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In the field of genome assembly, contig assembly is one of the most important parts.
Contig assembly requires the processing of overlapping regions of a large number of
DNA sequences and this calculation usually takes a lot of time. The time consumption of
contig assembly algorithms is an important indicator to evaluate the degree of algorithm
superiority. Existing methods for processing overlapping regions of sequences consume
too much in terms of running time. Therefore, we propose a method SLDMS for
processing sequence overlapping regions based on suffix array and monotonic stack,
which can effectively improve the efficiency of sequence overlapping regions processing.
The running time of the SLDMS is much less than that of Canu and Flye in dealing with
the sequence overlap interval and in some data with most sequencing errors occur at
both the ends of the sequencing data, the running time of the SLDMS is only about
one-tenth of the other two methods.

Keywords: algorithm, sequence analysis, genome assembly, contig assembly, overlapping regions, application

INTRODUCTION

Due to the limitations of existing gene sequencing technology, we cannot directly obtain the entire
gene sequence, but can only use existing sequencing methods to sequence the genes of the species to
be tested to generate sequence fragments and then further genome assembly to restore the original
genes. The genome assembly problem is also one of the most important and difficult problems in
bioinformatics today.

The two algorithms commonly used in genome assembly are the overlap-layout-consensus
(OLC) (Li, 2012) algorithm and the de-bruijn-graph (DBG) (Li, 2012) algorithm, which use
different methods to convert the assembly problem into a graph-theoretic related problem. By
creating an edge-weighted graph of the sequencing data, the resulting edge-weighted graph is
processed to find relevant pathway information in the graph for use in downstream genome
assembly work. All the algorithms derive the optimal path from the edge-weighted graph to obtain
the initial contig (Huang, 1992).

Most applications for genome assembly are based on one of the algorithms such as the Canu
(Koren et al., 2017), which chooses to use the MHAP (Koren et al., 2017) algorithm to detect the
overlap in noisy sequences to obtain the overlapping regions between sequences. Additionally,
the Flye (Lin et al., 2016) software uses the ABruijn (Lin et al., 2016) algorithm to combine the
OLC and DBG algorithms, generates its own unique A-bruijn-graph (ABG) graph, and obtains the
overlapping regions of the nodes in the graph and some other assembly software can also complete
the same work. These software are usually more time-consuming in the sequence alignment
process. For example, Flye takes longer to find overlapping regions of sequences and Canu is slower
to correct sequencing data, etc.
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This article presents a new software for overlapping regions
calculation called the SLDMS, a tool that uses gene sequencing
data as input and supports the fastq and fasta formats. It can
calculate an output overlapping regions information between
sequencing data and write it to a file, so that other applications
can use it. Compared to other genome assembly software that
calculates overlapping regions, our monotonic stack and suffix
array-based design approach is more efficient and provides richer
pathway information for downstream genome assembly software
to use as a reference. At the same time, the SLDMS can be easily
integrated into the genomic analysis process.

METHODS

The overall workflow of the SLDMS (Figure 1) includes four
steps: (i) data preprocessing; (ii) building a suffix array; (iii)
selecting the software version and establishing the relevant data
structure; and (iv) traversing the suffix array and output the
results of overlapping regions.

Data Structure
The SLDMS needs three arrays when obtaining overlapping
regions information, These three arrays are the suffix array
(SA) array (Manber and Myers, 1993) longest common prefix
(LCP) array (Fischer, 2010), and Document array (DA) array
(Muthukrishnan, 2002). First, we briefly introduce these three
arrays. The SA array is the suffix array and SA(i) represents
the starting position of the suffix whose string rank is i in the
original string. The LCP array is the longest common prefix array
and LCP(i) represents the longest common prefix of the suffixes
represented by SA(i) and SA(i-1). The DA array is a document
array. DA(i) represents the number of strings in the input data to
which the suffix ranked i belongs to. This array can be obtained
in the process of obtaining SA and LCP.

The meaning of the elements stored in the three arrays is given
in Figure 2. The SA array: The string above the array is the suffix
represented by each item in the array and the value stored in
the array is the starting position of the suffix it represents in the
original string. LCP array: The string above the array is the suffix
represented by each item in the array and the value stored in
the array is the length of the longest common prefix between the
suffix it represents and the suffix ranked one place ahead of it; to
calculate this length, we ignore the ending symbols of the suffix.
The DA array: The string above the array is the suffix represented
by each item in the array and the value stored in the array is the
source of the suffix. For example, DA(i)= 20, “babbc” belongs to
the 20th input sequence.

Algorithm Principle
We define read as a piece of data in the sequencing data and
its representation in the computer is a string. Before finding
the overlapping regions information of the sequencing data, first
consider the case of finding the overlapping regions information
for two reads. Suppose the two reads are str1 and str2; if the
tail of str1 and the head of str2 overlap and the overlap starts
at position i, then the suffix suf [suf = str1(i:)] of str1 must be

the same as some prefix of str2. In other words, the overlap part
is the prefix of str2 (otherwise, str2 is the substring of str1 and
the splicing is equivalent to discarding str2, so there is no need to
splice str1 with str2 in this case), so the longest overlap part of str1
and str2 must be a suffix belonging to str1 that is ranked before
str2 in the dictionary order. The overlapping regions information
can be obtained by sorting all the suffixes of str1 with str2 and
processing the suffixes ranked before str2 (Figure 3). As shown
in Figure 3, the set of suffixes in Figure 3 does not show suffixes
belonging to str2 because read cannot be connected to itself, so
it will make a judgment on the belonging of suffixes and ignore
these suffixes belonging to itself when calculating the candidate
answers of str2.

Extend the case of two reads overlapping to a set of reads.
All the suffixes of the reads are sorted, the best overlapping
regions information of each read must exist in some suffix
ranked before it, and the read to which this suffix belongs is
the maximum possible adjacent node of the current read after
building the graph.

Since reading itself is also a suffix of reads, when traversing
the set of suffixes, if we encounter a certain read itself, we are
able to guarantee that the suffix with its optimal overlapping
regions information must have been traversed. Then, the problem
is transformed into that the longest common prefix, which is
calculated for all the suffixes ranked before it and the current
string and when the length of the common prefix is equal to the
length of this suffix, we consider this suffix as a candidate answer
and select the best or top-K optimal as the final answer among all
the candidate answers.

