistic creation. However, without Psychological
Construct, these elements are independent of each other and
cannot lead to artic representations. Thus, material and spiritual
(psychological) constructs are both essential for art. Like other art
forms, choreography generates a series of psychological behaviors
with complex interactions and relations, where the subject’s
imagination exerts the most active psychological function
(Borovica, 2020). That is to say, a choreographer without artistic
imagination can never choreograph aesthetic dance postures, nor
can a positive and independent artistic dance image be formed.

From the perspective of art, the Psychological Construct is
mainly affected by choreographers’ experiences in real life. In
the art of dance, to pursue a better theme, the artistic works
must appeal to choreographers’ thoughts and emotions through a
vague mental state in the psychological space. For example, in the
dance A Couple Guarding A Sentry Box, the second part involves
a strong Psychological Construct by integrating real-life body
language into dance moves. Thus, the dance has a solid real-life
basis, reflecting the couple’s life around the front line of fighting
floods and disasters. Despite all the difficulties, the soldier’s wife
is brave and determined to support her husband: a People’s
Liberation Army (PLA) member, and share their joys and pains.
Overall, the dance can well reflect ordinary people’s lives and
tendering emotions, thus infecting the audience. The two actors
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FIGURE 1 | Principle of dancing robot-imagined choreography with enhanced interactive learning.

accurately convey the characters’ psychology through aesthetic
dance moves, such as modesty, heartache, helplessness, comfort,
coquetry, marital love, and other real-life scenes. Meanwhile,
the director has consolidated the characters’ emotions into
each move and embeds their psychological rhythm into the
dance connection. The process of the Psychological Construct is
demonstrated in Figure 2.

Figure 2 is the mapping diagram of Psychological
Construct during the performance of the dance A Couple
Guarding A Sentry Box. Obviously, the dancers have
successfully expressed the characters’ emotions and
psychology through dance moves. Such is the process of
Psychological Construct.

Principle of Back Propagation Neural
Network (BPNN)
Based on the achievements of DL in human keypoint recognition,
the Three-dimensional (3D) position coordinates of human key
points are obtained in the image by analyzing RGB images. BPNN
is a multilayer Artificial Neural Network (ANN), a new research
direction in the DL field. It is introduced into a broader concept
of Machine Learning (ML) to help realize true AI. In particular,
AI aims to understand the essence of intelligence and fabricate
an intelligent machine with human intelligence. It involves
multiple disciplines, such as robotics, language recognition,
Image Recognition (IR), Natural Language Processing (NLP),
and Expert Systems (ES). BPNN features error back-propagation
and signals forward transmission. Figure 3 sketches the structure
of a three-layer ANN.

As detailed in Figure 3, generally, the ANN comprises three
neuron layers: input layer, hidden layer, and output layer.
The signal is fed into the input layer during the forward
transmission, processed by the hidden layer, and outputted
by the output layer. The lower-layer neurons’ state is only
affected by the state of neurons in the upper layer. Nevertheless,
the error between the actual output and the expected result

(if large enough) will be back-propagated to adjust the network
threshold and weight. Such error back-propagation process will
repeat itself until the predicted output of BPNN approach the
expected output.

Biped Humanoid Robot-Imagined
Choreography Model
In addition to adopting the idea of choreography, choreographers
also follow the following creative rules. (1) Learn and master
the core elements of some dance forms, such as the shape
and position of hand and feet shape, position, and speed. New
elements lay the foundation of spontaneous imagination. (2)
All these elements are used as the basic dance, and the dance
movement is innovated, conforming to human body aesthetics
and design. (3) These dance movements are associated together
with different combinations, fabricating an intact dance work.
Based on the above BPNN research and the objective rules
of human choreography, the biped robot can imitate human
thinking when choreographing the independent dance. The
specific flow is as follows. Learning → Memorizing →

Imagining→ Processing→ Combining. In order to efficiently
complete choreography independent of human thought on the
biped robot platform, the model is implemented, as given
in Figure 4.

The joint angle is given as the action command of the
robot. The robot’s inverse kinematics calculation and forward
kinematics calculation involves the mutual conversion between
the joint coordinates and the joint angle. Moreover, the
angle must be adjusted in multiple steps. This complex angle
adjustment is unnecessary when the robot cannot imitate
some delicate motions due to the freedom and mechanical
structure constraints.

Figure 4 displays the choreographic process by a humanoid
robot. “Dance space representation” (Martinez Damia et al.,
2021) represents all the concepts adopted, including related
concepts of joints and limbs on top of the traditional

Frontiers in Neurorobotics | www.frontiersin.org 3 May 2022 | Volume 16 | Article 81955095

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Yang Psychological Space Construction Dance Creation

FIGURE 2 | Schematic diagram of psychological construction of dance A Couple Guarding A Sentry Box.

FIGURE 3 | Three-layer ANN structure.

dance-related concepts, such as dance elements and posture.
Moreover, the “memory dance space” stores (memorizes) all
objects. These objects incorporate the robot’s learned dance
elements and imagined new dance elements and postures, which
can be exported as executive files or relational databases. From
the operation process of the model, the robot first watches the
basic dance elements displayed by dance experts and then learns
these basic dance elements through imagination. Based on this,
it expands the new dance elements through its independent
imagination, which will be used as the basis for the “imagination”
of the next dance. At the same time, machine learning is
introduced to enable the robot to appreciate aesthetic dance
moves as humans so that it realizes the initial imaginary dynamic

dance posture. The robot randomly connects the dance elements
of various body parts with the dance posture in line with
human aesthetics. Finally, the dance posture corresponding
to human aesthetics is associated with different combinations.
Consequently, a robot’s independently choreographed dance is
created and mapped to the physical platform of a biped robot.
Further, three methods are adopted to smooth the choreography
process of humanoid robots: semi-interactive evolutionary
calculation, release-constrained algorithm, and balance detection
and balance compensation (Liu, 2020).

The dance representation space of the humanoid robot can be
represented byHRDES= {K, B, L, D, DA, DN, DC}. Themeaning
and expression of each part are listed in Table 1.
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FIGURE 4 | Framework of humanoid biped robot-imagined choreography model.

TABLE 1 | Humanoid robot dance representation space: HRDES.

Category K B L D

Meaning Joint set Domain set Limb set Constraint set

Representation K =
{

K1,K2, · · · ,K|K|

}

B =
{

B1,B2, · · · ,B|K|

}

L =
{

L1, L2, · · · , L|L|
}

D =
{

D1,D2, · · · ,D|L|

}

Other Ki represents the ith joint of

the humanoid robot.

Bi represents the domain

corresponding to the ith

joint.

Li represents the ith limb of

the humanoid robot.

Di represents the constraint

on the ith limb, where

Di ∈ {0, 1}.

Category DA DN DC

Meaning Dance Collection Dance posture Dance routine

Representation DAi =
{

Vi,1,Vi,2, · · · ,Ci,|Li |

}

DN =
{

DN1,DN2, · · · ,DN|L|,B
}

DC =
{

DC1,DC2, · · · ,DCY

}

Other DAi means the limb Li ’s

dance elements, and Vi,t is

the value of limb Vi,t at the

ith joint.

Dance posture includes all

dance elements of

humanoid robot members

and their aesthetic

evaluation value B

A robot dance routine

consists of a dance

sequence with a length of Y.

Learning Basic Dance Elements and
Imaging New Elements
Before independent choreography, the robot should first
determine what dance postures to choreograph (Kashyap
et al., 2020a). By defining dance postures, the robot can
retain basic dance features of human dance moves (García
and Diogo, 2020). HRDES indicates that dance elements
are attached to limbs or expressed through specific dance

postures, such as limb movement. Therefore, human
limb movements must be manually classified to construct

the limb movement set (L) before independent robot
choreography. Then, the robot will learn all the dance

elements demonstrated by human expert dancers alongside

various dance postures. Different dance elements and postures
combinations will be generated and stored in the robot dance
memory space.
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Next, the simulation learning will be implemented based on
Posture Similarity Index (PSI), referring to literature (Saqlain
et al., 2020). The robot’s human dance elements learning flow is
illuminated in Figure 5.

According to the learned dance elements, the robot’s newly
imagined elements align with the general motion perception
system, so the robot-imagined choreography based on the
release-constrained algorithm is reasonable (Kashyap et al.,
2020b). The release-constrained algorithm first clarifies the
direction of constraint; each robot member without constraints
is imposed with constraints to retain the human dance
features. The constraints on robots maintain the dance elements’
original features and do not allow “imagination” expansion.
Figure 6 depicts the schematic diagram of the humanoid robot
developing new dance elements “Imagination using the release-
constrained algorithm.

As described in Figure 6, the corresponding robots can
spontaneously “Imagine” new dance elements once the
constraints are released. When all the constraints are released
successively, all robot limbs without constraints are free to
“image,” thus innovating new dance elements while maintaining
original dance features.

Every imagined dance element on limb Li must be verified.
The dance element DAi in dance representation space is defined
as a vector, and an n-dimensional space R is composed of n
components. Thus, the dance element DAi is the next point
of space R. Then, to determine DAi, a neighborhood di is first
decided on the limb Li, a parameter to balance the number of
imagined new dance elements and the original dance elements.
It is a positive integer ǫ [1, MAXi]. Suppose Dmin[1owerbound,
upperbound] is the smallest field in the corresponding fieldset
of all joints of limb Li. In that case, MAXi can be calculated by
Equation (1):

MAXi =

[

Dmin · upperbpund − Dmin · lowerbpund + 1

2

]

(1)

The larger the neighborhood is, the fewer dance elements are
in R, and the greater the difference between dance elements
is, and vice versa. Therefore, an appropriate neighborhood
di should be determined. All the neighborhood points (di)
are similar, yet each is a unique dance element point. In
R, two spatially distanced points and no less than 2di are
deemed distinguishable dance elements. In Equations (2) and
(3), DAi,u and DAi,v represent two dance elements on the
same limb Li, their PSI [S

(

DAi,u,DAi,v

)

] is calculated by
Equation (2), and Equation (3) judge whether the two elements
are identical.

S
(

DAi,u,DAi,v

)

= EuclideanDistance(DAi,u,DAi,v) (2)

Same(DAi,u,DAi,v) =

{

True if S
(

DAi,u,DAi,v

)

< 2di
False if S

(

DAi,u,DAi,v

)

≥ 2di
(3)

Next, a new dance element imagination algorithm is given based
on the change of single joint value on limb Li. As shown in
Algorithm 1:

Algorithm 1 | Algorithm flow of the new dance element imagination based on the

change of single joint value.

For (Select each limb Li in turn from the limb set L)

Li =
{

Ji,1 , Ji,2 , · · · , Ji,|Li |
}

If Di = 0 Then

For (In limb Li , select each learned basic dance element DAi in order)

DAi = (Vi,1 , Vi,2 , . . . ,Vi,|Li |)

{

If not repeat(DAi) Then

The learned basic dance element DAi is added toW;

For (Select each joint Ki,k in order on the limb Li)

k ∈ [1, |Li|]

{

For (Select each value V
′

on the domain Dk [lowerbound,

upperbound] corresponding to joint Ki,k , with a step size of 2d)

{

Imagine and choreograph a new dance element

DAi′(Vi,1 , Vi,2 , · · · , Vi,k−1 ,V
′ , Vi,k+1 , . . . ,Vi,|Li |) on the

limb Li ;

If not repeat(DAi ’) Then

The imaginary new dance element DAi ’ is added toW;

}

}

If full Then

Ends the imagination on the limb Li and jumps to the outer layer

of the cycle to select the next limb;

}

Model Experiment and Analysis
Subsequently, this section takes Tibetan tap dance as an
experimental subject for independent humanoid robot-imagined
choreography. The Tibetan tap dance features regular knee
swings and footsteps (Hannah and Red, 2020). In particular, the
experimental robot selects the most popular bipedal robot in AI
research: the NAO robot (Robaczewski et al., 2021), which also
sees wide applications in teaching, smart home, entertainment,
and competition. Because of the superior processing mechanism
for joint and body balance, NAO can present various body
postures and is an ideal platform for studying biped robot
dance. For model implementation convenience, NAO is used
in the simulation environment. At the same time, Webots
(Sun et al., 2022) are employed, a powerful environment
development software for mobile robot modeling, programming,
and simulation.

The experimental simulation environment is based on a
personal computer. The software environment adopts Windows
7.0 Operating System (OS) and Webots 7.0 4.1 environments.
The “memory dance space” is the Windows file system, where
all instantiated objects are stored. The visual C++ platform
is chosen for coding (Noor and Saad, 2021). In Webots, the
hardware is configured with the robot NAO and the computer,
which are used to visualize various objects (dance elements,
dance posture, and overall dances).

The files in Windows OS, Webots environment, and Visual
C++ are closely related, as manifested in Figure 7. There is
one-way data transmission between Webots and Visual C++.
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FIGURE 5 | Basic dance elements imitation based on PSI.

FIGURE 6 | Algorithm flow of imagining new dance elements using the release-constrained algorithm.

Visual C++ generates the shared action control file to simulate
NAO. Webots read the shared action files and display dance
objects (dance posture, dance elements, and the overall dance) on
the simulated NAO. TheWindows Messages can synchronize the
visual application Webots and C++. Because the dance memory
space is implemented on Windows, Visual C++ must load and
compile the whole implementation process of the dance object
model. Thus, Visual C++ will repeatedly access the files in the
dance memory space.

The proposed intelligent robot-imagined independent
choreography model needs to learn the basic dance elements
from dance professionals. This study chooses the Tibetan

tap dance for the humanoid robot to imitate and learn.
Human dancers participate in dance posture evaluation
through semi-interactive evolutionary computing. Then, 10
ethnic dance professionals, who never used biped robots,
are invited from Dance University to evaluate and analyze
the robot-imagined dance postures. Nevertheless, they have
rich experience in stage performance, choreography, and
teaching. Everyone has a high aesthetic evaluation ability and
aesthetic perception. To improve the dance posture evaluation
effectiveness, these dance professionals are informed in advance
that the dance style of the model robot is Chinese Tibetan
tap dance.
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FIGURE 7 | Relationship among Windows, Webots, and Visual C++.

TABLE 2 | Comparison between the proposed model and IEC.

Models Evaluation

method

Final

evolutionary

outcome

Human load in

HCI

Is there a leg

dance?

Can the method retain

the original features of

dance?

Literature (Li et al.,

2020)

choreography

model

Human evaluation Optimal solutions

(less)

Heavier No Cannot

The proposed

model

Human + machine

evaluation

Better solutions

(more)

Lighter Yes Can

First, the dance representation space of the humanoid robot
must be instantiated (Slot et al., 2020). According to the
NAO technical manual, NAO is designed with 26 joints with
corresponding motion ranges to determine groups K and B in
the dance representation space. Because of the characteristics
of tap dancing and the physical structure limitations of the
NAO robot, the whole robot body is divided into three parts,
namely, L = {L1, L2, L3), with the constraints D = {D1, D2,
D3), as unfolded in Table 2. L3 (lower-body) plays an essential

role in body balance and reflects the features of Tibetan tap

dance. Thus, constraints are imposed on limb L3 to maintain
the dance features, and D3 = l. In other words, it is not allowed

to imagine dance postures on L3 limbs. In Tibetan tap dance,
human dancers often keep their hands relaxed. Accordingly,
the NAO robot’s left arm and right arm are modeled as the
upper body L2 (Upper-body), not independently. Compared
with L3, L2, and Ll (head) are more flexible, so D1 = 0 and
D2 = 0. Hence, L2 and Ll can be imagined with new dance
elements based on the learned dance elements on L3. The joint
set corresponding to limb L1 is {HeadYaw, HeadPitch}. The joint
set corresponding to limb L2 is {LShoulderPitch, LShoulderRoll,
LEbowYaw, LElbowRoll, LWristYaw, LHand, RShoulderPitch,
RShoulderRoll, RElbowYaw, RElbowRoll, RWristYaw, RHand}.

FIGURE 8 | Basic dance elements imitated on upper body L2 (upper-body).

The joint set corresponding to limb L3 is {LHipYawPitch,
LHipRoll, LHipPitch, LKneePitch, LAnkiePitch, LAnkleRoll,
RHipYawPitch, RHipRoll, RHipPitch, RKneePitch, RAnklePitch,
RAnkleRoll}.

Instantiation of Dancing Robot HCI
Interface
Based on the dance representation space of the instantiated
humanoid robot, the PSI-based simulation learning method is
adopted to learn the basic dance elements of human dancers.
Thus, the robot’s basic dance elements on three limbs (L1, L2, L3)
are collected and stored in the dance space. Specifically, seven
basic dance elements are learned on the limb L2, as given in
Figure 8. Five basic dance elements are learned on the limb L1,
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as shown in Figure 9. Another five basic dance elements have
been learned on limb L3, as depicted in Figure 10. Additionally,
to enable the robot to imaginemore new dance elements on limbs
L1 and L2, the parameters are set as d1 = 1 and d2 = 1.

Then, multiple “excellent” dance postures are randomly
picked out and are combined with different combinations for the
robot to image new dance elements. Such is the whole process

FIGURE 9 | Basic dance elements imitated on limb L1 (head).

of independent robot-imagined choreography. Figure 11 charts
one dance posture imagined by the proposed robot-imagined
choreography model.

RESULTS AND DISCUSSION

Analysis and Evaluation of New Elements
of Imaginative Dance
The experimental part mainly studies a kind of Tibetan tap
dance. The proposed robot-imagined choreography model uses
the release-constrained algorithm on L1 and L2. Altogether, 986
and 23,421 new dance elements are imagined on L1 and L2.

Then, 30 new dance elements on L2 and 30 on L1 are
randomly selected for model evaluation. Ten expert dancers
are invited to evaluate the innovation and basic features of the
robot-imagined dance postures. Each expert is told to evaluate
every dance element and score an integer between (Li, 2020;
Martinez Damia et al., 2021) (1—the worst, and 10—the best).
When all experts finish scoring, the lowest and highest scores
are removed to avoid the negative impact of extreme data. The
remaining scores are averaged as the final score of the dance
element. Figures 12, 13 illustrate the evaluation results of robot-
imagined new dance elements on L2 and L1. The y-axis represents
the evaluated score of dance elements, and the x-axis is the
number of dance elements. The two lines stand for the evaluation
sores of dance innovation and retention of the basic dance
features, respectively.

After calculation, the average basic feature retention score of
30 new elements on the L2 is 7.73, and the average innovation
score is 7.40. Those scores on L1 are 7.29 and 7.64, respectively.
In summary, the proposed robot-imagined choreography model

FIGURE 10 | Basic dance elements imitated on lower body L3 (lower body).

FIGURE 11 | An “Excellent” dance posture imagined by the humanoid robot.
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FIGURE 12 | Evaluation scores of robot-imagined 30 new dance elements on

L1.

can produce innovative dance elements while maintaining the
basic dance features. Also, it comprehensively considers the
contradiction between the basic dance features and innovation.

Comparison of Two Choreography
Methods
Table 2 compares the Interactive Evolutionary Computing (IEC)
method in literature (Li et al., 2020) with the proposed bipedal-
robot-imagined choreography model.

In the proposed choreography model, the body of the
robot NAO is divided into several members according to
the features of the selected dance. Then, dance elements are
extracted from different members. At the same time, any dance
element, whether imitated or imagined, always retains the
essential features of human dance. Therefore, the combined
dance posture still retains the essential features of human
dance. By comparison, the robot dance method based on
IEC does not consider how to maintain the basic features of
human dance.

Influence of the Dancing Robot on
Choreography
As far as dance itself is concerned, dancing robots can
broaden the expression of the art of dance. Interestingly,
dance uses body language to express emotion and intention,
with both artistic and decorative utilities (Lin et al., 2022).
Currently, robots might not dance as flexibly and aesthetically
as human dancers. Nevertheless, thanks to robots’ increasingly
intelligent humanoid features, robot-expressed dance will soon

FIGURE 13 | Evaluation scores of robot-imagined 30 new dance elements on

L2.

cause emotional resonance with the audience and influence
the audiences’ emotional expression. In the process of robot-
expressed dance, factors affecting the audience’s judgment
also have particular research significance (Rifajar and Abdul,
2021). The sense of rhythm, the coherence of movement,
and the symmetry of movement will affect the effect of
dance, which requires reflection and research on the dance
art itself. In addition to dancers’ personalities, robot-expressed
dance can also provide a research platform for analyzing
and researching dance as an art (Li et al., 2020). Further,
robot-expressed dance also improves people’s understanding
of dance itself. Robot-imagined choreography can stimulate
authentic human choreography and enhance efficiency for
professional dancers. Last, from a commercial point of view,
the entertainment of dancing robots and their interaction
with people make it a vital R&D field in the field of home
service robots. During the HCI with dancing robots, people
can be participants or evaluators (Peng et al., 2021). With
human participation, the robot can imitate human action.
At the same time, as a bystander, people can evaluate
the robot’s dance postures and feedback the information to
the robot for self-improvement. Overall, as a popular form
of performance, dance has the characteristics of rhythm,
lyricism, and movement.

CONCLUSION

Dance language has both common characteristics and special
laws as a language phenomenon. Robot dance is an exciting
research field that has attracted worldwide attention and research.
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First, this paper systematically reviews the research, summary,
and classification model in the field of dancing robots. The
innovation is the proposal of a new humanoid dancing robot
model that can choreograph dance elements independently. The
choreography refers to the human thinking mode. Specifically, it
establishes a biped-humanoid robot to choreograph dance moves
actively. Then, it invites human dance professionals to evaluate
the robot-imagined dance posture to verify the feasibility and
effect of the model. The 30 new dance elements imagined on the
L1 get an average basic feature retention and innovation scores
of 7.29 and 7.64, respectively. The results show that the proposed
independent robot-imagined choreography model is superior to
other literature methods and is feasible and innovative. However,
there are still some deficiencies. The proposed model is based
on the synchronous change of the value of one joint and the
value of two joints. Future works are expected to design a new
algorithm for dance element imagination based on the value
change ofmultiple joints andmaintain human dance’s innovation
and basic features.
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The exploration here intends to compensate for the traditional human motion recognition

(HMR) systems’ poor performance on large-scale datasets and micromotions. To

this end, improvement is designed for the HMR in sports competition based on

the deep learning (DL) algorithm. First, the background and research status of HMR

are introduced. Then, a new HMR algorithm is proposed based on kernel extreme

learning machine (KELM) multidimensional feature fusion (MFF). Afterward, a simulation

experiment is designed to evaluate the performance of the proposed KELM-MFF-based

HMR algorithm. The results showed that the recognition rate of the proposed

KELM-MFF-based HMR is higher than other algorithms. The recognition rate at 10 video

frame sampling points is ranked from high to low: the proposed KELM-MFF-based

HMR, support vector machine (SVM)-MFF-based HMR, convolutional neural network

(CNN) + optical flow (CNN-T)-based HMR, improved dense trajectory (IDT)-based

HMR, converse3D (C3D)-based HMR, and CNN-based HMR. Meanwhile, the feature

recognition rate of the proposed KELM-MFF-based HMR for the color dimension is higher

than the time dimension, by up to 24%. Besides, the proposed KELM-MFF-based HMR

algorithm’s recognition rate is 92.4% under early feature fusion and 92.1% under late

feature fusion, higher than 91.8 and 90.5% of the SVM-MFF-based HMR. Finally, the

proposed KELM-MFF-based HMR algorithm takes 30 and 15 s for training and testing.

Therefore, the algorithm designed here can be used to deal with large-scale datasets

and capture and recognize micromotions. The research content provides a reference for

applying extreme learning machine algorithms in sports competitions.

Keywords: deep learning, human motion recognition, sports, recognition rate, convolutional neural network, data

set

INTRODUCTION

With the further penetrating of computer technology (CT) into the sports fields, more
CT-empowered approaches are seeing applications in athletes’ training, saving the workforce
while sharing training experiences. Most commonly, CT can assist coaches and athletes in tactical
formulation through video content analysis (VCA) (Jiang et al., 2021). In particular, VCA can often
quickly identify the tactical information in the video, thereby improving the efficiency of analytical
work. VCA mainly uses image processing technology. Due to the huge amount of information in
competitive sports training and the high requirements for the processing ability of machines, the
human motion recognition (HMR) method combined with deep learning (DL) is used chiefly in
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sports VCA (Wang Q. Z. et al., 2021). In terms of human
detection, the research is abundant. Many methods have been
proposed to quickly and accurately detect people in video images.
However, only detecting people is far from enough due to the
rising and varying application demands. In many scenarios,
it is necessary to further perform motion recognition on the
detected people. Therefore, the accurate and real-time HMR in
the video image and positioning and motion analysis is vital
in real-life scenarios. Specifically, HMR-related technologies are
used in traffic scheduling, urban security, gymnastics rehearsal,
and stage scene analysis. There are many scenes where target
detection, positioning, and motion recognition can greatly
improve work efficiency and reduce human resources and
material consumption (Li et al., 2021). For example, in group
gymnastics rehearsal, it is possible to evaluate the performance
of individual members against given standards by detecting and
analyzing their positions and movement. Such can improve the
overall rehearsal efficiency. The athletes’ technical movements
are scored using HMR technologies in the Olympic gymnastics’
competition. In some interactive games, versatile HMR methods
are employed to present a better gaming experience for players.
Specifically, virtual reality (VR) games can analyze and recognize
the player’s movements and intelligently identify the player’s
instructions. With the introduction of DL’s concept, many
scholars have devoted themselves to DL research and have made
great progress and innovation.

Deep learning is a subcollection of machine learning (ML).
It is a new research direction that mimics the human brain
to enable machines to cluster data, learn features, and forecast
with incredible accuracy. Simply put, it makes computers
intelligent. DL is the representation and internal law of ML
sample data. Interpreting the information obtained in the
learning process help to realize the artificial intelligence (AI)
training. The collected information includes images, texts, and
sounds. In essence, DL is a kind of ML algorithm (Hsu
et al., 2021), which has seen applications in many fields,
including personalized technology and data mining (Sahu et al.,
2021). Because of the superior processing ability in image
understanding, DL algorithms are often used in the field of
VCA. As a typical DL model, a convolution neural network
(CNN) can realize a multiple-layer DL structure by convoluting
and sampling the original image (Khaydarova et al., 2021).
Thus, CNN has exerted excellent performance in visual target
recognition (Sarma K. V. et al., 2021). In particular, CNN
can extract complex patterns with high reference accuracy,
suitable for image processing with spatial relationships, such
as the DL applications in computer vision (CV) (Jin et al.,
2021). CV technology mainly uses computers and cameras
to capture, track, and measure the research object. Finally,
combined with an AI algorithm, CV realizes automatic motion
recognition of the research object. Meanwhile, CV technology
solvesmany shortcomings of traditional human body recognition
technology (Liang et al., 2021; Shen et al., 2021). The research
of HMR covers multi-disciplinary knowledge, including AI,
image processing, and pattern recognition (PR) (Zhang et al.,
2021). The HMR algorithm based on multi-feature fusion (MFF)
has become mainstream. So far, researchers have designed the

HMR algorithm based on the depth-image and obtained a
high computational efficiency. But the model performs poorly
on micromotion recognition. Then, others have proposed a
sequential deep belief network (SDBN)-based onlineHMRmodel
to extend the deep belief network (DBN) model’s recognition
ability over static image recognition. However, the SDBN model
also prolongs the training time and thus is less time-effective
on large-scale datasets. Therefore, HMR design should factor
in micromotion recognition performance apart from the time
efficiency on large-scale datasets.

The present work will study the application of the HMR
system in sports competitions. In particular, HMR in sports
competition is tracking and recording human motions through
some time-specific key motion points. Then, the key points are
expressed bymathematical methods. The application of the HMR
system is of great significance to developing competitive sports.
Based on the DL algorithm, the present work uses the HMR
system to analyze the sport’s tactics in sports competitions with
high efficiency and quality. Specifically, it introduces the research
background of HMR, designs the algorithm considering large-
scale datasets and micromotion recognition, and finally evaluates
the algorithm’s performance through simulation experiments.
The innovation of the present work is to apply HMR under DL to
the field of sports competition and design a sports video-oriented
HMR algorithm using kernel extreme learning machine (KELM)
multidimensional feature fusion (MFF) (hereafter, KELM-MFF-
based HMR algorithm). The research content provides a
reference for developing HMR in sports competition fields. The
organizational structure is shown in Figure 1. The Introduction
introduces the application background of DL in the field
of HMR and proposes the research questions. The literature
survey summarizes and analyzes the development of HMR. The
HMR algorithm of DL using KELM-MFF is applied to sports
competitions. Finally, the algorithm simulation is carried out.

LITERATURE SURVEY

The development of human body recognition technology began
in the 1990s, and the traditional research direction of HMR is
the identification, classification, and characterization of relevant
information in sports competitions (Chen and Lee, 2021). Sports
information representation includes the description of specific
movements of the human body, the detection of spatiotemporal
information points in videos, and the tracking and recognition
of motion-intense trajectory (IT) (Shieh et al., 2021). There
are many ways to characterize specific human motions, such
as combining multiple camera videos from different angles.
Accurate HMR can be achieved by estimating the motion
posture of the human body (Gao et al., 2022). HMR model can
be implemented by focusing on specific human parts’ motion
states. Then, motions can be positioned by the constraint of
the tree structure and specific motion information (Hu et al.,
2022). Meanwhile, the spatiotemporal and graphical models
can be combined to build an integrated HMR framework
(Low et al., 2022). Generally, detection tools must be used
to detect spatiotemporal information points in the video and
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FIGURE 1 | The organizational structure.

describe their features, such as filters and three-dimensional
detectors. Common feature descriptors for human motions in
VCA include optical flow histogram and directional gradient
histogram (Pardos et al., 2022). The first step of tracking and
recognizing the motion trajectory is to pre-process and sample
the video, then track the motion, and finally get multiple
data representation images (Sharif et al., 2022). Afterward, the
characterized human motion information needs to be identified
and classified. The traditional research of HMR is mainly based
on human skeleton information (Miao and Liu, 2021). Studies
have shown that motion history point cloud can also describe and
recognize actions.

The CV-based method requires simple equipment and
is convenient to deploy. It is the main method to study
HMR at this stage. It is mainly divided into top–down and
bottom–up detection methods. The top–down detection method
directly uses the existing detector to estimate the posture of a
single person every time. Thus, the detection time is directly
proportional to the number of people detected. With the
increase of the target human in the image, the detection time
of each image also increases, wherein the bottom–up method
can separate the target human in the complex image. This
method does not directly use the correlation information of other
body parts and the global information of others in the image.
However, the efficiency is not significantly improved, and the
final local correlation needs large amounts of calculation. For
example, Chen et al. (2021b) proposed a bottom–up method
to associate some detection candidates with a single human
body. However, the final detection time was relatively long.
Liu (2022) combined the image-pairing score detection method
with ResNet, significantly improving the calculation efficiency.

However, it took minutes to detect each image, a far cry from
real-time detection (Liu, 2022). Detecting the joint points of
human posture is a single frame-oriented method. However,
motion recognition analyzes the sequential posture set, featuring
time-spatial characteristics. Thivel et al. (2022) believed that
superimposing and calculating the motion silhouette of the
human body could get the motion energy map and motion
history map. They matched the two feature maps with the
template to realize motion recognition (Thivel et al., 2022). Bu
et al. (2022) used scale-invariant feature transform (SIFT) feature
to describe motion trajectory. They then used hidden Markov
model (HMM) for HMR (Bu et al., 2022). There is also research
on the skeleton points-based HMR. These methods are relatively
simple with a relatively low recognition rate. Choi et al. (2022)
introduced the concept of “entropy.” They proposed an HMR
model based on motion energy using a dynamic time warping
algorithm to realize HMR (Choi et al., 2022).

As from the past studies, the DL algorithm helps improve
the HMR algorithm’s efficiency on large-scale datasets. However,
the micromotion-oriented HMR algorithm needs more in-
depth research to analyze sports tactics better. In particular,
the present work uses KELM to combine the manual features
of improved dense trajectory (IDT) with the DL features. As
such, the proposed KELM-MFF-based HMR algorithm has both
advantages of manual features and DL features and can interpret
human motion in sports videos from multiple angles.

TECHNICAL BACKGROUND AND DESIGN
OF THE PROPOSED KELM-MFF-BASED
HMR ALGORITHM

Development of HMR Technology
At present, the most popular HMR system is based on a two-
CNN structure (Wang and Feng, 2021), where two CNNs are
combined, one for cutting out the action image and the other
for inputting the original image. The two-CNN fusion structure
reduces the network parameters and accelerate the training speed
(Zhang X., 2021). Additionally, some research combines spatial
and temporal dimensions of CNNs for HMR. A total of two
parallel frames are used to build the CNN. Alternatively, a
professional camera is used to accurately recognize the human
motion in the video in combination with the long-term recurrent
convolutional network (LRCN) (Chen et al., 2021a). Figure 2
displays (Kim S. U. et al., 2021) the content of HMR based
on CNN.

Figure 2 implies that with the development of the 3D neural
network, 3D CNN sees applications in HMR. Research directions
in CNN-basedHMR include video frame number, time sequence,
region, and other influencing factors.

The proposed KELM-MFF-based HMR algorithm comprises
a display screen, power supply (PS), controller system, and
posture sensor. The system PS is a set of lithium batteries charged
by the management module. The voltage stabilizing module
provides appropriate PS voltage for the main controller and
peripherals. The posture sensor collects the original data and
sends them to the microcontroller unit (MCU). Afterward, the
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FIGURE 2 | Motion recognition based on CNN.

FIGURE 3 | HMR system.

MCU sends the processed data results to the screen. The specific
process is profiled in Figure 3.

Design of HMR Algorithm Under DL
The single hidden-layer feedforward neural network (FNN) can
be solved by extreme learning machine (ELM) theory, which
is more straightforward than other theories. Therefore, the
present work selects the ELM to design the HMR algorithm
(Hao et al., 2022). Next, the ELM model classifies a certain
number of training samples (Su et al., 2021) and outputs as
the minimization. The ultimate purpose is to minimize the
training error.

Combined with the literature knowledge, Equation (1) gives
the compatible expression of KELM.

f
(

xj
)

= [P
(

xj, x1
)

. . .P
(

xj, xn
)

]
T
(
I

C
+ P)

−1

T (1)

In Equation (1), C, xj, and T are the regularization parameter,
the training error vector, and the real motion classification. P
indicates the kernel function, j= 1, . . . , n. Equation (1) calculates
the significance of the classification attribute of the analyzed
motion training video.

Dong et al. (2022) found that information fusion helped to
improve the algorithm’s performance. Based on this, Figure 4
divides the KELM into two parts for analysis.

In Figure 4, KELM first fuses the manual feature kernel and
the DL feature kernel and predicts the manual, DL, and fusion
feature kernels’ score vectors (scores). Then, a neural network-
trained classifier classifies the scores.

Equation (2) (Kang et al., 2021) shows the manual and DL
features fusion process.

P
(

xi, xj
)

= b(xi)b
T(xj) (2)

Frontiers in Neurorobotics | www.frontiersin.org 4 May 2022 | Volume 16 | Article 860981108

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhang Human Motion Recognition System

FIGURE 4 | KELM structure.

Equation (2) expresses the common manual and DL features
in the video, where P(xi, xj) are the different elements of p.
The manual and DL feature scores are averaged as the fusion
feature scores. Then, scores of fusion, manual, and DL features
are estimated.

Subsequently, the three kernel score vectors are used for the
fusion operation. The neural network structure calculates the
kernel matrix based on the feature scores. Equation (3) is used
to estimate the feature scores (Sedmidubsky et al., 2021).

P
(

qi, qj
)

= exp(−

∥

∥qi − q
∥

∥

2

σ 2
) (3)

Equation (3) is a square exponential kernel expression, where
q means the video prediction score, p stands for the Gaussian
element, and σ denotes the free parameter.

Further, the proposed KELM-feature fusion-based HMR
algorithm is implemented using CNN and manual features. The
manual features are coded by the IDT descriptor, including
absolute motion features of pixels, description of static features,
relative motion features of pixels, and trajectory (Lang et al.,
2021). The IDT descriptor uses the Fisher vector and involves a
huge amount of data (Kim T. et al., 2021).

Against training data spillover, this section proposes a new
mechanism using the principal component analysis (PCA) for the
IDT descriptor. The PCA-based new mechanism sets Gaussian

element P to 256 to train the model and trains the dataset to
25,600 subsets randomly sampled. Finally, the Fisher vector of
the IDT descriptor is obtained. Here, the linear kernel of the
descriptor is designed independently, and the descriptive kernel
of manual features is solved by Equation (4) (Sarma M. et al.,
2021).

Pb =
1

nd

∑

nd
i=1Pi (4)

Equation (4) expresses the kernel matrix of manual features,
where nd denotes a descriptor set to 4 types. They are pixel
absolute motion features, descriptive static features, relative
motion features, and trajectory.

The design of DL features is completed by organizing and
processing descriptors. The descriptors of DL features are set
to 4,096-dimensional video descriptors, and finally, the kernel
matrix PD is obtained by processing (Liu and Ji, 2021).

Equation (5) calculates fusing manual features and
DL features.

P =
Pd + Pb

2
(5)

Equation (5) is mainly expressed by fusing the average values.

Characteristics of DL in the Field of Sports
Competition
In this section, DL is introduced in the fuzzy judgment
of micromotion in sports videos. Figure 5 illustrates the
main structure.

Figure 5 indicates that the DL feature extraction is carried
out through two dimensions of video: time and red–green–blue
(RGB) channels, which will be described later.

Here, the video’s time template is used for HMR, the weighted
harmonic value of motion information difference, and statistical
data at different frames. Equation (6) (Zhang X. Q., 2021)
illustrates the specific expression.

TT = (
1

250
)
∑

n
i=2v1 · r(i) (6)

The weighted harmonic value in Equation (6) varies between 0
and 250. v means the weight value, n stands for the number
of video frames, and r denotes the motion information of
each frame.

Equation (7) is obtained by transforming Equation (6).

TT =

∑

n
i=2(

v1

255
) · r(i) (7)

Equation (7) is transformed with fuzzy membership function
(MF) to generate Equation (8) (Wang et al., 2021b).

TT =

∑

n
i=2λ(i) · r(i) (8)

In Equation (8), λ denotes a fuzzy MF, and λ ǫ (0-1). Equation
(8) expresses that the weight and fuzzy MF directly affect the
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FIGURE 5 | DL in the field of sports competition.

TABLE 1 | DL parameter settings.

DL Specific parameters

CNN 2 × 2 feature kernels in the pooling layer and 5 × 5 feature

kernels in the convolution layer

Tri-color channel RGB mode

significance of sports information. Equations (9–12) display the
fuzzy MFs designed here.

λ1 (i) = 1 (9)

λ2 (i) =
i

n
(10)

λ3 (i) = 1−
i

n
(11)

λ4 (i) =

{

2i
n , 0i ≤

n
2

2− 2i
n ,

n
2 i ≤ n

(12)

In Equations (9–11), i ǫ (0, n).
Notably, the membership degree (MD) of the four fuzzy MFs

is given in the Section Results.
The CNN is used to describe the DL features of motion

information. As mentioned above, CNN is used to learn
information features based on time templates. Table 1 lists the
parameters of the DL algorithm set.

Table 1 signifies that the architecture of the CNN adopted
is 5C-2s-5c-2s, where 2s indicates that the number of feature
kernels under the maximum pooling layer is 2 × 2. 5c indicates
the number of feature kernels under the convolution layer, which
is 5 × 5. Tri-color channel mode refers to RGB mode, applied to
SVM to recognize competitive sports motions (Chen K. Y. et al.,
2021).

Simulation Experiment of the Proposed
KELM-MFF-Based HMR Algorithm
Subsequently, this section evaluates the proposed KELM-
MFF-based HMR algorithm. The experimental sample adopts
two kinds of video datasets. The first dataset contains large
amounts of low-resolution data, which is used to test the
proposed algorithm’s large-scale data processing ability. The
second dataset has high-resolution micromotion samples. It tests
the proposed algorithm’s micromotion recognition ability. In
this way, sports micromotions in competitive sports can be
accurately identified.

Experimental Dataset

The datasets used include the (University of Central Florida
(UCF) 101 and NATOPS datasets. UCF 101 dataset is
collected on the Internet, with high complexity and obvious
background clutter. UCF 101 contains 13,320 video clips
with 101 action categories. At the same time, this article
determines three training set-test set partition schemes. The test
dataset selects seven video sequences from 25 groups for each
partition scheme. The other 18 video sequences are selected
for training.

NATOPS video dataset contains high-resolution images. The
motion recognition accuracy of the algorithm designed in this
article is evaluated by small hand movements in 24 sports
fields. Some gesture movements also include handshape changes.
The dataset can be used to evaluate the recognition rate of
the action recognition algorithm. The video dataset has a high
resolution of 320 × 240; overall, 20 categories are designed.
Each category includes 24 small hand movements and 24 ×

20 actions altogether. Then, the first five categories are selected
to test the algorithm. The last 10 categories are used to train
the algorithm.
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FIGURE 6 | Training mode of large-scale data processing ability algorithm.

FIGURE 7 | The proposed KELM-MFF-based HMR algorithm’s training mode

of micromotion processing ability.

In the first dataset, the recognition performance of the
proposed algorithm is evaluated by comparing it with
other algorithms. The algorithms involved include an
action recognition algorithm in the context of Converse3D
(C3D), an action recognition algorithm in the context of the
combination of motion information and SVM (SVM-MFF),
an action recognition algorithm in the context of CNN, an
action recognition algorithm in the context of IDT, and action
recognition algorithm in the context of CNN + optical flow
(CNN-T). The algorithm recognition performance evaluation
under the second dataset selects 64 × 48 frames as the
time template. It extracts the features of the four fuzzy FM
functions in Equations (9–12) and then compares them with
other algorithms. A total of 6 microhand motion recognition
algorithms are involved in this experiment.

Recognition Rate of the Proposed KELM-MFF-Based

HMR Algorithm

The general training framework of the proposed KELM-MFF-
based HMR algorithm on the large-scale dataset is outlined in
Figure 6.

As signified in Figure 6, the large-scale data processing ability
of the proposed KELM-MFF-based HMR algorithm is mainly
studied through the motions of jogging, walking, cycling, and
stretching legs.

The general training framework of the proposed KELM-MFF-
based HMR algorithm on the second dataset is portrayed in
Figure 7.

As in Figure 7, the second dataset aims to train the
micromotion processing ability of the proposed KELM-
MFF-based HMR algorithm and focus on hand motions.
Therefore, the experiment selects the videos of professional
basketball and volleyball games, which both have specific
requirements for players’ ball-handling skills and thus involve
many microhand motions.

Algorithm Feature Fusion Strategy

The feature fusion strategy is divided into two parts: early feature
fusion and late feature fusion. The first dataset is mainly used
for experimental analysis. Figure 8 displays the main flow of
feature fusion.

From Figure 8, the early fusion means feature fusion
before classifier, and the later fusion is the feature fusion
after classifier. More precisely, the early fusion strategy fuses
the feature kernel before the classifier classifies the features.
By comparison, the late fusion strategy first fuses the score
vectors of each feature. It then classifies the score vector to
achieve motion classification. Then, the influence of different
feature fusion strategies on the performance of the HMR
algorithm is evaluated on the UCF101 dataset. The proposed
KELM-MFF-based HMR algorithm is compared with other
kernel-based MFF HRM algorithms. Notably, the experiment
mainly compares the performance of the proposed KELM-
MFF-based HMR algorithm with the SVM-MFF-based HMR
algorithm in terms of recognition rate under different feature
fusion strategies.

Finally, the time efficiency of the proposed KELM-MFF-
based HMR algorithm is evaluated on the UCF 101 dataset
with the SVM-MFF-based HMR algorithm. The experimental
environment is configured with an Intel i7 3.3 GHz CPU and
16GB RAM.
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FIGURE 8 | Block diagram of feature fusion.

FIGURE 9 | MD of fuzzy MF.

ANALYSIS OF SIMULATION RESULTS

Comparison of Results of Recognition
Rate of Different Algorithms
The MD of the fuzzy MF in the previous section is counted in
Figure 9.

Figure 9 implies that λ2, λ3, and λ4 represent the beginning,
middle, and end regions of sports competitive video in the time
dimension. λ1 will not change with the change of video frame.
λ1 is mainly used to calculate the energy in sports competitions,
which is not affected by time and space. λ2 increases linearly
with the change of video frame, which is mainly used to calculate
the historical image of sports competitions and is significantly
related to the number of video frames. λ3 and λ2 change in
opposite directions, and λ3 is significantly correlated with the

FIGURE 10 | Comparison of large-scale data processing capabilities of

different algorithms.

number of video frames. λ4 assigns the highest significance in
the middle area.

Next, the performance of several HMR algorithms on large-
scale data is comparatively analyzed, including the C3D-based
HMR, SVM-MFF-based HMR, CNN-based HMR, IDT-based
HMR, and CNN + optical flow (CNN-T) HMR. The results are
signaled in Figure 10. The present work has not considered the
hyperparametric adjustment and only sets the learning rate to
0.01 for all algorithms.

Figure 10 implies that different algorithms have different
recognition rates on different superimposed motions. The
recognition rate of the proposed KELM-MFF-based HMR
algorithm is higher than that of the other five algorithms. The
recognition rates of other algorithms at 10 sampling points are
sorted from high to low as SVM-MFF-based HMR, CNN-T,
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FIGURE 11 | Comparison of micromotion processing capabilities of different

algorithms.

IDT, C3D, and CNN. Probably, it is because SVM-MFF-based
HMR and CNN-T are MFF algorithms. By comparison, IDT,
C3D, and CNN are single feature recognition. The conclusion
can be drawn that the recognition ability of the MFF algorithm
is better than that of a single feature recognition algorithm.
The recognition ability of SVM-MFF-based HMR is not much
different from the proposed KELM-MFF-based HMR algorithm.
Presumably, the reason is that the SVM-MFF-based HMR
algorithm adds a sports information mechanism using a time
template to the SVM algorithm, improving the recognition rate.
So far, numerous pieces of the literature have shown the MFF
algorithm’s advantages. Additionally, the present work results are
consistent with Tanaka et al. (2022) latest research results. The
recognition ability of MFF is stronger than that of a single feature
recognition algorithm. The difference is that many comparison
models are used in the present work (Tanaka et al., 2022).

