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We examine the bistable transmission non-reciprocity in a four-mode optomechanical system, where a mechanical oscillator interacts with one of three coupled optical cavities so as to generate an asymmetric optomechanical non-linearity. Two transmission coefficients in opposite directions are found to exhibit non-reciprocal bistable behaviors due to this asymmetric optomechanical non-linearity as the impedance-matching condition is broken for a not too weak input field. Such a bistable transmission non-reciprocity can be well manipulated to exhibit reversible higher isolation ratios in tunable wider ranges of the input field power or one cavity mode detuning by modulating relevant parameters like optical coupling strengths, optomechanical coupling strengths, and mechanical frequencies. This optomechanical system provides a flexible platform for realizing transmission non-reciprocity of weal light signals and may be extended to optical networks with more coupled cavities.
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1 INTRODUCTION
Cavity optomechanics, focusing on enhanced radiation pressure interactions between light fields and mechanical motions, has attracted extensive experimental and theoretical interests owing to its wide applications in processing quantum information, measuring weak signals, and developing new devices [1–9]. Various optomechanical systems have been proposed and fabricated to realize non-trivial tasks and interesting phenomena, such as entanglement generation between cavity and mechanical modes [10–15], ground-state cooling of mechanical resonators [16–20], optomechanically induced transparency (OMIT) and absorption (OMIA) [21–26], Bell non-locality verification [27], parity-time (PT) symmetry-breaking chaos [28], and tumor structural imaging [29]. We note in particular that optomechanical systems can provide an effective avenue for implementing non-reciprocal devices, like isolators and circulators, required in constructing all-optical communication networks [30–34].
Non-reciprocal devices promise the transmission of signals in one direction while blocking those propagating in the opposite direction and can be utilized to avoid unwanted interference of signals and protect optical sources and systems from noises [35–42]. Breaking reciprocity or time reversal symmetry is typically accomplished with magneto-optical effects [43–45] and has resulted in the emergence of new physics such as topologically protected one-way photonic edge modes [46] and non-reciprocal behaviors in giant atom systems [47, 48]. Unfortunately, magneto-optical effects are not present in standard optoelectronic materials including most metals and semiconductors and may result in crosstalk and other problems hampering on-chip implementations. This is why non-magnetic approaches for achieving optical non-reciprocity have been extensively studied with significant advances, for example, in chiral atomic systems [49–51] and optomechanical systems [30–34]. The latter includes, for instance, a three-mode optomechanical system with additional gain in one cavity [31] and a two-cavity optomechanical system with a blue-detuned driving [32].
Coupled micro-cavities are essential elements for constructing quantum information networks in that they are scalable via mode swapping or fiber coupling, compatible with mechanical oscillators and other elements, and easy to be controlled by driving fields. With this consideration, here we extend previous works [30–34] to seek more flexible manipulations on optical non-reciprocity by investigating a four-mode optomechanical system with three optical cavities and one mechanical oscillator. This system is found to exhibit an asymmetric optomechanical non-linearity, which then result in staggered bistable behaviors of two opposite-direction transmission coefficients, under the broken impedance-matching condition. Numerical results show in particular that quite a few parameters can be modulated on demand to manipulate, in different ways, the upper and lower stable branches of both transmission coefficients. This allows us to tune and widen non-reciprocal ranges in terms of the input power or a cavity detuning on the one hand, while improve isolation ratio and reverse isolation direction with respect to transmission coefficients on the other hand.
2 MODEL AND EQUATIONS
We consider a cavity optomechanical system consisting of three optical modes described by annihilation operators a1, a2, and a3 and a mechanical mode described by position operator q and momentum operator p, as shown in Figure 1. These optical and mechanical modes exhibit frequencies ω1, ω2, ω3, and ωm, respectively. The 2nd optical mode is coupled to the 1st optical mode with strength J12, while to the 3rd optical mode with strength J23, in a linear way controlled via the in-between waveguide or fiber. The mechanical mode is coupled only to the 1st optical mode with single-photon optomechanical coupling strength g. A driving field of frequency ωd is applied to excite the 1st optical mode with annihilation operator a1,in or the 3rd optical mode with annihilation operator a3,in. With these considerations, we can write down the following Hamiltonian (ℏ = 1):
[image: image]
where γj,e has been taken as the coupling constant to the driving field, that is, the external decay rate, of the jth optical mode. It is worth noting that the jth optical mode also exhibits an intrinsic decay rate γj,i so that its total decay rate turns out to be γj = γj,i + γj,e. Then we can define ηj = γj,e/γj as an effective coupling ratio with ηj = 0 denoting a vanishing coupling, while ηj = 1 denoting the maximal coupling. To be more specific, our optomechanical system may be implemented either with a vibrational membrane coupled to one of three Fabry-P[image: image]rot cavities, or with an optomechanical crystal coupled to one of three photonic crystal cavities [52].
[image: Figure 1]FIGURE 1 | (Color online) Schematic of an optomechanical system consisting of three cavities described by optical modes a1, a2, and a3 as well as a membrane described by position q and momentum p. This system could be driven by an input field a1,in and exhibit an output field a3,out, or driven by an input field a3,in and exhibit an output field a1,out. Here, g denotes the optomechanical coupling strength, while Jlk represents the coupling strength between optical modes al and ak.
In the rotating frame of the driving frequency ωd, it is viable to attain from the Hamiltonian in Eq. 1 the following quantum Langevin equations (QLEs):
[image: image]
where Δj = ωj − ωd is defined as the detuning of the jth optical mode to the driving field, while γm refers to the decay rate of the mechanical mode. In addition, we have used a1,vac, a2,vac, a3,vac, and ξ to denote the input quantum noise operators with zero mean values ⟨a1,vac⟩ = 0, ⟨a2,vac⟩ = 0, ⟨a3,vac⟩ = 0, and ⟨ξ⟩ = 0 [54].
Each operator of the optical and mechanical modes can be split into a classical mean value and a quantum fluctuation as usual. That means, we can set aj = αj + δaj, aj,in = αj,in + δaj,in, [image: image], and [image: image] with the ansatz αj = ⟨aj⟩, αj,in = ⟨aj,in⟩, [image: image], and [image: image]. In the limit of a much stronger optical driving than the optomechanical coupling, that is, [image: image], the classical mean values and the fluctuation operators can be treated separately. Then we can determine the classical mean values, in the steady state ([image: image]), via the following equations:
[image: image]
where the mean field approximation ⟨qα1⟩ ≈ ⟨q⟩⟨α1⟩ has been taken into account. It is not difficult to see that the first (α1) and third (α3) optical modes are not reciprocal because the mean position [image: image] of the mechanical mode is just coupled to the mean amplitude α1 of the first optical mode via [image: image] with [image: image]. That means, the aforementioned equations do not remain unchanged if we exchange subscripts “1” and “3.” Therefore, a transmission non-reciprocity is expected to occur no matter the driving field comes from either one direction (α1,in ≠ 0 or α3,in ≠ 0) or both directions (α1,in ≠ 0 and α3,in ≠ 0). With these classical mean values in hand, we can attain a set of linearized QLEs for the fluctuation operators in the matrix form
[image: image]
by introducing two column vectors
[image: image]
and a coefficient matrix
[image: image]
where we have further defined [image: image], [image: image], [image: image], and [image: image]. Our optomechanical system can work in the stable regime only if all the eigenvalues of matrix A are negative in their real parts. This problem is difficult or impossible to be solved analytically but can be by numerically examined via the Routh–Hurwitz criterion [53] as adopted later.
In the following, we consider two specific cases where the driving field of amplitude [image: image] and power pin is input just from the 1st optical mode with α1,in = sin and α3,in = 0 (I), or just from the 3rd optical mode with α1,in = 0 and α3,in = sin (II). In case (I), it is easy to attain from Eq. 3 that
[image: image]
with U = g2/ωm characterizing the non-linear optomechanical interaction. Considering the input–output relation [image: image] [55, 56], we finally attain
[image: image]
In this equation, we have introduced the effective damping rate Γ, detuning [image: image], non-linear interaction strength U31, and driving amplitude ɛeff by setting
[image: image]
with newly defined coefficients
[image: image]
In case (II), we attain via a similar procedure.
[image: image]
which, when substituting into the input–output relation [image: image], finally yields
[image: image]
with a new effective non-linear interaction strength U13 = − U/γ1,e, clearly different from U31.
For convenience, we now translate Eqs 8, 12 into a unified form in terms of Xi = |αi,out|2
[image: image]
with Ueff = U13 for X1 = |α1,out|2, while Ueff = U31 for X3 = |α3,out|2. This non-linear equation indicates that Xi can take three real values, corresponding to the bistability of output against input, under appropriate conditions. One way for determining the bistable region is to take a derivative of Eq. 13 with respect to Xi, yielding
[image: image]
whose two positive roots
[image: image]
restricted by [image: image] referring to two turning points of the bistable region. That means, the solution of Eq. 15 takes three branches in the bistable region of [image: image]. The intermediate branch is known to be definitely unstable because it corresponds to the maximum (not minimum) point in an effective potential, while the upper and lower branches are usually stable, for example, in a non-linear Kerr medium [57, 58]. In our optomechanical system, the upper branch may also be unstable as the mechanical mode exhibits a negative effective damping rate owing to a heating effect in the blue-detuned or strong-driving regime, which will be numerically examined via the Routh–Hurwitz criterion [53].
The expected non-linear bistability is straightforward to be examined by two transmission coefficients:
[image: image]
referring, respectively, to a transport from the 1st optical mode to the 3rd optical mode and that from the 3rd optical mode to the 1st optical mode. Considering that U31 and U13 have different expressions, we know from Eqs 8, 12 that a3,out ≠ a1,out in general and therefore T31 ≠ T13 for light signals of amplitudes a1,in = a2,in = sin input from the opposite sides of our optomechanical system. The efficiency of such a non-reciprocal transport can be quantified by defining
[image: image]
as the isolation ratio. We should note however that it is also possible to have U31 = U13 in the case of
[image: image]
referred to as the impedance-matching condition, from which it is viable to get a critical coupling strength
[image: image]
with [image: image] independent of input power pin. It is clear that in the case of [image: image], the impedance-matching condition will be broken, and we could have unequal (optomechanical) non-linear interaction strengths U31 ≠ U13. This would result in the optical transmission non-reciprocity characterized by T31 ≠ T13 and thus Itran ≠ 0.
3 RESULTS AND DISCUSSION
In this section, we examine the effects of relevant tunable parameters on the non-reciprocal bistable transmission of light signals input from the opposite sides of our optomechanical system via numerical calculations. Most parameters are chosen based on two recent works and accessible in up-to-date experiments [31, 44], among which γ1/2π = 1.0 GHz, γ2/2π = 0.5 GHz, γ3/2π = 4.5 GHz, η1 = η2 = η3 = 0.9, ωd/2π = 300 THz, and γm/2π = 6.0 MHz are fixed in the following discussions. Numerical results will be shown in two cases where transmission coefficients T31 and T13 are plotted against input power pin and detuning Δ1, respectively, as they are much easier to modulate in regard of real applications. The main difficulty relevant to an experimental realization of our proposal lies in that the accurate preparation and arrangement of three (micro)coupled cavities of identical optical modes while different decay rates. A (micro)mechanical oscillator of proper resonant frequency and optomechanical coupling strength may also be hard to be integrated with one (micro)optical cavity.
3.1 Non-Reciprocal Transmission Against Input Power
In Figure 2, we plot transmission coefficients T31 and T13 as a function of input power pin for different optical coupling strengths J23. Figure 2A shows that transmission non-reciprocity (i.e., T13 ≠ T31 or Itran ≠ 0) cannot be attained as the impedance-matching condition is well satisfied with [image: image] GHz, though our optomechanical system works in the bistable regime. Increasing or decreasing J23 to deviate from the critical value [image: image], we can see from Figures 2B–D that transmission non-reciprocity occurs with different isolation ratios for different input powers. We have, in particular, that Itr ≈ − 4.5 dB for pin = 50 mW in the case of J23/2π = 2.0 GHz, Itr ≈ 8.0 dB for pin = 36 mW in the case of J23/2π = 1.4 GHz, and Itr ≈ 10.2 dB for pin = 25 mW in the case of J23/2π = 1.0 GHz. These results indicate that it is viable to reverse the transmission non-reciprocity from Itr < 0 to Itr > 0 (Itr > 0 to Itr < 0) as J23 is decreased (increased) to cross the critical value [image: image], and we can attain higher isolation ratios in wider bistable regions by modulating J23 to be more deviating from the critical value [image: image]. Taking Figure 2C as an example, it is also important to note that we should choose to work in the region between turning points P2 and P4 as pin is increased from a small value, while between P1 and P3 as pin is decreased from a large value. This promises for attaining a more efficient transmission non-reciprocity corresponding to a larger |Itr| because it can be evaluated with the upper branch of T31 and the lower branch of T13. Otherwise, T31 and T13 will both work in the lower or upper branch to result in well suppressed transmission non-reciprocity of smaller or vanishing |Itr|.
[image: Figure 2]FIGURE 2 | (Color online) Transmission coefficients T31 (red squares) and T13 (blue circles) against input power pin with (A) J23/2π = 1.725 GHz; (B) J23/2π = 2.0 GHz; (C) J23/2π = 1.4 GHz; (D) J23/2π = 1.0 GHz. Solid and dashed parts of each curve refer to stable and unstable regions, respectively. Other parameters are Δ1/2π = Δ2/2π = 4.5 GHz, Δ3/2π = 1.5 GHz, g/2π = 0.9 MHz, ωm/2π = 10 GHz, and J12/2π = 3.0 GHz, except those at the beginning of Section 3.
Comparing Eqs 8, 12, it is easy to see that the transmission non-reciprocity will be attained as long as we have U13 ≠ U31, which requires not only a broken impedance-matching condition but also U = g2/ωm ≠ 0. Thus, it is essential to examine in Figure 3 different effects of optomechanical coupling strength g and mechanical frequency ωm on transmission coefficients T31 and T13 plotted against input power pin. Figures 3A,B show that as g is enhanced by one order, pin required for observing the transmission non-reciprocity (in the bistable region where T13 and T31 work in the lower and upper branches, respectively) is reduced by two orders without changing the maximal isolation ratio Itr ≈ 10.2 dB. That means the observed transmission non-reciprocity exhibits an inverse dependence on input power pin and optomechanical coupling strength g. Figures 3C,D further show that the non-reciprocal region in terms of pin is not so sensitive to ωm though this region can be enlarged in the case of a larger ωm. It is more important to note that the upper branches of T31 and T13 may not be always stable and a larger ωm is helpful to reduce the unstable regions. These findings tell us how to choose g and ωm for attaining a wide enough non-reciprocal region corresponding to low enough input powers.
[image: Figure 3]FIGURE 3 | (Color online) Transmission coefficients T31 (red squares) and T13 (blue circles) against input power pin with (A) g/2π = 0.9 MHz; (B) g/2π = 9.0 MHz; (C) ωm/2π = 4.5 GHz; (D) ωm/2π = 6.5 GHz. Solid and dashed parts of each curve refer to stable and unstable regions, respectively. Other parameters are the same as in Figure 2, except J23/2π = 1.0 GHz.
Considering that the driving field and relevant optical modes are easy to be modulated in frequency, we plot in Figure 4 transmission coefficients T31 and T13 as a function of input power pin for different detunings Δ1 and Δ3. We can see from Figures 4A,B that the isolation ratio may be evidently improved in a wider non-reciprocal region by choosing a slightly larger Δ1 to well suppress the lower branches of T31 and T13, while leaving the upper branches unchanged yet in magnitude. To be more specific, we have Itr ≈ 6.1 dB for pin = 14 mW with Δ1/2π = 3.5 GHz, while Itr ≈ 13.1 dB for pin = 35 mW with Δ1/2π = 5.5 GHz. Figures 4C,D show instead that a significant increase of Δ3, though can result in a wider non-reciprocal region, will not change the isolation ratio too much as the upper and lower branches are suppressed to the roughly same extent. We also note from Figure 4B that the upper branch of T31 starts to become unstable at pin ≳ 140 mW for Δ1 = 5.5 GHz. It is thus clear that detunings Δ1 and Δ3 play different roles in manipulating the transmission non-reciprocity and can be jointly modulated for observing an ideal transmission non-reciprocity with larger isolation ratios and well suppressed lower branches for moderate input powers.
[image: Figure 4]FIGURE 4 | (Color online) Transmission coefficients T31 (red squares) and T13 (blue circles) against input power pin with (A) Δ1/2π = 3.5 GHz; (B) Δ1/2π = 5.5 GHz; (C) Δ3/2π = 0.1 GHz; (D) Δ3/2π = 6.0 GHz. Solid and dashed parts of each curve refer to stable and unstable regions, respectively. Other parameters are the same as in Figure 2, except J23/2π = 1.0 GHz.
3.2 Non-Reciprocal Transmission Against Detuning
We first plot in Figure 5 transmission coefficients T31 and T13 as a function of detuning Δ1 for different input powers pin. As the input power is very low (i.e., pin = 0.1 mW), Figure 5A shows that T31 and T13 overlap well with a symmetric peak centered at Δ1 ≈ (J12 + J23)/2 = 2 GHz, therefore leading to a vanishing transmission non-reciprocity. This can be attributed to the fact that both Eqs 8, 12 reduce to [image: image] when Ujj′|αj,out|2 with j + j′ = 4 is much smaller than [image: image]. As the input power increases to be large enough, we find from Figures 5B–D that T31 and T13 start to exhibit different bistable behaviors and thus become distinguishable on the side of Δ1 > (J12 + J23)/2 because U13 and U31 always take negative values. That means the deviation of a transmission peak from its original position may serve as a good estimation on the strength of non-linear optomechanical interaction. To be more specific, the input power pin has less influence on T13 than T31 so that the transmission non-reciprocity occurs and becomes more and more evident as pin increases. It is also noted that a larger input power always results in a wider bistable region with a higher isolation ratio at the right turning point of T31: Itr ≈ 8.5 dB at Δ1/γ1 = 4.0 for pin = 20 mW; Itr ≈ 14.3 dB at Δ1/γ1 = 6.0 for pin = 40 mW; Itr ≈ 16.2 dB at Δ1/γ1 = 7.0 for pin = 50 mW.
[image: Figure 5]FIGURE 5 | (Color online) Transmission coefficients T31 (red squares) and T13 (blue circles) against detuning Δ1 with (A) pin = 0.1 mW; (B) pin = 20 mW; (C) pin = 40 mW; (D) pin = 50 mW. Solid and dashed parts of each curve refer to stable and unstable regions, respectively. Other parameters are Δ2/2π = 4.5 GHz, Δ3/2π = 1.5 GHz, g/2π = 0.9 MHz, ωm/2π = 10 GHz, J12/2π = 3.0 GHz, and J23 = 1.0 GHz, except those at the beginning of Section 3.
Then we examine different effects of optical coupling strengths J12 and J23 by plotting in Figure 6 transmission coefficients T31 and T13 against detuning Δ1. Figures 6A,B show that a slight increase in J12 will result in an evidently identical rising of T31 and T13 but leaving their peaks roughly unchanged in position. The main difference lies in that the upper branch of T31 in Figure 6A exhibits a wider stable region than that in Figure 6B, indicating that a larger J12 helps to suppress quantum fluctuations arising from the non-linear optomechanical interaction. On the other hand, Figures 6C,D show that a slight increase in J23 can also result in an evidently identical rising of T31 and T13, but their peaks become evidently closer to each other, leading to a narrowing of the non-reciprocal bistable region as well as a reduction in the isolation ratio. These findings tell that a moderate J23 and a larger J12 are appropriate for attaining non-reciprocal bistable regions of wide enough stable upper branches and large enough isolation ratios.
[image: Figure 6]FIGURE 6 | (Color online) Transmission coefficients T31 (red squares) and T13 (blue circles) against detuning Δ1 with (A) J12/2π = 1.0 GHz; (B) J12/2π = 1.3 GHz; (C) J23/2π = 1.0 GHz; (D) J23/2π = 1.3 GHz. Solid and dashed parts of each curve refer to stable and unstable regions, respectively. Other parameters are the same as in Figure 5, except pin = 20 mW.
Finally, we examine different effects of mechanical frequency ωm and optomechanical coupling strength g by plotting in Figure 7 transmission coefficients T31 and T13 against detuning Δ1. Comparing Figures 7A,B, we can see that both T31 and T13 remain unchanged in their peak values but clearly become more inclined toward Δ1 > 0 so as to yield wider bistable regions, with the increase in g. This then results in a wider non-reciprocal transmission region considering that T31 is much more sensitive to g and thus exhibits a much wider bistable region than T13. Figures 7C,D show however that an increase in ωm is helpful to reduce the unstable region of T31 in its upper branch but meanwhile also results in a reduction of the bistable regions for both T31 and T13. These findings tell that one should choose a lower ωm and a higher g to enhance the non-linear optomechanical interaction required for attaining wider non-reciprocal transmission regions of high isolation ratios.
[image: Figure 7]FIGURE 7 | (Color online) Transmission coefficients T31 (red squares) and T13 (blue circles) against detuning Δ1 with (A) g/2π = 0.9 MHz; (B) g/2π = 1.6 MHz; (C) ωm/2π = 4.5 GHz; (D) ωm/2π = 6.5 GHz. Solid and dashed parts of each curve refer to stable and unstable regions, respectively. Other parameters are the same as in Figure 5, except pin = 20 mW.
In figures, the bistable transmission non-reciprocity occurs as the two curves for T31 and T13 do not overlap in each plot. It is thus appropriate to roughly determine a non-reciprocal bandwidth as the absolute difference of two values of pin or Δ1 corresponding, respectively, to the peak of T31 and that of T13. This non-reciprocal bandwidth is a few or tens of mW in Figures 2–4, while several times of γ1 in Figures 5–7, depending on relevant parameters like J12, J23, g, and ωm. Note also that a dynamic reciprocity, referring to the fact that a (weak) backward noise, can also be transmitted with little loss in the presence of a (strong) forward signal of high transmission, typically exists in the non-reciprocal systems based on optical non-linearities [59]. Accordingly, one limitation of our optomechanical system may be that it cannot break the dynamic reciprocity because the transmission non-reciprocity arises from a bistable non-linearity. This is clear by looking at Figures 2–4 where we have T31 ≠ T13 only when input power pin is not too small.
4 CONCLUSION
In summary, we have studied a four-mode optomechanical system for attaining the transmission non-reciprocity, in the presence of an optomechanically induced non-linearity, with respect to a driving field input from the left or right side. As the impedance-matching condition is broken, we find that transmission coefficients T31 and T13, plotted against input power pin or cavity detuning Δ1, may exhibit staggered bistable behaviors and therefore can work in the upper and lower branches, respectively. The isolation ratio of such a non-reciprocal transmission is viable to switch between Itr > 0 and Itr < 0 and can be improved in magnitude by modulating optical coupling strengths J12,23 and detunings Δ1,3 to suppress the lower branches or enhance the upper branches. It is also viable to broaden the non-reciprocal bistable region in terms of pin (Δ1) by modulating optomechanical coupling strength g and mechanical frequency ωm in addition to J12,23 and Δ1,3 (pin). But we should note that an increasing part of the upper branch may become unstable as the non-reciprocal region becomes wider, which restricts the tunable ranges of relevant parameters. Our results well extend the previous works on realizing non-reciprocal transmission in optomechanical systems and are instructive for designing non-reciprocal devices in optical networks based on coupled cavities.
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The chiral interaction between single photons in waveguides and quantum emitters has gained considerable attention. Here, we proposed a tunable quantum routing scheme with a chiral quantum system by coupling an emitter to two chiral waveguides. Conventional quantum routers can only be achieved with each port output probability no larger than 25%. But our scheme can transfer quantum information arbitrarily from an input port to another, and each port’s output probability is 100%. Besides, we investigated the influence of the Purcell factor in quantum routing properties. No matter how to change the size of the directionalities Sj or set a specific value to the dissipation of the emitter, we always found that the quantum routing has very high efficiency. Moreover, we also used a superconducting qubit coupled to two resonators to show the present scheme is pretty feasible for experimental implementation.
Keywords: photon-atom interactions, quantum router, chiral waveguides, quantum coherence, purcell factor
1 INTRODUCTION
To further improve the rapid-developing quantum information technology, the establishment of a global quantum network [1] is an inevitable trend in the future. The quantum network requires the realization of quantum entanglement [2–4] among multiple remote quantum memories [5], and enables multi-party quantum communication [6, 7]. Such a network can also be applied to quantum computing, distributing quantum precision measurement and fundamental tests of physics in large-scale space. Quantum internet is consisted of three basic elements, which are quantum nodes, quantum channels and quantum repeaters. Quantum nodes, which generate, process and store quantum information, are connected by long-distance quantum channels, while quantum repeaters establish and distribute entanglement. As one kind of node devices, quantum routers [8–22] are a key component of quantum network, which can transmit information continuously between remote quantum nodes. Photons play significant roles in the construction of quantum router because they are relatively free of the decoherence [23, 24]that plagues other quantum systems, and can be manipulated and detected easily. Thus, photon is an ideal candidate of the flying qubit. The waveguide is conveniently scalable so it can be easily integrated on the chip to expand the number of nodes in the quantum network. Based on these excellent characteristics, the coupled waveguide-emitter system has attracted extensive attention in the field in quantum information processing [25–33] and quantum network. In the last several years, numerous theoretical and experimental jobs have showed a variety of quantum router plans based on superconducting circuit [34], cavity-atom [35], coupled resonator [18, 39], optomechanical system [36], or quantum dot [37] for controlling the photonic transport in quantum networks. However, the expectable routing probabilities from the incident channel to the other quantum channels are limited to no more than 50% in all previous schemes. But in the paper by Li et al [38], they investigate the input-output relations of the system and analyze the effect of the atomic states on the photon transmission. They scheme can route the input signal into different output ports guided by the quantum states of a two-level atom, and they also realized 100% output. In this paper we also present a physical scheme that also achieves the output of 100%. In fact, for a complex quantum network, quantum nodes can not only be used for the localized generation, processing, and storage of quantum information, but also generate and process a single qubit. Therefore, improving the routing capabilities of quantum routers is crucial.
Here, we put forward a plan to realize quantum router, our scheme is composed of two chiral waveguides and a Λ-type three-level system. Similar model has been considered in Ref. [17] to demonstrate nonreciprocal few-photon scatterings. The single-photon scattering amplitudes are given analytically. The result shows that the quantum information incident from one waveguide can be redirected into another with 100% probability when the coupling is chiral. Compared to the previous quantum routing plans [18, 39–43] that are based on single photons, our design quantum routing can transport the quantum information deterministically from an input port to arbitrary output port with high efficiency. Such a chiral quantum system could be a genuinely compact, versatile, and powerful improvement to the development of a complex quantum network.
2 MODEL SETUP
The physical system configuration considered in this article is shown in Figure 1. Similar model has been considered in Ref. [17] to demonstrate nonreciprocal few-photon scatterings. The hybrid system located at x = 0 is consists of two parallel waveguides and an emitter with ground states |g⟩, intermediate state |s⟩ and excited state |e⟩. The waveguides are labeled a and b respectively. In theory, we allow these couplings to be chiral and marked as λjL and λjR (j = a, b) respectively. When a single photon is incident from the left of waveguide a, it will propagate or be reflected by the atom along with the four ports of the two waveguide channels. Specifically, in this configuration, the perfect nonreciprocity of single-photon transport means when the single photon is incident from the left of a, it will be output from the right of b with a probability of 1. The Hamiltonian of the system is given by (setting ℏ = 1)
[image: image]
where H0, Hw and HI denote the free atomic Hamiltonian, the free-transport photon in the waveguide Hamiltonian and the interactions between the atom and the waveguides Hamiltonian respectively. The free atomic Hamiltonian H0 is given by
[image: image]
where ωs (ωe) is the frequency of the intermediate (excited)state, γ and Γ account for the spontaneous emission of the state |s⟩ and |e⟩ into other modes different from the waveguide modes, e.g., free space. Ω is the Rabi frequency of the control field that is applied to couple the atomic states |s⟩ and |e⟩. The Hamiltonian of the photon mode in the two waveguides is given by
[image: image]
where ω0j space is the reference frequency. Here, we set ω0j = ω0a = ω0b. [image: image](j = a, b) is the creation operator for the right-moving (left-moving) photon along the waveguide j at position x. νg is the group velocity of a photon in waveguide j which is considered as equal in this work. The interaction Hamiltonian is given by
[image: image]
where δ represents the Dirac δ function. In this expression, we choose the four coupling constants [VaR, VaL, VbR, VbL] to be real numbers for simplicity. VaR(bR) (VaL(bL)) is the photon-atom coupling strength for the photon propagating along the right (left) direction, and due to the chiral interactions, VjR ≠ VjL (j = a, b). They are related to the final decay rates into the waveguides through [image: image]. To measure the chiral coupling character, we bring in the parameter [17].
