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Editorial on the Research Topic

Exploring brain connectivity to understand behavior

Since the seminal work of Biswal et al. (1995), the study of connectivity has occupied

one of the most prominent places in neuroimaging, which is not surprising given the general

understanding of its role in information transfer and implementation of brain functions.

Beyond this general understanding, there are areas in which the study of connectivity has

a distinct advantage over the study of activation. The realization of brain function at rest,

when it is impossible to relate brain activity to the processing of specific stimuli, is one such

area. However, there is reason to believe that the study of functional connectivity also has

greater potential for identifying specific patterns associated with task performance than does

the study of brain activation. One of the most difficult questions in neuroscience is how

information is encoded in the brain. Numerous data accumulated by neuroimaging clearly

show a lack of specificity in the task-related activation of most cortical areas. For example,

Anderson and Penner-Wilger (2013) showed that the overall average diversity of different

anatomical areas on a scale from 0 (active in only one cognitive area) to 1 (equally active in

different cognitive areas) is 0.7. This diversity is much smaller for functional connections,

which suggests that the specificity of information representation in the brain is provided by

a task-specific pattern of connections rather than activations.

Most studies collected in this Research Topic use resting state fMRI (rs-fMRI)

functional connectivity data. These data allow to investigate task-independent patterns of

functional connections associated with pathological conditions or normal psychological

processes. Herman et al., using independent component analysis to identify resting state

networks, show that “decoupling” of the perceptual and somatosensory cortices, which can

compromise effective integration of early perceptual information with behavioral control

programs, may underlie impulsive behavior. Du et al. in their rs-fMRI study on a large

sample of students show that task-independent spontaneous connectivity in the punishment

network could explain the conformist tendency, which was measured using a conformity

scale. Schienle et al. selected participants based on their responses in a survey about

belief in miracles and showed that in people with high levels of belief, placebos can alter

the experience of emotional salience and cognitive control, which is accompanied by

connectivity changes in the associated brain networks. Xu et al. used rs-fMRI to reveal brain

underpinning of the primary childhood emotional neglect (CEN) and found that college

students with CEN history utilized the reappraisal strategy less frequently and displayed

more depressive symptoms than a control group, which was accompanied by stronger
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prefrontal functional connections with other brain regions. Suo

et al. recorded rs-fMRI in 122 earthquake survivors 10–15 months

after the event and used connectome-based predictive modeling

(CPM) to identify brain function features that are related to

symptom severity. CPM predicted symptom severity scores based

on functional connectivity between visual cortex, subcortical-

cerebellum, limbic, and motor systems. The study highlights the

potential usefulness of this kind of data for clinical assessment of

PTSD symptom severity at the individual level.

Two studies explore changes in connectivity during

experimental manipulations. Lee et al. using seed-based functional

connectivity analysis of fMRI data show that autonomous sensory

meridian response (ASMR), a sensory phenomenon in which

audio-visual stimuli evoke a tingling sensation accompanied by

a feeling of calm and relaxation, is accompanied by ongoing

interaction between regions that mainly include mentalizing

and self-referential networks. Contrary to the previous studies

that used functional connectivity measures, Choi et al. employ

effective connectivity measures in the framework of dynamic

causal modeling (Friston, 2011). They show that simulated driving

requires multi-domain executive function in addition to vision,

and pathway activation is influenced by the driving experience and

familiarity of the driver. Bari et al. use probabilistic tractography

to evaluate whether structural connectivity of the amygdala to

the brain reward network is associated with impulsive choice

and tobacco smoking. Using data from the Human Connectome

database, they analyze how subject performance on a delayed

discounting task and whether they met specified criteria for

difficulty quitting smoking could be predicted from sMRI

measures. Findings highlight the importance of the amygdala-

hippocampal-anterior cingulate network in the valuation of future

rewards and substance dependence. Authors suggest that these

results may help to identify potential targets for neuromodulatory

therapies for addiction and related disorders. Finally, a study

by Terstege et al. using Morris water maze training in mice and

quantification of c-Fos-labeled fluorescent cells examines the

effect of prior chronic spatial training on task-specific functional

connectivity associated with subsequent contextual fear recall.

Results show an increase in global efficiency and in network

resilience based on simulated targeted node deletion. Overall, this

study suggests that chronic learning has transferable effects on the

functional connectivity networks of other types of learning and

memory. The generalized enhancements in network efficiency and

resilience suggest that learning itself may protect brain networks

against deterioration.

To summarize, the collection of articles in this Research Topic

demonstrates the variety of areas of neuroscience in which the study

of connectivity can yield exciting discoveries. They range from

elucidating the cerebral underpinnings of persistent individual

differences, such as impulsivity, conformity, and suggestibility, to

the short-term or long-term effects of experimental manipulations,

such as ASMR, simulated driving, and water maze training, or

environmental events and conditions, such as earthquakes or CEN.

Even more exciting discoveries can be expected in the near future,

when recently developed methods such as dynamic connectivity

or multivariate pattern analysis breathe new life into the study

of connectivity.
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Trait Impulsivity Associated With
Altered Resting-State Functional
Connectivity Within the
Somatomotor Network
Aleksandra M. Herman1,2* , Hugo D. Critchley3,4 and Theodora Duka2,5
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Knowledge of brain mechanisms underlying self-regulation can provide valuable insights
into how people regulate their thoughts, behaviors, and emotional states, and what
happens when such regulation fails. Self-regulation is supported by coordinated
interactions of brain systems. Hence, behavioral dysregulation, and its expression as
impulsivity, can be usefully characterized using functional connectivity methodologies
applied to resting brain networks. The current study tested whether individual differences
in trait impulsivity are reflected in the functional architecture within and between resting-
state brain networks. Thirty healthy individuals completed a self-report measure of
trait impulsivity and underwent resting-state functional magnetic resonance imaging.
Using Probabilistic Independent Components Analysis in FSL MELODIC, we identified
across participants 10 networks of regions (resting-state networks) with temporally
correlated time courses. We then explored how individual expression of these spatial
networks covaried with trait impulsivity. Across participants, we observed that greater
self-reported impulsivity was associated with decreased connectivity of the right lateral
occipital cortex (peak mm 46/-70/16, FWE 1-p = 0.981) with the somatomotor
network. No supratheshold differences were observed in between-network connectivity.
Our findings implicate the somatomotor network, and its interaction with sensory
cortices, in the control of (self-reported) impulsivity. The observed “decoupling” may
compromise effective integration of early perceptual information (from visual and
somatosensory cortices) with behavioral control programs, potentially resulting in
negative consequences.

Keywords: trait impulsivity, resting state, functional connectivity, Barratt Impulsiveness Scale, somatomotor
network

INTRODUCTION

Self-control allows people to make plans for the future, choose the best option from several
alternatives, control impulses, inhibit unwanted thoughts, and regulate behaviors and emotions
(Kelley et al., 2015). Past studies typically employed task-related functional magnetic resonance
imaging (fMRI) to understand the neural substrates of transient fluctuations in self-control
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in different circumstances or in distinct populations. Although
this approach is well-suited to capture momentary changes in
brain activity in response to specific (internal or external) stimuli,
it is arguably insufficient to capture more tonic aspects of self-
control (Kelley et al., 2015). A global whole-brain network
approach can provide more comprehensive insight into neural
substrates supporting individual differences in the capacity for
self-control over longer timescales. Moreover, measurement of
functional connectivity (FC) across “resting-state” (RS) networks
has proven value as a tool for characterizing mechanisms
underlying neurocognitive processes and psychiatric disorders,
while overcoming technical and inferential limitations of task-
related fMRI (De Luca et al., 2006; van den Heuvel and Hulshoff
Pol, 2010; Cole et al., 2014; Dipasquale et al., 2015).

Specific studies using FC at rest have tested for differences in
the interaction between brain regions that account for impulsivity
and, more generally, the executive function and dysfunction,
in children (Inuggi et al., 2014) and in young adults (Davis
et al., 2013; Reineberg et al., 2015). In typically developing
children (8–12 years old) parental ratings of trait impulsivity
are related to lower RS brain connectivity within the default
mode network (DMN), specifically between posterior cingulate
cortex and right angular gyrus (Inuggi et al., 2014). The DMN is
considered a “task-negative” network, where activity is strongest
when an individual is not engaged in an external task (e.g., at
rest). Correspondingly, DMN activity is typically anti-correlated
to other “task-related” resting-state networks (RSN) (Uddin
et al., 2009). In highly impulsive children, the canonical anti-
phasic relation between the DMN and action-related networks
is much reduced, indicating that trait impulsivity is linked
to a reduced functional segregation of task-negative and task-
positive networks (i.e., the natural degree of anti-correlation
between these networks is reduced). By extension, impulsivity
may putatively arise in the context of functional interference
between brain systems directing internal and external attention
(Inuggi et al., 2014).

In adults, self-report questionnaires are used to assess trait
impulsivity, measuring one’s tendencies to show premature,
unplanned and short-sighted actions and decisions in daily
life (Herman et al., 2018). Applying graph-theory approaches
to functional brain architecture at rest in adults revealed an
association between trait impulsivity and increased segregation
between cortical and sub-cortical regions (i.e., increased
“modularity”) (Davis et al., 2013). This is coherent with
findings in young adults for whom core aspects of executive
function (quantified using three behavioral tasks) were positively
associated with connectivity between the frontal pole and
an “attentional” RSN, and also between the cerebellum and
a right frontoparietal RSN. This suggests that individuals
with better executive functioning manifest more expanded
yet more integrated RSN relative to individuals with worse
executive functioning (Reineberg et al., 2015). However, there
are also contrasting findings: Individuals with increased motor
impulsivity (i.e., poorer inhibitory capacity on the go/no-go
task) and higher trait impulsivity (Barratt Impulsiveness Scale),
reportedly show greater RS FC between the basal ganglia
and thalamus, motor cortex, temporal lobe and prefrontal

cortex (Korponay et al., 2017). This suggests that increased
connectivity between motor-brain regions may predispose to
disinhibited actions.

The comparison between these earlier studies to disentangle
the observed differences, however, is hindered by the different
approaches to functional connectivity (e.g., focus on a single,
pre-defined RSN, or the use of seed-based methods, instead of
a whole-brain model-free approach) and diverse measures of
disinhibited behaviors used (various behavioral tasks or trait
measures). Their focus on general executive functioning instead
of trait impulsivity or a specific behavioral impulsivity task is
also a limitation. The present study set out to cover these gaps
by testing for predicted associations between trait impulsivity
and the strength of FC within as well as between resting-
state networks.

An understanding of the brain mechanisms underlying self-
regulation can provide valuable insights into how people regulate
and control their thoughts, behaviors, and emotional states and
can illuminate what happens on those occasions when this
regulation fails (Kelley et al., 2015). The present study tested
whether individual differences in trait impulsivity are reflected
in within-and between-resting-state network architecture using
a FC approach. Based on previous findings, we predicted that
internal architecture of the default mode (Inuggi et al., 2014),
frontoparietal, and attentional networks (Reineberg et al., 2015)
would be linked to the expression impulsivity across individuals
and that between-network connectivity pattern of task-negative
(DMN) and task-positive networks (Inuggi et al., 2014) might
also be modulated by the magnitude of trait impulsivity.

MATERIALS AND METHODS

Participants
Thirty volunteers (nine males) were recruited from staff
and students of the University of Sussex. Participants were
required to be between 18 and 40 years old and right-handed.
Exclusion criteria included history of any psychological or
neurological disorders, head injury, current treatment for any
psychological or physical condition (including use of inhalers;
excluding the contraceptive pill), pregnancy or breastfeeding,
clinically significant impairment of vision, use of psychoactive
substances 48 h before testing, and any MRI contradictions
(claustrophobia, having any metal implants, teeth braces or
bridges, or cardiac pacemakers).

All participants provided written informed consent. The study
was conducted according to the Declaration of Helsinki. All
procedures were approved by the Brighton and Sussex Medical
School Research Governance and Ethics Committee.

Questionnaires
Participants completed the Barratt Impulsiveness Scale (BIS;
Patton et al., 1995), a 30-item questionnaire with three distinct
impulsivity facets: attentional (eight items; a lack of focus on the
ongoing task), motor (11 items; acting without thinking), and
non-planning impulsivity (11 items; orientation to the present
rather than to the future).
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MRI Experiment Design
In the MRI scanner, first, a structural scan was obtained followed
by a 7-min resting-state scan (165 volumes) during which
participants were instructed to rest with their eyes open focusing
on a fixation cross in the center of the screen with the instruction
to try not to think of anything and not to fall asleep. All
participants were tested between 2 pm and 6 pm to control for
possible time of day effects on an attentional level.

MRI Acquisition
MRI was performed on a 1.5-Tesla MAGNETOM Avanto
scanner (Siemens AG, Munich, Germany) with upgraded
gradients and a 32-channel headcoil. Structural volumes
were obtained using a high-resolution three-dimensional
magnetization prepared rapid acquisition gradient echo
sequence. Functional data sets used T2∗-weighted echo planar
imaging sensitive to blood oxygenation–level-dependent signal
(repetition time = 2.52 s, echo time = 43 ms, flip angle = 90◦,
34 slices, 3-mm slice thickness, field of view = 192 mm,
voxel size = 3 × 3 × 3 mm). Slices were angled −30◦ in the
anteroposterior axis to reduce the signal loss in orbitofrontal
regions (Deichmann et al., 2003; Weiskopf et al., 2006).

fMRI Data Pre-processing
Imaging analysis was performed using FEAT (FMRI Expert
Analysis Tool) version 6.00, a part of FMRIB Software Library
(FSLv6.0, Jenkinson et al., 2012). Pre-processing steps included
(1) skull stripping of structural images with Brain Extraction
Tool (BET), (2) removal of the first four functional volumes to
allow for signal equilibration, (3) head movement correction by
volume-realignment to the middle volume using MCFLIRT, (4)
global 4D mean intensity normalization, (5) spatial smoothing
(6mm full-width half-maximum), and (6) noise signals removal,
(7) temporal high-pass filtering (100 s cut-off).

FMRI datasets were co-registered to the participant’s
structural image using affine boundary-based registration
as implemented in FSL FLIRT (Jenkinson and Smith, 2001;
Jenkinson et al., 2002) and subsequently transformed them to
MNI152 standard space with 2 mm isotropic resolution using
non-linear registration through FSL FNIRT (Andersson et al.,
2010). Noise signals were identified individually and removed
using ICA-AROMA toolbox (Pruim et al., 2015). ICA-AROMA
incorporates probabilistic Independent Component Analysis
(ICA) on the partly pre-processed single-subject fMRI data
(following spatial smoothing and normalization but before
high-pass filtering), identifies independent components (ICs)
representing motion artifacts and removes them from the fMRI
time-series using linear regression.

Since there was a broad age range within our population (18–
37 years) and a larger number of females than males participated
in the study, in all reported analyses, gender and mean-centered
age were added as covariates of no interest.

Independent Components Analysis
The RS data analysis pipeline is summarized in Figure 1. To
decompose the RS data into various independent spatiotemporal
components, Probabilistic Independent Components Analysis

(PICA) was performed on the pre-processed functional scans
using Melodic version 3.14 (Beckmann and Smith, 2004).
A dimensionality estimation using the Laplace approximation to
the Bayesian evidence of the model order (Beckmann and Smith,
2004) produced 11 spatiotemporal components. Following an
approach described in Reineberg et al. (2015), we statistically
compared the spatial map of each independent component (IC)
to a set of seven reference RS networks from a previous large-
scale RS analysis (Yeo et al., 2011). We used FSL’s “fslcc” tool to
calculate Pearson’s r for each pairwise relationship and kept only
those ICs that yielded a significant spatial correlation (Pearson’s
r > 0.3) with one of the reference networks. This procedure
identified and helped label 10 target ICs (see Table 1 for details).
Upon visual inspection, the remaining 1 IC was considered noise
and was not subjected to further analysis.

Dual regression
For the between-subject analysis, we carried out dual regression,
a technique that back-reconstructs each un-thresholded group-
level component map at the individual subject level, generating
participant-specific spatial maps and time courses (Beckmann
et al., 2009; Filippini et al., 2009). The dual regression consists
of (1) a spatial regression of the group-average set of ICs
that produces a set of participant-specific time series, one
per group-level component, and (2) a temporal regression of
those participant specific time series, resulting in a set of
participant-specific spatial maps, one per group-level component
(see Figure 1). Participant-specific components are whole brain
images. For some individuals, the given IC might be very similar
to the group level IC while others might show variations of
the group level IC (i.e., have an expanded/constrained network
or high/low connectivity of a particular region). Statistical
analyses (discussed below) are performed on these whole brain
participant-specific ICs to determine areas that covary with trait
impulsivity measure, that is BIS total score.

Within-network connectivity
To quantify the within-network variation in functional
connectivity (FC), depending on BIS total score and participant-
specific ICs, we carried out voxel-wise regression to assess
statistically significant differences in FC in relation to trait
impulsivity score. The analysis was conducted using Randomize,
FSL’s non-parametric permutation testing tool (Winkler et al.,
2014), with 5000 permutations and threshold-free cluster
enhancement (TFCE) with an alpha level of 0.05 to correct
for multiple comparisons. The permutation testing procedure
was run for each set of participant-specific ICs (one for each
group-level ICs of interest); thus, the resulting statistical images
reveal how variation in RS FC (functional connectivity estimates)
predict differences in trait impulsivity (see Figure 1). For
example, the permutation testing procedure could reveal that
individuals with expanded one of the ICs (i.e., expanded to areas
outside the areas included in the group-level IC) report greater
impulsivity. Following studies using similar procedures (Uddin
et al., 2013; Nomi and Uddin, 2015; Reineberg et al., 2015; de
Bézenac et al., 2017; Herman et al., 2019), further correction for
multiple component testing was not applied.
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FIGURE 1 | Illustration of the steps followed during resting-state functional fMRI data analysis. For more details of this analysis steps see Methods section. rs-fMRI,
Resting state functional magnetic resonance imaging; PICA, Probabilistic Independent Component Analysis; IC, Independent Component; BIS, Barratt
Impulsiveness Scale.
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TABLE 1 | Identified Independent Components (IC Number) and their characteristics.

IC number Matching template
network

Correlation with the
template (Pearson’s

r)

Regions Lateralization Number of voxels

1 Visual 0.745 Bilateral 1,138,587

2 Default mode network 0.746 Bilateral 761,539

3 Dorsal Attention/Visual 0.579/0.359 Bilateral 1,003,173

4 Default mode network 0.469 Bilateral 266,631

5 Default mode network 0.548 Bilateral 670,689

6 Ventral attention 0.454 Bilateral 181,331

7 Somatomotor 0.746 Bilateral 898,845

8 Frontoparietal 0.329 Left 944,938

9 Frontoparietal 0.513 Right 689,400

10 Ventral attention 0.301 Bilateral 211,073

Images are presented in the radiological convention (left side of the brain is presented on the right side of the image). DMN, Default Mode Network.

Between-network connectivity
FSLNets. To examine the relationship between trait impulsivity
and between-network FC, we employed the FSLNets package1

implemented in Matlab v2015b (The MathWorks, 2015). This
analysis involved correlation of the participants’ time courses

1http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets

from the dual regression analysis and subjected them to between-
network comparisons to determine how they are correlated with
each other (Smith et al., 2013). We then calculated full and
partial correlations between all pairs of ICs. Partial correlations
are computed as correlations between two ICs while controlling
for the effect of all other ICs and are thought to reflect more
direct connections (Smith et al., 2011). Finally, BIS total score was
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FIGURE 2 | Somatomotor resting-state network (IC 7), depicted in warm colors, was identified as the only network showing the significant differences across the
BIS total score spectrum. The area that showed reduced resting state functional connectivity within this network was a region in the lateral occipital cortex (in blue;
X = 46, Y = −70, Z = 16). The visualization of the relationship is shown in the scatterplot in the bottom right corner. Images are presented in the radiological
convention. A-anterior, I-inferior, L-left, P-posterior, R-right, S-superior. IC, Independent Component.

used as a regressor in the regression analysis in FSL randomize
with 5000 permutations to assess differences in between-network
connectivity across BIS spectrum. Results were FWE corrected
for multiple comparisons.

RESULTS

Participants
No participant was removed because of extensive motion in the
scanner. The final sample (N = 30, 9 males) was aged between 18
and 37 years old (M = 23.40, SD = 5.01). The average BIS Total
score was 65.30 ± 11.39.

Within-Network Connectivity
Greater self-reported impulsivity (BIS score) was associated
with lower functional connectivity of the right lateral occipital
cortex with IC7, a network that correlated significantly with
Somatomotor template network (peak mm 46/-70/16, FWE 1-
p = 0.981) (Figure 2).

Between-Network Connectivity
Network analysis using FSLNets revealed a modular structure
of functional networks, which could be segregated into clusters:
Cluster 1 comprised of Visual, Somatomotor as well as Ventral
and Dorsal Attention Networks (Figure 3, blue cluster),
while Cluster 2 comprised of Frontoparietal and Default-Mode
Networks (Figure 3, red cluster).

Using BIS as a predictor, no significant between-network
differences in connectivity were found.

DISCUSSION

This study investigated whether aspects of intrinsic functional
architecture and between-network connectivity pattern is
associated with individual differences in trait impulsivity in a
normative (university) population. We showed that individual
differences in trait impulsivity, assessed with BIS Total Score,
are associated with altered aspects of the functional architecture
of the Somatomotor RS network. Specifically, higher trait
impulsivity was linked to decreased coupling between the lateral
occipital cortex and the Somatomotor Network. Surprisingly,
we did not find any significant differences in the network
functional architecture of default mode or frontoparietal
networks associated with impulsivity, as has been reported
previously (Inuggi et al., 2014; Reineberg et al., 2015). However,
it is important to note that such previous research used different
measures of impulsivity. Therefore, those inconsistent findings
might merely reflect a heterogeneous nature of impulsivity
and its underlying neural mechanisms (Caswell et al., 2015;
Herman et al., 2018).

The finding of disrupted FC within the Somatomotor RS
network in relation to trait impulsivity level corroborates
previous studies. The graph theory approach, has been used
to test the relationship between impulsivity (as reflected in
BIS score) and the functional segregation (i.e., modularity)
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FIGURE 3 | FSLNets results of between network correlations (N = 30). Each independent component (IC) is denoted by one column and a corresponding raw. The
colored matrix displays the correlations of the time series between networks pairs. Dark red squares indicate highly positive correlations, light green indicates a
near-0 correlation, and dark blue represents highly negative correlation as denoted on the scale at the bottom of the figure. Full correlations between networks pairs
are shown below the diagonal line (in gray) with partial correlations shown above the diagonal line (for detailed description of full and partial correlation please see
main text). Groups of highly correlated ICs were clustered together according to a hierarchical clustering algorithm (visualized at the top of the matrix as a clustering
tree). Please note that the color cut-off for hierarchical tree is arbitrary – just for visualization purposes. Numbers indicate specific independent components as
described in Table 1. The ICs have been reordered, according to a hierarchical clustering algorithm. Small images at the top of each column summarize each IC’s
spatial map, with the right side of the images representing the left side of the brain. As described in the main text, the between-network connectivity was not
modulated by trait impulsivity score.

of whole-brain resting state architecture (Davis et al., 2013).
Overall, this reveals a shift in the functional connectivity
between visual, sensorimotor, cortical, and subcortical structures
across the impulsivity range; specifically pointing to increased
functional modularity between cortical and sub-cortical regions
as a function of impulsivity score.

The lateral occipital cortex supports both visual perception
and multisensory integration (Grill-Spector et al., 2001;
Beauchamp, 2005). Interestingly, it is recognized that visual
cortices contribute to impulsivity (Davis et al., 2013) and
disorders commonly associated with impulsivity, including as
Attention Deficit-Hyperactivity Disorder (ADHD; Castellanos
and Proal, 2013). The sensorimotor network consists of both
motor cortices, known to play a critical role in response
inhibition (Li et al., 2006; Duque et al., 2012; Rae et al., 2014),
and somatosensory areas, which are vital for sensory integration.
These regions show altered activity in inhibitory control in
diseased states such as post-traumatic stress disorder (Falconer
et al., 2008; van Rooij et al., 2014) or under pharmacological
interventions with LSD (Schmidt et al., 2017). Here, the
“decoupling” may itself reflect a deficit in effective integration of

perceptual information (visual and somatosensory cortices) with
somatomotor outputs (motor cortex) associated with behavioral
control, ultimately resulting in negative consequences, from poor
planning for the future to excessive substance use (Dickman,
1990; Herman and Duka, 2019).

Limitations
Some limitations merit comment. Our study was conducted
on a moderately sized sample of students and employees of
the university. The average BIS total score in our sample is
65.30 ± 11.39; which is consistent with other reports in the
literature of university sample [e.g., 65.67 ± 9.92 in males and
64.58 ± 10.36 in females according to Caswell et al. (2015)
and 63.82 ± 10.17 according to Patton et al. (1995)] and
normative community populations [59.18 ± 9.54 according
to Reise et al. (2013) or 62.3 ± 10.3 according to Stanford
et al. (2009)]. However, our sample consists of relatively high-
functioning young adults, who may have developed many
mechanisms to cope with elevated impulsivity levels in daily
life, which might have an effect on aspects of functional
connectivity. It is also important to mention that the majority
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of the sample consisted of females, some of which were using
hormonal contraception, which can affect functional connectivity
(Hausmann, 2005). Therefore, future research should replicate
our findings in larger-scale studies with general population,
including a range of individuals with various backgrounds and
educational levels. Finally, we did not find any suprathreshold
differences in between-network connectivity that could be related
to elevated impulsivity levels. Possibly, this is because our
sample consisted of highly functioning young adults, all from
the university population, and differences in between-network
connectivity may only reveal themselves in pathologically
impulsive individuals.

CONCLUSION

In the brain, aspects of the functional architecture of the
Somatomotor Network were associated with individual
differences in trait impulsivity (BIS Total score). Specifically,
more impulsive individuals showed decreased connectivity
between the lateral occipital cortex and the Somatomotor
Network. Since perception informs action and vice versa (Creem-
Regehr and Kunz, 2010), proper integration of sensory inputs is
crucial for adaptive behavioral responses. Therefore, the observed
decreased connectivity between the visual and somatosensory
cortices and motor cortex, may reflect itself in less effective
integration of perceptual information and behavioral control
and, thus, in negative consequences. However, in this normative
sample, the between-network architecture was not related to
trait impulsivity level. This evidence supports the use of RS FC-
approaches to identify biomarkers for impulse-control problems.
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Introduction: The amygdala is known to play a role in mediating emotion and possibly
addiction. We used probabilistic tractography (PT) to evaluate whether structural
connectivity of the amygdala to the brain reward network is associated with impulsive
choice and tobacco smoking.

Methods: Diffusion and structural MRI scans were obtained from 197 healthy subjects
(45 with a history of tobacco smoking) randomly sampled from the Human Connectome
database. PT was performed to assess amygdala connectivity with several brain
regions. Seed masks were generated, and statistical maps of amygdala connectivity
were derived. Connectivity results were correlated with a subject performance both
on a delayed discounting task and whether they met specified criteria for difficulty
quitting smoking.

Results: Amygdala connectivity was spatially segregated, with the strongest connectivity
to the hippocampus, orbitofrontal cortex (OFC), and brainstem. Connectivity with the
hippocampus was associated with preference for larger delayed rewards, whereas
connectivity with the OFC, rostral anterior cingulate cortex (rACC), and insula were
associated with preference for smaller immediate rewards. Greater nicotine dependence
with difficulty quitting was associated with less hippocampal and greater brainstem
connectivity. Scores on the Fagerstrom Test for Nicotine Dependence (FTND) correlated
with rACC connectivity.

Discussion: These findings highlight the importance of the amygdala-hippocampal-ACC
network in the valuation of future rewards and substance dependence. These results
will help to identify potential targets for neuromodulatory therapies for addiction and
related disorders.
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INTRODUCTION

The amygdala is a complex and heterogeneous structure with
multiple sub-nuclei that exhibit differential connectivity with
other brain regions (Swanson and Petrovich, 1998; Saygin et al.,
2017) through which it mediates a wide range of behavioral
responses to emotionally relevant information (Mormann et al.,
2017). Although the amygdala was traditionally thought to
mediate fear and aversive behavior, more recent evidence has
demonstrated its role in appetitive behaviors, including reward
learning, goal-directed behavior, and addiction (Wassum and
Izquierdo, 2015). In rats, electrical stimulation of the basolateral
nucleus of the amygdala (BLA) reinstates cocaine-seeking
behavior, and inactivation of the central nucleus reduces the
effect of punishment on cocaine self-administration (Xue et al.,
2012). Amygdala volume also has been related to substance abuse
as smaller right amygdala volumes have been associated with
externalizing behaviors and cigarette smoking in adolescents
(Cheetham et al., 2018).

The amygdala is a central node within a reward-related
network, with connectivity to other key limbic cortical and
subcortical structures that underlie reward-seeking behavior
and addictive behavior. When exposed to smoking stimuli,
tobacco smokers have repeatedly shown increased blood flow
to a functional network involving the amygdala, nucleus
accumbens (NAc), orbitofrontal cortex (OFC), hippocampus,
and insula (Wilson et al., 2004; Franklin et al., 2007; Dagher
et al., 2009). Imaging studies have also revealed an association
between cocaine cravings and increased dopamine release in
the amygdala, NAc, OFC, and anterior cingulate cortex (ACC;
Koob and Volkow, 2016). Furthermore, amygdala connectivity
modulates reward valuation where disconnection between
the amygdala and ACC biases choices in favor of a low
effort, small reward over a large reward at greater effort
(Floresco and Ghods-Sharifi, 2007; Wassum and Izquierdo,
2015). Similarly, the functional disconnection between the
amygdala and insula abolishes the ability to observe outcome
devaluation during an instrumental conditioning task (Parkes
and Balleine, 2013). Along these lines, relapse in drug
addiction has been partially attributed to changes within
the amygdala-hippocampus-NAc circuit. In animal models of
cocaine dependence, electrical stimulation of the amygdala
or the hippocampus elicits long-lasting dopamine release
in the NAc which may underlie relapses in drug-seeking
behavior (Blaha et al., 1997; Floresco et al., 1998; Hayes
et al., 2003; Li et al., 2018). In addition to connectivity
with midbrain dopaminergic neurons, amygdala connectivity to
other monoaminergic nuclei within the brainstem contribute
to pathological behavior. For example, the pharmacological
blockade of the ventral noradrenergic bundle, which connects
the amygdala to noradrenergic nuclei within the brainstem,
leads to significant attenuation of heroin seeking behavior
(Shaham et al., 2000; Leri et al., 2002). Connectivity of
the amygdala with these structures likely influences addictive
and reward-related behaviors through combined influences on
reinforcement learning, reward valuation, and the subjective
emotional experience associated with reward consumption.

A common feature in addiction is the preference for
immediate reward even when the overall value of that reward
is relatively low. This phenomenon has been formally modeled
as temporal discounting in which subjects show a preference
for receiving smaller immediate rewards over larger rewards
in the future (McClure et al., 2004). Interpreted as a measure
of impulsive choice, it has been linked with substance abuse,
addiction, and relapse as well as a variety of neuropsychiatric
disorders (Ahn et al., 2011; Elton et al., 2017; Owens et al.,
2017). Tobacco smoking in particular has been associated with
temporal discounting (Roewer et al., 2015; Ghahremani et al.,
2018). Therefore, understanding the neural correlates of this
behavior may yield a better understanding of the neural basis
for maladaptive decision-making in individuals with various
addictions, including nicotine dependence.

Previous work has shown associations between temporal
discounting and several interconnected limbic structures,
including the amygdala, NAc, hippocampus, OFC, parietal
cortex, and ACC (Bertossi et al., 2016; Klein-Flugge et al.,
2016; Frost and McNaughton, 2017; Chen et al., 2018). Here,
we analyzed a large imaging and behavioral dataset to test for
potential correlations between the structural connectivity of the
amygdala to multiple reward-related brain regions and impulsive
choice and nicotine dependence. Through this approach, we aim
to evaluate the role of amygdala circuits in addictive behavior
and to provide potential connectivity-based targets for future
neuromodulatory therapies for nicotine dependence and other
forms of addiction.

Specifically, we focus on the use of probabilistic tractography
(PT) as a measure of the structural connectivity of the
amygdala to other reward areas. While invasive tract tracing
studies can be routinely used to study brain connectivity
in animal models of addiction, their use is precluded in
studies involving living human subjects. Therefore, MRI-based
tractography has been used to study structural connectivity
in human subjects. Increasingly, PT has been applied toward
elucidating the structural organization and connectivity of
the amygdala in vivo (Bach et al., 2011; Saygin et al.,
2011), and to test for correlation of amygdala structural
organization and connectivity with behavior (Greening and
Mitchell, 2015; Li et al., 2018). As such, PT offers a noninvasive
method of exploring how specific amygdala connections
may influence addiction-related behavior and may be a
promising clinical tool to evaluate potential imaging biomarkers
of addiction.

MATERIALS AND METHODS

Subjects
Data were obtained from the publicly available WU-Minn HCP
1,200 Subjects data release repository1 (Van Essen et al., 2013).
The scanning protocol was approved by the Human Research
Protection Office (HRPO), Washington University (IRB# 201
204 036). No human subject experimental procedures were
undertaken at the authors’ home institution. The participants

1https://www.humanconnectome.org/
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TABLE 1 | Demographics of study population.

N 197 (%)
Age

22–25 41 (20.8)
26–30 91 (46.2)
31–35 64 (32.5)
36+ 1 (0.5)

Sex
F 103 (52.3)
M 94 (47.7)

included in the HCP 1,200 Subjects data release provided written
informed consent as approved by the Washington University
IRB. From this repository, 200 total non-twin subjects were
randomly selected. The analysis was limited to 200 subjects based
on available computational resources and the costs of performing
the analysis. Of these, 45 reported a history of smoking tobacco.
Of the 200 total subjects, three subjects were excluded due to
incomplete diffusionMRI data and without a priori knowledge of
their smoking history. The remaining 197 subjects were included
in our analyses (Table 1).

MRI Acquisition
The data were acquired in a modified Siemens 3T Skyra
scanner with a customized protocol (Sotiropoulos et al., 2013).
The T1-weighted MRI has an isotropic spatial resolution of
0.7 mm, and the dMRI data have an isotropic spatial resolution
of 1.25 mm. The multi-shell dMRI data were collected over
270 gradient directions distributed over three b-values (1,000,
2,000, 3,000 s/mm2). For each subject, the multi-shell dMRI data
were collected with both L/R and R/L phase encodings using the
same gradient table, which were then merged into a single copy
of multi-shell dMRI data after the correction of distortions with
the HCP Preprocessing Pipeline (Glasser et al., 2013).

Probabilistic Tractography
PT was performed using FSL’s FMRIB Diffusion Toolbox
(probtrackx) with modified Euler streaming (Woolrich et al.,
2009; Jenkinson et al., 2012). Seed and target masks were
generated using the Harvard-Oxford subcortical atlas (Desikan
et al., 2006). Bilateral amygdala seed mask regions of interest
(ROIs) were created. Target masks included the dorsolateral
prefrontal cortex (DLPFC), hippocampus, insula, NAc, OFC,
rostral anterior cingulate cortex (rACC), and brainstem. The
brainstem was defined as the medulla, pons, and midbrain
excluding the cerebellum as depicted by the mask in Figure 1G.
All tractography was performed between each (right and left)
amygdala and the ipsilateral target masks except that the entire
brainstem (left and right side) was used as a target for each
amygdala. Each target mask was also a termination mask such
that tractography was terminated once a streamline entered the
target. Ipsilateral white matter masks were used as waypoints.
The ventricles and cerebellum were used as exclusion masks. We
used the ‘‘one way condition,’’ curvature 0.2, 2,000 samples, step
length = 0.5, fibthresh = 0.01, distthresh = 1 and sampvox = 0.0.
This resulted in 14 seed_to_target output files representing
a voxelwise map of the number of seed samples from each

amygdala to target. To calculate the connection probability
between each amygdala voxel to each of the seven targets,
we ran the FSL proj_thresh subroutine with a threshold of
1,250 on each probtrackx output. For each voxel in the seed
mask with a value above the threshold, proj_thresh calculates
the number of samples reaching each of the target masks as
a proportion of the total number of samples reaching any of
the target masks. This yielded a separate map of each amygdala
for each target with each voxel having a value between 0 and
1 representing the connection probability of that voxel to the
given target. This method normalizes connectivity within each
subject, controls for expected cohort-wide variation in amygdala
volume, and enables comparisons across subjects. Thus, there
were 14 maps for each subject (7 targets × 2 hemispheres).
To produce an overall probability of connectivity from each
amygdala to target, probabilities were averaged across all voxels
in each map. Next, we created a population connectivity
map across all 197 subjects. Each of the previously created
proj_thresh maps was registered to MNI 1 mm standard space,
thresholded at a level of 0.1 and binarized. These maps were
then added across all 197 subjects such that each voxel value
now represented the number of subjects with connectivity to
the target. FSL commands were performed using Amazon Web
Services (AWS)2 EC2 instances running in parallel. Each AWS
EC2 instance was an r4.large clone of an Amazon Machine
Image (AMI) running Ubuntu 14.04 with FSL software version
5.0.10. This allowed us to run tractography on all 197 subjects
simultaneously in parallel. FSL bedpostx directories for each
subject and the probtrackx output files were stored on an
Amazon S3 bucket.

Behavioral Assessments
As part of the screening process, all subjects were given
a comprehensive assessment of psychiatric and substance
use history over the phone including the Semi-Structured
Assessment for the Genetics of Alcoholism (SSAGA), which
is a well-validated diagnostic instrument used in numerous
previous large-scale studies, assessing a range of diagnostic
categories including tobacco dependence (Kozlowski et al.,
1994; Barch et al., 2013). In particular, participants were
scored as either low (1 point) or high (5 points) depending
on whether they met DSM criteria for tobacco dependence
with difficulty quitting (‘‘DSM tobacco dependence—difficulty
quitting’’). Other measures of tobacco dependence included
the Fagerstrom Test for Nicotine Dependence (FTND). All
tests were performed by WU-MINN HCP researchers (Barch
et al., 2013). None of the test data was collected by any of
the authors.