Figure 11 denotes the recognition of different dimension
features by fuzzy MF.

Figure 11 illustrates that the feature recognition rate of RGB
features is higher than that of the time feature, by up to 24%.
The recognition rate of the time dimension is low because the
microhand motions are easy to overlap in movement. The first
fuzzy MF has a lower recognition rate. The second, third, and
fourth MFs have a better recognition rate because they represent
the significance of the beginning, middle, and end of the video
sequence. Overall, the accuracy of the RGB color feature is better
than that of the time feature because microhuman motions are
more likely to overlap. In this case, the recognition of color
feature is higher. In the human body recognition research on
the phenomenon of human body overlap, the recognition rate
of the proposal of Santos et al. (2022) is consistent with the
present work.

FIGURE 12 | Comparison of accuracy of micromotion recognition with

different algorithms.

Afterward, the last three fuzzy MFs are fused. The comparison
is made between the proposed KELM-MFF-based HMR
algorithm and the SVM-MFF-based HMR algorithm in
recognizing micromotions, as sketched in Figure 12.

As Figure 12 displays, the proposed KELM-MFF-based HMR
algorithm has the highest recognition rate of the other five
algorithms. The proposed KELM-MFF-based HMR algorithm
fuses motion information with RGB features. It has more
advantages in capturing micromotion than the other five
algorithms. Hidden Markov algorithm (HMM), algorithm 1, and
conditional random field (CRF) belong to a single recognition
algorithm, so the recognition rate is low. By comparison, the
hidden conditional random field (HCRF) and the continuous
hidden conditional random field (C-HCRF) use video sequences.
They have a higher recognition rate because they belong to
multidimensional recognition. Apparently, the proposed KELM-
MFF-basedHMR algorithm can be used to deal withmicro-HMR
in sports videos. Compared with the latest research results of
Varshney et al. (2022), the experimental accuracy of the present
work is higher, indicating the superiority of fusing motion
information and color features. However, the analysis of color
fusion in the literature is more in-depth than the present work,
so the result findings are more convincing than the present work.
Thus, the present work will also do more in-depth research on
color fusion in the future.

Comparison of Feature Fusion Strategies
of Different Algorithms
Figure 13 compares the recognition rate between different fusion
strategies of the SVM-MFF-based HMR and the proposed
KELM-MFF-based HMR.
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FIGURE 13 | Comparison of recognition rate under different algorithm feature

fusion strategies.

Figure 13 signifies the recognition rate. Apparently, the
proposed KELM-MFF-based HMR algorithm is higher than
the SVM-MFF-based HMR algorithm in both the early and
late feature fusion stages, reaching 92.4 and 92.1%. The SVM-
MFF-based HMR algorithm has reached 91.8 and 90.5%. The
conclusion draws that the recognition rate is higher when
features are fused earlier than later under both algorithms.

Comparison of Time Efficiency of Different
Algorithms
The time efficiency of the proposed KELM-MFF-based HMR
algorithm is compared with that of the SVM-MFF-based HMR
algorithm, as plotted in Figure 14.

Figure 14 signifies that the proposed KELM-MFF-basedHMR
algorithm takes a shorter time to train and test than the SVM-
MFF-based HMR, only 30 and 15 s for training and testing.
By comparison, the SVM-MFF-based HMR algorithm takes 125
and 25 s. Thus, the time efficiency of the proposed KELM-MFF-
based HMR algorithm is much higher than that of the SVM-
MFF-based HMR algorithm. Therefore, the proposed KELM-
MFF-based HMR algorithm can be used to deal with large-scale
datasets. Bhatia et al. (2022) also have observed that the KELM
is suitable for processing large-scale datasets. At present, there
are few researches on large-scale dataset processing in sports.
The advantage of the present work is applying the proposed
KELM-MFF-based HMR algorithm to the field of sports.

DISCUSSION

In improving HMR, the recognition rate of the proposed
algorithm on large-scale data is more than 86%, higher than that
of the SVM, CNN-T, IDT, C3D algorithm, and CNN algorithms.
The recognition rate of the CNN-T algorithm is also high,

FIGURE 14 | Comparison of time efficiency of different algorithms.

which intuitively shows the superiority of the MFF algorithm.
With the rapid development of science and technology, the
combinatorial algorithm has become the first choice of current
researchers. The MFF algorithm can improve the performance
of a single algorithm and make up for the limitations of a single
algorithm. The latest research by Kyaw et al. (2022) shows that
the MFF algorithm is a critical way to solve practical problems.
HMR is inseparable from color recognition. The accuracy of
color recognition of the proposed algorithm is affected by the
phenomenon of human action overlap. It is hoped to strengthen
the research on improving the recognition rate of action overlap
in the future. For HMR, the proposed KELM-MFF-based HMR
has the highest accuracy among the five comparison algorithms,
mainly because this algorithm integrates RGB color features
and motion information. The research of Yang and Zou (2022)
suggests that the integration of RGB color features plays a vital
role in recognition algorithms. The present work verifies that the
ELM is suitable for processing large-scale video datasets through
the time efficiency comparison of different algorithms. The
finding provides data support for applying the ELM algorithm
in video recognition fields.

CONCLUSION

Following a review of the HMR system using the DL algorithm,
the present work studies the application of HMR systems in
sports competitions. After background introduction, a KELM-
MFF-based HMR algorithm is designed to improve traditional
algorithms’ poor performance against large-scale data and
micromotions in sports videos. Then, a simulation experiment
is designed to evaluate the performance of the proposed KELM-
MFF-based HMR algorithm. The research findings corroborated
that the proposed KELM-MFF-based HMR algorithm can be
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used to solve two problems in the current algorithm. (1) The DL
features of human motions in the video sequence are analyzed
through the time template to assign different significance to
different time domains of the motion information. (2) The time
template of the video sequence is inputted into the CNN to
learn the feature set of sports motions. The manual and DL
features are complementary and describe the human motions
in videos from different angles. The research content provides a
reference for applying the DL algorithm in sports competitions.
There are still some deficiencies in the article. The second
experimental dataset (NATOPS video dataset) only involves the
professional motions in basketball and volleyball without adding
other sports. Meanwhile, the analysis of color characteristics
is not deep enough. The present work does not optimize the
hyperparameters of the model. The follow-up research can
combine the common sports actions into a new dataset for amore
comprehensive analysis. There is a need to deepen the research on
color characteristics and increase the hyperparameter setting and
recognition rate of human actions for more convincing research
results. After further improvement, it is expected to be applied to
college sports events.
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Sports videos are blowing up over the internet with enriching material life and the higher

pursuit of spiritual life of people. Thus, automatically identifying and detecting helpful

information from videos have arisen as a relatively novel research direction. Accordingly,

the present work proposes a Human Pose Estimation (HPE) model to automatically

classify sports videos and detect hot spots in videos to solve the deficiency of traditional

algorithms. Firstly, Deep Learning (DL) is introduced. Then, amounts of human motion

features are extracted by the Region Proposal Network (RPN). Next, an HPE model

is implemented based on Deep Convolutional Neural Network (DCNN). Finally, the

HPE model is applied to motion recognition and video classification in sports videos.

The research findings corroborate that an effective and accurate HPE model can be

implemented using the DCNN to recognize and classify videos effectively. Meanwhile,

Big Data Technology (BDT) is applied to count the playing amounts of various sports

videos. It is convinced that the HPEmodel based on DCNN can effectively and accurately

classify the sports videos and then provide a basis for the following statistics of various

sports videos by BDT. Finally, a new outlook is proposed to apply new technology in the

entertainment industry.

Keywords: deep convolutional neural network, human motion recognition model, big data technology, hot spot

detection, sports video

INTRODUCTION

Today, the Chinese are enjoying an ever affluent material life as the domestic economy boosts, with
which their pursuit for spiritual wellbeing rises sharply. Especially with the increasingly mature
computer and networking technology (CNT), online resources have become primary resort of
people for spiritual pursuit and substantially enhance entertainment industry of China. Thus, it
is not uncommon for Chinese citizens to watch live sports broadcasts or sports videos to escape the
fast-paced and competitive study, life, and work.

The deep convolutional neural network (DCNN) algorithm is particularly apt
for image recognition (IR). Once, feature extraction (FE) has hindered the further
development of IR techniques, given the complexity of image data over other common
data types, such as texts. At that time, image features were mainly represented
through artificial means that are based on understanding or estimation of researchers.
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Such a situation has not seen a fundamental change until the
emergence of CNN, almost tailor-made for automatic FE for
images over traditional machine learning (ML). Thus, CNN has
dramatically simplified many emerging technologies, such as
IR and Pattern Recognition (PR) (Sulam et al., 2019; Maiorino
et al., 2021). In particular, big data technology (BDT) uses
Big Data to provide analytical solutions to complex practical
problems. The so-called big data refers to a collection of
structured, semistructured, and unstructured data sets that are so
voluminous for conventional data processing algorithms to tackle
appropriately that include the acquisition, storage, management,
and analysis of big data. Big data features massive scale, rapid
flow, diverse types, and low-value density (Romanowski, 2019;
Tolan et al., 2020).

In the Big data era, deep learning (DL) has become one of
the most favored technologies in various industrial applications,
on which extensive research has been conducted. For example,
Singh et al. (2021) proposed a novel pointwise convolution design
using spatial input information. Specifically, they extracted and
refined the input spatial context information on two scales
(Singh et al., 2021). Finally, a time-series feature vector for
classification trained the support vector machine (SVM). Sandula
et al. (2021) constructed a new camera motion classification
framework based on the hue-saturation-intensity (HSI) model to
compress block motion vectors. The designed framework sends
the input to the inter-frame block motion vector decoded by the
compressed stream to estimate its size and direction and assign
the motion vector direction to hue and the motion vector size to
saturation under a fixed Intensity. Then, the HSI distribution was
converted to Red, Green, Blue (RGB) images. After that, CNN
was used for supervised learning to identify 11 camera motion
modes that include seven pure camera motion modes and four
hybrid camera modes. The results showed that the recognition
accuracy of this method for 11 camera modes reached over
98% (Sandula et al., 2021). Rajesh and Muralidhara (2021)
designed a reconstruction loss based on new driving and used
the implicit multivariate Markov random field regularization
method to enhance local details. They used a multi-column
network to propagate the local and global information from
the context to the target coated area (Rajesh and Muralidhara,
2021). Churchill et al. (2020) applied the original data from
a single diagnosis (the electron cyclotron emission-oriented
imaging diagnostic data) from the Tokamak. They designed a
neural network (NN) architecture for the prevalent interruption
prediction problem: the fusion energy Tokamak (Churchill et al.,
2020). Jamali et al. (2021) built a timeliness and computational
efficiency CNN structure and combined it with other mainstream
NN and ML algorithms: random forest (RF), Gaussian network,
and Bayesian optimization Tree. As a result, the training time
was significantly shortened (Jamali et al., 2021). Chen et al.
(2020) employed DL in video recognition and put forward a
DCNN model for human motion recognition (HMR) (Chen
et al., 2020). Minhas et al. (2019) devised a track and field video-
oriented shot classification method using an eight-layer AlexNet,
including five convolution layers and three fully connected layers.

The shot was divided into a long shot, medium shot, close-
up shot, and off-site shot. The standardization and screening
layer response on the feature map improved overall training and
validation performance on different databases (Minhas et al.,
2019). Ramesh and Mahesh (2020) analyzed the performance
of the pre-training network, used the AlexNet for FE, image
classification (IC), and transfer learning (TL), and compared
its performance with the DCNN with a user-defined layer on
the same dataset. Consequently, the performance of DCNN was
improved (Ramesh and Mahesh, 2020). To sum up, DCNN has
been applied in various aspects, the most important of which
is used for data processing and machine vision recognition,
which can greatly improve the accuracy of HMR in the
video. In particular, AlexNet has gained enormous technological
advances through the research of experts and scholars on CNN
technology in different fields. Generally, an AlexNet is a CNN
structure with five convolution layers and three fully connected
layers, with two parallel graphics processing units (GPUs) for
computation acceleration. Meanwhile, the upper and lower
information can interact at the third convolution layer and fully
connected layer. AlexNet extends the basic principles of CNN
to deeper and wider networks. Concerning the current research
topic, the sports video’s hotspot detection, it is found that
different types of CNNs generate great differences in prediction
accuracy. Therefore, the present work will optimize the hotspot
detection model combined with BDT to empower the scoring
system effectively.

Thereupon, the present work proposes a human pose
estimation (HPE) for sports video classification, recognition,
and detection using DCNN and BDT. The available relevant
literature mostly uses the DCNN algorithm to extract the features
of sports images and can correctly identify the character poses,
only with relatively low recognition accuracy. By comparison,
the present work innovatively employs a Haar-like FE algorithm
for image data screening and enhancement, thus dramatically
improving the accuracy of HPE, reducing video delay, and
enhancing the efficiency of athlete motion capture. Thus, a
sports video recognition and classification model based on BDT
and DCNN is implemented, and the simulation experiment is
carried out. The innovation lies in optimizing the traditional
NN model by combining BDT with DCNN. Afterward, by
comparing single HPE algorithms and fusion models, the most
appropriate combination is selected to implement the proposed
athlete-oriented HPE model, increasing video pose recognition
accuracy and efficiency. As a result, a new perspective is proposed
for computer technology (CT) to promote the development of
the entertainment industry. Innovatively, the first-identification-
and-then-recognition method is employed to address the HMR
problem in sports video sequences. The target i algorithm (TIA)
is primarily used to detect poses of athletes in sports videos.
Then, the TIA is used to identify category of athletes of motion
behaviors in the video sequence. The value and excellence of
present research provide a more effective method to detect the
pose of the athletes in sports video and offer a new outlook for
the related research of high-precision HPE in the future.
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CONSTRUCTION OF SPORTS VIDEO
CLASSIFICATION AND RECOGNITION
SYSTEM

Big Data Technology
Big data refers to extra-large-scale datasets that cannot be
captured, managed, and processed by conventional software tools
within finite iterations. It is a voluminous, high-growth-rated,
diversified information asset that requires a new processingmode
with more robust decision-making (DM) power, insight and
discovery power, and process optimization ability (Singh et al.,
2019). Figure 1 shows the basic architecture of Big Data.

Generally speaking, before the final data report review or data-
based algorithm prediction, BDT will go through the following
processing links: data collection, data storage, data processing,
and data application.

Here, the primary sources of experimental data are (a)
background data of sports videos from major online platforms,
(b) rating data of various television (TV) sports channels, and (c)
viewing data of various broadcast channels during major sports
events (Opotowsky and Webb, 2020; Saju and Ravimaran, 2020).

Image Classification and FE
Figure 2 signifies the flow of an ordinary TIA.

Select the Bounding Box

When such target information as the number, size, and type in a
picture is unknown, it is necessary to ensure two aspects of the
algorithm design: (a) the bounding boxes for FE include as many

items to be inspected as possible and (b) the bounding boxes for
FE are as few as possible (Chavez-Badiola et al., 2020).

Three methods are available for selecting bounding boxes:
Sliding Window Algorithm (SWA), Selective Search (SS), and
Region Proposal Network (RPN). SWA reflects the detailed
features of images in the sliding window. Global FE methods
mainly include principal component analysis (PCA), gray level-
gradient co-occurrence matrix (GLCM), frequency domain
analysis method, scale-invariant feature transform (SIFT), and
Haar-like features. Remarkably, the present experiment chooses
the RPN method for bounding box selection with the following
implementation steps. First, pictures are used as initial input
for SS, according to which the bounding boxes are further
determined. Then, the pictures are segmented into smaller
images with unique features, similarities, and gradients used
for splicing the bounding boxes into large blocks. Finally,
the size of bounding boxes is determined according to the
blocks. The RPN method reduces bounding box extraction from
images when compared with the SWA. Meanwhile, RPN uses
the CNN algorithm to extract bounding boxes and generates
dense boxes by a fixed scale. Further, CNN can classify and
point out the positions of the boxes so that the final bounding
boxes could contain all objects, thus minimizing the number
of bounding boxes (Abu Hasan et al., 2020; Budiman and
Sugiarto, 2020; Tarsitano et al., 2021). Figure 3 illustrates the
RPN algorithm flow.

Feature Extraction

Feature Extraction technology is the core of computer vision and
is the basis of IR and IC. FE involves both bottom-layer features

FIGURE 1 | Basic architecture of Big Data.
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FIGURE 2 | Detection flow of the target identification algorithm (TIA).

FIGURE 3 | Bounding box selection by Region Proposal Network (RPN)

method.

(image color and texture) and advanced features (including
image generalization and abstraction). Information, such as size
and quantity, helps in visualizing asset management (Khaleefah
et al., 2020; Saad and Hirakawa, 2020). These features are listed
as follows.

a. Image color: A coordinate system can be established based
on the RGB three-hue format and calculation. RGB can
adjust the vector size to express different image colors
as vector components. RGB three-hue format can create
color distribution histogram, color space coding, and image
hash features.

b. Image texture refers to the distribution of image hue and light
intensity in a certain area, including the GLCM.

c. Image edge: It summarizes the outline of image content.
Standard FE algorithms include Canny or Sobel operator
edge detection.

d. Image transformation: The time-to-frequency domain
transformation can depict the image details, where the
statistical and content features are separated.

e. Image depth: The CNN algorithm is used for post-extraction
of standard and deep image features, widely used to describe
image features at the semantic and bottom feature levels.

FIGURE 4 | Schematic diagram of the cross product.

Feature Matching

Correlation between image features can be different. The
proposed algorithm calculates the image correlation by defining
the distance between two features (Gururaj and Tunga, 2020;
Sugiarto et al., 2020; Desai et al., 2021), as detailed below:

a. Euclidean Distance (ED): Equation (1) counts the distance
(ED) between two feature vectors in the Euclidean space.

dxy =

√

∑K

k=1
(xk − yk)

2 (1)

In Equation (1), x and y are all feature vectors, K stands for the
feature vector dimension, and dxy refers to the ED. The larger
the dxy is, the larger the correlation between two points and
vice versa.

b. Cross product. This parameter describes the consistency of
vector direction and value in a different dimension, expressed
as Equation (2) and displayed in Figure 4.
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Where −→a and
−→
b symbolize two vectors of a point. θ equals to

the space angle between two vectors and vector C is the parallel

spatial line of
−→
b . Therefore, the angle between −→a and C equals

that of the
−→
b and C.
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FIGURE 5 | The modular expression framework.

c. Cosine distance. It indicates the angular distance, namely, the
cosine value of the angle between two eigenvectors. The larger
the value is, the more similar the two eigenvectors are and
vice versa.

Expression Framework of HPE
Human Pose Estimation means estimating the coordinates and
position of human joints relative to each part in a given
image. Here, a single-lens camera is used for HPE. This section
designs an expression framework to describe the whole image
and express information-abundant local features effectively.
Therefore, a rough human body model is implemented initially.
Then, optimization is made on the local features in all directions.
SWA can scan the whole image with pre-determined sliding
window parameters in local feature modeling. A 220× 220-pixel
sliding window extracts the local features. Before a full-effect
expression framework can be established, it is necessary to pre-
process the input images so that DCNN can accept (Wang et al.,
2019; Lv and Liang, 2020; Abid et al., 2021), as illuminated in
Figure 5.

Pre-Processing and Post-Processing Module

The pre-processing module is used for data adjustment and
enhancement during model training. In contrast, the post-
processing module extracts’ joint information of the athlete
during training and competition and feedback the information.

Data Enhancement

Then, only minor changes need to be made to the existing
data set to obtain more data, such as flipping, translation, or
rotation. CNN can classify objects robustly even if they are
placed in different directions. After translation, the viewpoint,
size, or illumination (or a combination of the three) remain
unchanged. Images collected from the internet will have different
sizes. Since fully connected layers are fundamental design inmost
NNs, image size must be fixed before inputting the network.
Popular data enhancement technologies operate pictures in the
following ways: scaling, translation, rotation, flipping, adding
noise, illumination adjustment, and perspective transformation.

Image recognition relies on BDT, and many training samples
must be prepared. Accordingly, to weigh the shortage of training
samples, the present work chooses to enhance the sample data,
minimizing model overfitting or distortion from insufficient
training. Then, a human body structure withK joints is expressed
by Equation (3), where L will be used as the initial input of joints:

L = (l1, · · ·, li · ··), (i ∈ {1, · · ·,K}) (3)

In (3), li = (xi, yi) is the coordinates of the i-th human joint.
Where D represents the position information, L is the actual

value of human action. The original labeled sample is expressed
as (D, L), which is expressed as (D, L) after the expression
framework is adjusted. Dr

x and Dr
y denote the after-rotation

abscissa and ordinate, respectively.
Data enhancement performs multiple operations on the

original image. Then, to describe the coordinates after rotation,
the top left corner of the image is set to be 0 point and its
coordinates to be (1,1). From this point on, the Y-axis is set to top-
to-bottom, the X-axis left-to-right. The picture size is (Dx,Dy).
The rotation angle is ϕ; clockwise in the positive direction. li

r
=

(xi
r , yi

r) is the coordinate of the rotated human joint i. Dr is the
data of the rotated image.

a. Rotation: as in Equations (4–7).

xri = (x−
Dx

2
) cosϕ − (y−

Dy

2
) sinϕ +

Dr
x

2
(4)

yri = (y−
Dy

2
) cosϕ − (x−

Dx

2
) sinϕ +

Dr
y

2
(5)

Dr
x = (Dy − Dx tanϕ) sinϕ + Dx cosϕ (6)

Dr
y = (Dx − Dy tanϕ) sinϕ + Dy cosϕ (7)

The rotation angle is used to obtain amounts of training
samples randomly.

b. Translation: Different points on the image are selected to
translate the human body, by which the minimum clipping
area can be solved by Equations (8) and (9).

The rotation angle is random to obtain many
training samples.

Ctop−left = (min(xr1, · · ·, x
r
K), min(yr1 − yrK) (8)

Cbottom−right = ((max(xr1, · · ·, x
r
K), max(yr1 − yrK)) (9)
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Where Ctop−left is the coordinate of the leftmost pixel in the
clipping region, and Cbottom−right is at the bottom right. min
and max represent the minimum and the maximum values in
the sequence, xrK and yrK refer to the abscissa and ordinate
after conversion.

c. Scaling
d. Horizontal turning: The coordinates after horizontal turning

are expressed as Equations (10) and (11).

x
f
j = DS

x − xSi (10)

y
f
j = ySi (11)

In Equations (10) and (11), x
f
j refers to the inverted abscissa,

y
f
j indicates the inverted ordinate, DS

x represents the data of the

inverted image, (x
f
j , y

f
j ) indicates the coordinate value of the

inverted pixel, and j stands for the joint corresponding to the
original joint i.

HPE and Evaluation

The Precision-Recall (P-R) curve is used to evaluate the detection
effect. Equations (12) and (13) calculate the P and R values.

P =
TP

TP + FP
(12)

R =
TP

TP + FN
(13)

For a test, the relationship between the predicted value and the
actual value has four situations as signified in the following: TP
represents that the actual value of the positive sample is true, FP
represents that the predicted value of the negative sample is true,
TN represents that the predictive value of the positive sample is
true, and FN represents that the prediction of negative sample is
false. Pindicates precision and R denotes recall.

Deep Convolutional Neural Network
Deep Learning

In recent years, DL has been a relatively new and popular research
direction in the ML field. DL enables computers to learn and
summarize the internal laws of various data (sound, image, and
other data) and finally power the computer to analyze and learn
like humans. At present, many significant breakthroughs have
been made in DL (Cocos and Fiks, 2019). At first, in 2006,
DL appeared as a new research direction in ML and gradually
been applied to various industries. In 2012, Stanford University
took the lead in building a training model called DNN. Then,
using 16,000 Central Processing Units (CPUs), DNN technology
has made a great breakthrough in voice and IR applications.
In 2016, alpha dog, an artificial go (Chinese “Weiqi”) software

FIGURE 6 | Structure of simple neural network.

was developed based on DL, defeated Li Shishi, the top go game
master in the world. Since then, many well-known high-tech
companies worldwide have begun to invest tremendous material
resources and talents in DL and setup relevant research institutes.

Machine learning technology studies how computers
simulate or realize learning behaviors of humans to learn
new knowledge, rewrite existing data structures, and improve
program performance. From a statistical perspective, ML is
used to predict data distribution, model available data, and then
predict new data, requiring testing and training data to conform
to the same distribution. Its basic feature is to imitate the mode of
information transmission and processing between neurons in the
human brain. Computer vision and Natural Language Processing
(NLP) are the most notable applications of ML. Obviously, “DL”
is strongly related to “neural network” in ML. “Neural network”
is also its main implementation algorithm and means. Thus,
“DL” can also be called an “improved neural network” algorithm.
The idea of DL is to simulate human neurons. Each neuron
receives information and transmits it to all adjacent neurons
after processing. Figure 6 sketches the structure of a simple NN.

AlexNet: A DCNN

The basic principle of AlexNet has been applied to many other
deep network structures. The leading new technologies used by
AlexNet are as follows:

a. Rectified linear activation function (ReLU) is successfully
used as the activation function (AF) of CNN, and its effect
is verified to exceed that of Sigmoid function in deep NN.
Thus, ReLU can solve the gradient dispersion problem of
the Sigmoid function. Although the ReLU was proposed a
long time ago, it has not seen further application until the
emergence of AlexNet (Shorten and Khoshgoftaar, 2019).

b. During training, Dropout is used to ignore some neurons
randomly to avoid model overfitting. Dropout has been
discussed in a separate paper, and AlexNet has put it into
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practice and proved its effect through practice. In AlexNet,
Dropout is mainly used in several last fully connected layers.

c. Overlapping maximum pooling (Max pooling) is introduced
into CNN. Before AlexNet, CNN used average pooling. By
comparison, AlexNet introduces Max pooling to avoid the
blurring effect of average pooling. Additionally, AlexNet
proposes to scale down the step size than the pooling core so
that there will be overlap and coverage between the outputs of
the pooling layer, which improves the richness of features.

d. A local response normalization (LRN) layer is proposed
to create a competition mechanism for local neurons. The
value with a larger response becomes relatively larger and
inhibits other neurons with minor feedback. As a result, it
enhances the model generalization. In training many chain
data, once the distribution of each batch of training data is
different (batch gradient decline), the network must learn to
adapt to different distributions in each iteration, which will
significantly reduce the training speed.

Figure 7 displays the AlexNet-based DCNN structure, and
Table 1 lists its detailed parameters.

The proposed AlexNet-based DCNN has five convolution
layers, followed by theMax-pooling layer for down-sampling and
three fully connected layers. The last layer is the SoftMax output
layer, which has 1,000 nodes and corresponds to 1,000 image-
classification options in ImageNet atlas. The network middle
volume dividing base layer is calculated by two independent
operations, which is beneficial to GPU parallelization and
reduces calculation.

Two-dimensional (2D) CNN comprises a 2D convolution
layer and a 2D pooling layer. Since the 2D CNN does not
process object motion information in the time dimension
between images, it cannot detect video sequences. Researchers
proposed three-dimensional (3D) CNN to better extract video
features by adding a time dimension to the convolution
kernel (namely, the 3D convolution kernel) to obtain
time-domain and spatial domain information. Thus,
3DCNN can achieve better recognition results. Three
dimensional CNN forms a cube by stacking multiple
consecutive frames. In this cube structure, each feature
map in the convolution layer is connected to multiple

adjacent consecutive frames in the previous layer to capture
motion information.

The improved CNN model has three 3D convolution layers,
three 3D pooling layers, one fully connected layer, one SoftMax
layer, and two Flatten layers, as shown in Figure 8. The size
of the 3D convolution kernel is [3 × 3 × 3], where “3 ×

3” represents the spatial dimension, the third “3” is the time
dimension, the step size is “1,” and padding is “1.” The number of
convolution kernels from the first convolution layer to the sixth
convolution layer is 64, 128, 256, 256, 512, and 512, respectively.
Each convolution layer is connected to the pooling layer, and
Max pooling is used throughout the network structure. The Max
pooling can effectively eliminate the estimated mean shift caused
by the parameter error of the convolution layer. The filter size of
the first pooling layer is [1× 2× 2], and the size of the remaining
filters is [2 × 2 × 2]. After the Dropout and Flatten layers,
SoftMax is used to classify and get the class output. Figure 8
denotes an improved 3DCNN structure.

Multi-Instance Learning (MIL)

According to the ambiguity of training data, the research in this
field can be roughly divided into three learning frameworks:
supervised learning, unsupervised learning, and Reinforcement
Learning (RL). Supervised learning marks the samples, while
unsupervised learning does not need to mark them, so the
learning model has great ambiguity. MIL can be considered the
fourth learning framework juxtaposed with the three traditional
learning frameworks. MIL can be described as follows: suppose
that each datum in the training data set is a package, each package
is a set of examples, each package has a training tag, and the
examples in the package are tagless. Then, one positively marked
example will make the whole package positive; all examples
within a negatively tagged package are negative. Noticeably,
here the tagging operation is in relation to the sample training.
Differently put, the training operation only labels the package,
not the examples, but the example labels do exist. Meanwhile,
samples can be positive or negative and are used for further
sample classification. All the sample tags are given in supervised
learning but are unknown in MIL. By comparison, all examples
are tagless in unsupervised learning, while the package in MIL is

FIGURE 7 | Deep Convolutional Neural Network (DCNN) structure.
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TABLE 1 | Detailed AlexNet-based Deep Convolutional Neural Network (DCNN) parameters.

Input image data (size: 227 * 227 * 3)

Convolution layer 1 11 * 11 convolution kernel a, number = 48, step size = 4 11 * 11 convolution kernel b, number = 48, step size 4

Activate function (relu) Activate function (relu)

Pooling layer (kernel size = 3, stride = 2) Pooling layer (kernel size = 3, stride = 2)

Standardization

Convolution layer 2 Convolution layer size = 5*5, number = 128, step size = 1 Convolution layer size = 5*5, number = 128, step size = 1.

Activate function (relu) Activate function (relu)

Pooling layer (kernel size = 3, stride = 2) Pooling layer (kernel size =3, stride = 2)

Standardization

Convolution layer 3 Convolution kernel size = 3 * 3, number = 192, step size = 1 Convolution kernel size = 3 * 3, number = 192, step size 1.

Activate function (relu) Activate function (relu)

Convolution layer 4 Convolution kernel size = 3 * 3, number = 192, step size = 1 Convolution kernel size = 3 * 3, number = 192, step size 1.

Activate function (relu) Activate function (relu)

Convolution layer 5 Convolution kernel size = 3*3, number = 192, step size = 1 Convolution kernel size = 3*3, number = 192, step size = 1.

Activate function (relu) Activate function (relu)

Pooling layer (kernel size = 3, stride = 2) Pooling layer (kernel size = 3, stride = 2)

Fully connected layer 6 2,048 neurons 2,048 neurons.

Dropout Dropout

Fully connected layer 7 2,048 neurons 2,048 neurons.

Dropout Dropout

Fully connected layer 8 1,000 neurons

FIGURE 8 | Structure of the improved three-dimensional Convolutional Neural Network (3DCNN).

tagged. However, one characteristic of MIL is that it widely exists
in the real world and has great potential application prospects.

Weakly Supervised Learning (WSL)

Supervised learning technology builds prediction models by
learning many labeled training samples, which has succeeded in
many fields. However, due to the high cost of data annotation,
it is not easy to obtain strong supervision information, such
as all truth labels, in many tasks. However, due to the lack
of formulated labels, the performance of unsupervised learning
in practical application is often very limited. To solve this
problem, relevant researchers put forward the concept of WSL
that can reduce the workload of manual marking and introduce
supervised human information to improve the performance of
unsupervised learning to a great extent.

Weakly Supervised Learning is relative to supervised learning.
Unlike supervised learning, the data labels in WSL are allowed to
be incomplete. That is, only part of the data in the training set has
labels, and the rest or evenmost of the data are unlabeled. In other
words, supervised learning is indirect. That is, the ML signal is
not directly assigned to the model but indirectly transmitted to
the ML model through some guiding information. In short, WSL
covers a wide range. In some sense, tag learning can be regarded

as WSL as long as the annotation information is incomplete,
inaccurate, or imprecise. WSL mainly includes Semi-Supervised
Learning (SSL), TL, and RL.

RESEARCH MODEL AND FRAMEWORK

Algorithm Model
The recognition method based on the strength feature metric is
used here. Figure 9 displays its recognition and detection steps.
General human behavior recognition algorithm: spatio-temporal
graph convolutional network (ST-GCN) refers to recognizing
human behavior in the videos, namely, reading video. According
to the types of actions and the processing tasks, the behavior
recognition tasks in various cases are slightly different. First,
compare and distinguish the two groups of concepts:

The steps of image content identification and detection are
as follows:

The first step is to use the faster region CNN (FR-CNN)
target detection model trained on Microsoft Common Objects
in Context (MSCOCO) general dataset to detect human features.
Part of the FR-CNN structure comes from the convolution layer
of pre-training, and the other part is its unique structure. The
training process is as follows: (a) initialize the network with
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the convolution layer of pre-training and carry out training.
After training, the convolution layer of pre-training and its
unique structure will be updated and (b) initialize the FR-
CNN with the pre-training convolution layer. Note that the
pre-training convolution layer is the same as the first step. The
trained network is used to calculate the unique value, and then
the updated suggestion is given to FR-CNN. Then, the model
training continues to update the convolution layer of pre-training
and the network structure of FR-CNN. In steps a and b, the FR-
CNN is initialized with the same pre-training convolution layer
and then trained independently. Therefore, the update of the pre-
training convolution layer must be different after training, which
means that the pre-training convolution layer is not shared. (c)
The convolution layer pre-trained in step b is used to initialize
the network and train the network for the second time. Notably,

FIGURE 9 | Identification and detection steps.

the convolution layer of pre-training should be locked this time.
Differently put, the pre-trained convolution layer will remain
unchanged during the training process. However, the unique
structure will be changed, so the pre-training convolution layer
will always be consistent with the pre-trained FR-CNN structure
in step c. (d) Keep the pre-trained convolution layer in step
c unchanged, initialize FR-CNN, and train FR-CNN for the
second time.

In the second step, an initial vector represents main trunk of
the athlete, and the SWA is used for FE. A rectangular box with
multiple scales is specified in advance. The sliding window slides
from left to right and from top to bottom according to a particular
step from the upper left corner of the image. Each sliding position
is reserved as a bounding box. Increasing the rectangular box
type and reducing the sliding step allow the bounding box to put
down all detected objects. The linear transformation module is
trained by the MIL method. When it is known that the image
contains object categories, the candidate frame of the image is
extracted first. These bounding boxes form a negative package for
an image that does not contain a target object. These bounding
boxes form a positive package for an image containing a target
object. The goal of MIL is to determine which bounding box in
the positive package is the target object. After continuous MIL
between positive and negative packets, the category of bounding
boxes is finally determined to complete object localization. There
is no need to label the position and category of the boundary.

In the third step, the linear transformation module represents
the human trunk features. The feature is extracted on the feature
map of the target detection model according to the human trunk
detection frame, and the linear transformation module is trained
in the form of WSL. In this paper, RL is selected, a typical WSL
algorithm. Unlike supervised learning, RL needs to try to find
the results of each pose, and there is no training data to tell

FIGURE 10 | KTH datasets.
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FIGURE 11 | UCF Sports datasets.

FIGURE 12 | Target detection frame of algorithm.
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the machine which pose to estimate. However, an appropriate
reward function canmake theMLmodel learn the corresponding
strategies under the guidance of the reward function. The goal of
RL is to study how to learn a behavior strategy to maximize the
cumulative reward in interaction with the environment. In short,
RL keeps trying in the training process, deducting points if the
decisions are wrong and reward points if otherwise to get the best
decision in each state environment.

The fourth step is to map human features into the feature
space of the athlete to measure the similarity between human
features and athlete features. First, the video is segmented into
frames and then the general target detector based on FR-CNN is
used to detect the people in each frame. Afterward, the detection
results of the athletes are distinguished by the trained example
feature measurement model. Then, the multi-frame detection
result fusion strategy based on video time-domain context is
used to optimize the detection results of each frame. Further,
according to the detection frame of the athlete, the image is
enlarged, cut to a certain extent, and sent to the single-person
pose detector. Finally, the detection results of the single HPE
module are mapped back to the original image to obtain the
complete athlete-oriented HPE of each frame.

Fifth, to effectively distinguish whether there is inter-frame
mutation and local mutation, it is necessary to calculate
the inter-frame similarity and local similarity and set the
threshold to distinguish. Meanwhile, to calculate the similarity
of images, there is a need to extract the image features.
Specifically, this paper adopts the Haar-like feature method to
compare positions of athletes between multiple frames. The
threshold is set to distinguish athletes from non-athletes, and the
detection results are optimized based on the video time-domain
context information.

As in Figure 9, image frames with “someone” are classified
as positive packets and frames without “someone” as negative
packets. The detection frame extracts the image features that are
then transformed into the same domain space. The maximum
feature similarity is taken as the positive packet similarity.
Following a similar procedure, the negative packet similarity is
determined. Figure 9 draws the target detection frame of the
algorithm (Ma et al., 2019; Afrasiabi et al., 2021).

Description of Experimental Data Sets
KTH dataset was released in 2004, which contains six types of
human behaviors: walking, jogging, running, boxing, waving, and
applause. Each type of behavior is performed by 25 people in
four different scenarios (outdoors, outdoors with scale changes,
outdoors with clothing changes, and indoors) multiple times,
fixed with cameras. The database has a total of 2,391 video
samples with 25 Frames Per Second (FPS), a 160 × 120
resolution, and a 4-s average length, as portrayed in Figure 10.

The UCF Sports action library is mainly composed of 13
conventional sports actions. This data set consists of a series
of actions collected from various sports activities, which are
usually broadcast on TV channels, such as British Broadcasting
Corporation (BBC) and Entertainment and Sports Programming
Network (ESPN) (Kumar et al., 2021). These video sequences are

obtained from variousmaterial websites, as outlined in Figure 11.
Figure 12 shows the target frame detection algorithm.

Preparation of Simulation Experiment
The single-stage-based YOLOv3 detection algorithm model,
two-stage-based FR-CNN, Anchor-free, CornerNet, and Merge
Soring algorithm are selected as the control group. The model
recognition is tested on the MSCOCO dataset, and the largest
feature map is selected for FE. Finally, experiments are carried
out using the extracted football video and volleyball training
video data.

FIGURE 13 | Football video detection results.

FIGURE 14 | Volleyball video detection results.
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FIGURE 15 | Comparative experiment of mixed sports video recognition. (A) Retraining rate as 0.01; (B) retraining rate as 0.001.

TABLE 2 | Performance comparison of the same Human Pose Estimation (HPE)

algorithm.

Model Deep Joint Athlete Complete Accuracy

name network point pose test

computing matching matching time

time time time

FR-CNN 147ms 10ms 157ms 86.1%

Alphapose 158ms 203ms 78.3%

Pifpaf 258ms 102ms 10ms 443ms 79.5%

Local Pifpaf 213ms 302ms 294ms 79.6%

Experiment 1: Different diving training videos of a sports
college are collected as the experimental objects, with a resolution
of 342× 2,200.

Experiment 2: The database uses the KTH action library and
UCF Sports action library. The experiment uses the proposed
method to identify the confusion matrix of the two experimental
action libraries. The KTH library trains the models using 35
athletes’ sports training videos, tests the effect of the model on
one person for 36 rounds of cross-detection, and averages the
accuracy of pose recognition. Each type of video in the UCF
Sports database is randomly selected as a testing video. The
remaining video is used as a training video for 50 rounds of
cross-validation. The pose recognition accuracy is averaged.

Experiment 3: The proposed performance of the model is
compared to the top-down athlete-oriented HPE model based
on AlphaPose, the bottom-up athlete-oriented HPE model based
on PifPaf, and the athlete-oriented HPE model based on PifPaf
with local spatial constraints. Then, 300 football and volleyball
training video frames are extracted to generate a training set
with 200 pictures and a test set with 100 pictures, respectively.
Altogether, 600 non-athlete images are extracted and clustered

FIGURE 16 | Test results of false separation rate.

into a training set that contains 400 images and a testing set that
contains 200 images (Wang et al., 2021).

EXPERIMENTAL DESIGN AND
PERFORMANCE EVALUATION

The Effectiveness of Feature Metrics for
Detection Results
The proposed validity of the algorithm is tested on the football
and volleyball video datasets through comparative analysis
with YOLOv3, F-RCNN, CornerNet, YOLOv3 + the proposed
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FIGURE 17 | Recognition results of the confusion matrix. (A) Results of KTH confusion matrix, (B) Results of UCF Sports confusion matrix.

algorithm, F-RCNN + the proposed algorithm, CornerNet +
the proposed algorithm, YOLOv3 + the proposed algorithm
+ Merge, and CornerNet + the proposed algorithm + Merge.
Figures 13, 14 plot the recognition accuracy, maximum recall,
and accuracy of several models on the MSCOCO dataset.

As in Figures 13, 14, although there are differences in
the effectiveness of various models on different motion data
sets, the differences are relatively low in HPE accuracy, and
the maximum recall differences are the lowest. Additionally,
the maximum recall of individual YOLOv3, FR-CNN, the
Anchor-free, and CornerNet algorithms is normal. However,
the average accuracy on MSCOCO and AP is only 20–
40%, so using a general detection algorithm alone for sports
video detection and recognition is not feasible. However,
the average accuracy is greatly improved when the feature
metric detection method is added to the general model; the
maximum recall and average accuracy are both improved to
over 65%. The maximum recall of football videos is over
80%, while the maximum recall is generally over 70% for
volleyball videos.

Performance Comparison Experiment
Different kinds of mixed sports videos are used for identification
and contrast experiments, and the results are displayed in
Figure 15. The performance of the proposed athlete-oriented
HPEmodel is compared with that of the mainstreamHPEmodel,
as plotted in Table 2.

Figure 15 suggests that the FR-CNN model algorithm shows
higher recognition accuracy on mixed sports videos than on a
single sports video dataset, whichmay be related to the previously
established data set. After retraining, the recognition accuracy
of the FR-CNN algorithm has increased from <45–85%, with
significant improvement. The maximum recall for the other
two matching algorithms is not much different from that of a
single FR-CNNmodel algorithm. In comparison, the recognition
accuracy of the FR-CNN model algorithm before and after

retraining with the mixed sports videos is not much different
(from 40% to a bit higher). Therefore, the proposed athlete-
oriented HPE algorithm has presented the best maximum recall
and accuracy.

Figure 16 signifies that the separation results obtained by
the ChienSY method have obvious cavity problems, and the
results obtained by the proposed HPE algorithm are complete
and transparent. The false separation rate of the proposed
method is about 1%, while that of the ChienSY method
is about 3.4%. Due to biased parameter interference in the
camera static motion model, the error separation rate of
the ChienSY method shows a significant increasing trend
in the later stage. In contrast, the error separation rate of
the proposed algorithm does not show significant changes,
indicating that the proposed method can accurately separate
sports videos.

Figure 17A gives the identification results of the KTH
confusion matrix by the proposed method, and Figure 17B

presents the identification results of the UCF Sports confusion
matrix by the proposed method.

Figure 17A concludes that the proposed method can separate
the first and last three types of actions in the KTH database.
Still, the recognition accuracy for walking, jogging, and fast
running is relatively low, mainly because these three human
motions are hard to discern from one another in terms of the
involved body joints’ motion amplitude. Figure 17B implies that
it is basically the same as the recognition accuracy of various
actions in the confusion table of the UCF Sports database.
It is low of the variance of recognition accuracy of various
actions in the database. Table 2 corroborates that the athlete-
oriented HPE model’s estimation time is mostly wasted on
the NN, while no time has been spent on some modules.
This is because the sensitivity of the research experiment is
millisecond (ms), and the time span <1ms is all denoted
as 0ms. In conclusion, the proposed FR-CNN algorithm has
shown the fastest detection speed, as small as 157ms, and its
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accuracy is much higher than the other threemainstreammodels,
reaching 86.1%.

CONCLUSION

Combined with BDT and DCNN algorithm, this study proposes
an athlete-oriented FR-CNN-based HPE model to automatically
recognize human actions and sports types from sports videos and
finally realize sports video classification and hot spot detection.
Concretely, BDT is mainly used to search the training set and
testing set of sports video data. Then, the HPE model is realized
by the DCNN algorithm, and the feature recognition algorithm
is established to recognize the motion of the athlete. Finally, the
proposed HPE model is trained with mixed motion videos. Final
experiments demonstrate that by combining BDT with DCNN
algorithms, the proposed HPE model effectively recognizes
human motions in sports videos and can score accurately.

Although the expected objectives have been achieved, there
are still some limitations. The compatibility of the model is
insufficient, so future research work will focus on further
improving the compatibility of the model and optimizing the
code. (2) Due to the inability to obtain complete television and
network video ratings and program information, the model may
not accurately identify complex motion movements. Therefore,

future research work will focus on further collecting relevant
data, constructing reasonable data sets, understanding the actual
situation and collecting data, and constructing data sets to
optimize the model.
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Green Supply Chain Optimization
Based on BP Neural Network
Huan Wang*

College of Economics and Management, Hubei University of Automotive Technology, Shiyan, China

With the emergence and development of the Back Propagation neural network (BPNN),

its unique learning, generalization, and non-linear characteristics have been gradually

excavated and fully applied in the field of prediction. To improve the economic and

green benefits of enterprises, the BPNN algorithm is applied to the green supply chain

assisted by intelligent logistics robots. The BPNN algorithm can be used to output the

characteristics of different information and optimize the green supply chain according

to the input parameters and the influencing factors in the network. Firstly, an evaluation

index system is established for selecting suppliers, which includes 4 first-level indicators:

operational indicators, economic indicators, green indicators, social indicators, and

14 corresponding secondary indicators. Secondly, the evaluation indicator system is

modeled through the BPNN. Finally, using the BPNN model, a supply chain enterprise’s

selection of cooperative enterprises in Xi’an is taken as the research object and

simulation. Finally, the output results of the five alternative enterprises are 0.77, 0.75,

0.68, 0.72, and 0.65, respectively. The enterprise with the highest output results is

selected as the cooperative enterprise and the enterprise with the second highest output

results as an alternate. The green supply chain model based on the proposed BPNN is

scientific and effective through specific simulation experiments. It has certain reference

significance for the relevant issues related to subsequent optimization of the green

supply chain.