In the design of the algorithm, we choose two advanced
data structures, suffix array, and monotone stack, because the
information stored in the suffix array is the suffix of the string
sorted in dictionary order, which corresponds to the suffix set in
Figure 3. The reason for choosing the monotonic stack is that
the monotonic stack can work with the LCP array to filter the
set of suffixes and remove those suffixes that are not likely to
be the answer and improve the computation speed in this way.
When we get a certain candidate answer with length x, the rest
of the candidates with length greater than x must not match
exactly with the subsequent reads; this is because their common
prefixes have a maximum length of x, so these candidates should
be removed. The monotonic stack exists to remove this part
of information.

IMPLEMENTATION

Constructing the SA Array, LCP Array,
and DA Array
Since the method of constructing the SA and LCP arrays in a
single string is quite mature, the SLDMS stitches all the reads
in the data into a single string, splitting the sequence with
American Standard Code for Information Interchange (ASCII)
code 1, and ending the stitching with ASCII code 0. This
allows the read set to be treated as a string and we call this
stitched together extra-long string the “original string.” For
this part, we use gsufsort (Louza et al., 2020) software based
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FIGURE 1 | The overall workflow of the SLDMS.

on the gSACA-K (Louza et al., 2017) algorithm to obtain the
three arrays.

Maintaining the Monotonic Stack
Assuming that the number of reads is n, after obtaining the
information of the SA array and LCP array, the first n + 1 items
of the SA array are traversed. These n+ 1 items are the positions
of the interval $ between strings and the string terminator # in
the original string. Therefore, we can obtain the start and end
positions of each read in the original string and record them
in the Fi array and Se array. For example, the start position of
the xth read is Fi(x) = SA(X − 1) + 1 and the end position is
Se(x) = SA(x). According to the start position and end position
of each read, its length was also calculated as LEN(x) = [SE(x)
− Fi(x)+ 1].

After obtaining the above information, the matching process
of suffixes and reads can be optimized by maintaining a
monotonic stack. For different input data, different strategies
are adopted and the SLDMS was designed in two versions.
The first version considers the data to be completely correct
and can directly perform the overlapping regions calculation.
The accuracy of the result depends on the input dataset and if
the dataset is completely correct, the result is also completely
correct. Therefore, the input data required to use this version
should be either corrected high-accuracy data or raw high-
accuracy data such as the PacBio-HiFi (Hon et al., 2020)
dataset and the Sanger dataset. The second version allows some
differences between reads when performing overlapping regions
calculations. Overlapping regions information can be obtained
for data with some errors, the accuracy of the information
fluctuates depending on the characteristics of the errors in the
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FIGURE 2 | The elements stored in three arrays.

FIGURE 3 | The position of str2 in the suffix set of str1.

data, and the accuracy of the results of the runs varies from one
dataset to another. After experiments, it is found that the accuracy
of the run results is greatly improved when the error part in
the reads is gathered at both the ends. Therefore, for the second
version, if the errors in the dataset are completely random, it is
recommended to correct the complete data first before using the
first version or correct the data center part first before using the
second version of the software.

For the part of data error correction, we suggest that the
third-generation sequencing data PacBio can be used for self-
error correction (Hon et al., 2020) or the second-generation
sequencing Illumina data can be used for error correction of the
third-generation sequencing data PacBio (Mahmoud et al., 2017)
such as PBCR (Koren et al., 2012) in the famous Celera Assembler
(Schatz, 2006; Denisov et al., 2008) software and LoRDEC (Leena
and Eric, 2014) error correction tool. For the datasets with some
regularity of data errors (the errors of the sequencing appear on
both the sides of the reads), the second version of this software
can be chosen directly.

Deal With Reads Without Mismatch
In this version, since the data can maintain a high accuracy rate, it
is enough to directly obtain the overlapping regions information
of the reads and the problem of error correction of the reads is
not involved. The algorithm idea is as follows.

Build a monotonic stack. The stack is implemented by array
simulation to facilitate the acquisition of data in the stack. The
element type stored in the stack is a structure similar to a pair
designed by us. Its first element is of the int type, which is used to

represent the length of the suffix stored in the current element. Its
second element is a rolling array, which is used to store the DA
information of the suffix that meets the first condition. The length
of the array can be set artificially; for example, the length of the
array is set to n, i.e., to store the top n best answers for each read.
In this way, we can obtain more overlapping information between
reads. The struct design of the monotone stack and stack elements
is found in Supplementary Figure 1, where vector is the structure
of the stack, pair is the element stored in stack, and queue is the
main part of storing information in the pair, which is realized by
a rolling array (Supplementary Figure 2).

Maintain a monotonous stack (Figure 4A). Let one suffix
ranked Y be str and for all the suffixes ranked before Y, assuming
their rank is X, their longest common prefix with str, i.e., the
length of LCP, must be equal to min[LCP(X+ 1:Y)]. According to
this property, when traversing the SA and LCP arrays, each time a
new LCP(i) is traversed and the elements of the stack whose first
item is larger than LCP(i) can be taken off the stack because for
these elements and the following suffix the LCP cannot be greater
than LCP(i), so these suffixes become useless information and can
be cleaned up. Start to operate the elements in the monotonic
stack from the top of the stack; if the first element at the top of
the stack is larger than LCP(x), just get this top element out of
the stack directly and loop this operation until it is impossible
to get out of the stack. After clearing, check the pair at the top
of the stack, whether its first element is equal to the length of
the string corresponding to the current SA(i) [len = se(DA(i) –
SA(i))], if it is equal, put DA(i) into the second scrolling array
of the pair and update the array. If it is not equal, create a new
pair element whose first is equal to len and whose initial values
in the second element are set as follows: head = 0, tail = 1,
have = 1, size = k, and data(0) = DA(i). After the element is
created, this element is put on the stack. Since all the elements
in the stack whose first is greater than len have been removed
before entering the stack, each element entering the stack must
be the largest element in the stack, so the monotonicity of the
stack can be guaranteed, which is exactly the reason for using a
monotonic stack.