[image: image]
[image: Figure 1]FIGURE 1 | Schematic diagram of the system. Two waveguides are chirally coupled to a Λ-type three-level system, the Λ-type three-level system is located at x = 0, and the similar model has been considered in Ref. [17].
Here, Sj = 0 when λjR = λjL, which occurs in nonchiral interaction, 0 < Sj < 1 when λjR ≠ λjL, existing chiral interaction, and whereas for maximally asymmetric coupling Sj = 1. The other relevant element is the Purcell factor [44–48], which accounts for the modification of the total decay rate of an emitter placed in the vicinity of a nanostructure, [image: image]. Finally, λj = λjR + λjL (j = a, b), which accounts for the total decay rate of the excited state |e⟩ and intermediate state |s⟩ into each of the waveguides.
We concentrate on single-photon scattering in this system. Suppose the atom is in the ground state |g⟩ at the initial time. The wave function of the system can be expressed as
[image: image]
where φjm(x) denotes the probability amplitude of the right or left propagating photon in waveguide a or b. us and ue are the amplitudes of the states |s⟩ and |e⟩, respectively, and |0g⟩ denotes the ground state, wherein there is no photon in the waveguides and the atom is at the ground state |g⟩. Suppose that the single photon is injected from the left of waveguide a, the probability that the photon propagates can be expressed as
[image: image]
Here, ta (tb) denotes the single-photon transmission amplitude in waveguide a(b) and ra (rb) denotes the single-photon reflection amplitude in waveguide a(b). θ(x) is the Heaviside step function with θ(0) = 1/2. Using the eigenequation H|ψ⟩ = ω|ψ⟩, we obtain
[image: image]
The quantum routing properties of single photons in the four ports are characterized by the transmission coefficient Ta(b) = |ta(b)|2 and the reflection coefficient Ra(b) = |ra(b)|2. The analytic expressions above provide a complete description of the single-photon transport properties of the proposed network. Obviously, the desired quantum routing can be implemented by properly designing the relevant geometric parameter and the other physical parameters.
3 IMPLEMENTING TUNABLE QUANTUM ROUTING USING CHIRAL WAVEGUIDES
In order to compare with previous research works, we first discuss the routing capability when the coupling strengths between the atom and two waveguides are equal, so the relevant photon-atom interactions are not chiral but symmetric, λaR = λaL = λ1, λbR = λbL = λ2. For simplicity, we assume λ1 = λ2, thus ra = tb = rb. When Ω = 0, single photons incident from one waveguide a will be absorbed by the atom, which transits from its ground state to excited state. Since the excited state is coupled to a continuum of states, the excited two-level atom will emit a photon spontaneously into the propagating mode of either waveguide a or b. Consequently, mediated by the atom, single photons could be routed from one quantum channel to the other. In Figure 2A, we plot the image of the coefficients Ta, Ra and Tb + Rb, respectively. Here, Tb and Rb reach the maximum value of 0.25. In Figure 2B, we plot the figure of the coefficients Ta, Ra and Tb + Rb when Ω ≠ 0. The quantum routing due to the resonant tunneling process via the two dressed states is shown by the two peaks of the transfer rate in Figure 2B. When ω/λ = 0, Ta = 1. This is the conventional scheme for single-photon routing, which has an equal probability of routing the photon to either of the two waveguides, specifically, Tb = Rb = 0.25.
[image: Figure 2]FIGURE 2 | (A,B) The coefficients Ta, Ra and Tb + Rb as functions of the ω with Ω = 0 (Ω ≠ 0). Other parameters are set as follows: ωs = ωe = 0, λ1 = λ2 = λ, γ = Γ = 0.
When the coupling is chiral, λaR ≠ λaL, λbR ≠ λbL, we assume the λaL = λbL = 0, λaR = λbR = λ. In this case, we find that ra = rb = 0, which means that the Λ-type three-level system only couples to the right-propagating mode in the two waveguides. Figure 3 shows the probabilities of routing the incident photon to various output ports with respect to specific ω/λ. It indicates that the resonant photon incident from the left of waveguide a can output from the right of waveguide b with a probability of 100% whether Ω = 0 or Ω ≠ 0. But when Ω ≠ 0, Tb has two peaks centered at ω = ±Ω. If λaL = λbR = 0, λaR = λbL = λ, we can obtain ra = tb = 0, this means that the photon incident from the left of the waveguide a may output from the right of the waveguide a or the left of the waveguide b. When ω = ±Ω, Rb = 1, this means that the single photon is transferred to waveguide b and output from the left of waveguide b with a probability of 100%. In Figure 4, we show the probabilities of routing the incident photon to various output ports with respect to specific values of ω/λ, and we find that Figure 4; Figure 3 have the same physical phenomenon.
[image: Figure 3]FIGURE 3 | Transmission spectra of the waveguide with specific chiral photon-atom interactions, λaL = λbL = 0, λaR = λbR = λ. (A–C) Ta and Tb for different Ω = (0, 0.5, 1.5). Other parameters are set as follows: ωs = ωe = 0, γ = Γ = 0.
[image: Figure 4]FIGURE 4 | Transmission spectra and reflection spectra of the waveguide with specific chiral photon-atom interactions, λaL = λbR = 0, λaR = λbL = λ. (A–C) Ta and Rb for different Ω = (0, 0.5, 1.5). Other parameters are set as follows: ωs = ωe = 0, γ = Γ = 0.
4 INFLUENCE OF DISSIPATION
In this part, we show how dissipation affects the photon routing probability. Here, we presume that λaL ≠ λaR ≠ 0 and λbR ≠ λbL ≠ 0. If ta = 0 and an incoming photon in the resonance condition (ω = ωs = ωe), we can get
[image: image]
Because λj = λjR + λjL (j = a, b) and [image: image]
[image: image]
Here, we assume that Γ = γ. Consequently, the corresponding transmission coefficient Tb can be expressed [17].
[image: image]
Note that in the ideal case the efficiency defined above is equal to 1, whereas in a realistic case the probability leakage into the undesired channels will reduce this value. In Figure 5, we plot the coefficients Tb with different Sj as functions of the Purcell factor P. We found that the lager Purcell factor P is, the lager coefficient Tb is, but the last Tb can reach a fixed value.
[image: Figure 5]FIGURE 5 | The coefficients Tb as functions of Purcell factor P. Here, Sa = Sb.
Under the resonance conditions (ω = ωs = ωe), in order to observe the effect of the atomic dissipation on quantum routing more explicitly, we assume γ = Γ = 0.005. The first case is the real system with λaR = λbR = λ and λaL = λbL = 0.05λ, and we investigate the performance of the single-photon transport compared with the ideal case. However, the classical optical field can still determine the locations of the peaks of Tb. Figure 6 shows Ta and Tb as a function of ω/λ. In Figure 6A, we find that when ω = ±Ω, Tb reaches the maximum, but the maxima is less than 1, since the probabilities of the photon output from the left of waveguide a and b are not zero. The other case is when λaR = λbL = λ and λaL = λbR = 0.05λ, and we plot the figure of Ta and Rb in Figure 7. At this point, we get the same physical phenomenon as Figure 6.
[image: Figure 6]FIGURE 6 | (A) Ta as a function of ω/λ and (B) Tb as a function of ω/λ, here, ω = ωe = ωs, γ = Γ = 0.005, λaR = λbR = λ and λaL = λbL = 0.05λ.
[image: Figure 7]FIGURE 7 | (A) Ta as a function of ω/λ and (B) Rb as a function of ω/λ, here, ω = ωe = ωs, γ = Γ = 0.005, λaR = λbL = λ and λaL = λbR = 0.05λ.
5 PHYSICAL IMPLEMENTATION
As schematically shown in Figure 8, we consider a system in which two resonators with the same fundamental mode frequencies ωR/2π = 4.896 GHz are coupled to a superconducting qubit. The coupling frequencies between the qubit and each resonator is g/2π = 96.7 MHz. In addition to the geometric coupling gab/2π = 8.4 MHz there is the qubit mediated second-order dynamic coupling which depends on the magnetic flux applied to the qubit loop and on the qubit state, and the dynamical coupling on the qubit state can be used to realize switchable coupling between the two resonators [49–51]. The Hamiltonian of the whole system for the qubit coupled to the fundamental modes of the two resonators is (setting ℏ = 1) [49, 52].
[image: image]
where ωQ is the qubit transition frequency, σz = σ+σ− − σ−σ+ and ga and gb are the qubit-resonator coupling, assumed to be real for simplicity. Furthermore, we denote the annihilation (creation) operators for the two resonators A and B as a and b (a† and b†), respectively. Under the rotating-wave approximation, the effective Hamiltonian is [52].
[image: image]
where [image: image] and [image: image]. For the measurement, the qubit is kept in the ground state and the input power is chosen such that the mean resonator population is approximately one photon on average [50]. For coupled microwave resonators, we expect to observe two resonant modes corresponding to out-of-phase and in-phase oscillating currents in the two resonators. In this way, we can measure the transmission through the individual resonators and the transmission from the input of one resonator to the output of the second resonator [50, 51].
[image: Figure 8]FIGURE 8 | chematic diagram of two transmission line resonators coupled to a superconducting qubit.
6 CONCLUSION
In summary, we implemented a targeted single-photon router by using an effective atom-photon interface with two chiral waveguides, and no matter a classical field is turned off or turned on, it can always achieve quantum routing. Using a full quantum theory, the single-photon transmission and reflection amplitudes were analytically obtained. By the numerical method, we analyzed the relevant transport properties in detail. When the coupling between the Λ-type atom system and the waveguides is non-chiral, the maximum probability for single-photon transfer from waveguide a to waveguide b is 0.5, but at this time Tb = Rb = 0.25. In other words, we cannot directionally select quantum channels for quantum information transport in this case. When the coupling is chiral, the maximum transfer probability can achieve 100% in the ideal system. What is more, we can control single photon output from the chosen port of the waveguide b. After that, we analyzed the performance of the quantum routing. Whether we change the size of the directionalities Sj or give a certain value to the dissipation of Λ-type atom, we always found that the quantum routing has very high efficiency. Moreover, we also use the quantum circuit of the superconducting qubit coupled to two resonators verification the present scheme pretty feasible for experimental implementation. Therefore, the targeted single-photon routers we proposed here provides an effective approach to build a promising optical quantum network.
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In a recent publication [S. Gan, Laser Phys. 31, 055401 (2021)], a scheme for controlling the vortex four-wave mixing (FWM) in a five-level atomic system has been put forward. Based on this work, we propose a new scheme for the spatial manipulation via four-wave mixing in a five-level atomic system when the radial index is considered. It is found that the phase and intensity of the FWM field can be spatially manipulated. More importantly, we show the superposition modes created by the interference between the FWM field and a same-frequency Gaussian beam, which can also be controlled via the corresponding parameters. Our research is helpful to understand and manipulate optical vortices and can be widely used in quantum computation and communication.
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1 INTRODUCTION
The Laguerre–Gaussian (LG) light carrying orbital angular momentum (OAM) [1] has attracted a lot of interest due to its unique amplitude and phase structures. In particular, the four-wave mixing (FWM) based on OAM light has emerged as a hot topic in recent years. For instance, Qiu et al. proposed a scheme to demonstrate the manipulation of space-dependent four-wave mixing (FWM) in a four-level atomic system [2]. By adjusting the detuning of the control field, one can effectively control the FWM output field. Yu et al. described a theoretical investigation of a FWM scheme in a six-level atomic system driven by a field with OAM and making use of two electromagnetically induced transparency (EIT) control fields [3]. The obtained results allow one to control the helical phase of the output FWM field by varying the intensities of the two EIT control fields as well as the detuning of the probe field. Quite recently, Wang et al. have also proposed some schemes to control vortex FWM carrying OAM in different nanostructures [4–6].
In this paper, we investigated the spatial manipulation via four-wave mixing in a five-level atomic system. Quite recently, we have proposed a scheme for modulating the spatial vortex FWM in a five-level atomic system [7]. However, different from this previous study, the major features of applying our considered scheme are as follows. First, the main difference between our scheme and the one in [7] is that we have shaped the LG field as a double-ring LG mode with the radial index p = 1 while in [7] the radial index is 0. This scheme has many advantages for controlling the FWM in comparison with the publication [7]. For example, the double-ring LG mode provides two FWM channels, and in different channels the spatial variation of the FWM are different. Second, in this scheme more physical parameters (e.g., the radial index p = 1) can be manipulated and hence one can select suitable radial index p to explore singularity characteristics of helical phase wavefront in nonlinear processes. Third, we display the superposition modes created by the interference between the FWM field and a same-frequency Gaussian beam, which show a more flexible intensity control or phase control for the superposition modes.
2 THEORETICAL MODEL AND EQUATIONS
We consider an atomic system as shown in Figure 1. A probe field with Rabi frequency [image: image] (Ωp0 and Rp are the amplitude and transverse radius with t being the time) is applied to the transition |2⟩ ↔|0⟩. A control field with Rabi frequency Ωc drives the transition |2⟩ ↔|1⟩. A pump field with Rabi frequency Ω1 drives the transition |3⟩ ↔|2⟩, while a LG field with Rabi frequency Ωv drives the transition |4⟩ ↔|3⟩. Here Ωv is defined as
[image: image]
where [image: image], Ωv0 is the initial Rabi frequency, r is the radius and the beam waist is ω0. ϕ is the azimuthal angle and [image: image] is the Laguerre polynomial. The radial index and azimuthal index are defined by p and l, respectively.
[image: Figure 1]FIGURE 1 | Schematic of a five-level atomic system.
Making use of the Schrödinger equation, the dynamical equations for the atomic probability amplitudes Aj(j = 1–4) in the interaction picture are given by [8].
[image: image]
[image: image]
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[image: image]
where Δp, Δc, Δ3 and Δ4 are the detunings of the fields. The [image: image] is phase mis-matching condition, and [image: image] are the wave vectors of the corresponding fields. The γn (n = 1–4) are decay rates.
Under the slowly varying envelope approximation, the propagation equations of the probe and FWM fields are governed by the Maxwell equations
[image: image]
where kp(m) is the wave number of the probe field (FWM field). κ02(04) = 2Nωp(m)|D02(04)|2/(cℏ) is the propagation constant, which is related to the frequently used oscillator strengths of the transition |0⟩ ↔|2⟩ (|4⟩). N and D02(04) are the atomic density and dipole moment between states |0⟩ and |2⟩ (|4⟩), respectively.
We assume all the atoms are in the ground state |0⟩ i.e. [image: image] and use the condition of phase matching [image: image]. By applying Fourier transformations [image: image] to Eqs 2a, 3 and obtain [9].
[image: image]
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and the Maxwell’s equations Ωp(m) obeyed as follows
[image: image]
where ω is the Fourier frequency. f1 = ω + Δp − Δc + iγ1, f2 = ω + Δp + iγ2, f3 = ω + Δp + Δ3 + iγ3, f4 = ω + Δp + Δ3 + Δ4 + iγ4, and [image: image] are the Fourier transformations of Ωp(m). The first terms on the right-hand sides of the Eq. 5 accounts for light diffraction. Light diffraction can be neglected if the propagation distance is much smaller than the Rayleigh ranges of the probe pulse or the generated FWM field [10, 11], i.e. [image: image]. We take the propagation distance z = 15 mm, the transverse characteristic dimension wT = ω0 = 0.18 mm and the wavelength of the FWM field λ ≈ 300 nm, obtaining [image: image] mm ≫ 15 mm. So it is safe to ignore diffraction in this work.
Using the initial condition [image: image], the generated FWM field is given by
[image: image]
where [image: image], [image: image] [image: image], [image: image], M = (f1f2 − |Ωc|2) (f3f4 − |Ωv|2) − |Ω1|2f1f4, with [image: image]. We can see that there exist two modes K+(ω) and K−(ω) described by the dispersion relation K(ω) = K+(ω) + K−(ω) in Eq. 6, the real part Re[K(ω)] reflects the phase while the imaginary part Im[K(ω)] represents the absorption [12].
3 RESULTS AND DISCUSSION
In this section, we aim to study the effects of the different parameters on phase and intensity of the FWM field [image: image]. In order to clearly show the spatial-dependent mechanism, the superposition modes created by the interference between the FWM field and a same-frequency Gaussian beam are also provided.
In Figure 2, we plot the phase and the normalized intensity patterns of the FWM field versus the (x, y) for different probe detuning Δp. As we expected, both the phase (Figures 2A1–A7) and intensity (Figures 2B1–B7) patterns are divided into two parts. From this figure, one can find that, upon increasing Δp from 1 MHz to ±5 MHz, the value of intensity decrease progressively while the phase twist is suppressed. The key factor is that the azimuthal dependent absorption and dispersion properties of the FWM field are modulated, which lead to the corresponding results. Moreover, the real (Figures 2C1–C7) part and imaginary (Figures 2D1–D7) part of dispersion relation K(ω) are shown in Figure 2, which have given the physical reason for the phase and the intensity patterns of the FWM field being changed in Figure 2.
[image: Figure 2]FIGURE 2 | Phase (A1–A7) and normalized intensity (B1–B7) patterns of the FWM field for different probe detuning Δp. The real (C1–C7) and imaginary (D1–D7) parts of dispersion relation K(ω) versus radius r for different probe detuning Δp. The other parameters are ω0 = 0.18 mm, Rp = 3ω0, ω = 3 MHz, z = 15 mm, p = 1, l = 2, γ1 = 1 × 10–4 MHz, γ2 = 6 MHz, γ3 = 0.66 MHz, γ4 = 0.08 MHz, Ω1 = 12 MHz, Ωv0 = 2.5 MHz, Ωc = 5.5 MHz, Ωp0 = 0.55 MHz, Δc = Δ3 = Δ4 = 0, κ02 = 200 MHz/mm, κ04 = 0.01κ02.
In Figure 3, we present the phase and the normalized intensity patterns of the FWM field for different detuning Δ3. By direct comparison in Figures 2, 3, we obtain that the situation in Figure 3 is nearly the same as the Figure 2. Such results indicate that the OAM phase is transferred to the FWM field and is modulated via detuning Δ3. Here, we also provide the real part and imaginary part of dispersion relation in Figures 3C1–C7 and Figures 3D1–D7. By increasing the detuning Δ3, both the imaginary part and real part are changing. So we can see the varying phase and intensity of the FWM field.
[image: Figure 3]FIGURE 3 | Phase (A1–A7) and normalized intensity (B1–B7) patterns of the FWM field for different detuning Δ3. The real (C1–C7) and imaginary (D1–D7) parts of dispersion relation K(ω) versus radius r for different detuning Δ3. The other parameters are the same as in Figure 2.
Next, to obtain a better understanding of the vortex modulation, we show the superposition patterns of the FWM field and a same-frequency Gaussian beam in Figure 4. As illustrated in Figure 4, the superposition patterns are extremely rotated for different detunings Δp and Δ3. The reason for this is that, due to the equiphase surface of Gaussian beam is a plane, azimuthally phase difference between the FWM field and Gaussian beam is very sensitive to detunings (Δp, Δ3), which reflects the different superposition patterns. The findings in Figure 4 imply that the OAM phase is indeed transferred to the FWM field and has a spatial dependency, which is originated from the spatial-sensitive absorption and dispersion properties induced by the three fields in the present system.
[image: Figure 4]FIGURE 4 | Superposition phase (A1–A14) and intensity (B1–B14) patterns of FWM field and the same-frequency Gaussian beam [image: image] for different Δp and Δ3. The other parameters are the same as in Figure 2.
We note that, very recently, some theoretical schemes for controlling the space-dependent FWM in atoms [2, 3] or in semiconductor quantum wells [4–6] have been proposed. Comparing with those schemes, the major features of our proposal are the following. First, we have utilized the EIT induced by a additional control beam Ωc. The EIT scheme has many advantages for controlling the FWM in comparison with the one in [2]. For example, the coherent optical FWM with the EIT condition mediated by detunings Δp or Δ3 will lead to many orders of magnitude enhancement in the amplitude of the generated wave (e.g., see Figures 2, 3). Second, Different from the results obtained in [3], we display the superposition modes created by the interference between the FWM field and a same-frequency Gaussian beam. It is found that the superposition modes can be spatially manipulated via the corresponding parameters, which show a more flexible intensity control or phase control for the superposition modes. Third, unlike in solid-state systems [4–6], nonlinear effects are highly efficient and require only low light intensities in atomic vapors, which is convenient for the experimental realization of our scheme.
Before ending this section, it is worthwhile to briefly discuss the possible experimental realization of our scheme. Such an atomic structure can be realized in cold 85Rb atoms. The designated states can be chosen as: |0⟩ = |5S1/2, F = 1⟩, |1⟩ = |5S1/2, F = 2⟩, |2⟩ = |5P3/2⟩, |3⟩ = |5D5/2⟩ and |4⟩ = |nP3/2⟩ (n > 10). Three transitions are |5S1/2, F = 1⟩ ↔|5P3/2⟩ at 780 nm, |5P3/2⟩ ↔|5D5/2⟩ at 776 nm, |5D5/2⟩ ↔|63P3/2⟩ at 1260 nm, and a Rydberg transition generated the FWM field |5S1/2, F = 1⟩ ↔|63P3/2⟩ at 300 nm.
4 CONCLUSION
In summary, we have studied the spatial manipulation via four-wave mixing (FWM) in a five-level atomic system. Interestingly, by adjusting the detunings, one can effectively modulate the phase and intensity of the FWM field when the radial index is considered. More importantly, we show the superposition modes created by the interference between the FWM field and a same-frequency Gaussian beam, which show many interesting properties. So our results may be helpful to investigate the interactions between OAM light and quantum media [13, 14].
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Understanding phases of matter is of both fundamental and practical importance. Prior to the widespread appreciation and acceptance of topological order, the paradigm of spontaneous symmetry breaking, formulated along the Landau–Ginzburg–Wilson (LGW) dogma, is central to understanding phases associated with order parameters of distinct symmetries and transitions between phases. This work proposes to identify ground-state phases of the quantum many-body system in terms of time order, which is operationally defined by the appearance of the non-trivial temporal structure in the two-time auto-correlation function of a symmetry operator (order parameter) while the system approaches thermodynamic limit. As a special case, the (symmetry protected) time crystalline order phase detects continuous time crystal (CTC). We originally discover the physical meaning of CTC’s characteristic period and amplitude. Time order phase diagrams for spin-1 atomic Bose–Einstein condensate (BEC) and quantum Rabi model are fully worked out. In addition to time-crystalline order, the intriguing phase of time-functional order is discussed in two non-Hermitian interacting spin models.
Keywords: time order, time crystal, quantum phase, Bose–Einstein condensate, non-Hermitian many-body physics, fully connected model, exotic phase
1 INTRODUCTION
A consistent theme for studying the many-body system, particularly in condensed matter physics, concerns the classification of phases and their associated phase transitions [20, 52, 68]. In the celebrated Landau–Ginzburg–Wilson (LGW) paradigm [35, 70], spontaneous symmetry breaking plays a central role with order parameters characterizing different phases of matter possessing respective broken symmetries. Other schemes for classifying phases as well as their associated transitions are, however, beyond the Landau–Ginzburg–Wilson paradigm, which are by now well accepted since first established decades ago [53, 63, 64]. For example, topological order, which classifies the gapped quantum many-body system, constitutes a topical research direction [63, 64, 66, 67]. Our current understanding categorizes gapped systems into gapped liquid phases [74] and gapped non-liquid phases, with the former broadly including phases of topological order [63, 64], symmetry-enriched topological order [9, 12, 25, 65], and symmetry-protected trivial order [10, 11, 23], while the recently discussed fracton phases [55, 56, 60] belong to the latter of gapped non-liquid phases.
Temporal properties of phases are also worthy of investigations as exemplified by many recent studies [41, 50, 69]. For instance, time crystal (TC) or perpetual temporal dependence in a many-body ground state that breaks spontaneously time translation symmetry (TTS) constitutes an exciting new phenomenon. First proposed by Wilczek [69] for quantum systems and followed by Shapere and Wilczek [54] for classical systems in 2012, TC in their original sense is unfortunately ruled out by Bruno’s no-go theorem the following year [3, 42]. Watanabe and Oshikawa (WO) reformulate the idea of quantum TC, and present a refined no-go theorem for many-body systems without too long-range interactions [62]. Continued efforts are directed at searching for continuous time crystal in open systems [4, 5, 30] and classical driven-diffusive systems [28]. Most recent efforts on this topic are directed toward non-equilibrium discrete/Floquet TC breaking discrete TTS [16, 17, 31, 51, 61, 72], particularly in systems with disorder that facilitate many-body localizations [61, 72], in addition to clean systems [19, 27, 39, 49]. Ongoing studies are further extended to open systems with Floquet driving in the presence of dissipation [14, 21, 22, 37, 46], with experimental investigations reported for a variety of systems [2, 13, 43, 47, 48, 57, 75]. A recent study addresses TC and its associated physics along the imaginary time axis [6].
We introduce time order in this work as the essential element for a new perspective to identify and categorize quantum many-body phases, based on different ground-state temporal patterns. Each quantum many-body Hamiltonian [image: image] comes with its evolution or time translation operator [image: image]. When continuous time translation symmetry is broken for operator [image: image], akin to the breaking of continuous spatial translation symmetry for operator [image: image], time crystals arise in direct analogy to spatial crystals [69]. The message we hope to convey here in this study is rooted on the dual between [image: image] and [image: image], which we argue quite generally establishes a solid foundation for time order and provides further information concerning ground-state quantum phases based on time domain properties. Different quantum many-body states with the same temporal patterns are classified into the same time order phases, of which continuous TC (CTC), a ground state with periodic time dependence breaking continuous TTS as originally proposed in Refs. [54, 69], belongs to one of them.
We will adopt the WO definition of CTC based on two-time auto-correlation function of an operator. It was first outlined in the now famous no-go theorem work [62], and it establishes a general and rigorous subtype of CTC. Recently, Kozin and Kyriienko claim to have realized such a genuine ground-state CTC in a multi-spin model with long-range interaction [33], buttressing much confidence to the search for exotic CTCs. The operational definition that we introduced for time order encompasses WO CTC as one type of time order phases. We will also explore and elaborate a variety of possible exotic phases.
2 RESULTS
2.1 Time Order
We argue that ground-state temporal properties of a quantum many-body system can be used to characterize or classify its phases. Hence, the concept of time order can be introduced analogous to an order parameter by bestowing it in the non-trivial temporal dependence. To exemplify the essence of the associated physics, we shall present an operational definition for time order and accordingly work out the exhaustive list of all allowed phases. According to the WO proposal [62], a witness to CTC is the following two-time (or unequal time) auto-correlation function (with respect to the ground state):
[image: image]
for operator [image: image] defined as an integrated order parameter (over D-spatial-dimension), or analogously the volume averaged one,
[image: image]
with [image: image] the corresponding local order parameter density operator [image: image].
If f(t) is time periodic in the thermodynamic limit, the system is in a state of CTC. This can be reformulated into an explicit operational protocol by introducing a twisted vector. For a quantum many-body system with energy eigen-state [image: image], if there exists a coarse-grained Hermitian order parameter [image: image], [image: image] is called the eigen-state twisted vector; more generally, if [image: image] is non-Hermitian, [image: image] (or [image: image]) will be called the right (or left) eigen-state twisted vector.
