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Editorial on the Research Topic

Brain imaging relations through simultaneous recordings

1. Introduction

Recent technological advancements in neuroscience and in particular neuroimaging has

improved the understanding of brain functionality and connectivity—not only in animal but also

in human brains (Kawala-Sterniuk et al., 2021; Saeidi et al., 2021; Simon et al., 2021). Today, we

are not only able to identify, localize, and characterize brain pathologies, such as local infections,

lesions, or tumors, but we are also able to study brain anatomy, functionality, development,

neuronal networks, etc. with very high precision. Availability of sophisticated software and

advanced algorithms improved the possibilities for the analysis of various biomedical signals

and outputs (Ismail and Karwowski, 2020; Kawala-Sterniuk et al., 2021; Martinek et al., 2021).

Despite the above-mentioned rapid technological development in this field, certainmachine-

specific limitations have to be taken into consideration, as these affect our ability to fully

understand the mechanisms underlying brain functions. The limitations include poor temporal

and poor spatial resolution, as each respective neuroimaging technique is accompanied by

some shortcomings. Hence, the recent shift in the field has led to hybrid methods, which are

a combination of simultaneous neuroimaging methods such as electroencephalography (EEG)

and magnet resonance imaging (MRI) or functional near-infrared spectroscopy (fNIRS). Such

combined approaches overcome the limitations of single modalities and provide a fuller and

more comprehensive picture of the brain. They also play an increasing role when interacting

with the brain using stimulation techniques (e.g., transcranial electric or magnetic stimulation

(TES/TMS), including closed-loop applications) (Nasr et al., 2022).

The Research Topic “Brain Imaging Relations Through Simultaneous Recordings” consists

of a collection of 11 contributions discussing new methods and systems for various brain data

recordings and analyses, and document the most recent advancements in the field of neural

technology and simultaneous neuroimaging recordings.

The first article published by Żebrowska et al. titled “Removal of the Sinusoidal Transorbital

Alternating Current Stimulation Artifact From Simultaneous EEG Recordings: Effects of Simple

Moving Average Parameters” focuses on the analysis of electroencephalography (EEG) signals,

which is a very challenging task—mostly due to the nature of these signals. This study states that

alternating current stimulation can be a promising treatment method for various neurological

disorders, but it causes numerous artifacts and disturbances in EEG signals. In order to remove
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these artifacts, the authors proposed a simple moving average

subtraction, which gave very promising and positive results. The

authors of that paper based on a thorough literature background,

proved that moving average filtering can be efficiently applied in EEG

signals’ processing.

The second article, entitled “Reliability of MUSE 2 and Tobii

Pro Nano at capturing mobile application users’ real-time cognitive

workload changes,” was written by Zhang and Cui. Unlike Żebrowska

et al., this study focused on non-clinical, inexpensive equipment such

as MUSE 2 in order to check if it could be a useful tool for obtaining

high-quality EEG signals–potentially later applied for diagnostics

purposes (Zhang and Cui). The article is also focused on a very broad

topic—human omputer interaction (HCI), where the MUSE 2-EEG

was combined with an eye-tracking device (Tobii Pro Nano). The

obtained signals were of high quality and stable, making them useful

in studies assessing the usability of smartphone applications. Despite

some flaws, the authors have proven MUSE 2 to be a reliable device

for cognitive workload detection and measurement.

Functional near-infrared spectroscopy (fNIRS) can be considered

a less expensive alternative to fMRI functional magnetic resonance

imaging). The use of fNRIS has been discussed in two articles: Deng

et al. and Ma et al.. In the first article written by Deng et al.,

titled “The analgesic effect of different interactive modes of virtual

reality: A prospective functional near-infrared spectroscopy (fNIRS)

study,” the authors focused on studying the analgesic effect of various

virtual reality (VR) models with the use of fNIRS measurements.

The obtained results proved VR to have the analgesic effect, which

has been verified by the analysis of fNIRS signals. The second article

written by Ma et al. and titled “Increased cerebral cortex activation

in patients with stroke during the electrical stimulation of cerebellar

fastigial nucleus with functional near-infrared spectroscopy” applied

fNIRS data in order to detect any functional connectivity changes in

patients affected by brain stroke and to study the cortical activation

caused by fastigial nucleus (FNS) by measuring the cerebral cortex

oxygenated hemoglobin concentration (HBO), which can be done

with the fNIRS of both patients with stroke and healthy controls.

This study proved that combining FNS and fNIRS techniques can

help in choosing appropriate functional rehabilitation for patients

with stroke.

Electroencephalography recordings can be efficiently combined

with fNIRS as presented in article written by Chen et al. titled

“Amplitude of fNIRS resting-state global signal is related to EEG

vigilance measures: A simultaneous fNIRS and EEG study” describing

fNIRS-EEG simultaneous recordings in healthy participants. The

presented study consisted of two experiments, where the first one

was carried out on patients in the supine, sitting, and standing

positions; while the second experiment concerned the analysis of

fluctuations between the epochs of a separate group of subjects. The

authors found a negative temporal correlation between EEG vigilance

measurements and global fNIRS signal amplitudes. According to

the authors, this is the first study to reveal that vigilance as a

neurophysiological factor modulates fNIRS dynamics at rest, which

has important implications for understanding and processing noise

in fNIRS signals.

Three studies using hybrid recording systems based on EEG and

fMRI (functional magnetic resonance imaging) are also part of this

special issue: Bhutada et al., Rusiniak et al., and Basedau et al.. The

first article written by Bhutada et al., titled “Semi-automated and

direct localization and labeling of EEG electrodes using MR structural

images for simultaneous fMRI-EEG” describes both semi-automated

and direct methods for standard EEG cap electrode localization

and labeling. The data were obtained during simultaneous fMRI-

EEG recordings. The authors proposed a novel, semi-automated

method as a simple alternative for rapid electrodes labeling and

localization with no need for using any additional equipment than

the one already applied in a typical EEG-fMRI setup. Rusiniak et. al.

wrote an article (“EEG-fMRI: Ballistocardiogram Artifact Reduction

by Surrogate Method for Improved Source Localization”), where

they focused on ballistocardiogram (BCG) removal from the brain

signals obtained during EEG-fMRI recording. It is because the other

biosignals are frequently acting and considered artifacts while present

in brain recordings. Removal of such distorting biomedical signals

is a very challenging task. Rusiniak et al. proposed a method based

on surrogate source models applied for the purpose of artifact

removal with the possible minimal distortion. In the third article

written by Basedau et al.—“High-density electroencephalography-

informed multiband functional magnetic resonance imaging reveals

rhythm-specific activations within the trigeminal nociceptive network,”

the authors focused on using multi-modal non-invasive imaging

techniques for the pain assessment purposes. The authors showed

that changes in theta-band visible in EEG recordings are induced

by trigeminal pain and these correlate with fMRI activation in

the brainstem.

In another article, brain data obtained using imaging techniques

were applied to assess the severity of pain Wang et al.. As cancer

affects an increasing number of people, one of its most common

symptoms is cancer pain (CP), which frequently reduces life quality.

In an article written byWang et al. titled “Evaluation of the glymphatic

system with diffusion tensor imaging-along the perivascular space in

cancer pain,” the authors decided to apply diffusion tensor imaging

along the perivascular space (DTI-ALPS) as a non-invasive method

to detect the alteration of the caused by bone metastasis glymphatic

function in patients affected with CP. Their findings can improve

understanding not only the functional characteristics of the brain

under cancer pain but also to evaluate it through brain function

detection, which may play a crucial role in appropriate treatment

formulation. Neuroimaging techniques described in that article may

be considered biomarkers for cancer pain assessment.

Our special issue also contains a research article titled “Evaluating

the Safety of Simultaneous Intracranial Electroencephalography

and Functional Magnetic Resonance Imaging Acquisition Using

a 3 Tesla Magnetic Resonance Imaging Scanner” by Fujita

et al.. It presents a fMRI-based multi-modal system that was

combined with invasive brain activity recordings–intracranial

electroencephalography (icEEG). Due to the invasiveness of icEEG

recording, both methods have never been carried out at the

same time. The authors of this study decided to conduct both

measurements simultaneously using a 3-Tesla scanner. The authors

considered major risk factors and assessed safety rules. Their study

proved that under appropriate conditions that health risks during

such procedure are low.

The review article titled “Vascular cognitive impairment after

mild stroke: connectomic insights, neuroimaging, and knowledge

translation” written by Holguin et al. underlines that current stroke

assessment protocols rarely detect vascular cognitive impairment

(VCI), in particular among patients affected with lighter deficits.

The authors emphasize the importance of screening for VCI because

such screening provides information required for the rehabilitation

and recovery process. In this article, the authors focused on

the relationship between insult-induced connectome changes and
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the VCI; and discussed the latest clinical approaches to identify

disruptions in neural networks and white matter connectivity. It also

outlines how occupational therapists can work to make significant

clinical innovations and speed recovery for people affected by stroke.

As mentioned earlier, analysis of biomedical data, in particular

brain signals, is a very challenging task, but this makes it very

interesting. We hope that our Research Topic will be found

interesting to readers and researchers in fields of medicine,

biomedical engineering, or neuroscience.
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Removal of the Sinusoidal
Transorbital Alternating Current
Stimulation Artifact From
Simultaneous EEG Recordings:
Effects of Simple Moving Average
Parameters
Małgorzata Żebrowska1,2* , Piotr Dzwiniel1* and Wioletta Joanna Waleszczyk1†

1 Laboratory of Visual Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw,
Poland, 2 Faculty of Physics, Warsaw University of Technology, Warsaw, Poland

Alternating current stimulation is a promising method for the study and treatment of
various visual neurological dysfunctions as well as progressive understanding of the
healthy brain. Unfortunately, due to the current stimulation artifact, problems remain
in the context of analysis of the electroencephalography (EEG) signal recorded during
ongoing stimulation. To address this problem, we propose the use of a simple moving
average subtraction as a method for artifact elimination. This method involves the
creation of a template of the stimulation artifact from EEG signal recorded during non-
invasive electrical stimulation with a sinusoidal alternating current. The present report
describes results of the effects of a simple moving average filtration that varies based
on averaging parameters; in particular, we varied the number of sinusoidal periods per
segment of the recorded signal and the number of segments used to construct an
artifact template. Given the ongoing lack of a mathematical model that allows for the
prediction of the “hidden” EEG signal with the alternating current stimulation artifact,
we propose performing an earlier simulation that is based on the addition of artificial
stimulation artifact to the known EEG signal. This solution allows for the optimization
of filtering parameters with detailed knowledge about the accuracy of artifact removal.
The algorithm, designed in the MATLAB environment, has been tested on data recorded
from two volunteers subjected to sinusoidal transorbital alternating current stimulation.
Analysis of the percentage difference between the original and filtered signal in time and
frequency domain highlights the advantage of 1-period filtration.

Keywords: EEG, non-invasive electrical stimulation, transorbital alternating current stimulation, sinusoidal
stimulation, stimulation artifact, simple moving average, averaging parameters, artifact template removal

INTRODUCTION

Transorbital and transcorneal alternating current stimulation appear to be some of the most
promising tools for studying and the rehabilitation of visual dysfunctions. As a result, there is
a recent shift in the use of these methods from research laboratories to clinics (for review see
Ota et al., 2018; Sabel et al., 2019). Detailed analysis of the brain activity during stimulation is
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crucial for elucidating the processes underlying the generation of
phenomena associated with mentioned stimulation.

There are few possible types of alternating current stimulation
(ACS) wave shapes, including sinusoidal, triangle/sawtooth, and
squared (Moreno-Duarte et al., 2014; Dowsett and Herrmann,
2016). In this work, we focus on the sinusoidal transorbital (to-)
ACS given that the usefulness of this method (as well as other
types and subtypes of ACS) in rehabilitation of visual dysfunction
is unknown (Kanai et al., 2008; Brignani et al., 2013; Neuling et al.,
2013; Vossen et al., 2015; Kasten et al., 2016). Our main concern
is that analysis of the EEG signal recorded during stimulation
is significantly impeded due to the presence of a stimulation
artifact that completely obscures endogenous brain activity.
A representation of this problem is provided in Figure 1, showing
signal recorded during 40 µA 10 Hz sinusoidal toACS. The
amplitude of the signal with toACS stimulation is much greater
than the amplitude of the signal recorded prior to stimulation in
both time (Figure 1A) and frequency domains (Figures 1B,C).
This problem is complicated by the fact that the frequency of
stimulation usually falls within the frequency of interest, which
is crucial for the study of a given phenomenon. With regard to
these problems, the conclusions about the impact of a particular
stimulation protocol are usually drawn based on a comparison of
the EEG signal recorded before and after stimulation. Knowledge
about the EEG signal “hidden” under the artifact could provide
additional information on the impact of stimulation on neural
activity and thus enable scientists to extend and refine findings
on the impact of stimulation. Therefore, a method of filtering the
EEG signal is needed, allowing for the removal of artifact with
the greatest possible accuracy while ensuring the smallest possible
loss of information about endogenous brain activity.

The search for the most appropriate method of removing ACS
artifacts initially begin in studies concerning functional magnetic
resonance imaging (fMRI). The ACS artifact observed in the
EEG signal is similar to the artifact recorded during fMRI with
simultaneous stimulation. The previously proposed methods of
filtration were based on a combination of average (i.e., template)
artifact subtraction and other techniques, such as adaptive noise
cancelation (Allen et al., 2000), principal component analysis
(PCA; Niazy et al., 2005), or independent component analysis
(ICA) with different filtering (Bénar et al., 2003). Some of these
methods have already been used to remove the ACS artifact.
Template subtraction and PCA have been adapted to remove
10 Hz sinusoidal tACS artifact (Helfrich et al., 2014) using
a 2-step algorithm. This algorithm involves the calculation of
an artifact template from artifact segments. Obtained artifact
template is then subtracted from a segmented signal and the
remaining artifact is subsequently removed with the use of a
PCA. The combination of average template subtraction and
PCA was also used by Kohli and Casson (2015). In this study,
both techniques were used independently and their filtering
results were compared.

Previous publications that discuss the removal of the ACS
artifact have provided only brief explanations of the adopted
filtration parameters. We have found insufficient explanation of
the impact of mentioned filtration settings on the overall filtering
procedure outcomes. These publications will be discussed briefly

in the following. First, in Helfrich et al. (2014), the filtering
approach was based on the use of 30 period segments, and
then creating a template from 10 centered segments (i.e., 300
sinusoidal periods averaged to create 1-period artifact template).
Other research (e.g., Kohli and Casson, 2015) suggests that
individual segments should consist of the smallest possible
number of oscillation periods and that the length of the segment
(i.e., number of samples) should be an integer. The number of
averaged segments was equal to 5% of all segments extracted
from the signal. Given (1) the lack of a clear and well-established
consensus regarding the choice of the optimal averaging
parameters for satisfactory stimulation artifact removal, as well as
(2) the need for analysis of the relation between those parameters
and the removal method performance (Kohli and Casson, 2019),
we decided to consider this issue.

The present study aimed to provide a comprehensive analysis
of the effectiveness of the method for sinusoidal ACS artifact
removal based on the subtraction of the artifact template created
with the use of simple moving average (SMA). Our aim was to
propose a guide for researchers using SMA method for cleaning
EEG signals that have been contaminated with sinusoidal ACS
artifacts. Although the algorithm used to create an average artifact
template was applied in some of the aforementioned studies, our
analysis of the literature revealed insufficient information about
the values of the parameters used in the averaging procedure.
Furthermore, this method is often used as the only filtration
step or is used as the initial step before further filtration
stages (e.g., PCA, ICA). Thus, the considerations discussed
here are important for the accurate separation of the EEG
signal of interest from contamination due to stimulation artifact.
Therefore, this work focuses on illustrating the effects of various
SMA parameters and their respective values on the performance
of stimulation artifact removal from the EEG signal recorded
during sinusoidal toACS. We included a quantitative analysis
of the accuracy of the stimulation artifact removal and an
assessment of the pros and cons of using SMA filtering in the EEG
signal analysis.

MATERIALS AND METHODS

Ethical Approval
The study adhered to the Declaration of Helsinki and was
approved by the Ethical Committee of the University of Warsaw.
Participants provided written informed consent concerning their
participation in the study.

Subjects
One healthy female (age 23 years) and one healthy male (age
30 years) participated in the study. The participants were co-
authors of this article and were required to meet the following
criteria: (1) age between 20 and 40 years old; (2) lack of myopia
or other uncorrected visual acuity deficits; (3) lack of diagnosed
mental disorders; (4) lack of diagnosed neurological diseases or
disorders; (5) lack of history of epileptic seizures; (6) lack of
history of head injury resulting in loss of consciousness and/or
hospitalization with comorbid brain damage; (7) lack of intake
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FIGURE 1 | (A) Example of the EEG recording (electrode O2; one exemplar participant) with a visible stimulation artifact starting around 604.5 s and resulting from
an applied 40 µA 10 Hz sinusoidal to ACS. The EEG signal with superimposed stimulation artifact is 10 times greater in amplitude than the EEG signal recorded prior
to stimulation. (B) Power spectrum density (PSD) before stimulation in a condition with an excitation in alpha band (i.e., closed eyes). The large intensity of artifact in
10 Hz during stimulation (C) doesn’t allow for the analysis of the spectrum of endogenous brain activity in alpha band. PSD obtained from 5 min of signals, recorded
at a 500 Hz sampling frequency.

of psychoactive substances including medical drugs; (8) lack of
diagnosed addiction to any psychoactive substance; (9) lack of
implanted electronic devices; (10) not pregnant.

Study Preparation
Prior to the experiment, each participant was appropriately
prepared for the study. First, we applied the EEG cap on the
participant’s head. We ensured good contact between the EEG
recording electrodes and the participant’s skin via SuperVisc
conductive gel (EASYCAP, Germany). Next, the participant’s skin
was cleaned and hydrated below and above both eyes with the
use of 70% ethanol and Nuprep skin preparation gel (Weaver
and Company, United States), respectively. Finally, self-adhesive
current stimulation electrodes were placed in the prepared areas
around the participant’s eyes. The accepted impedance threshold
between skin and electrodes was set to 10 k�.

Hardware Configuration and
Experimental Design
Visual Stimulation and EEG Recording
The participant was situated in front of a laptop screen at a
distance of 80 cm and was instructed to fixate on a white circular
point (diameter: 0.3◦, luminance: 207.5 cd/m2) displayed on
a homogenous black background (luminance: 0.3 cd/m2). The
experiment with the male participant consisted of two continuous

15-min blocks repeated over two subsequent days. On day one,
EEG data were recorded while the participant’s eyes were closed
for the first block, and eyes open for the second block. On day
two, toACS was applied during the middle 5 min of each block
while performing simultaneous EEG recording. A 10-min break
separated each block and EEG data was not recorded during the
breaks (Figure 3A).

EEG data was recorded from the male subject using an
actiCHamp EEG amplifier, an actiCAP EEG cap equipped with 32
active recording electrodes and one additional ground electrode,
and recording software (Brain Products, Germany). The ground
electrode was placed at the AFz electrode location and the
software reference electrode was set at Cz. Thus, the raw EEG data
consisted of 31 channels, given that the reference electrode was
not included. Sampling frequency was set to 10 kHz. Low- and
high-pass hardware filters were 2470 Hz and DC, respectively.

Detailed information about EEG data collection for the second
subject (female) is presented in Supplementary Materials.

Electrical Stimulation
The generation and application of toACS was performed using
DC-Stimulator MC (neuroConn, Germany). The stimulator has
four stimulation output channels. The first two channels were
used to apply toACS to the participant. The third channel
carried the same information as the first two channels, but
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instead of using the channel for stimulation, it was sent via
opto-isolator to the EEG amplifier’s AUX input and later used
for EEG signal segmentation. Stimulation was applied via four
15 × 20 mm rectangular self-adhesive EMG electrodes (Spes
Medica, Italy) connected with external cables to the stimulator
and located directly below and above the participants’ eyes, i.e.,
transorbitally (Figure 2A). Impedance between the stimulation
electrodes and participants’ skin never exceeded 100 k�. If the
impedance exceeded 100 k�, the stimulator would automatically
stop the procedure due to safety issues. Current stimulation
was in a form of sinusoidal wave of 10 Hz frequency and
20 µA amplitude from peak-to-peak (Figure 2B). Maximum
calculated current density of the applied current stimulation
below each of the stimulating electrodes during stimulation
peak was 0.066 µA/mm2. Stimulation signal generated by the
stimulator was prepared in Python programming language as
∗.mat file, and converted with a dedicated neuroConn’s MATLAB
toolbox into a ∗.bfs file, a file format used by the stimulator
for stimulation. The sampling frequency of the stimulation
signal was 16 kHz.

Data Pre-processing
Pre-processing of the recorded EEG data was performed with the
use of custom-written scripts in Python programming language
and MNE-Python package (Gramfort et al., 2013; Jas et al.,
2018). First, the raw EEG data were filtered with a Butterworth
4th order biquadratic (i.e., second-order sections) IIR band-
pass filter for the 0.1–100 Hz frequency range. Then, data were
filtered with a zero-phase FIR notch filter of length 6.6 s for
grid artifact frequency and associated harmonics removal, i.e.,
50, 100, 150, 200, and 250 Hz. Of note, the filter type selection
was motivated by the need to minimize edge artifacts around the
current stimulation EEG artifacts.

Designed Algorithm for the Removal of
the Sinusoidal ACS Artifact From EEG
Signal
The algorithm that removes the sinusoidal ACS artifact from
the simultaneous EEG data recording was implemented in the
MATLAB environment. This algorithm is based on the coherent
averaging technique, which is useful in digital signal processing
to filter out noisy time series from repetitively applied stimuli
(Rompelman and Ros, 1986). This method assumes that noise
components are additive. Typically, during such filtration, the
signal of interest is a periodic wave (e.g., a sinusoidal function)
that is embedded in the noise. Averaging the corresponding noisy
signal segments that are compatible in the phase causes the noise
to be cleared, thus increasing the signal-to-noise ratio. In the
case of EEG signal with embedded sinusoidal ACS artifact, the
situation appears to be exactly the opposite (see Figure 3B).

The unwanted ACS component is a sinusoidal waveform
of a specific frequency. Averaging the appropriate number of
sinusoidal periods results in a filtered waveform. This waveform
serves as a template for artifact that can later be subtracted
from the recorded signal (Figures 3A,B). Due to the specificity
of the EEG signal recorded during stimulation, the part of the

signal that should be averaged to obtain the most comprehensive
artifact template is not readily apparent. In fact, the artifact
embedded in the signal may change over time due to possible
impedance changes at the skin-electrode interface caused by
sweating, peeling off the electrodes, or drying of the conductive
gel. One possible solution to the progressive changes related
to these potential fluctuations of the electric potential on the
skin-electrode interface is the application of a coherent moving
average (also called SMA) with a defined window that limits
the range of the averaged signal. The algorithm, described
in detail in the next paragraph, can be used to filter one-
dimensional continuous time series; for example, recordings
from a single EEG electrode.

Steps of the Algorithm
Division of the signal into segments
Knowing the sampling frequency of the signal Fs and the
frequency of the stimulation freqStim, the number of samples
corresponding to the length of the segment containing one full
sine wave stimulation period can be calculated as follows:

segmentLength =
Fs

freqStim
(1)

wherein segmentLength is the number of samples that
corresponds to the length of one stimulation period.

Starting with the first sample that includes stimulation, the
signal is divided into single-period segments (Figure 4A) or into
segments of a total multiplicity of the period (Figure 4B). Each
segment has the same length, corresponding to the same number
of samples. As a result, the signal with the stimulation artifact,
arising from one electrode (E), consists of segments s (n) of the
same length, according to the following rule:

E = [s (1) , s (2) , s (3) , . . . , s (N)] (2)

wherein s (n) represents successive segments, i.e., the sets of
samples containing the total number of stimulus oscillations and
n ∈< 1 : N >, N is total number of segments.

Calculation of the artifact template
For each segment, s (n), the artifact template temp is calculated
on the basis of A. A refers to the number of averaged segments
centered around the segment s (n). In this process, the segment
that is used to count the template is not used in averaging
to avoid any possible later subtraction of information about
the pure EEG. For this reason, the artifact template temp (n)
for the segment s (n) is determined according to the following
relationship:

temp (n) =
1
A

n+1+ A
2∑

n+1− A
2

s (n)

 (3)

wherein temp (n) represents an artifact template for segment
s (n), A represents an even number of averaged segments, s (n)
represents the segment, n ∈< 1 : N >, and N refers to the total
number of segments.
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FIGURE 2 | (A) Location of the electrical stimulation electrodes used in the study. (B) One second of the 10 Hz 20 µA sinusoidal alternating current stimulation that
was applied transorbitally.

FIGURE 3 | (A) Diagram of the experimental procedure on the first participant. The procedure consisted of two continuous 15-min blocks (one with eyes closed, one
with eyes open) repeated over the course of two subsequent days (SHAM and STIMULATION). A 10-min break separated each block, and EEG data were not
recorded during the breaks. During every 15-min session, the stimulation lasted 5 min, and had a frequency of 10 Hz and an amplitude of 20 µA. (B) Diagram of the
coherent averaging idea. In this example, four noisy sinusoidal segments compatible with phase are averaged resulting in a “pure” sinusoidal signal. The noise
component with a low amplitude represents endogenous EEG activity embedded in a high-amplitude sinusoidal wave representing an ACS artifact. The noise after
averaging is close to 0, which indicates that coherent averaging sets information about endogenous EEG activity to zero and thus allows for the acquisition of the
ACS artifact template (i.e., sinusoidal component).

Subtraction of templates from segments
The last stage consists of subtracting the prepared templates from
the corresponding segments. This operation results in a new
segment, newS (n), that is free of artifact and can be calculated
as follows:

newS (n) = s (n)− temp (n) (4)

wherein newS (n) refers to a new segment without
stimulation artifact, s (n) represents the artifact segment,
and temp (n) represents the artifact template for segment s (n).

Figure 5 presents three consecutive example segments. Each
segment [i.e., s (n), s (n+ 1), and s (n+ 2)] (Figures 5A–C)
was obtained from a signal with 10 Hz stimulation. Each
segment was constructed from 10 sinusoidal periods. Thus,
each segment is a 1-s recording and, due to the 500 Hz
sample frequency, every s (n) contains 500 samples. One
period contains 50 samples according to the simple calculation

500 Hz
10 Hz = 50. Three consecutive artifact templates [temp (n),

temp (n+ 1) , and temp (n+ 2)] were constructed from the
average of 20 segments centered around the considered
segment. The final effect of the filtering algorithm using the
moving average method presents new filtered segments without
artifact templates [newS (n), newS (n+ 1) , and newS (n+ 2)],
and with an amplitude that does not exceed 0.1 mV. The
amplitude before and after the filtering has been changed
more than 10 times.

Method for Selecting the Optimal Parameters of
Filtration
Here, we analyzed the accuracy of artifact removal using the
designed algorithm to verify, in detail, the effects of the two
filtration parameters: (1) the number of periods per segment
(i.e., in each artifact template) and (2) the number of averaged
segments used to create each artifact template.
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FIGURE 4 | Model for simple moving average filtration for 1- (A) and 2-period (B) segments. Simulation was prepared on signal STEP A1, B1, by dividing the signal
for one or two period segments [s(n) and s(m)]. STEP A2, B2: To create an artifact template for the nth or mth segment, 900 other segments were selected that
centered around the considered segments. The samples in the same phase were then averaged by columns. STEP A3,B3: The resulting artifact templates were then
subtracted from the nth and mth segments that included artifact. This subtraction results in nth and mth segments that are free of artifact.

Verifying the effectiveness of artifact removal without
simultaneously removing information about neural activity from
the EEG signal is difficult due to the lack of a model that predicts
the “real” EEG signal “hidden” under the artifact and lays in the
middle of the inverse problem. To facilitate understanding the
problem of removing stimulation artifact from EEG recordings,
we present results of SMA filtering on signal recorded during eyes
closed (Figure 6A) and eyes open (Figure 6C) conditions. These
results are shown in time and frequency domains only, for one
of several possible filtering settings (i.e., 900 1-period segments to
create 1-period artifact template). Following filtration, a decrease
in signal amplitude is observed in both time and frequency

domains. Unfortunately, because we are unable to compare these
results to a known stimulus signal, we have no information on the
accuracy of removing the artifact and possible loss of information
about neuronal activity. Therefore, it is important to identify the
filtration conditions that would be most effective, and how to
achieve a reliable assessment of the filtration algorithm.

Taking these factors into consideration, we adopted the
following principle. First, a sinusoidal waveform interpolated and
downsampled to simulate an undefined sinusoidal waveform in
the actual EEG recording, EEGS, was superimposed on pure EEG
signal with a known power spectrum. Then, after applying the
algorithm with different filtering parameters, the obtained signal
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FIGURE 5 | Effects of the three steps of the algorithm. Three adjacent segments [s(n) (A), s(n + 1) (B), and s(n + 2) (C)] recorded during the stimulation of the second
participant (details provided in the “Methods and Materials” section). Each segment contains 10 oscillations of a 10 Hz alternating current. Thus, each segment is a
1-s recording and, due to the 500 Hz sample frequency, every s(n) contains 500 samples. Of note, one period contains 50 samples according to the simple
calculation (500 Hz)/(10 Hz) = 50. Each template [i.e., temp (n), temp(n + 1), and temp(n + 2)] was created by averaging 20 segments centered around segments
s(n), s(n + 1), and s(n + 2). Three new segments [i.e., newS(n), newS(n + 1), and newS(n + 2)] were obtained after subtracting the artifact templates as follow:
s(n)-temp(n) = newS(n).

(EEGremovedArtifact) was compared with the original pure EEG
signal. The described algorithm is as follows:

1. EEG + SINUS interpolated by the order of 10, then
subjected to the downsampled by the order of 10 – (EEGS ).

2. EEGS subjected to the sine artifact removal algorithm –
(EEGremovedArtifact ).

3. Compare EEG with EEGremovedArtifact .
wherein EEG represents the EEG signal from the selected
electrode, SINUS refers to the artificial stimulation in
a form of sinusoidal function with a known frequency
(freqStim), and amplitude (Amp).

Performing the simulation (see Figures 6B,D) using this
approach allows for the determination of the optimal filtration
parameters. These optimal parameters could then be used on
the signal recorded during a real stimulation session. Upon
application to real data, it is important that the EEG signal used
in the simulation has the same sampling frequency and duration.
Also, the artifact should be characterized by the frequency given
in the actual stimulation. The number of averaged oscillations
needed to create an artifact template is increased gradually until
the signal is the closest to the original recorded signal. The
resulting fixed length of the averaging window could then be used
to remove the artifact in the stimulation signal.

To perform filtration of blocks st2 (i.e., signal with eyes
closed during stimulation, Figure 3A), a simulation needs to be
prepared using a signal from block sh2 (i.e., eyes closed during
sham stimulation). The choice of signals is dictated by the need
to preserve a similar condition of the subject from the real
stimulation stage and the signal without the stimulation that is
used to perform the simulation. For this reason, an analogous
approach should be used to filter the block st5 (i.e., signal with
eyes open during stimulation). The reference signal for this case
is block sh5 (i.e., signal with eyes open during sham stimulation).
In our opinion, it is important to keep the characteristics of the

reference signals as close as possible to the signal from which the
artifact should be removed. The simulation of artifact removal
from block sh2 contained the following components: (1) EEG
(signal from the O2 electrode, block lasting 5 min, eyes closed
during sham stimulation) and (2) SINUS (artificial stimulation, a
sinusoidal function with freqStim = 10 Hz, and Amp = 0.0002 V
(peak-to-peak of the sine wave).

To determine the optimal averaging parameters, we evaluated
the percentage difference in the power spectrum (i.e., spectrum
percentage difference, SPD) in the alpha band, and the difference
in stimulation frequency between the original and filtered signal.
The SPD was calculated as follow (5):

difference between spectra (SPD)

=

∑F
f=f

∣∣PpureEEG − PremovedArtifact
∣∣∑F

f=f
∣∣PpureEEG

∣∣ ∗ 100 (5)

wherein PremovedArtifact is the power of the signal after filtration;
PpureEEG is the power of the original signal; and f and F
represent the minimum and maximum frequencies of the band,
respectively.

The value of the signal’s power in the given frequency band
from f to F was determined using the following Formula (6):

PpureEEG/removedArtifact =
∣∣FFT

(
df
)∣∣2 (6)

where in FFT
(
df
)

is the value of the signal amplitude calculated
using the Fast Fourier Transform algorithm for frequencies from
f to F with the frequency resolution df .

SPD in alpha band was calculated in the 8–12 Hz range, and in
stimulation of 10 Hz frequency in the range of 9.5–10.5 Hz.

An analogous approach was used to analyze the differences
in signals in the time domain by determining the differences
in signal variances. Here, the variance of the time series is
understood as a measure of the fluctuation of the signal amplitude
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FIGURE 6 | Effects of simple moving average (SMA) filtration on 5-min of EEG signal recorded from the O2 electrode from the first participant with real stimulation
artifact (i.e., blocks st2 and st5) (A,C), and with a superimposed artificial sinusoidal function (i.e., blocks sh2 and sh5) (B,D). Parameters of the filtration are: 1-period
segments and 900-segment artifact templates. (A) Time and frequency analysis for the eyes closed condition with real stimulation artifact. (B) Time and frequency
analysis for the eyes closed condition with superimposed artificial sinusoid. (C) Time and frequency analysis for the eyes open condition with real stimulation artifact.
(D) Time and frequency analysis for the eyes open condition with superimposed artificial sinusoid. The superimposed artificial sinusoid used in (B,D) was of 10 Hz
frequency and 0.0002 V amplitude.
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values around the mean value. The variance, σ2, of the time series
x (n) defines the following relationship (7):

σ2
=

1
N

N∑
n=1

(x (n)− xaveraged)
2 (7)

wherein N is the number of samples in x (n), and xaveraged is the
average value of amplitude in x (n).

The difference between signal variances was calculated
according to the following relationship (8):

difference between variances

=

σ2
pureEEG − σ2

removedArtifact

σ2
pureEEG

∗ 100 (8)

wherein σ2
pureEEG is the variance of the original signal, and

σ2
removedArtifact is the variance of the signal after filtration.

RESULTS

Differences in the Frequency Domain
To show quantitative differences in the results more clearly,
Figure 7 report SPD values (defined in “Materials and Methods,”
section “Method for Selecting the Optimal Parameters of
Filtration”). The percentage difference in alpha band power (see
Figure 7A) between the primary and filtered signal depends on
the number of averaged segments, and the number of periods in
a given segment. To better illustrate the differences, the x-axis
is shown on a logarithmic scale. Based on Figure 7A, the use
of ten 1-period segments to calculate the artifact template for a
1-period segment results in an 80% change in alpha power as
compared to the original signal recorded during the eyes closed
condition. For the eyes open condition, there was a 60% alpha
power change from the original signal. Increasing the number of
1-period segments used for averaging decreases these differences
to the point at which the further extension of the averaging
window does not significantly change the accuracy of removing
the artifact (i.e., a plateau phase). In our opinion, the starting
point of the plateau effect may indicate the most effective values
of filtration parameters. Using multiperiod segments results in a
similar relation, but the differences start a lower percentage value
for short averaging windows (i.e., smaller than 300 segments).
Due to the limited number of oscillations in the 5-min signal
(i.e., 300 s ∗ 10 oscillations in every second = 3,000) and the
selected number of periods in one segment, a limited number
of segments were available for averaging. If the signal contains
3,000 oscillations, its division into two-periods segments results
in 1,500 segments that can be used for averaging. Similarly,
the division into 10-period segments will result in a relatively
small number of segments for SMA (300). Taken together, we
observed a relatively low difference in the spectrum, averaging
for example at 400 segments for 1, 2, 3, etc. periodic division. This
observation allows us to conclude that increasing the number of
periods in a given segment forces the averaging of a longer signal
fragment to obtain a satisfactorily low difference between signals.

As described in the “Materials and Methods” section, artifact may
change over time due to several reasons, including progressive
changes in the electric potential on the skin-electrode interface.
It is therefore desirable to use the shortest possible portion of
the signal with stimulation for averaging. It is also important to
note that, as the number of periods per segment increases, the
plateau effect becomes less apparent. For example, this effect can
be seen in the zoomed-in charts shown in Figure 7 without the
logarithmic scale on the x-axis. Such property makes it difficult
to identify the optimal filtration parameters. The percent values of
changes in the spectrum for 10 Hz (see Figure 7B) show a similar
trend as observed for the alpha band. In particular, starting from
10 to 600 segments, the power difference between signals at
10 Hz decreased from 97 to 7% in the eyes closed condition and
decreased from 95 to 6% in the eyes open condition. Further
extension of the averaging window does not significantly improve
the filtration accuracy, i.e., the observed changes are on the order
of 0.1%. Given the observed changes to the original spectrum
induced by our applied algorithm, it seems reasonable to select
the filtration parameters using 1-period segments that take into
account ˜5% of the entire signal (i.e., 600 1-period segments from
all 3000 oscillations).

In contrast to the above analyses, we checked for differences
in the spectrum based on the length of signal taken for averaging
(see Figures 7C,D). The approach was as follows: first, we
selected the signal length [e.g., 1200 oscillations (120 s signal),
900 oscillations (90 s signal)]. Then, we determined the method
for signal division (e.g., 1, 2, 3. periodic segments), and the SPD
value was read for the number of averaged segments according to
the following relationship:

periods in one segment ∗ averaged segments

= averaged oscillations (9)

The data shown in Figures 7C,D indicate that the smallest
possible difference in the obtained spectrum decreases with an
increasing length of the averaged signal used to create the artifact
template. In the case of 1200 averaged oscillations (i.e., 40% of
5 min signal), the smallest difference in the alpha band stops at
3–4%. However, for a smaller number of averaged oscillations,
this value increases by 4–5% for 900 and 600 oscillations, and
by 10% for 300 oscillations. The differences increase by 14 and
24% for 200 and 100 oscillations, respectively (Figure 7C). This
effect is even stronger for the SPD in the 10 Hz; in particular,
the smallest difference results in a 31% increase for the condition
with 100 oscillations (Figure 7D). It is also interesting to note
that the number of periods in each segment has more influence
on the SPD value when a smaller number of averaged oscillations
is used. As the number of periods in each segment increases
together with a smaller number of averaged oscillations, the
observed differences in the spectrum increase much faster. This
is particularly true for 300, 200, and 100 oscillations. These
results are similarly observed for the analysis of differences in the
spectrum of the signal with open eyes, and with low power in the
alpha band. In order to more accurately illustrate the effects of
frequency domain filtration, power spectra for various averaging
parameters are provided in Supplementary Materials.
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FIGURE 7 | (A,B) Spectrum percentage difference (SPD) between the original signal and the signal obtained after removing the simulated 10 Hz artifact. Simulated
artifact was removed using different averaged segments that varied by the number of periods per segment. The zoomed-in portion of each chart highlights a
limitation in the available number of averaged segments in different conditions (e.g., varying number of periods in each segment), and highlights the plateau phase.
Due to the observed plateau phase, SPD values were determined for a range of 10–100 averaged segments in increments of 2, and in the range of 100–2000 in
increments of 50. The original signal was obtained from the O2 electrode from the first participant, and downsampled to 500 Hz. (A) Results of SPD in the alpha
band after simulated filtration prepared on block sh2 (i.e., eyes closed) and sh5 (i.e., eyes open). SPD in the alpha band was counted in the range of 8–12 Hz.
(B) Results of SPD in 10 Hz after the simulated filtration prepared on block sh2 (i.e., eyes closed) and sh5 (i.e., eyes open). SPD in 10 Hz counted in the range of
9.5–10.5 Hz. (C,D) Spectrum percentage difference (SPD) between the original signal and the resulting signal after the removal of simulated 10 Hz artifact. Simulated
artifact was removed using different averaged segments that varied by the number of periods per segment. The original signal was obtained from the O2 electrode
from the first participant and was downsampled to 500 Hz. SPD values were determined according to the relationship described in Formula (9). The artifact template
was created by storing the selected fixed number of oscillations to create an artifact template (i.e., 1200, 900, 600, . . .). Then, for a given number of periods in each
segment, the appropriate number of averaged segments was selected. (C) SPD values in the alpha band (i.e., 8–12 Hz). (D) SPD values in 10 Hz (9.5–10.5 Hz).
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FIGURE 8 | Percent difference between signal variances for the various exemplar selected simulation, calculated according to the relationship described in Formula
(8). (A) Difference in variance for a varying number of periods per segment, prepared using signal with excitation in the alpha band (eyes closed). Zoomed-in displays
for 1- and 2-period segments were prepared to improve visibility of relatively small differences that vary based on averaged segments for the selected number of
periods per segment. (B) Difference in variance for various number of periods per segment prepared using signal with inactivity in the alpha band (eyes open).
(C) Averaged differences for various number of periods determined for different sampling frequencies. The original signal was recorded with a sampling frequency of
10 000 Hz, and downsampled in factors of 10, 20, and 40. This allowed us to analyze the signal with a sampling frequency of 1000 Hz, 500 Hz, and 250 Hz.

Differences in the Time Domain
We discovered changes (2–42%) in signal variation following
SMA with different filtration parameters (see the 8th equation in
the “Materials and Methods” section), as compared to the original
signal variance (see Figures 8A,B). The eyes open condition
is characterized by less pronounced changes in variance (6–
13%) as compared to the eyes closed condition (2–42%). Of
note, the effects of the number of periods per segment are
larger than the number of average segments, when considering
the difference in variance between the original and the filtered
signals. Changes between signals with a varying number of
periods per segment are significantly larger [condition: eyes
closed, p < 0.001, χ2 = 544.465, df = (10, 539), Kruskal-Willis;
condition: eyes open, p < 0.001, χ2 = 544.465, df = (10, 539),
Kruskal-Willis] than changes induced by a varying number of
averaged segments [condition: eyes closed, p = 1, χ2 = 0.371,
df = (49, 500), Kruskal-Willis; condition: eyes open, p = 1,
χ2 = 0.574, df = (49, 500), Kruskal-Willis].

Due to the small differences in variance observed for a selected
number of periods per segment, we also evaluated the effects of
sampling frequency on the observed results in the time domain
(Figure 8C). Registrations were made with the original sampling
rate, which was equal to 10,000 Hz. To assess the effects of lower
frequencies on changes in variances following SMA filtration,
the signal was downsampled appropriately to 1000, 500, and
250 Hz. The analysis failed to identify the most effective sampling
frequency for the removal of 10 Hz artifact.

Effects of SMA Filtering on the EEG
Signal Recorded From Electrode F4
As described in previous studies (Fehér and Morishima, 2016),
the amplitude of the stimulation artifact is not the same on all
recording electrodes. Indeed, the amplitude has been shown to
depend on the distance between the stimulation and recording
electrodes. Given this known association, we investigated the
effects of SMA filtration on electrode F4, using similar simulation
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principles as applied above for O2. Compared to electrode O2,
electrode F4 is characterized by a larger stimulation artifact
amplitude. Thus, we added an artificial sinusoidal stimulation
artifact to the uncontaminated EEG signal from the F4 electrode
using an artificial sinusoid amplitude that is two times greater
than the amplitude added to O2 (0.0004 V). Figure 9 presents
the SMA filtration effects in the frequency domain for a varying
number of averaged 1-period segments on the signal obtained
during the eyes closed (Figure 9A) and eyes open conditions
(Figure 9B). These signals were recorded from the F4 electrode
and downsampled to 500 Hz. The obtained spectra appear to
be similar to the spectra observed for the O2 electrode. For the
10 1-period segments applied to the signal from the eyes closed
condition, we observed strong notches in the power spectrum
occurring at 10 Hz and for its harmonics. The use of a larger
number of averaged segments was associated with a gradual
approximation of the amplitude of the signal after filtration to
the amplitude of the primary signal. The use of 10 1-period
segments to calculate the artifact template for a 1-period segment
results in a signal that differs from the original one by 74% in
alpha power for the eyes closed condition (Figure 9C) and by
60% for the eyes open condition (Figure 9D). Increasing the

number of 1-period segments used for averaging decreases these
differences to the point at which the further extension of the
averaging window does not significantly change the accuracy
artifact removal (i.e., plateau phase). A similar pattern was
observed for the analysis of the O2 electrode, with a smaller
stimulation artifact.

Effects of SMA Filtration on EEG Signal
With toACS Stimulation Artifact
We investigated the impact of SMA on real signal recorded
during toACS from three different electrodes (F4, C3, and O2)
recorded during both eyes open (Figure 10A) and eyes closed
(Figure 10B) conditions. The original 5-min signals recorded
during real 10 Hz stimulation were filtered with an SMA window
that contained 600 1-period segments. Power spectra obtained
from different electrodes allowed us to conclude that SMA
filtration is useful for the general observation of different brain
regions. This was despite the presence of neural activity or
inactivity in the alpha band in the case of ∼10 Hz stimulation
frequency, or any other frequency band that was identical to the
stimulation frequency.

FIGURE 9 | Effects of SMA filtration on EEG signal recorded from the F4 electrode with superimposed artificial stimulation artifact. The F4 electrode is situated closer
to the stimulation electrodes than the O2 electrode. Thus, the amplitude of contamination by the stimulation artifact is higher for F4 as compared to O2. (A) Results
of simulated filtration prepared on block sh2 (eyes closed). (B) Results of simulated filtration prepared on block sh5 (eyes open). Blocks sh2 and sh5 cause the sham
registration in the conditions with eyes closed and eyes open. Spectrum percentage difference (SPD) between the original signal and the signal obtained after
removal of the simulated 10 Hz artifact, which varies depending on the averaged segments for a varying number of periods per segment for the eyes closed (C) and
eyes open (D) conditions.

Frontiers in Neuroscience | www.frontiersin.org 12 July 2020 | Volume 14 | Article 73519

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00735 July 27, 2020 Time: 18:8 # 13
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FIGURE 10 | Effects of SMA filtration on EEG signal recorded during 10 Hz sinusoidal toACS from three different electrodes (F4, C3, and O2) during both eyes open
(A) and eyes closed (B) conditions. EEG signals were filtered with a moving window that consisted of 600 1-period segments.

DISCUSSION

Several studies report positive effects of different forms of ACS
applied to the visual modality. In human studies of glaucoma or
optic neuropathy, 10 days of toACS results in enhanced visual
functions, enlarged visual fields, improved visual acuity, and
decreased reaction time to visual stimuli, as well as improved
vision-related quality of life (Fedorov et al., 2011; Gall et al.,
2011; Sabel et al., 2011). A recent pilot clinical study shows
similar effectiveness of long-term treatment (i.e., 4–6 years) with
transcorneal(tco)ACS (Ota et al., 2018). Moreover, tcoACS has
also proven to be useful in the treatment of retinitis pigmentosa,
wherein recent clinical studies in humans demonstrate both
structural and functional improvement (Schatz et al., 2011;
Bittner and Seger, 2018; Bittner et al., 2018, however, see
Wagner et al., 2017). Several other clinical studies demonstrate
that tcoACS can improve visual function (i.e., visual acuity
and/or visual field) in patients with various retinal diseases,
including retinal artery occlusion, traumatic optic neuropathy,
non-arteritic ischemic optic neuropathy, and Best vitelliform
macular dystrophy (for a review, see Ota et al., 2018).

The mechanism of action of the various forms of ACS
as a therapeutic method is still debated. Animal studies
indicate that the therapeutic effects of toACS are due, in
part, to neuroprotection of the retinal ganglion cells and
decreased degeneration of photoreceptors (Hanif et al., 2016).
Neuroprotective and pro-regenerative effects found in rodent
models of optic neuropathies and retinal degeneration suggest
that both toACS and tcoACS exert their effects via an
upregulation of neurotrophic factors and a downregulation of
pro-inflammatory pathways [for review, see Sehic et al., 2016;
Antal et al., 2017 (submitted)]. Positive effects of toACS and
tcoACS are not limited to the retina; indeed, the positive effects

may also include changes in brain rhythms. Human and animal
studies have shown that stimulation aftereffects also include
modifications in neuronal oscillations (i.e., frequency, amplitude
and phase), which are known as cortical entrainment (Sergeeva
et al., 2015; Gall et al., 2016).

Considering the complexity of mentioned phenomena,
there may be objections to whether examination of the
acute effect can effectively help to understand the nature
of processes related to toACS and tcoACS. There is a
possibility, however, that therapeutic value of stimulation
is related to brain plasticity. Despite this, observing brain
activity during stimulation seems to be extremely helpful in
understanding the mechanisms responsible for stable post-
stimulation plastic changes.

The present study aimed to solve the problem of removing
the EEG signal artifact that results from sinusoidal toACS.
We designed an algorithm that allows the user to modify two
parameters: (1) the number of sinusoidal periods present in each
segment of the divided signal and (2) the number of segments
(centered around the segment that included the artifact) used to
calculate the artifact template for each segment. The selection
of these parameters depends on the sampling frequency of
the signal, the duration of the stimulation, and its frequency.
Evaluation of the accuracy of artifact removal during real toACS
is difficult due to the lack of relevant knowledge about the level to
which brain oscillations are entrained by the electrical stimulus
during simultaneous EEG recording. A reliable assessment of the
accuracy of removing the stimulation artifact is currently possible
only on simulation data, in which the information about the
primary EEG signal is “hidden” under artificially superimposed
sine wave representing sinusoidal toACS artifact. It is then
possible to compare the original EEG signal with the EEG signal
obtained after filtration in both time and frequency domains.
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To choose the optimal parameter values of the SMA-based
stimulation artifact removal, the approach we propose assumes
that the correct pre-stimulation simulations are performed on
the clean EEG signal (i.e., without real stimulation artifact). This
approach involves applying a sinusoidal function to the known
EEG signal (i.e., reference signal) that is similar in amplitude
similar to the function that occurs during real stimulation. In
addition, the frequency of the sinusoidal function should be the
same as the frequency of the stimulation. The reference signal
also should be the same length as the signal recorded during real
stimulation and should reflect the condition that the subject was
in during actual stimulation. For example, in a paradigm focused
on alpha band activity excitation (via, for example, closing the
eyes), the reference signal should also include an excitation in
alpha band activity. The use of quantitative measures allows for
the selection of appropriate filtering parameters, for example:
(1) a difference in the power spectrum and/or (2) variance
between the reference signal and the signal that resulted from the
application of various filtering parameters.

When choosing the optimal averaging parameters, one should
bear in mind the fact that in real stimulations, the electrical
artifact changes progressively with time. Therefore, the length
of the averaging window used to calculate the artifact template
should be as short as possible, with minimal difference between
the power of the reference signals and the filtered signals. As
shown in Figure 7 for the power domain, the difference between
the filtered and the original signal decreases with an increase in
the length of the averaged signal. A similar observation has been
reported in the removal of deep brain stimulation artifact using
an algorithm for creating a stimulation artifact template (Sun and
Hinrichs, 2016). Analysis of the accuracy of artifact removal on
artificial stimulation data showed power differences in the alpha
band between the primary and filtered signals that range from 80
to 2% for different averaging window lengths on signal collected
during an eyes closed condition. These differences range from
60 to 2% on signal collected during an eyes open condition. The
dynamics of SPD can be characterized exponentially as follows:
(1) SPD values decrease with an increase in the signal length used
for artifact template creation and (2) the slope of the exponential
curve decreases as the number of periods per segment increases.
Considering the optimal filtration parameters, it is important to
take into account the occurrence of the plateau phase, which is
a reflection of the phenomenon that a progressive increase in
the number of averaged segments does not substantially improve
the accuracy of artifact removal. We predicted a positive effect
of averaging the shortest possible signal to remove the artifact
from real signals. This prediction allows to conclude that the
plateau phase is a basis for inferring the correct choice of length
of the averaged signal that is used in the creation of the artifact
template. Our conclusions are consistent with previous work
that has examined challenges related to removal of sinusoidal
artifact. In particular, our results confirm the appropriateness of
selecting an averaging window equal to 2.5% of the length of the
full signal with stimulation (Helfrich et al., 2014). The approach
involved creating an artifact template for a 30-period segment
based on 10 neighboring segments centered on the segment that
included the target artifact. In the case described by Helfrich

and colleagues which included a 10 Hz stimulation that lasted
20 min, this means that 300 out of the total 12,000 oscillations
are used for the template (i.e., 2.5% of the entire signal length).
In our analysis, a 2.5% averaging window results in the selection
of 750 1-period segments from a total of 3000 oscillations. This
choice results in an ˜6% difference between the original and
the filtered signal in the case of excitation or inactivity in the
alpha band. The use of 2- and 3-period averages of 750 segments
is in accordance with the results presented in Figure 7, and
shows a more favorable difference between spectra. However,
this approach requires using a larger portion of the signal. The
second method proposed in the literature concerns the selection
of a window that is 5% of the length of the entire signal and
has the smallest possible number of oscillation periods. In our
case, this approach would be an average of 150 1-period segments
(Kohli and Casson, 2015). According to the simulation results,
such averaging is associated with an error in the power spectrum
in the alpha band that reaches almost 17% in the case of excitation
(i.e., eyes closed) and 8% in the case of inactivity (i.e., eyes open).
Under these parameters, the peak amplitude at 10 Hz reaches
22% in both states of activity. Due to the inability to observe the
plateau phase for multiperiod data and under short stimulation
times, the use of 1-period segments shows a clear plateau phase
even in 5-min of signal.

Analysis of differences in the variance between the primary
signal and signal after filtration showed that the SMA method
induced large percentage changes. In particular, filtering the
signal with increased power in the alpha band is characterized
by a large percentage difference (42%) for the 1-period segment.
This is a prerequisite for using SMA for signal analysis,
primarily in the frequency domain. However, it is clear from
the spectra obtained after SMA filtration that the algorithm
partially removes the stimulation frequency from the spectrum.
Adequate maneuvering with averaging parameters minimizes
the removal effect.

Recently, an alternative solution has been proposed
(Witkowski et al., 2016) to address the problem that the
stimulation artifact obscures brain activity in the frequency range
of interest: amplitude-modulated ACS (AM-ACS). This new
method is based on stimulation with a specific wave created from
two frequencies: (1) a high carrier frequency that is not related
to brain oscillation and (2) a modulated low target frequency.
The AM-ACS signal spectrum in the frequency range of interest
is devoid of the large artifact observed during traditional non-
modulated ACS. Unfortunately, although this is a relatively
new and promising electrical stimulation paradigm, AM-ACS
requires additional research to provide answers to many related
issues. For example, a recent study compared the effects of ACS
and AM-ACS on simulation data with modeled visual cortex
(Negahbani et al., 2018). Results of this study indicate that, in
the AM-ACS method, it is necessary to use a significantly larger
amplitude of stimulation than in traditional ACS to observe
similar effects in cortical activity. To the best of our knowledge,
no studies using real EEG signals exist, which could prove in
detail that AM-ACS and traditional ACS have the same effects on
brain activity. Such evidence would be required for researchers
to shift toward AM-ACS without negative effects and would
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circumvent the problems associated with the ACS artifact. The
algorithm we propose here for removing the sinusoidal toACS
artifact may improve the accuracy of analyses using signals
acquired during ACS and AM-ACS stimulation. This algorithm
would allow one to verify and compare the usefulness and
imperfections of both methods.

Considering the applicability of the proposed method, it is also
worth paying attention to the alternative fMRI research option
proposed in a number of papers (Vosskuhl et al., 2016; Chai et al.,
2018; Kar et al., 2020). Compared to fMRI, EEG is commonly
used in clinical practice and has a very good temporal resolution
allowing observations of changes in the brain related to numerous
deficits and diseases. Lower availability and much higher cost of
the fMRI cannot completely replace the EEG-based research and
its usefulness in clinics.

One unquestionable advantage of SMA filtration is the
simplicity of the algorithm implementation, and presence of
a clear operating principle. The two main parameters of the
algorithm directly translate into periodic signal specificity with
sinusoidal ACS. It is also important to note that the use of SMA
filtration is associated with the assumption that the noise to be
removed is additive. Previous research suggests the non-linear
nature of the unwanted component in the signal, which may
be a limitation to the applicability of the averaging algorithm
to remove the ACS artifact (Noury et al., 2016). In response
to these reports, Neuling et al. (2017) provided rationale for
observing the non-linearity of the ACS artifact, which involved
not exceeding the limits of technical stimulators. For this reason,
in the present study we carefully monitored the impedance of the
electrodes to ensure that the sidebands described in this study are
not affected. Due to the aforementioned limitations in the use of
SMA resulting from the non-linearity of the artifact caused by the
hardware settings, the effect of SMA filtration on the signal from
a different recording system was used in the main body of the
article. These results are reported in Supplementary Materials.
The analysis performed on the second signal did not reveal
any changes in the effects of SMA filtration that significantly
differ from the conclusions described herein. Despite mentioned
discussion between research group, no final arrangements have
been made about to what extent the artifact should be removed
for the signal to be useful. There is a possibility that the proposed
cleaning technique can remove some of the recorded ongoing
neural activity. Due to this, we prepared detailed analysis in
time and frequency domain for simulated data where we have
100% knowledge about original EEG information before adding
stimulation artifact. This approach allows us to extract percentage
value of accuracy of removing the artifact, which could be useful
in planning protocol of stimulation and preprocessing step in
EEG with simultaneous stimulation analysis.
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writing and reviewing of the manuscript. PD and WW: study
design. PD: data acquisition and EEG data pre-processing. WW:
supervision. All authors contributed to the article and approved
the submitted version.

FUNDING

This study was supported by statutory founding from the Nencki
Institute of the Experimental Biology of the Polish Academy of
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Recently, functional near-infrared spectroscopy (fNIRS) has been utilized to image the
hemodynamic activities and connectivity in the human brain. With the advantage of
economic efficiency, portability, and fewer physical constraints, fNIRS enables studying
of the human brain at versatile environment and various body positions, including at bed
side and during exercise, which complements the use of functional magnetic resonance
imaging (fMRI). However, like fMRI, fNIRS imaging can be influenced by the presence of
a strong global component. Yet, the nature of the global signal in fNIRS has not been
established. In this study, we investigated the relationship between fNIRS global signal
and electroencephalogram (EEG) vigilance using simultaneous recordings in resting
healthy subjects in high-density and whole-head montage. In Experiment 1, data were
acquired at supine, sitting, and standing positions. Results found that the factor of body
positions significantly affected the amplitude of the resting-state fNIRS global signal,
prominently in the frequency range of 0.05–0.1 Hz but not in the very low frequency
range of less than 0.05 Hz. As a control, the task-induced fNIRS or EEG responses
to auditory stimuli did not differ across body positions. However, EEG vigilance plays a
modulatory role in the fNIRS signals in the frequency range of less than 0.05 Hz: resting-
state sessions of low EEG vigilance measures are associated with high amplitudes of
fNIRS global signals. Moreover, in Experiment 2, we further examined the epoch-to-
epoch fluctuations in concurrent fNIRS and EEG data acquired from a separate group
of subjects and found a negative temporal correlation between EEG vigilance measures
and fNIRS global signal amplitudes. Our study for the first time revealed that vigilance as
a neurophysiological factor modulates the resting-state dynamics of fNIRS, which have
important implications for understanding and processing the noises in fNIRS signals.
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INTRODUCTION

Functional near-infrared spectroscopy (fNIRS) is a non-
invasive functional neuroimaging technique that can monitor
concentration changes in oxygenated and deoxygenated
hemoglobin (HbO and HbR) in the cerebral cortex. fNIRS
measurement is based on the absorption of light in near-infrared
spectrum from 700 to 1000 nm by biological tissues. Different
chromophores, such as hemoglobin, myoglobin, and cytochrome
aa3, have different absorptivity (Sood et al., 2015). With the
advantage of low-cost, portability, and ease to co-register with
other neural recording modalities, such as an EEG and fNIRS
has become an attractive means for imaging and monitoring
hemodynamic signals in the human brain, which complements
the use of fMRI in versatile environment. fNIRS has been widely
applied in functional neuroimaging (Torricelli et al., 2014;
Chen et al., 2020), cerebral monitoring in neonates (Sood et al.,
2015; Hu et al., 2020) and brain-computer interface (Naseer
and Hong, 2015; Ahn and Jun, 2017; Shin et al., 2017). Unlike
fMRI constraining subjects to lying down on a scanner bed,
fNIRS poses fewer physical constraints on the participants,
thereby permitting them to be studied at flexible body positions
during recordings.