Get overlapping regions information (Figure 4B). In the
process of maintaining the monotonic stack, if the current
suffix is an ordinary suffix, just follow the normal process of
maintaining the monotonic stack and if the current suffix is a
complete read [the value of SA(i) is equal to fi(DA(i))], then
we should add the process of information acquisition to the
normal maintenance process; at this time, you can maintain the
monotonic stack information to obtain the required overlapping
regions information. The way to obtain the required overlapping
regions information is very simple; first of all, we must first check
the top of the stack elements to ensure that the top of the stack
elements are not expired (if the elements are expired, they can
be taken out of the stack). Then, read the data from the top of
the stack and read the second item of each element; these are
the reads that are most likely to overlap with the current read
and output the overlapping regions information to the result file
for use in building the edge weight graph. By default, the first
ten possible results are provided, the longest overlapping regions
read is usually selected, and the specific read chosen as the path
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FIGURE 4 | (A) Schematic diagram of the monotonic stack maintenance process. (B) Diagram of the process of obtaining overlapping regions information.

FIGURE 5 | (A) Maintenance process diagram of monotone stack and (B) Overlap regions information acquisition flow diagram.

in the edge weight graph can be freely chosen according to the
subsequent software requirements.

Deal With Reads With Mismatch
The first-generation sequencing data are high-accuracy data, but
they are no longer in mainstream use because of their expensive
sequencing price. The second-generation sequencing data are
short-read data with high accuracy and are more suitable for use
with DBG assembly software based on K-mer counting (Wang
et al., 2020) such as the SOAPdenovo (Xie et al., 2014) software.
The third-generation sequencing data are long-read data with
a high error rate and there would be a high error rate if the
sequencing data was matched exactly, so this version allows for
slight differences in sequence during the matching process. This
version is an alternative solution to cope with the situation in
which the data cannot be completely corrected because of the
long correction time or high correction cost of the dataset.

In this version, the error part of the input data should appear
at both the ends of the data as far as possible or the data center
part has been corrected to ensure that there will be no error in the

middle part of each read. The closer the error location is to both
the ends, the better the overlapping regions information will be.
In this version, a parameter K will be entered, which determines
the maximum allowable cutting size of the sequence head and tail
when the algorithm is matching. If K is set speculatively without
knowing much about the dataset, there may be some error in
the result obtained from a single run due to the parameters. But,
the speed of fault-tolerant matching is very fast, we can get the
final result by inputting different fault-tolerant parameters and
running this version many times. We can also get the result at
one time by accurately setting K on the basis of knowing the error
distribution of dataset. The optimal value of K is set to ensure that
the error data at both the ends can be excised on the basis of as
small as possible. The algorithm idea is as follows.

Build a monotone stack. The monotone stack in this version
chooses to use another structure similar to a pair. Its first element
stores X characters in all the previous reads within the fault
tolerance range that match the current suffix. This first element
represents X. The second element is no longer a rolling array, but
represents the sequence number of the suffix with length X in the
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FIGURE 6 | Update process diagram of the min-heap: (A) from bottom to top and (B) from top to bottom.

suffix array within the fault tolerance range. The final result is
obtained by maintaining and optimizing all the second elements
in the monotone stack whose first elements are greater than
LCP(i). The concept diagram of the monotone stack is shown in
Supplementary Figure 3.

Maintain the monotonous stack (Figure 5A). Different from
the previous version, if the first element at the top of the stack
is greater than LCP(x), it does not directly take the element at
the top of the stack out of the stack, but takes out all the stack
elements whose first element is greater than or equal to LCP(x)
and selects the best element after comparison to access back
to the top of the stack. The element that meets the condition
[len(STR) – LCP(x)] is the best and its first item is assigned to
LCP(x) and its second item to the second of the optimal element.
This process is equivalent to allowing an excision operation at the
end of the read, where the wrong part is excised and matched
again and the length of the allowed excision is set by the user
of the software. After updating the stack, use the current suffix
information to create a new pair element. If the length is larger
than the top of the stack, put it on the stack. If the length is
the same, replace the top of the stack. Of course, to prevent self-
loops in the graph constructed from the last obtained overlapping
regions information, the stack update is performed by ignoring
the suffix of the read itself.

Get overlapping regions information (Figure 5B). When
traversing the suffix array under the previous version, the result
is obtained only when the current suffix is a complete read. In
this version, the result is obtained when the first character of
the current suffix is the first K characters of the original string,
but of course K is determinable and this operation is equivalent
to allowing the head of the sequencing data to be cut and the
allowed cut length is K. Each cut method is tried, so that each
read is compared several times and stores the maximum possible
result. Therefore, two auxiliary arrays are needed for multiple
result comparisons, the ANS array and the LEN array, where
the ANS array stores the ordinal number of its result in the
SA array and the LEN array stores the matched lengths. In

the process of maintaining the monotonic stack, if the current
suffix is the first K suffixes of the string to which it belongs, it
is compared with the top element of the stack and the better
result is stored. The final ANS array is obtained after several
maintenance sessions. After traversing the SA array under this
version, the resulting DA[ANS(i)] is the optimal overlapping
regions information to be obtained.

Maintain overlapping regions information. To facilitate
subsequent assembly software, the SLDMS provide more
overlapping regions information for subsequent software. In this
version, a top-k overlap suffix set is also provided for each
sequence to facilitate subsequent work on genome assembly and
parameters are required to set k before running the software. The
data structure used to maintain this set of suffixes is the min heap
and the top of the heap stores the Kth good overlapping regions
(Supplementary Figure 4). The reason for choosing this data
structure is that the heap can efficiently maintain the largest or
smallest value in the heap, so a min-heap of capacity K is created
and the top of the heap is the worst quality of the candidate
answer and when a new candidate answer is encountered, it only
needs to be compared with the top of the heap, which facilitates
the update of the answer.