Temporal Discounting Task
The impulsive choice was measured using a paradigm originally
developed by Kirby (2009). The task identifies ‘‘indifference
points’’ at which a person is equally likely to choose a smaller
reward (e.g., $100 now) sooner rather than a larger reward
($200 in 1 year). Based on the work of Green and Myerson,

2http://aws.amazon.com
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FIGURE 1 | Representative examples of cortical (A–C,E) and subcortical (F–H) masks of the target brain areas and the amygdala (D, center) from a single subject.
Masks were derived from Freesurfer automated segmentation included in the HCP dataset and were used to perform probabilistic tractography (PT) from the
amygdala to each target. (A) Orbitofrontal cortex (OFC). (B) Rostral anterior cingulate cortex (rACC). (C) Dorsolateral prefrontal cortex (DLPFC). (D) Amygdala. (E)
Insular cortex. (F) Nucleus accumbens (NAc). (G) Brainstem. (H) Hippocampus.

an adjusting-amount approach was used in which the delay is
fixed but reward amounts are adjusted on a trial-by-trial basis
based on the subject’s choices (Estle et al., 2006). The area
under the discounting curve (AUC_200) was used as an index
of discounting (Myerson et al., 2001). All data collection was
performed by the WU-MINN consortium (Barch et al., 2013).

Statistical Analysis
All statistical analysis was carried out using the R software
package3. One factor analysis of variance (ANOVA) was used
for amygdala connectivity to target regions with Tukey HSD
used for multiple comparisons correction. For analysis of the
association of connectivity with impulsivity, Pearson product-
moment coefficients were calculated. For testing the association
between connectivity to target and difficulty quitting tobacco
smoking, a two factor ANOVA model was utilized with Tukey
HSD used for multiple comparisons for the interaction effect.

3http://www.R-project.org/

RESULTS

Using DTI data from 197 subjects, we performed PT from
the amygdala to the following seven pre-determined target
structures: whole brainstem, DLPFC, hippocampus, insula, NAc,
OFC, and the rACC (Figures 1, 2). The relative probability
of connectivity was averaged over all amygdala voxels and
this value then averaged across all subjects (Figure 3). The
amygdala displayed the highest probability of connectivity with
the hippocampus relative to other targets (one-way ANOVA
with Tukey HSD, n = 2,758, p < 0.001 for all significant
comparisons, Tables 2, 3).

Next, we tested whether connectivity of the amygdala to these
target structures was spatially segregated or diffuse across all
amygdala voxels. Individual connectivity maps were normalized
to MNI standard space, thresholded, binarized, and summed
across all subjects to determine a population connectivity map
for each amygdala voxel to each target (Figure 4). We found
that connectivity with the insula, NAc, DLPFC, and rACC was

Frontiers in Behavioral Neuroscience | www.frontiersin.org 4 July 2020 | Volume 14 | Article 11718

http://www.R-project.org/
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Bari et al. Amygdala Connectivity and Smoking Cessation

FIGURE 2 | Example of PT from the amygdala to the OFC (left) and the hippocampus (right) from a single representative subject. Highlighted areas represent the
number of streamlines passing through each voxel. The number of streamlines reaching each target mask was added and divided by the total number of streamlines
reaching any of the seven target masks to calculate the probability of connectivity between the amygdala and each target.

FIGURE 3 | Probability of connectivity from the amygdala to each target region. Note that the highest probability of connectivity is to the hippocampus (33%). Thus,
33% of all tracks from the amygdala to the above targets terminated in the hippocampus. DLPFC, dorsolateral prefrontal cortex; HIPPO, hippocampus; NAc,
nucleus accumbens; OFC, orbitofrontal cortex; ROST_ACC, rostral anterior cingulate cortex; one-way ANOVA, *p < 0.001.

relatively segregated with a preference toward the dorsolateral
amygdala. Meanwhile, connectivity with the brainstem and

hippocampus was relatively diffuse with a localization trend
toward the central, relatively medial amygdala.
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TABLE 2 | ANOVA for connectivity by target.

DF Sum Sq. Mean Sq. F-value Pr ( >F)

Target 6 28.21 4.702 1,267 <2e-16∗∗

Residuals 2,751 10.21 0.004
∗∗p < 0.001

TABLE 3 | Tukey HSD Multiple Comparisons for mean connectivity between the amygdala and each target structure.

Target comparison Estimate Std. Error t-value Pr ( >|t|)

DLPFC—BRAINSTEM −0.095179 0.004341 −21.927 <0.001 ∗∗

HIPPO—BRAINSTEM 0.183838 0.004341 42.352 <0.001 ∗∗

INSULA—BRAINSTEM −0.016964 0.004341 −3.908 = 0.00179 ∗

NAc—BRAINSTEM −0.088717 0.004341 −20.439 <0.001 ∗∗

OFC—BRAINSTEM 0.088728 0.004341 20.441 <0.001 ∗∗

rACC—BRAINSTEM −0.113867 0.004341 −26.233 <0.001 ∗∗

HIPPO—DLPFC 0.279018 0.004341 64.28 <0.001 ∗∗

INSULA—DLPFC 0.078215 0.004341 18.019 <0.001 ∗∗

NAc—DLPFC 0.006462 0.004341 1.489 = 0.75172
OFC—DLPFC 0.183907 0.004341 42.368 <0.001 ∗∗

rACC—DLPFC −0.018688 0.004341 −4.305 <0.001 ∗∗

INSULA—HIPPO −0.200802 0.004341 −46.261 <0.001 ∗∗

NAc—HIPPO −0.272556 0.004341 −62.791 <0.001 ∗∗

OFC—HIPPO −0.095111 0.004341 −21.911 <0.001 ∗∗

rACC—HIPPO −0.297705 0.004341 −68.585 <0.001 ∗∗

NAc—INSULA −0.071753 0.004341 −16.53 <0.001 ∗∗

OFC—INSULA 0.105692 0.004341 24.349 <0.001 ∗∗

rACC—INSULA −0.096903 0.004341 −22.324 <0.001 ∗∗

OFC—NAc 0.177445 0.004341 40.88 <0.001 ∗∗

rACC—NAc −0.02515 0.004341 −5.794 <0.001 ∗∗

rACC—OFC −0.202595 0.004341 −46.674 <0.001 ∗∗

∗∗p < 0.001, *p < 0.05

FIGURE 4 | Population maps of amygdala connectivity to each target structure. The scale indicated the number of subjects that showed connectivity from each
amygdala voxel to each target structure. For example, while the amygdala was homogeneously connected to the OFC and hippocampus, there was greater
segregation of connectivity to the insula, rostral ACC, and nucleus accumbens. DLPFC, dorsolateral prefrontal cortex; OFC, orbitofrontal cortex; Rostral ACC, rostral
anterior cingulate cortex.
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FIGURE 5 | Pearson product-moment correlation of connectivity to the
target structure and the area under the delay discounting curve [area under
the curve (AUC)]. Connectivity between each target and the amygdala was
calculated. Subsequently, the correlation coefficient between amygdala-target
connectivity and the AUC of the temporal discounting behavior curve was
determined. Note that AUC is inversely related to impulsive choice in that a
high AUC indicates less discounting while lower AUC values indicate higher
discounting or more impulsive choice. Yellow bars indicate structures with
significant correlations with impulsive choice behavior. There was a significant
correlation between the hippocampus (r = 0.13) and the AUC (i.e., decreased
discounting). On the other hand, there was a significant negative correlation
between connectivity with the OFC (r = −0.13), insula (r = −0.11), and rACC
(r = −0.11) with the AUC (i.e., increased discounting; *p < 0.05, **p < 0.001).

We then evaluated the correlation between amygdala
connectivity to each target structure and temporal discounting,
using the area under the curve (AUC) for responses as an index
of discounting reward value as a function of delay. Connectivity
to the hippocampus was inversely correlated with temporal
discounting whereas connectivity to the OFC, rACC, and insula
were positively associated with greater preference for smaller,
more immediate rewards (Pearson product-moment correlation,
n = 197, hippocampus r = 0.13, p < 0.01; OFC r = −0.13,
p < 0.01; insula r = −0.11, p < 0.05; rACC r = −0.11,
p < 0.05, Figure 5, Table 4). There was no significant correlation

TABLE 4 | Pearson product-moment correlation for amygdala connectivity and
area under the curve (AUC) for the delay discounting task.

Target Estimate (r) p-value

DLPFC −0.022 0.657
rACC −0.106 0.036*
NAc 0.036 0.482
OFC −0.130 0.010**
INSULA −0.107 0.034∗

HIPPO 0.130 0.010**
BRAINSTEM 0.074 0.141
**p ≤ 0.01, *p ≤ 0.05

between the AUC and connectivity with the brainstem, DLPFC,
or NAc.

Addiction to nicotine, and substance abuse in general, has
been previously associated with impulsivity (Moody et al., 2016;
Hofmeyr et al., 2017). We sought to better characterize the
role of the amygdala’s structural connectivity to other brain
reward areas in mediating nicotine addiction. To this end, we
utilized behavioral measures of difficulty quitting and the FTND
scores as measures of severity of nicotine dependence. We found
a significant interaction effect between connectivity to reward
targets and tobacco dependence with difficulty quitting and
FTND scores. Comparisons revealed that connectivity of the
amygdala to the hippocampus was associated with low difficulty
quitting and connectivity with the brainstem was associated with
high difficulty quitting. There was also a trend of high difficulty
quitting associated with connectivity to the OFC and rACC but
this was not statistically significant [Two-factor ANOVA (Target,
Level of Difficulty Quitting), n = 45, p< 0.001, Table 5, Figure 6].
Similarly, amygdala connectivity with the rACC was significantly
correlated with higher FTND scores, indicative of dependence
(Table 6).

DISCUSSION

In this study, we utilize PT to compare the relative structural
connectivity of the amygdala to other brain areas involved in
reward processing to determine the correlation between this
connectivity and behaviors associated with reward processing.
The results show that an amygdala-hippocampal-OFC-ACC
network plays a role in the valuation of future rewards and
nicotine dependence. This is one of the highest-powered studies
to utilize PT to correlate the structural connectivity of the

TABLE 5 | Tukey pairwise comparisons for an interaction effect between target and difficulty quitting smoking for both levels of the “Difficulty Quitting” factor (low vs.
high).

Target Df 1 Df 2 F-Ratio p-value

BRAINSTEM 1 630 7.355 0.0069*
DLPFC 1 630 0.098 0.7549
HIPPO 1 630 23.879 <0.0001**
INSULA 1 630 0.097 0.7554
NAc 1 630 0.347 0.5563
OFC 1 630 1.362 0.2436
rACC 1 630 0.658 0.4177
**p < 0.001, *p < 0.01

Response Variable: Connectivity to Target.
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FIGURE 6 | Connectivity of the amygdala with each target and difficulty
quitting. The connectivity of the amygdala with each target was calculated.
Subsequently, an analysis of variance (ANOVA) was calculated with
connectivity as the dependent measure and target structure and difficulty
quitting (low = red vs. high = blue) along with their interaction effect using
Tukey HSD post hoc analysis. Yellow bars indicate statistically significant
findings. Connectivity of the amygdala with the hippocampus was associated
with less difficulty quitting while connectivity with the brainstem was
associated with greater difficulty quitting (Two factor ANOVA, n = 45,
*p < 0.01).

amygdala with impulsive choice and substance abuse. This
technique has been used before to segment the amygdala into
subnuclear components corresponding to its in vivo organization
(Bach et al., 2011; Abivardi and Bach, 2017; Saygin et al.,
2017). Our results focused on the connectivity of the amygdala
to brain areas implicated in reward and decision-making,
including the DLPFC, hippocampus, insular cortex, NAc, OFC,
and rACC. We also included the brainstem in our analysis
because of evidence that the amygdala modulates the activity
of midbrain dopaminergic neurons, and receives input from
brainstem nuclei, such as the locus coeruleus and nucleus
of the solitary tract in mediating behavioral and autonomic
responses to emotional stimuli (Veening et al., 1984; Petrov
et al., 1993; Rodríguez-Ortega et al., 2017). Of the pre-selected
brain targets, the amygdala had the highest probability of
connectivity with the hippocampus and OFC, followed by the
brainstem and insula, and lowest connectivity to the DLPFC,
NAc, and rACC (Figure 3). While functional connectivity
between the amygdala and all of these regions has been confirmed
in prior studies, the present study is the largest to date to
delineate structural connectivity to these areas and correlate
connectivity with impulsive choice and measures of nicotine
addiction. Furthermore, it is the first to show an association
of amygdala structural connectivity with both impulsive choice
and nicotine dependence. The higher probability of connectivity
with the hippocampus, OFC, and brainstem are particularly
interesting given that these regions have been previously
implicated in smoking behavior. For example, fMRI data shows
that hippocampal activation is associated with subjects assigning
a higher value to future rewards (Clewett et al., 2014). A
separate study identified an association between functional

TABLE 6 | Pearson product-moment correlation for amygdala-rACC connectivity
and the fagerstrom test for nicotine dependence.

Target Score Correlation coefficient p-value

rACC FTND 0.20 0.048*
*p < 0.05

connectivity of the hippocampus and the ACC and a reduction
in delay discounting when subjects invoked episodic future
imagination (Hu et al., 2016). This association between the
amygdala and memory for drug reward was corroborated by
our findings of an inverse correlation between delay discounting
and amygdala structural connectivity with the hippocampus
(Figure 5). However, we found that connectivity with the ACC
was related to preference for smaller sooner rewards. Our results
support the involvement of an amygdala-hippocampal-ACC
network in the valuation of future rewards. Others have proposed
that the specific role of the amygdala in reward may not lie in
Pavlovian or instrumental conditioned responding but rather
in reward learning in the context of changing incentive values
(Wassum and Izquierdo, 2015). Thus, connectivity with the
ACC and hippocampus may support the structural mechanism
underlying this phenomenon.

Performance on the delay discounting task has been
interpreted as a measure of impulsivity and a possible model
for substance abuse and relapse (Richards et al., 1999). For
example, it has been shown that less temporal discounting is
associated with a higher intention to quit smoking (Athamneh
et al., 2017). In this article, we show that connectivity between
the amygdala and hippocampus is associated with both decreased
delay discounting as well as less difficulty quitting (Figures 5, 6).
These findings support the concept that connectivity with
the hippocampus enhances smoking cessation behavior by
increasing the value of future rewards. On the other hand,
connectivity with the brainstem was associated with more
difficulty quitting. The brainstem is known to play a role in
the neuropharmacology of nicotine and is a direct target of
outputs from the central nucleus of the amygdala (Veening
et al., 1984). For example, nicotine may modulate brainstem
nuclei such as the ventral tegmental area, locus coeruleus, dorsal
motor nucleus of the vagus, and the nucleus of the solitary
tract through its activity at nicotinic receptors (Dehkordi et al.,
2015). Noradrenergic signaling from the locus coeruleus to the
extended amygdala is also associated with relapse to substance
abuse, including smoking (Smith and Aston-Jones, 2008). Thus,
structural connectivity between the amygdala and brainstemmay
mediate relapse to nicotine use.

In contrast to connectivity with the hippocampus,
connectivity with the OFC, rACC, and insula was associated
with preference for more immediate rewards (Figure 5). Based
on non-human primate anatomical studies, the OFC is known to
be directly connected to the amygdala (Cavada et al., 2000). The
relative roles of these two structures in reward are dissociable.
In rodent studies, lesions of the BLA increase preference for
smaller immediate rewards, while OFC lesions paradoxically
increase preference for more delayed rewards (Churchwell et al.,
2009). It is known that the OFC updates the incentive value of
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outcomes such as the effect of time on the devaluation of future
rewards (Wallis and Miller, 2003). Thus, increasing time delays
result in a devaluation of the corresponding reward, with the
updated value represented by the OFC (Ainslie, 1975). Here, we
show that greater OFC connectivity with the amygdala is linked
to a preference for more immediate rather than larger delayed
rewards. This was also reflected in our finding that increased
OFC connectivity was associated with more difficulty quitting
smoking, although this effect did not reach statistical significance
(Figure 6). We found a similar trend with connectivity to the
insula and rACC with higher connectivity associated with lower
AUCs reflecting a preference for more immediate choices. Also,
connectivity with the rACC was associated with higher FTND
scores of nicotine dependence (Table 6). Resting state fMRI has
shown that functional connectivity between the insula and ACC
and a monetary reward network is associated with increased
discounting (Li et al., 2013). However, their analysis did not
include the amygdala which may limit comparability with
our data. Taken together, our structural connectivity findings
support a dissociable role of the hippocampus compared to the
insula/OFC/rACC in the amygdala reward network.

To further validate connectivity results and potentially
inform targeting strategies for future neuromodulatory
therapies, we report topographical organization patterns of
amygdala connectivity (Figure 4). The amygdala is comprised
of several subnuclei which have been grouped according to
cytoarchitecture, neuroanatomical connectivity, and putative
function. The central nucleus (CeA) and the BLA are two
subnuclei that have been particularly implicated in the control
of emotional processes (Cardinal et al., 2002). The BLA is
constituted by the lateral (LN), basal (BN), and accessory basal
nuclei (ABN) with extensive projections to the neocortex and
NAc (Cardinal et al., 2002). Meanwhile, the CeA is generally
thought to regulate behavioral and autonomic responses via
strong anatomical connectivity with the brainstem (Cardinal
et al., 2002). Our tractography results are broadly consistent
with this organizational framework, where the NAc, DLPFC,
insula, and rACC most strongly connected to lateral portions of
the amygdala, while brainstem connectivity appeared relatively
medial (Figure 4).

Our findings may help to inform strategies and identify
potential targets of neuromodulatory therapy. Our group
previously reported an association between stimulation of the
BN and hedonic emotions (e.g., happiness and euphoria) in
PTSD patients (Avecillas-Chasin et al., 2020). This effect may
be important to note with regards to future neuromodulatory
therapies for addiction, especially given previous studies
describing the increase in NAc dopamine release and relapse
in drug-seeking behavior with non-specific BLA stimulation
(Blaha et al., 1997; Floresco et al., 1998; Hayes et al., 2003;
Li et al., 2018). Taken together with the topographical and
behavioral results related to amygdala connectivity, it may be
preferable to target stimulation toward the LN portion of the
BLA, to inhibit pathological connectivity with the insula and
rACC (which were found to be associated with more impulsive
decision making). Alternatively, if stimulation protocols could
be designed to enhance functional connectivity, there may be

benefits in targeting loci within the hippocampus to enhance
beneficial communication between the hippocampus and the
amygdala. Several other nodes within the tested network were
found to correlate with pathological behavior and merit further
investigation as potential targets of neuromodulation. For
example, greater connectivity between the amygdala and the
brainstem correlates with both impulsive decisions and greater
difficulty quitting smoking. We previously discussed several
possible brainstem nuclei which may underlie this behavioral
effect. Future, studies should be directed toward identifying these
nuclei and testing feasibility of targeting for neuromodulation.

The current study has several limitations. Discounting
behavior and addiction are complex phenomena with multiple
neurophysiological, environmental, and genetic influences. Here,
we attempt to correlate complex behaviors with discrete
structural imaging findings. We were limited to the HCP
database which only includes limited measures of smoking
dependence with the majority of subjects did not respond
to this questionnaire resulting in a highly powered temporal
discounting analysis, but a relatively lower powered nicotine
dependence analysis. Also, the temporal discounting monetary
task may have limited generalizability to substance abuse and
dependence (Lopez et al., 2015), and subjects did not undergo
other independent explicit impulsivity assessments such as
the Barrett Impulsivity Scale 11 (BIS-11). Other prior studies
have shown associations between tobacco dependence and
temporal discounting (Roewer et al., 2015; Ghahremani et al.,
2018). Given that our analysis was correlational, we cannot
definitively make conclusions regarding causality between these
correlated behavioral measures and connectivity. Finally, we are
skeptical of ascribing functional significance and directionality
to structural connectivity as measured by PT. Thus, while, we
describe an amygdala reward network with a tendency to view
connectivity as efferent projections from a central amygdala hub
to our target regions, it is equally valid to view the amygdala
as the target of axonal projections from these areas. Future
work must integrate functional neuroimaging and invasive
neurophysiological recordings to corroborate these structural
connectivity findings.
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Autonomous sensory meridian response (ASMR) is a sensory phenomenon in which
audio-visual stimuli evoke a tingling sensation and is accompanied by a feeling of calm
and relaxation. Therefore, there has been an increasing interest in using stimuli that
elicit ASMR in cognitive and clinical neuroscience studies. However, neurophysiological
basis of sensory-emotional experiences evoked by ASMR remain largely unexplored.
In this study, we investigated how functional connectivity is changed while watching
ASMR video, compared to resting state, and assessed its potential association with
affective state induced by ASMR. 28 subjects participated in fMRI experiment consisting
of 2 sessions (resting-state and task of viewing ASMR-eliciting video). Using a seed-
based correlation analysis, we found that functional connections between the posterior
cingulate cortex, and superior/middle temporal gyri, cuneus, and lingual gyrus were
significantly increased during ASMR compared to resting state. In addition, we found
that with the pregenual anterior cingulate cortex seed region, functional connectivity of
the medial prefrontal cortex was increased during ASMR condition, relative to resting
state. These results imply that ASMR can be elicited and maintained by ongoing
interaction between regional activity that are mainly involved in the mentalizing and
self-referential processing. We also found that ASMR-induced affective state changes
(high activation negative and high activation positive state) were negatively correlated
with functional connectivity involved in visual information processing, suggesting that
visual information processing in response to high arousal states can be weakened by
ASMR-eliciting stimuli.

Keywords: autonomous sensory meridian response, functional connectivity, functional magnetic resonance
imaging, default mode network, affective touch network, self-network

INTRODUCTION

Stress is common in everyday life, and is believed to affect individual health and happiness
(Segerstrom and Miller, 2004; Cohen et al., 2007). As a result, the development of stress
management approaches has become an important endeavor of preventing stress-related health
problems and accomplishing psychological well-being. In recent years, the autonomous sensory
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meridian response (ASMR) videos have been widely used in the
management of stress, by inducing relaxation and sleep (Barratt
and Davis, 2015; Lee et al., 2019). Specifically, ASMR is a sensory
phenomenon in which individuals experience a tingling in the
head and neck, in response to specific triggering audio and visual
stimuli (Barratt and Davis, 2015). The ASMR triggers lead to
response of psychologically pleasant effects such as feeling of
relaxation, reduction in anxiety, and sleep induction (Barratt
et al., 2017; Cash et al., 2018; Poerio et al., 2018).

Several studies have explored the neurophysiological basis
of ASMR using functional magnetic resonance imaging (fMRI)
(Smith et al., 2017, 2019; Lochte et al., 2018). Specifically,
Lochte et al. (2018) examined the brain activation during ASMR,
and observed significant activation in regions of the medial
prefrontal cortex (mPFC), dorsal anterior cingulate cortex,
supplementary motor area, and insular cortex during ASMR
condition, compared to the brain activity during resting state.

Smith et al. (2017, 2019) investigated the differences of resting-
state network between ASMR experienced and non-ASMR
experienced individuals. Using an independent component
analysis (Beckmann et al., 2005), they found that participants
with ASMR had less connections of the precuneus with other
regions of the default mode network (DMN) than controls. These
previous studies demonstrated the associations of ASMR with
the changes in regional activity and networks of resting state.
However, it is still unclear how connections among brain regions
are explicitly modulated by ASMR.

To address this issue, this paper focuses on the investigation
of ASMR condition-specific functional connectivity changes
in a brain network, compared to the resting-state functional
connectivity, using 3T functional magnetic resonance imaging
(fMRI). Functional connectivity was assessed using a seed-based
correlation approach (Biswal et al., 1995; Whitfield-Gabrieli and
Nieto-Castanon, 2012). We hypothesized that ASMR condition
would change the functional connectivity within the brain
network involved in mentalization and self-referential processing
as a meditation effect of ASMR. This is based on a previous
study (Barratt and Davis, 2015) reporting that sitting quietly
while watching relaxed scenes to arouse ASMR for a certain
period of time could be regarded as a form of mindfulness.
Mindfulness meditation can arouse relaxed and calm states by
developing a level of mentalization that controls emotion using a
capacity for resilience in the face of distressed conditions (Sharp
et al., 2011; Bateman and Fonagy, 2013). Also, the meditation has
been known to induce positive emotion using self- and other-
referential processing (Logie and Frewen, 2015). The previous
study (Logie and Frewen, 2015) has shown that participants who
experienced mindfulness meditation had self-positive bias that
led to positively affective responses during experimental self- and
other-referential processing. Therefore, based on an association
of ASMR and meditation conditions, we tested our hypothesis by
investigating the ASMR condition-specific connectivity changes
in the DMN that are involved in the mentalizing (Lombardo et al.,
2010; Mars et al., 2012), and the self- and other-networks that are
associated with self- and other-referential processing (Northoff
et al., 2006; Murray et al., 2015). The self-network has a function
of self-specific processing, indicating non-self-/self-distinction

to comprehend self in domain of perception, emotion, and
cognition (Northoff et al., 2006). The other-network has a
function of other-specific processing that represents other-/self-
distinction in understanding others’ mental and emotional states
across the domains of perception, emotion, and cognition
(Murray et al., 2015).

In addition, since the ASMR triggers have been known
to induce a tingling sensation as a secondary phenomenon
resulting from intensely positive emotion (Barratt and Davis,
2015), we explored the changes in the functional connectivity of
the affective touch network while watching the ASMR stimuli
(Morrison, 2016). We selected the seed regions for the default
mode, affective touch, and self-/other-networks as follows. The
posterior cingulate cortex (PCC), mPFC, and left/right lateral
parietal cortex (lLPC, rLPC) were used as the seed regions for
the DMN, because these regions are recognized as central hubs
within the network (Greicius et al., 2003). For the affective touch
network, we used the right posterior insular cortex (Ig2) as a
seed region based on a previous meta-analysis study (Morrison,
2016). Morrison (2016) reported a higher activation of Ig2
in response to affective touch compared with discriminative
touch. Using this seed region of Ig2, they observed an affective
touch network composed of bilateral clusters, including posterior
and anterior insular cortex, postcentral primary, and secondary
somatosensory regions. For the self- and other-networks, we used
the pregenual anterior cingulate cortex (pACC) and posterior
cingulate cortex/precuneus (PCC/PC) regions as seed ROIs,
because these two seed regions have been reliably shown to be
involved in conceptual self- and conceptual other-processing,
respectively (Murray et al., 2012). The self-network consisted of
the pACC and anterior insular cortex, whereas the other-network
consisted of the PCC/PC and angular gyrus/temporoparietal
junction (Murray et al., 2015).

Finally, using the functional connectivity estimates, we
further investigated the potential association of condition-
specific connectivity changes with affective state changes while
watching ASMR stimuli. Our hypothesis was that the changes in
functional connectivity during ASMR would be closely associated
with the changes in pleasant/unpleasant emotion and arousal
states during ASMR. We assessed the affective outcomes of
watching ASMR video clips using the Multi-Affect Indicator
(Warr, 1990; Warr et al., 2014) and then performed a correlation
analysis between the functional connectivity strengths and
individual scores for affective state induced by ASMR.

MATERIALS AND METHODS

Participants and Experimental Protocol
Twenty-eight healthy subjects (13 females, 15 males; mean age:
26.39 ± 3.77 years) participated in this study. No subjects had any
history of neurological disorders. The study was approved by the
Institutional Review Board (IRB) of Korea Basic Science Institute,
and the experiment was performed with the understanding and
written consent of each participant, according to IRB guidelines.

The experiment consisted of two sessions. In the first session,
which served as a control experiment, participants underwent
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a 5-min resting-state fMRI scan. During this scan, participants
were instructed to stare at a fixation point in the center of
the screen and remain awake. The scan duration of 5 min was
based on previous studies showing that estimates of resting-state
functional connectivity stabilized with this acquisition time (Van
Dijk et al., 2010). We also determined the specific instructions for
resting-state condition (eyes closed, eyes open, or eyes fixated on
a cross), based on Patriat et al. (2013). It was found that reliability
in the default mode, attention, and auditory networks was the
highest when subjects kept their eyes fixated on a cross.

In the second session, participants underwent ASMR task in
the MRI scanner. During the scan, participants were instructed
to view ASMR-eliciting video for 5 min. This video was trimmed
to a length of 5 min from the full-length version of the YouTube
video, which comprised repetitive and slow movements with
a scratching sound (i.e., scratching of a sand table). The web
address is as follows: https://youtu.be/bCFALoEfBGw. While
standards for ASMR videos have not yet been extensively
examined, several studies (Barratt and Davis, 2015; Fredborg
et al., 2017) have established the common stimuli that elicit
an intense ASMR experience, including whispering, scratching
sound, and slow/repetitive movements. Therefore, we selected
the content of the video clips based on these criteria. The length of
ASMR video clips was set to be consistent with that of the resting-
state condition because the scan length has been known to affect
the reliability of fMRI connectivity estimates (Birn et al., 2013).

After completing fMRI experiments, outside the scanner,
participants responded to questionnaires for assessing the
changes in affective states while watching ASMR video clips (see
the Behavior Data Analysis section for more details). Overall, this
study consisted of three phases: the first session for resting-state
experiment in the MRI scanner (5 min), the second session for
ASMR experiment in the MRI scanner (5 min), and behavioral
data collection outside the scanner.

MRI Acquisition
All images were acquired using a 3T Philips Achieva scanner
(Philips Medical Systems, Best, The Netherlands). Structural
images were acquired using a three-dimensional T1-weighted
sequence [repetition time (TR) = 6.6 ms; echo time (TE) = 3.1 ms;
flip angle = 9◦; voxel size = 1.0 × 1.0 × 1.2 mm3; field of view
(FOV) = 240 mm; 170 slices]. Blood oxygenation level dependent
(BOLD) images were obtained using a T2∗-weighted gradient
echo-planar imaging (EPI) sequence (TR = 2000 ms; TE = 35 ms;
flip angle = 79◦; voxel size = 3.0 × 3.0 × 3.0 mm3, FOV = 195 mm,
34 interleaved slices without slice gap).

Data Processing
The functional connectivity toolbox (CONN toolbox, Whitfield-
Gabrieli and Nieto-Castanon, 2012) with the statistical
parametric mapping software package (SPM12, Friston et al.,
2007) was used for pre-processing of the functional and structural
images, and functional connectivity analysis.

The effects of head movement between scans were corrected
by realigning all scans to the first image using a six-parameter
affine spatial transformation; the geometric distortion was
corrected by the unwarp function. The ensuing realignment

parameters were saved for modeling residual head motion
effects in the BOLD time series. To further mitigate motion-
related BOLD effects, including spikes, we used artifact
detection tools (ART, https://www.nitrc.org/projects/artifact_
detect) interoperable with CONN toolbox. Specifically, outlying
volumes in BOLD time series (scan “scrubbing”) were identified
based on normalized global mean intensity values (>Z = 5) and
motion parameters (>1 mm translational movement in the x, y,
or z planes or >0.02 rotation in yaw, pitch, or roll). The matrices
of outliers and realignment parameters were then entered as
first-level covariates (i.e., nuisance variables). To compensate for
slice-acquisition delays, the signal in each slice was realigned
temporally to a reference middle slice using sinc interpolation.
The structural image was co-registered with functional images
and segmented into gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF). All images were spatially normalized
to the Montreal Neurological Institute (MNI) space. Spatial
smoothing with a 6 mm full-width at half-maximum (FWHM)
Gaussian kernel was applied to the normalized images.

Systemic physiological confounds arising from cardiac and
respiration have been known to cause spurious correlation
structures throughout the brain (Birn et al., 2006; Chang and
Glover, 2009; Murphy et al., 2013). We therefore reduced
systemic physiological noise using the anatomical component-
based noise correction method (aCompCor) (Behzadi et al.,
2007). The method has also been shown to be effective in
the suppression of motion-related artifacts (Muschelli et al.,
2014). Assuming that the physiological noise contribution is
globally distributed, and neuronal activity-related signals are
low in the WM and CSF, the signals within the WM and
CSF were used as sources that primarily reflect physiological
noise. The top three components obtained from each of
the WM and CSF using principal component analysis were
included as the nuisance regressors in the first-level analysis. In
addition, to remove spurious task-induced co-activation effects,
we constructed a condition-specific regressor and included it
as additional temporal confounding factors by convolving a
canonical hemodynamic response function with a condition
(either ASMR or resting-state) spanning the entire scanner
acquisition length (Fair et al., 2007; Whitfield-Gabrieli and Nieto-
Castanon, 2012). Prior to the first-level connectivity analysis,
these temporal confounding factors (consisting of subject
movement, cardiac/respiration, and spurious parameters related
to task effects) were regressed out from BOLD time series at
each voxel. The resulting residual time series were then band-pass
filtered in the range of 0.01–0.1 Hz to constrain the low-frequency
BOLD fluctuations presumed to be related to spontaneous neural
activity (Biswal et al., 1995; Leopold et al., 2003).

First-level functional connectivity maps were generated by
computing Pearson’s correlation coefficients between average
BOLD time series calculated across all the voxels of a given seed
region and the time series of all other voxels in the brain (Biswal
et al., 1995; Fox et al., 2005). The resulting correlation coefficients
were converted to Z-scores using Fisher transformation (Fisher,
1915) to improve the normality assumptions of the subsequent
second-level general linear model (GLM) analysis. Functional
connectivity considered in our analysis was associated with (a)
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FIGURE 1 | Group-level functional connectivity of the t-statistic in the default mode network during resting-state, and in response to ASMR effects. Functional
connectivity strengths in terms of t-statistics were thresholded at a significance level of false discovery rate (FDR)-corrected p < 0.05, and overlaid on a cortical
surface atlas. Functional connectivity of the posterior cingulate cortex (PCC) seed region in response to ASMR (A), and in resting-state (B). Functional connectivity of
the medial prefrontal cortex (mPFC) seed region in response to ASMR (C), and in resting-state (D). Functional connectivity of the left lateral parietal cortex (lLPC)
seed region in response to ASMR (E), and in resting-state (F). Functional connectivity of the right lateral parietal cortex (rLPC) seed region in response to ASMR (G),
and in resting-state (H).
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TABLE 1 | Statistical significance of the group-level functional connectivity generated during ASMR condition.

Connectivity (ASMR) Brodmann area MNI (x, y, z) Size Peak-T Peak-beta Size p-FDR

PCC seed

Precuneus BA 7 (−2, −64, 40) 25801 30.715 0.977 0.00000

Medial frontal gyrus BA 10 (4, 50, −6) 12173 11.445 0.342 0.00000

Angular gyrus BA 39 (54, −62, 34) 6167 14.407 0.436 0.00000

Insular cortex BA 48 (−36, 4, 2) 1195 −8.276 −0.170 0.00000

Cuneus BA 18 (−26, −100, −8) 631 −7.666 −0.169 0.00000

Supramarginal gyrus BA 1 (64, −24, 48) 355 −5.303 −0.204 0.00000

Cuneus BA 17 (20, −102, −4) 221 −5.441 −0.144 0.00000

Superior frontal gyrus BA 8 (22, 4, 54) 151 −5.831 −0.135 0.00004

mPFC seed

Medial frontal gyrus BA 10 (2, 60, −2) 22584 29.669 1.241 0.00000

Posterior cingulate cortex BA 23 (6, −50, 22) 6927 14.525 0.562 0.00000

Angular gyrus BA 39 (−50, −66, 32) 2558 11.710 0.487 0.00000

Postcentral gyrus BA 40 (54, −32, 40) 1832 −6.744 −0.229 0.00000

Superior temporal gyrus BA 21 (60, −58, 20) 1715 10.946 0.397 0.00000

Inferior temporal gyrus BA 20 (54, −4, −36) 1659 8.214 0.256 0.00000

Inferior frontal gyrus BA 45 (−44, 38, 16) 251 −5.211 −0.241 0.00000

Superior temporal gyrus BA 38 (36, 20, −36) 146 6.139 0.163 0.00006

Parahippocampal gyrus BA 30 (26, −32, −16) 144 5.305 0.132 0.00006

Inferior frontal gyrus BA 45 (46, 38, 4) 109 −5.598 −0.212 0.00046

lLPC seed

Superior fontal gyrus BA 8 (24, 32, 48) 16420 14.658 0.390 0.00000

Angular gyrus BA 39 (−44, −72, 32) 15617 25.964 1.003 0.00000

Angular gyrus BA 39 (46, −70, 36) 5690 18.819 0.645 0.00000

Fusiform gyrus BA 37 (36, −34, −20) 408 7.241 0.186 0.00000

rLPC seed

Middle frontal gyrus BA 8 (26, 30, 52) 17027 14.827 0.480 0.00000

Superior temporal gyrus BA 39 (52, −60, 26) 7214 24.514 0.901 0.00000

Cuneus BA 18 (2, −70, 30) 7204 17.547 0.501 0.00000

Middle temporal gyrus BA 39 (−44, −68, 26) 4980 20.052 0.566 0.00000

Middle temporal gyrus BA 20 (−54, −8, −22) 2654 9.443 0.267 0.00000

Insular cortex BA 13 (42, 6, −4) 694 −7.820 −0.210 0.00000

Fusiform gyrus BA 37 (−30, −36, −16) 358 7.388 0.271 0.00000

Parahippocampal gyrus BA 36 (30, −20, −28) 316 5.600 0.147 0.00000

Insular cortex BA 48 (−36, 14, 8) 197 −6.373 −0.135 0.00000

pACC seed

Anterior cingulate cortex BA 32 (−2, 38, 16) 25640 46.025 2.517 0.00000

Inferior temporal gyrus BA 20 (−60, −56, −16) 2289 −8.354 0.160 0.00000

Inferior parietal lobule BA 48 (−44, −34, 32) 2285 −2.731 −0.079 0.00000

Precuneus BA 7 (8, −60, 70) 2062 −9.274 −0.176 0.00000

Middle occipital gyrus BA 37 (50, −64, −10) 1555 −6.903 −0.132 0.00000

Inferior parietal cortex BA 18 (58, −50, 50) 365 6.027 0.150 0.00000

PCC/PC seed

Middle frontal gyrus BA 8 (26, 40, 44) 12514 12.037 0.453 0.00000

Precuneus BA 23 (2, −62, 26) 8240 51.265 2.433 0.00000

Angular gyrus BA 39 (−44, −62, 26) 2753 12.495 0.521 0.00000

Middle temporal gyrus BA 21 (−66, −28, −8) 2310 8.849 0.229 0.00000

Angular gyrus BA 39 (54, −62, 34) 2107 13.294 0.493 0.00000

Inferior temporal gyrus BA 20 (56, −4, −38) 1751 11.132 0.212 0.00000

Insular cortex BA 48 (48, 12, 4) 1197 −7.101 −0.226 0.00000

Supramarginal gyrus BA 2 (54, −34, 38) 1075 −7.354 −0.264 0.00000

Insular cortex BA 48 (−36, 2, −4) 905 −7.141 −0.165 0.00000

Middle frontal gyrus BA 46 (−40, 54, 8) 837 −8.354 −0.215 0.00000

(Continued)
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TABLE 1 | Continued

Connectivity (ASMR) Brodmann area MNI (x, y, z) Size Peak-T Peak-beta Size p-FDR

Inferior frontal gyrus BA 45 (44, 40, 2) 712 −6.300 −0.239 0.00000

Middle occipital gyrus BA 18 (−30, −90, 8) 486 −7.160 −0.167 0.00000

Fusiform gyrus BA 37 (−30, −36, −16) 342 7.493 0.204 0.00000

Parahippocampal gyrus BA 35 (26, −22, −24) 229 9.158 0.199 0.00000

Superior temporal gyrus BA 38 (40, 20, −34) 172 5.631 0.157 0.00006

Middle occipital gyrus BA 37 (−50, −62, −10) 124 −6.009 −0.159 0.00010

Ig2 seed

Insular cortex BA 13 (42, −14, −8) 9980 63.964 0.669 0.00000

Postcentral gyrus BA 40 (−58, −26, 16) 9729 16.404 0.298 0.00000

Anterior cingulate cortex BA 24 (4, 22, 24) 6178 11.215 0.209 0.00000

Cuneus BA 18 (−12, −72, 6) 5566 10.453 0.163 0.00000

Middle frontal gyrus BA 46 (−32, 44, 22) 329 7.780 0.154 0.00000

Middle frontal gyrus BA 9 (38, 26, 54) 184 −5.517 −0.085 0.00000

We report clusters having significant connections from the seed region, cluster size, and the peak-voxel location in each cluster.

the DMN (Greicius et al., 2003), (b) affective touch network
(Morrison, 2016), and (c) the self-/other-networks (Northoff
et al., 2006; Murray et al., 2015). As seeds of the DMN,
we used the PCC centered at MNI coordinates [1, −61, 38],
mPFC (MNI: [1 55 −3]), and l/rLPC (lLPC, MNI: [−55 −12
29], rLPC, MNI: [56 −10 29]). The seed regions of interest
(ROIs) were defined using a standardized CONN toolbox
atlas (networks.nii) that was originally derived from group-
level independent component analysis (ICA) of the human
connectome project dataset (Calhoun et al., 2001; Whitfield-
Gabrieli and Nieto-Castanon, 2012; Van Essen et al., 2013). For
an affective touch network, we used the Ig2 as a seed ROI that
comprised all voxels within a sphere of 6 mm radius, centered on
the MNI coordinates [42, −14, 8]. Finally, for the self- and other-
networks, we used the pACC and PCC/PC regions as seed ROIs
(spheres of 6 mm radius, centered on MNI coordinates: [−2, 38,
16] and [2, −61, 26]).