Particularly, imaging of resting-state functional connectivity
(RSFC) in the human brain has been a recent focus for
neuroimaging studies, including fNIRS (Mohammadi-Nejad
et al., 2018; Pinti et al., 2018). The activity of the resting brain
exhibits spontaneous and large-amplitude fluctuations, which
have been observed in a number of imaging modalities such
as fMRI (Biswal et al., 1995), positron emission tomography
(Raichle et al., 2001; Watabe and Hatazawa, 2019), and
direct measures of neuronal activity with electro- or magneto-
encephalography (EEG or MEG) (Goldman et al., 2002; Mantini
et al., 2007; Brookes et al., 2011; Yuan et al., 2012, 2016). The
measures of resting-state cerebral hemodynamics, mostly using
fMRI based on the blood-oxygenation-level dependent (BOLD)
contrast, show fluctuations predominantly at a low frequency
band of <0.1 Hz (Cordes et al., 2001). The temporal synchrony
across brain regions have been revealed (Beckmann et al., 2005;
Damoiseaux et al., 2006), and demonstrated to be important
biomarkers for the brain at diseased conditions (Zhang and
Raichle, 2010). Prior studies of RSFC in both healthy and diseased
conditions can be influenced by the presence of a strong global
component, which is usually observed throughout sampled
voxels or sensors, thereby dominating the RSFC (Greicius et al.,
2003; Fox et al., 2005, 2009). However, the approach of removing
global signal has recently been shown to induce systematic biases
and the anti-correlation enhanced by global signal regression
(GSR) becomes the main concern (Fox et al., 2009; Murphy et al.,
2009). Furthermore, evidences show that a neural component
(Scholvinck et al., 2010; Wong et al., 2013, 2016) and even
diagnostic information (Hahamy et al., 2014; Murphy and Fox,
2017; Yang et al., 2017) exist in the global signal, which challenges
the assumption of removing it in the first place.

Like fMRI signals, fNIRS also offers the potential to examine
the human brain at resting state by measuring concentration
changes of HbO and HbR in the vasculature of the cortical tissues

below sensing channels (Obrig and Villringer, 2003; Scholkmann
et al., 2014). fNIRS has been effectively employed to characterize
the resting-state brain in adults (Obrig et al., 2000; White et al.,
2009; Lu et al., 2010; Mesquita et al., 2010; Zhang et al., 2010;
Sasai et al., 2011; de Souza Rodrigues et al., 2019), infants or
children (Homae et al., 2010; White et al., 2012; Molavi et al.,
2013; Watanabe et al., 2017; Bulgarelli et al., 2019, 2020; Wang
et al., 2020), and to assess differences between experimental
groups (Keehn et al., 2013; Ieong et al., 2019; Arun et al.,
2020). The most common RSFC analysis of fNIRS data involves
evaluating the temporal relationship between time series of the
preprocessed data from recording units, for example, through the
Pearson’s correlation. A global component has been observed in
fNIRS measurements and commonly removed for the purpose
of attenuating systematic noises at the resting state (White
et al., 2009; Gregg et al., 2010; Mesquita et al., 2010; Eggebrecht
et al., 2014; Tachtsidis and Scholkmann, 2016; Duan et al., 2018;
Sherafati et al., 2020; Wyser et al., 2020). Whereas removing
superficial contributions from short-distanced channels to fNIRS
is increasingly employed to attenuate the systematic noises
(Saager and Berger, 2005; Gagnon et al., 2011), data from both
long-distanced and short-distanced channels commonly suggest
a global component exist in fNIRS measurements and distribute
across wide regions (Zhang et al., 2005, 2007, 2009; Kohno et al.,
2007; Gregg et al., 2010; Tong and Frederick, 2010; Novi et al.,
2016; Sato et al., 2016). However, the physiological nature of
the fNIRS global signal has not been fully established, since
the neurophysiological components in the resting-state global
fNIRS signal have not been systematically investigated. Therefore,
whether or not to remove the global signal in fNIRS-based RSFC
analysis remains not clear.

In this study, we aimed to investigate the physiological
underpinning of resting-state fNIRS global signal by concurrently
acquiring fNIRS and EEG in whole-head, high-density montage.
Previous studies using simultaneous EEG and fMRI recordings
have revealed a negative association between the amplitude
of resting state fMRI global signal and EEG vigilance level
(Wong et al., 2013; Chang et al., 2016; Falahpour et al., 2018).
These studies have shown that subjects at lower vigilance states
are characteristic of higher global signal amplitudes, indicating
that neurophysiological covariates exist in the global signal.
Moreover, the temporal fluctuations of vigilance levels has been
linked to the spontaneous activities in regions constituting the
default mode network (DMN) (Olbrich et al., 2009) and also
linked to the fluctuations of fMRI global signal (Chang et al.,
2016; Falahpour et al., 2018), suggesting that regressing out the
resting-state global signal could potentially impact the dynamic
connectivity in resting state networks. Based on the prior studies
using BOLD fMRI, in the current study we hypothesize that
the fNIRS global signal has a neurological component and is
related to the EEG vigilance. Two experiments were included:
the 1st is a 10-min resting study from which we calculated the
stationary metrics; the 2nd is a 45-min resting study from which
we examined the epoch-to-epoch dynamics during the wakeful
epochs. Furthermore, considering that fNIRS is a promising
technology for imaging the human brain at versatile body
positions, Experiment 1 also examined whether and how different
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body positions affect the fNIRS global signal at resting state
conditions and, as a control, the impact of body positions
on evoked activities to auditory stimuli was studied. To our
knowledge, our study is the first of its kind to examine the
relationship between fNIRS global signal and EEG vigilance
with an advanced simultaneous EEG and fNIRS system in high-
density and whole-head montage.

MATERIALS AND METHODS

Protocol
All study procedures were completed according to the
Declaration of Helsinki guidelines and approved by the
Institutional Review Board at the University of Oklahoma Health
Sciences Center.

Experiment 1: 10-min Resting at Different Body
Positions
Twenty-four healthy subjects were recruited after giving
informed consent. All subjects were right-handed. Two subjects
were excluded due to excessive movements during the recording.
Another three subjects were excluded due to high electrode
impedance in recording sessions. Thus, nineteen subjects’ data
were included in the analysis (11 males and 8 females, aged 19
to 55 years old, average age ± STD = 30.8 ± 12.2 years). Each
subject participated in two separate sessions, eyes-open (EO) and
eyes-closed (EC), the order of which was randomized. For each
subject, two sessions occurred on different days that were within
a 4-week period (mean interval ± STD = 18.2 ± 29.5 days).
Each session contained three recording blocks at different body
positions: standing, sitting, and supine. The order of these
blocks was randomized among all subjects but was kept the
same for each subject at their consecutive visits. Each block
contained a 10-min resting-state part and an auditory task
part that lasted 6 min and 30 s. In the resting-state part,
subjects were instructed to keep as still as possible and not
fall asleep. Specifically, in EO resting condition, subjects were
instructed to focus on a black cross on a white background.
In the auditory task part, subjects were instructed to keep still
and listen to the auditory stimuli from a pair of earbuds. In
terms of the presentation, periods of 30-s stimuli on and 30-
s stimuli off were interleaved. Within a period of stimuli on,
subjects listened to a sequence of 15 brief one-kilohertz tones.
One tone lased for 100 ms duration and sampled at 44.1 kHz.
Tones within a stimuli-on period were separated by an inter-
stimulus interval of 2 s. Six datasets (two eye conditions by
three body positions) were obtained for each subject, yielding
a total of 114 datasets in the current study, which included
concurrent EEG and fNIRS data of both resting state and
task conditions.

Experiment 2: 45-min Resting at Supine Position
Because Experiment 1 used a stationary design of 10-min resting
study to investigate the fNIRS resting state signals, we further
included Experiment 2 in the design of a 45-min resting study
to examine the temporal dynamics in fNIRS global signal.

Specifically, subjects were instructed to rest still and allowed
to fall asleep during a 45-min recording, while subjects laid
supine in an adjustable recliner. A total of 20 healthy subjects
(sex: 12 females and 8 males; aged 28 to 63 years old; average
age ± STD: 42.8 ± 11.7 years) were studied in Experiment
2 and no subjects overlapped in Experiments 1 and 2. The
recording began and ended with bio-calibration, which were used
to identify artifacts in the EEG recordings. The bio-calibration
procedure was performed in a standard order of instructing
subjects to (1) open and close their eyes, (2) blink, (3) perform
lateral eye movements, (4) take deep breaths, (5) clench their
teeth, and to (6) speak.

fNIRS Data Acquisition
An identical configuration of acquisition was used in
Experiments 1 and 2. The fNIRS measurements were acquired
with a NIRScout system (NIRx Medical Technologies, LLC,
New York, United States). Thirty-two source probes and 32
detector probes were plugged into holders and arranged into a
cap based on the international 10–5 system (Jasper, 1958). A total
of 105 channels (i.e., 105 pairs of sources and detectors) were
defined, covering the areas from the forehead to the occipital
lobe. The inter-optode distance varied between 25, 27, and
30 mm, corresponding to three different sizes of caps (54, 58, and
60 cm). The intersection between the left and right tragus and the
Nasion and Inion was the center of the cap, which was denoted by
the Cz position. A dark black over-cap covered the cap to block
external light luminance. The absorption of near-infrared light of
two different wavelengths (760 and 850 nm) was measured with
a sampling rate of 1.95 Hz.

EEG Data Acquisition
A 64-channel, fNIRS-compatible EEG system (BrainProducts,
München, Germany) was utilized to record the EEG data. In
order to couple the EEG signal with the fNIRS hemodynamic
signal, the montage of the EEG electrodes was designed to
match the fNIRS montage. Every EEG channel was crossed
by an adjacent pair of light source and detector. Sixty-four
EEG electrodes were also mounted onto corresponding holders.
The electrode at FCz position was selected as the reference
point. Two 32-channel amplifiers, which were powered by
a rechargeable battery, were included in our EEG system.
Electrically conductive gel was added to decrease the impedance
between scalp and electrodes. The impedances of EEG electrodes
were kept under 20 k� throughout the recordings. All the EEG
datasets were digitized with a wide band of 0.1–250 Hz at a
500 Hz sampling rate.

fNIRS and EEG Data Pre-processing
Figure 1 shows the analysis flowchart of EEG and fNIRS
data. EEGLAB (Delorme and Makeig, 2004) was used for
pre-processing of EEG data. After loading the raw datasets,
the data was re-referenced to the common average reference.
A basic FIR bandpass filter from 0.1 Hz to 70 Hz was used
to filter the data in addition to a notch filter of 60 Hz.
Additional ocular and muscular artifacts were removed by the
independent component analysis implemented in EEGLAB. The
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FIGURE 1 | Flowchart of the data processing flowchart. (Left) fNIRS signal processing procedures, and (Right) EEG signal processing procedures. Dashed line
circles the pre-processing procedures.

ocular components, muscle movement components, and other
artifacts were manually inspected and removed (Chaumon et al.,
2015). Preprocessed EEG data were down-sampled to 250 Hz.

fNIRS data was pre-processed in HOMER2 (Huppert et al.,
2009). Channels consisted of a source electrode and adjacent
detector electrodes. Montages were created according to the
setup of sources and detectors. Preprocessing of fNIRS data
included converting raw light intensity to optical density,
principle component analysis (PCA) removal, and motion
artifact detection and correction. The PCA algorithm we
performed here is to filter out the first principal component (Novi
et al., 2016). Discontinuities and spikes existing in recordings
were replaced by an average of its adjacent data segment.
All channels were bandpass filtered from 0.01 to 0.2 Hz. The
resulted time series were subject to hemodynamic computation
via the modified Beer-Lambert law (Kocsis et al., 2006), yielding
relative changes in concentrations of Oxy-Hemoglobin (HbO)
and Deoxy-Hemoglobin (HbR) (Gratzer and Allison, 1960;
Putze et al., 2014).

Calculation of Resting-State fNIRS
Global Signal
After pre-processing, the fNIRS data became a measure of the
relative concentration changes of HbO and HbR in units of
µM. Then the preprocessed fNIRS were separated into two
frequency bands: the lower range of <0.05 Hz and the upper
range of >0.05 Hz that contains the Mayer wave (Julien, 2006),
guided by inspection of power spectrum and analysis of variance
(ANOVA) tests. To calculate the global signal, the time series
of relative changes in HbO or HbR were averaged across all
channels covering the whole brain. Then, the amplitude of the
global signal was defined by the standard deviation of the global
signal time series.

Quantification of EEG Vigilance Level
For EEG data, after removing artifacts, a spectrum was calculated
by using Welch’s power spectral density estimate with segments of
10 s and 50% overlap for each EEG channel. Then the spectrum
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was divided by its overall root mean square (RMS) amplitude of
all frequency bins, resulting in the relative amplitude spectrum.
The relative amplitude spectrums were then averaged across all
channels. Three frequency bands (delta: 1 – 4 Hz, theta: 4 – 7 Hz,
alpha: 7 – 13 Hz) were delineated, and the RMS amplitudes were
calculated separately for each band. A measure of EEG vigilance
was defined as the RMS amplitude in the alpha band divided
by the sum of RMS amplitudes in the delta and theta bands
(Horovitz et al., 2008; Wong et al., 2013), which is equivalent to
the alpha slow-wave index (ASI) (Jobert et al., 1994).

Auditory fNIRS and EEG Data
Whereas a key investigation of the Experiment 1 was to examine
the impact of body position on resting-state neural recordings, we
also included investigation of the body position on task-induced
responses in EEG and fNIRS, in order to control systematic
and environmental nuisances. A mixed block and event-related
design were used for the concurrent EEG and fNIRS recordings.
One session contained six task blocks and each block contained
15 auditory stimuli. The auditory stimuli were controlled by
E-Prime software (Psychology Software Tools, Pennsylvania,
United States). Stimuli was sent to earbuds by the stimulation
computer. The trigger pulse corresponding to the sound then
marked EEG and fNIRS synchronously via a parallel control box.
There was a total of six task conditions (standing/sitting/supine
body positions X EO/EC conditions).

For fNIRS analysis, block average was obtained after
preprocessing in the same way described in resting data. The
first marker of a task block was kept as the start of each task
block. Based on all available auditory markers (as time 0 s), the
time series were demeaned with reference to the time window
from −5 to 0 s and averaged, resulting in the auditory response
waveform. Segments containing detected motion artifacts were
excluded from the average. To visualize the time courses of
hemodynamic responses, the fNIRS auditory response was
plotted from −10 to 50 s.

For EEG analysis, auditory evoked potentials (AEP) were
obtained. Specifically, the recordings were band-pass filtered
between 0.1 and 30 Hz, down sampled to 250 Hz, referenced
to common average reference, and segmented into epochs
from −100 to 500 ms. For every single segment, the t = 0 s
denotes the onset of auditory stimuli. The mean of the baseline
(averaged from −100 to 0 ms) was subtracted from the time
series. Ocular and muscular artifacts were removed by the
independent component analysis implemented in EEGLAB.
Visual inspection further excluded the trials containing motion
artifacts. Remaining trials of EEG epochs were averaged for each
auditory task condition, resulting the AEP waveforms.

Sleep Stage Scoring
In Experiment 2, the 45-min recording was reviewed and
manually scored into sleep stages by a certified expert (BWC),
using standard scoring criteria by the American Academy of
Sleep Medicine (Berry et al., 2017). Briefly, EEG data were first
segmented into epochs of 30-s length. Based on the frequency
and amplitude of the signal, each segment was assigned as awake,

non-rapid-eye-movement sleep, Slow Wave Sleep, or rapid-eye-
movement sleep. Only epochs of awake stages before first sleep
onsite were included in the analysis.

Statistical Analysis
In Experiment 1, in order to explore the effect of body position
on neural recordings (i.e., standing, sitting and supine), ANOVA
was applied on the EEG or fNIRS quantities, separately for the
EO and EC conditions. We performed the statistical test on
each frequency bin along a continuous spectrum (Figures 3, 4).
Then, based on the delineation of frequencies, we segregated
the quantities of the fNIRS global signal in two bands: f < 0.05
and f > 0.05 Hz.

Next, two-way repeated measures ANOVA (standing/sitting/
supine body positions X EO/EC) was applied to assess if any
main effect of body position or eye condition, or interaction
between the body position and the eye condition, separately in
the frequency range of <0.05 and >0.05 Hz and separately for
HbO and HbR. Likewise, two-way repeated measures ANOVA
(supine/sitting/standing body positions X EO/EC) was tested on
the EEG vigilance scores. Furthermore, post hoc analysis assessed
the difference between conditions using a paired, two-sided t-
test. Bonferroni correction was used to correct the multiple
comparison problem.

After delineating the position and eye effects, we assessed
whether fNIRS global signal amplitudes were associated with the
EEG vigilances. Particularly, motivated by a negative relationship
between fMRI global signal and EEG vigilance reported in
the literature, we tested whether higher fNIRS global signals
are associated with lower vigilance. The analysis has excluded
the frequency band of greater than 0.05 Hz that contains
the Mayer wave. Also, the analysis only considered the eyes-
open condition to exclude the body position factor on EEG
or fNIRS. Then, per each individual, the EEG vigilance at
three body positions was sorted into highest, medium and
lowest levels; and the fNIRS global signal associated with
the highest vigilance levels were compared to fNIRS global
signals at the medium or lowest level using a paired, two-
sample and one-sided t-test. Furthermore, for the purpose
of determining whether vigilance variations underlie the
fluctuations in fNIRS global signal, the co-variation was assessed
in one eye condition at one body position across all subjects,
because practically resting state experiments are conducted in
a single experiment condition rather than combined. Partial
correlations between global signal amplitude and vigilance
measures were calculated, by controlling age and gender as
confounding factors.

While Experiment 1 focused on the stationary properties of
fNIRS and EEG, we further evaluated whether the epoch-
by-epoch fluctuations in fNIRS global signal and EEG
vigilance are associated in Experiment 2. For each subject,
we calculated the fNIRS global signal amplitudes and EEG
vigilance measures in 30-s epochs. Then the temporal correlation
between the fNIRS global signal and EEG vigilance was
calculated using Pearson’s correlation coefficient across all
epochs per each subject. To assess the temporal correlations
at a group level, the correlation coefficients were converted
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to z scores using the Fisher’s transform. Afterward, a
one-sample t-test against 0 was performed on all individuals’
z scores to evaluate the significance of temporal correlation
at a group level.

RESULTS

The aim of the study was to investigate the neurological basis
of the fNIRS resting-state global signal, if any, and the impact
of body positions on the resting-state signals. The results are
organized as such: In Experiment 1, the frequency-dependent
impact of body positions on fNIRS and EEG signals was explored,
then the factors of body positions and eye conditions were
assessed in fNIRS global signal in two delineated frequency bands,
and finally, the co-variation in the amplitude of fNIRS global
signal and EEG vigilance was analyzed. As control results, the
fNIRS and EEG task responses to auditory stimuli were included.
In Experiment 2, the epoch-to-epoch fluctuations of fNIRS global
signal amplitudes and EEG vigilance measures across 30-s epochs
were examined and their temporal correlation was reported.

Experiment 1: 10-Min Resting at
Different Body Positions
Firstly, spontaneous fluctuations were observed in the fNIRS
global signal when subjects rested with their eyes open and
closed, without any external stimuli. Representative single-
session traces of fNIRS global signals are shown in Figure 2,
at an EC resting condition. Notably, the global signal at all
three positions exhibit fluctuations with a peak frequency of
∼0.02 Hz. Meanwhile, the data acquired from these body
positions exhibited different patterns of fluctuations in the time
domain, i.e., slower fluctuations are observed in the supine
position and faster fluctuations in the sitting and standing
positions. In terms of the amplitude, we noted that the power
spectrum at the supine position showed a lowest amplitude in the
frequency range of 0.05 – 0.1 Hz than those at sitting and standing
positions, in the representative subject.

Furthermore, the position-dependent profile of the resting-
state fNIRS global signal is also prominent at the group level.
Figure 3 shows the grand average of the power spectrum of
fNIRS global signal at various resting state conditions. Notably,

FIGURE 2 | Representative traces of fNIRS global signal derived from HbO signal when the subject closed the eyes and rested in (A) supine position (in gray color),
(B) sitting position (in orange color), and (C) standing position (in blue color), exhibited in the time domain (left panel) and frequency domain (right panel).
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FIGURE 3 | The grand average of the power spectrum of fNIRS global signals at resting state. (A) and (B) show HbO signal at EO and EC conditions. (C) and (D)
show HbR signal at EO and EC conditions, respectively. The gray, orange, and blue curves represent supine, sitting, and standing position, respectively, in all panels.

in the frequency range from 0.05 Hz to 0.1 Hz, the spectrums at
three different body positions show largely different amplitudes.
The spectrum at the standing position appears to be of highest
amplitudes in 0.05 – 0.1 Hz, at both EO and EC conditions
(Figures 3A,B) in blue curves, whereas spectrum at supine are
of lowest amplitudes (Figures 3A,B) in gray curves. In order to
delineate the frequency-dependent effect of body position, we
performed one-way ANOVA on the amplitude of fNIRS global
signal separately in each frequency bin. At the EO condition,
between 0.05 and 0.09 Hz, the effect of body position was
significant on HbO (p < 0.05, uncorrected). Similarly, at the
EC condition, the effect of body position was significant in the
range from 0.07 to 0.09 Hz on HbO (p < 0.05, uncorrected).
Since the fNIRS signal in the frequency range of 0.05 – 0.1 Hz
has been related to a physiological noise known as the Mayer
wave (Julien, 2006), our later analysis of the fNIRS global signal
then focused on two distinct frequency bands, i.e., f < 0.05
and f > 0.05 Hz, in order to distinguish a position-dependent
impact that may be attributed to physiological noises. In HbR
(Figures 3C,D), we used the same frequency bands as with HbO.
Noteworthy, none of HbO or HbR data showed any significant
effect of body positions in a frequency bin less than 0.05 Hz
(p > 0.05, uncorrected).

Likewise, in the resting-state EEG, our analysis explored
whether a position-dependent profile exists on the spectrum.
Figures 4A,B show the grand average of the power spectrum at

EC and EO conditions, respectively. ANOVA revealed that the
body position was not significant in any of the frequency bins
at either EO or EC conditions (p > 0.05, uncorrected). Notably,
although the grand average at the EC conditions appears with
different amplitudes for three different conditions, it did not
reach a significance level (p = 0.067 at f = 10.8 Hz, uncorrected).

Next, we aggregated the fNIRS and EEG quantities as the
amplitude of global signal and vigilance scores, respectively. In
particular, we averaged the amplitude of the fNIRS global signal
(as root-mean-square) in the range of f < 0.05 Hz, which excludes
the Mayer wave, and then separately in the range of f > 0.05 Hz.
Meanwhile, EEG vigilance scores were calculated based on the
power spectrum of resting state EEG as the ratio of alpha-band
RMS divided by the sum of delta- and theta-band RMS. Two-way
Repeated Measures ANOVA (body positions × eye conditions)
revealed that the effect of body positions was not significant on
fNIRS global signal amplitude in the very low frequency range of
f < 0.05 Hz (q = 0.10). Meanwhile, the effect of body position was
significant on the fNIRS global signal in the range of f > 0.05 Hz
(q < 0.001). Noteworthy, the interaction of body positions and
eye condition was not significant in fNIRS global signal amplitude
in either frequency range.

Post hoc comparison on HbO in the range of f > 0.05 Hz was
then conducted to assess the difference between pairs of body
positions (i.e., standing vs. supine, sitting vs. supine, and standing
vs. sitting) (Figure 5B). Analysis showed that the amplitude
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FIGURE 4 | The grand average of the power spectrum of EEG resting-state signals at (A) EO condition and (B) EC condition. The gray, orange, and blue curves
represent supine, sitting, and standing position, respectively, in both panels.

FIGURE 5 | Effects of body positions (supine, sitting, and standing) and eye conditions (EC and EO) on (A–D) fNIRS global signal amplitude, and (E) EEG vigilance
measurement. The effect of body position was significant in HbO global signal amplitude, in the range of f > 0.05 Hz that contains Mayer wave (B). EEG vigilance
measurement showed significance in the effect of body position, the effect of eye conditions and the position-eye interaction (E). Stars indicate post hoc significance
after multiple comparison correction (∗ indicates q < 0.05, ∗∗ indicates q < 0.01, ∗∗∗ indicates q < 0.001). Error bars indicate standard error.
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of fNIRS global signal for the supine position was significantly
lower than the sitting position (q < 0.01) and standing position
(q < 0.001), after multiple comparison correction. But amplitude
of fNIRS global signal for sitting position did not differ from the
standing position. Noteworthy, neither the eye factor or the eye-
position interaction was significant in fNIRS HbO or HbR data.

In terms of EEG vigilance scores (Figure 5E), the two-way
repeated measure ANOVA found that the effect of body position,
the effect of eye condition and the eye-position interaction
was all significant (q < 0.001). Post hoc comparisons on
the EEG vigilance scores were then conducted to assess the
differences. Informed by the significant interaction factor, we
performed separate ANOVA analysis on the effect of body
positions at separate eye condition and also performed separate
t-test on pairs of body positions and eye conditions. Only
under EC condition, the supine position had significant smaller
EEG vigilance than sitting (q < 0.05) and standing position
(q < 0.001). Furthermore, regarding the eye factor (EO vs. EC),
the EEG vigilance showed significance at both sitting (q < 0.01)
and standing positions (q< 0.001), but not in the supine position.
However, under EO condition, there was no significant effect
of body positions.

As a next step, we examined the relationship between the
fNIRS global signal and the EEG at resting state. Firstly,
we tested whether higher fNIRS global signals are associated
with lower vigilance, which was motivated by a negative
relationship between fMRI global signal and EEG vigilance
reported in the literature. Particularly, we compared the
amplitude of fNIRS global signal in the frequency range of
f < 0.05 Hz against the EEG vigilance scores, only at EO
state when either fNIRS or EEG quantities were not impacted
by the factor of body positions. Results in Figure 6 shows
a reversed association was identified between EEG vigilance
and fNIRS global signals. After sorting the vigilance measures
within each individual, the resting sessions of lowest vigilance
were associated with significantly higher HbO global signals
[t(18) = 2.02, p < 0.05] and also higher HbR global signals
[t(18) = 2.98, p < 0.01] than those of highest vigilance.
Importantly, note that neither the vigilance nor the global
signal differed between body positions at the eyes-open

condition; nonetheless, a reversed association was still found
between EEG and fNIRS.

In addition, we examined the co-variation between fNIRS
global signal and EEG per each body position across individuals.
Results showed a consistent negative trend such that higher global
signals are associated with lower vigilance states. In particular,
both HbO and HbR at the standing position significantly
co-varied with the EEG vigilance after controlling age and
gender as confounding factor (HbO: r = −0.51, p < 0.05;
HbR: r = −0.57, p < 0.05), as shown in Figure 7. However,
at other positions, the covariation did not reach significance
after multiple comparison correction, although a negative trend
in the association was consistently noted. HbR at the supine
position showed a significance-approaching covariation with
EEG vigilance (r = −0.36, p = 0.1) and HbO at the sitting position
also approached significance (r = –0.34, p = 0.1). HbO at supine
position (r = −0.06) and HbR at sitting position (r = −0.20) did
not reach a significant covariation with EEG vigilance.

In order to control systematic and environmental nuisances,
task-induced responses in EEG and fNIRS were investigated.
Figure 8 shows the grand average of EEG AEP curves at three
different body positions, from the FCz electrode. In either EO
and EC conditions, the AEP curves at three body positions
followed a very similar profile: negative activities at the ∼100 ms
(N1) and positive activities at the ∼200 ms (P2). The factor of
body positions has no significant effect on N1 or P2 (q > 0.1).
Furthermore, the eye-position interaction is not significant,
either (q > 0.1).

Meanwhile, task-related fNIRS responses were averaged across
the blocks after subtracting the activities between −5 s and
0 s, with time 0-s as the beginning of the block. Figure 9
shows the grand average of fNIRS response to auditory stimuli.
Representative time courses from the channels located over the
left and right auditory cortex regions are shown in Figure 9B.
When the auditory stimuli were on (shaded gray area in
Figure 9B), relative changes of the HbO increased while the
relative changes of the HbR decreased. In order to visualize the
topography of auditory task responses, the block-average time
series of fNIRS was selected from 10 to 30 s, averaged, and shown
in Figure 9A. Positive activations of HbO are shown in left and

FIGURE 6 | A reversed association between EEG vigilance and fNIRS global signals. Resting state sessions of lowest vigilance measures were associated with
significantly higher amplitudes of fNIRS global signals in the (A) HbO (p < 0.05) and (B) HbR (p < 0.01). ∗p < 0.05, ∗∗q < 0.01, and error bars indicate standard error.
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FIGURE 7 | Amplitude of fNIRS global signal in the range of f < 0.05 Hz co-varied with EEG-based measure of vigilance, when subjects rested in the standing
position with their eyes open. fNIRS global signal amplitudes derived from HbO signal (A) and from HbR signal (B) both significantly co-varied with EEG vigilance
after controlling age and gender as confounding factors (HbO: r = –0.51, p < 0.05, HbR: r = –0.57, p < 0.05).

FIGURE 8 | Grand average of EEG auditory evoked potentials at (A) eyes-open (EO) condition, and at (B) eye-closed (EC) condition. The gray, orange, and blue
curves represent supine, sitting, and standing positions in both panels.

FIGURE 9 | Grand average of fNIRS auditory response derived from HbO signals. (A) shows the topography of averaged HbO responses between 10 to 30 s after
the stimulus onsite). (B) plots the time courses of fNIRS auditory response obtained from representative channels over left and right auditory cortex (orange: left
auditory cortex HbO, blue: right auditory cortex HbO, gray: left auditory cortex HbR, yellow: right auditory cortex HbR). Shaded gray area indicates the time window
of auditory stimulus. Time zero is the onsite of stimulus.
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right auditory cortex in the topography of HbO (Figure 9B).
Results revealed no significant effect of body positions on the
fNIRS auditory response.

Experiment 2: 45-Min Resting at Supine
Position
In Experiment 2, subjects were instructed to rest for a total
duration of 45 min while allowed to fall asleep. Sleep scoring
found that all 19 were able to fall asleep. Only data at wakeful
resting before any sleep were used in the current analysis
(Mean ± SD = 711 ± 602 s, ranging from 150 to 2430 s). After
quantifying vigilance and fNIRS global signal amplitude in 30-s
epochs, temporal fluctuations were observed. The time courses of
HbO, HbR, and EEG vigilance measurement in a representative
subject are displayed in Figure 10A. Every dot represents the
global signal amplitude calculated from a windowed 30-s fNIRS
signal and vigilance measurement calculated from 30-s EEG
in the same aligned time window. As the subject gradually
fell into the sleep, the vigilance exhibited a slowly decreasing
trend, in reversed synchrony with surges of increases in fNIRS
global signal and temporal. In the same time course, scattered
moments of rebounds in vigilance are also aligned with drops
of global signals, especially toward the later duration before
the subject fell into sleep. In the same subject (shown in
Figures 10B,C), a negative temporal correlation was observed
between fNIRS global signal amplitude and EEG vigilance
measurement (HbO vs. vigilance: r = −0.46, p = 0.004; HbR vs.
vigilance: r = −0.61, p < 0.001).

At the group level, all subjects exhibited temporal variations
in EEG vigilance. Specifically, the standard derivation of EEG
vigilance over the period of wakeful rest ranged from 0.07 to
0.46 across all subjects (Mean ± SD = 0.25 ± 0.13). In terms
of association, analysis showed that there existed significant
correlation between HbO global signal amplitude and vigilance
[t(19) = −2.57, p = 0.02), as well as significant for HbR
and vigilance [t(19) = −2.80, p = 0.01]. Despite that subjects
had different durations of wakefulness, the window length of
wakefulness was not associated with the temporal correlation
between fNIRS global and vigilance (p > 0.1 for HbO and
HbR). When restricting the wakeful epochs to be within the
10 min before falling into sleep, the temporal correlation was still
significant between HbO and vigilance [t(19) = −2.32, p = 0.03],
and also significant between HbR and vigilance [t(19) = −2.83,
p = 0.01]. Furthermore, considering that individuals exhibited
different levels of vigilance fluctuations (i.e., standard derivation
of EEG vigilance ranged from 0.07 to 0.46), we examined
whether the standard derivation of EEG vigilance modulated
the association between EEG vigilance measures and fNIRS
global signal; yet the analysis showed that the scale of vigilance
fluctuation levels was not relevant (p > 0.1).

DISCUSSION

Our study has investigated the neurophysiological nature of the
global signal of fNIRS measured at resting state. The results

FIGURE 10 | Temporal correlation between epoch-to-epoch fluctuations of vigilance and fNIRS global signal in a representative subject at wakeful rest. (A) plots the
time courses of EEG vigilance measure (black curve) and global signal amplitude of HbO (orange curve) and HbR (blue curve) calculated in 30-s epochs over 18 min.
(B) shows the negative correlation between vigilance and HbO global signal amplitude is significant (r = –0.46, p = 0.004). (C) shows the negative correlation
between vigilance and HbR global signal amplitude is significant (r = –0.62, p < 0.001).
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for the first time have demonstrated that the amplitude of
the fNIRS global signal, particularly in the frequency range of
0.01 < f < 0.05 Hz, is reversely associated with EEG vigilance
measures. The discovery of a neurological origin for fNIRS global
signal has important implications for the processing of fNIRS
signal acquired at resting state.

One of the most fundamental and critical issues in analyzing
neuroimaging data is how to handle the global signal, which is
defined as the time series of intensity averaged across imaging
units in PET (Fox et al., 1988; Friston et al., 1990), fMRI
(Desjardins et al., 2001; Macey et al., 2004), and more recently
in fNIRS (Franceschini et al., 2006; Zeff et al., 2007; White
et al., 2009; Mesquita et al., 2010). A strong presence of global
signal in fMRI may lead to a massive and diffused activation
pattern in task-based studies if the time series of the global
signal is of similar profile with the task modulation (Kay et al.,
2013; Power et al., 2015). Likewise, fNIRS studies of various
tasks commonly removed a global component derived from the
measurements to reveal focal activations, via linear regression or
spatial filtering based on PCA/ICA decomposition (Zhang et al.,
2005, 2007, 2016; Franceschini et al., 2006; Kohno et al., 2007;
Zeff et al., 2007; Eggebrecht et al., 2012, 2014; Sato et al., 2016).
Nonetheless, the impact of global signal is more problematic
in task-free, resting state studies, as the global signal may lead
to a perfusive connectivity pattern that is attributed to the
global signal, no matter whichever seed region of interest is
selected. Because region-specific connectivity is more desirable
and because non-neuronal sources can dominantly contribute
to the global signal (Glover et al., 2000; Wise et al., 2004; Birn
et al., 2006; Yuan et al., 2013), the analysis of resting state fMRI
data has commonly included steps to attenuate the impact of a
global signal. For example, GSR removes an averaged signal of all
recording units from the time series through linear regression.
This procedure was originally developed for and applied to
task-based fMRI data (Zarahn et al., 1997; Aguirre et al., 1998;
Macey et al., 2004). Later, most resting-state fMRI studies have
adopted GSR as a pre-processing approach: the global signal
component is regressed out of preprocessed BOLD signals prior
to computation of connectivity measures and therefore regionally
focused connectivity patterns are reported (Fox et al., 2009).
Similarly, in recent fNIRS studies of resting state brain, a
global component has been recognized in the measurements
from regularly distanced optodes (White et al., 2009; Mesquita
et al., 2010; Tong and Frederick, 2010; Eggebrecht et al., 2014;
Tachtsidis and Scholkmann, 2016; Duan et al., 2018; Wyser et al.,
2020) and from short-distanced optodes (White et al., 2009;
Gregg et al., 2010; Mesquita et al., 2010; Eggebrecht et al., 2014;
Tachtsidis and Scholkmann, 2016; Duan et al., 2018; Sherafati
et al., 2020; Wyser et al., 2020). To date, there is no well-
established pre-processing routine in resting state fNIRS studies
although multiple efforts are being made (Huppert et al., 2009; Ye
et al., 2009; Xu et al., 2014; Santosa et al., 2018). Approaches such
as GSR and spatial filtering via PCA and ICA decomposition that
were used in task-based fNIRS studies are also commonly adapted
in resting state fNIRS studies to remove the global component,
yielding regionally focused connectivity pattern (Mesquita et al.,
2010; Zhang et al., 2010, 2011; Sakakibara et al., 2016).

However, the removal of global signal in neuroimaging
data has encountered controversial critiques, particularly in the
studies of resting state functional connectivity. Because a global
neurophysiological component may be present in direct neural
recordings (Scholvinck et al., 2010; Wong et al., 2013, 2016),
removing the global signal is shown to cause loss of such neural
components, thereby confounding the resulted pattern of resting
state functional connectivity. For example, Chen et al. (2012)
found that the global signal is highly correlated with DMN
component. Further evidences indicated that the global signal
resembles the resting-state fMRI time courses of the largest
cluster when the level of global noise is low (Chen et al.,
2012). Under such circumstances, GSR could mathematically
mandate the presence of anti-correlation network in fMRI studies
(Murphy et al., 2009). Other studies have further linked the
fluctuations of global signals to the varying levels of vigilance
or arousal (Chang et al., 2016; Falahpour et al., 2018), which
suggests that removing the global signal in those situations could
remove an underlying behavioral factor. Therefore, the GSR
should be very carefully applied when studying resting-state MRI
(Murphy et al., 2009; Saad et al., 2012; Murphy and Fox, 2017).
Until now, the nature of the fNIRS global signal has not been
fully established since the neurophysiological components in the
resting-state global fNIRS signal have not been systematically
investigated. Our current study is the first of its kind to investigate
the neuronal and non-neuronal sources in the fNIRS global signal
by using concurrent fNIRS and EEG in whole-brain and high-
density setup. Because both fNIRS and BOLD fMRI measure
the cerebral hemodynamics, they carry similar substrates for
neuronal activities while they also share common caveats due to
non-neuronal sources, including respiration, cardiac pulsations,
motion, etc. Like in the case of fMRI, removal of fNIRS global
signal may lead to spurious results in the functional connectivity
pattern, depending on whether or not there exists any neural
component in the global signal of fNIRS and the amplitude level
of global signal.

In this study, we have shown that fNIRS global signals
acquired from the resting human brain are periodical oscillations.
As shown in Figures 2, 3 at respective individual and group
level, the resting-state fNIRS global signal resides in three
ranges: dominantly less than 0.05 Hz with a peak component at
∼0.02 Hz, a second peak between 0.05 and 0.1 Hz (also known as
the Mayer wave) and greater than 0.1 Hz. Furthermore, our study
extended investigations of the fNIRS global signal at standing,
sitting and supine positions. Indeed, periodic fluctuations were
observed in the global signal at all body positions. The presence
of a fluctuating fNIRS global signal with dominate activities of
<0.1 Hz suggests that the RSFC pattern may be affected by
the global signal. Comparing with intracranial neural recordings
(Leopold et al., 2003; He et al., 2008; Shmuel and Leopold,
2008), fNIRS global signal and spontaneous neural activities
overlap their peaks in the range of <0.1 Hz. Meanwhile, in
comparison with fMRI, the fNIRS global signal shows a very
similar spectral profile with those from BOLD fMRI. Especially,
the spectrum of fNIRS at the supine position (Figures 3A,B)
for both EO and EC conditions are almost identical to those
reported in fMRI (e.g., Figure 1 in Biswal et al., 1995). Since
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in our study the whole-head fNIRS montage were sampled at
1.95 Hz, which is a higher frequency than BOLD fMRI (usually
0.5 Hz), the spectrum of fNIRS global signal revealed a more
accurate spectrum.

Importantly, for the first time our study reported a negative
association between the amplitude of fNIRS global signal in
the range of <0.05 Hz and the EEG vigilance based on the
simultaneous recording in the Experiment 1 (Figures 6,7).
Within individuals, the resting state sessions with lowest EEG
vigilance measures were associated with significantly higher
fNIRS global (HbO and HbR in Figure 6), which was observed
at eyes open condition and neither EEG nor fNIRS was affected
by body positions. Furthermore, in a single body position at
eyes-open condition, a negative covariation between fNIRS global
signal amplitude and EEG vigilance was also confirmed across
individuals (HbO and HbR in Figure 7). The selection of
frequencies f < 0.05 Hz for fNIRS is critical: it is within the
range of resting state fMRI data but distinctly narrower to exclude
the Mayer wave. Previous fMRI study has demonstrated that
the functional connectivity in auditory, visual and sensorimotor
cortices is characterized 90% by the low-frequency band from
0 to 0.1 Hz (Cordes et al., 2001). Meanwhile, the fractional
amplitude of low-frequency fluctuation (fALFF) is defined as the
ratio of power spectrum of 0.01 – 0.08 Hz to that of the whole
frequency band (Zou et al., 2008). Noteworthy, one of the most
studied networks – DMN – has significantly higher fALFF than
other brain regions, which indicates DMN has higher intensity of
regional spontaneous brain activity in the range of 0.01 – 0.08 Hz
(Zou et al., 2008). More importantly, our fNIRS signal was further
narrowed to the range of <0.05 Hz, in order to avoid the Mayor
wave which is shown to depend on body positions. Because of
a high sampling frequency, fNIRS was effective in preventing
aliasing of high-frequencies related to pulse and respiration into
the range of <0.05 Hz.

In addition, our results revealed that the power spectrum
of HbO global signal depends on body positions in the range
between 0.05 – 0.1 Hz, regardless eyes were opened and
closed (shown in Figures 2, 3 at respective individual and
group level). Data at the standing position show the largest
amplitude than the others, while the supine position is associated
with lowest amplitude. These findings are consistent with
previous reports by Tachtsidis et al. (2004), who compared
three different positions’ effect on cerebral blood pressure with
fNIRS. Their results showed that standing position has the
highest mean blood pressure (MBP) and supine has the lowest
MBP. They followed the Task Force of the European Society
of Cardiology and the North American Society of Pacing and
Electrophysiology (1994) to separate the frequency spectrum
into three standard frequency bands: very low frequency (VLF:
0.02–0.04 Hz), low frequency (LF: 0.04–0.15 Hz) and high
frequency (HF: 0.15–0.4 Hz). Although VLF did not reveal
any significant impact of body position, their results reported
that the magnitude of low frequency oscillation in HbO in the
resting brain shows a significant difference between different
postures in LF. Coincidentally, Mayer wave, i.e., the cyclic
changes in arterial blood pressure, fall into this LF range
(Muller et al., 2003; Julien, 2006). Mayer wave appears to have

a close relationship with fNIRS global signal. It is observed
as oscillations of arterial pressure at ∼0.1 Hz in conscious
humans (Julien, 2006). Besides, it is positively related with
the strength of the corresponding sympathetic nervous activity
and the mean level of sympathetic nerve activity (Furlan
et al., 2000). More importantly, prone, supine, and sitting
have significantly different effect on autonomic regulation of
cardiovascular function (Watanabe et al., 2007). One rational
speculation is that different body positions, especially the up-
tilt positions, significantly affect autonomic regulation includes
SNA which set the level of sympathetic vasoconstrictor tone,
hence contributing to sustain arterial pressure (Julien, 2006;
Scholkmann et al., 2014; Mohammadi-Nejad et al., 2018).
Therefore, we regarded position-dependent effect in the Mayer
wave range to be of physiological origin and discarded them
for comparison against EEG. Aside from the Mayer wave range,
our analysis further eliminated the factor of body positions and
revealed a negative association between the EEG vigilance and
fNIRS global signal in the frequency range of <0.05 Hz (HbO
and HbR in Figures 6, 7). Such EEG-fNIRS association for
the first time revealed a neurophysiological contribution to the
fluctuations of fNIRS global signal (due to EEG vigilance), rather
than a physiological factor (due to body positions). As control
data in the Experiment 1, we conducted qualitative analysis and
statistical analysis on auditory EEG and fNIRS responses. Our
results did not observe the different body positions’ effect on AEP
of EEG data or task-related average of fNIRS data, at both EO
and EC conditions. This excludes the concerns of environmental
and systematic biases, such as the quality of data recording when
subjects were positioned differently.

Our findings of a negative association between fNIRS global
signal and EEG vigilance measures have important implications
for the analysis and interpretation of fNIRS-based resting state
functional connectivity. The reversed association between EEG
vigilance and fNIRS global signal observed within individuals
(Figure 6) indicates that removal of fNIRS global signal will
also remove the neurological effect of vigilance in the signals.
Therefore, in resting state functional connectivity studies using
repeated fNIRS measures within an individual, especially if the
subjects’ conditions are related to the vigilance levels, global
signal removal should not be performed. In addition, a negative
covariation across individuals at the standing position (Figure 7)
indicates that removal of global signal will also remove the
neurological effect of vigilance in the signals. Therefore, in resting
state studies using fNIRS (such as biomarkers of disease across
individuals), especially when vigilance is an individual-level trait
relevant to disease symptoms (Yang et al., 2017) or behaviors (Li
et al., 2019), global signal removal could become problematic.

Furthermore, our study in the Experiment 2 for the first time
reported a negative temporal correlation between the epoch-by-
epoch fluctuations of fNIRS global signal and EEG vigilance,
which further confirmed the negative association observed across
subjects in Experiment 1. In wakeful rest periods that were
verified by sleep scoring criteria, subjects exhibited momentary
upsurges and drops of vigilance, as they stayed awake but
were falling into sleep. Such vigilance fluctuations were then
shown to be in reversed synchrony with the HbO and HbR
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global signal: epochs of decreased vigilance were associated with
surges in fNIRS global signal, and vice versa. Interestingly,
such findings of negative association are consistent with other
studies that have examined the BOLD fMRI signals and EEG
or behavior measures of vigilance. For example, Olbrich et al.
(2009) of simultaneous EEG and fMRI study have reported
that decreased of EEG vigilance measures are associated with
a perfusive increase of BOLD signals in widespread cortices
(except the thalamus). Similarly, Liu and colleges have observed a
negative temporal correlation between EEG vigilance and fMRI
global signal calculated from whole-brain average, which was
reported in 23 sessions out of the 25 sessions in total and ranged
between 0 and −0.5 (Falahpour et al., 2018, Figure 4), which
is similar with our observation. In another study performed
in unanesthetized monkeys, Chang et al. (2016) investigated
the behavior measure of vigilance, indicated as opening and
closure of eyes, and reported again that the fluctuations of
vigilance level have negative temporal correlation with BOLD
signals in widespread cortices, in a similar spatial extent and
consistent temporal manner with those observed in human
studies (Olbrich et al., 2009; Falahpour et al., 2018). Our study,
however, reported for the first time the negative temporal
correlation exists in concurrent and whole-head fNIRS and
EEG recordings in human. Our findings of the epoch-by-epoch
association are important for the interpretation of dynamic
resting state functional connectivity, which commonly used a
windowed approach of 30-s to 120-s duration. While the resting
state brain connectivity is increasingly recognized to possess
rich information of dynamics (Hutchison et al., 2013), some
studies removed the global signal (Allen et al., 2014) whereas
other studies did not (Chang et al., 2013). By showing that
the fNIRS global signal amplitude is negatively correlated with
EEG vigilance, our findings suggest that the removal the global
signal should not be performed in the investigation of dynamic
connectivity using fNIRS, especially in conditions affected by
vigilance fluctuations. Beyond that, DMN has been reported to
be correlated with EEG vigilance scores (Olbrich et al., 2009).
Removing fNIRS global signal therefore may attenuate activities
of DMN that are related with vigilance fluctuations. Evidence
has shown that the working memory plays a critical role in both
visual rehearsal and vigilance performance (Baddeley et al., 1999).
And age-related alterations and disease-related decrements (such
as Alzheimer’s disease) in DMN have significantly impacted
working memory performance (Baddeley et al., 1999; Sambataro
et al., 2010). Therefore, the fNIRS global signal should not
be treated as non-neural confound, and its removal should be
carefully considered via a frequency delineation.

Noteworthy, the calculation of the fNIRS global signal
amplitude in our study is a reasonable adaption from the
definition of global signal amplitude in previous fMRI study
(Wong et al., 2013). Considering that the fNIRS optical density is
converted to relative changes of HbO/HbR concentration in the
stage of hemodynamic computation, the normalization in fNIRS
equates the normalization in fMRI analysis (i.e., divided by the
mean of fMRI time course), the calculation of fNIRS global signal
in our study followed exactly the same definition in Wong et al.
(2013). Our findings are consistent with previous findings on

the relationship between fMRI global signal and EEG vigilance
(Wong et al., 2013, 2016). Such discovery of a neurological
component in fNIRS global in our study is novel. Importantly,
our investigation adds findings from a unique perspective by
showing a covariation relationship in a carefully constrained
frequency range that has excluded the possible physiological
noise of blood pressure regulation. Our studies of two experiment
datasets have demonstrated the reversed association exiting in
both static and dynamic manner.

Additionally, it is worthy to note that the quantification of
EEG vigilance has limitations, due to interindividual variance
in EEG activity that is commonly observed in many EEG
studies (Jobert et al., 1994; de Munck et al., 2007; Olbrich
et al., 2009). For example, certain subjects may exhibit almost
no EEG alpha peak in the power spectrum of resting EEG
at eyes open and sometimes, even at eyes closed states. In
the meanwhile, there are subjects that show strong alpha
peak power at both eyes open and eyes closed states. Here
in our analysis we have taken multiple steps to mitigate the
factor of interindividual variance in EEG activity. Firstly, we
have calculated a normalized spectrum of EEG accounting all
frequency bins; and the vigilance measures was calculated as
the ration between the alpha-band amplitude divided by the
sum of amplitudes in the delta and theta bands based on the
normalized spectrum. Then, in Experiment 1, we accounted
the interindividual variance by contrasting between the lowest
vigilance condition and higher vigilance conditions within
individuals, at which subjects’ eyes were all open. Moreover,
in Experiment 2, we examined the temporal fluctuations to
determine the association between EEG vigilance and fNIRS,
while we concluded that the levels of vigilance fluctuations did
not affect the temporal association. Nonetheless, because we
also examined the across-individual covariation (Figure 7), the
observation of the association between EEG vigilance and fNIRS
global signal could be attributed to interindividual variance in
EEG activities rather than the neurological factor of vigilance,
although removal the global signal under such situation could
still introduce confounds to the fNIRS resting state functional
connectivity analysis.

CONCLUSION

With the advantage of economic efficiency and portability, fNIRS
has been proposed as a complementary option to fMRI, especially
to be used in populations with contraindications to MRI scanner
and in challenged environment (such as brain monitoring at
bed-side or during surgery). The current study for the first time
revealed a negative relationship between fNIRS global signal
amplitudes and EEG vigilance in human participants, based
on concurrent EEG and fNIRS recordings at high-density and
whole-head montage. Our results stressed the significant effect of
body positions on the fNIRS resting-state global signal, primarily
in the frequency range of greater than 0.05 Hz yet not in the range
of less than 0.05 Hz. However, EEG vigilance plays a modulatory
role in the fNIRS signals in the frequency range of less than
0.05 Hz: resting-state sessions of low EEG vigilance measures

Frontiers in Neuroscience | www.frontiersin.org 14 December 2020 | Volume 14 | Article 56087838

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-560878 November 29, 2020 Time: 19:34 # 15

Chen et al. Vigilance Affects fNIRS Global Signal

are associated with high amplitudes of fNIRS global signals.
Moreover, the epoch-by-epoch fluctuations of EEG vigilance and
fNIRS global signals are significantly correlated in a negative
manner at a wakeful resting period. The findings of a neural
component, i.e., EEG vigilance, in fNIRS global signal suggests
that such global signal should not be removed as non-neural
physiological signal, especially in studies and conditions where
vigilance and related brain networks are of interest.
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Electroencephalography (EEG) source reconstruction estimates spatial information from
the brain’s electrical activity acquired using EEG. This method requires accurate
identification of the EEG electrodes in a three-dimensional (3D) space and involves
spatial localization and labeling of EEG electrodes. Here, we propose a new approach
to tackle this two-step problem based on the simultaneous acquisition of EEG and
magnetic resonance imaging (MRI). For the step of spatial localization of electrodes,
we extract the electrode coordinates from the curvature of the protrusions formed in
the high-resolution T1-weighted brain scans. In the next step, we assign labels to each
electrode based on the distinguishing feature of the electrode’s distance profile in relation
to other electrodes. We then compare the subject’s electrode data with template-
based models of prelabeled distance profiles of correctly labeled subjects. Based on
this approach, we could localize EEG electrodes in 26 head models with over 90%
accuracy in the 3D localization of electrodes. Next, we performed electrode labeling of
the subjects’ data with progressive improvements in accuracy: with ∼58% accuracy
based on a single EEG-template, with ∼71% accuracy based on 3 EEG-templates,
and with ∼76% accuracy using 5 EEG-templates. The proposed semi-automated
method provides a simple alternative for the rapid localization and labeling of electrodes
without the requirement of any additional equipment than what is already used in an
EEG-fMRI setup.

Keywords: electroencephalography, magnetic resonance imaging, EEG/fMRI, source localization, electrode
positioning, electrode labeling

INTRODUCTION

Despite the usefulness of electroencephalography (EEG) to study the dynamic changes in brain
signal, one of its historical weaknesses has been its restricted spatial resolution. An approach to
tackle this issue has been to analyze EEG signals with an inverse mathematical model and trace
brain activity through a method called EEG source reconstruction (Michel et al., 2004). By using

Frontiers in Neuroscience | www.frontiersin.org 1 December 2020 | Volume 14 | Article 55898143

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.558981
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2020.558981
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.558981&domain=pdf&date_stamp=2020-12-22
https://www.frontiersin.org/articles/10.3389/fnins.2020.558981/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-558981 December 16, 2020 Time: 15:28 # 2

Bhutada et al. MR-Based Localization and Labeling of EEG Electrodes

models of the brain’s structure, the inverse model allows us to
locate regions that are activated over time from the information
given by the voltage measurements of the electrodes. EEG
source reconstruction serves many clinical and neuroscientific
purposes such as epileptic seizure mapping and understanding
neurovascular coupling (Gavaret et al., 2004; Vulliemoz et al.,
2010; Yuan et al., 2010; Hanslmayr et al., 2011; De Ciantis and
Lemieux, 2013; Lei et al., 2015). On the other hand, another way
to deal with EEG drawbacks has been relying on multimodal
approaches. The development of EEG-fMRI has resulted in an
interesting symbiosis of two techniques that allow a richer and
more comprehensive understanding of brain dynamics in a non-
invasive way (Goebel and Esposito, 2009; Huster et al., 2012).

For a successful source reconstruction analysis of EEG
signals, it is necessary to precisely obtain three-dimensional
(3D) coordinates of the location of each electrode for each
individual subject (Dalal et al., 2014). Although some previous
approaches have relied on a standard positioning of electrodes
in the EEG cap, the personalization of electrode mapping for
each experimental subject improves the accuracy of the observed
results by taking into consideration the differences in head shape
and size across subjects. Although some external devices and
methods have been proposed to obtain electrode locations (see
below), in the present work we propose one method to use
the standard EEG-fMRI experimental setup, i.e., MR-compatible
EEG system with and electrode cap using conductive gel plus
a magnetic resonance imaging (MRI) scanner, without further
additions or extra MR-sequences to obtain EEG positions and
labeling, facilitating a more accurate analysis of EEG in a
multimodal environment.

The process of spatial localization of EEG electrodes involves
two major steps: (1) correctly localizing and obtaining the
3D coordinates of each electrode, and (2) distinguishing each
electrode by finding its proper label. There have been attempts
to solve these two steps of the problem (De Munck et al.,
1991; Steddin and Botzel, 1995; Yoo et al., 1997; Le et al.,
1998; Koessler et al., 2007; Péchaud et al., 2007); however, there
are only a few approaches that have automated this process of
mapping electrodes. In the following paragraphs, we summarize
the existing manual, semi-automated, and automated methods of
EEG localization and labeling.

Manual Localization and Labeling
The most rudimentary methods are based on direct manual
measurements (e.g., calipers or compass) of the distances between
each electrode and particular landmarks to later calculate the
Cartesian coordinates using a system of equations (De Munck
et al., 1991). Recent methods through the use of digitizers,
cameras, or external devices allow for manual localization
of electrodes on the standard cap (Koessler et al., 2007).
Electromagnetic digitization utilizes an electromagnetic field
transmitter and multiple receivers across the subject’s head in
order to create a model. Another stylus receiver is then used as
a way to manually localize electrodes on the head (Le et al., 1998).
An ultrasound digitizer uses a similar method for digitizing
the subject’s head and for localizing EEG electrodes by using
sound impulses (Steddin and Botzel, 1995). A photogrammetry

system, also known as geodesic photogrammetry system (GPS),
uses a system of multiple cameras placed in a polyhedron-
based structure around the subject’s head and allows for
3D reconstruction of a head model and localization of the
electrodes through method of triangulation (Russel et al.,
2005; Clausner et al., 2017). The photogrammetry method still
involves manual selection of points on each of the pictures
taken. While these methods are useful in visually generating
a head model, the process of localizing and labeling each
of the electrodes is still manual and time-consuming. Some
methods have taken advantage of the manual digitization
and they have co-registered it with MRI volumes, using
fiducial points and surface matching (Brinkmann et al., 1998;
Lamm et al., 2001).

Semi-Automated Localization and
Labeling
Initial attempts to make visible electrodes in MR have considered
the inclusion of additional tags e.g., inclusion of gadolinium
capsules, and manual segmentation of the electrodes from
the images (Yoo et al., 1997). However, other methods have
relied on the fact that electrodes are visible thanks to the
conductive gel in some structural brain images acquired using
MRI (see Figure 1). Using this feature, a semi-automated
method of localizing electrodes, the Pancake View Method, has
been implemented (De Munck et al., 2011). In this method,
a flat pancake view of the head can be derived from T1-
weighted (T1W) structural images. Each electrode artifact can be
visualized in a single two-dimensional (2D) view. Later, locations
and labels have to be selected manually for each electrode,
generating a grid with known vertices. Using the template grid,
the electrodes can be labeled automatically on other subjects
using the same cap. Finally, the 2D coordinates of the pancake
view are transformed to obtain the 3D coordinates of each
one of the electrodes in the MRI coordinate frame. Another
method based on MR, allows the localization of electrodes
without relying on the presence of conductive gel, but using
additional MR-sequences ultra-short echo time sequences (UTE)
exclusively sensitive to the polymer material of the electrodes
(Butler et al., 2017).

The combinatorial optimization and self-calibration is a
different semi-automated approach to localizing electrode
positions (Péchaud et al., 2007). In this method, the 3D
coordinates of each electrode are reconstructed with a
photogrammetry-based method of ten different pictures of
the subject’s head from various angles. The 3D coordinates
are used to generate a template head with labels. To label
the electrodes on a test subject, a minimization algorithm is
then applied on the coordinates of the subject’s head and the
previously prepared template head in order to automatically
provide labels for each of the electrodes.

These methods are closer to fully automatic approaches to
solving the two-step problem; however, a limitation to these
techniques is that they both require manual selection of points
to localize the electrodes which can be quite time-consuming.
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FIGURE 1 | T1-weighted (T1W) structural image with electrode protrusions appearing over the scalp.

Fully-Automated Localization and
Labeling
A method for automated localization and labeling of electrodes
also exploits the protrusions pertaining to EEG electrodes that
appear in MR structural images (Koessler et al., 2008). In this
method, structural MR images are pre-processed to enhance the
clarity of the electrode protrusions so that they are more clearly
visible as high-intensity voxels. With this approach, electrodes
can be localized more effectively by segmenting the different
layers of the head and identifying the voxels with the highest
intensity across the scalp of the subject. After the electrodes are
localized, a point drift method is used to register and label each
electrode (Koessler et al., 2008). Although this approach results
in automated localization and labeling, it requires specific sensors
for detection of EEG electrodes in MR anatomical images. These
sensors are not commonly used on a standard 64 channel EEG
cap and must be externally glued on the subject’s scalp.