Overlapping regions information maintenance method: create
a min-heap for each read to maintain the top-k suffix set, the
data in the heap store the position of the corresponding suffix
in the SA array, and Len stores the matching length between the
suffix and the current reads. Node(1) corresponds to the top of
the heap. The larger the size of the heap, the more information
is obtained and the longer the corresponding program takes to
run. To obtain the required information, the top element of the
stack is compared with the data in the min-heap, in addition to
maintaining the optimal value of the ans array, when traversing
the suffix array and encountering a suffix that can obtain the
answer [i-fi(da(i)) ≤ k]. If the amount of data in the min-heap
is less than k, put the top element of the stack directly into the
min-heap and update the heap from the bottom up (Figure 6A).
This is because the capacity of the heap is K. There is still space in

Frontiers in Plant Science | www.frontiersin.org 6 January 2022 | Volume 12 | Article 81303610

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-813036 December 21, 2021 Time: 14:59 # 7

Chen et al. SLDMS

the heap to store the candidate answers, so the candidate answers
can be put directly into the heap and the heap can be updated.
Otherwise, compare the top element of the stack with the top
element of the heap. If the top element of the heap is better, do not
update the elements in the heap; otherwise, use the top element
of the stack to replace the top element of the heap and update
the heap from top to bottom (Figure 6B). This is because there
is no space in the heap to store extra candidate answers, so we
must choose between the K answers in the heap and the current
candidate answers and delete the worst quality answer. Using
this method, software users can obtain more overlapping regions
information, which makes the edge weight graph based on this
overlap information more high-quality information to facilitate
subsequent software processing.

Output the Final Overlapping Regions
Result
The SLDMS software builds an edge-weight graph with read
as the point and overlapping regions information as the
edge based on the overlap information after obtaining the
overlapping regions information, which contains the overlap
position information of the two reads in addition to the length of
the overlap for use in obtaining the initial contig. Each path in the
graph is stitched into a longer read according to the overlapping
regions information, which is the initial contig and the SLDMS
software stores all the information in this edge weight graph into
a file for the next step of obtaining the contig.

When processing reads without mismatch, the SLDMS only
counts the overlapping regions information when a complete
read is encountered, a complete read is only encountered
once, and the result is not updated again in the subsequent
maintenance process, so the output to the file is in the order of the
encountered reads, which is a way to update the data processing
and the result output synchronously. When processing reads with
mismatch, the SLDMS collects data for a read several times in
the process of maintaining the monotonic stack, so the stored
result information may be updated by subsequent maintenance
and the program design idea of separating data processing and
result output is adopted. To ensure the accuracy of the results,
the maintained results are output in the order of the input data
after the program has processed all the data.

Although the output of the two strategies is different, logically
they both fill in an array of final results and the i-th element of
this array stores the answer of the i-th read. The two strategies
differ only in the order of filling in the array, one is filling in the
array in order and the other is filling in the array in disorder, but
the final goal is to fill in the array completely.

Accuracy Analysis
To prove the universality of the SLDMS software, we write a
program to generate the simulated gene sequence randomly,
traverse the generated gene sequence many times, and randomly
take a substring for simulated gene sequencing. In the first
version, the substring is completely correct and in the second
version, random errors are generated at both the ends of the
substring and used for the SLDMS software input. At the same

time, we record the start and end positions of each read and store
them in the check file for the final accuracy test.

We consider that the result of each read is correct when it
refers to its adjacent read in the gene sequence. After using the
SLDMS software to run these input data, the output file and
check file are combined to prove the accuracy. According to the
results in the output file, we determined whether there was a
common part in the interval of the two reads in the check file.
If there is a common part, it means that the two reads should be
assembled together. We think this is the correct result. We write a
program to do this work. First, the program reads the output file
and the check file; find each pair of reads and the corresponding
overlapping regions information in the output file (if the overlap
length is less than 100, it is regarded as invalid data and discarded
directly) and then find the corresponding interval in the check
file and check the interval. If there is a common part in the two
intervals, we can find the corresponding interval in the check
file, which is considered the correct result. After calculation, the
accuracy of the two versions of the SLDMS is above 99.99%.

The SLDMS software itself and the program code used in the
above accuracy proof process are stored on the GitHub website at
https://github.com/Dongliang-You/sldms.

RESULTS

The SLDMS and Flye and Canu software were tested on 6
PacBio-HiFi datasets of different sizes and sequenced species
and 32 simulated datasets (16 ultrahigh-accuracy datasets and
16 datasets with errors at both ends of the read) on a desktop
computer with an Intel Core (TM) i7-9700 CPU (3.00 GHz 8-core
processor), 32 GB RAM, and 477 GB hard disk. Due to the limited
hardware conditions of the test environment, the oversized
dataset was cut where the descriptions of the PacBio-HiFi dataset
are shown in Table 1, which are the datasets downloaded from the
official National Center for Biotechnology Information (NCBI)
website. The Sequence Read Runs (SRR) in the description
represents the data record of the dataset on the website and the
specific data information can be viewed at the official website
of the NCBI according to the data record information, which is
located at https://www.ncbi.nlm.nih.gov/. The data information
of the simulated dataset is shown in Supplementary Tables 1, 2.

The timing in the experiment starts when the sequencing
data are read and ends when the contig is ready to be acquired.
This means that it is necessary to be able to build the edge-
weight graph from the overlapping regions information to
obtain the contig.

For the SLDMS versions that do not allow for mismatching, six
PacBio-HiFi datasets with 16 high-accuracy simulated datasets
were chosen for testing and comparison with both the Canu and
Flye software. When running the Flye software, the genomeSize
parameter is the best estimate according to the uasge.md
documentation of the Flye software, which is approximately 1%
of the file size. The min-overlap parameter is set to 1,000 and
the rest of the parameters are the default parameters. When
running the Canu software, the genomeSize parameter is the
best guess value entered according to the usage documentation,
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TABLE 1 | The PacBio-HiFi dataset used in the experiment and its description.

Dataset Size(MB) Description

Z. mays 579 WGS of Zea mays “B73” using PacBio HiFi
Sequencing(SRR11606869)

E_coli_K12 1,914 WGS of E. coli K12 with PacBio HiFi DNA
sheared on Megaruptor to
20 kb(SRR10971019)

F. × ananassa_part1 1,131 WGS of Fragaria × ananassa Royal Royce
using PacBio HiFi Sequencing
(SRR11606867)

F. × ananassa_part2 2,190 WGS of Fragaria × ananassa “Royal
Royce” using PacBio HiFi
Sequencing(SRR11606867)

M. musculus_part1 1,567 WGS of Mus musculus “C57/BL6J” using
PacBio HiFi Sequencing(SRR11606870)

M. musculus_part2 2,760 WGS of Mus musculus “C57/BL6J” using
PacBio HiFi Sequencing(SRR11606870)

which is the same as the genomeSize parameter of the Flye
software and the rest of the parameters are default values without
any restrictions.