Following the computation for the first-level functional
connectivity maps, the resulting voxel-specific Z-scores between
a seed area and every other voxel for each subject were
entered into a second-level GLM analysis. Specifically, we
performed a one-sample t-test at the second level to test the
statistical significance of each functional connectivity map in
a group of subjects that was generated during resting-state
or ASMR conditions (ASMR). We then tested our hypothesis
that functional connectivity related to mentalizing and self-
referential processing within the default mode, affective touch,
and self-/other-networks would be greater during an ASMR
condition than the resting-state, using a two-tailed paired
sample t-test with a contrast “ASMR > resting-state” at the
second-level. This analysis enabled us to compare the functional
connectivity patterns between two conditions, including a
resting-state and an ASMR condition, and assess their statistical
significance in a sample. For false positive control in the whole-
brain seed-to-voxel connectivity analysis, we applied a cluster-
forming threshold using a height threshold of uncorrected
p-value < 0.001 and a cluster-extent threshold of false discovery

rate (FDR)-corrected p-value < 0.05 (Friston et al., 1994;
Whitfield-Gabrieli and Nieto-Castanon, 2012). We used a
semi-automated search for finding local maxima (peaks) and
their MNI coordinates within the cluster-corrected thresholded
map, to identify regions within the significant functional
connectivity maps. Their anatomical labels were determined
using xjView toolbox (https://www.alivelearn.net/xjview), and
the Brodmann area labels were identified using the Brodmann
atlas, which is included in the MRIcron software (https://www.
nitrc.org/projects/mricron). Functional connectivity maps were
overlaid on a cortical surface atlas using the CONN toolbox
(Whitfield-Gabrieli and Nieto-Castanon, 2012).

Behavioral Data Analysis
To investigate the potential association of functional connectivity
estimates with the psychological changes of ASMR, we measured
the affective outcomes of watching ASMR video clips using the
Multi-Affect Indicator (Warr, 1990; Warr et al., 2014). This
multi-affect indicator has been designed to specify different
kinds of feelings in terms of two dimensions, including the
conventional negative-to-positive continuum (from unpleasant
to pleasant state) and low-to-high mental activation (arousal) that
defines one’s state of readiness for action or energy expenditure
(Russell, 2003). Particular feelings were then categorized into four
affective states: low-activation positive (LAP, which corresponds
to comfort and calmness), high-activation positive (HAP, related
to enthusiasm and excitement), low-activation negative (LAN,
related to depression and sadness), and high-activation negative
states (HAN, related to anxiety and stress). In this study, we
used 12 items to measure these affective states (Warr, 1990;
Poerio et al., 2018): “calm,” “relaxed,” and “at ease” for LAP;
“enthusiastic,” “joyful,” and “excited” for HAP; “depressed,”
“dejected,” and “hopeless” for LAN; and “anxious,” “nervous,” and
“tense” for HAN. After completing the fMRI experiments, the
participants were asked to rate each item in the range of 1 (much
less) to 7 (much more) by responding to the question: How did

Frontiers in Behavioral Neuroscience | www.frontiersin.org 6 August 2020 | Volume 14 | Article 15431

https://www.alivelearn.net/xjview
https://www.nitrc.org/projects/mricron
https://www.nitrc.org/projects/mricron
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-14-00154 August 25, 2020 Time: 18:31 # 7

Lee et al. ASMR Effects on Functional Connectivity

TABLE 2 | Statistical significance of the group-level functional connectivity generated during resting-state condition.

Connectivity (Resting state) Brodmann area MNI (x, y, z) Size Peak-T Peak-beta Size p-FDR

PCC seed

Precuneus BA 7 (−2, −64, 40) 22585 33.057 0.930 0.00000

Medial frontal gyrus BA 11 (8, 54, −12) 8607 11.036 0.303 0.00000

Middle frontal gyrus BA 9 (−28, 42, 42) 2296 9.627 0.263 0.00000

Insular cortex BA 22 (50, 2, −2) 1748 −7.633 −0.161 0.00000

Middle temporal gyrus BA 21 (52, 0, −26) 613 7.965 0.195 0.00000

Middle temporal gyrus BA 21 (−62 0 −26) 311 6.144 0.133 0.00000

mPFC seed

Medial orbital gyrus BA 11 (0, 50, −10) 23406 27.766 1.122 0.00000

Posterior cingulate cortex BA 23 (−10, −54, 22) 6945 16.959 0.422 0.00000

Supramarginal gyrus BA 40 (44, −34, 38) 4216 −9.262 −0.150 0.00000

Inferior parietal lobe BA 40 (−38, −42, 44) 4023 −8.222 −0.270 0.00000

Angular gyrus BA 39 (−46, −64, 30) 2171 13.206 0.383 0.00000

Angular gyrus BA 39 (52, −68, 34) 1983 12.751 0.433 0.00000

Inferior temporal gyrus BA 37 (−58, −60, −8) 877 −7.902 −0.191 0.00000

Fusiform gyrus BA 37 (54, −50, −24) 812 −9.106 −0.167 0.00000

Parahippocampal gyrus BA 30 (24, −20, −24) 571 7.417 0.230 0.00000

Inferior frontal gyrus BA 44 (−48, 8, 20) 422 −5.921 −0.175 0.00000

Middle occipital gyrus BA 18 (34, −92, 10) 384 9.068 0.194 0.00000

lLPC seed

Superior frontal gyrus BA 8 (−30, 24, 58) 27546 14.534 0.440 0.00000

Angular gyrus BA 19 (−40, −74, 38) 12347 28.357 0.992 0.00000

Middle temporal gyrus BA 39 (40, −66, 28) 4118 18.926 0.446 0.00000

Middle temporal gyrus BA 20 (−60, −44, −14) 1331 12.042 0.366 0.00000

Superior temporal gyrus BA 38 (−52, 2, −4) 788 −6.582 −0.190 0.00000

Parahippocampal gyrus BA 36 (26, −28, −20) 615 8.237 0.154 0.00000

Fusiform gyrus BA 37 (−28, −38, −18) 551 11.315 0.353 0.00000

Middle cingulate cortex BA 32 (−8, 16, 36) 355 −5.982 −0.151 0.00000

Supramarginal gyrus BA 40 (−52, −26, 14) 180 −5.442 −0.158 0.00000

Cuneus BA 18 (22, −88, 8) 161 −5.987 −0.166 0.00001

rLPC seed

Middle frontal gyrus BA 8 (28, 32, 52) 17537 17.430 0.542 0.00000

Superior temporal gyrus BA 39 (48, −58, 22) 10591 25.784 0.839 0.00000

Middle temporal gyrus BA 39 (−42, −64, 24) 4687 21.402 0.546 0.00000

Middle temporal gyrus BA 20 (−60, −44, −14) 2905 10.013 0.275 0.00000

Middle temporal gyrus BA 21 (52, −4, −26) 2185 9.641 0.289 0.00000

Insular cortex BA 13 (40, 4, −2) 1521 −6.337 −0.207 0.00000

Parahippocampal gyrus BA 30 (26, −20, −24) 653 7.891 0.215 0.00000

Fusiform gyrus BA 37 (−28, −38, −16) 652 8.397 0.235 0.00000

Middle cingulate cortex BA 24 (2, 16, 40) 342 −6.416 −0.188 0.00000

Cuneus BA 19 (22, −82, 18) 193 −5.855 −0.159 0.00000

Lingual gyrus BA 18 (−10, −64, −6) 160 −5.583 −0.132 0.00002

pACC seed

Anterior cingulate cortex BA 32 (−2, 38, 16) 24791 53.786 2.502 0.00000

Inferior parietal cortex BA 7 (34, −50, 58) 1299 −7.197 −0.170 0.00000

Fusiform gyrus BA 20 (54, −36, −26) 368 −9.512 −0.128 0.00000

Paracentral lobule BA 4 (−14, −38, 64) 143 −4.862 −0.105 0.00005

PCC/PC seed

Superior frontal gyrus BA 10 (−4, 64, −6) 11827 14.727 0.388 0.00000

Precuneus BA 23 (2, −62, 26) 7292 49.964 2.393 0.00000

Insular cortex BA 48 (34, 16, 6) 3232 −13.322 −0.252 0.00000

Middle temporal gyrus BA 38 (−42, 14, −32) 2957 8.952 0.193 0.00000

Middle temporal gyrus BA 39 (−48, −66, 28) 2802 13.988 0.515 0.00000

(Continued)
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TABLE 2 | Continued

Connectivity (Resting state) Brodmann area MNI (x, y, z) Size Peak-T Peak-beta Size p-FDR

Supramarginal gyrus BA 2 (66, −24, 28) 2555 −11.081 −0.281 0.00000

Superior temporal gyrus BA 39 (56, −60, 28) 2461 15.897 0.506 0.00000

Middle temporal gyrus BA 21 (54, −2, −26) 2302 9.784 0.345 0.00000

Middle cingulate cortex BA 32 (6, 14, 42) 996 −8.940 −0.169 0.00000

Middle frontal gyrus BA 46 (−32, 46, 28) 790 −7.645 −0.208 0.00000

Parahippocampal gyrus BA 36 (28, −16, −30) 743 8.167 0.155 0.00000

Precuneus BA 7 (−12, −58, 60) 388 −5.490 −0.142 0.00000

Ig2 seed
Insular cortex BA 13 (42, −12, −8) 13955 59.166 1.709 0.00000

Middle cingulate cortex BA 31 (6, −52, 32) 6103 −6.661 −0.146 0.00000

Parahippocampal gyrus BA 30 (−20, −42, −8) 464 5.728 0.108 0.00000

Cuneus BA 18 (16, −72, 8) 157 6.563 0.129 0.00003

Middle frontal gyrus BA 10 (4, 68, 18) 121 −6.164 −0.081 0.00005

We report clusters having significant connections from the seed region, cluster size, and the peak-voxel location in each cluster.

you feel while watching ASMR video clip during the MRI scan,
compared to before you watched the video?

We then performed two-tailed paired samples t-tests to
compare the means of two affective states that were selected from
LAP, HAP, LAN, and HAN, and determined whether there was a
significant difference between the two states that can be observed
from ASMR stimuli. In addition, we performed a correlation
analysis to investigate the associations of these affective state
changes with ASMR condition-specific functional connectivity
changes. Specifically, for each brain network, we identified
clusters that had a significantly higher functional connectivity
from a seed region for ASMR condition than the resting-state
condition (a height threshold of uncorrected p-value < 0.001
and a cluster-extent threshold of FDR-corrected p-value < 0.05).
Then, we extracted the functional connectivity values (z-score)
of peak coordinates (i.e., the local maxima of the cluster) for
all subjects, and calculated Pearson’s correlation coefficients
between these functional connectivity strengths and individual
scores for each affective state. We decided that the computed
correlation value is significantly different from zero if the p-value
is less than 0.05.

RESULTS

Functional Connectivity
Figure 1 shows the group-level functional connectivity of the
t-statistic in the default mode network generated during either
ASMR or resting-state conditions. Statistical significance of
clusters and their peak coordinates for ASMR and resting-
state conditions are summarized in Tables 1, 2, respectively.
While the global maxima of the functional connectivity was
located in the seed cluster, in both conditions of resting-state
and ASMR, the significant hubs (local maxima of the functional
connectivity within the cluster) were reliably positioned in the
PCC, mPFC, lLPC, rLPC, and superior/middle/inferior temporal
gyri, and superior/inferior frontal gyri. For seed regions of the
PCC and rLPC, the negative functional connectivity was observed
in the insular cortex.

Figure 2 shows the group-level functional connectivity of
the t-statistic in the affective touch, self-, and other-networks
generated during either ASMR or resting-state conditions.
For the affective touch network with Ig2 seed region, the
significant clusters were estimated in the insular cortex and
postcentral gyrus in both conditions of resting-state and ASMR.
In the self-network with the pACC seed region, we found
the positive functional connectivity of the anterior cingulate
cortex. In other-network with the PCC/PC seed region, the
positive functional connectivity was observed in the angular
gyrus, precuneus, and frontal regions extending orbitofrontal and
medial prefrontal cortices.

Figure 3 shows the group-level functional connectivity
of the t-statistic obtained by the “ASMR > resting-state”
contrast. Table 3 summarizes statistical significance of clusters
functionally connected to the seed regions of the PCC,
l/rLPC, pACC, and Ig2, and their peak coordinates. There
were no significant clusters in the DMN with the mPFC
seed region and the other-network with the PCC/PC seed
region. In the DMN with the PCC seed region, 5 clusters
having positive functional connectivity were significantly
detected in peaks in the cuneus, superior/middle temporal
gyri, and lingual gyrus. In addition, 6 clusters having
negative functional connectivity were significantly detected
in peaks in the superior/middle frontal gyri, middle occipital
lobe, precuneus, and visual area. In the DMN with the
lLPC seed region, 2 positive and 1 negative clusters were
observed in peaks in the superior temporal gyrus and visual
area (calcarine sulcus), and precuneus, respectively. In the
DMN with the rLPC seed region, 2 positive clusters were
generated in peaks in the cuneus and lingual gyrus. In the
self-network with the pACC seed region, a positive cluster
was detected in peaks in the middle frontal lobe. In the
affective touch network with the the Ig2 seed region, one
cluster having positive functional connectivity was observed in
peaks in the cuneus.

The beta-values of the group-level functional connectivity
for ASMR, resting-state, and ASMR > resting-state contrast are
provided in Supplementary Figures.
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FIGURE 2 | Group-level functional connectivity of the t-statistic in the other networks during resting-state, and in response to ASMR effects. Functional connectivity
strengths in terms of t-statistics were thresholded at a significance level of false discovery rate (FDR)-corrected p < 0.05, and overlaid on a cortical surface atlas.
Functional connectivity of the right posterior insular cortex seed (Ig2) region in response to ASMR (A), and in resting-state (B). Functional connectivity of the
pregenual anterior cingulate cortex (pACC) seed region in response to ASMR (C), and in resting-state (D). Functional connectivity of the posterior cingulate
cortex/precuneus (PCC/PC) seed regions in response to ASMR (E), and in resting state (F).

Behavioral Data
There was a significant overall main effect on the affective
response while watching ASMR video clips. As shown in Figure 4,
participants had the most increase in low-activation positive state
during the ASMR condition among four affective states that
we have considered: LAP (group mean ± standard deviation:
3.94 ± 1.46), HAP (1.51 ± 0.63), LAN (1.45 ± 0.64), and HAN
(1.38 ± 0.78). Statistical significance of the comparison between
two selected states are as follows: LAP > HAP [beta = 2.429,
t = 8.349, p = 5.86 × 10−9, df = 27, 95% confidence interval
of the mean = (1.832–3.025); LAP > LAN (beta = 2.488,
t = 8.471, p = 4.39 × 10−9, df = 27, 95% confidence interval
of the mean = (1.885–3.091); LAP > HAN (beta = 2.560,

t = 7.638, p = 3.25 × 10−8, df = 27, 95% confidence interval
of the mean = (1.872–3.247)]. Table 4 summarizes the statistical
significance of affective states in response to ASMR.

Correlation coefficients between each of the four affective
states and ASMR condition-specific connectivity changes are
summarized in Table 5. In the DMN with the PCC seed
region, significantly negative correlation was estimated between
HAN and clusters with peaks in the lingual gyrus. Associations
of HAP with clusters of the cuneus and lingual gyrus were
also negatively correlated. In the affective touch and self-
/other-networks, there were no significant correlation between
the affective state scores and the ASMR-condition specific
connectivity changes.
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FIGURE 3 | Group-level functional connectivity of the t-statistic obtained by the “ASMR > resting-state” contrast. The default mode networks with seed regions of
(A) the posterior cingulate cortex (PCC), (B) left lateral parietal cortex (lLPC), and (C) right lateral parietal cortex (rLPC). (D) The self-network with the pregenual
anterior cingulate cortex (pACC) seed region. (E) Affective touch network with the posterior insular cortex (Ig2) seed region. There were no significant clusters in the
default mode network with the mPFC seed region and the other-network with the PCC/PC seed region.

DISCUSSION

In this study, we sought to test whether changes in functional
connectivity within specific networks, including the DMN,
affective touch network, and self-/other-networks occurred
during ASMR. As a result, relative to connectivity in the resting-
state, significantly altered connectivity of seed regions during
viewing of ASMR-eliciting stimulus was found in the main
hub composing each network. Furthermore, we confirmed that
the strength of connectivity in involved in visual information
processing was negatively correlated with the behavior score,
including the HAN, and HAP states. We now discuss the
implications of these results in more detail.

Default Mode Network (ASMR > REST)
Our results showed that in the DMN, functional connectivity
between the PCC seed region and the superior/middle temporal
gyri, cuneus, and lingual gyrus were significantly increased

during ASMR condition, compared to the resting-state. Previous
functional imaging studies (Carrington and Bailey, 2009; Spreng
et al., 2009) have found that the PCC and superior temporal
gyrus (STG) are involved in the “mentalizing,” also known as
“theory of mind” that is an ability to make inferences about other
people’s mental states [i.e., an understanding that the behaviors
of others is determined by their desires, attitude, and beliefs
(Frith and Frith, 2003)]. Specifically, Castelli et al. (2000) revealed
that the superior temporal region was activated while watching
silent or computer-presented animations, and this process was
related to the attribution of mental states. Fletcher et al. (1995)
reported significantly increased cerebral blood flow in the PCC
during the condition necessitating the attribution of mental task.
Therefore, the increased functional connectivity between the STG
and PCC during ASMR condition can be associated with the
increased covariance of the STG and the PCC activities compared
to the resting-state, which may be interpreted as activation
of mentalizing process to infer others’ mental and emotional

Frontiers in Behavioral Neuroscience | www.frontiersin.org 10 August 2020 | Volume 14 | Article 15435

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-14-00154 August 25, 2020 Time: 18:31 # 11

Lee et al. ASMR Effects on Functional Connectivity

TABLE 3 | Statistical significance of the group-level functional connectivity obtained by the “ASMR > resting-state” contrast.

Connectivity (ASMR > REST) Brodmann area MNI (x, y, z) Size Peak-t Peak-beta Peak p-unc Size p-FDR

PCC seed

Cuneus BA 18 (8, −74, 22) 1451 8.799 0.283 0.00000 0.00000

Superior frontal gyrus BA 6 (24, 4, 56) 176 −5.498 −0.159 0.00000 0.00001

Visual area BA 18 (10, −90, −6) 173 −6.020 −0.207 0.00000 0.00001

Lingual gyrus BA 18 (−18, −70, 2) 59 4.290 0.176 0.00021 0.01692

Precuneus BA 7 (6, −66, 48) 49 −4.552 −0.171 0.00010 0.02626

Superior temporal gyrus BA 48 (54, 0, 0) 49 4.840 0.178 0.00004 0.02626

Superior temporal gyrus BA 22 (−54, −2, −8) 42 5.822 0.158 0.00000 0.04210

Precuneus BA 7 (−6, −64, 66) 37 −4.331 −0.219 0.00018 0.04281

Middle frontal gyrus BA 8 (−24, 16, 58) 37 −4.434 −0.177 0.00014 0.04281

Middle occipital lobe BA 39 (40, −78, 24) 37 −4.187 −0.200 0.00027 0.04281

Middle temporal gyrus BA 21 (−62, −20, −6) 37 5.742 0.140 0.00000 0.04281

lLPC seed

Visual area BA 17 (−6, −78, 16) 526 5.702 0.186 0.00000 0.00000

Superior temporal gyrus BA 22 (−56, −32, 10) 266 5.599 0.168 0.00000 0.00000

Precuneus BA 7 (−6, −66, 50) 118 −5.131 −0.176 0.00002 0.00296

rLPC seed

Cuneus BA 18 (8, −76, 22) 1014 5.812 0.211 0.00000 0.00000

Lingual gyrus BA 18 (−14, −64, −6) 113 5.501 0.187 0.00000 0.00002

pACC seed

Middle frontal lobe BA 9 (−50, 18, 44) 53 4.426 0.183 0.00014 0.03391

Ig2 seed

Cuneus BA 17 (−10, −68, 6) 301 5.565 0.143 0.00000 0.00000

We report clusters having significant connections from the seed region, the peak-voxel location in each cluster, and the corresponding t-, beta-, and p-values.

states by observing objects and perceiving intended actions and
using ourselves to simulate their experience to understand them
(Blakemore and Decety, 2001; Allen et al., 2003; Frith and Frith,
2006; Liew et al., 2011; Riekki et al., 2018).

FIGURE 4 | Summary of the results showing changes in affect state after
viewing ASMR, relative to before watching ASMR. Bar graphs represent group
mean scores for affective state assessed using the Multi-Affect Indicator (Warr,
1990). All variables range from 1 to 7. For self-reported changes in affect,
1 = much less; 7 = much more. The participants had the most increase in
low-activation positive state during the ASMR condition among four affective
states: low-activation positive state (group mean ± standard deviation:
3.94 ± 1.46), high-activation positive state (1.51 ± 0.63), low-activation
negative state (1.45 ± 0.64), and high-activation negative state (1.38 ± 0.78).
Statistical significance was determined by a p-value of less than 0.05.

We also found the reduced connectivity between the
dorsolateral prefrontal cortex (dlPFC) and the PCC during
ASMR condition, compared with the resting-state. Lévesque
et al. (2003) reported that the dlPFC was involved in inhibition
processing such as voluntary suppression of a negative emotion
(sadness) while the participants suppressed their emotional
reaction to the sad stimuli. For the PCC, this region has been
known to be a part of network for emotion evaluation (Lee and
Siegle, 2012), including an automatic perception for the emotion
salience of stimulus (Maddock, 1999). Thus, compared to the
resting state, the decreased functional connectivity between the
dlPFC and PCC during ASMR condition can be interpreted
as the decrease in voluntary suppression of negative emotion.
This process may occur due to the nature of ASMR triggers
that often lead to response of psychologically pleasant effects
(Poerio et al., 2018).

With the DMN of the bilateral LPC seed regions, we found
that the functional connectivity between the l/rLPC seeds and the
visual areas of the cuneus and calcarine sulcus was significantly
higher during the ASMR condition than during the resting-state.
The cuneus is involved in visual information processing that
interacts with the primary visual cortex (Vanni et al., 2001) and
is known to integrate somatosensory information with other
sensory stimuli (Price, 2000). In addition, the LPC is involved in
receiving a visual input from the occipital regions, which belong
to the dorsal stream of visual processing (Rizzolatti and Matelli,
2003). In terms of the visual stimuli, in our experiment, ASMR-
eliciting video clips were much richer in visual information than
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the instruction for resting-state condition (with eyes fixated on
a cross). Therefore, greater functional connectivity of the cuneus
and calcarine sulcus within the DMN may reflect the increased
visual input and processing from ASMR-eliciting stimuli through
functional connectivity, compared to the resting-state condition.

Affective Touch and Self-Networks
(ASMR > REST)
This study showed significant connectivity differences not only
in the DMN but also in other network areas, including affective
touch network, and self-network. In terms of the affective touch
network, we found a greater connectivity between the Ig2 and

TABLE 4 | Mean and standard deviation of behavioral score among emotional
states.

Item Average score Standard deviation

Nervous 1.464 0.865

Anxious 1.321 0.847

Tense 1.357 0.934

HAN 1.381 0.775
Depressed 1.214 0.619

Dejected 2.107 1.496

Hopeless 1.036 0.186

LAN 1.452 0.644
Enthusiastic 1.536 0.906

Joyful 1.786 1.013

Excited 1.214 0.674

HAP 1.512 0.627
Calm 3.964 1.742

Relaxed 4.071 1.731

At ease 3.786 1.820

LAP 3.940 1.456

Paired t-test p t beta (95% CI) df

LAP-HAP 0.00000 8.349 2.429 (1.832–3.025) 27

LAP-LAN 0.00000 8.471 2.488 (1.885–3.091) 27

LAP-HAN 0.00000 7.638 2.560 (1.872–3.247) 27

HAP-LAN 0.6858 0.409 0.060 (-0.239–0.358) 27

HAP-HAN 0.4957 0.691 0.131 (-0.258–0.520) 27

LAN-HAN 0.6078 0.519 0.071 (-0.211–0.354) 27

We report t-test results for comparing affective states during ASMR. HAN, High-
activation negative state; LAN, Low-activation negative state; HAP, High-activation
positive state; LAP, Low-activation positive state; df, Degrees of freedom.

TABLE 5 | Statistical results of correlation coefficients between each of the four
affective states and ASMR condition-specific connectivity changes.

Connectivity-behavioral correlation MNI (x, y, z) r p

PCC seed

HAN-Lingual gyrus * (−18, −70, 2) −0.411 0.030

rLPC seed

HAP−Cuneus ** (8, −76, 22) −0.5085 0.006

HAP−Lingual gyrus** (−14, −64, −6) −0.497 0.007

**p–value < 0.01, *p–value < 0.05. PCC, Posterior cingulate cortex; rLPC, Right
lateral parietal cortex. HAN, High-activation negative state; HAP, High-activation
positive state.

the cuneus of the occipital region during the ASMR condition
than the resting-state. The cuneus is a part of the visual areas
and engages in processing of visual input (Waberski et al., 2008)
and the insular cortex integrates information from multiple
modalities, including visual and auditory sensory modalities
(Bamiou et al., 2003). Thus, the increased connection between
Ig2 and cuneus indicates the higher visuoauditory influence
of ASMR stimulus.

In terms of the self-network involved in the reflection of
one’s own experiences against other stimuli (Northoff et al.,
2006), we found an increased connectivity between the pACC
and the mPFC during ASMR condition, compared to resting-
state. Murray et al. (2012) revealed that the mPFC and dorsal
anterior cingulate cortex were activated in the self-referencing
processing state rather than the other-relevant processing,
and Gusnard et al. (2001) showed that these regions were
particularly involved in self-referential processing in emotion
domain. In addition, Northoff et al. (2006) reported that cortical
midline structures including the mPFC and pACC mediate self-
referential processing in psychological or physical domain such
as autobiographical, emotional, and motor stimuli. Therefore,
the increased connectivity between the pACC and the mPFC
during ASMR may reflect the self-referential processing triggered
by ASMR stimulus.

Correlation Between Connectivity and
Affective State
Although the major focus of this study is the connectivity
on which the effects of ASMR are neural underpinnings, a
correlation analysis was performed to investigate how these
changed connections relate to the feelings felt during ASMR.
As a result, in the PCC region, significantly negative correlation
was estimated between clusters with peaks in the lingual gyrus
and HAN. For rLPC seed region, connectivities in clusters of
the lingual gyrus and cuneus were also negatively correlated in
HAP. The PCC receives visual information from visual systems
(Vogt et al., 2006) and the LPC also accepts visual input
through dorsal stream (Rizzolatti and Matelli, 2003). The ASMR
stimulus contains audio-visual stimuli that lead to a positive
emotional response to calmness and a tingling sensation that
emerges from a positive emotion (Barratt and Davis, 2015).
Thus, these results imply that visual information processing in
response to high arousal states can be weakened by ASMR-
eliciting stimuli.

As a limitation of this finding, we did not explicitly
measure the affective outcomes of resting state using the
behavioral questionnaire [e.g., the Multi-Affect Indicator
(Warr, 1990; Warr et al., 2014)]. As described in the Behavioral
Data Analysis section, the participants were instructed to
indicate how they felt while watching the ASMR video clip
during the MRI scan, compared to before they watched
the video. Therefore, individual behavioral scores that we
measured may reflect relative affective states of ASMR
condition to resting state. However, a control acquisition of
the behavioral questionnaire after the resting state session would
be required to compare the affective state changes between
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resting-state and ASMR conditions more explicitly. Thus, caution
should be exercized when interpreting the correlation coefficient
between functional connectivity estimates and behavioral scores
used in this study.

In conclusion, using fMRI functional connectivity estimates,
we explored the ASMR-condition specific connectivity changes in
the DMN, self-/other-networks, and the affective touch network.
Compared with the resting-state functional connectivity, we
found that several connections within the selected networks were
significantly altered while watching ASMR video. In particular,
the connections between the PCC and the superior temporal
gyrus, between the pACC and the mPFC, and between the
Ig2 and the cuneus were significantly greater during ASMR
condition than resting state. These results suggest that ASMR
process can be associated with ongoing interaction between
regional activity that are involved in the integration of visual
and auditory information followed by the mentalizing and self-
referential processing. In terms of the relationship between
connectivity and affective state changes, we found that ASMR-
induced affective states (i.e., high activation negative and high
activation positive state) were significantly negatively correlated
with functional connectivity involved in visual information
processing. These results imply that high arousal states can
be attenuated in the process of perception of ASMR-eliciting
stimuli. Our findings have implications for neurophysiological
mechanisms of an ASMR effects in relation to functional
connectivity changes.
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FIGURE S1 | Group-level functional connectivity of the beta-value in the default
mode network during resting-state, and in response to ASMR effects. Functional
connectivity of the posterior cingulate cortex seed region in response to (A)
ASMR, and (B) resting-state. Functional connectivity of the medial prefrontal
cortex seed region in response to (C) ASMR, and (D) resting-state. Functional
connectivity of the left lateral parietal cortex seed region in response to (E) ASMR,
and (F) resting-state. Functional connectivity of the right lateral parietal cortex
seed region in response to (G) ASMR, and (H) resting-state.

FIGURE S2 | Group-level functional connectivity of the beta-value in the affective
touch, self-, and other-networks during resting-state, and in response to ASMR
effects. Functional connectivity of the right posterior insular cortex seed region in
response to (A) ASMR, and (B) resting-state. Functional connectivity of the
pregenual anterior cingulate cortex seed region (C) in response to ASMR, and (D)
resting-state. Functional connectivity of the posterior cingulate cortex/precuneus
seed region in response to (E) ASMR, and (F) resting-state.

FIGURE S3 | Group-level functional connectivity of the beta-value for
ASMR > resting-state contrast. Default mode networks with seed regions of (A)
the posterior cingulate cortex, (B) medial prefrontal cortex, (C) left lateral parietal
cortex, and (D) right lateral parietal cortex. (E) Self-network with the pregenual
anterior cingulate cortex seed region. (F) Other-network with the posterior
cingulate cortex/precuneus seed region. (G) Affective touch network with the
posterior insular cortex seed region.
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This study was examined the effective connectivity between brain areas activated during
driving. Using a driving simulator, the subjects controlled a wheel with both of their
hands as well as an accelerator and brake pedal with their right foot. Of the areas
activated during driving, three areas from each hemisphere were analyzed for effective
connectivity using dynamic causal modeling. In the right hemisphere, bidirectional
connectivity was prominent between the inferior temporal gyrus, precuneus, and lingual
gyrus, which provided driving input (driving input refers to the area of input among areas
connected with effective connectivity). In the left hemisphere, the superior temporal
gyrus provided driving input, and bidirectional connectivity was prominent between
the superior temporal gyrus, inferior parietal lobule, and inferior frontal gyrus. The
visual attention pathway was activated in the right hemisphere, whereas the inhibitory
control movement and task-switching pathways, which are responsible for synesthesia,
were activated in the left hemisphere. In both of the hemispheres, the visual attention,
inhibitory control movement, and episodic memory retrieval pathways were prominent.
The activation of these pathways indicates that driving requires multi-domain executive
function in addition to vision. Moreover, pathway activation is influenced by the driving
experience and familiarity of the driver. This study elucidated the overall effective
connectivity between brain areas related to driving.

Keywords: effective connectivity, driving, visual attention pathway, inhibitory control movement pathway,
episodic memory retrieval pathway

INTRODUCTION

The development of functional magnetic resonance imaging (fMRI) has enabled research on the
function and connectivity of brain areas. Previous fMRI studies on driving, which requires complex
cognitive processing, such as attention, learning, memory, and decision making, were conducted
using driving simulators. Michon (1984) reported that driving requires complex cognitive
processing of three interacting hierarchical levels, including the strategic (i.e., trip planning and
route finding), tactical (i.e., planning of relevant actions based on the current driving context), and
operational (i.e., action execution and perception) levels. Drivers should drive appropriately, paying
attention to not making mistakes, which requires complex cognitive processing. Most driving
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accidents are caused by drivers’ mistakes in cognition and
judgment, demonstrating that cognition and judgment are
crucial for driving. More than 90% of the information
required for such cognition and judgment during driving is
acquired through vision.

In particular, many studies on changes in brain activation
related to visual cognition and spatial attention during driving
have been conducted (Arrington et al., 2000; Friston and
Buchel, 2000; Tomasi et al., 2004). The main areas related
to visual cognition are the primary visual (V1) and motion-
sensitive visual regions [V5/area middle temporal (MT)] and
the parietal cortex (Brodmann area 7; Friston and Buchel,
2000). Further, the brain areas related to high-order visual
processing are the posterior cingulate, cerebellum, and occipital
and parietal cortices (Calhoun et al., 2002). Areas related to visual
attention are the occipital, inferotemporal, and parahippocampal
cortices, thalamus, cerebellum, and frontal cortex (Arrington
et al., 2000; Tomasi et al., 2004) and those related to spatial
attention (vigilance) are the frontal and parietal cortical regions
(Graydon et al., 2004). When a video game of cars was
used for subjects to recognize whether the speed was slow
or fast, areas related to the high-order visual, such as the
occipital fusiform, cerebellum, middle and superior occipital
lobes, inferior temporal lobe, and superior parietal lobe, were
activated, and those related to vigilance, such as the medial,
inferior, middle, superior frontal lobes, and precuneus (parietal),
were activated (Calhoun et al., 2002).

Recently, there have been many studies on extraction of
interaction between activated brain regions using “effective
connectivity” for various cognitive performances and on
direction and connection strength between regions. Studies
on effective connectivity for cognitive processing are also
being conducted, but there are not many studies on effective
connectivity between areas that are activated during driving. In
particular, Wang et al. (2015) conducted a driving experiment
with drivers and non-drivers and reported greater functional
connectivity in the left fronto-parietal and primary visual
resting-state networks (RSNs) in people with more driving
experience. The left fronto-parietal network is a connectivity
related to higher-order cognitive functions, and the primary
visual resting-state networks is a network related to functions
of visual cognition. The driving behavior altered the functional
connectivity between the cognitive and sensory intrinsic
connectivity networks (ICNs), and the strength of specific
connections between the left fronto-parietal and primary visual
network significantly correlated with the number of years as a taxi
driver (Wang et al., 2015). Shen et al. (2016) reported that the
strength of connectivity between areas in the vigilance network
decreased with increasing driving experience. The vigilance
network is a network containing areas of anterior cingulate cortex
and anterior insula. The vigilance is the ability to sustain attention
over prolonged periods of time. Among the cognitive types that
may appear when driving, only the results of studies on the
above-mentioned networks have been reported using functional
connectivity analysis.

The aforementioned studies investigated differences in
functional connectivity between brain areas during driving in

certain subject groups and for certain cognitive aspects, and
research on overall brain connectivity during driving has so far
been lacking. Particularly, connectivity among the left, right, and
bilateral hemispheres during driving, their meaning and input
areas, and directivity and correlation between input and other
areas are yet to be investigated; however, such information can
be obtained through an effective connectivity analysis.

Based on other studies and previous studies from our
research team, we expect the following results on brain
effective connectivity when driving. As mentioned above, since
driving requires complex cognitive processing, such as attention,
learning, memory, and decision making, we expect that certain
cognitive areas would appear dominant in the left and right
hemispheres when driving. In the right hemisphere, connectivity
between areas related to the high-order visual and concentration
would be dominant, and in the left hemisphere, connectivity
between areas related to synesthesia and motion control is
expected to be large. In addition, because the steering wheel
is controlled with both hands, the motor cortex areas of the
left and right hemispheres would be activated simultaneously,
and since the right foot is used to operate the pedal, the motor
cortex of the parietal lobe in the left hemisphere would be
predominantly activated.

To investigate the correlation between brain areas activated
during driving, this fMRI study analyzed effective connectivity
between areas in the left, right, and bilateral hemispheres using
dynamic causal modeling (DCM).