Marino et al. (2016) reported an automatic method devised
for high-density electrode caps, which extracts the electrode
position through image processing and labels the electrodes
using a transformation of the candidate position to MNI space
to be matched with a template of the desired EEG positions.
Another method (Fleury et al., 2019) allows the localization
of electrodes without relying on the presence of conductive

gel (although it uses additional UTE sequences, mentioned
above) and implements automatic labeling using the iterative
Closest Point algorithm, over a template of the electrode cap.
These approaches again rely on the use of specialized electrodes
for localization.

In another recent study, the same high-density electrode caps
used in Marino’s study were localized with the use of 3D scanners
(Taberna et al., 2019). The approach used in Taberna’s study
was accurate in localization and used Closest Point algorithm
to label the electrodes. Another study shows how 3D scanners
have improved EEG source modeling due to a more reliable
electrode localization (Homölle and Oostenveld, 2019). Yet, these
approaches require the additional hardware (i.e., 3D scanner) in
order to localize electrodes.

The Proposed Approach
Our MR-based method provides a direct way of solving this two-
step problem of localization and labeling of the electrodes in
a simultaneous EEG/MRI setup. With our approach, the user
does not have the need for additional equipment (e.g., digitizers
and cameras) or the need for specialized MR sequences (e.g.,
UTE sequences) to solve this two-step problem (Steddin and
Botzel, 1995; Yoo et al., 1997; Le et al., 1998; Russel et al., 2005;
Koessler et al., 2007; Péchaud et al., 2007; Marino et al., 2016;
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Butler et al., 2017; Clausner et al., 2017; Fleury et al., 2019;
Homölle and Oostenveld, 2019; Taberna et al., 2019). We take
advantage of the fact that standard EEG electrodes can be
seen in the standard high-resolution MRI structural images.
A surface model of the head is first generated from the T1
images and electrodes are localized in the Cartesian coordinate
system by considering the fact that each electrode protrusion in
the MRI images possesses relatively higher curvature than the
surrounding scalp in the generated head mesh (see Figure 2). In
order to isolate the specific 3D coordinate value of a particular
electrode, we consider the centroid of groups of points with
maximal curvature to obtain the electrode location. The locations
of all electrodes are determined in this manner first. In the
next step, electrodes are labeled based on the idea that each
electrode has a particular set of distances to all of the other
electrodes. The set of all distances from each electrode to all
other electrodes is called the Distance Profile (see Figure 4).
The approach is based on the assumption that for a given EEG
cap configuration, distance profiles should be constant despite
changes in the point of reference of the coordinates system or in
the shape of experimental subject heads. In this way we present
an approach that provides a simple solution to the problem of
localizing and labeling electrodes.

MATERIALS AND METHODS

Our method involves pre-processing of the T1W structural
images in order to create a head model that can be used
to extract the electrode positions. Next, the localization of
electrodes is performed by finding vertices in the head mesh
which have maximal curvature. The final step involves utilizing
the distance profile criterion in order to assign labels to each
of the electrode positions. An approximate duration of applying
our method to localize and label electrodes is around 10 min
per electrode set (participant), mostly giving time required
for human intervention (i.e., indicating fiducial points in MR,
pruning any extraneous electrodes located, etc.). Our study

considers 26 T1W structural scans (subjects’ ages: 22.86 ± 1.54)
acquired during real-time fMRI neurofeedback study during
simultaneous acquisition of EEG signals fMRI results from that
study can be found in Sepulveda et al. (2016). The experimental
protocol was approved by the ethics committee of Pontificia
Universidad Católica de Chile. Each participant signed a written
informed consent during the study. More details on the approach
are available in the Supplementary Methods.

MR and EEG Acquisition
MR acquisition was done using a Philips Achieva 1.5T
MR scanner (Philips Healthcare, Best, Netherlands) at the
Pontificia Universidad Católica de Chile. A standard 8-channel
head coil was used. Structural T1W brain volumes were
acquired using T1W-3D Turbo Field Echo (TFE, magnetization
prepared gradient echo also known as MPRAGE) sequence
with TR/TE = 7.4/3.4 ms, matrix size = 208 × 227, α = 8◦,
317 partitions, voxels size = 1.1 mm × 1.1 mm × 0.6 mm,
TI = 868.7 ms. To prevent discomfort during MRI sessions, pads
and air cushions were used to fix subject heads.

MR-compatible EEG caps with 64 electrodes (Compumedics
Neuroscan Quik-Cap) were used for the entire experiment. In
particular, the MR structural scan was acquired at the end of
the neurofeedback experiment. Therefore, it should be noted that
participants were inside the scanner (wearing the EEG cap) for
around 1 h before extracting the MR volumes.

Generating the Head Model
From T1W structural images each electrode can be seen directly
as small bumps or protrusions over the scalp of the subject (see
Figure 1). These protrusions are generated by the material of
the EEG electrode and gel. Therefore, generating a head model
which will include these protrusions is fundamental to localize
the position of the electrodes. FreeSurfer (version 3.19; Dale
et al., 1999)1 and Brainstorm software (version 5.30; Tadel et al.,
2011) can be used to generate a head model directly from the

1http://surfer.nmr.mgh.harvard.edu/

FIGURE 2 | Head Models. (A) Head model generated from the T1W structural scan of a subject using Free Surfer. Each protrusion on the scalp is an EEG electrode.
(B) Clusters of vertices with high curvature are used to generate the position of the potential electrodes. Different clusters are depicted using different colors.
(C) Using the curvature information of the head model, we can identify electrodes using the proposed method.

Frontiers in Neuroscience | www.frontiersin.org 4 December 2020 | Volume 14 | Article 55898146

http://surfer.nmr.mgh.harvard.edu/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-558981 December 16, 2020 Time: 15:28 # 5

Bhutada et al. MR-Based Localization and Labeling of EEG Electrodes

FIGURE 3 | Distance Profile. (A) Distances from one electrode to other
electrodes form a particular pattern that could be utilized in identifying and
labeling electrodes. (B) The distance profiles for six of the 64 electrodes of a
subject (frontal: FP1 and FPZ, occipital: O1 and OZ, and central: CZ and M1).
To construct the distance profile, we set the Euclidean distances between the
electrode of interest and the rest of the 63 electrodes in a descending order.
Comparing the distance profiles of FPZ and OZ the total distance of FPZ from
all other electrodes would decrease slower than in the case of OZ. This profile
is used to individualize the electrode for the assignment of labels to each
electrode by comparison with electrodes with known position and label (Note:
Distance values were extracted from the units available through Brainstorm
from the MRI volumes).

anatomical MRI volume (Figure 2A). More importantly, when
using Brainstorm this process is fast (less than 1 min to generate
the head surface mesh using 10,000 vertices, erode factor = 0, and
fill holes factor = 2). However, this step requires manual selection
of fiducial points on the anatomical MRI volume to align the head
model. This selection was done by an experienced user through
the Brainstorm graphical interface.

Electrode Positioning
The head model, available in Brainstorm, contains information
about the curvature for each vertex in the 3D mesh. The position
of the electrodes was found by isolating vertices with high
curvature on the surface mesh of the head model. Using the
coordinate system assigned by Brainstorm, we restricted a search
space z > 0 in the axial plane. Since the coordinate system is

based on fiducial points from the MRI image, by limiting our
search to z > 0 we were able to exclude the vertices located on
the nose, cheeks or lips of the head model. Next, we identified
the 2,000 highest curvature vertices across the remaining mesh.
This value considers the number of electrodes and characteristics
of the EEG cap used in Sepulveda et al. (2016) experiment and
may need to be changed to work in other systems (e.g., using
more vertices to cover a higher number of electrodes). Due to the
resolution of the mesh, there were groups of vertices with high
curvature contained within the area corresponding to one single
electrode. Therefore, from the group of 2,000 vertices selected
above, we clustered the vertices whose distances from each other
were within 1 cm (estimated diameter for the used electrode).
Assuming that clusters containing the greatest number of vertices
represent an electrode, we selected all the clusters that contained
at least 10 vertices (Figure 2B). The centroid of each cluster was
calculated to represent the position of the potential electrode
(Figure 2C). A matrix containing the position of the potential
electrodes was generated. Given that this step was not completely
accurate (see section “Results”), a manual check of the potential
electrodes were required. In most cases, an excess of points on the
scalp was generated in the matrix; therefore, a manual removal
of these extra points was performed by an experienced human
analyzer on our team. Before moving onto the next step, a matrix
of precisely 64 (unlabeled) electrodes was required. Please see
the section “Localization” in the Supplementary Methods for
more details on this stage. Custom MATLAB scripts were used
for electrode positioning.

Electrode Labeling Using the Distance
Profile Method
The next step was to correctly identify the labels of each of the
64 points that we located in the 3D head space. We hypothesized
that each of the electrodes can be distinguished from one another
based on their relative distances. For example, frontal electrodes
like FPZ, FP1, or FP2 might have a greater number of electrodes
far away from them than the number of electrodes close to them.
In contrast, an electrode like CZ may have more electrodes closer
to it than farther from it (Figure 3). This is mainly due to the
general shape of the head and how the electrodes are arranged on
the cap. For this reason, each electrode has a unique collection of
Euclidean distances to all the other electrodes, otherwise referred
to in this paper as their distance profile.

For each electrode, a distance profile was determined. To
do this, we calculated the distances from an electrode to all
the others, and we sorted these distances in a vector from the
highest to the lowest (Figure 3). A crucial requirement for this
step is having at least one template (i.e., a set of localized and
labeled electrodes) with extracted reference distance profiles.
Using this template, a Pearson correlation was calculated between
the distance profiles of the unlabeled and template electrodes.
The label of the template electrode was given to the unlabeled
electrode with the highest correlated distance profile.

It should be noted that the distance profiles of electrodes
located in symmetrical positions in the left and right hemispheres
with respect to the central electrode axis (e.g., FP1 and FP2, C1
and C2, etc.,) might be identical. This created confounds for
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FIGURE 4 | Processing Pipeline. Summary of processing pipeline for electrode localizations and labeling. Top: During EEG-fMRI acquisition, we extrapolate the
location of each electrode by looking for protrusions across the subject’s scalp. Bottom: Through the use of labeled templates, we can classify the electrode by
comparing the distance profiles for each unlabeled electrode (white dashed line) to the distance profiles of labeled electrodes of each template. The template analysis
successfully votes to give the correct label of FPZ by 3 out of the 5 template votes.
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accurate labeling. To avoid this problem, we picked the electrodes
labeled as FPZ and OZ to define a central plane. All electrodes that
were located in symmetrical positions were compared against this
central plane. A list with the pair of electrodes that are located
in symmetrical positions with respect to the central plane was
defined to run this comparison (e.g., FP1–FP2, F1–F2, and C1–
C2, etc.). Once the unlabeled electrodes were each assigned a label
using distance profile comparison, we checked if the hemisphere
(right or left) was correctly assigned. For example, an electrode
labeled as C1 could be C1 or C2. Since both C1 and C2 electrodes
are in symmetrical positions, they should ideally have identical
distance profile. If we found that this electrode was actually to the
left side of the central plane, we kept its label as C1; however, if we
found that it was actually to the right side of the central plane, we
labeled it C2, the other symmetrical label. If pairs of electrodes
are given the same label, the relative position of the electrodes
are compared to determine which ones are located at the right
and left hemisphere. In cases when more than three unlabeled
electrodes receive the same name, a label was not assigned.

In order to properly automate the process of labeling the
electrodes, it is critical to use templates that are robust in defining
the distance profiles for all the electrodes. However, given the
wide variability between participants’ head shape, the use of
a unique template may be inappropriate to arrive at correct
electrode labeling. In our method, we used multiple templates
for the labeling of individual electrodes to account for this
variability. To estimate the improvement that the inclusion of
additional templates provides to the labeling performance, we
tested using 1, 3, and 5 templates. When multiple templates were
used, we implemented a voting system for the definition of the
final electrode label: Every template “proposes” a label for the
unlabeled electrode and the label with most votes is assigned (see
Figure 4). If there is no majority in the voting, the label that
comes first in the sequential order of electrodes is assigned (e.g.,
the sequence for a 64-electrode Neuroscan Quik-Cap is presented
in Supplementary Material). If none of the templates was able to
identify a label for the electrode, the electrode remains unlabeled.
For more details about this stage, please check “Labeling” section
in the Supplementary Methods. Custom MATLAB scripts were
used for electrode labeling.

Detection Rate of Electrode Localization
To estimate the detection rate of our electrode localization
method, we compared the results of our curvature positing
algorithm with the true electrode positions. In our case, since
we did not have access to digitizers or any other mechanism to
extract the location of the electrodes, we determined the true
position of electrodes by visual inspection of the locations in
the MRI volume. In this way, points that did not correspond to
electrodes [e.g., around eyes or ears, and electrooculogram (EOG)
electrodes] were taken out. We used 26 structural T1W brain
volumes for the purpose of testing the proposed method. We
computed the detection rate of the method (i.e., true electrodes
identified / 64) for each volume. A heat map was generated
using EEGLAB, containing the information about the mean
detection rate for the localization of electrodes across participants
(Delorme and Makeig, 2004).

Accuracy Analysis of Electrode Labeling
In order to check the accuracy of the distance profile method, we
compare the labels assigned to the 64 electrodes by the algorithm
with the true labels. To assess the performance of the method, we
determined the value for true positives (TP, electrodes correctly
labeled), false positives (FP, electrodes mislabeled), and false
negatives (FN, electrodes for which no label was assigned).

We used the same 26 sets of 64 electrodes again as either
templates or unlabeled electrode sets in order to test the
accuracy of the labeling step. To test the accuracy and robustness
of the multiple template approach, we considered different
combinations of each of the 26 sets to generate variations of
template groups. In other words, we ran multiple simulations in
which we defined one of the electrodes sets as unlabeled, and
picked 1, 3, or 5 of the remaining sets as templates. The vote
system described above was used in each of the simulations for
3 and 5 templates. In the 5-template approach, due to the high
number of possible combinations we selected only a subset to
test (i.e., 30% of the total number of combinations was randomly
selected). We calculated the TP, FP, and FN for every electrode set
that was labeled using 1, 3, or 5 templates.

RESULTS

Detection Rate of Electrode Localization
Method
From the structural MRI volume, we extracted the positioning of
electrodes using curvature information from the vertices in the
head model mesh. The centroid of the clusters of high curvature
vertices were used to obtain the location of potential electrodes.
Overall, the analysis of 26 different head models showed that our
method was able to detect 93.99% of the electrodes [standard
deviation (SD) = 0.0882] (Figure 5). From further inspection, we
observed that the frontal and central electrodes were accurately
identified by the algorithm (electrode detection over 90%).
However, the localization of some occipital (e.g., OZ, I1, and I2)
and lateral electrodes (e.g., T7 and T8) appeared to have a lower
detection rate (electrode detection <80% accuracy).

On average, the algorithm identified 20.307 extra electrodes
(SD = 3.8447), i.e., points indicated as electrode positions but
without correspondence to real labeled electrodes. Considering
that the caps had 64 labeled electrodes in total, this means the
algorithm detects around 30% of excess points. This may be due
to either artifacts in the MR-structural image, empty electrode
holders in the EEG cap (dummy electrodes) or additional
(e.g., REF, GND, and oculomotor electrodes). Importantly,
the caps used in the experiment (Compumedics Quik-Cap)
contained around 15 dummy or additional electrodes. Extra
electrodes were removed manually to leave only 64 electrodes for
the labeling step.

Accuracy Analysis of Electrode Labeling
After locating the electrodes in the 3D head space, the Distance
Profile method was employed to assign the labels. We used
various templates (1, 3, and 5) to compare the electrodes’ distance
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FIGURE 5 | Detection Rate of Electrode Localization Method. Heat map of the mean accuracy for the localization of electrodes across 26 structural MRI scans.
Areas indicated in red reflect high detection rate, while areas in blue reflect low detection rate for identifying electrodes.

profiles, as a way of generating more accurate and robust labeling.
In the cases of 3 and 5 templates, a voting system determined
the label to be assigned to each electrode. Due to a problem in
determining the middle plane in the cap (missed labeling of FPZ
and OZ), we were unable to run the algorithm in 2.314% of all the
simulated unlabeled-labeled combinations set for one template
approach (15 pairs out of 650 possible pairs). These pairs were
excluded and TP, FP, and FN were calculated for the remaining
combinations in the cases for 1, 3, and 5 templates. From the
results of our simulations, we obtained the mean value for TP, FP,
and FN for each one of the 26 electrode sets available (Figure 6
and Table 1).

The results in Table 1 show that as the number of templates
increases there is a corresponding increase in the number of true
positive electrodes and decrease in FN. Adding more templates
increases the accuracy of labeling by enabling the cross-checking
of labels and filling in of missing labels. Another trend that must
be noted is that the number of FP remains at a constant value of
about 20% despite increasing the number of templates.

Additionally, we evaluated the accuracy of our distance profile
algorithm by analyzing each electrode, pointing to identify the
ones that are more difficult to label through this method. We
generated spatial maps to display the accuracy of the method
using 1, 3, and 5 templates (Figure 7). In this case, it appears
that occipital electrodes are labeled with higher accuracy (>80%
accuracy) while some fronto-lateral electrodes present more
difficulties for identification (e.g., FP1 labeling accuracy <50%).

DISCUSSION

Localization and labeling of EEG electrodes are critical for
the analysis of EEG data, especially for source reconstruction.
Functional imaging in clinical applications (e.g., epileptic foci
detection), neurofeedback and brain-computer interfaces (BCI)

can greatly benefit from an accurate representation of the spatial
location of the electrodes. Many methods have been proposed
so far (Steddin and Botzel, 1995; Yoo et al., 1997; Le et al.,
1998; Russel et al., 2005; Koessler et al., 2007; Péchaud et al.,
2007; Marino et al., 2016; Butler et al., 2017; Clausner et al.,
2017; Fleury et al., 2019; Homölle and Oostenveld, 2019; Taberna
et al., 2019). However, most approaches require laborious manual
intervention to prepare for the experiment or the use of special
digitization devices.

The proposed approach enables the direct localization and
labeling of EEG electrodes without the requirement of external
devices (e.g., digitizers) in a context of simultaneous EEG-
MRI experiments. Simultaneous EEG-fMRI experiments are
already time-consuming and tedious for participants. The use
of additional equipment (Steddin and Botzel, 1995; Brinkmann
et al., 1998; Le et al., 1998; Lamm et al., 2001; Russel et al.,
2005; Koessler et al., 2007; Clausner et al., 2017) and special
protocols (Yoo et al., 1997; De Munck et al., 2011; Marino
et al., 2016; Butler et al., 2017; Homölle and Oostenveld,
2019; Taberna et al., 2019) may increase setup time and
cost, and cause fatigue and extra burden on the participants.
Additionally, misplacement problems may arise between the
electrode digitization (using external devices) outside the scanner
and the later positioning of the participant inside the scanner.
Also, our method does not rely on special MR acquisition
sequences (Butler et al., 2017; Fleury et al., 2019), which
may not be available in standard research or clinical setups.
By using the spatial data provided from the individual MR
structural volumes, it is possible to identify the electrodes
on the head of a subject wearing a standard EEG cap. The
MR structural volumes are required in any fMRI study for
pre-processing. In this way, we were able to preserve the
position in which the fMRI experiment was performed without
incurring any extra time and cost than required for the standard
fMRI procedure.
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FIGURE 6 | Electrode Labeling Accuracy. Box plots of the TP values for the
different number of template(s): one template (left), 3 templates (middle), and 5
templates (right). The red line represents the mean value. Dots correspond to
the accuracy obtained for each electrode set (26 in total). As the number of
templates increases the mean accuracy also increases.

TABLE 1 | Summary of accuracy analysis with the distance profile method.

Number of templates True positives
(%)

False positives
(%)

False negatives
(%)

1 Mean value 58.23 20.05 21.72

Standard deviation 10.27 9.05 3.96

3 Mean value 71.79 20.81 7.40

Standard deviation 12.56 11.60 2.70

5 Mean value 76.55 20.83 2.62

Standard deviation 13.65 13.21 2.12

In the initial step of localization of the electrodes, we utilized
the curvature data given by the head model to find the Cartesian
coordinates of the electrodes. Protrusions with high curvature are
formed in the surface of 3D reconstruction of structural scans,
due to the volume of gel contained between the electrode and
the scalp. Using this method over 90% of the electrodes were
accurately localized in our simulations. Our results found that the
occipital and temporal electrodes were more difficult to localize
than electrodes in other regions. This outcome could be due
to a decrease in the MR signal resulting from the gels in those
electrodes. It should be noted that the structural MR volumes
were acquired at the end of the experiment; thus, the subjects had
been inside the scanner in a supine position for around 1 h. Since
the EEG electrodes were prepared by gelling at the earliest time
in the preparation for the experiment, it is possible that the gel
would have dried considerably by the time of the MR acquisition.
The regions with poorer localization are the ones in the posterior
electrodes, which coincidentally are the electrodes over the which
the participant’s head rests during the experiment. One cause for

this might be that these regions are drying faster because they may
experience higher temperatures during the experiment. Another
potential cause is that the gravitational force can displace the
gel away from the scalp in these posterior electrodes when the
subject is in the supine position. Additionally, hair presence may
increase the space between the electrodes and the scalp, causing
the gel to spread out from the electrode capsule. By detaching
part of the volume off of the scalp surface, these complications
decrease the signal observed in those particular electrodes. These
changes in the electrode gel throughout the course of the scan can
lead to variation in the localization across subjects. Such errors
may lead to mislabeling problems, as a result of variability in
the distance profiles of the electrodes. To overcome the above
problems, we propose that the MR structural images are acquired
at the beginning of the experiment when the gel is fresh and is
contained in all electrodes to an equal extent.

During automated labeling, our method distinguishes each
electrode based on its particular distance profile: The descending
ordering of the distances between each electrode and the other
63 electrodes in the cap. Given that each electrode has a distinct
location, the distance profile of each will be different from other
electrodes in the same hemisphere to allow for proper labeling. To
carry out the labeling, we used the distance profiles of previously
labeled electrodes as templates for comparison. As observed
above, the use of multiple templates results in higher accuracy
of the labeling: From an average of 58% of electrodes correctly
labeled for 1 template to a 76% for 5 templates. Through the
use of multiple templates, many of the false negative electrodes
were reduced. Interestingly, although the number of FN reduces
with the use of multiple templates, the number of FP (i.e.,
electrodes that were mislabeled) did not reduce significantly.
Since this number seems to be independent of the number of
templates we are using, it may be related to a particular weakness
of our distance profile comparison. A higher similarity of the
distance profile in a particular subgroup of electrodes might make
it difficult to distinguish electrode identity using correlations;
thus, hindering successful classification. Therefore, the same
label would be assigned indistinctly to different electrodes,
generating mismatches. We think this is the case for the lateral
frontal electrodes.

Despite the increase in the accuracy of labeling with templates,
it is observed that lateral frontal electrodes are the most difficult
to identify using this method. As mentioned above, similar
distance profiles between the electrodes in this region may
generate FP (e.g., FC1 has a very similar profile to C1, making
them prone to labeling mismatch). Additionally, we think this
problem may arise from the way our method deals with symmetry
of electrode locations on left and right hemispheres (e.g., F1
and F2 electrodes). In our method, to identify electrodes that
are located at symmetrical positions on the cap we define the
midplane using frontal and occipital electrodes located in the
center. In the case that two electrodes are assigned the same label
we assumed that they may correspond to a symmetrical pair (e.g.,
two electrodes labeled as C1 when they actually should be C1
and C2). To distinguish them, we considered the location of each
one of them relative to the midplane. However, if we have three
electrodes assigned with the same label, we decided to keep them
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FIGURE 7 | Electrode Labeling. Heat maps of the mean value of TP in the labeling of individual electrodes using the distance profile algorithm with 1, 3, and 5
templates. Red corresponds to a high accuracy of labeling while blue corresponds to a low accuracy. There is a positive relationship between the number of
templates to the accuracy of labeling.

unlabeled. The reason for this was to avoid having electrodes
with the same name in the cap since it would cause confusion as
to which of the three electrodes belong to the symmetrical pair.
Therefore, it is possible that if the frontal electrodes have similar
distance profiles, they might be given the same label (more than
twice). This would cause those electrodes to remain unlabeled.

We can compare our values on detection rate and labeling
accuracy to the most recent methods that use EEG-fMRI system-
based approaches. When looking at Fleury et al. (2019) and Butler
et al. (2017), who present an approach that does not require
any additional devices, we see that they report a detection rate
around 94%. Our detection rate is similar to their results. One
disadvantage of their approach is that they did not contribute to
solving the problem of labeling and relied on using De Munck’s
Pancake model (2011). For this reason, these papers did not
present any values on localization accuracy; thus, we could not
compare our results with those. We also compared our results
with Marino et al. (2016) and De Munck et al. (2011), whose
papers present a semi-automated method to solve the two-step
problem. When comparing our results to De Munck et al. (2011),
we saw that their approach had a manual selection process
for localization of electrodes. This is decidedly a big limitation
since it requires relatively more time and an experienced user
to manually select each electrode. In our study, the localization
step is automated, although in practical terms minor human
intervention is required to correct detection errors. Marino et al.
(2016) presents an automated approach that has a very good
detection rate and labeling accuracy. While their approach had
very few FN detected in the localization step (<0.5%), they
also had FP detected (∼16% of 256 electrode set, which is even
further reduced using additional filtering). Our false positive rate
was higher than theirs (∼30% of 64 electrode set). However,
please note that our false positive rate for detection does not
take into account the fact that some of these FP are caused
by DUMMY or REF electrodes (i.e., extra electrodes physically
present in the cap). Their labeling step notably yielded no
FP or FN. We found that our labeling accuracy was ∼77%
when using 5 templates. While Marino et al. (2016) present

a more accurate approach for solving this two-step problem,
it is based on the use of high-density electrodes (HydroCel
Geodesic Sensor Net, Electrical Geodesics) for proper localization
and labeling, which is not a standard EEG system in EEG-
fMRI studies.

The labeling accuracy of our method relies on the following
assumptions: (1) head shapes and distance profiles are similar
across the subject population and (2) the localization of the
electrodes is performed using the standard 10–20 system.
However, it is known that head morphology is variable across
humans, e.g., relationship between head circumference and
height (Bushby et al., 1992). Additionally, the use of the
same EEG caps in heads of variable shapes unavoidably will
lead to discrepancies in electrode positions. We must also
consider that our method uses individual head models as
templates, making the identification even more idiosyncratic. To
ameliorate these variabilities, one might consider using average
head models or probabilistic head models. Furthermore, the
method might be improved by generating a more sophisticated
voting system when multiple templates are used. Statistical
measures such as t-maps can be used. Also, to avoid assigning
the same label to different electrodes, it might be useful to
utilize the information of nearby electrodes to help characterize
an electrode’s identity more precisely (e.g., include in the
comparison of distance profiles not only the electrode to label but
also neighboring electrodes).

In our method, the localization and labeling steps are designed
as automated procedures. However, between localization and
labeling user supervision is required to remove (or add) localized
positions from the electrode matrix when more (or less) than
64 points are reported. As mentioned earlier, the identification
of high curvature areas around the ears or additional electrodes
(e.g., REF electrodes) are some of the reasons for these FP. In
our experiments, empty electrode holders were located mostly
in the occipital region to distribute head weight. The inclusion
of these electrodes as part of the labeling step (e.g., as DUMMY
or REF) may be a solution to reduce the human intervention
required at this stage.
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In conclusion, here we have presented a semi-automated
and direct method for localizing and labeling electrodes
on a standard EEG cap, from MR structural images,
acquired during simultaneous fMRI-EEG experiments. We
used elements required for standard EEG-fMRI studies (i.e.,
T1W structural scans and standard MRI-compatible EEG
caps using conductive electrode gel), presenting a more
economical approach to the two-step problem of labeling and
localizing electrodes. The method exploits data that is already
available (MR structural scans); thus, avoiding the extra time
and cost that is otherwise involved in the use of external
digitization devices and cumbersome manual processes or extra
modifications to the standard EEG-fMRI procedure. Our future
work will conduct comparisons of this method with other
existing approaches.
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Cancer pain (CP) is one of the most common symptoms affecting life quality, and there
is considerable variation in pain experience among patients with malignant tumors.
Previously, it has been found that the fluid drainage function in the brain can be regulated
by peripheral pain stimulation. However, the relationship between cancer pain and
functional changes of the glymphatic system (an important pathway for fluid drainage in
the brain) remains unclear. In this study, 97 participants were enrolled, which included 40
participants in the cancer pain (CP) group, 27 participants in the painless cancer (PLC)
group and 30 participants in the control (NC) group. Differences in glymphatic system
function among the three groups and between before and after pain pharmacological
intervention were analyzed by measuring diffusivity and the index along the perivascular
space (ALPS index) using diffusion tensor imaging. We found that diffusivity and the
ALPS index were significantly lower in the CP group than in the PLC and NC group
and increased following intervention with pain relief. Moreover, the ALPS index was
negatively correlated with the degree of pain in the CP group. The present study
verified that alterations in glymphatic function are closely related to cancer pain, and
the quantification of functional changes reflects pain severity. Our findings support the
use of neuroimaging biomarkers for cancer pain assessment and indicate that pain can
be alleviated by regulating brain function status.

Keywords: cancer pain, glymphatic system, MRI, DTI, ALPS

INTRODUCTION

Cancer pain (CP) is a general term for pain caused by tissue and nerve invasion due to a primary
tumor or metastasis as well as pain caused by tumor-related treatment and is one of the most
common symptoms in cancer patients, and incidence of pain accounts for 40–70% of all cancer
patients (Neufeld et al., 2017; Yang et al., 2021). CP not only causes significant physical and
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psychological pain to patients, impacting quality of life, but
also presents difficulties in cancer treatment (Ham et al., 2017).
Thus, active and effective control of CP and improving life
quality of cancer patients through the accurate assessment of the
pain are considered important tasks during cancer treatment.
The mechanism of CP is complex, and pain perception varies
considerably among cancer patients (Loffler et al., 2018; Caraceni
and Shkodra, 2019). Currently, clinical assessment of the degree
of CP is primarily based on a patient’s subjective pain score, dose
of pain medication, and observation of status by physicians (Jeter
et al., 2018; Caraceni and Shkodra, 2019). However, patients’
subjective cognition and expression ability and doctors’ subjective
misjudgment may result in the pain assessment to deviate
from actual pain status, which may lead to inaccurate drug
dosages, delayed pain control (Neufeld et al., 2017; Sato et al.,
2017), unsatisfactory pain relief, or even drug overuse during
CP interventions (Preuss et al., 2021). Therefore, the objective
quantification of CP will help in the formulation of effective pain
intervention plans and adjustment of treatment plans based on
corresponding changes in indicators caused by pain.

The glymphatic system is a recently discovered effective
drainage and exchange pathway between the cerebrospinal fluid
(CSF) in subarachnoid space and the interstitial fluid (ISF) in
the brain parenchyma. It is composed of the perivascular space
and the water channel aquaporin-4 (AQP4), localized on the
endfeet of astrocytes (Iliff et al., 2012; Nycz and Mandera, 2021),
and is active during deep sleep (Anzai and Minoshima, 2021).
The glymphatic system, the extracellular space (ECS) in the
deep brain, the subarachnoid space, the lymphatic vessels in the
dural sinuses, and the ventricular system together constitute the
intracerebral fluid circulation pathway (Louveau et al., 2015; Lei
et al., 2017; Nycz and Mandera, 2021). Fluid drainage in the
brain is crucial for maintaining the homeostasis of the brain
microenvironment (Lei et al., 2017). Increasingly, studies have
shown that impairment of the drainage and clearance function
of the glymphatic system is closely related to several mental
and neurodegenerative diseases, such as depression, Alzheimer’s
disease (AD), and Parkinson’s disease (PD) (Lei et al., 2017;
Rasmussen et al., 2018; Hablitz and Nedergaard, 2021; Yan
et al., 2021). Furthermore, several studies have reported that
peripheral pain stimulation induces spatial structural alterations
and decreased drainage function of the ECS in the deep brain
(Goldman et al., 2020; Li et al., 2020). More importantly, chronic
pain is a vital risk factor for depression and cognitive impairment
(Jenny Wei et al., 2021). Therefore, CP may also cause alterations
in glymphatic system function. However, whether glymphatic
system function is altered in patients with CP and whether
pain and glymphatic system function are correlated remain
unclear. This knowledge will help gain a deeper understanding
of brain changes under CP and whether changes in brain
functional parameters have potential value for the quantitative
evaluation of CP.

Previous studies on the glymphatic system have been based
primarily on the observation of tracer drainage, diffusion, and
distribution following invasive tracer introduction (Lei et al.,
2017; Benveniste et al., 2021). A non-invasive method to assess
glymphatic system function will offer significant value in clinical

settings. Diffusion tensor imaging (DTI)-along the perivascular
space (DTI-ALPS) was proposed by Taoka et al. (2017) as a
non-invasive measurement method, which is now widely used
in studies on the glymphatic system of the human brain. This
method assumes the following: in the white matter near the lateral
ventricles, the medullary veins run in the right-left direction (x-
axis), which is perpendicular to the lateral ventricular wall. In
contrast, at this level, the projection fibers run predominantly
in the head-foot direction (z-axis), mainly adjacent to the lateral
ventricle, and the association fibers (the superior longitudinal
fascicles) run in the anterior-posterior direction (y-axis), outside
of the projection fibers (Taoka et al., 2017). Thus, the perivascular
space is orthogonal to the major fibers at this level (Taoka et al.,
2017). In our previous study, we found that myelinated fibers
in the deep brain play a crucial role in regulating ISF drainage
(Wang et al., 2019). The application of a high b-value (e.g.,
b = 1000 s/mm2) to DTI suppresses the flowing venous blood,
which allows independent analysis of the diffusivity along the
x-direction in perivascular space (Taoka et al., 2017; Figure 1).

By DTI-ALPS, Taoka et al. (2017) found that the ALPS index
was significantly negatively correlated with the Mini-Mental
State Exam score in AD patients when b = 1000 s/mm2, which
indicated lower water diffusivity along the perivascular space
in relation to AD severity. One study in 2020 on glymphatic
system alterations in patients with type two diabetes showed
that diffusivity in different fiber areas and the ALPS index were
associated with the severity of diabetes; moreover, the ALPS
index reflected the damage of the glymphatic system (Yang et al.,
2020). Recently, McKnight et al. (2021) reported that the ALPS
index in PD patients was significantly lower than that in patients
with essential tremor, which may be related to changes in the
transport environment in the glymphatic system due to abnormal
protein aggregation in PD. Furthermore, they found correlations
between the ALPS index and age and T2-weighted white matter
hyperintensity (McKnight et al., 2021). Taken together these
findings demonstrate that DTI-ALPS is feasible in detecting
functional changes of the glymphatic system. In the present study,
we applied DTI-ALPS to the analysis of ALPS index changes in
participants experiencing CP and investigated the relationship
between the ALPS index and CP to determine the potential value
of the ALPS index as a biological indicator of CP conditions.

MATERIALS AND METHODS

Informed Consent, Participant
Recruitment, and Criterion
The study was approved by the ethics committee of Tianjin
Medical University Cancer Institute and Hospital, and all
participants provided informed consent, adhering to the
ethical standards stipulated by the Declaration of Helsinki
and its amendments.

Ninety seven participants were enrolled, which included Forty
participants in the CP group, Twenty seven participants in the
PLC group and Thirty participants in the NC group (Table 1). All
subjects were right-handed. After enrollment, we acquired brain
magnetic resonance imaging (MRI) data, which included axial
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FIGURE 1 | Diffusion tensor imaging-along the perivascular space (DTI-ALPS). (A) The DTI fractional anisotraphy (FA) map shows the maximum level of the lateral
ventricle for anatomical location. (B) The DTI V1 map shows the direction and distribution of the different types of fiber tracts: projection fibers (z-axis: blue),
association fibers (y-axis: green), and subcortical fibers (x-axis: red). (C) The merged image of the FA and V1 maps and two regions of interest (ROIs) were set onto
the projection and association fibers, and diffusivity within the ROIs in the three directions was measured. (D) Schematic of the positional relationship between the
perivascular space of the medullary vein and adjacent fibers at the same level. The perivascular space of the medullary vein is parallel to the x-axis and orthogonal to
the projection fibers in the z-axis and the association fibers in the y-axis.

T2-fluid attenuated inversion recovery (FLAIR) images and DTI
on a 3.0-Tesla magnetic resonance scanner (Discovery MR750,
General Electric, Milwaukee, WI, United States) to evaluate T2-
weighted hyperintensities in the deep white matter (DWM) and
obtain ALPS indices. The self-rating anxiety (SAS) and self-rating
depression scales (SDS) were used to evaluate the emotional
states of the two groups. The numeric rating (NRS) and visual
analog scales (VAS) were used to evaluate the degree of pain
in the CP group. The mini-mental state examination (MMSE)
was used to evaluate the cognitive function. Sixteen participants
in the CP group were included in the follow-up group, after
CP pharmacological intervention, according to the ‘three-stage’
treatment plan and treatment for primary tumors for 1 month
without other treatments, such as nerve block and physiotherapy.
Patients’ degree of pain, emotional state, and brain MRI were
assessed using the same methods as those used at baseline. None
of the 16 participants were on antidepressants or anti-anxiety
drugs during the study period (Figure 2).

Cancer Pain Group
Forty participants were recruited into the CP group, which
included 19 males (47.5%) and 21 females (53.5%), with an
average age of 54.33 ± 7.28 years. All participants in the

CP group had a confirmed history of spinal bone metastasis,
and primary tumors included lung cancer (19 cases), breast
cancer (14 cases), prostatic carcinoma (3 cases), renal carcinoma
(2 cases), rectum carcinoma (1 case), and thyroid carcinoma
(1 case). All participants in the CP group have no obvious
pain feeling in any other parts of the body except for the
confirmed back pain related to spinal bone metastasis diagnosed
via various imaging examinations, which included patients who
had not taken any pain treatment medicine (15 participants)
as some of these participants were diagnosed with tumor for
the first time and some of these participants were focusing
on treatment of the primary tumor by systemic chemotherapy
or targeted therapy and did not yet undergo intervention
targeting the pain as well as those who did not respond
well to pain medication before enrollment (25 participants).
Some participants showed the symptoms related to primary
tumor such as cough, blood in the sputum, chest tightness,
malnutrition and enlarged axillary lymph nodes, those did
not affect the nervous system directly. Pain duration of each
participant was ≥ 1 month. The average pain duration time
before hospitalization was 6.46 ± 4.50 months. All participants in
the CP group have no acute symptoms and no invasive treatment
in the last month.

Frontiers in Neuroscience | www.frontiersin.org 3 March 2022 | Volume 16 | Article 82370157

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-823701 March 5, 2022 Time: 17:0 # 4

Wang et al. Glymphatic Drainage Reflects Cancer Pain

TABLE 1 | Demographic and clinical information of each group.

CP group (n = 40) PLC group (n = 27) NC group (n = 30)

Recruitment criteria • confirmed pain related to spinal bone
metastasis
• pain duration ≥ 1 month
• no obvious pain feeling in any other parts of
the body
• no acute symptoms of tumor in the last
month
• no invasive treatment in the last month
• no cognitive impairment
• no mental illness or serious consciousness
disturbance
• no drug abuse or alcohol addiction
• no heart, liver or kidney failure
• expected survival time > 2 months

• confirmed tumor history
• no obvious pain feeling
• no acute symptoms of tumor
• no invasive treatment in the last month
• no cognitive impairment
• no mental illness or serious
consciousness disturbance
• no drug abuse or alcohol addiction
• no heart, liver or kidney failure
• expected survival time > 2 months

• healthy adult
• no chronic pain
• no chronic diseases
• no invasive treatment in the last month
• no anxiety or depression
• no cognitive • impairment
• no mental illness or serious
consciousness disturbance
• no drug abuse or alcohol addiction
• no heart, liver or kidney failure
• expected survival time > 2 months

Primary tumor • lung cancer (19 cases)
• breast cancer (14 cases)
• prostatic carcinoma (3 cases)
• renal carcinoma (2 cases)
• rectum carcinoma (1 case)
• thyroid carcinoma (1 case)

• lung cancer (19 cases)
• breast cancer (8 cases)

Primary tumor treatment • systemic chemotherapy (15 participants)
• targeted therapy (12 participants)
• chemotherapy combined with targeted
therapy (7 participants)
• no treatment as first diagnosed (6
participants)

• systemic chemotherapy (10participants)
• targeted therapy (6 participants)
• chemotherapy combined with targeted
therapy (8 participants)
• no treatment as first diagnosed (3
participants)

Pain intervention • no pain treatment as first diagnosed (6
participants)
• did not undergo pain intervention as focusing
on primary tumor treatment (9 participants)
• did not respond well to pain medication (25
participants)

Age (years) 54.33 ± 7.28 56.30 ± 6.31 52.77 ± 10.34

Age composition

≥ 65 4 (10%) 2 (8%) 6 (20%)

≥ 45, < 65 32 (80%) 23 (92%) 17 (56.67%)

≥ 30 4 (10%) 1 (4%) 7 (23.33%)

Sex

Male 19 (47.5%) 12 (44.4%) 18 (60%)

Female 21 (53.5%) 15 (55.6%) 12 (40%)

SAS 58.98 ± 8.22 52.07 ± 4.66 44.80 ± 3.55

SDS 58.80 ± 7.79 56.77 ± 6.83 48.10 ± 2.66

MMSE 28.4 ± 1.21 29.4 ± 1.13 28.8 ± 1.17

Fazekas score

0 14 (35%) 9 (33.3%) 9 (30%)

1 12 (30%) 9 (33.3%) 13 (43.3%)

2 12 (30%) 9 (33.3%) 7 (23.3%)

3 2 (5%) 0 1 (3.3%)

SAS, self-report anxiety scale; SDS, self-report depression scale; MMSE, mini mental state examination.

Painless Cancer Group
Twenty seven participants were recruited into the PLC group,
which included 19 males (44.4%) and 21 females (55.6%), with
an average age of 56.30 ± 6.31 years. All participants in the
PLC group had a confirmed history of tumor including lung
cancer (19 cases), breast cancer (8 cases). All participants in
the PLC group have no obvious pain feeling in any parts
of the body except for the symptoms related to primary

tumor such as cough, blood in the sputum, chest tightness,
malnutrition and enlarged axillary lymph nodes, those did
not affect the nervous system directly. Except for three
participants whose tumors were first diagnosed, the rest of the
participants in the PLC were receiving systematic chemotherapy
or targeted therapy for tumors. All participants in the PLC
group have no acute symptoms and no invasive treatment
in the last month.
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FIGURE 2 | Procedures and data used for the study.

Normal Control Group
Thirty participants were recruited into the control (NC) group,
which included 18 males (60%) and 12 females (40%), with
an average age of 52.78 ± 10.34 years. All participants in
the NC group were healthy people without chronic pain
or chronic diseases or anxiety or depression in the past
and have no acute symptoms and no invasive treatment
in the last month.

Assessment of Pain Level
The NRS and VAS were used to quantify the degree of pain
in the CP group. The NRS is an 11-point scale from 0 to 10.
A higher number indicates greater pain: 0 indicates “no pain,” and
10 indicates the “worst imaginable pain.” Participants selected a
number that best represented their pain. The VAS is a reliable,
valid, responsive, and frequently used scale to measure pain
outcomes. It consists of a bidirectional straight 10-cm line with
two labels at each end of the line: “no pain” and “worst possible
pain.” Patients were instructed to draw a vertical mark on the line
that indicated their pain level (Hjermstad et al., 2011).

Emotional State Evaluation
The SDS and SAS were used to evaluate the emotional states
of the NC and CP groups. The SDS is a self-report instrument
designed to detect symptoms related to depression and measure
the severity of depression. The SAS is designed to detect
symptoms related to anxiety. The two scales are similar in the
items and specific methods in scale assessment. Both the SDS
and SAS comprise 20 items, each of which is scored on a scale
of 1–4, ranging from the absence of the symptom (score of 1)
to maximal symptoms (score of 4), and a higher score indicates
greater severity of depression or anxiety. Standard scores of 53
(equal to the original raw score of 41) for the SAS and 50
(equal to the original raw score of 40) for the SDS were used
as the cut-off scores for Chinese clinical significance, where the
higher the score, the more severe the depressive or anxious mood
(Zhang et al., 2021).

Cognitive Evaluation
The MMSE is a screening instrument to acquire a global
impression of cognitive function. It was administered as the first
instrument in a comprehensive fitness-to-drive assessment in a
clinical setting (see Piersma et al. (2016) for the full protocol).
The sum score of the MMSE (range 0–30) was used.

Brain Magnetic Resonance Imaging
Image Acquisition
For the axial T2-FLAIR image, we used the following scanning
protocols: repetition time [TR]/echo time [TE] = 8000/120 ms;
inversion time [TI] = 2100 ms; flip angle = 90◦; section
thickness = 5 mm; field of view [FOV] = 26; number of
excitations = 1. The scanning protocols for the DTI were: b = 0
and b = 1000 s/mm2, echo-planer sequence, TR = 6600 ms,
TE = 89 ms, motion probing gradient (MPG) = 60 directions,
FOV = 230 mm, matrix = 94 × 94, slice thickness = 3 mm.

Image Analysis
White Matter Lesion Assessment
Brain axial T2-FLAIR images were assessed by two radiologists
with more than 5 years of diagnostic experience. DWM T2-
weighted hyperintensity was graded on a 0–3-point scale
according to the Fazekas score standard: absence (score of 0);
punctate lesions (score of 1); punctate lesions beginning to merge
(score of 2); large lesion fusion (score of 3) (Morotti et al., 2020).

Diffusion Tensor Imaging Analysis and Along the
Perivascular Space Calculation
The FMRIB Software Library (FSL) toolkit (version 6.0)1 was used
to process and reconstruct the DTI images. First, the BET toolkit
(version 2.0) was used to extract the brain, and the fractional
intensity threshold was set to 0.3. Images were then motion-
corrected and eddy current-corrected using the eddy function
in the FDT diffusion toolkit (version 2.0). The processed DTI
images were used to fit the tensor using the FDT diffusion toolkit

1https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

Frontiers in Neuroscience | www.frontiersin.org 5 March 2022 | Volume 16 | Article 82370159

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-823701 March 5, 2022 Time: 17:0 # 6

Wang et al. Glymphatic Drainage Reflects Cancer Pain

(version 2.0), and the parameter images were generated to allow
measurements of FA, tensor, diffusivity, and vector. The locations
of projection and association fibers adjacent to the left lateral
ventricular were confirmed by two radiologists with more than
5 years of diagnostic experience. Two 3 mm × 3 mm regions
of interest (ROIs) were set in each of the two fibers in FSLeyes.
Diffusivity of the three directions in the ROIs was measured and
the mean ALPS index was calculated according to the following
formula:

Along the perivascular space index = mean (Dxproj,
Dxassoc)/mean (Dyproj, Dzassoc) (1),
where Dxproj and Dxassoc are the x-axis diffusivities in the area
of the projection and association fibers, respectively, Dyproj is
the y-axis diffusivity in the area of the projection fibers, and
Dzassoc is the z-axis diffusivity in the area of the association
fibers (Figure 3).

Statistical Analysis
The SPSS version 21.0 software (Inc., Chicago, IL, United States)
was used for the statistical analysis. NRS, VAS, SAS, and
SDS scores, diffusivity, and the ALPS index are expressed as
means ± standard deviations. Bland-Altman plot analysis was
used to analyze the consistency of results between NRS and VAS
pain assessment methods. Kruskal-wallis analysis was used to
test for differences in diffusivity, ALPS index, MMSE, SAS, and

SDS scores among the three groups. Wilcoxon rank-sum analysis
was used to test for differences in diffusivity, and ALPS index in
participants in the CP group from before to after pain treatment.
Changes in SAS and SDS scores in the CP group before and
after pain treatment were compared using paired-samples t-test.
Chi-square tests were used to analyze differences in sex ratio,
age composition, and Fazekas score among the three groups.
Pearson’s correlation was used to analyze correlations between
diffusivity and the ALPS index and age, Fazekas score, NRS score,
VAS score, pain duration, SAS score, and SDS score. Statistical
significance was set to p < 0.05.

RESULTS

Demographic and Clinical Features
Because glymphatic system function can be influenced by age,
sex, white matter lesions, and emotional state (Nedergaard and
Goldman, 2020; Gertje et al., 2021), we firstly compared the age
and sex compositions and brain white matter T2-hyperintensity
among the CP, PLC and NC group. After analysis, no significant
differences were found among groups in age (54.33 ± 7.28 years
vs. 56.30 ± 6.31 years vs. 52.77 ± 10.34 years, p = 0.387), age
composition (p = 0.069), or sex composition (p = 0.444). The
Fazekas scores of the three groups were as follows: CP group:
score of 0, 14 (35%); score of 1, 12 (30%); score of 2, 12 (30%);

FIGURE 3 | Process of the DTI analysis and ALPS index calculation.
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score of 3, 2 (5%). PLC group: score of 0, 9 (33.3%); score of 1,
9 (33.3%); score of 2, 9 (33.3%); score of 3, 0.NC group: score of
0, 9 (30%); score of 1, 13 (43.3%); score of 2, 7 (23.3%); score of
3, 1 (3.33%). No significant difference was found among groups
for the Fazekas score (p = 0.876). SAS and SDS scores were both
higher in the CP group than in the NC group (SAS: 58.98 ± 8.22
vs. 44.80 ± 3.55, p < 0.001; SDS: 58.80 ± 7.79 vs. 48.10 ± 2.66,
p < 0.001). And no significant difference was found between CP
group and PLC group for SAS and SDS scores, although CP group
showed higher scores (p = 0.134). No significant difference was
found among groups for MMSE score (p = 0.249).

The Consistency of the Numeric Rating
and Visual Analog Scales Scores
Results of Bland-Altman plot analysis showed that the two
methods had high consistency in evaluating the degree of CP.
The deviation value of the two methods was −0.175, the standard
deviation was 0.873, the limits of agreement = −1.888, 1.5376,
and the 95% bias confidence interval (CI) = −0.454, 0.104. The
lower limit of agreement 95% CI = −2.371, −1.40, and the upper
limit of agreement 95% CI = 1.054, 2.021 (Figure 4).

Alterations in Diffusivity and Along the
Perivascular Space Index in Cancer Pain
Compared with the NC group, Dxproj (0.541 ± 0.054 vs.
0.629 ± 0.083, p < 0.001), Dzproj (1.066 ± 0.150 vs.
1.238 ± 0.112, p < 0.001), Dxassoc (0.521 ± 0.051 vs.
0.793 ± 0.089, p < 0.001), Dyassoc (1.070 ± 0.124 vs.
1.249 ± 0.080, p < 0.001), and Dzassoc (0.239 ± 0.095 vs.
0.345 ± 0.103, p < 0.001) were significantly lower in the CP
group. However, there was no difference in Dyproj between the
NC and CP groups (0.543 ± 0.009 vs. 0.566 ± 0.009, p = 0.355).
Compared with the PLC group, Dxassoc (0.521 ± 0.051 vs.
0.624 ± 0.067, p < 0.001) was significantly lower in the CP
group (p < 0.001) (Figures 5A,B). No significant differences
were found for Dxproj (0.541 ± 0.054 vs. 0.559 ± 0.095,
p = 0.453), Dyproj (0.543 ± 0.009 vs. 0.558 ± 0.065, p = 0.859),
Dzproj (1.066 ± 0.150 vs. 1.141 ± 0.063, p = 0.488), Dyassoc
(1.070 ± 0.124 vs. 1.150 ± 0.102, p = 0.070), and Dzassoc
(0.239 ± 0.095 vs. 0.222 ± 0.119, p = 0.999) between CP and
PLC group. In the NC group, Dxproj (r = –0.698, p < 0.001)
and Dzproj (r = −0.661, p < 0.001) were negatively correlated
with the Fazekas score. In the CP group, Dxproj was negatively
correlated with NRS and VAS scores (rNRS = –0.463, pNRS = 0.003,
rVAS = –0.586, pVAS < 0.001) and Dzassoc was negatively
correlated with pain duration (r = –0.360, p = 0.023) (Table 2 and
Table 3).

Results of the ALPS index analysis showed that the ALPS index
in the CP group was significantly lower than that in the PLC and
NC group (1.571 ± 0.153 vs. 1.526 ± 0.103 vs. 1.386 ± 0.207,
p = 0.0002; Figure 5C). The ALPS index was negatively correlated
with age and Fazekas score in the NC group (rage = –0.675,
page = 0.000; rFazekas = –0.626, pFazekas = 0.012), which is
consistent with previous research (Figures 5D,H; McKnight et al.,
2021). However, the ALPS index was not correlated with age
or Fazekas score in the CP group (rage = −0.230, page = 0.056;

FIGURE 4 | Bland Altman plot. Consistency of the NRS and VAS methods
was verified (n = 40). The averages of the two scores were compared and
plotted. The central line represents the mean difference, and the upper and
lower lines indicate the 95% limits of agreement.

rFazekas = −0.190, pFazekas = 0.242; Figure 5I). The ALPS index
in the CP group was negatively correlated with NRS and VAS
scores (rNRS = −0.716, pNRS = 0.013; rVAS = −0.603, pVAS = 0.027;
Figures 5E,F,I). In addition, we found that the ALPS index
in the CP group was negatively correlated with pain duration
(r = −0.568, p = 0.043; Figures 5G,I). Finally, we did not find
any significant correlations between diffusivity in any x, y or z
direction, ALPS index and emotional scores in either the CP
or NC group (p > 0.05). Besides, no significant correlation was
found in PLC group between diffusivity, ALPS index and other
parameters (p > 0.05) (Tables 2, 3).

Diffusivity and Along the Perivascular
Space Index Changes in the Cancer Pain
Group After Pain Intervention
In the CP group, there was no significant difference in diffusivity
or ALPS index between participants who had been treated with
drugs before recruitment and those who had not (p > 0.05).
The 16 participants in the CP group who were enrolled in the
follow-up group were treated with pain medication for 1 month.
NRS, VAS, SAS, and SDS scores of these 16 participants decreased
after the intervention (NRS: 4.50 ± 1.317 vs. 1.88 ± 0.619,
p < 0.001; VAS: 4.38 ± 1.409 vs. 1.88 ± 0.696, p = 0.000;
SDS: 59.64 ± 9.014 vs. 58.45 ± 7.258, p = 0.001; SAS:
59.73 ± 6.784 vs. 58.91 ± 7.409, p = 0.001). Dxproj (0.535 ± 0.057
vs. 0.586 ± 0.030, p = 0.002), Dxassoc (0.513 ± 0.044
vs. 0.584 ± 0.057, p < 0.001), Dzproj (1.070 ± 0.123 vs.
1.166 ± 0.045, p = 0.018), Dxassoc (0.513 ± 0.044 vs.
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FIGURE 5 | Differences in diffusivity and ALPS index among the CP, PLC, and NC groups. (A,B) Comparisons of Dx, Dz, Dy of the projection and association fibers
among the CP, PLC and NC groups. Diffusivity in the CP group was lower than that in the NC group, except for Dyproj. And Dxassoc in the CP group was lower
than that in the PLC group. (C) Violin plot showing the comparison of the ALPS index among the NC, PLC and CP groups. The ALPS index of the CP group was
significantly lower than that in the PLC and NC groups. (D) Correlation between ALPS index and age in the NC (green), PLC (black) and CP groups (red). In the NC
group, the ALPS index was negatively correlated with age. However, in the CP and PLC groups, there were no correlations between the ALPS index and age. (E,F)
The ALPS index was negatively correlated with NRS and VAS scores in the CP group. (G) Negative correlation between the ALPS index and pain duration. (H,I) The
correlation factor matrices of the NC and CP groups; darker colors where the two factors converge indicate higher correlations. *p < 0.05, **p < 0.01.

0.584 ± 0.057, p < 0.001), Dyassoc (1.077 ± 0.143 vs.
1.156 ± 0.071, p = 0.003), and ALPS index (1.412 ± 0.193
vs. 1.528 ± 0.119, p = 0.012) were significantly higher after
the intervention (Figure 6). No significant alterations were
found for Dyproj (0.544 ± 0.053 vs. 0.565 ± 0.044, p = 0.231)
and Dzassoc (0.232 ± 0.091 vs. 0.204 ± 0.065, p = 0.489)
after intervention. Although diffusivity and the ALPS index
showed an increasing trend with decreases in NRS and VAS
scores after pain intervention, there was no correlation between
these measures (p > 0.05). Moreover, there were no significant
correlations among diffusivity, ALPS index, and emotional scores
after treatment (p > 0.05) (Table 4).

DISCUSSION

In this study, DTI-ALPS was used as a non-invasive method
to detect the alteration of glymphatic function in CP caused by
bone metastasis, which is the most common forms of persistent
and severe CP (Hong et al., 2020; Yoneda et al., 2021). We
firstly found the alteration of glymphatic function under CP.
Furthermore, the relationship between glymphatic function and
CP was revealed. Our findings are helpful to further understand
the functional characteristics of brain under cancer pain, and also
has important hints for the evaluation of cancer pain through
brain function detection.
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4 To date, although there are various methods to treat CP, such

as three-stage analgesics, nerve blocks, and Chinese acupuncture
point stimulation, 50% of patients continue to experience CP. In
addition, some patients experience side effects, such as increased
drug tolerance or even addiction due to drug abuse during the
treatment process; this is because the CP experience is subjective,
with no objective indicator for CP evaluation in clinical pain
management (Gallagher et al., 2017; Neufeld et al., 2017).
Therefore, an objective biomarker that reflects the status of CP
will help to accurately quantify CP in the clinic and will be highly
valuable for the formulation of effective treatment plans for CP.

In chronic pain stimulation, numerous microstructural and
functional changes occur in the brain, such as synaptic plasticity,
blood perfusion, and connectivity properties of the functional
and structural networks (Kuner and Flor, 2017; Iwabuchi et al.,
2020; Barroso et al., 2021). These changes are closely related
to the onset of pain, which may not only be adaptive changes
in response to peripheral pain stimulation but also a key
intermediate link to pain perception (Prinsloo et al., 2014).
Han et al. found using tracer-based MRI that peripheral pain
stimulation induces changes in ISF drainage and the spatial
structure of ECS in the deep brain (Li et al., 2020). Excitation of
neurons decreased the volume fraction (α) of the ECS in the deep
brain and the clearance rate of ISF toward the superficial cortex
(Li et al., 2020).

In our study, we found that diffusivity of the CP group
decreased in the primary directions of the projection and
association fibers and perivascular space was significantly lower
than that in the NC group; moreover, the ALPS index in the
CP group was also significantly lower than that in the PLC
and NC group, which indicated that ISF drainage in both the
brain parenchyma and perivascular space was impaired. We
speculate that these drainage alterations were caused by the
following mechanisms: (1) in our previous research, we found
that myelinated fiber tracts regulated ISF drainage in the deep
brain, and the ISF drained into the superficial cortex along
the myelinated fiber tracts, which constitutes the upstream
structure of the glymphatic system in the cortex (Wang et al.,
2019). As previously reported by Han et al., peripheral pain
stimulation leads to morphological changes of brain cells, which
results in spatial structure changes of the ECS in the deep
brain, obstructing ISF drainage into the cortex and affecting the
function of the glymphatic system downstream. This results in a
decrease in diffusivity, which reflects the drainage directions of
the myelinated fiber tracts and perivascular space (Li et al., 2020).
(2) The release of neurotransmitters, such as norepinephrine,
increases under chronic pain stimulation, which may cause
arteries in the brain to contract and decrease pulsation, affecting
the function of the glymphatic system (Xie et al., 2013; IsHak
et al., 2018; Goldman et al., 2020). Norepinephrine promotes
the activation of microglia, which interact with other brain cells,
such as neurons and astrocytes, via ‘crosstalk,’ causing changes
in the activity and metabolism of cells, further affecting the
function of the glymphatic system (Malcangio, 2019). (3) Because
chronic pain is a risk factor for depression and neurodegenerative
diseases, such as AD, pain stimulation may also affect brain
waste clearance and the drainage function of perivascular spaces
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TABLE 3 | Correlation analysis of PLC and NC groups.