The orthonormal set of eigen-wavefunctions [image: image] for a system described by Hamiltonian [image: image] is arranged in increasing eigen-energies ϵi with i = 0 denoting the ground state. When the coarse-grained order parameter [image: image] is Hermitian, the ground-state twisted vector [image: image] can be expanded [image: image] into the eigen-basis. With the help of the Schrödinger equation [image: image] (ℏ = 1 assumed throughout) for the system wave function [image: image], we obtain the following equation:
[image: image]
where ηj ≡|aj|2 denotes weights of the ground-state twisted vector, η0 the corresponding ground-state weight, and ηj (with j > 0) the excited-state weight.
When the coarse-grained order parameter [image: image] is non-Hermitian, we use |v(l)⟩ and |v(r)⟩ to denote, respectively, the left and right ground-state twisted vectors and expand them analogously in the eigen-basis to arrive at [image: image] and [image: image]. In this case, we find the following equation:
[image: image]
with [image: image] weights of the ground-state twisted vector instead. Similarly, η0 and ηj (j > 0) denote, respectively, ground- and excited-state weights.
Given an order parameter [image: image], quite generally f(t) is a sum of many harmonic functions with amplitudes ηj and characteristic frequencies ωj ≡ϵj − ϵ0. Non-trivial time dependence of the two-time auto-correlation function is thus imbedded in the energy spectra of H as well as in the weights of the ground-state twisted vector. For CTC order to exist, one of the excited-state weights must be non-vanishing in the thermodynamic limit, or in rare cases, f(t) can include harmonic terms of commensurate frequencies.
If f(t) is a constant, the time dependence will be trivial. However, a subtlety appears when f(t) is vanishingly small with respect to the system size. Since what we are after is the system’s explicit temporal behavior or time dependence, it is easily washed out to f(t) = 0 by a vanishing norm of the twisted vector. Such a difficulty can be mitigated by multiplying system volume V, that is, using the twisted vector |v⟩ → V|v⟩, to check if the correlation for the bulk order parameter F(t) ≡ V2f(t) exhibits temporal dependence, or vanishes as follows:
[image: image]
When f(t) = 0 but F(t) remains a periodic function, the system can still be considered a CTC. Such a remedy surprisingly captures the essence of generalized CTC of Ref. [40].
The analysis presented above can be directly extended to excited states [59]. It is also straightforwardly applicable to non-Hermitian systems, as long as a plausible “ground state” can be identified, for example, by requiring its eigen-energy to possess the largest imaginary part or the smallest norm. Denoting the imaginary part of energy eigen-value Ei as Im(Ei), a prefactor [image: image] then arises in the auto-correlation function, leading to unusual time functional order in the classification of time order.
Therefore, quantum many-body phases can be classified according to time order. The two-time auto-correlation function-based complete operational procedure for classifying time order thus extends the definition of WO CTC as provided in Ref. [62]. Our central results can be simply stated as follows: if f(t) exhibits non-trivial time dependence, then time order exists. If f(t) = 0 but F(t) displays non-trivial time dependence instead, then generalized time order exists.
More specifically, if f(t) = const. is non-zero, the system exhibits time trivial order. The same applies when f(t) = 0 and F(t) = const. For all other situations, non-trivial time order prevails. A complete classification for all time order ground-state phases is shown in Table 1, according to the temporal behaviors of their auto-correlation functions f(t) or F(t). As discussed in Section 4, the above discussion and classification on time order can be extended to finite temperature systems as well.
TABLE 1 | Classification of the ground-state phases for a quantum many-body system.
[image: Table 1]The operational procedure outlined previously presents a straightforward approach for detecting time order, albeit with reference to an order parameter operator. Hence, more appropriately, this approach should be called order parameter assisted time order or symmetry-based (or -protected) time order to emphasize its reference to symmetry order parameter of a quantum many-body system. The twisted vector facilitates easy calculations to distinguish between different time order phases from time trivial ones, as we illustrate in the following text in terms of a few concrete examples. It is reasonable to expect that transitions between different time order phases can occur, reminiscent of phase transitions in the LGW spontaneous symmetry breaking paradigm.
2.2 Time Order Phase in a Spin-1 Atomic Condensate
A spin-1 atomic Bose–Einstein condensate (BEC) under single spatial mode approximation (SMA) [36, 44, 73] is described by the following Hamiltonian:
[image: image]
where [image: image] [image: image] denotes the annihilation (creation) operator for atom in the ground-state Zeeman manifold |F = 1, mF⟩ with corresponding number operator [image: image]. The total atom number [image: image] is conserved. p and q are linear and quadratic Zeeman shifts that can be tuned independently [38], while c2 describes the strength of spin exchange interaction.
The validity of this model is well established based on extensive theoretical [8, 24, 71, 76] and experimental [1, 7, 38, 45] studies of spinor BEC over the years. The fractional population in spin states |1, 1⟩ and |1, − 1⟩, [image: image], with [image: image], is often chosen as an order parameter [1, 15, 34, 71] with N assuming the role of system size. The ground state twisted vector then becomes [image: image], and
[image: image]
[image: image]
We will concentrate on the zero magnetization Fz = 0 subspace and employ exact diagonalization (ED) to calculate eigen-states. p = 0 is assumed since Fz is conserved. Figure 1 illustrates the system’s complete time order phase diagram. For ferromagnetic interaction c2 < 0 as with 87Rb atoms, the critical quadratic Zeeman shift q/|c2| = 2 splits the whole region into the time trivial order (TT) phase for smaller q that observes TTS and the generalized time crystalline (gTC) order phase for q/|c2| > 2, where TTS is spontaneously broken. The latter (gTC phase) is found to coincide with the polar phase [71]. Limited by available computation resources, the system sizes we explored with ED remain moderate which prevent us from mapping out the finer details in the immediate neighborhood of q = 2|c2|. Further elaboration of time order properties in this region is therefore needed. On the other hand, for antiferromagnetic interaction c2 > 0 with 23Na atoms, we find q = 0 separates TT phase from gTC order. We note here that q = 2|c2| is the second-order quantum phase transition (QPT) critical point between the polar phase and the broken-axisymmetry phase of the ferromagnetic spin-1 BEC, while q = 0 corresponds to the first-order QPT critical point for antiferromagnetic interaction.
[image: Figure 1]FIGURE 1 | Time order phase diagram for spin-1 atomic BEC, where TT and gTC, respectively, denote time trivial and generalized time crystalline order. The region of (hashed) line segments surrounding c2 = 0 for the non-interacting system is to be excluded.
More detailed discussions including the dependence of time order phases on system size, possible approaches to detect them, and extension to thermal state phases can be found in Section 4.
2.3 Time Order Phase Diagram for Quantum Rabi Model
As a second example, we consider time order phases of the quantum Rabi model described by the Hamiltonian as follows:
[image: image]
where [image: image] is the Pauli matrix of a two-level system (transition frequency Ω), [image: image] is the annihilation (creation) operator for a single bosonic field mode (of frequency ω0), and λ is their coupling strength.
It is known that the aforementioned model exhibits a QPT to a superradiant state, despite its simplicity [29]. The transition occurs at the critical point gc ≡ 1, with the dimensionless parameter [image: image]. The equivalent thermodynamic limit is approached by taking Ω/ω0 → ∞. Though the system only has finite components, the QPT herein is well established. According to the studies in Ref. [29], an almost exact effective low-energy Hamiltonian for the normal phase (g < 1) is given by the following equation:
[image: image]
whose low-energy eigen-states are [image: image] for g ≤ 1, with [image: image] and rnp(g) = − [ln(1 − g2)]/4, and the energy eigen-values are [image: image], with [image: image] and EG,np(g) = [ϵnp(g) − ω0]/2 − Ω/2. For the superradiant phase (g > 1), the effective low energy Hamiltonian becomes
[image: image]
whose eigen-states are given by [image: image], with rsp(g) = − [ln(1 − g−4)]/4, [image: image], and [image: image]. The displacement-dependent spin states are [image: image], while the energy eigen-values take the form [image: image], with [image: image] and [image: image]. More details can be found in the supplementary material of Ref. [29].
For this model, the scaled average cavity photon number [image: image] is a suitable order parameter with Ω/ω0 assuming the role of system size. The corresponding bulk order parameter then becomes [image: image] or the average cavity photon number, and
[image: image]
For g < 1, we find
[image: image]
respectively, where η0 =  sinh4(rnp) and η2 =  cosh2(rnp) sinh2(rnp). For g > 1, we obtain the following equation:
[image: image]
The time order phase diagram is shown in Figure 2. When g < 1, the system ground state corresponds to a generalized time crystalline order phase, while the system exhibits time trivial order when g > 1. Despites such a simple model composed of a two-level system and a bosonic field mode, the ground state of the quantum Rabi model displays an intriguing temporal phase structure accompanied by a finite-component quantum phase transition.
[image: Figure 2]FIGURE 2 | Time order phase diagram for the quantum Rabi model, where TT and gTC, respectively, denote time trivial and generalized time crystalline order.
2.4 Non-Hermitian Many-Body Interaction Model
Finally, we consider two effective models with many-body spin–spin interaction and non-Hermitian effects. The first is described by the Hamiltonian:
[image: image]
with two σy operators at sites i and j in a string of otherwise σx N-body spin interaction. 1/[N(N − 1)] is the normalization factor, λ is the spin interaction strength, and γ represents an effective dissipation rate. λ > 0 and γ ≥ 0 are both real numbers.
We observe that the Greenberger–Horne–Zeilinger (GHZ) states
[image: image]
correspond to two non-degenerate system eigen-states with eigen-energies ± (λ + iγ)/2. The spectra of this model system are bounded inside the circle of radius [image: image] in the complex plane. The eigen-state whose eigen-value has the largest imaginary part is taken as the ground state, or |GS⟩ = |G+⟩ with eigen-energy ϵ0 = (λ + iγ)/2. The highest excited state is |G−⟩, whose corresponding eigen-energy is [image: image].
An appropriate order parameter operator in this case becomes the average magnetization [image: image]. The twisted vector becomes [image: image], and the auto-correlator can be easily worked out to be [image: image]. When γ = 0, the system ground state exists time-crystalline order phase and corresponds to a continuous time crystal [33]. When γ ≠ 0, the system exhibits time functional order, with an exploding f(t) as time evolves.
A second non-Hermitian model Hamiltonian is given by
[image: image]
where [⋅] denotes the integer part, σN+1 ≡σ1 corresponds to the periodic boundary condition, and λ and γ are spin-string interaction strength and dissipation strength, respectively, as in the previous model, and are real numbers. This Hamiltonian contains [(N + 1)/2]-body interaction terms and supports GHZ state |G+⟩ as a non-degenerate excited state [18] with eigen-energy ϵ+ = − N. The other two eigen-states of concern are [image: image] with α1 = 1 and α2 = − (N + ϵ(±))/2(λ + iγ), where
[image: image]
The eigen-energies for |Ψ(±)⟩ are given by [image: image], with more details of the derivation given in Section 4. For the same order parameter operator [image: image], we find [image: image].
At γ = 0, the above non-Hermitian Hamiltonian Eq. 17 reduces to a Hermitian one, whose ground state |Ψ0⟩ corresponds to the one with smaller ϵ from |Ψ(−)⟩ and |Ψ(+)⟩, or [image: image]. The ground state |Ψ0⟩ for this non-Hermitian system is therefore chosen from |Ψ(−)⟩ or |Ψ(+)⟩ to be the one that deforms into the right Hermitian case one when γ approaches zero. However, the criteria for the ground state energy ϵ0 correspond to choosing the smaller one from ϵ(±) when ϵ is real and choosing the one with the larger imaginary part when ϵ is complex.
Therefore, we directly obtain the following equation:
[image: image]
When λ ≠ 0 and γ ≠ 0, the system exists in time functional order phase and again results from the non-Hermitian Hamiltonian. When λ ≠ 0 but γ = 0, the auto-correlation function reduces to
[image: image]
as for a genuine time crystal of the WO type exhibiting time crystalline order. When λ = 0 and 0 < |γ| ≤ 1, we find
[image: image]
The system ground state again exhibits time-crystalline order. When λ = 0 and |γ| > 1, we obtain
[image: image]
by choosing [image: image] as the ground state eigen-energy from the two eigen-values [image: image]. The system ground state now exhibits time functional order phase, with a decaying f(t) as time evolves. When λ = γ = 0,
[image: image]
the ground state reduces to the time trivial order phase.
The above two non-Hermitian models represent direct generalizations of the Hermitian system as considered in Refs. [18, 33]. While slightly more complicated, they remain sufficiently simple for compact analytical treatment, thus helping to reveal interesting and clear physical meanings of the underlying time order.
2.5 Some Remarks About Continuous Time Crystal
According to the WO no-go theorem [62], f(t) for the ground state or the Gibbs ensemble of a general many-body Hamiltonian whose interactions are not-too-long ranged exhibits no temporal dependence; hence, it belongs to time trivial order according to our classification scheme. At first sight, this seems to sweep many important models of condensed matter physics into the same boring class of the time trivial order phase. However, it remains to explore, for instance, many-body systems with more than two-body (or k-body) interactions, or non-Hermitian systems, which might support the existence of CTC. Inspired by the recent results on CTC [33], we believe more time crystalline phases will be uncovered and further understanding will be gained in the future.
The two-time auto-correlation function f(t) measures the CTC phase as in earlier studies [33, 62], while both auto-correlation functions f(t) and F(t) together define different time-order phases we propose in this work. The absence of the local temporal behavior f(t) = 0 does not imply the absence of any temporal property in the bulk, when F(t) could have various temporal behaviors. Based on this, our operational definitions of time order are developed. We also extend the scope of CTC to include both TC order and gTC order phases. This distinction between f(t) and F(t) gives more insights into quantum many-body phases.
As emphasized earlier, continuous time crystal results from spontaneously breaking continuous time translation symmetry. Due to the genuine time periodicity contained in CTC, it might be possible to explore and design new types of clocks based on macroscopic many-body systems, as the time period is directly related to energy spectra, and whose physical meaning is clearly the same as for atomic clock states. Furthermore, they are not affected by finite size effect in contrast to periodicity in DTC.
3 DISCUSSION AND CONCLUSION
While ground-state phases of a quantum many-body system are mostly classified with their Hamiltonian based on the following two paradigms: LGW symmetry breaking order parameter or topological order, this work proposes to study phases from time dimension using time order or more specifically with the proposed symmetry-based time order. Compared to the recent progress and understanding gained for topological order [66, 67], one could try to develop a framework for entanglement-based time order instead of the symmetry-based time order we employ here in this study. Quantum entanglement in a many-body system is responsible for topological order, whose origin lies at the tensor product structure of the quantum many-body Hilbert space [image: image] with [image: image] the finite-dimensional Hilbert space for site-i. An entanglement-based time order therefore calls for a combined investigation to exploit quantum entanglement and temporal properties of a quantum many-body system.
Through time order, one focuses on temporal structure of the evolution operator [image: image]. The symmetry-based time order therefore unifies the LGW paradigm with the concept of time order, while an entanglement-based time order could amalgamate the topological order paradigm (or entanglement beyond that) with time order. For this to happen, a more basic definition for time order will be required, which will likely expand into further in-depth investigations.
In conclusion, understanding the phases of matter constitutes a cornerstone of contemporary physics. Capitalizing on the concept of CTC for the many-body ground state with perpetual time dependence, this study argues that information from time domain can be employed to classify the quantum phase as well, which provides a new perspective toward the understanding of ground-state time dependence, significantly beyond existing studies on CTC. We introduce time order, provide its operational definition in terms of two-time auto-correlation function of an appropriate symmetry order operator, bestow physical meaning to characteristic frequencies and amplitudes of the correlation function, and present a complete classification of time order phases. Time order phase diagrams for a spin-1 BEC system and the quantum Rabi model are fully worked out. Interesting time order phases in non-Hermitian spin models with multi-body interaction are presented. In addition to the time crystalline order which already attracts broad attention from its studies in terms of CTC, other phases we identify, for example, time quasi-crystalline order and time functional order, represent exciting new possibilities.
4 METHODS AND CALCULATION DETAILS
Here, in this section, we provide more supporting material for our main results and related details for the aforementioned presentation. It is organized as follows: in Section 4.1, we extend the discussion of time order to finite temperature; in Section 4.2, we present calculation details related to the spin-1 atomic BEC example considered and give intriguing results for finite temperature scenario in spin-1 BEC; in Section 4.3,as a more straightforward approach to understand numerical results, we present a variational approach for treating the polar ground state of a spin-1 BEC. Finally, we give the details about ground state and eigen-energy calculation in the non-Hermitian quantum many-body model with multi-body interaction in Section 4.4.
4.1 Time Order at Finite Temperature
At finite temperature T, excited states will be populated, which can be taken into account with the Gibbs ensemble [image: image], where [image: image] denotes the partition function and β ≡ 1/T the inverse temperature. We then find
[image: image]
where |vk⟩ is the eigen-state twisted vector for |ψk⟩ and cjk is its associated weight. Analogously, for the non-Hermitian case, we find
[image: image]
where [image: image] and [image: image] are the left and right twisted vectors for eigen-state |ψk⟩, respectively, and cjk is the corresponding weight.
It is easily noted that f(t) at finite temperature contains contributions from all eigen-states of the quantum many-body system [image: image], with a temperature-dependent weight factor for different energy levels, but f(t) remains to include contributions from different periodic functions. Hence, the quantum phase classification task essentially remains the same (including its possible reference to F(t)) as is shown in Table 1 for the ground state. At finite temperature, due to thermal excitations to the ground state, the temporal behavior will be more complex, thus opening up for more interesting possibilities, for example, to control time order phases and to study crossover or driven phase transitions between different time order phases.
4.2 Time Order in a Spin-1 Atomic BEC
For typical interaction parameters of a spin-1 BEC (e.g., of ground state 87Rb or 23Na atoms) in a tight trap, spin domain formation is energetically suppressed when the atom number is not too large as spin-dependent interaction strength is much weaker than spin-independent interaction [26, 32, 36, 58]. This facilitates a single-spatial-mode approximation (SMA) by assuming all spin states share the same spatial wave function ϕ(r), which effectively decouples the spatial degrees of freedom from the spin and results in the Hamiltonian [36, 44] in Eq. 6 for the model many-body system, where [image: image] is the annihilation operator of the ground manifold state |F = 1, mF⟩ with corresponding number operator [image: image]. p and q are linear and quadratic Zeeman shifts which could be tuned independently in experiments [38], while c2 denotes the spin exchange interaction strength. Unless otherwise noted, we will take |c2| = 1 as unit of energy in this work. The total particle number operator [image: image] and the longitudinal magnetization operator [image: image] are both conserved. Thus, linear Zeeman shift can be set to p = 0 effectively.
As discussed in the main text, a suitable order parameter for this model system is [image: image] [image: image], which measures the fractional atomic population in the states |1, 1⟩ and |1, − 1⟩, and N assumes the role of system size. Following our formulation and denoting the system energy eigen-state by |ψi⟩ (i = 0, 1, 2, ⋯) with increasing eigen-energy ϵi, the ground-state twisted vector becomes [image: image], with ai = ⟨ψi|v⟩ its expansion coefficient on the eigen-state |ψi⟩. We find
[image: image]
where bj ≡|aj|2 is the weight of the ground-state twisted vector, [image: image] the total weight, and
[image: image]
where Ai = N⟨ψi|v⟩, Bj ≡|Aj|2 is the weight of the enlarged ground state twisted vector, and [image: image] the total weight.
Our study below is for the zero magnetization Fz = 0 subspace and employs exact diagonalization (ED) to calculate eigen-states as well as eigen-energies. The overall time order phase diagram for spin-1 BEC is shown in Figure 1. For ferromagnetic interaction c2 < 0, the critical quadratic Zeeman energy q/|c2| = 2 splits the whole region into the time trivial order (TT) phase for smaller q that observes TTS, and the generalized time crystalline (gTC) order phase for q/|c2| > 2 where TTS is spontaneously broken. The latter (gTC phase) is found to coincide with the ground-state polar phase. The available computation resource limits the calculation to a finite system size, which prevents us from mapping out the exact details in the immediate neighborhood of q = 2, where further elaboration is needed for its time order properties. On the other hand, for antiferromagnetic interactions, we find q = 0 separates TT phase from gTC order.
In Figure 3, the weights for the ground state as well as for the low-lying excited states are shown as functions of q for a typical system size of N = 10 000. Only the ground-state weight b0 is non-vanishing in the q < 2 (q < 0) region for ferromagnetic (antiferromagnetic) interactions, but total weight b is zero in the q > 2 (q > 0) region for ferromagnetic (antiferromagnetic) interaction, which prompts us to examine further the enlarged weights Bi corresponding to the bulk order parameter. For ground and the first excited states, the volume enlarged weights B0,1 are found to be non-vanishing, although both decrease as q increases and grow with N as q approaches q = 2 (q = 0) for ferromagnetic (antiferromagnetic) interaction. However, as mentioned above, limited to a system size of N = 10 000 by computation resource in the ED calculation, we cannot exactly map out the behavior near q = 2 (q = 0) for ferromagnetic (antiferromagnetic) interaction. This consequently leaves empty for q in region [2.0, 2.02] ([0, 0.01]) for ferromagnetic (antiferromagnetic) interaction.
[image: Figure 3]FIGURE 3 | Weights of ground-state twisted vector in the ground and low-lying excited states as functions of q at system size N = 10 000. The upper panel is for ferromagnetic interaction, where weights bi for q < 2 are shown in (A), while weights Bi for q > 2 are shown in (B). The lower panel is for antiferromagnetic interaction, where weights bi for q < 0 are shown in (C), while weights Bi for q > 0 are shown in (D).
The dependence on system size N is clearly revealed by Figure 4, with the enlarged weights in the gTC regime attaining fixed values as the system approaches thermodynamic limit (N → ∞). In regions away from q = 2 (q = 0) for ferromagnetic (antiferromagnetic) interaction, ED numerics can always approach thermodynamic limit, except for the immediate neighborhood near q = 2 (q = 0), where we infer with confidence the tendencies to divergence of the weights B0,1 as q approaches q = 2 (q = 0).
[image: Figure 4]FIGURE 4 | Weights of ground-state twisted vector in the ground and low-lying excited states as functions of system size N at q = 2.1 for ferromagnetic interaction (A) and at q = 0.2 for antiferromagnetic interaction (B).
The time evolution of two-time auto-correlation function F(t) is plotted in Figures 5A,C for ferromagnetic and for antiferromagnetic interactions, while Figures 5B,D display energy gaps between ground and the first excited states as a function of q for ferromagnetic and antiferromagnetic interactions, respectively, at a system size of N = 5000. The behavior of F(t) is quantitatively consistent with that of the weights Bi(q) (i = 0, 1) shown in Figure 3 and the energy gap ϵ1 − ϵ0 shown in Figures 5B,D.
[image: Figure 5]FIGURE 5 | F(t) for different q as a function of time t. The solid and dotted lines correspond to Re(F) and Im(F), respectively. The red, green, and blue lines correspond to q = 2.5, q = 3, and q = 5, respectively, for ferromagnetic interaction (A). The red, green, and blue lines correspond to q = 0.7, q = 1, and q = 3, respectively for antiferromagnetic interaction (C). The energy gap between ground and the first excited state ϵ1 − ϵ0 as a function of q for ferromagnetic (B) and antiferromagnetic interactions (D), at system size N = 5000.
At finite temperature, excited states come into play by also contributing to the correlation function. We find the gTC order hosted in the polar phase persists for both ferromagnetic and antiferromagnetic interactions. The corresponding time evolution and Fourier transform of F(t) are shown in Figure 6, calculated for N = 500 at a temperature of β ≡ 1/T = 1. The Fourier transform is performed for Re(F) over t = [0, 1000] with the zero frequency (DC) component subtracted or for Im(F). The upper (lower) panel corresponds to ferromagnetic (antiferromagnetic) interaction at q = 3 (q = 2). For ferromagnetic interaction, two distinct frequency components are clearly identified for q = 3, associated with the two different energy level gaps. The beautiful beat pattern for F(t) would appear, while we only show the short time behavior in Figure 6 (a). Thus, the gTC phase remains at a finite temperature. Moreover, we also find a generalized time quasi-crystalline order phase assuming the two frequencies are incommensurate, by fine-tuning their corresponding energy gaps such that the relation Δ1/Δ2 = m1/m2 with m1 and m2 being co-primes is not satisfied. The gTC phase at finite temperature here is robust which is in contrast to the melting behavior of continuous time crystal (CTC) shown in Ref. [33].
[image: Figure 6]FIGURE 6 | F(t) as a function of time t at q = 3 for ferromagnetic interaction (A) and q = 2 for antiferromagnetic interaction (C). The red and blue solid lines, respectively, correspond to Re(F) and Im(F). The Fourier transform spectrum [image: image] of Re(F) or Im(F) with ν = 1/T the frequency, T the period, for ferromagnetic (B) and antiferromagnetic (D) interactions, at temperature β = 1 and system size N = 500.
Finally, we hope to address the critical question about how could this time order, sort of a perpetual time dependence, can be observed. We note the bulk two-time auto-correlation function introduced [image: image] denotes nothing but the ground-state (averaged) conditional outcome of measuring Nsum(t) at t after starting with Nsum(0) initially. The dynamics of F(t) follows that of Nsum(t) as in the quantum regression theorem. Given the system is well controlled, highly reproducible, one can simply detect F(t) by measuring Nsum(t), although for each measurement at an instant t, a condensate is destroyed, and a follow-up one will have to be prepared as closely as possible in every respects (through selection and post-selection) and be measured at a different t′ > t. Thus, a plausible way to detect the ground-state time dependence will require reconstructing the time dependence of F(t)/Nsum(0). As long as the oscillation amplitude is more than a few percent, it will be easily observable with not too much difficulty, although such a reconstruction will still be difficult as Nsum(0) can be rather small compared to N0 ∼ N in the polar state. Alternatively, one can perhaps start from a twin-Fock state, that is, by preparing an initial state with Nsum(0) ∼ N.
In Figure 7A, we show the behavior of oscillation amplitude for F(t)/Nsum(0). The time dependence of F(t)/Nsum(0) at q = 2.5 for ferromagnetic interaction is shown in Figure 7B.
[image: Figure 7]FIGURE 7 | (A) Bi/Nsum(0) as a function of q for ferromagnetic interaction. (B) F(t)/Nsum(0) as a function of time t at q = 2.5 for ferromagnetic interaction. The red and blue solid lines correspond to the real and imaginary part of F(t)/Nsum(0), respectively.
4.3 A Variational Polar State for Ferromagnetic Spin-1 BEC
One might naively expect that nothing particularly interesting could happen in the polar phase of a ferromagnetic spin-1 BEC, where essentially all atoms reside in the single particle state |1, 0⟩. Nevertheless, due to the competition between spin exchange interaction c2 and quadratic Zeeman shift q, the ground state of our system differs from |N1 = 0, N0 = N, N−1 = 0⟩, which can be affirmed based on a simple variational analytical calculation given in this section.
We use the number-state basis |N1, N0, N−1⟩ ≡|[N], M, k⟩, where [image: image] denotes the occupation number of the mF magnetic state, M ≡ N1 − N−1, and k ≡ N−1. We take the following ground-state variational ansatz [image: image] for the polar state of ferromagnetic spin-1 BEC, where a = reiϕ is a (complex) variational parameter with r and ϕ as real parameters. From Eq. 6 and (assumed) p = 0, the ground-state energy follows from
[image: image]
We see the extreme value (the minimum) of E is reached when cos(ϕ) = ±1, that is, for a real variational parameter a, which will be assumed from now on. This gives the following equation:
[image: image]
with [image: image] and [image: image]. The derivative of the energy function E(a) is as follows:
[image: image]
which determines the locations for the extreme values.
[image: image]
and the corresponding extreme values are as follows:
[image: image]
In the thermodynamic limit N → ∞, they reduce, respectively, to [image: image] and [image: image]. The left and right asymptotic value for the energy function E(a) is therefore
[image: image]
For ferromagnetic interaction (c2 < 0), E− assumes the minimum, which corresponds to the ground state [image: image] with [image: image], and [image: image] in the thermodynamic limit N → ∞.