MATERIALS AND METHODS

Subjects
Fifteen adult men (mean age: 26.0 ± 1.4 years old), without
any history of mental or neurological disease and with a mean
driving experience of 2.5± 1.6 years, were selected as subjects. All
subjects were right-handed as a result of the revised Edinburgh
Reading Test (Oldfield, 1971). Individuals with metal inside their
bodies (e.g., cardiac pacemaker or medical wiring), which could
interfere with magnetic resonance (MR) imaging, as well as
those with claustrophobia were excluded. External factors, such
as smoking, alcohol consumption, and coffee intake, which can
influence driving and brain activation, were restricted in the
subjects prior to the experiment. The purpose and details of the
experiment were explained to the subjects. Practice driving was
conducted until the subjects became familiar with the driving
simulator environment and could drive without any accidents.

MR-Compatible Driving Simulator
As shown in Figure 1A, an MR-compatible driving simulator
consisting of a wheel and pedals (i.e., accelerator and brake)
was used for this study (Kim et al., 2020). The driving
environment (Figure 1B), which mostly consisted of straight
streets without many visual distractors, was presented using
Lightrock Entertainment software. The subjects controlled the
wheel with both of their hands as well as the accelerator and
brake with their right foot. The subjects were asked to drive
at a constant speed of 80 km/h without changing lanes. Visual
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FIGURE 1 | (A) an MR-compatible driving simulator consisting of a wheel and pedals (accelerator and brake). (B) The driving environment and experimental design.

information for driving was presented to the subjects through the
visual system attached to the head coil. Visual system is 800× 600
pixels, aspect ratio is 4:3, and FOV is 30◦ horizontal/23◦ vertical.

Experimental Design
As shown in Figure 1B, the experiment consisted of three blocks,
with each block consisting of rest (1 min) and driving (2 min)
phases. During the rest phase, the subjects were asked to look at
a fixed screen without driving. During rest phase, subjects placed
both hands on the steering wheel and a right foot on the pedal
without any movement. During the driving phase, the subjects
were asked to drive at a constant speed of 80 km/h. To help
the subjects maintain a speed of 80 km/h, speed information
was presented on the lower left corner of the simulator screen.
During the driving phase, alerts signaling the start (i.e., “please
start driving”) and completion (i.e., “please stop driving”) of the
driving task were orally provided by a researcher through the
headset worn by each subject. Oral driving cues were given to
subjects at each driving phase.

Image Acquisition
Images were acquired with a 3T MRI scanner (Magnetom
TrioTim, Siemens Medical Systems, Erlangen, Germany) using
a standard 32-channel head coil. Single-shot echo planar
fMRI scans were acquired in 29 continuous slices, parallel
to the anterior commissure-posterior commissure line. The
fMRI parameters were as follows: TR/TE = 3000/30 ms,
FOV = 200 mm, flip angle = 90◦, matrix = 128 × 128, slice
thickness = 5 mm, and voxel size = 1.6 × 1.6 × 5.0 mm.
Anatomical images were obtained using a T1-weighted 3D-
MPRAGE sequence with TR/TE = 1900/2.48 ms, FOV = 200 mm,
flip angle = 9◦, matrix = 256 × 256, slice thickness = 1 mm, and
voxel size = 0.8× 0.8× 1.0 mm.

Image Analysis
The fMRI data were analyzed with Statistical Parametric
Mapping (SPM) 8 software (Wellcome Department of Cognitive

Neurology, London, United Kingdom). All functional images
were aligned with anatomic images using affine transformation
routines built into SPM 8. The realigned scans were co-
registered to anatomic images obtained within each session
and normalized to a template image in Montreal Neurologic
Institute (MNI) space. Motion correction was done using a
Sinc interpolation. Time-series data were filtered with a 240
s high-pass filter to remove artifacts due to cardiorespiratory
and other cyclical influences. The functional map was smoothed
with an 8 mm isotropic Gaussian kernel prior to statistical
analysis. Statistical analysis was performed at the group level
using the general linear model and theory of Gaussian random
fields implemented in SPM8. A group analysis was performed
to extend the inference of individual activation to the general
population from which the subjects were drawn. This will
list all clusters above the chosen level of significance as well
as separate (>8 mm apart) maxima within a cluster, with
details of significance thresholds (height threshold T = 4.69
(p < 0.05), extent threshold k = 0 voxels) and search
volume underneath.

Subtraction method was used to obtain the activated area
in the driving phase compared to the rest phase (Driving
phase – Rest phase). This result is a functional map obtained
through group analysis. It may be that, due to this extraction
method, driving-like response from the previous driving phase
was minimized in the rest phase.

Connectivity Analysis
To extract the effective connectivity between brain areas activated
during driving, DCM was used to investigate the correlation
between areas of interest. DCM, which is a model-based analysis
method, can be applied not only to the analysis of brain
activation through general linear modeling (GLM), but also
to the analysis of brain area connectivity. In this analysis,
the relationship between each variable is estimated through
covariate or linear regression analysis, and a model of the
correlation between brain areas is constructed based on this

Frontiers in Behavioral Neuroscience | www.frontiersin.org 3 September 2020 | Volume 14 | Article 15843

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-14-00158 September 18, 2020 Time: 22:13 # 4

Choi et al. Effective Brain Connectivity of Driving Performance

information. For DCM analysis, models are defined in SPM8
based on MATLAB, which is followed by variable estimation
and Bayesian model selection (BMS). Operating under the
hypothesis that all activated areas form a network, DCM
analyzes the correlation between areas with blood oxygen level-
dependent (BOLD) signals and establishes optimal dynamic
causality models (Friston et al., 2003).

Of the areas activated during driving, three areas from
each hemisphere with the highest z-scores had their effective
connectivity analyzed. As discussed in the results section,
the three areas from the right hemisphere with the highest
z-scores were the inferior temporal gyrus (ITG), precuneus
(PCu), and lingual gyrus (LiG), whereas those from the left
hemisphere with the highest z-scores were the inferior parietal
lobule (IPL), superior temporal gyrus (STG), and inferior
frontal gyrus (IFG; Figure 2). The effective connectivity was
analyzed for the three areas in the left and right hemispheres
as well as for all six areas in both hemispheres. Effective
connectivity analysis involved the selection of driving input
areas as areas of interest and modeling connectivity based
on the correlation between the BOLD signals of the areas
of interest. For connectivity analysis, the time-series of the
BOLD signal of each area of interest was extracted from 5 mm
diameter spherical regions centered around the voxel with the
greatest z-score.

Specifically, effective connectivity analysis began by selecting
driving inputs to the left and right hemispheres (i.e., three areas
from each) as well as both hemispheres (i.e., six areas). After
selecting areas of interest as fully connected (i.e., full bidirectional
connection between all areas of interest), models hypothesizing
each area as the input were established. For example, the
inferior temporal gyrus, precuneus, and lingual gyrus of the right
hemisphere were selected as fully connected, and three models,
in which each area was set as the driving input, were established.
Subsequently, using BMS, the most significant driving input
model was selected using fixed effect calculations.

After selecting the driving input areas of the right, left, and
both hemispheres, the connectivity between areas of interest was
analyzed. Sixty-four models for each hemisphere were established
to investigate the connectivity between the three areas of the
left and right hemispheres (Figure 3). In Figure 3, the first and
second columns are models of the three areas of the right and left
hemispheres, respectively, and the third column shows models
of the six areas of both hemispheres. As shown in the first and
second columns of Figure 3, Model 1 is a full connection model
indicating intrinsic connection with bidirectional connections
between all areas. Moreover, Models 2–63 differ in the direction
of connections while considering external connections. Model 64
has no connections between areas.

A total of 299 models of the connectivity between the six
areas in both hemispheres were established (see Figure 3, third
column). Similar to the models within the first and second
columns, in the third column, Model 1 is a full connection model,
Models 2–298 differ in the connectivity between areas of interest,
and Model 299 has no connectivity.

This analysis was performed for each subject. The posterior
model probability for each model was extracted for each

subject using BMS fixed effects (FFX) to compare models in
each hemisphere. Based on the data from each subject, group
comparison of models was performed using BMS random fixed
effects (RFX). RFX analysis obtains the optimal probability for
presumed models, and was used to estimate the probability
of each model. Model probability was tested at the group
level, and the model with the highest probability was used to
derive the mean correlation between areas and determine the
effective connectivity.

RESULTS

Of the brain areas activated during driving, the three areas in the
right hemisphere with the highest z-scores were the ITG, PCu,
and LiG (Figures 2A–C), which had z-scores of 9.33, 8.28, and
8.05, respectively. The most significant of the three models, in
which each area was set as the driving input, was that with the LiG
as the driving input (probabilities: 1.00, C-direct effects: 0.1 Hz).
The connectivity between these three areas was bidirectional and
had significant effects (Table 1 and Figure 4A).

The three areas in the left hemisphere with the highest z-scores
were the IPL, STG, and IFG (Figures 2D–F), which had z-scores
of 9.91, 7.14, and 7.66, respectively. The most significant of the
three models analyzed was that with the STG as the driving
input (probabilities: 1.00, C-direct effects: 0.13 Hz). Similar to the
right hemisphere, the connectivity between these three areas was
bidirectional and had high correlations (Table 1 and Figure 4B).

For both of the hemispheres, the effective connectivity was
analyzed between the right ITG (rITG), right PCu (rPCu), right
LiG (rLiG), left IPL (lIPL), left STG (lSTG), and left IFG (lIFG;
Table 2 and Figure 4©). Of the six models with each of the six
areas set as the driving input, the most significant model was that
with the lSTG as the driving input (probabilities: 1.00, C-direct
effects: 0.15 Hz). There was prominent connectivity from the
lSTG to the rITG (A-intrinsic connections: 0.15, correlation
parameters: 100%), rLiG (0.16, 100%), lIPL (0.1, 99%), and
lIFG (0.13, 100%).

DISCUSSION

For driving, various cognitive processes, such as vision,
synesthesia, motion control, judgment, concentration, attention,
and memory, are required. In previous studies, visual network
(Wang et al., 2015), vigilance network (Shen et al., 2016), and
left fronto-parietal network (Wang et al., 2015) among the
brain networks for various cognitive types that may appear
when driving is reported using functional connectivity. The
main difference between this study’s results and previous studies
is to be mentioned in three ways. First, by using effective
connectivity, the meaning of connectivity and the input area
in each connectivity are presented. Second, the results for
directionality and connection strength from the input region to
other regions are presented. Third, these results are reported
as brain networks that predominate in each of the left and
right hemispheres. This study sought to analyze the connectivity
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FIGURE 2 | Functional brain map showing the average of all subjects obtained through group analysis. The three right [(A) ITG, inferior temporal gyrus; (B) PCu,
precuneus; (C) LiG, lingual gyrus] and left [(D) IPL, inferior parietal lobule; (E) STG, superior temporal gyrus; (F) IFG, inferior frontal gyrus] hemispheric areas with the
highest z-scores during driving.

between brain areas responsible for cognitive processing during
driving in the right, left, and both hemispheres.

Effective Connectivity Between Areas
Activated in the Right Hemisphere
In the right hemisphere, the LiG, which processes visual linguistic
information and plays a crucial role in the analysis of encoded
visual memories (Mechelli et al., 2000), PCu, which is related
to recollection and memory as well as the integration of
information relating to environment perception (Lundstrom
et al., 2005; Cavanna and Trimble, 2006), and ITG, which is
related to higher-level visual processing (Kolb and Whishaw,
2014) had significant bidirectional connectivity. Since the right
hemisphere visually perceives the driving environment and
processes information for this purpose, the LiG would have
been selected as the input area. Previous fMRI studies have
reported that the aforementioned three areas form the visual
attention pathway (Milner and Goodale, 1998; Macaluso et al.,
2000; Purves et al., 2008). Visual attention can best be defined
as a family of processing resources or cognitive mechanisms that

can modulate signals at almost every level of the visual system.
Research shows that visual attention can perform this function by
actively suppressing irrelevant stimuli or by selecting potentially
relevant stimuli. The connectivity from the LiG to the PCu is the
dorsal stream pathway, which processes the location of objects
(Milner and Goodale, 1998). Moreover, this pathway has been
reported to analyze motion as well as the spatial relationship
(i.e., “where”) between objects, thus being responsible for visual
synesthesia (Purves et al., 2008). The connectivity from the
LiG to the ITG is the ventral stream pathway, which processes
information on “what” an object is (Milner and Goodale, 1998).
This pathway has been reported to be responsible for high-
resolution vision (Purves et al., 2008). This study, which analyzed
brain connectivity related to driving, also clearly observed
visual attention pathways related to the “where” and “what”
of an object as in previous studies. This study also found
significant bidirectional connectivity between the PCu and the
ITG. Although a pathway between these two areas has not been
previously reported, this finding is reasonable given the functions
of each area. Information processing for driving is mostly
performed through vision, and visual information is processed
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FIGURE 3 | After selecting the driving input areas of the right, left, and both hemispheres, 64 models were established to analyze the connectivity between the areas
of interest.

through simple and higher-order processing. High-resolution
visual processing is necessary for driving, and recollection and
memory as well as the integration of information relating to the
perception of the environment play important roles in driving
tasks. Therefore, the PCu and ITG would have had a significant
correlation. In addition to the aforementioned functions, the PCu

is also associated with episodic memory retrieval (Lundstrom
et al., 2005) and vigilance performance (Shen et al., 2016).
Vigilance, which is a fundamental component of attention, refers
to the ability to maintain attention over a long period of time.
Vigilance is crucial in driving, in which an individual must
continuously monitor and react to rare signals while ignoring
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TABLE 1 | Correlation between three left (IPL, inferior parietal lobule; STG, superior
temporal gyrus; IFG, inferior frontal gyrus; and right (ITG, inferior temporal gyrus;
PCu, precuneus; LiG, lingual gyrus) hemispheric areas activated during driving.

From

ITG PCu LiG

Right hemisphere

To

ITG 0.46 (97%) 0.63 (100%)

PCu 0.3 (93%) 0.25 (90%)

LiG 0.54 (100%) 0.33 (91%)

From

IPL STG IFG

Left Hemisphere

To

IPL 0.4 (99%) 0.43 (97%)

STG 0.46 (98%) 0.44 (98%)

IFG 0.38 (96%) 0.41 (98%)

ITG, Inferior Temporal Gyrus; PCu, Precuneus; LiG, Lingual Gyrus; IPL, Inferior
Parietal Lobule; STG, Superior Temporal Gyrus; IFG, Inferior Frontal Gyrus.

irrelevant stimuli. Therefore, it is possible that the PCu and ITG
had a significant correlation not only because drivers perceive
the driving environment based on higher-order visual processing,
but also because their episodic memories and vigilance influence
driving. Thus, the connectivity between the LiG, PCu, and ITG
during driving, with the LiG as the input area, may serve as the
visual attention-(episodic) memory retrieval pathway.

Effective Connectivity Between Areas
Activated in the Left Hemisphere
In the left hemisphere, the STG, which is primarily involved
in auditory recognition and understanding language meaning
(Howard et al., 2000), IFG, which is associated with information
selection and monitoring as well as cognitive control (Lundstrom
et al., 2005; Grindrod et al., 2008), and IPL, which is associated
with perspective difference cognition,2 spatial cognition, and
visually guided movement (Andersen, 2011; Hadjidimitrakis
et al., 2012, 2019; Yttri et al., 2014; Kaas and Stepniewska,
2016), had significant bidirectional connectivity. In particular, a
study reported that inferior frontal junction area (IFJ) (located
at the junction of the inferior frontal sulcus and the inferior
precentral sulcus), which includes the IFG region, has three
main component processes (task switching, inhibitory control
and working memory) (Brass et al., 2005; Derrfuss et al., 2005,
2009; Levy and Wagner, 2011; Kim et al., 2012).

2With “perspective difference cognition” or, for short, “perspective tracking” we
want to merely grasp the existence of this concept required for registering an actual
or potential conflict between perspectives. The more common term “perspective
taking” suggests the ability to put oneself into another perspective than the
perspective one currently has. This would require the tracking of a particular
perspective not just the tracking of a potential perspective difference. There is
growing evidence that the dorsal part of the left temporo-parietal junction (TPJ),
which overlaps with the left inferior parietal lobe (IPL), is reliably activated by
perspective tasks (Goel et al., 1995; Ruby and Decety, 2003).

Since oral driving alerts (i.e., “Please start driving” and “Please
stop driving”) were provided by a researcher to the subjects
during each phase, the STG, which is associated with language
processing, would have been selected as the input area. The
connectivity between the STG and IFG has previously been
reported as a wide language network (Jeong et al., 2009); however,
these areas may have driving functions as well. The STG and
IFG have been associated with convergent semantic processing,
which controls, suppresses, and modulates various options to
successfully perform multiple related tasks (Friederici et al.,
2003). Since this study required the subjects to maintain their
driving lane and speed, they had to simultaneously control
the wheel and pedals, which required convergent semantic
processing. This task led to significant bidirectional connectivity
between the STG and IFG, in which these areas formed a network
associated with inhibitory control in addition to language
processing. Inhibitory control, also known as response inhibition,
is a cognitive process and more specifically, an executive
function – that permits an individual to inhibit their impulses and
natural, habitual, or dominant behavioral responses to stimuli
(a.k.a. prepotent responses) in order to select a more appropriate
behavior that is consistent with completing their goals (Diamond,
2013; Ilieva et al., 2015). Inhibitory control revealed that frontal,
subcortical, insula (INS), and parietal regions are active.

The connectivity between the STG and IPL can be predicted
according to the following observations. First, the dorsal part
of the left temporo-parietal junction (TPJ) is activated during
perspective tasks (Goel et al., 1995; Ruby and Decety, 2003),
which require tracking of potential, or actual, perspective
differences (Arora et al., 2015). The driving images presented in
this study were similar to actual driving environments, requiring
spatial perception of near and far perspectives. Since oral driving
cues (lSTG) and driving images with perspective differences
(IPL) were used for this driving task, bidirectional connectivity
between these two areas would have been significant. Second,
the driving cues (STG) as well as the spatial cognition and hand
and leg movements needed to control the wheel and pedals for
visually guided driving (lIPL) are predictive of these areas having
significant bidirectional connectivity.

The bidirectional connection between the Inferior Frontal
Gyrus and the Inferior Parietal Lobule may be related to
movement control for controlling the steering wheel and
pedals when driving. By initiating and modulating cognitive
control abilities, the fronto-parietal network (Sundermann and
Pfleiderer, 2012) is involved in a wide variety of tasks. Thus,
cognitive control of driving by the IFG as well as control of the
wheel and pedals to maintain speed by the IPL led to significant
connectivity between these two areas.

Due to the use of oral driving cues, the STG was selected
as the input area. The overall connectivity of the STG with
the IFG and IPL can be interpreted in terms of movement
during driving. First, the connectivity from the STG to the IFG,
and then to the IPL, selects and monitors driving information,
and permits driving (IPL) through inhibitory control (IFG).
Therefore, this pathway could serve as an inhibitory control
movement pathway. With the STG as the input, the IPL performs
driving through spatial recognition and vision. Moreover, the
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FIGURE 4 | Models estimating the effective connectivity between areas activated during driving in the (A) right, (B) left, and (C) both hemispheres.

cognitive control of the IFG switches between different tasks,
such as controlling the wheel and pedals. Consequently, this
pathway could serve as a task-switching pathway. Although these
pathways may be considered identical since they both regulate
movements associated with driving, they still differ in terms of
whether a driving motion is performed.

TABLE 2 | Correlation between six left and right hemispheric areas (rITG, right
inferior temporal gyrus; rPCu, right precuneus; rLiG, right lingual gyrus; lIPL, left
inferior parietal lobule; lSTG, left superior temporal gyrus; lIFG, left inferior frontal
gyrus) activated during driving.

From

rITG rPCu rLiG lIPL lSTG lIFG

To

rITG 0.02 (56%) 0.08 (73%) 0.02 (71%) 0.15 (100%) 0.08 (71%)

rPCu 0 0.13 (87%) 0 0 0.12 (85%)

rLiG 0 0 0 0.16 (100%) 0

lIPL 0.11 (80%) 0.03 (58%) 0.09 (75%) 0.1 (100%) 0.09 (74%)

lSTG 0.05 (64%) 0 0.05 (64%) 0.03 (60%) 0

lIFG 0.04 (63%) 0 0.04 (62%) 0 0.13 (100%)

r, right hemisphere; l, Left hemisphere.

Effective Connectivity Between Areas
Activated in Both Hemispheres
Of the six areas activated in both hemispheres, the lSTG was
selected as the input area since oral driving cues were provided to
the subjects during each phase. The following pathways, with the
input area as the start and correlations above 70%, are explained
below (Figure 4):

1© As described previously, the connectivity between the
lSTG→ lIFG→ lIPL is the inhibitory control movement
pathway. In the left hemisphere, inhibitory control
movement and task-switching pathways were observed,
whereas, in both hemispheres, the inhibitory control
movement pathway was dominant.

2© There was a prominent connectivity between the
lSTG → lIFG → rPCu. Previous studies have reported
that the lIFG and rPCu were activated during episodic
memory retrieval (Lundstrom et al., 2005). This pathway
would likely act to select and monitor information on
certain driving aspects (i.e., maintenance of speed and
lane) acquired prior to driving and apply the subject’s
episodic memory. Therefore, this pathway could act as an
episodic memory retrieval pathway.
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3© The pathway between the lSTG → rITG → lIPL could
have resulted from the subjects using higher-order visual
functions to perceive the driving environment (Kolb and
Whishaw, 2014), spatial cognition (Andersen, 2011), and
perspective differences cognition for driving.

4© The pathways between the lSTG → rLiG → rPCu
and 5© lSTG → rLiG → rITG are visual attention
pathways (see section “Effective Connectivity Between
Areas Activated in the Right Hemisphere”) that were
dominant in the left and right hemispheres.

6© The pathway between the lSTG→ rLiG→ lIPL→ rITG
appeared since the perception of perspective differences
and spatial cognition (lIPL) were added to the visual
attention pathway (i.e., 5©).

CONCLUSION

This study investigated the effective connectivity between
brain areas activated during driving for the left, right, and
both hemispheres.

Since visual cognition and processing are crucial for
driving, the visual attention pathway was prominent in the
right and both hemispheres. Moreover, the inhibitory control
movement and task-switching pathways, which are related
to synesthesia required for driving, were prominent in the
left hemisphere. An interesting finding of this study was the
observation of the inhibitory control movement pathway, which
was prominent in the left and both hemispheres. Although
research on inhibitory control has been largely conducted
using go/no-go tasks (Chikazoe, 2010; Ma et al., 2015), no
reports associated with driving have been made. Inhibitory
control is a multi-domain executive function critical for flexible
responsivity to changing task demands, and, thus, is an essential
component of adaptive behavioral regulation. As expected,
pathways regulating movement through inhibitory control were
prominent during driving.

The episodic memory retrieval pathway observed in the right
and both hemispheres is associated with drivers recalling their
own experiences, indicating that driving is influenced by driving
experience and familiarity.

In accordance with the hypothesis proposed in this study,
connectivity between areas related to specific cognition in the
right and the left hemispheres was predominant, but we could
also observe interesting results that were not consistent with
the hypothesis. Because both hands and right foot were used,
we expected that activation would be dominant in the area

including the premotor cortex and supplementary motor area.
However, lIPL parietal cortex, the area responsible for controlling
the movement by perceiving the situation through spatial and
visual perception (controlling steering wheel with both hands
and pedal with right foot in this study), was predominantly
activated. As such, we suggest that IIPL cortex, which is involved
in complex cognitive processing that controls behavior according
to the surrounding environment, is more activated than motor
cortex such as premotor cortex and supplementary motor area.

Although the driving simulator was similar to actual driving
conditions, it still differed from actual conditions. Moreover,
events that were not directly associated with driving, such as the
oral driving cues, were included in the experiment. However, this
study is still significant by being the first to investigate the overall
effective connectivity between brain areas associated with driving.
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Fear of punishment prompts individuals to conform. However, why some people are
more inclined than others to conform despite being unaware of any obvious punishment
remains unclear, which means the dispositional determinants of individual differences
in conformity propensity are poorly understood. Here, we explored whether such
individual differences might be explained by individuals’ stable neural markers to potential
punishment. To do this, we first defined the punishment network (PN) by combining
all potential brain regions involved in punishment processing. We subsequently used a
voxel-based global brain connectivity (GBC) method based on resting-state functional
connectivity (FC) to characterize the hubs in the PN, which reflected an ongoing
readiness state (i.e., sensitivity) for potential punishment. Then, we used the within-
network connectivity (WNC) of each voxel in the PN of 264 participants to explain their
tendency to conform by using a conformity scale. We found that a stronger WNC in the
right thalamus, left insula, postcentral gyrus, and dACC was associated with a stronger
tendency to conform. Furthermore, the FC among the four hubs seemed to form a three-
phase ascending pathway, contributing to conformity propensity at every phase. Thus,
our results suggest that task-independent spontaneous connectivity in the PN could
predispose individuals to conform.

Keywords: punishment network, functional connectivity, conformity propensity, thalamus, insula, postcentral
gyrus, dACC

INTRODUCTION

‘‘The idea that men are created free and equal is both true and misleading: men are created different; they
lose their freedom and their autonomy in seeking to become like each other.’’

David Riesman, The Lonely Crowd: A Study of the Changing American Character

Conformity is a prevailing social phenomenon, which means behaving in accordance with the
common norms, social standards, attitudes, beliefs, and values of a given culture (Riesman, 1950;
Riesman et al., 2001). At an individual level, conformity refers to the act of changing one’s behavior
to match the responses of others (Cialdini and Goldstein, 2004). Marcuse (1964) defined this social
character as one-dimensionality in his book,One-Dimensional Man, describing a state of affairs that
conforms to existing thought and behavior, in which there is a lack of critical dimension.
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Individuals are prompted to conform due to a fear of
punishment (Cialdini and Goldstein, 2004; Spitzer et al., 2007;
Haun and Tomasello, 2011; Gelfand, 2012). First, from a social
psychological perspective, a minority position is aversive (Asch,
1956; Hornsey et al., 2003); it can lead to hostility, disapproval,
rejection from others, or social isolation (Heerdink et al., 2015).
To avoid such social punishment, people might be motivated
to conform to the majority position (Falk et al., 2012). Second,
from an evolutionary perspective, evolutionary game-theoretic
models (Smith, 1982) show that groups that face greater societal
threats require harsher punishment for norm deviators to avoid
a breakdown of cooperation and to survive (Gelfand, 2012).
Regarding the prominent role of such peer punishment in human
evolution (Boyd et al., 2003), humans could have developed
corresponding neural mechanisms that made them constantly
vigilant to the threat of potential punishment (Fehr and Gächter,
2002; De Quervain et al., 2004; Spitzer et al., 2007), which implies
that the dispositional determinants of individual differences in
conformity propensity (Egerton et al., 2010; Jolles et al., 2011)
might be a stable neural trait (i.e., sensitivity to punishment at a
neural level). Also, as the tendency to imitate is usually swift and
automatic (Griskevicius et al., 2006), the individual differences
in conformity propensity might be driven by differences in early
automatic perception of potential punishment (Franzen and
Brinkmann, 2015).

Therefore, in the present study, we explored whether andwhat
neural traits—dispositional brain-based characteristics—might
explain individual differences in conformity propensity. To
measure individuals’ neural markers of punishment sensitivity,
one of the best options is to use spontaneous resting-state
functional magnetic resonance imaging (rs-fMRI) to measure
the level of coactivation of functional time series [i.e., functional
connectivity (FC)] in a specific functional network [i.e., the brain
punishment network (PN; Salvador et al., 2005; Damoiseaux
et al., 2006; Van den Heuvel and Hulshoff Pol, 2010)]. Because
brain regions often have to work together to form a functional
network during rest (Damoiseaux et al., 2006; Fox and Raichle,
2007; Smith et al., 2013), this makes spontaneous rs-fMRI
oscillations a robust measure to examine ongoing functional
communication between brain regions absent of actual stimulus
(Peelen et al., 2013; Hutchison et al., 2014; Stevens et al.,
2015; Wang et al., 2016). Unlike task-based imaging, which
typically highlights brain responses associated with any given
task, rs-fMRI allows researchers to observe how a brain’s resting-
state connectivity is ready for prime time in the absence of any
explicit task (Shen, 2015). Therefore, we can measure rs-fMRI
in PN to characterize individuals’ preparation and anticipation
states for potential punishment. Hence, the resting-state FC in
the PN is an ideal neural marker of punishment sensitivity.

Here, we defined the PN by including all brain regions
potentially involved in punishment processing. According
to neuroscience studies, punishment processing may be
underpinned by several distinct brain systems (Palminteri
and Pessiglione, 2017). The first system has suggested that
punishment-avoidance processing is driven by dopamine (DA)
activity (Brooks and Berns, 2013). Specifically, some fMRI
studies have shown that the dorsal parts of the frontostriatal

circuits (dorsal striatum) could reinforce punishment avoidance
(Seymour et al., 2007; Delgado et al., 2008; Shenhav and Buckner,
2014; Pauli et al., 2015). Additionally, some studies have
emphasized that punishment processing is mediated by aversive
signals encoded in other brain areas, such as the insula, dorsal
anterior cingulate cortex (dACC), and amygdala (Gonzalez et al.,
2014; Namburi et al., 2016; Bernardi and Salzman, 2017). The
involvement of these regions in experiencing punishment has
been supported by some fMRI studies as well as meta-analyses
(Palminteri et al., 2012, 2015; Bartra et al., 2013; Garrison et al.,
2013; Hayes et al., 2014). These results demonstrate the critical
and specific role that various brain structures could play in
punishment sensitivity: first, some were implicated in the DA
system (striatum), and second, other subcortical and cortical
structures were implicated in aversive processing, such as the
insula, dACC, and amygdala. Therefore, the aforementioned
brain regions all possibly contributed to punishment sensitivity
and worked in an integrative manner, despite the absence of any
punishment stimulus, to predispose individuals to conform.

To test this hypothesis, we first combined all potential
brain regions associated with punishment processing to form
the PN using an automated meta-analysis (i.e., Neurosynth;
Palminteri and Pessiglione, 2017). Then, we characterized the
voxel-wise FC within the PN in a large sample of participants
(N = 272) with voxel-based global brain connectivity (GBC)
method using rs-fMRI (Cole et al., 2012; Wang et al., 2016).
For the brain-wide GBC analyses, a voxel’s GBC was computed
as the average connectivity of that voxel with the rest of the
brain; For the ROI GBC analyses, voxel-wise connectivity was
based on average correlations of a voxel with the rest of all
within-region voxels (Cole et al., 2010). Thus, in this study,
to focus on investigating punishment sensitivity the voxel-wise
GBC maps were computed within the PN. Specifically, the
functional integration of the PN was determined by calculating
the within-network connectivity (WNC) of each voxel in the PN
as the average FC of a voxel with the rest of the punishment-
selective voxels in the PN. Next, we examined whether the WNC
in the PN was related to conformity propensity (tendency),
measured with a conformity scale (Mehrabian and Stefl, 1995)
to explore attributes of conforming. Hence, by correlating the
WNC of each voxel in the PN with the tendency of conformity
across participants, we characterized the conformity propensity
relevance of integration (i.e., a stronger WNC) of the PN, which
could elucidate the dispositional determinant (i.e., punishment
sensitivity) of conformity behaviors. We hypothesized that the
integration (i.e., a stronger WNC) of the PN is positively
associated with conformity propensity.

MATERIALS AND METHODS

Participants
A total of 272 participants [146 female participants; 272
self-reported right-handed; mean age = 20.4 years, standard
deviation (SD) = 0.9 years] from Beijing Normal University
participated in the rs-fMRI scan and behavioral session. All
participants had a normal or corrected-to-normal vision and
reported no history of neurological or psychiatric disorders
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TABLE 1 | Demographic information for participants.

n = 272

Age 20.4 (0.9)
Gender 146 F (54%), 126 M (46%)
Left-handed 0%
History of neurological disorders N/A
History of psychiatric disorders N/A

(Table 1). All investigation protocols were approved by the
Institutional Review Board of Beijing Normal University.
Written informed consent was obtained from all the participants
before the study.

PN Map From Neurosynth Meta-analysis
To obtain an activation map relevant for punishment processing,
we used an automated meta-analysis tool called Neurosynth1

(Yarkoni et al., 2011) to generate the association test map
displaying brain regions preferentially related to the key
terms ‘‘punishment,’’ ‘‘aversive,’’ and ‘‘pain’’ (Palminteri
and Pessiglione, 2017). The meta-analysis was performed
by automatically identifying all studies in the Neurosynth
database that loaded highly on the term. Meta-analyses
were then performed to identify brain regions consistently
or preferentially reported in the tables of those studies,
including the key terms. Despite the automaticity and
potentially high noise resulting from the association between
the term frequency and coordinate tables, this approach
has been demonstrated to be robust and reliable (Yarkoni
et al., 2011; Helfinstein et al., 2014; Kong et al., 2017). The
database was accessed in February 2019. ‘‘Punishment’’ was
searched for in 92 studies with 2,881 activations, ‘‘aversive’’
was searched for in 238 studies with 8,529 activations, and
‘‘pain’’ was searched for in 516 studies with 23,295 activations.
The generated maps were corrected using a false discovery
rate (FDR) approach with an expected FDR of 0.01. We
combined all three maps to create the final map of the PN.
As expected, the resulting statistical map included the dACC,
postcentral gyrus (PG), bilateral insula, striatum, thalamus,
and amygdala, which is similar to the results obtained in
previous punishment-processing studies (Delgado et al., 2008;
Palminteri et al., 2012; Bartra et al., 2013; Garrison et al., 2013;
Eisenberger, 2015; Pauli et al., 2015; Bernardi and Salzman, 2017;
Palminteri and Pessiglione, 2017).

Image Acquisition
The images were acquired using a 3T scanner (MAGNETOM
Trio, A Tim System; Siemens) with a 12-channel phased-array
head coil at the Beijing Normal University Imaging Center
for Brain Research in Beijing, China. The rs-fMRI scanning
was conducted using a gradient-echo echo-planar imaging
(GRE-EPI) sequence [repetition time (TR) = 2,000 ms,
echo time (TE) = 30 ms, flip angle = 90◦, number of
slices = 33, voxel size = 3.125 × 3.125 × 3.6 mm3].
Scanning lasted for 8 min and consisted of 240 contiguous
EPI volumes. During the scan, the participants were

1https://github.com/neurosynth/

instructed to relax without engaging in any specific task
and remain still with their eyes closed. In addition,
high-resolution T1-weighted images were acquired
with a magnetization-prepared gradient-echo sequence
(MPRAGE: TR/TE/TI = 2,530/3.39/1,100 ms, flip angle = 7◦,
matrix = 256 × 256, number of slices = 128, and voxel
size = 1 × 1 × 1.33 mm3) for spatial registration. Earplugs
were used to attenuate scanner noise, and a foam pillow and
extendable padded head clamps were used to restrain the
participants’ head motion.

Image Preprocessing
The rs-fMRI data were preprocessed using the FMRIB Software
Library (FSL)2. Preprocessing included removal of the first four
images, correction for head motion (by aligning each volume
to the middle volume of the image with the MCFLIRT), spatial
Gaussian smoothing [with a Gaussian kernel of 6 mm full-width
at half-maximum (FWHM)], intensity normalization, and linear
trend removal. A temporal bandpass filter (0.01–0.1 Hz) was then
applied to reduce low-frequency drifts and high-frequency noise.

To further eliminate physiological noise, such as the
fluctuations caused by motion, cardiac and respiratory cycles,
nuisance signals from cerebrospinal fluid, white matter, whole-
brain average, motion correction parameters, and the first
derivatives of these signals were regressed out using the methods
described in previous studies (Fox et al., 2005; Biswal et al.,
2010). The four-dimensional residual time series obtained after
removing the nuisance covariates were used for the rs-FC
analyses. The strength of the intrinsic FC between two voxels was
estimated using Pearson’s correlation of the residual resting-state
time series for those voxels.

The rs-fMRI images of each participant to the
structural images were registered using FLIRT to
produce a six-degrees-of-freedom affine transformation
matrix. The registration of each participant’s structural
images to a common stereotaxic space [the Montreal
Neurological Institute (MNI) 152-brain template with
a resolution of 2 × 2 × 2 mm3, MNI152] was
accomplished using FLIRT to produce a 12-degrees-of-
freedom linear affine matrix (Jenkinson and Smith, 2001;
Jenkinson et al., 2002).

Behavioral Tests
The participants’ conformity propensity was measured using
an 11-items conformity scale based on Mehrabian and Stefl
(1995). Conformity was defined as involving the characteristic
willingness to identify with others and emulate them, giving in
to others to avoid conflict, and being a follower rather than
a leader in terms of ideas, values, and behaviors (Mehrabian
and Stefl, 1995). Seven items were positively scored (+),
showing a stronger tendency toward conformity, while the
remaining four items were negatively scored (−). The items
are statements such as ‘‘I often rely and act upon the advice
of others’’ (+), ‘‘Generally, I’d rather give in and go along
with the majority of others for consistency’’ (+), and ‘‘I am

2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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more independent than conforming in my ways’’ (−). The
participants were asked to evaluate themselves on a 6-point
Likert scale ranging from 1 (never or almost never true) to 6
(always or almost always true), with higher scores indicating
a higher tendency to conform. In the current study, the
internal consistency for all items was provided by a Cronbach’s
coefficient of 0.78.

WNC Analyses in the PN
The GBC method, which is a recently developed analytical
approach for fMRI data, was used to characterize the intrinsic
WNC of each voxel within the PN (Cole et al., 2012). The GBC
of a voxel was generally defined as the averaged FC of that voxel
to the remaining voxels in the entire brain or a predefined mask
(Cole et al., 2012; Wang et al., 2016; Pan et al., 2019; Li et al.,
2020). This method enabled the characterization of a specific
region’s full-range FC with the voxel-wise resolution, allowing
us to comprehensively examine the role of each region’s FC
in punishment sensitivity. Specifically, the FC of a PN voxel
to the remaining PN voxels was computed one by one and
then averaged as the WNC of the PN voxel. Then, participant-
level WNC maps were transformed to z-score maps by using
Fisher’s z-transformation to yield normally distributed values
(Cole et al., 2012; Gotts et al., 2013). A one-sample t-test was
performed for each voxelWNC to identify the distribution of hub
regions within the PN (Song et al., 2020). The significance was
determined using the FDR correction approach with p < 0.01.
Moreover, we conducted two-sample t-tests to compare the
WNC in the PN between male and female participants to
determine whether gender differences existed in punishment
sensitivity. The significance was determined using the FDR
correction approach with p < 0.01.