Keywords: Back Propagation neural network algorithm, network model, green supply chain, intelligent logistics

robot, artificial intelligence

INTRODUCTION

With the rapid development of technology and the continuous progress of society, as an
important driving force for a new round of scientific and technological revolution and industrial
transformation, artificial intelligence (AI) has become an extremely important technological
content at present. Under the background of made in China 2025 and the continuous
transformation and upgrading of technology in the manufacturing field, the production level and
the application efficiency of China’s manufacturing have been greatly improved. The widespread
use of AI technology has not only brought revolutionary changes to traditional manufacturing,
but also affected the transition of modern manufacturing to a smarter, more modular trend (Brito
et al., 2020). With the development of AI technology, the robot industry has also developed
from programmable robots and sensory robots to intelligent robots, which has become a trend
of development at present and in the future (Staal et al., 2020). With the application of intelligent
robots in the logistics industry, the operation efficiency of the logistics system has been greatly
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advanced. Intelligent logistics robots have gradually
demonstrated their advantages of speed and convenience
in logistics, warehousing, transportation and other fields. While
technology and the economy are developing rapidly, “green
development” has also become a hot topic in society, and all
walks of life are transforming to green.

Ahmet andAlk (2020) believed that supply chainmanagement
(SCM) was an important part of reducing costs and increasing
profits for most companies in a competitive enterprises
environment, and the success of enterprises is directly related
to the performance of the supply chain. The introduction of
the green SCM theory also provides a new way of thinking for
the logistics industry to realize green transformation, so that
enterprises can choose the right partners and jointly complete
the green transformation. While ensuring the economic benefits
of enterprises, they also harvest green benefits. Shao et al. (2019)
considered that the idea of the green supply chain could provide a
decision-making basis for the bidding and procurement process,
and proposed that the green supply chain mainly included three
levels: external environment, corporate strategy, and inventory
level (Shao et al., 2019). At present, the domestic green supply
chain is still in its infancy, and there are fewer studies on
the optimization of the existing green supply chain. With the
emergence and development of the Back Propagation neural
network (BPNN), its unique learning, generalization, and non-
linear characteristics have been gradually excavated and fully
applied in the field of prediction. The BPNN algorithm can
output the characteristics of differentiated information according
to different input parameters and various influencing factors
in the network, and optimize the green supply chain of the
logistics industry. The innovation of this research is to use the
predictability of BPNN to predict the choice of different supply
chain enterprises, thus achieving the optimal choice.

To improve the economic and green benefits of enterprises,
the BPNN algorithm is applied to the green supply chain. Firstly,
an evaluation index system is established for selecting suppliers.
Secondly, the system is modeled through BPNN. Finally, the
BPNN model is used to simulate the selection of partners by a
supply chain enterprise in Xi’an, which verifies that the proposed
index system model is scientific and effective.

THE MODEL OF GREEN SUPPLY CHAIN
USING THE BPNN

Construction of Evaluation Index System
of Green Supply Chain
The concept of supply chain first appeared in manufacturing,
which refers to the whole process of manufacturing enterprises
purchasing raw materials, producing and manufacturing,
supplying to distributors, transferring to retailers, and finally
to consumers. With the gradual deepening of the research
on manufacturing operation mode, the academic community
combines supply chain with supply management and expresses
it as a relationship between suppliers and manufacturing
enterprises. Nowadays, manufacturers, supply enterprises,
transportation enterprises, distributors, information flows and

consumers are all included in the supply chain. In the whole
process of SCM, the green supply chain relies on its advanced
scientific concepts and technical means, takes economic
benefits, social benefits and environmental protection benefits as
management goals, and carries out high-efficiency and low-cost
overall control of logistics, fund flow and information flow of the
entire supply chain (Gao et al., 2021).

The green supply chain is a closed-loop system with four
main features: (1) The main goal of traditional SCM is to
improve the profitability of enterprises in the supply chain, and
the green supply chain not only aims to improve enterprise
efficiency, but also adds two new goals: social and environmental
benefits. In practice, the three benefits may be contradictory,
and the realization of one benefit improvement will often
lead to the decline of the other benefit. Green SCM is to
comprehensively consider the three benefits and make the three
develop together. (2) Traditional supply chain is the product of
enterprise organization, and the main body of the green supply
chain is more complex. Government intervention, preferences
of consumer groups, etc. will have an impact on it. Due to the
complexity of the main body in the supply chain, its behavioral
goals are also more diversified, thus promoting the common
development of multiple benefits. (3) The life cycle of products
in the traditional supply chain includes design, raw material
procurement, product manufacturing, sales, logistics and after-
sales service, while the green supply chain also includes the
recovery of waste materials to form a closed loop to minimize
energy consumption and reduce environmental hazards. (4)
The main factor of traditional SCM is the relationship between
subjects, but the green supply chain also includes technical
requirements in addition to the relationship between subjects
(Cui et al., 2021).

The formation of the green supply chain can be divided into
internal and external aspects. The specific principle of formation
is shown in Figure 1.

In Figure 1, the internal factors that make up the green
supply chain include internal driving drive and automatic force.
The internal driving force includes economic benefits, social
benefits and environmental benefits. The green supply chain
improves economic benefits by reducing costs, reducing waste,
promoting the market, and improving brand benefits, improving
social benefits by improving product security, saving energy and
increasing employment, and improving environmental benefits
through improving the efficiency of the use of material resources
and controlling the entry of highly polluting substances into
the supply chain. The automatic forces include self-organization,
self-evolved and self-coordinated. The subjects involved in the
green supply chain share resources, restrict each other, and also
promote each other. When a subject in the supply chain behaves
abnormally, the supply chain will adjust itself in time (Fallahpour
et al., 2020; Meager et al., 2020).

The external factors that constitute a green supply chain
include security force and external pressure. The security force
includes technological innovation, institutional innovation,
and industrial structure adjustment. Through correct guidance
and appropriate incentives, the government promotes the
green upgrading of the supply chain, establishes effective
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FIGURE 1 | The formation principle of the green supply chain.

environmental regulations, builds standardized incentive
mechanisms, guarantees the due benefits of technological
innovation of enterprises, makes macro-adjustments to the
industrial structure of enterprises, and formulates appropriate
industry development plans to achieve the green upgrade of
the supply chain (Midya et al., 2021). The external pressure
includes environmental regulations and standards, public
opinion orientation and public demand. The introduction
of relevant regulations and standards can promote the
green upgrade of the supply chain, and public opinions on
environmental pollution and the use of toxic and hazardous
materials can also improve the environmental protection
concepts of corporate managers and consumers. With the
improvement of public consumption capacity, consumers will
also buy products for the green premium of products, and
they will be more inclined to choose corporate products with
a strong sense of social responsibility, which also ensures the
demand for products in the green supply chain (Khan et al.,
2021).

According to the characteristics and formation principle
of the green supply chain, the indicator system of the green
supply chain is set. The operational indicators, economic
indicators, green indicators and social indicators are taken as
the first-level indicators of the indicator system of the green
supply chain. Among them, operational indicators include five
secondary indicators, namely delivery advance, response speed,
delivery accuracy, production flexibility and order completion
rate. Economic indicators include four secondary indicators,
and they are cost reduction rate, destocking level, sales profit
margin, and capital turnover rate, respectively. Green indicators
include two secondary indicators, namely energy utilization
rate and waste resource recovery rate, respectively. Social
indicators include three secondary indicators, namely social
welfare investment, enterprise reputation level, and employee
and customer satisfaction. The specific content is shown in
Figure 2.

FIGURE 2 | The evaluation indicator system of the green supply chain.

In Figure 2, the first-level indicators of the evaluation
indicator system of the green supply chain are four categories:
operational indicators, economic indicators, environmental
indicators and social indicators, and the corresponding
secondary indicators are a total of 14 categories. Each indicator
is independent and does not overlap with each other, but it
affects, restricts and interacts with each other. By applying these
indicators to BPNN, a green supply chain evaluation model
based on BPNN can be constructed.

The BPNN Model
For building a green supply chain evaluation model based on
BPNN, it is necessary to understand the meaning of BPNN. The
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concept of the BPNN was first proposed by a group of scientists
led by Rumelhart andMcClelland in 1986, and it was widely used.
The BPNN includes the input layer, the output layer, and the
hidden layer. Neurons in the same layer are not connected to
each other, and only neighboring upper and lower neurons can
connect to each other (Wu et al., 2019). The BPNN can generate
different output information by inputting different input data to
meet all training sets as much as possible (Tang and Yu, 2021).
The structure is shown in Figure 3.

In the BPNN, the hidden layer may be only one layer or
multiple layers, each layer may have one or more neurons. But
the theory has proved that the BPNN with only one layer of the
hidden layer can approximate arbitrary non-linear continuous
functions. So in most cases, the BPNN with only one layer of the
hidden layer is used. In the input layer, the number of neurons is
the same as the number of input parameters, and the number of

FIGURE 3 | The structure of the BPNN.

neurons in the output layer is the same as the number of output
parameters (Zhou et al., 2019, 2020).

Generally speaking, the excitation function between the
hidden layer and the output layer is the Sigmoid function,
which includes two forms, namely the Log-Sigmoid function and
the Tan-Sigmoid function. The expression of the Log-Sigmoid
function is shown in Equation (1):

f (x) =
1

1+ e−x
(1)

The expression of the Tan-Sigmoid function is shown in
Equation (2):

f (x) =
1− e−x

1+ e−x
(2)

As the most frequently applied excitation function in the BPNN,
the Sigmoid function “extrudes” the input of the upper function
and outputs it into a range, thereby completing arbitrary non-
linear mapping from input to output (Sakaki et al., 2019).

Neural networks (NNs) also have the function of autonomous
learning, and their learning methods can be divided into
supervised learning and unsupervised learning. Supervised
learning can make the output value of each group of NNs as
close as possible to the actual output value. Because the BPNN
trains the NN with the input and output of the training set, the
number of hidden layers, learning rate, threshold and weights of
neurons can be adjusted. Unsupervised learning can only adjust
the weights between neurons, and there is no actual output value,
so it is impossible to compare the output of the NN with the
actual output, so it is impossible to adjust the parameters.

FIGURE 4 | The operation flow of the BPNN model.
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FIGURE 5 | The function curve of the sum of errors.

When using the model of the BPNN, there are the following
steps: first, the output information is calculated according to the
input information, then the threshold and weight are reversely
updated between the two adjacent levels according to the error
between the actual output and the expected output. When
learning, the standard BPNN algorithm uses the descent method
of the error function. When the sum of squared errors between
the actual output and the expected output is minimized, the
learning process ends (Peng et al., 2018; Hirschfeld et al., 2020;
Carvalho and Plastino, 2021).

Because the BPNN with only one layer of the hidden layer can
approximate arbitrary non-linear continuous functions, resulting
in most NN models that only use one layer of the hidden layer,
so this time NN models with only one layer of the hidden are
also used as examples. a is the number of input layer neurons, b
is the number of output layer neurons, and c is the number of
hidden layer neurons. Ymn is the weight of the mth input layer
neurons to the nth hidden layer neurons. Qsn is the weight of the
s-th hidden layer neurons to the nth output layer neurons. xm1 to
xma is an input parameter of mth group data. ym1 to ymb is the b
output parameter of mth group data. Yn0 is the threshold of the
nth hidden layer neuron. Qs0 is the threshold of the sth output
neuron. The application process of the BPNN model is shown in
the equation.

Step 1: The number of neurons is determined. The number
of neurons in the input layer is the same as the number of input
values. The number of neurons in the output layer is the same
as the number of output parameters. The number of hidden
layer neurons is usually estimated by the experience formula, and
then the number is determined by temptation. Two experience
formulas are shown in Equations (3) and (4):

p =

√

a+ b+ ε (0 ≤ ε ≤ 10) (3)

p = log2 a (4)

Because the secondary index of the chain evaluation index of this
green supply is 14, the number of neurons in the input layer is 14,
the number of neurons in the output layer is 1, and the value is 0–
10 in turn for ε. The speed of convergence of the NN processing
data is tested, and the number of hidden layers is 8. The model of
the BPNN is finally set to 14∗8∗1.

Step 2: Data pre-processing. Firstly, the input and output of
the BPNN are determined, secondly, the corresponding training
set is built, and finally, the processing of the data is normalized.
Generally, the data is normalized into intervals [0,1] or intervals
[−1,1], as shown in Equation (5) to (7):

xnew =
x− xmin

xmax − xmin
(5)

xmid =
xmax − xmin

2
(6)

xnew =
x− xmid

0.5 (xmax − xmin)
(7)

Equation (5) is to normalize the data to [0,1], Equations (6) and
(7) are to normalize the data to [−1,1].

Step 3: Parameters of the input network model. Input weight
Ymn, weight Qsn, learning rate η, thresholds, incentive function,
maximum recursive times and setting target error.

Step 4: Calculate the output of the hidden layer. First, the
weighted sum of the data is calculated by the input layer in the
NN, and then the excitation function is used to “compress it” and
finally, the output value of the hidden layer is obtained, as shown
in Equation (8):

Km = f
(

∑a

k = 1
Ykmxk + Ym0

)

(8)

In the equation, Km is the output value of the mth neuron of the
hidden layer. f() is the excitation function, as shown in Equations
(1) or (2).

Step 5: Calculate the output value of the output layer neurons,
as shown in Equation (9):

yi = f
(

∑n

k = 1
KkQkm +Qm0

)

(9)

Step 6: Calculation error. The output error is calculated according
to the output value of the BPNN model and the actual output
value. The sum of squares of errors is shown in Equation (10):

E =

∑Nt

m = 0

∑b

n = 1

[

t(m)
n − y(m)

n

]2
(10)

In Equation (10), E represents the sum of squares of errors. Nt

indicates the total number of training samples. m shows the mth
training sample. n is the nth output neuron, and b means the

number of output neurons. y
(m)
n is the nth network model output

of the mth training sample and t
(m)
n is the nth actual output of the

mth training sample.
Step 7: Distinguish whether the training is over. Distinguish

whether the BPNN model training is over or not by the
following situations:

(1) Given error maximum > error E.
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TABLE 1 | Questionnaire of self-evaluation indicators of the green supply chain.

No. Problem description Totally disagree Broadly disagree Largely agree Broadly agree Totally agree

1 Customers are very satisfied with the quality of the product

2 Customers are very satisfied with the price of the product

3 Customers are very satisfied with the timeliness of delivery

4 Customers are very satisfied with the accuracy of delivery

5 The needs of customers are satisfied for different batches

and different product combinations

6 The company always pays attention to the market and

responds quickly

7 The company can successfully solve the temporary

increase in orders

8 The company can meet orders of different batches at any

time

9 The company keeps inventory to a minimum while

maintaining customer demand

10 The company’s transportation costs are reduced to a

minimum

11 The company minimizes loss of the product

12 The company can make accurate forecasts of inventory

levels

13 There is no problem with the turnover of the company’s

funds

14 The company’s control of sales profits is very strict

15 The company can rationally use equipment and tools to

improve efficiency

16 The company saves or recycles recyclable resources

17 The benefits within the company are very good

18 Employees are very satisfied with the company’s salary and

benefits

19 The company has a certain reputation in the society

20 The company and its partners can achieve mutual benefit

and win-win results

(2) The number of recursions > the set parameter values.
(3) When the training error E is basically unchanged for many

consecutive times, it has converged to the minimum value.

If one of the above conditions is met, skip the next step,
otherwise, go to the next step.

Step 8: First, adjust the weights and thresholds in the NN, and
then jump back to Step 4. The BPNN algorithm is used to learn
according to the gradient descent method of error functions. The
partial derivatives of E relative thresholds and weights should be
calculated first, as shown in Equations (11) to (14):

∂E

∂Qsn
=

∑Nt

p = 1

[

y
(p)
s − t

(p)
s

]

ϕ

(

∑a

m =1
Ynmxm + Yn0

)

(11)

∂E

∂Qs0
=

∑Nt

p = 1

[

y
(p)
s − t

(p)
s

]

(12)

∂E

∂Ynm
=

∑Nt

p = 1

∑b

s = 1

[

y
(p)
s − t

(p)
s

]

ϕ

(

∑a

m=1
Ynmxm + Yn0

)

[

1− ϕ
(

∑a

m = 1
Ynmxm + Yn0

)]

xm (13)

∂E

∂Yn0
=

∑Nt

p=1

∑b

s = 1

[

y
(p)
s − t

(p)
s

]

ϕ

(

∑a

m = 1
Ynmxm + Yn0

)

[

1− ϕ
(

∑a

m =1
Ynmxm + Yn0

)]

(14)

In the equations, E represents the sum of squares of errors.
Nt indicates the total number of training samples. m shows
the mth training sample. n is the nth output neuron, and b
means the number of output neurons. The thresholds Yn0, Qs0

and weights Ynm, Qsn are modified, as shown in Equations (15)
to (18):

Qnew
sn = Qold

sn − η
∂ E

∂ Qsn
(15)

Qnew
s0 = Qold

s0 − η
∂ E

∂ Qs0
(16)

Ynew
nm = Yold

nm − η
∂ E

∂ Ynm
(17)

Ynew
n0 = Yold

n0 − η
∂ E

∂ Yn0
(18)

Step 9: Verify the feasibility of the algorithm. The BPNN model
that has been trained is used to calculate the output according to
the input of the training set, and then the output value of the NN
model with the actual output value are compared and calculated.
Finally, the error is calculated and the rationality of its structure
is analyzed.
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FIGURE 6 | The data of testing and training sample.

FIGURE 7 | The output value of training sample.

Step 10: After the algorithm training is over, the completed
NNmodel is used to solve the problem. The operation flow of the
BPNN model is shown in Figure 4.

The reason why the BPNNmodel can be used so widely is due
to its following characteristics:

(1) Good non-linear mapping ability. In the BPNN model, the
threshold of each neuron, the weights between neurons, etc.,
can be stored as specific information.

(2) Distributed storage information. In the BP neural network
model, the threshold of each neuron, the weights
between neurons, etc. can be expressed as stored as
specific information.

(3) Autonomous learning ability. The BPNN model
will calculate the output according to the input
of the training set, and then compare it with the
actual output to reversely update the threshold
and weights in the model until the network model
gradually stabilizes.

(4) Synchronization. All neurons in the BPNN can receive and
process information separately, so neurons in the same layer
can calculate the received data synchronously, and then
transmit the calculated results to the lower neurons together.

(5) Good fault tolerance. Even if the BPNN model is partially
damaged or the information received is lost, it can work
without much impact (Huang et al., 2020; Sze et al., 2020;
Samek et al., 2021).

The BPNN has the above advantages and solves many problems.
However, with people’s continuous research on it, it is found
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FIGURE 8 | The convergence diagram of the target error of the BPNN.

FIGURE 9 | Results of the output.

that there are many shortcomings a. It is mainly reflected in the
following aspects:

(1) The convergence speed of the sum of errors is very slow
during training. To maintain stability, the learning rate is a
small fixed value, which leads to the convergence speed of the
sum of errors is very slow during BPNN training.

(2) The sum of errors can easily enter the local minimum value.
The function diagram of the sum of errors is a continuous
but uneven curve, which contains N local minimal values
and an overall minimal value. The purpose of model training
is to find the overall minimal value of the sum of errors. In
the process of training, it starts from a point in the function

curve of the sum of errors, and moves to a minimum value
in the descending direction. This minimum value may be
the overall minimum value or a local minimum value, so the
sum of errors is easy to enter the local minimum value in the
process of training (Alarifi et al., 2020). The details are shown
in Figure 5.

(3) The training time of the BPNN is long. Because the number
of layers of the hidden layer and the number of neurons are
not fixed, even if the number of layers is generally only used
one layer, however, the experience formulas should still be
used to calculate the valuation to determine the number of
neurons in the hidden layer, and then train themmany times
to test the most suitable number of neurons. Therefore, the
training time of the BPNN is long.

(4) The NNmodel is unstable.When the BPNNmodel gradually
stabilizes through training, and then inputs new training
data, the previous threshold and weights cannot be applied,
and the NN model cannot be applied, so the new training
data has to be combined with the previous training data for
retraining. Therefore, the BPNNmodel is unstable (Zielonka
et al., 2020).

(5) There is an endless cycle in the NN. When the Sigmoid
function is used as an incentive function, if the learning rate
or weight is too large, the derivative of the Sigmoid function
will tend to be 0, and the correction values of the threshold
and weights will also tend to be 0. At this time, the NN will
fall into an endless cycle.

In view of the above situation, the adaptive adjustment method
of the learning rate and the additional momentum method
are generally used to improve it. The additional momentum
method is used to adjust the weights and thresholds, as shown
in Equations (19) to (22):

1Qnew
sn = α1Qold

sn − η
∂E

∂Qsn
(19)

1Qnew
s0 = α1Qold

s0 − η
∂E

∂Qs0
(20)

1Ynew
nm = α1Yold

nm − η
∂E

∂Ynm
(21)

1Ynew
n0 = α1Yold

n0 − η
∂E

∂Yn0
(22)

α is a momentum factor with a value (0,1); η is a learning rate
with a value (0,1); and E represents the sum of squares of the
training error. Due to the influence of momentum factors, when
the training drops to a local minimal value, the minimal value is
still searched until the overall minimal value is reached (Huang
et al., 2019). η will affect the training speed and model effect. The
automatic adjustment method of the learning rate can deal with
this problem:

ηk+1 =







1.04ηk,Ek+1 < Ek
0.8ηk,Ek+1 > 1.05Ek

η, other
(23)

k shows the kth algorithm recursive. When the sum of squares
of the training error is less than the sum of the recursive squares
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of the previous algorithm, the learning rate can be appropriately
improved. When it is >1.05 times the sum of the recursive error
squares of the previous algorithm, the learning rate should be
appropriately reduced. In other cases, the learning rate should
remain unchanged.

VERIFICATION OF EXPERIMENTAL DATA
AND SIMULATION OF MODEL

Verification of Experimental Data
A supply chain enterprise in Xi’an as an example is taken to select
suitable supply chain partners for it. The alternative collaborators
are A-E. According to the existing indicator system, the BPNN
model is established. The number of neurons in the input layer
is 14, the number of neurons in the hidden layer is 8, and the
number of neurons in the output layer is 1. The final output value
of the model is the final evaluation result, and the priority is given
to the high score.

The data are collected in the form of questionnaires. The
questionnaire adopts the Likert five-point scale. Each question
ranges from totally disagree to totally agree, representing 1-5
points, respectively. The specific content of the questionnaire is
shown in Table 1.

In Table 1, the problems contain the actual problems shown
by all 14 secondary indicators. The questionnaire is distributed
to the management of the alternative partner, 20 copies per
enterprise, and finally, the sample data of the test partner is
obtained by sorting out the statistics of the questionnaire. In
addition, F, G and H enterprises in the same industry are selected
to investigate as training samples. The test sample data and
training sample data are normalized after they are obtained. The
final data is shown in Figure 6.

The training data is input into the NN and the expected output
is shown in Figure 7.

Simulation and Analysis of Model
In Figure 5, the data of the three enterprises F, G, and H are
brought into the NN as the input value, and the output value
in Figure 6 is taken as the target. When inputting the training
function, the target error is 0.01. After 700 times of training, the
requirements of the error are met, and the training is completed.
The convergence diagram of the target error of the BPNN is
shown in Figure 8.

The test data of the five enterprises A-E are brought into
the trained BPNN model, and the expected value is obtained as
Figure 9.

Figure 9 indicates that enterprise A has the highest evaluation,
with a score of 0.77, which can be used as a supply chain partner,
and enterprise B ranks second in the evaluation, with a score of
0.75, which can be used as an alternative enterprise for supply
chain partners. The evaluations of C, D and E enterprises are
0.68, 0.72 and 0.65, respectively. The evaluation score is lower
than that of company A and company B, so it can be given up in
this selection of the supply chain partner. Finally, this experiment

selected the optimal cooperative enterprise for the supply chain
through the BPNN.

BPNN has strong self-learning and self-improvement
capabilities. In other words, the quality and quantity of training
samples brought in during the BPNN training process largely
determine the output quality of the evaluation model. Therefore,
to make enterprises choose more suitable supply chain partners,
enterprises should use the evaluation in the process of supplier
selection and the evaluation in the whole process of contract
performance to establish a complete supplier evaluation
database. Meanwhile, the BPNN is continuously trained as a
sample to improve the supplier’s BPNN selection model. And
enterprises should also do a good job in the training of staff, carry
out special training courses, professional lectures, experience
sharing sessions, etc., to improve staff ’s understanding of the
BPNN system and practical skills. On the basis of systematic
training for the existing personnel, the introduction of high-level
talents should also be carried out in a targeted manner, and the
talent structure should be adjusted.

CONCLUSION

The BPNN algorithm is used to output various information
features and optimize the green supply chain according to
the input parameters and the different influencing factors in
the network. Firstly, by combining the management practice
of supply chain enterprises, an evaluation index system of
the green supply chain is established, and then the system
is combined with the BPNN algorithm to build a BPNN
model. Secondly, a supply chain enterprise in Xi’an as an
example is taken to select suitable supply chain partners
for it, the relevant data of the five alternative enterprises is
input into the trained NN. Finally, the output results are
0.77, 0.75, 0.68, 0.72, and 0.65, respectively. The enterprise
with the highest output results is selected as the cooperative
enterprise. Through specific experiments, the scientific and
effectiveness have been proved. Due to some limitations,
the involved evaluation indicators are not comprehensive
enough. In the future, the scope of research will be expanded,
the evaluation indicators of the green supply chain will be
added, and the number of influencing factors and neurons
will be added. It has certain reference significance for the
relevant issues related to subsequent optimization of the green
supply chain.
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It was aimed to discuss the effect of bed-type rehabilitation robots under machine

learning combined with intensive motor training on the motor function of lower limbs

of stroke patients with hemiplegia. A total of 80 patients with stroke hemiplegia were

taken as the subjects, who all had a course of treatment for less than 6 months in the

Rehabilitation Medicine Department of Ganzhou Hospital. These patients were divided

into the experimental group (40 cases) and the control group (40 cases) by random

number method. For patients in the control group, conventional intensive motor training

was adopted, whereas the conventional intensive motor training combined with the

bed-type rehabilitation robot under machine learning was applied for patients in the

experimental group. Fugl-Meyer Assessment of Lower Extremity (FMA-LE), Rivermead

Mobility Index (RMI), and Modified Barthel Index (MBI) were used to evaluate the motor

function and mobility of patients. The human–machine collaboration experiment system

was constructed, and the software and hardware of the control system were designed.

Then, the experimental platform for lower limb rehabilitation training robots was built, and

the rehabilitation trainingmethods for stroke patients with hemiplegia were determined by

completing the contact force experiment. The results showed that the prediction effect of

back-propagation neural network (BPNN) was better than that of the radial basis neural

network (RBNN). The bed-type rehabilitation robot under machine learning combined

with intensive motor training could significantly improve the motor function and mobility

of the lower limbs of stroke patients with hemiplegia.

Keywords: stroke, hemiplegia, intensive motor training, machine learning, bed-type lower limb rehabilitation robot

INTRODUCTION

Stroke, also known as cerebrovascular accident, shows high morbidity, high mortality, high
disability, and high recurrence (Pan, 2018; D’Ancona et al., 2020). At present, the incidence of
stroke exceeds that of tumors and heart diseases in China, and it has become the world’s second
and the China’s first most fatal disease (Luney et al., 2020; Xia et al., 2021). Hemiplegia is the
most common sequelae of stroke. It has been surveyed that more than 50% of patients with
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hemiplegia suffer from lower limb spasm, and the severity of
spasm increases over time (Suri et al., 2018; Tomida et al.,
2019; Tsuchimoto et al., 2019; Park et al., 2021). Stroke patients
with hemiplegia have a high incidence of lower limb motor
dysfunction, which is difficult to recover with a poor prognosis.
It seriously affects the independence of the patients’ daily life and
social activities (Yang et al., 2021).

From the overall rehabilitation process after stroke, it is
difficult to recover from hemiplegia of the lower limbs, which
not only takes a long time but also costs a lot of money;
the treatment effect is limited (Alawieh et al., 2018; Uwatoko
et al., 2020; Tang et al., 2021). With the rapid development
of modernization, informatization, and intelligent technology,
high-performance rehabilitation robots have emerged. Bed-type
rehabilitation robots have been gradually used in clinical research
on the rehabilitation of lower limbs of stroke patients with
hemiplegia (Zhang et al., 2021). The bed-type rehabilitation
robot, as an emerging physical therapy technology for the
treatment of lower limb dysfunction of stroke patients with
hemiplegia, can provide high-precision and high-repeatability
training. At present, the gait training robot Rehoambulator
(Calabrò et al., 2016) developed by American HealthSouth
Medical Company has been productized and popularized to
the market by Motorika Company. Its two separate mechanical
legs are fixed on the frame: one leg only has two degrees of
freedom of hip joint and knee joint, and the two connecting
rods on the leg are driven by the motor to drive the big leg and
the small leg to reciprocate. Erigo (Sarabadani Tafreshi et al.,
2016), an early rehabilitation training system for nerve injury
developed and promoted by Swiss company Hocoma, consists
of a rehabilitation bed with an adjustable angle and a stepping
system to help lower limb rehabilitation, which can realize early
intensive rehabilitation training.

Nowadays, machine learning-based algorithms can train the
human body model directly, which makes the prediction and
recognition of human intentions more accurate in human–
computer collaboration. The algorithm based on machine
learning captures, learns, and predicts human actions by visual
sensors to identify the operator’s intention, so as to improve
the coordination between patients and robots (Cha et al., 2021).
Therefore, developing a lower limb rehabilitation robot with
independent intellectual property rights, simple structure, low
cost, and convenient operation will be of great significance to
the development of the rehabilitation medical robot industry
in China.

It was innovated based on the intensivemotor training that the
bed-type rehabilitation robot under machine learning was used
to perform lower limb rehabilitation training for stroke patients
with hemiplegia. The effect on lower limb motor function of
stroke patients with hemiplegia was observed in this work.

MATERIALS AND METHODS

Study Subjects
A total of 80 patients with stroke hemiplegia were selected to be
the research subjects, and they all had a course of treatment for
less than 6 months in the Rehabilitation Medicine Department of

Ganzhou Hospital. All patients met the stroke diagnostic criteria
established by the cerebrovascular disease academic conference
(Hellmich et al., 2020). They were divided into the experimental
group (40 cases) and the control group (40 cases) by random
number method, and their data were evaluated, trained, and
analyzed by 3 physicians. There were 38men and 42 women, with
an average age of 48.52 ± 11.46 years. This work was approved
by the Medical Ethics Committee of Ganzhou Hospital, and the
patients and their families understood the research situation and
signed informed consent forms.

The following were the inclusion criteria. With transcranial
magnetic resonance imaging examination, the patients met the
diagnostic criteria for stroke combined with hemiplegia. It was
the first onset of the patients, Brunnstrom stage of the affected
lower limb is above stage II, and the course of the disease was
less than half a year. The patients and their families accepted and
cooperated with the experiments.

Exclusion criteria were as follows. Patients were in progress
with cerebrovascular diseases. Patients had serious heart, liver,
lung, and other organ damages. Patients suffered from severe
cognitive dysfunction and sensory aphasia. Patients had other
major mental illnesses. Patients had diseases that did not allow
them to complete the lower limb motor training, such as
thrombosis of the lower limbs, joint swelling, and joint stiffness.
Patients had other diseases that might lead them and their
families to be unable to cooperate, or they were unwilling
to participate.

Collection of the Patients’ Clinical Data
Clinical data of all research subjects were collected, including the
name, age, race, place of residence, education level, stroke type,
course of disease, hemiplegic side, history of atrial fibrillation,
history of coronary heart disease, history of diabetes, history of
smoking, and history of drinking. After treatment, the patients
were followed up for 8 weeks, and the total recovery time of the
two groups was compared.

Examination and Evaluation of Motor
Function and Mobility
Fugl-Meyer Assessment Lower Extremity (FMA-LE) (Madhoun
et al., 2020), Rivermead Mobility Index (RMI) (Lim et al., 2019),
andModified Barthel Index (MBI) (Taghizadeh et al., 2020) were
adopted jointly to test and evaluate patients’ motor function and
mobility. The subjective state of the examination process and
the environment had a certain impact, so it was necessary to be
guided in accordance with the unified instructions. The hints that
exceed the specified range were eliminated, to create a relaxing,
comfortable, and quiet evaluation environment.

Fugl-Meyer Assessment Lower Extremity score is
internationally recognized as the most standard and most
widely used method for evaluating stroke combined with
hemiplegia, with high sensitivity and reliability. It is mainly used
to evaluate autonomous, separated, and independent movements
related to coordinated movements. It could be used for accurate
quantitative assessment of lower limb motor function of patients
with hemiplegia. There are 34 evaluation items, and each item is
scored to be 0–1 points. There are three levels for the score, as 0
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point means the patient was incapable of activities completely, 1
point means the patient could complete part of the activities, and
2 points mean the patient could complete the activities normally.
The total score for the normal motor function is 34. The higher
the total score, the better the recovery of motor function.

The RMI was used to evaluate the transferability of patients.
The scale covers 15 items in total, including turning over on
the bed, sitting balance, independent standing, and independent
walking indoors. The results were obtained through inquiry
except for assisted observation was performed in going up and
downstairs and running. The total score is 15 points, and the
score ranges from 0–1 point for each item. Then, 0, 1, and 2 points
mean the patient is unable to complete, able to complete partially,
and able to complete normally, respectively. The higher the score,
the better the transferability.

The MBI was used to evaluate the patient’s daily mobility.
The MBI covers 10 items, such as eating, dressing, going up and
downstairs, transferring, and walking. The scores are graded into
four levels of 0, 5, 10, and 15 points, with a total score of 100.
Then, 100 points mean there is no need for dependence, 60–
99 points mean light dependence, 41–59 points mean moderate
dependence, and less than 40 points mean severe dependence.

Treatment Methods
For patients in the control group, conventional intensive
motor training was given. According to the situation of motor
dysfunction in patients, the appropriate intensive motor training
method was chosen.

In the experimental group, conventional intensive motor
training was combined with the bed-type rehabilitation robot
under machine learning. The training of the intelligent
rehabilitation robot was completed by professional therapists.
Bed-type rehabilitation robot can provide patients with a
maximum weight of 135 kg, accommodate patients with a
maximum height of 2m, dynamic weight support: 0–85 kg,
dynamic weight support range: 0–18 cm, treadmill speed range:
1–3.2 km/h, treadmill speed accuracy:+/−0.1 km/h, as shown
in Figure 1. The therapists instructed the patients to complete
the isolating movements with the uninhibited lower limb before
training. Bed-type rehabilitation robot training was as follows:

During the training, the patients were required to look at the
front horizontally. The patients were asked to adjust their body
posture and maintain the symmetry of their body posture as
looking themselves in the mirror. They should extend the knee
actively in the middle of the support phase and fully extend
the hip joint at the end of the support phase. The virtual mode
and training parameters of the rehabilitation robot were set as
follows. The treatment time was 30min, the rising angle of
the bed was 70–80◦, and the training pace was 1.24–1.78 km/h.
Throughout the training process, the therapists tried not to help
as much as possible. If the patients had negative emotions, lack
of concentration, and so on, the therapists should promptly
encourage and remind the patients to participate in the training
actively. The training time for walking was 30min per day,
and the total time was 45min (including robot setting, patients’
preparation, training time of walking, and getting out of the
bed after training). It should be trained 5 times a week, and 2

weeks were spent to complete. In the training process, if the
blood pressure of patients exceeded 180/110 mmHg, the heart
rate exceeded 75% of the age-standard heart rate, or they had
headaches, nausea, or other adverse symptoms, the training had
to be stopped immediately.

Human–Machine Coordination
Experimental System Model
After the human–machine collaboration started, it was expected
that the rehabilitation robot could cooperate with the human
limbmovement, to speed up the response speed of the robot. The
dynamic function of the human–machine coordinated motion
model was expressed as Equation (1).

Ma+ Bv+ Gv = F1 + F2 (1)

In Equation (1), M, B, G, a, and v represented system
inertia, damping, stiffness, the end acceleration of the robot,
and the speed and the desired end speed, respectively. F1
and F2 represented the force of the operator and the force
of the rehabilitation robot, respectively. The human–machine
coordinated motion model was a load with a mass of m
that was coordinated by humans and robots. It was necessary
to consider the inertia, damping, and stiffness of the system
comprehensively, as shown in Figure 2, in which F3 was the force
of the object. In the process of human–machine collaboration, the
force contributed by the robot needed to exceed the force exerted
by the operator, thus reducing the burden on the operator.

Construction of Human–Machine
Coordinated Motion Experiment System
Under Machine Learning
The principle of operator intention recognition under machine
learning mainly consists of two parts. One part is offline learning,
in which the data are collected and classified using a fuzzy
method, and the samples are trained in the neural network. The
other part is online execution, including information acquisition
and the prediction of back-propagation neural network (BPNN),
as shown in Figure 3. The characteristics of fuzzy classification
were utilized to perform cluster analysis on the required data
in the offline part. Then BPNN was applied to train the data
samples. The model constructed in the offline part was used to
predict the speed information of the operator during the process
of robot identification, learning, and prediction of operator
information in the online execution part. The information
predicted by the BPNN was inputted into the robot in advance,
to make the robot follow the operator for collaborative tasks.

Back-propagation neural network was composed of an input
layer, a hidden layer, and an output layer. The number of network
layers was determined by the hidden layer. The input layer node
entered the input quantity, the input layer node output quantity
was the input quantity of the hidden layer, and the hidden layer
output quantity was taken as the input quantity of the output
layer. The final output is worked out as shown in Figure 4.
The BPNN shows strong learning ability, adaptability, and
high fault tolerance. During the training process, the difference
between the output and the expected value was adjusted to

Frontiers in Neurorobotics | www.frontiersin.org 3 June 2022 | Volume 16 | Article 865403144

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Liu et al. Rehabilitation Robotic Bed

FIGURE 1 | Bed-type lower robot.

change the parameters for self-adjustment. The three-layer neural
network could complete the work well of prediction, linear
approximation, recognition, etc., so it was chosen and applied.

Due to the slow convergence of the BPNN and the difficulty
of determining the hidden layer and the number of nodes, it was
aimed to improve the limitations of the BPNN.

On the one hand, the momentum term was added. Since the
BPNN did not consider the direction of the previous gradient
when modifying the weight or threshold, the stability was poor
and the convergence was slow. Therefore, the momentum term
could be added for correction, which was expressed as Equation
(2) and Equation (3).

1W
(

k
)

= γ
[

(1− z)G
(

k
)

+ z1W
(

k− 1
)]

(2)
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(

k
)
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∂E

∂W
(

k
) (3)

In Equations (2) and (3), 1W(k) represented the weight at
the moment, 1W(k-1) represented the weight at the previous
moment, and G(k) represented the negative gradient function
at moment k. γ was the learning rate and z was the
momentum factor.

On the other hand, the step size was changed. The
convergence speed of the network was mainly determined by the
learning rate γ . If γ was too small, the convergence speed became
slower. If γ was too large, the system would be unstable. The step
size of seat could be optimized, and the Equations (4) and (5)
were as follows.
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(
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)

G
(
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(4)
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(
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= 2λγ
(

k− 1
)

(5)

In Equations (4) and (5), sgn (·) represented the sign function,
G(k) and G(k-1) represented the negative gradient function at
moments k and k-1, respectively. γ was still the learning rate.
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FIGURE 2 | Human–machine coordinated motion model.

FIGURE 3 | Schematic diagram of operator intention recognition under machine learning.

The hardware of the human–machine coordinated motion
experiment system included industrial control computer, force
information acquisition module, servo control system, and
motion execution module. Figure 5 is a simplified diagram of

the human–machine coordinated motion experiment system.
The force information acquisition module was made up of a
six-dimensional force sensor and the matched data acquisition
card, and the six-dimensional force sensor was to collect the
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FIGURE 4 | Schematic diagram of the basic structure of BPNN.

interaction force between human andmachine. The servo control
system consisted of a motion control card and a servo driver.
Figure 6 shows the hardware structure of the system.

The robot control programwas compiled by SMCBasic Studio
software, which supported online programming and debugging
of Basic language and G code, with rich programming languages
and concise programs. In addition, the software supported the
function demonstration and debugging of the motion controller,
mainly including IO monitoring, uniaxial motion function test,
zero-return motion function test, psychomotor vigilance test
(PVT), and DA/PWM output function test. The control software
can control the related motion parameters and IO parameters of
the controller by the user through the upper computer, which was
convenient to operate. Themulti-task mode set by Basic language
was adopted in the control program design.

When the trajectory data of human walking joints were
analyzed, it was necessary to prevent the vibration of the
motor caused by the uneven speed from affecting the wearing
comfort of patients and the life of the motor, so as to ensure
the characteristics and smoothness of the motion curve of the
collected trajectory. Multi-order sine trigonometric function is
used to fit the collected discrete data. The fitting function is
as follows:

f (t) =

n
∑

i=1

Ai sin(xit + bi) (6)

In Equation (6), n represented the order of sine trigonometric
function, Ai represented amplitude modulation coefficient, xi

represented frequency coefficient, and bi represented offset.

min ‖t‖22 =

l
∑

i=0

[(g (t) − f (t))]2 (7)

In Equation (7), g (t) represented the collected discrete trajectory
points, and l referred to the fitting order.

Sample Data Collection
The data were collected with the human–machine coordinated
motion experiment system, as shown in Figure 7. First, the
tension and pressure sensor used in the system and the
alternating current servo motor representing the robot were
initialized. The zero-return operation opportunity was set on
the end handle, to ensure that the collected end position
information of the robot was consistent. When sample data
were collected, the robot in the one-degree-of-freedom human–
machine collaboration system was controlled by impedance
control. The operator used the movements in motor spaces
restricted by each speed as much as possible to cover the one-
degree-of-freedom human–machine collaboration data space, so
that the samples had diversity. The operating frequency of the
human–machine coordinated motion experiment system was
1 kHz during the data collection process, and the sampling
frequency was 60Hz. During the data collection, data in 5 s were
randomly selected, and the number of repeated samplings was
3 times.
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FIGURE 5 | Schematic diagram of the human–machine coordinated motion experiment system.

Simulation Experimental Verification
A simulation experiment was performed to verify the
effectiveness of the above experiments and to prevent the
diversity of verification equipment and the multi-degree-
of-freedom motion control coupling. The above-mentioned
human–machine coordinated motion experiment system
was applied, and the BALM-3 tension and pressure sensor
(Honeywell, China) was used to detect the magnitude and
direction of the interaction force during human–machine
collaboration. The IPC-610H industrial control computer
(Shanghai Senke Electronic Technology Co., Ltd.) was used to
compile the program, collect the force sensor information, and
control the servo motor (robot) when the program was applied.
PCI-1245E control card (Beijing Konrad Technology Co., Ltd.)
was used as the information collection system. 60HBM0130CM
servo motor was also utilized with a rated power of 400W and a
rated torque of 1.27 nm.

For the human–machine cooperative control system, the
rotation angle α was taken as the generalized coordinate. If the
loss between the shaft couplings was neglected, the kinetic energy
in the system energy was expressed as Equation (8).

K = Js ×
α2

2 + Jb ×
α2

2 +
mv2

2

= Js ×
α2

2 + Jb ×
α2

2 +
m

(

Lα
2π

)2

2 (8)

In Equation (8), K stood for the kinetic energy, and Js and Jb were
the magnetic flux of each pole of the servo motor and the ball
motor, respectively. m was the mass of the object, and L was the
lead of the screw.

V =
(

F −mg
)

× z =
(

F2 −mg
)

×
Lα

2π
(9)

In Equation (9), V represented potential energy, and F2 was the
force of the operator.

D =
Cz2

2
=

C
(

Lα
2π

)2

2
(10)

In Equation (10), D meant the energy consumption, and C was
the system damping.

Generalized dynamic function for rotation angle α was
expressed as Equation (11).

d

dt

(

∂L

∂α

)

−
∂L

∂α
+

∂D

∂α
= K (11)

After the final handling, Equation (12) was obtained.

K =

⌊

Js + Jb +m× ( L
2π )

2
⌋

× α +

(

−F2 +mg
)

×
L
2π + C( L

2π )
2
× α (12)
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FIGURE 6 | Hardware structure of the human–machine coordinated motion experiment system.

FIGURE 7 | Flowchart of data collection.
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FIGURE 8 | Predicted value and true value of the operator’s intention recognition in the human–machine collaboration experiment system under BPNN.

Statistical Methods
The data were processed and analyzed via SPSS19.0. The
measurement data were expressed as the mean ± standard
deviation ( ± s), and the enumeration data were expressed as
the percentage (%). Pairwise comparison was performed through
one-way analysis of variance. The difference was statistically
significant at p < 0.05.

RESULTS

Verification of Experiment Results
It was compared with the RBNN model, to test the experimental
effect of identifying and predicting the operator’s intention
under the BPNN model constructed above. The test samples
collected by impedance control were detected. With 80 sets of
test data, the predicted value and true value of the operator’s
intention under the BPNN and RBNN are shown in Figures 8,
9, respectively. There was less difference between the two
networks in prediction effect, and the predicted results were
both acceptable. After training, the mean square error (MSE)
of the BPNN model was 0.9975, and that of the RBNN
model was 0.9642. The MSE was closer to the real number 1,
the better the prediction and training effect. It was indicated

that the prediction effect of the BPNN was better than that
of RBNN.