Age Fazekas score SDS SAS

PLC group

Dxproj r = −0.171 p = 0.394 r = 0.316 p = 0.109 r = 0.143 p = 0.814 r = 0.134 p = 0.444

Dyproj r = 0.112 p = 0.577 r = 0.346 p = 0.587 r = 0.262 p = 0.612 r = 0.078 p = 0.873

Dzproj r = 0.192 p = 0.336 r = 0.044 p = 0.827 r = 0.168 p = 0.604 r = −0.110 p = 0.661

Dxassoc r = 0.461 p = 0.066 r = 0.063 p = 0.757 r = 0.304 p = 0.173 r = 0.236 p = 0.489

Dyassoc r = 0.794 p = 0.207 r = 0.270 p = 0.173 r = 0.311 p = 0.114 r = 0.117 p = 0.542

Dzassoc r = 0.095 p = 0.638 r = 0.437 p = 0.063 r = 0.226 p = 0.501 r = 0.007 p = 0.603

ALPS index r = −0.210 p = 0.293 r = 0.447 p = 0.019 r = 0.141 p = 0.441 r = 0.163 p = 0.563

NC group

Dxproj r = –0.273 p = 0.144 r = −0.698 p < 0.001 r = 0.074 p = 0.697 r = −0.127 p = 0.503

Dyproj r = –0.194 p = 0.304 r = −0.024 p = 0.900 r = −0.432 p = 0.064 r = −0.157 p = 0.407

Dzproj r = –0.448 p = 0.060 r = −0.661 p < 0.001 r = −0.183 p = 0.332 r = −0.085 p = 0.654

Dxassoc r = 0.693 p = 0.244 r = −0.366 p = 0.543 r = 0.042 p = 0.826 r = −0.143 p = 0.451

Dyassoc r = 0.233 p = 0.216 r = −0.041 p = 0.829 r = 0.688 p = 0.248 r = 0.084 p = 0.661

Dzassoc r = 0.627 p = 0.102 r = 0.304 p = 0.103 r = 0.253 p = 0.178 r = −0.044 p = 0.818

ALPS index r = −0.675 p < 0.001 r = −0.826 p < 0.001 r = 0.045 p = 0.813 r = −0.319 p = 0.840

FIGURE 6 | Diffusivity and ALPS index changes before and after pain intervention. (A,B) Comparisons of Dx, Dy, and Dz in the projection and association fibers
between before and after pain treatment. Diffusivity increased after treatment, except for Dyproj and Dzassoc. (C) Violin plot shows the comparison of the ALPS
index between before and after pain treatment. The ALPS index increased significantly after pain treatment. *p < 0.05, **p < 0.01.

TABLE 4 | Correlation analysis of diffusivity and ALPS index after pain intervention.

NRS VAS SDS SAS

Dxproj r = −0.103 p = 0.705 r = −0.105 p = 0.388 r = 0.140 p = 0.682 r = −0.061 p = 0.859

Dyproj r = −0.056, p = 0.837 r = 0.202 p = 0.453 r = 0.497 p = 0.120 r = 0.157 p = 0.644

Dzproj r = 0.041 p = 0.880 r = −0.091 p = 0.737 r = 0.348 p = 0.294 r = 0.406 p = 0.215

Dxassoc r = −0.010 p = 0.969 r = −0.084 p = 0.756 r = 0.382 p = 0.246 r = −0.025 p = 0.942

Dyassoc r = 0.293 p = 0.272 r = 0.325 p = 0.220 r = 0.182 p = 0.591 r = 0.174 p = 0.610

Dzassoc r = −0.017 p = 0.951 r = 0.009 p = 0.975 r = −0.225 p = 0.505 r = −0.320 p = 0.338

ALPS index r = −0.008 p = 0.978 r = −0.288 p = 0.279 r = 0.278 p = 0.408 r = 0.226 p = 0.504

(IsHak et al., 2018). All of these mechanisms can influence the
overall ISF drainage in the brain.

Moreover, we found that the ALPS index was correlated with
age and Fazekas score in the NC group, which is consistent
with previous studies (McKnight et al., 2021). However, this
was not observed in the CP group, which showed a negative

correlation between the ALPS index and degree of pain, where
the higher the level of pain, the lower the ALPS index. Following
pain intervention, the ALPS index increased with pain relief,
which suggested that the glymphatic system is mainly affected by
pain stimulation under CP, and the ALPS index is a parameter
that reflects the function of the glymphatic system and has a
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certain indication function on CP. Additionally, the ALPS index
in the CP group was negatively correlated with the duration
of pain, which suggested that the longer the pain duration,
the more serious the impairment to the glymphatic system.
However, whether there is an interaction between the degree
of pain and pain duration on drainage function remains to be
elucidated in a larger sample. It is worth noting that there was no
correlation between the ALPS index and degree of pain after pain
intervention. We speculate that this is because the low degree of
pain before the intervention in the participants who were enrolled
in the follow-up, and their pain was effectively controlled after
intervention, and the change in the ALPS index of them was
not significant.

Our study has the following shortcomings. Firstly, the method
we applied only describes ISF drainage in the paravalvular
space at the level of the lateral ventricle via a mathematical
formula; thus, it lacks intuition compared with that of the
tracer-based method. Moreover, ISF drainage in the brain may
be regionalized (Wang et al., 2019; Harrison et al., 2020),
which means that the functions and spatial structures may be
different among difference brain regions, and the measurement
of drainage function for one region may not reflect the functional
alteration of the whole brain. Secondly, a larger sample is needed
to investigate influencing factors, such as analgetic dosage, of
glymphatic system changes in patients with CP.

In conclusion, by applying DTI-ALPS, we found a
correlation between glymphatic system function and CP
and that the ALPS index may have potential value for
evaluating CP. In the future, the ALPS index, combined
with biological indicators, such as gene polymorphisms, may
allow more objective and individualized CP assessments.
Furthermore, the association between the glymphatic system

and pain stimulation may help in the development of non-
pharmaceutical interventions for pain, where pain may
be alleviated via the regulation of glymphatic function
(Goldman et al., 2020).
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For the analysis of simultaneous EEG-fMRI recordings, it is vital to use effective artifact
removal tools. This applies in particular to the ballistocardiogram (BCG) artifact which
is difficult to remove without distorting signals of interest related to brain activity. Here,
we documented the use of surrogate source models to separate the artifact-related
signals from brain signals with minimal distortion of the brain activity of interest. The
artifact topographies used for surrogate separation were created automatically using
principal components analysis (PCA-S) or by manual selection of artifact components
utilizing independent components analysis (ICA-S). Using real resting-state data from
55 subjects superimposed with simulated auditory evoked potentials (AEP), both
approaches were compared with three established BCG artifact removal methods: Blind
Source Separation (BSS), Optimal Basis Set (OBS), and a mixture of both (OBS-ICA).
Each method was evaluated for its applicability for ERP and source analysis using the
following criteria: the number of events surviving artifact threshold scans, signal-to-noise
ratio (SNR), error of source localization, and signal variance explained by the dipolar
model. Using these criteria, PCA-S and ICA-S fared best overall, with highly significant
differences to the established methods, especially in source localization. The PCA-S
approach was also applied to a single subject Berger experiment performed in the MRI
scanner. Overall, the removal of BCG artifacts by the surrogate methods provides a
substantial improvement for the analysis of simultaneous EEG-fMRI data compared to
the established methods.

Keywords: simultaneous EEG and fMRI, artifact removal, optimal basis set (OBS), blind source separation (BSS),
multimodal imaging, spatial filter (SF), independent component analysis (ICA), pulse artifact (PA)

INTRODUCTION

Interest in simultaneous electroencephalogram (EEG) and functional magnetic resonance imaging
(fMRI) experiments has grown, ever since Logothetis et al. (2001) showed a clear relationship
between EEG and the blood oxygenation level-dependent (BOLD) signal. Over the years, it has
become clear that multimodal data acquisition, in particular EEG-fMRI, provides new insights into
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neurocognitive functions (Laufs, 2012; Manganas and Bourbakis,
2017). Simultaneous EEG-fMRI recordings benefit from
the advantages of both methods—delivering high spatial
and temporal precision, and observation of electric and
hemodynamic changes at the same time (Mulert and Lemieux,
2010; Rosenkranz and Lemieux, 2010).

The utility of simultaneous EEG-fMRI recordings is limited
by three main interconnected factors: (1) the effectiveness of
fMRI-related artifact reduction from EEG recording; (2) the
usability of analytical tools; (3) the examination cost. Here,
effective methods for artifact reduction are of highest importance
and a prerequisite for generating useful results. Two types of
artifacts are predominant in the EEG signal recorded during
fMRI acquisition. The first type is an imaging artifact induced by
the magnetic gradient coils (Allen et al., 2000). The second type,
the so-called ballistocardiogram (BCG), is related to the heartbeat
(Debener et al., 2008) or pulse artifact (Yan et al., 2010). While
there is general agreement that the adaptive average subtraction
method proposed by Allen et al. (2000) with further improvement
from Moosmann et al. (2009) is a sufficient solution for imaging
artifact removal, the BCG artifact is still not treated efficiently.
The BCG artifact is a complex signal distortion that originates
from multiple physical phenomena. As described by the Maxwell
equations, the changing magnetic field induces a changing
electric field. Therefore, even microscopic head movements in
a strong magnetic field generate a strong electrical current. The
heartbeat and related blood flow cause whole-body movements
when a subject is in supine position (Niazy et al., 2005; Debener
et al., 2008). In addition, when an electrode is located near
a vein, the skin pulsation can generate another component of
artifact (Bonmassar et al., 2002; Yan et al., 2010). Since blood is a
conductive fluid, it can generate electrical potential changes over
the scalp due to the Hall effect (Müri et al., 1998; Mullinger et al.,
2013). Moreover, the BCG artifact can vary over the duration of
a recording (Marino et al., 2018a) because of various factors (i.e.,
position change in MRI, blood pressure change, etc.).

Over the past few years, multiple data processing approaches
have been proposed to reduce the BCG artifact (see for review:
Grouiller et al., 2007; Vanderperren et al., 2010). Three main
trends of BCG artifact reduction can be distinguished: (1)
channel-wise subtraction of a BCG artifact template; (2) blind
source separation (BSS) based on independent component
analysis (ICA); (3) the combination of both methods. The
first method evolved from the original work of Allen et al.
(1998) and was significantly improved by Niazy et al. (2005).
In this approach, the artifact template is created and then
subtracted from the data using the optimal basis set (OBS)—the
combination of the principal components obtained from the
averaged artifact template and the template itself. Further
improvements to the OBS were recently proposed by Oh
et al. (2014) and Marino et al. (2018b). Most of the changes,
however, focus on QRS complex detection and BCG template
creation, where the correction procedure is based on artifact
signal subtraction which can introduce distortion that mostly
manifests itself in topography malformation (Ille et al., 2002).
The second approach—Blind Source Separation (BSS)—is of a
different nature (Jung et al., 2000). The signal is first decomposed

to select artifact-related components. Then, the signal is projected
back to the sensor space leaving out these components. The BSS
approach usually makes use of ICA algorithms for decomposition
as initially proposed by Bénar et al. (2003). Nowadays, there is a
vast number of ICA algorithms and many different approaches
for component selection (see Vanderperren et al., 2010), which
were applied for BCG artifact reduction. Among others, the
Infomax (Bell and Sejnowski, 1995; Lee et al., 1999) and the
FastICA (Hyvarinen, 1999) have been shown to be successful in
reducing the BCG artifact (Infomax: Bénar et al., 2003; Srivastava
et al., 2005; Debener et al., 2007, FastICA: Mantini et al., 2007).
Nonetheless, the BSS approach could be questioned due to
the complex nature of the BCG artifact (Grouiller et al., 2007;
Abreu et al., 2016). The independency criterion for ICA might
not be fulfilled since the BCG artifact originates from multiple
phenomena which result from the same physiological process.
One attempt to overcome this limitation is to combine ICA
with QRS detection of an EKG electrode either by performing
ICA on the epoched data relative to R-peak (Debener et al.,
2007) or by clustering approach (Wang et al., 2018). Yet
still, the separation between the components of the artifact,
as well as the separation of artifact and brain signals, might
be insufficient. To address these problems of the mentioned
methods, a third approach that is a combination of both
methods (OBS-ICA or ICA-OBS) has been proposed (Debener
et al., 2007; Abreu et al., 2016; Marino et al., 2018b). Despite
the rationality of such an idea, one should consider that the
pitfalls of both methods can also propagate to this approach,
resulting in high signal distortion when not used carefully
(Vanderperren et al., 2010).

To deal with the BCG artifact, there are also hardware-based
solutions like reference layer (Chowdhury et al., 2014; Luo et al.,
2014) or carbon wire loops (Masterton et al., 2007; Abbott
et al., 2015; van der Meer et al., 2016). In those approaches,
the BCG artifact is reduced by the subtraction of a referential
signal obtained from additional layers/electrodes/loops which
record the currents induced by the movement and not the brain
activity. It was already shown that this approach can reduce the
BCG artifact efficiently (Bullock et al., 2021), however it requires
additional hardware and a setup procedure, and also cannot be
applied to data already recorded.

In the present paper, we propose a semi-automated BCG
artifact reduction method based on surrogate spatial filtering
(Berg and Scherg, 1994a). The measured signal is a superposition
of brain and artifact activities. In the surrogate method, it is
assumed that the artifact signals and the signals originating from
the brain can be separated if their spatial distributions over
the scalp are known. The artifact topographies can be obtained
either by principal component analysis (PCA) performed on an
averaged artifact template (Ille et al., 2002) (similarly to the OBS
method) or by ICA (like in the BSS method). The brain signals
are estimated using a surrogate model consisting of a set of
regional dipole sources distributed over the brain to describe
most of the EEG signal. Therefore, the BCG reduction procedure
should not introduce substantial distortions of the brain signals
and separate out the artifact components sufficiently at the same
time. In this study, the proposed approaches were compared
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with the most commonly used OBS, BSS, and OBS-ICA methods
described above.

MATERIALS AND METHODS

Subjects
EEG data were collected from 55 young male adults (mean age 27
years). One additional male subject (27 years) was recruited for
the Berger experiment. This subject data was part of a previous
study (Rusiniak et al., 2018).

All subjects had no history of neuropsychiatric disorders or
head injury. Subjects provided written informed consent prior
to participation. EEG data processing was performed using
BESA Research software (version 7.1 March 2021, BESA GmbH,
Gräfelfing, Germany) unless otherwise stated.

Data Acquisition
Data was collected using an MRI compatible 64-channel EEG
system (SynAmps2, Neuroscan, Texas, United States). EEG
recordings were performed in a 3 T MR scanner (Magnetom
Trio, Siemens, Erlangen, Germany) simultaneously with an fMRI
sequence (TR = 3 s, TE = 30 ms, 47 slices, slice thickness = 3 mm,
no gap, pixel spacing = 2 × 2 mm). The EEG recording
was sampled with 10 kHz frequency starting before the fMRI
session and ending after finishing the image acquisition. The
EEG sampling clock was synchronized with the MRI machine.
Simultaneous EEG-fMRI sessions lasted 6 min (120 volumes).
Subjects were asked to observe a black screen (resting-state
paradigm) and remain calm. Each fMRI volume acquisition was
marked by a trigger event in the EEG data.

A second experiment designed to evoke alpha rhythm in
occipital cortex [Berger, 1929 experiment (1929)] was conducted
using the same EEG and MRI setup. The subject was asked to
open his eyes (when the beep sound was presented) or close them
(when the screen was switched to black). Each block lasted for
30 s and the whole recording lasted 6 min.

Superimposition of Simulated Auditory
Evoked Potentials Data
To analyze the efficiency of BCG artifact reduction, simulated
auditory evoked potentials (AEP) were added to each resting-
state EEG recording using BESA Simulator (version 1.4.0, BESA
GmbH, Gräfelfing, Germany). 200 replications of the same
simulated AEP signal were added to the original EEG to mimic an
auditory EEG-fMRI experiment (inter-stimulus interval = 1.5 s
with jitter = 0.2 s) prior to artifact correction or any other
signal processing. Two dipoles, oriented perpendicular to the
right and left Sylvian fissure, were used to generate the AEP.
Source activities were simulated as near-to synchronous mono-
phasic Cz-negative deflections (2 ms time lag, parameters detailed
in Table 1) and some noise was added with a signal-to-noise
ratio (SNR) of 6.

Figure 1 illustrates the locations, waveforms and topographies
of the two-dipole AEP simulation (the plots were created using
BESA Plot, Version 1.2.3, BESA GmbH, Gräfelfing, Germany).

TABLE 1 | Description of the dipolar model used for auditory ERP simulation.

Source Location in Talairach
coordinates

Orientation N100 peak

X Y Z X Y Z Latency

Left −49 −18 12 −0.17 −0.25 −0.95 101 ms

Right 49 −15 13 0.15 −0.24 −0.96 103 ms

Using this model, the scalp AEP distribution was generated at
the 64 recording electrodes and overlapped with the original
EEG at the 200 predefined trigger times as specified above. This
overlap of AEP and EEG served as the same, identical input for
each pipeline of artifact correction to evaluate the differences
between methods and to observe the specific distortions of the
AEP introduced by each method.

The resulting signal dk(t) at electrode k can be described as
the sum of the measured electrical potential uk(t) and simulated
AEPk(t):

dk(t) = uk (t)+ AEPk (t) . (1)

Since the measured electrical potential uk(t) is a mixture of
the brain signal bk(t), imaging artifact IMGk(t), BCG artifact
BCGk(t), and noise nk(t), Eq. 1 can be formulated as follows:

dk (t) = bk (t)+ IMGk (t)+ BCGk (t)+ nk (t)+ AEPk (t) . (2)

Pipeline of Artifact Processing
The pipeline of removing artifacts and retrieving the
superimposed, averaged AEP consisted of several steps.
First, the imaging artifact IMGk(t) was estimated and removed
from the data dk(t), as described in the fMRI artifact removal
section. Second, different BCG artifact reduction approaches
were applied to reduce BCGk(t). Third, bad trials were rejected,
and the accepted N AEP trials were averaged as detailed below.
The number of rejections depends on the noise level of the
EEG, as described in the Evaluation metrics section. Finally, the
averaging enhanced the time-locked AEP while minimizing bk(t)
and nk(t). Leaving away the latter terms, this leads to the formula
of the averaged AEP:

AEPk(t) =
N∑

n=1

AEPn,k (t)

∼=

N∑
n=1

(dn,k (t)− IMGn,k (t)− BCGn.k (t)). (3)

Thus, an optimal IMG and BCG artifact reduction should
result in an averaged AEP similar to the simulated AEP.

Functional Magnetic Resonance Imaging
Artifact Removal
The imaging artifact IMGk(t) was removed from dk(t) by
applying the realignment parameter informed moving average
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FIGURE 1 | Dipole model used for the simulation of auditory ERP. In the first row, the locations and orientations of the two dipoles are depicted in the head scheme.
On the right, the modeled dipoles are shown in the presence of the surrogate model used for BCG artifact correction. The 29 regional sources for surrogate brain
model are color-coded (red for right hemisphere, blue for left hemisphere, gray for midline). The modeled sources (which are not part of surrogate brain activity
model) are shown in white. The second and third row show the left and right dipole source waveforms along with their topographies. Below, the evolution of the
N100 topography from 80 to 120 ms is depicted.

artifact subtraction method as described by Moosmann et al.
(2009). We used 16 averages as a parameter for moving
template creation and a realignment threshold of 0.5 mm. The
realignment information was obtained from fMRI preprocessing
using Statistical Parametric Mapping software (version SPM12,
the Wellcome Centre for Human Neuroimaging, London,
United Kingdom) in MATLAB (version 2007, MathWorks,
United States). After fMRI artifact removal, EEG data were down-
sampled to 1 kHz.

Ballistocardiogram Artifact Removal
To reduce the BCG artifact, five different approaches were used
independently as described below and illustrated in Figure 2.

Ballistocardiogram Artifact Removal by the PCA
Surrogate Method
The PCA Surrogate method (PCA-S) consisted of the following
steps: First, for the purpose of creating an averaged template of
the artifact, EEG data were band-pass filtered in the frequency
range of BCG (1–20 Hz) and re-referenced to the average
reference. Then, one representative occurrence of the BCG
artifact was manually selected from the EEG data based on visual
inspection of all channel waveforms and used for automated

pattern search (Scherg et al., 2002; Bast et al., 2004) to create
an averaged template of the artifact. Each detected pattern that
had a spatio-temporal correlation with the template higher than
60% was accepted. In the next step, a PCA was performed
on the averaged template. All principal components accounting
for more than 0.5% of the artifact template signal variance
were used for spatial filtering. The number of components
varied between 4 and 8 (mean 5.7). The accepted artifact-
related principal components were combined with predefined
regional sources (surrogate model) distributed evenly throughout
the brain to calculate a spatial filter that separated the BCG
artifact from brain activity as described by Berg and Scherg
(1994a). We used a brain surrogate model that included 29
regional sources. A regional source in EEG consists of 3 dipoles
at the same location with orthogonal orientations to describe
the surrounding brain activity in any direction. Thus, the brain
activity was approximated with high goodness-of-fit (>99%) by
87 dipoles (Beniczky et al., 2016). The surrogate model (together
with simulated sources which are not part of it) are shown in the
first row of Figure 1. By combining the artifact-related principal
components and brain-related source components, the inverse
spatial filter of PCA-S was created. When applying this linear
filter to the original, unfiltered EEG signals, source waveforms

Frontiers in Neuroscience | www.frontiersin.org 4 March 2022 | Volume 16 | Article 84242070

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-842420 March 8, 2022 Time: 11:22 # 5

Rusiniak et al. EEG-fMRI: Balistocardiongram Artifact Reduction

FIGURE 2 | Schematic representation of all five methods used for Ballistocardiogram (BCG) artifact reduction. Data processing was performed from top to bottom,
each column represents one method.

with BCG artifact were calculated. Then, data can be projected
back onto the scalp EEG using only non-BCG-related data to
reconstruct the BCG artifact corrected EEG in sensor space. The
brain surrogate model was applied with regularization of 2% and
artifact coefficients were applied without regularization.

Ballistocardiogram Artifact Removal by ICA
Surrogate
The ICA surrogate (ICA-S) method is comparable to the
PCA-S method. Instead of using PCA topographies, the BCG
artifact components were determined by ICA using the same
manual selection as described for BSS (section Ballistocardiogram
Artifact Removal by Optimal Basis Set). Then, the spatial
components of the ICA traces that were identified as artifact
were combined with the 87 spatial brain source components as
described for PCA-S (cf. Figure 2).

Ballistocardiogram Artifact Removal by Optimal
Basis Set
The OBS approach of BCG artifact reduction (Niazy et al.,
2005) was used as implemented in the FMRIB plug-in (version
2.0, Nuffield Department of Clinical Neuroscience, Medical
Sciences Division, Oxford, United Kingdom) for the EEGLAB
toolbox (version 13.6.5.b, Swartz Center for Computational
Neuroscience, San Diego, United States). After removing the
fMRI imaging artifact, EEG was exported from the BESA
Research software into European Data Format (EDF) and
loaded into EEGLAB. First, QRS complexes were detected in
the ECG channel by the FMRIB plugin (combined algorithms
of Christov, 2004; Kim et al., 2004). Second, by averaging

the epochs around the detected QRS complexes, an averaged
template of the BCG artifact was created. Finally, using the
OBS approach, the principal components of the averaged artifact
template were subtracted from the EEG. The number of removed
components was fixed to 4 which is the default value in the
FMRIB plugin. After BCG artifact reduction, EEG data were
converted to EDF and reloaded into the BESA Research software
for further analysis.

Ballistocardiogram Artifact Removal by Optimal
Basis Set and ICA
The OBS-ICA method used the outcome of the procedure above
(OBS) followed by ICA. This computation was performed in the
EEGLAB toolbox following the Debener et al. (2007) processing
pipeline. First data was filtered in the range of 0.3–40 Hz and
epoched around each detected BCG event (in a range of −50
to −750 ms). Then ICA was computed on concatenated epochs
using the Extended Infomax approach (Lee et al., 1999). The
component that had the highest spatial correlation with the
topography of maximum signal of BCG template was removed
during back projection of scalp EEG.

Ballistocardiogram Artifact Removal by Blind Source
Separation
The BSS approach (Jung et al., 2000) is based on ICA. After
filtering with a time-constant filter (low cutoff 0.1 Hz) and
a high cutoff filter (30 Hz), a 40 s block of data with clearly
visible BCG artifact was selected to perform ICA using the
Extended Infomax algorithm (Lee et al., 1999). The largest
components were displayed for inspection, and the following

Frontiers in Neuroscience | www.frontiersin.org 5 March 2022 | Volume 16 | Article 84242071

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-842420 March 8, 2022 Time: 11:22 # 6

Rusiniak et al. EEG-fMRI: Balistocardiongram Artifact Reduction

visual cues were used to manually identify and mark traces
with BCG artifact: waveform shape, and temporal relationship to
the electrocardiography (ECG) channel. The number of marked
components varied from 3 to 9 (mean 5.5), depending on data.
Finally, the BCG artifact corrected scalp EEG was calculated by
back projecting only the unmarked ICA components.

Auditory Evoked Potentials Averaging
Using the artifact-corrected EEG, identical analysis steps were
performed for all BCG artifact correction methods. First, bad
epochs with residual artifacts like movement or blink were
rejected using the automated rejection tool of BESA Research.
Epochs with peak-to-peak amplitudes greater than 120 µV and
signal gradients greater than 75 µV/sample were excluded. For
the detection of bad epochs, data were filtered from 0.3 Hz
(forward phase-shift, 6 dB/Oct) to 30 Hz (zero phase-shift,
24 dB/Oct). Second, after rejecting bad epochs, filters were turned
off to average the AEP in a window of −300 to +800 ms around
the accepted triggers. The averaged signal was filtered using the
same filter settings as previously. Finally, EEG data were re-
referenced to the average reference of the 64 channels of the
artifact-corrected EEG. The grand average AEP was created using
the AEPs averages of all subjects.

Evaluation Metrics
We compared the BCG artifact reduction methods by using
the following evaluation criteria: First, for each data correction
method that was applied, we compared the number of events
that passed the amplitude and gradient acceptance thresholds
for averaging. Second, the SNR values of the averaged AEP
resulting after applying each method were compared. SNR per
channel was computed using the root mean square value of pre-
stimulus interval (−300 to 0 ms) as baseline and the root mean
square value of the first 300 ms of post-stimulus data as the
signal of interest. The mean SNR value across all channels was
computed. Third, the averaged AEP waveforms were examined
by comparing the latency and amplitude at Cz as detected
automatically by the peak detection algorithm of BESA Research
in the time range from 0 to 200 ms.

We examined the accuracy of source reconstruction after
each BCG artifact reduction method. Since the AEP had been
generated by fixed simulated bilateral dipoles (Figure 1 and
Table 1), we assessed how much of the averaged signal after
BCG correction was explained by the initial AEP model. For this,
explained variance was calculated both for the grand average AEP
and individual AEP in the full width of half maximum (FWHM)
range (81–114 ms). This would amount to 100% if data variance
over all channels was fully explained by the model. Lower values
indicate higher distortion of the AEP topography.

We also evaluated the location and angle error from single
subject source localization. For this purpose we computed a
source solution containing two symmetric dipoles for every
subject. Dipole locations and orientations were fitted to
the artifact corrected averaged ERP using the Nelder-Mead
optimization algorithm (Nelder and Mead, 1965) in the range
81–114 ms. A 4-shell ellipsoidal head model was used (the same
as for the ERP simulation) (Berg and Scherg, 1994b). The

localization error was computed as a norm of difference between
obtained and seeded dipole position (c.f. Figure 1 and Table 1).
The difference angle was computed as scalar product between
dipole orientations. Since in each model there was exactly two
dipoles, to simplify further analysis we computed the average
error for each pair of dipoles.

None of the tested variables showed normal distribution as
tested by Shapiro-Wilk test in the SPSS software (version 21.0,
IBM, New York, United States). Therefore, the Kruskal-Wallis
(K-W) test was applied followed by Dunn-Bonferroni post-hoc
pairwise comparison in SPSS.

Alpha Rhythm Data Analysis (Single
Subject)
We compared the eyes-closed state with the eyes-opened
state from Berger experiment session using mean fast Fourier
transform (FFT). The mean FFT was computed in overlapping
blocks (2.05 s) over combined periods of each condition
(c.a. 180 s per condition). To investigate the difference, we
evaluated the spatial distribution in the alpha range as well as
an FFT heat map representing mean amplitude per frequency for
each channel, sub-divided into channel groups (frontal, central,
left temporal, right temporal, and occipital). In addition, for
this data set we compared BCG waveforms from the beginning
of the recording with ones from the end of the recording, to
evaluate the BCG variability. For this purpose, two different
epochs of raw EEG signal after average referencing and filtering
(0.3–30 Hz) were sent to the source analysis module of BESA
Research. We compared two epochs—one from the eyes-opened
state at the beginning of the recording (10 s) and one from
the eyes-closed state at the end of the recording (355 s).
The epochs were time-locked to the R-peak and the epoch
interval was −100 to 600 ms. For both epochs the same model
(spatial filtering) was applied, replicating the PCA-S artifact
reduction—29 brain regional sources (with 2% regularization)
extended with 4 BCG coefficients (with no regularization)
obtained from PCA. These were the same components that we
used for artifact correction.

RESULTS

Mean Trial Number
As an initial measurement of BCG artifact reduction efficiency,
we assessed the number of accepted events after rejecting bad
epochs. The more accepted events, the higher the quality of the
data (fewer residual artifacts).

In Figure 3 (left), the mean numbers of accepted trials were
compared. The highest mean value was observed for the PCA-S
method (x̄ = 178 ± 16). Lower values were obtained for ICA-S
(x̄ = 155± 41), OBS (x̄ = 120± 44) and OBS-ICA (x̄ = 126± 45)
while the BSS method showed the lowest numbers (x̄ = 93± 62).
There was a statistically significant difference between these
methods as determined by K-W test [H(4) = 101.1, p < 0.001]
with a mean rank trial number of 215 for PCA-S, 171 for ICA-S,
106 for OBS, 115 for OBS-ICA and 82 for BSS. Post-hoc testing
(Table 2) revealed that the higher number of accepted epochs was
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FIGURE 3 | Comparison charts of mean trial number and mean SNR for different BCG artifact reduction methods. Boxes show the medians and 1st and 3rd
quartiles, whiskers denote the 1.5 interquartile range, crosses indicate mean values, and outliers are represented by dots.

statistically significant when PCA was compared with all other
methods (p < 0.001 for OBS, OBS-ICA, BSS and p < 0.05 for
ICA-S). Similarly, ICA-S outperformed OBS (p < 0.001), BSS
(p < 0.001), and OBS-ICA (p < 0.05). There was no significant
difference between OBS and OBS-ICA (p = 1.000), OBS and BSS
(p = 1.000) and between OBS-ICA and BSS (p = 0.307).

Signal-To-Noise
SNR is a good indicator of the averaged data quality. Higher
SNR value indicates a cleaner and less noisy baseline. When
the five BCG artifact reduction methods (Figure 3, right) were
compared, the highest SNR values were observed for PCA-S
(x̄ = 3.45 ± 1.60) and ICA-S (x̄ = 3.42 ± 1.77). OBS, OBS-ICA
and BSS had much smaller values (OBS: x̄ = 1.33 ± 3.14,
OBS-ICA: x̄ = 1.11 ± 3.29, BSS: x̄ = 1.43 ± 2.08). The K-W test
showed statistically significant differences between these methods
[H(4) = 81.4, p < 0.001]. The mean rank SNR was 193, 188, 100,
96, 112 for PCA-S, ICA-S, OBS, OBS-ICA, and BSS, respectively.
Post-hoc pairwise comparison (see Table 2) revealed that the
higher SNR value observed for both PCA-S and ICA-S was
significantly higher (p < 0.001) than for OBS, OBS-ICA and BSS.

TABLE 2 | Dunn-Bonferroni post-hoc results of pairwise comparison between
BCG artifact reduction methods for trial number and SNR.

Pair Trial number SNR

PCA-S vs. ICA-S 0.035* 1.000

PCA-S vs. OBS 0.000** 0.000**

PCA-S vs. OBS-ICA 0.000** 0.000**

PCA-S vs. BSS 0.000** 0.000**

ICA-S vs. OBS 0.000** 0.000**

ICA-S vs. OBS-ICA 0.002* 0.000**

ICA-S vs. BSS 0.000** 0.000**

OBS vs. OBS-ICA 1.000 1.000

OBS vs. BSS 1.000 1.000

OBS-ICA vs. BSS 0.307 1.000

Statistically significant values are indicated in bold print, *p < 0.05, **p < 0.001.

The difference in SNR between PCA-S and ICA-S, as well as
between OBS, OBS-ICA, and BSS was not significant (p = 1.000).

Auditory Evoked Potentials Waveform
Properties
To reflect typical ERP evaluation, we compared the averaged AEP
signals resulting from the different methods (Figure 4A). The
overall waveforms for grand average after BCG artifact reduction
were similar to the modeled ones. However, the AEP amplitudes
after BCG reduction were slightly reduced as compared to
the simulated model for all the methods. Peak latency and
amplitude differences between BCG artifact reduction methods
were evaluated for N100 at the central electrode (Cz) but no
significant differences were found. [K-W test for amplitude:
H(4) = 3.0, p = 0.553, K-W test for latency: H(4) = 1.3, p = 0.866].
Despite of no difference in amplitude and latency at Cz electrode,
some differences in the scalp topography of the grand-mean AEP
averaged over the latency range of 81–114 ms were observed
(Figure 4B). This could affect source localization which was
furtherly evaluated.

Explained Variance
The quality of source reconstruction as defined by the explained
variance of the grand average data was highest with PCA-S
(97.3%) and ICA-S (96.9%), whereas it was reduced for OBS
(93.8%) and OBS-ICA (94.0%), as well as for BSS (90.3%), as
shown in Figure 5 (left). Due to the noise of the corrected
individual AEPs the mean values of explained variance were
lower when considering the mean values over all subjects
(Figure 5, right). They were still considerably smaller in OBS
(x̄ = 67.3% ± 16.0), OBS-ICA (x̄ = 62.8% ± 21.1), and BSS
(x̄ = 40.5% ± 23.8) as compared to PCA-S (x̄ = 80.0% ± 9.9)
and ICA-S (x̄ = 77.3% ± 12.9). The statistical evaluation by the
K-W test showed a significant difference between the five BCG
reduction methods [H(4) = 102.0, p < 0.001] with a mean rank
explained variance of 194 for PCA-S, 182 for ICA-S, 133 for
OBS, 132 for OBS-ICA, and 58 for BSS. The post-hoc pairwise
comparison is depicted in Table 3. The explained variance
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FIGURE 4 | Comparison of the BCG artifact reduction methods. (A) The signals recovered at T7, Cz and T8 electrodes (virtually re-referenced to the average
reference) are compared to the noise-free, simulated AEP signal. Each solid color line represents one of the 5 different BCG artifact reduction methods; the dashed
line (Model) represents the simulated AEP signal. (B) Topographic plots of averaged ERP response for the simulated AEP signal and the BCG artifact reduction
methods in the range 81–114 ms (full width at half maximum of the modeled signal power, as illustrated by the gray shaded areas in the top row).

FIGURE 5 | Explained variance of grand averaged data and individual data. Explained variance was averaged across the full width at half maximum of modeled
signal power for the different BCG artifact reduction methods. For individual data the boxes show the medians and 1st and 3rd quartiles, whiskers denote the 1.5
interquartile range, crosses indicate mean values, and outliers are represented by dots.

obtained for PCA-S was significantly higher than any other non-
surrogate-based methods: OBS (p < 0.05), OBS-ICA (p < 0.001)
and BSS (p < 0.001). Similarly, ICA-S values were significantly
higher in comparison to non-surrogate-based methods, but the
difference was slightly smaller (p < 0.05 for OBS and OBS-ICA,
p < 0.001 for BSS). BSS had significantly lower explained variance
as compared to both OBS and OBS-ICA (p < 0.001). There was
no statistical difference between PCA-S and ICA-S and between
OBS and OBS-ICA.

Localization Error and Angle Error
Furthermore, we evaluated how the observed difference in
explained variance translates to source analysis efficiency. To
measure this, we verified the deviation between source model
fitted to the artifact corrected data and the seeded model (see
Figure 1 and Table 1). As shown in Figure 6, PCA-S and
ICA-S had most of the dipoles located around the auditory
cortex (where the seeded dipoles were located). For the OBS,
and even more so for OBS-ICA, more outliers can be observed.
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TABLE 3 | Dunn-Bonferroni post-hoc results of pairwise comparison between
BCG artifact reduction methods for explained variance, localization error
and angle error.

Pairwise comparison Explained variance Localization error Angle error

PCA-S vs. ICA-S 1.000 1.000 1.000

PCA-S vs. OBS 0.001* 0.016* 0.040*

PCA-S vs. OBS-ICA 0.000** 0.002* 0.002*

PCA-S vs. BSS 0.000** 0.000** 0.000**

ICA-S vs. OBS 0.013* 0.073 0.264

ICA-S vs. OBS-ICA 0.001* 0.012* 0.026*

ICA-S vs. BSS 0.000** 0.000** 0.000**

OBS vs. OBS-ICA 1.000 1.000 1.000

OBS vs. BSS 0.000** 0.000** 0.000**

OBS-ICA vs. BSS 0.000** 0.001* 0.006*

Statistically significant values are indicated in bold print, *p < 0.05, **p < 0.001.

The BSS method resulted in dipoles widely distributed over
the whole brain volume. This observation is supported by
the numerical verification of localization and angle error, as
shown in Figure 7. The localization and angle error were
smallest for PCA-S (localization error: x̄ = 17.2 mm ± 10.4,
angle error: x̄ = 22.5◦ ± 9.8) and ICA-S (localization error:
x̄ = 18.2 mm ± 11.3, angle error: x̄ = 24.0◦ ± 10.7).
A larger error was observed for both OBS (localization error:
x̄ = 27.6 mm ± 18.4, angle error: x̄ = 28.9◦ ± 11.2) and
OBS-ICA (localization error: x̄ = 29.0 mm ± 18.5, angle error:
x̄ = 31.1◦ ± 11.9). The largest deviation from simulated model
was observed for BSS (localization error: x̄ = 49.6 mm ± 24.9,
angle error: x̄ = 43.0◦ ± 16.3). Further statistical evaluation
confirmed that these differences were statistically significant
[H(4) = 76.2, p < 0.001 for localization error, H(4) = 63.8,
p < 0.001 for angle error]. The mean rank values for localization
error were 92.3, 99.6, 140.2, 148.8, 209.2 for PCA-S, ICA-S,
OBS, OBS-ICA, and BSS, respectively. The mean rank values
for angle error were 94.5, 104.5, 138.2, 150.2, 202.6 for PCA-S,
ICA-S, OBS, OBS-ICA, and BSS, respectively. The pairwise
comparison showed that both localization and angle error for
PCA-S was lower than for OBS and OBS-ICA (p < 0.05),
as well as for BSS (p < 0.001). Similarly, ICA-S had lower

localization and angle error than OBS-ICA (p < 0.05) and BSS
(p < 0.001). Also, BSS was outperformed by OBS (p < 0.001)
and by OBS-ICA (p < 0.05). There were no statistical differences
between PCA-S and ICA-S (p = 1.000), ICA-S and OBS (p = 0.073
for localization error, p = 0.264 for angle error), OBS and
OBS-ICA (p = 1.000).

The Evaluation of Single Subject
Recording (Berger Experiment)
No BCG artifact was visible in the data after PCA-S artifact
correction, as shown in Figure 8. The blink related to
the closing of the eyes is clearly visible in the middle of
the shown interval, followed by prominent alpha rhythmical
activity. No such activity can be observed before the closing
of the eyes. In raw data the blink is also visible, yet due
to high contamination with BCG artifact no other data
features can be distinguished, even when investigating heat
maps and topography maps which are shown below the
data interval in Figure 8. Conversely, after correcting data
using the PCA-S method, the heat maps depicted a strong
differentiation between eyes-opened and eyes-closed states—the
activity in the alpha frequency range can be noted, especially
in occipital channels. Importantly, in both heat maps, no other
atypical oscillatory activity can be observed. The alpha rhythm
topography also reflected the normal topography typically
observed for the Berger experiment—strong activity in the
occipital lobe in eyes-closed state, which is absent during the
eyes-opened state.

Ballistocardiogram Variability Evaluation
in a Single Subject Recording (Berger
Experiment)
In Figure 9 the waveforms for four components of BCG obtained
at the beginning (10 s) and at the end of the recording (355
s) are shown. In addition, the first sample was obtained during
eyes-opened state, the second during eyes-closed state. While all
waveforms are similar, some minor differences can be observed,
especially for the second component.

FIGURE 6 | Distribution of source localization obtained by fitting two symmetric dipoles to individual data, for the different BCG artifact reduction methods. In each
image the seeded dipole model in the right and left Sylvian fissure is depicted in black.
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FIGURE 7 | Localization error and angle error for individual model fitting for the different BCG artifact reduction methods. Boxes show the medians and 1st and 3rd
quartiles, whiskers denote the 1.5 interquartile range, crosses indicate mean values, and outliers are represented by dots.

DISCUSSION

In this study, we applied the spatial filtering method (Berg and
Scherg, 1994a) to EEG data measured during fMRI acquisition
using a standard surrogate source model in order to reduce the
BCG artifact. To compare this approach with the established
methods of OBS, OBS-ICA, and BBS, we combined real resting-
state EEG data measured during fMRI acquisition with simulated
AEPs. Thus, we could evaluate the strength of artifact reduction
and signal distortions introduced by the different methods.
This approach is justified by the assumption that the fMRI
environment introduces only contaminations of the EEG signal
and does not influence the brain signals themselves. Importantly,
we evaluated our method using auditory ERPs. This bilateral,
synchronous activity with tangential dipolar orientation makes
the source analysis challenging (Scherg et al., 2019) and highly
dependent on SNR. Also, as shown by Shams et al. (2015), the
auditory ERPs are more troublesome for BCG artifact correction
when compared to e.g., visual ERPs, due to differences in the BCG
characteristic across different channels since the generators lie on
distant and opposite sites relative to the to head center.

While there was no significant difference between methods
for AEP waveform properties, both surrogate-based BCG artifact
reduction methods—PCA-S and ICA-S—outperformed the OBS,
OBS-ICA, and BSS approaches in the following evaluation metric:
the basic signal features (number of events accepted for averaging
and SNR), the quality of source reconstruction for the grand
average, and source localization error for single subjects. The
method used to estimate the artifact topography in the surrogate
methods (PCA or ICA) did not have an impact on the AEP
outcome, apart from a higher mean trial number accepted for
ERP averaging when the PCA method was used.

The number of events accepted for averaging was significantly
higher when comparing PCA-S with ICA-S (p < 0.05) and OBS,
OBS-ICA, BSS (p < 0.001, Figure 3, left). A higher number of
accepted events for averaging is of major importance since it
may lead to shorter experiments and allow for more sophisticated

methods of data analysis, for example, the comparison of the
first and second part of an experiment, single-trial analysis,
time-frequency analysis (Castelhano et al., 2014), or EEG-
driven fMRI analysis (Abreu et al., 2018). Furthermore, the
higher the number of averaged events, the less biological noise
contaminates the waveforms, which can be evaluated using SNR
and peak amplitudes.

The highest SNR was observed for PCA-S, followed by ICA-S
(Figure 3, right). The significant reduction of SNR in the OBS,
OBS-ICA, and BSS methods was mainly due to increased noise
introduced before and after the AEP. These findings are in general
agreement with the observations of Debener et al. (2007) and
explain why the number of detected events was significantly
reduced both in OBS and BSS. Interestingly, a slightly lower
SNR value was observed when OBS-ICA was compared to OBS,
while the number of mean number of trials showed the opposite
relationship. This observation stands in contrast to Debener et al.
(2007), yet it was not statistically significant here.

Amplitude reduction was observed in all BCG artifact
reduction methods, but we did not notice any significant
difference between tested methods for single (central) electrode
amplitude and latency evaluation. For the first time, this study
showed this effect is clearly a product of data processing, as
the testing procedure combined modeled AEP activity with real
EEG resting state data instead of using test-retest comparisons.
However, the cause of this reduction is unclear since it might
be due either to the specific BCG artifact reduction process
or to the fMRI artifact removal. For simultaneous EEG-fMRI
studies, it is widely accepted that signal quality and amplitude
is decreased to some extent (i.e., Rusiniak et al., 2013; Marino
et al., 2018b). Yet, it is crucial that the MR environment and
EEG post-processing do not distort signal topography, in order
to minimize the bias of statistical comparisons and source
localization. The stability of the signal distribution after BCG
correction is also of major importance for a direct comparison of
the AEP within and outside of the magnetic resonance device, as
well as for longitudinal experiments apart from the documented
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FIGURE 8 | The comparison of Eyes-Opened and Eyes-Closed state for both raw (A) and PCA-S artifact corrected data (B). At the top of each sub-figure an
example of the same 30 s of recording is shown, in which the transition from eyes-opened to eyes-closed state occurs in the middle. 20 electrodes are shown (every
second channel from the 64-channel montage that was used). Below, an FFT heat map for both states, respectively, is shown, showing each recorded channel
(grouped by brain lobes) along with the alpha rhythm topography.
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amplitude reduction. Inspecting topographies obtained on the
grand average level for all the methods (Figure 4B) it can be
noted that each method affected the topography, yet the outcome
of PCA-S and ICA-S reassembled the modeled signal, whereas it
looks like the OBS and OBS-ICA introduced some frontal shift
in the map. The topography after BSS artifact correction seems to
be distorted most.

The differences in topography may likely translate into a
distortion of source localization. Therefore, we checked the
explained variance of the corrected AEP data when using the
simulated AEP source as model. The percentage of explained
variance was significantly higher using PCA-S and ICA-S as
compared to the OBS, OBS-ICA, and BSS methods. For both
surrogate methods the explained variance was around 97%. This
value clearly indicates that most of the signal was explained, and
that the model is adequate for data explanation. The lower the
value, the larger the risk that the model might be considered
not sufficient for the data, leading to a perceived need to
introduce additional sources to the model. This observation
was investigated in more detail by performing analysis on the
individual subject level. Obviously, due to much larger noise
contamination compared to the grand average, the explained
variance at the single subject level was lower in general. The
difference between surrogate methods and other methods was
even more prominent in this case. For PCA-S as well as for ICA-S,
we obtained a mean value around 80% with very low inter-subject
variability, while the other methods performed much worse,
especially BSS. This indicated the need for a larger number of
cases for non-surrogate-based methods to achieve trust-worthy
grand average generation. Furthermore, source analysis on a
single subject level analysis might not be fully trust-worthy
for these methods.

To investigate the reproducibility of single subject source
analysis we performed the source fitting procedure on single
subjects and evaluated how far from the modeled sources the
results were. The source distribution shown for every method in
Figure 6, followed by the statistical analysis of localization and
angle error shown in Figure 7 and Table 3, clearly indicated that
PCA-S, as well as ICA-S provided robust and focused results close
to the modeled signal (with mean error values around 20 mm
and 20◦). Most importantly, these methods successfully located
activity in the temporal lobe, with just sparse outliers. The OBS
and OBS-ICA seem to also lead to correct localization of sources
in the vicinity of the modeled sources, yet the high number of
outliers as visible in Figure 6 indicate that both methods distort
the signal in many cases. The BSS method did not allow for
trust-worthy source localization at single subject level at all.

Finally, we verified if the PCA-S method works also for non-
ERP data. The Berger experiment is clinically relevant and by far
the oldest procedure for evaluation of a non-dipolar, rhythmical
signal on continuous data level. In Figure 8 we show that the
PCA-S method proposed here allowed for successful BCG artifact
reduction and signal evaluation on both visual and computational
level (FFT heat maps, alpha rhythm topography). No signal
distortion and residual artifacts were observed.

Using this dataset, we also evaluated how PCA-S approach
handles BCG variability (Figure 9). Due to changes in cardiac

FIGURE 9 | BCG waveforms from a single subject (Berger experiment) for all
four artifact components used for artifact correction. Waveforms at the
beginning of the recording (10 s, blue line) and at the end of the recording
(355 s, red line) are shown. For each component the percentage value of
explained variance in the BCG template is indicated in the waveform caption.

FIGURE 10 | Different BCG artifact reduction pipelines for surrogate artifact
reduction methods.

rhythm and blood pressure the artifact changes over time (Oh
et al., 2014; Marino et al., 2018a). However, unless the subject
changes head position in the MR machine, the spatial distribution
is not affected by the aforementioned changes that only impact
the temporal aspects of BCG. In this regards the spatial filtering
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should be unaffected by the physiological artifact variation. The
artifact waveforms extracted by spatial filter from data at the
beginning and at the end were reviewed. There is a noticeable
difference in the waveforms that proved adaptation of data
correction to changes in temporal aspects of the artifact. Also,
even though first data block was extracted during the eyes-
opened state and the second during eyes-closed state, there is no
prominent oscillatory activity visible in any of the waveforms.
Furthermore, PCA-S, as well as ICA-S, can be easily extended
to account for spatial changes by applying regularization to the
artifact components, however, that could introduce a risk of
data distortion. Here it is worth adding that subject movement
in the MR machine is an even bigger issue for fMRI gradient
artifact removal, which is based on moving average artifact
subtraction, and happens prior to BCG artifact correction in
simultaneous EEG-fMRI data processing. Therefore, subject
movement should be avoided.

The surrogate approach presented here was already
successfully applied in our previous study where simultaneous
EEG-fMRI was used for time-frequency analysis of the
relationship between alpha rhythm and default mode network
in a group of adults (Rusiniak et al., 2018). Recently Plaska
et al. (2021, Preprint) applied this approach to evaluate
interhemispheric connectivity in working memory during a
visual stimulation task.

The classical implementation of the OBS method requires an
additional ECG electrode to create the BCG artifact template.
Moreover, the OBS method assumes a fixed delay (210 ms) of the
BCG artifact relative to the R-wave of the ECG (Niazy et al., 2005).
As mentioned before the recent findings show that this value
varies with blood transverse time (Oh et al., 2014; Marino et al.,
2018a). This problem was partially solved by deriving the triggers
for template averaging from the EEG (Marino et al., 2018b),
similarly to the creation of the averaged template in PCA-S.
In both approaches, the additional ECG channel is no longer
required, and the QRS-BCG timing difference is not an issue.
However, if no trigger is detected in the OBS-based methods, the
BCG artifact will not be subtracted from the signal at this time
point. Moreover, in the OBS approach there is no brain signal
modeling and artifact components are simply subtracted from the
data. In contrast, PCA-S and ICA-S provide a stationary spatial
filter (as defined by the inverse separating BCG and surrogate
components) that projects out all BCG-artifact components from
the EEG at each time point when an artifact occurs. A potential
disadvantage of spatial filtering is that a sufficient number of
recording channels is needed, amounting to at least the number
of artifact and brain source components to enable their separation
(Berg and Scherg, 1994a; Scherg et al., 2002). In contrast, a
subtraction procedure as used in OBS can be used even for
a single channel dataset. However, this limitation is of minor
importance in recent studies which use at least 32 EEG channels.

The BSS method uses a stationary spatial filter derived from
ICA. The ICA approach implemented here is prone to human
error as incorrect components may be selected, or selected
components may contain small parts of the ERP activities that
are removed with the artifact (Marino et al., 2018a). It is worth

mentioning that automatic and semi-automatic approaches do
exist (i.e., Srivastava et al., 2005; Mantini et al., 2007; Debener
et al., 2008), yet they suffer from the same ICA method
limitations. Since ERP signals are typically much smaller than the
background EEG, ICA rarely creates independent components
for the whole ERP that would be spatially orthogonal to the
removed ICA components. Thus, any part of the ERP spatially
correlated with the removed components will result in ERP
amplitude reduction and distortion if not modeled by another
component. In contrast, both PCA-S and ICA-S were specifically
designed to remove the correlation between artifact and brain
source components, based on the spatial filtering method of Berg
and Scherg (1994a). Since the BSS approach is based on ICA
and is independent of QRS detection, it acts as a spatial filter
on the whole EEG similarly to the surrogate model approaches.
However, the BSS approach is fully based on ICA requiring
perfect visual selection and separation of the BCG artifact
components. An additional problem with ICA-based approaches
is the vast amount of possible options for ICA computation
(Vanderperren et al., 2010). The BCG artifact is a complex multi-
dimensional signal due to the head movement in the strong
static magnetic field (translation and rotation in any direction)
caused by ballistic forces generated by the heart as well as single
electrode movements due to skin pulsation and the Hall effect
(Debener et al., 2008; Marino et al., 2018a). It might be scattered
over multiple independent components or might not be well
separated from another activity. While the manual BCG-related
components selection conducted here might be sub-optimal, it
is worth to underline that the same selection of ICA artifact
components was used in our BSS and ICA-S applications and
ICA-S outperformed BSS as well as OBS and OBS-ICA. The
fundamental difference of ICA-S is that these components are
not simply projected out by the spatial filter (potentially together
with some relevant brain activity), but instead they are used
as a model of the artifact when separating artifact and brain
surrogate components by the inverse filter. Thus, the brain
activities are preserved to a large extent in ICA-S as well as by
the PCA-S method.

Considering the basic problems of both approaches (OBS
and BSS) as shown and discussed here, this combination
does not solve the essential problem of subtracting out brain
signal together with the artifact in both approaches. While
OBS-ICA delivered slightly higher number of mean trial number
accepted for averaging, the decrease in all other parameters
(SNR, explained variance and localization error) was observed
as well. There was no statistical difference between OBS and
OBS-ICA but the distortion introduced by the additional ICA
step made the difference between OBS-ICA and both surrogate
methods (PCA-S and ICA-S) more significant. It is likely that
careful manual trimming of OBS and OBS-ICA parameters could
improve the efficiency of these methods, but this can be stated for
all other methods as well.

BCG artifact reduction is one of the major problems limiting
broader usage of simultaneous EEG-fMRI. Taking the above
into consideration, the big advantage of the OBS method is its
automation and ease of use as implemented in the FMRIB plug-in
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for the EEGLAB toolbox. As shown here, the PCA-S approach has
also been automated apart from the initial selection of one good
sample of the BCG artifact. This step could also be automated
for future applications (Marino et al., 2018b). Both PCA-S and
OBS use PCA to obtain the spatial topographies of the artifact.
PCA-S adjusts the number of components using a cutoff criterion
based on the variance of each component but does not subtract
these components directly from the EEG. In contrast, OBS needs
to limit the number of orthogonal PCA components, typically to
four, in order not to subtract too much other activity from the
EEG due to limited separation from the brain signal.

OBS, OBS-ICA, and BSS BCG artifact correction have to be
performed prior to the rejection of other artifacts, averaging,
and source analysis. Contrary to this, the spatial filter defined
by contrasting artifact and surrogate model components is a
linear operator which leads to other advantages: It can be applied
for the first time prior to the detection of other artifacts and
averaging (Figure 10). In addition, the averaging can be done
using the uncorrected EEG and the filter is then reapplied
to the averaged data prior to source analysis, since averaging
and filtering are linear operations and thus commutative (2nd
column in Figure 10). The last combination (3rd column in
Figure 10) would add the spatial artifact components to the
source model of the ERP in order to separate artifact and
ERP source activities. Thus, the impact of the number of
artifact components and their topographies can be assessed
at each stage of data processing in PCA-S and ICA-S and
adjusted if required.

In this study, a standard surrogate model of 29 regional
sources equally distributed over the brain was used in order to:
(a) allow for an automated application of the PCA-S approach
and (b) investigate the potential benefit of the surrogate approach
even in cases where the source model is not a perfect match
of the underlying ERP (e.g., in AEPs), plus for rhythmical
non-focal activity. The general surrogate brain activity model
might not fit perfectly to every brain data and could lead
to some minor distortion, but still the impact of this is
less severe than for any other method presented here. Please
note that the used surrogate model does not have a source
overlap with the seeded model as shown in Figure 1. The
adequate choice of an individually generated surrogate model
can further improve the rendering of an undistorted ERP when
spatial filtering is used for the separation of artifact and brain
source components (Berg and Scherg, 1994a). For example,
Siniatchkin et al. (2007) used an individual surrogate model of
interictal epileptiform discharges recorded outside of the magnet
and averaged previously. However, as they pointed out, the
limitation of such an approach is to procedures where test-retest
can be performed.

While in this paper the focus was on a broad evaluation
of source analysis improvement resulting from usage of PCA-S
and ICA-S, further assessment of this approach is needed
especially for time-frequency and single trial data analysis.
The high number of retained events for averaging (Figure 3)
might suggest that this approach might be effective for these
application types as well. Also, since the surrogate approach is
based on spatial filtering and does not need extensive computing

it potentially could be used for real-time data processing, after
preparing a BCG artifact template during a training phase
at the beginning of the recording. Here we performed the
evaluation using simulated ERPs superimposed on real EEG-
fMRI data. While this allowed for precise assessment of the
artifact correction quality there is a need for further evaluation
of this approach with real data tests, even though some positive
outcomes were already shown (Rusiniak et al., 2018; Plaska et al.,
2021, Preprint).

The present study demonstrates that BCG artifact reduction
techniques provide more reliable results when surrogate-based
spatial filtering is used to correct simultaneous EEG-fMRI
recordings especially for source analysis. While for simple ERP
evaluation all methods gave similar results, the proposed methods
of PCA-S and ICA-S successfully reduced BCG artifacts and
preserved the simulated brain signals much better than the
established methods of OBS, OBS-ICA, and BBS. This finding
was independent of the artifact modeling approach used (PCA
or ICA). We also showed that the approach proposed here can be
used for evaluation of continuous EEG (Berger experiment) and
is unaffected by temporal variation of the BCG artifact. Therefore,
the surrogate model approaches can be automated and applied to
all types of cognitive EEG-fMRI studies. They have already been
implemented in the BESA Research 7.1 software package, and a
detailed whole EEG-fMRI pipeline description is available (BESA,
2022).
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Rhythm-Specific Activations Within
the Trigeminal Nociceptive Network
Hauke Basedau, Kuan-Po Peng, Arne May and Jan Mehnert*

Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

The interest in exploring trigeminal pain processing has grown in recent years, mainly
due to various pathologies (such as migraine) related to this system. However, research
efforts have mainly focused on understanding molecular mechanisms or studying
pathological states. On the contrary, non-invasive imaging studies are limited by either
spatial or temporal resolution depending on the modality used. This can be overcome
by using multimodal imaging techniques such as simultaneous functional magnetic
resonance imaging (fMRI) and electroencephalography (EEG). Although this technique
has already been applied to neuroscientific research areas and consequently gained
insights into diverse sensory systems and pathologies, only a few studies have applied
EEG-fMRI in the field of pain processing and none in the trigeminal system. Focusing
on trigeminal nociception, we used a trigeminal pain paradigm, which has been well-
studied in either modality. For validation, we first acquired stand-alone measures with
each imaging modality before fusing them in a simultaneous session. Furthermore, we
introduced a new, yet simple, non-parametric correlation technique, which exploits
trial-to-trial variance of both measurement techniques with Spearman’s correlations,
to consolidate the results gained by the two modalities. This new technique does
not presume a linear relationship and needs a few repetitions per subject. We also
showed cross-validation by analyzing visual stimulations. Using these techniques, we
showed that EEG power changes in the theta-band induced by trigeminal pain correlate
with fMRI activation within the brainstem, whereas those of gamma-band oscillations
correlate with BOLD signals in higher cortical areas.