Despite the vanishing order parameter nsum in the polar phase (here the gTC order phase from the time order perspective), the enlarged quantity Nsum retains a finite value. Hence, the physics we present here clearly belongs to the realm of quantum effects, beyond the reach of mean-field theory.
4.4 The Non-Hermitian Spin Model With Multi-Body Interaction
The non-Hermitian quantum many-body model Hamiltonian is
[image: image]
with
[image: image]
where [⋅] denotes the integral part, σN+1 ≡σ1, λ, and γ are spin-string interaction strength and dissipation strength, respectively. λ and γ are both real numbers. i is the imaginary unit. σx,y,z are Pauli operators. N is the qubit number of the system. The Hamiltonian has the [(N + 1)/2]-body interaction term and supports the GHZ state |G+⟩ as a non-degenerate excited state.
First, the Greenberger–Horne–Zeilinger (GHZ) states are denoted as follows:
[image: image]
and
[image: image]
where [image: image] is a multi-index.
We immediately know that |G±⟩ is the degenerate ground state of the ferromagnetic Ising Hamiltonian [image: image] with eigen-energy E(0) = − N, [image: image] is the excited state of [image: image] with eigen-energy E(1) = − N + 4.
The action of [image: image] on |G−⟩ [image: image] gives [image: image] (|G−⟩) with a multiplicative factor –2.
[image: image]
Then we know the two eigen-states of [image: image] are a superposition of |G−⟩ and [image: image], and can be written as
[image: image]
where α1,2 are the undetermined coefficients. By substituting into the Schrödinger equation [image: image], we get
[image: image]
[image: image]
We obtain the eigen-energy [image: image]. Choosing [image: image], we have [image: image]. Imposing the normalization condition, we have the following equation:
[image: image]
If γ = 0, the Hamiltonian is Hermitian, and we have the ground state |Ψ0⟩ ≡|Ψ(−)⟩ with energy [image: image] (see more details about the Hermitian version of the system in Ref. [18]). Here, we choose the eigen-state from {|Ψ(+)⟩, |Ψ(−)⟩} as the ground state |Ψ0⟩ of our generalized non-Hermitian system, for it deforms into the ground state of the Hermitian case when γ approaches zero. If ϵ is real, then ground-state energy ϵ0 corresponds to the smaller one from ϵ(±). However, ground-state energy ϵ0 corresponds to the one with the larger imaginary part when ϵ is a complex number. Ground state |Ψ0⟩ is obtained straightforwardly.
For the GHZ state |G+⟩, we can know it is a non-degenerate excited state with energy ϵ+ = − N, for
[image: image]
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A scheme for the coherent control of perfect optical vortex (POV) in an asymmetric semiconductor double quantum well (SDQW) nanostructure is proposed by exploiting the tunneling-induced highly efficient four-wave mixing (FWM). The orbital angular momentum (OAM) is completely transferred from a unique POV mode to the generated FWM field. Using experimentally achievable parameters, we identify the conditions under which resonant tunneling allows us to improve the quality of the vortex FWM field and engineer helical phase wave front beyond what is achievable in the absence of resonant tunneling. Furthermore, we find that the intensity and phase patterns of the vortex FWM field are sensitive to the detuning of the probe field but rather robust against the detuning of the coupling field. Subsequently, we perform the coaxial interference between the vortex FWM field and a same-frequency POV beam and show interesting interference properties, which allow us to measure the topological charge of the output POV beam. Our result may find potential applications in quantum technologies based on POV in solids.
Keywords: perfect optical vortex, coherent control, resonant tunneling, four-wave mixing, quantum well
1 INTRODUCTION
In the past several decades, the study of optical vortices has been one of the hot spots in optics due to their potential applications in particle manipulation [1, 2], optical communication [3, 4], and quantum information processing [5–16]. Note that an optical vortex beam with a helical phase factor eilθ carries OAM of lℏ per photon, where l and θ are the topological charge (TC) and azimuthal angle, respectively [17–19]. Conventional optical vortex beams such as Laguerre–Gaussian (LG) beam [20], Bessel–Gauss (BG) beam [21], and high-order Bessel beam [22] exhibit the concentric ring intensity pattern at the transverse distribution. However, the ring radii of this kind of optical vortices is proportional to TCs, which make them face difficulties in actual applications requiring a small vortex diameter and a large topological charge [3] or spatial superposition of vortex beams with different TCs [4]. In order to overcome this challenge, Ostrovsky et al. first proposed the concept of the POV beam, whose ring radius is completely independent of its TC [23]. Since then, significant efforts have been made to explore the generation and detection of the POV beam [24–28]. For instance, different kinds of POV beams have been experimentally generated via using spatial light modulator [28, 29], polymer-based phase plate [30], strongly scattering media [31], single-layer dielectric metasurface [32], etc. In situ measurements for TC of POV beams have been realized via exploiting the phase shift method [33], optical modal decomposition [34], and hybrid angular gradient phase grating [35]. Quite recently, Dai et al put forward a scheme for the fractional OAM conversion of an asymmetric POV beam by using second-harmonic generation [31].
On the other hand, based on the combination of electromagnetically induced transparency (EIT) and standing waves, spatially dependent light-matter interaction has led to many interesting quantum optical phenomena such as atom localization [36, 37], electromagnetically induced grating [38], and controllable photonic band gaps [39]. In 2015, Radwell et al experimentally observed spatially dependent electromagnetically induced transparency via utilizing optical vortex beams to drive cold rubidium atoms [40]. Subsequently, numerous schemes for the spatially dependent light-matter interaction induced by LG beams have been proposed in cold atomic ensembles [41], rare-earth–doped crystal [42], two-dimensional array of metal-coated dielectric nanosphere [43], semiconductor quantum dots [44], and molecular magnets [45]. Meanwhile, many intriguing quantum optical phenomena have been discovered such as vortex-induced spatial absorption [46, 47], spatially structured Kerr nonlinearity [39], ultraprecise Rydberg atomic localization [48], vortex four-wave mixing (FWM) [44, 45, 49, 50, 51, 52], and spatially dependent hyper Raman scattering [53]. Recently, semiconductor quantum wells (SQWs) have been exploited to explore the transfer and control of mid-infrared LG beams due to their inherent advantages such as high nonlinear optical coefficient and large electric dipole moments of intersubband transitions [54, 55, 56]. As far as we know, no reports have been proposed for the investigation of the conversion and manipulation of a POV beam in SDQWs.
In this study, we investigate the conversion and manipulation of a POV beam in an asymmetric SDQW nanostructure via resonant tunneling. The OAM of a unique POV mode can be completely transferred to the generated FWM field via the tunneling-induced highly efficient FWM process. Differing from previous studies in solids [44, 54, 55, 56], the distinguishing features of this scheme are given as follows: First and foremost, we are interested in showing the conversion and manipulation of the mid-infrared perfect optical vortex (POV) beam, which has different vortex characteristics from LG beams in Refs. [54, 55, 56]. Second, our scheme combines the advantages of the four-level ladder-type scheme [55] and tunneling-induced constructive interference [57, 58]. With resonant tunneling, the FWM field is closer to an ideal POV beam, which is a significant advantage of our scheme compared with Ref. [55]. Third, the detunings of probe and coupling fields have different influences on the intensity and phase of the FWM field. Differing from previous schemes [54, 55, 56], the vortex properties of the FWM field are rather robust against the detuning of the strong continuous-wave (CW) coupling field. Furthermore, we show the coaxial interference between the vortex FWM field and a same-frequency POV beam and focus on the influence of the TC of the vortex FWM field on the interference pattern. The interference results illustrate that the interference intensity and phase patterns are determined by the TC of the FWM field, which allows us to measure the TC of the generated POV field.
2 MODELS AND EQUATIONS
As shown in Figure 1A, we consider an n-doped asymmetric SDQW nanostructure, which can be grown by molecular-beam epitaxy (MBE) on a semi-insulating GaAs substrate [59]. After a buffer layer, the active region shown in Figure 1A is grown. It consists of a 118 Å wide deep well layer (GaAs) and a 130 Å wider shallow well layer (Al0.10Ga0.90As). The two well layers are separated by a 32 Å wide thin potential barrier (Al0.485Ga0.515As). Then, the growth is finished with a thick capping layer. The corresponding electron wave functions are shown via color-coded solid lines, and the energy levels are shown via blue dashed lines. The electron motion in the z-direction is limited by the potential barrier of the SDQW and obeys the one-dimensional effective mass Schr[image: image]dinger equation, that is,[image: image], where m* and ψ(z) represent the effective mass and wave function of the moving electrons. It is worth noting that |ψ(z)|2 represents the probability of finding the electrons. In this SDQW nanostructure, the energy of the ground subband |1⟩ in the right side of the deep well is 25.5 meV. Two closely spaced delocalized subbands |2⟩ and |3⟩ with energies 101.8 and 106.9 meV are separated by resonant tunneling. Their corresponding wave functions are asymmetric and symmetric combinations of |sg⟩ and |de⟩, that is, |2⟩ = (|sg⟩–|de⟩)/[image: image] and |3⟩ = (|sg⟩ + |de⟩)/[image: image]. Two upper subbands |4⟩ and |5⟩ with eigen-energies of 259.5 and 374.1 meV are coupled by a continuous-wave (CW) driving field Ωd (central frequency ωd and wave vector [image: image]). A weak probe field Ωp (central frequency ωp and wave vector [image: image]) couples the ground subband |1⟩ and two short-lived subbands |2⟩ and |3⟩, while a CW control field Ωc (central frequency ωc and wave vector [image: image]) couples the subband |4⟩ and the subbands |2⟩ and |3⟩, respectively. In this SDQW nanostructure, the pulse probe field and CW coupling and driving fields would induce two FWM processes |1⟩ → |2⟩ → |4⟩ → |5⟩ → |1⟩ and |1⟩ → |3⟩ → |4⟩ → |5⟩ → |1⟩, and then generate a pulse FWM field Ωm (central frequency ωm and wave vector [image: image]) (see Figures 1B,C). In our proposal, the driving field Ωd is a POV beam, which can be obtained through Fourier transformation of a BG beam [28]. Thus, the driving field Ωd can be written as
[image: image]
where [image: image], Ωd0 is the initial Rabi frequency of the driving field, r is the radius, and θ is the azimuthal angle. w0 (= 2f/(kdwg)) and R are the half width and radius of the ring of the POV beam, respectively, f is the focal length of the Fourier lens, and wg is the beam waist of the initial BG beam.
[image: Figure 1]FIGURE 1 | (A,B) Schematic of diagram of an asymmetric SDQW nanostructure with five subbands. The solid curves represent the schematics of the corresponding electronic wave functions. (C) A simple block diagram of the SDQW nanostructure sample with four optical fields, in which the driving field is a POV beam.
In the interaction picture and under the rotating-wave approximation, the Hamiltonian of this system is given by:
[image: image]
where[image: image], and [image: image] represent one-half of the Rabi frequencies for the respective transitions. [image: image] and [image: image] are the corresponding dipole matrix elements. Δp(c,m) = ωp(c,m) − (ω2(4,5) − ω1(2,1)) denote the detuning of the corresponding fields. [image: image] 5.1 meV indicates the strength of the resonant tunneling between subbands |3⟩ and |2⟩. [image: image] is the ratio between the subband transition dipole moments [image: image] and [image: image]. [image: image] is the ratio between the subband transition dipole moments [image: image] and [image: image].
Defining the electronic energy state as [image: image], using the Schr[image: image]dinger equation [image: image], the equations of motion for the probability amplitude Aj (j = 1 ∼ 5) of the electronic wave functions can be obtained as
[image: image]
[image: image]
[image: image]
[image: image]
where γi (i = 2, 3, 4, 5) is added phenomenologically to describe the overall decay rate of the subbands |i⟩, (i = 2, 3, 4, 5). In order to simplify the calculation, we assume the phase matching condition, that is, [image: image], is satisfied.
The following Maxwell equations describe the propagation equations of the probe and FWM fields:
[image: image]
[image: image]
where ζp = ζ21(31) = 2Nωp|μ21(31)|2/(ℏɛ0c), ζm = ζ51 = 2Nωm|μ51|2/(ℏɛ0c) are two constants, which are related to the frequently used oscillator strengths of the subband transitions |1⟩ ↔ |2 (3)⟩ and |1⟩ ↔ |5⟩. N is the electron sheet density. The transverse derivatives [image: image] on the right-hand sides of Eqs 7, 8 account for light diffraction [51]. When the propagation distance is much smaller than the Rayleigh length, that is, [image: image], light diffraction can be neglected. In this study, w0 ≈ 200 μm, λm = 3.56 μm, and L = 100 μm are chosen so that [image: image]m ≫ L. Therefore, it is reasonable to ignore diffraction in the following analysis.
In the limit of the weak probe and FWM fields, most of the electrons remain in the subband |1⟩, that is, |A1|2 ≈ 1. Taking Fourier transform of Eqs 3–6 and 7, 8, we obtain
[image: image]
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where d2 = ω + Δp + iγ2, d3 = ω + Δp − δ + iγ3, d4 = ω + Δp + Δc + iγ4, d5 = ω + Δm + iγ5, ω is the Fourier variable. [image: image] and [image: image] are the Fourier transforms of Aj (j = 2, 3, 4, 5) and Ωp(m), respectively. By solving Eqs 9–12, it is easy to obtain the following relations:
[image: image]
[image: image]
where Dp1 = Dp1(ω), Dp2 = Dp2(ω), Dm1 = Dm1(ω), Dm2 = Dm2(ω), D = D(ω), Dp1(ω) = d5 (α − β)2|Ωc|2 − (d2α2 + d3) (d4d5 − |Ωd|2), Dp2(ω) = −(d2αβ + d3)ΩcΩd, [image: image], [image: image], and D(ω) = d2d3 (d4d5 − |Ωd|2) − d5 (d2β2 + d3)|Ωc|2.
By substituting Eqs 15, 16 into Eqs 13, 14 and using the initial condition [image: image], the expression of the generated FWM field can be obtained as
[image: image]
where [image: image], [image: image] with [image: image]. From Eq. 17, we readily observe that there exist two modes described by the dispersion relations K+(ω) and K−(ω), respectively. By seeking the approximated inverse Fourier transform with the approximation of neglecting both O(ω) in [image: image] and O (ω2) in K±(ω), it is straightforward to obtain
[image: image]
where K± = K±(0), η± = t − z/Vg±, and [image: image] is the group velocity of K± mode. Re(K±) and Im (K±) represent the phase shift per unit length and absorption coefficient of K± mode, respectively. In the adiabatic regime, the absorption coefficient Im (K−) is much greater than Im (K+) [58], which indicates that the K− mode is absorbed quickly and only the K+ mode remains after a short propagation distance L. Therefore, Re(K+) and Im (K+) are called as the modal phase shift per unit length and absorption coefficient for the remaining K+ mode, respectively. By neglecting the K− mode, the generated FWM field after a short propagation distance L can be given as
[image: image]
with
[image: image]
It is worth noting that the modulation term S, which is independent of the propagation distance L, can also influence the output of the FWM field, that is, the modulation term S appears once the FWM process takes place. Thus, S is the inherent attribute for the SDQW-based FWM system. S is a complex function of the radial position r due to the existence of the POV driving field and can modify the intensity and phase patterns of the generated FWM field. In order to compare with the modal phase shift Re(K+) and modal absorption Im (K+), we introduce a factor Q to replace S by setting S = eiQL = ei Re(Q)L− Im(Q)L. In this sense, the inherent phase shift and absorption induced by S can be represented by Re(Q) and Im(Q). Thus, Re(Q) and Im(Q) are called as the inherent phase shift per unit length and absorption coefficient of the SDQW-based FWM system. Using K+ = Re(K+) + i Im (K+), Eq. 19 can be rewritten as
[image: image]
where the intensity of the vortex FWM field is [image: image], while the factor [image: image] reflects the phase wave front of the vortex FWM field. In Eq. 21, Im(K+)L, Im(Q)L, and Re(Q)L should be dimensionless. In our proposal, the unit of the propagation distance L is μm. Therefore, the units of the absorption coefficients and the phase shifts per unit length are μm−1.
3 RESULTS AND DISCUSSIONS
In this section, the focus is on investigating the coherent control of the generated POV beam via FWM process in an asymmetric SDQW nanostructure. As we know, the structure of a SQW determines its properties such as resonant tunneling and subband decay rates. In other words, these properties of the SQW are determined once it is fabricated. Thus, the values of the decay rates may be different for the cases with and without resonant tunneling. In the proposed asymmetric SDQW nanostructure, resonant tunneling exists, that is, α = −0.11, β = 0.98, and δ = 5.1 meV, and the decay rates are γ2 = γ3 = 1 meV and γ4 = γ5 = 0.1 meV [58]. For comparative analysis, we consider the case without resonant tunneling by directly taking α = β = 0 and δ = 0. This approach has been used to investigate tunneling-induced highly efficient FWM [57,58].
The influence of the resonant tunneling on the intensity and phase of the generated FWM field is explored first. Here, the driving field Ωd (r, θ) is a POV beam with the TC l = 3, and the corresponding intensity and phase profiles are plotted in Figures 2A,D, respectively. The intensity distribution of the driving field in Figure 2A exhibits a ring pattern at the radial position r = 2 mm with a full width at half maximum (FWHM) of ΔωH = 0.402 mm. Meanwhile, the helical phase profile in Figure 2D displays three periods along the azimuthal direction, and the phase of each period is 2π. Based on Eq. 21, the intensity and phase profiles of the generated FWM field are also plotted in Figure 2. As shown in Figures 2B,E, in the absence of resonant tunneling, that is, α = β = 0 and δ = 0, the intensity distribution also displays a ring pattern at r = 2 mm with an increased FWHM of ΔωH = 0.606 mm (see Figure 2B), while the helical phase twists in the clockwise direction [see Figure 2E]. When considering the existence of resonant tunneling, that is, α = −0.11, β = 0.98 and δ = 5.1 meV [58], as shown in Figures 2C,F, the intensity of the vortex FWM field is almost unchanged, and FWHM of the intensity pattern decreases from 0.606 to 0.384 mm, while the helical phase twists in the opposite direction compared with the case in Figures 2B,E. More interestingly, the phase distortion is significantly enhanced at two edges of the intensity pattern. For a POV beam, the FWHM of the intensity pattern can be adopted in appraising the quality of POV, where ΔωH = 0 corresponds to an ideal POV beam [23]. The direct comparison between the aforementioned two cases implies that the resonant tunneling makes the generated vortex FWM field closer to an ideal POV beam and modifies the wave front of the helical phase. Actually, the resonant tunneling can lead to the symmetric and asymmetric wave functions of subbands |2⟩ and |3⟩ in the SDQW nanostructure (i.e., αβ < 0). Therefore, the optical nonlinear properties of the SDQW nanostructure can be modified by the resonant tunneling, which results in the different findings in Figure 2.
[image: Figure 2]FIGURE 2 | (A,D) Intensity and phase profiles of the drive field with POV. (B,C) Intensity and (E,F) phase profiles of the FWM field for different values of α, β, and δ: (B,E) α = β = 0, δ = 0 meV; (C,F) α = −0.11, β = 0.98, δ = 5.1 meV. The other parameters are ζp = ζm = 9.2 × 10–3 meV/μm, L = 100 μm, l = 3, wg = 200 μm, λ = 10.83 μm, R = 2 mm, f = 11.69 mm, Ωp = 1 meV, Ωc = 14 meV, Ωd0 = 10 meV, Δp = 16 meV, and Δc = Δm = 0 meV.
In order to inspect the effect of the resonant tunneling, the radial distributions of the imaginary and real parts of Q and K+ are plotted in Figure 3. Note that the inherent absorption Im(Q) and modal absorption Im (K+) at r = 2 mm determine the output intensity of the vortex FWM field. Without and with resonant tunneling, the total absorption coefficients at r = 2 mm are 57.77 μm−1 and 57.56 μm−1, respectively. In the two cases, the total absorption coefficients are nearly equal so that the intensity of the FWM field remains nearly constant. In addition, the inherent absorption Im(Q) and modal absorption Im (K+) determine the intensity distribution of the generated vortex FWM field, while the inherent phase shift Re(Q) and modal phase shift Re(K+) determine the wave front distribution of the helical phase. Without the resonant tunneling, the inherent absorption Im(Q) dominates in tailoring the intensity profile of the FWM field [see blue lines in Figures 3A,C]. The ring pattern of the FWM field becomes flat in the vortex transfer processing due to the existence of the strong inherent absorption peak at r = 2 mm. Thus, the FWHM of the vortex FWM field increases compared with the driving field with POV. The appearance of peaks of both the inherent and modal phase shifts at r = 2 mm results in the helical phase twisted in the clockwise direction (see red lines in Figures 3A,C). With the resonant tunneling, the FWM field suffers stronger inherent and modal absorption at two edges of the intensity pattern (see blue lines in Figures 3B,D). In this case, the edge energy of the vortex FWM field can be easily dissipated, resulting in the width of the intensity pattern becoming narrower. The double-valley pattern of the dominated modal phase shift around r = 2 mm gives rise to two tremendous distortions in the anticlockwise direction (see red lines in Figures 3B,D).
[image: Figure 3]FIGURE 3 | Real and imaginary parts of (A,B) Q and (C,D) K+ versus radius r for different values of α, β, and δ: (A,C) α = β = 0, δ = 0 meV; (B,D) α = −0.11, β = 0.98, δ = 5.1 meV. Other parameters are the same as in Figure 2.
We then examine in Figure 4 the influence of the detuning Δp of the probe field on the intensity and helical phase of the vortex FWM field in the presence of the resonant tunneling. The corresponding radial distributions of the imaginary and real parts of Q and K+ are shown in Figure 5. One can find that the total absorption (including inherent and modal absorption) at the center of the light ring increases when increasing Δp from −4 to 8 meV (see blue lines in Figure 5). Correspondingly, the intensity of the vortex FWM field decreases (see Figures 4A–C). In the case of Δp = −4 meV, one can find from Figures 4A,D that the FWHM of the light ring is wide (ΔωH = 0.416 mm) while the distortion of the helical phase is almost invisible. The reason is that the vortex FWM field suffers a strong inherent absorption at the center of the light ring and a small total phase shift (including inherent and modal phase shifts) (Figures 5A,D). When the probe detuning is varied from −4 to 4 meV, the vortex FWM field suffers stronger inherent and modal absorption at the edges of the intensity pattern (see Figure 5B), and there are single peaks of inherent phase shift and double peaks of modal phase shift (Figure 5E). Therefore, the FWHM of the intensity pattern decreases to 0.196 mm (Figure 4B), and the helical phase twists in the clockwise direction (Figure 4E). More importantly, the twisted helical phase wave front is flat because of complementation between inherent and modal phase shifts. As the probe detuning increases to 8 meV, as shown in Figures 4C,F, 5C,F, the FWHM of the intensity slightly increases to 0.264 mm due to the wider transparent window in modal absorption spectrum. Meanwhile, the helical phase twists anticlockwise because of the existence of a single valley of inherent phase shift and double valleys of modal phase shift. Therefore, one can conclude that the detuning of the probe field can manipulate the helical phase wave front of the generated FWM field in an effective manner.
[image: Figure 4]FIGURE 4 | (A–C) Intensity and (D–F) phase profiles of the FWM field for different probe detuning Δp: (A,D) Δp = −4 meV; (B,E) Δp = 4 meV; (C,F) Δp = 8 meV. Other parameters are the same as in Figure 2C.
[image: Figure 5]FIGURE 5 | Real and imaginary parts of (A–C) Q and (D–F) K+ versus radius r for different probe detuning Δp: (A,D) Δp = −4 meV; (B,E) Δp = 4 meV; (C,F) Δp = 8 meV. Other parameters are the same as in Figure 2C.
We further investigate the dependence of the intensity and helical phase of the vortex FWM field on the detuning Δc of the coupling field in Figures 6, 7. It can be seen from Figure 6 that the intensity, width, and phase of the vortex FWM field are not very sensitive to the coupling detuning Δc. The results can be explained that the impact of the coupling detuning on the absorption and phase properties of the FWM field is weak. At the center of the light ring, the modal absorption remains unchanged and the inherent absorption decreases slowly with the increase of Δc (see blue lines in Figure 7), so we can find that the intensity of the vortex FWM field increases limitedly in Figures 6A–C. However, the FWHM of the intensity pattern is kept at 0.216 mm because of the strong inherent and modal absorption at the two edges of the intensity pattern. At the same time, the modal phase shift dominates in modulating the helical phase wave front of the FWM field (see red lines in Figure 7). As shown in Figures 6D–F, the near-identical double valleys of the modal phase shift result in almost the same double distortions for the helical phase wave front. Therefore, the generated vortex FWM field has good robustness on the detuning of the coupling field.
[image: Figure 6]FIGURE 6 | (A–C) Intensity and (D–F) phase profiles of the FWM field for different coupling detuning Δc: (A,D) Δc = 4 meV; (B,E) Δc = 8 meV; (C,F) Δc = 16 meV. Other parameters are the same as in Figure 4C.
[image: Figure 7]FIGURE 7 | Real and imaginary parts of (A–C) Q and (D–F) K+ versus radius r for different coupling detuning Δc: (A,D) Δc = 4 meV; (B,E) Δc = 8 meV; (C,F) Δc = 16 meV. Other parameters are the same as in Figure 4C.
Now, we analyze the influence of the conventional LG beam and POV beam with higher order TC on the intensity and phase patterns of the vortex FWM field in Figure 8. In the former case, we select the traditional single-ring LG beam [image: image] with radial index p = 0 and TC l = 3 in Ref.[45] as the OAM driving field and plot the intensity and phase profiles of the FWM field in Figures 8A,C. Compared with the case shown in Figures 2C,F, we can find that both the intensity and ring radius of the FWM field greatly decrease (Figure 8A). In addition, the helical phase wave front also suffers double distortion at the two edges of the intensity pattern. However, the phase twist in the inner edge is much smaller than that in the outer edge (Figure 8C). In the latter case, a POV beam with TC l = 6 is treated as the OAM driving field. The intensity and phase profiles of the FWM field are plotted in Figures 8B,D, respectively. The direct comparison between Figures 2C,F, 8B,D implies that the intensity patterns and phase distortions of the FWM field remain unchanged, except for the fact that the helical phase profile in Figure 8D displays six periods along the azimuthal direction.
[image: Figure 8]FIGURE 8 | (A,B) Intensity and (C,D) phase profiles of the FWM field for different beams. (A,C) LG beam with p = 0, l = 3, and wLG = 0.5 mm; (B,D) POV beam with l = 6. Other parameters are the same as in Figure 2C.
We note that, very recently, some theoretical schemes for exploring the vortex FWM process in SQWs have been proposed [54, 55, 56]. In these schemes, SQWs were used to explore the transfer and control of mid-infrared conventional LG beams [54, 55] and inner–outer ring LG beams [56]. In comparison with these schemes, the major differences in our proposal are the following: First, the main difference between our scheme and Refs. [54, 55, 56] is that we focus on the conversion and manipulation of the mid-infrared POV beam, while previous studies are focused on the control of the mid-infrared LG beams. Second, our scheme takes the advantages of the four-level ladder-type scheme [55] and tunneling-induced constructive interference [57, 58]. For example, resonant tunneling can effectively open the channel for the FWM process and modify the spatial distribution of the FWM field. Third, with the presence of resonant tunneling, both the intensity and phase patterns are insensitive to the detuning of the coupling field. The findings are quite different from the results obtained in Ref. [55], where the intensity pattern and phase distortion strongly depend on the detuning of the corresponding field.