The time required for different software programs to run the
PacBio-HiFi datasets to find the overlapping regions is given in
Figure 7 and Supplementary Table 3. The SLDMS software ran
faster than Flye on all the datasets, faster than Canu on most
datasets, and only slightly slower than the Canu software on the
M. musculus_part1 dataset due to the nature of the algorithm of
the Canu software, which makes it potentially efficient at running
certain datasets. This result suggests that the SLDMS software
runs more efficiently than Canu and Flye for sequence alignment
on most PacBio-HiFi datasets.

The time required for different software programs to run
ultrahigh-accuracy simulation datasets to find overlapping
regions is given in Figures 8, 9 and Supplementary Table 4.

As shown in the two line graphs in the first row of Figure 8,
these are the results of running the ultrahigh accuracy simulation
dataset with different average lengths for the same data volume
of 5,000, 10,000, 15,000, and 20,000 reads. As shown in the two
line graphs in the second row of Figure 8, these are the results of
running the ultrahigh-accuracy simulation dataset with different
data volumes for the same average data lengths of 5,000, 10,000,
15,000, and 20,000. As seen from the graphs in all the runs, the
SLDMS software has a shorter run time than the other two, which
suggests that in most cases, it is a good choice to use the SLDMS
software to find the overlapping regions information.

For the SLDMS versions that allow for mismatching, there are
no real data available that match the conditions for this version
to run, so it was only possible to test this version using simulated
data. Each read in the simulated data was divided into three parts
in order, with the first and third parts being 80% accurate, the
second part being 100% accurate, and the second part being at
least half the length of the read. The Canu and Flye software
selected PacBio-Raw for the data type during the tests and the rest
of the parameter settings were the same as the previous version.

The time required for different software programs to run
the simulation datasets with errors to find overlapping regions
is given in Figure 9, in which row 1 is an experiment with
the average length of the data as the variable and row 2 is an
experiment with the amount of data as the variable. As seen
from the graph, when running these datasets, both when running
datasets with different average lengths for the same amount of
data and when running datasets with different amounts of data
for the same average length, the SLDMS runs much faster than the
other two. This shows that using the SLDMS to run this dataset
with errors only at both the ends of the data is much better and
takes less time than using the other two software tools.

In the experiment, we tested the performance of the different
software programs on different datasets. The SLDMS software

FIGURE 7 | Time required for different software programs to run PacBio-HiFi datasets to find the overlapping regions.
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FIGURE 8 | Time required for different software programs to run ultrahigh-accuracy simulation datasets to find overlapping regions.

FIGURE 9 | The time required for different software to run simulation datasets with errors to find overlapping regions.

was stable and efficient in obtaining overlapping regions
information for the various test data. The running time of the
SLDMS is only related to the size of the input dataset and does
not fluctuate depending on differences in the accuracy of the data.
This means that the SLDMS is suitable for processing a wide

variety of data without the worry that the SLDMS will take a
particularly long time to process a particular type of data.

The SLDMS software uses the gsufsort algorithm to calculate
the three arrays of SA, LCP, and DA information, which takes
a significant amount of time. If new methods are developed to
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obtain this information more quickly, the SLDMS software will
be more efficient.

DISCUSSION

The main contribution of the proposed method SLDMS for
extracting information about the overlapping regions between
sequences based on suffix arrays and monotonic stacks is to
substantially improve the time efficiency of calculating the
overlapping regions. Obtaining overlapping regions information
is useful in many bioinformatics applications. As the price
of sequencing technology decreases and genome sequencing
technology develops, it becomes easier to obtain sequencing data
with a wide range of characteristics and higher accuracy. When
assembling these sequencing data, it is essential to efficiently
extract overlapping regions information between sequences
to provide a more favorable environment for subsequent
genome assembly work.

The Flye software uses the ABruijn algorithm, which combines
the OLC and DBG algorithms to generate its own unique ABG
graph, obtains the overlapping regions information of nodes in
the graph, and then processes the ABG graph to obtain contigs.
In this process, it takes considerable time to process the graph, so
we can see from the experimental results that the Flye software
takes about twice as long to run as the SLDMS on almost
all the datasets.

The Canu software uses the MHAP algorithm to aggregate
reads with the same k-mer for error correction and pruning
and then obtains the overlapping regions information. When
dealing with high-accuracy data without error correction, the
SLDMS is around 20% faster than Canu. With respect to error
correction, the Canu software is very slow, regardless of the error
characteristics of the data, indicating that the Canu software does
not take full advantage of the error characteristics of the data. The
SLDMS does a very good job in this respect and in some data with
most sequencing errors occur at both the ends of the sequencing
data, the SLDMS runs at many times the speed of Canu.

The SLDMS obtains the three arrays of SA, LCP, and DA
by processing the input data and quickly finds the overlapping
regions information in the input data with the help of these three
arrays and the monotonic stack. The calculation speed of the
overlapping regions information is improved. The experimental
results show that compared with the other two kinds of software,
the SLDMS have faster speed in the calculation of the overlapping
regions and with the help of the SA array containing all the

suffixes, it also has the ability of data fault tolerance by cutting
the suffixes. This shows that the SLDMS is very efficient as an
approach based on suffix arrays and monotonic stacks and that
suffix arrays are still the ideal data structure for solving the
problem of calculating overlapping regions of gene sequences.