Keywords: simultaneous EEG-fMRI, trial-to-trial variance, beta time-series, correlation, validation, brain rhythms

INTRODUCTION

The human trigeminal nociceptive system is the origin of numerous pathologies such as headaches
and facial pain syndromes (Stankewitz et al., 2010; Schulte et al., 2016, 2017; Goadsby et al., 2017;
Mehnert et al., 2017). Most studies on humans are limited by either spatial or temporal resolution,
depending on the modality used. While electroencephalography (EEG) provides the high temporal
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resolution needed for casual interference such as coupling
measures, it lacks spatial resolution. In contrast, functional
magnetic resonance imaging (fMRI) can provide a spatial
resolution of up to 1 mm3, yet it suffers from poor temporal
resolution. The idea of combining both non-invasive techniques
through simultaneous measurements thus has unique potential
(Mulert and Lemieux, 2010) because it may overcome the
spatial constrain of the EEG and the temporal limitation of
fMRI. However, it is methodologically demanding and although
neuroimaging of trigeminal nociception has made substantial
progress in understanding trigeminal processing and related
pathophysiology (May, 2013), simultaneous EEG-fMRI has
not yet been established for trigeminal nociception. Here, we
explored simultaneous EEG-fMRI as an intriguing tool to
enhance insights into the human trigeminal nervous system.

Simultaneous EEG-fMRI has not yet been established to
research the human trigeminal pain system. Nevertheless, a few
studies using EEG-fMRI offer insights into the pain processing
of other parts of the body (Iannetti and Mouraux, 2010). These
studies mostly used heat delivered either by thermode (Roberts
et al., 2008; Mayhew et al., 2013) or laser (Iannetti et al., 2005;
Mobascher et al., 2009a,b; Brinkmeyer et al., 2010) on the hand,
arm, or leg. One study applied painful electrical stimulation
(Christmann et al., 2007), but the stimulations mentioned
in these studies are not easily transferable to investigate the
trigeminal nociception and furthermore exploit event-related
potentials (ERP) rather than event-related synchronization (ERS)
and desynchronization (ERD) of individual frequency bands,
which are more robust to shifts of the stimulation onset in the
millisecond range.

To investigate the spatiotemporal mechanisms of
physiological trigeminal pain processing non-invasively in
humans, we used a standardized and well-published experimental
study design, eliciting trigeminal pain by applying gaseous
ammonia into the nostril. Further conditions include visual
stimuli as well as rose odor and simple air puffs as control
conditions (Stankewitz et al., 2010; Schulte et al., 2016). We
acquired high-density EEG using 64 channels (Scarff et al.,
2004) and simultaneously fMRI with a brainstem optimized
protocol (Schulte et al., 2016) that was extended through
multiband acquisition techniques (Uji et al., 2018) to cover
also all cortical areas of the brain. Our data fusion of both
measurement modalities (EEG and fMRI) reveals new insights
into the spatiotemporal dynamics of the trigeminal nociceptive
system (May et al., 2020).

The aim of the study was twofold. First, we aimed to verify
a novel analytical routine for fusing fMRI and EEG data.
To this end, we used non-parametric Spearman’s correlations
between single-trial EEG power changes and single-trial blood
oxygen level-dependent (BOLD) changes from the fMRI.
This validation was used in the visual condition first, as a
correlation between the induced steady-state evoked potential
and the occipital regions of the brain is rather robust. In a
second step, we aimed to gain deeper insight into trigeminal
nociception by using the aforementioned analytical routine to
correlate evoked EEG features with the fMRI during painful
trigeminal input.

For the visual control condition, we aimed to replicate an
(early) event-related potential (ERP), decreased alpha event-
related synchronization (ERS), and, most prominently, a steady-
state evoked potential (SSEP) and its higher harmonics (Mehnert
et al., 2019) in the time-frequency representation of the central
occipital electrode (Oz) of the EEG. The SSEP should correlate
with BOLD changes in occipital regions in the fMRI.

The painful stimulation is estimated to reproduce the
previously presented results in EEG. This refers to an ERP
representation in the theta-/delta-band (Ploner et al., 2006;
Huart et al., 2012; Taesler and Rose, 2016; Mehnert et al.,
2019), a decrease in the alpha-band (Mehnert et al., 2019), and
an increase in gamma ERS (Bader, 2019), all at the central-
parietal electrode Pz.

We further hypothesized that correlations between power
changes of the theta frequency and hemodynamics of the fMRI
are present in areas in the brainstem pertinent to the trigeminal
nociceptive system, including the spinal trigeminal nucleus
(STN), the rostral ventromedial medulla (RVM), and eventually
the periaqueductal gray (Stankewitz et al., 2010). We further
expected gamma ERS to correlate with cortical areas of the pain
matrix (Zhang et al., 2012).

MATERIALS AND METHODS

Subjects
In total, 35 healthy volunteers (18 women, age:
28.03 ± 3.94 years) participated in a standardized experiment
on trigeminal pain processing. The study was approved by the
Local Ethics Committee in Hamburg, Germany (PV 4896) and
was conducted in accordance with the Declaration of Helsinki.
We obtained written informed consent before the initiation of
the first study session. The volunteers underwent a two-session
pilot study consisting of (i) acquisition of EEG solely and (ii)
acquisition of fMRI solely. Of these 35 participants, 18 volunteers
were recruited for a final third session of (iii) simultaneous
acquisition of EEG-fMRI. One was excluded due to inadequate
data quality and prominent fMRI-artifact residuals in the
EEG. The criteria for insufficient data quality are described in
the section “Preprocessing of Electroencephalography Data.”
Therefore, the final group of combined EEG-fMRI consisted of
17 (9 women, age: 28.29± 3.51 years) datasets.

Experimental Design
The stimulus design is well-established and has been published
multiple times elsewhere (Stankewitz et al., 2010; Schulte et al.,
2016; Mehnert et al., 2017, 2018, 2019; Mehnert and May,
2019). In short, the volunteers received four different stimuli
(ammonia, rose scent, or air into the left nostril, and a repetitive
visual stimulation at 8 Hz) with an interstimulus interval of
46 ± 9 s, where the ammonia elicits a short-lasting, stinging,
or stabbing painful sensations (Hummel and Kobal, 1992;
Stankewitz et al., 2010). Refer to Figure 1 for an overview of
the experimental timeline. For all experimental sessions (EEG
alone, fMRI alone, EEG-fMRI), the experiment was divided into
three blocks, in which each condition was randomly presented
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FIGURE 1 | Experimental design. Each run was repeated three times resulting in 15 stimuli/condition/participant.

five times, corresponding to 15 presentations of each condition
for each participant in total. The subject rated the intensity and
unpleasantness after each stimulus using a visual analog scale
ranging from 0 to 100 for the intensity rating, where 0 means
no pain at all while 100 refers to the worst imaginable pain. The
unpleasantness was rated between −50 (extremely pleasant) and
50 (extremely unpleasant).

Stand-Alone Acquisition of
Electroencephalography (First Session)
During the first session of the experiment, we acquired fast
(5,000 Hz), high-density EEG (BrainAmp MR plus, Brain
Products, Munich, Germany) with 59 channels, as well as
echocardiogram (ECG) and 4 electrooculogram (EOG) channels,
in a shielded EEG recording chamber. We used a custom-built
photoionization detector (PID) (Bentekk, Hamburg, Germany)
to track the gaseous stimulation boli of the ammonia with
high-temporal resolution (100 Hz) necessary to identify the
precise stimulus onset for the EEG analysis and to control
the concentration and amount of ammonia given at a single-
trial level.

Stand-Alone Acquisition of Functional
Magnetic Resonance Imaging (Second
Session)
During a second appointment, high-resolution structural images
using an MPRAGE sequence (voxel size 1 mm× 1 mm× 1 mm)
were initially recorded, along with field maps (74 slices,
3 mm × 3 mm × 2 mm resolution, FOV 222 mm, TR
0.814 s) for the correction of inhomogeneities in the magnetic
field. The participants subsequently underwent high resolution
(1.25 mm × 1.25 mm × 2 mm), multiband BOLD fMRI [echo-
planar imaging, TR 3.173 s, TE 35 ms, 74 slices, 2 slices at a time
(i.e., multiband), FOV 225 mm] covering the brainstem from
foramen magnum up to all cortical areas using a 3T MR scanner
(PRISMA, Siemens, Erlangen, Germany).

Acquisition of Simultaneous
Electroencephalography and Functional
Magnetic Resonance Imaging (Third
Session)
For those participating in the third session, simultaneous
EEG and fMRI were recorded using the parameters already

described for the EEG and fMRI stand-alone sessions.
Additionally, a second ECG and pulse and breathing were
acquired with a supplementary device (Expression MR-Monitor,
PHILIPS Corporation, Massachusetts, United States) to correct
for cardiovascular artifacts. The timing of the EEG and
the MR scanner was synchronized using a SyncBox (Brain
Products, Munich, Germany), and triggers occurring at each
radiofrequency pulse (RF-pulse) were passed from the MR
to the EEG. All settings followed the protocol provided by
the EEG manufacturer (sampling rate = 5,000 Hz; resolution:
0.5 µV; low cutoff = 10 s; high cutoff = 250 Hz; series resistor
values = 10 k�) (Brain Products, Munich, Germany). During
the acquisition, the helium compressor was turned off to avoid
vibrations and, therefore, electrical noise for optimizing data
quality. An overview of the complete setup is sketched in
Supplementary Figure 1.

Preprocessing of
Electroencephalography Data
Electroencephalography data were re-referenced to the average,
cut into epochs between −500 and 3,000 ms time-locked to
stimulus onset, and high-pass filtered at 0.5 Hz using the
FieldTrip toolbox (Oostenveld et al., 2011). Power line artifacts
were reduced by a notch filter at 50 Hz. Eye movement and
blinking artifacts were automatically eliminated by regressing the
difference in the signal between the two vertical as well as the two
horizontal EOG channels using the procedure described by Parra
et al. (2005). Thereafter, all trials passed the automated muscle
detection routine of FieldTrip (version 22-02-2017)1 using the
ft_artifact_muscle routine with default parameters (bandpass-
filter: Butterworth at 110–140 Hz, filter order 8, Hilbert
transform, and a boxcar of 0.2) and an overall z-score higher
than 5 using the ft_artifact_zvalue routine, which thresholds the
z-transformed value of the preprocessed raw data at a z-score
of 5. Furthermore, for the investigation of gamma oscillations,
it was necessary to filter residual saccades. For this purpose,
an algorithm developed by Hassler et al. (2011) was used,
which detects transient saccades by an automated decomposition
of saccades and removes them from the remaining data by
interpolation. All identified artifact-loaded trials were completely
excluded from further analysis, leaving 96.38% of the trials (90.7%
in ammonia condition, 98.7% in rose, 96.6% in checker, and
99.6% in air condition) for the analysis.

1https://www.fieldtriptoolbox.org/
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Time-frequency transformation of the individual trials was
calculated using the multitaper method (Thomson, 1982; Mitra
and Pesaran, 1999; Litvak et al., 2011) for frequencies of 2–100 Hz
with frequency steps of 1 Hz and frequency resolution of 1–
10 Hz, depending on the frequency under observation {higher
resolution for higher frequencies created with MATLAB’s linspace
[1, 10 length (frequencies)] routine} using the implementation
of the SPM12 toolbox2. Temporal resolution was set to 800 ms
and the temporal steps to 50 ms. The resulting time-frequency
spectra were—on a single-trial level—recalculated as relative
changes to baseline (defined as 500–0 ms before stimulus onset)
by division, logarithmically transformed, and then averaged
within the individuals showing the induced responses (David
et al., 2006) following the robust averaging protocol within
SPM12. Then, the individual averages were cropped to a temporal
window from 0 to 2,500 ms regarding stimulus onset.

For comparability reasons, the same approach was chosen
for the simultaneous data. Given the synchronization between
EEG and fMRI, as stated before and markers for each RF pulse,
gradient artifact were corrected using the software provided by
the EEG manufacturer (Brain Vision Analyzer 2, Brain Products,
Munich, Germany) using 111 gradient template averages (three
times the 37 slices) before any other preprocessing step. This
algorithm in principle uses an average of several EEG periods as
a template for a scanner artifact and subtracts this curve from the
data as described in the study by Allen et al. (2000). Cardiobalistic
artifacts were also corrected with the aforementioned software
using the pulse signal acquired by the Expression R© monitor for
the detection of heartbeats. Again, this algorithm uses averages of
several pulses used as templates to correct the EEG signals (Allen
et al., 1998). In addition, we used a band-stop filter to denoise the
remaining artifacts of the fMRI in the frequency range between
11.17 and 12.16 Hz (0.5 Hz around the repetition frequency of the
RF pulses, i.e., number of slices/TR). The artifact correction of the
preprocessing routine for the simultaneous with fMRI acquired
EEG data left 94.0% of the trials (88.2% in ammonia condition,
96.1% in rose, 95.3% in checker, and 96.5% in air condition)
for the analysis.

For the visual condition, we extracted trial-wise averages at
the stimulation frequency of 8 Hz in the temporal window
between 100 and 2,000 ms at the central occipital electrode, where
the SSEP is expected. This was previously reported to show a

2http://www.fil.ion.ucl.ac.uk/spm/

significant increase for the current experimental design (Mehnert
et al., 2019). For the nociceptive condition, we extracted trial-
wise averages for four time-frequency windows at the central
parietal electrode (Pz), which is a representation of the ERP in
the theta-/delta-band (Ploner et al., 2006; Huart et al., 2012;
Taesler and Rose, 2016; Mehnert et al., 2019), a decrease in the
alpha-band (Mehnert et al., 2019) signifying a rise in attention,
as well as an increase in gamma ERS (Bader, 2019) as stated
in the section “Introduction.” The details of the time-frequency
windows are presented in Table 1 and have previously been
reported to contain significant changes in response to trigeminal
nociception (Grosser et al., 2000; Bader, 2019; Mehnert et al.,
2019). Averages of the time-frequency windows used for the
nociceptive condition were also tested for the control condition
(air puffs). The significance of these derived features is tested by
a two-sided t-test against 0 with an alpha level of 0.05 in the
stand-alone EEG session and for the EEG in the simultaneous
EEG-fMRI session.

Preprocessing of Functional Magnetic
Resonance Imaging Data
All fMRI images in the second and third sessions were first
denoised using the spatially adaptive non-local mean algorithm
(Manjón et al., 2010) implemented in the CAT12 extension of
SPM12. Field maps were preprocessed and used for realignment
and unwarping of the fMRI data. The data were further
corrected for slice time, taking the multiband acquisition into
account. Subsequently, functional images were co-registered to
the anatomical images; the latter was then used to normalize all
data to MNI space with a non-linear approach and smoothed
with a 4 mm3 isotropic Gaussian kernel (Schulte et al., 2016)
for the trigeminal nociception but 6 mm for the repetitive visual
stimulation. Data from the three acquired runs were combined
into a single general linear model (GLM). In the GLM, we
modeled the four conditions (ammonia, visual, rose, and air
puffs) as well as the evaluations (ratings) in separate regressors.
The GLM further included the run-wise movement parameters
calculated in the realignment as regressors of no interest. In a
similar fashion, 18–20 regressors per session inferred the cardiac
and breathing characteristics of each image using the approach
provided by Deckers et al. (2006). Group level statistics were
calculated using SPM12: The main effects of the repetitive visual
stimulation and the trigeminal nociception (beta images) were
statistically tested with a t-test at a voxel-wise FWE-corrected

TABLE 1 | Time-frequency windows of interest derived from the study by Bader (2019) and Mehnert et al. (2019).

Electrode Frequency Time t-value for EEG-standalone/EEG in
EEG-fMRI (df = 34/df = 16)

p for EEG-standalone/EEG
in EEG-fMRI

Repetitive visual stimulation

Oz 8 Hz (flicker, SSVEP) 100–2000 ms 6.16/4.34 <0.0001/<0.0001

Trigeminal nociception

Pz 3–6 Hz (theta/delta) 350–1150 ms 3.72/1.53 0.0007/0.0028

Pz 9–10 (alpha) 1250–2000 ms −6.10/n.s. <0.0001/0.2551

Pz 33–43 Hz (low gamma) 100–2000 ms 4.05/2.44 0.0003/0.0266

Pz 57–100 Hz (high gamma) 300–2000 ms 6.13/3.43 <0.0001/0.0034
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threshold of p < 0.05 with a minimal cluster extent of 30
voxels in the stand-alone fMRI session. This high statistical
threshold was used to ensure the reproductive capacity of the
experimental design used.

Simultaneous
Electroencephalography-Functional
Magnetic Resonance Imaging Data
Fusion
To perform our analytical approach on correlations of trial-to-
trial variability in the spirit of Iannetti and Mouraux (2010),
we calculated one GLM where each painful, each visual, and
each air puff trial were individually modeled with a HRF
and included as regressors of interest in a trial-by-trial GLM
(Rissman et al., 2004; Abdulrahman and Henson, 2016), while
rose scent stimulation was included as a single, condition-
wise regressor. As for the stand-alone analysis of the fMRI,
further regressors were implemented to account for movement
and breathing as well as pulse-related artifacts. The resulting
so-called beta time-series (Abdulrahman and Henson, 2016)
of each participant was then normalized to MNI space using
the SPM12 standard procedure (Ashburner and Friston, 2005)
with an isotropic voxel size of 2 mm3 using the segmentation
of the participants’ structural image. The images were then
z-transformed within each subject and concatenated across
subjects for visual stimulation, trigeminal nociception, and the
control condition (air puffs), respectively.

Trial-wise averages of EEG data from one time-frequency
window for the visual condition were extracted [the flicker
frequency of 8 Hz known to produce an SSVEP (Norcia et al.,
2015)] at the central occipital electrode Oz and averages within
four time-frequency windows for the trigeminal nociception
and the control condition (air puffs) at the central-parietal
electrode Pz. The time-frequency windows and electrode
positions extracted are listed in Table 1 and marked in Figure 2
and Supplementary Figures 2, 3. Trial-wise averages of EEG
power modulations were z-transformed within each subject
and concatenated across subjects. After this process, each EEG
time-frequency window and each fMRI voxel contains a time
course with one entry for each trial (i.e., trial-wise averages
of time-frequency windows for the EEG and beta time-series
for the fMRI). We then correlated EEG and fMRI by non-
parametric Spearman’s correlation in the temporal dimension in
a searchlight manner (Kriegeskorte et al., 2006). For each voxel,
we extracted the beta time-series of all neighbors within a sphere
of 6 mm radius, which were part of a gray and white matter mask.
The resulting beta time-series were then averaged and correlated
with the individual time-frequency window of the EEG data.
We repeated this approach for each voxel, resulting in an image
of correlation coefficients (and p-values) in MNI space for each
time-frequency window of interest.

To evaluate our approach, we first tested it using the data
from the repetitive visual stimulation to locate the 8 Hz time-
frequency window of the EEG within the primary visual cortical
areas (which therefore were masked). Presented results are FDR
corrected for the number of the voxel at a threshold of p < 0.05

(one-sided). We used the more general FDR correction instead
of FWE correction because the latter is based on random field
theory, which might not be applicable to this specific type of
non-parametric correlation.

Our primary hypothesis of correlations between trial-wise
average power changes in the theta-band time-frequency window
and trial-wise BOLD changes in the brainstem was tested
using a lower threshold of p < 0.005 (one-sided, uncorrected).
The latter was chosen because EEG measures only superficial
signals, as neuronal activity of the brainstem will be overlaid
by cortical activation. Therefore, activity from the brainstem is
only represented indirectly and in a minor part of the EEG
signal. Furthermore, the nuclei in the brainstem are rather small
in comparison to cortical areas. The main source of EEG is
derived from the pyramidal cells on the cortex, and the direct
contribution from the gray matter in the brainstem is rather small
(Olejniczak, 2006). All other trial-to-trial correlations of EEG
average power from the selected time-frequency windows and
fMRI beta time-series were tested at an FDR-corrected (for the
number of the voxel of the gray and white matter mask) threshold
of p < 0.05 (one-sided).

Furthermore, we included a comparison of correlations
between the trigeminal nociception and the control condition.
As for the trigeminal nociception, we first calculated correlations
between the single-trial beta values of the air puffs and the single-
trial EEG responses for the air puffs in the same time-frequency
windows as for the nociceptive condition. In a second step, we
performed a comparison between the correlation results of the
nociception and the air puffs using a permutation approach.
For each voxel and time-frequency window, we compared the
(Fisher z-transformed) difference of the correlation values of
the air puffs and the correlation value of the nociception to a
null distribution stemming from the difference of correlation
between randomized orders of nociception and control calculated
for 50,000 permutations of the randomly selected voxel. As for
the main fusion analysis, gamma-band correlation differences
were again FDR corrected at an alpha of 0.05, while theta-
band correlation differences had to pass a statistical threshold of
p < 0.005 (uncorrected).

Correlation With Ratings
In addition, we correlated the subjects’ z-scored single-
trial intensity ratings of the nociceptive condition with the
aforementioned z-scored and trial-wise averages of the EEG’s
time-frequency windows mentioned in Table 1 using the Pearson
correlation coefficient at an alpha level of 0.05 (two-sided).

Similar to our analyses on the fusion of fMRI and EEG, we
used z-scored trial-wise intensity ratings (instead of the EEG
features) to correlate pain intensity and fMRI beta time-series.
Here again, we used an FDR-corrected threshold p < 0.05.

RESULTS

Behavior
The ratings for the painful stimulation of the first trigeminal
branch (ammonia) showed significant higher intensity (EEG
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FIGURE 2 | Result from the stand-alone measurements during trigeminal nociception in EEG and fMRI. (A) Averages of stimulus induce power changes in
time-frequency bands of trigeminal nociception in the EEG and (B) activity seen by the fMRI. Results of the fMRI are presented at a visualization threshold of
p < 0.001 (uncorrected). Time-frequency windows of interest are framed in black or white.

stand-alone: 53.05 ± 18.12, fMRI stand-alone: 46.26 ± 17.47,
EEG-fMRI: 45.69± 17.48, with an intensity scale ranging from 0
to 100) and unpleasantness (EEG stand-alone: 7.33± 17.17, fMRI
stand-alone: 0.95 ± 15.85, EEG-fMRI: 2.02 ± 15.06, with ratings
ranging from −50 to 50) ratings than the control condition
(air puffs) in each of the three sessions (p < 0.01, Wilcoxon
signed-rank tests).

Electroencephalography Features
Extracted EEG features were normally distributed (KS-test)
and showed significant differences from 0 for the visual and
nociceptive but not for the control condition (air). This applies
to both EEG sessions (EEG stand-alone and EEG combined
with fMRI), except for the alpha-band after nociception, which
became insignificant in the combined session and was therefore
dismissed from the fusion analyses between EEG and fMRI. The
results are presented in Table 1. The results of the EEG for all
35 subjects in the EEG-only session, the subgroup, which also
participated in the EEG-fMRI session, and the EEG-fMRI session
are displayed in Supplementary Figure 2.

Neuroimaging
The repetitive visual stimulation revealed the expected outcome:
high activity in primary visual areas and correlations between
the SSEP of the EEG and occipital area activation (Figure 3A).
Details on the results for the visual stimulation can be found
in the Supplementary Section “Results for the Repetitive
Visual Stimulation” and Supplementary Figures 2, 3 and
Supplementary Tables 2, 3. Similar to the visual stimulation,
the trigeminal-nociceptive stimulation also replicated previously
published results (Mehnert et al., 2019) on power changes in
time-frequency bands of the EEG in the stand-alone session
(Figure 2A) as well as during the simultaneous EEG-fMRI

measurements (Supplementary Figure 2). Like with visual
stimulation, painful stimulation showed an ERS in the frequency
band of 3–6 Hz in the parietal-central (Pz) channel ranging
from 350 to 1,150 ms after onset. The expected ERD in the
alpha frequency range (8–13 Hz) follows. Simultaneously, a
wide-ranging synchronization in gamma oscillations occurred,
which can be separated into a lower and higher frequency range
(Bader, 2019).

In the fMRI stand-alone session, the activation for trigeminal-
nociceptive stimulation was similar to previously published
results, i.e., FWE-corrected (p < 0.05) bilateral activation of
pain-related cortical areas (insula, operculum, cerebellum, and
somatosensory cortex) and midbrain areas (thalamus) with the
dominance of the contralateral hemisphere (Figure 2B and
Supplementary Table 2). An activation of the ipsilateral STN,
the first relay of the trigeminal nerve in the central nervous

FIGURE 3 | Non-parametric correlations of trial-to-trial variance between EEG
event-related band-power changes and fMRI beta time-series. (A) Relation of
EEG SSVEP and fMRI during repetitive visual stimulation. (B) Relation of
theta/delta and (C) high gamma EEG time-frequency windows during
trigeminal nociception.
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system, became significant at a small-volume FWE-corrected
(p < 0.05) threshold within a sphere of 4 mm around
previously published coordinates [MNI coordinates (−6, −39,
−45), Stankewitz et al., 2010].

Our analysis of correlations between EEG power changes
in specific time-frequency windows and beta time-series of the
fMRI revealed positive relationships between the EEG theta-
/delta-band (3–6 Hz) and the bilateral STN (r = 0.20), as well
as the cerebellum (right: r = −0.21; left: r = −0.18). The
frontal medial gyrus (r = 0.23) also showed significant positive
correlations between EEG and fMRI. A negative correlation
was observed in structures such as the RVM (r = −0.21), the
entering area of the trigeminal nerve (r = −0.22) (Stankewitz
et al., 2010), and the entorhinal area (r = −0.34). These results
are shown in Figure 3B and presented detail in Table 2. These
results persist when comparing them to the control condition
of air puffs (Supplementary Figure 4 and Supplementary
Table 4). Additionally, the strength of these nociceptive
stimulus-associated synchronizations was significantly positively
correlated with the intensity evaluation of painful stimuli
(r = 0.151, p = 0.023, two-sided test, Figure 4A).

Event-related synchronization in the high gamma-band (57–
100 Hz) showed positive correlations in bilateral secondary
visual association areas (right: r = 0.25; left: r = 0.29) and in
somatosensory areas such as the contralateral SII (r = 0.27),
middle cingulate cortex (r = 0.25), and insula (r = 0.23).
In addition, negative correlation was found bilaterally in the
primary visual cortex (right: r = −0.24; left: r = −0.20) and in
the ipsilateral insula (r = −0.23). These results are presented
in Figure 3C and Table 3. No significant correlation between
fMRI beta time-series and EEG power changes in the alpha
and low gamma range were observed at the chosen statistical
threshold. These results persist when comparing them to the
control condition of air puffs (Supplementary Figure 4 and
Supplementary Table 4). We further found a significantly
positive correlation between the gamma-band and the individual
intensity ratings (r = 0.25, p < 0.001, two-sided test, Figure 4B).
Correlations of intensity ratings and fMRI beta time-series were
not significant at an FDR-corrected threshold of p < 0.05.

DISCUSSION

The simultaneous recording of EEG and fMRI has received
increased attention in basic research and clinical translation

(Debener et al., 2006; Ullsperger and Debener, 2010; Huster
et al., 2012) since it has the potency to overcome a fundamental
problem in neuroimaging: the imbalance between the temporal
and spatial resolution of electrophysiological and hemodynamic
responses. This study serves as a bridge to translate our
well-studied experimental paradigm on trigeminal nociception
induced by gaseous ammonia (Stankewitz et al., 2010) to non-
invasive simultaneous EEG-fMRI to gain further insights into
trigeminal pain processing in humans. For this purpose, the
primary goal of this study is to validate and evaluate this approach
together with a novel way of fusing EEG and fMRI data.

As a first step, we reevaluated our paradigm in two stand-
alone sessions of separate EEG and fMRI measurements. For
both modalities, we were able to reproduce previously published
results for trigeminal nociception and also for repetitive visual
stimulation. We used the latter to validate our analytical approach
by fusing data from both modalities during the simultaneous
experimental session. Regarding trigeminal nociceptive stimuli,
we observed in fMRI, in both stand-alone and simultaneous
sessions, activations in areas such as the thalamus, primary
and secondary somatosensory cortices, insula, and cingulate
cortex. These results (Supplementary Table 2) are in line
with previous studies dealing with the central processing of
painful, in particular, trigeminal nociceptive stimuli (Peyron
et al., 2000; Treede et al., 2000; Apkarian et al., 2005; Tracey
and Mantyh, 2007; Stankewitz et al., 2010). The results of the
time-frequency analyses in the EEG of the EEG stand-alone
session reproduced previously published findings (Bader, 2019;
Mehnert et al., 2019) despite a smaller cohort size (Table 1).
The EEG results from the stand-alone session were further
used as a reference to confirm the reliability of the extensive
cleaning of artifacts caused by influences of EEG signals on MRI
during the simultaneous collection of both modalities. In the
combined EEG-fMRI session, we observed a slight reduction in
the induced power, although the previously observed stimulus-
associated effects were rather robust in explicit time-frequency
bands (Supplementary Figure 2).

Non-parametric Correlation of Intertrial
Variation in Electroencephalography and
Functional Magnetic Resonance Imaging
In addition to the reevaluation of our results for simultaneous
EEG-fMRI, we carefully validated our analytical approach for
fusing both modalities with the repetitive visual stimulation,

TABLE 2 | Trial-to-trial correlations between EEG and fMRI for the trigeminal nociception for the theta/delta frequency band at electrode Pz using a statistical threshold of
p < 0.005 (uncorrected).

Anatomical region (direction of correlation) Left (ipsilateral) Right (contralateral)

Cluster size x y z r Cluster size x y z r

Spinal trigeminal nucleus (+) 16 −7 −36 −58 0.198 13 8 −36 −58 0.198

Cerebellum (+) 13 −12 −72 −56 0.182 13 48 −54 −54 0.216

Middle frontal gyrus (+) 156 30 48 4 0.230

Transition zone of sensory trigeminal nerve fibers (−) 30 −14 −18 −30 −0.222

Rostral ventromedial medulla (−) – – – 53 2 −34 −46 −0.211

Entorhinal area/Parahippocampus (−) – – – 228 20 0 −40 −0.343
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FIGURE 4 | Correlation of intensity ratings with EEG (A) theta power and (B) high gamma power (z-scored rating and power, two-sided Pearson’s correlation).

as here the hypothesis is clear: a strong correlation between
trial-to-trial variations in the fMRI of the primary visual cortex
and the SSEP in the EEG. Several approaches to fuse EEG and

fMRI exist (Mulert and Lemieux, 2010; Abreu et al., 2018), and
they all have their advantages and disadvantages. Early EEG-
fMRI studies aimed at correlating the raw (but temporally shifted
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TABLE 3 | Trial-to-trial correlations between EEG and fMRI for the trigeminal nociception for the high gamma frequency band at electrode Pz using a statistical threshold
of p < 0.05 (FDR corrected for the considered number of the voxel).

Anatomical region (direction of correlation) Left (ipsilateral) Right (contralateral)

Cluster size x y z r Cluster size x y z r

Visual cortex (−) 22 −22 −100 −12 −0.204 148 16 −100 −12 −0.247

Insula (−) 35 −42 0 20 −0.234

Orbital gyri (−) 235 −10 18 −24 −0.264 58 10 28 −26 −0.237

Middle temporal gyrus (+) 1907 −56 −64 14 0.299 295 52 −46 8 0.253

Insula (+) 29 36 −6 12 0.225

Middle cingulate cortex (+) 78 14 −22 36 0.246

SII (+) 356 66 −34 30 0.265

Middle occipital gyrus (+) 197 46 −68 26 0.205

Cuneus/Precuneus (+) 636 −16 −76 28 0.258 734 18 −76 28 0.217

or convolved by a hemodynamic response function) time courses
of both modalities (Moosmann et al., 2003; Ritter et al., 2009),
presuming a quasi-linear relationship and artifact-free data. Later
approaches mostly used ERP components, which are less stable
than the power changes of time-frequency bands (Varela et al.,
2001). As a result, they need a high number of repetitions,
which are subsequently used as an additional regressor for the
fMRI analysis, mostly as a parametric modulator, which also
assumes linearity (Andreou et al., 2017). Notably, EEG and fMRI
measure different signals of activation, and an assumption of
linearity might be misleading to research their relationship. To
overcome this issue, there are multiple ways to use multivariate
approaches (Dähne et al., 2015), which fuse multimodal data with
the disadvantage of the need for a high number of repetitions for
adequate cross-validation (Dähne et al., 2013) or a high number
of conditions exploiting the function of interest (Cichy et al.,
2016). Thus, these approaches seem only possible for higher
cognitive functions.

As the number of repetitions and the number of conditions
to deliver trigeminal pain are limited, we decided to examine
non-linear rank correlations of trial-to-trial variations of both
modalities in an EEG-informed fMRI fashion, where the
z-transformed single-trial responses of the individual participants
were concatenated. To achieve this, the stimulation-associated
responses in the EEG of previously published time-frequency
windows were correlated with estimates of the hemodynamic
responses of the individual stimuli from the fMRI. Our approach
has the advantage that relatively few trials are necessary, and it is
easily extendable to a multivariate fashion, e.g., by using a support
vector regression (Bogler et al., 2014) during the searchlight
approach (Allefeld and Haynes, 2014).

Trigeminal Nociception in
Electroencephalography-Informed
Functional Magnetic Resonance Imaging
Our main finding during trigeminal nociception is a significant
relationship between the theta/delta frequency bands, which
corresponds to the time-frequency equivalent of a nociceptive
evoked potential (Makeig et al., 2004) and is also correlated to
the individually perceived intensity of the painful stimulation
and the STN as well as the RVM. As hypothesized, this time-
frequency window shows a significant correlation with the

corresponding activation estimates in certain brainstem regions
(see Figure 3B and Table 2) including the STN, the first relay
station of the trigeminal peripheral nerve (Borsook et al., 2003;
Stankewitz et al., 2010; Schulte et al., 2016). The result is
that the variability of the EEG signal is more covariant with
STN activation than with other somatosensory discriminating
regions of the pain matrix, such as SI or SII, which could lead
to the conclusion that the ascending pain signal is processed
independently of the somatotopic assignment in SI (Petrovic
et al., 2004). The negative relation with the RVM, which is
part of the descending antinociceptive system (Heinricher et al.,
1989; Ossipov et al., 2010), contrasts this positive relation. This
negative association might reflect the results of the animal study
by Heinricher et al. (1989): they showed that the spontaneous
activity of “on” and “off” cells in the RVM is modulated by
painful stimuli at a very early stage of central pain processing.
An opposite correlation of the nociceptive signal from the
STN to the RVM with decreasing strength of the EP suggests
that, in addition to nociception, antinociceptive modulation
is initiated simultaneously to (pro)nociceptive ascending pain
processing. In conclusion, the strength of the pain-induced
early evoked synchronizations in the theta/delta frequency
band, which is the time-frequency equivalent of the nociceptive
evoked potential, indicates an early trial-to-trial modulation of
trigeminal nociceptive stimuli already at the brainstem level.

In the gamma frequency range, we observed a correlation
between EEG and fMRI in numerous cortical structures. In
addition to positive correlations with regions generally associated
with the pain matrix, such as the contralateral insula, middle
cingulate cortex, and SII, extra-sensory cortical structures such as
visual (cuneus/precuneus) and visual-associative areas (temporal
gyrus, occipital medial gyrus) also showed a positive correlation
between the gamma power modulation in EEG and the single-
trial activation in fMRI (Figure 3C and Table 3). This can be
explained by the full range of neuronal structures for processing
extrinsic stimuli that are inevitably obtained by extending
the time window of observation (Senkowski et al., 2014).
Furthermore, it has been shown that fMRI results and gamma
power changes after nociceptive input are not specific to pain and
can also be induced by other attentive paradigms (Legrain et al.,
2011) and hence reflect a more general salience system, which can
also explain the correlation to visual and frontal areas. However,
the individual variability in the strength of nociceptive-evoked
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gamma oscillations suggests that central sensory processing
occurs at both motivational-affective and purely sensory
discriminatory levels. Consequently, power changes in this time-
frequency window are significantly positively correlated with
individuals’ intensity ratings (Figure 4B), echoing the previous
findings (Gross et al., 2007; Hauck et al., 2007; Schulz et al.,
2012; Zhang et al., 2012; Tu et al., 2016). This is corroborated
by the positive correlations of this gamma oscillation with BOLD
signals in areas of the lateral as well as the medial pain pathway.
Interestingly, the contralateral and ipsilateral insula correlate in
opposite directions with the EEG’s power changes. This might be
explained by feedback transmission, which could be dependent
on the stimulated side. In conclusion, the gamma frequency range
might not exclusively indicate the processing of nociceptive-
sensory stimuli but reveals associations to a wide range of
structures, suggesting both motivational-affective and sensory-
discriminative processing recruiting associative areas (secondary
visual cortex, medial occipital gyrus, temporal gyrus), while
primary structures (primary visual cortex) show an opposite
direction of influence on both signals.

Conclusion
Our study validates an experimental trigeminal nociceptive
paradigm for simultaneous EEG-fMRI and a novel approach
for EEG-informed fMRI analysis. While our findings on the
experimental side should be extended to clinical cohorts such as
migraine or cluster headache patients, our analytical approach
may be adapted to any multimodal data analysis and possibly
extended to a multivariate approach.
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Background: The unsurpassed sensitivity of intracranial electroencephalography
(icEEG) and the growing interest in understanding human brain networks and ongoing
activities in health and disease have make the simultaneous icEEG and functional
magnetic resonance imaging acquisition (icEEG-fMRI) an attractive investigation tool.
However, safety remains a crucial consideration, particularly due to the impact of the
specific characteristics of icEEG and MRI technologies that were safe when used
separately but may risk health when combined. Using a clinical 3-T scanner with body
transmit and head-receive coils, we assessed the safety and feasibility of our icEEG-fMRI
protocol.

Methods: Using platinum and platinum-iridium grid and depth electrodes implanted
in a custom-made acrylic-gel phantom, we assessed safety by focusing on three
factors. First, we measured radio frequency (RF)-induced heating of the electrodes
during fast spin echo (FSE, as a control) and the three sequences in our icEEG-
fMRI protocol. Heating was evaluated with electrodes placed orthogonal or parallel
to the static magnetic field. Using the configuration with the greatest heating
observed, we then measured the total heating induced in our protocol, which is a
continuous 70-min icEEG-fMRI session comprising localizer, echo-planar imaging (EPI),
and magnetization-prepared rapid gradient-echo sequences. Second, we measured
the gradient switching-induced voltage using configurations mimicking electrode
implantation in the frontal and temporal lobes. Third, we assessed the gradient
switching-induced electrode movement by direct visual detection and image analyses.
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Results: On average, RF-induced local heating on the icEEG electrode contacts tested
were greater in the orthogonal than parallel configuration, with a maximum increase of
0.2◦C during EPI and 1.9◦C during FSE. The total local heating was below the 1◦C safety
limit across all contacts tested during the 70-min icEEG-fMRI session. The induced
voltage was within the 100-mV safety limit regardless of the configuration. No gradient
switching-induced electrode displacement was observed.

Conclusion: We provide evidence that the additional health risks associated with
heating, neuronal stimulation, or device movement are low when acquiring fMRI at 3 T
in the presence of clinical icEEG electrodes under the conditions reported in this study.
High specific absorption ratio sequences such as FSE should be avoided to prevent
potential inadvertent tissue heating.

Keywords: MRI, simultaneous intracranial EEG-fMRI, subdural electrode, depth electrode, 3 tesla, fMRI, epilepsy,
safety

INTRODUCTION

There are several modalities used to analyze brain activity.
Scalp electroencephalography (EEG) is a simple method for
measuring brain signals with high temporal resolution. However,
EEG source localization is generally difficult for the superficial
activity that EEG can actually detect, in particular if the generator
is widespread and complex. Functional magnetic resonance
imaging (fMRI) focuses on the changes in cerebral blood flow,
using blood oxygen level-dependent contrast for probing brain
activity, regardless of the coverage and indifference to the
extent and complexity of the source. By effectively combining
their advantages, simultaneous EEG and fMRI measurement
(EEG-fMRI) is an attractive investigation tool for those who
are interested in understanding the relationship between the
two modalities. For example, EEG-fMRI is used in epilepsy
to understand the mechanisms underlying the generation
of epileptic activities, spontaneous brain activities that are
unpredictable (Gotman et al., 2006; Khoo et al., 2017). It is also
used in the field of neuroscience to study the hemodynamic
correlates of event-related potentials and to study neurofeedback
(Mele et al., 2019). However, activities in the high-frequency
band, markers of most cognitive neuronal activities, are difficult
to record on scalp EEG, and the information gained from these
activities are also limited for the following reasons. (1) Spectral
power follows a 1/f distribution across frequencies and thus high
gamma activities are generally lower in amplitude than that of
low frequency activities (Baranauskas et al., 2012; Jaspers-Fayer
et al., 2012; Li et al., 2019). (2) The skull further attenuates the
amplitude of EEG, generally resulting in a low signal-to-noise
ratio especially in the high-frequency band. (3) High-frequency
activities overlap the spectral bandwidth of muscle activities.
(4) Scalp EEG has low sensitivity to activity generated deep in
the brain as it detects mostly neocortical activity (Wennberg
et al., 2011). Intracranial EEG (icEEG) electrodes, implanted to
delineate the epileptogenic zone of patients with drug-resistant
epilepsy prior to resection, provide increased sensitivity to
activities in the high-frequency range, while allowing detection
of low amplitude activities in a lower frequency range (i.e.,

epileptiform activities). Hence, the sensitivity of icEEG acquired
simultaneously with fMRI provides a good opportunity to study
neuronal activities more substantively (Vulliemoz et al., 2011;
Cunningham et al., 2012; Tehrani et al., 2021).

There are three potential hazards associated with the
introduction of icEEG electrodes to the magnetic resonance
imaging (MRI) environment (Carmichael et al., 2010; Boucousis
et al., 2012): radiofrequency (RF)-induced heating of brain tissue
surrounding the electrodes, in which the temperature increase
of a device is conservatively limited to within 1◦C of the
surrounding tissue according to current safety standards (IEC,
2015); neural stimulation or tissue damage caused by induced
currents in low-resistance circuits generated by magnetic field
fluctuations such as gradient switching (Georgi et al., 2004;
Wang et al., 2018), in which a voltage exceeding 100 mV at a
frequency less than 10 kHz can cause neural stimulation (Georgi
et al., 2004); and tissue damage due to uncontrolled electrode
movement caused by forces or torques induced by the static or
dynamic magnetic field on the electrode.

Although deep brain stimulation (DBS) electrode (MRI-
conditional for 3 T) and icEEG electrodes from a specific
manufacturer (DIXI medical, MRI-conditional for 1.5–3 T)
are allowed for MRI under the restrictive guidelines of
manufacturers, most commercial icEEG electrodes have yet to
be formally approved for MRI (Ciumas et al., 2014; Hawsawi
et al., 2017). Nevertheless, structural imaging of icEEG electrodes
has been well documented in both clinical and research settings
without adverse events at 1.5 T (Davis et al., 1999; Carmichael
et al., 2007, 2008; Larson et al., 2008; Nazzaro et al., 2010; Weise
et al., 2010; Vulliemoz et al., 2011; Zrinzo et al., 2011; Hawsawi
et al., 2017, 2020; Erhardt et al., 2018; Hall and Khoo, 2018;
Yazdani et al., 2021). Imaging of DBS electrodes at 3 T has also
been documented in 10 patients with a mild temperature increase
and concluded to be potentially safe (Sammartino et al., 2017).
Due to the potential of increased risk, clinical imaging of icEEG
electrodes at 3 T has never been documented (Hawsawi et al.,
2017). Nonetheless, simultaneous acquisition of icEEG and fMRI
(icEEG-fMRI) has been documented in a few human studies
at 1.5 T performed in two institutions (Vulliemoz et al., 2011;
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Carmichael et al., 2012; Chaudhary et al., 2016; Ridley et al.,
2017; Saignavongs et al., 2017; Liu et al., 2022) and at 3 T in
another (Aghakhani et al., 2015; Tehrani et al., 2021), using a
local imaging protocol developed in each institution for research,
without reports of significant adverse events to date. Hence,
icEEG-fMRI appears to pose a low health risk to patients
provided that site-specific precautions are taken.

However, findings of the icEEG-fMRI safety studies that
justified the choice of MRI field strength by two of the
aforementioned institutions, appeared to be conflicting:
significant RF-induced heating at 3 T was documented in one
(Carmichael et al., 2008) but not in the other (Boucousis et al.,
2012) even though the same type of electrodes (platinum-iridium
electrodes from Ad-Tech Medical, Racine, WI, United States)
has been used. This difference can be attributed to various
factors given the difference in the equipment and conditions
used in each institution and thus imaging of icEEG electrodes
at 3 T remains controversial. The logical conclusion on the
safety of any icEEG-fMRI acquisition is that it is dependent on
specific conditions and a careful assessment must be made for
any significant deviation from the tested conditions, including
electrode implantation and wiring configurations, scanner type
and field strength, type of RF coil (body or head transmit), MRI
scanning protocol and sequences (Carmichael et al., 2008, 2010).

In this study, we assessed the feasibility of performing icEEG-
fMRI over the entire course of a typical prolonged acquisition
that lasted for approximately 70 min in a GE Signa Architect
UPG 3 T MRI scanner with a body transmit head-receive coil,
using grid and depth electrodes commercially available in Japan.
To this effect, following previous work on the safety of icEEG-
fMRI (Carmichael et al., 2008, 2010; Boucousis et al., 2012),
we performed temperature, voltage, and electrode movement
measurements on a standard gel and acrylic phantom. If proven
feasible, the findings may serve as a guidance for developing
clinical combined icEEG-fMRI protocols at 3 T and provide
another piece of evidence regarding the feasibility of icEEG-fMRI
at 3 T, an MRI field strength that is becoming the standard in
clinical and research settings due to the improved signal-to-noise
ratio that it offers.

MATERIALS AND METHODS

Phantom Preparation
To better reflect actual icEEG-fMRI acquisitions, we used
a phantom made of two elements: a spherical head and
a rectangular torso with electrical conductivity and thermal
characteristics similar to those of human tissue. The head part of
the phantom was made by combining two custom-made hollow
hemispherical acrylic shells (diameter = 150 mm), in which one
of them had an opening (diameter = 50 mm) on the top. We used
a commercially available polypropylene box (42 L: width 362 mm,
length 617 mm, height 185 mm) as the container for the body part
of the phantom. The containers were then filled up with a semi-
liquid gel comprising distilled water, poly-acrylic acid partial
sodium salt (A9799; Sigma-Aldrich, St. Louis, MO, United States)
and sodium chloride (008-71265; Kishida Chemical Co., Ltd.,

Osaka, Japan). The gel had an electrical conductivity of 0.26 S
m−1 and limited thermal convection to mimic those of human
tissue (Carmichael et al., 2010). The gels for the head and torso
were made by adding sodium chloride (1.4 g for the head, 28 g for
the torso) to distilled water (2 L for the head, 40 L for the torso)
heated to 40◦C to prevent air bubbles forming in the gel. Then
we gradually added poly-acrylic acid partial sodium salt (16 g for
the head, 320 g for the torso) while slowly stirring the solutions.
We pre-implanted the electrodes in the head phantom from the
top opening and from the gap between the two hemispheres.
To mimic how the electrodes are placed in real human subjects,
we fixed the grid electrodes tangential to the inner surface of
the acrylic container with the electrode contact exposure facing
the center, and placed the depth electrodes perpendicular to the
surface of the acrylic container with all of the contacts embedded
within the gel (Figure 1A). Then the gap was sealed with a
polymer clay made of polyvinyl (Super Sculpey R© Beige, Polyform
Products Company, Elk Grove Village, IL, United States).

We tested two types of commercially available intracranial
grid and depth electrodes: the first type was from Unique
Medical (Tokyo, Japan), which we are currently using at our
center; the second type was from Ad-Tech Medical (Racine,
WI, United States), which has been used in previous safety
studies (Carmichael et al., 2010; Boucousis et al., 2012). The
grid electrodes have 20 disk-shaped contacts, and the depth
electrodes have six contacts (Figure 1B) connected via lead wires
to connector terminals. Table 1 summarizes the composition and
dimension of each electrode type.

The Unique Medical electrodes were implanted on one side
and the Ad-Tech electrodes on the contralateral in the same head
phantom to allow fair comparisons between the two types of
electrodes. The two grid electrodes were placed at the bottom
side of the acrylic container. For Unique Medical, two depth
electrodes were implanted: one was placed quasi-perpendicular
(depth electrode A) and one quasi-parallel (depth electrode
B) to the grid electrode (Figures 1A,C). For Ad-Tech, only
one depth electrode was implanted (depth electrode A) quasi-
perpendicular to the grid electrode (Figures 1A,C). In total, two
grid electrodes and three depth electrodes were placed in the head
phantom. Since the head phantom was not attached to the body
phantom, we rotated the head phantom accordingly to achieve
the configurations needed in each experiment during either the
temperature or voltage measurement (see “The Experiments:
Electrode and phantom configurations” section below for details).

Temperature Measurement Methodology
The temperature was measured continuously and simultaneously
from four locations using a four-channel, fiber-optic
thermometry system (MultiSens; Opsens Solutions, Quebec,
QC, Canada) connected to four fiber optic MRI-compatible
temperature sensors (OTP-M; Opsens Solutions, Quebec, QC,
Canada, accuracy ± 0.30◦C) with a sampling rate of 1/1.4 s.
We placed the temperature sensors at the electrode tip, the
location most likely to demonstrate the largest temperature
change as shown in previous studies (Boucousis et al., 2012;
Carmichael et al., 2012), as follows: the most distal contact
(#1) of the 6-contact depth electrode A, the corner or edge of
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FIGURE 1 | Phantom preparation. (A) Left panel: Photos of the empty acrylic shells are shown here to clarify the position of each electrode in the head phantom. Two
Unique Medical depth electrodes were placed in the acrylic shells: one was quasi-perpendicular (depth electrode A) and the other was quasi-parallel (depth electrode
B) to the grid electrode. Only one Ad-Tech depth electrode was implanted, which was quasi-perpendicular to the grid electrode (depth electrode A). Right panel:
photo of the head phantom that was ready for use in experiments of both the temperature and voltage measurements. (B) Electrode contact numbering. In the case
of grid electrodes, #1 represents the contact at the right corner and the most distal from the leads, and #20 represents the contact at the left corner and the most
proximal to the leads. In the case of depth electrodes, #1 represents the contact at the tip. (C) The head phantom as represented in a two-dimensional line drawing.

the grid (#16 or #18) (Figure 1B). A temperature sensor was
placed at the middle of the head phantom, distanced from all
electrodes to serve as a control (Figure 2A). In the case of grid
electrodes, the temperature sensors were laid in a transverse
position on the surface of the disk contact and held in place using
a silk suture through the silicon. In the case of depth electrodes,
the sensor was laid parallel, and tied to the electrode contact
using a silk thread. Then the sensors were connected via optical
fibers to the thermometry system placed outside the MRI room
(Figure 2B). To mimic concurrent icEEG-fMRI acquisitions, the
electrodes were connected to the EEG amplifiers (Brain Products,
Gilching, Germany) via connector cables (180 cm, Tech-Attach
Connection System; Ad-Tech Medical) attached to a 64-channel
touch-proof electrode input box (EIB64; Brain Products). The

connector cables were folded (with 10 cm folds, as previously
reported; Carmichael et al., 2012) and placed straight at the
center of the MRI bore to minimize the MRI-induced current.
To avoid movement due to machinery-induced vibration, the
external portion of the leads of the electrodes (between the
phantom head and the connector cables) were sandwiched
between memory foam cushions that were placed around the
phantom head inside the head coil. MRI-compatible sandbags
were used to immobilize the cables between the head coil and
the EEG amplifiers, which were connected via optic fibers to the
recording computer placed outside the MRI room. The signals
from the implanted electrodes were recorded during temperature
measurements to mimic an actual icEEG-fMRI acquisition
on human subjects.
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Voltage Measurement Methodology
Voltages were measured using a balanced coaxial probe
connected to a 350-MHz digital oscilloscope (MDO3034;
Tektronix Inc., Beaverton, OR, United States) placed in the MRI
control room. The balanced coaxial probe consisted of two 10-m
long 50-ohm coaxial cables (RG-58/U) in which the shields were
soldered together, and a 950-ohm resistor attached in series to
each cable’s end (AKA 20:1 ‘low impedance’ probe) (Smith, 1993;
Lemieux et al., 1997). The two probes of the balanced coaxial
probe were connected to the icEEG electrodes via a connector
block and a 10-cm connector cable (Tech-Attach Connection
System; Ad-Tech Medical) modified for the voltage measurement
to ensure electrical isolation between electrode tails and between
contacts (Figures 3A,B).

TABLE 1 | Materials and dimension of the electrodes used.

Unique Medical Co. Ltd. Ad-Tech Medical
Instrument Co.

Grid electrode UZN C1-20-05-10-2-A FG20C-SP10X-000

Dimension

Number of contacts 20 (4 × 5) 20 (4 × 5)

Center-to-center
contact spacing
(mm)

10 10

Contact
diameter/exposure
(mm)

5/3 4/2.3

Lead wire diameter
(mm)

0.08 0.0635

Total length (mm) 465 430

Materials

Contacts Platinum Platinum–iridium

Imbedding sheet Silicon Silicon

Lead wire Stainless steel Stainless steel

Lead tubing Silicon Silicon

Connector terminal Stainless steel Nickel–chromium

Depth Electrode UZN D4-06-054-151-101-A SD06R-SP10X-000

Dimension

Number of contacts 6 6

Center-to-center
contact spacing
(mm)

5 between the first four
contacts from the tip
15 between contact #4 and #5
10 between contact #5 and #6

10

Contact length
(mm)

1.0 1.32

Electrode diameter
(mm)

1.5 1.1

Lead wire diameter
(mm)

0.08 0.0635

Total length (mm) 450 380

Materials

Contacts Platinum Platinum

Lead wire Platinum Nickel–chromium

Lead tubing Silicon Polyurethane

Connector terminal Stainless steel Nickel–chromium

Movement Measurement Methodology
We assessed the potential electrode movement induced by the
magnetic field’s gradients switching during the scan using two
different approaches: visual assessment and image analyses.
For visual assessment, an echo-planar imaging (EPI) scan was
acquired (see sequence parameters below) with the electrodes
placed in the head coil without the gel head phantom
because the gel was not completely transparent (Figure 4).
For image analyses, we used one of the 200-volume EPI scan
images acquired during the RF-induced heating experiments
(experiment B as described in the section “The Experiments:
Electrode and phantom configurations” below). We evaluated
the displacement of the electrode tip between two consecutive
EPI volumes using the following steps (Figure 5). (1) We
identified the tip of each depth electrode and contact #1 of
each grid electrode (see Figure 1B for the position). (2) For
each electrode, we extracted a three-dimensional (3D) region
of interest (ROI) of 10 × 10 × 10 voxels containing either
the tip of a depth electrode or the contact #1 of a grid (voxel
size of EPI = 3.7 × 3.7 × 3.7 mm). This resulted in five 3D
ROIs, each containing one of the five electrodes implanted in the
head phantom. (3) We calculated the cross-correlation between
two consecutive EPI volumes within the 3D ROI to look for
dissimilarity using an FSL tool (fslcc1). This was repeated for each
3D ROI extracted in step (2). Cross-correlation value was 1.00000
between two identical 3D ROI and the mean cross-correlation
value among nine 3D ROIs extracted at random location from
the EPI volume (resulted in nine dissimilar ROI-restricted EPI
volumes) was 0.36396 (range 0.10098-0.84291). Thus, any cross-
correlation value lower than 1.00000 indicates dissimilarity and
possible electrode displacement. (4) For each 3D ROI, the pair
of consecutive volumes with the lowest correlation value was
considered the most dissimilar and identified as the pair with
the greatest electrode displacement. We visually examined the
tip of a depth electrode or contact #1 of a grid between the pair
of consecutive volumes identified and physically measured the
displacement if there was any.

Scanning Sequences
All measurements were performed in a 3.0 T MRI scanner (GE
3 T MRI Signa Architect, No. EM0219; GE Medical Systems,
Milwaukee, WI, United States) using the standard RF body
transmit and head-receive coils, the latter with an opening at
the back to allow the wires to pass straight to the back of the
MRI bore. In RF-induced heating, switching gradient-induced
voltage and electrode movement experiments described in the
section “The Experiments: Electrode and phantom configurations”
below, the parameters of the scanning sequences used were
as follows: localizer (two-dimensional gradient-recalled steady
state) acquired in sagittal, coronal, and axial separately {sagittal:
echo time [TE] = 5.6 ms, repetition time [TR] = 20 ms, flip
angle = 30◦, field of view (FOV) = 28 cm, matrix = 256 × 256,
five 5-mm-thick slices; coronal: TE = 7.6 ms, TR = 20 ms, flip
angle = 30◦, FOV = 28 cm, matrix = 256 × 256, five 5-mm-
thick slices; axial: TE = 10 ms, TR = 20 ms, flip angle = 30◦,

1https://fsl.fmrib.ox.ac.uk/
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FIGURE 2 | Experimental setup for temperature measurement of radiofrequency-induced heating. (A) Orientation of the head phantom and the location of
temperature sensors during experiment A (upper panel) and experiment B (lower panel). In experiment A, two conditions were tested: configuration A1 – electrodes
placed orthogonal to the direction of the static magnetic field; configuration A2 – electrodes placed parallel to the direction of the static magnetic field. The blue
electrodes were Unique Medical electrodes, and the yellow electrodes were Ad-Tech. The location of a temperature sensor was indicated as red dot. The red dot
distanced from all electrodes represents the sensor placed within the gel to serve as control. Experiment B was performed twice: two sensors were placed on
Unique Medical electrodes during the first and on Ad-Tech electrodes during the second time. (B) Layout of the phantoms and all of the equipment during
experiments for temperature measurement. The head and body phantoms were placed in the magnetic resonance imaging (MRI) scanner with the head at the
isocenter to emulate an actual simultaneous acquisition of icEEG and fMRI (icEEG-fMRI). The electrodes implanted in the head phantom were connected to the EEG
amplifier placed at the “back” of the MRI bore, with exactly the same configuration as an actual icEEG-fMRI acquisition in human subject. The electrodes were
secured using memory foam cushions in the head coil and cables were secured using sandbags to prevent movements resulted from mechanical vibration of the
MRI scanners during the experiment. The fiber optic MRI-compatible temperature sensors, fixed to the intracranial electrodes, were connected via optical fibers to
the thermometry system placed outside the MRI in the control room.

FOV = 28 cm, matrix = 256 × 256, five 5-mm thick slices};
EPI (T2∗-weighted gradient-recalled echo planar, TE = 22 ms,
TR = 1900 ms, flip angle = 70◦, FOV = 23 cm, matrix = 64 × 64,
33 3.7-mm-thick slices) acquired as a 200-volume image per scan
(total scan time = 6 min 20 s) and scans were repeated if required;
magnetization-prepared rapid gradient-echo (MP-RAGE) (3D
T1-weighted inversion recovery, TE = 2.5 ms, TR = 2500 ms,
flip angle = 9◦, FOV = 25.6 cm, matrix = 256 × 256 × 166,
1-mm-thick slices); and fast spin echo (FSE) (two-dimensional
T2-weighted spin echo, TE = 102 ms, TR = 4000 ms, flip

angle = 180◦, FOV = 22 cm, matrix = 512 × 256, 24 5-mm-
thick slices).