WNC–Conformity Propensity Correlation
Analyses
A correlation analysis was conducted to examine the relationship
between the WNC of each voxel in the PN and the individual
differences in conformity propensity. Specifically, a Pearson’s
correlation between the WNC and conformity scores was
conducted for each voxel with a GLM tool implemented in FSL,
where the conformity scores were set as an independent variable
and the WNC in the PN was set as the dependent variable.
Multiple comparison correction was performed on the statistical
map using the 3dClustSim program implemented in AFNI3

(version 16.1.13, 2016). The voxel- and cluster-level thresholds
of p < 0.002 and p < 0.05, respectively, were set based on Monte
Carlo simulations in the PN mask.

Furthermore, control analyses were performed to rule out
other possible confounding factors such as head motion and
gender, because recent studies have shown that rs-FC is largely
affected by head motion (Satterthwaite et al., 2012; Van Dijk
et al., 2012) and gender was identified as a possible modulator of
conformity (Rosander and Eriksson, 2012). Thus, we calculated
the partial correlation between WNC and conformity propensity
while controlling for headmotion and gender. The extent of head

3http://afni.nimh.nih.gov

motion was measured by the mean framewise displacement (FD)
for each participant (Van Dijk et al., 2012).

Seed-Based FC-Conformity Correlation
Analysis
We further investigated with which specific regions the FCs of
the identified clusters in the aforementioned WNC–conformity
correlation analyses were correlated with conformity propensity.
In this regard, seed-based FC analyses were performed with
each identified cluster as the seed. For a seed identified in the
WNC–conformity correlation analysis, we calculated the FC
between themean time series in the seed (Fisher’s z-transformed)
and each PN voxel and correlated the FC with conformity scores.
Again, multiple comparison correction was performed using
the 3dClusSim program implemented in AFNI (version 16.1.13,
2016)3. A threshold of voxel-level p < 0.002 and cluster-level
p < 0.05 was set based on Monte Carlo simulations in the PN.
Furthermore, similar control analyses were performed to rule out
the confounding effects of head motion and gender.

Participant Exclusion
The exclusion criterion for fMRI data was head motion >2.0◦ in
rotation or 2.0mm in translation throughout the fMRI scan. Four
participants (three male and one female) were excluded based
on this criterion. For the behavioral tests, Tukey’s outlier filter
(Hoaglin et al., 1983) was used to identify outlier participants
with exceptionally low (3 × the interquartile range below the
first quartile) or high (3 × the interquartile range above the third
quartile) scores. Four additional participants (two male and two
female) were excluded using this method.

RESULTS

Behavior Results
Participants’ conformity propensity was measured using the
conformity scale (Mehrabian and Stefl, 1995), and the mean
score obtained by the sample (N = 264) was 3.47 (SD = 0.58).
Also, an independent sample t-test was used to examine the
difference in the conformity propensity betweenmale and female
participants. The results revealed significant differences between
male (mean = 3.29, SD = 0.56) and female (mean = 3.63,
SD = 0.55), t(262) = 5.06, p< 0.001, Cohen’s d = 0.61) participants,
which is consistent with previous studies that a gender difference
in conformity propensity might exist at the behavioral level
(Rosander and Eriksson, 2012). Therefore, we used gender as a
control variable for further analysis.

Definition of PN
To define the PN, we used the results of the Neurosynth
meta-analysis with the terms ‘‘punishment,’’ ‘‘aversive,’’ and
‘‘pain’’ (Z > 2.3, uncorrected, Figure 1A) and recreated a PN
mask combining the three association test maps (Palminteri and
Pessiglione, 2017). As a result, the PN included the dACC, PG,
bilateral insula, thalamus, amygdala, and striatum (Figure 1B).
The regions in the PN were in agreement with the punishment-
selective regions identified in studies on punishment processing
(Delgado et al., 2008; Palminteri et al., 2012; Bartra et al.,
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FIGURE 1 | (A) Maps resulting from automatized large-scale meta-analyses as implemented in Neurosynth. Three association test maps displaying brain regions
preferentially related to the key terms “punishment,” “aversive,” and “pain” created in the Neurosynth meta-analysis (Z > 2.3, uncorrected). These three maps involve
both similar (the dACC) and specific (notably the striatum, thalamus, amygdala, and insula) brain regions. (B) Global pattern of within-network connectivity (WNC) in
the punishment network (PN; combing aforementioned “punishment,” “aversive,” and “pain” maps). The group-level (one-sample t-test) WNC map is overlaid on the
cortical surface (FDR corrected p < 0.01). L, left; R, right. The visualization was provided by BrainNet Viewer (http://www.nitrc.org/projects/bnv/).

2013; Garrison et al., 2013; Eisenberger, 2015; Pauli et al., 2015;
Bernardi and Salzman, 2017; Palminteri and Pessiglione, 2017).

WNC in the PN
After identifying the PN, we computed each voxel’s WNC in the
PN by using the rs-fMRI data, where the WNC measured the
voxel-wise FC within the PN. First, a one-sample t-test was used
to identify the hubs distribution in the PN. Specifically, we used
a one-sample t-test to calculate the WNC across voxels in the
entire sample (N = 264). The results showed that almost all voxels
in the PN exhibited positive WNC (FDR-corrected p < 0.01),
suggesting that the PN is a relatively encapsulated network,
and among all the PN regions (FDR-corrected p < 0.01), the
insula, thalamus, dACC, and PG had the largest WNC values
(Figure 1B), among which theWNC values of the right thalamus,
bilateral insula, dACC, and PG was 1 SD higher than the mean
WNC value of the PN, suggesting that these regions serve as
hubs of the PN (Dai et al., 2015; Wang et al., 2016). Also, a
two-sample t-test between male and female participants across
voxels in the WNC value within the PN revealed no significant

difference between genders, which indicated that male and
female participants have similar sensitivity to punishment at the
neural level.

Correlation Between WNC and Conformity
Propensity
To investigate how the resting-state FC patterns in the PN were
related to conformity propensity, we performed a voxel-wise
correlation analysis to search for any PN voxels exhibiting a
correlation between WNC and conformity propensity across the
participants. As shown in Figures 2A,D, 3A,D and Table 2, four
clusters (voxel-level p < 0.002, cluster-level p < 0.05, corrected)
in the right thalamus (38 voxels, r = 0.217, p < 0.001, MNI
coordinates of peak: 14, −22, −2, Figures 2A,B), left insula
(44 voxels, r = 0.215, p < 0.001, MNI coordinates of peak: −38,
−10, −4, Figures 2D,E), PG (121 voxels, r = 0.252, p < 0.001,
MNI coordinates of peak: 26, −28, 58, Figures 3A,B), and dACC
(47 voxels, r = 0.217, p < 0.001, MNI coordinates of peak: −42,
24, 34, Figures 3D,E) showed significant positive correlation
between the WNC and conformity propensity, suggesting that
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FIGURE 2 | Correlation between the PN WNC and conformity. The PN WNC in the R_thalamus (38 voxels, voxel-level p < 0.002, cluster-level p < 0.05, corrected)
and L_insula (44 voxels, voxel-level p < 0.002, cluster-level p < 0.05, corrected) was positively correlated with conformity (A,D). The scatter plots are shown just for
illustration and visualization of the partial correlation (controlling for gender and head motion) between the PN WNC in the R_thalamus, L_insula, and conformity
(B,E). Correlation between seed-based functional connectivity (FC) and conformity is shown in Panels (C,F). (C) The FC between the R_thalamus seed and the
clusters in the bilateral insula was positively correlated with conformity. (F) The FC between the L_insula seed and the clusters in the bilateral insula and postcentral
gyrus (PG) was positively correlated with conformity. To better visualize the location of the significant clusters, the boundary of the clusters are shown with a red
contour. L, left; R, right; a.u., arbitrary units. The visualization was provided by BrainNet Viewer (http://www.nitrc.org/projects/bnv/).

individuals with stronger within-network integration in these
four regions during resting state were more inclined to conform.
No clusters showed a negative correlation between the WNC
and conformity propensity. In brief, these results suggested that
individuals’ conformity propensity was positively correlated with
the integration of the right thalamus, left insula, PG, and dACC
in the PN.

Control analyses were then performed to ensure that the
WNC-conformity correlation in the right thalamus, left insula,
PG, and dACC was not caused by confounding factors, such as
head motion or gender. We reanalyzed the WNC-conformity
correlation while controlling for head motion (Van Dijk et al.,
2012) and gender. We found that the correlation remained
significant (right thalamus: partial r = 0.188, p = 0.002; left
insula: partial r = 0.208, p = 0.001; PG: partial r = 0.219,
p < 0.001; dACC: partial r = 0.179, p = 0.004). These
results indicated that the WNC-conformity correlations in the
four clusters were not an artifact resulted from head motion
or gender.

To examine the reliability of the correlation, the top and
bottom 25% of the participants, according to the WNC (in

the significantly positive WNC–conformity correlation clusters:
right thalamus, left insula, PG and dACC), were labeled as
the high- and low-punishment sensitivity groups (N = 66 for
both groups), respectively. Consistent with the correlation
results, the high punishment sensitivity group (a group divided
according to the WNC in the cluster in the right thalamus:
conformity = 3.60; in the left insula: conformity = 3.58; in the
PG: conformity = 3.56; and in the dACC: conformity = 3.64)
exhibited higher conformity scores than did the low-punishment
sensitivity group (group divided according to WNC in the
cluster in the right thalamus: conformity = 3.28; in the left
insula: conformity = 3.27; in the PG: conformity = 3.24; and
in the dACC: conformity = 3.31) according to the WNC
in four clusters, respectively (the difference of conformity
scores between the top and low WNC groups in the right
thalamus: t(130) = −3.099, p = 0.002, Cohen’s d = 0.55;
in the left insula: t(130) = −2.946, p = 0.004, Cohen’s
d = 0.51; in the PG: t(130) = −3.595, p < 0.001, Cohen’s
d = 0.64; and in the dACC: t(130) = −3.351, p = 0.001,
Cohen’s d = 0.58). These results indicated that individuals with
superior punishment sensitivity (specifically reflected in the right
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thalamus, left insula, PG, and dACC integration) are more likely
to conform.

Conformity Relevance of Seed-Based FC
in the PN
After identifying the right thalamus, left insula, PG, and dACC
as the connection hubs within the PN associated with conformity
propensity, we examined with which specific regions in the
PN the FC of the identified clusters in the aforementioned
WNC–conformity correlation analysis were correlated with
conformity. For this purpose, we performed seed-based FC
analyses with the identified four clusters as seeds. We then
calculated the FC between the mean time series in the seed
(Fisher’s z-transformed) and each PN voxel and correlated the
FC with conformity scores (the results of correlation analyses
were summarized in Table 2). First, we found that the FC
between the right thalamus and two clusters were positively
correlated with conformity propensity (voxel-level p < 0.002,
cluster-level p < 0.05, corrected, Figure 2C), including the
bilateral insula (right, 655 voxels, MNI coordinates: 40, −11, −4;
left, 407 voxels, MNI coordinates: −40, −5, −4). In addition,
the correlations remained unchanged while controlling for the
participants’ head motion (Van Dijk et al., 2012) and gender
(right thalamus-right insula: partial r = 0.270, p < 0.001; right
thalamus-left insula: partial r = 0.264, p < 0.001). Second, the
FC between the left insula and three clusters were positively
correlated with conformity propensity (voxel-level p < 0.002,
cluster-level p < 0.05, corrected, Figure 2F), including the PG
(59 voxels, MNI coordinates: 60,−15, 34) and the bilateral insula
(right, 119 voxels, MNI coordinates: 34, 4, 6; left, 70 voxels,
MNI coordinates: −30, −17, 4). Additionally, the correlations
remained unchanged while controlling for the participants’
head motion and gender (left insula-PG: partial r = 0.178,
p = 0.004; left insula-right insula: partial r = 0.254, p < 0.001;
left insula-left insula: partial r = 0.239, p < 0.001). Third, the
FC between the PG and three clusters were positively correlated
with conformity propensity (voxel-level p < 0.002, cluster-level
p < 0.05, corrected, Figure 3C), including the dACC (759 voxels,
MNI coordinates: 8, 24, 20) and the bilateral parietal operculum
(PO; right, 334 voxels, MNI coordinates: 56, −29, 32; left,
161 voxels, MNI coordinates: −52, −35, 36). The correlations
remained unchanged while controlling for the participants’ head
motion and gender (PG-dACC: partial r = 0.251, p < 0.001; PG-
rPO: partial r = 0.216, p < 0.001; PG-lPO: partial r = 0.215,
p < 0.001). Finally, the FC between the dACC and two clusters
were positively correlated with conformity propensity (voxel-
level p < 0.002, cluster-level p < 0.05, corrected, Figure 3F),
including the bilateral PO (right, 241 voxels, MNI coordinates:
58, −21, 20; left, 463 voxels, MNI coordinates: −55, −21, 10). In
addition, the correlations remained unchanged while controlling
for the participants’ headmotion and gender (dACC-rPO: partial
r = 0.210, p = 0.001; dACC-lPO: partial r = 0.262, p < 0.001).
Taken together, these results suggest that from the right thalamus
to the bilateral insula to the PG to the dACC, these regions might
not only play parallel hub-like roles in punishment sensitivity but
also seem to have integrated as an ascending pathway to facilitate
conformity behaviors (Figure 4). TA
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FIGURE 3 | Correlation between the PN WNC and conformity. The PN WNC in the postcentral gyrus (121 voxels, voxel-level p < 0.002, cluster-level p < 0.05,
corrected) and dACC (47 voxels, voxel-level p < 0.002, cluster-level p < 0.05, corrected) was positively correlated with conformity (A,D). The scatter plots are shown
just for illustration and visualization of the partial correlation (controlling for gender and head motion) between the PN WNC in the postcentral gyrus (PG), dACC, and
conformity (B,E). Correlation between the seed-based FC and conformity is shown in panels (C,F). (C) The FC between the postcentral gyrus seed and the clusters
in the dACC and bilateral parietal operculum (PO) was positively correlated with conformity. (F) The FC between the dACC seed and the clusters in the bilateral PO
was positively correlated with conformity. To better visualize the location of the significant clusters, the boundary of the clusters are shown with a red contour. L, left;
R, right; a.u., arbitrary units. The visualization was provided by BrainNet Viewer (http://www.nitrc.org/projects/bnv/).

DISCUSSION

Using rs-fMRI, we demonstrated that task-independent FC
in the PN related to individual differences in conformity
propensity: higher WNC in the PN was associated with a
stronger tendency to conform. Specifically, first, we identified
the right thalamus, bilateral insula, PG, and dACC as
hubs for integrating all other regions in the PN. Then,
the correlation analysis between WNC and the conformity
scores demonstrated that individuals with stronger WNC in
the right thalamus, left insula, PG, and dACC (i.e., high
PN integration) exhibited considerably higher conformity
propensity. Furthermore, through seed-based analysis, the
results suggested that the specific connections from all four
brain regions seemed to form an ascending pathway and
that the connection of each phase in this pathway all
contribute to conformity propensity. Therefore, stronger WNC
in the PN might predispose conformity behaviors by fostering
punishment sensitivity. Every phase in this ascending pathway
for punishment sensitivity was positively correlated with
conformity propensity.

By using the GBC approach, our finding that the right
thalamus, left insula, PG, and dACC are hub areas integrating
the whole PN is consistent with previous findings that these brain
regions play a central role in punishment processing, such as the
processing of aversive, and painful stimuli (Frot et al., 2007; Chai
et al., 2010; Straube and Miltner, 2011; Kobayashi, 2012; Wiech
et al., 2014). Thus, the fact that these four hubs integrating the PN
at resting state indicate that they were in an ongoing readiness
state for priming of multiple potential punishments (Simmons
and Martin, 2011; Shen, 2015). This readiness state positively
correlated with individuals’ conformity propensity, suggesting
that this task-independent neural functioning might predispose
individuals toward conformity.

Also, seed-based FC-conformity correlation analyses were
conducted with four clusters as seeds in the right thalamus,
left insula, PG, and dACC, respectively, and the results
showed that the FCs in the four hub regions seemed to
form an ascending pathway that was positively correlated with
conformity propensity in each phase. It is also worth mentioning
that the PO was not the hubs in the PN but connected with
two hubs (i.e., the PG and dACC) in the ascending pathway
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FIGURE 4 | Illustration of the three-phase ascending pathway in the punishment network (PN). Phase 1 is the “input phase” and refers to the connectivity from the
thalamus to the insula; Phase 2 is the “affective and sensory processing phase” and refers to the connection between the insula, postcentral gyrus (PG), and parietal
operculum (PO); and Phase 3 is the “alarm phase” and refers to the connectivity within PG, PO, and dACC. The visualization was provided by BrainNet Viewer
(http://www.nitrc.org/projects/bnv/).

to contribute to the behavior tendency of conformity. This
result is consistent with previous studies that have indicated
that the function of the PO might not be the hub region to
integrate the whole PN, but that it plays an essential role in
transmitting signals within the hubs (Eickhoff et al., 2010; Garcia-
Larrea, 2012; Mano et al., 2017). More importantly, unilateral
severe physical punishment (e.g., painful stimulation) evoked
bilateral activation of PO but also activated the insula, PG, and
cingulate cortices in the contralateral hemisphere in completely
callosotomized patients (Fabri et al., 2002), which indicated that
PO could play a powerful function in transferring information
bilaterally, even in subjects with resection of the corpus callosum
and distributing signals to both hemispheric brain regions. Thus,
the major role of the PO could be facilitating connectivity
within the PG and dACC in the ascending pathway. Our
results suggested that the mechanism of punishment sensitivity
comprises multiple phases of processing (Ernst et al., 2006), and
this sensitivity could result from stronger connectivity of one or
multiple phases.

Specifically, this punishment sensitivity pathway in the PN
could be divided into three phases (Figure 4): Phase 1 is
the ‘‘input phase’’ and refers to the connectivity from the

thalamus to the insula, which is responsible for processing
early sensory input (Dum et al., 2009; Liang et al., 2012;
Cho et al., 2013). Phase 2 is the ‘‘affective and sensory
processing phase’’ and contributes to the connection between
the insula, PO, and PG (where the somatosensory cortex is
located). According to research, the insula is responsible for
processing the ‘‘affective’’ components of punishment stimulus
(Touroutoglou et al., 2012; Duerden et al., 2013; Rogers-Carter
et al., 2018), activation during aversive anticipation (Simmons
et al., 2006; Carlson and Mujica-Parodi, 2010; Haase et al.,
2014), and arousal during negative affection processing (Caria
et al., 2010; Duerden et al., 2013), whereas the somatosensory
cortex is responsible for processing ‘‘sensory-discrimination’’
and is implicated in self-awareness of a person’s own body
(Frot et al., 2007; Khalsa et al., 2009) as the perception of
bodily states playing a crucial role for affective and emotional
experiences (Straube and Miltner, 2011). Phase 3 occurs in
the ascending pathway and is the combined affective and
sensory signal projected to the dACC (i.e., accomplished by
the connectivity within the somatosensory cortex, PO, and
dACC), which acts as a neural ‘‘alarm system’’ or conflict
monitor, detecting ‘‘something is wrong’’ and preparing for a
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response (Eisenberger and Lieberman, 2004; Ullsperger et al.,
2004; Gonzalez et al., 2014; Chester and DeWall, 2015; Coste and
Kleinschmidt, 2016). The connectivity in every phase is positively
associated with conformity propensity, which means that every
phase is preparing for punishment stimulus and the sensitivity
in each phase plays a role in explaining individual differences in
conforming tendency.

Also, two regions included in our predefined PN did not
seem to play essential roles in punishment sensitivity and
did not contribute to conformity propensity. First, the dorsal
striatum is mentioned in a few previous studies to be associated
with punishment avoidance (Seymour et al., 2007; Delgado
et al., 2008; Pauli et al., 2015). While reward processing being
associated with striatum activation has been almost consistently
reported, results regarding punishment processing have been
less consistent (Rutledge et al., 2009; Jocham et al., 2011;
Eisenegger et al., 2014). The fact is that the meaning of
positive or negative outcomes always been reframed in studies
about reward- or punishment-processing tasks, which means the
absence of punishment could be perceived as a reward (Vlaev
et al., 2011; Rangel and Clithero, 2012; Palminteri et al., 2015).
Thus, the dorsal striatum might play a major role in value-
coding in these tasks, rather than being a response specific to
punishment. Second, the amygdala has not presented as a hub
area in punishment sensitivity. The possible reason is that the
amygdala is an area associated with emotional processing, such
as emotional salience, valence, and discrimination (Pessoa and
Adolphs, 2010). So in punishment relevance tasks, the function of
the amygdala is more likely to process the emotional response to
individuals’ own errors before punishment is inflicted (Jackson
et al., 2015) or to the succeeding emotional processing after
suffering punishment (Sladky et al., 2013). Thus, it is not
responsible for processing the direct experience associated with
the punishment itself; therefore, it has not played a role in
punishment sensitivity or contributed to conformity propensity
in this study.

LIMITATIONS AND FUTURE DIRECTIONS

The limitations and several unaddressed issues of the present
study need to be explored in future research. First, given
that the processing ascending pathway in the PN presented
in this study was based on seed-based analysis, future studies
are invited to investigate directed FC within PN (e.g., using
Granger causality analysis, GCA; Khazaee et al., 2017; Price
et al., 2017; Xue et al., 2019), and how the directed FC in
the PN are associated with conformity propensity. Second,
the present study used resting-state FC when participants
were not performing punishment processing tasks since the
present study aims to investigate the intrinsic FC in the PN
as an indicator for task-free, stable trait-like neural activity
in potential punishment (Tavor et al., 2016), yet future fMRI
studies measuring task-state FC during the performance of
the punishment processing relevant tasks (Palminteri et al.,
2012; Palminteri and Pessiglione, 2017) may help further
elucidate the distinct function of each region related to
punishment processing and the specific role they play in

promoting conformity behaviors. Third, the generalization of
the present finding is limited by the purely college-aged sample.
It will be interesting for future studies to investigate the
punishment sensitivity at the neural level in other age groups
and the corresponding associations with group varieties of
conformity propensity.

CONCLUSION

In summary, the present study evidences that a neural trait
marker—task-independent FC in the PN—explains individual
differences in conformity propensity. That might be the reason
why the conformity phenomenon is so prevalent in our society
today because the neural connectivity in the PN is a consistent
and automatic motivational factor in our brain. Hence, our
study revealed a paradox: we conform because of sensitivity
to punishment, but avoiding potential punishment leads us to
be a ‘‘one-dimensional man,’’ which itself is the most severe
punishment. The significance of this study is probably cautionary
at best. As American historian Wilfred M. McClay evaluated
Riesman’s The Lonely Crowd, ‘‘It warns us against the peculiar
forms of bondage to which our era is especially prone. And in
doing so, it draws us into a deeper consideration of what freedom
might be, both now and in the future,’’ (McClay, 1998). Thus,
constructing a new sensibility of being nonconforming is the
antidote to regaining one’s drive for personal liberation.
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Previous studies have demonstrated relations between spontaneous neural activity
evaluated by resting-state functional magnetic resonance imaging (fMRI) and symptom
severity in post-traumatic stress disorder. However, few studies have used brain-based
measures to identify imaging associations with illness severity at the level of individual
patients. This study applied connectome-based predictive modeling (CPM), a recently
developed data-driven and subject-level method, to identify brain function features that
are related to symptom severity of trauma survivors. Resting-state fMRI scans and
clinical ratings were obtained 10–15 months after the earthquake from 122 earthquake
survivors. Symptom severity of post-traumatic stress disorder features for each survivor
was evaluated using the Clinician Administered Post-traumatic Stress Disorder Scale
(CAPS-IV). A functionally pre-defined atlas was applied to divide the human brain into
268 regions. Each individual’s functional connectivity 268 × 268 matrix was created
to reflect correlations of functional time series data across each pair of nodes. The
relationship between CAPS-IV scores and brain functional connectivity was explored in a
CPM linear model. Using a leave-one-out cross-validation (LOOCV) procedure, findings
showed that the positive network model predicted the left-out individual’s CAPS-IV
scores from resting-state functional connectivity. CPM predicted CAPS-IV scores, as
indicated by a significant correspondence between predicted and actual values (r = 0.30,
P = 0.001) utilizing primarily functional connectivity between visual cortex, subcortical-
cerebellum, limbic, and motor systems. The current study provides data-driven evidence
regarding the functional brain features that predict symptom severity based on the
organization of intrinsic brain networks and highlights its potential application in making
clinical evaluation of symptom severity at the individual level.

Keywords: psychoradiology, post-traumatic stress disorder, functional magnetic resonance imaging, resting-
state, functional connectivity, connectome-based predictive modeling
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INTRODUCTION

There is a high risk for trauma survivors to develop
post-traumatic stress disorder (PTSD; Yehuda and Flory,
2007), a highly debilitating psychiatric disorder characterized
by symptoms including avoidance of trauma-related stimuli,
re-experiencing of the trauma, hyperarousal, and altered
cognition and mood (American Psychiatric Association, 2013).
Psychoradiology, a new field of radiology, aims to use brain
imaging to not only advance understanding of psychiatric
disorders but also play a clinical role in diagnostic and treatment
planning decisions (Sun et al., 2018; Huang et al., 2019; Gong,
2020). Previous studies have identified brain connectivity
network alterations in trauma survivors who develop PTSD
compared with those who do not (Patel et al., 2012; Lei
et al., 2015; Kennis et al., 2016; Akiki et al., 2018; Niu et al.,
2018). However, these alterations were based on group-level
comparisons. Thus, it remains unclear whether image data can
be helpful for the clinical evaluation of symptom severity in
individual trauma survivors.

Functional magnetic resonance imaging (fMRI) is a
noninvasive technique assessing neural activity. Functional
connectivity analyses, examining associations of activity across
different brain regions, have demonstrated robust and unique
patterns of brain activity that predict neuropsychological traits
and clinical symptoms across individuals (Dubois and Adolphs,
2016; Rosenberg et al., 2018). Modeling the associations between
phenotypic measures (e.g., ratings of illness severity) and
functional brain organization can provide a basis for establishing
the clinical utility of imaging data (Gao et al., 2019).

The comprehensive map of functional connectivity in the
human brain is defined as the ‘‘functional connectome’’ (Biswal
et al., 2010). Recent research has applied functional connectome
analysis to predict a broad range of phenotypic measures,
including intelligence (Finn et al., 2015), creativity (Beaty et al.,
2018), attention (Rosenberg et al., 2016), cocaine abstinence
(Yip et al., 2019), cognitive impairment (Lin et al., 2018), and
symptom severity of autism spectrum disorder and attention
deficit hyperactivity disorder (Lake et al., 2019). Few studies
have attempted to investigate the relationship between functional
connectivity and PTSD symptom severity (Lanius et al., 2010;
Zhou et al., 2012; Tursich et al., 2015; Zandvakili et al.,
2020). Further, most included participants were receiving
treatment with psychotropic medications and had psychiatric
comorbidities, which may have influenced study findings. Also,
some studies used a seed-based method in which findings
may have been biased by the particular seed region chosen.
While resting-state functional connectivity analyses of symptom
severity in PTSD have been informative, the prediction of PTSD
symptom severity using the whole brain functional connectome
before drug treatment remains to be established in noncomorbid
trauma survivors.

In the current study, we applied a recently developed
connectome-based predictive modeling (CPM) method (Shen
et al., 2017) to identify the neural networks that allow for accurate
prediction of individual PTSD symptom severity reflected
in CAPS-IV scores in a cohort of trauma survivors using

resting-state brain functional connectome features. Clinician-
Administered PTSD Scale (CAPS), a widely used structured
interview, is considered the gold standard in PTSD research
for measuring its severity, and is a rating scale with excellent
psychometric properties including strong discriminant and
convergent validity, good clinical utility, and sensitivity to
clinical alteration (Weathers et al., 2001). There are two
neural models when investigating the neuropathophysiology
underlying PTSD. One is the traditional neural circuit of
PTSD based on studies of fear processing, with critical
structures including medial prefrontal cortex, amygdala, and
hippocampus (Rauch et al., 2006). The other is the triple
network model including central executive, default mode, and
salience networks (Patel et al., 2012). Based on prior research,
we hypothesized that individual symptom severity would be
related to intrinsic functional connectivity across distributed
networks, e.g., traditional fear neural circuit or the triple
network model.

MATERIALS AND METHODS

Participants
This retrospective study was approved by the Medical Research
Ethics Committee of West China Hospital, Sichuan University,
and informed written consent was obtained from all participants
before the study. One-hundred and twenty-two survivors were
recruited between 10 and 15 months after the 2008 Sichuan
earthquake event (see Table 1). Inclusion criteria were as follows:
(i) physical experience of the earthquake; (ii) without any
physical injury; and (iii) personally witness serious injury, death,
and/or the collapse of buildings. Exclusion criteria included
history of any neurological or psychiatric disorder other than
PTSD, psychiatric comorbidities evaluated by the structured
clinical interview for DSM IV diagnosis (SCID), pregnancy,
history of drug or alcohol abuse, and recent medication that
might have an effect on brain function. Each participant was
evaluated by using the CAPS-IV as a continuous measure of
symptom severity (Blake et al., 1995). Of the 122 traumatized
earthquake survivors included, 64 fulfilled diagnostic criteria for
current PTSD at the time of fMRI examination. All participants
had received no prior treatment with psychiatric medications.
fMRI data from these participants have been reported previously
elsewhere. In 2014, Gong et al. (2014a) investigated the
relationship between resting-state fMRI data and PTSDChecklist
scores using a multivariate analytical method, whereas our
current work constructed a prediction model at the level of
individual patients using the CAPS-IV and a CPMmethod.

Data Acquisition
Resting-state fMRI is a technique for measuring spontaneous
blood oxygen level-dependent (BOLD) fluctuations that reflect
resting neurophysiological activity of the brain. The acquisition
of fMRI from survivors took place between 10 and 15 months
after the earthquake at the same day of clinical assessment. A
total of 200 image volumes sensitized to BOLD signal changes
were collected for each participant using a 3-T MRI system (GE
EXCITE, Milwaukee, WI, USA) equipped with an eight-channel
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TABLE 1 | Demographics and clinical characteristics of the subjects.

Characteristic Earthquake survivors (n = 122)

Age (years)b 43.0 ± 10.3 (20–67)a

Gender (male/female) 36/86
Years of educationb 7.3 ± 3.4 (0–16)a

Time since trauma (months)b 12.2 ± 2.2 (8–15)a

Clinician-administered PTSD scale 40.1 ± 22.3 (3–95)a

aData are presented as the mean ± SD (range of minimum–maximum). bAge, years of
education, and time since trauma were reported by participants at the time of magnetic
resonance scanning.

phased array head coil. The fMRI data were obtained with
the following scanning parameters: repetition time = 2,000 ms;
echo time = 30 ms; field of view = 240 × 240 mm2; voxel
size = 3.75 × 3.75 × 5 mm3; matrix size = 64 × 64;
flip angle = 90◦; slice thickness = 5 mm, no slice gap; and
30 axial slice per volume. For each participant, each functional
run resulted in a total scanning time of 400 s. Each subject
was instructed to lie quietly with their eyes closed during
the scanning.

Data Pre-processing
SPM8 software1 was used to perform the pre-processing of
fMRI image data. First, the original 10 time points were deleted
to establish magnetic tissue stabilization. Then, slice timing
correction was conducted to correct for intra-volume acquisition
delay. The images were further realigned for the correction
of head movement. To reduce the influences of head motion,
a scrubbing method was performed, which deleted volumes
with frame-wise displacement (FD) >0.5 mm. Images were
normalized using echo-planar imaging templates (voxel size:
3 × 3 × 3). Subsequently, linear trends in time series were
removed. Nuisance signal (including the Friston 24-parameter
head motion model, the white matter signal, the cerebrospinal
fluid signal, and the global signal) were regressed out. Finally,
functional data were linearly detrended and temporally bandpass
(0.01–0.1 Hz) filtered to eliminate effects of high-frequency noise
and low-frequency drift, and smoothed (Gaussian kernel with a
full-width at half-maximum of 4 mm). None of the participants
showed excessive head motion (defined as rotation >2◦,
translation >2 mm, or mean FD >0.15 mm) throughout the
course of scans.

Functional Connectivity
Using the GRETNA2 toolbox (Wang et al., 2015), the functional
brain network was constructed. The Shen brain atlas was applied
to parcellate the brain into 268 region of interest including the
cortex, subcortex, and cerebellum (Supplementary Table 1 and
Supplementary Figure 1) to define the network nodes (Shen
et al., 2013), as in previous CPM work (Rosenberg et al., 2016;
Beaty et al., 2018; Lake et al., 2019; Yip et al., 2019). This involved
computation of mean time courses for each of the 268 nodes
(i.e., average time course of voxels within the node) for use in
node-by-node pairwise Pearson’s correlations. The resultant r
coefficients were transformed using Fisher’s z-transformation to

1http://www.fil.ion.ucl.ac.uk/spm
2http://www.nitrc.org/projects/gretna/

create symmetric 268 × 268 connectivity matrices in which each
value of the matrix represents the connection strength between
all pairs of nodes.

Connectome-Based Predictive Modeling
CPM was conducted using previously validated and freely
available custom MATLAB scripts (Shen et al., 2017). Briefly,
CPM took brain connectivity data and behavioral measures (in
this case, functional brain connectivity matrices and CAPS-IV
scores, respectively) as input to create a linear predictive model
of the PTSD symptom severity using the connectivity matrices.
Spearman’s correlations with a statistical significance P-value
threshold of 0.05 were calculated between edge weights and
disease symptom measures across the training participants to
identify negative and positive predictive networks. According
to the suggestion of Shen et al. (2017), the Spearman’s
correlation rather than the Pearson’s correlation were calculated
as the CAPS-IV scores do not follow a normal distribution.
For the positive prediction network, edges were positively
associated with the disease symptom measures, and for the
negative prediction network, edges were negatively associated
with the disease symptom measures. Therefore, elements in
the negative and positive prediction network were defined by
associations with CAPS-IV scores instead of negative or positive
functional connectivity themselves. While both networks were
used for predicting the same variable, they were by definition
independent, because a single edge was either a negative or
a positive predictor. Individual summary values were then
calculated by summing the significant functional connectivity
strength in each network and were applied to construct
linear predictive models to estimate the relationships between
network strength with CAPS-IV scores. The resultant polynomial
coefficients (including slope and intercept) were then used to
predict symptom severity. In the current study, leave-one-out
cross-validation (LOOCV) analysis was employed. Briefly, the
‘‘left-out’’ participant’s predicted CAPS-IV score was obtained
by the predictive model trained on all other participants’ data
iteratively until all participants had a predicted score.

Spearman’s correlations between the predicted and actual
CAPS-IV scores were used to assess the model performance.
To address the problem of non-independence of analyses in the
leave-one-out folds, nonparametric permutation testing rather
than parametric testing was performed to evaluate statistical
significance. To obtain empirical null distributions for Spearman
correlation coefficients, the correspondence between CAPS-IV
scores and connectivity matrices were randomly shuffled
1,000 times and the CPM analysis was re-conducted using the
shuffled data. The p-values for leave-one-out predictions were
computed based on the null distributions as previous suggested
(Shen et al., 2017).

Contributing Nodes and Edges in the
Prediction of CAPS-IV Scores
To investigate the functional anatomy of the contributing
elements, the distribution of nodes and edges were summarized
in two methods. First, the 268 nodes were classified into
10 macroscale brain regions that were anatomically defined,
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including the prefrontal cortex (46 nodes), cerebellum
(41 nodes), temporal lobe (39 nodes), limbic cortex (36 nodes),
parietal lobe (27 nodes), occipital lobe (25 nodes), motor
cortex (21 nodes), subcortical structures (17 nodes), brainstem
(9 nodes), and insular cortex (7 nodes; Finn et al., 2015;
Rosenberg et al., 2016). Second, the 268 nodes were parcellated
into eight canonical networks previously defined using a
clustering algorithm (Finn et al., 2015), including medial frontal,
motor, subcortical-cerebellum, visual (I, II, and association),
frontoparietal, and default mode networks. The number of
connections between all pairs of macroscale brain regions or
canonical networks was then computed. Last, the number of
each node’s connections was used to evaluate their importance
(Rosenberg et al., 2016; Beaty et al., 2018). The functional
connectivity patterns of the top 10 nodes with the most
connections were determined.

Validation Analyses
The following procedures were performed to further evaluate
reproducibility of our results. First, a 1,000-iteration permutation
test was used to generate an empirical null distribution of the
test statistic. To determine whether our main results depended
on the choice of different iterations, we reran the CPM analysis
using a 5,000-iteration permutation test. Second, we constructed
functional connectomes using another parcellation scheme, the
automated anatomical labeling (AAL) atlas (Tzourio-Mazoyer
et al., 2002) and repeated the entire analyses. Third, we also
performed CAPS-IV score prediction using LIBSVM (Chang
and Lin, 2011) to implement support vector machine regression
(SVR) with a linear kernel. Positive and negative edges were
selected the same way as in CPM, and both positive and negative
edges were input into SVR as features. The performance of
the SVR algorithm was evaluated using correlation between the
observed and predicted values.

Support Vector Machine (SVM) Analysis
Exploratory SVM analyses were applied to the functional
connectivity matrices to determine whether functional networks
can detect PTSD patients and trauma-exposed non-PTSD
(TENP) controls at the individual level. For full details of SVM
evaluation, please refer to our recent study (Lei et al., 2020).

RESULTS

Preliminary Analyses
Subjects differed widely in respect to their degree of psychological
distress reflected in CAPS-IV scores (Figure 1A). There were no
statistically significant correlations between CAPS-IV scores and
age (r = 0.072, P = 0.430) as well as the mean FD head motion
(r = −0.076, P = 0.407). CAPS-IV scores did not differ between
genders (P = 0.881).

Predicting CAPS-IV
The relations between connection strength of the
positive/negative network and CAPS-IV scores in individual
trauma survivors were examined by implementing a LOOCV
approach. Model performance was evaluated using Spearman’s

rank correlation on predicted and actual scores, and statistical
significance was determined using a 1,000-iteration permutation
test, repeating the prediction analysis, and determining the
fraction of correlations between predicted and actual scores
that were as extreme as the original data. Results indicated
that resting-state brain functional connectivity in the positive
network was related to individuals’ CAPS-IV scores (correlation
between actual and predicted scores: r = 0.30, P = 0.001,
permutation test, Figures 1B,C). However, resting-state
functional connectivity in the negative network could not
reliably predict CAPS-IV scores (correlation between actual and
predicted scores: r = 0.17, P = 0.07).