ABOUT THE SLDMS

The SLDMS is an open source software tool developed in C
and can only be run on Linux systems. The link to the project
is (https://github.com/Dongliang-You/sldms). Permission from
the author is required before use for non-academic purposes.
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Prediction of RNA secondary structure is an important part of bioinformatics genomics
research. Mastering RNA secondary structure can help us to better analyze protein
synthesis, cell differentiation, metabolism, and genetic processes and thus reveal the
genetic laws of organisms. Comparative sequence analysis, support vector machine,
centroid method, and other algorithms in RNA secondary structure prediction algorithms
often use dynamic programming algorithm to predict RNA secondary structure
because of their huge time and space consumption and complex data structure. In
this article, the domain of RNA secondary structure prediction algorithm based on
dynamic programming (DP-SSP) is analyzed in depth, and the domain features are
modeled. According to the generative programming method, the DP-SSP algorithm
components are interactively designed. With the support of PAR platform, the DP-
SSP algorithm component library is formally realized. Finally, the concrete algorithm is
generated through component assembly, which improves the efficiency and reliability of
algorithm development.

Keywords: algorithm component library, feature modeling, PAR platform, RNA secondary structure prediction
algorithm, generative programming

INTRODUCTION

RNA is one of the important macromolecules in organisms and plays an important role in protein
synthesis, cell differentiation, metabolism, and genetic process. Especially in HIV and other viruses,
genetic information is carried directly by RNA rather than DNA (Jiang et al., 2002). To better
analyze the role of RNA molecules in the life process, it is necessary to understand the molecular
structure of RNA. The molecular structure of RNA can be divided into three levels (Peter and Rdf,
2000; Yang, 2013), namely, primary structure, secondary structure, and tertiary structure. Primary
structure refers to a sequence composed of four bases (A, U, C, and G) of RNA. The secondary
structure is a two-dimensional planar structure formed by pairing partial bases on the basis of the
primary structure, and tertiary structure is a three-dimensional structure formed by folding on the
basis of secondary structure (Yu, 2009; Huang et al., 2014). It has been proved that RNA tertiary
structure plays a decisive role in RNA function, but the prediction of RNA tertiary structure largely
depends on the prediction of secondary structure (Shuaimin, 2019; Bowen, 2021; Zhaokui and
Yuanchao, 2021). Therefore, RNA secondary structure prediction is an important and hot issue
in the field of RNA research. Since 1980s, RNA secondary structure prediction algorithms have
emerged one after another, which can be roughly divided into two categories: one is comparative
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sequence analysis method, such as Stochastic Context-free
Grammar (SCFG) model (Dowell and Eddy, 2004) and
Covariance Model (CM) (Eddy and Durbin, 1994); and the
other is the prediction method based on dynamic programming.
Typical examples include the maximum base pairs algorithm
proposed by Nussinov of Weizmann Institute of Science
(Nussinov et al., 1978); the minimum free energy algorithm
designed by Zuker of Division of Biological Sciences, National
Research Council of Canada (Zuker and Stiegler, 1981); the
partition function algorithm established by McCaskill of Max-
Planck lnstitut fur Biophysikalische Chemie (McCaskill, 1990);
and the helix-based prediction algorithm studied by the team
of Harbin Institute of Technology (Xia, 2008). Because the
former requires a large number of homologous RNA sequences
in advance to predict, the time and space complexity of the
algorithm is particularly high, and long sequences cannot be
analyzed well, people often use dynamic programming model to
predict RNA secondary structure.

Most of the existing RNA secondary structure prediction
algorithms based on dynamic programming focus on the
optimization of specific steps of specific algorithms, such
as accelerating the execution speed of algorithms through
parallelization technology, and the optimization results will
have different effects on different sequences. In addition, the
complexity of the RNA secondary structure prediction problem
and the diversity of algorithm design strategies make the
reliability of the algorithm development difficult to guarantee
and the development cost high, which is not convenient for
researchers to study.

In this article, the domain of RNA secondary structure
prediction algorithm based on dynamic programming (DP-SSP)
is regarded as a specific domain. Through in-depth analysis of
the DP-SSP domain, the commonness and differences of the
domain are extracted, and the generic algorithm component
library in the DP-SSP domain is designed by combining domain
engineering, feature modeling, formal method PAR, and other
related technologies. Then, the abstract generic programming
language Apla is used to formalize the implementation. Finally,
using the program conversion system of PAR platform, the
components of the component library are manually assembled
according to the configuration knowledge and generate a specific
algorithm, thereby improving the development efficiency of the
RNA secondary structure prediction algorithm and ensuring the
reliability of the algorithm development.

The section “Materials and Methods” introduces related
theories and methods of domain engineering, generative
programming (GP), formal method PAR, and so on. The section
“Domain Analysis and Abstraction of RNA Secondary Structure
Prediction Algorithm” analyzes the domain of RNA secondary
structure prediction algorithm domain, establishes the domain
feature model of DP-SSP, and implements it by using the
generic abstract programming language Apla in the formal
method PAR, finally establishing a high abstract component
library based on abstract data type (ADT). The section “Results”
shows the process of developing Zuker algorithm based on
the component library and gives the experimental results of
the algorithm and the comparison with other algorithms.

Finally, in the section “Discussion,” the full text is summarized
and prospected.

MATERIALS AND METHODS

PAR Framework
PAR framework (Jinyun, 1993, 1998; Xue, 1997, 2015; Shi and
Xue, 2009; Wang and Xue, 2009) includes a practical formal
method and corresponding support platform. PAR platform
includes requirements design language SNL, algorithmic
modeling language Radl, abstract programming language Apla,
and a series of conversion rules and automatic conversion tools.
PAR focuses on the design and implementation of algorithms,
supports most of the current mainstream algorithm design
technologies, includes a new development strategy of loop
invariant, and implements the distributed transaction processing
system and relational database mechanism. By using PAR method
to develop algorithms, we can have a deeper understanding of the
algorithm and avoid the difficulty of selecting the design method.
The agile generic mechanism is one of the important features
of PAR. Regardless of the data type, data value, calculation
operation, or user-defined ADT, it can be a generic parameter.
Apla can directly use ADTs and abstract processes programming.
It not only has the advantages of concise mathematical language
but also has the characteristics of expressing unambiguity. Due to
its high abstraction, Apla is very suitable for describing abstract
algorithm programs. The following describes the implementation
mechanism and constraint mechanism of Apla generics:

(1) Apla includes the concepts of type variables, type domains,
operation variables, operation domains, ADT variables,
and ADT domains. It uses sometype, someaction, and
someadt to represent type domain, operation domain, and
ADT domain, respectively, and implements the parametric
operation of type, function, program, and custom ADT. In
the instantiation process, actual parameters that meet the
relevant attribute conditions can be passed in to implement
different program units.