Finally, we perform the coaxial interference between the vortex FWM field and a same-frequency POV beam [image: image] with the topological charge m = 1. The interference intensity and phase patterns are displayed in Figure 9 for different TCs of the vortex FWM field. From Figure 9, one can find that the interference patterns are quite different from the case in Figures 4C,F. The interference intensity exhibits a double-ring pattern for l = m = 1 and a vortex petal-like pattern for l ≠ m = 1 (Figures 9A–C,G–I). Specifically, as TC increases from l = 1 to l = 3, the number of petals in the intensity pattern increases from 0 to 2, and the rotating direction of petals is clockwise. However, the number of petals increases from 2 to 4 with TC increasing from l = −1 to l = −3, where the petal-like pattern is rotated in the anticlockwise direction. Meanwhile, the interference phase at the radial position r = 2 mm twists in the clockwise direction for l = 1, 2, 3 and in the opposite direction for l = −1, −2, −3, while the interference phase in the other region is the same as the helical phase of the POV beam ΩG. From Figure 9, one can conclude that the number of intensity petals in the interference intensity spectrum equals to the value of |l − m|, and the rotating direction of intensity petals reflects the sign of l − m (i.e., the clockwise and anticlockwise rotation of petals correspond to l − m > 0 and l − m < 0 , respectively). Therefore, we can efficiently realize the measurement for the value and sign of TC of the generated vortex FWM field (i.e., the vortex driving field) via observing the interference intensity spectrum.
[image: Figure 9]FIGURE 9 | Interference intensity [(A–C) and (G–I)] and phase [(D–F) and (J–L)] profiles of different values of TC of the FWM field. ΩG0 = 0.16 meV, m = 1, and other parameters are the same as in Figure 4C.
4 CONCLUSION
We mainly focus on the condition of low temperatures up to 10 K, and have neglected other many-body effects such as the depolarization effect, which renormalizes the free-carrier and carrier-field contributions. These contributions and their interplay have been investigated quite thoroughly in Ref. [60]. Note that due to the low electron sheet density considered here, these effects only give a negligible correction.
In conclusion, a scheme for transferring and manipulating POV in an asymmetric SDQW nanostructure is theoretically suggested. The OAM of a unique POV mode is completely transferred to the generated FWM field via a tunneling-induced highly efficient FWM process. It is demonstrated that resonant tunneling plays an important role in the manipulation of the intensity and phase distribution of the vortex FWM field. With the presence of resonant tunneling, the generated FWM field is closer to an ideal POV beam and exhibits an enhanced phase distortion at two edges of the intensity pattern. Furthermore, we find that the intensity and phase profiles of the vortex FWM field are sensitive to the detuning of the weak probe field but rather robust against the detuning of the strong coupling field. These results can be reasonably explained via the combination of inherent and modal dispersion relation. Subsequently, the coaxial interference between the vortex FWM field and a same-frequency POV beam is studied. It is found that the interference intensity and phase patterns are determined by TC of the vortex FWM field, which allows us to measure TC of the FWM field with POV. Our proposal may provide an avenue for the coherent control of POV and a possibility for the TC measurement of a POV beam.
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We demonstrated a tuned dipole interaction between Rydberg atoms by employing a controllable electric field in a cold cesium ensemble. The |nP3/2⟩ (n = 38–40) Rydberg pairs are prepared with a three-photon scheme and detected via the state-selective field ionization technique. A weak DC electric field is used to tune the Rydberg pair interaction from the van der Waals interaction regime to the dipole–dipole interaction regime. The Förster resonant interaction and an adiabatic resonance energy transfer between the nP and nS Rydberg states are attained by precisely tuning the electric field. Rydberg excitation blockade with and without the electric field is investigated by changing the excitation pulse duration, which demonstrates that the dipole interaction–induced blockade effect is stronger than the van der Waals interaction–induced blockade effect. The precise control of the Rydberg interaction is of great significance to the coherent interaction in many-body systems and non-radiative collision processes.
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1 INTRODUCTION
Rydberg atom, one electron placed in a highly energetic excited state is a kind of exotic atom that has attracted more and more attention in atomic and molecular physics in recent years. A Rydberg atom has a huge orbital radius ( ∝ n2, n is the principal quantum number), a large polarizability (∝ n7), a strong interaction between Rydberg atoms (∝ n11) [1], and so on. Due to these properties, the Rydberg atom is very popular both for investigation of the blockade effect and single photon source [2,3] and single photon transistor [4] and for the microwave field measurement and the field sensor [5–10].
In addition, Rydberg levels can be tuned by the external field to the Förster resonant regime, where the Rydberg atoms display strong dipole–dipole interaction and dipole blockade [11,12]. At the Förster resonance, the non-radiative redistribution of the electronic state between two particles coupled by the dipole–dipole interaction is of great importance for a variety of phenomena. For the Rydberg pair state, the initial prepared Rydberg atom can adiabatically transfer to a nearby state without a change in the kinetic energy, which is called the resonance energy transfer (RET). The dipole interaction and the RET play a very important role in atomic and molecular dynamics and multi-body interactions [13]. This kind of resonant interaction has been studied extensively, for example, the strong interaction between Rydberg atoms under an electric field [14–17], the exploration, and analysis of the multi-body [13] and the few-body interaction [18,19], an optical nonlinearity in cold atom systems [20], and an atomic interference [21]. In recent years, the resonant dipole interaction between neutral pairs of atoms, particularly the dipole interaction between Rydberg atoms, has been used to investigate quantum gates [22–24], quantum simulation, and computing [25,26].
In this work, we prepared the |nP3/2⟩ (n = 38–40) Rydberg pair with the three-photon scheme in the cold cesium atoms. A weak DC electric field is used to tune the Rydberg pair interaction from the van der Waals interaction regime to the dipole–dipole interaction regime. At the Förster resonance, we achieved an adiabatic resonance energy transfer between the nP and nS Rydberg states by means of controlling the dipolar interaction tuned by an electric field. Rydberg excitation with and without the DC field and the blockade effect are investigated by changing the excitation pulse duration, which demonstrates that the dipole interaction–induced blockade effect is stronger than the van der Waals interaction–induced blockade effect.
2 INTERACTIONS BETWEEN RYDBERG ATOMS
As mentioned earlier, the Rydberg atom has a strong long-range interaction and a large dipole transition matrix element because of its huge polarizability. Considering a pair of Rydberg atoms, the Hamiltonian can be expressed as,
[image: image]
where, H0 = HA + HB is the Hamiltonian of the bare atoms A and B, [image: image] is the interaction potential between atoms. The interaction potential can be written as a Laurent series with the atomic distance R,
[image: image]
with Cn as the dispersion coefficient. We assumed that two atoms are initially in the same Rydberg state |2⟩, as shown in Figure 1A. The state |2⟩ can transition to the state |1⟩ (|3⟩) by emitting (absorbing) a photon. The energy level is Ei (i = 1,2,3), and the energy defect of the atomic pair is defined as ΔE = 2E2 − (E1 + E3). We take the pair state of {|2⟩|2⟩} (|nP⟩|nP⟩) and {|1⟩|3⟩} (|nS⟩|n′S⟩) as our basis vectors and further diagonalize the Hamiltonian to obtain the eigen energy,
[image: image]
where [image: image] [image: image] represents the transition dipole moment of |2⟩ → |1⟩ (|2⟩ → |3⟩). Usually, 1) when |ΔE|≫|μ1μ2/R3|, the Rydberg pair mainly displays the van der Waals interaction, and the related interaction potential is VvdW = C6/R6 (C6 ∼ n11)(Figure 1A). 2) When |ΔE|≪|μ1μ2/R3|, the Rydberg pair shows the strong dipole–dipole interaction, and the interaction potential is Vdd = C3/R3 (Figure 1B). For |38P3/2, mj = 3/2 (1/2)⟩ state used in this work, the calculated C3 = 0.56 (0.37) GHz ⋅ μm3 and the mean of C6 in all directions are 1.62 (1.40) GHz ⋅ μm3, respectively. Both the van der Waals and the dipole–dipole interaction of Rydberg atoms can block further excitation of the nearby atom, resulting in the blockade effect. Under the condition of ΔE = 0 (E3 − E2 = E2 − E1), one initial atom in |2⟩ state can transfer to |3⟩ state by absorbing a photon that is emitted by the |2⟩ → |1⟩ transition of the other atom, which is called the resonance energy transfer (RET).
[image: Figure 1]FIGURE 1 | (color online). (A) Scheme of the van der Waals interaction between Rydberg atomic pairs. Two atoms initially prepared in the same Rydberg state |2⟩, |1⟩, and |3⟩ are the dipole allowed near states. ΔE indicates the energy defect between |3⟩ − |2⟩ and |2⟩ − |1⟩. For the case of ΔE ≠ 0, the Rydberg pair displays the van der Waals interaction, which scales as R−6. (B) Scheme of the dipole–dipole interaction. The weak DC electric field is used to tune the Rydberg level to the Förster resonance. For the case of ΔE = 0, the Rydberg pair displays the dipole–dipole interaction, which scales as R−3.
In view of Rydberg wave functions and parity conservation, the selection rules of Δl = ±1 (l, the orbital quantum number) and Δmj = 0, ±1 (mj, the total angular momentum quantum number) for the electric dipole moment operator are considered. For a cesium atom in this work, we chose the initial |nP3/2⟩ state excited by the three-photon excitation; the form of resonance energy transfer is usually expressed as
[image: image]
Based on the Stark shift and splitting of the Rydberg state, we tuned the Rydberg level by applying the external DC electric field to obtain ΔE = 0 and the RET condition. Following Zimmerman’s method [27], we numerically resolved the radial equation of the cesium atom and obtained the Stark map of the cesium Rydberg atom. From the Stark map, we extracted the Stark shift of |nS1/2⟩ and |nP3/2⟩ levels and obtained the energy defect of the Rydberg pair and, further, the Förster resonant electric field. For details, refer Section 4.
3 EXPERIMENT SCHEME AND SETUP
Our experiment is performed in a standard magneto-optical trap (MOT), where a cold cloud of Cs atoms is trapped in the center of a metal MOT with a density of 1010 cm−3. The |nP3/2⟩ Rydberg state is excited by the three-photon excitation scheme. The experimental setup and three-photon excitation are displayed in Figure 2. Three photons at 852 nm, 1,470 nm and 780 nm lasers are used to realize the Rydberg transition of |6S1/2⟩ → |6P3/2⟩ → |7S1/2⟩ → |nP3/2⟩. The first photon couples the lower transition of |6S1/2(F = 4)⟩ → |6P3/2(F′ = 5)⟩ with the detuning of δ = +110 MHz and the Rabi frequency of Ω852 = 2π × 45 MHz; the second photon drives the intermediate transition of |6P3/2(F′ = 5)⟩ → |7S1/2(F′′ = 4)⟩ with the Rabi frequency of Ω1470 = 2π × 80 MHz, while the third photon achieves the Rydberg transition of |7S1/2⟩ → |nP3/2⟩ with the Rabi frequency of Ω780 = 2π × 10 MHz.
[image: Figure 2]FIGURE 2 | (color online). (A) Three-photon excitation diagram of the Rydberg state. The first photon from the 852 nm (red) laser drives the lower transition |6S1/2⟩ → |6P3/2⟩, whose frequency is blue detuned δ from the intermediate state. The second photon, 1,470-nm (dark purple) laser couples the intermediate transition of |6P3/2⟩ → |7S1/2⟩. The third photon, 780-nm (dark red) laser achieves the Rydberg state via the up transition |7S1/2⟩ → |nP3/2⟩. Yellow and blue balls represent the ground and Rydberg state atoms, respectively. (B) Schematic diagram of the experiment. Three excitation lasers cross through the MOT center. The ions of Rydberg atoms are detected with a MCP detector, analyzed with a boxcar, and recorded by a computer. The ramp (DC) electric field is applied to the grids located in the z direction for the field ionization (the manipulation of the Rydberg interaction). Other grids in x − and y − directions are not shown here. (C) Timing sequence. After switching off the MOT beam, the Rydberg excitation pulse with duration of 6 μs is switched on for preparing Rydberg atoms. During the Rydberg excitation, a weak DC electric field is applied to tune the interaction between Rydberg atoms. After the Rydberg excitation, a ramp electric field is applied that is used to selectively ionize the Rydberg atoms. DM: dichroic mirror.
The experimental setup is shown in Figure 2B. Cesium atoms are trapped in the center of a metal MOT via the laser cooling and trap technique. The MOT density is measured with the shadow image. The first photon, 852 nm, and the third photon, 780 nm, lasers with a waist of ∼ 80 μm are co-propagated through the MOT center along the x-axis after being combined by a dichroic mirror (DM), whereas, the second photon 1,470 nm lasers with a beam waist of 800 μm is crossed with the first photon laser at the center of the atom cloud, forming the cylindrical excitation region. Three pairs of girds (only one pair of grid is shown in Figure 2) are placed on either side of the MOT along three directions, which are used to apply the electric field for the state-selective field ionization of Rydberg atoms and compensate for the stray electric field. The resultant Rydberg ions are accelerated to the microchannel plate (MCP) detector. The Rydberg signal the MCP detects is analyzed with a boxcar and recorded with a computer.
The experiment is performed within 100 μs, during which the cooling light is turned off, see the timing sequence of Figure 2C. During the Rydberg excitation, we apply a weak DC electric field to tune the Rydberg level and further the interaction between Rydberg atoms. After the Rydberg excitation, we apply a ramp electric field for the state selective field, ionizing the initial prepared Rydberg atoms and the production due to the RET process.
4 EXPERIMENTAL RESULTS
In the experiment, we used the three-photon scheme to excite the |nP3/2⟩ Rydberg state; refer Figure 2A. The frequencies of the first (852 nm) and the second (1,470 nm) lasers are locked with a method of a saturated absorption spectrum (SAS) and an optical-optical double-resonance spectrum (OODRS), respectively. The frequency of the third (780 nm) laser is scanned at a speed of 4 mHz. In Figure 3, we present the time of flight (TOF) spectra of the |38P3/2⟩ state without (Figure 3A) and with (Figure 3B) an electric field of 1.74 V/cm. The peak at 0.5 μs comes from the initially excited |38P3/2⟩ state, which is marked with the blue gate. In Figure 3B, we clearly observed that the small peak appears at later time, marked with the yellow gate, which mainly comes from the |38S1/2⟩ state. The |38S1/2⟩ state is produced due to the RET process as the |38S1/2⟩ state can only be populated at an external field of ∼ 1.74 V/cm, where the energy defect is ΔE ≈ 0. It should be noted that |39S1/2⟩ would accompany the |38S1/2⟩ state during the RET process and appear before the blue gate. However, in Figure 3B, we can see the variation of the front wing of the TOF spectrum but not a clear |39S1/2⟩ signal due to our ramp electric field with a fast ramp time. In addition, it is also seen that in the presence of the electric field, the signal of the |38P3/2⟩ state in the blue gate is about 50% of the field free signal; we attribute the decrease of the signal of the |38P3/2⟩ state to the dipole blockade effect due to the strong dipole interaction at the Förster resonance. It is noted that the small peaks before the blue gate may be attributed to auto-ionization during the Rydberg excitation and the high angular momentum Rydberg states, which are beyond the scope of this work.
[image: Figure 3]FIGURE 3 | (color online). Time of flight spectrum of the |38P3/2⟩ state with a DC field of 0 V/cm (A) and 1.74 V/cm (B). The blue and yellow shadows mark the positions of the |38P3/2⟩ and |38S1/2⟩ states, respectively. The initial |38P3/2⟩ atoms transfer to |38S1/2⟩ due to the Förster resonant dipole interaction within the electric field of 1.74 V/cm.
To better understand the RET process and qualitative analysis of the observed signals, in Figure 4A, we present the Stark map near n = 34, 35 manifolds including |38P3/2⟩, |38S1/2⟩, |39S1/2⟩ states for |mj| = 1/2 (red solid line) and 3/2 (blue solid line). The vertical dashed lines mark the Förster resonance electric fields, 1.60 V/cm for mj = 1/2 and 1.74 V/cm for mj = 3/2, where the energy defect ΔE ≃ 0. Therefore, although the dipole interaction can couple |38P3/2⟩ to a bunch of states, the Förster resonance process occurs only for the specific pair of states under the specific electric field value. The signal of |38S1/2⟩ in the yellow gate of Figure 3B is generated from the |38P3/2⟩ Förster resonant transfer. We conducted a series of measurements and recorded the |38S1/2⟩ signal in the yellow gate by changing the frequency of the 780 nm laser and DC electric fields. In Figure 4B, we present a contour plot of the |38S1/2⟩ state transferred from |38P3/2⟩ as a function of the DC electric field and the 780 nm laser detuning Δ780. It is shown that the |38S1/2⟩ signal is very small and reaches maximum only at the field of ∼ 1.58 ± 0.01 V/cm and 1.74 ± 0.01 V/cm, showing good agreement with the calculations with a deviation of less than 2%.
[image: Figure 4]FIGURE 4 | (color online). (A) Calculations of the Stark map near n = 34 and 35 manifolds. In the electric field, the |38P3/2⟩ state shifts and splits into two Stark lines, forming two Förster resonant points at the electric field 1.60 V/cm and 1.74 V/cm, respectively, as shown with the black square. The inset shows the enlargement of the square marked region. (B) Contour plot of the |38S1/2⟩ state transferred from the initial |38P3/2⟩ state as a function of the DC electric field and the 780-nm laser detuning Δ780. The signal of the |38S1/2⟩ state can be observed at the electric fields of 1.58 ± 0.01 V/cm and 1.74 ± 0.01 V/cm, respectively.
As mentioned earlier, the strong interaction between Rydberg atoms can block further excitation of nearby atoms. In the following experiment, we will investigate the blockade effect with and without the electric field. The blockade effect is attained by varying the laser power [11,28] or the excitation pulse duration. In contrast to the previous literature, we changed the duration of the excitation pulse in this work. To observe the blockade effect, we recorded all the signals, including the signals in the blue and yellow gates. In Figure 5, we present the measured Rydberg ions of the |40P3/2⟩ state as a function of the excitation pulse duration with (red circles) and without (blue squares) the DC electric field. The dashed line displays the Rydberg signal that linearly increases with the excitation duration without any blockade effect.
[image: Figure 5]FIGURE 5 | (color online). Measured field ionization signal of |40P3/2⟩ Rydberg state as a function of the excitation duration with (red circles) and without (blue squares) the DC electric field. The black dashed line displays the linear increasing with the excitation duration without any blockade effect. It is seen that blockade behavior is stronger due to the dipole interaction than that due to the van der Waals interaction.
Close inspection of Figure 5 reveals that the Rydberg excitation process can be divided into three regions. I) The first linear region for the excitation duration tdur < 3μs, where the excited Rydberg signals are almost same and lie in the dashed line, displaying linear increase with the excitation duration for both cases. II) The second region for the excitation duration of 3μs ≲ tdur ≲ 7μs, where the measured Rydberg signal without the DC field still lies in the dashed line, displaying the linear increase, but the Rydberg signal with the DC field begins to deviate from the dashed line when tdur > 3μs, and the difference between the signal with and without the DC field increases with the excitation duration. This behavior proves that the dipole interaction (1/R3)–induced blockade effect is much larger than the van der Waals interaction (1/R6)–induced blockade effect. III) The third blockade region for the excitation duration tdur ≳ 7μs, where the Rydberg signal in the absence of the DC field also begins to deviate from the dashed line, showing the blockade effect. In this region, the difference between the signals with and without the DC field does not change much when we increase the excitation duration further because they are both in the blockade region.
Due to the large polarizability, the energy level of the Rydberg state is easily tuned with the external electric field to the Förster resonance, where Rydberg atoms display the strong dipole interaction. The electric field tuned dipole interaction has lots of applications in the non-radiative energy exchange [29], the collective effect [30], the engineering quantum states of matter [31], and so on. The tuning of coherent interactions in many-body systems with an external field has been a promising method. The cold Rydberg gases provide an ideal platform for the quantum simulation of complex many-body problems due to their controllable interactions.
5 CONCLUSION
To conclude, in this work, we have investigated the interaction between |nP3/2⟩ (n = 38–40) Rydberg pairs, excited by the three-photon scheme in the cold cesium atoms. The Rydberg level is tuned by the weak DC field and the resonant energy transfer spectrum due to the Förster resonance is observed. The |38S1/2⟩ state due to the resonant energy transfer as a function of the excitation frequency and the electric field has been obtained and the extracted Förster electric field for |38P3/2⟩ Rydberg atom agrees with the calculated field value. Finally, the blockade effects induced by the van der Waals interaction and the dipole interaction between Rydberg pairs have been studied by changing the excitation duration, which demonstrates that the dipole interaction–induced blockade effect is stronger than the van der Waals interaction–induced blockade effect. Considering the flexible and controllable nature of the electric field, the field tuned dipole interaction plays an important role in the coherent interactions in many-body systems and non-radiative collision processes and collective effects and engineering quantum states of matter.
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Quantum error correction is a crucial step to realize large-scale universal quantum computing, and the condition for realizing quantum error correction is that the error probability of each operation step must below some threshold. This requires that the qubits’ quality and the quantum gates precision can reach a certain level experimentally. We firstly discuss the mechanism of quantum errors: the precision of quantum gates corresponds to unitary operator errors, and the quality of qubits is attributed to decoherence. Then, according to the threshold of the surface code error correction, we proved the minimum of quantum gate fidelity should not be less than 1 − p with the error probability p, and found the natural decoherence time of qubits that can be used for error correction. This provides some kind of theoretical supports for qubits preparation and performing quantum operations experimentally.
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1 INTRODUCTION
As one of the Frontier fields in the post-Moore’s Law era, quantum computing has received extensive attention from physicists, information scientists, and cryptographers. There are two main reasons. First, The spatial scale of classical computer chips has approached the scale of quantum physics. The classical laws are no longer applicable in such scale, which requiring the support of quantum theory. Second, quantum algorithms based on quantum systems can reduce the computing complexity of difficult problems, to achieve computational acceleration even exponentially, such as Shor’s algorithm [1,2], Grover’s algorithm [3,4], etc.
However, the main difficulty in the current quantum computing experiments is that it is hard to achieve large-scale qubits integration, because of the decoherence, noise in channels, and crosstalk between qubits, and so on [5,6]. Since practical universal quantum algorithms require large-scale fault-tolerant quantum computing platforms, the current stage in the field of quantum computing is to demonstrate and practicalize the quantum superiority of Noisy Intermediate Scale Qubits quantum computing [7,8]. Quantum error correction is still the most technical step that needs to be overcome and improved. If error correction is not carried out, quantum circuit will accumulate errors until the correct result cannot be obtained. The commonly used error correction scheme that can be implemented at present includes surface code (two-dimensional topological quantum error correction) [9,10]. Gidney et al. estimated that the time to crack 2048-bit RSA by executing the Shor’s algorithm on the superconducting circuits platform using the surface code is about 8 h [11], however the qubits overhead reaches 20 millions. Gouzien et al. took advantage of a 3D-guage color code and the ion trap quantum computing to reduce the qubits overhead to 13,436 at the cost of a slight increase in execution time to 177 days [12].
It can be seen that different quantum error correction schemes will have a certain impact on the overhead of quantum circuits, and will also produce different error probability thresholds pth. This threshold pth will further impose a constraint on the fidelity of qubits and quantum operations, which is also the focus of our work. If we want to go further in the development of quantum error correction, we need a more accurate understanding and deeper exploration of the error mechanism of qubits.
Although error correction schemes based on error syndrome detection don’t require us to identify the source of errors for each qubit, but only need the statistical probability of errors. However, during the preparation of required qubits and quantum gates, their fidelity and decoherence characteristic time should be used as reference standard. Therefore, according to the error probability threshold required by error correction schemes, after clarifying the error generation mechanism, the theoretical calibration of the corresponding standard is also an important part of overcoming the bottleneck in quantum error correction experiments.
In this work, we explore the different sources of single-qubit errors, and calculate the fidelity of quantum operations and decoherence respectively according to the surface code probability threshold pth. For the single-qubit error correction model, the probability of detecting an error should be a comprehensive characterization of the two error sources. The conclusions of this work provide a theoretical basis for the fidelity criteria of the qubits preparation and quantum operations in experiments.
2 THE SOURCE OF QUBIT ERRORS
As a quantum system existing in the environment, qubits will inevitably interact with the surrounding environment to exchange information. This is a loss of information for qubits, and it will also bring errors to the result of quantum circuits.
We can use the fidelity between the initial and final states of a quantum system to measure the degree of information retention. But since the measurement of fidelity requires ensemble-based measurement methods such as quantum state tomography, it is not suitable to do the fidelity measurement in quantum circuits. Therefore, error correction schemes usually directly use a parity-like error characterization method to monitor errors and avoid destroying data qubits.
Specifically, the model of the interaction between a quantum system and the environment can be described by the operation-sum representation. First, the total state of the quantum system and the environment ρ = ρ0 ⊗ ρenv, ρ0 represents the initial state density matrix of the quantum system, and ρenv represents the density matrix of the environment. According to the Schmidt purification, the initial state ρenv of the environment can always be written as a pure state, which means [image: image]. Wherein [image: image] is a set of basis for the environment, and [image: image] is the initial state. Then after the whole system experiences evolution U, the final state of the quantum system [image: image], that is, ρ experiences the evolution of U, and then the environment is traced to obtain the reduced density matrix of the quantum system,
[image: image]
where [image: image], represents the matrix element of the U under the environmental representation, and acts on the quantum system [13].
For the quantum system, the fidelity F after the evolution is
[image: image]
In fact, after the partial tracing of the environment Trenv, all we care about is the difference between the initial and final states of the quantum system, that is, what kind of errors will be caused. The details of the evolution process don’t need us to care about. The operator E has also become a reduced operator that only acts on the quantum system.
Next, we can judge whether E is unitary or not to classify the errors occurred from the quantum system. For the sake of simplicity, we take one qubit as the quantum system in quantum computing. Specifically, it is divided into two categories:
Unitary operator E. The operator E is unitary and can preserve the trace of the quantum state density matrix. This type of error can keep the qubit still in pure state. We know that under ideal conditions, the quantum state required for quantum computing should be a pure state, and the quantum operation should be a unitary operation1. If the introduced error is also a unitary operator, this means that the effect of the error did not decoherent the quantum state. From the perspective of the Bloch sphere, it’s just that the state vector produces some unexpected rotations on the spherical surface.
Considering the actual operation, this kind of error mainly comes from the quantum gate. Whether it’s because the operator’s approximation can’t reach 100% accuracy, or because of environmental influences that make the quantum gates behave inaccurately, such kind of errors can be translated into single-qubit rotations on the Bloch sphere.
Non-unitary operator E. The operator E evolves the qubit from a pure state to a mixed state. This type of error can be understood as what we usually say, decoherence. Compared to the first type of error, the effects of decoherence are more common. The damping of amplitude and phase is usually due to the contact of the qubit with the environment (various types of noise). Since the qubit has become a mixed state, part of the information contained in it has changed from the form of quantum superposition to a classical mixture, which has irreversibly leaked into the environment.
From the perspective of the Bloch sphere, the decayed state vector shrinks from the surface to the inside of the sphere. The decay of the state vector can be decomposed into transverse relaxation and longitudinal relaxation [14,15]. For detailed discussion and calculation, please refer to Section 3.2.
Although from the perspective of error correction, it seems that we do not need to care about the cause of the errors, but only need to monitor the errors and take corresponding error correction operations to ensure the reliability of the circuit. However, in experiments, various quantum computing platforms using different materials and principles may have very different qubit properties and types of quantum operations. Our research conclusions can provide a unified theoretical standard for different platforms, and can obtain more precise qubit decoherence fidelity and quantum operation fidelity according to different error correction schemes and error correction standards. Therefore, the research on the error mechanism of qubits is of certain significance.
For the widely used surface code, since the error correction circuit increases the circuit depth and the number of qubits, its error threshold can also be divided into different classes [9]. Specifically, according to the surface code error correction circuit (Figure 1A), Fowler et al. divides the error thresholds into pth,0, pth,1, and pth,2. These three levels of thresholds have different degrees of sensitivity to the logic error rate of the error correction circuit, and we will select the appropriate class of threshold as constraint according to the expression of fidelity.
[image: Figure 1]FIGURE 1 | (A) Single cycle logical circuit that detects X errors in the surface code. The solid circles in the circuit represent auxiliary qubits, and the open circles represent data qubits. A single cycle contains 8 steps, including single-qubit gate, initialization, C-NOT gate, and measurement; (B) Bloch sphere representation of a single qubit. |ψf⟩ represents the quantum state after the ideal quantum operation, |ψe⟩ is the final state after the error occurs. The angle between the projection of the x − y plane and the x-axis is the phase angle ϕ, and the angle between the state vector and the z-axis is the polar angle θ.