Functional Anatomy
Across all folds of LOOCV, 1,006 edges (2.81% of the 35,778 total
edges) in the positive prediction network appeared in every
iteration of the LOOCV and were defined as the contributing
network (Figure 2A). CPM analysis revealed the functional
anatomy of networks in which activity was related to CAPS-IV
scores. We applied the parcellation that grouped the 268 nodes
into 10 macroscale brain regions, which were anatomically
defined, to the positive networks to identify connections between
macroscale brain regions involved in prediction. Connections
between occipital lobe and cerebellum and connections of the
limbic lobe with cerebellum and occipital lobe were primary
predictors of CAPS-IV score (Figure 2B).

When dividing the 268 nodes into the eight canonical
networks previously used in Finn et al. (2015), connectivity based
on the number of connections within and between canonical
networks for the positive networks is shown in Figure 2C.
It was revealed that the positive network included relatively
more connections of the subcortical-cerebellum network with
visual I, visual II, visual association, and motor networks, and
connections within the subcortical-cerebellum network were
highly involved in prediction (Figure 2C).

Lastly, the top 10 nodes with the most connections were
located in the bilateral visual cortex [including bilateral visual
association cortex (18) and left visual cortex BA 19] and
cerebellum (lobules VI–VII), indicating the critical role of these
nodes in predicating the severity of PTSD-related symptoms
as reflected in CAPS-IV scores (Figure 3 and Table 2). Note
that single-subject levels of CAPS-IV scores were primarily
represented by functional connectivity of these regions to other
brain regions in addition to their intrinsic connectivity.

Validation With Different Schemes
Using different validation schemes, the performance of
prediction was re-estimated. The resultant correlation
coefficients between actual and predicted CAPS-IV scores
remained significant when using 5,000 times permutation
test, thus validating the main findings. However, there was
no significant prediction in the positive (correlation between
actual and predicted scores: r = 0.16, P = 0.10, permutation
tests) or negative network model (correlation between actual
and predicted scores: r = 0.16, P = 0.11, permutation tests) when
using the AAL atlas. The application of SVR to the positive
networks (correlation between actual and predicted scores:
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FIGURE 1 | Clinician Administered Post-traumatic Stress Disorder Scale (CAPS-IV) scores and performance of the prediction model. (A) CAPS-IV scores across all
participants. (B) Correlation between actual and predicted CAPS-IV scores. (C) Permutation distribution of the correlation coefficient (r) for the prediction analysis.
CAPS, clinical-administered post-traumatic stress disorder (PTSD) score.

r = 0.08, P = 0.64, permutation tests) or negative networks
(correlation between actual and predicted scores: r = 0.10,
P = 0.56, permutation tests) did not allow quantitative prediction
of CAPS-IV scores with statistically significant accuracy.

Single-Subject Classification of PTSD
Patients and TENP Controls Using SVM
Using functional connectivity matrices, the mean balanced
accuracy of classification of PTSD vs. TENP was 64.5%, with
sensitivity 67.1% and specificity 62.0% (P = 0.004). To identify
brain regions providing greatest contribution to single-subject
classification, themean absolute value of the weights of themodel
across the different folds of the cross-validation was calculated.
The 10 brain regions with the highest mean values are shown in
Supplementary Figure 2. It can be seen that most of the brain
regions were cerebellum and visual association regions.

DISCUSSION

We applied a functional brain network analysis in a recently
developed machine-learning approach to use fMRI features
to predict clinical severity of PTSD symptoms in a group
who had experienced acute major life trauma. We have
demonstrated that functional brain connectivity allowed
for prediction of single-subject PTSD symptom severity

independently of confounding variables (i.e., head motion,
gender, age, prior treatment with psychiatric medications,
and psychiatric comorbidity). Inter-individual differences
in CAPS-IV scores were mainly accounted for by the
functional brain connectivity between subcortical-cerebellum,
visual, limbic, and motor systems. These observations
highlight the importance of brain regions outside the
classic traditional fear neural circuit and the triple network
model as being important in determining the severity
of PTSD.

Our prior study showed that the utilization of a multivariate
machine-learning approach known as SVM to structural MRI
data provided for the discrimination of traumatized survivors
who do and do not fulfil the criteria for PTSD (Gong
et al., 2014b). However, this study focused on a binary
classification between non-PTSD controls and PTSD patients
and neglected the severity of PTSD symptoms as a dimensional
illness feature of important clinical significance. A data-driven,
whole-brain dimensional analysis centered on single-subject
variations instead of binary case–non-case classification may
be more helpful for obtaining features related to illness
severity (Lake et al., 2019). In addition, we previously used
a multivariate analytical approach known as relevance vector
regression to the whole-brain fMRI data to predict the
clinical scores (Gong et al., 2014a). This current research
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FIGURE 2 | Functional connections predicting CAPS-IV scores. (A) Positive (red) networks selected by the prediction model. For the positive network, increased
edge weights (i.e., increased functional connectivity) predict higher CAPS-IV scores. (B) Connections plotted as number of edges within and between each pair of
macroscale regions. (C) Connections plotted as number of edges within and between each pair of canonical networks. Cells represent the total number of edges
connecting nodes within (and between) each macroscale region or canonical network, with darker colors indicating a greater number of edges. PFC, prefrontal; Mot,
motor; Ins, insula; Par, parietal; Tem, temporal; Occ, occipital; Lim, limbic; Cer, cerebellum; Sub, subcortical; Bsm, brainstem; MF, medial frontal network; FP,
frontoparietal network; DM, default mode network; SubC, subcortical-cerebellum network; MT, motor network; VI, visual I network; VII, visual II network; VA, visual
association network.

FIGURE 3 | Connectivity patterns of the top 10 nodes with the most connections. L, left; R, right.
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TABLE 2 | Ten nodes with the most connections selected by the prediction
model.

Node MNI coordinate (mm) Lobe Degree

L Visual Assoc (18) −36 −84.2 −3.9 Occipital 37
L Visual BA 19 −31.6 −87.2 12.5 Occipital 33
R Visual Assoc (18) 7.8 −88.6 11.9 Occipital 33
R Visual Assoc (18) 23.7 −96 6.5 Occipital 32
R Cerebellum 7.1 −53.7 −34.4 Cerebellum 31
L Visual Assoc (18) −22.3 −96.6 −10.1 Occipital 30
L Cerebellum −8 −68.4 −19.9 Cerebellum 30
R Visual Assoc (18) 17.9 −83.4 −11.3 Occipital 27
L Visual Assoc (18) −14.7 −84 −13.1 Occipital 27
L Visual Assoc (18) −10.8 −98.1 7.6 Occipital 26

Abbreviation: Assoc, association; L, left; R, right.

extended these earlier studies by demonstrating that the
symptom severity (CAPS-IV measures) could be significantly
and quantitatively predicted from a subject-level’s unique
resting-state functional brain connectivity by using the CPM
approach. CPM has two appealing aspects compared to the
multivariate machine-learning approaches (Shen et al., 2017).
First, from a practicable point of view, it is simpler to
perform CPM, which requires less skill in machine learning
and makes it easier to the general neuropsychiatric imaging
investigators for conducting replicable data-driven analyses of
the relationships between individual brain imaging data and their
phenotypic measures. Second, CPM provides straightforward
and clearly interpretable one-to-onemapping back to the original
feature space in order that the underlying brain connectivity
contributing to the predictive model can be easily determined
and visualized.

Our findings reveal that intrinsic functional connectivity
across multiple neural systems contributes to predicting
individual PTSD clinical measures. Specifically, individual
CAPS-IV score was primarily accounted for by intrinsic
functional connectivity between bilateral visual cortex and
cerebellum. Previous studies with PTSD patients have shown
hyperactive function of visual cortex compared with controls,
which was positively related to PTSD symptom severity (Zhu
et al., 2014, 2015; Neumeister et al., 2017). Hyperactivity of
visual cortex may be related to disrupted visual imagery in PTSD
and underlie the visual re-experiencing of trauma events (Zhu
et al., 2014). The cerebellum, another region that integrates
sensory information for sensorimotor control, is recognized
increasingly to be implicated in cognitive and emotional
processing (Schmahmann and Caplan, 2006). Animal studies
have established a role for the cerebellum in fear-conditioning
consolidation (Sacchetti et al., 2002). Following more and more
neuroimaging research, interest in the cerebellum has increased
in PTSD. Hyperactivity of the cerebellum in PTSD was observed,
including increased resting-state activity (Bing et al., 2013; Ke
et al., 2016), increased blood flow during rest (Bonne et al.,
2003), and in response to threat-related stimuli in PTSD (Osuch
et al., 2001; Pantazatos et al., 2012). During earthquake imagery,
the PTSD group demonstrated activation in the bilateral visual
cortex and cerebellum while the control group did not (Yang
et al., 2004). Similarly, positive correlations were found between
resting-state cerebral perfusion in the cerebellum and visual

association cortices and PTSD symptom severity in trauma
survivors, in keeping with the between-group analysis (Bonne
et al., 2003). In addition, a recent study showed that resting-
state functional connectivity of the visual association cortices
with cerebellum was increased and correlated positively with
PTSD symptomatology (Rabellino et al., 2018). Altogether, the
alterations in visual cortex and cerebellum might play a critical
role in ongoing visual re-experiencing of trauma events and
abnormal emotional processing in PTSD.

We further demonstrated that connections of the limbic lobe
with cerebellum and occipital lobe were primary predictors of
individual CAPS-IV score. The traditional view of PTSD has
been that it is a disorder specific to the fronto-limbic fear
circuit. Different from this traditional view, regions outside the
fronto-limbic circuit were primarily predictive for the severity
of PTSD symptoms in the current study. Our findings were
consistent with the subset of studies that found functional and
structural alterations between limbic and occipital/cerebellum
regions (Chen et al., 2012; Leutgeb et al., 2016; McGlade et al.,
2020). For instance, Leutgeb et al. (2016) found altered functional
connectivity between the limbic system and cerebellum in
violent offenders, suggesting that this circuit may contribute
to behavioral perturbations linked to PTSD. Similarly, using
voxel-based morphometry method, Chen et al. (2012) found
that the gray matter volume in the limbic and occipital lobe
of trauma survivors were correlated with their CAPS scores.
These studies provided evidence for comparable dysfunction
in the corticolimbic circuitry, specifically limbic and occipital
and cerebellum connectivity in PTSD. Our analytic approach
focusing on current symptom severity indicates that systems
outside the fronto-limbic fear circuit are crucial to predict
the current symptomatology following exposure to serious
life trauma.

Prior studies have suggested that symptomatology of PTSD
is related to dysfunction of a triple network model that
includes the central executive, default mode, and salience
network (Patel et al., 2012; Lei et al., 2015; Kennis et al.,
2016; Niu et al., 2018). We therefore hypothesized that
alterations in this network model would be related to PTSD
symptom severity. Contrary to this hypothesis, using the CPM
approach, we found that brain regions outside the triple network
(e.g., visual cortex and cerebellum) primarily contributed to
an accurate prediction of symptom severity. Additionally,
connections between the subcortical-cerebellum and motor
network and within subcortical-cerebellum were also revealed
as key contributions in the prediction of CAPS-IV scores.
With respect to subcortical-cerebellum and motor network
connectivity, a diffusion tensor imaging study has reported
direct connections between the subcortical (e.g., amygdala)
and motor cortices (Grèzes et al., 2014), with a resting-
state fMRI study providing evidence of a distinct amygdala-
sensorimotor functional network (Thome et al., 2017), which
might be related to emotional modulation of subjective sensory
experiences as they are used in action planning. Disrupted
resting-state functional connectivity between subcortical and
motor regions in PTSDmight reflect maladaptive somatosensory
processing (Thome et al., 2017; Belleau et al., 2020). While
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large-scale, spatially distributed triple network alterations are
relatively well established in patients diagnosed with PTSD,
our findings extend these studies by adding to a growing
evidence base implicating visual, cerebellar, subcortical, and
motor involvement in pathophysiological processes that are
associated with symptom severity in PTSD. In particular, the
cerebellum has, until recently, been underemphasized in PTSD
research and in studies of other psychiatric disorders (Baldaçara
et al., 2008). It is noteworthy that with the CPM approach,
which is based on correlational associations of MRI features
and clinical symptoms, we cannot draw a conclusion that PTSD
symptoms were ‘‘caused’’ by one or a few networks. As with
other studies (Lake et al., 2019), investigating illness-related
biology as a continuous spectrum rather than in terms of
categorical definition based on meeting and not meeting criteria
for diagnosis can add an important approach for studying brain-
behavior associations related to current symptom severity vs.
those associated with presence of illness.

Notably, when using functional connectivity to discriminate
PTSD patients and TENP controls, the accuracy of classification
was 64.5%. Our recent study of PTSD found that large-scale
brain networks allowed single-subject classification of patients
and healthy controls with higher accuracy as might be expected
(average: 89%; Zhu et al., 2020). Furthermore, most of the
top 10 brain regions providing the greatest contribution to
the classification of PTSD and TENP participants overlapped
with the key regions in the prediction of CAPS-IV symptom
severity scores: among them were the abovementioned visual
and cerebellar regions. Therefore, the current study provides
an important step toward data-driven diagnostic assessment in
PTSD. Although machine learning is not yet available in day-
to-day clinical practice, in light of the urgent clinical need for
objective biomarkers in the early stage of the disease, it has
the potential to inform the development of diagnostic imaging-
based markers.

Finally, using a different parcellation strategy (AAL atlas)
and predictive model (SVR), we did not detect a pattern of
regional connectivity that showed a significant association with
clinical scores. Several issuesmight contribute to the discrepancy.
First, the 268-node Shen functional atlas comprises nodes with
more coherent time series and specific functional specificity
than those defined by the AAL atlas, which might account for
the superior performance of the 268-node parcellation because
anatomical boundaries do not always match functional ones
(Shen et al., 2013). Additionally, when the number of a priori
selected regions is very small, the risk of no edges or very few
edges being selected within some iterations of cross-validation
grows remarkably higher. This could lead to unstable models
with poor predictive ability. Second, in the CPM model, all
positive/negative features were averaged to create summary
statistics, which reduced the variance of the summary statistics
compared to the original set of features used in the SVR model
(Yip et al., 2019). An alternative possibility is that there is
a complex relationship between clinical scores and functional
connectivity beyond a simple linear correlation in the SVR
model. This might be addressed in future studies with larger
sample sizes.

Several limitations of this study need to be acknowledged.
First, although there is growing evidence that brain functional
connectivity may act as a reliable and objective imaging marker
of individuals’ phenotypic measures, CPM has not yet been
widely used in clinical research. Also, the extent to which
brain functional connectivity reflects transient states vs. stable
traits is still unknown. To address this issue and determine
the observed pattern as a stable feature of symptom severity,
future longitudinal studies will be required. Second, participants
included in the current study were following a single type of
trauma, which increased the homogeneity of the study sample.
Since previous studies have suggested that different types of
trauma may have different cerebral deficits (Meng et al., 2014),
this leaves open the question of whether the findings observed
in our study can be generalized to PTSD caused by other
types of trauma. Third, since brain connectivity can be acquired
from different MRI modalities (i.e., T1-weighted and diffusion
tensor imaging), future work might examine structural change
in relation to functional patterns. Fourth, the lack of data
from an independent sample precludes us from conducting
an external validation analysis, and the generalization of the
current findings requires further validation using an independent
sample. Fifth, some confounding factors, e.g., childhood/early
stress, cannot be excluded in the analysis. Future studies may
address these issues.

In summary, this study used a recently developed data-driven
method to provide evidence that the resting-state brain
functional connectivity can reliably and effectively predict
individual PTSD clinical scores of trauma-exposed survivors. The
significant contribution of visual cortex, cerebellum, limbic, and
motor region connectivity to individual PTSD symptom severity
indicates that more brain features beyond the triple network
model of PTSD need to be considered to comprehensively
understand the illness, and the traditional view that PTSD is
a psychiatric disorder specific to the fronto-limbic fear circuit
may require reconsideration. The current data-driven approach
provides a novel tool to characterize the neural underpinning of
PTSD severity and might have potential applications to inform
the evaluation of subjects in a clinical setting.
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Placebo Effects in the Context of
Religious Beliefs and Practices: A
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Anne Schienle*, Andreas Gremsl and Albert Wabnegger
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Background: Placebos (inert substances or procedures) can positively influence a
person’s psychological and physical well-being, which is accompanied by specific
changes in brain activity. There are many different types of placebos with different effects
on health-related variables. This study investigated placebo effects in the context of
religious beliefs and practices. The participants received an inert substance (tap water)
along with the verbal suggestion that the water would come from the sanctuary in
Lourdes (a major Catholic pilgrimage site with reports of miracle cures). We investigated
changes in resting-state functional connectivity (rsFC) in three brain networks (default-
mode, salience, cognitive control) associated with the drinking of the placebo water.

Methods: A total of 37 females with the belief that water from the sanctuary in Lourdes
has positive effects on their spiritual, emotional, and physical well-being participated in
this placebo study with two sessions. The participants drank tap water that was labeled
“Lourdes water” (placebo) before a 15-min resting-state scan in one session. In the
other (control) session, they received tap water labeled as tap water. The participants
rated their affective state (valence, arousal) during the session and were interviewed
concerning specific thoughts, feelings, and bodily sensations directly after each of the
two sessions.

Results: The placebo reduced rsFC in the frontoparietal cognitive control network
and increased rsFC in the salience network (insular-cerebellar connectivity). During the
session, the participants rated their affective state as very pleasant and calm. The ratings
did not differ between the two conditions. Immediately after the session, the participants
reported increased intensity of pleasant bodily sensations (e.g., feelings of warmth,
tingling) and feelings (e.g., gratefulness) for the “Lourdes water” condition.

Conclusions: The present findings provide the first evidence that placebos in the context
of religious beliefs and practices can change the experience of emotional salience
and cognitive control which is accompanied by connectivity changes in the associated
brain networks.

Keywords: resting-state functional connectivity, religious belief, fronto-parietal cognitive control network,
salience network, placebo
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INTRODUCTION

A placebo is defined as ‘‘a substance or procedure . . . that
is objectively without specific activity for the condition being
treated’’ (Moerman and Jonas, 2002). The most common
paradigm for assessing placebo effects (‘‘placebo analgesia’’)
uses an inert intervention (e.g., a capsule filled with sugar,
sham acupuncture, sham surgery) which is combined with
the verbal suggestion of a pain-reducing treatment. Several
studies have demonstrated that this approach leads to a
reduction in experienced pain as well as altered brain activity
in pain-sensitive regions and prefrontal cognitive control
areas (for a summary see Wager and Atlas, 2015). Placebos
have also been used in other areas. Placebo treatment
can reduce the intensity of negative affective states (e.g.,
anxiety, disgust), which is accompanied by changes in brain
activity in regions involved in the encoding of affective
salience (e.g., insula, anterior cingulate cortex; Petrovic et al.,
2005; Schienle et al., 2014). Moreover, placebos have been
successfully administered to improve physical well-being and
sports performance (Beedie and Foad, 2009), emotional and
social well-being (e.g., interpersonal trust; Yan et al., 2018). Thus,
research shows that there is not one single placebo effect, but
many (Benedetti, 2014).

Another very important area of placebo application involves
the treatment of illness. Placebo-induced symptom reduction has
been reported for several diseases and mental disorders, such
as Parkinson’s disease, depression, attention-deficit hyperactivity
disorder, and binge-eating disorder (De la Fuente-Fernández
and Stoessl, 2002; Weimer et al., 2015). Illness typically
involves psychological aspects; patients not only sense somatic
signs of illness, but they interpret these signs. Interpretations,
such as cognitions of danger or loss (e.g., the threat of
dying, loss of health) produce anxiety or depressed mood.
A placebo counteracts these negative interpretations (Lundh,
1987). Patients who believe that a placebo is going to improve
their health condition will experience reduced stress and anxiety;
and these processes are accompanied by specific neurobiological
processes (e.g., altered activation in cognitive control areas of the
brain (Benedetti, 2014).

The present investigation focused on a specific placebo in
the context of religious beliefs and practices. The participants
received an inert substance (tap water), which was administered
with the verbal suggestion that it is water from the sanctuary
in Lourdes (a major Catholic pilgrimage site in France). Many
Roman Catholics believe that Lourdes water has supernatural
healing powers and the Medical Bureau of Lourdes has been
recorded more than 7,000 reports of cured diseases1 (December,
9th, 2020).

Geochemical analyses of the water from different springs in
the Lourdes area have shown that the water contains little total
dissolved solids, has a slightly alkaline pH level (7.50–7.68), and
oxidizing conditions, all of which are typical characteristics of a
hydrogeological system that developed in carbonate-dominated
bedrock (Dobrzyński and Rossi, 2017). There are no ‘‘special’’

1https://www.lourdes-france.org/en/miraculous-healings/retrieved

ingredients in the water. Therefore, it does not seem to be the
water in itself that has a positive effect, but the belief in it.

Placebo effects require that the treated person believes that
a specific treatment or procedure will work. It has been shown
that the expectancy and the desire for improvement are positively
correlated with the magnitude of the placebo effect (e.g., Enck
et al., 2008). Thus, what we believe we will experience from
a treatment has a substantial impact on what we experience.
Moreover, spirituality is associated with placebo responsivity.
Hyland et al. (2006) showed that spirituality predicted perceived
improvement of individual problems, such as unexplained
fears and worries, after placebo (flower essence) treatment
independently of expectancy.

In the present study, we focused on resting-state functional
connectivity (rsFC), which is widely used in neuroscience
research to investigate intrinsic neural circuits and their
functional states (for a summary see Uddin et al., 2019). The
term ‘‘resting state’’ refers to a state in which the individual is
awake (lying quietly with eyes closed) and does not perform a
specific experimental task (Raichle et al., 2001). Several large-
scale functional brain networks have been identified during
resting states, such as the default-mode network (involved in
self-referential processing, mentalizing), the salience network
(involved in detecting/integrating interoceptive, autonomic, and
emotional information), and the frontoparietal cognitive control
network (involved in the deliberate selection of thoughts,
emotions, and behaviors; for a description of the networks
see Marek and Dosenbach, 2018; Uddin et al., 2019). For
example, it has been shown that religiously inspired techniques,
such as mindfulness meditation can increase rsFC in the
default-mode network between the posterior cingulate cortex
and the dorsolateral prefrontal cortex (Creswell et al., 2016).

To the best of our knowledge, this is the first study to explore
the effects of (Christian) religious belief on rsFC in different
functional networks (cognitive control, salience, default-mode).
We focused on these networks because previous neuroimaging
research has indicated that placebo responding as well as
religious/spiritual experiences are linked to the structure and
function of neural components of these networks (e.g., prefrontal
cortex, insula, superior/posterior parietal regions; e.g., Wiech
et al., 2008; Schjoedt et al., 2009; McClintock et al., 2019;
Schienle et al., 2019). The mentioned brain areas are involved
in emotion regulation, attention control, and self-awareness
(Tang et al., 2015). For example, in the study by Wiech
et al. (2008), practicing Catholics and non-religious participants
received noxious stimulation while they were either presented
with an image of the Virgin Mary or a portrait without
religious connotation. The religious group perceived less pain
while looking at the religious image, which was associated with
increased activation in the ventrolateral prefrontal cortex. This
area plays a central role in pain modulation via reappraisal.

In the present study, females who believed in the miracles of
Lourdes drank tap water directly before two resting-state scans
separated by approximately 1 week. The water was labeled ‘‘water
from the sanctuary of Lourdes’’ in one condition (placebo), and
‘‘tap water’’ in another condition (control). It was tested, whether
the placebo would change reported well-being (emotional,
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cognitive, bodily) and rsFC in brain networks (cognitive control,
salience, default-mode) compared to the control condition.

MATERIALS AND METHODS

Sample
A total of 37 females (mean age: M = 30.59 years, SD = 13.8)
participated in this study. To reduce sex-related variance in
resting-state functional connectivity (e.g., Weis et al., 2020), and
religious well-being (Unterrainer et al., 2010) the sample was
restricted to females. They had been selected based on their
answers in an internet-based survey that contained the following
questions: (a) Do you think that water from the sanctuary in
Lourdes can have positive (spiritual, emotional, somatic) effects?;
(b)Would you use Lourdes water if you had a serious illness?; and
(c) Do you believe in miracles in a religious/spiritual sense? The
questions were answered on Likert scales ranging from 0 = ‘‘no’’
to 6 = ‘‘definitely.’’ The inclusion criterion for the study was an
average ‘‘Lourdes score’’ >3 (M = 3.76, SD = 1.1). The Lourdes
score had sufficient reliability (McDonald’s omega = 0.75).

All of the participants had a highschool diploma; 76%
were University students and the remaining participants were
white-collar workers. The religious affiliation of the majority of
participants was Roman–Catholic (73%), while others stated to
be Protestants (6%), or not religiously affiliated (21%). None
of the participants reported a current serious somatic illness
(e.g., cancer, neurological disease) or mental disorder.

Stimuli and Design
The study had a repeated-measures design. The participants were
scanned twice and received a glass of tap water (60 ml) labeled as
water from the sanctuary in Lourdes (placebo) in one session and
tap water labeled as tap water in the other session (control). The
sequence of the sessions was counterbalanced.

Procedure
We invited the participants to two functional magnetic resonance
imaging (fMRI) sessions, which were scheduled 1 week apart
from each other. In the placebo condition, the participants first
obtained written information (one sheet) describing the religious
visions of Saint Bernadette of Lourdes. In the control condition,
the sheet provided basic knowledge about fMRI. The information
in the two conditions was also summarized as a poster on the
wall of the room, where the instruction took place. Subsequently
(directly before the MRI recording), the water was served. The
water was poured out of a little bottle into the glass. The label of
the bottle either stated ‘‘Sanctuary of Lourdes’’ or ‘‘tap water.’’

The fMRI session started with the resting-state measurement.
The experimenter who conducted the scanning was not aware of
the condition. The participants were instructed ‘‘Close your eyes
and let your thoughts wander freely.’’ Directly after the 15-min
resting-state scan, the participants rated their experience on
two basic affective dimensions, valence, and arousal, on 9-point
Likert scales (9 = very pleasant, aroused). Afterward, a structural
scan was obtained (duration: 4.5 min). Following the MRI
session, the participants were asked by the experimenter to report
specific thoughts, feelings, and somatic sensations experienced

during the MRI recording. Each reported symptom was rated on
a 9-point Likert scale according to experienced intensity (9 = very
intense). The participants also rated the ‘‘overall effects of the
water’’ on a 9-point scale (9 = very strong) and were invited to
give open comments.

Finally, the participants completed the scale ‘‘general
religiosity’’ of the multidimensional instrument for the
measurement of religious-spiritual well-being (MI-RSWB 48 by
Unterrainer et al., 2010). The scale contains eight statements
(e.g., My faith gives me a feeling of security; Cronbach’s
alpha = 0.94), which are answered on a 6-point Likert scale
ranging from 1 = ‘‘strongly disagree’’ to 6 = ‘‘strongly agree.’’

All participants received detailed instructions before data
collection. The study protocol was approved by the ethics
committee of the University (GZ: 39/19/63 ex 2018/19).
Following their study involvement, all participants were fully
debriefed and received written information about the aim of the
study, the procedure (placebo approach), and the main findings
of the experiment. We also offered the option of personal
communication with the experimenter.

MRI Recording and Analysis
The MRI session was conducted with a 3T scanner (Skyra,
Siemens, Erlangen, Germany) with a 32-channel head coil. In
both sessions (‘‘Lourdes water’’, Tap water) structural images
were recorded using a T1-weighted MPRAGE sequence with
following settings: TR = 1.680 s; TE = 0.00188 s; acquisition
matrix = 256; flip angle = 8◦; 192 transverse slices; FoV = 224mm;
slice thickness = 0.88 mm; fat suppression: water excit. fast;
acquisition time = 4.29 s). Functional images were acquired
using a CMRR-multiband2 with following settings: sequence
type = epfid, acceleration factor = 3; TR = 1.4 s; TE = 0.0304 s;
flip angle = 72 degrees; slice thickness = 3 mm; total readout
time = 0.046 s; spacing between slices: 3 mm; acquisition
matrix = 80; phase encoding direction: anterior-posterior;
number of volumes = 650).

Resting-state analyses were carried out by using the CONN
toolbox (version 18.b3, RRID:SCR_009550; Whitfield-Gabrieli
and Nieto-Castanon, 2012) and SPM124 (version 7487)
implemented in Matlab (2017b). Preprocessing followed the
default pipeline suggested by the CONN toolbox (realignment,
slice-timing, normalization, and spatial smoothing with an 8 mm
Gaussian kernel to ameliorate individual anatomical differences).
The final voxel size was 3 mm isotropic. The subsequent
component-based noise-reduction approach (CompCor)
included 15 dimensions of white matter and cerebrospinal
fluid, as well as 12 realignment parameters (including 1st-order
derivatives). Scrubbing controlled for additional motion-related
variance. Finally, a bandpass filter (0.0–10.1 Hz) was applied.

Statistical Analysis
Self-report
We used paired t-tests to compare the effects of Condition
(PLACEBO: ‘‘Lourdes water’’ vs. CONTROL: Tap water) on the

2https://www.cmrr.umn.edu/multiband/
3www.nitrc.org/projects/conn
4https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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ratings reported in the scanner (arousal, pleasure) and outside
of the scanner (intensity of experienced emotions, thoughts,
bodily sensations, perceived effectiveness of the treatment).
Additionally, we computed Pearson correlations between
questionnaire scores (general religiosity, the perceived overall
effect of the ‘‘Lourdes water’’). We used the Bonferroni-Holm
correction for multiple comparisons (Holm, 1979).

fMRI Data
We computed weighted GLM bivariate region of interest (ROI)
correlations between 29 network ROIs provided by the CONN
toolbox. The labeling of each ROI can be found in the
supplementary material. The ROIs are based on the analysis of
the human connectome project (HCP) dataset with 497 subjects.
In the second-level analysis step, we investigated the contrast
PLACEBO—CONTROL. Age was introduced as a covariate
because of the substantial age range (18–58 years). Moreover,
we computed exploratory correlation analyses between resting-
state connectivity and difference scores of self-reports (e.g., the
intensity of bodily sensations in the placebo condition minus
bodily sensations in the control condition). We used false-
discovery rate (FDR) seed-level correction provided by the
CONN-toolbox, that corrects acrossmultiple target areas. Results
were considered statistically significant if p(FDR) < 0.05.

RESULTS

Self-reports
Ratings in the Scanner
The conditions (PLACEBO: ‘‘Lourdes water’’ vs. CONTROL:
Tap water) did not differ concerning reported valence and
arousal (see Table 1).The participants experienced their affective
state as very pleasant (M = 6.56, SD = 1.36) and calm (M = 2.63,
SD = 1.45) across both conditions.

Ratings Outside of the Scanner
The participants rated the water as more effective in the placebo
condition than in the control condition (p = 0.001). The
perceived intensity of bodily sensations and feelings was higher
after the application of ‘‘Lourdes water’’ compared to tap water
labeled as such (ps < 0.015). The intensity of thoughts did not
differ between the conditions (Table 1). The reported bodily
sensations involved skin sensations (tingling), feeling of warmth,
and ‘‘bodily relaxation’’ (mentioned by n = 25 participants;
68%). Thoughts mainly involved other people (friends, partners),

daily duties, and past experiences (e.g., movies, parties). Specific
emotions that were reported included happiness, satisfaction,
gratefulness, anxiety, and nervousness. Negative emotions were
predominantly reported in the control condition (CONTROL vs.
PLACEBO; nervousness: 8 vs.1; anxiety: 5 vs. 0).

Open Comments
Of the participants, 32% (n = 12) reported a specific taste of
the ‘‘Lourdes water’’ (e.g., ‘‘tastes like spring water’’, ‘‘tastes
fresher than tap water’’). Twelve participants stated that they
experienced a different time perception in the ‘‘Lourdes water’’
condition compared to the tap water condition (‘‘Time went
by faster’’). One participant reported a considerable symptom
reduction concerning her chronic obstructive pulmonary
disease after the ‘‘Lourdes water’’ condition (reduced breathing
problems). Nine participants (24%) reported a religious
experience during the ‘‘Lourdes water’’ condition, such as mental
images of Jesus at the cross, the grotto of Lourdes, or Saint
Bernadette.

Exploratory Correlation Analyses
The mean score on the general religiosity scale (MI-RSWB 48 by
Unterrainer et al., 2010) was M = 3.65 (SD = 1.40). This score
was positively correlated with the ‘‘overall effect’’ of the ‘‘Lourdes
water’’ (r = 0.524, p = 0.001). Additionally, the ‘‘Lourdes score’’
(belief in the healing power of Lourdes water) was positively
correlated with ‘‘general religiosity’’ (r = 0.496, p = 0.002), the
intensity of reported feelings in the ‘‘Lourdes water’’ condition
(r = 0.425, p = 0.009), and with the estimated ‘‘overall effect’’ of
the ‘‘Lourdes water’’ (r = 0.354, p = 0.031).

Resting-State Functional Connectivity
The findings of the rsFC analysis are displayed in Table 2
and Figure 1. The placebo condition (compared to the control
condition) was associated with reduced rsFC between the
posterior parietal cortex (PPC) and the lateral prefrontal
cortex (LPFC) as well as the inferior frontal gyrus (IFG).
Moreover, reduced rsFC was observed between the cerebellum
and the LPFC.

Increased rsFC during the ‘‘Lourdes water’’ condition
(compared to control) characterized the anterior insula and
the cerebellum.

Exploratory Analyses
To follow up on the finding that ‘‘Lourdes water’’ increased
the intensity of pleasant bodily sensations and feelings, we

TABLE 1 | Self-reports for the conditions with “Lourdes water” suggestion vs. “tap water” suggestion.

PLACEBO: “Lourdes water” CONTROL: “tap water” T36 (p) Cohen’s d
M (SD) [95% BCa CI] M (SD) [95% BCa CI]

Inside-scanner ratings (1..9)

Pleasantness 6.81 (1.57) [6.24–7.32] 6.31 (1.86) [5.62–6.96] 1.42 (0.165) 0.23
Arousal 2.54 (1.71) [2.06–3.11] 2.72 (1.87) [2.19–3.28] 0.51 (0.617) 0.08

Outside-scanner ratings (intensity 1..9)

Thoughts 5.09 (2.11) [4.29–5.76] 4.89 (1.97) [4.26–5.57] 0.53 (0.599) 0.09
Feelings 6.15 (1.96) [5.28–6.76] 4.99 (2.16) [4.17–5.92] 2.90 (0.006) 0.48
Bodily sensations 4.47 (2.19) [3.59–5.27] 3.30 (1.58) [2.37–3.84] 2.58 (0.014) 0.42
Estimated overall effect of the water 4.35 (2.38) [3.62–5.09] 1.89 (1.33) [1.46–2.44] 6.60 (0.001) 1.09
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TABLE 2 | Results of the resting-state functional connectivity analysis.

ROI (seed) ROI t p(FDR)

CONTROL (“Tap water”)–PLACEBO (“Lourdes water”)

Posterior parietal cortex (l) Inferior frontal gyrus (l) −4.28 0.004
Posterior parietal cortex (l) Lateral prefrontal cortex (r) −3.50 0.018
Posterior parietal cortex (r) Inferior frontal gyrus (l) −3.27 0.049
Posterior parietal cortex (r) Lateral prefrontal cortex (l) −3.13 0.049
Lateral prefrontal cortex (r) Posterior parietal cortex (l) −3.50 0.037
Lateral prefrontal cortex (r) Posterior cerebellum −3.24 0.037
Inferior frontal gyrus (l) Posterior parietal cortex (l) −4.28 0.004
Inferior frontal gyrus (l) Posterior parietal cortex (r) −3.27 0.034
Posterior cerebellum (r) Lateral prefrontal cortex (r) −3.24 0.044

PLACEBO (“Lourdes water”)–CONTROL (“Tap water”)

Posterior cerebellum (r) Anterior insula (l) 3.17 0.044

ROI, region of interest; l/r: left/right; FDR, false discovery rate.

FIGURE 1 | Results of the resting-state functional connectivity analysis.

correlated rsFC with the difference scores for the ratings in
the two conditions (PLACEBO minus CONTROL). Changes in
bodily sensations were positively correlated with rsFC between
occipital and inferior frontal regions, and negatively with rsFC
between inferior frontal regions and temporal/parietal regions
(Table 3). Changes in the intensity of feelings were not correlated
with rsFC.

Addionally, we compared participants with Roman-
Catholic affilitation (n = 27) and other affiliations (n = 10)
with each other concerning resting-state connectivity and
questionnaire/rating data. Roman-Catholics reported greater
general religiosity on the MI-RSWB 48 (Unterrainer et al.,
2010; M = 3.94, SD = 1.32) compared to participants
who were not Roman-Catholic (M = 2.88, SD = 1.40;
t(35) = 2.15, p = 0.039). All other variables (ratings and
resting-state) did not reveal statististically significant group
differences (p > 0.05).

DISCUSSION

This resting-state functional connectivity (rsFC) study
examined a specific placebo. The participants received an
inert substance (tap water) along with the verbal suggestion
that they would drink water from the sanctuary in Lourdes.
Compared to drinking tap water labeled as such, ‘‘Lourdes
water’’ changed the strength of temporal correlations between
specific brain sites, including both increased as well as
decreased connectivity.

The placebo increased the connectivity between the
anterior insula and the posterior cerebellum. Both regions
are part of the salience network (e.g., Habas et al.,
2009; Uddin, 2015). The salience network is involved
in detecting, integrating, and filtering interoceptive,
autonomic, and emotional information. The label ‘‘salience’’
is applied to this network for its broad role in identifying
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TABLE 3 | Association between resting-state functional connectivity and experienced bodily changes (“PLACEBO: Lourdes water”–“CONTROL: Tap water”).

ROI (seed) ROI t p(FDR)

Occipital cortex (l) Inferior frontal gyrus (l) 3.79 0.017
Inferior frontal gyrus (l) Occipital cortex (l) 3.79 0.015
Superior temporal gyrus (r) Inferior frontal gyrus (r) −3.77 0.015
Superior temporal gyrus (r) Inferior frontal gyrus (l) −3.59 0.015
Superior temporal gyrus (l) Supramarginal gyrus (r) −3.48 0.039
Supramarginal gyrus (r) Superior temporal gyrus posterior (l) −3.48 0.039
Inferior frontal gyrus (r) Inferior frontal gyrus (l) −3.59 0.015
Inferior frontal gyrus (r) Superior temporal gyrus posterior (r) −3.77 0.017
Inferior frontal gyrus (l) Superior temporal gyrus posterior (r) −3.59 0.015

Note: experienced bodily changes: intensity of bodily sensation in the Lourdes water condition minus intensity of bodily sensation in the Tap water condition; ROI, region of interest; l/r,
(left, right); negative/positive t-score indicates the direction of correlation; FDR, false discovery rate.