(2) Generic constraints describe the types and composition
of generic parameters in detail. The implementation
of generic constraint mechanism can greatly improve
the reliability of generic programming, which is one
of the necessary conditions for the real implementation
of generic programming. PAR platform implements
relevant generic constraints on generic parameters such
as basic data type, ADT type and subroutine type, and
proposes corresponding constraint description, matching,
and detection mechanisms, which are still being improved.

In addition, PAR platform also supports the transformation
of Apla into executable high-level programming languages such
as C++, Java, C#, and Delphi, which has a good support for
the development of components. PAR has established two ways
to formalize the way to develop programs, and its platform
architecture is shown in Figure 1. The first is that for quantitative
problems, the PAR method can convert the SNL requirement
model into the Radl specification model, then into the Radl
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algorithm model, and further into the Apla abstract program
model, and finally into a high-level language program that can
be run directly. The second way is that for nonquantitative
problems, we can manually design the Apla program directly
through the SNL requirement model, supplemented by the
corresponding formal proof, and then convert the Apla program
into an executable program.

Domain Engineering
Domain engineering (Neighbors, 1989; Li et al., 1999; Hu and
Wei, 2008) is the basic process of software reuse, and its
purpose is to acquire and use reusable resources in a specific
domain to develop high-quality software efficiently and at
low cost. Domain engineering mainly analyzes, designs, and
implements the domain. Domain analysis includes a series of
activities such as system scope definition, domain requirement
definition, and related terminology analysis, and finally, the
results are reflected in the domain model. The domain design
completed the architecture design of the system family in the
domain, identified the corresponding functions and related
constraints, and made plans for the subsequent implementation
process. Domain implementation uses appropriate technology
to complete the development of reusable resources such as
architecture and components. These three stages adopt the idea
of gradual refinement in practical application and modify and
improve the completed results at any time according to changes
in requirements.

Domain analysis is the basis of domain engineering. The
generated domain model affects the quality of subsequent work.
It usually adopts a combination of top-down and bottom-up
analysis to repeat domain analysis activities. Top-down analysis
takes into account the needs of future systems in the domain,
while the bottom-up analysis mainly considers the existing
systems and the reusable resources accumulated by previous
development. After years of efforts by researchers, many methods
have been used in domain analysis, such as organization domain
modeling (ODM), object-oriented analysis (OOA), and feature-
oriented domain model (FODM) (Wartrk, 1999; Chastek et al.,
2001). To carry out domain analysis activities efficiently, Zhang
and Mei (2003) put forward a feature modeling method FODM,
which focuses on the characteristics of services, functions, and
behaviors in the domain and discusses the presentation form of a
feature model and its detailed modeling process.

Generative Programming
Generative programming (Czarnecki et al., 2000; Fan and Zhang,
2005) is a new type of software paradigm, which accords with the
idea of software reuse. It uses components and makes software
products in an automated way, which is of great significance to
solve the “software crisis.” There are two steps to implement GP.
The first is to change the current software development mode
into the development of software system families and develop
generators to automatically assemble components. GP is an
example of domain engineering application, which needs to make
full use of existing domain knowledge to complete component
development in corresponding domain. Finally, generator is used
to develop new software in the field by means of component

assembly, without the need to follow the steps of software
engineering to start programming from scratch.

The purpose of GP is to realize the production automation
of components and applications, and the key part of GP is to
establish domain models for system families. The generative
domain model consists of three parts: problem space, solution
space, and corresponding configuration knowledge. The problem
space mainly includes the needs of application programmers and
users for the system, and the requirements are generally described
by the concepts and characteristics of the program; the solution
space includes the relevant components that can solve the
demand problem and the combination mode of each component,
and it is required to achieve the maximum composability, and
the redundancy between the combinations must be minimized,
and the highest reusability of the components must be achieved
as much as possible. The configuration knowledge is the
mapping relationship between the problem space and the
solution space, which avoids the occurrence of illegal feature
combination and sets the default parameters and rules of features.
Configuration knowledge is the mapping relationship between
the problem space and the solution space, which avoids the illegal
feature combination and sets the default parameters and rules
of features.

Concepts Related to RNA Secondary
Structure Prediction
RNA sequence: RNA sequence refers to the primary structure S =
S1S2S3 . . . Sn of RNA, where Si ∈ (G, C, U, A), 1 ≤ i ≤ n.

Base pair: If (Si, Sj) ∈ {GC, AU, UG}, 1 ≤ i < j ≤ n, then
(Si, Sj) constitutes a base pair.

RNA secondary structure: A set of base pairs.
RNA secondary structure prediction: Input an RNA sequence,

predict the secondary structure through some algorithm, and
follow the following rules in the prediction process:

(1) A base cannot be paired with two or more bases at the same
time. That is, there are base pairs (Si, Sj) and (Sk, Sl). If
i= k, then j= l.

(2) If i < g < j < h or g < i < h < j, (Si, Sj) and (Sg , Sh) cannot
appear in the secondary structure, that is, pseudoknot
cannot appear in the secondary structure.

(3) If there are base pairs (Si, Sj), then |j− i| ≥ 4, that is, the
length of hairpin loop structure should be ≥ 4.

Hairpin loop: A structure consisting of one base pair (Si, Sj)
and all unpaired bases closed by it.

Stem: A structure composed of two adjacent base pairs (Si, Sj),
(Si + 1, Sj−1).

Bulge loop: It is composed of two base pairs (Si, Sj) and (Sk, Sl),
and the two base pairs are adjacent at one end and not adjacent at
the other end (k= i+ 1, k < l < j− 1or l= j− 1, i+ 1 < k < l).

Interior loop: It is composed of two base pairs (Si, Sj) and
(Sk, Sl), and the two base pairs are not adjacent at both ends
(i+ 1 < k < l < j= 1).

Multibranched loop: A structure closed by three or
more base pairs.
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FIGURE 1 | The development algorithm flow of PAR method.