Next, we will show the correlation between different quantum superposition initial states, error probability and fidelity for single qubit. And then theoretically deduce and calculate the qubit fidelity and quantum operation fidelity of the above two error-generating mechanisms, and find the corresponding theoretical limit under the error probability threshold.
3 ERROR PROBABILITY AND FIDELITY OF SINGLE QUBIT
For any single-qubit pure state, we denote an arbitrary superposition state of |0⟩ and |1⟩ as |ψ⟩ = α|0⟩ + β|1⟩, where the normalization condition is |α|2 + |β|2 = 1. In a Bloch sphere with the radius of 1, |ψ⟩ is the radial vector on the sphere, taking [image: image], [image: image], and |ψ⟩ is expressed as
[image: image]
where θ is the polar angle and ϕ is the azimuth angle. We usually use the density matrix of state ρ = |ψ⟩⟨ψ| to calculate [13].
[image: image]
For a error correction process, we need to perform error detection and correction for the result after each step. Without loss of generality, we assume that after each unitary operation of quantum computing, the final state |ψf⟩ = α|0⟩ + β|1⟩, where f means ‘final’. But due to the error of quantum operation or decoherence caused by noise, the final state becomes |ψe⟩, where e means ‘errors’. Compared with |ψf⟩, the difference generated by |ψe⟩ may originate from one or more reasons, and we will analyze them one by one below.
3.1 The Error of Unitary Operation
The quantum gate operation in the quantum circuit is usually to apply a specific controllable external field to the qubit to control it. There are different type of external field according to the different qubit systems, such as the microwave pulse [16] in the superconducting circuit system, the laser pulse [17] in the ion trap system, and so on. Here we consider the errors that such quantum operations bring to qubits because they cannot be 100% accurate.
For example, a beam of Xπ-pulse can rotate the qubit by an angle of π around the x-axis, but due to the insufficient precision, the quantum state actually rotates around the x-axis by π ± δ. Such an error can be understood as an unexpected unitary operation, and equivalent to a rotation of an unknown angle. In fact this unexpectedly angle can be a rotation around any axis, not necessarily the same as the operation rotation. (Figure 1B).
According to the above operations, the single-qubit state can be written as the following process:
1. The initial state undergoes an error-free unitary operation, |ψf⟩ = U|ψ0⟩;
2. The initial state undergoes an unitary operation with errors, |ψe⟩ = U′|ψ0⟩ = UeU|ψ0⟩ = Ue|ψf⟩.
The qubit undergoes the quantum operation U′ with errors, which is equivalent to the qubit first undergoes the precise operation U, and then undergoes an error operation Ue, and finally becomes the quantum state with error |ψe⟩. Ue is also essentially a rotation operation on the Bloch sphere, so it can be decomposed into rotation around x-axis and z-axis, corresponding to the types of X and Z errors that occur in qubits respectively. Besides, the error probability is described by the rotation angle ɛ.
3.1.1 X Errors
[image: image], the probability of error [image: image].
After the state |ψf⟩ is affected by Ux,
[image: image]
Since |ψf⟩ and |ψe⟩x are pure states, their density matrices are ρf = |ψf⟩⟨ψf|, ρe,x = |ψe⟩x⟨ψe| respectively. And the fidelity Fx under the X error of probability p is
[image: image]
Bringing in the |ψf⟩ and |ψe⟩, we can get
[image: image]
We can see that the fidelity [image: image] is not only related to the error rotation angle ɛ, but also to the θ and ϕ angles of the quantum state |ψf⟩. This means that even the same error will have different effects on different quantum states. Figure 2A plots the relationship between [image: image] and ɛ, θ (For the convenience of drawing, we take ϕ = 0.)
[image: Figure 2]FIGURE 2 | (A) For Ux errors, the qubit fidelity [image: image] is a function of the error probability p and the polar angle θ (ϕ is set to be 0); (B) For Uz errors, the qubit fidelity [image: image] is a function of the error probability p and the polar angle θ.
3.1.2 Z Errors
[image: image], the probability of error [image: image].
The same process as X errors,
[image: image]
After the Z error for probability p, the density matrix becomes ρe,z = |ψe⟩z⟨ψe|, and the fidelity
[image: image]
It can be found that for Z errors, the fidelity ρe,z = |ψe⟩z⟨ψe| is not affected by the phase angle ϕ, but is still affected by the polar angle θ, see Figure 2B.
3.2 Natural Decoherence
We analyzed the case where the error is a unitary operator above, which ensures that the qubit is still pure. And because of the unitarity of the operator, unitary errors are in principle completely reversible. But if the error causes the qubit to evolve from a pure state to a mixed state, its information will be irreversibly lost, usually described as decoherence caused by the environment.
Under the conditions of Born approximation (weak coupling between quantum system and environment) and Markovian approximation (each noise is temporally uncorrelated), the decoherence problem of quantum system is usually described by the master equation of density matrix (quantum Liouville equation) [18].
[image: image]
where H represents the coherent dynamic evolution Hamiltonian, and [image: image] represents the incoherent evolution. [image: image] is the Lindblad quantum transition operator, which is used to describe the effect of different decoherence effects on the quantum state ρ, and Γk represents the rate (influence degree) of the corresponding [image: image].
The research on the master equation and multi-body quantum system is complicated, and we can refer to [19,20] for details. In universal quantum computing, any quantum operation can be decomposed into a combination of single-qubit gates and two-qubit gates. So theoretically only the decoherence of at most two bodies need to be considered in quantum computing. In this subsection, we first consider the single-qubit decoherence problem.
In theory, decoherence occurs in the entire process of quantum computing, that is, the entire process from initialization, quantum gate operation, to measurement and memory. In the stage without quantum operations, we can set the Hamiltonian H of the coherent evolution part to 0. It means that in such stage the qubit will undergo natural decoherent decay. Although such model is relatively naive, it can also correspond to the process of qubit storage and preparation, which is of great significance to quantum computing.
For the natural decoherence model of single qubit, we also categorize the types of errors [15]:
Amplitude damping. The conversion between |0⟩⇌|1⟩ is called amplitude damping. This includes the transition of |0⟩ → |1⟩ and the decay of |1⟩ → |0⟩. However, the probability of a spontaneous transition in a quantum system in equilibrium is negligible compared to the probability of decay [21]. During longitudinal relaxation, single qubit exchange energy with the environment, resulting in irreversible information leakage.
Dephasing. The decay of the phase angle ϕ is called pure dephasing. Pure dephasing does not exchange energy with the environment, so it is in principle reversible. In theory, the dynamic decoupling method can completely eliminate the pure dephase decay [22], and in practice scientists are trying to achieve it.
For the master equation solution of the above decoherence model, it can be described by a simplified form of the Bloch-Redfield density matrix [15,23,24],
[image: image]
The operator interaction strength Γk represents the decay rate, the amplitude damping rate is Γ1, and the transverse decoherence rate is Γ2 = Γ1/2 + Γϕ, which includes both amplitude damping and pure dephasing effects. The probability amplitude of |1⟩ is attenuated from |β|2 to [image: image], and the probability amplitude of |0⟩ is [image: image]; the decay rate of the off-diagonal term is [image: image].
In the standard Bloch-Redfield model, the off-diagonal term also has a frequency detuning attenuation term e−iδωt, which represents the attenuation caused by the frequency detuning between the qubit and the control system. The Hamiltonian H is set to 0, so the detuning term doesn’t need to be considered.
In addition, the standard Bloch-Redfield model cannot still accurately describe the decoherence of superconducting qubits. The off-diagonal term in the density matrix should also normally contain the non-exponential decay term [image: image], which can describe 1/f-type noise. For the sake of simplicity, we do not consider the non-exponential decay term here.
With the decoherent density matrix, we compute the fidelity [image: image]
[image: image]
Bring [image: image] and [image: image] in, we can get
[image: image]
It can be found that there is no related term of [image: image] in the fidelity [image: image]. Since Γ2 = Γ1/2 + Γϕ, it means that [image: image] is not affected by pure dephasing, which also reflects the reversibility of pure dephasing in the decoherence process. The relationship between [image: image] and the polar angle θ, the amplitude damping probability [image: image] is shown in Figure 3.
[image: Figure 3]FIGURE 3 | For natural decoherence, the quantum state fidelity [image: image] as a function of decay probability p and the polar angle θ.
For different quantum states ρf, the effect of natural decoherence on fidelity is also different. The larger the polar angle θ, the greater the effect of amplitude damping decoherence on fidelity, and vice versa.
4 SURFACE CODE ERROR PROBABILITY THRESHOLD AND THE MINIMUM FIDELITY
Surface codes have become widely used error correction schemes in various experimental platforms due to their neighbor interactions and the lattice structure that is easy to expand. In the field of error correction, the threshold theorem is the basic principle that guarantees the effectiveness of error correction schemes. Error corrections need additional auxiliary qubits and gates, which will introduce new errors. If there are too many additional errors introduced by the error correction circuits, the errors will continue to accumulate during the error correction cycle. Therefore, we need to require the error probability of the qubits and operations to be lower than a certain threshold pth, so that the error probability of the final result of the circuit can be reduced by continuously implementing the error correction cycle [13].
For the X error correction circuit of the surface code (see Figure 1A), there are a total of 8 basic steps, including single-qubit gates, two-qubit gates, measurement and other operations. Considering these 8 steps comprehensively, error probability threshold is pth = 0.0057 for each step [9].
The author also divided the errors into three classes, and studied the sensitivity of each type of errors to the threshold: Class0 represents the single-qubit error of the data qubit, pth,0≅0.043; Class1 represents the initialization of the auxiliary qubit, H gate and measurement errors, pth,1≅0.12; Class3 represents two-qubit gate errors, pth,2≅0.0125. However, since these types of error threshold are larger than the overall threshold pth when considered separately, we take pth = 0.0057 for calculation.
4.1 Unitary Errors
4.1.1 X Errors
Assuming that only X errors occur, the error probability threshold pth = sin2ɛ, [image: image]. According to Eq. 8, we can get the fidelity when the error probability p is between 0 ∼ 0.0057,
[image: image]
Still taking ϕ = 0, the function curve is shown in Figure 4A.
[image: Figure 4]FIGURE 4 | (A) The value range of fidelity [image: image] after limiting the error probability p to the surface code error threshold range; (B) Under the same error probability value range, the value range and the gradient trend of [image: image].
It is easy to know that the minimum value of [image: image] is obtained at θ = 0, π. At this time, the quantum state is at the two poles of the Bloch sphere, and the X error will completely flip the qubit. If p = pth, then for |ψf⟩ = |0⟩ or |ψf⟩ = |1⟩, the minimum fidelity [image: image]. That is, the minimum fidelity of unitary operation under X error is 99.43%.
4.1.2 Z Errors
On the other hand, assuming that only Z errors occur, we bring in [image: image],
[image: image]
We can also get the function curve of [image: image] when 0 < p ≤ 0.0057, as shown in Figure 4B.
From Eq. 15, if θ = 0 or π, we have sin θ = 0, [image: image] is independent of p, and Z error will not affect the fidelity. In fact, θ = 0, π corresponds to |0⟩ and |1⟩, and the Z error is to rotate the quantum state around the z axis, which naturally does not change these two quantum states. If 0 < θ < π, the minimum fidelity value when θ = π/2 is [image: image], which is also 99.43%.
4.1.3 Rotation Errors Around an Arbitrary Axis m by an Angle of ɛ
Through the discussion of X and Z errors, we find that the minimum values of their fidelity are the same, although the quantum states when taking the minimum value are different. In fact, we can show that the minimum value of fidelity is 1 − p (or 1 − sin2ɛ) for the error when the state is unexpectedly rotated by ɛ around any axis m.
Proof: From Section 3.1, it can be seen that the final state with error |ψm⟩ = Um|ψf⟩, then let [image: image], Um represents the rotation of ɛ around the m-axis operation, σm is the operation of rotating π around the m-axis. [image: image] means 2π rotation around the m-axis, so there is [image: image]. Then the fidelity
[image: image]
When [image: image], we have [image: image]; and when [image: image], [image: image]. From the perspective of the Bloch sphere, when the fidelity gets the maximum, the qubit state vectors just falls on the m-axis and we marked them as |0⟩m and |1⟩m. At this point, the operation of rotating around the m-axis cannot change the quantum state. When the fidelity gets the minimum, the state vector falls on the normal plane n of the m-axis, and we marked them as |ψm⟩max, see Figure 5.
[image: Figure 5]FIGURE 5 | For the rotation operation of any axis m, its error operator is Um. The maximum of fidelity [image: image] is obtained when the quantum state vector coincides with the m-axis, and we mark the states as [image: image] and [image: image]; And the minimum of [image: image] is obtained when the state falls on the normal plane n of the m-axis, we mark it as [image: image].
The m-axis is also easy to determine if we know |ψf⟩ and |ψm⟩. Take the two points which are the intersection of |ψf⟩ and |ψm⟩ with the Bloch sphere respectively and connect them. The midpoint of the above line segment and the center of the sphere, these two points can determine the m-axis, which is perpendicular to the above line segment.
Moreover, Um can be decomposed into rotating ɛ1 around the x-axis first, and then rotating ɛ2 around the z-axis, that is [image: image]. If [image: image], and [image: image], we can have
[image: image]
4.2 Natural Decoherence
For the natural decoherent state ρBR, the amplitude damping probability [image: image]. If the characteristic time T1 is fixed, according to the error probability threshold pth, we can obtain the longest lifetime τ = −T1 ln pth that the qubit can be used for quantum computing.
According to the work of Krantz et al. [15], taking T1 = 85 μs, we can get τ = 0.489 μs. This means that a superconducting qubit with a amplitude damping lifetime of 85 μs has 489 ns available for quantum operations before decoherence. This time seems very short, but it is undoubtedly sufficient for a superconducting system with a single operation time of 10 ∼ 100 ns.
Similarly, we take the threshold pth = 0.0057 of the surface code scheme, then there is [image: image], and the relationship between [image: image] and the polar angle θ and time t is shown in Figure 6.
[image: Figure 6]FIGURE 6 | (A) The amplitude damping probability pdec is limited in the surface code error threshold range. This figure shows the value range and gradient trend of the quantum state fidelity [image: image]; (B) The two-dimensional drawing of (A).
It can be found that the fidelity is minimized when θ = π, [image: image].
5 DISCUSSION
From the analysis above, we studied the fidelity of quantum unitary operations and natural decoherence under surface code threshold requirements. But in each case, we assumed that only this type of error occurs, and in practice the operation errors and decoherence would occur at the same time. Therefore, the actual error probability [image: image], since 0 < pU, pdec < 1, so p > pU and also p > pdec. Given all this, the actual quantum operation fidelity should be larger than the above calculated value of 99.43%, and the actual available decoherence time should be shorter than 489 ns.
At the same time, the threshold theorem guarantees that the circuit can correct errors by continuously increasing the number of cycles when the error probability is lower than the threshold. However, the closer the error probability is to the threshold, the more cycles are required. Due to the limited quantum resources (number of qubits, number of quantum gates), it is impossible for us to require that the actual error probability only just reaches the threshold, which will cause enormous amount of qubits. Therefore, there is a recognized fidelity standard of 99.9% (the error probability per step is 10–3), which is assumed in some articles [9,11]. So that for the surface code, the number of physical qubits can be controlled between 103 ∼ 104 to encode a logical qubit.
For different quantum error correction codes, their error probability thresholds are different. Therefore the quantum gate fidelity and coherence time required for error correction will also be different. This will further affect the number of cycles of the error correction code, which is reflected in the required quantum resources (the corresponding amount of qubits and quantum operations). Based on our above processing method, the minimum required gate fidelity and qubit coherence time can be calculated by just obtaining the error probability threshold of the error correction code. Then according to the minimum standard, we can seek the balance between the number of quantum resources and their fidelity, which provides theoretical standards for experiments.
Two-qubit gate errors. In the previous sections, we only discussed the fidelity of single-qubit operations, but the set of general quantum gates also includes two-qubit gates, such as C-NOT gates. For a two-qubit gate, both qubit 1 and qubit 2 will have unitary errors with probability p respectively, resulting in a lower fidelity than single-qubit gate. We can regard the error of two qubits as two independent and unaffected operators’ direct product Uqubit, 1 ⊗ Uqubit, 2, and the research on the fidelity of two-qubit gate is also worthy of our further study focus on.
Decoherence with driven field. In the decoherence part, we only perform the correlation calculation of natural decoherence (let the Hamiltonian H = 0). But decoherence occurs throughout the computing process, including when quantum operations are excuted. When an external field drives the quantum state evolution, decoherence occurs. And this process can be described by the master equation of the density matrix with a time-independent Hamiltonian H.
In quantum computing, single-qubit gate and two-qubit gate are usually fixed rotations rather than time-dependent continuous transformations. So for the master equation, in the part of the Heisenberg evolution [image: image], the Hamiltonian H is time-independent, only ρ evolves with time. The incoherent evolution led by Lindblad operator [image: image] also affects the evolution of ρ in the master equation, so the qubit decoherence problem with driving field is relatively complicated, but it is also more suitable for studying the decoherence phenomenon during executing quantum operations.
6 CONCLUSION
In this work, we present a classification discussion about the sources of quantum errors according to the unitarity of the reduced evolutionary operators. For an unitary error, we can understand it as the precision error of the quantum operation. The effect of it is equivalent to the effect of an extra unitary rotation operation, and the quantum operation fidelity can be calculated according to the error probability threshold of the surface code. The non-unitary error can be understood as the decoherence process of qubits. We focus on the situation of natural decoherence, and calculate the qubit coherence duration that can be used for quantum error correction according to the evolution properties of decoherence.
Decoherence time and quantum gate operation fidelity are important parameters in the preparation of qubits and quantum control experimentally. Our work clarifies the mechanism of quantum error sources and provides theoretical support for laboratory technical.
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FOOTNOTES
1For the two-qubit operations, we treat the two qubits together as a quantum system. If we consider one of them, it is in a mixed state, but the two-qubit state is still pure.
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Rydberg atom arrays offer flexible geometries of strongly interacting neutral atoms, which are useful for many quantum applications such as quantum simulation and quantum computation. Here, we consider an all-optical gate-based quantum computing scheme for the Rydberg atom arrays, in which auxiliary atoms (wire atoms) are used as a mean of quantum-mechanical remote-couplings among data-qubit atoms, and optical individual-atom addressing of the data and wire atoms is used to construct universal quantum gates of the data atoms. The working principle of our gates is to use the wire atoms for coupling mediation only, while leaving them in noncoupling ground states before and after each gate operation, which allows the double-excited states of data qubits to be accessible by a sequence of π or π/2 pulses addressing the data and wire atoms. Optical pulse sequences are constructed for standard one-, two-, and multi-qubit gates, and the arbitrary two-qubit state preparation is considered for universal computation prospects. We further provide a detailed resource estimate for an experimental implementation of this scheme in a Rydberg quantum simulator.
Keywords: quantum gates, Rydberg atom, CNOT, Toffoli, quantum computation
1 INTRODUCTION
Quantum computing is being actively studied as a mean to revolutionize humankind’s computational capability beyond the limits of digital computers [1, 2]. Quantum computing hardware are two-level physical systems, which we refer to as qubits hereafter, and quantum computation performs operations of universal quantum gates on them. Gate-based quantum computations have been demonstrated in many physical systems, including linear optics [3, 4], circuit quantum electrodynamics of superconductor [5–7], trapped ions [8–10], defects in solid-state materials [11, 12], and neutral atoms [13, 14].
Neutral atoms have been considered for gate-based quantum computations using interactions between the Rydberg atoms [15, 16]. The advantages of using Rydberg atoms are strong dipole–dipole interactions that can be switched on and off by fast laser excitation, large-scale atom arrays that can be prepared with almost any desired geometries and topologies [17–19], and stable ground hyperfine states that can be used for long-term quantum information. Quantum gates using Rydberg atoms can utilize the distance-dependent interactions [20] or the Rydberg blockade effect which prohibits adjacent atoms from being excited to a Rydberg state [21, 22]. There are many Rydberg atom schemes for quantum gates and entanglements [23–26] and experimental demonstrations [27–31, 33, 34]. The single-qubit gate fidelity of the recent demonstrations was recorded 0.97 in the alkali atom system [29] and 0.99 in the alkaline-earth atomic system [31]. Many of these previous studies are based on coding quantum information in the stable states, which are the hyperfine-Zeeman substates, requiring a hybrid microwave or Raman excitation scheme in addition to Rydberg atom excitation.
In this article, we consider an all-optical quantum gate scheme in a Rydberg atom array, which does not resort to the ground sublevels and, instead, utilizes auxiliary atoms (wire atoms) to mediate coupling among qubit atoms (data atoms), and single-atom addressing operations. When we use a Rydberg state and ground state to be the two qubit states for a data qubit and use a cluster of data and wire qubits in a Rydberg atom array, in which the wire atoms between the data qubits mediate interactions between the data atoms, by a sequence of single-atom addressing operations. The advantage of this setup comes in twofold. First, the gates are all realized with fast laser excitation of the ground-Rydberg transitions, so that the quantum circuit for a certain computational task (including digital quantum simulation) can be carried out fast. Second, the distance between the data atoms can be large, for which analyses shown later with practical and currently available resources estimates that, for example, a CZ gate between two atoms separated about 19 μm could be created with a high fidelity over 98% within a duration 2π/Ω, where Ω is the Rydberg Rabi frequency.
In the rest of the article, we first outline the main idea of the quantum wire gates based on the Rydberg interaction and single-atom addressing in Section 2, and then construct single- and two-qubit gates in Sections 3, 4. We then discuss the general two-qubit state generation and multi-qubit gates in Sections 5, 6. Experimental implementations, gate performances, and alternative schemes are discussed in Section 7.
2 SINGLE-ATOM ADDRESSING IN A RYDBERG-ATOM SYSTEM
We aim to construct quantum gates with a sequence of individual-atom addressing in an array of atoms. We consider a two-dimensional (2D) array of atoms as shown in Figure 1A. In the Rydberg blockade regime, adjacent two atoms are inhibited from being excited to an antiblockade state, |11⟩, so the computational space of the two atoms is limited to {|00⟩, |01⟩, |10⟩} excluding |11⟩ (the antiblockade two-atom state), when the two-level system, {|0⟩, |1⟩}, is defined with the ground and Rydberg states of each atom. However, because |11⟩ is necessary for general quantum computation, we use the auxiliary atoms (which we refer to as wire atoms, hereafter) to mediate couplings among the data atoms. In Figure 1A, data atoms are illustrated with red spheres and wire atoms are with gray spheres.
[image: Figure 1]FIGURE 1 | The Rydberg wire gate scheme: (A) A 2D atomic array consists of data atoms (red spheres) and auxiliary (wire) atoms (gray spheres). Atomic ground state |0⟩ and Rydberg state |1⟩ are used for the two-level system of each atom. Wire atoms, e.g., W, mediate the couplings between two adjacent data atoms, e.g., A and B which are separated from W by a distance d. (B) The energy level diagram of the three atoms, A, W, and B. We use four computational basis states, |00⟩AB|0⟩W, |01⟩AB|0⟩W, |10⟩AB|0⟩W, and |11⟩AB|0⟩W (in the blue dashed rectangle), out of five accessible states including |00⟩AB|1⟩W, which is considered as a temporal register (in the light green dashed rectangle). The other states, |10⟩AB|1⟩W, |01⟩AB|1⟩W, and |11⟩AB|1⟩W are not accessible due to the Rydberg blockade.
In the three-atom system, AWB in Figure 1A, A and B are the data atoms and W is the wire atom to couple A and B. When the wire atom is excited to |1⟩, only for data processing of |AB⟩ and otherwise left to be |0⟩W, there are five computational base states |00⟩AB|0⟩W, |01⟩AB|0⟩W, |10⟩AB|0⟩W, |11⟩AB|0⟩W, and |00⟩AB|1⟩W. Here, the first four base states are the computational basis for the two-data (AB) system and the last |00⟩AB|1⟩W can be considered as a temporal register, as in Figure 1B. There are three available atom addressings:
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where Θ and ϕ are the Rabi rotation angle and axis, respectively. HW is the Hamiltonian of single-addressing of W given by
[image: image]
in the Rydberg blockade regime of adjacent atoms, i.e., [image: image], where d and dB are the interatom and blockade distances, respectively. Ω is the Rabi frequency, [image: image] is the rotational axis defined by a laser phase ϕ, V = C6/d6 is the van der Waals interaction with coefficient C6, and [image: image] is the Pauli vector and n = (1 − σz)/2 is the excitation number.
It is noted that the atom-addressing operations in Eqs 1a–c are three-qubit gates. We intend to use them for general quantum computations of the data AB atoms. [image: image] changes |00⟩AB|0⟩W to |00⟩AB|1⟩W and preserves all the other states and their superpositions. Thus, the [image: image] operation is the inverted controlled rotation gate, where AB are the control qubits and W is the target qubit. The other three operators are reduced to single- and two-atom rotations in the data-qubit (AB) basis as
[image: image]
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where R is the single-qubit rotation and I is the identity.
3 STANDARD ONE-QUBIT GATES
With the atom-addressing operations, [image: image], [image: image], and [image: image], in Eqs 1a–c, we construct standard one-qubit gates which include Pauli gates, X, Y, and Z, general rotation R(Θ, ϕ), Hadamard gate H, and phase gate, P.
Pauli gates rotate the quantum state of one atom, while leaving the other atoms unchanged. For the data atoms, A and B, Pauli X-gates are given by
[image: image]
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where [image: image], [image: image], and α = π/2 is the global phase. Likewise, Pauli Y and Z gates are given by
[image: image]
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where [image: image] and [image: image]. The general rotations are given by
[image: image]
[image: image]
The Hadamard gate, H, converts the quantum states, |0⟩ and |1⟩, to the superposition states, [image: image] or [image: image], respectively. The Hadamard gate is identical to [image: image], given by
[image: image]
[image: image]
where [image: image] and [image: image] are the pseudo-Hadamard gates. α = π/2.
The phase gates, PA(ϕ) and PB(ϕ), are given by
[image: image]
[image: image]
S and T gates are obtained as SA = PA(π/2), SB = PB(π/2), TA = PA(π/4), and TB = PB(π/4).
The global phase, α, of the abovementioned gates can be eliminated with a global phase gate. One example is
[image: image]
which is a combination of four two-qubit phase rotations, |00⟩ → eiα|00⟩ which is performed by [image: image], |01⟩ → eiα|01⟩ by [image: image], |10⟩ → eiα|10⟩ by [image: image], and |11⟩ → eiα|11⟩ by [image: image], where [image: image] denotes [image: image].
4 STANDARD TWO-QUBIT GATES
Now, we consider the standard two-qubit gates including the controlled-NOT gate, CNOT, the swap gate, SWAP, and the controlled-phase gate, CP.
The controlled-NOT gate, CNOT, flips the target qubit (the second qubit) only when the control qubit (the first qubit) is in |1⟩, i.e., |AB⟩ → |A, A ⊕ B⟩, which is also the controlled X-gate, i.e., CNOT = CX. With the atom addressing, CXAB and CXBA are, respectively, given by
[image: image]
[image: image]
of which the sequence can be understood as follows: In CXAB, [image: image] at the center works as an inverted-CZ gate, which flips only the sign of the coefficient of |00⟩AB|0⟩W. When this is multiplied by [image: image] from one side and by its Hermitian conjugate from the other side, we get the controlled-Z gate, similarly as in Ref. [32], i.e.,
[image: image]
which is then multiplied by [image: image] and its Hermitian conjugate, to attain CXAB. The quantum circuit of CXAB is presented in Figure 2A. Likewise, the controlled-Y gates are given by
[image: image]
[image: image]
[image: Figure 2]FIGURE 2 | Quantum circuits of (A) controlled-NOT gate, CXAB, and (B) controlled-phase gate, CP00(α).