(subjectively) important, or salient, information. It has
been shown that the salience network with the insula
as a central hub mediates placebo effects in different
areas (e.g., placebo analgesia, reduction of negative affect;
Schienle et al., 2014; Wager and Atlas, 2015). The insular
cortex can integrate and transform information about
salience into perceptual decisions. This brain region
links emotional/motivational/decision processes, which
is central for placebo responding (Wager and Atlas,
2015). Moreover, the role of the insula in spiritual
experience has been identified before (Hölzel et al.,
2008; Haase et al., 2016). An fMRI study by Haase et al.
(2016) showed that religiously inspired training (20-h
mindfulness training) altered insula activation to a stressor
(loaded breathing).

In line with the observed changes in rsFC within the
salience network (insula-cerebellum connectivity), the ‘‘Lourdes
water’’ application increased the intensity of experienced
positive feelings (e.g., gratefulness) and bodily sensations.
Many participants experienced tingling and warming, which
they interpreted as signs of ‘‘bodily relaxation.’’ On the
one hand, it is well-known that tingling and warming are
associated with autonomic relaxation (i.e., an increase in
parasympathetic activity and a decrease in sympathetic activity).
These sensations are typically experienced by individuals who
practice relaxation training. On the other hand, focusing one’s
attention on a body part can give rise to various ‘‘spontaneous
sensations’’ without external stimulation. These attention-
related sensations strongly depend on expectations and prior
information (Tihanyi et al., 2018). In the present study, the
‘‘Lourdes water’’ suggestion implied possible somatic changes
since water from the sanctuary has been linked with the healing
of somatic illness.

It is noteworthy, that the placebo-induced change in the
bodily state was correlated with frontoparietal rsFC. The
connectivity within this network was generally reduced through
the placebo. More specifically, the coupling of the IFG
and the lateral prefrontal cortex (LPFC) with the PPC was
lowered. The mentioned regions are part of a frontoparietal
cognitive control network (e.g., Dosenbach et al., 2008; Dixon
et al., 2018; Marek and Dosenbach, 2018). Cognitive control
refers to the deliberate selection of thoughts, emotions, and
behaviors based on current task demands and social context,

as well as inhibition of inappropriate actions (Miller and
Cohen, 2001). An influential model suggests that the lateral
prefrontal cortex (LPFC) represents rules or instructions in
working memory. This information guides perceptual and motor
processing in parietal regions, thus resulting in action selection
or inhibition (Miller and Cohen, 2001). The LPFC represents
relationships between contexts, task rules, and anticipated
outcomes (Dixon et al., 2018). The mentioned functions
are central for placebo responding, which typically involves
the LPFC (e.g., Wager et al., 2004; Petrovic et al., 2010).
Placebos only work if the recipients believe in the effectiveness
of the treatment. The belief is associated with anticipation
and positive outcome expectations, which are represented in
the LPFC.

Functional brain imaging studies with a localization
approach have detected associations between neural activation
in lateral prefrontal regions (Wiech et al., 2008), the IFG
(Kapogiannis et al., 2009), superior/posterior parietal regions
(Kapogiannis et al., 2009), and religious/spiritual experiences.
In the study by Kapogiannis et al. (2009), the participants
indicated whether they agreed to religious statements (e.g.,
addressing God’s involvement in the world) or not. In a
reanalysis of the data set, the authors (Kapogiannis et al.,
2014) focused on effective connectivity (causal binding)
between specific brain regions. They identified a pathway
from the IFG to the superior medial frontal gyrus, and
the precuneus when the participants were thinking about
God’s level of involvement. Thus, the placebo intervention
of the present investigation affected the connectivity of
those brain areas involved in both, placebo responding and
spiritual experience.

This study has several limitations that merit consideration.
First, we only studied females. Therefore, the results cannot be
generalized to males. Second, the time for recording rsFC was
relatively short. The reliability of resting-state correlations can
be increased with longer periods of data acquisition (∼45 min)
(Marek andDosenbach, 2018). Third, we investigated a sample of
healthy individuals. The placebo effects on rsFC can be possibly
enhanced by studying a sample with a greater need for positive
effects of ‘‘Lourdes water’’ (e.g., patients with various illnesses).
However, this approach has ethical issues.

The present study differs from previous placebo research
regarding the use of verbal suggestions. Typical instructions
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in placebo studies involve a clear statement of the expected
effect (e.g., ‘‘this pill will reduce your pain’’). In contrast,
in the present investigation, each participant had to create
her own ‘‘instruction’’ based on her concept about Lourdes
water effects. Some authors have pointed out that when
individuals report their experience through concepts and
beliefs, they significantly distort their direct experience (Pashko,
2013). They report opinions instead of direct experience.
This might also explain, why rating differences between the
placebo and control conditions were more pronounced when
interpreting the experience after the session instead of during
the session.

In summary, the findings of the present study allow us to
draw preliminary conclusions about the placebo effect in the
context of religious beliefs and practices. We found that this
type of placebo can enhance emotional-somatic well-being, and
can lead to changes in rsFC in cognitive control/emotional
salience networks of the brain. Future research is warranted to
replicate the results. Moreover, future research should investigate
whether the observed effects generalize across different religious
affiliations. The idea of ‘‘holy water’’ (or blessed water) is
common in several religions, fromChristianity, Islam, Buddhism
to Sikhism.
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Memory storage and retrieval are shaped by past experiences. Prior learning

and memory episodes have numerous impacts on brain structure from micro

to macroscale. Previous experience with specific forms of learning increases

the efficiency of future learning. It is less clear whether such practice effects

on one type of memory might also have transferable effects to other forms of

memory. Different forms of learning and memory rely on different brain-wide

networks but there are many points of overlap in these networks. Enhanced

structural or functional connectivity caused by one type of learning may be

transferable to another type of learning due to overlap in underlying memory

networks. Here, we investigated the impact of prior chronic spatial training

on the task-specific functional connectivity related to subsequent contextual

fear memory recall in mice. Our results show that mice exposed to prior

spatial training exhibited decreased brain-wide activation compared to control

mice during the retrieval of a context fear memory. With respect to functional

connectivity, we observed changes in several network measures, notably an

increase in global efficiency. Interestingly, we also observed an increase in

network resilience based on simulated targeted node deletion. Overall, this

study suggests that chronic learning has transferable effects on the functional

connectivity networks of other types of learning and memory. The generalized

enhancements in network efficiency and resilience suggest that learning itself

may protect brain networks against deterioration.

KEYWORDS

cognitive stimulation, functional connectivity, context memory, immediate early
genes, mouse model

Introduction

It has been well established that prior learning experiences alter the canvas against
which new learning occurs. Learning results in numerous structural changes in the brain
ranging from cellular and synaptic changes (Lendvai et al., 2000; Nyberg et al., 2003;
Holtmaat et al., 2005; De Paola et al., 2006; Epp et al., 2013) to altered macroscale
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measurements of regional size and shape (Maguire et al., 2003;
Draganski et al., 2004; Bermudez et al., 2008; Hyde et al.,
2009; Scholz et al., 2009). A classic example of learning-induced
structural changes is the change in hippocampal volume that
occurs as a result of intense practice with spatial navigation in
London taxi drivers (Maguire et al., 2000). Similar increases in
hippocampal volume have also been observed in mice that were
trained on a spatial learning task (Lerch et al., 2011).

To the extent that there are relationships between brain
function and underlying structure, it should be predicted
that learning-induced structural changes should also induce
functional changes. Training-induced increases in hippocampal
volume for example are also associated with enhanced memory
performance (Bohbot et al., 2007).

In addition to structural changes, learning has been shown
in some studies to change the organization of memories in
the brain. In rats, previous studies have indicated that prior
training with a memory task can prevent lesion-induced deficits
in both similar and slightly distinct memory tasks (Clark and
Delay, 1991; Ocampo et al., 2018). This suggested that prior
learning experiences fundamentally change how and where
future memories are encoded (Owen et al., 2010; Nouchi et al.,
2012; West et al., 2017). Experiments such as these suggest some
form of reorganization but do not give a complete picture as to
how this reorganization has occurred.

Functional imaging experiments in humans have provided
evidence that cognitive stimulation, or memory training, alters
brain functional connectivity (Martínez et al., 2013; Dresler
et al., 2017; Bagarinao et al., 2019; Miró-Padilla et al., 2019;
Finc et al., 2020). These findings are of significant importance
because reorganization of functional networks could increase
the efficiency of learning and memory and could even increase
the resilience of cognitive processes to damage or deterioration.
However, investigating the influence of prior learning on
altered functional connectivity in humans is complicated by the
diverse cognitive, genetic and lifestyle differences in different
individuals.

In the present study, to further elucidate the impact of
prior learning on memory related functional connectivity, we
have developed a mouse model in which mice are trained
in a repeated acquisition spatial learning and memory task
for several months. Using mice, we are able to control for
environmental and genetic factors, and we can also control
for prior learning experiences. Our aim was to investigate
whether learning a spatial memory task would increase the
efficiency of the functional networks underlying a different form
of memory (contextual fear memory). Although spatial and
contextual memories are independent of each other, the circuits
involved in both of these forms of memory likely overlap in
numerous places including, most notably, the hippocampus
and connected structures. The repeated activation of regions
that are mutually involved in circuits across multiple forms of
learning and memory is likely a key factor in determining the

breadth of tasks that would be influenced by prior learning. To
examine the extent to which spatial memory training influences
contextual memory circuits, we adopted a brain-wide functional
connectivity approach using immediate early gene imaging that
has been recently described (Wheeler et al., 2013; Vetere et al.,
2017; Scott et al., 2020).

In this study, we show that chronic cognitive stimulation, in
the form of spatial learning is sufficient to induce generalized
changes in the organization of functional connectivity networks
underlying a test of contextual fear memory.

Materials and methods

Mice

8-week-old male C57BL/6J mice purchased from The
Jackson Laboratory (Bar Harbor, ME, United States) were used
for all experiments. Upon arrival, mice were group housed,
3-4 mice per cage, under a 12-h light/12-h dark cycle with
ad libitum access to food and water. Testing and handling was
performed during the light phase of the cycle. Behavioral tests
and network analyses were conducted using groups of n = 10.
Mice from the Morris Water Maze training group and the
cage control group were co-housed, and all mice received equal
handling throughout the study. All procedures were conducted
in accordance with protocols approved by the University of
Calgary, Health Sciences Animal Care Committee, following the
guidelines of the Canadian Council for Animal Care.

Morris water maze training

In order to provide mice with chronic cognitive stimulation,
we trained half of the mice on a repeated acquisition and
performance testing variant of the Morris Water Maze (MWM;
see Figure 1A for an outline of the testing schedule and
Figure 1B for the maze itself) (Spanswick et al., 2007). This task
was chosen because it provides considerable flexibility in design,
whereby a hidden platform can be moved to many different
locations within the maze to encourage continuous learning.
Furthermore, the spatial learning which occurs during MWM
training is supported by many of the same neuroanatomical
regions as contextual conditioning (Jo et al., 2007; Miller et al.,
2014; Giustino and Maren, 2015; Kwapis et al., 2015; Milczarek
et al., 2018). In this version of the task, the hidden escape
platform is moved every second day which requires mice to
repeatedly acquire new spatial memories throughout a 10-week
training period. We used 10 different platform locations, with
each platform location occurring on 2 separate occasions. Mice
were trained 4 days per week (2 platform locations). During
each daily session, mice were given four trials. Each trial lasted
a maximum of 60 s and was initiated by placing the mouse
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FIGURE 1

(A) Mice were trained on a repeated acquisition and performance testing variation of the MWM (n = 10) or kept in conventional housing
conditions (n = 10) for 10 weeks. Afterward all mice underwent contextual fear conditioning and a retention test 24 h later. (B) During water
maze training, the escape platform was moved every second day between 10 locations. After the 10th position, the platform was returned to the
1st position and the cycle was restarted. (C) Mean distance traveled in the water maze across each of the 20 locations. (D) During contextual
fear memory retrieval, (E) there was no overall difference in freezing rates between the control group and the group which had underwent
Morris Water Maze training (Paired two-tailed t test; P > 0.05). (F) Mice who had underwent Morris Water Maze training froze significantly more
during the first half (minutes 0-3) of the test than they did during the second half of the test (minutes 3-6; Two-Way Repeated Measures
ANOVA; Time × Treatment interaction: F1,18 = 7.763, p = 0.0122; MWM 0-3 – 3–6: p < 0.0066), while control mice showed no difference in
task performance across these two halves of the test. Data shown are mean ± SEM when applicable.

gently into the pool, facing the wall. The start location was
from a different cardinal compass position around the pool for
each trial and the order of start locations was randomized each
day. Trials were terminated once the mouse located the hidden
platform. If the platform was not found after 60 s, mice were
gently guided to the platform by the experimenter. Once on the
platform, mice were given 15 s to remain on the platform before
being returned to their cage. Trials were interleaved, whereby
each mouse performed their first trial before the first mouse
performed its second of four daily trials. This resulted in an
intertrial interval of approximately 10 min. The circular pool
had a diameter of 150 cm and a depth of 50 cm. The pool was
filled so that the water level was 2 cm above the surface of a
circular escape platform that had a diameter of 11 cm. The water
was made opaque using white non-toxic tempera paint. The
water was kept at a constant temperature of 22◦C and stirred and
cleaned of debris before each trial. Automated tracking software

(ANY-Maze, Stoelting, Wood Dale, IL, United States) was used
to record and analyze swim behaviors in the pool, primarily the
distance traveled prior to locating the hidden platform. When
analyzing these results, linear regression was applied to the mean
distance traveled by each mouse across each training session
to assess the influence of the memory of previous platform
locations on the ability to learn new platform locations. The
extent to which mice learned platform position within blocks of
consistent locations was assessed by examining the mean slope
of the regression lines between distance traveled at all first-day
trials and between all second day trials.

Contextual fear conditioning

After the conclusion of the Morris Water Maze training
protocol, all mice were trained in contextual fear conditioning.
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Training was conducted in sound-attenuated chambers with
grated floors through which shocks (0.5 mA; 2 s) were delivered
(Ugo Basile, Gemonio, Italy). Mice were first allowed to
acclimate to the chamber for 2 min prior to the presentation
of a series of 3 shocks, each separated by an interval of
90 s. 24 h after the training session, mice were returned to
the conditioning chambers for a 6-min retention test. During
this test, no shocks were administered, and behavior was
monitored via an overhead infrared camera in conjunction
with an automated tracking software (ANY-Maze, Stoelting,
Wood Dale, IL, United States). The chamber was cleaned using
70% ethanol and allowed to dry before and after each trial.
When analyzing these results, freezing criteria was defined as
bouts of a minimum of two seconds without ambulation. The
percentage of the trial spent exhibiting freezing behavior was
compared between groups.

Perfusions and histology

Mice were transcardially perfused with 0.1 M phosphate
buffered saline (PBS) followed by 4% formaldehyde 90 min after
retention testing. Brains were then extracted and post-fixed in
4% formaldehyde for 24 h. Fixed brains were cryoprotected in
30% W/V sucrose solution at 4◦C until no longer buoyant. From
cryoprotected brains, serial coronal sections with a thickness of
40 µm were cut on a cryostat (Leica Biosystems, Concord, ON,
Canada) and stored in 12 series at−20◦C in antifreeze solution.

Immunohistochemistry

When conducting labeling for c-Fos expression, all tissue
was processed concurrently. Tissue sections were washed 3 times
(10 min per wash) in 0.1M PBS before being incubated in a
primary antibody solution of 1:2000 rabbit anti-c-Fos primary
antibody (226 003, Synaptic Systems, Göttingen, Germany), 3%
normal donkey serum, and 0.03% Triton-X100 for 48 h at room
temperature on a tissue shaker. Tissue sections were washed
3 × 10 min in 0.1M PBS before secondary antibody incubation.
The secondary antibody solution was composed of 1:500 donkey
anti-rabbit Alexa Fluor 488 (111-545-003, Cedar Lane Labs,
Burlington, ON, Canada) in PBS for 24 h at room temperature.
Sections were then transferred to 1:2000 DAPI solution for
15 min before being washed 3 × 10 minutes in 0.1M PBS.
Labeled sections were mounted to glass slides and coverslipped
with PVA-DABCO mounting medium.

Brain-wide c-Fos quantification

Quantification of fluorescent c-Fos labeled cells was
conducted using a custom semi-automated segmentation and

registration pipeline (Figure 2A). All slides were imaged
as a single batch using an Olympus VS120-L100-W slide
scanning microscope (Richmond Hill, ON, Canada). Images
were collected using a 10x objective with a numerical aperture of
0.40 and a Hamamatsu ORCA-Flash4.0 camera. Labeled c-Fos
was imaged using a FITC filter cube and a 9.00 V lamp at
an intensity of 100% and an exposure time of 140 ms. DAPI
staining was imaged under the same conditions, but with a DAPI
filter cube and an exposure time of 65 ms. Cells expressing a
c-Fos label were segmented using the machine learning-based
pixel and object classification program, Ilastik (Berg et al., 2019).
To further prepare Ilastik output images and DAPI channel
photomicrographs for regional registration, a custom plug-in
was written for ImageJ. The pixel intensity threshold of the
Ilastik outputs was adjusted so as to only contain objects which
the program determined to be within the correct range of pixel
intensities and shapes. To compensate for inadequate regional
area measurements at an image-by-image level in the atlas
registration software, a mask of evenly spaced binary points was
generated from the DAPI channel image. The pixel intensity
thresholds of these images were adjusted to create a binary mask
in the shape of the tissue section. Grid lines were then overlaid
to create a mask of binary points arranged in a square grid in the
shape of the tissue section. Adjacent binary points were spaced
by 22 µm, therefore, each point in the mask accounted for an
area of 484 µm2.

Next, tissue sections were registered to plates of the
Allen Mouse Brain Atlas using the R-based Whole Brain
software (Fürth et al., 2018). Using this software, DAPI channel
images were used as references to which the atlas plates
were aligned. The number of segmented c-Fos labeled cells
per neuroanatomical region was quantified in Whole Brain.
Similarly, the binary point masks were processed to count the
number of points in each region. Regional areas were then
approximated using a Cavalieri-based point counting approach,
whereby the number of mask points in each region was
multiplied by the area accounted for by each point. This allowed
for the c-Fos labeled cells to be normalized by area and presented
as regional cell densities.

Validation of c-Fos quantification and
regional area approximation

A separate cohort of mice was used for the validation
of c-Fos labeled cell segmentation and regional area
approximation. c-Fos immunostaining and imaging was
identical to the methods described previously. To generate
ground truth cell counts as a gold standard for our automated
counting procedure, ten 500 µm x 500 µm regions of
interest (ROI) were randomly generated from each of
several regions including the basolateral amygdala, CA1,
dentate gyrus, paraventricular nucleus, and the retrosplenial
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FIGURE 2

(A) In the cell segmentation and tissue registration pipeline, tissue was sectioned, immuno-labeled, and mounted on slides prior to being
imaged on a fluorescent slide scanning microscope. Images of labeled c-Fos and DAPI staining were then processed using Ilastik and ImageJ to
generate binary c-Fos labels and a mask of evenly spaced grid points in the shape of the tissue sections. These binary images were then applied
to plates from the Allen Mouse Brain Atlas which had been morphed to align with the tissue sections using Whole Brain, yielding regional c-Fos
densities. (B) Examples of raw c-Fos+ cells in the BLA, CA1, DG, PVT, and RSC (top, L-R) and cells segmented using Ilastik (bottom). (C) A set of
ROIs was quantified for validation. Automated Ilastik segmentation yielded cell counts within the 95% confidence intervals of counts acquired
from trained independent experimenters in each of the aforementioned regions (Two-Way ANOVA; segmentation method factor:
F1,15 = 0.09515, p = 0.7620). Data presented as mean 95% ± confidence interval. (D) Cell counts collected using automated Ilastik processing
were found to correlate highly with mean counts gathered through manual counting (Pearson r = 0.9610, p < 0.01). Data presented as mean
95% ± confidence interval. (E) Area approximations generated using the pipeline were correlated with areas acquired by tracing regions
manually in ImageJ (Pearson r = 0.9941, p = < 0.0001). (F) c-Fos quantification across the 97 brain regions of interest. Relative to the control
group, c-Fos expression in the mice that had previously received Morris Water Maze training was decreased to a variable extent in all brain
regions.

cortex. These ROIs were processed through our Ilastik label
segmentation pipeline (representative raw and processed images
in Figure 2B). In addition, the same ROIs were hand counted
independently by 4 experimenters blind to the automated cell
count results. The total numbers of cells counted across all
counting boxes were then compared to assess whether or not

Ilastik could segment fluorescent c-Fos labels within natural
and acceptable inter-rater variability.

To assess the accuracy of regional area approximations,
areas generated using the Cavalieri-based point counting
approach were compared to the areas of these same regions
which were manually traced in ImageJ. During this analysis,
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five photomicrographs of each of the following regions
were examined: basolateral amygdala, CA1, dentate gyrus,
paraventricular nucleus, and the retrosplenial cortex.

Functional connectivity network
generation

We focused on a selection of 97 regions based on our ability
to discriminate these regions using a DAPI stained image as
reference (see Supplementary Table 1 for list of regions and
abbreviations). From this list of regions, c-Fos label densities
were cross correlated within each group to generate pairwise
correlation matrices. Correlations were filtered by statistical
significance and a false discovery rate of 5% (Benjamini and
Hochberg, 1995; Bassett et al., 2009). For network analyses,
correlation matrices were binarized to adjacency matrices based
on Pearson’s correlation coefficient and statistical significance
(r > 0.9; α = 0.005). This threshold allowed for sufficient
network density to study global brain dynamics, while still
limiting the analyses to only the strongest and most biologically
plausible connections (Schneidman et al., 2006). To ensure that
the thresholding parameters did not bias network analyses,
additional adjacency matrices were generated using either more
(r > 0.95; α = 0.0005) or less (r > 0.8; α = 0.05) conservative
thresholds. To analyze adjacency matrices as network graphs,
the 97 neuroanatomical regions were plotted as nodes.
Connections were drawn between nodes whereby correlations
surpassed correlation matrix thresholding parameters.

Functional connectivity network
analysis

Graph theoretical analyses were applied to network graphs
to examine global and local properties of the network. These
analyses were guided by the use of the Brain Connectivity
Toolkit (Rubinov and Sporns, 2010), the SBEToolbox (Konganti
et al., 2013), and other custom analyses. Network properties
examined include node degree, network density, global efficiency,
betweenness centrality, Katz centrality, and network resiliency.
In the following definitions, N is the array of nodes in the
network represented by adjacency matrix A. The number of
nodes in the network is represented by n and the number of
connections between nodes is l. The variable aij is the index into
the adjacency matrix which indicates the connection status of
nodes i and j. The presence of a connection is represented by
aij 6= 0 (Rubinov and Sporns, 2010). Node degree is the number of
connections that link a node to the rest of the network (Rubinov
and Sporns, 2010).

ki =
∑
j∈N

aij (1)

Network density is a metric of network dispersion. It is
expressed as a proportion of the number of connections in a
given network over the number of connections which would be
required to saturate a network of the same size (Rubinov and
Sporns, 2010).

kden =
2l

n2 − n
(2)

Global efficiency is defined as the inverse of the average
shortest path of connections between all possible pairs of
nodes (Latora and Marchiori, 2001; Achard and Bullmore, 2007;
Rubinov and Sporns, 2010).

E =
1
n

∑
i∈N

∑
j,h∈N,j6=i d−1

ij

n− 1
(3)

Betweenness centrality and Katz centrality are measures
which can be used to assess the importance of a node in the
effective communication of a network. Betweenness centrality
quantifies the number of shortest paths between nodes that pass-
through a given node (Freeman, 1978; Brandes, 2001; Rubinov
and Sporns, 2010).

bi =
1

(n− 1)(n− 2)

∑
h, j ∈ N

h 6= j, h 6= i, j 6= i

ρhj(i)
ρhj

(4)

Katz centrality applies an eigenvector approach to this
metric by weighting the connections involving more highly
connected nodes more heavily than those from lesser connected
nodes when considering the makeup of the shortest paths which
pass through a given node (Katz, 1953; Hubbell, 1965). The
attenuation factor, α, used for this analysis was 0.1 (Zhan et al.,
2017).

CKatz,i =

∞∑
k=1

n∑
j=1

αk(Ak)ij (5)

Network resiliency was assessed through targeted node
deletion and an assessment of the size of the largest community
of connected nodes and global network efficiency with each
deletion. Nodes were targeted for deletion in decreasing order,
from nodes with the highest degree to those with the lowest.
Degree was recalculated after each deletion and the list was
reordered accordingly.

Network metrics were both compared across conditions
as well as used to assess small world-like network properties
compared to random control network topology. Small world
network distribution can be described as being efficient at both
local and global scales (Watts and Strogatz, 1998). Random null
control networks were generated for both the cognitive training
and control groups and were matched for network size, overall
degree, and degree distribution. Local efficiency was assessed by
comparing mean clustering coefficients, while global efficiency
was assessed by comparing bootstrapped global efficiency values
with one hundred replacements. Networks were considered to
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display small world-like properties if they had displayed both
the high global efficiency characteristic of a random network and
increased local efficiency relative to random networks (Wheeler
et al., 2013).

Statistical analyses

Behavioral data from all tasks was recorded and analyzed
using ANY-Maze (Stoelting, Wood Dale, IL, United States).
All t-tests and Two-Way ANOVA for comparing behavioral
data, regional c-Fos expression, segmentation and regional
area approximation validation, and functional connectivity
networks were conducted using GraphPad Prism (GraphPad
Software, San Diego, CA, United States). GraphPad Prism
was also used to conduct the linear regression used to
assess inter-position memory and repeated new learning
in the Morris Water Task. The analysis of functional
connectivity networks was conducted using MATLAB.
Figures were generated using MATLAB, Cytoscape, and
GraphPad Prism.

Results

Morris water maze training alters
memory performance in unrelated
tasks

A repeated acquisition and performance testing variant
of the Morris Water Maze was used to provide chronic
cognitive stimulation (Figures 1A–C). Simple linear regression
was applied to assess inter-position memory and the presence of
repeated new learning. The slope of the best fit line of the linear
regression applied to the mean distance traveled by each mouse
across each training session was −0.067. When examining the
mean distances traveled across all first days at a given platform
position, the line of best fit had a slope of −0.068. Across
all second days at a given platform position, this slope was
determined to be −0.069. Within each platform location, the
line of best fit of the linear regression yielded a mean slope of
−0.97 which differed significantly from zero and was indicative
of improved performance over time within the same platform
location (one sample t test; p = 0.0010).

FIGURE 3

Pairwise correlation matrices (A,D), binarized adjacency matrices (B,E) and circle plots (C,F) showing significant correlations between regions
for control (A-C) and Morris Water Maze trained (D-F) groups. See Supplementary Table 1 for full list of regions. MWM training increased (G)
network density and (H) global network efficiency.
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To assess the generalization of improved cognitive
performance following long-term spatial learning, mice were
trained and tested in a contextual fear conditioning paradigm
(Figure 1D). The percentage of time that mice exhibited
freezing behavior was compared between groups and across the
training and retention test sessions. Across both sessions, there
were no significant differences in freezing behavior (Figure 1E).
However, when the retention was divided into a first half and a
second half, mice who had received cognitive training displayed
increased freezing behavior during the first half of the test
and then decreased freezing during the second half of the test
(Figure 1F).

Validation of c-Fos segmentation and
neuroanatomical atlas registration

To assess the reliability of the semi-automated c-Fos
segmentation and mouse brain atlas registration pipeline
used in this study (Figure 2A), we compared c-Fos counts
obtained using this pipeline to those gathered manually (see
representative images Figure 2B). We found that the number
of c-Fos labeled cells quantified using Ilastik processing fell
within the range of values counted manually by four different
experimenters across a subset of regions with varying levels
of background autofluorescence (Figure 2C). The inter-rater

FIGURE 4

(A) Consistent with definitions of small world organization, in both control and MWM trained networks the majority of nodes were of a low
degree. However, water maze training shifted the degree distribution and increased the number of highly connected nodes. (B) Also consistent
with small world organization, both control and MWM trained networks showed equivalent global efficiency to random networks matched for
degree distribution. (C) A third requirement for the classification of a small world organization is a higher clustering coefficient than a random
network. Compared to random networks matched for degree distribution, both control and MWM trained networks showed heightened
clustering. Data shown are mean ± 95% confidence intervals.
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reliability was determined to be 15% across the datasets as
a whole and the semi-automated cell counts were within
3.75% of the average of the manual cell counts. Manual and
automated cell counts were highly correlated across the sampled
brain regions (Figure 2D). WholeBrain region registration also
produced regional area approximations that correlated highly
with hand-traced regional area values (Figure 2E).

Prior spatial learning alters c-Fos
expression associated with context
memory recall

Changes in regional c-Fos expression density are depicted
in Figure 2F as the percent change from the regional c-Fos
expression density from the control condition to the group
which had underwent long-term spatial learning. We observed
decreased c-Fos expression density in all brain regions that
were analyzed in mice that had received prior spatial training.
With respect to brain-wide activity, prior spatial training
resulted in an overall significant decrease in c-Fos expression
(Supplementary Figure S1. Unpaired t test; p = 0.0003).

Morris water maze training alters
functional connectivity network
topology

Analyses of cross-correlated regional c-Fos expression
density revealed differences in global functional connectivity
network topology. On a global scale, we observed a
reorganization of connections throughout the brain
(Figures 3A–F). Relative to control conditions, mice that
underwent prior cognitive training exhibited an increase in the
overall density of functional connections during subsequent
contextual fear memory retrieval (Figure 3G). Furthermore,
the organization of these networks after prior cognitive training
resulted in increased global efficiency relative to the control
condition (Figure 3H). These increases were also present in
the networks constructed with both more or less conservative
thresholds, indicating that this effect was not an artifact of the
thresholding level (Supplementary Figure S2).

Control and morris water maze
training networks exhibit small-world
qualities

Networks from both control and spatial learning groups
exhibited heavy-tailed degree distribution characteristic of a
small-world network, with the majority of nodes making
very few connections and a lesser number of nodes carrying

disproportionate importance to the overall connectivity of the
network (Figure 4A) (Bassett et al., 2006; Bullmore and Sporns,
2009). Comparisons to random null networks also highlighted
that both the control and spatial learning networks maintained
the high global efficiency characteristic of random networks
(Figure 4B) while displaying increased clustering (Figure 4C).
Together, these analyses indicate that the functional connectivity
networks engaged during memory recall in both the control and
spatial learning conditions exhibit properties that are consistent
with small-world topology.

Morris water maze training alters
cluster organization and connectivity

Changes in network topology were also observed at the
local level. The organization of local communities within global
networks changes with long-term spatial learning. While the
size of the giant component (GC) (Figures 5A–C) underwent
very little change with MWM training, differences arose in the
connectivity patterns within this component. Within the GC,
MWM training increases the mean number of connections per
node (Figure 5D). The changes in connectivity coincided with
changes in network resiliency. When faced targeted deletion
of nodes, with deletions occurring in the order of decreasing
degree, long-term spatial learning increased the ability of the
network to preserve its giant component size (Figure 5E) and
global efficiency (Figure 5F).

Coinciding with these changes in network resiliency were
changes in Katz centrality. Katz centrality is a measure of
centrality which differentially weighs connections based on
the degrees of the nodes involved (Katz, 1953). This measure
has previously been shown to correlate highly with neuronal
activity compared to other measures of centrality (Fletcher and
Wennekers, 2018). While most nodes in the control network
had similar Katz centrality vectors (Figure 5G), MWM training
increased the centrality of a subset of regions (Figure 5H). There
was considerable overlap between these regions with increased
Katz centrality and the regions in the most densely connected
region of the GC. This was further corroborated by analysis
of regional degree distribution (Supplementary Figure S3)
and change in Katz centrality (Supplementary Figure S4)
which further highlighted an increase in connectivity and of
importance of numerous amygdala subregions following spatial
learning.

Discussion

In the current study we employed a brain-wide activity
mapping approach to examine the impact of a prolonged period
of repeated spatial learning on brain-wide patterns of activation
and functional connectivity. We posited that repeated activation
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FIGURE 5

Network plots of (A) control and (B) MWM trained networks with the giant component (GC) highlighted in each in the darker shade. (C) In these
networks, there is very little difference in the size of the GC. (D) Within the GC, there was an increase in the mean number of edges per node
with MWM training (Two-tailed t test, p < 0.0001). MWM training also made the (E) integrity of the GC and the (F) global efficiency of the
network more resilient to targeted node deletion. Relative to the control condition (G), MWM training (H) also increased Katz centrality of a
subset of regions within the network. Data shown are mean ± SEM when applicable.

of the circuits underlying spatial learning and memory might
alter the networks that represent other forms of hippocampus
dependent memory in the future. During the spatial learning
manipulation, we saw that in changing the hidden platform
location in the Morris Water Maze every second day, mice were

encouraged to continuously learn. This continuous learning was
evident by improved performance within platform positions
between the first and second days, supported by a significantly
negative slope in the regression analysis performed on the
mean distances travelled between these days. Furthermore, there
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was minimal change in performance across all trials with new
platform locations, as was evident by the minimal slope of
the regression line when analyzing mean swimming distance
across all trials, all first days only, and all second days only.
These findings suggest that mice were continuously learning
new platform positions and that this new learning was only
minimally altered by prior learning of conflicting platform
locations. Our results also clearly indicate that this prior spatial
learning manipulation caused significant changes to the task-
related functional connectivity associated with retrieval of a
contextual memory. In the current study, prior exposure to
repeated spatial learning episodes had minimal effects on the
overall retrieval of a subsequently acquired contextual fear
memory. Interestingly, when subdividing the retrieval period,
we noticed that the nature of the memory was different in
mice that had prior spatial training. Specifically, the retention
was stronger in the first half of the test and decreased in
the second half, whereas control mice showed stable retention
throughout the test. This could be indicative of an increase
in behavioral flexibility and/or increased rate of extinction in
the absence of additional foot shocks. That we did not observe
major differences in memory retrieval was not surprising given
that the subjects were normal mice without memory deficits,
the memory in control mice was already very strong and the
retention interval was short (24 h). This similarity in behavioral
performance between conditions allowed us to assess patterns
of neuronal activation without the confound of differential
memory ability. When we examined neuronal activation and
network organization underlying the memory in these two
groups, we observed a number of differences that could enhance
retention/retrieval in the face of cognitive decline.

We were most interested in investigating whether such a
manipulation, which might be viewed as memory practice or
training, would enhance measures of efficiency when examining
the storage and retrieval of future memories. The efficiency
of brain activity underlying cognitive function is vulnerable to
aging and disease. Decreased efficiency of cognitive processing
has been reported in several neurological conditions, including
major depressive disorder (Zhang et al., 2020), schizophrenia
(Sheffield et al., 2016), and Alzheimer’s disease (Srivishagan
et al., 2020). Even in healthy adults, patterns of brain activation
become less efficient with age (Ajilore et al., 2014; Chong et al.,
2019). These decreases in efficiency also coincide with decreased
cognitive performance, thereby indicating that an intervention
which can improve the efficiency of the functional connectome
may preserve cognitive function in these conditions (van den
Heuvel et al., 2009). We show here that the efficiency of brain-
wide activation, as measured by c-Fos expression, is greatly
increased in the mice that had prior spatial training. Efficiency
can be defined as equal or greater memory performance with
the expenditure of fewer resources (i.e., a decrease in activation)
(McQuail et al., 2020). Our results show that contextual
memory retrieval following spatial learning was associated with

a decrease in the total c-Fos expressing cells throughout the
brain compared to mice that had not previously experienced
any spatial training. Previously, it has been reported that c-Fos
expression density is increased in several neuroanatomical
regions following water maze training (Guzowski et al., 2001;
Teather et al., 2005). When interpreting the results of the
current study, it is imperative that we highlight the differences
in experimental designs which could underlie this difference.
In these studies, c-Fos expression was tagged directly to water
maze performance, while in the present study this expression
was tagged to the recall of a contextually conditioned memory.
Furthermore, the duration of the spatial learning period in
these previous studies was much shorter than that used in
the current design. Therefore, our results showing that all
brain regions exhibited reduced activity are not contradictory
with existing literature. Taken together, this pattern of activity
perhaps indicates that the behavioral expression of the memory
retrieval is more efficient on the level of neuronal activation.

At a network level, global efficiency can be estimated as the
inverse of the average shortest path lengths between all network
nodes. This measure represents the relative ease or difficulty
of integrating information between nodes in a network. Using
this measure, we found that mice which had received prior
spatial training exhibited enhanced global efficiency and higher
clustering compared to controls during subsequent contextual
memory retrieval. Both of these findings are consistent with the
effects of memory training observed using human functional
neuroimaging (Langer et al., 2013). This analysis corroborates
the interpretations of increased efficiency based on overall
brain activation. Further corroborating these interpretations are
changes in the Katz centrality within these networks. Centrality
measures can be used as proxies of the relative importance
of a node in the maintenance of effective communication
across a network and as indicators of the functional segregation
of the network as a whole. Spatial training increased the
centrality of a subset of nodes. This pattern of distribution
suggests a higher degree of network segregation and that this
subset of regions is relatively more important to the behavioral
expression of the context memory. Comparatively, based on the
variability of regional Katz centrality, all regions in the network
generated from untrained mice are of similar importance in
the expression of this same behavior. These findings coincide
with increased centrality in resting state memory networks
following working memory training in human neuroimaging
studies (Takeuchi et al., 2017). Together these metrics illustrate
that the redistribution of neuronal activation induced by prior
spatial learning is not only more efficient from the perspective
of energetic resources, but also proves to be more efficient with
respect to global flow of information throughout the brain.

Functional connectivity networks in the brain are
considered to be complex networks. Many complex networks
exhibit small world organization. Small-world networks
balance global efficiency with local clustering by having a
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small proportion of nodes to contribute disproportionately to
the overall connectivity of the network (Watts and Strogatz,
1998; Bassett et al., 2006; Sporns and Honey, 2006). This type
of organization facilitates specialized processing in dense,
local clusters while maintaining efficient information transfer
between clusters. Regardless of prior spatial training exposure,
the networks engaged by contextual memory retrieval displayed
characteristic small-world properties. Compared to random
networks, we observed that the memory networks had a
small number of highly connected regions, an increase in
clustering coefficient, and equivalent global efficiency. Small
world organization facilitates specialized processing in densely
connected local communities while also allowing for efficient
transfer of information between local communities. We used
Markov chain clustering to detect the structure of these
communities within the networks. In both networks there was a
large interconnected central component, referred to as the giant
component, which did not change in size as a result of prior
spatial training. However, there was a significant increase in
the density of connections within the GC of the group of mice
who had received prior spatial learning. The densely connected
giant component at the core of the network underlying context
memory expression in mice with prior spatial training contained
many redundant connections. Therefore, we hypothesized that
more successive deletions would be required to break apart
communities in a way which would be consequential to the
effective communication of the network. This hypothesis
was supported by the results of targeted node deletion. By
sequentially deleting nodes in the descending order of their
degree, we noted that mice which had prior spatial training were
able to retain a higher percentage of their basal global efficiency
and giant component size. In being more resistant to targeted
attack, this network can be said to be more resilient than the
network obtained from control mice (Achard et al., 2006).