Amplitude of Driving Torque
The simulation time was set as the standard gait cycle of human
walking of 1.3 s, which can be obtained by motion analysis and
calculation. The maximum driving torque required by the single-
leg movement of the robot was 14Nm, and the maximum driving
torque required by the whole lower limb rehabilitation robot
was 28Nm. At this time, the crank speed was 4.67 md/s, and
the maximum power required by the system was 125.7W. The
driving torque amplitude curve is shown in Figure 10.

Comparison of Baseline Data of Patients in
the Two Groups
Among the 80 patients included, those in the experimental group
received training of the intelligent lower limb rehabilitation
robot. At the end, all 80 patients completed the entire training.
There were no significant differences between the two groups in
gender, age, course of disease, stroke type, hemiplegic location,
past history of atrial fibrillation, history of coronary heart disease,
history of diabetes, history of smoking, and history of drinking (p
> 0.05). The details are shown in Table 1.
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FIGURE 9 | Predicted value and true value of the operator’s intention recognition in the human–machine collaboration experiment system under RBNN.

FIGURE 10 | Driving torque amplitude curve.
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TABLE 1 | Comparison of patients’ baseline data in the two groups.

Indicators Control group (n = 40) Experimental group (n = 40) p

Gender Male 17 19 0.256

Female 23 21

Age (years old) 48.68 ± 11.21 49.68 ± 12.16 0.312

Course of disease (days) 43.56 ± 19.34 45.27 ± 20.58 0.283

Stroke types Ischemic 22 22 1.000

Hemorrhagic 18 18

Hemiplegic location Left side 20 21 1.000

Right side 20 19

History of atrial fibrillation Yes 2 0 1.000

No 38 40

History of coronary heart disease Yes 3 3 1.000

No 37 37

History of diabetes Yes 11 12 1.000

No 29 28

History of smoking Yes 20 19 1.000

No 20 21

History of drinking alcohol Yes 19 18 1.000

No 21 22

FIGURE 11 | Comparison of FMA-LE scores before and after treatment. * and # indicated that the difference was statistically significant compared with the data

before treatment and that in the control group, respectively (p < 0.05).
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FIGURE 12 | Comparison of RMI scores before and after treatment. * and # indicated the statistically significant difference compared with the score before treatment

and that of the control group, respectively (p < 0.05).

Comparison of FMA-LE Scores of Lower
Limb Motor Function Between the Two
Groups
Before treatment, there was no significant difference in FMA-
LE scores between the two groups (p > 0.05). After 2 weeks of
treatment, the FMA-LE scores of both the experimental group
and the control group were higher than those before treatment,
and the difference was statistically significant (p < 0.05). In
addition, as shown in Figure 11, the FMA-LE score of the
experimental group (10.58 ± 6.89) was significantly higher than
that of the control group (26.57± 6.26), and the differences were
statistically significant (p < 0.05).

Comparison of the Patients’ Mobility
Scores and Total Recovery Time Between
Two Groups
Before treatment, there was no significant difference between the
two groups of RMI scores (p > 0.05). After 2 weeks of treatment,
the RMI scores of both groups were higher than those before
treatment (p < 0.05). Moreover, the score of the experimental

group was significantly higher than that of the control group (p
< 0.05), as more details are shown in Figure 12.

Before treatment, no significant difference was found in the
MBI scores between the two groups (p > 0.05). After 2 weeks of
treatment, the MBI scores of both the experimental group and
the control group were increased than those before treatment (p
< 0.05). It is also shown in Figure 13 that the BMI score of the
experimental group was significantly higher than the score of the
control group (p < 0.05).

The total rehabilitation time of the experimental group was
significantly shorter than that of the control group (4.57 ± 1.21
vs. 6.23± 2.13) weeks (p < 0.05).

DISCUSSION

Stroke has gradually become the leading cause of death and
disability in middle-aged and elderly people (Cipolla et al., 2018).
Therefore, how to achieve the recovery of lower limb dysfunction
quickly has become the primary goal of rehabilitation for stroke
patients with hemiplegia. The bed-type rehabilitation robot was
designed for intensive motor rehabilitation training, to help
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FIGURE 13 | Comparison of MBI scores before and after treatment. * and # indicated that statistically significant differences as the MBI score were compared with

that before treatment and that of the control group, respectively (p < 0.05).

stroke patients with hemiplegia who lack the motor ability of
lower limbs. First, the human–machine collaboration experiment
system was constructed, and the software and hardware of the
control system were designed. Then, the experimental platform
for the lower limb rehabilitation training robot was set up,
and the specific rehabilitation training methods for stroke
patients with hemiplegia were determined by the contact force
evaluation experiment.

The training control experiment was completed under BPNN
and RBNN, to verify the feasibility of the robot control algorithm.
The results showed that the prediction effect of BPNN was
better than that of RBNN, which was consistent with what
was obtained by Espinoza Bernal et al. (2021). Although the
mechanical structure design, control system construction, and
control method design of the bed-type rehabilitation robot
were basically completed, the robot still needed to be further
improved with the issues found in the experiments and the future
development trend of robots. For the mechanical structure,
the bed-type rehabilitation robot basically conformed to the
trajectory of human walking joints merely, but cannot complete

a real-time change. It was still necessary to further optimize the
structure design later to work out a mechanical structure that
was more in line with the walking of human body. In addition,
due to the cantilever beam structure, the mechanical strength did
not meet the expected requirements, and further improvements
were needed in the future. For the robot control system, the
single motor was mainly used to drive both lower limbs for
rehabilitation training synchronously. It was temporarily unable
to complete the single-leg training. In the subsequent control
system design, drive motors should be added for the needs for
separate rehabilitation training for the two lower limbs. Besides,
the passive control training of this control system was only for
the speed control of the servo motor, and the control accuracy
was insufficient. In the follow-up, the joint information at the
end of the rehabilitation training robot is needed to be fed
back to complete the closed-loop control, so as to improve the
control accuracy.

After stroke hemiplegia, the upper motor neuron of patients
will be damaged, and the motor reflex of the lower center will
be released, resulting in motor dysfunction. The main clinical
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manifestations are weakened muscle strength, increased muscle
tone, and tendon hyperreflexia (Zhang et al., 2018; Kimura
et al., 2019; Ratanapinunchai et al., 2019). The FMA-LE motor
function scale was used to evaluate the lower extremity motor
function of stroke patients with hemiplegia. Before treatment,
no significant difference was in FMA-LE score between the two
groups (p> 0.05). After 2 weeks of treatment, the FMA-LE scores
were higher than those before treatment in both groups (p <

0.05), and the score of the experimental group was significantly
higher than that of the control group (p < 0.05), which were
consistent with the research results of Huang et al. (2019). This
suggested that a machine learning-based bed-type rehabilitation
robot combined with intensive motor training could significantly
improve the lower limb motor function of stroke patients with
hemiplegia, and the effect was better than that of single intensive
motor training.

Motor dysfunction after stroke often leads to a decline
in the mobility of patients with hemiplegia, thereby reducing
the life quality of patients (Sethy and Sahoo, 2018). The
RMI score and the MBI score were adopted to evaluate the
mobility of stroke patients with hemiplegia. Before treatment,
no significant difference was discovered between the two
groups in RMI score as well as BMI score (p > 0.05). After
2 weeks of treatment, the RMI and BMI scores of both
groups were higher than those before treatment (p < 0.05).
Both RMI and BMI scores of the experimental group were
significantly higher than those of the control group (p <

0.05), which were consistent with the results of Yao et al.
(2020). It proved that a machine learning-based bed-type
rehabilitation robot combined with intensive motor training
improved the mobility of stroke patients with hemiplegia
significantly, with a better effect than that under intensive motor
training alone.

In recent years, as the incidence of stroke has gradually
shown a younger trend, patients’ expectations for rehabilitation
are also increasing. The efficacy evaluation of the rehabilitation
not only focuses on weakening muscle strength, increasing
muscle tone, tendon hyperreflexia, etc., but also paid more
attention to the application of limbs in real life (Yu et al., 2020).
Therefore, in addition to treating the damaged structure and
function of the patients, the ultimate goal is to make patients
restore motor and social activities. Based on the conventional
intensive motor training, the bed-type rehabilitation robot

under machine learning could help to improve the motor
function and walking function of the lower limbs of stroke
patients with hemiplegia, further improving the ability to
transfer, go up and downstairs, walk, and do other daily living
activities. It aimed to make patients return to their family and
society to the greatest extent, thus reducing the family and
social burdens.

CONCLUSION

The human–machine collaboration experiment system was built
with the software and hardware designs of the control system.
The experimental platform for lower limb rehabilitation training
robots was also established to determine the rehabilitation
training methods for stroke patients with hemiplegia through
the contact force evaluation experiment. It was aimed to discuss
the effect of a machine learning-based bed-type rehabilitation
robot combined with intensive motor training on the lower limb
motor function of stroke patients with hemiplegia. The bed-
type rehabilitation robot under machine learning combined with
intensive motor training had the effect of improving the motor
function and mobility of the lower limbs of stroke patients with
hemiplegia. There were certain shortcomings shown. For the
limitation of the study time, there were no long-term follow-ups.
Thus, the patients needed to be followed up for a long time in
the later period to verify the long-term efficacy. The included
sample size was also too small to represent the training effect on
all patients with stroke hemiplegia. It was necessary to increase
the sample size for further clinical research in the future. It was
believed that some ideas and experimental support were offered
for the diagnosis and treatment of motor dysfunction in stroke
patients with hemiplegia.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this
article will be made available by the authors, without
undue reservation.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

REFERENCES

Alawieh, A., Zhao, J., and Feng, W. (2018). Factors affecting post-

stroke motor recovery: Implications on neurotherapy after brain

injury. Behav. Brain Res. 340, 94–101. doi: 10.1016/j.bbr.2016.0

8.029

Calabrò, R. S., Cacciola, A., Bertè, F., Manuli, A., Leo, A., Bramanti, A., et al. (2016).

Robotic gait rehabilitation and substitution devices in neurological disorders:

where are we now? Neurol. Sci. 37, 503–514. doi: 10.1007/s10072-016-2474-4

Cha, B., Lee, K. H., and Ryu, J. (2021). Deep-learning-based emergency stop

prediction for robotic lower-limb rehabilitation training systems. IEEE Trans.

Neural. Syst. Rehabil. Eng. 29, 1120–1128. doi: 10.1109/TNSRE.2021.3087725

Cipolla, M. J., Liebeskind, D. S., and Chan, S. L. (2018). The importance

of comorbidities in ischemic stroke: Impact of hypertension on the

cerebral circulation. J. Cereb. Blood Flow Metab. 38, 2129–2149.

doi: 10.1177/0271678X18800589

D’Ancona, G., Ketterer, U., Kische, S., Murero, M., Feickert, S., Ortak, J., et al.

(2020). Percutaneous left atrial appendage closure for cerebrovascular accident

prevention: rationale, indications, technical aspects, clinical results and future

perspective. Fut. Cardiol. 16, 237–250. doi: 10.2217/fca-2019-0086

Espinoza Bernal, V. C., Hiremath, S. V., Wolf, B., Riley, B., Mendonca, R. J., and

Johnson, M. J. (2021). Classifying and tracking rehabilitation interventions

through machine-learning algorithms in individuals with stroke. J. Rehabil.

Assist. Technol. Eng. 8, 20556683211044640. doi: 10.1177/20556683211044640

Frontiers in Neurorobotics | www.frontiersin.org 14 June 2022 | Volume 16 | Article 865403155

https://doi.org/10.1016/j.bbr.2016.08.029
https://doi.org/10.1007/s10072-016-2474-4
https://doi.org/10.1109/TNSRE.2021.3087725
https://doi.org/10.1177/0271678X18800589
https://doi.org/10.2217/fca-2019-0086
https://doi.org/10.1177/20556683211044640
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Liu et al. Rehabilitation Robotic Bed

Hellmich, B., Agueda, A., Monti, S., Buttgereit, F., Boysson, d. e., Brouwer,

H., et al. (2020). 2018 Update of the EULAR recommendations for

the management of large vessel vasculitis. Ann. Rheum. Dis. 79, 19–30.

doi: 10.1136/annrheumdis-2019-215672

Huang, Y. C., Chen, P. C., Tso, H. H., Yang, Y. C., Ho, T. L., and Leong, C. P.

(2019). Effects of kinesio taping on hemiplegic hand in patients with upper

limb post-stroke spasticity: a randomized controlled pilot study. Eur. J. Phys.

Rehabil. Med. 55, 551–557. doi: 10.23736/S1973-9087.19.05684-3

Kimura, D., Fukuda, I., Tsushima, T., Sakai, T., Umetsu, S., Ogasawara, Y.,

et al. (2019). Management of acute ischemic stroke after pulmonary resection:

incidence and efficacy of endovascular thrombus aspiration. Gen. Thorac.

Cardiovasc. Surg. 67, 306–311. doi: 10.1007/s11748-018-1024-9

Lim, J. Y., An, S. H., and Park, D. S. (2019). Walking velocity and

modified rivermead mobility index as discriminatory measures for functional

ambulation classification of chronic stroke patients. Hong Kong Physiother. J.

39, 125–132. doi: 10.1142/S1013702519500112

Luney, M. S., Lindsay, W., McKeever, T. M., and Moppett, I. K. (2020).

Cerebrovascular accident and acute coronary syndrome and perioperative

outcomes (CAPO) study protocol: a 10-year database linkage between Hospital

Episode Statistics Admitted Patient Care, Myocardial Infarction National Audit

Project and Office for National Statistics registries for time-dependent risk

analysis of perioperative outcomes in English NHS hospitals. BMJ Open. 10,

e037904. doi: 10.1136/bmjopen-2020-037904

Madhoun, H. Y., Tan, B., Feng, Y., Zhou, Y., Zhou, C., and Yu, L. (2020). Task-

based mirror therapy enhances the upper limb motor function in subacute

stroke patients: a randomized control trial. Eur. J. Phys. Rehabil. Med. 56,

265–271. doi: 10.23736/S1973-9087.20.06070-0

Pan, X. L. (2018). Efficacy of early rehabilitation therapy on movement ability of

hemiplegic lower extremity in patients with acute cerebrovascular accident.

Medicine. 97, e9544. doi: 10.1097/MD.0000000000009544

Park, J. S., Lee, S. H., Yoo, W. G., and Chang, M. Y. (2021). Immediate

effect of a wearable foot drop stimulator to prevent foot drop on the gait

ability of patients with hemiplegia after stroke. Assist. Technol. 33, 313–317.

doi: 10.1080/10400435.2019.1634658

Ratanapinunchai, J., Mathiyakom, W., and Sungkarat, S. (2019). Scapular upward

rotation during passive humeral abduction in individuals with hemiplegia

post-stroke. Ann. Rehabil. Med. 43, 178–186. doi: 10.5535/arm.2019.43.2.178

Sarabadani Tafreshi, A., Riener, R., and Klamroth-Marganska, V. (2016).

Distinctive steady-state heart rate and blood pressure responses to passive

robotic leg exercise and functional electrical stimulation during head-up tilt.

Front. Physiol. 7, 612. doi: 10.3389/fphys.2016.00612

Sethy, D., and Sahoo, S. (2018). Kinesiophobia after complex regional

pain syndrome type one in a case of stroke hemiplegia and effect

of cognitive behavior therapy. Indian J. Psychiatry. 60, 152–154.

doi: 10.4103/psychiatry.IndianJPsychiatry_201_17

Suri, R., Rodriguez-Porcel, F., Donohue, K., Jesse, E., Lovera, L., Dwivedi, A. K.,

et al. (2018). Post-stroke movement disorders: the clinical, neuroanatomic, and

demographic portrait of 284 published cases. J. Stroke Cerebrovasc. Dis. 27,

2388–2397. doi: 10.1016/j.jstrokecerebrovasdis.2018.04.028

Taghizadeh, G., Martinez-Martin, P., Meimandi, M., Habibi, S. A. H., Jamali,

S., Dehmiyani, A., et al. (2020). Barthel Index and modified Rankin Scale:

Psychometric properties during medication phases in idiopathic Parkinson

disease. Ann. Phys. Rehabil. Med. 63, 500–504. doi: 10.1016/j.rehab.2019.08.006

Tang, Y., Wang, L., He, J., Xu, Y., Huang, S., and Fang, Y. (2021). Optimal

method of electrical stimulation for the treatment of upper limb dysfunction

after stroke: a systematic review and bayesian network meta-analysis of

randomized controlled trials. Neuropsychiatr. Dis. Treat. 17, 2937–2954.

doi: 10.2147/NDT.S332967

Tomida, K., Sonoda, S., Hirano, S., Suzuki, A., Tanino, G., Kawakami, K., et al.

(2019). Randomized controlled trial of gait training using gait exercise assist

robot (GEAR) in stroke patients with hemiplegia. J. Stroke Cerebrovasc. Dis. 28,

2421–2428. doi: 10.1016/j.jstrokecerebrovasdis.2019.06.030

Tsuchimoto, S., Shindo, K., Hotta, F., Hanakawa, T., Liu, M., and Ushiba, J.

(2019). Sensorimotor connectivity after motor exercise with neurofeedback

in post-stroke patients with hemiplegia. Neuroscience. 416, 109–125.

doi: 10.1016/j.neuroscience.2019.07.037

Uwatoko, H., Nakamori, M., Imamura, E., Imura, T., Okada, K., Matsumae, Y.,

et al. (2020). Prediction of independent gait in acute stroke patients with

hemiplegia using the ability for basic movement scale II score. Eur. Neurol. 83,

49–55. doi: 10.1159/000506421

Xia, P., Yang, T., Wang, X., and Li, X. (2021). Combination of pregabalin and

transcutaneous electrical nerve stimulation for neuropathic pain in a stroke

patient after contralateral C7 nerve transfer: a case report. Int. J. Neurosci. 131,

1248–1253. doi: 10.1080/00207454.2020.1786687

Yang, F., Chen, L., Wang, H., Zhang, J., Shen, Y., Qiu, Y., et al. (2021).

Combined contralateral C7 to C7 and L5 to S1 cross nerve transfer

for treating limb hemiplegia after stroke. Br. J. Neurosurg. 10, 1–4.

doi: 10.1080/02688697.2021.1910764

Yao, D., Stukenborg-Colsman, C., Ettinger, S., Claassen, L., Plaass, C., Martinelli,

N., et al. (2020). Subjective outcome following neurostimulator implantation as

drop foot therapy due to lesions in the central nervous system-midterm results.

Musculoskelet Surg. 104, 93–99. doi: 10.1007/s12306-019-00604-3

Yu, X. M., Jin, X. M., Lu, Y., Gao, Y., Xu, H. C., Xue, X., et al. (2020).

Effects of body weight support-tai chi footwork training on balance

control and walking function in stroke survivors with hemiplegia: a pilot

randomized controlled trial. Evid. Based Compl. Alternat. Med. 2020, 9218078.

doi: 10.1155/2020/9218078

Zhang, C., Huang, M. Z., Kehs, G. J., Braun, R. G., Cole, J. W., and Zhang, L. Q.

(2021). Intensive in-bed sensorimotor rehabilitation of early subacute stroke

survivors with severe hemiplegia using a wearable robot. IEEE Trans. Neural.

Syst. Rehabil. Eng. 29, 2252–2259. doi: 10.1109/TNSRE.2021.3121204

Zhang, S., Chen,M., Gao, L., and Liu, Y. (2018). Investigatingmuscle function after

stroke rehabilitation with 31P-MRS: a preliminary study. Med. Sci. Monit. 24,

2841–2848. doi: 10.12659/MSM.907372

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Liu, Cai and Leelayuwat. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 15 June 2022 | Volume 16 | Article 865403156

https://doi.org/10.1136/annrheumdis-2019-215672
https://doi.org/10.23736/S1973-9087.19.05684-3
https://doi.org/10.1007/s11748-018-1024-9
https://doi.org/10.1142/S1013702519500112
https://doi.org/10.1136/bmjopen-2020-037904
https://doi.org/10.23736/S1973-9087.20.06070-0
https://doi.org/10.1097/MD.0000000000009544
https://doi.org/10.1080/10400435.2019.1634658
https://doi.org/10.5535/arm.2019.43.2.178
https://doi.org/10.3389/fphys.2016.00612
https://doi.org/10.4103/psychiatry.IndianJPsychiatry_201_17
https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.04.028
https://doi.org/10.1016/j.rehab.2019.08.006
https://doi.org/10.2147/NDT.S332967
https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.06.030
https://doi.org/10.1016/j.neuroscience.2019.07.037
https://doi.org/10.1159/000506421
https://doi.org/10.1080/00207454.2020.1786687
https://doi.org/10.1080/02688697.2021.1910764
https://doi.org/10.1007/s12306-019-00604-3
https://doi.org/10.1155/2020/9218078
https://doi.org/10.1109/TNSRE.2021.3121204
https://doi.org/10.12659/MSM.907372
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


ORIGINAL RESEARCH
published: 13 June 2022

doi: 10.3389/fnbot.2022.905313

Frontiers in Neurorobotics | www.frontiersin.org 1 June 2022 | Volume 16 | Article 905313

Edited by:

Florian Röhrbein,

Technische Universität

Chemnitz, Germany

Reviewed by:

Dante Mujica-Vargas,

Centro Nacional de Investigación y

Desarrollo Tecnológico, Mexico

Enrique Garcia-Trinidad,

Tecnológico de Estudios Superiores

de Huixquilucan, Mexico

Alejandro Zacarías,

Instituto Politécnico Nacional

(IPN), Mexico

*Correspondence:

Luis M. García-Sebastián

lgarcias2020@cic.ipn.mx

Victor H. Ponce-Ponce

vponce@cic.ipn.mx

Received: 26 March 2022

Accepted: 09 May 2022

Published: 13 June 2022

Citation:

García-Sebastián LM,

Ponce-Ponce VH, Sossa H,

Rubio-Espino E and

Martínez-Navarro JA (2022)

Neuromorphic Signal Filter for Robot

Sensoring.

Front. Neurorobot. 16:905313.

doi: 10.3389/fnbot.2022.905313

Neuromorphic Signal Filter for Robot
Sensoring
Luis M. García-Sebastián*, Victor H. Ponce-Ponce*, Humberto Sossa, Elsa Rubio-Espino

and José A. Martínez-Navarro
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Noise management associated with input signals in sensor devices arises as one of

the main problems limiting robot control performance. This article introduces a novel

neuromorphic filter model based on a leaky integrate and fire (LIF) neural model cell,

which encodes the primary information from a noisy input signal and delivers an output

signal with a significant noise reduction in practically real-time with energy-efficient

consumption. A new approach for neural decoding based on the neuron-cell spiking

frequency is introduced to recover the primary signal information. The simulations

conducted on the neuromorphic filter demonstrate an outstanding performance of white

noise rejecting while preserving the original noiseless signal with a low information

loss. The proposed filter model is compatible with the CMOS technology design

methodologies for implementing low consumption smart sensors with applications in

various fields such as robotics and the automotive industry demanded by Industry 4.0.

Keywords: neuromorphic, filter, CMOS, low-frequency, sensoring

1. INTRODUCTION

The term neuromorphic, coined by Mead (1990), refers to Very Large Scale of Integration (VLSI)
systems aiming to reproduce biological neuron behaviors. Neuromorphic computing platforms
are relatively simple regarding the number of active elements (transistors) compared to complex
traditional digital units (microprocessors) to replicate brain-like responses. Today, the convergence
of electronics, computing science, and neuroscience offers bountiful inspiration to explore novel
hardware structures, algorithms, and innovative ways to process information more efficiently,
maintaining low levels of energy waste and material use (Schuman et al., 2017). One of the most
remarkable contributions of this inter-discipline convergence is the conception of spiking neurons
(SN), also called the third generation of artificial neurons (Maass, 1997). The main difference
concerning previous generations is the inclusion of temporal information in the computing
process, and this feature offers the possibility to process signals efficiently with variations across
time. Unfortunately, the large-scale modeling of SN units is limited due to the high computational
cost involved in solving numerically the whole set of differential equations representing each SN
unit. Therefore, the design and implementation of these units are more convenient at the silicon
plane and in the analog domain to overpass this vast amount of numerical computation effort.

Traditional analog filters are designed based on scaling specific frequency domain signal
components and attenuating the rest. This approach has been proven effective with noise that
is primarily out of signal frequency range. However, linear filters cannot clear noisy signals
when disturbance affectation is in the same frequency range as primary signal. In this context,
digital filters, especially average filter techniques, take precedence at the cost of resources
expense. For this reason, some filter proposals based on the use of several SNs have been made
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(Orchard et al., 2021; Sharifshazileh et al., 2021). Generally,
integrated circuits hosting neuromorphic implementations
possess an inherent capacity to extract primary features of
given entries since integrals tied to the SN model can be
interpreted as the average value operator on a timewindow. Thus,
neuromorphic systems allow average filtering while retaining the
benefits of analog circuits.

2. METHODS

2.1. Neural Circuit
There are several proposals reported on analog implementations
of neural model circuits (Abbott, 1999; Wijekoon and Dudek,
2008; Zamarreño-Ramos et al., 2011; Wu et al., 2015; Zare et al.,
2021). Throughout the development of this study, the leaky
integrate and fire neuron (IFN) circuit, proposed in Wu et al.
(2015) was used, as seen in Figure 1. However, the proposed
methodology could be easily adapted to work with other neural
circuit models. This proposal is divided into two main parts,
a leaky, current integrator circuit (LI) to emulate the behavior
of a neuron during the period of depolarization and a reset
engine that returns the output voltage of the operational amplifier
(Vmem) to a reference voltage level (VRef ). It also assumes
the generation of a convenient spike shape, compliant with
memristors technology to allow weight adjustment during the
learning phase.

Wu’s neural circuit shown in Figure 1 operates in the
integration and firing mode. At the integration mode, the
OPAMP works as a leaky integrator, over the current, Iin, flowing
at its negative input. At the integration mode, the voltage level at
the output of the OPAMP decreases until it reaches a determined
threshold voltage, Vthr . The comparator circuit compares the
membrane voltage,Vmem, with vthr , to generate a signal activating
the Phase Control block when the descending Vref reaches Vthr .
At this moment, the Phase Control block commands the Spike
Generator block to initiate a spike event with a predefined
waveform and it changes the control signals, αfire to ON state,
while αint to OFF state. These control signals are complementary.
The neural circuit is reconfigured by the current states of αfire

and αint . If αint is ON, the OPAMP works in the integration
mode, if αfire is ON the neuron is in fire mode. During integration
mode the neuron output Vout is set in Vref , at the same time, the
spike generator block must hold a Vref at the positive OPAMP
input, which is buffered at the negative OPAMP input. In the
firing mode, Vout , is connected toVmem, generating a spike event,
feedbacking, Vmem to the negative OPAMP input. At the end of
the firing mode, Cmem is reset to a Vref , potential.

The equivalent model of the LI section is presented in
Equation (1).

dVmem

dt
=

Vp − Vmem(t)

RleakCmem
−

Iin

Cmem
(1)

Where Vp is the voltage objective, while the circuit is in
integration mode Vp corresponds to Vthr .

Wu’s circuit functioning could still be simplified to implement
the proposed methodology, performing a noise signal filtering

process. The simplification consists of establishing constant
delays before switching states and restarting the integration
phase. It imposes a period of neuron inactivity corresponding to
the refractory period, seen in biological brains. This behavior is
modeled as shown below:

if Vmem ≈ Vthr

then Vp← Vref , Rleak ← 1, Iin ← 0

Once the neuron is in the refractory period, it maintains its state
for a predefined period, after which it returns to the previous
(integration) state.

2.2. Tuning Curves
Since spike trains convey information through their timing and
any spike-wave produced by neural circuits models are supposed
to be identical (Gerstner et al., 2016), the membrane’s potential
in neuromorphic circuits can be characterized simply by a list of
events: t0, t1, ..., tn, where 0 ≤ ti ≤ T, with i = 0, 1, 2, ..., n is the
i-th spike time in an observed period T (Dayan and Abbot, 2001).
Figure 2 shows a representation of this list.

A simple way to characterize the response of a neuromorphic
circuit is by counting the number of peak voltages fired during
the presentation of a stimulus (input current). By repeating this
operation for a certain number of different stimuli, it is possible
to estimate a function, f , that describes the relationship between
an input current, Iin, and a frequency of spikes fr (Dayan and
Abbot, 2001; Elliasmith, 2013). In this study, an alternative way to
estimate the neuron frequency is proposed. Since neuromorphic
circuits have no stochastic behavior, it is possible to prove that
the same neuron frequency response will always be obtained for
a given Iin. Therefore, by measuring the time elapsed between the
event of two spikes, p = tn − tn−1 , the frequency is obtained by
using 1

p .

2.3. Mean Value Theorem for Integrals
The time between spikes in the circuit presented in Figure 1

corresponds to the mean value of the input current.
Rearranging elements from Equation (1), we find the

next expression.

Iin =
Vp − Vmem(t)

Rleak
− Cmem

dVmem

dt
, (2)

Equation (2) corresponds to Current Kirchhoff’s Law, producing
a summation of all the currents at input node, Iin = IRLeak+ICmem ,
where IRLeak (t) is the current across RLeak, which behavior is
unknown in advance, thus:

Iin = IRLeak (t)− Cmem
dVmem

dt
. (3)

Now, integrating both sides of Equation (3) with the defined time
intervals limits between neural events (spike occurrences) results
in Equation (4). Internal values of the neuromorphic units are
reset at the end of each neural event,

∫ tn

tn−1
Iindt =

∫ tn

tn−1
IRLeak (t)dt −

∫ Vthr

Vref

CmemdVmem (4)
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FIGURE 1 | Neuromorphic filter architecture, showing a spiking neuron CMOS circuit implementation, see Wu et al. (2015).

FIGURE 2 | Neuron circuit spike response. Since spike waveform is not needed for the filtering process, spike events are registered as a list of times when the neuron

circuit reach threshold voltage. Time elapsed between tn and tn+1 is denoted as p.

Solving integrals on both sides:

Iin(t
n
− tn−1) =

∫ tn

tn−1
IRLeak (t)dt − CmemVmem (5)

Where the value Vmem = Vthr − Vref results at the end of the
integration period. Equation (5) corresponds to the Mean Value
Theorem for integrals (Stewart, 2018). Thus, a constant value of
Iin exists such that applied for the time interval, tn − tn−1, equals
the value of the current IRLeak (t) on the same period. Particularly,
Iin can be seen as themean value of current on the period tn−tn−1

plus a constant value (CmemVmem).

3. PROPOSED METHODOLOGY FOR A
NEURAL FILTER DESIGN

Our proposal consists of using the tuning curve function of the
neuromorphic circuit to estimate the Iin value on Equation (5).
Themethodology proposed to use a neural circuit as a signal filter
is depicted in Figure 3.

The tuning curve for the circuit introduced in Figure 4, is
obtained by sweeping the current Iin of Equation (1) between

a current interval ∈ [0, 300]µA, considering the following
electrical and timing parameters: Cmem = 1µF, Rleak = 10k�,
and a refractory period of 10µs, we proceed to measure the time
elapsed between potential membrane spikes. The below equation
is proposed as a prototype to estimate function f .

f (Iin) = ln(Iin + a)b− c (6)

Parameters a = 1724.8761, b = 21.6051, c = −161.1285, are
determined using nonlinear least squares curve fitting (Virtanen
et al., 2020).

Because Equation (6) is invertible, we can take two produced
spikes and calculate the current in the elapsed period between
spikes. That is to say, f−1 computes the equivalent input current
value in the system (Iin).

f−1(fr) = Iin(fr) = β

[

e
fr−c
b − a

]

(7)

Where:

fr =
1

αp
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FIGURE 3 | Proposed Methodology. First, define the parameters of the neural

circuit. Second, characterize the response to obtain the circuit tuning curve

function, f , and its inverse function. Finally, stimulate the neural circuit with the

noisy input signal and use the time elapsed since the last spike to evaluate the

inverse function f−1. The value computed using f−1 is held until the next event

occurs.

with: p = tn − tn−1. tn is the time of the n-th spike. In order to
maintain values on a more convenient time-scale α = 1 × 104

and β = 1 × 10−6 are added as scale factors. Equation (7) is
evaluated at each spike and the value is held until the next spike
occurs, refer to Figure 5B.

Observe that Equation (7) is a decaying exponential function;
therefore, it is possible to define a circuit that reproduces
this behavior by using the capacitor discharging dynamic
in a commuted capacitor scheme working as follows. At
each spike event, a low impedance branch quickly charges
a capacitor during the refractory period of the SN unit.

Once the refractory period concludes, the charging branch
for the capacitor is open, and discharge becomes through a
branch with fixed impedance such that the current on the
capacitor has a behavior similar to Equation (7), refer to
Figure 5A. Once a new spike event occurs, the current value
of the capacitor is registered and held until the next spike
event.

This scheme based on frequency shows a better performance
than other strategies previously introduced (Dupeyroux et al.,
2021; Guo et al., 2021) since it demonstrates good noise
mitigation capacity employing only one neuron.

4. EXPERIMENTS AND RESULTS

To demonstrate the performance of our proposal, the following
experiment was conducted. First, synthetic white noise is
simulated to ensure a critical noise condition affectation over
the clean signal with a uniform frequency distribution (Grinsted,
2022) (Figure 6). Second, the white noise is added to an arbitrary
signal, refer to Figure 7. Finally, the noisy signal is used as
the input for Equation (1), and the equivalent current output
is computed using Equation (7). The results are shown in
Figure 8.

It is possible to appreciate a significant noise reduction
after the rebuilding operation. Figure 9 shows the Power
Spectral Density of both original and noisy signals, and
preservation of fundamental frequency is observed, thus
we could conclude that the recovered signal is a good
approximation of the original one. Notice that fundamental
frequencies of the original signal are within the frequency range
of noise.

In order to compare this proposal with other approaches,
the same noisy signal was filtered using linear (Chebyshev,
Butterworth Butterworth, 1930, Elliptic) and digital (median
Tukey, 1977) filters (Virtanen et al., 2020). Figure 10 shows the
output responses obtained from these standard filters. Figure 11
shows the error measure of each filter, computed as the difference
between the original and the output of the corresponding
filter. Additional experiments were conducted using Gaussian
Multiplicative Noise and Impulsive Random Noise, results are
shown in Figures 12, 13.

To define a figure of merit for the proposed filter, we measure
the distance between each filter response and the original signal
(noiseless signal). As each filter introduces a different amount
of time delay caused by the filtering process, Euclidean distance
is not an appropriate choice since filtering techniques with a
minimum delay will tend to render better results. Therefore, Fast
Dynamic TimeWrapping (Salvador and Chan, 2007) (FastDTW)
was used as a performance evaluation criterion. Comparisons of
error results applying both Euclidean distance and FastDTW are
shown in Table 1.

5. CONCLUSION

This study introduced the capacity and performance of simulated
spiking neural network circuits to recognize primary signal
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FIGURE 4 | Tuning curve of the used circuit. Marks shows measurements frequencies obtained by sweeping the current Iin of Equation (1) in interval 0− 300µA, with

electrical and timing parameters: Cmem = 1µF, Rleak = 10k�, and a refractory period of 10µs. The orange line shows approximation by 7. * refers to the measured

frequency of spikes. - refers to measurments approximation made by Equation (6).

FIGURE 5 | Signal rebuild scheme. (A) Behavior of Equation (7) evaluated at each step of the simulation. (B) At each spike Equation (7) is evaluated with p equal to

the time elapsed from the last spike, and the value is preserved until the next event is reached. The dotted line marks the time of two spikes.

FIGURE 6 | Synthetic white noise generate for this study. (A) Noise signal added. (B) Fast Fourier Transform of noise. It is possible to observe that the noise has a

frequency uniform distribution between 1Hz and 31.6228× 104 Hz.
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FIGURE 7 | Comparison between the original signal with the noisy signal. For this experiment, the signal was computed evaluating the function sin(1500t2 )cos(50t)
50×106

+200× 10−6. It is important to observe that the signal must be positive at any moment.

FIGURE 8 | Comparison between signal rebuild from spike frequency on neuron output (blue line) and original signal (orange line).
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FIGURE 9 | Power Spectral Density graph of the original signal and filter signal by our proposal. We can observe than primary frequencies are presented with low

degradation.

FIGURE 10 | Comparison of results between different filters. (A) Median filter. (B) 3rd-order Chebyshev type 1 filter with cutoff frequency at 55kHz. (C) 3rd-order

Chebyshev type 2 filter with cutoff frequency at 55kHz. (D) 3rd-order Butterworth filter with cutoff frequency at 55kHz. (E) 3rd-order Elliptic filter with cutoff frequency

at 55kHz. (F) Neural filter proposed.
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FIGURE 11 | Comparison of error between outputs of different filters (additive white noise) and the original signal. The ideal error signal must be 0 at any time. (A)

Median filter. (B) 3rd-order Chebyshev type 1 filter. (C) 3rd-order Chebyshev type 2 filter. (D) 3rd-order Butterworth filter. (E) 3rd-order Elliptic filter. (F) Neural filter

proposed.

FIGURE 12 | Comparison of results between different filters, using a signal affected by Gaussian Multiplicative Noise of 30% . (A) Median filter. (B) 3rd-order

Chebyshev type 1 filter with cutoff frequency at 55kHz. (C) 3rd-order Chebyshev type 2 filter with cutoff frequency at 55kHz. (D) 3rd-order Butterworth filter with cutoff

frequency at 55kHz. (E) 3rd-order Elliptic filter with cutoff frequency at 55kHz. (F) Neural filter proposed.
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FIGURE 13 | Comparison of results between different filters. The signal is affected by impulsive random noise (random pulses of 5µs and 0.1mA were added). (A)

Median filter. (B) 3rd-order Chebyshev type 1 filter with cutoff frequency at 55kHz. (C) 3rd-order Chebyshev type 2 filter with cutoff frequency at 55kHz. (D) 3rd-order

Butterworth filter with cutoff frequency at 55kHz. (E) 3rd-order Elliptic filter with cutoff frequency at 55kHz. (F) Neural filter proposed.

TABLE 1 | Comparison between filter performance with Additive White Noise,

Multiplicative Gaussian Noise, and Impulsive Random Noise.

Filter Euclidean FDTW MSE PSNR*

Additive white noise

Median filter 0.257062 2.66536 4.40539 ×10−09 15.6014

3rd-order Chebyshev

type-1 filter

0.0300501 0.246951 6.02007 ×10−11 34.2452

3rd-order Chebyshev

type-2 filter

0.0575698 0.576117 2.20952 ×10−10 28.5982

3rd-order Butterworth filter 0.0378712 0.342871 9.56154 ×10−11 32.2359

Elliptic filter 0.047365 0.463987 1.49563 ×10−10 30.293

Proposed Neural filter 0.043605 0.187784 1.26760×10−10 31.0114

Multiplicative gaussian noise

Median filter 0.0574893 0.543259 2.20335×10−10 28.6104

3rd-order Chebyshev

type-1 filter

0.0278647 0.153496 5.17626×10−11 34.901

3rd-order Chebyshev

type-2 filter

0.0365451 0.299232 8.90364×10−11 32.5455

3rd-order Butterworth filter 0.0306838 0.206129 6.27664×10−11 34.0639

Elliptic filter 0.0338538 0.260648 7.64055×10−11 33.21

Proposed neural filter 0.0453503 0.170839 1.37110×10−10 30.6705

Impulsive Random Noise

Median filter 0.0653834 0.142627 2.85000×10−10 27.4928

3rd-order Chebyshev

type-1 filter

0.0364574 0.172277 8.86096×10−11 32.5664

3rd-order Chebyshev

type-2 filter

0.0488858 0.20908 1.59321×10−10 30.0185

3rd-order Butterworth filter 0.0468088 0.160894 1.46071×10−10 30.3956

Elliptic filter 0.0486396 0.226337 1.57720×10−10 30.0623

Proposed Neural filter 0.0438345 0.173065 1.28098×10−10 30.9658

Highlighted values represent the best performance according to the used criterion. A lower

value implies better performance (*Higher value is better). The results shown in this table

are the average values obtained from 15 conducted simulations.

information from signals corrupted deliberately with noise. Our
proposal works as the analog mobile mean filter (refer to
Mean Value Theorem for Integrals section) minimizing digital
electronics, thus reducing the required number of transistors.
Our frequency base decoding scheme has proven to have a good
noise rejection, specially added white noise, but maintaining
good performance with other types of noise, bringing artificial
intelligence closer to circuit technology to deliver innovative
solutions to filter white noise with the same frequency domain
as the original signal, with minimal latency and low information
loss. It is also a promising approach to, i.e., the conception
of future innovative lab-on-chip implementations. Increasing
the signal-to-noise ratio rejection ratio, cost efficiency, and
sensitivity, is essential in these devices.
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The primary research purpose lies in studying the intelligent detection of movements

in basketball training through artificial intelligence (AI) technology. Primarily, the theory

of somatosensory gesture recognition is analyzed, which lays a theoretical foundation

for research. Then, the collected signal is denoised and normalized to ensure that the

obtained signal data will not be distorted. Finally, the four algorithms, decision tree (DT),

naive Bayes (NB), support vector machine (SVM), and artificial neural network (ANN), are

used to detect the data of athletes’ different limb movements and recall. The accuracy

of the data is compared and analyzed. Experiments show that the back propagation

(BP) ANN algorithm has the best action recognition effect among the four algorithms.

In basketball training athletes’ upper limb movement detection, the average accuracy

rate is close to 93.3%, and the average recall is also immediate to 93.3%. In basketball

training athletes’ lower limb movement detection, the average accuracy rate is close to

99.4%, and the average recall is immediate to 99.4%. In the detection of movements of

upper and lower limbs: the recognition method can efficiently recognize the basketball

actions of catching, passing, dribbling, and shooting, the recognition rate is over 95%,

and the average accuracy of the four training actions of catching, passing, dribbling, and

shooting is close to 98.95%. The intelligent basketball training system studied will help

basketball coaches grasp the skilled movements of athletes better to make more efficient

training programs and help athletes improve their skill level.

Keywords: somatosensory motion gesture recognition, recall, accuracy, artificial neural network, basketball

training

INTRODUCTION

The rapid development of artificial intelligence (AI) technology in computer vision, mobile
internet, big data analysis and other fields, deep learning, cross-border integration, and other
technologies along with new features have gradually become the new focus of international
competition. Additionally, in computer vision, AI technology combines cameras and computers
to replace human eyes to segment, classify, and identify targets. These functions are used in virtual
reality and human–computer interaction, especially in sports video analysis, which has become a
research hotspot in industries and academia. Basketball is a collective sport. Compared with other
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sports, basketball is very technical. In basketball, the basketball
level of players has a significant impact on the team (Gonzalo-
Skok et al., 2019). Currently, basketball is very popular on
college campuses. The development of basketball teaching is
popularized. Many schools have created the conditions for
education in basketball lessons. College students are also very
keen to participate in basketball, and playing basketball has
become the first choice for most students to enrich their
extracurricular activities. However, the public basketball teaching
and training in colleges and universities emphasize more on
offense technique while ignoring defensive practice. If students
can have a tactical training robot, it will significantly improve
their basketball ability and technical and tactical level (Hagiwara
et al., 2020). The analysis of sports technology can compare and
evaluate athletes’ training and game videos. After the technique
is analyzed, the athlete’s movement standardization, physical
fitness, and other aspects are targeted for training. Additionally,
in the team competition, the movement and position of the
athletes are detected, tracked, and analyzed, which can promote
the improvement of the technical level (Garcia et al., 2020). Basic
movements in basketball games include dribbling, shooting,
and layup. Dribbling is the most basic action in basketball,
and shooting is the key to scoring the whole game. The
accuracy of the basic movements has a greater impact on the
game’s score. With the development of basketball competitions,
the human pose estimation algorithm is integrated with the
action recognition algorithm. These algorithms play a vital
role in assisting to improve the scoring rate. Human pose
estimation detects and estimates the position, orientation, and
scale information of each target human body part from the
image. This information needs to be converted into a digital
form that the computer can interpret and output the current
human pose. However, action recognition is to judge whether
a person’s actions are normative and how to improve the
normativeness according to pose estimation as the input object
(Sobko et al., 2021).

This study explores the intelligent detection of movements
in basketball training through AI technology. Firstly, relevant
literature is researched and learned. The relevant theory of
somatosensory gesture recognition is mastered. Secondly,
the collected motion data are denoised and normalized.
Finally, the superiority of the four algorithms is analyzed in
terms of the recall rate and accuracy rate. The most suitable
motion recognition algorithm is selected for the basketball
training intelligent system. The experimental results may
be applied to the research of basketball assistant robots. By
basketball teaching assistant robots, basketball coaches can
better grasp the technical movements of athletes, formulate
more efficient training programs, and help athletes improve
their technical level. The innovation point is to achieve more
efficient detection of basketball players’ technical movements
during training through the four action recognition algorithms.
By analyzing the recall rate and accuracy rate of the four
algorithms, the optimal algorithm is selected to detect
technical movements. These several rounds can serve as a
good reference for developing basketball assistant robots
in the future.

LITERATURE REVIEW

Related Research Analysis
With the development of AI technology pair, the technology is
gradually applied in various fields. Several research teams have
begun to study how to improve the quality of basketball training
through AI technology.