The Experiments: Electrode and
Phantom Configurations
Since the mechanism underlying RF-induced heating and
switching gradient-induced voltage differs (see below),
the electrode and phantom were configured differently for
temperature and voltage measurements to maximize the effects
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FIGURE 3 | Experimental setup for gradient switching-induced voltage measurement. (A) Modified Ad-Tech connector cables and the electrodes. An Ad-Tech
connector cable was cut at 10 cm away from the connector and 2 cm of the cable outer sheath was removed to expose the wires embedded within the cable. Each
wire corresponds to one pair of conductor tooth on the connector; connection to an electrode contact can be established by connecting the probe of the balanced
coaxial cable to one of these wires. The electrode was connected to the connector via a connector block; connection to any of the contacts on a grid electrode can
be achieved by adjusting the relative position of the conductor tooth (on the connector) and the connector block. (B) Layout of the phantoms and all of the equipment
during experiments for voltage measurement. Each electrode was connected via a modified Ad-Tech connecter cable (as in A) and a custom-made balanced coaxial
cable to the oscilloscope placed outside the magnetic resonance imaging (MRI) in the control room. The electrodes were secured using memory foam cushions (not
shown) in the head coil. The portion of electrode leads outside the head coil and the connector were placed at the center of the MRI bore as far away from the head
coil as possible and firmly secured using sandbags (not shown). (C) Electrode configurations for voltage measurements. Upper panel – electrode configuration
emulating frontal lobe implantation on the right (F1), center (F2), and left (F3). Lower panel – electrode configuration emulating temporal lobe implantation on the right
(T1) and left (T2). See Table 2 for electrode contact pairs used for the measurement. Only the Unique medical electrodes are shown for illustrative purpose.
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FIGURE 4 | Configurations of the electrodes in the head coil during experiments for detecting gradient switching-induced electrode movement by visual
assessment. Configurations of depth electrodes were shown in the upper panel and grid electrodes in the lower panel. Two depth electrodes (one Unique Medical
and another Ad-Tech) were placed parallel to the Y-axis (A), X-axis (B), or Z-axis (C). Two grid electrodes (one Unique Medical and another Ad-Tech) were placed in
the XY-plane (D), YZ-plane (E), or ZX-plane (F). In (A,D,E), the electrodes were hanged down from a surgical tape (indicated as orange line) that was placed across
the head coil parallel to the X-axis, with the end taped to the head coil. Each electrode was taped to the surgical tape at a point 7.5 cm from the tip. In (B,C,F), the
electrodes were placed on an isometric graph paper attached on the acrylic shell (that was used for preparing the head phantom). In all (A–F), the electrodes were
placed as close as possible to the center of the head coil (without touching each other), which was then placed at the isocenter of the magnetic resonance imaging
scanner bore while running scans of EPI sequence.

FIGURE 5 | Movement measurement methodology – using image analysis. A three-dimensional (3D) region-of-interest (ROI) of 10 × 10 × 10 voxels containing
either the tip of a depth electrode or contact #1 of a grid was extracted. Only Unique Medical depth electrode A and its 3D ROI are shown (left panel). The
cross-correlation value (ri ) between two consecutive EPI volumes within the 3D ROI was calculated (right upper panel): the lower the correlation value, the more
dissimilar the pair of volumes were and thus the more likely the electrode was displaced. The pair of consecutive volumes with the lowest correlation coefficient were
visually examined and any visible displacement of the electrode tip was physically measured. The two consecutive volumes within the 3D ROI containing Unique
Medical depth electrode A with the lowest cross-correlation value was shown in the right lower panel.
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of each factor (worst-case scenarios). Table 2 summarizes the
MRI sequences tested in each experiment below.

Radio Frequency-Induced Heating
For temperature measurements, since the RF-induced heating
may vary depending on the orientation of the electrodes relative
to the scanner static magnetic field (B0) (Nordbeck et al., 2008;
Winter et al., 2020), temperature change was first recorded
during a scan of each MRI sequence to identify the worst case
(experiment A, shorter recording), and then recorded during
a scan using all MRI sequences over a total scan period of
approximately 70 min (experiment B, longer recording), to
mimic a typical icEEG-fMRI acquisition. In experiment A,
measurements were performed using two configurations as
follows: electrodes oriented perpendicularly to B0 (A1) and
electrodes parallel to B0 (A2). Experiment B was performed
using the configuration found in experiment A that resulted
in most heating (which corresponded to A1, see Table 3) with
MRI sequences in the following order: localizer, EPI (200-volume
image × 10, total scan time approximately 63 min), and MP-
RAGE (scan time ∼8 min). Experiment B was repeated three
times for Unique Medical electrodes. Repeated measurement
has been well-documented previously using Ad-Tech electrodes
(Boucousis et al., 2012) and thus not repeated here.

Switching Gradient-Induced Voltage
For voltage measurements, since the gradient field amplitude
varies as a function of location along the scanner’s long axis
(Schaefer et al., 2000) and to maximize the effect (worst
case scenarios), measurements were performed with electrodes
configured in orientations mimicking either frontal lobe or

TABLE 3 | Results of Experiment A.

Depth Grid Control

Measurement B1+RMS 4T(◦C) 4T(◦C) 4T(◦C)

Configuration A1: Orthogonal

A1.1 (EPI) 0.77 0.2 0.1 0.1

A1.2 (MP-RAGE) 0.72 0.1 0.1 0.1

A1.3 (FSE) 2.57 1.9 0.7 0.2

Configuration A2: Parallel

A2.1 (EPI) 0.77 0.1 0.1 0.1

A2.2 (MP-RAGE) 0.72 0.1 0.1 0.1

A2.3 (FSE) 2.57 0.6 0.4 0.1

Temperature measurements for the Unique Medical electrodes.
EPI, echo-planar imaging; MP-RAGE, magnetization-prepared rapid gradient-echo;
FSE, fast spin echo; B1+RMS, root mean square value of B1+ averaged over
a period of 10 s; Depth, depth electrode; Grid, grid electrode; 4 T, maximum
change in temperature.

temporal lobe implantations (see Table 4 and Figure 3C). For
frontal lobe implantation configurations, electrodes were placed
to mimic either implantation in the right (configuration F1),
center (configuration F2), or left (configuration F3) aspects of
the frontal lobe. Two temporal lobe implantation configurations
were used: right (configuration T1) and left (configuration T2).

According to Maxwell’s equation, the larger the circuit within
the electrodes and leads perpendicular to the magnetic field,
the larger the induced voltage (Georgi et al., 2004). Based on
this equation and previous studies (Carmichael et al., 2010;
Boucousis et al., 2012), we measured the gradient-induced
voltage between two most distant electrode contacts aiming

TABLE 2 | MRI sequences tested in the radio frequency-induced heating, switching gradient-induced voltage and electrode movement experiments.

Experiments Measurement # MRI sequences tested

Radio frequency-induced heating
• Only low B1+RMS or SAR sequences (localizer, EPI, MP-RAGE) were used when the EEG amplifiers were placed in the scanner. These are the sequences required to
complete a typical icEEG-fMRI experiment at our center.
• A high B1+RMS sequence or SAR (FSE) that causes substantial heating was used as a positive control, after the amplifiers were removed from the scanner. This
sequence would not be used during a typical icEEG-fMRI experiment.

Experiment A – shorter recording (separate scan of each MRI
sequence)

Configuration A1 – electrodes oriented perpendicular to B0 A1.1 EPI

A1.2 MP-RAGE

A1.3 FSE

Configuration A2 – electrodes oriented parallel to B0 A2.1 EPI

A2.2 MP-RAGE

A2.3 FSE

Experiment B – longer recording (continuous scan of all MRI
sequences)

B Localizer +
10 consecutive EPI scans + MP-RAGE

Switching gradient-induced voltage
• Nerve stimulation is likely caused by induced currents and voltages resulted from a time-varying gradient magnetic field of less than 10 kHz.

See Table 4 EPI

Electrode movement
• Rapidly switching gradient field may cause rapid movement of implants because implants are subjected to mechanical force when exposed to gradient field.

See Figure 4 EPI

B1+RMS, root mean square value of B1+ averaged over a period of 10 s; EPI, echo-planar imaging; FSE, fast spin echo; icEEG-fMRI, simultaneous acquisition of icEEG
and fMRI; MP-RAGE, magnetization-prepared rapid gradient-echo; MRI, magnetic resonance imaging; SAR, specific absorption ratio.
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TABLE 4 | Electrode configurations for voltage measurement.

Configuration Location Voltage
measurement #

First contact (see
Figure 1B for

electrode type and
contact numbering)

Location of the first
contact in relation to

the phantom

Second contact (see
Figure 1B for

electrode type and
contact numbering)

Location of the first
contact in relation to

the phantom

Frontal lobe

F1 Right F1.1 Grid #1 Inner surface Grid #20 Inner surface

F1.2 Grid #1 Inner surface Depth A #1 Near center

F2 Middle F2.1 Grid #1 Inner surface Grid #20 Inner surface

F3 Left F3.1 Grid #1 Inner surface Grid #20 Inner surface

F3.2 Grid #1 Inner surface Depth A#1 Near center

Temporal lobe

T1 Right T1.1 Grid #1 Inner surface Grid #20 Inner surface

T1.2 Grid #1 Inner surface Depth A #1 Near center

T1.3 Depth A #1 Near center Depth B #1 Near center

T2 Left T2.1 Grid #1 Inner surface Grid #20 Inner surface

T2.2 Grid #1 Inner surface Depth A #1 Near center

T2.3 Depth A #1 Near center Depth B #1 Near center

Grid, grid electrode; Depth, depth electrode; Depth A, the depth electrode that was implanted quasi-perpendicular to the grid electrode; Depth B, depth electrode that
was implanted quasi-parallel to the grid (see Figures 1A,C).

at maximizing the loop area (representing the worst-case
condition). The measurement was performed with either of the
following electrode contact combinations: between contact #1
and #20 of a grid electrode, between contact #1 of a depth
electrode and contact #1 of a grid electrode, or between contact
#1 of two depth electrodes (the third combination was only
available for depth electrodes from Unique Medical). Electrodes
that were not used during each measurement were electrically
shorted at the tails/cable terminations. The last four columns of
Table 4 summarize the electrode contact combinations used in
each configuration and the location of each electrode contact
in relation to the phantom. The orientation of each electrode
contact relative to the MRI bore axis is shown in Figure 3C.

Electrode Movement
For visual assessment of electrode movement, the electrodes
were oriented either parallel to the X-, Y- or Z-axis of the
MRI bore (Figure 4). For the orientation parallel to the Y-axis
configuration, the electrodes were fixed at a point 75 mm
away from the tip of a depth electrode or the distal edge
of a grid electrode using a surgical tape; the tip or edge of
the electrodes was hanging freely. An isometric graph paper
was placed at the back to facilitate detection of any possible
movement, without touching the electrodes. For the orientation
parallel to the X- or Z-axis configuration, the electrodes were
placed on a piece of isometric graph paper, held at the same
point as above-mentioned. Movement was assessed under both
direct visual observation and through video recording taken
during the experiment.

RESULTS

Temperature Measurements
Table 3 and Figure 6 summarize temperature changes for each
sequence used in our icEEG-fMRI protocol, and a high specific

absorption rate (SAR) sequence (FSE). For configuration A1,
the observed maximum temperature increases were 0.2, 0.1, and
1.9◦C during EPI, MP-RAGE, and FSE, respectively, for the
depth electrode; and 0.1, 0.1, and 0.7◦C during EPI, MP-RAGE,
and FSE, respectively, for the grid electrode. For configuration
A2, the observed maximum temperature increases were 0.1, 0.1,
and 0.6◦C during EPI, MP-RAGE, and FSE, respectively, for the
depth electrode; and 0.1, 0.1, and 0.4◦C during EPI, MP-RAGE,
and FSE, respectively, for the grid electrode. Figure 7 shows
the results of Experiment B. For Unique Medical electrodes,
the observed total median temperature increases were 0.4 and
0.6◦C for the grid and depth electrodes, respectively. For Ad-
Tech electrodes, the observed total temperature increases were
0.7 and 0.6◦C for grid and depth electrodes, respectively. The
temperature increased monotonically with time at all electrodes
throughout the course, although a more rapid increase on depth
electrodes was observed upon the start of MP-RAGE.

Voltage Measurements
Under frontal lobe implantation configurations, the greatest
mean gradient-induced voltage was 43.5 (standard deviation, SD
0.5) mV for Unique Medical and 64.0 (SD 1.4) mV for Ad-Tech
electrodes. Under temporal lobe implantation configurations, the
greatest mean gradient-induced voltage was 79.3 (SD 1.6) mV for
Unique Medical and 86.6 (SD 1.1) mV for Ad-Tech electrodes.
A larger voltage was induced under the left temporal lobe
implantation configurations. The results are shown in Table 5.

Movement Measurements
Under visual assessment, no movement was detected under all
tested conditions. Using EPI image analyses, the lowest cross-
correlation value of each 3D ROI containing a depth electrode
tip or grid electrode contact #1 was shown in Table 6. Visual
inspection revealed no displacement even between the volume
pairs with the lowest cross-correlation value (see Figure 5 for an
example). The variation in cross-correlation values were due to
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FIGURE 6 | Temperature changes observed during a scan of each sequence for simultaneous acquisition of icEEG and fMRI (EPI, MP-RAGE), and a high-SAR
sequence (FSE) as control in experiment A. The upper panel shows the changes at each electrode when oriented perpendicularly to B0 (configuration A1). The
lower panel shows the changes at each electrode when oriented parallel to B0 (configuration A2). The temperature change was generally larger in configuration A1
except for MP-RAGE. SAR, specific absorption rate; EPI, echo planar imaging; FSE, fast spin echo; MP-RAGE, magnetization-prepared rapid gradient-echo.

slight changes in global intensity between EPI volumes instead of
a visible displacement.

DISCUSSION

This study addressed the safety of performing icEEG-fMRI
at 3 T using depth and grid electrodes available in Japan,
under conditions tested in this study. For all conditions tested,
the gradient-induced voltages were within 100 mV and the
maximum temperature increase was within 1◦C, both fulfilling
the criteria according to current safety standards (Georgi
et al., 2004; IEC, 2015). A prolonged acquisition that lasted
approximately 70 min under the worst-case scenario also did not
result in a temperature increase exceeding 1◦C in the vicinity
of the electrodes. Despite the difference in the combination
of electrodes and scanner used in our study, the results were
comparable to studies reported on the feasibility of icEEG-
fMRI. For example, Carmichael et al. (2010) and Boucousis
et al. (2012) reported temperature changes within 1◦C, induced
voltages within 100 mV and no significant implant movements
using Ad-Tech electrodes in a 1.5 T Siemens scanner and a
3 T GE scanner, respectively. The findings of our study may
serve as a guidance for safety precaution to centers intending
to perform MRI imaging for post-implantation localization of
icEEG electrodes. MP-RAGE sequence is rather safe but not high
SAR sequence such as FSE; however, a local safety protocol should
be developed in each center because a slight difference in MRI
scanner, coils, electrode and leads configuration may result in
considerable differences in the safety profile of implants in an
MRI (Carmichael et al., 2008).

Radio frequency-induced heating can result from implanted
electrodes acting as a resonating linear antenna. The high
electrical resistance of the tissue causes local resistive heating and
increases temperature (Mattei et al., 2008). RF-induced heating
can cause neuronal damage when prolonged increases of 5◦C
above body temperature occur (Dewhirst et al., 2003; Georgi
et al., 2004; Boucousis et al., 2012). Current safety standards
have further limited the acceptable heating of a device more
conservatively to within 1◦C (IEC, 2015). In our experiments, the
temperature increase during the prolonged 70-min acquisition
was well below this limit. Our observations provide evidence
that the risk of excessive heating is manageable in the specific
circumstances tested; namely a 3 T GE MRI scanner with
body RF coil, grid, and depth electrodes configured to mimic
implantation in the frontal and temporal lobes. We found that
RF-induced heating was more prominent with the electrodes
placed orthogonal to the static magnetic field. Previous studies
have shown that the closer the distance between an electrode
and the RF transmitter coil, the higher the temperature of
the induced heating (Mattei et al., 2008; Bhusal et al., 2018).
For this reason, the temperature increased more when an
electrode was placed orthogonal, in which the electrode has
been inserted from the side and thus closer to the transmitter
coil. These observations along with ours are in line with the
observations of some early case reports on the adverse effects
potentially resulting from RF-heating in the MRI. These include a
transient dystonic and ballistic movements following a head MRI
(Spiegel et al., 2003) and a peri-electrode hemorrhage following
a lumbar spine MRI (Henderson et al., 2005) both performed
at 1.0 T on patients with Parkinson’s disease that was implanted
with bilateral DBS. The difference in severity of the adverse effects
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FIGURE 7 | Temperature changes throughout the 70-min acquisition using all sequences of a typical simultaneous acquisition of icEEG and fMRI experiment. Radio
frequency-induced heating on grid and depth electrodes placed orthogonal to the static magnetic field were shown. For Unique Medical electrodes, each trace
represents the median temperature changes from three measurements. Error bars show the interquartile range of the measured temperature at the end of each
sequence. The total temperate increase was within 1◦C regardless of electrode type. Compared to Ad-Tech, Unique Medical electrodes showed a more abrupt
temperature decrease between images.

in these reports suggested the potential impact of electrodes’
orientation, length, and configuration on RF-induced heating.
Indeed, a study on a cardiac pacemaker implant showed the

TABLE 5 | Observed gradient-induced voltages.

Configuration Measurement # Peak voltage (mV)

Unique Medical Ad-Tech

Mean SD Mean SD

F1 F1.1 43.5 0.5 14.6 0.9

F1.2 7.2 1.0 55.7 0.6

F2 F2.1 22.3 0.4 64.0 1.4

F3 F3.1 29.0 0.9 14.6 0.8

F3.2 26.0 0.5 21.1 1.3

T1 T1.1 55.5 1.0 66.3 0.9

T1.2 19.6 0.9 51.8 1.1

T1.3 41.5 0.6 NA

T2 T2.1 64.9 5.1 10.7 0.4

T2.2 55.9 1.8 86.6 1.1

T2.3 79.3 1.6 NA

Depth, depth electrode; Grid, grid electrode; NA, not applicable.
Depth A, the depth electrode that was implanted quasi-perpendicular to the grid
electrode; Depth B, the depth electrode that was implanted quasi-parallel to the
grid electrode (see Figures 1A,C).
Mean and standard deviation of 10 peak voltages were shown. Note that only
one Ad-Tech depth electrode was implanted in the phantom, and thus the voltage
measurement was not applicable for the combination of the two Ad-Tech depth
electrodes. NA, not applicable; SD, standard deviation.

impact of lead pathway and device position on RF-heating during
MRI (Nordbeck et al., 2009).

Gradient switching during EPI causes polarity of the magnetic
field to change rapidly and results in an induced current. The
induced current is dependent on the frequency and the cross-
sectional area of the electrode contacts. In general, stimuli above
10 kHz such as those generated by RF pulse do not evoke action
potentials in neuronal cells (Patrick Reilly, 2016; Ziegelberger
et al., 2020). Therefore, only the effect of gradient switching
below 10 kHz are considered in terms of induced voltage that

TABLE 6 | The lowest cross-correlation value between two consecutive EPI
images acquired during a 200-volume EPI scan.

Electrode The lowest
cross-correlation

value

The corresponding
pair of EPI volumes

(image #)

Unique Medical
grid electrode contact #1

0.99996 1/2

Unique Medical
depth electrode A tip

0.99912 1/2

Unique Medical
depth electrode B tip

0.99842 1/2

Ad-Tech
grid electrode contact #1

0.99994 1/2

Ad-Tech
depth electrode A tip

0.99976 1/2

Depth electrode A, the depth electrode that was implanted quasi-perpendicular
to the grid electrode; depth electrode B, the depth electrode that was implanted
quasi-parallel to the grid electrode (see Figures 1A,C). EPI, echo-planar imaging.
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could result in inadvertent neuronal stimulation or brain tissue
damage, which has been suggested to occur at voltage exceeding
100 mV (Georgi et al., 2004). In this study, neither implantation
mimicking frontal nor temporal lobe exceeded this limit, thus
confirming the safety of icEEG-fMRI using these implantation
schemes, which predominate at our center.

Implants such as intracranial electrodes can be subjected to
mechanical force when exposed to magnetic gradient, depending
on their orientation. The resultant force may lead to movement of
implants against the surrounding tissue (Erhardt et al., 2018). Our
study showed that gradient switching during the EPI sequence
did not cause any visible movement by direct visual inspection
and analysis of the EPI images. We did not perform a formal
measurement of static magnetic field-induced forces according to
the American Society for Testing of Materials because these were
previously reported to be insignificant for non-ferromagnetic
platinum-iridium electrode contacts (Carmichael et al., 2010;
Boucousis et al., 2012).

This study showed that the total temperature increase
during a 70-min acquisition that included all MRI sequences
used in a typical icEEG-fMRI experiment at our center was
below the established safety limit of 1◦C. Nevertheless, as
the increase was summative following each scan, a sufficient
interval should be placed in between scans if more scans
are needed. We did not evaluate the difference in electrode
heating between the left and right side of the scanner because
our MRI scanner uses multiple RF transmissions in parallel
(multidrive RF transmission technology) that minimizes the
RF non-uniformity especially around the isocenter, where the
electrodes were placed. Therefore, our findings should not be
extrapolated to MRI scanners without this technology. The
minimal increase in temperature recorded in this study may
well be attributed to the configuration of the connecting cables
placed along the central axis of the coil because the closer
the cable is placed to the transmitter coil, the more heat
is generated (Carmichael et al., 2010; Bhusal et al., 2018).
Although we did not evaluate the effect of cable length
in this study, it should also be carefully considered and
optimized to the strength of the magnetic field; the temperature
increase is greatest when the cable length is one fourth or
half the RF wavelength (Yeung et al., 2007). Although we
expect the effect of brain perfusion to mitigate RF-induced
heating in living human subjects and therefore our heating
measurements can be taken to reflect a worst-case scenario
in this specific sense, the utmost care and attention to detail

is recommended when considering performing icEEG-fMRI in
patients; specifically, a local safety assessment and experiments
such as those presented here, are recommended as a minimum.
Our findings are not generalizable to other MRI scanners,
RF-transmit coils, or electrodes from other manufacturers
(Carmichael et al., 2008).
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Contemporary stroke assessment protocols have a limited ability to detect vascular
cognitive impairment (VCI), especially among those with subtle deficits. This lesser-
involved categorization, termed mild stroke (MiS), can manifest compromised
processing speed that negatively impacts cognition. From a neurorehabilitation
perspective, research spanning neuroimaging, neuroinformatics, and cognitive
neuroscience supports that processing speed is a valuable proxy for complex
neurocognitive operations, insofar as inefficient neural network computation significantly
affects daily task performance. This impact is particularly evident when high cognitive
loads compromise network efficiency by challenging task speed, complexity, and
duration. Screening for VCI using processing speed metrics can be more sensitive
and specific. Further, they can inform rehabilitation approaches that enhance patient
recovery, clarify the construct of MiS, support clinician-researcher symbiosis, and further
clarify the occupational therapy role in targeting functional cognition. To this end,
we review relationships between insult-derived connectome alterations and VCI, and
discuss novel clinical approaches for identifying disruptions of neural networks and white
matter connectivity. Furthermore, we will frame knowledge translation efforts to leverage
insights from cutting-edge structural and functional connectomics research. Lastly, we
highlight how occupational therapists can provide expertise as knowledge brokers
acting within their established scope of practice to drive substantive clinical innovation.

Keywords: stroke, neuroimaging, occupational therapy, neurorehabilitation, cognitive dysfunction,
neurocognitive function, translational medical research, connectomics

INTRODUCTION

Stroke is the most frequent cause of disability in the United States (Ovbiagele and Nguyen-
Huynh, 2011), a fact that spurs investigation into the nature and variability of infarct-related
deficits along a continuum of impairment. The literature is replete with widely accepted
functional characterizations of moderate through severe stroke (Murphy et al., 2001; Hodics
et al., 2012; Rost et al., 2016), with less clarity available on mild clinical presentations
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(Brott et al., 1989; Roberts et al., 2020). This uncertainty stems
from the absence of a precise taxonomy for characterizing
the mild stroke (MiS) population (Roberts et al., 2020). In
clinical practice, the lack of a consensus definition precludes
consistency in evaluation and treatment approaches and obscures
understanding of this population’s needs.

Ongoing work to develop an accord on MiS codification can
benefit both research and clinical practice. In their systematic
review on downstream effects of inconsistent MiS classification,
Roberts et al. (2020) discuss 10 distinct definitions present in
the literature. This lack of diagnostic and taxonomic uniformity
potentiates knowledge translation efforts targeting the depth and
breadth of understanding within this important stroke practice
and research area. However, even a robust consensus definition
cannot explain mechanisms that drive variation in post-stroke
disability, especially regarding shared and distinct underpinnings
among each NIH Stroke Scale (NIHSS) severity level (National
Institute of Neurological Disorders and Stroke, 2011).

Within this review, we address MiS-relevant associations
between vascular cognitive impairment (VCI), processing speed
(PS), and neural network efficiency, as informed by insights from
neuroimaging and connectomics research. We present evidence
suggesting that established norms for key neurocognitive
assessments can be used as proxies for detecting potentially
overlooked VCI. Infusing emerging theoretical perspectives from
multiple academic disciplines, we review approaches that can fuel
substantial clinical innovation. In particular, we focus on using
proxy-defined, threshold-specific instances of dysfunction that
are scalable according to premorbid capacities and inherent daily
routine demands. Drawing from neuroimaging-informed models
employed to predict and monitor stroke recovery, we argue
that performance capacity can be quantified by the degree of
dissociation between available and necessary performance skills.
Such quantification could empower clinicians and MiS survivors
to more strategically consider interrelationships between current
abilities and requisite progress along an ecologically valid,
individualized recovery timeline.

We also examine three intersecting themes that provide a
framework for early MiS care innovation and highlight paths
to advance clinical investigation targeting health and wellbeing.
After providing background on essential considerations of stroke
and associated cognitive sequelae, we first review the problem
of MiS-associated-VCI (MiS-VCI) underdetection and clarify
the consequences of imprecisely characterizing stroke-derived
neurocognitive dysfunction. Secondly, we examine the promise
of knowledge translation efforts to improve stroke care and
address priorities articulated by healthcare systems and research
funding agencies. Thirdly, we overview and delineate knowledge
relevant to MiS-VCI rehabilitation that derives from cutting-
edge neuroanatomic, structural, and functional connectomics
research. These studies employ advanced neuroimaging
technologies plus conventional computed tomography (CT) and
magnetic resonance imaging (MRI). Importantly, we focus on PS
as a proxy for the integrity of neural networks and neurocognitive
capacities. Lastly, we highlight clinical implications and future
directions by providing evidence and arguments supporting
more comprehensive MiS-VCI screening in early stroke care

and emphasize the pivotal role of occupational therapy (OT) in
addressing functional cognition.

While calling attention to the valuable confluence of
contemporary research findings and clinical stroke rehabilitation
practices, we will discuss literature ranging from the acute
to more chronic phases of recovery. Beyond temporal
considerations, foundational links between network theory
and neurological insults are influenced by a broad range of
factors such as demographic characteristics, lesion laterality, and
even mechanisms of injury (e.g., ischemic vs. hemorrhagic stroke
vs. traumatic brain injury). Herein, we do not focus on such
differentiating factors, as it would far exceed the scope of this
endeavor and is the likely purview of future prospective data-
analytic studies. We do, however, discuss in detail the findings
from conceptual and applied perspectives on an overarching
construct poised to drive innovation in clinical practice. Please
see Table 1. for a summary of constructs and interrelationships.

BACKGROUND

Stroke Diagnosis and Classification
Currently, stroke is diagnosed based on neuroimaging and
clinical examinations. Aberrant clinical examinations often
reflect ischemia-associated fragmentation of neural networks and
are highly correlated with abnormal findings on CT or MRI
(Jadhav et al., 2020). More severe levels of stroke are typically
accompanied by overt motor, sensory, and neurocognitive
impairments. By contrast, MiS often involves a small ischemic
lesion that may go undetected even when employing standard
CT imaging. Detecting subtle deficits is further complicated
by an upstream dearth of information concerning MiS-VCI.
Lacking a consensus taxonomy for MiS, clinicians often rely
on imprecise or inadequate categorizations of symptoms and
sequelae. Such conceptualizations are frequently derived from
routine neurological assessment protocols which quantify post-
stroke severity and functional impairment but fall short of
informing rehabilitation approaches (Hajek et al., 1997; Wolf and
Rognstad, 2013). Importantly, many of these metrics quantify
interrelationships between motor deficits and patients’ daily
functioning by focusing on the ability to perform activities of
daily living (ADL), bed mobility, transfers, and ambulation,
rather than neurocognitive capacities (Wolf and Rognstad, 2013;
Lee et al., 2015). Within this review, we use the overarching
TREAT definition of MiS (Spokoyny et al., 2015) (i.e., NIHSS 0-
5, and the absence of visual field deficits, aphasia, pronounced
weakness, or other disabling deficits).

Neurocognitive Function, Vascular
Cognitive Impairment, and Functional
Cognition
“Neurocognitive” refers to the interrelated domains of
perceptual-motor function, language, social cognition, complex
attention, executive function (EF), learning, and memory
(Ganguli et al., 2011). VCI refers to the broad spectrum of
neurocognitive impairment associated with vascular pathology,
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TABLE 1 | Summary of overarching constructs, themes, and seminal works within the reviewed sources.

References Summary Points

MiS classification and VCI underdetection

Roberts et al., 2020 Highlights inconsistencies in MiS classification linked to contemporary methods of assessment, imaging, and
outcomes. Discusses 10 different definitions present in the literature.

Fischer et al., 2010 Examined six MiS definitions and outcomes, testing their validity in stroke patient subgroups. Determined that
definitions best suited for this population were: (a) those with a score of 1 or less on every NIHSS item and normal

consciousness; or (b) an NIHSS score of three or less.

Burns et al., 2018 Presents findings from The Health and Wellness Task Force that emphasize return to work and driving as being key
aspects of community reintegration following stroke. Discusses “mild stroke” as a misnomer in light of the persistent
challenges experienced by MiS survivors. Notes the disconnect between patients’ needs and available services to

address them. Proposes an interdisciplinary MiS practice model to assist those described as frequently being
discharged from the hospital without appropriate rehabilitation services targeting complex life activities.

Wolf and Rognstad, 2013 Study with findings indicating “.performance on standardized cognitive testing in the early phases of mild stroke
remained stable over a 6-month period. These results help justify the necessity and ability to assess cognition

immediately post-mild stroke in order to make accurate and appropriate rehabilitation recommendations.” p. 256

Hajek et al., 1997 Examined patients’ performance on 11 multifaceted stroke assessments. Determined. . . “cognitive functions are
frequently affected in stroke patients, cognitive impairment needs to be more seriously considered when describing

and/or predicting a patient’s level of independence.” p. 1331

Yakhkind et al., 2016 Reviews current evidence and standard of care for MiS patients. “A majority of patients with ischemic stroke present
with mild deficits for which aggressive management is not often pursued. Comprehensive work-up and appropriate

intervention for minor strokes and transient ischemic attacks (TIAs) point toward better patient outcomes, lower
costs, and fewer cases of disability. Imaging is a key modality to guide treatment and predict stroke recurrence.”

p. 86

Balasooriya-Smeekens
et al., 2016

“Stroke and transient ischemic attack (TIA) survivors reported residual impairments that for many had impact on
work. Most impairments were ’invisible’, including fatigue, problems with concentration, memory and personality
changes. . . .Despite having been able to return to work after a stroke, people may still experience difficulties in

staying in work and risking losing their job.”

Adamit et al., 2015 Prospective cohort study of interrelationships among cognition, participation and quality of life (QoL) among MiS
survivors. Participants experienced neurocognitive impairments negatively impacting participation and QoL. Health

care systems and rehabilitation programs neglect the rehabilitation needs of MiS patients as they are seemingly
independent with basic daily tasks. MiS has long-term effects impacting patients and their family members.

Barbay et al., 2018 Systematic review and meta-analysis of prevalence in post-stroke neurocognitive disorders (NCD) found 36%
prevalence among MiS survivors. Argued that “Harmonization of stroke assessment and cognitive score thresholds
is urgently needed to allow more accurate estimation of post-stroke NCD prevalence, especially mild post-stroke

NCD.” P. 322

Neurocognitive Function and VCI

de Haan et al., 2006 Cognitive and emotional outcomes are linked to: (a) focal damage causing selective impairments from gray matter
dysfunction; (b) diffuse neuronal dysfunction compromising mental speed, memory, and executive functioning; and

(c) outcomes being modulated by age, sex, premorbid level of functioning, and comorbidity. Modern
neuropsychological assessment can facilitate patient classification, intervention selection, and creation of prognostic

models.

Irimia et al., 2014 Reviews the state of the art in structural and connectomic neuroimaging targeting brain atrophy, alterations in
morphometry, and inter-regional connectivity post injury. Discusses monitoring of clinical condition and evolution of

status, including the potential for translational impact when coupled with neuropsychological measures.

Irimia and Van Horn, 2015b Summarizes the use of functional magnetic resonance imaging, diffusion tensor imaging, positron emission
tomography, magnetic resonance spectroscopy, and electroencephalography for studying TBI-related brain

dysfunction and improving rehabilitation. Neurocognitive aspects discussed include consciousness, attention,
memory, higher cognition, personality, and affect. Provides recommendations for future neuroimaging research.

Bullmore and Sporns, 2009 Highly influential review of complex brain networks in diverse experimental modalities (e.g., structural and functional
MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography).

Turken et al., 2008 Demonstrated correlation between Digit-Symbol performance and fractional anisotropy of white matter in bilateral
parietal and temporal lobes and the left middle frontal gyrus. Assessed the effect of white matter damage on

processing speed using voxel-based lesion-symptom mapping. Results indicated that cognitive processing speed
is correlated with the structural integrity of white matter tracts associated with parietal and temporal cortices, left

middle frontal gyrus, and the superior longitudinal fasciculus.

Gawryluk et al., 2014 Study employing 4T fMRI and an adapted Symbol Digit Modalities Test to identify white matter activation in either
the corpus callosum or internal capsule in 88% of participants. “A key step in linking neuroimaging advances to the
evaluation of clinical disorders is to examine whether WM activation can be detected at the individual level during

clinical tests associated with WM function.”

Adleman et al., 2002 “. . . the first developmental fMRI investigation of the Stroop interference task, provides a template with which
normal development and neurodevelopmental disorders of prefrontal cortex function can be assessed.”

(Continued)
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TABLE 1 | (Continued)

References Summary Points

Neuroimaging and Neuroinformatics

Lim and Kang, 2015 Outlines the basic concepts of structural and functional connectivity, and the connectome. Explores current
evidence regarding how stroke lesions cause changes in connectivity and network architecture parameters.

Discusses clinical implications of perspectives on the connectome in relation to the cognitive and behavioral sequela
of stroke. p. 256

Eckert, 2011 Neuroimaging morphometry study on neurobiological predictors of age-related changes in processing speed.
Declines in specific neural systems compromise processing speed. “Future studies of processing speed –

dependent neural systems will be important for identifying the etiologies for processing speed change and the
development of interventions that mitigate gradual age-related declines in cognitive functioning and enhance

healthy cognitive aging.” p. 25

MiS-VCI rehabilitation and links to neuroanatomic, structural, and functional connectomics research

Park and Friston, 2013 Context-sensitive integration during cognition tasks entails a divergence between structural and functional
networks. Function-structure mapping is crucial for understanding the nature of brain networks. The emergence of

dynamic functional networks from static structural connections calls for a formal (computational) approach to
neuronal information processing that may resolve this dialectic between structure and function. p. 579

Petersen and Sporns, 2015 “. . .network science offers a theoretical framework for approaching brain structure and function as a multi-scale
system comprised of networks of neurons, circuits, nuclei, cortical areas and systems of areas. This paper views

large-scale networks at the level of areas and systems, mostly based on data from human neuroimaging, and how
this view of network structure and function has begun to illuminate our understanding of the biological basis of

cognitive architectures.” p. 207

Kuceyeski et al., 2016 Demonstrated that “measures of baseline connectome disruption, acquired using only routinely collected MRI
scans, can predict 6-month post-stroke outcomes in various functional domains including cognition, motor function

and daily activities.” p. 2587

Liew et al., 2020 “. . . outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols
and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data.

Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large-scale
stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research

are discussed. Finally, future directions and limitations, as well as recommendations for improved data
harmonization through prospective data collection and data management, are provided.” p. 129

Lopes et al., 2021 “Prediction accuracy was evaluated in four domains (memory, attention/executive, language and visuospatial
functions) and compared with clinical data and other functional networks. . . A machine learning model based on the

post-stroke cognitive impairment network can predict the long-term cognitive outcome after stroke.” p. E1167

Knowledge translation approach to improving stroke care

Austin, 2021 “The mission of translational science is to bring predictivity and efficiency to the development and dissemination of
interventions that improve human health. . . Reviews the origins of translational science and advances to this point.”

p. 1629

Meyer, 2010 “Knowledge brokers are people or organizations that move knowledge around and create connections between
researchers and their various audiences. This commentary reviews some of the literature on knowledge brokering

and lays out some thoughts on how to analyze and theorize this practice.” p. 118

Chaudoir et al., 2013 Systematic review of structural, organizational, provider, patient, and innovation level measures affecting
implementation of health innovations. “. . .discussion centers on strategies that researchers can utilize in order to
identify, adapt, and improve extant measures for use in their own implementation research. In total, our literature
review and resulting measures compendium increases the capacity of researchers to conceptualize and measure

implementation-related constructs in their ongoing and future research.” p. 1

foregrounding working memory, PS, and EF as sensitive
categorical impairment indicators (Hachinski et al., 2006). VCI
is arguably a key defining characteristic of MiS and a robust
predictor of successful participation in normal daily routines
(Khatri et al., 2010; Spokoyny et al., 2015; Overdorp et al., 2016).
Nevertheless, VCI is often overlooked in acute clinical settings
despite multilevel implications for patients, health care systems,
and society (Tellier and Rochette, 2009; Ovbiagele et al., 2013;
Adamit et al., 2015). This disconnection stems from insufficient
MiS diagnostic criteria, with underdeveloped characterizations
impeding deficit identification and remediation (Fischer et al.,
2010; Roberts et al., 2020). Even using the term mild, in this
context, can inadequately represent the persistent obstacles
within post-stroke daily functioning (Burns et al., 2018). Lastly,

“functional cognition” relates to OT’s focus on “clients” and their
capacity to perform essential tasks given the totality of their
abilities, including their use of strategies, habits/routines, and
contextual/environmental resources (Giles et al., 2017). Although
functional cognition requires looking beyond discrete skills, we
contend that initially employing a sound, generalized proxy
for network dysfunction can increase access to more specific,
comprehensive, and ecologically valid types of intervention
currently missing from MiS care.

Neurorehabilitation research and practice are moving toward
performance-based assessment tools, such as the Executive
Function Performance Test (Baum et al., 2008), the Menu
Task (Al-Heizan et al., 2020), and the Kettle Test (Hartman-
Maeir et al., 2009). Yet, traditional instruments such as the
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Trail Making Test (Reitan, 1958), Symbol-Digit Modalities
Test (SDMT) (Smith, 1973), and Stroop Color-Word Test
(SCWT) (Golden and Freshwater, 2002) remain part of the
gold standard for validating newer instruments. Despite newer
tools achieving higher ecological validity by evaluating real-world
task performance, their administration requirements often strain
clinician capacities given time and environmental limitations
inherent to practice, especially in fast-paced hospital settings.

In this review, we highlight the use of PS to detect
compromised connectome integrity. We further explore how
assessing VCI via the select, psychometrically robust instruments
discussed herein can significantly improve early stroke care
services. In particular, circumscribing and formalizing early
MiS-VCI detection protocols can help identify subtle deficits
that may be otherwise overlooked. Further, more uniform,
sensitive, and specific assessments can potentiate greater access
to subsequent performance-based OT evaluations emphasizing
functional cognition.

Mild Stroke-Vascular Cognitive Impairment
Underdetection
Uncertainty surrounding the concept of MiS-VCI derives in
part from inadequate in-place assessment protocols (Roberts
et al., 2020). This shortcoming is troubling given that VCI is
common among MiS survivors (Chung et al., 2013; Spokoyny
et al., 2015; Overdorp et al., 2016) and involves subtle—yet
persistent—deficits in working memory and EF. Importantly,
PS (i.e., “the rapidity with which a patient processes simple or
routine information without making errors of either omission or
commission,” Weiss et al., 2010) can sensitively detect MiS-VCI.
Improper or inadequate computation within neural networks
can significantly impact patients’ ability to undertake daily life
tasks, especially when required speed, complexity, and duration
amount to high cognitive loads (Khatri et al., 2010; Wolf and
Rognstad, 2013; Spokoyny et al., 2015). To offset such potential
issues, we wish to extend the scope of care available to the
underserved MiS population.

Building on existing literature, we aim to advance MiS-VCI
knowledge translation targeting clinical research. To this end,
we discuss MiS-relevant scope, implications, and opportunities
afforded by structural neuroimaging and connectomics research,
though without deeply exploring overarching MiS and VCI
associations that are thoroughly reviewed elsewhere (Brodaty
et al., 2010; Spitzer et al., 2011; Li et al., 2012; Wolf and
Rognstad, 2013; Spokoyny et al., 2015; Sensenbrenner et al.,
2020). More concretely, we propose a novel course of action
informed by neuroimaging, connectomics, network science, and
OT that quantifies covert VCI and highlights the mechanistic
link to connectopathies. Our central thesis holds that, in light
of technological innovation and advances in neuroimaging and
neuroinformatics, PS has emerged as an underutilized—yet
essential—indicator of compromised neural network integrity,
and thus as a viable MiS-VCI biomarker.

Acute stroke screening protocols lack the ability to
consistently detect subtle MiS-VCI. Not having sensitive
indicators of potential VCI can potentiate patients being ill-
prepared to resume full participation in their daily routine.

Being unaware of possible neurocognitive deficits, MiS survivors
may prematurely recommence complex tasks such as driving,
employment, and caregiving. Therefore, we support using robust
capacity indicators to quantify potential discrepancies between
pre- and post-stroke levels of functioning.

Mild stroke survivors experience less sensorimotor and VCI
than those with moderate-to-severe strokes (Tellier and Rochette,
2009). Yet, they have similar rates of disability (19%, Cucchiara
et al., 2019) as all stroke severity classifications as a whole
(22%, Mu et al., 2017). Current methodological approaches for
understanding and quantifying the nuances of MiS-VCI cannot
explain the mechanisms that underlie these findings. Therefore,
a critical question is: What is the source of MiS survivors’
documented disability?

Even subtle VCI can manifest a profound functional
disconnection between past and present capacities when
individuals undertake complex tasks (Stephens et al., 2005). In
practice, there are widely accepted measures of motor function
such as the Fugl-Meyer assessment (Fugl-Meyer et al., 1975)
and the Action Research Arm Test (Lyle, 1981; Santisteban
et al., 2016). Yet, uncertainty regarding the measurement and
classification of MiS-VCI persists. In this context, focusing on
MiS-VCI may yield promising etiological insights (de Haan et al.,
2006) via ecologically valid perspectives on daily task proficiency
(Stephens et al., 2005).

Profound VCI unquestionably contributes to stroke-
associated disability (Spitzer et al., 2011; Wolf and Rognstad,
2013; Sensenbrenner et al., 2020). Yet, there is an absence
of research examining the influence of PS thresholds on the
likelihood and severity of post-stroke disability. This knowledge
gap stems from the widespread practice of classifying stroke
by heavily weighting the degree of motor impairment, leading
to estimates that 88% of stroke cases acquire notable motor
deficiencies, with 71% failing to regain motor function within
6 months of onset (Bonita and Beaglehole, 1988). Among those
with TREAT-defined MiS, 29-35.6% reportedly experience
residual deficits (Spokoyny et al., 2015). Regarding MiS-VCI,
focusing on the degradation of network efficiency to better
understand post-stroke disability reveals a path to move beyond
the circumscribed utility of primarily motor-driven assessments.

Impact of Underdetection
Stroke survivors with less pronounced impairments are more
likely to resume participation in complex activities that offer
little margin for error (Hofgren et al., 2007). This tendency
may help explain how MiS survivors that lack overt deficits
ultimately file for disability at relatively similar rates to those
with higher degrees of documented impairment (Mu et al., 2017).
To a potentially detrimental degree, decisions regarding activity
participation are likely scaled according to patients’ perceived
residual capacity. This perspective derives from individuals’
reflections on their lived experience, combined with the degree
to which healthcare providers have endorsed their overarching
capacities. Though predominantly missing from discussions in
contemporary practice, PS provides a sound framework for
assessing the integrity of neurocognitive operations in a way
that can bridge the gap between actual and perceived abilities.
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As detailed in subsequent sections, PS can provide a valuable,
quantifiable proxy for neurocognitive function. Moreover, it can
drive cutting-edge knowledge translation efforts targeting stroke
severity characterization and recovery prediction.

Stroke survivors discharging from the acute hospital setting
with unrecognized MiS-VCI face considerable challenges in
resuming safe and independent daily routine participation
(Balasooriya-Smeekens et al., 2016; Camicia et al., 2016).
Unfortunately, there is a dearth of literature coalescing clinical
evidence to compel early, highly sensitive neurocognitive
assessment that could prompt referrals to essential outpatient
therapy services following hospitalization. Without improved,
neurocognitively focused early stroke care screening protocols,
MiS will remain inconsistently detected, incompletely
understood, and MiS survivors will continue to struggle in
silence (Barbay et al., 2018).

Despite unequivocal evidence linking functional cognition to
successful ADL performance (Chung et al., 2013; Fride et al.,
2015; Overdorp et al., 2016), widely used stroke assessments
lack the sensitivity to detect subtle VCI (Wolf and Rognstad,
2013; Yakhkind et al., 2016; Burns et al., 2018). Concerns about
the limited scope of diagnostic instruments are compounded by
the frequent suspicion that some MiS patients are incorrectly
perceived as lacking deficits (Yakhkind et al., 2016). As a result,
MiS patients are often discharged with unrecognized VCI after
brief hospital admissions (Balasooriya-Smeekens et al., 2016;
Camicia et al., 2016), and are likely to experience threshold-
dependent VCI.

Broadly conceived, threshold-dependent VCI involves
diminished neurocognitive functioning linked to activity-
dependent increases in cognitive load. Daily living involves
fluctuating requirements in speed, complexity, and duration
inherent to activity engagement. PS metrics can quantify
maladaptive responses to variable, multifocal task demands
(Leavitt et al., 2011). Thus, increased cognitive load, reflecting
greater requisite mental effort during task performance (Calvillo
and Irimia, 2020), is linked to diminished task performance
quality (Hajek et al., 1997; Fischer et al., 2010). Clinical stroke
protocols can benefit from incorporating elements informed
by responses to cognitive load and likely individual-specific
performance variability.

Knowledge Translation
Entrenched disconnections between research discovery and carry
over into clinical practice reinforce a longstanding barrier to
mutually beneficial exchanges of ideas (Austin, 2021). Previous
efforts targeting top-down, direct-translation of knowledge to
end-users have attempted to rectify this issue, with recent trends
favoring intricate, multilevel stakeholder collaborations. Within
a knowledge translation framework, OT is highly qualified
to incorporate innovative approaches into multidisciplinary
care collaboratively. Such ends can be accomplished by OT
occasionally acting as the knowledge broker, a designation
characterizing persons that “facilitate the creation, sharing, and
use of knowledge” (Meyer, 2010).

Given OT’s expertise in addressing functional cognition
within dynamic, real-world contexts, practitioners can

facilitate valuable MiS-VCI research collaborations mobilizing
neuroimaging and connectomics-based knowledge. In particular,
they can lend insight into the multifaceted nature of patients’
impairments, an essential component of innovative predictive
models, patient care delivery, and communications with
various stakeholders. Among allied health professions in acute
care settings, OT is the only one to have demonstrated a
statistically significant association between healthcare spending
and lower readmission rates (Rogers et al., 2017). In line with
NIH’s emphasis on innovation and developing evidence-based
treatment, OT’s established expertise, in-place representation
within acute care teams, and cost-effective services provide
strong support for its potential to broker knowledge toward
those ends effectively (Chaudoir et al., 2013).

Neuroimaging-Based Perspectives and
Future Mild Stroke Care
Neuroimaging and Neuroinformatics for Mild Stroke
Care
Neuroimaging technologies have added unprecedented
scope and precision to our understanding of neurological
disorders. Unfortunately, current advances in neuroimaging
and neuroinformatics outpace translational efforts targeting MiS
care. Given the symbiotic nature of translational research and
clinical practice, such delays have hindered ongoing innovation
in both domains. Although evidence-based protocols guiding
early stroke care have improved recovery trajectories, common
metrics quantifying MiS characteristics do not reflect recent
insights into complex neural processes underlying observable
clinical deficits. Instead, contemporary early stroke clinical
assessments inordinately focus on motor capacity over cognitive
function (Bonita and Beaglehole, 1988; Hodics et al., 2012),
endorsing an underdeveloped representation of MiS sequelae.

Connectomics is the field of study concerned with the
systematic mapping of neural connections. It provides a
unique framework for analyzing neural network disruptions
by combining graph theory methodology with neuroimaging
(Irimia et al., 2014). Specifically, by conceptualizing brain
regions as nodes with structural or functional properties
connected by white matter (WM) fibers, connectomics
can bridge the gap between mapping neural networks
and understanding their functions (Bullmore and Sporns,
2009). Neural network analysis involves focusing on both
functional and structural connectivity (Irimia and Van
Horn, 2015b). Employing diffusion tensor imaging (DTI)
and diffusion spectrum imaging, structural connectomics
uses spatial topography data to construct a physical map
of neural activity and infer WM anatomic organization
along with neurological insult-derived connectivity damage
(Irimia et al., 2014).

Using functional MRI (fMRI) (Irimia and Van Horn, 2015b),
magnetoencephalography (MEG) (Irimia and Van Horn, 2015a),
and electroencephalography (EEG) (Lima et al., 2006; Irimia and
Van Horn, 2015a) functional connectomics involves the study
of neural network activity via: (a) temporal dynamics; (b) maps
representing information exchange between nodes and modules;
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(c) resting states; and (d) responses to exogenous stimuli
(Halgren et al., 2011). Such studies facilitate the measurement
of network integrity following neurological insults, including
stroke. Additionally, brain activity can be further understood
mechanistically through activation patterns identified within the
functional connectome. This lens can be useful when cognitive
abilities, behavior, or network PS modulate neural responses
(Craddock et al., 2015).

Ischemic insults can compromise information processing
within and across neural networks. In worst-case scenarios,
this ability is lost. In more moderate cases, neuroplasticity
can facilitate the preservation of intended operational outputs
in a lesioned network. Importantly, this type of recovery
has been studied more thoroughly in sensorimotor than
neurocognitive domains (Gray et al., 1989; Wang et al., 2010; Lee
et al., 2015). With neurocognitive demands, however, negative
consequences of ischemic insults may manifest as sub-optimal
neural processing, producing operations that are detrimental to
the desired outcome or are inadequately timed. Such imprecision
gives rise to alternative neural pathway use during network
activation sequences to meet specific PS demands (Honey and
Sporns, 2008; Wang et al., 2010). By integrating connectomics
insights into practice and knowledge translation initiatives,
rehabilitation professionals can better identify, isolate, and
subsequently target alternative pathways within patient-tailored
therapeutic activities.

Consistent with previously discussed trends comparing VCI
across stroke severity levels, the ubiquity of WM damage
and compromised neurocognitive function is well-documented
among severe cases (Zinn et al., 2007), and significantly less
so among those with lower degrees of functional impairment
(Wolf and Rognstad, 2013). Using innovative PS measures
can more sensitively detect MiS-VCI than standard assessment
protocols. The following two sections review evidence linking
common processing efficiency metrics to emerging insights
from connectomics. Such evidence, we propose, can aid the
formulation of novel, concrete guidelines for utilizing such
knowledge in clinical rehabilitation practice and knowledge
translation endeavors.

Insights From Structural Connectomics
Previous studies have highlighted relationships between PS and
the modulation of WM connections. For example, Turken et al.
(2008) demonstrated that damage to the structural integrity of
WM axons correlates with diminished performance in PS tasks.
Specifically, posterior parietal lesions often lead to compromised
PS and associated changes in the integrity of water diffusion
anisotropy along WM fibers. Additional evidence suggests that
brain activity recruiting temporo-occipital WM structures, such
as the inferior longitudinal fasciculi, also modulates PS (Turken
et al., 2008). There is robust support for the use of well-studied,
psychometrically sound neurocognitive assessments targeting
processing efficiency. For example, the SDMT evaluates PS
and efficiency and is sensitive to WM disruptions (Gawryluk
et al., 2014), whereas the SCWT includes a useful event-related
cognitive task that can measure PS sensitively even in the
presence of subtle VCI (Adleman et al., 2002).

DTI techniques like WM tractography facilitate the modeling
and visualization of neural pathways (Basser and Pierpaoli, 2011).
This method has been used to employ compromised processing
efficiency as a metric for impairment magnitude across various
neurocognitive domains. Action potentials propagating along
WM axons enable information exchange across neural networks,
often by synchronizing the firing of neuronal populations (Assaf
and Pasternak, 2008; Turken et al., 2008; Basser and Pierpaoli,
2011). Thus, WM insults can substantially alter information
processing across network nodes, disrupting neurocognitive
capacities (Assaf and Pasternak, 2008; Turken et al., 2008; Basser
and Pierpaoli, 2011). At the microscale, such insults often
involve dendritic or synaptic loss and inflammation modulated
by microglia, both phenomena being able to interfere with local
network function (Lim and Kang, 2015).

In addition to applications for MiS-VCI, given DTI’s ability
to identify subtle WM abnormalities, it can assist in predicting
functional outcomes in other cases involving less severe
neurological insults. In particular, there is support for this
technology addressing WM changes associated with cerebral
hemorrhages and mild traumatic brain injury (Irimia et al.,
2014), as well as those linked to the neuro-invasion potential
of SARS-CoV-2 during the recovery from COVID-19 (Lu
et al., 2020). Importantly, standard structural MRI cannot
always detect WM changes (Lim and Helpern, 2002; Assaf
and Pasternak, 2008). Thus, DTI can be leveraged to assist
the diagnosis and classification of MiS, and help researchers
elucidate the relationship between structural WM damage and
MiS-VCI. Additionally, because DTI-based network analysis can
provide quantitative measures of brain dysfunction, this strategy
can complement in-place behavioral diagnostic methods. For
these reasons, we propose that insights obtained by combining
quantitative descriptions of structural network integrity and
insult location can have utility for improving diagnostic accuracy
while facilitating MiS characterization and targeted treatment-
approach development.

Insights From Functional Connectomics
In its own right, functional connectivity can substantially assist
MiS diagnosis and classification. Research suggests that the brain
can be modeled as a small-world network with extensive local
clustering, which facilitates efficient information processing
(Lim and Kang, 2015). Global communication, by contrast,
relies on long-range connections between network nodes. This
ranged approach enables further information processing and
integration across neuroanatomically or functionally distinct
regions. The extent of network impairment following stroke is
highly dependent upon lesion location and can alter both local
and global network efficiencies (Wang et al., 2010; Lim and
Kang, 2015). For example, Wang et al. (2010) studied patients
with focal subcortical motor pathway damage and found that,
compared to healthy volunteers, motor execution networks
exhibited lower efficiency of local information transfer between
homotopic brain network regions. Similarly, reductions in global
network efficiency due to nodal damage have been demonstrated
by both computational models and MRI studies (Honey and
Sporns, 2008; Alstott et al., 2009; Wang et al., 2010). Therefore,
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interpretations and clinical applications of connectomic
measures require careful consideration.

While stroke may compromise local network efficiency, distal
network modules can assume the roles of injured regions in
response to rehabilitation (Biernaskie et al., 2005; Nomura et al.,
2010; Grefkes and Fink, 2011). Given structural redundancies
within the brain, these networks can be recruited during recovery
from stroke, potentiating functional improvement. Whereas
local network efficiency can decrease following stroke, there
can also be simultaneous, compensatory functional connectivity
increases throughout the brain. Compensation may involve
rerouting information between nodes using indirectly connected
uninjured regions, increasing the amount of neural processing
commensurate with task demands.

Researchers can harness functional connectomics to enhance
investigations of cortical information exchange and network
integrity since connectomic analysis can sensitively detect subtle
MiS-VCI. Furthermore, functional connectivity methods can
facilitate the investigation of task-related, inter-regional coupling
(Wang et al., 2010), phenomena that are essential considerations
in conceptualizing VCI. Incorporating these insights into MiS
care can bolster clinical assessment methods and improve the
detection of subtle network inefficiencies associated with context-
driven impairment.

PS: A Proxy for Complex Neurocognitive
Function
To assess network processing efficiency and quantify the
adequacy of mental operations indelible to neurocognitive
function, clinical assessments should account for patient-specific
factors that facilitate or hinder performance. Replicating stressors
that fuel context-driven impairment can be impractical in acute
care settings. In this light, there is utility in identifying a sound
proxy to screen core neurocognitive capacities. One crucial factor
that varies in response to context-driven cognitive demands
is PS. Task-specific demands governing speed, complexity, and
duration parameters influence the degree of perceived difficulty
associated with any given neurocognitive operation.

Distractions and unexpected changes in the scope of a given
task can negatively impact processing efficiency by increasing
the cognitive load. Such challenges increase demands upon
working memory and EF. Given the nuanced nature of daily
living, difficulties may still ensue after reducing competing
stimuli and prioritizing task resources. Within the literature,
there are examples linking compromised PS to deficient saccadic
eye movements and oculomotor impairment to neurocognitive
dysfunction (Barnett and Singman, 2015). Similarly, the SCWT
and the SDMT are gold-standard assessments of PS (Smith,
1973; Golden and Freshwater, 2002). Importantly, results from
these instruments derive from large normative statistical samples
and allow subject stratification according to age and educational
attainment peers. These tests have also been used to measure
neurocognitive function under heightened cognitive load (Siegle
et al., 2008) and detect deficits ranging from subtle to profound
impairment. In conclusion, using PS as a proxy to assess
connectomic integrity and subsequent neurocognitive capacities

provides a central organizing principle to inform MiS-VCI
detection protocols, drive knowledge translation efforts, and
refine treatment approaches.

DISCUSSION

Clinical Applications and Considerations
Building on the Human Connectome Project’s body of
knowledge, current conceptualizations of intact network
processing (Sporns et al., 2005), generalized linear models of
neurocognitive function (Park and Friston, 2013; Petersen
and Sporns, 2015), and studies of damaged network integrity
due to focal or diffuse injuries (Lim and Kang, 2015), the
potential benefit of incorporating connectomic methods into
MiS care protocols is compelling. Work toward this end involves
creating functional connectivity models, plus calculating network
clustering coefficients and characteristic path lengths (Bullmore
and Sporns, 2009). Thus, improved MiS-VCI detection could
involve quantifying neural network efficiency or the extent of
network reorganization following injury. Such strategies offer the
potential to stratify MiS presentations with substantial sensitivity
and specificity based on the severity of functional network
impairments. This approach has already been demonstrated in
proof-of-concept studies involving moderate-to-severe stroke
(Wang et al., 2010), suggesting that extending this method
to more accurately characterize MiS-VCI should be a future
research priority.

While clinical neuroimaging modalities critically inform
medical management decisions following moderate and severe
stroke (Wintermark et al., 2013), multimodal imaging and
network theory research have substantially advanced our
current understanding of structural and functional connectivity
disturbances underlying MiS (Silasi and Murphy, 2014). Such
progress has enabled clinicians and researchers to better
characterize stroke lesions and their impact on structural and
functional connectivity. In practice, neuroimaging localizes
lesions topographically to construct a predictive framework for
cognitive outcomes after stroke (Hope et al., 2013). However,
most topographic models do not account for stroke severity
(van Meer et al., 2012; Hope et al., 2013). Thus, aiming
beyond topography-based lesion analysis (e.g., studying stroke-
driven structural connectome alterations) can potentially help
predict MiS-VCI incidence and identify associated biomarkers
(Kuceyeski et al., 2016). To improve MiS care, clinician
scientists, OT, and other allied health professions should
acquire and incorporate findings from standard structural and
multimodal imaging technologies. Employing aggregate, atlas-
informed (Liew et al., 2020) neuroimaging biomarkers can
aid MiS classification, reducing uncertainty stemming from
absent consensus on best practices governing detection and
diagnosis. Although MiS and brain network heterogeneity may
be limiting factors in this respect, incorporating knowledge
from VCI-associated deficit atlases can refine clinical evaluations
(Wang et al., 2010). Insights from these data-driven approaches
may inform the development and selection of MiS-VCI
rehabilitation approaches rooted in daily living contexts.
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However, what is the best way to employ multimodal approaches
in quantifying network efficiency and PS while also deriving
more sensitive and specific MiS-VCI characterizations? One
process could involve the creation or refinement of resting-state
fMRI atlases and mapping MiS-associated functional network
impairments. This type of development would be akin to MR
fingerprinting techniques (Ma et al., 2013) and the Virtual Brain
Project, where neuroinformatics drives personalized medical care
(Falcon et al., 2016).