Increased resiliency to targeted node deletion
presents interesting possibilities from the perspective
of neurodegenerative disease. The pathology of many
neurodegenerative conditions does not arise uniformly
throughout the brain and rather targets the most highly
involved regions of a network reviewed in Crossley et al. (2014).
In addition to suffering from targeted attacks, the functional
connectomes characteristic of many neurodegenerative
conditions networks also display decreased redundancy in their
connectivity patterns, rendering networks more vulnerable
to these attack (Langella et al., 2021). An efficient network
which is more resilient to attack has the potential to delay or
reduce cognitive decline during early neurodegenerative disease
progression (Rittman et al., 2019). The present study found that
cognitive stimulation through repetitive learning experiences
was able to increase network efficiency and resilience. Therefore,
the potential exists for prior exposure to repetitive learning
experiences to increase resiliency to deterioration. Future
studies of this phenomenon might build upon this by

examining whether prolonged cognitive stimulation and
the resulting alterations in functional connectivity are sufficient
for reducing cognitive deficits observed in early stages of
neurodegeneration. From the current results it is not known
whether the observed change in functional connectivity and
activity would be observed in tasks other than contextual fear
conditioning and as such this should also be investigated in
future studies.

In the present study, networks were generated based on
correlated expression of c-Fos across the brain. While this
method has been demonstrated at various levels of regional
organization in previous publications (Wheeler et al., 2013;
Vetere et al., 2017; Silva et al., 2019; Scott et al., 2020),
it is worth acknowledging the limitations of this approach.
While exhibiting excellent spatial resolution at the single cell
level, c-Fos expression is limited in its temporal resolution.
It is important to consider the delay that occurs between
cellular activity and c-Fos expression. A delay of 90 minutes
between cellular activity and peak c-Fos expression allows
us to use c-Fos to examine brain-wide activity tagged to
behavioral paradigms which are incompatible with head-fixed
neuroimaging techniques. However, it is impossible under the
current design to establish patterns of c-Fos expression during
distinct bouts of freezing or movement during conditioned
context reintroduction. In an experiment such as this in
which freezing behaviors were consistent between groups, it
is possible that this limitation has less of an impact on the
ability to interpret the results than in an experiment in which
the behaviors corresponding with the tagged neuronal activity
vary greatly between groups. In such scenarios, follow-up
experiments using an in vivo measure of regional activation
would be advised to assess the specificity functional connections
to distinct behavioral outputs.

When analyzing networks based on brain-wide correlated
c-Fos expression density the entire group is treated as a single
network. This limits the inferential statistics that can be applied
when comparing network metrics between groups. However, it
can be easy to overlook that underlying each cell in a correlation
matrix is a p value. In thresholding these correlation matrices
to generate the binary adjacency matrices that form the bases
of the presented network analyses, the statistical significance of
each correlation is heavily weighted. The thresholds examined
in the present study (α = 0.05, α = 0.005, and α = 0.0005)
were implemented so as to only consider the most statistically
significant correlations in the network analysis, thereby ensuring
than any descriptive comparisons between networks were
based on the organization of highly significant patterns of co-
activation.

Additionally, while we attribute the changes in network
topology to spatial learning, there are other possible factors
present during these episodes which may also contribute
to network reorganization. These heavily intertwined factors
include, exercise, motor activity, sensory exposure, and repeated
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acute stress. Among these factors, there is considerable debate
surrounding stress in the Morris water maze (Sandi et al.,
1997; Engelmann et al., 2006; Harrison et al., 2009). Repeated
exposure to this mild stressor could result in changes in
the HPA axis, which could then impact behavior and the
organization of functional connectivity networks underlying
a contextually conditioned fear memory (Sandi et al., 2003;
Rodríguez Manzanares et al., 2005). Mice given pool exposure
matched to the duration of the water maze training group
without an escape platform location to learn, commonly
referred to as a yoked control group, may superficially control
for exposure to the water maze. However, other issues arise
with yoked control group as there may be differences between
escapable and inescapable stressors. These points considered, it
was decided that measures controlling for exercise, such as the
use of a yoked control group might induce further variability.
However, the important conclusion of the current study is
that repeated learning and memory episodes induce widescale
changes in brain activity and functional connectivity during
encoding and/or retrieval of subsequent unrelated memory
tasks. Future studies will be required to assess the relative
influence of specific factors occurring during task exposure.
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students: The mediating role of
reappraisal strategy

Bin Xu*, Shilin Wei, Xiaojuan Yin, Xiaokang Jin, Shizhen Yan and

Lina Jia

Faculty of Psychology, Tianjin Normal University, Tianjin, China

Childhood emotional neglect (CEN) has a relatively high incidence rate and

substantially adverse e�ects. Many studies have found that CEN is closely related

to emotion regulation and depression symptoms. Besides, the functional activity

of the prefrontal lobe may also be related to them. However, the relationships

between the above variables have not been thoroughly studied. This study

recruited two groups of college students, namely, thosewith primary CEN (neglect

group) and those without childhood trauma (control group), to explore the

relationships among CEN, adulthood emotion regulation, depressive symptoms,

and prefrontal resting functional connections. The methods used in this study

included the Childhood Trauma Questionnaire (CTQ), Emotion Regulation

Questionnaire (ERQ), Beck Depression Inventory-II (BDI-II) and resting-state

functional magnetic resonance imaging (rs-fMRI). The results showed that

compared with the control group, the neglect group utilized the reappraisal

strategy less frequently and displayed more depressive symptoms. The prefrontal

functional connections with other brain regions in the neglect group were more

robust than those in the control group using less stringent multiple correction

standards. Across the two groups, the functional connection strength between the

right orbitofrontal gyrus and the right middle frontal gyrus significantly negatively

correlated with the ERQ reappraisal score and positively correlated with the BDI-II

total score; the ERQ reappraisal score wholly mediated the relationship between

the functional connection strength and the BDI-II total score. It suggests that

primary CEN may closely correlate with more depressive symptoms in adulthood.

Furthermore, themore robust spontaneous activity of the prefrontal lobemay also

be closely associated with more depressive symptoms by utilizing a reappraisal

strategy less frequently.

KEYWORDS

childhood emotional neglect, reappraisal strategy, depressive symptoms, resting-state

functional magnetic resonance, college student

1. Introduction

Childhood emotional neglect (CEN) refers to the failure to meet children’s basic

emotional needs, the lack of emotional response to children’s pain, the inability to take into

account children’s social needs, and the expectation that they will deal with situations beyond

their maturity or insecurity (Teicher and Samson, 2013). Several studies have identified CEN
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as a relatively common subtype of childhood trauma with a

relatively high incidence rate and substantially adverse effects

(Finkelhor et al., 2013; Dias et al., 2015; Shen et al., 2015; Maguire

and Naughton, 2016; Taillieu et al., 2016).

Many studies have indicated that CEN is closely related

to emotion regulation and depression symptoms. For instance,

Huh et al. (2017) demonstrated that adaptive emotion regulation

strategies significantly mediated the relationship between CEN

and depressive symptoms. According to a study by O’Mahen

et al. (2015), there was a strong correlation between the CEN

score and the avoidance strategy score. This strategy significantly

mediated the relationship between CEN and depressive symptoms.

In addition, Wang et al. (2017) also demonstrated a significant

negative correlation between CEN and reappraisal strategies in

patients with depression. These studies suggest that CEN may

change the tendency to utilize emotion regulation strategies in

adulthood, which may be an essential reason that CEN leads to

depression. Early adulthood, especially the college stage when one

first leaves home life, is an important period for individuals to

develop their emotion regulation ability. Exploring the relationship

between CEN and college students’ emotion regulation and

depressive symptoms will help prevent and intervene in college

students’ depressive symptoms.

In addition, some studies have suggested that the CEN

experience of individuals may alter not only the behaviors related

to adulthood emotion regulation but also the functional activity

of the brain associated with emotion regulation. Resting-state

functional magnetic resonance imaging (rs-fMRI) does not require

experimental tasks. Therefore, the observed individual differences

in spontaneous BOLD signal fluctuations are not disturbed by

experimental manipulation differences when using rs-fMRI, which

reflects the inherent characteristics of a particular brain activity.

In conclusion, it can be purer to explore the state-dependent

brain functional differences between individuals (Tavor et al.,

2016). Using rs-fMRI, Wang et al. (2014) discovered significant

negative correlations between CEN and the functional connections

of the bilateral thalamus and also the dorsolateral and medial

prefrontal gyrus in adults with major depression. Fadel et al.

(2021) found that CEN experience was correlated with decreased

functional connections within the salience network and increased

functional connections between the salience network and the

default mode network in adults with major depression. Based on

the region of interest analysis, Souza-Queiroz et al. (2016) found

that CEN significantly negatively correlated with the abnormal

functional connections between the left ventromedial prefrontal

lobe and amygdala in adults with bipolar disorder. These studies

found a close relationship between CEN and prefrontal functional

connections in adults with severe depressive symptoms. The

prefrontal cortex has been consistently implicated in perceiving

and understanding emotional information and cognitive and

attentional control (Li et al., 2020a,b). Abnormal prefrontal cortex

functional activities have been reported in a large number of

studies to closely correlate with difficulties in emotion regulation

and emotional disorders (Wager et al., 2008; Kanske et al., 2011;

Rabinak et al., 2014; Koch et al., 2016; Yang et al., 2020). In addition,

because the region of interest analysis can avoid the possibility

of false-negative results caused by numerous multiple comparison

corrections (the brain is divided into more than 6,000 voxels) in

whole-brain analyses, it may better detect small but meaningful

differences (Poldrack, 2007; Price et al., 2021).

Finally, we conclude that CEN may be closely linked to

the tendency to utilize emotion regulation strategies, depressive

symptoms, and changes in prefrontal functional connections

in adults. However, the limitations of existing literature in

the screening of subjects restrict the validity of the results.

As can be seen, the adults with childhood trauma in the

aforementioned literature were mostly accompanied by severe

physical or psychological disorders (Wang et al., 2014; Souza-

Queiroz et al., 2016; Fadel et al., 2021). Moreover, even healthy

control adults experienced some childhood trauma (including

CEN) (Wang et al., 2014; Souza-Queiroz et al., 2016). Furthermore,

some studies suggested that the relationship between CEN and

emotion regulation, depressive symptoms, and brain functional

activity might be specific to other childhood trauma subtypes.

For example, Huh et al. (2017) demonstrated that only CEN,

but not other childhood trauma subtypes, could lead to more

depressive symptoms causing less frequent utilization of adaptive

emotion regulation strategies. Similarly, O’Mahen et al. (2015)

found that only CEN could exacerbate depressive symptoms

through avoidance strategies. Dannlowski et al. (2013) discovered

that just CEN, rather than other childhood trauma subtypes,

was the most critical predictor of abnormal brain activity when

individuals watched sad faces. The latter has been linked to many

negative emotional symptoms. Thus, further research is needed to

investigate whether there is a strong relationship between primary

CEN experience and emotion regulation strategies, depressive

symptoms, and resting state prefrontal functional connectivity

abnormalities in healthy college students without psychological

disorders, with interference from other traumatic experiences

excluded whenever possible.

Accordingly, the present study aims to explore the relationships

among primary CEN, the tendency to utilize emotion regulation

strategies, depressive symptoms, and resting state prefrontal

functional connections by combining Childhood Trauma

Questionnaire (CTQ), Emotion Regulation Questionnaire (ERQ),

Baker Depression Inventory-II (BDI-II), and rs-fMRI. First, two

groups of healthy college students with primary CEN (neglect

group) and no childhood trauma (control group) were screened by

evaluating CTQ and clinical interviews by psychiatrists. Second,

between the two groups, ERQ and BDI-II were used to investigate

the differences in the tendency to utilize emotion regulation

strategies and depressive symptoms, and rs-fMRI was used to

investigate the differences in prefrontal functional connections.

Finally, combined with the questionnaire and imaging data,

the potential mediating role of emotion regulation strategies in

the relationship between prefrontal functional connections and

depressive symptoms was explored.

This study’s hypotheses are as follows: (1) The neglect group

may utilize the adaptive strategy (reappraisal) less frequently and

have more depressive symptoms; (2) There may be significant

differences in prefrontal functional connections with other brain

regions between the two groups; and (3) The prefrontal functional

connections with other brain regions may be significantly

correlated with the scores of emotion regulation strategies and
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depressive symptoms, and emotion regulation strategies may

mediate the relationship between the above functional connections

and depressive symptoms.

2. Methods

2.1. Participants

Potential participants were screened by the online survey

from March to June 2020. A total of 5,010 college students

from four universities in Tianjin, China, participated in the

survey. The content included Childhood Trauma Questionnaire

(CTQ) and relevant demographic information (age, gender, student

origin distribution, and whether only child). There were 4,566

questionnaires with complete details that were carefully answered,

with an effective completion rate of 91.14%. After a minimum

of 1 month, video interviews were conducted with potential

participants identified in the initial investigation, including the

retesting of CTQ, screening for mental illness, and significant

physical hazards [completed jointly by two attending psychiatrists

according to the DSM-IV-TR Axis I Clinical Examination Patient

Edition for Disorders (SCID-I/P)].

The cutoff scores of CTQ subscales recommended by relevant

studies were used as the basis for screening the two groups of

participants for a formal experiment (Sáez-Francàs et al., 2015; Lu

et al., 2016; Frodl et al., 2017; Kim et al., 2018; Peters et al., 2018;

Wu et al., 2021). The inclusion criteria for the neglect group were

as follows: emotional neglect ≥15, emotional abuse <12, physical

abuse <9, sexual abuse <7, and physical neglect <9; for the control

group: emotional neglect, emotional abuse, physical abuse, sexual

abuse, and physical neglect all scored aminimum of 5. All the above

results were consistent across two CTQ assessments for each group.

Exclusion criteria for both groups were (1) anymental disorder that

met the diagnostic criteria for the DSM-IV-TR axis I; (2) severe

physical diseases, such as hypertension, diabetes, heart disease,

thyroid disease, and basic metabolic diseases; (3) head injury with

coma lasting for more than 5min; (4) epilepsy or febrile seizures;

(5) receiving or having received electroconvulsive, acupuncture,

and other physical therapy; (6) being pregnant or planning to be

pregnant; and (7) contraindications for MRI.

The final number of participants was 21 in the neglect group

(10 male participants, 19.19 ± 0.68 years old) and 26 in the

control group (13 male participants, 19.04 ± 0.87 years old). All

the participants signed the informed consent and received specific

remuneration after the study. The ethics committee of Tianjin

Normal University approved the experimental scheme.

2.2. Questionnaire

2.2.1. Childhood trauma
The childhood trauma of college students was assessed using

the Chinese version of the Childhood Trauma Questionnaire-Short

Form (CTQ-SF, Bernstein et al., 2003), translated and revised by

Zhao et al. (2005). It is a retrospective self-assessment questionnaire

with 28 items, assessing five factors, namely, emotional abuse,

physical abuse, sexual abuse, emotional neglect, and physical

neglect. Each factor contains five items; each is rated on a five-

point Likert scale from 1 (never) to 5 (always). The higher the

subscale scores and total score are, the more serious the individual’s

childhood trauma is. The Chinese version was tested on 819 high

school students, and the reliability and validity were good (Zhao

et al., 2005). In this study, Cronbach’s α coefficient of the total scale

was 0.80.

2.2.2. Emotion regulation strategies
The emotion regulation strategies of college students were

assessed using the Chinese version of the Emotion Regulation

Questionnaire (ERQ, Gross and John, 2003), translated and

revised by Wang et al. (2007). It is a retrospective self-assessment

questionnaire with 10 items, assessing two factors: reappraisal and

suppression. The reappraisal factor contains six items and the

suppression factor contains four items; each is rated on a seven-

point Likert scale from 1 (strongly disagree) to 7 (strongly agree).

The higher each subscale score is, the more likely the individual

will utilize this strategy. The Chinese version was tested on 1,163

college students, and the reliability and validity were good (Wang

et al., 2007). In this study, Cronbach’s α coefficient of the reappraisal

was 0.86 and the suppression was 0.71.

2.2.3. Depressive symptoms
The depressive symptoms of college students were assessed

using the Chinese version of the Beck Depression Inventory-II

(BDI-II, Beck et al., 1996), translated and revised by Yang et al.

(2014). It is a retrospective self-assessment questionnaire with

21 items, assessing two factors, namely, cognitive-affective and

somatic. The cognitive-affective factor contains 16 items, and the

somatic factor contains five items; each is rated on a four-point

Likert scale from 0 (no symptoms) to 4 (pronounced symptoms).

The higher the subscales scores and total score are, themore serious

the individual’s depressive symptoms are. The Chinese version was

tested on 2,797 college students, and the reliability and validity were

good (Wang et al., 2018). In this study, Cronbach’s α coefficient of

the total scale was 0.90.

2.2.4. Socioeconomic status in childhood
Previous studies have found that childhood socioeconomic

status represented by family economic status, education level, and

work status of the father and mother may be associated with

changes in adulthood brain functional activities (Ly et al., 2011;

Neville et al., 2013; Muscatell, 2018). Therefore, parent’s education

level and work status and also the subjective perceived family

economic status during childhood were additionally collected as

covariates in the following analysis of brain function to exclude

the interference of the differences between groups in childhood

socioeconomic status on the results. According to the study of

Luo and Waite (2005), parents’ education level was divided into

six dimensions: 1 = none, 2 = primary school, 3 = junior

middle school, 4 = high school or technical secondary school, 5

= university or junior college, and 6 = master’s degree or above.

Parents’ work status was divided into seven dimensions: 1 =

none, 2 = education system, 3 = health system, 4 = state-owned

enterprises, 5 = government departments, 6 = private enterprises,
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and 7 = others. The subjective perceived family economic status

was divided into three dimensions: 1 = poor, 2= medium, and

3= rich.

2.3. Resting-state fMRI data collection and
preprocessing

2.3.1. Data collection
All the rs-fMRI data were collected at Tianjin Normal

University. ERQ and BDI-II were completed before fMRI scanning

using the Siemens MAGNETOM Prisma 3.0T Scanner and

64-channel head coil. The participants were supine and we placed

a sponge pad inside the coil to fix their heads. They were asked to

keep their heads and bodies still and their eyes focused on the cross

on the screen without systematic thinking. For the resting state

functional imaging, ABI1_bold_rest sequence and sagittal scanning

were used, TR = 2,000ms, TE = 30ms, FA = 90◦, FOV = 224 ×

224mm, matrix = 112 × 112, voxel size = 2 × 2 × 2mm, slices

= 75, slice thickness = 2mm, no interval, time points = 240, and

acceleration factor = 3. The acquisition time was 495 s. For the

whole brain structural imaging, ABI1_t1iso_mprage sequence and

sagittal scanning were used; TR= 2,530ms, TE= 2.98ms, FA= 7◦,

FOV = 256 × 256mm, matrix = 256 × 256, voxel size = 1 ×

1 × 1mm, slices = 192, slice thickness = 1mm, no interval. The

acquisition time was 363 s.

2.3.2. Data preprocessing
DPABI V4.3 (http://rfmri.org/dpabi) was used for data

preprocessing. The steps included are as follows: (1) The images

were retained in the NIFTI format; (2) The first 10 time points

were deleted; (3) Slice-time correction, considering that rs-fMRI

adopted the sequence with acceleration factor = 3, MATLAB

R2015b (MathWorks, http://www.mathworks.com/) was used to

find the reference time point of each participant, then SPM12

(http://www.fil.ion.ucl.ac.uk/spm) was used to conduct slice-time

correction according to the reference time point; (4) Motion

correction, the data that translation exceeds 1.5mm and rotation

exceeds 1.5◦were deleted (two in the neglect group and one in

the control group, see Appendix 1 for details); (5) Normalization,

DARTEL was used to normalize functional images into Montreal

Neurological Institute (MNI) space: the structural images of each

participant were registered into the average functional images, and

then the structural images were divided into gray matter, white

matter, and cerebrospinal fluid, so a matrix was generated; finally,

the functional images were normalized to the MNI standard space

by using the matrix generated when the structural images were

segmented with resampling voxel size = 2 × 2 × 2mm; and (6)

spatial smoothing (FWHM= 6× 6× 6 mm).

3. Statistical analysis

3.1. Demographic and questionnaire data
analysis

SPSS 25.0 (IBM Corporation, Armonk, NY, USA) was used to

conduct an independent sample T-test for the age of the two groups

(p < 0.05) and a chi-square test for other demographic variables

(p < 0.05). An independent sample t-test was conducted for the

CTQ subscales scores, BDI-II total score, and ERQ reappraisal and

suppression scores (p <0.05).

3.2. Functional connection analysis of the
prefrontal lobe and its correlation and
mediation analysis with questionnaire data

3.2.1. Extracting PFC subregions as ROI
According to the Brainnetome Atlas (BN Atlas) developed

by the Brainnetome Center, Institute of Automation, Chinese

Academy of Sciences (http://atlas.brainnetome.org, see Appendix 2

for details), we marked all the 68 subregions of PFC (BN1-68).

After that, REST V1.8 (http://www.restfmri.net/forum) was used to

extract binary masks for these subregions of ROI.

3.2.2. Voxel-wise functional connection analysis
(1) After smoothing, the data were used to extract and

remove covariates (including linear drift trend, Friston 24 head

parameters, cerebrospinal fluid, and white matter), and then band-

pass was filtered (0.01∼0.1Hz). ROIs were the aforementioned

68 subregions of PFC extracted from the BN Atlas. The average

time series of all the ROIs of the two groups were extracted, their

linear correlation coefficients with the voxels of the whole brain

were calculated, and then Fisher-z transformation to obtain the

zFC statistical map was conducted. (2) A total of 10 items of

FD Jenkinson head movement parameters, age, gender, whether

only child, student origin distribution, education level, work status

of parents, and subjective perceived family economic status in

childhood were taken as covariates (the same below), and two-

sample t-test was conducted on the zFC statistical map of each

ROI of the two groups using SPM12. Two methods, “family wise

error rate” (FWE, p < 0.05) and “false discovery rate” (FDR, p <

0.05), were used for multiple corrections as the first and second

options. If the results cannot pass the above multiple corrections,

according to previous studies (Petersen et al., 2017; Lin et al.,

2020; Schneider et al., 2021), the method “a threshold of p <

0.001 (uncorrected at the voxel level) followed by an empirically

determined threshold of p < 0.05 (FWE at the extent level)” was

used as the third option. All the clusters with significant differences

between the two groups were labeled according to the BN Atlas

and compared with AAL (Anatomical Automatic Labeling) using

xjView. (3) Taking the central coordinate of the above clusters

with significant differences between the two groups as the center

of the circle and 3mm as the radius, DPABI V4.3 was used to

extract the zFC values of the clusters. The correlation analysis

was conducted with the questionnaire data (the ERQ reappraisal

and suppression scores, and the BDI-II total score), controlling all

covariates (Bonferroni correction). (4) If some zFC values were

significantly correlated with the ERQ reappraisal or suppression

score and BDI-II total score simultaneously, the BDI-II total score

was taken as the dependent variable and the zFC values and ERQ

reappraisal or suppression scores were taken as the independent

and mediating variables, respectively; in turn, a mediation analysis

was conducted controlling all covariates.
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TABLE 1 Di�erences in questionnaire data between the two groups (n = 47).

Variables Neglect group (n = 21) Control group (n = 26) Cohen’s d t p

n M ± SD n M ± SD

CTQ:CEN 21 16.00± 1.22 26 5.00± 0.00 12.751 45.918 <0.001

CTQ:emotional abuse 8.10± 2.43 5.00± 0.00 1.804 6.520 <0.001

CTQ:physical abuse 6.05± 1.40 5.00± 0.00 1.061 3.838 <0.001

CTQ:sexual abuse 5.52± 0.81 5.00± 0.00 0.908 3.292 0.002

CTQ:physical neglect 7.76± 1.34 5.00± 0.00 2.913 10.553 <0.001

ERQ:reappraisal 27.29± 5.02 34.08± 5.47 −1.293 −4.388 <0.001

ERQ:suppression 15.57± 4.65 13.85± 4.75 0.366 1.250 0.218

BDI-II:total 16.38± 7.43 4.19± 4.32 2.001 7.031 <0.001

4. Results

4.1. Di�erences in demographic and
questionnaire data between the two groups

4.1.1. Di�erences in demographic data between
the two groups

There was no significant difference between the two groups

regarding age, gender, whether only child, student origin

distribution, parents’ education level, and work status in childhood

(p> 0.05). However, there were significant differences in subjective

perceived family economic status in childhood (p = 0.005) (see

Appendix 3 for details).

4.1.2. Di�erences in questionnaire data between
the two groups

As shown in Table 1, all CTQ subscales scores and the BDI-II

total score in the neglect group were significantly higher than those

in the control group (p< 0.001), and the ERQ reappraisal score was

significantly lower than that in the control group (p< 0.001). There

was no significant difference in the ERQ suppression score between

the two groups (p > 0.05).

4.1.3. Correlation and linear regression analysis of
questionnaire data

Controlling all covariates, partial correlation analysis showed

that only the ERQ reappraisal score was significantly negatively

correlated with the BDI-II total score (r = −0.597, pcorrection
< 0.001). In contrast, the ERQ suppression score was not

significantly correlated with the BDI-II total score (r = −0.032,

pcorrection > 0.05).

Controlling all covariates, linear regression analysis further

proved that the ERQ reappraisal score was significantly negatively

correlated with the BDI-II total score [Beta = −0.698, t = −5.401,

p < 0.001, 95.0% confidence interval (−1.310, –−0.586)].

4.2. Di�erences in the functional
connections of PFC subregions between
the two groups and the correlation with
questionnaire data

4.2.1. Di�erences in the functional connections of
PFC subregions between the two groups

There was no significant difference between the two groups that

could pass the multiple corrections of FWE and FDR. However,

some clusters with significant differences between the two groups

could pass the multiple corrections of the third method [p < 0.001

(uncorrected at the voxel level) followed by p < 0.05 (FWE at the

extent level)]. In addition, the results indicated that BN7 (with

BN179 and BN122), BN40 (with BN12 and BN51), BN46 (with

BN22 and BN166), BN3 (with BN232), BN8 (with BN3), BN11

(with BN64), BN12 (with BN64), BN16 (with BN3), BN20 (with

BN46), BN36 (with BN204), BN38 (with BN3), BN39 (with BN62),

BN42 (with BN23), BN44 (with BN64), BN47 (with BN221), and

BN52 (with BN204) showed more robust functional connections

in the neglected group than those in the control group (see

Appendix 4 for details).

4.2.2. Correlation between the functional
connections of PFC subregions and questionnaire
data

As shown in Table 2, four functional connection values between

PFC subregions and other brain regions significantly correlated

with questionnaire data. After controlling for all covariates,

partial correlation analysis showed that two functional connection

values were only significantly negatively correlated with the ERQ

reappraisal score, namely, FC: BN3–BN232 (the right thalamus in

the AAL Atlas) and FC: BN11–BN64 (the right Rolandic oper in

the AAL Atlas), as shown in Figure 1. Moreover, two functional

connection values were significantly negatively correlated with

the ERQ reappraisal score and significantly positively correlated

with the BDI-II total score, namely, FC: BN12–BN64 (right

Rolandic Oper in AAL Atlas) and FC: BN46–BN22 (right

Frontal Mid in AAL Atlas), as shown in Figure 2. Functional
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TABLE 2 Functional connections (neglect group > control group) significantly correlated with the questionnaire data (n = 45).

ROI Brain regions functionally connected with the ROI Voxels t MNI coordinates (x, y, z)

Label ID Gyrus

BN3 (Left superior frontal

gyrus)

232 Right thalamus 208 5.92 12,−2, 4

BN11 (Left superior frontal

gyrus)

64 Right precentral gyrus 126 4.61 52, 8, 14

BN12 (Right superior frontal

gyrus)

64 Right precentral gyrus 232 6.30 52, 8, 14

BN46 (Right orbital gyrus) 22 Right middle frontal gyrus 236 5.69 44, 56, 6

FIGURE 1

Functional connections (neglect group > control group) significantly correlated with ERQ: reappraisal. Left: Brain regions functionally connected

with the ROIs. Right: Scatter plot of the correlation between the FC value and ERQ reappraisal. All the p-values underwent Bonferroni corrections.

connection values were not significantly correlated with the ERQ

suppression score.

According to the results of partial correlation analysis, taking

the ERQ reappraisal score and the BDI-II total score as dependent

variables, the functional connection values significantly correlated

with the two scores and all the covariates as common independent

variables, and a linear regression analysis was conducted. It was

found that only FC: BN46–BN22 was significantly negatively

correlated with the ERQ reappraisal score [Beta = −0.603, t =

−3.312, p = 0.004, 95.0% confidence interval (−31.037, −7.001)]

and significantly positively correlated with the BDI-II total score

[Beta = 0.477, t = 2.750, p = 0.012, 95.0% confidence interval

(5.013, 36.131)].

The results of linear regression analysis indicated that

by taking FC: BN46–BN22 as the independent variable,

the BDI-II total score as the dependent variable, and the

ERQ reappraisal score as the mediating variable, a mediation

analysis was conducted, controlling all covariates. The indirect

and total effects were significant, suggesting that the ERQ

reappraisal score wholly mediated the relationship between

FC: BN46–BN22 and the BDI-II total score, as seen in

Figure 3.

Logically speaking, the functional connections of PFC may also

mediate the relationship between the ERQ reappraisal score and the

BDI-II total score, so the following steps were attempted. By taking

the ERQ reappraisal score as the independent variable, the BDI-II

total score as the dependent variable, and FC: BN46–BN22 as the

mediating variable, a mediation analysis was conducted, controlling

all covariates. The results showed that FC: BN46–BN22 could not

mediate the relationship between the ERQ reappraisal score and the

BDI-II total score, as shown in Appendix 5.

5. Discussion

This study investigated the relationships between the tendency

to utilize emotion regulation strategies, depressive symptoms, and

the functional connections of the PFC in college students with
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FIGURE 2

Functional connections (neglect group > control group) significantly correlated with ERQ: Reappraisal and BDI-II: Total. Left: Brain regions

functionally connected with the ROIs. Right: Scatter plot of the correlation between the FC value and ERQ reappraisal and BDI-II: Total. All the

p-values underwent Bonferroni corrections.

FIGURE 3

A mediation analysis of FC: BN46-BN22 with ERQ reappraisal and BDI-II total. **p < 0.01.

primary CEN, based on a questionnaire survey and the rs-fMRI

technique. The questionnaire survey results showed that the BDI-II

total score in the neglect group was significantly higher than that

in the control group, and the ERQ reappraisal score in the neglect

group was considerably lower than that in the control group.

However, the two groups had no significant difference in the ERQ

suppression score. Brain-behavior correlation analysis revealed

that the functional connection value of BN46 with BN22 was

significantly negatively correlated with the ERQ reappraisal score

and significantly positively correlated with the BDI-II total score;

the ERQ reappraisal score was significantly negatively correlated

with the BDI-II total score. The ERQ reappraisal score wholly

mediated the relationship between the functional connection of

BN46 with BN22 and the BDI-II total score.

5.1. Relationships among primary CEN,
emotion regulation, and depressive
symptoms

Shipman et al. (2005) found that children who experienced

chronic emotional neglect tended to develop psychological

disorders in adulthood due to the less utilization of adaptive

emotion regulation skills such as reappraisal. Wang et al. (2017)

also found that adults with depression had experienced CEN, and

this experience was correlated with the tendency to utilize adaptive

emotion regulation strategies less frequently. These results provide

a reliable basis for the view that relationships may exist between

CEN, the tendency to utilize emotion regulation strategies, and

depressive symptoms in adulthood. In the present study, taking
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healthy college students with primary CEN, the BDI-II total score

in the neglect group was significantly higher than that in the control

group, and the ERQ reappraisal score was considerably lower than

that in the control group. Moreover, the ERQ reappraisal score

was significantly negatively correlated with the BDI-II total score,

further verifying the above views.

According to Gross’s emotion regulation process model,

reappraisal may be more adaptive and protective than suppression.

Reappraisal is one of the antecedent-focused emotion regulation

strategies because it focuses on helping individuals reinterpret and

understand the nature and significance of the situation or stimulus

that triggers their emotions and makes them take action at the

early stage of the emotion generation process (Gross, 2002). The

aforementioned characteristics of reappraisal make it possible to

effectively control improper emotional expression, improve the

bad subjective emotional experience, and simultaneously reduce an

excessive emotional physiological response (Gross, 1998; Ochsner

et al., 2002; Ray et al., 2010; Kim and Hamann, 2012). Individuals

who often use the reappraisal strategy have better emotional

and mental health (Gross and John, 2003). Compared with

reappraisal, suppression may only forcibly reduce the impulse of

negative emotional expression. For individuals who often use the

suppression strategy, their negative experience and corresponding

physiological response may not be effectively improved (Gross and

Levenson, 1997; Harris, 2001).

The results suggest that although primary CEN may not

necessarily induce depression that meets the clinical diagnostic

criteria, it may be more prone to related depression symptoms.

Because these individuals may choose the reappraisal strategy

less frequently to deal with significant emotional events, it is

also necessary for college educators to pay attention to the daily

emotional state of these individuals to avoid the occurrence of

psychological crises.

5.2. The mediating role of the reappraisal
strategy in the relationship between the
functional connections of PFC and
depressive symptoms

Previous studies found that depression patients with CEN

had abnormal brain functional connections related to emotion

regulation, particularly the PFC (Wang et al., 2014; Souza-Queiroz

et al., 2016; Duque-Alarcón et al., 2019). Based on the result

from questionnaire data in this study, we further explored the

relationships among brain functional connections in the resting

state, emotion regulation strategies, and the depressive symptoms

of individuals with primary CEN. The results showed that

compared with the control group, the neglect group had a more

robust functional connection between BN46 (right orbital gyrus)

and BN22 (right middle frontal gyrus). The value of the functional

connection was significantly negatively correlated with the ERQ

reappraisal score and significantly positively correlated with the

BDI-II total score. Furthermore, mediation analysis further found

that the ERQ reappraisal score wholly mediated the relationship

between the functional connection and the BDI-II total score.

These findings are the first to fully reveal the relationships among

CEN, emotion regulation strategies, depressive symptoms, and

resting-state brain function in adulthood.

It has been suggested that the orbitofrontal cortex (OFC) plays

an essential role in receiving and processing emotional information

and expressing and controlling dynamic behavior by suppressing

unwanted or uncomfortable feelings and related neural activities

(Shimamura, 2000). However, some studies revealed that OFC had

a top-down suppressing effect on the amygdala affecting negative

emotional symptoms (Price, 2007; Salzman and Fusi, 2010). For

example, Zhang et al. (2014) found that the functional connections

of OFC with the amygdala in patients with MDD were significantly

decreased compared with those of the control group. There is

growing evidence that the middle frontal gyrus (MFG) could

regulate the function of OFC. MFG is a part of the dorsal attention

network (DAN), which participates in goal-oriented top-down

processing and plays a crucial role in emotion regulation tasks

involving high-order cognition (such as utilizing the reappraisal

strategy) (Corbetta and Shulman, 2002). The changes in the

activity in MGF may affect the evaluation and feedback process

of the emotional stimulus of OFC, leading to possible emotional

disorders (Ochsner et al., 2004; Eippert et al., 2007). For example,

Xu et al. (2017) found that compared with healthy people,

people with schizophrenia exhibited a series of cognitive and

emotional disorders, and the functional connections of the bilateral

orbitofrontal gyrus with right MGF significantly decreased.

Interestingly, this study found the prefrontal functional

connection to be significantly positively correlated with the

score of depressive symptoms, which was inconsistent with some

previous study results. For example, Wang et al. (2014) found

that the prefrontal functional connections of patients with MDD

significantly got reduced compared with that of healthy people.

One possible explanation for these differences is that the subjects

in those studies were patients diagnosed with depression or other

psychological diseases. In addition, even among patients with

depression, the prefrontal lobe activity or the strength of functional

connections may not be reduced. Xu et al. (2019) found that

compared with healthy people, the ALLF of the left inferior frontal

gyrus orbital in patients with MDD significantly increased. It is

speculated that the neglect group in this study had more robust

prefrontal functional connections and more depressive symptoms,

which may be a compensatory mechanism developed by them to

offset the increase of depressive symptoms related to CEN.

5.3. Limitations

There are some limitations in this study. (1) It is difficult

to obtain the dynamic changes of the process of the emotion

regulation ability, depressive symptoms, and neural activities

during the period of experiencing CEN and later the longer life

cycle, especially the relationship between the time factor and the

above variables. (2) To manipulate the variable of CEN better,

the inclusion criteria of the control group adopted the strict

standard of no childhood traumatic experience, but this also

blocked the possibility of taking CEN as a continuous variable to

investigate its relationship with emotion regulation strategies and

depressive symptoms. (3) The data analysis method of rs-fMRI

is not comprehensive. For example, the relationships among
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brain local functional activities (ALFF and ReHo), the topological

attributes of the brain network and emotion regulation strategies,

and depressive symptoms have not been investigated. (4) The

multiple correction standard used for brain imaging analysis was

not stringent enough. In the future, it is necessary to expand the age

range of subjects, make more effective screening by the extensive

use of multiple tools, and use more comprehensive data analysis

methods to explore the relationships among primary CEN and

emotion regulation, depressive symptoms, as well as the functional

brain activity.

6. Conclusion

For the first time, this study investigated the relationships

among primary CEN, adulthood emotion regulation strategies,

depression symptoms, and prefrontal functional connections.

The results showed that college students with primary CEN

utilized the reappraisal less frequently and had more depressive

symptoms and more robust prefrontal functional connections.

Moreover, the tendency to utilize the reappraisal strategy mediated

the relationship between prefrontal functional connections and

depression symptoms. The results suggest that primary CEN may

closely correlate with more depressive symptoms in adulthood.

Moreover, the more robust spontaneous activity of the prefrontal

lobe may also be closely associated with more depressive symptoms

by utilizing the reappraisal strategy less frequently.
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