Xu and Tang (2021) applied machine learning algorithms to
the path planning of intelligent robots. Firstly, the movements
in basketball training are identified and analyzed in combination
with the basketball movement trajectory model. Secondly, a
mathematical model of the trajectory of the basketball shot is
established. An improved machine-learning based Q-learning
algorithm is proposed. The algorithm realizes the path planning
of the mobile robot and effectively completes the behavior of
avoiding obstacles. The results show that the fuzzy controller
applied to the basketball robot can effectively avoid the
obstacles during the robot’s motion. Therefore, the proposed
machine learning algorithm has a good obstacle avoidance
effect when applied to path planning in basketball training.
The application of this algorithm can effectively prevent sports
injuries in basketball (Xu and Tang, 2021). Zhi and Jiang (2020)
proposed a path planning algorithm based on behavioral module
control, aiming at problems, such as the strong dependence
of traditional algorithms on environmental information, the
path planning of basketball robots in unknown environments,
and the improvement of autonomous navigation safety. They
applied the fuzzy control theory to behavior control structures
and combined these two path planning algorithms to solve
the path planning problem of basketball robots in unknown
environments. The results show that the basketball robot can
overcome the uncertainty in the environment and effectively
achieve good path planning, which verifies the feasibility of the
fuzzy control algorithm and the validity and correctness of the
path planning strategy (Zhi and Jiang, 2020). Cox et al. (2021)
built a generic controller for regulating the motion of an inertia-
driven jumping robot. The robot can specify the desired speed
and jump height. The controller can ensure that the desired value
is achieved. The controller can achieve the maximum response
of the basketball robot the maximum jump height of 0.25m (Cox
et al., 2021). Carnevale et al. (2021) used the emerging distributed
constrained aggregation optimization framework for application
to basketball robots.

They proposed a constant-step distributed algorithm for
solving online optimization problems. In the static case (i.e., with
constant costs and constraints), they show that the knowledge
estimate converges to the optimal solution at a linear rate. Finally,
numerical values show that the method is effective in robotic
basketball games and robotic surveillance scenarios (Carnevale
et al., 2021). Yang (2020) expounded the development trend
of AI technology, analyzed the development status of AI, and
expounded the status of AI in sports. Finally, he focused on
the AI training strategy for basketball players. Yang analyzed
and studied the application in other aspects, aiming to provide
theoretical support and guidance for further development of
modern basketball. The basketball player training system should
be based on AI, fully understand and evaluate the physical
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condition and competitive ability of the players, and measure
the sports skills of the basketball players in time. The training
system should propose training strategies according to the sports
conditions of basketball players and optimize the training plan of
the players (Yang, 2020).

When the action recognition technology based on AI
technology is applied to the action recognition of basketball
players, the action point data of the hand posture during
the shooting process and the lower limb state during the
movement process are collected. Basketball movements are
complex movements completed by the upper and lower limbs.
The identification of basic basketball movements plays an
important role in improving the skills of basketball players.
Therefore, the basic movements of the upper and lower limbs in
basketball have been studied, and the identification of the basic
movements of basketball has been preliminarily realized.

Somatosensory Motion Gesture
Recognition
As a branch of pattern recognition, human attitude recognition
has been widely studied and developed in recent years. Human
body recognition based on inertial sensors has gradually
become a research hotspot. Based on pattern recognition,
many scientists have applied imaging technology to the human
body recognition of handheld devices (Zhang and Shi, 2021).
Figure 1 shows inertial sensors’ human body recognition process,
comprising specific steps of data acquisition, data processing,
data segmentation, feature extraction, and classification training.
Especially, in the data acquisition stage, it mainly includes
physical or physiological signals, such as acceleration and angular
velocity, heart rate, and body temperature. These are primarily
covered by detection devices. The data processing can purify
and standardize the data to meet the system’s requirements. In
data processing, data are extracted and analyzed in time and
frequency range, separately. In the stage of function extraction,
the analysis of element function is basically completed, and
the extraction of associated attributes is taken as the sample
data of calculation. Selected samples are formed according to
the different classification principles, which will lead to the
separation of unknown samples (Sannino et al., 2019; Xu and Yi,
2021).

The recognition technology based on image analysis also
has many defects, such as the high precision requirement for
machines, large size, and unsuitability for wearing. It is difficult
to observe in some areas, and the monitoring coverage is limited.
Although a large amount of collected datamay lead to insufficient
storage, real-time monitoring cannot be realized (Soferman,
2019). The development of science and technology based on
inertial sensors has promoted the progress of sensor technology,
such as smaller size, higher precision, better flexibility, high
environmental protection requirements, high sensitivity, low
energy consumption, and good real-time performance. It has
become the best way to understand the human condition and has
been widely used in sports and other fields. Many inertial sensor
devices form a spatial network and are widely used (Liu, 2020).

FIGURE 1 | Method flow of human posture recognition.

Data Preprocessing
In the data collection stage, the data signal collected by the
sensor device is usually interfered with by the outside world or
itself. Interferences include: (1) the jitter generated by the body
or periodic signals generated by the surrounding environment
during human movements. (2) There are measurement errors in
the signal acquisition equipment itself. (3) During themovement,
the signal caused by the position deviation of the node is
inaccurate. The collected raw data cannot be directly used for
analysis and calculation in practical applications. The signal
needs to be preprocessed to obtain a more accurate signal after
it is ordered. Standard preprocessing methods include denoising
and normalization. The two processes of preprocessing will
be introduced.

Denoising
The original data signals collected by the detection equipment
often contain noise signals from an external environment, which
is inevitably inaccurate. The signal denoising method in software
design is generally called digital filtering, mainly composed of
two types of filters: classical filter and current filter (Taborri

Frontiers in Neurorobotics | www.frontiersin.org 3 June 2022 | Volume 16 | Article 819784169

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Cheng et al. Intelligent Basketball Training System

et al., 2021). When the useful signal and the noise signal are
in different frequency bands, adding another noise signal into
the linear system can eliminate the noise signal. Commonly
used high- and low-pass filters are established according to the
principle of the distribution of signals in different frequency
bands (Zhao et al., 2020). Still, the traditional filters have some
defects and are no longer suitable for signal noise and frequency
bands. Modern filters decompose proper signals and sound
into random movements. The corresponding autocorrelation
function is used to determine the beneficial signal or noise, such
as the statistics of the autocorrelation spectrum. Commonly used
filtering algorithms are Kalman andWiener (Estevez et al., 2019).

Standardization
Standardization also belongs to normalization, which is the basic
step of data mining and plays an essential role in simplifying
the calculation. The normalization method is also adopted
in human posture recognition. For data processing (Graham
et al., 2019), due to the different positions of nodes in the
network system of the human body domain, the nodes will shake
with the movement of the human body. Data standardization
can eliminate the dimensional influence between different data
and solve the problem of data comparability. Specifically, their
expressions are converted into different data for a comprehensive
comparison and evaluation (Hussein et al., 2020). Two data
standardization methods are described in detail as follows.

Linear Function Transformation
The linear function transformation maps the initial parameters
into the interval [0,1] through a linear transformation. Its
calculation method are presented as follows:

Xnorm =
X − Xmin

Xmax − Xmin
(1)

In Equation 1, Xnorm represents the result of linear function
after conversion operation, X refers to the initial parameter, Xmax

stands for the largest data in the selected sample, and Xmin means
the smallest data in the selected sample.

Zero Mean Standardization
The zero mean standardization method processes the original
data into a normal distribution set with a mean of 0 and a
variance of 1. The specific calculation method is defined as:

y =
x− µ

δ
, (2)

where x represents the data set, y refers to the result after
calculation, µ stands for the initial parameter mean, and δ

denotes the variance of the initial parameter.
Here, in calculating the node attitude, the three data of

angular velocity, acceleration, and magnetic field strength are
fused to achieve a more accurate attitude calculation and reduce
the noise interference of the sensor. Quaternion means space
attitude. Extended Kalman filtering is selected to implement data
fusion. The accuracy of the posture solution result is improved.
Quaternion and the principle of extended Kalman filtering are
introduced in detail.

In 1843, William Rowan of Hamilton created the
mathematical concept of Quaternion. It is a simple, super
complex number to describe the rotation of a rigid body.
Quaternion combines an actual number and three imaginary
number units, as shown in Equation 3:

Q = w+ xi+ yj+ zk, (3)

where w, x, y, and z are real numbers, i, j, and k are the three
imaginary units. A quaternion can also be represented by (w, x, y,
z). Q satisfies Equation 4:

w2
+ x2 + y2 + z2 = 1, (4)

where Q is called the unit Quaternion. The unit Quaternion (1,
0, 0, 0) describes the attitude of the rigid body at rest. Only, the
unitized Quaternion can describe the rotation of a rigid body,
therefore the Quaternion is normalized. Its normalized form is
shown in Equation 5:

Qnwn =
Q

√

w2 + x2 + y2 + z2
, (5)

where Qnorm means Quaternion after being normalized.
The unit Quaternion can describe the rotation of a rigid body

in a three-dimensional (3D) space, as shown in Equation 6.
Equation 6 is also Quaternion’s differential equation:

Q̇ = 0.5 · Q · p, (6)

where p stands for Quaternion. It consists of the angular velocity
detected by the gyroscope. The actual part is 0. Q̇ is the derivative
of Quaternion concerning time, as shown in Equation 7:

p = 0+ ωxi+ ωyj+ ωzk, (7)

Q̇ = a+ bi+ cj+ dk. (8)

Applying Equations 3, 7 are brought into Equation 6 for
calculation according to the complex number arithmetic, as
shown in Equation 9:
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c
d









= 0.5









−xωx − yωy − zωz

wωx − zωy + yωz
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(9)

Equation 9 reflects the relationship between the angular velocity
of the rigid body carrier and the derivative of Quaternion
concerning time. According to the original state Quaternion, the
Quaternion in the new state can be obtained. The normalization
process can bring the unit Quaternion used to describe the
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transformation of a rigid body from one posture to the next. The
updated equation is shown in Equation 10:

Qk+1 = Qk +1t · Q̇k, (10)

where k is a nonnegative integer, representing the time of the
system, Qk, and Qk+1 represent the unit Quaternion of the rigid
body posture at the kth and k + 1th moments, respectively,
represents the derivative of Quaternion for time at the kth
moment, and 1t represents the time interval between the two
samples. As the value of1t is small, it is assumed that the rigid
body rotates at a constant speed in it.

Q̇k represents the derivative of Quaternion concerning time at
the kth moment. According to Equation 6, Equation 11 can be
obtained as

Q̇k = 0.5 · Qk · pk (11)

Equation (11) is brought into Equation 10, and Equation 12
is obtained:

Qk+1 = Qk + 0.5 · Qk · p ·1t (12)

When the initial state of the system and the rotational angular
velocity of the rigid body are known, the Quaternion of the
system’s state is obtained from Equation 12 to determine the
current posture of the rigid body.

Expand Kalman filtering is converted from the nonlinearly
changing scene into a linearly changing state for the solution. A
non-linearly changing differential equation set is defined to apply
the extended Kalman filtering technology to the actual location of
nonlinear changes, as shown in Equation 13:

x = f (x)+ w, (13)

where x is the state vector of the system. The function f (x)
can calculate the predicted value of the system state at the next
moment through the current system state. w represents the
process noise vector expected to be 0.

The process noise matrix C is composed of the process noise
vector w, as shown in Equation 14:

C = E
(

wwT
)

(14)

The measurement equation is a nonlinear state equation, as
shown in Equation 15:

z = h(x)+ v (15)

The function f (x) is the observation equation of the system. v is
the measurement error vector expected to be 0, represented by
the measurement noise matrix R, as shown in Equation 16:

R = E
(

vvT
)

(16)

As the measurement process is a nonlinear changing equation, k
is used to represent the time. Equations 13, 15 are transformed
into Equations 17, 18, respectively:

zk = h(xk)+ Vk (17)

xk+1 = f (xk)+Wk (18)

Assuming that the current optimal estimation state of the system
is, the prior error e−

k
of the system can be obtained according to

the expected state value of the system, as shown in Equation 19:

e−
k
= xk − x̂−

k
(19)

The posterior error of the system is shown in Equation 20:

ek = xk − x̂k (20)

Knowing that the prior error of the system is the expectation
of the covariance of the system error, the covariance of the
preceding error is shown in Equation 21:

P−
k
= E

(

e−
k
e−T
k

)

(21)

The covariance of the posterior error is shown in Equation 22:

Pk = E
(

eke
T
k

)

(22)

According to the principle of the extended Kalman filtering
algorithm, the expected value of the next moment of the system
can be obtained by the optimal estimation of the current system.
The desired correction of the system state is completed by
mapping the system’s measurement error to the system’s state
domain, thereby obtaining the optimal estimation of the system
at the next moment. The state of the system is estimated to be
continuously updated. The best estimate of each moment of the
system is obtained. The Kalman filtering method of the nonlinear
system is shown in Equations 23–27:

x̂−
k+1

= f
(

x̂k, uk
)

, (23)

P−
k+1

= FkP
−

k
FTk + C, (24)

Kk+1 = P−
k+1

HT
k+1

(

Hk+1P
−

k+1
HT
k+1 + R

)−1
, (25)

x̂k+1 = x̂−
k+1

+ Kk+1

(

zk+1 − h
(

x̂−
k+1

))

, (26)

Pk+1 = P−
k+1

− Kk+1Hk+1P
−

k+1
(27)

Equation 23 represents the desired state at the next moment.
It can be obtained from the well-estimated state at the current
moment. In Equation 24, F is the Jacobi matrix of the function
f (.). This equation expresses that the current error covariance
estimate is obtained through the posterior error covariance
matrix now. Equation 25 gives the method of solving Kalman
gain Kk. Hk is the Jacobi matrix of the function. Equation 26
combines the expected value of the state at the next moment
and the observed value. It obtains the Kalman gain, thereby
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obtaining the optimal estimation value of the form at the current
moment. Kalman filtering is an iterative cycle process. Therefore,
the updated test error covariance is used for future iterations.
Equation 27 uses the prior error covariance at the next moment
to update. It is brought into Equation 24 for a new round
of iterations.

The expansion of Kalman filtering mainly includes two
processes: time iteration and measurement iteration. Time
iteration includes Equations 23, 24, which completes the
prediction of system state and error covariance primarily.
Measurement iteration uses observations to correct expectations,
to obtain more accurate estimates, and to obtain optimal
forecast, as shown in Equations 25–27. In Equation 26,
Kalman gain is mainly used to weigh the state expectation
and the proportion of the system measurement value
in calculating the optimal estimation. The greater the
Kalman gain, the closer the optimal estimate is to the
observed value.

In actual situations, the process noisewk and themeasurement
noise vk conform to the white noise of the normal distribution.
The two types of noise are not correlated with each other.
Therefore, the covariance matrix C of the process noise and the
covariance matrix R of the measurement noise are constants. At
the initial moment of the system, the posterior error covariance
matrix P0 of the system can be set to any diagonal matrix as the

initial value. The initial values of other states of the system can be
set arbitrarily. In the iterative process of the system, these values
will automatically converge and get closer to the actual situation.

Quaternions Method
In 1843, the British mathematician W.R. Hamilton introduced
Quaternions in mathematics. However, until the late 1960’s,
this method had not been put into practical use. With
the development of space technology and strapdown inertial
navigation system (SINS) technology, Quaternions have attracted
people’s attention. Solving the Quaternions differential equations
involves solving four differential equations. Although this is
one more equation than solving Euler’s differential equations,
it has the advantages of less computation, high precision, and
the avoidance of singularities. This method is one of the focuses
of current research. Due to the direction cosine method, skew,
scale, and drift errors will be generated when solving the
attitude dynamics of the carrier. However, it is essential in
SINS to estimate these errors when doing attitude solutions.
The advantage of the Quaternions method compared to the
directional cosine method is that the skew error is equal to 0. The
derivation of the scale error leads to an analytical expression that
facilitates further analysis. The directional cosine method can
only analyze and detect scale errors in exceptional cases without
drawing general conclusions. A comparison of the Euler angle

FIGURE 2 | Composition of basketball training action.
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method, directional cosine method, and Quaternions method
from different angles shows that Quaternions method performs
the best.

Kalman Filtering
Kalman filtering does not require the assumption that both
signal and noise are stationary processes. For the system
disturbance and observation error (i.e., noise) at each
moment, if some appropriate deductions are made about
their statistical properties, and by processing the observation
signal containing noise, the minimum error can be obtained
in the average sense. Therefore, the Kalman filtering theory is
applied in communication systems, power systems, aerospace,
environmental pollution control, industrial control, radar
signal processing, and other industries and has achieved many
successful application results. For example, in image processing,

FIGURE 3 | Data division method of basketball posture.

Kalman filtering restores the images blurred by some noise.
After making some statistical assumptions about the noise, the
Kalman filtering algorithm can be used to obtain the actual
image with the minor mean square error from the blurred image
in a recursive way, so that the blurred vision can be restored.

Classification Algorithm
Decision Tree
Decision tree (DT) is a monitoring learning method, which
is often used for data classification and regression. It is the
essence of DT to simplify complex problems into a hierarchical
structure to solve these problems, therefore it is also a multilevel
decision model. DT can be regarded as a tree structure
composed of nodes and sharp edges, a theoretical statistical
model (Rampersad, 2020). The node types include leaf and
internal nodes. The internal nodes represent the recognition of
specific attributes of multiple samples, the extended branches
stand for the recognition results, and the leaf nodes denote
the specific classification results. The construction of DT is
complex. Feature selection and partition is the primary step of
constructing DT, in which feature selection contains detailed
information, which is mainly based on some indicators related
to characteristics. The most common hands are gain rate and
information gain and inversion (Senhaji et al., 2021). Feature
segmentation can also be regarded as a re-segmentation method.
Below them, different categories can be filtered so that every data
pointing to an edge has the same type as possible. Standard DT
construction algorithms are C4.5, Iterative Dichotomiser 3 (ID3),
Classification and Regression Trees (CART), etc. The principle
of DT is relatively simple, the construction process is not
complicated, and the construction time is relatively short (Kotter
and Ranschaert, 2021). However, this method is not suitable for
the problem of missing data, and it is prone to overfitting.

FIGURE 4 | A comparison of Kalman filtering effects of changing the walking

angle.
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Naive Bayes
Naive Bayes (NB)method is a simple classificationmethod. Based
on the Bayesian theory, the classification probability of each type
of sample is calculated, and themost probable category is selected
as the classification result. Simple Bayesian algorithm has a strong
theoretical foundation and is a relatively stable classification
method based on classical mathematical theory. Because this
method is simple and insensitive to lost data, there are some
limitations in practical applications, which need to be improved
to make the models independent of each other. These problems
are usually encountered (Радутний, 2019). In the application
of human identification markers, the occurrence of events is
uncertain, therefore it is difficult to obtain the prior probabilities
of different classification behaviors, hence the Bayesian algorithm
is not applicable.

Support Vector Machine
Support vector machine (SVM) refers to a supervised
classification method, which is widely used in machine
learning at present. It was first used in 1960 and applied to the
optimal classification hyperplane. The basic principle of SVM
is its minimal structure, therefore it has strong generalization
ability. Initially, this method was mainly used to deal with the
classification of two simple categories. It can automatically find
out the vector machine to achieve the optimal classification,
which is linear. SVM uses the kernel technique to make it
applicable to nonlinear classification. Multiple SVMs are
combined to meet the requirements (Ha et al., 2019). SVMs are
constantly being optimized and improved. The SVM algorithm
is widely used in text classification, image classification,
handwriting font recognition, and other fields.

Artificial Neural Network
It is a machine learning algorithm that imitates the biological
neural network model, which has a complex network structure.
Each neuron has a simple structure and unique function. This is
an adaptive nonlinear information processing system. Artificial
neural network (ANN) can be summarized as a three-layer
mathematical model, including an input layer, an output layer,
and a hidden layer (Luo et al., 2019). The input layer consists of
many neurons for receiving information. The hidden layer is also
called as concealed layer. The neural network can be divided into
input and output layers. It is widely used in image processing and
language recognition. A neural network has strong self-learning
and nonlinear adaptive ability and has relatively little interference
to noise data.

RESEARCH MODEL AND THE
METHODOLOGY

Recognition of Basketball Players’ Actions
During Training
The Definition of Basketball Posture
When basketball players train, they usually perform complex
skill actions. Figure 2 presents an analysis of the composition
of skill actions in the training process of basketball players.
According to the different states of different limbs at a certain
moment, the athletes’ action states in basketball training can
be simply divided into two types: motion and static. Under
the static state, the movement of limbs of athletes belongs to a
stationary state, and the relativemovement state refers to the state
when the limbs perform related exercises. For example, when the

FIGURE 5 | The model of the human body.
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athletes perform the ball-catching action, the legs of professional
athletes will not change, therefore the legs at this time belong
to a static state, while the upper limbs participate in the ball-
catching action. Therefore, the arm is in motion (He, 2021). The
shooting, catching, passing, and dribbling of upper limbs and
jumping, walking, and running of lower limbs are defined as unit
movements. In the motion state, the exercises can be divided
into rapid movements and continuous movements according to
whether they are periodic or not. Generally, instantaneous action
does not have periodicity. It only contains one-unit action, such
as catching, dribbling, and shooting. In this way, the continuous
basketball training action is periodic. There will be many small
unit actions when completing a set of training actions, such as
constant walking, dribbling, and running dribbling. Therefore,
in recognizing athletes’ movements in basketball training, it is
imperative to distinguish the activities of upper and lower limbs.
Therefore, a division method based on unit action extraction is
adopted here.

Data Segmentation
Data segmentation is generally divided into two stages, and
Figure 3 shows the specific data partitioning process. In the
data division of the first stage, according to the discreteness
characteristics of action data in basketball training of athletes
in two different states, what is extracted are the athletes’ action
data and the sustained and instantaneous actions of athletes in
a series of activities. Because there are many athletes’ persistent
movements and much need of unit movements, in the second
stage of data division, according to the changes in the limbs
angles of basketball players during the training process, it is
finally realized of the data extraction of athletes’ continuous
movements (Dudnik et al., 2021).

Division of Exercise Status
The degree of dispersion indicates the degree of difference
between the values of the observed variable. The difference
between the sensor signal sample values is taken as the dispersion.

FIGURE 6 | The model of 3dMax basketball player.

Taking angular velocity as an example, ωx
n represents the x-axis

angular velocity data at the nth time. ωx
n−1 represents the x-

axis angular velocity data at the n – 1th time. dxn represents the
difference between the angular velocity of the x-axis of the sensor
at the nth moment and the angular velocity at the last moment.
The dispersion dxn can be obtained by Equation 28:

dxn =

∣

∣ωx
n − ωx

n−1

∣

∣ (28)

The motion data includes angular velocity data and acceleration
data. The data characteristics of each sensor need to be
considered comprehensively to achieve the accurate division of
actions. Dx

n represents the dispersion of the acceleration sensor
data at the nth time. d

g
n represents the dispersion of the angular

velocity sensor data at the nth time. represent the dispersion
of the acceleration and angular velocity of each axis, and the
expressions of Da

n and D
g
n are shown in Equations 29, 30:

Da
n = dasn + d

ay
n + dazn , (29)

D
g
n = d

gs
n + d

gy
n + d

gz
n (30)

In the stationary state, the acceleration and angular velocity
dispersion are kept below the threshold values λa and λg ,
respectively. In the state of exercise, the sensor data will change
rapidly with the athlete’s movements. Dispersion can reflect the
degree of difference in the sensor data. Therefore, the dispersion
feature can realize the athlete’s limb state division. γn represents
the state of the athlete’s limb at the nth moment. When γn is 0,
it indicates a static state. When γn is 1, it represents the state of
motion, as shown in Equation 31:

γn =

{

0, Da
n < λa and D

g
n < λg

1, Da
n ≥ λa or D

g
n ≥ λg

(31)

The data dispersion degree of each sensor is calculated, and the
threshold value can identify each movement state.

Division of Unit Actions
By dividing the action state, instantaneous action and continuous
action are obtained. The division of unit actions is the further
processing of constant measures. In constant movement, the
movements of the legs and arms are in constant periodic
changes, and the periodicity of the continuous changes is more
pronounced. Therefore, it is feasible to realize the division of
unit actions based on the movement data of the arms and
legs. Through data comparison, the angular velocity data can
intuitively describe the angular change during the movement of
the rigid body. Angular velocity is used as a reference, and the
data are divided as a reference.

The degree of dispersion represents the degree of difference
between the values of the observed variable. The difference
between the sample values of the sensor signal is used as
the dispersion. Taking the angular velocity as an example, ωx

n

represents the x-axis angular velocity data at the nth time, ωx
n−1

represents the x-axis angular velocity data at the n – 1th time,
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and dxn represents the difference between the angular velocity of
the sensor x-axis at the nth moment and the angular velocity
of the last moment. The degree of dispersion dxn is shown in
Equation 32:

dxn =

∣

∣ωn
x − ωx

n−1

∣

∣ (32)

The motion data includes angular velocity data and acceleration
data. Each sensor data feature is comprehensively considered
to achieve an accurate division of actions. dan represents the
dispersion of the acceleration sensor data at the nth time, and
d
g
n represents the dispersion of the angular velocity sensor data at

the nth time. Da
n and D

g
n are shown in Equations 33, 34:

Da
n = daxn + d

ay
n + dazn (33)

D
g
n = d

gx
n + d

gy
n + d

gz
n (34)

At rest, the acceleration and angular velocity dispersions remain
below the thresholds λa and λg , respectively. In the state of
motion, the sensor’s data will change rapidly with the athlete’s
movement, and the degree of dispersion can reflect the degree of
difference of the sensor data. Therefore, the discrete feature can
realize the athlete’s limb state division. γn represents the state of
the athlete’s limb at the nth moment, as shown in Equation 35:

γn =

{

0,Da
n < λa and D

g
n < λg

1,Da
n ≥ λa and D

g
n ≥ λg

(35)

In basketball, the sensor signal is easily affected by the human
body and the external environment. When calculating the
angle during limb movement, the Kalman filtering algorithm is
used to fuse acceleration, magnetic field strength, and angular
velocity data to reduce the influence of external noise. Figure 4
shows the change curve of the calf angle during walking. The
abscissa represents time, and the ordinate represents the calf
angle. The dotted line is the angle curve obtained without
the Kalman filtering algorithm, periodically changing. After a
period, the angle value shifted significantly. The solid line is the
angle curve obtained by the Kalman filtering algorithm, which
fluctuates at the same amplitude on both sides of 0◦. Kalman
filtering algorithm processing data can reduce the interference of
noise signals.

Figure 4 uses the Kalman filtering algorithm to process data
whose value remains at [−40, 60]. The data values that are not
processed by the Kalman filtering algorithm remain at [−110,
40], which is less stable than the former data because the Kalman
filtering algorithm can effectively remove the interference data
and ensure the accuracy of the obtained data.

Posture Feature Extraction of Basketball Players
Data division obtains the unit action data composed of
acceleration and angular velocity. axn, a

y
n, and azn represent the

accelerations of the three axes of the nth sampling point, and,
g
y
n, and indicates the angular velocity of three axes at the nth
sampling point. Parameters an and gn express the acceleration

vector sum and angular velocity vector sum, respectively, as
shown in Equations 36, 37:

an =

√

(axn)
2
+ (a

y
n)

2
+ (azn)

2, (36)

gn =

√

(gxn)
2
+ (g

y
n)

2
+ (gzn)

2 (37)

The eight-dimensional vector is mainly composed of combined
acceleration, triaxial acceleration, combined angular velocity, and
triaxial angular velocity. And, n is the number of points that
unit basketball training movements can collect, each dimension
in the vector contains the sampling data of N basketball
training actions. And, each basketball training action is taken
as a sample. Every sample will become an N∗8-dimensional
matrix. Simultaneously, every basketball training action should
be calculated in all dimensions, therefore it is necessary to
calculate the signal, which mainly has two signal features:
frequency and time. There are two main features in the time
domain: variance and mean. Parameters µa and δ2 represent
the mean and variance of acceleration components in basketball
training actions, which are obtained by Equations 38, 39 (Shivale
et al., 2020):

µa = E(a) =
1

N

∑N

i=1
ai (38)

δ2 =
1

N

∑N

i=1
(ai − µa)

2 (39)

The frequency-domain features mainly include two types:
frequency and signal peak value after the discrete Fourier
transform. According to the discrete Fourier transform, the
obtained action signal is transformed from the time domain to
the frequency domain. SDFT(n) represents the Fourier transform
result of the nth sampling point, and j represents the imaginary
unit, and its calculation process is as shown in Equation 40:

SDFT(n) =
∑N−1

i=0
aie

−j 2πN in

(40)

The peak value SDFT(k) of the signal is obtained by Fourier
transform, where K represents the sampling point corresponding
to each peak during Fourier transform. The frequency F in the
Fourier transform is calculated by Equation 41, and the sampling
frequency is represented by fx:

f = K ×
fx

N
(41)

Through feature calculation, it can figure out the features
of collected action signals in the frequency domain and
time domain.
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Basketball Posture Recognition
The essence of basketball gesture recognition is constructing
a classification model that satisfies the classification of
basketball action data. For each specific basketball action,
after data collection, data preprocessing, data division, and
feature extraction, the attribute set of the specified basketball
action can be obtained, that is, the feature vector set. These
feature vector sets are abstract data sets of basketball actions.
The corresponding classification can be obtained in the
calculation of the classifier model. The attributes contained
in the feature vector are complex. The feature vector feature
is selected to eliminate irrelevant and redundant attribute
values in the feature vector. The priority search algorithm
and principal component analysis method are adopted in
attribute screening. Feature selection realizes the dimensionality
reduction of feature vectors. This reduces the complexity
of the classification calculation process and improves the

working efficiency of the system. In the experiment, the
sensor nodes are fixed on the calf and forearm of the subject
to detect the action and behavior information of different
limbs. According to the different placement positions of the
nodes, the data set of each kind of movement is divided
into the upper and the lower limb movement data set.
Different sample sets are separately constructed classifiers
to realize the specific division of upper and lower limb
unit actions. The upper and lower limb movements are
combined, and the basketball movement posture performed
by the current examinee is obtained. In constructing the
classification model, four commonly used classification
algorithms are used: C4.5 DT, SVM, Bayesian network, and
backpropagation ANN. The output results of these four
classification methods are compared and analyzed. The best
classification method following the experimental environment
is obtained.

FIGURE 7 | Principle of the data partition method based on discreteness (A) angular velocity discreteness and motion state during walking; (B) angular velocity of

legs during walking; (C) angular velocity dispersion and motion state during passing; and (D) arm angular velocity during passing.
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Intelligent System Design
Target Machine Software
It realizes signal transmission by the position calculation module
and runs on the nodes of the sensor. The function of the base
station is to receive the nodes and collect the parameters of
the obtained nodes. Therefore, a serial port is used to transmit
the data to the upper computer, and the upper computer uses
the serial port to collect the action data of basketball players
and perform classified calculations and analysis of actions. The
data are passed to the upper computer to shape the athlete’s
body posture (Echevarría et al., 2019). Data initialization mainly
completes Quaternion initialization, acceleration initialization,
and magnetic field intensity initialization. The received data

FIGURE 8 | Comparison of the angles and angular velocities of basketball

players forearm dribbling and calf walking: (A) forearm and (B) calf. (A:

forearm/calf angular momentum while dribbling and B: forearm/calf angle while

dribbling).

mainly includes the position information of each sensor,
including acceleration, angular velocity, and magnetic field
strength. According to the height calculation method, one-
quarter of the data is recursive. In the data fusion process
of Kalman filter design, the acceleration, angular velocity, and
magnetic field strength determine whether the acceleration data
can be used for position calculation when the object position
changes (How and Wei, 2019). If the position of the object
changes and the acceleration data cannot be used for filtering
calculation, the position data are directly sent to a computer
through a serial port and converted into a cosine matrix. And
then, it is converted into unified coordinates for the upper
computer to display.

Upper Computer Software
The function of the upper computer is to realize the consignment
of athletes’ skill movement data and the display of athletes’
postures. The upper computer reads the relevant attitude
information data sent from the attitude node to the base
station through a serial port. And, the upper computer part
constructs a 3D model of the human body through visualization
toolkit (VTK) development tools, and through processing and
calculating the collected posture information, thereby intuitively
displaying the posture of the human body.

The upper computer module only receives data of the
quaternion data type. According to the OpenGL theory, OpenGL
cannot directly utilize and draw quaternions. Therefore, before
applying the OpenGL theory, it is necessary to process the
obtained data. Therefore, a data processing module is added
between the received data and the human body display module
(Joshua and Niloufer, 2020). By changing Quaternion into
directional cosine and then converting directional cosine into
four-dimensional homogeneous coordinates, the combination
with OpenGL can be realized after such a transformation.

The 3D model of basketball elements can be divided into
10 structural parts. In these 10 parts, the bones will produce
associated animation effects after rotation and translation due
to the interaction of various structures. Figure 5 presents the
specific structural relationship. Each node in Figure 5 can be
regarded as a rigid body. In the spatial structure, rigid bodies
are usually represented by the two points. The rotation centers
of these two nodes are the origin, and the other node is called
the endpoint. The relationship between two nodes is the parent–
child relationship by default.When the parent node rotates, it will
drive the child node to translate.

In Figure 5, the method of skeletal animation is referred to
make that the established basketball player model have animation
effects. Geometric vertices are bound to bones, and spirits are
generated by controlling the translation and rotation of these
bones. The specific performance is that each bone has a weight
factor for all vertices, and the size is 0 to 1, where 0 means
that the bone is not related to the vertex. Multiple bones may
drive a vertex. However, the weights of the bones connecting
the vertex should add up to 1. The obj file does not contain
bone information, and it is necessary to use 3dMax to export
the set weight data in text form. Afterward, 3dMax tools are
used to draw the concrete human model and bind the bones.
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The experiment rotates continuously from 0◦ to 1,080◦, with
data sampling every 90◦. The investigation is divided into two
groups. To compare the compensation effect of Kalman filtering
on the angle calculation, the first group of the investigation
does not use any compensation method. It directly obtains
the rotation angle of the sensor through the angular velocity
integration. The second group of experiments uses the extended
Kalman filtering method to compensate for the angular output
of the sensor nodes. Figure 6 shows the model constructed
in 3dMax.

The related methods of skeletal animation to connect the
geometric vertices of the model characters are combined with
the bones’ positions to generate animation by using the rotation
and translation of the bones of the characters in the model.
Specifically, each bone has a weight for all vertices, ranging from
0 to 1, where 0 indicates that the bone is irrelevant to the vertex.
Multiple bones may drive a vertex, but the weights of the bones
connecting the vertex should add up to 1.

Design of Basketball Assistant Robot
The overall shape of the robot is designed as a humanoid
omnidirectional wheeled mobile robot with a relatively simple
structure. According to the characteristics and functional
requirements of the training land, the overall design plan is:
the mechanical system includes three parts: the swinging robotic

TABLE 1 | The number of samples collected by each tester’s thinking data.

Behavior Number of actions

Walk 50

Running 50

Jump 50

Stationary dribble 50

Walking dribble 50

Running dribble 50

Shot 50

Pass 50

Catch the ball 50

TABLE 2 | The number of different movements of the upper and lower limbs.

Upper and lower limbs Behavior Number of actions

Arm movements Stationary dribble 400

Walking dribble 400

Running dribble 400

Shot 400

Pass 400

Catch the ball 400

Leg movements Walk 400

Running 400

Jump 400

Shot 400

Running dribble 550

Walk dribble 450

arm, the robot torso, and the mobile base. A motor drives
the mechanical arm to swing up and down at a certain angle,
which can expand the defensive area and simply block the pass
and pitch. The robot’s torso is generally a “bell-shaped” cavity
structure with a narrow upper and a lower width to facilitate
the installation of the middle and outer protective layers. A
gyroscope is installed in the middle and lower part of the torso
to keep the robot balanced when it is bumped. The mobile
base consists of a driving gear train, a base frame, and base
armor. The driving wheel train adopts the vertical layout of
four omnidirectional wheels. Four servo motors independently
drive the four omnidirectional wheels to meet the requirements
of all-round steering of the robot. As the robot needs to
sense and defend the position of the ball and players, vision
sensors are required. A gyroscope device is installed in the
robot body to prevent the robot from being knocked down
during training.

During the data collection process of basketball training
movements, the basketball teaching assistant robot tested the
walking, jumping, running, and dribbling in place without
the ball, running dribbling, walking dribbling, passing with
the ball, and eight male testers, respectively. Nine kinds of
basketball training actions, shooting, and catching are collected
for related data. A total of 5,000 samples are collected this
time. When dribbling the ball, the upper body movements of
athletes mainly include dribbling in place, running dribbling,
walking dribbling, passing, shooting, and catching, totaling 2,400.
There are 2,600 data records of lower body movements during
athletes’ training, including walking, jumping, running, dribbling
in place, running dribbling, and shooting while dribbling the
ball. During the data collection process, each athlete participating
in the test must complete all technical movements, and the
basketball assistant robot will record the number of basketball
technical movements.

EXPERIMENTAL DESIGN AND
PERFORMANCE EVALUATION

Evaluation of the Athlete’s Attitude
Estimation of the Intelligent System
The evaluation methods of joint human points include
percentage of correct keypoints (PCK) and object keypoint
similarity (OKS). Here, Euclidean distance is used to compute
the similarity between the two poses and the score between 0
and 1 (Wetzel et al., 2020). Euclidean distance is one of the most
common distance measures. It measures the absolute distance
between all points in a multidimensional space. The Euclidean
distance of two n-dimensional vectors X = (x1, x2, x3, ..., xn) and
Y = (y1, y2, y3, ..., yn) is shown in Equation 42:

D(X,Y) =

√

√

√

√

n
∑

i=1

(xi − yi)
2 (42)

When the OKS value is more significant than 0.5, the athlete’s
posture can be correctly detected. Athlete detection and pose
estimation are both detection tasks. The evaluation method of
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the inspection task is selected as the commonly used evaluation
index, namely, the maximum recall rate. For experimental
results, there are four possible situations between the predicted
and the actual values.

TP, FP, FN, TN, and TP indicate that positive samples are
predicted to be true. FPmeans that negative samples are expected
to be true. FN means that positive samples are predicted to
be false. TN indicates that the pessimistic sample prediction
is incorrect. P stands for precision, R stands for recall, and S
represents specificity, as shown in Equations 43–45:

P =
TP

TP + FP
, (43)

R =
TP

TP + FN
, (44)

S =
TN

FP + TN
(45)

Different detection confidence thresholds are set. Different test
results will be produced. The detection result of each threshold is
calculated as P and R. The recall obtained is the maximum recall
when the confidence threshold is set to the minimum value.

Data Partition Principle Based on
Discreteness
Through the principle of data division of discreteness, the skill
movements of athletes during basketball training are detected,
and Figure 7 displays the collected data.

Figure 7 shows that, by dividing the action states of basketball
players in the training process, it is possible to extract the action
data of basketball players in the training process. Figure 8 shows
the relative angular velocity and angle analysis between the
forearm and calf during walking dribbling.

FIGURE 9 | Classification results of upper limb movements by different classification algorithms (A: catching; B: passing; C: shooting; D: dribbling on foot; E: dripping

while standing; F: running dribbling). (A) accuracy and recall of C4.5; (B) accuracy and recall of SVM; (C) accuracy and recall of BN; and (D) accuracy and recall of

back propagation–artificial neural network (BP-ANN)].
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According to the experimental data in Figure 8, the results
indicate that the angular velocity signals detected by basketball
players when dribbling on the forearm and walking on the
calf have significant noise signals, which lead to the unsmooth
signal data curve. However, the angle signal curves detected by
basketball players are relatively smooth when dribbling on their
arms and walking on their calves. Therefore, the conclusion
suggests that the angle can be taken as the division of unit actions,
reducing the complexity.

Basketball Posture Recognition Test
The test of basketball gesture recognition is to verify the
effect of basketball gesture recognition. The scenes are set of
various basketball actions. The physical information data are
obtained from the different detectors in varying basketball
actions. Experiment, a large amount of data are collected. The

corresponding experimental scene is also tested. The collected
data are processed according to the described data processing
and data division methods. The feature vector set describing the
specific action is obtained. Thus, the sample set is constructed.
Finally, the sample set is sent to the classifier. Here, the realization
of the classifier uses the existing Weka platform to compare and
analyze the performance of several classifiers.

The experiment will organize the walking, running, and
jumping motion data of eight male testers without the ball to
collect basketball motion data.When holding the ball, themotion
data of stationary dribble, walking dribbling, running dribble,
shooting, passing, and catching are collected separately. Each
action is repeated for 50 times. There are 5,000 samples in total.
When holding the ball, the upper body movements included
stationary dribble, walking dribble, running dribble, shooting,
passing, and catching, a total of 2,400 times. There are 2,600 lower

FIGURE 10 | Classification results of lower limb movements in basketball training by different classification algorithms (A: jumping; B: running; C: on foot; D: average

level). (A) Accuracy and recall of C4.5; (B) accuracy and recall of SVM; (C) accuracy and recall of BN; and (D) accuracy and recall of BP-ANN.
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body movements, including walking without the ball, running,
jumping, walking, dribbling running, dribbling, and shooting.
Each tester completed the required actions as required during
the sampling process and monitored the recorded amount of
activity. Table 1 presents the statistical results of the samples
collected by each tester during the data collection process.Table 2
shows the statistics of different movements of the upper and
lower extremities.

Basketball action is mainly an overall movement completed
by the coordinated movement of the upper and lower limbs of
an athlete. Therefore, when basketball moves are recognized,
the upper and lower limb movements are discussed separately.

In the data collection process, sensor nodes are placed in
different positions of the body, and the data on upper and lower
limb movements are collected and discussed, respectively. For
upper and lower limb movements, classifiers are constructed
separately for recognition. The moves made by the athletes
are determined through the combination of upper and
lower limb movements. The classification characteristics of
different classifiers are analyzed. The classification performance
of different classifiers for basketball gesture recognition
is compared. A corresponding classification algorithm is
constructed for training the motion data of additional limbs. In
Figures 9, 10, the whole experimental process is implemented on

FIGURE 11 | Classification of upper limb movements by the four classification algorithms: (A) Accuracy and recall of C4.5; (B) accuracy and recall of SVM; (C)

accuracy and recall of BN; and (D) accuracy and recall of BP-ANN (A: catching; B: passing; C: dribbling; D: shooting).
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the Weka platform, and the recognition effect is analyzed from
the two aspects of precision and recall. A 10-fold cross-validation
method is used.

Figures 9, 10 are obtained through the data analysis of the
body movements, as presented in Tables 1, 2. The recognition
effect of the back propagation (BP) ANN is better for the
action classification of different limbs. Among them, the average
accuracy rate of upper limb movements reached 93.2%. The
average recall rate reached 93.2%. The average accuracy of
lower body movements reached 99.2%. The average recall rate
reached 99.2%. For the four recognition algorithms, the average
accuracy of lower extremity movements (jumping, running, and
walking) ranged from 97 to 99.2%. The average accuracy of upper
body movements ranged from 84.9 to 93.2%. The recognition
accuracy of upper body movements (catching, passing, and
shooting) is relatively low. This is because the upper limb
movement states of in situ dribbling, walking dribbling, and
running dribbling are all dribbling states. The three dribbling
characteristics are similar and difficult to distinguish. Meanwhile,
the upper body movements of dribbling in place, walking,
and running are considered as a movement state. The average
recognition rate is up to 99%, and the average recall rate is
up to 99%.

Analysis of Experimental Results of
Different Classification Algorithms
Figure 11 shows the classification results of athletes’ upper limb
movements in basketball training after the four classification
algorithms are merged.

Figure 11 shows the classifier established by the BP ANN
algorithm, which can efficiently identify the basketball
movements of the ball, passing, dribbling, and shooting. In
detecting upper and lower limb movements, the recognition rate
exceeds 95%. The average accuracy of the four actions is close
to 98.95%. Meanwhile, among the four algorithms, the BP ANN
algorithm can more accurately identify the technical movements
of the upper and lower limbs.

CONCLUSION

The angular velocity signal detected by the basketball player’s
forearm dribbling and calf walking has a significant noise signal.
The drawn signal data curve is not smooth enough. The angle
signal curve detected by the basketball player’s forearm dribbling

and calf walking is relatively smooth. Therefore, the division of
angles as unit actions can reduce the complexity. Meanwhile, the
BP ANN algorithm showed the best action recognition effect. In
the detection of upper limb movements of athletes in basketball
training, the average accuracy is close to 93.3%. The average
recall is immediate to 93.3%. In detecting lower limb movements
of basketball-trained athletes, the average accuracy rate is close
to 99.4%. The average recall is close to 99.4%. In detecting
upper and lower limb movements, the BP ANN algorithm is
used to build a classifier: the recognition method can efficiently
identify basketball movements of ball, passing, dribbling, and
shooting with a recognition rate of over 95%. The average

accuracy of the four actions is close to 98.95%. This can accurately
collect the sports parameters of the athletes in real-time, analyze
and identify the sports postures of the athletes, and build a
training effect evaluation model. The coaches make reasonable
adjustments to the training program and scientifically evaluate
the training quality. This is of great significance to improving
athletes’ competitive ability and coaches’ decision-making ability.

However, this study also has certain limitations. The technical
movements of basketball training are not rich enough, resulting
in preliminary results. In the future, the basketball teaching
assistant robot should combine the trainee’s different action
designs and tactical combinations by meeting the trainee’s needs
efficiently and purposefully. The robot will be equipped with
various peripheral sensors, infrared (IR) sensors, visual sensors,
etc., to monitor the target position in real-time and make
corresponding defenses and counterattacks. These problems will
be further improved to ensure the routine implementation of
various assumptions and meet the needs of college physical
education teaching basketball tactics.
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The purpose of the study is to improve the performance of intelligent football training.

Based on deep learning (DL), the training of football players and detection of football

robots are analyzed. First, the research status of the training of football players

and football robots is introduced, and the basic structure of the neuron model and

convolutional neural network (CNN) and the mainstream framework of DL are mainly

expounded. Second, combined with the spatial stream network, a CNN-based action

recognition system is constructed in the context of artificial intelligence (AI). Finally, by

the football robot, a field line detection model based on a fully convolutional network

(FCN) is proposed, and the effective applicability of the system is evaluated. The results

demonstrate that the recognition effect of the dual-stream network is the best, reaching

92.8%. The recognition rate of the timestream network is lower than that of the dual-

stream network, and the maximum recognition rate is 88%. The spatial stream network

has the lowest recognition rate of 86.5%. The processing power of the four different

algorithms on the dataset is stronger than that of the ordinary video set. The recognition

rate of the time-segmented dual-stream fusion network is the highest, which is second

only to the designed network. The recognition rate of the basic dual-stream network is

88.6%, and the recognition rate of the 3D CNN is the lowest, which is 86.2%. Under the

intelligent training system, the recognition accuracy rates of jumping, kicking, grabbing,

and starting actions range to 97.6, 94.5, 92.5, and 89.8% respectively, which are slightly

lower than other actions. The recognition accuracy rate of passing action is 91.3%, and

the maximum upgrade rate of intelligent training is 25.7%. The pixel accuracy of the

improved field line detection of the model and themean intersection over union (MIoU) are

both improved by 5%. Intelligent training systems and the field line detection of football

robots are more feasible. The research provides a reference for the development of AI in

the field of sports training.