SWAP gate performs the state swapping of two qubits, i.e., |AB⟩ → |BA⟩, which is also the exchange of the coefficients of |01⟩ and |10⟩. In our atom-addressing scheme, an X-gate version of SWAP gate is given by
[image: image]
in which the first three-pulse combination, [image: image], exchanges the coefficients of |10⟩AB|0⟩W and |00⟩AB|1⟩W. The coefficient of |00⟩AB|1⟩W is then exchanged with that of |01⟩AB|0⟩W by the second combination, [image: image], before the coefficient of |00⟩AB|1⟩W is returned to |10⟩AB|0⟩W by [image: image].
The controlled-phase gate, CP(α), puts the local phase of |11⟩ of AB data qubits. In our atom-addressing scheme, W-atom addressing, [image: image], converts |00⟩AB|0⟩W to − ieiα|00⟩AB|1⟩W and [image: image] converts |00⟩AB to eiα|00⟩AB, so CP00(α), which puts the local phase of |00⟩, is given by
[image: image]
The quantum circuit of CP00(α) is presented in Figure 2B. The standard CP(α) = CP11(α) is, therefore, obtained by
[image: image]
where the CP00(α) in the middle is multiplied by [image: image] from one side and by the conjugate of [image: image] from the other side, which respectively exchanges and exchanges back the coefficients of |00⟩ and |11⟩. As a result, we get |11⟩ → eiα|11⟩. Similarly, CP01(ϕ) and CP10(ϕ) are obtained as
[image: image]
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5 ARBITRARY TWO-QUBIT STATE GENERATION
The general two-qubit state generation is to find a unitary operation which transforms the initial state |00⟩AB to an arbitrary two-qubit state, i.e.,
[image: image]
The above U can be in principle constructed with the single- and two-qubit gates. Also, it is sufficient to define the general rotations and at least one inversion operation among the two-qubit base states, {|00⟩, |01⟩, |10⟩, |11⟩} of AB atoms.
Inversion operations are the reflection of the two-qubit state vector about a given plane. For example, CZ inverts the state vector about the plane orthogonal to |11⟩, i.e., [image: image]. Likewise, [image: image], [image: image], and [image: image].
General rotations are the base-pair rotation between a pair of two-qubit base states, i.e., [image: image] for j, k ∈ {|00⟩, |01⟩, |10⟩, |11⟩}. [image: image] rotates the quantum information stored in the base pair, |00⟩ and |01⟩, which are, for example, given by
[image: image]
where the first two π-pulse operations, [image: image] and [image: image], perform |00⟩AB|0⟩W → |00⟩AB|1⟩W and |01⟩AB|0⟩W → |00⟩AB|0⟩W, respectively, which means that the quantum state of B atom is transferred to W atom. Then, the state vector of W atom is rotated by [image: image] and transferred back to B atom by the last two π-pulse operations. Similarly, other rotations can be obtained as follows:
[image: image]
[image: image]
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6 MULTI-QUBIT GATES
While the multi-qubit gates can be decomposed to a sequence of single- and two-qubit elementary gates, the standard three-qubit gates require many elementary gates. For example, a Toffoli gate needs 15 or 17 elementary gates. In the following, we consider the possibilities of using wire atom arrangements which can reduce the number of gates significantly for the Toffoli and CCZ gates.
If we use the simple linear configuration, as in Figure 3A, of ABC data atoms and two wire atoms W1 and W2, their pulse-sequence solutions, e.g., for the Toffoli and CCZ gates, are rather complicated:
[image: image]
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[image: Figure 3]FIGURE 3 | (A) A 5-atom chain and (B) an Y-shape atomic array to implement the multi-qubit wire gates. (C) Quantum circuit of the Toffoli gate TOFFABC for the control atoms A, B and the target atom C.
Instead, if we use the Y-shape configuration, as shown in Figure 3B, which has one wire atom, W, which couples all the three data atoms, ABC, simultaneously, their solutions are simple, given as the extensions of CX and CZ in Eqs 10a,b, 11. The CCZ utilizes the fact that [image: image] is the inverted-CCZ, to attain
[image: image]
where [image: image] and [image: image] are for the bitwise flip and flip-back of the data atoms, applied before and after to change the inverted-CCZ to CCZ. The Toffoli gate of the AB controls and C target is also obtained as
[image: image]
where [image: image] and [image: image] on both ends are the pseudo-Hadamard and its inverse acting on the target. The quantum circuit of TOFFABC is presented in Figure 3C.
7 DISCUSSION AND CONCLUSION
Experimental implementation: Rydberg wire gates introduced previously can be implemented in optical-tweezer atomic systems, which have been previously demonstrated elsewhere [20, 29, 30]. As an example, we consider three rubidium (87Rb) atoms arranged in the linear chain geometry. Once the single atoms are loaded to individual tweezers from magneto-optical trap, the atoms are prepared to one of the magnetic sublevels in hyperfine ground states as the ground state |0⟩ (for example, |0⟩ = |5S1/2, F = 2, mF = 2⟩). The states |0⟩ and |1⟩ are coupled by Rydberg state excitation lasers, and in general two-photon excitation is used to transit to |nS⟩ or |nD⟩ Rydberg levels via |5P3/2⟩ with 780 and 480 nm lights. For |1⟩ = |69S1/2⟩, the atoms undergo van der Waals interaction, and the interaction strength when the interatomic distance d = 7 μm becomes [image: image] MHz, where C6 = −(2π)732 GHz ⋅ μm6. Individual-atom addressing to couple between |0⟩ and |1⟩ can be implemented by diffracting multiple laser beams from an acousto-optic modulator (AOM), then focusing to the individual atoms. The switching of individual beams can be done by controlling the amplitude and frequency of radio-frequency wave to AOM. The individual addressing lasers can be either ground-Rydberg resonant lasers [30] or far-detuned lasers [35], in which the latter suppress the Rydberg state excitation with the additional AC Stark shift combined with global resonant lasers.
Gate performance: the performance of the Rydberg wire gate schemes can be estimated with numerical calculations. In Figure 4, we estimate the average fidelity of CP00(π) gate for all the initial states [image: image] using the time-dependent Schrödinger equations. For |1⟩ = |69S1/2, mj = 1/2⟩, the results with respect to the interatomic distance are shown with the solid line in Figure 4. For Rabi frequency Ω = (2π)2 MHz, the gate duration is 0.5 μs. It is expected that the maximum fidelity [image: image] can be reached to 94% when the lattice constant is around 6.8 μm.
[image: Figure 4]FIGURE 4 | Performance estimation of the CZ gate for the present van der Waals scheme (solid line) in comparison with the Förster resonance scheme (dashed line).
Gate imperfection sources: The sources of finite infidelities related to the Rydberg atomic properties can be characterized. The finite lifetime of Rydberg state gives imperfection to the transition to |1⟩. For the lifetime of |1⟩ to be τ, this gives the average gate error [image: image] [36]. Another source of gate infidelity is the Rydberg blockade error: as the Rydberg interaction strength is proportional to 1/d6, the interaction strength within the blockade distance dB is finite, and there is nonzero residual interactions outside. For the interaction strength, V, between a nearest neighbor Rydberg atomic pair, the gate error is given by [image: image] for the initial state |10⟩AB, |01⟩AB and [image: image] for |11⟩AB [37, 38]. In addition, the phase shift [image: image] occurs for the initial state |11⟩AB, due to the nonzero interactions between atom A and B. Considering all these error budgets, we estimate the average fidelity error as
[image: image]
where the terms denote the Rydberg state decay error, the Rydberg blockade error, and the residual interaction error, respectively. Their estimated infidelity contributions are 4 × 10−3, 2.04 × 10−2 and 9.12 × 10−2, respectively, at d = 6.8 μm. While our fidelity estimation considers limitedly sub-μs pulsed gate significantly shorter than the typical coherence time of Rydberg atoms, a detailed analysis, for example, in a large-scale quantum circuit requires many-body effects and open quantum system dynamics [39–43].Toward the higher fidelity gates, we discuss methods to improve the gate fidelity to suppress the last two errors in Eq. 25. One approach is to utilize the dipole–dipole interaction by Förster resonance between the nearest neighbor atomic pair. Near the principal quantum number n = 69 discussed previously, there exist two transition channels between the Rydberg pair states, |69S1/2 + 71S1/2⟩ ↔|69P3/2 + 70P1/2⟩ and |69S1/2 + 71S1/2⟩ ↔|69P1/2 + 70P3/2⟩ by the dipole–dipole interaction, with Förster defects of 6.6 and 19.7 MHz, respectively [44]. This induces the dipole–dipole interaction with the strength of V′ = C3/d3, where C3 = (2π)12.32 GHz ⋅ μm3, with the interatomic distance less than the crossover distance 11 μm [45]. In realizing the CP00(π) gate, the atom W is to be excited to |1′⟩ = |71S1/2, mj = 1/2⟩ state, while the data atoms A and B are excited to |1⟩. Then, the interaction strength between A(B) and W is increased due to the Förster resonance, so the interatomic distance can also be increased. This further reduces the long range residual van der Waals interaction between A and B, thus the gate infidelity can be suppressed. In Figure 4, we illustrate the improved performance of the CP00(π) gate of the dipole–dipole interaction (the dashed line). The overall fidelities [image: image] are increased compared to the previous example, and the maximum reached to 98% at d = 9.17 μm.
Weakness of the Rydberg wire gates: The weakness of the present scheme is that the Rydberg states are not stable. There is a constant decay process occurring during the quantum control process. However, for a fast quantum control process, the decay-induced error can be relatively small for the decay error and is proportional to the Rydberg superposition time. Moreover, the quantum error correction can, in principle, be executed by the gates shown in this article, so that the error during the control process can be corrected. Because both the main control process and error correction are fast. Thanks to the fast pulsed operations of quantum wire gates, the overall speed to reach a wanted computational result can still surpass the traditional method of coding information with the stable hyperfine-Zeeman substates.
In summary, the Rydberg wire gates are proposed, which utilize auxiliary atoms to couple the data atoms. By coding the information with a ground-state qubit state and a Rydberg qubit state, the universal gate set can be realized based on the strong, local interactions of the neutral Rydberg atoms. The gates are realized by the fast laser excitation of Rydberg states, so that their speed can be fast, and the well-separated data atoms can be rapidly entangled. Fast entangling operations are important basic elements in a quantum circuit for large-scale quantum computation, and long-distance entanglement can greatly simplify complex operations between distant qubits in the array. The new idea of Rydberg wire gates can bring new prospective in neutral-atom quantum science and technology.
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We theoretically propose a scheme to measure the topological charge (TC) of a mid-infrared vortex beam via observing the intensity distribution of the four-wave mixing (FWM) field in an asymmetric semiconductor double quantum well. Due to the existence of Fano-type interferences, the special inherent interference takes place, and thus generates the interference-type phase and intensity patterns for the FWM field. Furthermore, it is demonstrated that the intensity and visibility of the interference-type intensity pattern can be drastically manipulated by adjusting the intensity and detuning the control field. Subsequently, we perform the TC measurement of the vortex driving field via directly monitoring the number of light spots of the FWM field. By choosing the suitable control parameters, the detectable value of the TC can reach to 120 with the visibility exceeding 0.97. Our scheme may provide the possibility for the realization of a mid-infrared OAM detector in a compact solid-state system.
Keywords: topological charge, optical vortex, semiconductor quantum well, Fano-type interference, four-wave mixing
1 INTRODUCTION
In the past several decades, the study of optical vortices carrying an orbital angular momentum (OAM) of lℏ per photon has been an active area in the field of optics since it was first proposed and experimentally observed by Allen et al. in 1992 [1]. As a structured light beam, the vortex beam contains a helical phase term eilϕ, where l is the topological charge (TC) [2]. The exchange and manipulation of optical vortices have been extensively investigated in a variety of structures and materials, such as liquid crystal films [3], metamaterials [4, 5], Dammann vortex grating [6], cold atomic ensembles [7–11], quantum dots [12, 13], molecular magnets [14], and graphene [15]. Meanwhile, optical vortices have been widely used in optical tweezers [16, 17], optical communication [18, 19], microscopic imaging [20, 21], quantum entanglement [22, 23], quantum teleportation [24, 25], and quantum information processing [26]. For most of these applications, it is of great importance to accurately measure the TCs of optical vortices. Until now, numerous approaches have been proposed to realize the TC measurement, such as using the torque measurement [27, 28], rotational Doppler effect [29], the diffractive optical elements including apertures [30, 31] and gratings [32, 33], the interference mechanisms of oblique plane waves [34], spherical waves [35, 36], Young’s double-slit [37, 38] and Mach–Zehnder [39, 40]. However, these approaches mostly require some specialized optical components or a good number of optical elements with fine alignment. Therefore, realizing the TC measurement of a vortex beam in a simple and efficient optical system still remains to be explored.
On the other hand, as a solid-state material working in the mid-infrared band, semiconductor quantum wells (SQWs) provide a promising platform for the coherent control of mid-infrared light transmission due to their advantages of high nonlinear optical coefficients, large electric dipole moments, and a flexible structure design. Until now, a host of breakthroughs have been made such as electromagnetically induced transparency (EIT) [41, 42], electromagnetically induced grating [43, 44], all-optical switching [45], optical solutions [46, 47], Goos–Hänchen shift [48, 49], and four-wave mixing (FWM) [50–52]. Recently, the transfer and modulation of mid-infrared optical vortices have been realized via the high-efficient FWM process in SQWs [53–55]. Thus, it reminds us of one question: Can we realize the TC measurement of a mid-infrared vortex beam in a SQW system?
To answer this question, a scheme is proposed in this article for measuring the TC of a mid-infrared vortex beam via observing the intensity distribution of the generated FWM field in an asymmetric semiconductor double quantum well (SDQW). In this SDQW, Fano-type interference exists, which arises from the absorption paths of two states coupled to an electronic continuum [52, 56, 57]. Different from previous studies, the distinguishing features of this scheme are given as follows: First and foremost, with the help of the Fano-type interference, the special inherent interference leads to the interference-type phase and intensity patterns for the generated FWM field. This is a significant advantage of our proposed scheme compared with Refs. [53, 54]. Second, by adjusting the intensity and detuning of the control field, the interference-type intensity pattern of the FWM field can be drastically manipulated. In particular, by an appropriate choice of the intensity Ωc and detuning Δc, a high-visibility interference-type pattern accompanied by an appropriate intensity can be achieved. Third, by monitoring the number of light spots of the FWM field, the measurable TC value can reach up to 120 in our scheme, which is a great improvement compared with previous schemes [38, 58].
2 MODELS AND EQUATIONS
As shown in Figure 1A, we consider an asymmetric SDQW with four-subband configurations, which can be grown by molecular-beam epitaxy [56]. In this designed SDQW, an 8.3-nm thick Al0.07Ga0.93As layer and a 6.9-nm GaAs layer are separated by an Al0.32Ga0.68As potential barrier with the thickness of 4.75 nm. On the right side of the right well is a thin barrier with a thickness of 3.8 nm, which is followed by a thick Al0.16Ga0.84As layer [52, 59, 60]. The eigenenergies and wave functions for the four conduction subbands can be obtained by solving the effective mass Schrödinger equation [61]. In the proposed SDQW, the eigenenergies of the four subbands |1⟩, |2⟩, |3⟩, and |4⟩ are ω1 = 51.53 meV, ω2 = 97.78 meV, ω3 = 191.3 meV, and ω4 = 233.23 meV, respectively [52]. Owing to the existence of resonant tunneling, the two closely spaced delocalized subbands |3⟩ and |4⟩ can be represented by a coherent superposition of the first excited subband in the shallow well |se⟩ and deep well |de⟩, that is, [image: image] and [image: image]. A pulse probe field Ωp = Ωp0 exp (−t2/τ2) (Ωp0 and τ are the initial Rabi frequency and pulse width) is applied to the transition |3⟩ ↔|1⟩, while the transitions |3⟩ ↔|2⟩ and |4⟩ ↔|2⟩ are driven by a continuous-wave (cw) control field Ωc and a vortex driving field Ωd. Subsequently, a pulse FWM field Ωm can be efficiently generated via the FWM process [image: image] (Figures 1B,C). In our scheme, the vortex driving field Ωd is a Laguerre–Gaussian (LG) mode with the form [12]
[image: image]
where r and ϕ are the radial radius and azimuthal angle, respectively. Ωd0 and w0 represent the initial Rabi frequency and beam waist, respectively. The radial index and TC are labeled by p and l, respectively. Here, [image: image] is the Laguerre polynomial.
[image: image]
[image: Figure 1]FIGURE 1 | (A) Schematic energy-band diagram of a single period of the asymmetric SDQW. (B) The corresponding energy-level arrangement. (C) Geometry of the four applied fields. In the FWM process, control field Ωc, vortex driving field Ωd, and probe field Ωp interact with the SDQW and generate FWM field Ωm under the phase-matching condition [image: image].
It can be seen from Eqs 1, 2 that the Laguerre polynomial [image: image] determines the radial distribution of the intensity of the LG mode. For simplicity, it is assumed that all the four subbands have the same effective mass. Furthermore, this SDQW is designed to have a low electron sheet density so that the electron–electron interactions can be reasonably neglected [62]. Under the rotating-wave and electric-dipole approximations, the interaction Hamiltonian for this system in the interaction picture can be written as (ℏ = 1).
[image: image]
where Δp = (ω3 − ω1) − ωp, Δc = (ω3 − ω2) − ωc, and Δd = (ω4 − ω2) − ωd are the probe field, control field, and vortex field detunings, respectively. [image: image] (j = p, c, d, and m) is the wave vector of the corresponding applied field. The Rabi frequencies of the corresponding applied fields are Ωp = μ31Ep/2ℏ, Ωc = μ32Ec/2ℏ, Ωd = μ24Ed (r, ϕ)/2ℏ and Ωm = μ41Em (r, ϕ)/2ℏ with μij (i, j = 1–4; i ≠ j) being the transition dipole moment between subbands [image: image] and Ep,c,d,m being the slowly varying electric field amplitude of the applied field. According to Ref. [63], the light intensity Ii (j = p, c, d, and m) of the applied field is proportional to the square of the electric field amplitude Ei, that is, [image: image]. In other words, [image: image], which means that the Rabi frequency of an applied field can be used to represent its light intensity. Meanwhile, the electron wave function can be written as
[image: image]
where Aj (j = 1, 2, 3, 4) stands for the time-dependent probability amplitude for finding particles in the corresponding subband. Substituting Eqs 3, 4 into the Schrödinger equation [image: image], the equations of motion for the probability amplitudes can be obtained as [52].
[image: image]
[image: image]
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in which [image: image] denotes a phase mismatching factor. In Eqs 6–8, the decay rate γj (j = 2, 3, 4) is introduced phenomenologically. The total decay rate γj (j = 2–4) = γjl + γjd includes the population decay rate γjl and the pure dipole dephasing rate γjd. The population decay rate γjl is induced by the longitudinal optical phonon emission events at low temperatures, which can be calculated in [56]. The pure dipole dephasing rate γjd is due to a combination of quasi-elastic interface roughness scattering and acoustic phonon scattering. In the presence of the electronic continuum, the population decay rates γ3l and γ4l represent the decay rates from the subbands |3⟩ and |4⟩ to the continuum by tunneling with γ3l = 1.58 meV and γ4l = 1.5 meV. In the absence of the electronic continuum, γ3l and γ4l stand for the decay rates from the subbands |3⟩ and |4⟩ to the ground subband with γ3l ≈ γ4l = 1 meV. For temperatures up to 10 K, the electron density can be kept to 1024m−3 [64]. In this sense, the dephasing rates can be estimated as γ3d = 0.32 meV and γ4d = 0.3 meV. It is worth noting that a cross coupling term between the two excited states [image: image] and [image: image] is introduced as [image: image] when the electronic continuum exists [56, 57, 64]. In this case, the strength of the Fano-type interference can be denoted by [image: image], where p = 0 and p = 1 correspond to no interference and perfect interference, respectively. In the limit of slowly varying amplitude approximation, both the input probe field Ωp and the generated FWM field Ωm, which propagate in the z-direction, obey one-dimensional Maxwell wave equations.
[image: image]
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where [image: image] and [image: image] are the propagation constants with N being the electron density. The first terms on the right-hand sides of Eqs 9, 10 account for light diffraction. When the propagation distance L is much smaller than the Rayleigh length (i.e., [image: image]), the diffraction term can be ignored. In our scheme, L = 1μm, w0 ≈ 500 μm, and λm ≈ 6.8 μm are selected so that [image: image]m ≫ 1 μm, Therefore, we can neglect the diffraction terms in Eqs 9, 10. In the following, we perform a time-dependent analysis for FWM in the asymmetric SDQW, which requires both the input probe field and the generated FWM field as laser pulses, not cw lasers [65]. Then, we can perform the Fourier transformation for Eqs 5–10 by defining
[image: image]
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where ω is the Fourier transform variable.
In the limit of weak probe and FWM fields, most electrons remain in the ground subband |1⟩, that is, |A1|2 ≈ 1. Therefore, we can obtain
[image: image]
[image: image]
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By analytically solving Eqs 13–15, one can obtain aj (j = 2, 3, and 4) as
[image: image]
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where[image: image], [image: image], [image: image], [image: image] and [image: image][image: image].
Considering the initial conditions for the pulse probe and FWM fields, that is, Λp (0, ω) ≠ 0, and Λm (0, ω) = 0, we obtain the analytical solution of the FWM field as follows:
[image: image]
where
[image: image]
[image: image]
with [image: image], by seeking the approximated inverse Fourier transform with the approximation of neglecting the O(ω) term in S(ω) and the O (ω2) term in K±(ω) [52]. Then it is straightforward to obtain
[image: image]
where the group velocities Vg± are determined by [image: image]. Note that there exist two modes described by the dispersion relations K+(0) and K−(0). Re [K±(0)] and Im [K±(0)] represent the phase shifts per unit length and absorption coefficients at the center frequency ω = 0, respectively. A previous study [52] has demonstrated that the absorption of the K+(0) mode is much greater than that of the K−(0) mode. Therefore, the rapid decay K+(0) mode can be reasonably ignored after a short propagation distance L. Therefore, Eq. 24 can be simplified to
[image: image]
where Vg = Vg− and K = K−(0). By using [image: image] and K = Re(K) + iIm(K), Eq. 25 can be rewritten as
[image: image]
where the intensity of the FWM field is [image: image]. The factor ei Re(K)L reflects the phase distribution of the FWM field. Obviously, both the phase and intensity distribution of the FWM field are modulated by dispersion relation K.
3 RESULTS AND DISCUSSIONS
We first explore the influence of the Fano-type interference on the phase and intensity distribution of the generated FWM field in Figure 2. Here, the mode of the vortex driving field Ωd is [image: image]. In the absence of the electronic continuum, the Fano-type interference does not exist (i.e., p = 0). In this situation, the system is simplified as a common double-Λ SDQW [55]. One can find from Figures 2A,C that the phase wavefront twists in the anticlockwise direction and the intensity distribution exhibits a single-ring pattern at the radial position r = 0.71 mm. A phase singularity exists at the center of zero intensity, around which the helical phase changes from 0 to 8π. As explained, the OAM of the vortex driving field can be transferred to the generated FWM field via the FWM process [55]. In the presence of the electronic continuum, the Fano-type interference exists (i.e., p = 0.83) [52]. Different from Figures 2A,C, the FWM field displays four phase singularities on the inner side of the twisted phase wavefront in the phase profiles and the helical phase changes from 0 to 2π around every phase singularity (Figure 2B). Meanwhile, a petal-like intensity pattern with four light spots on the circle with radius r = 0.71 mm can be observed (Figure 2D). As a matter of fact, the cross coupling term ζ in Eq. 26 acts as a plane wave and then makes inherent interference with the vortex driving field. Therefore, we can observe an interference-type intensity pattern with four light spots and an interference-type phase pattern with four phase singularities, which satisfies the conservation of OAM [66, 67].
[image: Figure 2]FIGURE 2 | (A,B) Phase and (C,D) intensity patterns of the FWM field without and with including electronic continuum, (A,C) without including electronic continuum: γ3l = γ4l = 1 meV and p = 0, (B,D) with including electronic continuum: γ3l = 1.58 meV and γ4l = 1.50 meV and p = 0.83. Other parameters used are γ2 = 2.36 × 10–−6 μeV, γ3d = 0.32 meV, γ4d = 0.30 meV, |Ωc| = 25 meV, |Ωd0| = 30 meV, Δc = 5 meV, Δp = Δd = 0, and κm = κp = 9.6 × 103μm−1meV, l = 4, p = 0, w0 = 500 μm, and L = 1 μm.
In order to have a deeper understanding for the effect of the Fano-type interference, we plot the spatial distribution of the real and imaginary parts of the dispersion relation K in Figure 3. Note that the phase shift Re(K) per unit length determines the phase wavefront distribution of the FWM field, while the absorption coefficient Im(K) determines the distribution of the intensity [55]. Without the Fano-type interference, the phase shift Re(K) per unit length displays an inverted crater-like pattern with a radius r = 0.71 mm and leads to the helical phase twisting in the anticlockwise direction (Figure 3A). Meanwhile, the absorption coefficient Im(K) also exhibits an inverted crater-like pattern at r = 0.71mm, where the low absorption ring results in the appearance of an intensity ring (Figure 3C). With the Fano-type interference, the inverted crater-like pattern of Re(K) also makes the phase twist in the anticlockwise direction (Figure 3B), while the existence of four independent low-absorption regions along the angular direction leads to a discrete intensity distribution with four light spots (Figure 3D).
[image: Figure 3]FIGURE 3 | (A,B) Real and (C,D) imaginary parts of the dispersion relation K. (A,C) without including electronic continuum: γ3l = γ4l = 1 meV and p = 0; (B,D) with including electronic continuum: γ3l = 1.58 meV and γ4l = 1.50 meV and p = 0.83. Other parameters are the same as in Figure 2.
A previous study [36] has demonstrated that the number of light spots in the interference spectrum is determined by the TC of the involved optical vortex. Therefore, the inherent interference mechanism in the proposed SDQW allows us to measure the TC of the vortex driving field via directly monitoring the number of light spots of the FWM field. It is worth noting that the precision of the TC measurement would be limited by the intensity and visibility of the inherent interference. To achieve a high-quality interference-type pattern, we explore the influence of the intensity and detuning of the control field based on Eq. 26. Figures 4A–C show the intensity patterns of the FWM field for different values of the control intensity Ωc. When Ωc = 10 meV, the FWM field shows a clear four petal-like intensity pattern, but the intensities of the four light spots are very small (Figure 4A). As we adjust Ωc to 25 meV and then to 40meV, as shown in Figures 4B,C, the intensity of the FWM field becomes more and more stronger, while the visibility of the light spots becomes more and more worse. In order to evaluate the quality of the interference-type intensity pattern, we defined interference visibility η as [63].
[image: image]
where Imax and Imin represent the maximal and minimal light intensities along the angular direction in the interference-type intensity pattern of the FWM field, respectively. We can set [image: image] and [image: image] with αmin and αmax being the corresponding minimal and maximal absorption coefficients, respectively, of the FWM field along the angular direction. Then, Eq. 27 can be rewritten as
[image: image]
where Δα = αmax − αmin stands for the difference between the maximal and minimal absorption coefficients. It can be seen that Δα determines the interference visibility of the output FWM field. Saying concretely, the increase (decrease) of Δα would lead to the increase (decrease) of interference visibility η. Here, the absorption coefficient difference Δα and interference visibility η versus the azimuthal angle ϕ at radius r = 0.71 mm are plotted in Figure 4D. It is found that Δα decreases from 32,720.0 μm−1 to 350.6 μm−1 when Ωc increases from 10 to 40 meV. Thus, interference visibility η shows a decreasing trend. It is worth noting that η is almost kept to 1 for 10 meV [image: image] because Δα has an extremely high value in this region so that term e2ΔαL in Eq. 28 is close to infinity.
[image: Figure 4]FIGURE 4 | (A–C) Intensity patterns of the FWM field for different intensities of the control field. (A) Ωc = 10 meV, (B) Ωc = 25 meV, and (C) Ωc = 40 meV. (D) Absorption coefficient difference Δα and interference visibility η as a function of intensity Ωc of the control field. Other parameters are the same as in Figure 2B except for Δc = 8 meV.