Advances in network theory and neuroimaging applications
can help clinicians develop innovative, evidence-based, early
MiS care. For example, the literature supports the utility of
studying compromised network efficiency linked to damaged
neuroanatomical structures (Honey and Sporns, 2008). Due to
stroke-related increases in average neural network path lengths,
information relayed across these structures takes longer to
reach intended destinations. This insult-derived change supports
screening for MiS-VCI using PS metrics (Turken et al., 2008;
Eckert, 2011), as PS is a key variable predicting overall cognition-
based stroke outcomes (Su et al., 2015).

As previously discussed, VCI can be reliably measured at
the bedside by OT using robust instruments like the SDMT
and SCWT (Smith, 1973; Golden and Freshwater, 2002).
Additionally, compromised PS can disrupt essential visual-motor
skills such as pursuits and saccades. These foundational visual-
motor abilities are sensitive to mild cortical insults and can
reflect the integrity of core neurocognitive capacities at risk
for context-driven impairment (Barnett and Singman, 2015).
Therefore, healthcare providers should integrate this information
into early stroke care protocols to increase MiS-VCI detection
and subsequent access to services (e.g., outpatient OT targeting
functional cognition and post-stroke quality of life).

Looking beyond applications within acute MiS care,
neuroimaging advances could inform more effective functional
cognition protocols for chronic insult recovery. Historically,
clinicians have relied heavily upon assessment batteries or
subjective measures to determine intervention efficacy (Hajek
et al., 1997). However, research suggests that technology such
as DTI can be employed to bolster predictions regarding motor
responses to restorative stroke therapies (Cassidy et al., 2018).
The validity of such approaches targeting MiS-VCI would be
further strengthened by in-depth analyses of network disruptions
within specific regions of interest, quantified by measures like
connectivity strength (Sporns and Zwi, 2004; Park and Friston,
2013).

Future Directions
In addition to improving detection and service provision
for stroke patients, emerging practices involving multimodal
neuroimaging are being employed to model and predict clinical
outcomes. For example, recent studies have successfully predicted
aspects of post-stroke cognitive recovery by examining DTI-
based connectivity measures and employing machine learning
analysis of resting-state network fMRI data (Aben et al., 2021;
Lopes et al., 2021). Unfortunately, these studies focus on long-
term timelines, using measures acquired 6 months after stroke
to predict function at 3-years, or 5 weeks post onset being used

to predict 1-year status. We contend that, while such studies are
important to advance our overarching understanding of stroke,
we must also look pointedly at immediately pressing issues.
Specifically, steps should be promptly taken to improve triaging
and care for individuals experiencing MiS.

The clinical and neuroimaging communities should undertake
sustained knowledge translation efforts to develop theory-driven,
practice-based treatment models addressing the paucity of
knowledge regarding MiS-VCI. As exemplified in the examples
below, integrating neuroimaging protocols with clinical
rehabilitation insights can enhance our understanding of this
understudied condition. For instance, bolstering functional
cognition assessments to consider network strain under high
cognitive loads can improve MiS-VCI characterization. Also,
positron emission tomography (PET) or MR spectroscopy
(MRS) can potentiate improved post-stroke functional
mapping and pharmacological targeting of performance-specific
neurotransmitters and blood-borne molecules (Schlosser, 2000).
Further, evidence supports that incorporating neuroimaging
insights into pharmaceutical development protocols can
improve early post-stroke medication effectiveness (Faingold
and Blumenfeld, 2015). One potentially beneficial general
consideration regarding MRI segmentation, as the accuracy
of its scheme relies on the ability to differentiate between
tissue classes (Madhukumar and Santhiyakumari, 2015) is
that the use of fuzzy preprocessors can account for tissue
geometry and reduce computational load (Versaci et al.,
2015). Lastly, promising MEG/EEG mapping research
supports that temporal network patterns reflect resource
shifts pre, during, and post task performance (Irimia and
Van Horn, 2015b). Studies such as these, examined within
large samples, could elucidate high-frequency, time-dependent
characteristics of network activity, against which deficient
MiS-VCI dynamics can be compared. However, considerable
work remains to clarify interrelationships between MiS-driven
electrophysiological changes during neural activity and links to
clinical parameters.

CONCLUSION

Subtle stroke-associated neurocognitive impairment is an under-
examined condition that impacts patients, health care systems,
and society overall (Sun et al., 2014). Though two-thirds of
stroke survivors experience minor deficits (Yaghi et al., 2017),
and the emerging recognition that VCI is a potential hallmark
of MiS (Lim and Kang, 2015), conventional assessments often
mischaracterize or inadequately detect MiS. Existing diagnostic
and rehabilitation paradigms would benefit from incorporating
current perspectives from neuroimaging and connectomics.
Such inclusion would illustrate research and practice symbiosis,
via knowledge translation efforts, targeting improved MiS-VCI
construct clarification and clinical service provision.

Incorporating connectomics and network theory into existing
clinical perspectives may require further innovation targeting the
acquisition, analysis, and interpretation of neuroimaging data.
Nevertheless, structural and functional neuroimaging methods
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offer unique opportunities for scientific discovery and clinical
advances in MiS care whether employed individually or together
(Silasi and Murphy, 2014). Available literature supports two key
approaches for developing and refining current perspectives:
(a) quantify interrelationships between MiS-VCI and network
dysfunction via existing neurocognitive assessments; and (b) atlas
MiS-derived neural damage to bolster interdependence of MiS
research and clinical practice (Liew et al., 2020). These and other
strategic knowledge-translation efforts should be pursued in the
understudied yet epidemiologically significant area of MiS-VCI.

Finally, considering the MiS-survivor experience, returning
to prior routines can be fraught with challenges. Performing
complex activities with neurocognitive deficits can be
complicated by a narrow margin of error separating success
from failure. Consider the prospect of resuming employment
with undiagnosed MiS-VCI. A VCI-fueled unsuccessful return
to work scenario is easy to envision without access to sensitive
assessment and treatment. Despite legal protections available
through the Americans with Disabilities Act (n.d.), there is still
an inordinate risk for performance-based termination if MiS-VCI
has not been identified.

Every day, lapses in judgment and substandard quality of
work drives job loss among neurologically intact individuals. In
this light, how are MiS-VCI survivors likely to fare given an
increased probability of substandard complex task performance
in conjunction with potential overestimations of their capacities?
Without sensitive MiS-VCI assessments and established access
to ecologically valid functional cognition interventions, MiS

survivors are often ill-equipped to fully participate in the context
of daily living. They are also likely to struggle in negotiating
the impact of multifaceted functional disconnections from
their baseline capacities. Such deficiencies can be life-changing,
significantly altering their ability to perform other complex tasks
such as driving and caregiving. In response to such potentialities,
clinicians and researchers should proactively infuse cutting-edge
neuroimaging technology, neuroinformatics, and connectomics
perspectives into rehabilitative approaches to positively influence
MiS survivors’ neurocognitive recovery trajectories.
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Increased cerebral cortex
activation in stroke patients
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Background: Electrical stimulation of the cerebellar fastigial nucleus (FNS) has

been shown to protect animals against cerebral ischemic injury. However, the

changes in cortical activation as a response to FNS have not been illustrated

in humans.

Objective: This study aims to detect functional connectivity changes in the

brain of stroke patients, and investigate the cortical activation caused by FNS

through measuring the oxygenated hemoglobin concentration (HBO) in the

cerebral cortex of stroke patients and healthy controls (HCs).

Methods: This study recruited 20 patients with stroke and 20 HCs with all the

following factors matched: age, gender and BMI. The experiment session was

made up of the pre-task baseline, FNS task period, and post-task baseline.

FNS task period contains 5 blocks, each block encompassing the resting state

(30 s) and the FNS state (30 s). HBO signals were acquired by functional

near-infrared spectroscopy (fNIRS) from the Prefrontal Cortex (PFC), the

Motor Cortex (MC) and the Occipital Cortex (OC) throughout the experiment.

The Pearson correlation coefficient was used to calculate the resting-state

functional connectivity strength between the two groups, and the general

linear model (GLM) was used to calculate the activation of 39 fNIRS channels

during FNS in stroke patients and HCs, respectively.

Results: The coupling strength of stroke patients were significantly decreased

in the following regions: right MC and left MC (t = 4.65, p = 0.0007),

right MC and left OC (t = 2.93, p = 0.04), left MC and left OC (t = 2.81,

p = 0.04). In stroke patients, the changes in cerebral oxygenated hemoglobin

(1HBO) among 12 channels (CH) in the bilateral PFC and bilateral MC regions

were significantly increased during the FNS state (FDR corrected p < 0.05)

compared with the resting state. In HCs, only 1 channel was increased (FDR

corrected p < 0.05) in the left PFC during FNS.
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Conclusion: By using the FNS and fNIRS techniques, the characteristics of

functional connectivity were found to decrease in stroke patients. It was also

noticed that FNS activates the PFC and MC regions. These findings may help

to guide functional rehabilitation in stroke patients.

KEYWORDS

cerebellar fastigial, electrical stimulation, cortical activation, oxygenated hemoglobin
concentration, functional near infrared spectroscopy

Introduction

Four pairs of nuclei (fastigial nuclei, emboliform nuclei,
globose nuclei and the dentate nuclei) exist in the cerebellum.
The cerebellar fastigial nucleus (FNS) is located at the top of
the fourth ventricle. According to one MRI study, the FN is
approximately 3 × 3 × 3 mm in size (in width, height and
length, respectively) (Dimitrova et al., 2002). The FN is well
known for its essential role in motor control and the non-motor
system (Al-Afif et al., 2019; Zhang X. Y. et al., 2016). It carries
out extensive projections to many motor structures, which
control the body’s movement by projecting to the reticular
structure of the medulla oblongata/brainstem and the primary
motor cortex (MC). Eye movement, for example, is governed by
the projection of the cranial nucleus in the brainstem. The FN
also regulates the cardiovascular system by sending projection
fibers to the solitary tract and the paramedian reticular nucleus.
In the 1990s, a study discovered a fastigial pressor response
(FPR) in cats, whereby the arterial pressure was observed to
increase upon stimulation of the FN (Miura and Reis, 1969).

Electrical stimulation of the cerebellar FNS has been
proven to improve brain cortical blood perfusion effectively
(Golanov and Reis, 1996). It is also effective against cerebral
ischemia. Cerebral ischemia can evoke an inflammatory
response and secondary brain injury. Researchers found
that FNS contributes to decreased infarction volumes, elicits
suppression of periinfarction depolarizing waves, promoting
axonal regeneration, and inhibiting inflammatory response
(Golanov and Reis, 1999; Wang et al., 2019; Xia et al., 2019).
Xia et al. (2019) observed that FNS treatment could affect the
expression of some inflammatory factors such as caspase-1 and
interleukin 1β, besides inhibiting cell apoptosis and promoting
neuronal repair and regeneration (Wang et al., 2019). Several
basic animal experiments have proven that FNS is involved in
regulating activity in other brain regions and modulate vascular
activity (Zhang C. et al., 2016; Golanov et al., 2017; Gao
et al., 2018). However, clinical applications of this treatment
are relatively few, and relevant clinical treatment evidence
are still lacking.

Functional imaging technology can be applied to detect
brain metabolism, cerebral blood flow (CBF) and other

indicators to determine the level of cerebral cortex activity,
thus providing a clear image of a person’s state of brain
function. Traditional functional imaging methods include
functional magnetic resonance imaging (fMRI) (Buxton, 2013)
and positron emission tomography (PET) (Hooker and
Carson, 2019). Nevertheless, these techniques cannot provide
dynamic observation of brain function changes during electrical
stimulation. Recently, functional near-infrared spectroscopy
(fNIRS) has been widely used in the evaluation of brain
function because of its portability, repeatability, and for being
non-radiation. fNIRS is a hemodynamics-based neuroimaging
technique that provides a non-invasive method for the detection
of relative changes in cerebral oxygenated hemoglobin (1HBO)
at the cortical surface (Lloyd-Fox et al., 2010; Obrig, 2014;
Scholkmann et al., 2014). This method is commonly used
to detect changes in cerebral hemodynamics during electrical
stimulation and rehabilitation tasks in stroke, depression,
Parkinson’s and various mental diseases (Noda et al., 2012;
Wang et al., 2020; Conceição et al., 2021; Zhang et al.,
2021). Kozel et al. (2009) and Li et al. (2019) acquired
fNIRS when their subjects were receiving transcranial magnetic
stimulation, and they found decreased levels of activation and
functional connectivity within the cerebrum. In addition, the
simultaneous application of transcranial electrical stimulation
or peripheral nerve electrical stimulation combined with
fNIRS to explore the mechanism of CBF is an essential
innovation in therapeutic interventions (Di Rosa et al.,
2019; Huo et al., 2019). The integration of fNIRS and
transcranial electrical stimulation therapy also brings great
potential for neuroscience research and clinical application of
the brain related diseases. All these advantages make fNIRS a
suitable technique for detecting activity changes in the brain
cortex during FNS.

FNS is a non-invasive brain stimulation technique that
transmits bionic low-frequency biological current to the
cerebellar FNS through a bilateral mastoid process to modulate
CBF and brain function (Hu et al., 2017). This study aims to
detect brain functional connectivity changes in stroke patients,
and investigate the cortical activation caused by FNS through
measuring the concentration of HBO in the cerebral cortex of
stroke patients and healthy controls (HCs), respectively.
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Materials and methods

This study was conducted at the Rehabilitation Medicine
Department of Sun Yat-sen Memorial Hospital. This study
was performed adhering to the Declaration of Helsinki on
biomedical research involving stroke patients and healthy
subjects. The research protocol was approved by the Sun Yat-
sen Memorial Hospital Ethics Committee (SYSEC-KY-KS-2021-
251). All participants provided written informed consent before
their inclusion in this study. The comprehensive testing lasted
for 10 min, including resting and stimulation.

Participants

Forty right-handed participants comprised of 20 patients
with stroke (3 females, 17 males) and 20 sex, age-matched
HCs with no history of mental or neurological disorders were
recruited from the local community to participate in this
fNIRS study. The patients with stroke were recruited from the
Department of Rehabilitation Medicine, Sun Yat-sen Memorial
Hospital, Guangzhou, China, while the HCs were enrolled
from the society. For the patients with stroke, the inclusion
criteria for stroke group were as follows: (1) Right-handed;
(2) an ischemic stroke as confirmed by imaging (the magnetic
resonance imaging or computed tomography) outcomes; (3)
unilateral lesions; and (4) more than 4 weeks after the onset
of stroke. Meanwhile, the exclusion criteria were as follows: (1)
unstable medical condition; (2) any neurological disease except
stroke; (3) unable to cooperate with the examination due to
depression, anxiety, mania, schizophrenia and/or other mental
disorders; (4) skin infections, lesions and/or sensitive tingling in
the areas of stimulation; and (5) informed consent could not be
obtained from patients or their family members.

The Modified Rankin Scale (MRS), National Institutes of
Health Stroke Scale (NIHSS), and Modified Barthel index
(MBI) were evaluated by trained attending physicians to assess
patients’s neurological and motor functional recovery. The Body
mass index (BMI) and blood pressure were extracted from the
electronic medical records of patients in hospital.

Study design

The experimental section consisted of a 40-s pre-task
baseline, a 300-s FNS task period, and a 20-s post-task
baseline (Figure 1A). The 300-s FNS task period was made
up of 5 block sets, with each block containing an FNS
condition (30 s) and a resting condition (30 s). Participants
were asked to sit in a quiet, dark environment to avoid
noise and light interference, and the order of tasks was not
revealed before the experiment. The fNIRS measurements were
taken through the whole experimental process. During the

FNS condition, electrodes of the FNS electrical stimulator
(CVFT-201, QianKang electrical stimulator, ShangHai, China)
were attached to the bilateral mastoid (Figure 1B). FNS was
performed using model 3 (136 Hz, strength: 45–90%) according
to the manufacturer’s instructions.

Functional near-infrared spectroscopy

A continuous-wave, multi-channel fNIRS system (NirSmart,
Danyang Huichuang Medical Equipment Co., Ltd.) was used
to measure HBO and deoxygenated hemoglobin (HBR) with
a sampling rate of 11 Hz. The wavelengths of light for this
measurement system were between 730 and 850 nm. As shown
in Figure 1C, 39 fNIRS channels were positioned over the PFC
(LPFC/RPFC), MC (LMC/RMC) and OC (LOC/ROC) regions.
The fNIRS measured light intensity signals through 19 light
source probes and 15 detector probes. Concentration changes of
HBO were calculated by the light intensity obtained from fNIRS.

Data preprocessing

The data recorded from fNIRS were preprocessed and
analyzed using the NirSpark software package, which runs
in MATLAB (Mathworks, United States). Data preprocessing
included several steps. The raw light intensity was converted
to optical density according to the modified Beer-Lambert Law
(Kocsis et al., 2006). Remove both baseline shifts and spike
artifacts by using parameter-free motion correction method
(Hou et al., 2021). The band-pass filtering of the optical density
signals was set between 0.01 and 0.2 Hz to remove baseline drift
and physiological noise (Zheng et al., 2019; Si et al., 2021). The
optical density transformed to HBO and HBR concentrations
(Tak and Ye, 2014). Because the HBO has a better signal-to-noise
ratio than HBR, we choose the HBO as our primary indicator
in the following analysis. The hemodynamic response function
(HRF) initial time was set to –5 s while the end time was set to
50 s (with “–5 to 0 s” as the baseline state and “0–50 s” as the
state for a block paradigm). With the FNS duration set to 30 s,
the HBO of each five-block paradigm were superimposed and
averaged to produce an average block result.

Analysis of functional near-infrared
spectroscopy data

For each participant, functional connectivity was calculated
by conducting the Pearson correlation analyses between time
series of each pair channel. The Pearson correlation was
calculated for the pre-task baseline between any two channels
to generate a 39 × 39 correlation matrix for each participant.
Furthermore, the 39 channels were divided into six regions
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FIGURE 1

Experiment equipment and procedures. (A) The experimental process consisted pre-task baseline, task period, and post-task baseline. The
block design in task period is made up of 5 cycles of 2 states: 30 s of FNS and 30 s of rest. (B) Location of electrodes for FNS: bionic
low-frequency biological current from 2 transcutaneous electrodes is transmitted along the mastoid process to the fastigial nucleus. (C) The
source optodes, detector optodes and channels: 39 Channels according to the 10/10 system. 6 cerebral areas were measured: LPFC, RPFC,
LMC, RMC, LOC, and ROC.

of interest (ROI), including LPFC, RPFC, LMC, RMC, LOC,
and ROC. We calculated the functional connection matrix
between the six ROI in the same way. For any two ROI, the
mean value of the functional connection value of all channel
pairs between them is used as the functional connection value
between the two ROI.

The mean time course for one subject is expressed as
X = [xi(t)t = 1,2,3,....N], where xi(t)t = 1,2,3,....N is the mean
time series of the region. The formula for calculation is as
follows: x

xi = the average of xi

r
(
xi, xj

)
=

∑N
t =1 [xi (t)− xi]

[
xj (t)− xj

]√∑N
t =1 [xi (t)− xi] 2

√∑N
t =1

[[
xj (t)− xj

]]
2

(1)

According to the waveforms of individuals in all 39
channels, each channel’ s averaged waveforms of HBO and
HBR changes of all participants in the stroke groups were
obtained. The general linear model (GLM) (Uga et al.,
2014) was used to analyze the preprocessed HBO data of
each channel for each subject to identify cerebral areas that

were significantly activated by FNS. GLM establishes an
ideal HRF for each subject task, allowing the calculation
of beta values that reflect the level of cerebral cortex
activation according to the matching degree of actual HRF
and excellent HRF values. The results of this study are
based on beta values.

Statistical analysis

Data normality was tested by the Shapiro-Wilk test. The
Mann-Whitney U-test was used for age and height difference
in stroke and HCs, while gender was tested by the chi-
square test. A two-sample t-test was used to compare the
characteristics such as weight, BMI and BP between the stroke
group and the HCs.

In the activation analysis, the beta values of the stroke
group and the HCs were analyzed with a single sample t-test
and two-sample t-test on each channel by using the NirSpark
software. Statistical results were corrected by FDR correction
(p < 0.05).
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To find the difference in functional connectivity between the
HCs and the stroke group, two-sample t-tests were performed
between groups to identify correlation in each ROI, and the
results were corrected by FDR multiple hypothesis tests.

Results

Demographic and characteristics

The demographic characteristics comparisons of the two
groups are listed in Table 1. The stroke group included 17
males and 3 females. The HCs included 16 males and 4 females.
Participants with stroke and HCs showed no difference in age

(z = 1.93, p > 0.05), gender (chi-square = 0.17, p > 0.05), BMI
(t = 1.18, p > 0.05), or blood pressure (t = 0.73, p > 0.05;
t = –0.55, p > 0.05). Among them, 11 patients had unilateral
basal ganglia infarction, 5 patients had brainstem infarction
(Supplementary Table 1). The mean time after stroke of stroke
group was 4 months (SD = 2.1), the mean MRS, NIHSS and
MBI scores of patients were 3 (SD = 0.7), 10 (SD = 4.5) and 45
(SD = 12), respectively.

Decreased functional connectivity in
stroke patients

Figure 2A employs a 39 × 39 matrix figure to show
averaged connectivity strength during FNS by group. Data

TABLE 1 Characteristics comparison between stroke group and HCs.

Stroke (n = 20) HCs (n = 20) T/Z/χ2 p

Age (years) 42 (30.0, 49.75) 30 (28.39) 1.93 0.056

Gender (M/F) 17/3 16/4 0.17 0.677

Weight (kg) 63 (8.9) 58 (8.4) 1.77 0.085

Height (cm) 173 (162.5, 175.8) 165.5 (160.3, 172.3) 1.66 0.096

BMI (kg/m2) 22 (2.3) 21 (1.8) 1.18 0.242

Systolic blood pressure (mmHg) 126 (17.9) 123 (9.6) 0.73 0.473

Diastolic blood pressure (mmHg) 82 (13.2) 84 (6.1) –0.55 0.584

Time poststroke (month) 4 (2.1) – – –

MRS 3 (0.7) – – –

NIHSS 10 (4.5) – – –

MBI 45 (12) – – –

HCs, Healthy controls; BMI, Body mass index; MRS, Modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; MBI, Modified Barthel index.

FIGURE 2

Spatial patterns of the functional connectivity in the FNS state and resting state. (A) Networks of FNS-related changes in functional connectivity
between stroke patients and HCs. (B) Histograms of functional connectivity distribution in the two groups. (C) Functional connectivity in
patients with stroke showed significant decreases in different cerebral regions when compared with HCs.
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TABLE 2 Channels with HBO significantly increased when compared
with the resting baseline during FNS.

ROI of cortical area Channels

L-DLPC 9 23 24*

R-DLPC 3 17 19* 28*

L-PT 11 12 25#

R-PT 3 4 18

L-PMC 31 30* 32 33

R-PMC 15 16 34* 35*

L-SMC 13* 14* 26 27

R-SMC 1 2 28* 29

L-VAC 38 39

R-VAC 36 37

Obitorfrontal area 5 6 8

Frontopolar area 7* 9 10 20* 21* 22*

L, left; R, right; DLPC, Dorsolateral Prefrontal Cortex; PT, Pars Triangular; PMC, Primary
Motor Cortex; SMC, Supplementary Motor Cortex; VAC, Visual Association Cortex.
*p < 0.05 in the stroke group.
#p < 0.05 in the stroke group and HCs.

showed that the average connectivity strength in stroke patients
was much lower [e.g., in the MC and occipital cortex (OC)]
than that in the HCs. The mean values and standard deviations
of connectivity strength were 0.29 ± 0.14 for stroke patients,
and 0.39 ± 0.21 for HCs (Figure 2B). Figure 2C shows the

difference in functional connection strength between the two
groups in six ROI. Compared with the HCs, stroke patients
showed decreased functional connectivity between RMC and
LMC (t = 4.65, p = 0.0007), RMC and LOC (t = 2.93, p = 0.04),
and LMC and LOC (t = 2.81, p = 0.04). The results were
corrected by FDR.

Analysis of cortical activation

13 of the 39 channels were significantly activated in
the 2 groups distributed across the 12 Brodmann regions
(Table 2) where distributed according MNI coordination
(Supplementary Table 3). In stroke patients, the 1HBO
among several channels in the bilateral PFC (CH7, CH19,
CH20, CH21, CH22, CH24) and bilateral MC (CH13,
CH14, CH28, CH30, CH34, CH35) regions were significantly
increased during the FNS state (p < 0.05 FDR correction, the
effect size of all channels can be found in Supplementary
Table 2) when compared with the resting state. In HCs,
the 1HBO in CH25 of the left Pars Triangular was
significantly increased as compared to the resting state.
Figure 3 shows brain maps with activation regions during
FNS being highlighted by using beta values of GLM analysis
in (A) HCs and (B) stroke patients. Figure 4 shows dynamic
concentration changes in the average HBO of stroke patients

FIGURE 3

Brain map of activation regions during FNS by using beta values of GLM analysis in the (A) HCs, and the (B) stroke patients. The color bar
represents the P-value of beta values.
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at different Brodmann regions over time (–5 to 60 s, 0–
30 s represent the FNS period). The concentration of HBO
gradually increased with the initiation of FNS. It reached
the peak value after 10 s and then dropped rapidly in
the bilateral MC.

Discussion

In this study, the fNIRS approach was used to study
cortex functional connectivity and activation characteristics in
the stroke patient and HCs. From the functional connectivity
perspective, the correlation coefficients between bilateral MC
and left OC were found to decrease in stroke patients
compared with the HCs during the resting state; from
the cortex activation perspective, significant activation was
observed in the PFC and MC of stroke patients during

FNS. Moreover, FN was also found to activate part of the
LPFC in the HCs.

Based on the results of this study, the functional connectivity
strength between RMC and LMC, RMC and LOC, and LMC and
LOC were significantly decreased in stroke patients compared
with participants in the HCs. And the strength of functional
connection in both hemispheres decreased asymmetrically.
Neural plasticity is an important factor that reflects cortical
reorganization after stroke, and functional connection is one
of the main indicators of neural plasticity. The MC is the
core of the brain that plans and executes volitional movements
(Svoboda and Li, 2018), whereas the OC is associated with
peripheral sensory information (Song et al., 2017). The results
of this study are consistent with previous studies that reported a
high correlation between decreased sensorimotor connectivity
and clinical motor functional defect assessment (Volz et al.,
2016). Studies found that focal cerebral ischemic injury can

FIGURE 4

Grand average waveforms of HBO changes during FNS in each ROI based on Brodmann in stroke patients. The vertical axis represents
concentration changes of HBO and HBR; while the horizontal axis represents the latency. The start time of the FNS period was defined as 0 s.
The ROI contained 12 cerebral areas, which include the bilateral Visual Association Cortex, bilateral Primary Motor Cortex, bilateral
Supplementary Motor Cortex, bilateral Pars Triangular, bilateral Dorsolateral Prefrontal Cortex, Frontopolar area and Obitorfrontal area.
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lead to a decline in the complete network of sensorimotor
connections, especially in the early stage of stroke (Park et al.,
2011). It can also affect functional connections between the
hemispheres of the undamaged lateral cortex (Green et al.,
2018). Although all patients in the stroke patient group of
this study suffered from long-term unilateral ischemic brain
injury and most of the infarcts are located in the left basal
ganglia, with only a few patients that had large frontal
parietal and temporal lobe infarction on left hemisphere, results
showed weakened intra-hemispheric and inter-hemispheric
brain functional connectivity. The results of our study suggest
that our stroke patients still need rehabilitation therapy
to improve the motor function of the affected limbs and
improve the level of motor functional connection between
the hemispheres.

Results also showed that the HBO of the bilateral PFC
and bilateral MC significantly increased during the FNS period
in stroke patients and HCs. This outcome indicates that FNS
can activate parts of the brain in the PFC and MC. HBO
in the MC increased with FNS but gradually returned to
baseline when FNS was stopped (Figure 4). These results
are in line with those of previous studies (Steriade, 1995;
Golanov and Reis, 1996; Watson et al., 2009, 2014), where
EEG examination showed that the brain-electric activity began
to increase after FNS. CBF was also found to increase in
4 s, peaked around 8 s, and then gradually dropped to the
baseline level. A plausible explanation to these results may be
the ability of FNS in increasing CBF by evoking vasodilation
neurons. The HBO signal could reflect the dynamic changes
in the neural and functional activity of the cerebral cortex
due to the neurovascular coupling mechanism (Claassen et al.,
2021). Besides the influence of CBF, FNS also activates the
intrinsic neurons in the cerebral cortex through neural pathways
(Reis et al., 1997). Fibers from the FNS cross to the opposite
side of the cerebellar vermis to form an uncinate cerebellar
bundle (Haroian et al., 1981). This nerve bundle projects to
the dorsal tegmental area of the midbrain, continues to rise
into the thalamus, and finally terminates in the ventromedial
nucleus of the thalamus dorsal medial nucleus. Due to the
extensive relationship between the dorsal medial thalamic
nucleus and the prefrontal cortex (PFC), the FNS could activate
the PFC (Steriade, 1995). The present results are significant
as the activation of PFC and MC by FNS provides a certain
therapeutic basis and plays a guiding role in the rehabilitation
of stroke patients.

Conclusion

This study illustrated that FNS induced activation in the
brain regions of PFC and MC, with the FC values between
bilateral MC and left OC being significantly decreased in
stroke patients. The results of this study provide evidence
for the clinical application and curative effect guidance of

FNS treatment in the rehabilitation of patients with stroke
and brain injury.

Limitations

Due to the limitation of the fNIRS technology, it was not
possible to measure the subcortical structures and cerebellum.
In the future, the mechanisms related to the neural conduction
pathways between cerebellar FN and cortex should be further
explored to provide more accurate evidence that would be
critical for potential clinical application. Besides, the sample size
in this study was not large enough as well.
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Virtual reality has demonstrated its analgesic e�ectiveness. However, its

optimal interactive mode for pain relief is yet unclear, with rare objective

measurements that were performed to explore its neural mechanism.

Objective: This study primarily aimed at investigating the analgesic e�ect

of di�erent VR interactive modes via functional near-infrared spectroscopy

(fNIRS) and exploring its correlations with the subjectively reported VR

experience through a self-rating questionnaire.

Methods: Fifteen healthy volunteers (Age: 21.93 ± 0.59 years, 11 female,

4 male) were enrolled in this prospective study. Three rounds of interactive

mode, including active mode, motor imagery (MI) mode, and passive mode,

were successively facilitated under consistent noxious electrical stimuli

(electrical intensity: 23.67 ± 5.69mA). Repeated-measures of analysis of

variance (ANOVA) was performed to examine its pain relief status and cortical

activation, with post hoc analysis after Bonferroni correction performed.

Spearman’s correlation test was conducted to explore the relationship

between VR questionnaire (VRQ) items and cortical activation.

Results: A larger analgesic e�ect on the active (−1.4(95%CI, −2.23 to −0.57),

p = 0.001) and MI modes (−0.667(95%CI, −1.165 to −0.168), p = 0.012) was

observed compared to the passive mode in the self–rating pain score, with

no significant di�erence reported between the two modes (−0.733(95%CI,

−1.631 to.165), p = 0.131), associated with diverse activated cortical region

of interest (ROI) in charge of motor and cognitive functions, including the left

primary motor cortex (LM1), left dorsal–lateral prefrontal cortex (LDLPFC), left

primary somatosensory cortex (LS1), left visual cortex at occipital lobe (LOL),

and left premotor cortex (LPMC). On the other hand, significant correlations

were found between VRQ items and di�erent cortical ROIs (r = −0.629 to

0.722, p < 0.05) as well as its corresponding channels (r = −0.599 to 0.788,

p < 0.05).
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Conclusion: Our findings suggest that VR can be considered as an e�ective

non-invasive approach for pain relief by modulating cortical pain processing.

A better analgesic e�ect can be obtained by exciting and integrating cortical

ROIs in charge of motor and cognitive functions. The interactive mode can be

easily tailored to be in line with the client’s characteristics, in spite of the diverse

cortical activation status when an equivalent analgesic e�ect can be obtained.

KEYWORDS

virtual reality, analgesia, functional near infrared spectroscopy, pain, fNIRS

Introduction

Pain is a complex sensory and emotional experience felt by

a person in response to a real or an imaginary tissue injury,

which can be largely influenced by personal experience and

self-perception (Guarin, 2013). Even though there are a variety

of approaches for bringing pain relief in a patient, including

pharmacological and non-pharmacological types, there is still

a worldwide public concern voiced against any inappropriate

pain management (Sinatra, 2010). Considering the unsatisfied

side effects caused by pharmacological approaches, we recently

witnessed an expansion of research on non-pharmaceutical

management (Benyamin et al., 2008; Sostres et al., 2010).

The updated rationale behind bringing in such a non-

pharmaceutical approach is to modulate both personal and

environmental factors (Maral and David, 2017). It is suggested

that physical exercise can help alleviate pain by exciting

the primary motor cortex (M1), thus inhibiting limbic–

cortical–thalamic activities, thereby decreasing the negative

impact generated by prolonged immobilization on account

of sustained pain (Ambrose and Golightly, 2015). On the

other hand, studies have suggested that pain perception can

be downgraded by orienting visual attention over the body’s

painful site, as it can strengthen its functional connectivity

between the pain network and visual cortex at the occipital

lobes (Longo et al., 2012; Karunakaran et al., 2020). It is

speculated that a better analgesic effect can be obtained by

incorporating these factors for bringing about innovations in

current therapeutic approaches.

Even though traditional non-pharmacological management,

such as physical exercise and mindfulness breathing, may bear

these factors for pain modulation, it is quite challenging to

engage a client at a painful status to sustain his/her engagement

in a physically/attentively demanding task, letting alone those

clients of older age and/or those who are in a severe painful

status. Therefore, a tangible approach, which can address this

problem, is keenly required. In recent years, virtual reality

(VR) has been slowly expanding its application in health

care services (Pillai and Mathew, 2019). The rationale behind

such an approach like virtual reality is to immerse the client

in a three-dimensional (3D) virtual simulated environment,

with an entertaining gaming exercise to distract the client’s

attention from painful stimuli (Triberti et al., 2014; Rizzo

and Bouchard, 2019). Over the past years, successive clinical

evidences have demonstrated their promising effectiveness for

pain reduction, anxiety, and stress management not only

in acute pain management caused by a variety of medical

procedures, such as wound dressing changes, dental procedures,

and peripheral intravenous catheter placement, but also in

chronic pain management (Hoffman et al., 2008; Jones et al.,

2016; Alshatrat et al., 2018; Gold et al., 2021). However, these

findings were mostly accrued via subjective ratings with rare

objective measurements. In spite of the VR analgesic effect

evidenced by a small number of studies using functional

magnetic resonance imaging (fMRI), obvious drawbacks of

those studies cannot be ignored (Hoffman et al., 2007). For

instance, the fMRI as a neuroimaging technique can have its

own constraints when observing the neuronal activities during

VR interaction, i.e., poor temporal resolution and constrained

testing environment (Hennig et al., 2003). On the other hand,

even though the distraction hypothesis also suggests that a

better analgesic effect can be achieved when a greater extent

of attention is required in the VR environment, its optimal

interactive mode and the corresponding neural mechanism are

both enigmatic (Li et al., 2011; Lier et al., 2020). To overcome

the technical constraints mentioned above, functional near-

infrared spectroscopy (fNIRS) has been introduced, as it enables

the non-invasive quantification of cortical hemodynamics at

the near-infrared spectrum (Boas et al., 2004). A recent

fNIRS study on VR-induced analgesia clearly discriminated

the unique modulation of anterior prefrontal cortex (aPFC)

over the premotor cortex in traditional mindful breathing

(interoception) by traditional mindful breathing from VR

breathing (exteroception), in which the increased visual–

auditory cortical activation was associated with diminished

functional connection with primary somatosensory cortex (S1)

(Hu et al., 2021). It inspired the applicability of fNIRS in VR-

induced analgesia studies. Considering its superior temporal

resolution and environmental feasibility in comparison with

fMRI and electroencephalography (EEG), fNIRS can be used

as an optimal neuroimaging tool for observing neuronal

activities during VR interaction in an open and unconstrained
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environment bearing its differential optical properties of

hemoglobin (Irani et al., 2007; Yücel et al., 2017).

In the present study, we primarily aimed at investigating

the analgesic effect of different VR modes under painful stimuli.

Secondarily, we aimed at exploring how cortical pain processing

is modulated during different VR interactive modes. Based on

the distraction theory, our primary hypothesis suggests that VR

with a higher requirement of interactive elements can bring in a

better analgesic effect by modulating cortical pain processing.

Materials and methods

This prospective study was approved by the Medical Ethics

Committee of the hospital, with the clinical trial registered at the

Chinese Clinical Trial Registry (Ref. No.: ChiCTR2200061536).

The study was performed in line with the principle of the

Declaration of Helsinki. Written consent form was obtained

from all the participants prior to the beginning of the study.

Participants

Eligible healthy adults aged 18 years or above were enrolled.

Participants with disorders enumerated below were excluded:

(1) auditory or visual deficit, (2) sensory loss due to peripheral

neuropathy or neurological disorders (e.g., peripheral nerve

injuries or brain injuries); (3) acute or chronic pain disorders;

(4) intake of painkillers or other sensory altering substances

(alcohol, etc.) in the recent 2 weeks before the experiment, and

(5) motion sickness. Finally, there were 15 young and healthy

subjects (4 males, 11 females, age: 21.93 ± 0.59 years) who

were recruited.

Study design and procedures

As delineated in Figure 1, this study was basically divided

into three rounds, with interval between each round of at

least 1 day (24 h) to avoid any carryover effect. After the

subjects were enrolled by the convenience sampling method,

a briefing session was initiated to introduce the experimental

flow, to educate on the use of VR device, and to take

safety precautions. A VR questionnaire (VRQ) was provided

throughout each experimental round. Prior to each VR session,

the participants were asked to report their recent pain status

via the visual-analog scale (VAS) for pain scores in the VRQ,

with those who reported any pain excluded. Immediately after

the successful completion of the VR session, the participants

were asked to recall their subjective VR experience, including

the level of pain status, attention, immersion, and pain

distraction as well as their current pain status via VAS

pain scores.

As shown in Figure 2A, the participant was required to wear

a 44-channel fNIRS cap (NirSmart-6000A, Danyang Huichuang

Medical Equipment Co. Ltd., China), with a headmounted

display (HMD) (HTC VIVE Cosmos, HTC/Valve Co.) placed

over his/her head, holding the controllers bilaterally to interact

with the VR gaming task. In each round, an electric stimuli

equipment (YRKJ-F1002, Yirui Co. Ltd., China) was arranged,

with two electrode pads placed on both sides of the participant’s

lumbar L5/S1 level. The frequency rate was set as 1Hz, with 1ms

as the frequency width. The intensity of electrical stimuli started

from 5mA upwards, with its intensity fixed when the participant

reported that the stimuli were similar to a pinprick sensation

(unpleasant, slightly painful). The intensity was constant for

every subject throughout each round.

This block study design consists of three parts, including 30-

s rest, 190-s VR task, and 60-s recovery. During the 30-s rest

period, participants were required to stand still with eyes closed,

counting the number in seconds from 1 to 30. In the 190-s task

session, subjects were required to interact with the VR gaming

task in line with the interactive rules. The last part was a 60-s

recovery session. Again, subjects were required to stand still with

eyes closed, counting the number in seconds from 1 to 60. The

task was conducted under constant electrical stimuli throughout

the experiment.

As delineated in Figure 1, the three rounds were composed

of active VR mode (R1), motor imagery (MI) mode (R2), and

passive VR mode (R3), respectively. A rhythm VR game named

< Beat Saber > (Beat Games, Czech) was chosen as the VR task,

with the music <pop stars> by K-DA, a virtual K-pop female

vocal group that opted for the VR session (Figure 2B). In R1,

the participants were required to wield a pair of glowing sabers,

slashing a stream of approaching blocks in sync with the song’s

beats and notes; whereas in R2, the participants were required

to track the stream of blocks with their eyes, imaging the correct

slashing act without any physical motion; in R3, the participants

were required to listen to the music only, with eyes closed and

physical motion absent.

Data analysis

fNIRS acquisition

A multichannel portable near-infrared system (NirSmart-

6000A, Danyang Huichuang Medical Equipment Co., Ltd.,

China) was used in this study, taking 11Hz as the sampling

frequency rate with dual near-infrared (near-IR) lights

(wavelengths: 730 nm and 850 nm) to detect oxyhemoglobin

(HbO) and deoxyhemoglobin (HbR) concentration changes.

In accord with the international 10/20 electrode distribution

system, the 18 emission sources and 16 detectors (source-

detector separation: 3 cm) were arranged over the frontal,
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FIGURE 1

Experimental flow.

FIGURE 2

Experimental scenario. (A) The scenario of real world; (B) the scenario of virtual world (Virtual Scenario of Beat Saber, n.d.).

parietal, temporal, and occipital regions at both hemispheres,

consisting of 44 channels. The spatial locations of sources

and detectors were measured by an electromagnetic 3D

digitizer device (Patriot, Polhemus, USA) placed on the head

of the subject, with acquired coordinates that are converted

into coordinates in line with the Montreal Neurological

Institute and Hospital (MNI). These coordinates are further

projected to the MNI standard brain template using the

spatial registration approach in NirSpace (Danyang Huichuang

Medical Equipment Co., Ltd., China). A flexible headgear

holder was used for reducing signal noise between the

emitter and scalp. During the experiment, the excessive
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FIGURE 3

Brain map of channel distribution.

light was controlled for better data collection. A brain

location map with its distribution of channels is shown in

Figure 3.

fNIRS data processing

The NIRspark (v1.7.3, Huichuang, China) based on Matlab

(v2021a, Natick, USA) was used to analyze the experimental

data collected by the fNIRS system. The data processing was

performed in the following steps:

1© Elimination of the motion artifact: Spline interpolation was

taken for data correction. The time window was set as 0.5s.

Those signals with any changes beyond 6 standard deviation

(std_thr > 6) and 0.5 amplitude (amp_thr >0.5) of the

whole time series were considered as the motion artifact

(Scholkmann et al., 2010).

2© Data conversion: Based on the Beer–Lambert Law,

the optical density was converted into HbO and

HbR concentrations.

3© Data filter: The raw data were digitally filtered in the

bandpass 0.01–0.2Hz to remove low oscillations, e.g.,

respiratory and cardiac components.

4© Obtainment of the hemodynamic response function (HRF):

The hemodynamic response function’s (HRF’s) initial time

was set to −32 s, and the end time was set to 30 s (with

“−32 to −30s” as the reserved baseline state and “−30

to 30s” as the time for a single block paradigm). The

HbO concentrations across channels for each subject were

superimposed and averaged to compute an average result.

5© Calculation of cortical activation: The β value and featured

value (FV) were taken as cortical activation in this study. The

β values was calculated by employing the Generalized linear

model (GLM) as follows:

Y = Xβ + ε,XǫRN×M ,βǫRM×L (1)

β = X∗Y ,X∗ = (XTX)−1XT (2)

where X ǫ RN×M denotes the design matrices (whereM

is the number of data points during the recording period and
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TABLE 1 Descriptive characteristics.

Demographics

N 15

Age (year): Mean± SD 21.93± 0.59

Gender (Male/Female, N) 4/11

Hand dominance(Left/Right) 0/15

Electric stimulus intensity (mA): mean± SD 23.67± 5.69

VRQ Pain Attention Immersion Pain Distraction

R1 Pre VR task 4/10 - - -

During VR task 2.33± 1.23/10 7.87± 2.42 8.73± 1.39 6.53± 3.36

Post VR task 0 - - -

R2 Pre VR task 4/10 - - -

During VR task 3.07± 0.7/10 6.2± 2.11 6.53± 2.29 6.2± 2.27

Post VR task 0 - - -

R3 Pre VR task 4/10 - - -

During VR task 3.73± 0.88/10 4.93± 2.19 4.87± 2.67 4.73± 2.4

Post VR task 0 - - -

VRQ, VR questionnaire; R1, active mode R2, motor imagery; R3, passive mode.

N is the number of β dimensions), and β ǫ RM×L (where L is

the number of measurement channels) is the corresponding

response signal strength for the HbO parameter. The

canonical HRF was chosen as the basic function of GLM.

The match between experimental design and HRF values

was calculated, then the GLM can derive the β value. The

β value represents the intensity of activation triggered by

the experimental task in the individual’s cerebral cortex.

Then, the FV was obtained based on HRF in the rest

period (-30 to 0s) being subtracted from that in the task

period (0–30 s).

Statistical analysis

SPSS (v24.0, IBM, USA) was used for statistical analysis.

The interactive VR mode from R1 to R3 was considered

as the within-subject variable, while the mode sequence

was incorporated as the between-subjects variable. The

Kolmogorov–Smirnov and Shapiro–Wilk tests were used,

revealing data were normally distributed. The obtained data

were corrected for multiple comparisons across channels by

the false discovery rate (FDR). Repeated-measures analysis of

variance (ANOVA) was used to examine the cortical activation

(β and FV) and VAS pain scores in the VRQ among the three

VR modes. Bonferroni’s correction was utilized for multiple

comparisons. The confidence level a was defined as 0.05.

Finally, Spearman’s correlation test was used to examine the

relationship between VRQ items and cortical activation (ROIs

and corresponding channels).

Results

Descriptive characteristics

Finally, there were 15 right-hand dominant participants

(number of males/females: 4/11; age: 21.93 ± 0.59 years)

who were enrolled, with no one dropped out throughout the

experiment. The overall mean intensity of electrical stimuli was

23.67 ± 5.69mA, equivalent of VAS 4/10 subjectively reported

by the enrolled participants during the resting period, with no

one reporting any side effect after the experiment. The VAS

scores during VR task from R1 to R3 were 2.33/10 (active mode),

3.07/10 (MI mode), and 3.73/10 (passive mode) respectively

(Table 1).

VR-induced analgesic e�ect during
di�erent VR interactive modes

The painful status during different modes of VR interaction

is presented in Figure 4. A significant effect of VR analgesia

was found in the subjectively reported pain scores (F(1.743,

24.401)=11.47, p < 0.0001). Post hoc analysis revealed

significant difference between R1 (active mode) and R3 (passive

mode) (−1.4 (95%CI, −2.23 to −0.57), p = 0.001), R2 (MI

mode), and R3 (passive mode) (−0.667 (95%CI, −1.165 to

−0.168), p= 0.012), whereas no significant difference was found

between R1(active mode) and R2 (MI mode) (−0.733 (95%CI,

−1.631 to 0.165), p= 0.131).
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FIGURE 4

Virtual reality (VR)-induced analgesic e�ect during di�erent VR interactive modes. *p < 0.05; **p < 0.01; ***p < 0.001.
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TABLE 2 Cortical activation [β and featured values (FVs)] during di�erent virtual reality (VR) interactive modes.

ROI BA Anatomic label CH MNI coordinates Beta Feature value

X Y Z R1 R2 R3 R1 R2 R3

LDLPFC 9 Dorsolateral prefrontal cortex 16 12.45 −3.15 15.75 0.10± 0.13 0.03± 0.13 −0.03± 0.11 0.03± 0.07 0.00± 0.02 −0.02± 0.07

RDLPFC 9 Dorsolateral prefrontal cortex 24 14.7 −4.65 6.8 0.07± 0.14 0.02± 0.14 −0.04± 0.07 0.02± 0.07 −0.02± 0.08 −0.03± 0.05

LOL 18 V2 14 1.25 −9.2 14.55 0.05± 0.09 0.00± 0.11 −0.05± 0.10 0.04± 0.05 0.04± 0.05 −0.03± 0.07

17,18,19 V1, V2, V3 15 3.2 −10.9 14.45

19 V3 20 5.65 −12.05 14.05

18 V2 21 0.85 −9.7 13.6

17 V1 22 2.8 −11.4 13.5

ROL 19 V3 27 7.2 −13.35 8.45 0.07± 0.07 0.01± 0.07 −0.04± 0.09 0.04± 0.04 0.01± 0.05 −0.01± 0.06

17 V1 28 4.25 −12.85 7.7

17 V1 29 2.75 −11.65 6.05

18 V2 34 5.4 −12. 6.75

17,18,19 V1,V2,V3 35 3.9 −11.6 5.1

LM1 4 Primary motor cortex 13 11.3 −6.1 16.15 0.1± 0.11 0.03± 0.12 −0.05± 0.11 0.04± 0.05 0.02± 0.06 −0.04± 0.06

4 Primary motor cortex 19 11.6 −8.2 15.25

RM1 4 Primary motor cortex 25 13.45 −9.3 8.4 0.02± 0.1 0.01± 0.09 −0.02± 0.15 −0.01± 0.08 0.01± 0.04 0.01± 0.10

4 Primary motor cortex 30 13.7 −7.7 6.75

LPMC 6 Pre-motor and supplementary motor cortex 11 10.8 −3.9 16.8 0.08± 0.09 0.03± 0.14 −0.04± 0.08 0.03± 0.04 0.02± 0.06 −0.02± 0.06

6 Pre-motor and supplementary motor cortex 17 12.95 −5.35 15.1

RPMC 6 Pre-motor and supplementary motor cortex 23 14.75 −6.45 8.3 0.03± 0.07 0.02± 0.08 −0.02± 0.12 0.02± 0.06 0.00± 0.06 −0.01± 0.07

6 Pre-motor and supplementary motor cortex 31 13.65 −5.9 5.25

LS1 2 Primary somatosensory cortex 8 6.7 −5.1 17.25 0.06± 0.05 −0.03± 0.11 −0.02± 0.08 0.02± 0.05 0.01± 0.04 −0.02± 0.05

1, 2, 3 Primary somatosensory cortex 12 9.3 −6.8 16.95

RS1 1 Primary somatosensory cortex 32 12.3 −8.8 5.35 0.06± 0.11 0.02± 0.11 −0.01± 0.14 0.01± 0.07 −0.01± 0.06 −0.01± 0.07

2 Primary somatosensory cortex 40 10.1 −7.45 3.25

LSTG 22 Superior temporal gyrus 3 6.15 −3.05 17 0.09± 0.14 0.12± 0.11 −0.04± 0.18 0.00± 0.04 0.03± 0.08 0.02± 0.04

RSTG 22 Superior temporal gyrus 42 9.45 −5. 2.7 0.04± 0.08 0.04± 0.1 0.00± 0.1 −0.02± 0.08 0.01± 0.06 0.02± 0.05

ROI, Region of interest; BA, Broadmann area; CH, channel; MNI, Montreal Neurological Institute and Hospital (MNI); R1, active mode R2, motor imagery; R3, passive mode; LDLPFC, left dorsal lateral prefropntal cortex; RDLPFC, right dorsal lateral

prefrontal cortex; LOL, left occipital lobe; ROL, right occipital lobe; LM1, left primary motor cortex; RM1, right primary motor cortex; LPMC, left premotor cortex; RPMC, right premotor cortex; LS1, left primary somatosensory cortex; RS1, right

primary somatosensory cortex; LSTG, left superior temporal gyrus; RSTG, right superior temporal gyrus;V1, primary visual cortex, V2, visual association cortex 2; V3, visual association cortex 3.
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FIGURE 5

Cortical activation (β value) during di�erent modes of virtual reality (VR) interaction. LDLPFC, left dorsal–lateral prefrontal cortex; RDLPFC: right

dorsal–lateral prefrontal cortex; LOL, left occipital lobe; ROL, right occipital lobe; LM1, left primary motor cortex; RM1, right primary motor

cortex; LPMC, left premotor cortex; RPMC, right premotor cortex; LS1, left primary somatosensory cortex; RS1, right primary somatosensory

cortex; LSTG, left superior temporal gyrus; RSTG, right superior temporal gyrus.

Cortical activation during di�erent VR
interactive modes

The cortical regions of interest (ROIs) and their

corresponding channels, associated with the MNI coordinates,

are described in Table 2. The obtained β and featured values

(FVs) in each ROI, including dorsal–lateral prefrontal cortex

(DLPFC), primary motor cortex (M1), premotor cortex

(PMC), primary somatosensory (S1), superior temporal gyrus

(STG), and occipital lobe (OL) in both hemispheres, were also

delineated, with the numerical analysis for each ROI plotted in

Figures 5, 6 correspondingly.

Repeated measures (RM)-ANOVA revealed significant

difference in β values of LM1 (F(6.37, 20.3), p = 0.009), LS1

(F(3.708, 24.628), p = 0.041), and LOL (F(7.973, 22.5), p =

0.003) as well as the FV in LPMC (F(8.379, 21.1), p = 0.002),

LM1 (F(4.356, 22.627), p= 0.027), and LOL (F(9.249, 20.725), p

= 0.002). On the other hand, in terms of the individual channel,

it revealed a significant difference in the β values of channel 13

(F(3.963, 15.938), p = 0.04) and channel 15 (F(11.274, 14.917),

p = 0.002) as well as FV in channel 11 (F(5.255, 18.478), p =

0.017), channel 17 (F(4.349, 13.85), p = 0.035), and channel 19

(F(5.782,23.117), p= 0.01).

Even though no significant difference was found in the

cortical activation of ROIs between R1 and R2 (Figure 7), there

were significant differences of ROIs in comparisons with ROIs

and individual channels for R1 and R3 (Figure 8) as well as R2

and R3 (Figure 9). Regarding β values, post hoc analysis after

Bonferroni correction revealed significant difference between

R1 and R3 in channel 13 (0.133(95%CI, 0.028 to 0.238), p =

0.012), channel 15 (0.14(95%CI, 0.028 to 0.252), channel 16

(0.025(95%CI, −0.087 to 0.138), p = 0.017), and channel 17

(0.17(0.037, 0.304), p = 0.013) (Figure 8A); R2 and R3 in LOL

(0.103 (95%CI, 0.041 to 0.166) p = 0.003) and channel 15

(0.17(95%CI, 0.037 to 0.304), p= 0.013) (Figure 9A).

Regarding FV, post hoc analysis after Bonferroni correction

revealed significant difference between R1 and R3 in channel

11 (0.091(95%CI, 0.004 to 0.177), p = 0.014), channel 17

(0.071(95%CI, −0.003 to 0.146), p = 0.016), and channel 19

(0.083(95%CI, 0.011 to 0.135), p = 0.022) as well as LPMC

(0.069(95%CI, 0.027 to.11), p = 0.003) (Figure 8B); R2 and R3

in LOL (0.067(95%CI, 0.032 to 0.101), p= 0.004) (Figure 9B).
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FIGURE 6

Cortical activation (featured value) during di�erent modes of virtual reality (VR) interaction. LDLPFC: left dorsal–lateral prefrontal cortex;

RDLPFC, right dorsal–lateral prefrontal cortex; LOL, left occipital lobe; ROL, right occipital lobe; LM1, left primary motor cortex; RM1, right

primary motor cortex; LPMC, left premotor cortex; RPMC, right premotor cortex; LS1, left primary somatosensory cortex; RS1, right primary

somatosensory cortex; LSTG, left superior temporal gyrus; RSTG: right superior temporal gyrus.

Correlation between VRQ items and
cortical roi/channel activation

Regarding correlations between VRQ items and β values,

significant correlations were found between attention and LM1

(r = 0.609, p = 0.016) as well as its corresponding channel

19 (r = 0.677, p = 0.006), pain and right S1 [right primary

somatosensory cortex (RS1)] (r = −0.588, p = 0.021), pain

distraction and right PMC (RPMC) (r = −0.528, p = 0.043)

as well as RDLPFC (r = −0.668, p = 0.009) in R1; significant

correlation was found between pain distraction and RDLPFC in

R2 (r = 0.531, p = 0.042); significant correlations were found

between attention and RDLPFC (r= 0.587, p= 0.027), attention

and RS1 (r=0.543, p= 0.045) as well as between immersion and

RS1 (r= 0.539, p= 0.047) in R3 (Table 3).

On the other hand, regarding correlations between VRQ

items and featured values (FVs), a significant correlation was

found between attention and LM1 (r = 0.772, p = 0.001)

associated with its corresponding channel 19 (r = 0.788, p <

0.001), as well as RS1 (r = 0.543, p = 0.036) in R1; immersion

and RDLPFC (r = 0.574, p = 0.032) in R2; pain and LPMC

(r = 0.539, p = 0.047), attention and RPMC (r=-0.62, p =

0.014) associated with its corresponding channel 33(r=-0.599,

p = 0.022), LOL (r = 0.557, p = 0.039) as well as RSTG (r

= −0.629, p = 0.016) in R2; correlation was found between

attention and RDLPFC (r = 0.538, p = 0.047) as well as pain

distraction and RDLPFC (r= 7.43, p= 0.002) in R3 (Table 3).

Discussion

To our knowledge, this is the first study which has

investigated the effectiveness of different VR interactive modes

for pain relief through fNIRS. In terms of the outcome generated

through both subjective and objective measurements, we aimed

at exploring VR as an analgesic by observing the cortical pain

processing during painful stimuli. Throughout each round, the

VR context and the electrical stimuli were both consistent, while

the interactive mode was particularly designed in terms of its

engaged level. According to the distraction theory, it is suggested

that not only the interactive element of VR but also the level of

attention is paid to the VR environment, which may contribute
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FIGURE 7

Comparisons of cortical activation between R1 and R2. R1: Active mode; R2: motor imagery (MI) mode; (A): β value; (B): featured value; color

bar: 0.1 to 0.9.

FIGURE 8

Comparisons of cortical activation between R1 and R3. R1: active mode; R3: passive mode; (A): β value; (B): featured value; color bar: 0.1 to 0.9.

to the ultimate analgesic effect (Mccaul and Malott, 1985;

Gutierrez-Maldonado et al., 2011). Our finding demonstrated

a better analgesic effect can be achieved to be associated

with higher attention, immersion, and pain distraction during

interaction with the VR context, which was consistent with a

prior VR study using EEG, suggesting a better analgesic effect

in the active VR mode is associated with reduced amplitudes of

N1 and P3 (Lier et al., 2020). In addition, another finding in our

studies revealed no significant difference between active and MI

mode, implicating equivalent analgesic effect can be attainable

when a sufficient level of attention was distracted in the VR

context. This finding can be inspiring for those clients who tend

to be quite immobile at painful status, as a similar analgesic effect

can be achieved when a less active mode can be used.
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FIGURE 9

Comparisons of cortical activation between R2 and R3. R2: motor imagery (MI) mode; R3: passive mode; (A): β value; (B): featured value; color

bar: 0.1 to 0.9.

Pain was processed, based on the sensory stimuli and

behavior status by integrating different cortical information

from various ROIs (Karunakaran et al., 2020). Therefore, the

diverse analgesic effect associated with varied activated cortical

area during different VR modes can be indicative of an

altered pain perceptual processing. In our experiment, since the

intensity of the electrical stimulus was never changed for every

subject, the noxious input can be constant from peripheral to

the spinal level. In this way, the area that modulates noxious

stimuli by VR can only be situated at the thalamal–cortical area,

where the correspondent cortical ROIs in charge of motor and

cognitive function were involved.