Keywords: deep learning, human action recognition, dual-stream network, functional strength training,

recognition accuracy
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INTRODUCTION

Football has become the most popular sport in the world today
due to its strong antagonism and enjoyment, and it is known as
“the largest sport in the world.” As the top football league, the
Fédération Internationale de Football Association (FIFA) World
Cup is held every 4 years. As of the 21st World Cup in 2018,
the global TV audience has reached more than 3.5 billion (Pons
et al., 2021). Football requires high physical fitness of athletes,
especially strong jumping ability, which is an indispensable skill
for shooting. It not only requires athletes’ leg strength, but also
other parts of the body (Bueno et al., 2021). The functional
training of football refers to the realization of specific sports
functions of the body for football (Teixeira et al., 2021). In
addition to jumping ability, functional strength training in
football sports includes training for kicking strength of their legs,
the stability of athletes’ upper and lower limbs during football
competition, and training for athletes’ acceleration and starting
strength during competitions, etc. (Vella et al., 2021). Currently,
the functional strength training of football players requires
the coaches to adjust training items, supervise the athletes to
complete strength training, and to analyze the training situation
(Guan and Wang, 2021). Due to the limitation of the number of
coaches and the interference factors of man-made supervision,
the speed and strength of the athletes are improved to a small
extent within a certain period. Therefore, artificial intelligence
(AI) is introduced to study the functional training of football.
Since the requirements for AI in the functional training of
football players are in semantic extraction and action recognition,
based on deep learning (DL) and human action recognition
related knowledge, the speed and strength improvement of
athletes in functional training is studied. Currently, human
action recognition is one of the research hotspots in the field
of computer vision, and it is gradually being applied in many
fields, such as virtual reality, video surveillance, the interaction
of AI, medical assistance, etc. (Materne et al., 2020). The
research content of human action recognition mainly includes
the extraction and analysis of human action and the detection
of moving targets (Parim et al., 2021). The research often
encounters discrepancies in different environments, so many
methods of expressing features have been proposed, such as DL
algorithms. DL algorithms are different from traditional artificial
feature extraction, which saves a lot of time and manpower
(Aslam et al., 2021).

Deep learning algorithms belong to the field of machine
learning and are mainly used in the learning of complex
semantics by machines. The DL uses hierarchical extraction
of features and feature learning methods, and currently, it
is widely used in audio recognition, processing of natural
language, and in other fields (Khan et al., 2021). As one of the
commonmodels of DL, the convolutional neural network (CNN)
shows great advantages in visual recognition tasks. Human
action recognition will be studied by combining CNN with the
DL algorithm (Khan et al., 2020). Human action recognition
under DL mainly extracts the global and local information
of the video image in the computer, and it performs feature
extracting and analysis on this part of the information, and then

conducts the recognition of the target behavior (Ullah et al.,
2020).

As an important experimental platform for the research of
AI application technology and multi-agent system (MAS), the
football robot is a vital way to break through the research
in the field of AI technology. Meanwhile, it is also extremely
challenging for scientific researchers. Its related technologies
include robotics, AI, intelligent control technology, sensor
technology, communication, computer and image processing,
and other fields. A football robot is a typical MAS in the
form of competition. The research on its structure theory and
control method has promoted the development of methods
and theories of robotics and AI technology (Setyawan et al.,
2022). Intelligent robots have been widely used in various fields
of social life. As one of the intelligent robots, football robot
games have often been held around the world in recent years. It
integrates technology, viewing and fun, effectively stimulates the
enthusiasm of young people for research, and provides a stage
for cultivating all aspects of ability. Students closely combine
scientific knowledge with practice, link theory with practice, and
exert their intelligence through practical operation, teamwork,
innovation, creation, etc. (Suwarno et al., 2022). The actual
technological level and control skills can be evaluated in the
fairest, most reasonable, and objective way through the robot
football game. Through the competition, its own deficiencies are
found, to improve and innovate technology, and promote the
development of related technologies (Wang, 2022). The Robo
Cup Humanoid Competition is the highest-level competition in
the field of humanoid football robots. The robot captures the
field image through the camera, performs field line detection
on the image, extracts the feature information in the field line
that can be used for robot positioning, combines with the robot’s
movement information, performs robot self-positioning, and
makes decisions and path planning based on the detection and
positioning information to complete match (Watanabe et al.,
2022). Since the current football robot positioning detection is
unstable, it will be combined with the fully convolutional network
(FCN) for research.

The traditional functional strength training of football players
has the problems of insufficient coaches and slow speed in
improving the speed and strength of football players. In the era
of AI, the training problem of football players can be effectively
solved. Based on the current situation of football player training,
the AI is introduced to study the players’ functional training,
aiming to improve the detection technology of football robots.
First, the research background of football training and football
robots in the era of AI is introduced. Second, combined with
video recognition technology, a functional strength training
system by AI and CNN is established, combining time flow and
spatial flow network to build a field line positioning system for
football robots based on FCN. Finally, the feasibility of the two
systems is evaluated. The innovation lies in the application of the
human action recognition system under DL to solve the problems
existing in the ability training of football players. The main
difference between the designed algorithm and other algorithms
is to propose an improved model based on FCN and residual
network for field line detection of football robots. The used data
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set is an image data set containing 4,800 videos. To sum up, the
feasibility of the provided intelligent training system and the high
accuracy of the football detection of football robots are obtained.
The research results provide a new way for the development of
strength training of football players and the detection technology
of football robots.

DESIGN OF AN INTELLIGENT SYSTEM
FOR FUNCTIONAL STRENGTH TRAINING
AND RESEARCH ON FIELD LINE
DETECTION OF FOOTBALL ROBOT

Research Status of Human Action
Recognition
Human action recognition algorithms before the emergence of
DL algorithms were mainly studied through shallow learning
and spatiotemporal features. For example, sampling the pixel
points in the video for dense trajectory acquisition, and
extracting feature information as the result of the recognition
action; acquiring the research target trajectory in the video
by the information of the optical flow field, extracting feature
information, and then performing feature encoding to obtain
recognition results; researching the key point of optical flow
information in the video through the sequence of video;
combining Gaussian distribution to perform feature extraction
on the information in the video, etc. (Fan et al., 2020).

Since the system of human action recognition involves a lot
of domains, including feature selection, machine vision, pattern
recognition, etc., it is also a very challenging processing method
for the computer (Pareek and Thakkar, 2020), so it has important
significance in the research of human action recognition. The
current research on human action recognition has made
great progress, but there are still some shortcomings, such as
insensitivity to the differences among different targets, difficulty
in processing under the influence of complex video environment
background, and differences between video databases and
real data, etc. (Ozcan and Basturk, 2020). The emergence of
DL algorithms has gradually replaced artificial representation
methods, and the above problems have been studied. Methods
of action recognition based on DL include CNN and dual-stream
algorithms (Abdelbaky and Aly, 2021).

The main research direction in DL is the dual-stream
algorithm, which aims at using the two dimensions of space
and time to study video, and then combines the optical flow
image and the video frame image to train the DL model, and
to finally obtain the recognition result (Lagemann et al., 2021).
The CNN has a simple network structure and a large-scale
processing data set, so it is widely used. Among them, the 3D
CNN extracts and recognizes video images through the three-
dimensional convolution kernel, which is more comprehensive
than the two-dimensional algorithm (Fan et al., 2020).

The research on human action recognition has been carried
out earlier, but it has only been applied in sports in recent
years. Research on human movement in the field of sports
involves sports, such as basketball, badminton, etc. Football
research is mainly focused on tracking the trajectory of football

players in the game, and there is less research on strength training
(Stoeve et al., 2021). Thakkar and Shah (2021) proposed the
use of wearable devices for action recognition (Thakkar and
Shah, 2021). In addition, the research methods for human action
recognition include computer vision research (Newman et al.,
2021). Football is a highly antagonistic sport and is not suitable
for wearing equipment. Therefore, the visual aspects of human
action recognition are analyzed.

Research Status of Football Robots
In the 1992 International AI Conference, Professor Alan
Mackworth of Canada first proposed the idea of robot football
in his paper, “On Seeing Robot.” The Federation of International
Robot Soccer Association (FIRA) competition was first proposed
by Professor Kim Jong-hwan of South Korea in 1995. The first
and second international competitions were held in Korea in
1996 and 1997, respectively (Chen and Gao, 2020). In June
1997, the FIRA was announced during the second micro-robot
football competition. Since then, FIRA holds an international
competition every year and an academic conference (FIRA
Congress) to exchange experience and technology in the robot
football research. In 2011, the 16th FIRA Robo World Cup and
Congress were held in Taiwan for the first time, with more
than 10 national teams including South Korea, Canada, Mexico,
the United Kingdom, Singapore, Malaysia, Thailand, Argentina,
Slovakia, and China participated in the competition, and 53
teams competed on the same stage. This is the FIRA game, one
of the international robot soccer game series organized by FIRA
so far (Chen, 2020).

With the development of the FIRA competition, another
major series of football robot competitions, the Robo Cup, has
also been developed by leaps and bounds during the same period.
The Robo Cup J League was planned in June 1993 by Minoru
Asada, Hiroaki Kitano, and Yasuo Kuniyoshi. However, within a
month, it received a positive response from scientific researchers
around the world, and therefore changed its name to Robo
Cup, that is, the Robot Football World Cup. In 1997, the first
official competition and meeting of the Robo Cup was held in
Nagoya, Japan, with 38 teams from 11 countries participating
in the competition (Hong et al., 2021). The competition was a
huge success. Before this competition, many scientific researchers
did a lot of pre-competition preparations, such as drafting
rules, organizing simulation group competitions, etc., to ensure
the success of this competition. Since then, the Robo Cup
competition is held around the world every year, and then the
exchange meeting on its scientific research progress is held,
which provides a good communication platform for scientific
researchers and promotes the rapid development of their related
scientific and technological fields (Houtman et al., 2021).

In 1997, Chinese researchers began to study robot football,
starting relatively late. In 1998, the Chinese branch of the FIRA
was established. In the Robo Cup held in Brazil in August 1999,
the New Neu team of Northeastern University won the first
place in standard action and the fifth place in Mriosot, realizing
the breakthrough of the Chinese team’s 0 gold medal in the
Robo Cup (Antonioni et al., 2021). In 2000, the Robo Cup was
held in Beijing for the first time. In the Robo Cup in August

Frontiers in Neurorobotics | www.frontiersin.org 3 June 2022 | Volume 16 | Article 867028187

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhou et al. Usage of Functional Strength Training

2001, 8 championships among 9 competitions were won by the
Chinese team, which fully proves that China has achieved a very
high development level in the field of robot football research.
After more than 10 years of unremitting efforts, with the strong
support of FIRA and the Chinese Society for AI, the Chinese
robot football team has spread all over the country. So far, there
are more than 200 teams belonging to more than 80 universities.
More andmore scientific research institutes and universities have
begun to organize scientific research forces to join the team of
football robots, which has greatly promoted the development of
football robots and the related fields of science and technology.

The rules of the game before 2013 stipulated that the game
ball is orange, the goal is yellow or blue, and the field line is
white, so the target detection algorithms are all algorithms based
on color segmentation. As the rules of the game continue to
change, the ball becomes a mixture of black and white, the goal
and field lines are both white, and the algorithm based on color
segmentation is no longer effective. Based on the odometry-based
positioning method, Park et al. (2022) calculated the current
robot’s pose relative to the initial moment by accumulating
the measurement results (Park et al., 2022). To achieve higher
accuracy, filtering methods, such as Kalman filtering can be used
for coordination. The advantage of this method is that it can
quickly provide the robot pose, but the disadvantage is that it has
accumulated errors. As the movement time or distance increases,
the error of its pose estimation will also increase. Due to the
high confrontation of robot football games, the robot collisions
between them occur frequently, so thismethod is only suitable for
short-term and short-distance self-positioning. Jeong et al. (2022)
proposed a positioning method based on sensors, such as laser
rangefinders and sonars, using a rotating mirror mechanism to
emit laser beams outwards, and to detect the laser beams reflected
by objects, and to obtain external environmental information.
This positioning method has high positioning accuracy, good
anti-interference, no cumulative error, and a short positioning
period, but the equipment is expensive, and the cost is high
(Jeong et al., 2022). Colombini et al. (2022) proposed a vision-
based positioning method by obtaining images of surrounding
scenes through visual sensors, using some natural or artificial
features in the scenery, and obtaining models of the surrounding
environment through image processing methods to achieve
positioning (Colombini et al., 2022). According to the different
positioning markers, this method can be divided into the
positioningmethod based on road signs and based on white lines.
Due to the limited observation range of general omnidirectional
vision, it is difficult to observe enough positioning marks in
most areas of the site. The CNN has developed rapidly in recent
years. Its excellent performance in image processing has led more
and more researchers to abandon algorithms based on color
segmentation and use CNN to detect balls and goals but still uses
a color segmentation-based algorithm to detect yield lines. The
field line detection algorithm based on color segmentation has a
small amount of calculation and a fast operation speed, but it is
only suitable for the situation of stable lighting conditions, and
the detection effect becomes worse when the lighting conditions
change. The technical committee of the Robo Cup has issued a
notice that the competition venue will be illuminated with natural

light. Therefore, the field line detection effect based on the color
segmentation algorithm will become unstable, and new methods
need to be studied to cope with changes in lighting conditions
and improve the detection stability.

Therefore, in the field detection part of the football robot,
aiming at improving the detection stability, based on the FCN
model, an improvedmodel is proposed for the field line detection
of the football robot. The design idea of the residual network
model is adopted, and the number of network convolutional
layers is increased. The residual structure is introduced to
enhance the ability of the network to extract image features,
and more low-level field line information is incorporated in
the process of upsampling to improve the accuracy of the field
site line.

Theory Basis of DL
The Neuron Model of Neural Network

The principle of DL is to improve the computer performance
from both new data and historical experience after being
input into the computer (Sarker, 2021). The research of DL
algorithms originated from the development of artificial neural
networks, so DL also has the characteristics of neural network
hierarchical structure (Chen et al., 2021). The neural network
model is a model similar to the neural mechanism of the
human brain designed by humans in order to allow computers
to recognize behaviors and understand images and other
complex behaviors. The neural model contains a hierarchical
structure composed of neuron nodes. Neurons are its basic
components. The specific expression of neurons is shown in
Equation (1) (Kuwana et al., 2020).

σw,b(X) = σ

(

WTx
)

= σ

(

n
∑

i=0

wixi + b

)

(1)

In Equation (1), X is the output value; W is the weight; b means
the offset value; n is the number of inputs, i represents the input
sequence number; σ is the output value.

Neurons between different levels are connected through input
and output, and the relationship between output and input is
described by an activation function. In general action recognition
research, choosing a non-linear function as the activation
function is of great significance in solving complex problems in
real life. The more commonly used activation functions include
the hyperbolic tangent function, the step function, the S-shaped
growth curve, modified linear unit, etc. The specific expressions
of these four functions are shown in Equations (2)–(5).

tanh(x) =
ex − e−x

ex + e−x
(2)

Equation (2) is the expression of the hyperbolic tangent function,
and the output value ranges from−1 to 1.

sgn(x) =

{

1, x ≥ 0
0, x < 0

(3)

Equation (3) is the expression of the step function. It can be seen
from Equation (3) that when the input value is less than 0, the
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output of the step function is 0, which means that the neuron has
not received excitation; when the input value is greater than or
equal to 0, the output of step function is 1. It can be seen that
the step function is an idealized expression, and it is used to solve
complex practical problems.

sigmoid(x) =
1

1+ e−x
(4)

Equation (4) is the expression of the S-shaped growth curve
function, and the output value range is between 0 and1.When the
input value of the S-shaped growth curve function has an extreme
value, the gradient of the function approaches 0, which will affect
the back propagation, so it is not suitable for DL.

Relu(x) = max(0, x) (5)

Equation (5) is the expression of the modified linear element
function. The calculation of the modified linear element is
relatively simple, and it has the characteristics of fast derivative
convergence, so it is widely used to study the problem of
gradient disappearance.

The feedforward neural network composed of a certain
combination of multiple neurons is an important part of the
study. The function of the feedforward neural network is to
spread samples. The network structure of the feedforward neural
network has no closed loops and no feedback information in the
forward direction. The specific structure is shown in Figure 1.

Figure 1 shows the three components of the feedforward
neural network, including the output layer, input layer, and
hidden layer. In the figure, ai represents the output of the ith
neuron, and the specific equation expressions are shown in
Equations (6)–(9) (Haldorai and Ramu, 2020).

a
(2)
1 = f

(

H
(1)
11 m1 +H

(1)
12 m2 +H

(1)
13 m3 + c

(1)
1

)

(6)

a
(2)
2 = f

(

H
(1)
21 m1 +H

(1)
22 m2 +H

(1)
23 m3 + c

(1)
2

)

(7)

a
(2)
3 = f

(

H
(1)
31 m1 +H

(1)
32 m2 +H

(1)
33 m3 + c

(1)
3

)

(8)

qH,c(m) = a
(3)
1 = f

(

H
(2)
11 a

(2)
1 +H

(2)
12 a

(2)
2 +H

(2)
13 a

(2)
3 + c

(2)
1

)

(9)

In Equations (6)–(9),m is the input information; H is the weight
parameter; c is the bias parameter; q is the final output result of

the hidden layer, and a
(1)
i represents the output of ith neuron

node in the lth layer. H
(l)
ij represents the weight of the ith node

of the lth layer connected to the ith node of the first layer, and c
(l)
i

represents the bias parameter of the ith neuron of layer l, and f is
the activation function.

The input weighted sum is introduced to represent the ith
node of the lth layer, and the above equations are simplified to
obtain Equations (10) and (11).

vl = H(l−1)f (v(1−l))+ c(l−1) (10)

al = f (v(l)) (11)

f is the excitation function in Equations (10) and (11).

Next, data update is needed to complete network training. The
update of parameter is performed by the back propagation
method. The loss function expression of the network output layer
is shown in Equation (12).

P(H, c ; m, y) =
1

2

∥

∥qH,c(m)− y
∥

∥

2
(12)

In Equation (12), y is the output result obtained, and P is the
loss function.

The residuals of different nodes are expressed by
Equation (13).

β
(l)
i = (

sl+1
∑

j=0

H
(l)
ji β

(l+1)
i )f ′(v

(l)
i ) (13)

In Equation (13), s represents the number of nodes in all layers.
The relationship between the loss function and the input value

is expressed as Equations (14) and (15) using residuals.

∂

∂H
(l)
ji

P(H, c ; m, y) = a
(l)
j β

(l+1)
i (14)

∂

∂b
(l)
j

P(H, c ; m, y) = β
(l+1)
i (15)

Equations (14) and (15) express the rate of change of the loss
function to the input.

Finally, the gradient descent method is used to update the
parameters H and c, and equations (16) and (17) are obtained.

H
(l)
ji = H

(l)
ji − α

∂

∂H
(l)
ji

P(H, c) (16)

c
(l)
j = c

(l)
j − α

∂

∂c
(l)
j

P(H, c) (17)

α represents the learning rate in Equations (16) and (17).

Theoretical Basis for CNN and DL

Convolutional neural network is mainly used to extract
feature information. It can effectively combine the training
process and feature extraction, and has good results in image
processing. Figure 2 shows the structure of CNN.

Figure 2 implies that CNN is mainly composed of an output
layer, a fully connected layer, a pooling layer, a convolutional
layer, and an input layer.

The convolutional layer is the core component of CNN and
contains a certain number of convolution kernels. Convolution
is similar to a filtering operation and is mainly used to extract
features. The CNN is an inter-layer structure, which uses neurons
between layers to connect. After the original image is input,
it performs certain operations with the convolution kernel to
output certain characteristic information. The main function
of the pooling layer is to improve the generalization ability of
the neural network model, while preventing the occurrence
of over-fitting. The fully connected layer is usually set at the

Frontiers in Neurorobotics | www.frontiersin.org 5 June 2022 | Volume 16 | Article 867028189

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhou et al. Usage of Functional Strength Training

FIGURE 1 | Structure of feedforward neural network.

FIGURE 2 | Structure of CNN.

end of the network structure, and the convolutional layer and
the pooling layer are connected to synthesize the extracted
two-dimensional feature vectors and form a one-dimensional
feature vector. Each neuron in the fully connected layer is fully
connected to all neurons in the previous layer to integrate local
information in the network, so it occupies most of the parameters

in the network. In actual use, the fully connected operation
can still be implemented by a convolution operation. The
main difference between the fully connected layer and the
convolutional layer is that the neurons of the convolutional
layer and the input data are locally connected, and the neurons
share parameters.
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TABLE 1 | The specific content of the design system.

Design system module Specific content

Service processing module Training information storage query, identity

information authentication and data

processing

Video image processing

module

Face recognition, motion recognition

system, scoring system

There are many application frameworks for DL. Among them,
the Caffe framework (Somu et al., 2021) can be well combined
with CNN, which is widely used in solving image problems. The
Caffe framework stores data and builds training and network
core units, and finally calculate the loss to get the function of a
given task.

Design of the System of Functional
Strength Training Based on AI
Adopting a client/server architecture, football players’ action
information is collected and transmitted to convert the
information into optical flow diagrams for action recognition,
and finally the analysis results are obtained (Zhang et al.,
2020). Camera equipment is mainly used to capture the action
videos of the players to achieve the purpose of intelligent
functional training for football players. The coach only needs to
analyze the results in the server to get the training effect of each
football player.

The design system includes two modules, the business
processing module, and the video image processing module. The
specific content is shown in Table 1.

Table 1 suggests that the two modules cooperate with each
other to finally complete the intelligent functional training for
football players.

The overall framework of the design system is shown in
Figure 3.

Figure 3 reflects that the program of server-side recognizes
and synchronizes the video data of the football players’ training
actions, and finally obtains the action recognition and feature
extraction of the video data. The client program collects video
data, then accepts the results of data recognition, and finally
displays the training results of each athlete.

The specific workflow chart of the whole system is shown in
Figure 4.

Figure 4 shows that the client has instructions for the training
start. Once the training starts, the client performs camera
shooting and synchronizes the video data to the server. The
server starts the action recognition at the same time. During
the training process, the client can accept user instructions
throughout the entire process to stop training. The server
finally feeds back the results. After receiving feedback, the client
compares the recognition result of the action in the video with the
trainingmode in the database, displays the completion of training
on the client interface, and saves the data (Pareek and Thakkar,
2020).

The main content of the client software workflow is shown in
Figure 5.

Figure 5 presents that the client is composed of five parts. The
client starts to work after receiving the start instruction. After the
training video is obtained, it is synchronized to the server port
immediately. After the server feeds back the recognition result, it
performs real-time show on the client section interface.

The server-side software workflow is shown in Figure 6.
Figure 6 shows that the server-side workflow consists of

six parts. After receiving the video data, the server-side starts
preprocessing the data and extracting feature, then performs
network fusion, and finally feeds back the recognition results to
the client terminal for interface displaying.

Since the time of data transmission of Socket is short and
the amount of data is small, the communication protocol
among the modules in the design system adopts Socket
(Elharrouss et al., 2020).

Based on the above content, the overall communication
connection of the system of functional strength training is
summarized, and the results are shown in Figure 7.

Figure 7 indicates that the overall process of communication
connection of the system of functional strength training
strengthens the connection between the client and the server
segment, which makes the video information processing faster,
and at the same time, the server continues to establish new
threads to ensure a complex client service demand resolution.

Video Action Recognition
In recent years, most research has been inspired by the dual-
stream CNN, which combines the spatiotemporal information
extracted from the Red Green Blue (RGB) image and the optical
flow image of the video, and extracts and recognizes two types
of features from separate CNNs. Finally, video information
generated from the prediction result contains two parts: spatial
information and time information. Compared with static images,
the time series components of video provide additional time-
representing motion information for action recognition. The
spatial information in the video is the position on each frame
of the image, which represents the spatial information, such as
the target and scene in the video; the temporal information refers
to the change between video frames and carries the movement
information of the object between video frames, including the
movement of the camera or movement information of the
target object, etc. The idea of recognizing video action mainly
includes two categories, namely, the method of extracting video
spatiotemporal features for video recognition, and the method
of retraining by using human skeleton node information as
network input data. The system uses the ordinary camera to
collect motion video for recognition, so the dual-stream CNN
is mainly used to extract the temporal and spatial features of
the video for action recognition and analysis. The streaming
CNN is composed of a convolutional network that expresses
two-dimensional information of spatial flow and time-domain
flow. It is used to process the spatiotemporal information of
video data. The design architecture of dual-stream networks
comes from the dual-stream hypothesis in the research of
biological vision systems. Both streams are CNNs with the same
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FIGURE 3 | The overall framework of the design system.

structure. The spatial stream network takes a single-frame RGB
image of the video as input. The decoupling of the spatial stream
and the temporal stream network also enables the use of image
data on large image data sets. The pretraining of the spatial
stream network is used to identify the surface features related
to the action and describe the feature in the spatial domain in
the video. The spatial flow network is the same as the common
static image recognition network, while the network of time flow
inputs multi-frame stacked flow images into the network for
training, and is used to learn the time features contained in the
action, such as the movement and deformation of the target. It
also describes the characteristics of video actions in the time
domain. Using the method of multi-task training to provide two
output layers of softmax for fusion, the output of the softmax
layer is the probability of identifying the action category, and
providing two softmax outputs is equivalent to the process of
regularization. There are two main fusion methods: averaging
and using the softmax layer to retrain a support vector machine
(SVM) classifier for recognition.

This section gives a detailed description of the core of the
research, namely video action recognition. Based on the previous
content, a dual-stream CNN is used to study the recognition of
remote mobilization training actions. Optical flow is the velocity
vector of human motion in the video. The optical flow image
is extracted from the video for data processing and motion
feature extraction.

The most famous methods for calculating optical flow
are the Hom—Schunck algorithm and the Lucas—Kanade

algorithm. The Hom—Schunck algorithm is based on the fact
that the gray level of the object image remains unchanged in
a short time interval, assuming that the velocity vector field
changes slowly in a given neighborhood, and then the calculation
of optical flow under global smoothness constraint of the
optical flow field is proposed. However, due to the smoothness
assumption that the algorithm is based on, the vector estimation
of optical flowmay have a large error in the edge area of the image
or the presence of occluded areas. The Lucas—Kanade algorithm
uses local smoothness constraints, that is, assuming that all pixels
in a small neighborhood have similar motions, and then realize
the estimation of optical flow. Compared with the previous
algorithm, the Lucas—Kanade algorithm is simple to implement,
and it has lower computational complexity. After comparison,
the Lucas—Kanade algorithm is selected to calculate the optical
flow (Pratama, 2021). The specific calculation equation of optical
flow is shown in Equation (18).

DTD
→

w = DT(−c) (18)

In Equation (18), T refers to time; c is a constant term; and D is
a coefficient matrix, w=dy/dt, where y is the ordinate position of
the action. Solving Equations (18) and (19) (Zhao et al., 2021) can
be obtained.

[

u
w

]

=

[∑

i Fx(Xi)
2&
∑

i Fx(Xi)Fy(Xi)
∑

i Fx(Xi)Fy(Xi)&
∑

i Fx(Xi)
2

]−1 [
−
∑

i Fx(Xi)F(Xi)
−
∑
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]
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FIGURE 4 | The specific workflow chart.

In Equation (19), u=dx/dt, F is the brightness, and x is the
abscissa of the position of the action.

Data collection uses Haikang camera equipment to obtain
the video, and then uses the kit for software development of
equipment network to convert the information flow into a
three-color mode, and finally uses a sparse sampling strategy to

process the video information. The collection process of real-time
video stream first needs to initialize the software development
kit (SDK). The device network SDK is developed by Haikang
based on the communication protocol of private networks. It
is a supporting module for network hard disk recorders, video
servers, network cameras, and other products. It can be used for
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FIGURE 5 | The client software workflow.

remote visit equipment and conduct secondary development. It
could verify and login by setting the Internet Protocol (IP),
port number, and other information of the webcam; then real-
time video preview could be realized by setting the playback
channel, video stream types, connection methods, and other
information. It could be realized that the real-time video stream
acquisition is done through the playback callback function; in
addition, setting the connection timeout, reconnection time, and
abnormal state callback functions need to be done; finally, the
SDK is called to convert the obtained real-time video stream
into Red, Green, Blue, Alpha (RGBA) data, and the entire video
stream collection is completed. After using the Haikang camera
to obtain the real-time video stream, the data transmission
module on the client end will synchronize the video stream
data frame by frame to the server-side program for processing,
and save it as a video file in the client hard disk at the
same time.

Based on the previous content, the image data set the size of
the input training of the network design as 224 × 224. Through
the first layer of convolution conv1, the size of the convolution

kernel is set to 7 × 7, and the step size is set to 2, with a total of
96 convolution kernels, outputting 96 feature maps of 112× 112
size. After the pooling operation, 96 feature maps with a size of 56
× 56 are output. Then through the second layer of convolution,
conv2, the size of the convolution kernel is set to 5 × 5, and the
step size is set to 2, and a total of 25 convolution kernels and
256 feature maps with a size of 28 × 28 are output. After the
pooling operation, 256 14 × 14 feature maps are output. Then
through the third layer of convolution, conv3, the fourth layer
of convolution, conv4, and the fifth layer of conv5 are output. If
the size of the convolution kernels of the three layers are all 3
× 3, the step size is also 1, and the number is also 512, so that
after the last three layers of convolution, 512 14 × 14 feature
maps are output. Then, after the pooling operation, 512 7 × 7
feature maps are output. Finally, through the two fully connected
layers, full 6, full 7 (global average pooling avg pool), and the final
Softmax, the output is obtained as a 1 × 1 × 101 or 1 × 1 ×

51 vector. The main content of the functional training database
for football players involved in this study is shown in Table 2

(Cournoyer et al., 2021).
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FIGURE 6 | The server-side software workflow.

Table 2 presents that the functional strength training of
football players is mainly carried out from the aspects of jumping
strength, kicking strength, and competing strength. The training
video in the database of this design system is obtained by
referring to the current football player training video. After
obtaining the real-time video, the computer is used to compare

the training actions in the video with the actions in the database
to obtain the quantified scores of speed and strength.

Based on the above content, the overall architecture of the
network model of action recognition is given here, as shown in
Figure 8.

As Figure 8 suggests, a time-segmented CNN is used based
on a sparse sampling strategy. The time-segmented CNN is used
to segment the entire video and sparsely sample short segments
from it as the network input. The temporal characteristics
of optical flow images and the spatial characteristics of RGB
images are extracted to perform action recognition. The time
segmentation CNN first divides a video containing an action into
several equal parts, and then randomly extracts a short sequence
from it, so that the short segment generated by its sampling
can effectively express the motion information in the entire
video. For each sampled segment, feature extraction is performed
through a dual-stream CNN. The temporal stream network
captures the temporal structure information of the video and
the spatial appearance information of the image captured by
the spatial stream network, and it generates a corresponding
dual-stream network prediction for each short segment. Finally,
an aggregation function is used to fuse the characteristics of
time flow and spatial flow network as the recognition result of
the whole video. This method can effectively extract the long-
term information of the entire video, which is more accurate
and effective than the recognition method by densely sampling
the entire video segment and does not increase the calculation
cost. In the learning process, the loss value of the entire video
prediction is optimized through the iterative update parameter
calculation to realize the end-to-end network training process.

The application of the research system to the speed and
strength of football players will also be reflected by a scoring
system. The scoring system is based on video recognition.
After comparing and analyzing the standard data in the video
recognition system, the scoring system will score the athletes’
movements according to the differences in their movements.
Since the improvement of the speed and strength of football
players will be reflected in the performance during the game, the
scoring systemmainly deducts in accordance with the foul action
of the players. The systemwill give the detailed foul or unqualified
actions of the football player for reference and promotion.

Under the premise of using the action recognition system to
identify the result of foul action, Harris3D operator is used to
establishing the potential function of the foul action sequence,
which provides support for foul action feature extraction. By
Harris3D operator, the foul action is mined; the spatiotemporal
interest points of each different foul action are extracted in
the image; the features of gradient histogram and streamer
direction histogram are obtained, which are divided into 72-
dimensional and 90-dimensional images, respectively. Fusion
gradient histogram and the streamer direction obtain a 162-
dimensional feature vector based on the histogram, which
constitutes the underlying feature of the foul action and selects
the key skeleton points of the football player. According to the
characteristics of human body structure, the football player’s
body is divided into seven local reference points: shoulders, left
and right arms, left and right legs, and left and right feet. The
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FIGURE 7 | The overall communication connection of the functional strength training system.

shortest Euclidean distance between each point of interest in time
and space of the foul action and the local reference center point
is shown in Equation (20).

n =

argmin

√

(

ai − xj
)2

+
(

bi − yi
)2

(

xṅ, yn
) (20)

In Equation (20), n represents the local reference center human
body range mark, which is called the spatiotemporal interest
point range. It is divided into 7 regions according to the
local reference point; (xj, yj) represents each spatiotemporal
interest point.

The foul action set time and space interest points are divided
into three levels, which are the characteristics of all foul actions
of football players; the corresponding foul action features of the
shoulder, left and right arms, and left and right legs; the foul

action characteristics of the shoulder, left and right arms, left
and right legs, and left and right feet. Using K-means to cluster
the bottom foul action features, the number of cluster centers is
K, and K×162-dimensional foul action images are obtained. At
the same time, three levels of foul action images in seven areas
are generated, and the T frame of the foul action in each area
is defined as a foul action spatiotemporal action module, which
represents a certain part of the foul action feature of a football
player. The number of overlapping frames of two foul action
image units is T/2, and all action units in each foul action image
are organically synthesized to obtain a spatiotemporal foul action
unit sequence with a length. When comparing the sequence data
extracted from standard actions and actions of football players,
since everyone’s action sequence time is not necessarily the same,
the direct use of conventional distance comparison methods,
such as Euclidean distance will result in poor scoring accuracy,
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TABLE 2 | Actions of functional training database.

Functional strength

training method

Specific requirements

Jumping power In groups of three, tie sandbags on your legs to

fight for the top ball

Kicking strength After finishing the forward roll, jumping the low

hurdle and drilling the high hurdle, sprint and

shoot

Power in competition Two football players cooperated, one dribbled

the ball quickly, and the other made a tackle.

After the tackle was completed, he quickly got

up and chased the ball

Starting force in running In groups of 10 people, after hearing the

whistle, they began to sprint 100 meters

Leg strength In groups of two, one person throws a solid ball

to the other party, and the other party passes it

back with his feet after receiving the ball

so this method of sequence comparison is adopted to match the
dynamic time warping (DTW) algorithm.

Simulation Experiment of Intelligent
System of Functional Strength Training
It can be seen from Figure 8 that after the video segment is input
to the algorithm, the tricolor mode image and the optical flow
image are first extracted (Fan et al., 2020), and then combined
with the commonality of the segment to classify the video action,
and finally the video recognition result is obtained.

The feature fusion method is convolution fusion, and the
fusion is achieved through the combination of two CNNs after
feature extraction. The dual-stream fusion adopts pooling and
three-dimensional convolution.

Shen et al. (2019) proposed a method for mining the text
of two-layer concept link analysis. Based on this, a data set is
selected. The data set contains 4,800 videos with a resolution
of 320× 240, and the duration of each video action is 3–9 s, 25
frames per second. The content of the videos are presented in
Table 2. First, the grid training of the gradient descent algorithm
is performed, the parameters are set to a momentum of 1.0, and
the batch size is 256 (Wang et al., 2019). The parameters of the
dual-stream network set as the initial weight of time flow is 0.01,
and the space flow is 1. Three methods are used for experimental
verification, namely, time flow, and space flow network zeroing
training, the CNN of only pretraining the space flow, and
initializing the time flow network using the tricolor mode to
compare the recognition effect of the dual-stream CNN. On this
basis, the commonly used quantity set is introduced, and the
recognition effect between the algorithm designed herein and
other common algorithms under the two kinds of quantity sets
is compared.

Finally, the practicability and reliability of the entire system
are verified. About 20 football players are selected to collect and
verify 5 training actions. Finally, the best result of each recognized
action is selected. The recognition accuracy greater than 90%

is considered an excellent one. If the recognition accuracy is
between 85 and 90%, it is good (Gong et al., 2019).

Due to the addition of a scoring system in the experiment,
the performance of football players will be reflected in
scores. The scores under the traditional training mode are
counted by the manual score of the football team coach,
and the training system with AI is scored by the computer
system. The training improvement is reflected by the football
action score improvement rate before and after the use of the two
training modes.

The operating system of the experimental environment adopts
the operating system (CentOS) Linux release 7.3.1611, the central
processing unit (CPU) adopts Intel Xeon E5-2680 v2. It has
the memory capacity of 128 Gigabytes (GB), double data rate
(DDR) of 2 2,400/3,200MHz, and hard disk capacity of 512
GB+4 Terabyte (TB). The graphics processing unit (GPU) used
is GeForce Giga-Texel (GTX) Titan V.

The Algorithm Design Effect Is Compared
With Traditional Training
Since the purpose is to compare with traditional strength
training to improve the speed and strength of football players, a
comparative experiment is carried out here. About 20 athletes are
selected and divided into two groups. They are given a traditional
functional strength training for a week, and based on that,
an algorithm has been designed herein. Finally, the speed and
strength results of the two groups before and after training are
tested. The intelligently trained athletes are scored by statistics,
and the ability of athletes under traditional training are scored by
coaches. Five kinds of action are set up to improve the speed and
strength of athletes.

The learning of network parameters is realized by a small
batch of gradient descent algorithms, with batch size set to 256
and momentum set to 0.9. Gradient descent in small batches can
be accelerated by the calculation of matrices and vectors, and the
variance of updated parameters are reduced to obtainmore stable
convergence. Using a batch each time can reduce the number
of iterations of convergence, and at the same time make the
result of convergence closer to the effect of gradient descent. For
the traditional descendent gradient algorithm, if the functional
plane of the actual objective is a partially concave surface, then
a negative gradient will make it point to a steeper position. This
situation near the local optimal value of the objective function
will slow down the convergence speed. At this time, it is necessary
to give the gradient a momentum, so that it can jump out of
the local optimum and continue to optimize in the direction
of the gradient descent, so that the network model can more
easily converge to the global optimum. For the time segmentation
dual-stream network used in this system, the initial weight of
the spatial stream convolutional neural network is set to 1, and
the initial weight of the time stream convolutional network is
set to 1.5. The learning rate for the network training is set
smaller: the initial value of the spatial flow of CNN is set to
0.01, and is adjusted to one tenth for every 2,000 iterations;
the initial value of the time flow of CNN is set to 0.005, and
is adjusted to one-tenth after 12,000 and 18,000 iterations of
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FIGURE 8 | The overall architecture of the network model of action recognition.

network parameters. In addition, the total time-consuming data
training are as follows: the spatial streaming network requires
about 2 h; the time streaming network requires about 11 h.

There may be a risk of overfitting when deep CNN is used for
network training. In order to further alleviate this problem, three
network training strategies are used here to compare the ability
to alleviate the risk of overfitting. The first method is to train the
spatial stream and time stream network directly from scratch by
using the Gaussian distribution to initialize the CNN parameters,
without any other means of pretraining processing; the second
method is to perform the pretraining processing for convolving
the spatial stream CNN. Since the spatial stream convolutional
network only uses RGB images as the network input data, the
convolutional network can be pretrained through the Image Net
image database, and the pre-rained network parameters are used
as the initial parameters of spatial stream network; the third

method is the pretraining processing method of the cross-input
model that initializes the time flow network with the RGBmodel,
while still initializing the Image Net data set as the pretraining
input data of the spatial flow network. First, the image pixels are
deep CNN discretized at the interval of [0, 255] through linear
changes of optical flow characteristics, so that the range of the
optical flow image is the same as the RGB; then the mapped
image is input to the spatial flow convolutional network for
training, and then the preprocessing is performed. The weights
of the first convolutional layer of the trained spatial stream
convolutional network model are averaged, and the average value
is copied according to the number of input channels of the time
stream convolutional network. The time-splitting dual-stream
network divides the input video sequence into three segments
for processing. Therefore, the average value is used as the initial
weight of the three channels of the time flow network for training.
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FIGURE 9 | The model before and after improvement.

Field Line Detection for Football Robots
Based on the previous content, combined with CNN for yield
line detection, but the extraction ability of traditional FCN
model is weak, so it needs to be improved. By increasing the
number of convolutional layers, introducing residual structure,
constructing residual blocks, and enhancing the model feature
extraction ability, the accuracy of field line detection is improved
finally. After the residual structure is introduced, the input
feature of each convolutional layer is the sum of the input
and output features of the previous convolutional layer, so each
convolutional layer can extract more features, which is more
conducive to improving the detection accuracy. Residual block
refers to a residual structure containing multiple consecutive

convolutional layers, that is, a direct correlation channel is
introduced between the input of the first convolutional layer
and the output of the last convolutional layer, so that the input
features of the residual block are directly added to the output
features as input features for the next convolutional layer or
residual block. Themodel before and after improvement is shown
in Figure 9.

In Figure 9, compared with the FCNmodel, the convolutional
layers of the improved model are increased from 15 to 34, and
the convolutional layers are constructed into 4 residual blocks,
which improves the ability of feature extraction. In the residual
block, a convolutional layer with a stride of 2 is used to replace the
pooling layer for downsampling. In the process of upsampling,
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FIGURE 10 | Comparison of recognition effects of CNN under different training methods.

a cross-layer connection structure is used to fuse the output
feature maps of all residual blocks to make the final detection
result more refined, and the field line detection can be performed
more accurately.

The evaluation index of the field line adopts the average pixel
precision P and themean intersection over Union (MIoU)Q, and
the specific calculation is shown in Equations (21) and (22).

P =
1

k+ 1

k
∑

i=0

∑k
i=0 Pii

∑k
j=0 Pij

(21)

Q =
1

k+ 1

k
∑

i=0

Pii
∑k

j=0 Pij +
∑k

j=0 Pji − Pii
(22)

In Equations (21) and (22), k+1 is the number of categories
(including 1 background class); Pii indicates the point that is
correctly predicted; Pij means that the pixel marked as class i
is predicted to be the pixel of class j; Pji denotes that the pixel
marked as class j is predicted to be pixels of class i.

In the experimental field, three lighting conditions are set,
namely, lighting, sufficient natural light, and insufficient natural
light. The average pixel precision andMIoU of field line detection
between the color segmentation model and the improved model
are compared under different lighting environments, and the
average pixel precision and MIoU of the FCN model and
the improved model are compared. Finally, the continuously

running time of three models is compared, and the model uses
100 images of the research area.

ANALYSIS OF INTELLIGENT DETECTION
RESULTS OF FUNCTIONAL TRAINING
INTELLIGENT SYSTEM AND FOOTBALL
ROBOT

Analysis of Functional Training Results
Based on the previous content, a comparison of the recognition
effect of CNN under different network training methods is
obtained, as shown in Figure 10.

Figure 10 displays that under different training methods, the
recognition effect of CNN is somewhat diverse. Among them,
the dual-stream network has the best effect, with a recognition
rate of 92.8%. On the whole, the recognition rate of the time-
stream network is lower than that of the Shuangliu network,
and its highest rate is 88%; the recognition rate of the spatial
stream network is the lowest among the three comparisons,
which is 86.5%. The overall recognition rate of the network under
the three training methods is sorted from large to small, cross
mode initialization, spatial flow pretraining, and training from
the scratch. Analysis of the reason for this phenomenon is that
the feature recognition dimension of the dual-stream network is
higher, and the coverage is more comprehensive, and the single

Frontiers in Neurorobotics | www.frontiersin.org 16 June 2022 | Volume 16 | Article 867028200

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhou et al. Usage of Functional Strength Training

FIGURE 11 | Comparison of recognition effects among different algorithms.

network recognition often has only one dimension. The method
of training from scratch is prone to overfitting when the data
set is small, so the recognition rate is the lowest among the
three training methods, and the spatial flow pretraining method
can reduce the risk of overfitting to a certain extent, and the
training method of crossover mode could reduce risks to the
largest extent. It can be seen that the design algorithm is more
feasible.

After the introduction of common quantity sets, the
processing results of common algorithms for the two kinds of
quantity sets are shown in Figure 11.

Figure 11 shows that in the processing of the data set, the
four algorithms have different effects on the video set selected
from herein and the common video set. The processing power
of the data set herein is stronger than that of the common video
set. The recognition rate of the time-divided dual-stream fusion
network is the highest, reaching 92.8%. The recognition rate of
the time segmentation network is second only to the network
designed herein, which is 90.9%. The recognition rate of the basic
dual-stream network is 88.6%, and the recognition rate of the
3D convolutional neural network is the lowest, just 86.2%. When
analyzing the reasons, it can be seen that the commonly used data
set has a large amount of data, so the processing effect is poor. The
time-divided dual-stream fusion network can sample efficiently,
and other algorithms are prone to excessive information due to a

long time for sampling. The algorithm designed herein is highly
reliable.

On the basis of Table 2, the recognition accuracy of the five
actions of this design system is compared, and the results are
shown in Figure 12.

Figure 12 demonstrates that under the intelligent training
system, the recognition accuracy of different actions is high, and
the highest is that of jumping actions, reaching 97.6%, and the
recognition accuracy of kicking actions is 94.5%. Grabbing action
is 92.5%, starting action is slightly lower, reaching 89.8%, and that
of passing action is 91.3%. It can be seen that the recognition
accuracy is beyond the good level. Except for the recognition
accuracy of the starting movement, others are all at an excellent
level. The analysis shows that when the 10-person group set up
starts, the overlap rate of the athletes in the video is relatively
high, so the system identification is more difficult. The intelligent
training system can meet the design requirements.