We also investigate the influence of control detuning Δc on the intensity pattern of the FWM field in Figures 5A–C. It can be seen that the intensity of the FWM field decreases monotonically as Δc increases from 2 to 14 meV (Figures 5A–C). Different from the results shown in Figure 4, Δα increases from 735.8 μm−1 to 42,871 μ m−1 as Δc increases from 2 to 14 meV (Figure 5D). In this sense, interference visibility η increases from 0.63 to 1. As Δc exceeds 5.2 meV, the value of Δα is extremely high so that interference visibility η ≈ 1. According to the aforementioned discussions, one can conclude that the intensity and detuning of the control field play different roles in modifying the intensity and visibility of the interference-type pattern. Therefore, a high-visibility interference-type pattern accompanied by an appropriate intensity can be achieved via choosing the suitable values of the intensity and detuning of the control field.
[image: Figure 5]FIGURE 5 | (A–C) Intensity patterns of the FWM field for different detunings of the control field. (A) Δc = 2 meV, (B) Δc = 8 meV, (C) and Δc = 14 meV. (D) Absorption coefficient difference Δα and interference visibility η as a function of detuning Δc of the control field. Other parameters are the same as in Figure 2B except for Ωc = 15 meV.
Based on the aforementioned discussions, we perform the TC measurement of the vortex driving field via monitoring the number of light spots in the intensity pattern of the generated FWM field. The intensity patterns of the FWM field for different TCs of the vortex driving field are displayed in Figure 6, and the corresponding curves for absorption coefficient difference Δα and interference visibility η are shown in Figure 7. It is worth noting that the waist radius of the vortex driving field is always kept to 500 μm for the selected TCs. In the measurement of the low-order TC (i.e., l ≤ 10), Ωc = 25 meV and Δc = 8 meV are selected. We can clearly observe two, four, and six light spots in the intensity patterns of the FWM field when l = 2, 4, and 6 (Figures 6A–C). As shown in Figure 7A, Δα increases from 2,263.6 μm−1 to 2,436.1 μm−1 as l increases from 2 to 6. Therefore, interference visibility η would increase from 0.9786 to 0.9848 for the low-order TC case. Although the overall output intensity decreases in some degree due to the dependence of the Laguerre polynomial on the TC, the visibility of the interference-type pattern always exceeds 0.97. That is to say, we can realize a high-precision measurement for the low-order TC of a mid-infrared optical vortex. In the measurement of the high-order TC, Ωc = 13 meV and Δc = 2 meV are chosen. When l = 100, 110, and 120, the same number of light spots can be observed in the interference-type pattern of the FWM field (Figures 6D–F). The overall output intensity of the FWM field only decreases slightly with the increase of l from 100 to 120. Δα first slightly increases from 2,126.7 μm−1 to 2,127.1 μm−1 as l increases from 100 to 105 and then decreases to 2,125.6 μm−1 as l increases to 120 (see the blue line in Figure 7B). Therefore, interference visibility η would slightly increase from 0.97197 to 0.97207 and then decrease to 0.97191 with the increase of l from 100 to 120 (see the red line in Figure 7B). The change of Δα is so small that interference visibility η is kept at the level of 0.9719. Therefore, our scheme is suitable for measuring both the low-order and high-order TC. More importantly, the measurable TC value is greatly improved compared with previous schemes [38, 58].
[image: Figure 6]FIGURE 6 | (A–F) Intensity patterns of the FWM field for different TCs of the vortex driving field. (A) l = 2, (B) l = 4, (C) l = 6, (D) l = 100, (E) l = 110, and (F) l = 120. Ωc = 25 meV and Δc = 8 meV for (A–C) and Ωc = 13 meV and Δc = 2 meV for (D–F). Other parameters are the same as in Figure 2B.
[image: Figure 7]FIGURE 7 | Absorption coefficient difference Δα and interference visibility η corresponding to (A) the low-order TCs and (B) high-order TCs. Other parameters are the same as in Figure 6.
Before concluding, we explore the influence of the TC of the vortex driving field on the conversion efficiency of FWM. FWM efficiency ρ is defined as [image: image] [65], where [image: image] is the is the electric field amplitude [image: image] of the generated FWM field at the exit z = L and [image: image] is the electric field amplitude [image: image] of the probe field at entrance z = 0. Combined with Eq. 26, the FWM efficiency can be rewritten as
[image: image]
where [image: image]. It can be seen from Eq. 29 that the spatial distribution of the FWM efficiency depends on the spatially dependent vortex driving field. In Figure 8, we plot FWM efficiency ρ versus radius r for different values of the TC by setting ϕ = 0. In this situation, these curves can reflect the radial distribution of the FWM efficiency cross the center of the light spot. As shown in Figure 8, the FWM efficiency is spatially dependent for a certain vortex driving field. In the low-order TC case, the peak value of the FWM efficiency decreases from 9.86 to 3.66% as l increases from 2 to 6 (Figure 8A). In the high-order TC case, the optimal FWM efficiency decreases from 4.79 to 4.04% with the increase of l from 100 to 120 (Figure 8B). In the two cases, the peak of the FWM efficiency moves toward the larger radius with the increase of TC owing to the change of the ring radius of the vortex driving field. Thus, one can conclude that the FWM efficiency would decrease when the ring radius of the vortex driving field increases with the TC.
[image: Figure 8]FIGURE 8 | FWM efficiency ρ versus radius r for different values of the TCs. (A) and (B) correspond to the cases of low-order TCs and high-order TCs, respectively. Other parameters are the same as in Figure 6.
4 CONCLUSION
In conclusion, we have theoretically suggested a scheme to measure the TC of a mid-infrared vortex beam via observing the intensity distribution of the FWM field in an asymmetric SDQW with a four-subband configuration. In this SDQW, the effect of the Fano-type interference exists because the absorption paths of two states are coupled to an electronic continuum [56, 57]. With the help of the Fano-type interference, the cross coupling term acting as a plane wave makes inherent interference with the vortex beam and generates the interference-type patterns for the phase and intensity of the FWM field. It is demonstrated that a high-contrast interference-type pattern accompanied by appropriate intensity can be achieved via adjusting the intensity and detuning the control field. Furthermore, the TC measurement of the vortex beam is performed by monitoring the number of light spots of the FWM field. By properly choosing the parameters of the system, the detectable TC value can reach to 120, which is greatly improved compared with previous schemes [38, 58].
Mid-infrared optical vortices can open up new avenues toward super-resolution microscopy of arbitrarily oriented single molecules [68], fabrication of three-dimensional chiral microstructures [69], and OAM-multiplexing-based free-space optical communication [70]. Our scheme may provide the possibility for the realization of mid-infrared OAM detectors in a compact solid-state system.
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Atom localization enables a high-precision imaging of the atomic position, which has provided vast applications in fundamental and applied science. In the present work, we propose a scheme for realizing two-dimensional off-axis atom localization in a three-level Λ system. Benefiting from the use of a hybrid coupling field, which consists of one Gaussian beam and one Laguerre–Gaussian beam, our scheme shows that the atoms can be localized at arbitrary position with high spatial resolution. Considering realistic experimental parameters, our numerical simulation predicts that the atoms can be precisely localized with a spatial resolution of [image: image] nm in the range of a radial distance of a few micrometers to the beam core. Our results provide a more flexible way to localize atoms in a two-dimensional system, possibly paving one-step closer to the nanometer scale atom lithography and ultraprecise microscopy.
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1 INTRODUCTION
Nowadays, the Laguerre–Gaussian (LG) beam [1] has engendered tremendous advanced applications [2–7]. For example, it is widely used in the superresolution fluorescence microscopy such as the stimulated emission depletion [8, 9] and minimal photon fluxes [10, 11] in order to overcome the diffraction limit. Another approach to this target is utilizing the spatially dependent coherent light–matter interaction in atom-light coupling systems [12–14], which essentially depends on a spatially modulated atom-light coupling. By the detection of spontaneously emitted photons [15–18], level population [19–25], absorption [26–28], and gain [29, 30], subwavelength-scale atom localization can be obtained.
As far as we know, atom localization with LG beams can exhibit a large number of advantages [31, 32]. For example, the LG beam has a donut intensity spot naturally, which may avoid the need of two orthogonal standing wave (SW) fields for generating spatially modulated atom-light coupling in a two-dimensional (2D) atom localization system. That fact largely reduces the complexity of experimental implementation. Moreover, it is easier to create a single excitation spot in its core by a LG beam. In traditional SW-based localization schemes, due to the periodicity of the SW field intensity there may exist more than one localization spots within single optical wavelength. Therefore after one-time measurement, the probability of finding atoms at a certain position can be deeply reduced. So far, some approaches have been proposed to break this periodicity of SW fields, via utilizing the sensitivity of light–matter interactions to the light phase in a closed-loop atomic system [33, 34] and the interference of multiple SW fields with different wavelengths and phases [35, 36]. These methods, however, will increase the complexity of experimental setup. Although the LG beam has the aforementioned advantages in localization, it can only localize atoms in the vicinity of its beam core where the laser intensity is close to zero. Off-axis atom localization must be accompanied by the movement of the LG beam itself, which undoubtedly adds to extra complexity.
In traditional SW localization schemes, the superposition of multiple SW lasers with different wavelengths and phases is commonly adopted for reaching a single excitation point [35, 36]. In addition this effect between two LG beams can show interesting patterns such as optical Ferris wheels where the light intensity can be modulated to be zero in certain positions [37]. Inspired by these contributions, in the present work, we study a 2D off-axis atom localization in a three-level Λ system, in which a Gaussian beam serves as the probe field and a LG beam together with a Gaussian beam as the hybrid coupling field. The quantum interference effect between these two beams (LG and Gaussian) can achieve a unique zero-intensity spot at arbitrary position. We show that by appropriately tuning the ratio of peak amplitudes between the LG and any Gaussian beams, atoms can be localized at arbitrary position, with a certain distance to the beam core. Both the spatial resolution and radial distance of localization can be flexibly manipulated via tuning laser Rabi frequencies. Depending on the numerical simulation with experimental parameters our scheme enables the realization of an efficient off-axis 2D atom localization, accompanied by a best spatial resolution [image: image] nm and a radial distance of a few micrometers. Our scheme provides a more convenient route to the target of ultraprecise off-axis 2D atom localization.
2 THEORETICAL STRATEGY
To describe the scheme mechanism we consider a simple three-level Λ system as displayed in Figure 1, where states [image: image] and [image: image] are resonantly coupled by a weak probe field Ωp and states [image: image] and [image: image] are connected by another coupling field Ωc2, with zero detuning. In order to realize an off-axis atom excitation, we have assumed that the probe and coupling beams as Gaussian beams, which are
[image: image]
where i = p, c2 and Ωi0 represent the peak amplitude and Wi the Gaussian spot size. Remarkably, states [image: image] and [image: image] are also coupled by a second LG field Ωc1 at the same time, as [38].
[image: image]
where Ωc10, Wc1, θc1, and l are the peak amplitude, the beam waist, the initial phase, and the winding number, respectively. r and θ are the cylindrical radius and the azimuthal angle, respectively. Here, we take the winding number l = 1, which enables a single-spot excitation. Other higher-order modes with l > 1 would lower the localization precision by redistributing the atomic population among multiple azimuthal nodes. To our knowledge, this three-level model can be experimentally realized by the D1 line of ultracold 87Rb atoms with energy levels [image: image], [image: image], and [image: image]. Based on Ref. [14], we assume the decay rates from |3⟩ → |1⟩ and |3⟩ → |2⟩ are equal, typically calculated by Γ31 = Γ32 = 2π × 5.75 MHz. The decay rate between two hyperfine ground states |1⟩ and |2⟩ is Γ21 = 5 kHz, satisfying Γ21 ≪Γ31, Γ32 [39] so the lifetime of [image: image] is about 200μs. The beam width is Wi = Wc1 = W estimated to be same for simplicity. Under the frozen-gas limit where the atomic center of mass is unvaried we can take a measurement for the population on state |2⟩ by collecting its fluorescence signals with a CCD camera and a well-localized position distribution of atoms could facilitate this measurement [14].
[image: Figure 1]FIGURE 1 | Schematic of a Λ-type three-level system where the probe field Ωp for the transition of states |1⟩ and |3⟩ is a Gaussian beam. The coupling field between |3⟩ and |2⟩ is composed by one LG beam Ωc1 and one Gaussian beam Ωc2. Γnm denotes the spontaneous decay rates from |n⟩ to |m⟩.
Considering a frozen atomic gas the time evolution of the systematic density-matrix elements can be described by (ℏ = 1) [40].
[image: image]
where [image: image] and [image: image] mean the conservation. The population on state |2⟩ is solved by ρ22 = 1 − ρ11 − ρ33. In deriving Eq. 3 we have defined
[image: image]
representing the superposition of two coupling fields. Γnm denotes the spontaneous decay from [image: image] to [image: image] and γnm is defined as
[image: image]
The steady solutions of Eq. 3 can be obtained by assuming [image: image]. Due to the presence of decay Γ21, it is intuitive that ρ22 decreases with Γ21. Luckily, accounting for the condition of Γ21 ≪ Γ31(32) that makes the effect of Γ21 negligible [23, 39], then ρ22 takes a simple form of
[image: image]
where Γ31 = Γ32, Γ21 = 0 are used. [image: image] and [image: image] stand for the laser intensities. Note that ρ22 (r, θ) reveals a position-dependent feature due to the use of several structured fields. From Eq. 6, it is apparent that the condition Ic(rloc, θ) ≪ Ip(rloc) will cause ρ22 → 1, which means a perfect atomic confinement can be achieved at arbitrary position rloc in our scheme.
3 OFF-AXIS LOCALIZATION
According to Eq. 4 together with the definitions in Eqs 1, 2, the intensity of the hybrid coupling field can be written as
[image: image]
where the peak ratio is κc = Ωc20/Ωc10, which can be tuned by Ωc20 if Ωc10 is fixed. Note that this hybrid coupling field is composed by one LG beam and one Gaussian beam, which resonantly couple states |2⟩ and |3⟩ at the same time. Finally we can arrive at an analytical solution to the equation Ic(r, θ) = 0, that is, the perfect condition of localization can be reached at
[image: image]
where the population ρ22 attains 1.0 in principle. That means atoms can be precisely placed at any desired position (rloc, θloc) with a very high probability. While in fact, owing to the influence from intrinsic noises in the experimental setup, the observed localization resolution is quite limited. In Section 5 we will discuss the fluctuation of laser intensities, the steady time as well as the noise from atomic thermal motion, in order to present a practical estimation for the experimental observation. Moreover, we have to point out that benefiting from the interference between two hybrid coupling fields Ωc1 and Ωc2 [41], the localization position (rloc, θloc) can be widely adjusted by the beam parameters, which is not restricted merely at the beam core as in most previous works [31, 32].
As illustrated in Figure 2A, we show that atoms denoted as the steady population ρ22 on state |2⟩, can be confined in any spatial position (rloc, θloc) by changing the parameters (κc, θc1). For example when (κc, θc1) = (0.1, π), (0.5, π), (0.5, π/4), (0.5, − π/4), Figure 2A explicitly shows the off-axis atom localization at different positions as labeled by A ∼D. Figures 2B1–B4 amplify the distribution of atoms at different localized places. It is apparent that the spatial resolution of atom localization remains unchanged for different κc and θc1. Therefore, thanks to the zero-intensity point (Ic(r, θ) = 0) created by the interference between two light beams Ωc10 and Ωc20, our scheme can realize an effective off-axis localization at arbitrary position in a 2D space.
[image: Figure 2]FIGURE 2 | Off-axis atom localization. (A) Off-axis localized positions A, B, C, and D with respect to (κc, θc1) = (0.1, π), (0.5, π), (0.5, π/4), (0.5, − π/4). The white cross denotes the center of light beams. (B1–B4) show the amplified images for the localized atomic positions, which have an off-axis feature. Here, Ωp0/Ωc10 = 0.01.
4 ULTRAPRECISE LOCALIZATION
The quality of localization also depends on a high spatial resolution, which is characterized by the full width at half maximum (FWHM) of the steady distribution ρ22 (r, θ). A narrower linewidth indicates that the position of atoms can be well-resolved within a smaller range. By replacing the profiles of light fields (Eqs 1, 2) the expression of ρ22(r) takes an explicitly Lorentz form
[image: image]
where we have omitted the azimuth angle by letting θ = π − θc1 and paid attention to the variation of ρ22(r) along the radial direction. We treat the FWHM of function ρ22(r) as a measurement to localization, which can also be analytically solved,
[image: image]
In Figure 3, we plot the steady distribution ρ22(r) vs. r for different peak ratios κp. Clearly a weaker probe field leads to the atomic population more confined in the vicinity of the localization point r = rloc = 0.5W, promising for a higher resolution localization. For example, we find that ar = 0.02W when κp = 0.01, but this value is decreased by one order of magnitude, which is ar = 0.004W as κp reduces to 0.002. From Eq. 10, it is intuitive that ar → 0 if κp ≪ 1, enabling an ultraprecise localization under a sufficiently weak probe field. However in a realistic system, the fact that the time for a steady state becomes much longer in the weak probe limit, results in the atomic motion non-negligible. We will discuss this point in Section 5.2.
[image: Figure 3]FIGURE 3 | Steady population distribution ρ22(r) along the radial direction r for κp = Ωp0/Ωc10 = 0.01 (blue-dotted), 0.005 (green-dashed), and 0.002 (red-solid). ar is the FWHM, which characterizes the spatial resolution of localization. Here, we use κc = 0.5.
5 FEASIBILITY DISCUSSION
The numbers presented in this work are considered from 87Rb where the lifetime of state |3⟩( = |5P1/2, F = 2⟩) is 27.7 ns [42], leading to the decay rates Γ31 = Γ32 = 2π × 5.75 MHz, and the lifetime of |2⟩( = |5S1/2, F = 2⟩) is 200 μs, leading to Γ21 = 5 kHz. We assume that the co-propagating probe and coupling lasers are overlapping in space and have a same beam width W = 5 μm. As explicitly presented in section 3 and section 4, our scheme can achieve an ultraprecise off-axis atom localization due to the flexible manipulation of peak ratios κc and κp, together with the azimuth angle θc1. Due to the rotational invariance we ignore θc1 by focusing on the radial distance r. However, as for an experimental implementation these parameters are also restrained. In this section, we numerically solve the spatial resolution ar and the peak value of ρ22(r) by evolving the motional Eq. 3 under more realistic conditions coming from measurement.
5.1 Laser Intensity Noise
To obtain realistic results evaluating experimental conditions, we introduce a perturbed laser intensity by adding a random intensity noise δΩi (i = p, c1, c2) to the peak value Ωi0 [43, 44]. The resulting fluctuated Rabi frequencies [image: image] can be written as
[image: image]
In the calculation, we assume δΩi/Ωi0 ∈ [− ξ, ξ] and pay attention to the radial population distribution ρ22(r). During each measurement, the perturbation term δΩi can be a random number obtained from the range of [− ξ, ξ]Ωi0. By taking account of sufficient measurements, the average result can show the realistic observation in the experimental setup. Note that a larger Rabi frequency leads to stronger laser noise since δΩi ∝Ωi0.
Figure 4 illustrates the distribution of steady population ρ22(r) under the influence of laser intensity noise, which is characterized by the factor ξ. By comparing Figures 4A–D it is apparent that a bigger ξ will give rise to a broadened population distribution with smaller peak values, which lowers the precision of localization. Furthermore, as for atoms localized closer to the beam core (r = 0) the intensity noise δΩc2 [∝Ωc20] is smaller due to rloc = κcW. Therefore by positioning atoms far from the beam core the observation will suffer from a stronger laser intensity noise, in turn yielding a lower-quality localization, see Figures 4A–D. This fact gives a limitation to our protocol that the atoms cannot be placed very far from the beam core. A rough estimation (not shown) shows that the average peak value of ρ22(r) will be smaller than 0.2 if the radial localization distance rloc is larger than 10 μm. In the experiment, a better control for the laser intensity noise can improve the scheme performance.
[image: Figure 4]FIGURE 4 | Radial population distribution ρ22(r) under different intensity noises, which are given by (A,B) ξ = 1.0% and (C,D) ξ = 5.0% at different positions. We take 500 measurements for each point denoted by the error bar and the average result is shown by the green solid line. For comparison the black-dotted line indicates the result without any intensity noise, that is, ξ = 0. Here, Ωc20/2π = (30, 90) MHz, respectively for (A,C) and (B,D), corresponding to the localization positions rloc = (1.0, 3.0) μm. Other parameters are Ωp0/2π = 3 MHz, Ωc10/2π = 150 MHz, and W = 5 μm.
5.2 Time Needed for a Steady State
From section 4, we have known that ultraprecise localization with ar → 0 in principle relies on a sufficiently small κp, that is, Ωp0 ≪Ωc10. This condition leads to the time Ts for reaching steady localization much longer. Because Ts is inversely proportional to the exact laser Rabi frequencies. For a longer Ts, the atomic thermal motion does play roles and the frozen-gas approximation fails. A discussion for the effect of atomic thermal motion can be seen in section 5.3. An efficient localization reports that Ts is so short to make the atomic movement during the steady time negligible. In the calculation, we consider atoms under the temperature T = 1 μK [14], with a most probable velocity [image: image] cm/s, where kB is the Boltzmann constant and M is the atomic mass. We introduce a new constraint to the resolution factor ar
[image: image]
where the real time Ts for a steady state should be smaller than [image: image] so as to make the atomic motion negligible during the measurement.
Figure 5 exhibits the steady time Ts as a function of the localization distance rloc for different peak probe Rabi frequencies Ωp0. Here, Ts is obtained by numerically evolving the master Eq. 3, considering all spontaneous decays. From Figures 5A–D, as decreasing Ωp0 we find that the steady time Ts (blue-solid) increases significantly; although the position of atoms can be well-resolved with a better spatial resolution (ar becomes smaller) at the same time. According to the constraint (12), the maximal steady time [image: image] permitted for localization is labeled by the red-dashed line in the figure. When [image: image] atoms can obtain a robust localization. Obviously, in Figures 5A,B where the spatial resolution ar is relatively large, atoms can be well localized within a wider radial range rloc < 5.3 μm and rloc < 3.7 μm. Insets explicitly show the area of off-axis localization, which is denoted as a gray disk. In fact via an appropriate adjustment of κc and θc1, atoms can be confined at arbitrary position inside the gray disk.
[image: Figure 5]FIGURE 5 | Steady time Ts vs. the radius distance rloc under (A) Ωp0/2π = 4.5 MHz and ar = 300 nm, (B) Ωp0/2π = 3.0 MHz and ar = 200 nm, (C) Ωp0/2π = 2.1 MHz and ar = 141 nm, and (D) Ωp0/2π = 1.5 MHz and ar = 100 nm. The red-dashed line denotes the maximal Ts permitted for an efficient localization. The shaded-green region stands for the radial range where atoms can be localized. Insets: effective off-axis localization is enabled within the gray disk. Here, Ωc10/2π = 150 MHz, W = 5 μm, Ωc20 = rlocΩc10/W, T = 1 μK, and Γ21 = 5 kHz.
Whereas, when Ωp0 is reduced to 2π × 2.1 MHz (Figure 5C), the reduction of ar causes [image: image] persistently. In this case only atom positioned at the beam core can be accurately confined so the protocol of off-axis localization fails. Furthermore, if ar < 141 nm, for example, ar = 100 nm as in Figure 5D, the steady time Ts is maintained larger than the required [image: image], calculated by Eq. 12 so no atoms could be localized. Because during such a longer steady time Ts most atoms have been moved away from the localization spot caused by their thermal motions, leading to a poor resolution (also see the discussion in section 5.3). Therefore, based on our analysis, we treat ar = 141 nm as the best spatial resolution yet atoms can only be localized at the beam core. Effective off-axis localization needs to be at the expense of the spatial resolution. For example, a resolution of ar = 200 nm (300 nm) can be obtained within a localized radius of rloc < 3.7 μm (5.3 μm), see the insets of Figures 5A,B for a more visible representation. In addition, since the steady time is inversely proportional to the exact Rabi frequencies the limitation for a best off-axis localization can further be overcome by a stronger coupling laser. For example, when Ωc10/2π = 300 MHz and Ωp0/2π = 2.7 MHz the best spatial resolution of our protocol can be reduced to 91 nm if atoms are localized in the beam core (not shown).
5.3 Noise From Atomic Thermal Motion
In a real experimental setup due to atomic thermal motion, the laser intensity ‘seen’ by atoms would have a strong perturbation, which intuitively brings a noise on detecting the steady atomic population. Here, we consider atoms move randomly in space whose velocities satisfy a two-dimensional Maxwell–Boltzmann distribution [45].
[image: image]
Here, vp is the most probable velocity defined by [image: image]. Other interatomic collisions are ignored. During the jth measurement we assume a simple uniform motion of atoms by letting
[image: image]
where (vx, vy) are obtained stochastically from the velocity function f (vx, vy) and Tmeas is the time for single measurement. By inserting Eq. 14 into Eqs 1, 2 atoms can feel a fluctuated Rabi frequency Ωi(t) (i = p, c1, c2) for each measurement. The final results are based on an average of 500 times random samplings of the velocity (vx, vy).
In Figure 6, we show the calculated population distribution ρ22(r) under sufficient measurements in the x–y frame. Clearly, from Figures 6A1–A4 due to a larger probable velocity of atoms caused by the growing temperature, the peak value [image: image] has an explicit decrease together with a lower spatial resolution ar. For example, when T = 1 μK, ar = 206 nm which is close to the value at T = 0. Because the average distance of atoms during each measurement (Tmeas = 1 μs) is only vpTmeas ≈ 14 nm, which is much smaller than ar. However, as for a higher temperature the movement of atoms during each measurement can cause a bigger effect making the precision of atom localization worse. See the case of T = 10 μK in Figure 6A4, we observe that [image: image] and ar = 247 nm. For comparison in Figures 6B1–B4 we also study the case of a longer measurement time (Tmeas = 5 μs) where atoms can move farther, leading to a very poor spatial resolution at a finite temperature. We numerically show that at T = 10 μK the distribution of atomic population ρ22(r) has become slightly deformed with its peak value (spatial resolution) as low as [image: image](ar = 687 nm). That fact means such a long-time measurement has made most atoms away from the localization spot via their thermal movements. Therefore a faster measurement accompanied by a lower environment temperature can facilitate high-quality atom localization.
[image: Figure 6]FIGURE 6 | (A1–A4) 2D population distribution of ρ22(r) under different temperatures T = (0, 1, 5, 10)μK. The peak value of ρ22(r) is given in the picture and the diameter of white-dashed rings stands for the spatial resolution ar, which is ar = (200, 206, 222, 247) nm, respectively. Here, we assume the measurement time is Tmeas = 1 μs. Analogous to (A1–A4), (B1–B4) show the case of Tmeas = 5 μs and the calculated resolution is ar = (200, 308, 530, 687) nm. Every point is obtained by averaging over 500 measurements.
6 CONCLUSION
To conclude, our scheme presents a novel 2D atom localization, having both ultraprecise and off-axis features. Differing from the previous works using a single LG field we adopt a LG beam together with a Gaussian beam as the hybrid coupling field. The previous contributions can only localize atom in the beam core where the intensity of coupling field is zero. While our protocol shows that atoms can be localized at arbitrary position due to the effect of quantum interference between these two coupling beams that leads to a zero-intensity spot in space. Our numerical simulation confirms that with an appropriate adjustment for the peak ratios of laser Rabi frequencies a wider off-axis localization range and higher quality spatial resolution can be achieved at the same time. Under experimentally feasible parameters an estimation for the implementation of realistic off-axis atom localization is predicted, promising for a resolution of [image: image] nm and a localized radius of a few μm. In addition, we also discuss the weakness of our scheme when some intrinsic quantum noises from imperfect measurement, including laser intensity noise, limited steady time, and atomic thermal motion, are considered. Our approach may provide unique application to atomic lithography with more flexibility and better resolution [46]. An extension to the 3D off-axis atom localization is possible by implementing a spatial modulation to the probe detuning which is our next-step work [32].
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