As for the motor-relevant cortical area, significant difference

in the activation in LM1 between active and passive mode was

found (Figure 8). In addition, a dual positive correlation between

attention and LM1 activation, associated with its corresponding

channel in the active mode, was also specified (Table 3). M1 was

basically in charge of motor planning, initiation, and execution

of voluntary movement by processing cortical information from

parietal, frontal, and temporal cortical regions (Wei-Ju et al.,

2015). Since the corticospinal activation can be inhibited by

acute painful stimuli, this ROI has been a critical target for pain

relief by exciting it through invasive or non-invasive approaches

(Svensson et al., 2003; Lopes et al., 2019). In our experiment,

the active VR mode requires the participant’s visual attention to

identify and track the fast-moving blocks, plan the dimensions

of movement, i.e., direction, speed, etc., to initiate and finally

execute the slashing act in an appropriate way. It can be

analogous to a process of non-invasive stimulation (exercise) to

excite the primary motor cortex, meanwhile distracting his/her

attention to interact in the VR context. Whereas in the passive

VR mode, the level of attention was much less needed, in

which the M1 was least activated compared to the other modes

(Figures 5, 6). Therefore, M1 can be considered as a critically

targeted area in a VR-induced analgesic approach.

Regarding cognition-relevant cortical area, a similar finding

was observed in the DLPFC, in which its activation in the

active VR mode was higher compared to the less engaged

VR modes, bearing a strong correlation with cognitive factors

during different modes of VR interaction (Table 3, Figures 5, 6).

The DLPFC (Brodmann Area 9) is considered to be relevant

to higher-order cognitive processing related to attention,

working memory, and inhibition of responses (Karunakaran

et al., 2020). Previous fMRI studies reported its role in pain

processing, including detection, perception, and suppression

of pain (Apkarian et al., 2004). It was found that non-

invasive stimulation of the LDLPFC appears to exhibit an anti-

nociceptive effect, thus increasing pain tolerance (Brighina et al.,

2011). In our study, a higher activation of DLPFC was found

in the active VR mode compared to the less engaged modes

(Figures 5, 6). Therefore, it can be considered as a non-invasive

approach to excite the DLPFC, thus sustaining participant’s

attention to the VR task during noxious stimuli.

Even though the role of visual cortex at OL in pain

processing has not been established, Huff et al. (2022) suggested

that visual cortex is critical for the consious perception of visual

stimuli, visual-guided attention, and motor action. Previous

studies have reported the use of fNIRS in observing the function
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TABLE 3 Spearman’s correlation between virtual reality questionnaire (VRQ) items and cortical activation (β and featured values).

LDLPFC RDLPFC LOL ROL LM1 RM1 LPMC RPMC LS1 RS1 LSTG RSTG

Beta value P_R1 - - - - - - - - - −0.588* - -

A_R1 - - - 0.609*

(Ch19:0.677**)

- - - - - - -

I_R1 - - - - - - - - - - - -

PD_R1 - 0.668** - - - - - −0.528* - - - -

P_R2 - - - - - - - - - - - -

A_R2 - - - - - - - - - - - -

I_R2 - - - - - - - - - - - -

PD_R2 - 0.531* - - - - - - - - - -

P_R3 - - - - - - - - - - - -

A_R3 - - - - - - - - - 0.543* - -

I_R3 - - - - - - - - - 0.539* - -

PD_R3 - - - - - - - - - - - -

Featured Value P_R1 - - - - - - - - - - -

A_R1 - - - - 0.772**

(Ch19:0.788***)

- - - - 0.543* - -

I_R1 - - - - - - - - - - - -

PD_R1 - - - - - - - - - - - -

P_R2 - - - - - - 0.539* - - - - -

A_R2 - - 0.557* - - - - −0.62*

(Ch31:−0.599*)

- - - −0.629*

I_R2 - 0.574* - - - - - - - - - -

PD_R2 - - - - - - - - - - - -

P_R3 - - - - - - - - - - - -

A_R3 - 0.538* - - - - - - - - - -

I_R3 - - - - - - - - - - - -

PD_R3 - 0.743** - - - - - - - - - -

* p < 0.05; **p < 0.01; ***p < 0.001.

VRQ, VR questionnaire; R1, active mode; R2, motor imagery mode; R3, passive mode, P, Pain, A, attention; I, immersion; PD, pain distraction; LDLPFC, left dorsal lateral prefropntal

cortex; RDLPFC, right dorsal lateral prefrontal cortex; LOL, left occipital lobe; ROL, right occipital lobe; LM1, left primary motor cortex; RM1, right primary motor cortex; LPMC, left

premotor cortex; RPMC, right premotor cortex; LS1, left primary somatosensory cortex; RS1, right primary somatosensory cortex; LSTG, left superior temporal gyrus; RSTG, right superior

temporal gyrus.

of visual cortex for attention and working memory following

mild traumatic brain injury. However, there is yet not any

study using fNIRS to evaluate pain-associated changes in the

visual cortex (Takahashi et al., 2000). In our experiment, it

was found that the visual cortex was correlated with attention

(Table 3), with higher increased activation in the active VR

mode compared to those less engaged modes, associated with

better pain relief status (Figures 4, 5). Even though no casual

relationship was found between visual cortex and pain relief

in our study, there were animal studies that reported atrophy

in visual cortex may occur following intense stress, which is

reportedly similar to human beings in painful status (Yoshii

et al., 2017).

Similar to visual cortex, a higher activation of PMC was also

found in the active mode in comparison with those less engaged

VR modes (Figures 4, 5), associated with better analgesic effect.

This frontal cortical region is part of Brodmann Area 6 in

charge of movement preparation (Chouinard and Paus, 2006).

The PMC function inmotor activities for planning, imagination,

and control of movement was evidenced by previous fNIRS

studies but no specific studies relevant to pain processing were

reported (Pawan et al., 2017). Nevertheless, PMC was suggested

in planning the escape when facing an aversive event such

as pain (Haines and Mihailoff, 2018). In this way, a higher

level of VR interaction can be considered as a way of better

“escaping” from the pain status, which may help to explain the

consistent activation.

Nevertheless, several drawbacks cannot be ignored in our

study. The participants were all young and healthy, such that

the promising analgesic effect can be biased. Regarding the

combined use of VR headset and fNIRS equipment, the weight

of HMD headset as well as the optode of the fNIRS cap over
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the scalp may generate some pain. The HbO collected by fNIRS

was not nociceptive specific but reflected an overall response

following the noxious stimulation. The head movement may

vary in different interactive modes, resulting in various motion

artifacts. To reduce the impact, a time window (1–2min)

for adaptation was provided immediately after placing these

devices on the head before the experiment. To minimize the

possible data interference, a prevalently used data-processing

method, which enables semi-automatic detection and reduction

of movement artifacts, was taken based on moving standard

deviation and spline interpolation (Scholkmann et al., 2010).

In addition, multiple channels in the correspondent ROIs were

averaged among subjects, which can represent the repeated

measures of analyzed ROIs in the time-locked phase. It is

believed that a more robust result can be obtainable when

the future studies bearing a larger sample size with broader

spectrum such as age, gender, and specific pain-related disorder

are made accountable.

Conclusion

Conclusively, our findings suggest that the VR mode with

a higher level of engagement can bring in a better analgesic

effect by modulating motor and cognitive cortical ROIs in

charge of pain processing. They further suggest that the VR

interactive mode can be easily tailored to be in line with

the client’s status when the equivalent analgesic effect can be

attainable. Our findings have contributed to suggest VR as a

non-pharmacological analgesic method for pain management.
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Introduction: Despite the importance of cognitive workload in examining

the usability of smartphone applications and the popularity of smartphone

usage globally, cognitive workload as one attribute of usability tends to be

overlooked in Human-Computer Interaction (HCI) studies. Moreover, limited

studies that have examined the cognitive workload aspect often measured

some summative workloads using subjective measures (e.g., questionnaires).

A significant limitation of subjective measures is that they can only assess

the overall, subject-perceived cognitive workload after the procedures/tasks

have been completed. Such measurements do not reflect the real-time

workload fluctuation during the procedures. The reliability of some devices

on a smartphone setting has not been thoroughly evaluated.

Methods: This study used mixed methods to empirically study the

reliability of an eye-tracking device (i.e., Tobii Pro Nano) and a low-cost

electroencephalogram (EEG) device (i.e., MUSE 2) for detecting real-time

cognitive workload changes during N-back tasks.

Results: Results suggest that the EEG measurements collected by MUSE 2 are

not very useful as indicators of cognitive workload changes in our setting,

eye movement measurements collected by Tobii Pro Nano with mobile

testing accessory are useful for monitoring cognitive workload fluctuations

and tracking down interface design issues in a smartphone setting, and

more specifically, the maximum pupil diameter is the preeminent indicator of

cognitive workload surges.

Discussion: In conclusion, the pupil diameter measure combined with other

subjective ratings would provide a comprehensive user experience assessment

of mobile applications. They can also be used to verify the successfulness of a

user interface design solution in improving user experience.

KEYWORDS

cognitive workload, EEG, eye tracking, eye movement, GUI

Introduction

Portable media devices, such as smartphones, have become an increasingly pervasive

part of our lives. In 2020, the number of smartphone users in the United States

was estimated to reach 294.15 million and will reach 311.53 million by 2025 (O’Dea,

2021). American adults spent around 3 h and 30min per day using mobile phones in

2019, with an increase of about 20min from 2018, according to Zenith (Molla, 2020).

Frontiers inNeuroscience 01 frontiersin.org

148

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.1011475
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.1011475&domain=pdf&date_stamp=2022-11-28
mailto:lmzhang@hytc.edu.cn
https://doi.org/10.3389/fnins.2022.1011475
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.1011475/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang and Cui 10.3389/fnins.2022.1011475

Correspondingly, the number of applications in the App Store

has soared from the initial 500 in 2008 to roughly 2.22

million available applications in 2021 (Ceci, 2022). As a result,

mobile phone applications receive greater attention from the

Human–Computer Interaction (HCI) field, resulting in a surge

in the number of publications. We input a query “usability AND

phone AND application” with custom time ranges: 1991–2000,

2001–2010, and 2011–2020 in Google Scholar, and get 8,500,

55,500, and 68,200 results.

Researchers in Human–Computer Interaction (HCI) fields

have long recognized usability as the core of product design,

including the application design of smartphones (Shneiderman,

1986; Nielsen, 1993; Brooke, 1996; Dumas et al., 1999). Previous

research has manifested that cognitive workload is an essential

aspect of product usability (Harrison et al., 2013; Davids et al.,

2015).

Measuring cognitive workload has been recognized

as one challenge when taking objectivity and causality

into consideration (Brunken et al., 2003; Brünken et al.,

2010). Instruments such as the NASA questionnaire

(Hart and Staveland, 1988) help solicit perceived

cognitive workload from users after a task is completed.

Results obtained through such instruments are tinted

with a level of subjectivity and put the causality

between stimuli and reported cognitive workload

in question.

On the other hand, electroencephalogram (EEG) devices

can objectively monitor and record the brain’s electrical

activities and researchers have successfully identified signals

from EEG to measure cognitive workload (Gevins and

Smith, 2003; Antonenko et al., 2010a; Makransky et al.,

2019). And eye movement data have been collected and

analyzed to guide and advise various aspects of product

design: navigation, page layout, user interface (UI)

visualization style with design elements, advertisement,

user viewing behaviors, and user cognitive workload

(Goldberg and Wichansky, 2003; Nielsen and Pernice,

2010).

However, most of the studies were not executed in a

smartphone setting and they cannot provide direct evidence

for the reliability of EEG and eye-tracking devices to measure

cognitive workload in a smartphone setting, due to several

variabilities between desktop/laptop computer settings and

smartphone settings. The screen sizes of desktop/laptop

computers and smartphones are different: large vs. small. Users’

interactions with these devices are distinct: cursors vs. gestures.

The content compositions are not the same either: columns vs.

scrolling. Physically, the users interact with their smartphones in

different manners, such as: (1) one-handed, (2) two-handed, and

(3) cradled, (4) no-handed; and in three body postures: walking,

standing, and sitting/lying (Hoober, 2013).

Based on a thorough review of the related literature, we have

identified three gaps as follows:

(1) Despite the significance of cognitive workload, it tends to

be overlooked in the HCI field (Zhang and Adipat, 2005;

Coursaris and Kim, 2006; Harrison et al., 2013).

(2) The majority of studies we reviewed only examine the

overall cognitive workload during tasks and fail to study the

instantaneous or peak cognitive workload during tasks and

its relationship with product interface design and usability.

(3) There is little direct evidence to suggest that EEG and

eye-tracking devices are reliable in measuring cognitive

workload in a smartphone setting.

To address these gaps, we need to answer the two

questions first:

(1) Are EEG data collected by MUSE 2 and eye movement

data recorded by Tobii Pro Nano valid, reliable, and feasible

as assessment tools for the real-time cognitive workload?

(2) Are measures collected by the two devices (averages of

Event-related (de-)synchronization (ERD) of Alpha, Beta,

and Event-related synchronization (ERS) of Theta for TP9,

TP10, AF7, and AF8; pupil dilation, saccade duration and

saccade number, fixation duration, and fixation number)

sensitive to the cognitive workload of different N-back tasks

in real time when the tasks are completed on a smartphone?

To answer the questions asked above, we employed

a low-cost and portable electroencephalogram (EEG)

device (MUSE 2, https://choosemuse.com/muse-2-guided-

bundle/) and a user-friendly eye-tracking device (Tobii

Pro Nano, https://www.tobiipro.com/product-listing/nano/)

to detect real-time cognitive workload changes during

N-back tasks on a smartphone. Our hypotheses were

simple—we predict that the EEG device, MUSE 2, and

the eye tracker device, Tobii Pro Nano with smartphone

adopters, are reliably quantifying the cognitive workload of

users performing tasks on a smartphone by these measures

listed above.

Background

Cognitive workload in usability

According to the latest ISO 9241-11 (2018), usability is

“the extent to which a system, product, service can be used

by specified users to achieve specified goals with effectiveness,

efficiency, and satisfaction in a specified context of use.” Various

standards and models list a range of attributes for usability.

Among these attributes, the cognitive workload is defined by

Bevan and MacLeod (1994) as the mental effort required to

perform tasks and is particularly important in safety-critical

applications. It refers to the user’s cognitive processing amount

to using the application (Harrison et al., 2013).
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Cognitive workload measurements in HCI

The cognitive workload measurements can be roughly

grouped into three broad categories: subjective self-assessment

rating scales, performance measures, and psychophysiological

measures (Wilson and Eggemeier, 1991; Cain, 2007; Evans

and Fendley, 2017). Here, we only introduce two measures

adopted in this research: electroencephalogram (EEG) and eye

movement in psychophysiological measures.

Measurement of cognitive workload using
electroencephalogram

Electroencephalogram (EEG) is an electrophysiological

method of monitoring and recording the brain’s electrical

activity. Most of the time, an EEG device that comprises non-

invasive electrodes is placed along a subject’s scalp. These

electrodes capture voltage fluctuations resulting from ionic

currents within the brain’s neurons.

In recent years, researchers have been evaluating the

potential of the EEG as a measure of cognitive workload in

different task conditions: arithmetic tasks (Anderson et al., 2011;

Cirett Galán and Beal, 2012; Kumar and Kumar, 2016; Borys

et al., 2017; Chin et al., 2018); cognitive tasks (Trammell et al.,

2017); reading tasks (Dimigen et al., 2011; Knoll et al., 2011;

Gwizdka et al., 2017); listening to music tasks (Asif et al.,

2019); visual search task (Winslow et al., 2013; Hild et al.,

2014); learning tasks (Dan and Reiner, 2017; Mazher et al.,

2017; Notaro and Diamond, 2018); and vehicle driving task

(Cernea et al., 2012). These studies confirm the fact that EEG

provides reliable signals for studying cognitive workload in their

respective settings.

Event-related (de-)synchronization (ERD/ERS) with Alpha,

Theta, and Beta bands is one of the three most popular

analysis techniques (Cabañero et al., 2019). Event-related

(de)synchronization (ERD) is a recognized rate-of-change

metric for oscillatory EEG dynamics, which was originally

developed to quantify changes in the Alpha band (Pfurtscheller

and Aranibar, 1977). Synchronization is a process where

neurons are getting in line (synchronized) to enter an idling

state. Desynchronization is a process where individual neurons

get ready to perform their parts in a task. The steps of

performing a task are: neurons desynchronize (wake up),

perform tasks, and neurons synchronize (rest).

To obtain percentage values for ERD/ERS, the power within

the frequency band of interest in the period after the event is

given by A, whereas that of the preceding baseline or reference

period is given by R. The percentage decrease (or increase) from

the reference interval (R) to the activation interval (A) (before

responding) was defined as

ERD/ERS% = [(R−−A)/R]∗100% (1)

(Pfurtscheller and Aranibar, 1977; Pfurtscheller and Lopes

da Silva, 1999; Pfurtscheller, 2001).

Negative values computed by Equation 1 indicate power

increase and desynchronization (ERD), and positive values

indicate power decrease and synchronization (ERS).

Pfurtscheller and Lopes da Silva (1999) recommended that

the term ERD is meaningful only if the baseline measured some

seconds before the event represents rhythmicity seen as a clear

peak in the power spectrum. Similarly, the term ERS only has

a meaning if the event results in the appearance of a rhythmic

component and therefore in a spectral peak that was initially not

detectable (Pfurtscheller and Lopes da Silva, 1999).

The quantification of ERD/ERS was divided into four steps,

first, the bandpass filtering was carried out for all Event-related

trials; second, the amplitude samples were squared to obtain

the power samples; third, the power samples of all trials were

averaged; and fourth, the time samples were averaged to make

the data smooth and reduce (Pfurtscheller and Lopes da Silva,

1999).

The review articles (Klimesch, 1999; Antonenko and

Niederhauser, 2010b) concluded that with increasing task

demands Theta synchronizes (decreases), whereas Alpha and

Beta desynchronize (increase) (Pfurtscheller and Berghold, 1989;

Neubauer and Fink, 2003; Stipacek et al., 2003; Klimesch et al.,

2005; Neubauer et al., 2006; Scharinger et al., 2016; Saitis et al.,

2018).

Measuring cognitive workload using eye
movement data

Multiple kinds of eye movement data related to cognitive

workload can be reliably collected using a high-quality eye-

tracking device.

Pupil dilation is an involuntary response, in which the pupil

diameter changes to protect the retina or to respond to a shift in

fixation between objects at different distances. Previous research

has shown that users’ pupils dilate when the difficulty of the

task increases and more cognitive effort has been allocated to

solve the task (Granholm et al., 1996; Pomplun and Sunkara,

2003; Klingner et al., 2008; Chen et al., 2011; Porta et al., 2012;

Rafiqi et al., 2015; Gavas et al., 2017; Ehlers, 2020). Accounting

for individual and environmental differences, it is necessary to

measure pupil diameters while referencing an adaptive baseline

(Lallé et al., 2016).

According to Purves et al. (2001), saccades are rapid and

ballistic movements of eyes that change the fixations abruptly.

Previous research has found that growth in saccade velocity

indicates a greater task difficulty (Barrios et al., 2004; Chen et al.,

2011; Lallé et al., 2016; Zagermann et al., 2018).

Eye fixation refers to a focused state when eyes dwell

voluntarily over some time and is the most common type of eye-

tracking event (Zagermann et al., 2016). Previous research has

proven that the correlation between the duration of fixation and
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FIGURE 1

(A)MUSE 2 EEG headband; (B) EEG electrode positions in the 10-10 system using modified combinatorial nomenclature, along with the fiducials

and associated lobes of the brain. Adopted from https://en.wikipedia.org/wiki/10%E2%80%9320_system_%28EEG%29#/media/File:EEG_10-

10_system_with_additional_information.svg.

the cognitive processing level is positive (Rudmann et al., 2003;

Goldberg and Helfman, 2010; Chen et al., 2011; Wang et al.,

2014; Zagermann et al., 2018).

Devices in measuring cognitive workload

As previously reviewed literature shows, the measures of

computing from EEG and eye movement data have been

proven to be effective for detecting cognitive workload changes.

However, most of the studies were conducted in smartphone

settings, and the devices adopted in these studies are not suitable

for use in smartphone usability testing environment.

Grateful to technology development, there are a wide range

of choices in the selection of devices to capture the EEG data

and eye-tracking data, respectively. Some examples of the EEG

devices, ordered at prices, from low to high include: MUSE

2 headband, Emotiv Insight, OpenBCI, ANT Neuro, BioSemi,

etc. (Farnsworth, 2019). A ranking of the top eye-tracking

companies, ordered by the number of publications found

through Google Scholar, is Tobii, SMI, EyeLink, Smart Eye,

LC Technologies, Gazepoint, The Eye Tribe, etc. (Farnsworth,

2020).

Among listed choices, the MUSE 2 headband (Figure 1A,

$250) is an easy-to-use, affordable, and portable EEG recording

system from InteraXon Inc. It is a four-channel headband

with dry electrodes at positions AF7, AF8, TP9, and TP10

(Figure 1B). The headband is connected to the app on phone

via Bluetooth, which makes it a great tool for detecting cognitive

workload while the user is performing the task on smartphones,

especially in some field experiments, of course, after its reliability

is verified.

Despite the small number of sensors and the mismatch in

the locations of the sensors to the standard 10–20 electrode

positioning system, several studies have shown that the MUSE

headband has the potential to provide good quality EEG data.

Two studies (Arsalan et al., 2019; Asif et al., 2019) adopted

MUSE 2 to capture EEG data and adopted classifiers to classify

stress levels. Another study (Papakostas et al., 2017) also adopted

MUSE EEG to predict the user task performance, and they

achieved a maximum accuracy rate of 74%. Krigolson et al.

(2017) collected data by MUSE EEG system, and the results

showed quantifiable N200 and P300 Event-related potential

(ERP) components in the visual oddball task and the reward

positivity. However, these studies cannot provide direct evidence

on the EEG data captured by the MUSE EEG system is reliable

for cognitive workload changes.

Some studies have pointed out MUSE’s limitations. Ratti

et al. (2017) compared two medical grade (B-Alert, Enobio) and

two consumer (MUSE, Mindware) EEG systems in five healthy

subjects. Results showed that EEG data can be successfully

collected from four devices, yet MUSE showed a broadband

increase in power spectra and the highest relative variation

across test–retest acquisitions. Another study has also shown

that the data collected by MUSE headband were of poor quality

under noisy conditions, such as at a public lecture (Przegalinska

et al., 2018). To explore MUSE 2’s potential as a great tool

in smartphone usability testing, we still need direct empirical

evidence on the reliability of MUSE 2 in capturing EEG data for

measuring cognitive workload.

Having picked an EEG device with its usefulness still under

investigation, we selected a well-established eye-tracking device

for this study to control the risk. We chose Tobii Pro Nano

because it is one of the top eye-tracking companies and has
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been used in 20.5 k publications. It is also an accessible and

efficient approach to capturing eye movement (Figure 2) and

is used by many HCI researchers (Sugaya, 2019; Ehlers, 2020;

Lee and Chenkin, 2020). Ehlers (2020) adopted Tobii Pro

Nano to capture the pupil diameter and confirmed that it is a

valid indicator of cognitive workload. Lee and Chenkin (2020)

evaluated Tobii Pro Nano’s potential to differentiate between

experts and novices in the interpretation of POCUS clips in

medical fields. Sugaya (2019) used Tobii Pro Nano to test an

assumption about the meaning-making process of adjective

expression formation.

Tobii Pro Nano can be mounted on a mobile testing

accessory, also manufactured by Tobii (Figure 2). It has a screen

capture device connecting directly to smartphones. The screen

capture device records a high-definition (HD) video of the

mobile device’s screen at 60 frames per second with a latency

of only 10 milliseconds (Mobile Testing Accessory | Perfect for

Usability Tests., 2020). Yet, the mobile testing accessory is just

in the market, with no research done on it. The other great

device for smartphone experiments is Tobii Pro Glass with a

much higher price. If we can provide a piece of evidence on the

reliability of Tobii Pro Nano with a mobile testing accessory, it

could be a high-performance cost ratio choice for researchers.

Methods

The goal of the experiment was to examine the reliability

of the MUSE 2 headband and Tobii Pro Nano with a mobile

testing accessory for detecting cognitive workload changes

during a smartphone task and to select the best measure(s)

computed from data collected by the two devices. The measures

adopted in the experiment are (1) ERD percentage for Alpha,

Beta, and ERS Theta rhythms extracted from EEG data; (2)

multiple eye movements: pupil dilation, saccade duration,

saccade number in second, fixation duration, and fixation

number in second; and (3) user performance data: reaction time

and accuracy rate.

Participants

This study was approved by the UA IRB office (Protocol

Number: 2101428836) and obtained permission from Qinghe

High School, Jiangsu, China.

We recruited 5 students as pilots and 30 students

as participants from Qinghe High School, Jiangsu, China.

The inclusion criteria were normal vision or correct to

normal vision, normal cognitive function, and proficiency

in smartphones.

Students who participated either as pilots or as participants

were compensated 50 in Chinese currency after they complete

the task successfully.

FIGURE 2

Tobii Pro Nano with mobile testing accessory.

Apparatus

We used the MUSE 2 headband and Tobii Pro Nano as the

devices to collect cognitive workload-related measures.

The environment’s brightness variations produce changes in

the pupil size (Pfleging et al., 2016; Zagermann et al., 2016).

Therefore, the experiment was conducted in a room with

lightproof curtains down to avoid natural lighting conditions,

and electric lights on the room ceiling created a consistent

lamination for the experiment. Environment, such as noise, also

impacts cognitive load (Örün and Akbulut, 2019). We made

sure the experiment room was free of all noise during the

experimental sessions. All devices were sanitized before the next

participant came.

When using EEG devices, one has to fulfill several other

requirements. These include a clean scalp, clean electrodes,

minimum participant activities, including head movements,

since a small movement could generate muscle-based signals

known as artifacts (Pratama et al., 2020). We instructed all

participants to stay as still as possible and not to wear any

makeup during the experiment. Also, as the electrodes need

to be attached to the back of the ears, we encouraged the

participants to wear contacts instead of glasses.We also provided

a disposable wet cloth for participants to moisturize their

foreheads and back of the ears to get a better connection of the

EEG headset.
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FIGURE 3

A screenshot of the N-back task.

Task: N-back task

N-back tasks are continuous-recognition measures that

present stimulus sequences, such as letters or pictures. A

sequence of stimuli is presented to the participants one by

one. The participants are required to make a decision as to

whether the current stimulus is the same as the one presented

in N trials ago (Coulacoglou and Saklofske, 2017). The N

can be 0, 1, 2, 3, etc. There is an increase in difficulty in

tasks while N increases. An N-back task is a useful tool for

experimental research on working memory (Jaeggi et al., 2010),

and it has been adopted to manipulate cognitive workload

(Reimer et al., 2009; Ayaz et al., 2010; Yokota and Naruse,

2015).

In this study, all participants completed an N-back

task.When employed in a computer setting, the participants of

the experiment can press individual keys on keyboards as “YES”

or “NO”. To cope with the touch screen of a smartphone, we

placed “×” on the left bottom corner, and “
√
” on the right

bottom corner of the smartphone screen (Figure 3).

In this study, we employed a 1 back task and a 2 back task to

create a low cognitive workload condition and a high cognitive

workload condition. The rationale of only including 1 and 2

levels is to simulate cognitive workload levels that smartphone

users would experience in the real world.

The key features of the N-back task implementation were:

• Four sets of letters were created and arranged in two groups

for a training block and an experiment block.

◦ Training Block:

∗ Five trails of one back task (EEIPP) as a

training session,

∗ Six trails of two back task (OSOMLI) as a

training session;

◦ Experiment Block:

∗ low cognitive workload block: 20 trials of 1 back

task (DAABEEDRRODHHRDSSELDD);

∗ high cognitive workload block: 21 trails of 2

back (BAEAAEASHSAELEOBBBOSHS).

• These two sets of letters in the experiment block were

designed to have an identical “YES” or “NO” response

sequential: YNNNYNNNYNNNYNNYNNYN.

• Each stimulus was presented for maximally 3,000

milliseconds.

The low and high cognitive workload blocks were randomly

and evenly assigned to participants. More specifically, 15

participants assigned an odd ID completed the task in Order

1: low cognitive workload block, high cognitive workload block;

and another 15 participants assigned an even ID completed the

task in Order 2: high cognitive workload block, low cognitive

workload block.

Procedure

All participants entered the experiment room and

performed the experiment once at a time.

First, the participants watched an instructional video of

the instruments and experimental procedure (https://youtu.

be/_d24CRSwhuQ). They were free to ask any questions after

viewing the video.

The experiment started with the participant filling in a

demographic questionnaire (Appendix A). This questionnaire

covered subjects’ age, gender, strong hand, experience with

smartphones, and current smartphone usage situation. Then,

they wore the MUSE 2 headband and adjusted themselves

to a comfortable sitting position. After that, the participants

completed an eye-tracking calibration with Tobii Pro Nano

followed by 10 s with an eye-open relaxed position and another

10 s with an eye-closed comfortable position.

After the preparation step, the participants completed the

training session. They can ask any questions about the N-back

task during or after the training section. The training sessions

were excluded from data analysis.
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FIGURE 4

(A) The MUSE 2 headband was transmitted over Bluetooth to a phone via an application called Mind Monitor for EEG data collection, and the

EEG data were uploaded to the research’s selected cloud drive after each participant completed the task. (B) The N back task was recorded on a

website designed by researchers, and the user performance data were collected via the server. (C) The Tobii Pro Nano eye tracker was

connected to a laptop with Tobii Pro Lab software installed, and the eye movement data were collected by the Tobii Pro Lab software and stored

in the hard drive of the laptop.

Then the participants completed the experiment session

of the N-back task at the experiment station, wearing the

MUSE 2 headband. They first completed 20 trails of 1-

back/2-back stimuli, followed by 20 trails of 2-back/1-back

stimuli, with intervals of approximately 1–2 s in between

each 1-back/2back stimuli (the time between a response

and the display of the next stimuli) and a rest period of

5 s in between 1-back and 2-back blocks. The participants

were instructed to respond to tasks as accurately and

rapidly as possible. The variation of intervals between

each 1-back/2back stimuli caused by the internet loading

time varied.

The MUSE 2 headband collected raw EEG data of TP9, AF7,

AF8, and TP10 through an application called Mind Monitor

(iOS Version 2.2.0) (Figure 4A). And the Tobii Pro Nano

recorded multiple types of eye movement data: pupil dilation,

saccade length, saccade velocity, fixation duration, and fixation

number (Figure 4B). The self-developed website for the N-back

task collected the reaction time and accuracy rate during the

experiment (Figure 4C) (N-back task website: http://n-back.

artkey.xin/). It is designed for an experiment on a smartphone,

and it works best on a smartphone.

Besides the procedure described above, the procedure

described in Appendix B when conducting the experiments as

a precaution against COVID-19 was followed as well.

Measures

Data collected from the experiment allow us to examine and

compare the following measures:

(1) Event-Related Synchronization percentage (ERS) of

Theta, Event-Related Desynchronization percentage

(ERD) of Alpha, and Event-Related Desynchronization

percentage (ERD) (Equation 1).

(2) Multiple eyemovements: pupil dilation, saccade duration,

saccade number in second, fixation duration, and fixation

number in second.

(3) User performance data: reaction time (RT) and accuracy

rate (AR). Reaction time (RT) is the period between the

onset of a letter and the response made by a participant.

The accuracy rate (AR) is the ratio of the number of

correct inputs and the total number of inputs.

Frontiers inNeuroscience 07 frontiersin.org

154

https://doi.org/10.3389/fnins.2022.1011475
http://n-back.artkey.xin/
http://n-back.artkey.xin/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang and Cui 10.3389/fnins.2022.1011475

TABLE 1 Participants’ answers for Questions 4–8 in the demographic

questionnaire.

Question Answer (n = 30)

Q4: Smartphone: You are able to operate

smartphones proficiently.

Strongly agree – 20

Agree – 10

Neither agree nor disagree – 0

Disagree – 0

Strongly disagree – 0

Q5: Smartphone: Which operating system do

you use more frequently and proficiently?

iOS – 3

Android – 22

Both – 5

Other – 0

Q6: Smartphone: How many years have you

owned/used a smartphone?

<1 year – 5

1–2 years – 15

3–5 years – 7

5–10 years – 1

>10 years – 2

Q7: Smartphone: How many hours a day on

average do you use your smartphone when

the school is in session?

0.5–1 h – 28

1–2 h – 2

3–5 h – 0

6–8 h – 0

>8 h – 0

Q8: Smartphone: How many hours a day on

average do you use your smartphone when

the school is on break?

0.5–1 h – 5

1–2 h – 10

3–5 h – 13

6–8 h – 2

>8 h – 0

Results, analysis, and discussion

The experiment has investigated the feasibility of using

data acquired wirelessly from an EEG headband (MUSE

2) and an eye-tracking device (Tobii Pro Nano) to assess

cognitive workload in a well-controlled N-back task in a

smartphone setting.

Demographic data

A total of 30 high school students from Qinghe High School

in Huaian, Jiangsu, China completed the experiment, including

the demographic questionnaire (Appendix A). Eleven of the 30

participants were female and 19 were male, and the female

and male ratio is 11/19. Their average age was 16.34 years old

(SD= 0.61). All participants were from the first year in high

school. The right hand was the dominant in 29 participants,

and the other participant was ambidextrous. The answers to

Questions 4–8 of the demographic questionnaire are presented

in Table 1. To summarize the data in Table 1, all participants

were frequent and proficient smartphone users.

User performance data

Only 29 participants’ user performance data were processed,

analyzed, and discussed here. Participant ID 126’s experimental

data were not recorded due to Internet connection issues.

We analyzed user performance data (reaction time and

accuracy rate) in order to confirm that participants perceived the

various N-Back conditions as different. User performance data

processing, user performance data results, and user performance

data analysis are included in this section.

User performance data processing

TheN-Back website recorded participants’ ID, N-back order,

current letter, participants’ choices, accuracy (yes/no/null),

reaction time, start timestamp in Unix time, and end timestamp

in Unix time. Unix time is a system for describing a point in time

and it is the number of seconds that have elapsed since the Unix

epoch, excluding leap seconds (Ritchie and Thompson, 1978).

I conducted a Shapiro–Wilk test for the reaction time (RT) of

all participants for 1 back and 2 back tests to check its normality.

The result is significant (p < 0.001), which indicates that the

data are not normally distributed. Therefore, I conducted a

Mann–Whitney–Wilcoxon Test for the reaction time (RT)

between 1 and 2 back.

User performance data results

The descriptive statistics and the Mann–Whitney–Wilcoxon

Test results for the reaction time (RT) and accuracy rate (AR)

between conditions are presented in Table 2.

User performance data analysis

Reaction time

The Mann–Whitney U test was conducted to examine

whether the reaction time (RT) had statistically significant

differences between 1 and 2 back for all participants, for

participants with odd IDs, and for participants with even IDs.

The p-values (< 0.001) indicate the answer is yes, as expected

(Table 2).

Accuracy rate

The Mann–Whitney–Wilcoxon test was conducted to

examine whether the accuracy rate (AR) had significant

differences between 1 back and 2 back for the 29 participants.

The p-value (<0.001) indicates the answer is yes, as expected.

The median of 1 back accuracy rate is 1, which is higher than the

median of 2 back accuracy rate (0.9) (Table 2).

User performance data discussion

As expected, the reaction time (RT)increased and accuracy

rate (AR) decreased with the leveled-up differential of N-Back
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TABLE 2 The descriptive statistics and Mann–Whitney–Wilcoxon Test results for reaction time (RT) (unit: second) and accuracy rate (AR) between 1

and 2 back.

Measure N back N Mean SD Median W* p-value

Reaction time 1 580 1.11 0.35 1.06 91,036 < 2.2e-16***

2 580 1.58 0.65 1.43

Reaction time with odd IDs 1 300 1.15 0.32 1.13 25,475 < 2.2e-16***

2 300 1.65 0.67 1.53

Reaction time with even IDs 1 280 1.06 0.38 0.98 19,302 < 2.2e-16***

2 280 1.51 0.62 1.33

Accuracy rate 1 29 0.94 0.14 1 702 6.547e-06***

2 29 0.85 0.11 0.9

*W-Value is the sum of the ranks of the first sample. ***P = 0.001.

tasks, and 1 and 2 back tasks did create low and high cognitive

workload conditions for the experiment’s participants.

EEG data

EEG data processing and analysis

Only 29 participants’ EEG data were processed, analyzed,

and discussed here. Participant ID 126’s EEG was not recorded

due to Internet connection issues.

During the experiment, participants wore a MUSE 2

headband connected to the Mind Monitor. The Mind Monitor

collected their EEG data. According to the Technical Manual

from the Mind Monitor website, bandpass filtering was carried

out on the raw data with power noise at 50Hz or 60Hz. Then,

a fast Fourier transform (FFT) calculation (Heckbert, 1995) was

applied to the raw data to get Theta, Alpha, and Beta.

The recorded EEG signals were processed using Excel and R

to get two baselines:

• baseline_near: Based on the timestamps recorded by the

N-back task website, we sectioned the intervals starting

from−200ms to the onset of each letter as the baseline

interval for each letter (Xiang et al., 2021).

• baseline_away: According to the timestamps recorded by

the N-back task website, we segmented the first 3,000ms of

the 10 s relaxing eyes open relaxing as a baseline.

Computed ERD of Alpha {TP9, AF7, AF8, TP10}, ERD of

Beta{TP9, AF7, AF8, TP10}, and ERS of Theta {TP9, AF7, AF8,

TP10} with baseline near for each letter interval; and ERD of

Alpha AF7, Alpha AF8, Beta AF8, and Beta TP9 with baseline

away for each letter interval. The interval starts from the onset

of each letter to the time point that a choice is being made by

participants, which is definitely≤ 3 s.

A non-parametric test, the Mann–Whitney–Wilcoxon

test, was selected for non-normal data. The

Mann–Whitney–Wilcoxon test was conducted for 12 measures

(Alpha {TP9, AF7, AF8, TP10}, ERD of Beta{TP9, AF7,

AF8, TP10}, and ERS of Theta {TP9, AF7, AF8, TP10} with

baseline_near between 1 back and 2 back; and ERD of Alpha

AF7, Alpha AF8, Beta AF8, and Beta TP9 with baseline away 1

back and 2 back. See Appendix C for the details.

EEG data results

The average workload is the average value of instantaneous

loads within a task duration (Xie and Salvendy, 2000). In this

study, the average cognitive workload is represented by the

average ERD of Alpha, Beta, and ERS of Theta for TP9, TP10,

AF7, and AF8 of the intervals of each letter with baseline_near.

To examine whether there is a difference between 1 and

2 back for averages of ERD of Alpha, Beta, and ERS of

Theta for TP9, TP10, AF7, and AF8 with baseline near, we

conducted Mann–Whitney–Wilcoxon tests between 1 and 2

back of all participants. The results are included in Table 3. Due

to computational problems, the numbers of subjects (N) vary

between the analyses.

It is not feasible to have a baseline for each stimulus in

scenarios of users experiencing an application on smartphones.

Hence, to explore the feasibility of adopting a single baseline

away with stimulus, we conducted Mann–Whitney–Wilcoxon

tests for averages of ERD of Alpha AF7 and Beta TP9 with

baseline away between 1 and 2 back for all participants,

participants with odd IDs, and participants with even IDs,

respectively. We find no significant results (Table 4).

Analysis of EEG results

Different cognitive workloads evoked associated human

brain oscillatory responses (Krause et al., 2000; Pesonen et al.,

2007) that made it possible to measure the corresponding

cognitive workload levels.

The results in Table 3 show that only Alpha ERD AF7

and Beta ERD TP9 among the 12 measures (TP9, AF7,

AF8,TP10 ∗ Alpha, Beta, and Theta) are sensitive to the different
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TABLE 3 The descriptive statistics and Mann–Whitney–Wilcoxon test results for averages of ERD of Alpha, Beta, and ERS of Theta for TP9, TP10,

AF7, and AF8 with baseline near between 1 and 2 back.

Measure N Back N Mean SD Median W* p-value

Theta_ERS_TP9_near 1 415 0.5103788 2.3437866 0.1606055 81,290 0.05664

2 424 0.3624826 0.8789823 0.1961127

Theta_ERS_AF7_near 1 442 1.479168 7.528482 0.3261652 102,550 0.1951

2 488 40.222121 858.424241 0.3993164

Theta_ERS_AF8_near 1 463 256.550957 4473.14064 0.4962916 107,560 0.7199

2 471 1.656752 6.897568 0.4979768

Theta_ERS_TP10_near 1 402 0.1968689 0.2983741 0.1055942 76,520 0.1935

2 402 0.4827313 2.7181894 0.1440152

Alpha_ERD_TP9_near 1 407 −0.2429342 0.6022346 −0.0708803 94,305 0.07823

2 433 −1.0891115 16.1080866 −0.0994483

Alpha_ERD_AF7_near 1 417 −0.4870307 1.31401 −0.1177238 89,413 0.03469**

2 395 −4.1949784 63.64311 −0.1726443

Alpha_ERD_AF8_near 1 422 −1.305807 7.191686 −0.1905496 91,227 0.9368

2 431 −7.442734 122.014022 −0.2087486

Alpha_ERD_TP10_near 1 382 −0.3358805 1.1701908 −0.0741198 75,913 0.6915

2 391 −0.2689888 0.5359719 −0.0839877

Beta_ERD_TP9_near 1 424 −0.0948762 0.1298309 −0.053213 94,695 0.04122**

2 413 −0.1438368 0.3410383 −0.0645524

Beta_ERD_AF7_near 1 398 −0.4218005 1.783285 −0.0801937 86,126 0.8545

2 436 −0.6272942 3.536376 −0.0829866

Beta_ERD_AF8_near 1 431 −0.1898465 0.3919714 −0.0811931 99,618 0.1104

2 435 −0.2896695 0.7094699 −0.1054581

Beta_ERD_TP10_near 1 259 −0.1434616 0.2283444 −0.0740742 36,067 0.2439

2 263 −0.1571087 0.1960775 −0.0797461

*W-Value is the sum of the ranks of the first sample. The bold values are p values smaller than 0.01, so they are statistically significantly. **P = 0.01.

TABLE 4 The descriptive statistics and Mann–Whitney–Wilcoxon test results for averages of ERD of Alpha_AF7 and Beta_TP9 with baseline away

between 1 back and 2 back.

ID Measure N Back N Mean SD Median W* p-value

ALL Alpha_ERD_AF7_away 1 325 −0.707954 0.6306785 −0.548365 56,233 0.2634

2 364 −0.707059 0.7387755 −0.4852188

Beta_ERD_TP9_away 1 179 −0.119261 0.1193088 −0.0843989 20,950 0.1648

2 205 −0.154169 0.1637146 −0.1034079

*W-Value is the sum of the ranks of the first sample.

workloads of between 1 and 2 back conditions for all participants

(p < 0.05).

The magnitudes of Alpha ERD AF7 and Beta ERD TP9

are significantly greater for the 2 back than for the 1 back

(Figure 5), indicating that Alpha and Beta increase as tasks

demand more cognitive workload. This is in line with previous

studies that found with inclining task demands, Alpha and

Beta desynchronize (increase) (Klimesch, 1999; Stipacek et al.,

2003; Klimesch et al., 2005; Neubauer et al., 2006; Antonenko

et al., 2010a; Antonenko and Niederhauser, 2010b; Xiang et al.,

2021).

The insensitivity of the six measures (AF8 and TP10 ∗

Alpha, Beta, and Theta) can be explained by the functions of the

cerebral cortex.

The TP10 electrode is positioned behind the right ear, which

is the right temporal lobe, and the AF8 electrode is on the

right forehead, which is the right frontal lobe (Figure 1). The

TP9 electrode is positioned behind the left ear, which is the left

temporal lobe, and the AF7 electrode is on the left forehead,

which is the left frontal lobe (Figure 1).

The left temporal lobe is associated with understanding

language, learning, memorizing, forming speech, and
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FIGURE 5

Box plots with medians between 1 back and 2 back for Alpha ERD AF7 (A) and Beta ERD TP9 (B).

remembering verbal information (Guy-Evans, 2021b). We

used English letters as a stimulus in the N-back task and

participants’ primary language is Chinese, thus it makes sense

that Beta ERD TP9 are found to have significant differences

between 1 and 2 back.

The AF7 electrode is on the left side of the frontal lobe.

The frontal lobe is located behind the forehead, at the front

of the brain. Each lobe controls the operations on opposite

sides of the body: the left hemisphere controls the right side

of the body and vice versa (Guy-Evans, 2021a). It is believed

that the left frontal lobe works predominantly with language,

logical thinking, and analytical reasoning. The right frontal

lobe, on the other hand, is mostly associated with non-verbal

abilities, creativity, imagination, musical, and art skills (Guy-

Evans, 2021a).

The dominant hands of 29 participants were the

right hand, and the remaining one was both hands. We

observed all participants only used their right hands to

make the choices. This explains that the Alpha ERD AF7

(left forehead) but not AF8 (right forehead) was found

to have significant differences between 1 and 2 back.

However, the other four measures of TP9 and AF7 shall

be sensitive to the difference in cognitive workload, as previous

studies prove.

Discussion on EEG data

In summary, MUSE 2 outputs good signals, but these signals

may not be readily useful in the studies on the usability of

smartphone applications for an entire and consecutive user

experience as a result of the difficulty in selecting a sensible

baseline due to two rationales.

The first rationale behind the difficulty in the selection of a

sensible baseline lies in the fact that only Alpha ERD AF7 and

Beta ERD TP9 show sensitivity to the difference in cognitive

workload between 1 and 2 back. It is not consistent with that

given in previous studies (Klimesch, 1999; Stipacek et al., 2003;

Klimesch et al., 2005; Neubauer et al., 2006; Antonenko and

Niederhauser, 2010b; Xiang et al., 2021).

Second, according to Pfurtscheller and Lopes da Silva

(1999), ERD/ERS is required to have a baseline captured some

seconds right before the events. Yet, it is not feasible to have a

baseline for each stimulus in the scenarios of users experiencing

any applications on smartphones. We had carried out an

exploration of adopting a single baseline away with stimulus,

but unfortunately it did not show any statistically significant

differences for averages of ERD of Alpha AF7 and Beta TP9

between 1 and 2 back.

All in one sentence, although MUSE 2 is of consumer grade,

comfortable to wear, and wireless connected, it is a reliable

device for researchers to capure stable EEG data for measuring

cognitive workload. It does show some promise for detecting

cognitive workload elicited by isolated/independent elements

in user interface (UI) design, and selective signals may be

combined with eye-tracking data to detect UI issues that invoke

user errors.

Eye movement data

Eye movement data processing and analysis

During the experiment, participants completed N-back tasks

on a smartphone attached to the mobile testing accessory

with the Tobii Pro Nano mounted on the top (Figure 2). Eye

movement data were collected by the Tobii Pro Nano via the

Tobii Pro Lab software (version 1.162.32461).

Similar to the EEG data, the recorded eye movement

data were processed using Excel and R through several steps

to get averaged pupil dilation left, averaged pupil dilation

right, averaged fixation duration, averaged fixation number in

second, averaged saccade duration, averaged saccade number in

second, maximums of pupil dilation left, maximums of pupil

dilation right, maximums of fixation duration, and maximums

of saccade duration.
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A non-parametric test was selected for non-normal data. See

Appendix C for data processing and analysis detailed steps.

Eye movement data results

The Tobii Pro Nano was extremely sensitive to angle

changes between participant’s eyes and the device. Based on the

experience we had gathered from pilots, we had a higher chair

for the participants to improve the capture rate and adjusted the

Tobii Pro Nano angle according to each participant. Despite the

higher chair we had employed and the active adjustments made

to the mobile testing accessory, the capture rates varied across

participants. Eighteen participants’ data with relatively higher

capture rates were processed and analyzed here.

Averaged cognitive workload is quantified by the averaged

pupil dilation left and the averaged pupil dilation right,

the averaged fixation duration and the averaged fixation

number, and the averaged saccade duration and the averaged

saccade number.

To examine whether there were statistically significant

differences for averaged pupil dilation changes between low

and high cognitive workload conditions, we conducted a

Mann–Whitney–Wilcoxon test for averaged pupil dilation left,

averaged pupil dilation right, between 1 and 2 back. The results

are presented in Table 5.

In this research, the averaged fixation duration and the

fixation number in second were adopted as the representative

of the averaged cognitive workload during the intervals, starting

from the appearance of each letter to the time point that choices

were made.

To examine whether there were statistically significant

differences for averaged fixation duration and fixation number

in second between low and high cognitive workload conditions

were observed, we conducted Mann–Whitney–Wilcoxon

tests between 1 and 2 back. The results are presented

in Table 5.

In this research, the averaged saccade duration and the

averaged saccade number in second were adopted as the

representative of the averaged cognitive workload during the

intervals, starting from the appearance of each letter to the time

point that choices were made.

To examine whether there were statistically significant

differences for the averaged saccade duration and the averaged

saccade number in second between low and high cognitive

workload conditions, we conducted Mann–Whitney–Wilcoxon

tests between 1 and 2 back. The results are presented in Table 5.

The maximum pupil dilation left and the maximum pupil

dilation right were adopted as the representative of the peak

cognitive workload during the intervals, starting from the

appearance of each letter to the time point that choices

were made.

To examine whether statistically significant differences

for maximums of pupil dilation changes between low

and high cognitive workload condition, we conducted

Mann–Whitney–Wilcoxon tests for maximums of pupil dilation

left and of pupil dilation right between 1 and 2 back. The results

are presented in Table 6.

In this research, the maximums of fixation duration were

adopted as the representative of the peak cognitive workload

during the intervals, starting from the appearance of each letter

to the time point that choices were made.

To examine whether statistically significant differences

exist for the maximums of fixation duration between low

and high cognitive workload conditions, we conducted

Mann–Whitney–Wilcoxon tests between 1 and 2 back. We find

no significant results (Table 7).

In this research, the maximum saccade duration was

adopted as the representative of the peak cognitive workload

during the intervals, starting from the appearance of each letter

to the time point that choices were made.

To examine whether statistically significant differences

exist for the maximums of saccade duration between low

and high cognitive workload conditions, we conducted

Mann–Whitney–Wilcoxon tests for it between 1 and 2 back. We

find no significant results (Table 7).

Eye movement results’ analysis

Overall, the eye movement data collected by the Tobii Pro

Nano are valid and reliable. Some measures (pupil dilation,

saccade number in second, fixation number in second) are

sensitive to the difference of average cognitive workload and

peak cognitive workload introduced by the 1 or 2 back tasks.

The averages of pupil dilations of both eyes have been proven

to be reactive to the differences of average cognitive workload

between 1 and 2 back tasks consistently. As Table 5 reveals,

there are statistically significant differences between 1 and 2 back

for the averages of pupil dilation of both eyes (p < 0.05). The

medians of the averages of pupil dilations of both eyes are larger

in 2 back than in 1 back. The medians of the averages of pupil

dilations of both eyes remain greater in the 2 back and in the

1 back, so that the bigger average of pupil dilations means a

higher averaged cognitive workload. This finding is in line with

earlier studies (Granholm et al., 1996; Pomplun and Sunkara,

2003; Klingner et al., 2008; Chen et al., 2011; Porta et al., 2012;

Rafiqi et al., 2015).

The same pattern is discovered in the maximums of pupil

dilation. There are statistically significant differences between 1

back and 2 back for maximums of pupil dilation of both eyes

(p < 0.05 or < 0.001) (Table 6). The medians of the maximum

pupil dilation of both eyes are larger in 2 back than in 1 back for

both eyes, which indicates the larger maximum of pupil dilations

means a higher peak cognitive workload.

As for fixation and saccade, statistically significant

differences were observed between 1 and 2 back in the fixation

number in second and saccade number in second (Table 6).
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TABLE 5 The descriptive statistics and Mann–Whitney–Wilcoxon test results for the averaged pupil dilation left, the averaged pupil dilation right,

the averaged fixation duration, the averaged fixation number, the averaged saccade duration, and the averaged saccade number in second between

1 and 2 back.

Measure [mm] N back N Mean SD Median W* p-value

Averaged pupil dilation left 1 245 0.0776042 0.3685327 0.1129762 24,874 0.0006402***

2 247 0.2135481 0.3894946 0.1967991

Averaged pupil dilation right 1 255 0.1306679 0.4081041 0.1599511 29,682 0.005187**

2 271 0.2631821 0.4403823 0.2407292

Averaged fixation duration [ms] 1 247 224.4167 186.5857 166.7222 30,689 0.6749

2 254 217.8477 167.6373 166.4935

Fixation number in second 1 247 25.89081 15.4502 22.97702 33,166 0.02676**

2 254 24.25003 14.94318 22.54331

Averaged saccade duration[ms] 1 267 27.14384 10.29906 25 37,158 0.9221

2 277 27.43823 13.47225 25

Saccade number in second 1 267 11.416636 6.600944 10.673235 41,258 0.0196**

2 277 9.862231 5.004347 9.687836

*W-Value is the sum of the ranks of the first sample. The bold values are p values smaller than 0.01, so they are statistically significantly. **P = 0.01; ***P = 0.001.

TABLE 6 The descriptive statistics and Mann–Whitney–Wilcoxon test results for the maximum pupil dilation left and the maximum pupil dilation

right between 1 and 2 back.

Measure [mm] N back N Mean SD Median W* p-value

Maximums of pupil dilation left 1 299 −0.5025064 1.676639 0.1764088 26,852 0.03083**

2 300 −0.3933013 1.735202 0.2990345

Maximums of pupil dilation right 1 300 −0.30043015 1.54833 0.2411331 37,104 0.0001998***

2 300 0.04463652 1.391381 0.397199

*W-Value is the sum of the ranks of the first sample. **P = 0.01; ***P = 0.001.

TABLE 7 The descriptive statistics and Mann–Whitney–Wilcoxon test results for the maximums of fixation duration between 1 and 2 back for all

selected participants.

Measure N Back N Mean SD Median W* p-value

Maximum of fixation duration [ms] 1 247 290.8664 226.5789 217 30234 0.3964

2 256 309.6367 247.3612 217

Maximum of saccade duration[ms] 1 267 42.42697 23.30892 33 36237 0.5242

2 280 43.71071 24.47466 33

*W-Value is the sum of the ranks of the first sample.

Irreconcilable with previous findings is that the correlation

between the number of fixation and cognitive workload is

negative. Previous studies have concluded that an upswing

number of fixations correlate with an increased cognitive load

level (Goldberg and Helfman, 2010; Chen et al., 2011; Wang

et al., 2014; Zagermann et al., 2018). And the higher number

of saccades in second (saccade velocity) is also related to lower

cognitive workload, opposing the previous research (Barrios

et al., 2004; Chen et al., 2011; Lallé et al., 2016; Zagermann et al.,

2018).

Discussion on eye movement data

In this study, we found that eye-tracking device, Tobii

Pro Nano with mobile testing accessory, appears to be a valid

instrument for monitoring the cognitive workload difference in

a smartphone setting. This finding along with previous studies

(Sugaya, 2019; Ehlers, 2020; Lee and Chenkin, 2020) can provide

an initial empirical evidence on the reliability of Tobii Pro

Nano with mobile testing accessory. Moreover, the average pupil

dilation and the maximum pupil dilation have been ratified

as the effective measures of cognitive workload difference in a
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TABLE 8 The tasks in the papers.

Paper Task

Chen et al. (2011) observing team player positions in basketball

game videos

Goldberg and Helfman (2010) scanning within and between bar, line, and

spider graphs

Barrios et al. (2004) browsing content to learn

Lallé et al. (2016) retrieve, find, sort, and compute in charts

Wang et al. (2014) online shopping tasks on a shopping website

Zagermann et al. (2018) three visual search tasks that represent

different levels of difficulty

smartphone setting, and they enlarge along with the difficulty

levels of N-back task rising.

One incongruent finding is that the fixation velocity

and saccade velocity decline with the increment of cognitive

workload, while the previous studies found an upswing number

of fixations correlate with an increased cognitive load level

(Barrios et al., 2004; Goldberg and Helfman, 2010; Chen et al.,

2011; Wang et al., 2014; Lallé et al., 2016; Alonso Dos Santos and

Calabuig Moreno, 2018; Zagermann et al., 2018).

One possible justification for this reverse is the different

task design. The N-back task only required participants to look

at one spot on the screen, while the previous studies required

participants to observe, scan, and search during tasks and the

gazes were not fixed in one spot (Table 8).

Another obvious concern about the Tobii Pro Nano is the

unstable capture rate. Only nearly half of the participants’ data

was captured enough to be adopted.

One pilot participant’s capture rate was 0% and he

mentioned that he had a high degree of astigmatism, around

500–600 in both eyes. Astigmatism is an imperfection

in the curvature of your eye’s cornea or lens (Boyd,

2021). It may be helpful to think of the normal eye as

being shaped like a basketball. With astigmatism, it is

shaped more like an American football. The Tobii Pro

Nano may not effectively recognize the eyes of people

with astigmatism. This suggests that the low capture rate

for some participants may be caused by astigmatism.

Therefore, information about astigmatism was obtained

from the participants.

For the astigmatism degree, we averaged two eye degrees.

The capture rate was recorded in the Tobii Pro Nano. We

adopted Spearman’s rho statistic to assess the correlation

between capture rate and astigmatism degree, and the

correlation coefficients and p values are given in Figure 6.

The result shows that there is a statistically significant

negative correlation between capture rate and astigmatism

degree (p < 0.05 or < 0.001). The correlation coefficient is

−0.55. The negative correlation between astigmatism and

capture rate may have resulted from the changes in the shape

of eyeballs.

Overall, the objective of Experiment 1 was to assess the

feasibility of using wirelessly acquired EEG (MUSE 2) and eye-

tracking device (Tobii Pro Nano) to assess cognitive workload in

a well-controlled N-back task in a smartphone setting. And the

eye-tracking device, Tobii Pro Nano, can be adopted as a device

to collect eye movement data to monitor cognitive workload

fluctuations in a smartphone setting with a screen for high

astigmatism, and pupil dilation can be measured for cognitive

workload differences.

Conclusion and future directions

This study aimed to verify the feasibility of using

eye-tracking (i.e., Tobii Pro Nano) and low-cost

electroencephalogram (EEG, i.e., MUSE 2) devices to measure

real-time cognitive workload changes during mobile application

use, and which measures are sensitive to cognitive workload

differences. Results from the experiment manifest that the

eye-tracking device (Tobii Pro Nano) can be adopted as a

device to collect eye movement data to monitor cognitive

workload fluctuations in a smartphone setting, and pupil

dilations can be used to measure the cognitive workload

differences, with a screening test to filter out people with a high

astigmatism degree.

There are three main directions for future research. The first

one is to adopt pupil dilations as an effective measure to assess

users’ cognitive workloads while experiencing a smartphone

application and to improve the UI design of the application

based on the assessment.

The second one is to expand the age range to cover middle-

aged and older adults. Only younger users who were born with

smartphones were included in the study and we found that they

have a high level of endurance for design issues and proficient

capability to resolve issues by themselves. While it has been

found that cognitive performance declines with age (Deary et al.,

2009), it is reasonable to expand research to include middle-aged

and older adults to verify the findings in the different age groups

to investigate whether experience with smartphones overcomes

cognitive ability’s recession.

The third one is to test findings in other settings, e.g.,

virtual reality (VR), wearable devices, etc. Some ubiquitous

screens (e.g., smart watches, etc.) and certain brand immersive

experience technologies (e.g., VR glasses, etc.) have been

winning consumers’ heart with acceptable prices and great user

experiences. It is necessary to test our findings in these settings

as well.

In the far future, one major direction we desire to explore

is to establish a multidimensional assessment tool for product

usability, including subjective ratings, psychophysiological

measures, and performance measures. We understand this
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FIGURE 6

The correlation between capture rate and astigmatism degree.

objective is extensive and requires considerable time and human

resources to complete.

Another direction is to expand from application-focused

studies to include cognitive-focused studies. Instead of studying

how to improve the usability of specific kinds of software

applications, we aim to study cognitive processes, such as how

to help people focus or refocus in different settings.
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