Finally, the results of the functional strength training of the
athletes under the AI system are counted, and it is compared with
the scores under the traditional training methods. The results are
shown in Figure 13.

Figure 13 shows that the upgrade rate of speed and strength
under intelligent training is higher than that under traditional
training. The maximum upgrade rate of intelligent training is
25.7%, which is the improvement of passing ability, and the
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FIGURE 12 | The recognition accuracy of different actions.

FIGURE 13 | Comparison of training results.

Frontiers in Neurorobotics | www.frontiersin.org 18 June 2022 | Volume 16 | Article 867028202

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhou et al. Usage of Functional Strength Training

FIGURE 14 | Performance comparison of color segmentation model and improved model.

FIGURE 15 | Performance comparison of the models [(A) The comparison between the FCN model and the improved model, (B) The comparison of running time of

the three models].

minimum is 18.6%. For the improvement of jumping ability,
the highest upgrade rate of traditional training is the ability
to compete for the ball, which is 19.6%, and the lowest is

the improvement of jumping ability, which is 10.3%. Since
intelligent training strengthens the autonomy of football players,
the upgrade rate increases rapidly. The experiment is set for 1
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week, but it takes a long time for the training of jumping ability to
be effective. Therefore, the upgrade rate of jumping ability in the
two training groups is low. In summary, the intelligent training
system has a strong applicability.

Analysis of Field Detection Results of
Football Robots
The average pixel precious P and MIoU Q of the color
segmentation model and the improved model under different
lighting are shown in Figure 14.

Figure 14 indicates that the P of the improved model exceeds
90%, especially under insufficient natural light, the P of the
improved model is 93.7%, while the average pixel accuracy of
the color segmentation model under insufficient natural light is
45%. The Q of the improved model is about 89% in the three
lighting modes, and the Q of the color segmentation model is
larger in different lighting modes. It refers that the improved
model algorithm has better stability.

The performance comparison of the color segmentation
model, the FCNmodel, the improvedmodel, and the comparison
of the running time of the three models are shown in Figure 15.

Figure 15A shows that the P and Q of the improved model
are higher than those of the FCN model. Due to the weak feature
extraction ability of the FCN model, it is easy to be interfered
by other nonsite line objects in the field line recognition, and
the detection results are not accurate enough. In contrast, the
improved model can complete the yield line detection more
accurately due to its strong feature extraction ability. Figure 15B
shows that the improved model takes the longest time due to the
larger amount of computation, but the detection effect is good,
the accuracy is high, and the detection speed basically meets the
requirements of the competition.

CONCLUSION

To improve the effectiveness of functional strength training for
football players and the field detection stability of football robots,
first the DL and human action recognition are combined under
the background of AI to study intelligent training methods
suitable for football players. Second, a functional strength
training system is established by combining time flow and spatial

flow networks. Based on CNN, an improved yield detection
method is designed. Finally, the application ability of the system
is evaluated. The results manifest that the intelligent training
system is feasible, and the designed football robot has high field
detection accuracy. The research provides a reference for the
intelligent training of football players and the development of
football robots. The training system will be mainly used for
football training in schools and clubs to realize the autonomy and
intelligence of football training and provide a certain reference
for improving the overall level of football players in China.
Field detection of football robots can be used in football robot
games. But there are some drawbacks. There are few statistics
about different actions in football in the dataset, and the main
limitations are not to study the positioning of football robots. In
the follow-up research, these two parts will be deeply analyzed

to make the research content more comprehensive. The practical
application value of research is that after further improvement,
it will be expected to promote the level of football training
in colleges and universities, and improve the level of football
capabilities of the young players.
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This work proposes using an evolutionary optimization method known as

simulated annealing to train artificial neural networks. These neural networks

are used to control posture stabilization of a humanoid robot in a simulation.

A total of eight multilayer perceptron neural networks are used. Although

the control is used mainly for posture stabilization and not displacement,

we propose a posture set to achieve this, including right leg lift in sagittal

plane and right leg lift in frontal plane. At the beginning, tests are carried

out only considering gravitational force and reaction force between the floor

and the humanoid; then tests are carried out with two disturbances: tilted

ground and adding a mass to the humanoid. We found that using simulated

annealing the robot maintains its stability at all times, decreasing the number

of epochs needed to converge, and also, showing flexibility and adaptability

to disturbances. The way neural networks learn is analyzed; videos of the

movements made, and the model for further experimentation are provided.

KEYWORDS

simulated annealing, bipedal robot, neural network control, neurorobotics, machine

learning

1. Introduction

Since ancient times, machines have been created that attempt to replicate the human

form (Boden, 2006). With the development of robotics, this search for the development

of machines with human characteristics has continued. This search is of vital importance

as we aim for robots that can carry out tasks that at the moment are achievable only by

human beings. A very useful feature that human morphology possesses is the ability to

locomote and this feature is the focus of this work. Research has been done that shows

that human morphology is the best option when using legged robots due to its energy

efficiency (Kuo A., 2007).
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To program the locomotion of a biped, classical control

strategies were previously used, making use of complex

equations to model the dynamics of the robot, however, with

the development of some areas in artificial intelligence, and

especially with the rise of artificial neural networks, significant

progress has been made in simplifying the locomotion control

process of bipedal robots. In Jha et al. (2005), a method

combining fuzzy control and genetic algorithms was proposed

to control a stair-climbing biped in a simulation. Another

work in which fuzzy logic was also used is in Murakami

et al. (1995) where a fuzzy controller was used for each leg

in a biped. In Miller (1994) and Kim et al. (2005, 2012)

the authors use trained neural networks with supervised

learning to control the balance of a biped. In Lin et al.

(2006) and Wu et al. (2007) unsupervised learning is used

to control the biped, however these proposals have the

disadvantage of additionally needing a controller to compensate

the torque with a PID controller. In other applications,

Sun et al. (2021) uses a neural network-based adaptive

control approach to stabilize the airgap of the nonlinear

maglev vehicle.

In this work, what is sought is to use a posture stability

control method for a biped in a simulated environment. This

control is based on artificial neural networks and evolutionary

optimization, but unlike other works, the use of transfer

equations and other classical control methods is ruled out. It

is sought that the control system has a simpler implementation

allowing the algorithm to be easily understood and reproducible

while its performance meets the assigned task. As a contribution

to stability control strategies in bipeds, this paper proposes

a method in which only artificial neural networks trained

by evolutionary optimization methods are used to achieve

stabilization in the posture of a simulated biped in a computer-

generated environment (MATLAB’s Simulink). The novelty

of this work is that it uses an optimization method in

which prior knowledge is not required, since its operation is

similar to reinforcement learning, being an important difference

that learning is done in real time, so that fewer iterations

are required.

This work focuses on the goal to achieve a stable standing

position in each moment. A sequence of these positions creates

movement. With the knowledge of this positions, it is possible

to produce a faster motion using reinforcement learning (Gil

et al., 2019), among other techniques; not only for walking

on a straight line but also to make another movements

including movement with disturbances. The prediction of

movement can be applied changing the architecture to a

recurrent neural network, this could also help to achieve a

faster motion.

The benefits of having this technology are that there is

no need of large datasets to train the neural network, it can

be trained online while the robot is moving. It can also be

implemented in other morphologies. So it can be applied in

robots with different shapes and the performance should be the

same. Nevertheless, more research is necessary.

The rest of the document is organized as follows: In

Section 2, the state of the art is presented, works related to

the area of bipeds are described. The works are presented

starting with classical approaches, then works with more

modern control methods are shown. Section 3 describes the

methodology followed for the development of this work.

Section 4 details the experiments carried out and the results

obtained. Finally, in Section 5 we draw our conclusions, and

some proposals are made to continue developing the project

proposed here.

2. Related work

Bipedal locomotion is an area that has been developed

for several decades and for locomotion, balance control

is an indispensable requirement. Bipedal robots are high

dimensional systems, the dimension varies depending on

the configuration of the robot but even those systems that

only have the legs and waist, have many dimensions. A

common way to solve the dimensionality problem is to

represent the biped as a low-dimensional inverted pendulum

(Kajita et al., 2001; Kuo A. D., 2007; Pratt and Drakunov,

2007). The robot is thus controlled so that its center

of mass follows a specific target. However, this approach

has some challenges: finding the stable solution in the

complete model, deciding how to associate the states of

the pendulum with the complete high-dimensional system,

even realizing the correct model of the inverted pendulum

is not an easy task (Da and Grizzle, 2019). These are the

reasons why a different non-linear control option is proposed.

The ability of neural networks to approximate functions

makes them a valuable tool for the design of nonlinear

controllers (Plumer, 1996; Zhang et al., 2003; Geng et al., 2006).

Movement trajectories can be generated depending on

the application. For example, that a bipedal robot moves in

a straight line. However, these trajectories usually do not

consider disturbances that may exist in the environment.

Therefore, the adaptability of the bipedal control system

to environmental disturbances is an important aspect to

take into account. To solve this problem, classical control

options have been considered. In Cho and Kim (2018),

the authors create a dynamic model of a biped based on

an inverted pendulum with a spring and damper. Later

they calculated the transfer equations to make a closed

control loop.

The next sections present a brief summary of some works

related to the control of bipedal robots. These works focus on

stabilization of bipedal posture and not on the gait cycle.
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2.1. Dynamic posture stabilization of a
biped robot SUBO-1 on slope-changing
grounds

This work (Cho and Kim, 2018) describes a dynamic posture

stabilization model for a bipedal robot on a tilted floor. The

work uses the Zero Moment Point method to stabilize posture.

It also makes use of an altering spotter that was designed to

counteract alteration due to ground tilt. This work focuses on

the control of blind walk on globally sloped terrain. Without

using a vision system or anymechanism in the foot. It is assumed

that the slope of the terrain changes continuously and that the

floor is flat and without local slopes. Combining Zero Moment

Point control and disturbance observer, a stabilization strategy

using force sensors in the feet and an inertial sensor in the pelvis

is proposed.

The control frequency used in that work is 200 Hz, for which

the central controller receives the sensory data and sends the

positions in a period of 5 ms. The structure of the walking

algorithm consists of a walking pattern generation and a posture

stabilizer with feedback. The pattern generator is a feedforward

control and the posture stabilizer is a feedback control. Finally,

the desired angle is calculated by solving the inverse kinematics

for the two control inputs.

The robot was modeled as an inverted pendulum with a

flexible joint consisting of a spring and a damper. Transfer

equations were calculated to apply the control loop. At the end

of the work it was concluded that adding an observer was very

useful to deal with sloping floors. In addition to stabilization

with ZMP control. It is hoped that in the future a control system

including vision can be built for use in rough terrain.

2.2. Nearly optimal neural network
stabilization of bipedal standing using
genetic algorithm

In this work (Ghorbani et al., 2007), the stability control for

a biped was studied. The model of the biped was simplified as an

inverted pendulum with one joint. The controller consists of a

general regression neural network with feedback that stabilizes

the biped in a vertical position, and a PID control with feedback

that maintains the pendulum in a vertical position. The neural

network is also designed to minimize energy cost.

For that work, a General Regression Neural Network

(GRNN) is used, which has the advantage that it is not necessary

to define the number of hidden layers or the number of neurons

per layer. When generating the trajectory, it is assumed that the

biped moves in a sagittal plane and is simplified as an inverted

pendulum with a rigid joint that is the foot.

As a first step, a closed-loop control with a GRNN was

designed to move the pendulum in a region around the vertical

position while minimizing the energy related to the cost function

(torque). To increase stabilization, a PID control tuned by

trial and error is activated to keep the biped upright. Three

restrictions were considered: there is no lifting of the foot, there

is no sliding, and the center of pressure is always maintained in

the region of contact between the ground and the foot.

It has been reported that when standing subjects are exposed

to small disturbances, they typically respond by moving in

the sagittal plane and tend to keep their knees, neck, and

hips straight, moving primarily at the ankle (Kuo, 1995).

In conclusion, in the work it was possible to minimize

energy consumption by comparing the proposed system with a

previously proposed one (Yang and Wu, 2006). By comparison,

the new system managed to cut energy consumption in half

We have discussed several works that use modern control

methods such as artificial neural networks or bioinspired

algorithms; however, they still rely on classical techniques to

ensure correct control of the biped. In Ghorbani et al. (2007), the

authors use a general regression neural network with feedback

for vertical stabilization of a biped, and a PID control with

feedback to maintain the pendulum in a vertical position.

Again, modeling the biped as an inverted pendulum, and using

Lyapunov exponents to analyze the stability control. In the next

section, we present our proposal, where we seek to use only

neural networks for the purpose of moving a biped humanoid

without losing its balance.

3. Methodology

Our proposed method that allows a biped humanoid to

move without losing its balance consists of six stages.

1. Calculation of direct kinematics equations of the biped

2. Encoding of training algorithm

3. Modeling of the biped

4. Sense data filtering

5. Neural network training

6. Testing.

The next sections with provide more details on our

proposed model.

3.1. Kinematic model of the biped
humanoid

For this work, a kinematic model of the biped was conceived

in order to calculate the center of mass and thus perform a

stability analysis. Link lengths were modeled on average adult

male limb measurements. The model has 20 degrees of freedom,

however some of these will remain rigid during the simulation.

Of the 20 degrees of freedom, 16 have a biological counterpart

and four are necessary to make the complete model. The joints
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with a biological counterpart are: ankle, knee, hip, shoulder and

elbow. Of these joints, the knee and elbow have one degree of

freedom, while the ankles, hips, and shoulders have two degrees

of freedom each.

In the model, both legs are modeled as a single powertrain.

This indicates that the foot that is resting on the ground is the

base of the robot. Therefore, the point X0Y0Z0 corresponds to

the center of the foot of the supporting leg. In case both legs

serve as support, X0Y0Z0 is taken from the center of the foot

of the left leg.

With the kinematic model, the position equations were

calculated by making the necessary multiplications of the

homogeneous transformation matrices. The position equations

of each joint in the X, Y, and Z axes are taken from

the last column of the matrix resulting from said matrix

multiplications. Once the position of each joint is known

and assuming the body has a uniform mass distribution, the

center of mass can be calculated with respect to the first

link (which will default to the left foot unless otherwise

stated). In this model there are 13 different elements, which

are:

• Left foot with mass

m1 = 578 g

• Right foot with mass

m2 = 578 g

• Left tibia with mass

m3 = 4,000 g

• Right tibia with mass

m4 = 4000 g

• Left femur with mass

m5 = 5,000 g

• Right femur with mass

m6 = 5,000 g

• Hip with mass m7 =

6,000 g

• Torso with mass m8 =

18,000g

• Left humerus with mass

m9 = 3,000 g

• Right humerus with

massm10 = 3,000 g

• Left radius with mass

m11 = 2 000 g

• Right radius with mass

m12 = 2,000 g

• Head with mass m13 =

4,189 g

Considering that each cm3 equals 1 g. The formula to calculate

the center of mass on the X axis is:

X =

13
∑

i=1

Xi ∗mi (1)

And the same procedure is followed for the Y and Z axes.

3.2. Using simulated annealing for
training artificial neural networks

The problem we are trying to solve at this point is

that we have a movement to perform (for example, raising

the right leg laterally) and we have the data on the angles

of each joint to achieve this movement, but the available

data does not consider any stability criteria. So, if such data

is entered into the simulation, it is likely that the biped

will fall as it is not in a stable position. Therefore, the

control system must find the value of the angle for each

joint that allows the biped to remain stable. As there are

no environmental disturbances, the stability criterion only

considers that the center of mass of the biped is within the

support polygon, which is delimited by the position of the feet

of the humanoid.

The control system chosen to solve this task is a multilayer

perceptron type neural network. This neural network requires

unsupervised training, since, although the data at the input (the

desired position) is known, there is no set of training data at the

output.

For the training of neural networks in an unsupervised

way, simulated annealing was used. As seen in the theoretical

framework, this algorithm has shown great performance in

optimization. Simulated annealing has been used in a wide

variety of problems. However, depending on the problem, it can

be encoded in different ways.

The first variable to define is an error function. For

convenience we will call this function E[f (s)], where s is

the output of the network and f(s) is a function that

represents the environment in which the element is evaluated.

output performance. If the training is not online, at each

iteration the input data set can be evaluated and fed

into the function f(s). Then calculate the error of each

of the outputs and, as is common in backpropagation

training, calculate the mean square error. With the value

of the error it is evaluated if the change is accepted or

not. To calculate the mean square error, Algorithm 1 is

followed.

To use simulated annealing in neural network training,

each weight and each bias are considered as a dimension of

the problem. The calculation of the neighbor of a given point

will be done for each of the variables of the neural network.

Ideally, in each iteration, the neighbor of each one of the

variables would have to be calculated and see if with the

neighbor there is a better performance, however, due to the fact

that in the perceptron the network is completely connected,

there is a large number of variables that increase with each

neuron added to each layer. This is why the algorithm is

Algorithm 1 Calculation of the mean error (emean).

m: number of training examples

n: data number of the output vector of the neural network

medium = 0

for i = 1:m do

for j = 1:n do

emean = emean + (y(i, j)− output(i, j))2

emean =
√
emean
m∗n

Frontiers inNeurorobotics 04 frontiersin.org

209

https://doi.org/10.3389/fnbot.2022.934109
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Angeles-García et al. 10.3389/fnbot.2022.934109

coded so that it only calculates the neighbor of K variables

for each iteration. Each modified variable is chosen randomly.

The training algorithm for the neural network is shown in

Algorithm 2.

Figure 1 shows an example of the error by epoch without

(left) and with (right) simulated annealing for a sample of joint

points. Without simulated annealing, the number of epochs is

greater, and an unstable progression can be observed.

3.3. Modeling the biped

The biped model consists of a series of rectangular blocks

joined by rotational joints modeled in Simulink. Simulink

was chosen because, being part of MATLAB, it does not

need to connect to external programs and all the code is

written in MATLAB. Simulink also allows to obtain useful

information since it has blocks of pressure sensors or inertial

sensors. Additionally, the position of each block in the three

axes can be known, but this last feature will not be used.

For the distance of each block, the average measurements

of the extremities of an adult man are taken into account.

The humanoid model consists of two legs, made up of

three blocks each, a torso, hips, two arms, made up of

two blocks each, and a head. Figure 2 shows the total

connection of the humanoid, however, the blocks of the

arms and legs are kept as a subsystem to make the diagram

more understandable.

In order to illustrate the posture control system applied to

movement, in the following section we present details for right

leg raise in frontal plane.

Algorithm 2 Neural network training method.

choose a large variable T

choose a number k ∈ [1, length(X)]

for each variable xi ∈ X

xi = rand(−1, 1)

for epoch = 1:Epochs do

for k = 1:K do

evaluate the neural network with the weights X for all inputs

calculate mean error

r = rand(1,length(X))

xi = X(r)

calculate neighbor x′i of xi

substitute xi for x
′

i in X

evaluate the neural network with the new weight for all inputs

calculate newmean error

if newmeanerror < meanerror || rand(0, 1) < 1

e
f (xi )−f (x′i )

T

then

xi = x′i
Decrease the temperature T

4. Experiments and results

4.1. First neural network training for
biped balance

As a first approximation for balance control of a biped, we

continue with the procedure presented in the previous section.

A MATLAB simulation of the biped was performed. Figure 3A

shows this biped and a small movement in Figure 3B. This

simulation is a plot of the position of each joint of the biped

calculated in Section 3.1. In this simulation, the only information

obtained to calculate the control is the center of mass. But thanks

to the calculation of the Zero Moment Point, it is possible to

calculate the biped’s error and determine whether or not it is in

a balanced position.

The purpose of this simulation is to train a neural network

whose input is a series of positions of the biped to perform a

movement, these positions do not consider any stability criteria,

so the movement may or may not be in a stable region. In the

case presented in this section, the movement consists of raising

the right leg in the frontal plane. The movement consists of 50

positions in which the lateral hip joint opens from an angle 0 to

π/2rad.1

The neural network proposed to solve this task is a fully

connected multilayer perceptron-type neural network. This

network has 20 neurons in the input layer and 20 neurons in the

output layer. Figure 4 shows the correspondence of each joint

with each neuron in the input layer. Sixteen blue lines and four

red lines are shown in the image. The blue lines correspond to

mobile joints that the biped has, the red lines are rigid joints

that are necessary to show the complete model. The joints in red

could have been omitted in the training of the neural network,

but keeping them in the simulations did not affect themodel. It is

important to clarify that during training a limit is not considered

in the angle of each joint, a limit that would exist in the case of

testing with a physical robot.

Apart from the joints, there are 15 points of interest in

the humanoid that are useful to calculate the similarity in the

input and output trajectories of the neural network. These points

coincide with the joints of the humanoid except for the points on

the hands and on the head.

The problem to be solved in this neural network is the

minimization of the error. The calculation of the error is made

considering twometrics: the proximity of the center ofmass with

the 0 point of the XZ plane and the average error between the

input and output joints of the network. The calculation of the

mean error is done by subtracting the total of the training data

set from the output data set and squaring the result. For more

details on the calculation of the mean error, refer to Algorithm 1.

1 The movement can be seen on https://youtu.be/DKR9xuieMFk. The

path marked in red is the center of mass and how it changes position

according to the movement made.
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FIGURE 1

Error by epoch when training without (left) and with (right) simulated annealing.

FIGURE 2

Block model of the complete system.

To calculate the center of mass error, the direct kinematics

function is used, which gives the position of the center of mass in

the three axes X,Y,Z. Since the humanoid stands on the XZ plane,

it is on this plane that the position of the center of mass must be

minimized. For this, we calculate the distance from 0 to the point

of the center of mass with the equation cm =

√

x2 + z2.

Both the mean error of the joints and the position of the

center of mass are multiplied by a constant to give greater

or lesser importance to each metric. The error related to the

difference between coordinates, called errorequal is multiplied

by a constant α. The error related to the position of the center

of mass, called errorcm is multiplied by a constant β . The total

error is the sum of both errors, as shown in Equation (3).

Te(ep, n,m, p) = ep(4mnp+ 2m)error = α ∗ errorequal

+ β ∗ errorcm (2)

The parameters related to simulated annealing are: T s the initial

temperature, TempVar indicates every how many epochs the

temperature decreases, andDeltaTemp indicates the percentage

of temperature that will remain after TempVar epochs. The

variables that must be defined are:

1. T Initial temperature

2. DeltaT Temperature Change

3. TempVar, or the number of epochs before the temperature

drops

4. DeltaEpoch or the number of epochs until the temperature is

increased again

5. Epochs

6. LimitsW or the range in which the weights and bias are

initialized

7. LimiteV or the maximum value of neighbor value for each

weight

8. K or the number of weights and bias that are modified for

each epoch

9. alpha and beta or the importance value given to each error

parameter.
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FIGURE 3

Movement of the biped. (A) Initial position. (B) First stable position.

FIGURE 4

Correspondence of each joint with each neuron in the input layer.

The parameters of the algorithm used in this work are shown

below.

1. T = 1,000

2. TempVar = 5

3. DeltaT = 0.85

4. DeltaEpoch = 100

5. LimitsW = [−2, 2]

6. LimitsV = [−0.5, 0.5]

7. K = 100

8. α = 0.75

9. β = 0.25

To know if the center of mass is within the support polygon,

it must not exceed 0.085 both in the x axis and in the z axis.

This due to the architecture of the humanoid that is taken as a

reference.2

2 The video of the complete movement can be seen at https://youtu.be/

ViPiFOuDbDA
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FIGURE 5

Architecture of the neural networks used.

4.2. First standing training (front plane
right leg raise)

The biped must always start in position 0 (in which all joints

are at 0), then take it to some initial position other than 0 (if

required) and from there start doing the experiments. This is

because if the robot is initialized in a different position, the

pressure sensors can appear inside the ground and mark very

high values that decrease over time until the biped “goes up” and

is positioned on the ground. It is possible to initialize the biped

to a position other than 0, however there are sometimes errors,

so it is preferable to follow the instructions above. Figure 3A

shows the biped in position 0, which is when all its joints are

at 0 position. For this simulation, we chose to perform the

movement which is to raise the right leg 90◦ in the frontal plane.

To accomplish this, the biped was started at position 0. Once in

this position, instructions are given for the biped to move each

of its joints to a range of [−0.2, 0.2] radians, moving one joint at

a time. This to know what is the position in which the center of

mass is placed on the left leg, which will be the one that remains

on the ground3. To know the position of the center of mass, the

Inertial Sensor block of the Simscape Multibody Body Elements

library was used. This block gives information on the position

of the center of mass of each body. Therefore, calculating the

average of the center of mass of each body, gives the total center

of mass of the humanoid. This position is the absolute position

of the center of mass with respect to point 0 of the world in

which we are working. To calculate the position relative to the

supporting leg it is necessary to subtract the total center of mass

minus the center of mass of the foot of the supporting leg.

Once the degree configuration of the joints necessary to

place the center of mass on the supporting leg is known, the

neural networks are trained to reach said position. A total of

eight neural networks were used: two for right hip (one for each

3 The video showing these movements can be found at https://youtu.be/

AHMae7Ki1Go

joint) and other two for left hip, one for each knee and one for

each arm.

For the control of the ankle joints, a different algorithm was

used, which is explained later. The architecture is the same for

all neural networks and is shown in Figure 5. The inputs of the

neural network are:

1. Reference path consisting of 16 data.

2. Previous position consisting of 18 data.

3. Left and right sensors consisting of 8 data.

4. Relative position of the center of mass of the body with

respect to the position of the foot of the supporting leg in the

x,y plane.

Hyperbolic tangent was used as activation function. The neural

networks were trained so that, while at the input the position

is position 0, each one delivers the necessary value to place

the center of mass of the biped on the left leg, we will call

this position the first position of stability, which is shown in

Figure 6. Once the neural network is trained, it runs until it

reaches the first stability position. Figure 7 shows the trajectory

of the center of mass in the X axis of the body relative to

the support leg. A red line is shown, which is the limit at

which a stable position is considered if only the left leg is

supported.

In this problem of optimization, we are trying to minimize

the error, for this we are taking into account two parameters:

the center of mass of the body and the difference between

angle joint input and output. We know the center of mass

of the body using the function block described called Inertia

Sensor, which gives the position of the center of mass in the

three axes X,Y,Z. Since the humanoid stands on the XY plane,

it is on this plane that the position of the center of mass

must be minimized. For this, we calculate the distance from

0 to the point of the center of mass with the equation cm =
√

x2 + y2.

error = α ∗ errorequal + β ∗ errorcm (3)
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FIGURE 6

First stable position of the humanoid.

Algorithm 3 Learning algorithm in Simulink.

c = 1;

The vector of positions called Vector

is received while simulation == true do

target = Vector[c]

Calculate the output of the neural network

error = α(target − output)+ βcm

while error > 1e do

The neural network is modified according to the simulated

annealing algorithm

Calculate the output of the neural network

error = α(target − output)+ βcm

if c < length(Vector) then

c = c+ 1;

Both the error of the joint and the position of the center

of mass are multiplied by a constant to give greater or

lesser importance to each metric. The error related to the

difference between angle joint, called errorequal is multiplied

by a constant α. The error related to the position of the

center of mass, called errorcm is multiplied by a constant

β . The total error is the sum of both errors, as shown in

Equation (3).

Once the biped is in the first position of stability, the

first value of the position vector, which is specific for each

joint, is entered into each neural network as a target. Once

the difference between the network output and the target

is small enough (remembering that the output may not be

the same since the neural network considers the center of

mass error). The target is updated to the next value in

the array of positions. A brief description of the learning

algorithm is shown in Algorithm 3. This ensures that it will

not advance to the next position until the previous position

has been learned first, and will not advance beyond the last

indicated input.

Algorithm 4 Storage method.

The output is calculated by doing the matrix multiplication.

The information is sent to the model and the error is evaluated.

If the error is less than or equal to a given value e, the input and output

are saved in the respective vector and it is repeated from Step 1 with a

new position.

If the error is still not small enough, another modification is made to the

neural network and steps 2–5 are repeated.

Figure 8 shows how one of the neural networks learns. In this

case it is the neural network that controls the lateral right hip

joint. The blue signal is the target, the red signal is the output

delivered by the neural network. The staggered shape of the

target is due to the fact that it will not change to the next position

until the error between the two signals is not small enough, that

is why when the red signal approaches the blue one, the target

signal jumps.

Since the neural networks ensure a stable movement for

the current position, a series of inputs and their corresponding

output are known to move in a stable way. So the information

is stored in case you want to train a subsequent neural

network in a supervised way. To store such information, a

vector of inputs and outputs is initialized to zero. As the

epochs progress, the inputs collected from the sensors are

saved. Only those outputs that ensure a sufficiently small error

are saved and not all the outputs delivered by the neural

network. Algorithm 4 shows the steps to follow to collect the

data that can be used later to train a neural network in a

supervised way.

It is important to clarify that the output delivered by

the neural network is not directly input to the algorithm.

This is due to the sensitivity of the simulator to sudden

changes in the joints.4 Therefore, once the neural network

delivers an output with a sufficiently small error, the joints

are instructed to reach this value by changing their value

by 1c each cycle. For this work, 1c = 0.00007rad was

selected. This value may seem small but it is necessary

so that the change in position of the joint is not made

abruptly.

It should be sought that the four sensors of each foot are in

contact with the ground and that the force is evenly distributed

in each sensor. This is why the algorithm is relatively simple.

For the four joints, an algorithm similar to the one shown in

Algorithm 5 is followed.

Figure 9 shows the initial and final position of the biped

performing the movement of raising a the right leg in frontal

plane5. The trajectory of the center of mass in the X axis is

4 Video at https://youtu.be/HU5L8lLqmrA shows a simulation in which the

ankle joint was changed from position 0 to 0.1.

5 The full video of this move is at https://youtu.be/2SNglSgEwzw
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FIGURE 7

Trajectory of the center of mass on the X axis.

Algorithm 5 Ankle control algorithm.

if s1 < s2|s4 < s3 then
joint = joint + num;

if s1 > s2|s4 > s3 then
joint = joint - num;

observed in Figure 10A. Recall that the biped is standing on

the X,Y plane, the X axis is the frontal plane of the biped and

the Y axis is the sagittal plane. Therefore, for this movement

the axis that has more importance is the X axis. Figures 10B,C

also shows the trajectory of the center of mass in the Y and Z

axes6.

Figure 11 shows the output of the neural network in blue as

well as the trajectory of the joint that moves the right hip laterally

in red. There is a clear time lag between the output of the neural

network and the articulation. This displacement is due to what

was previously mentioned, by having to slowly modify the angle

of the articulations, the neural network converges faster than the

joint reaches the desired position.

6 For a better visualization the video of the trajectory of the center of

mass in the X and Y axes while the movement is executed can be found

at https://youtu.be/xxBiI43VpeM

4.3. Training the biped with added
perturbation (ground tilt)

As explained in previous sections, the training used for

neural networks is a learning style that does not require full

knowledge of the desired output. This flexibility in learning

allows the neural network to learn in an environment with

certain disturbances. As an added disturbance, the platform on

which the humanoid is standing tilted. The tilt was 1◦ and was

done on the X axis.

Figure 12 shows the initial and final position of the

biped seen from the front (left) and the same positions

seen from the side for a better visualization of the slope

of the ground (right).7 The learning trajectory and the

actual motion path, compared with regard to the desired

one, can be seen in Figure 13. This figure shows the

output trajectory of the neural network in blue, this is to

visualize how the trajectory of the neural network is modified

according to the desired target. Figure 13B shows the same

target, this time in blue but with the actual output of

the joint. In this figure, the disturbance of inclined ground

is considered.

7 The full motion video can be found at https://youtu.be/7ktSoxzQo_0
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FIGURE 8

Output trajectory and target of the neural network.

FIGURE 9

Initial (A) and final (B) position of the movement performed.
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FIGURE 10

(A) Trajectory of the center of mass in X axis, (B) Y axis, and (C) Z axes of movement 1.

FIGURE 11

Comparison of desired move (blue) with performed movement (red).

4.4. Training the biped with added mass
perturbation

As an added disturbance a 0.1 m sphere was added to the

biped’s right arm. This represents 7.5% of the humanoid’s weight.

Figure 14 shows the initial (Figure 14A) and final (Figure 14B)

position of the biped’s movement. The movement he performs

is the lifting of the right leg in the frontal plane. The learning

trajectory and the trajectory of the desired (blue) and actual (red)

movement are shown in Figure 15. This figure allows to visualize

how the trajectory of the neural network ismodified according to

the desired target. Figure 15B shows the same target in blue, with

the actual output of the joint when a mass is added to the biped.

5. Conclusions

This work has presented the use of neural network control

for robot stabilization and displacement. Although there are

already several works that use neural networks in control,

they usually require the help of external control methods or

complicated training of many iterations to solve the assigned

task. In this case the control was implemented in a simple way

with little prior knowledge. The method we have presented

allows having both flexibility and adaptability, as it has been

presented in the last two sections above: the neural network

adapted its weights despite having changing conditions such as

a floor inclination, or adding a mass. The presented method is
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FIGURE 12

Initial and final position of the biped seen in the XZ (left–A,B) and YZ (right–A,B) planes for ground tilt.

FIGURE 13

(A,B) Learning path for ground tilt and desired and actual motion path for ground tilt.

a mixture of supervised and reinforcement learning, combined

in a novel way, allowing to implement several neural network

applications easily and with little prior knowledge. Simulated

annealing was used as a means of training the neural networks;

although this optimization method has been used previously,

it is not common to apply this method for training this

kind of application. We have found that using this method

in the application of robot control can help to reach a goal

position while keeping the biped humanoid stable. Although

the presented solution is slower at some steps than other better

known methods, by using simulated annealing, in overall there

is a noticeable reduction in the epochs needed to converge,

making this method feasible for many applications. A difficulty

to consider is that the learning time is variable because, being

a heuristic method, the random component in learning means

that the learning time is not always optimal.

One of the applications of postural stability is that, by

knowing or calculating the stable positions, it is possible

to implement passive locomotion. Although this type of

locomotion is more inefficient than active locomotion, it

allows movement and has a robust response to disturbances.

Although there is software specialized in robot simulation,

sometimes it is difficult to know how to run or control these

simulators. If it is not necessary to have many sensors, and

the purpose is to test robots whose constitution is relatively

simple, MATLAB is a good option, since within this program

the necessary actuators can be controlled without the need for

an external program. There is a drawback, however, in that

the simulation time can be long. In this work, a humanoid

was developed that can be used for future projects. The

link to download the humanoid can be found at Yoqsan

(2022).
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FIGURE 14

Initial and final position of the movement seen from the XZ plane. (A) Initial position of motion. (B) Final position of motion.

FIGURE 15

Learning Path for Added Mass and Trajectory of the desired (blue) and actual (red) movement for Added Mass (B). (A) Desired trajectory (blue)
and output network (red).

5.1. Future work

This work presented a robot control method that had not

been presented before, so it is still in its infancy and can be

optimized in many areas. The simulated annealing method can

be mixed with other optimization methods to find more optimal

neighbors than looking for close neighbors, which is what was

done in this work. Other types of architectures can also be

tested, in this work a multilayer perceptron was used, however,

there are other neural architectures that may help improve

the response.

The objective of this work was to achieve a balance

in the posture of a humanoid and, although the objective

was achieved, slow movements were required to achieve

it. If, in addition to the anterior position of the joint,

information on the speed and acceleration of the joints is

included, it would be possible to increase the speed at which

the biped moves. If the error also considers a criterion

of energy expenditure, it would also be possible to make

the optimal movements energetically, just as human beings

do.

Furthermore, having this type of locomotion, it is

possible to optimize it to achieve dynamic locomotion.

Experiments of this latter point are left as future work.

According to the data obtained from the experiments, it

is known that this method allows a robot to function in
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an environment where there are unknown disturbances.

Motion prediction is not done yet, however, it is

possible to implement another neural network or modify

existing ones by adding memory and recursion to

predict motion.

As seen in the experiments presented, neural networks

behaved correctly despite adding disturbances, so it is possible

that the same control system works to move robots with

another configuration. Although this was not tested, in future

works the control system could be implemented with different

configurations of robots and obtain information on the

difference between their movements.
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Recognition of musical beat and
style and applications in
interactive humanoid robot

Yue Chu*

Music College, Dalian University, Dalian, China

The musical beat and style recognition have high application value in

music information retrieval. However, the traditional methods mostly use

a convolutional neural network (CNN) as the backbone and have poor

performance. Accordingly, the present work chooses a recurrent neural

network (RNN) in deep learning (DL) to identify musical beats and styles. The

proposed model is applied to an interactive humanoid robot. First, DL-based

musical beat and style recognition technologies are studied. On this basis,

a note beat recognition method combining attention mechanism (AM) and

independent RNN (IndRNN) [AM-IndRNN] is proposed. The AM-IndRNN can

e�ectively avoid gradient vanishing and gradient exploding. Second, the audio

music files are divided into multiple styles using the music signal’s temporal

features. A human dancing robot using a multimodal drive is constructed.

Finally, the proposedmethod is tested. The results show that the proposed AM-

IndRNN outperformsmultiple parallel long short-termmemory (LSTM)models

and IndRNN in recognition accuracy (88.9%) and loss rate (0.0748). Therefore,

the AM-optimized LSTM model has gained a higher recognition accuracy. The

research results provide specific ideas for applying DL technology in musical

beat and style recognition.

KEYWORDS

multi-modal features, humanoid robot, recurrent neural network, recognition

technologies, musical beat and recognition of style source

Introduction

Music is an indispensable part of modern life, which can assist the expression of

emotion in different situations. Musical factors are complex. A composer considers some

basic elements in his/her music composition: rhythm, melody, harmony, and timbre.

Thus, one must gain a professional understanding of the basic musical elements to

understand musical contents or themes. Non-professionals can also empathize with

music through musical styles and beats. Of these, style is the overall grasp of music and

people’s intuitive feeling of a piece of music. Most music-playing software recommends

music through users’ historical musical style selections. Music recommendation accuracy

has become the key metric for users in choosing music recommendation applications

(APPs). The beat in music is generally understood as the combination law between

strong and weak rhythms, reflected in a stressed note in a piece of a song. Following
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the musical beat, people will swing their bodies unconsciously or

perform other activities. The recognition of style and beat is of

great significance to robot performance (Abbaspour et al., 2020;

Zhou et al., 2020). People can obtain massive amounts of audio,

image, and video information through the internet. Internet

music has a large user base, and the internet music library

is enriched with the diversification of user needs. Given the

massive amount of music information, users urgently demand

a personalized information retrieval approach. However, music

recommendation is extremely challenging. As a form of artistic

expression, music is endowed with a certain emotion. It involves

trivial elements, such as melody, rhythm, harmony, and form,

thus forming different musical styles. Usually, different music

styles emphasize different music elements. These features in

music styles can be used in music classification and retrieval

through the content information. Currently, the music style

classification is most commonly studied and has seen successful

commercialization by music dealers to organize and describe

music. On the other hand, with the increased capacity of

the Internet music library, style-based music retrieval has

become the mainstream method of music information retrieval.

Classifying music by style can meet the users’ personalized

music retrieval and facilitate users to retrieve and efficiently

manage their preference music styles timely. At the same

time, it is convenient for music dealers to manage and label

music styles and recommend music styles of interest to users.

Automatic and accurate classification and recognition of music

styles can effectively reduce labor costs. Therefore, improving

the accuracy of music style classification and recognition can

promote the intelligent development of music platforms. It

provides better services for music listeners, improves user

experience, and expands their choices, which have great research

and economic value.

As artificial intelligence (AI) research becomes mature, its

application gets closer to public life. For example, intelligent

robots are seeing various applicational scenarios, such as service

robots and unmanned aerial vehicles (UAVs). Meanwhile,

robotic technologies are oriented toward entertainment from

practical works. Research on service-oriented robots is abundant

both in and outside China, while there is relatively little research

on dancing robots. Dancing to the beat might seem natural to a

human, but getting robots to respond to beats requires tons of

work and design.

Chronologically, Robots’ applications can be segmented

into several phases, from industrial robots to service robots

and household robots. From the economic sector’s perspective,

robot applications are experienced practical->industrial-

entertainment->domestic development stage. Researchers

have also done many works in robotics, deep learning (DL),

and music interaction in robotics. Wen (2020) designed an

intelligent background music system based on DL, the internet

of things (IoT), and the support vector machine (SVM). They

used a recurrent neural network (RNN) structure to extract

image features. Nam et al. (2019) developed an automatic string

plucking system for guitar robots to generate music without

machine noise. The soft robot technology was used for a new

silent actuator: a soft elastic cone as a buffer to prevent impact

noise. As a result, an elastic cone design method based on

nonlinear finite element analysis (FEA) was proposed. The

silent characteristics of the silent actuator were confirmed

by the noise test that compares the silent actuator with the

traditional actuator. Rajesh and Nalini (2020) represented that

music was an effective medium to convey emotions. Emotional

recognition in music was the process of recognizing emotions

from music fragments. They proposed an instrument-like

emotional recognition method in view of DL technology.

The music data set was collected from strung, percussion,

woodwind, and brass instruments corresponding to four

emotions, namely, happiness, sadness, neutrality, and fear.

From the instrumental data set, the features of Mel frequency

cepstral coefficient (MFCC), normalization statistics of chroma

energy, short-term Fourier Transform (FT) of chroma, spectral

characteristic, spectral centroid, bandwidth, attenuation, and

time characteristics were extracted. Based on the extracted

features, the RNN was trained for emotional recognition. Then,

the performance of RNN and baseline machine learning (ML)

classification algorithm was compared. The results showed that

deep RNN had an excellent effect on instrument emotional

recognition. Instrument classes played an important role in

music-induced emotions. Briot and Pachet (2020) indicated that

in addition to traditional tasks, such as prediction, classification,

and translation, DL was receiving increasing interest as a music

generation method. The latest research groups, such as Google’s

Magenta and Spotify’s Creator Technology Research Lab

(CTRL), were evidenced. The motivation was to automatically

use DL architecture to learn music style from any music corpus

and then generate samples from the estimated distribution.

Then, DL-based music generation reached certain limitations,

such as feedforward in circular architecture, because they tended

to imitate the learned corpus without the incentive of creativity.

Besides, the DL architecture did not provide a direct method

to control music generation. DL architecture automatically

generated music without human-computer interaction (HCI).

However, given its generated content, it still could not help

musicians create and refine music. They focused on the

issues of control, creativity, and interaction analysis. Then the

limitations of applying DL to music generation were listed,

and possible solutions were outlooked. Martin-Gutierrez et al.

(2020) pointed out that the application of multimedia promoted

the services provided by platforms, such as Spotify, Lastfm,

or Billboard. However, the innovative methods of retrieving

specific information from a large amount of music-related

data have become a potential challenge in music information

retrieval. They studied the creation of SpotGenTrack popular

data sets. They proposed an innovative multi-mode end-to-end

DL architecture HitMusicNet to predict the popularity of music
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recording. Experiments showed that the architecture proposed

was better than the existing technology.

The innovation of this work is to propose a lightweight

multi-task cascaded convolutional neural network (MTCNN).

With the help of the proposed MTCNN, the notes are located

and extracted for normalization operation. The innovative

combination of independent recurrent neural network (RNN)

and attention mechanism (AM) is used for music style

recognition, and the data are transferred to the multi-attention

CNN and long-short term memory (LSTM) network for feature

extraction and recognition. This method does not need to label

in advance and is weak-supervised learning. The refined features

extracted by themulti-attention CNN increase the sample details

and contain the global information of the samples. The method

proposed improves the accuracy and precision of music style

recognition to a certain extent.

Design of music style recognition
model and construction of
interactive robot system

Music style recognition modeling by
IndRNN

The music style describes the overall characteristics of a

complete song. The dancing robots’ performance style must

match the music style. In recent years, researchers have applied

neural networks (NNs) to audio signal processing (ASP) (Jiang,

2020; Er et al., 2021). Over time, many variants of RNN have

been developed and applied to ASP. This work optimizes the

RNN to use for music style recognition. Then, an endpoint

detector algorithm (EDA) based on short-term energy difference

is proposed. The starting point of notes can be determined by

looking for the peak of short-term energy difference. Then, two

layers of judgment are designed to determine the endpoint and

reduce the dependence on the threshold (Chakraborty et al.,

2021; Feng et al., 2021).

The principle of the proposed EDA is shown in Figure 1.

As in Figure 1, the music style recognition process is divided

into two stages. The original signal is pre-processed in the

training stage, and then the improved RNN is trained using the

pre-processed data. In the testing stage, the audio to be tested

is first pre-processed by simple data, and then the feature file is

transformed (Mcauley et al., 2021; Wang et al., 2021).

DL is one of the main ways to lead to AI. DL is a branch

of ML that essentially fits data to summarize the available

laws. DL has successfully promoted science and technology and

profoundly impacted big data analytics (BDA). A convolutional

neural network (CNN) is one of the most important models

in DL and lends well to image processing (IP). Combined with

other technologies, CNN can be applied to many different fields.

LeNet was the first real CNN proposed in 1998. This network has

been widely used to recognize the handwritten font of Bank of

America check, which has achieved good results. RNN is another

commonly used DL structure and has a memory function. It

is suitable for solving continuous sequence problems and is

good at learning rules between samples with certain sequential

significance. Unlike CNN, RNN is generally used in production

and prediction, such as in Google Translate and some speech

recognition applications (Mirza and Siddiqi, 2020; Wu, 2021).

RNN is widely used in language models and text production,

image description, video tagging, keyword extraction, and stock

analysis. Meanwhile, RNN has a feedback structure. Its output

relates both to the current input’s weight and to the previous

network’s input. The difference between RNN and the traditional

NN is that RNN has the concept of timing, and the state

of the next moment will be affected by the current state.

Some researchers also call recurrent networks deep networks,

whose depth can be shown in input, output, and time-depth

(Hernandez-Olivan et al., 2021; Parmiggiani et al., 2021). The

RNN structure is given in Figure 2.

Equation (1) can calculate the hidden state ht in the forward

propagation of RNN:

ht = tanh
(

Uxt +Wht−1
+ b

)

(1)

The network output at a specific moment can be calculated

by Equation (2)

ot = Vht + c (2)

The prediction output can be counted by Equation (3):

at = softmax
(

ot
)

= softmax
(

Vht + c
)

(3)

In Equations (1)–(3), x(t) represents the input of training

samples when the sequence index number is t. h(t) denotes the

hidden state of the model when the sequence index number

is t. h(t) is jointly decided by h(t) and x(t). o(t) signifies the

output of the model when the sequence index number is t. o(t)

is only determined by the current hidden state h(t). L(t) refers

to the model loss function when the sequence index number

is t. signifies the true output of the training sample sequence

when the sequence index number is t. Three matrices () are the

model’s linear relationship parameters, shared within RNN. The

parameter sharing mechanism reflects the “recurrent feedback”

of the RNN model.

For RNN, since there is a loss function at each position of the

sequence, the final loss L can be explained by Equation (4):

L =

Ŵ
∑

t=1

L(t) (4)
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FIGURE 1

Framework of proposed EDA.

The parameter gradient calculation reads:

∂L

∂c
=

Ŵ
∑

t=1

∂L(t)

∂c
=

Ŵ
∑

t=1

ŷ(t) − yt (5)

∂L

∂V
=

Ŵ
∑

t=1

∂L(t)

∂V
=

Ŵ
∑

t=1

(

ŷ(t) − yt
)(

h(t)
)T

(6)

RNN adds the concept of timing; thus, different input layers

can be set according to the time node. Data can be entered

in multiple ways. The number of hidden layers in the middle

is the same as the number of time nodes, and the number of

neurons per layer and independent variables are the same. The

disadvantage of RNN is that it cannot solve the problem of

long-term dependence, and there is a phenomenon of network

gradient dissipation and explosion. Against the defect of RNN,

the LSTM NN is proposed (Liu et al., 2021; Alfaro-Contreras

et al., 2022), as drawn in Figure 3.

In LSTM, the forget and input gates are expressed by

Equations (7) and (8), respectively. The short-term and long-

term cell states are counted by Equations (9) and (10). The

output gate is exhibited by Equation (11).

ft = σ

(

Wf ·
[

ht−1, xt
]

+ bf

)

(7)

it = σ
(

Wi ·
[

ht−1, xt
]

+ bi
)

(8)

C̃t = tanh
(

WC ·
[

ht−1, xt
]

+ bC
)

(9)

Ct = ft · Ct−1 + it · C̃t (10)

ot = σ
(

Wo ·
[

ht−1, xt
]

+ bo
)

(11)

LSTM and gated recurrent unit (GRU) are the first proposed

two RNN variants. However, the practical applications find that

the Sigmoid and Tanh functions in LSTM and GRU will lead

to gradient attenuation and significantly impact the input of

long-term sequences. To solve the above problems, this section

introduces an IndRNN (Tan et al., 2021; Wagener et al., 2021).

The hidden state in traditional RNN is the input of the next state

and is updated by Equation (12):

ht = σ
(

WXt + Uht−1 + b
)

(12)

In Equation (12), ht is the hidden state at time t. ht−1

represents the hidden state at the previous moment. U is the

weight of different stages.

According to relevant literature, the multiplication

operation of recurrent weight causes gradient explosion or

attenuation. The IndRNN adopts a new and independent

RNN as the basic classification model. Unlike traditional RNN,

IndRNN employs a different state update mechanism (Li and

Zheng, 2021; Xu et al., 2021). Its recurrent input is processed by

Hadamard product, as in Equation (13):

ht = σ
(

WXt + u⊙ ht−1 + b
)

(13)

In Equation (13), u is a recurrent weight. Its mathematical

form is a vector. ⊙ is a Hadamard product operation. The

principle is to multiply the corresponding elements of the two

matrices before and after the symbol.

At moment t, each neuron only accepts the input at this

moment and its own hidden state as input information at

moment t − 1. The hidden state of the nth neuron is described

by Equation (14):

hn,t = σ
(

WnXt + unhn,t−1 + bn
)

(14)

In Equation (14), Wn, un is the nth line of input weight

and recurrent weight. W and u input the spatial and temporal

features, respectively.
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FIGURE 2

RNN structure.

The basic architecture of the IndRNN is depicted in Figure 4.

Activation function (AF) chooses the rectified linear unit

(ReLU). The IndRNN processes the input weight using the

Recurrent+ ReLU structure.

The IndRNN back propagates the gradient in each layer

according to the temporal features. For the nth neuron hn,t , if

the optimization goal of T-time is J, then at t-time, the gradient

reverse propagation process is described by Equations (15)–(18):

∂Jn

∂hn,t
=

∂Jn

∂hn,T

∂hn,T

∂hn,t
(15)

∂Jn

∂hn,t
=

∂Jn

∂hn,T

∏

k=t

∂hn,k+1

∂hn,k
(16)

∂Jn

∂hn,t
=

∂Jn

∂hn,T

T−1
∏

k=t

σ ′

n,k+1un (17)

∂Jn

∂hn,t
=

∂Jn

∂hn,T
uT−t
n

T−1
∏

k=t

σ ′

n,k+1 (18)

σ ′

n,k+1
is the AF in Equation (18).

According to Equation (18), the gradient of the IndRNN

directly depends on un index, while the traditional RNN

gradient is calculated by Equation (19):

∂Jn,T

∂hn,t
=

T
∑

t=0

∂Jn,T

∂ ŷn,T
∗

∂ ŷn,T

∂hn,T

T
∏

j=t+1

∂hn,j

∂hn,j−1
(19)

The traditional RNN determines the gradient by the

Jacobian matrix. A slight change in the matrix might cause great

fluctuation in the final output. In summary, compared with

traditional RNN, IndRNN has many advantages in long-term

sequence tasks. First, IndRNN can avoid gradient disappearance

and explosion more effectively. Second, IndRNN can process

long-term sequences better. Finally, IndRNN has a better

explanation (Mussoi, 2021; Shalini et al., 2021; Xu, 2022).

Visual AM is a unique signal processing mechanism of

the human brain. Human beings can choose areas of focus

by observing global pictures (Mussoi, 2021; Zainab and Majid,

2021). Thereby, they devote more resources to the focus area

than ordinary areas to obtain more detailed features while

suppressing useless information. The essence of the AM is

illustrated in Figure 5.

The input data of the input AM module is X =
(

x1, x2, · · · , xk · · · , xn
)

, representing n environmental variable

sequences. x
k

=

(

xk1, x
k
2, · · · , x

k
t , · · · x

k
T

)

denotes the kth

environment variable sequence, and the time window size is

T. The hidden state ht−1 of the previous time corresponding

to the input of the LSTM unit and cell state Ct−1-extracted

environmental parameter weights are introduced into the input

AMmodule. The calculation process is shown in Figure 6, where

ekt and αk
t are calculated by Equations (20) and (21):

ekt = Ve tanh
(

We
[

ht−1 : ct−1
])

+ Uex
k
+ be

)

(20)

αk
t =

exp
(

ekt

)

∑n
i=1 exp

(

eit

) (21)

In Equations (20) and (21), ekt represents the weight of the

kth environmental parameter at time t. αk
t k means the value of

ekt normalized by softmax function. Ve, We, Ue, and be are the

parameter to be trained.

Equation (22) calculates the environmental parameter’s

vector x̃t weighted by αk
t at time t:

x̃t =

(

α1
t x

1
t ,α

2
t x

2
t , · · · ,α

k
t x

k
t , · · ·α

n
t x

n
t

)

(22)
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FIGURE 3

Original structure of the LSTM network.

The temporal AM extracts the importance of environmental

variables at different times, and its calculation process is shown

in Figure 7.

The input data are the output of the encoder module. That

is the hidden state h
′

i of the weighted value x̃t at time i of the

environmental data sequence after passing through the LSTM

unit. The temporal attention weight is calculated by Equations

(23) and (24):

lit = Vd tanh
(

Wd

[

d
′

t−1 : s
′

t−1

])

+ Udh
′

i

)

(23)

β i
t =

exp
(

lit

)

∑T
j=1 exp

(

l
j
t

) (24)

In Equations (23) and (24), 1 < i 6 T,T is the size of the

time window. d
′

t−1 and S
′

t−1 are the hidden state and cell state

at (t− 1) time. Vd,Wd, and Ud are the parameter to be trained.

β i
t represents the normalized weight of the ith hidden state.

Output Ot of temporal AM module is calculated by

Equation (25):

Ot =

T
∑

i=1

β i
th

′

i (25)

The decoder predicts the beat at time T + 1 combined

with the fully connected layer. Y =
(

y1, y2, · · · , yt , · · · , yT
)

represents the number of beats at each time in the T time

window. The specific process is shown in Equations (26)

and (27).

ỹt = W
[

yt :Ot
]

+ b̃ (26)

d
′

t+1 = f
(

d
′

t , ỹt

)

(27)

In Equations (26) and (27), Ot is the output of the temporal

AM module. ỹt is a linear transformation of yt . d
′

t represents

the hidden state of the decoder at time t. d
′

t+1 denotes the

hidden state of the decoder at the time (t + 1). Function

f is an LSTM computing unit. W and b̃ are parameters to

be trained.

Design of interactive humanoid robot
system

Interactive robots are dancing robots expressing artistic

forms, such as action and language, using physical movements.

The dancing robot can recognize the music style and beat

for given music and display the right music style and beats.

Generally, music style has two targets, namely, beat recognition

and action performance. Beat recognition results can be

expressed from the actions of interactive robots. Pose estimation

is to extract dance movements to form a dance action database

from many dance videos. Finally, the interactive robot performs

specific actions according to the recognized beat. Dance

movement extraction can generate intelligent choreography

based on pose estimation technology. By comparison, pose

estimation is a basic computer vision technology, the estimation

of the human posture or the key points of the human body. The
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FIGURE 4

IndRNN.

dance action library comprises various stylish dances, divided

into ten categories. The dance library is mainly divided into

two parts, aiming at robots and non-professionals. The design

framework of dancing robots is divided into three parts. The

focus is on the design of the dance library, which is divided

into three steps. First, the image is detected from the video

frame. Second, 2D keypoint information is detected from the

image. Third, the music style recognition system converts the

2D keypoint information into 3D information. Fourth, the

3D information is transformed into joint angle information

recognizable by the robot motion model. Ultimately, the dance

action library is enriched according to the actions obtained

from different styles of dance videos. Dance pose estimation

and the dance action classification modules in the HCI system

are the key to background recognition. Accuracy and response

time can evaluate the dance movements and test the feasibility

of HCI systems based on dance education and action analysis

and recognition.

The deep LSTMnetwork architecture reported here contains

a four-layer network structure. The first layer is the input,

with 13 neuron nodes. The neurons in the middle two

hidden layers are 128 and 32, respectively. The last layer

is the output containing ten nodes corresponding to ten

music styles.

Frontiers inNeurorobotics 07 frontiersin.org

228

https://doi.org/10.3389/fnbot.2022.875058
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Chu 10.3389/fnbot.2022.875058

FIGURE 5

Thought of AM. (A) Network structure, (B) Algorithm pseudocode.

The dataset and the environment
configuration of the experiment

Themusic style library used in this experiment is GTZAN. It

is the western music style library used by Tzanetakis in his paper

published in 2002, including ten music styles, namely, blues,

classical music, country music, disco, hip-hop, jazz, metal, pop

music, reggae, and rock, with 100 clips in each style, totalling

1,000 music clips. Each segment is a mono 16-bit wav file with a

length of 30 s and a sampling rate of 22.05 kHz. Of these, 50 clips

are selected from each style for training, 25 clips for verification,

and 25 clips for testing.
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FIGURE 6

Input AM module calculation process.

FIGURE 7

Temporal AM.

FIGURE 8

Relationship between the hidden layer neurons, the learning rate, and model error. (A) Indicates the relationship between the hidden layer
neurons and error. (B) Shows the relationship between the learning rate and model error.
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FIGURE 9

Model comparison results.

FIGURE 10

Comparison of multi-parallel LSTM models, IndRNN, and AM-IndRNN. (A) the first test; (B) the second test.

Analysis and discussion of
experimental results

Experimental results of model parameter

The relationship between the hidden layer neurons, the

learning rate, and model error is outlined in Figure 8.

Overall, the training error decreases when the hidden layer

neurons increase from 3 to 13. In particular, when the hidden

layer neurons increase from 10, 11, to 12, the training error

increases first and then decreases. In conclusion, the optimal

hidden layer nodes are 11. On the other hand, the learning

rate directly affects the model learning and training efficiencies.

Concretely, the prediction error fluctuates greatly given a large

learning rate, and the model converges fast. By comparison,

a low learning rate means some uncertainties and slow

convergence. Finally, the optimal learning rate is determined as

0.01 by observing errors and the number of training.
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Functional test of the algorithm

Figure 9 compares the music style and beats recognition

accuracy of single LSTM, bi-directional LSTM, IndRNN, and

AM-IndRNN.

Comparing the loss and prediction accuracy reveals that

multi-parallel models have higher prediction accuracy than

single ones. The recognition accuracy of the multi-parallel

model reaches 79.8%, higher by 43.8% than the single LSTM

model, and themodel loss is only 6.85%. Overall, the recognition

accuracy and loss of the AM-IndRNN reported here are

optimal, reaching 88.9% and 7.48%, respectively. Therefore, the

optimized LSTM has higher recognition accuracy and is more

applicable for recognizing music styles and beats.

The result of note prediction accuracy is plotted in Figure 10.

In Figure 10, the abscissa means the number of iterations,

and the ordinate denotes the note prediction accuracy.

Apparently, note prediction accuracy increases with training

iterations. Meanwhile, the accuracy of the proposed AM-

IndRNN is always higher than that of multi-parallel LSTM

models and IndRNN.

The experimental results show that compared

with the model proposed by Soufineyestani et al.

(2021), the AM-IndRNN reported here has a higher

recognition rate on the GTZAN dataset. The experimental

results of this paper are compelling. They can well

complete the classification of music styles on the

GTZAN dataset.

The advantage of the AM-IndRNN reported here is that

the recognition accuracy and loss rate are optimal, reaching

88.9% and 0.0748, respectively. Compared with the non-

optimized LSTM model, the optimized LSTM model has higher

recognition accuracy.

The disadvantage of the AM-IndRNN reported here

is that this work limits the research object to single

music tone recognition. There are different musical

instruments in different countries and nationalities. With

the deepening of research, the recognition task may no

longer be limited to specific musical instruments or single

musical instrument performance. With the continuous

expansion of instrumental music, the identification and

discrimination work can eventually develop into the

performance identification of multiple groups of musical

instruments and even the music performance identification

with vocal music elements.

Algorithm comparison

Under the same experimental conditions, the proposed AM-

IndRNN model, deep Bach model, and BiLSTM- Generative

adversarial network (GAN) model’s note prediction accuracies

are compared in Figure 11.

FIGURE 11

Comparison of the deep Bach model, BiSTM-GAN model, and
the proposed AM-IndRNN model.

According to Figure 11, when the network iteration =

600, the music note prediction accuracy of the proposed AM-

IndRNN, BiLSTM-GAN, and deep Bach model is 73, 65,

and 33%, respectively. When the network iteration = 1,400,

the accuracy of the above three models is 92, 85, and 53%,

respectively. Therefore, with the increase in network iteration,

the model’s accuracy in predicting notes gradually increases.

Meanwhile, the accuracy of the proposed AM-IndRNN to

predict notes is always higher than deep Bach and BiLSTM-

GAN models.

Conclusion

With the popularity of internet technology and multimedia

equipment, online digital music has increased exponentially.

Thus, it becomes extremely challenging to manually manage

and classify massive numbers of online musical works. At

the same time, users’ needs for timely and accurate music

information retrieval have become imminent. This requires

the design of an accurate and effective music style and beats

recognition and classification system to manage online music

databases. The traditional music style classification methods

need a priori knowledge, with complex feature extraction and

fewer representative features. In particular, the DL classification

model can be used for automatic music style classification. This

work focuses on music style classification from audio feature

extraction, classifier training, and music style prediction. As

a result, a complete automatic music style recognition system

is implemented. To do so, the LSTM model is selected over

CNN. The sample music is divided into ten different styles.

Meanwhile, a hierarchical classification is adopted to improve

the classification accuracy further. Specifically, music is classified

into strong and weak categories by the LSTM classifier and
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then divided into multiple subcategories. This new multi-stage

classification method is used to classify different music styles.

Experiments show that hierarchical multi-step can improve

classification accuracy to a certain extent.

However, there are still some deficiencies. The music style

recognition system reported here recognizes single notes, but

multiple notes generally appear continuously in real music.

Hence, future research work will continue to study the problem

of multi-tone pitch recognition. In addition, due to the

limitation of research time, the number of samples is small,

and the experimental samples will continue to be expanded in

future research.
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The dance generated by the traditional music action matching and statistical

mapping models is less consistent with the music itself. Moreover, new dance

movements cannot be generated. A dance movement generation algorithm

based on deep learning is designed to extract themapping between sound and

motion features to solve these problems. First, the sound and motion features

are extracted from music and dance videos, and then, the model is built. In

addition, a generator module, a discriminator module, and a self-encoder

module are added to make the dance movement smoother and consistent

with the music. The Pix2PixHD model is used to transform the dance pose

sequence into a real version of the dance. Finally, the experiment takes the

dance video on the network as the training data and trained 5,000 times.

About 80% of the dance data are used as the training set and 20% as the

test set. The experimental results show that Train, Valid, and Test values based

on the Generator+Discriminator+Autoencoder model are 15.36, 17.19, and

19.12, respectively. The similarity between the generated dance sequence and

the real dance sequence is 0.063, which shows that the proposed model can

generate a dance more in line with the music. Moreover, the generated dance

posture is closer to the real dance posture. The discussion has certain reference

value for intelligent dance teaching, game field, cross-modal generation, and

exploring the relationship between audio-visual information.

KEYWORDS

deep learning, dancemovements, action characteristics, sound characteristics, dance

sequence

Introduction

Dance is a carrier of performing arts that widely communicates and spreads

characteristic culture through human body movements. It is an effective means to

reflect cultural diversity and national characteristics. For example, the dance performers’

gestures, eyes, and facial expressions, which are ever-changing postures, can represent

people’s seven emotions and six sensory pleasures. It can even represent natural scenery

such as heaven, earth, mountains, and rivers and natural phenomena such as day

and night. It is closely connected with music in structure, artistic expression, and

interpretation (Minturn and Fowlin, 2020). The continuous development of science and

technology provides a broad development platform for deep learning (DL) technology.

How to apply this technique to the generation of dance movements is one of the
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problems that educational circles pay attention to. The dance

movements are different due to cultural and ethnic differences,

and the follow-up DL technology will also study it. To

make dance and music a better fit, choreographers need

to create dance movements according to the characteristics

of music. Choreographers listen to music, analyze music

types, characteristics, inner feelings, or information, and then

design corresponding dance movements according to music

information. This whole process is called choreography. It is an

art of collecting and organizing movement sequences based on

music to reflect or express the dancer’s thoughts and emotions

(Moreu et al., 2020).

The traditional dance generation algorithm usually

constructs a music action database containing massive music

action pairs. When a music segment is used as input, it will be

divided into several small music segments. Each music segment

can find the most similar segment in the database. Then, the

system can provide corresponding dance action candidates

and combine them into a new dance action. In recent years,

with the development and popularization of DL, the artificial

neural network has been successfully applied to the generation

of dance movements. The significant advantage of using DL for

dance generation is that it can extract high-level features directly

from the original data. In addition, deep neural networks can

create new dance movements (Shang and Sun, 2020; Gao and

Xu, 2021). Li (2020) proposed a deep neural network, which

is trained from zero in an end-to-end manner and generates

faces directly from the original speech waveform without any

additional identity information. Their model is trained in a

self-supervised way by using the audio and video features

naturally aligned in the video (Li, 2020). Thomas and Blanc

(2021) proposed a cross-modal generation model based on a

cyclic generation countermeasure network by considering a

cross-modal cyclic generation countermeasure network and

combining different generated subnetworks into a network.

It further enhanced the effect of mutual generation between

music and images (Thomas and Blanc, 2021). Griffin (2021)

tried to use an Encoder-Decoder neural network model to

learn the corresponding relationship between the original

audio and video. This model uses the joint embedding of face

and audio to generate a synthetic speech face video frame.

The input of the model is a still image and audio segment

of the target face. Then, the lip video of the target face is

synchronized with the audio output (Griffin, 2021). Elst et al.

(2021) combined the convolutional neural network model and

generation countermeasure network model to produce a real

face sequence synchronized by two networks and input audio

(Elst et al., 2021). The limitation of the above dance action

generation method is that due to the use of the end-to-end

model, the consecutive frame of the generated dance may not be

smooth, making the visual effect of the generated dance worse.

Moreover, the dance directly generated by the algorithm is often

difficult to match the music.

The purpose is to enhance the consistency between the dance

generated by the model and the music itself and to increase the

smoothness and rationality of the long-time dance sequence.

This exploration designs a dance generation algorithm based

on DL to extract the mapping between sound and motion

features. First, the prosody features and audio beat features

extracted from music are regarded as music features. The

coordinates of human skeleton key points extracted from dance

videos are trained as motion features. Then, the basic mapping

between music and dance is realized through the generator

module of the model to generate a smooth dance posture.

The discriminator module is used to realize the consistency of

dance and music. The audio features are more representative

through the autoencoder module. The improved Pix2PixHD

model is used to transform dance pose sequences into a real-

life dance. Finally, the loss function of the model and the

generation results of cross-modal dance sequences are analyzed

through experiments, which proves that the scheme of the

dance automatic generation model based on DL is scientific and

effective. The advantage of its future work lies in providing a

method reference and rich theoretical basis for the generation of

subsequent dance movements and expanding the fields involved

in the current DL technology.

Automatic generation algorithm of
dance movement based on DL

Related technology

OpenPose is one of the most popular multi-person pose

estimation algorithms. Like many bottom-up methods, it first

detects the key point coordinates of all people in the image,

and then assigns the detected key points to each corresponding

person. In practice, the OpenPose network first uses the first

few network layers of Visual Geometry Group-19 (VGG-19) to

extract features from images. Next, these features are transmitted

to two parallel convolution layer branches (Simpson et al.,

2014; Kim et al., 2021). The first branch is used to predict

18 confidence maps, each representing a joint in the human

skeleton. The second branch predicts a set containing 38 Part

Affinity Fields (PAF), describing the connection degree among

joints. Next, a series of steps are used to optimize the predicted

value of each branch.With the joint confidence graph, a bipartite

graph can be formed between each joint pair. Then, the PAF

value is used to delete the weak connections in the bipartite

graph to detect the key points of the human posture of all people

in the graph.

The traditional deep neural network cannot effectively solve

the problem of time-series format data. The Recurrent Neural

Network (RNN) solves this problem. RNN has a closed loop,

which can continuously input the time-series information into

the network layer at different times. This circular structure
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FIGURE 1

Structure diagram of RNN.

shows the close relationship between RNN and time-series data

(Wang et al., 2021). Figure 1 is the structural diagram of RNN.

Long-Short Term Memory (LSTM) neural network is a

special type of RNN. It is designed to solve the problem of long-

term dependence on RNN. The network modules of all RNN

internal loops are the same. In ordinary RNN, the structure of

the loop module is very simple. However, the special RNN of

LSTM is designed to avoid long-term dependence, so different

but similar structures are designed, in which each module has

different structures. They interact in a quite special way. The

key to LSTM lies in the state of cells in each network layer and

the horizontal line passing through cells. The cellular structure

is similar to a conveyor belt structure. Data run directly on the

whole chain, with only a small amount of linear interaction

(Noumi et al., 2021; Venskus et al., 2021; Yang and Lee, 2021).

Figure 2 displays the details.

LSTM first decides what information to discard from the

cell. This decision is controlled by the Sigmoid layer of the

forget gate. For each element in the cell state ht−1, the forget

gate outputs a number between 0 and 1 by inputting ht−1 and

xt , which represents the percentage ft of information retained

from the previous cell state ct−1 to the current cell. 1 means

“keeping all this information,” and 0 means “discarding all this

information.” The updated equation of ft reads:

ft = σ

(

Wf ·
[

ht−1, xt
]

+ bf

)

(1)

Then, the model will decide which new information to store in

the cellular state. This step is divided into two parts. First, ht−1

and xt are used to get it through an input gate to determine

which information to update. Next, ht−1, xt , and a tanh layer

are used to create a new cell vector candidate value C̃t . This value

may be updated to the cellular state. Equations (2) and (3) are it

and C̃t updated equations.

it = σ
(

Wi ·
[

ht−1, xt
]

+ bi
)

(2)

C̃t = tanh
(

WC ·
[

ht−1, xt
]

+ bC
)

(3)

Next, the old cellular state Ct−1 is updated to the new status

Ct. The updated rule is to multiply the old state Ct−1 of the

previous time by the parameter ft to forget part of the old cell

state information. Then, the input gate added with a part of the

candidate cell state C̃t information is used to update the state Ct .

C_ The updated equation of Ct reads:

Ct = ft∗Ct−1 + it∗C̃t (4)

Finally, after updating the cell state, it is essential to determine

the final output according to the input ht−1 and xt . The output

will be based on the current cell state and some information will

be filtered. First, the output gate of a Sigmoid layer is established

to get the judgment conditions and determine which parts of

the cell to output. Then, the cell state is passed through the

tanh layer, so that the value of the output vector is between −1

and 1, and multiplied by the output gate. In this way, the final

output result of the LSTM unit will be obtained. The updated

equations read:

ot = σ
(

Wo ·
[

ht−1, xt
]

+ bo
)

(5)

ht = ot · tanh (Ct) (6)

The attention model is first used in machine translation, and

now it has become an important concept and tool in DL. The

attention mechanism is an important part of the neural network

structure, which has many applications in natural language

processing, machine learning, computer vision, and other fields

(Han et al., 2021). The Sequence-to-Sequence model is a kind

of End-to-End algorithm framework. It is also a transformation

model framework from sequence to sequence. It is applied in

machine translation, automatic response, and other scenarios.

It consists of encoder-decoder architecture. The encoder is an

RNN that accepts the input sequence {x1, x2, . . . xi} (i is

the length of the input sequence), and encodes it as a vector

{h1, h2, . . . hi} of fixed length. The decoder is also an RNN,

which takes a fixed-length vector hi as the input to generate

an output sequence {y1, y2, . . . yj}, where j is the length of the

output sequence. At each time, hi and Sj represent the hidden

state of the encoder and decoder, respectively, which are called

candidate state and query state, respectively (Luo et al., 2021;

Zhou et al., 2021). Figure 3 is a schematic diagram of the network

structure of the Sequence-to-Sequence model.

In the traditional encoder-decoder framework, the encoder

must compress all input information into a fixed-length vector

hi. Then, it is passed to the decoder. Using a fixed-length vector

to compress the input sequence may lead to a large amount

of information loss. Moreover, it cannot model the alignment

between input and output sequences. The attention model can

effectively solve these two problems. Its core idea is to introduce

attention weight α into the input sequence to give priority to

the location of relevant information to generate the output the

next time. The attention module in the network structure with

the attention model is responsible for automatically learning

attention weight αij, which can automatically capture the

correlation between hi and Sj (Gamal et al., 2020). These

attention weights are then used to construct the content vector
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FIGURE 2

Schematic diagram of LSTM network structure.

FIGURE 3

Network structure of the Sequence-to-Sequence model.

C, which is passed to the decoder as input. At each decoding

position j, the content vector cj is the weighted sum of all hidden

states of the encoder and their corresponding attention weights.

Equation (7) displays the details.

cj =

T
∑

i=1

αijhi (7)

Attention weight is learned by adding the feedforward

neural network to the Sequence-to-Sequence architecture. The

feedforward network learns a special attention weight αij, uses

hi and Sj as the input of the neural network, and then learns the

value of αij (Saka et al., 2021).

The autoencoder is a kind of neural network that uses a

back propagation algorithm to iterate and make the output

value equal to the input value. It first compresses the input

information into the latent space representation and then

reconstructs this representation into output. It is often used

in dimensionality reduction and outlier detection (Samanta

et al., 2020). Therefore, an autoencoder is actually a data

compression algorithm, and its compression and decompression

algorithms are realized through a neural network. It has three

characteristics: (1) Data correlation. The autoencoder can only

compress data similar to its previous training data. (2) Data

loss. Compared with the original input, the output obtained by

the autoencoder during decompression will have information

loss. Hence, the autoencoder is a data lossy compression

algorithm. (3) Automatic learning means that the autoencoder

automatically learns from data samples, making it easy to train a

specific encoder to input a specified class without any new work

(Rahimzad et al., 2021; Verma et al., 2021).

Generative Adversarial Network (GAN) is a representative

DL model. It makes the samples generated by the generated

network obey the real data distribution through confrontation

training (Yang et al., 2021). In GAN, there are two networks

for confrontation training. One is the discriminative network.

The goal is to judge whether a sample comes from real data

or generated data from the network as accurately as possible

and distinguish the generated data from the real data as much

as possible. The other is the generative network. The goal is

to generate real images as much as possible to deceive the

discriminative network and make it unable to distinguish the

samples from the source (Adamiak et al., 2021; Jeong et al.,

2021). The final ideal result is that the model converges, and

the discriminative network cannot judge the authenticity of

the input samples, that is, the generated network can generate

samples in line with the real data distribution.

Generally, image generation using GAN is to generate

a random image according to random noise. Although the

discriminator will judge the image’s authenticity, the generated

image is uncontrollable for the user. Pix2Pix model improves

this problem. It uses paired data for training and realizes

the mutual transformation of a group of images with some

semantic relationship (Du et al., 2020). Pix2PixHD generates

high-resolution and high-quality images based on Pix2Pix. With

a source video and another target video, the goal is to generate a

new video, so that the characters in the target video make the
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FIGURE 4

Schematic diagram of the network structure of the dance
generation model.

same actions as those in the source video (Boni et al., 2020).

The task is divided into three stages to complete: the human

posture detection stage, the global posture normalization stage,

and the mapping from the standardized human posture to the

target character. The model uses the open-source human pose

detection framework to create the human pose skeleton map

from the source video in the pose detection stage. In the global

posture standardization stage, themodel considers the difference

in spatial position between the characters in the source video and

the characters in the target video (Shin et al., 2020). Finally, the

model designs a countermeasure generation network to learn the

mapping from the standardized human posture skeleton map to

the real person image of the target character.

Model design

The dance generation algorithm based on the DL model

is committed to generating realistic dance movements

and matching the music as much as possible. The timing

characteristics of dance and audio data should be considered

in the model design. The focus of the model design is the

combination of dance and music and ensuring a good

dance generation effect. First, according to music and

dance data characteristics, a feature extraction scheme is

designed, including the extraction of prosodic features

and rhythm features. The dance generation model of

generating dance posture according to audio features

is designed based on the feature extraction scheme.

The model includes the generator, discriminator, and

autoencoder modules. Then, according to the dance pose

sequence generated by the model, a scheme of real dance

transformation is designed. Figure 4 shows the overall design of

the model.

In Figure 4, first, the audio features and motion features are

extracted from the dance data, then the audio features are input

into the dance generator to obtain the predicted dance posture,

and Mean Square Error (MSE) Loss is made with the real dance

posture. The reconstructed audio features are obtained through

the Autoencoder module and the Loss of audio reconstruction

is made. The predicted and real dance posture are sent to the

discriminator together, and the discrimination is conducted

through the anti-loss training model.

The Sequence-to-Sequence model has good sequence

generation ability, so the generator module of the model

is composed of a Sequence-to-Sequence model based on an

attention mechanism. The generator model of the dance

generation model with attention mechanism mainly includes

three parts (Figure 5).

The encoder module is composed of multi-layer LSTM to

extract long-term audio features. The input is the extracted

audio feature vector and rhythm feature vector, and the output

is the music context vector. The specific expression reads:

fC = ReLU
(

F3∗ReLU
(

F2∗ReLU
(

F1∗E(X)
)))

(8)

H = EncoderRecurrency
(

fc
)

(9)

F1, F2, and F3 are three convolution kernels. ReLU is the non-

linear activation on each convolution layer. EncoderRecurrency

represents bidirectional LSTM. After feature extraction, the

music feature sequence is first sent to three convolution

layers to extract music context information, and then, sent

to a bidirectional LSTM to generate the hidden state H of

the encoder.

The encoder module and decoder module can calculate the

hidden layer state H = {h1, h2, . . . hi} and hidden layer state

S = {M1, M2, . . . Mj}, respectively. hi and Mj are the hidden

states of the coding layer and the hidden states of the decoding

layer at each time step. Then, the attention weight is calculated

and assigned to the music context vector to obtain the audio

feature vector after assigning the weight. Attention calculation

occurs at each decoder time step. The custom score function is

calculated for the target hidden state and each source state to

generate attention weight. To reduce the potential sub-sequence

repetition or omission in the decoding process, the cumulative

attention weight of the previous decoding process is considered

as an additional feature to keep the model consistent when

moving forward along the input sequence. Therefore, the model

uses the attention mechanism based on location sensitivity

to expand the previous attention mechanism. Equation (10)

displays the details:

ei,j = score
(

si, cαi−1, hj
)

= vTa tanh
(

Wsi + Vhj + Ufi,j + b
)

(10)

fi,j is the position feature obtained by convolution of the

previous attention weight αi−1. v
T
a , W, V , U, and b are the

parameters to be trained. Through the attention calculation
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FIGURE 5

Schematic diagram of Sequence-to-Sequence model based on attention mechanism.

module, the attention weight between the hidden layer states hi

and sj can be obtained.

The music training dataset is M = {M1, M2 . . . Mn}.

Mi is a sequence of audio feature vectors. The dance training

dataset corresponding to music is P = {P1, P2 . . . Pn}. Pi is the

dance posture feature vector corresponding to Mi. {Mi,Pi} is the

training data of a sample pair. M and P are obtained from live

dance videos through specific feature extraction schemes. The

goal of the model is to train a dance generator G and realize the

mapping relationship between M and P. Equation (11) displays

the details:

LMSE(G) =
1

N

N
∑

i=1

‖ Pi − G (Mi) ‖
2 (11)

Equation (11) shows the specific process of generator training.

First, the model is trained on {Mi,Pi} and MSE Loss is calculated

between the dance G(Mi) generated by the model and the real

dance Pi. After the training, the corresponding dance posture

sequence can be obtained for any given music input.

A human posture sequence is a time-series that changes

constantly. Therefore, the difference between the front and

back frames of human posture can reflect the change process

of action, not just considering the fixed posture action in

time sequence. Such a change process can better represent the

characteristics of dance posture. The discriminator input is set

as posture vector P = {P1, P2 . . . Pn}, frame difference vector of

the pose before and after is set as M={P1-P2, P2-P3, . . . Pn−1-

Pn} and the audio feature vector is set as M= {M1, M2 . . . Mn}.

They are input into the discriminator together to judge whether

the combination of pose vector and corresponding audio vector

is true. Equation (12) shows the details:

LGAN (G,D) = E(P,M)[logD((P,M))]+
1
2EM[log(1− D((G(M),M)))+ log(1− D((W,M)))]

(12)

Equation (12) reveals that the generator G receives the music

feature vector M and generates the predicted dance posture

through C, which is recorded as G(M). In the training phase,

the generator G and the discriminator D are trained alternately

in turn. D is a discriminative network, which is used to judge

whether the generated dance is consistent with the music.

((G(M),M) sample pairs are set as a pair of negative samples.

M is the other real dance pose that does not match the current

audio. (W,M) is also set as a pair of negative samples. (P, M)

is the sample pair composed of music and its corresponding

real dance posture vector. It is set as a positive sample to

train the discriminator. The output D (G(M),M) represents the

probability of mutual fit between the predicted dance andmusic.

The closer the value of D (G(M),M) is to 1, the better the fit

between music and dance. The closer the output value is to 0,

the more discordant the generated dance is with the music.

An Autoencoder module is added to the model to

combine the music and dance posture more closely. The
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TABLE 1 Selected dance types, nationalities, quantities and characteristics.

Type Detailed Quantity Style characteristics

Mongolian dance Drum dance 30 Bold and generous

Chopsticks dance 30

Hui dance Banquet song 25 Cheerful and flexible

Dancing flowers 25

Uygur dance Sanam 35 Warm, bold and delicate

Dorang dance 35

Yi dance Cigarette box Dance 31 Positioning with “fire”

Music and dance 31

Zhuang dance Shigong dance 29 Some labor actions

Pole dance 29

audio autoencoder module is a network designed for audio

reconstruction. In the encoder stage of the generatormodule, the

input audio features are encoded.When the coding is completed,

in addition to the prediction of dance posture, the audio

features are input into an autoencoder module and regressed

with the audio features before coding. In this way, because the

model’s loss function needs to consider the regression loss of

dance posture and the regression loss of audio reconstruction

simultaneously, it can ensure that the dance posture will be

more consistent with the music when the model is predicted.

Moreover, the encoded audio feature vector can better represent

the original audio with the model’s training. The details are

as follows:

fi = Encoder (Concat (Mi,Bi)) (13)

M∼

i = Decoder
(

fi
)

(14)

The audio autoencoder takes the audio feature vectorMi and the

beat feature vector Mi as inputs. The LSTM network structure

is used to encode the audio features. Besides, the same and

symmetrical network structure is used for decoding. The basic

model structure is shown in the equation. Mi is the original

audio feature vector, Bi is the rhythm eigenvector, and M∼

i is

the reconstructed audio feature vector. f is a dimension-reduced

audio representation extracted from the audio feature vector.

Concat is a vector splicing operation. Encoder and Decoder are

neural networks to be learned. The loss function of the audio

autoencoder is defined as the Euclidean distance between the

original audio featureMi and predicted audio featuresM∼

i . The

Equation reads:

LRecon ( Encoder, Decoder ) =
1

N

N
∑

i=1

‖ M∼

i −Mi ‖
2 (15)

To sum up, equation (16) displays the optimization objective of

the model:

min
G

max
D

LGAN (G,D)+ λ1LMSE(G)+ λ2LRecon

(Encoder, Decoder) (16)

λ1 and λ2 are training parameters.

Experimental design

The dance synthesis results under different models and

parameter settings are evaluated to verify the feasibility and

effectiveness of the dance generation model. This experiment

takes the dance data video screened and downloaded from the

network as the experimental dataset for experiment and result

analysis because the dance types of the platform are diverse

and the research results will be more accurate. In addition,

it is more convenient and quicker to choose. In the process

of downloading, dance videos will also be screened to ensure

that each type of dance is involved, so that their cultural

characteristics can be captured from the dance. In the generator

training phase, the model training times are set to 5,000 times.

The model input dimension is 35, the encoder convolution

layers are 3, and themaximum length of each convolution core is

5. The decoder dimension is 1,024, the prenet dimension is 256,

the learning rate is set to 0.001, the gradient clipping threshold

is set to 1, the weight attenuation is set to 1e-6, the batch size is

set to 40, the seqlen is set to 125, and the optimizer is Adam. In

the discriminator training phase, it is set that the discriminator

is trained once every three training rounds of the generator. The

learning rate of the discriminator is 0.001, the weight attenuation

is 1e-6, and the optimizer uses Adam. The training set uses 80%

of the dance data, and the test set uses 20% of the dance data.

The experimental results are analyzed based on the model loss

function and cross-modal dance sequence generation results.

Table 1 shows the specific dance types selected.
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FIGURE 6

Experimental process of dance movement generation.

Figure 6 shows the specific experimental process.

Experimental results and analysis

Analysis results of the model loss
function

In the stage of audio feature extraction, the influence

of different data processing methods on the final loss

function is analyzed, and the specific results are shown in

Figure 7.

Figure 7 indicates that without filtering out the wrong data,

the loss value of using the rhythm feature will be greater than

that of not using the rhythm feature. This is also reasonable,

because with the increase of the dimension of audio data, the

noise may also increase, but the rhythm characteristics may

be useful for the final generation effect of dance. The effect

of using an interpolation function to supplement the missing

values of dance data is better than not using it. It is very

important to filter out the wrong data and it will enhance the

final result.

In the model-building stage, on the premise of filtering out

the wrong data, using rhythm characteristics and interpolating

the missing values, the impact of different modules on

the model loss is analyzed. The results are shown in

Figure 8.

As Figure 8 presents, the loss value with disciplinarian is

slightly greater than that without disciplinarian. This can be

expected because the confrontation training will make the

generator generate a new sequence that does not necessarily

match the original dance posture sequence, which may deviate

from the real value of the dance posture predicted by optimizing

Euclidean loss only. After the comparative analysis of the above

three types ofmodels, it can be seen that the autoencodermodule

has a significant impact on the loss of the model.

Analysis of generation results of
cross-modal dance sequences

First, the training set of the dance dataset is preprocessed.

According to the settings of seqlen = 125 and batchsize = 40,

music and dance sequences are segmented. Then, the segmented

audio sequence features are extracted and projected into a

dictionary together with their corresponding dance sequence.

The dance generation model is used to generate dance from

the music after segmentation. If the music segment does not

appear in the previous training data, the most similar music

segment is found in the audio feature vector dictionary obtained

by the K-means algorithm and K-nearest neighbor algorithm.

For K-means clustering, the number of clusters is set as k

= 5. The similarity measure of the audio feature vector is

Euclidean Distance. The similarity between the corresponding

dance sequence and the generated dance sequence is calculated.

If the music segment appears in the previous training data, the

similarity between the music-generated dance sequence and the

real dance sequence is directly calculated to measure the actual

generation effect of the dance. Figure 9 shows the similarity

between robot-generated dance and real human dance.

In Figure 9, the similarity between the robot-

generated dance and the real human dance shows that the

Generator+Disciminator+Autoencoder model has the best

effect on the actual human dance generation. The dance

effect of the network with a discriminator is better than

that of the network without a discriminator. Moreover, the

generator is superior to the generator of the LSTM series.

To sum up, the dance generation model scheme based on

Generator+Discriminator+Autoencoder can effectively extract

music features and generate dance pose sequences that fit the

music, which is feasible and effective.

To verify the actual effect of the design model, 200

dancers are recruited to evaluate the effect of dance movement

generation. Figure 10 shows the specific results.

Frontiers inNeurorobotics 08 frontiersin.org

242

https://doi.org/10.3389/fnbot.2022.911469
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Liu and Ko 10.3389/fnbot.2022.911469

FIGURE 7

Influence of di�erent data processing methods on final loss function in audio feature extraction stage.

FIGURE 8

Impact of di�erent modules on model loss in model building stage.

Figure 10 shows that 36.26% of the dancers think the

model has a very good dance movement generation effect;

57.61% of the dancers think that the model has a better

generation effect; 5.13% of the dancers hold that the model

has a general generation effect; and 1% of the dancers think

that the generation effect is poor. After that, 1% of the dancers

are paid a return visit. They believe that the reason why

they think the generation effect is poor is that the video

generated by the model will get stuck due to the impact

of the network environment. However, most of the dancers

recognize the designed model. Therefore, in the follow-up

study, it is necessary to strengthen the improvement of the

network environment.

Discussion

With the development of science and technology, a variety

of advanced technologies has been applied to the generation

of dance movements. From the perspective of DL, this work

studies the influence of this technology on the generation of

dance movements. First, starting with the real dance scene,

this work discusses and designs a DL-based dance action

generation algorithm, which can extract the background music

and dancers’ actions. Second, it establishes the corresponding

model. The selected data are applied to the model for research

and analysis. Fink et al. (2021) tried to use the delayed LSTM

artificial neural network to generate key points synchronized to
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FIGURE 9

Similarity between robot-generated dance and real human dance.

FIGURE 10

The dancer’s evaluation of the dance action generation e�ect.

audio, and then, another network was used to generate video

frames based on key points. It is a network architecture that

takes any text as input, and then, generates the corresponding

voice and synchronous photo display pure synchronous video.

Different from other published methods, their methods are only

composed of fully trainable neural networks and do not rely on

any traditional computer graphics methods (Fink et al., 2021).

Wang and Tong (2022) further proposed a time consistency

method for dynamic pixel loss. Compared with the direct audio-

to-image method, this cascading method avoids fitting the

false correlation between audio-visual signals independent of

speech content. To avoid these pixel jitter problems, they also

emphasized the network’s attention to audio-visual related areas,

and proposed a new attention mechanism with dynamically

adjustable pixel-level loss. In addition, to generate clearer

images with well synchronized facial motion, they proposed a

new regression-based discriminator structure, which considers

sequence-level and frame-level information (Wang and Tong,

2022). The above two scholars discussed their methods of

generating dance movements from different angles. This study

draws lessons from the effective methods and designs a model

based on Generator+Discriminator+Autoencoder to generate

dance movements. This study has a certain reference value

for intelligent dance teaching, cross-modal generation, and

exploring the relationship between audio-visual information.

Conclusion

In the field of music-driven computer dance motion

generation, there are many problems in the traditional music

motion matching model and statistical mapping model. From

the perspective of DL technology, this study studies the

generation of dancemovements, andmainly draws the following

conclusions. (1) Taking 80% of the dance data as the training

set and 20% of the dance data as the test set, it is found that

in terms of the loss function, although the loss value based on

Generator+Discriminator+Autoencoder model is higher than

that of pure generator model, it can generate dance more in line

with music. (2) In the evaluation of dance posture sequence,

compared with other models, the dance posture generated by

the model in this work is the closest to the real dance posture,

whether for the music in the training set or the music in the

test set. Experiments show that the scheme of the DL-based

dance automatic generation model is scientific and effective.

However, the amount of data selected here is less and there

are some errors in the relevant test of the data. In addition,

this study only analyzes the research of DL technology in dance

movement generation but does not discuss the application of

other technologies. In the future, a larger dance data set will be
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established to expand the training data, thereby, training a more

representative dance movement generation model.
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