FIGURE 2 | Flowchart of RNA secondary structure prediction algorithm.

Domain Analysis and Abstraction of RNA
Secondary Structure Prediction
Algorithm
Here, we briefly analyze the core ideas of three typical dynamic
programming algorithms.

(1) Nussinov algorithm
Given a sequence s, when the i-th base Si is paired with the
j-th base Sj in S, θ(i, j) = 1, otherwise θ(i, j) = 0. M(i, j) is
used to represent the maximum matching base logarithm
on the subsequence Sij, and its value can be iterated by the
following formula:

M(i, j) = Max


M(i+ 1, j)
M(i, j− 1)

M(i + 1, j− 1)+ δ(i, j)
Max(M(i.k)+M(k+ 1, j))

(1)

in which i≤ k≤ j, when i= 1, 2, 3, . . ., n, M(i, i)= 0. When
i= 2, 3, 4, . . ., n, M(i− 1, i)= 0.
The four terms in formula (1) correspond to the possible
pairing between the i-th base and the j-th base in the
sequence:

À Si does not participate in base pairing, then the
maximum number of base pairing in interval (i, j)
is equal to the maximum number of base pairing in
interval (i+ 1, j).

Á Sj does not participate in base pairing, then the
maximum number of base pairing in interval (i, j)
is equal to the maximum number of base pairing in
interval (i, j= 1).

Â Si is paired with Sj, and the maximum number of
base pairs in interval (i, j) is equal to the maximum
number of base pairs in interval (i+ 1, j= 1) plus 1.
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Ã Si is paired with base Sk in interval (i, j), then the
maximum number of base pairings in interval (i, j) is
equal to the number of pairings in interval (i, k) plus
the pairing number of interval (k + 1, j). Take k = i,
k = i + 1, k = i + 2,..., j in turn, then the maximum
number of base pairings in interval (i, j) is equal to
the one with the largest number.

Each iteration takes the maximum of the above four cases,
and the value of M(1, n) is the maximum number of
base pairs. The secondary structure of sequence s can be
obtained by backtracking from W(1, n).

(2) Zuker algorithm
Give a sequence s, fragment Sij represents the subsequence
from the i-th base to the j-th base in the s sequence,
where 1 ≤ i ≤ j ≤ n. W(i, j) is the minimum free
energy of all RNA secondary structures composed of
subsequence Sij (whether Si and Sj are paired or not),
V(i, j) is the minimum free energy of RNA secondary
structure formed by pairing Si and Sj. The calculation
process of W(i, j) and V(i, j) is shown in formulas (2)–(6)
as follows:

W(i, i) = 0 (2)

W
(
i, j
)
= V

(
i, j
)
= if j− i < 4 (3)

V(i, j) = if i and j are not paired. (4)

V(i, j) =



E1 = EH(i, j)
E2 = Es(i, j; i+ 1, j− 1)+ V(i+ 1.j− 1)

E3 = min{EL(i, j; i′, j′)+ V(i′, j′)},
i < i′ < j′ < j, (i′ − i)+ (j− j′) > 2

E4 = min{Wm(i+ 1, k)+Wm(k+ 1, j− 1)},

i < k < j− 1

(5)

W(i, j) = min{V(i, j)W(i+ 1, j), W(i, j−1), min{W(i, k)

+W(k+ 1, j)}, i < k < j−1}, j−i ≥ 4 (6)

EH(i, j) in formula (5) represents the minimum free energy
corresponding to the hairpin loop structure formed by
pairing base Si and base Sj, Es represents the minimum free
energy corresponding to the stem structure formed by the
pairing of base Si and base Sj, EL represents the minimum
free energy corresponding to the interior-loop or bulge-
loop structure formed by the pairing of base Si and base Sj,
and E4 represents the minimum free energy corresponding
to the multibranched loop structure formed by the pairing
of base Si and base Sj.
By using formula (6) to iterate continuously, w(1,
n) is the minimum free energy of sequence s. The
secondary structure of sequence s can be obtained by
backtracking from W(1, n).

(3) Helix-based algorithm
Given an RNA sequence s, all possible stem regions
were calculated by using the INN-HB energy model. Ei,j

represents the minimum free energy of the subsequence Sij,
and its value can be obtained by using formula (7).

Ei,j =


Einit

E(Hi,j,k + Ei+k,j−k)

min[Ei,k + Ek+1,j]

(7)

Equation (7) corresponds to three situations: À If j− i < 8,
then Ei,j = Einit = 0; Á Otherwise, search the stem regions,
if there is a stem region Hi,j,k starting with the i-th base
and ending with the j-th base, and Hi,j,k + Ei + k,j−k < Ei,j,
then Ei,j = E(Hi,j,k + Ei + k,j−k). Â For each k(i < k < j), if
Ei,k + Ek + 1,j < Ei,j, then Ei,j = Ei,k + Ek + 1,j. When E1,n
is calculated, the minimum free energy of RNA is found,
and the secondary structure with the minimum free energy
can be found by backtracking.

By further analyzing a large number of RNA secondary
structure prediction algorithms based on dynamic programming,
we can know that the process of RNA DP-SSP can be summarized
as shown in Figure 2.

Next, we analyze the DP-SSP domain with FODM method,
and consider the Service, Function, and Behavior in the DP-SSP
domain to build a feature model. The scope of the algorithm field
is limited to an algorithm form with dynamic programming as
the main strategy and RNA secondary structure prediction as the
main prediction method in the field of RNA function analysis.
RNA secondary structure prediction is the core service in this
field. The user-defined RNA secondary structure prediction
algorithm is realized by controlling the prediction mode, the
execution priority, and the combination mode between algorithm
features in the process of RNA secondary structure prediction.

(1) Sequence validity check (seq_check) is a preprocessing
operation that must be performed on the input sequence
before each algorithm runs, which is regarded as a
common function.

(2) All algorithms in this field need to build matrices and
auxiliary storage tables to store data and also need to
operate matrices and auxiliary storage tables, so matrix
manipulating (matrix_mani) and auxiliary storage
table manipulating (auxiliary_storage_mani) are the
required components. Further analysis shows that for
auxiliary_storage_mani, the auxiliary storage mode
(auxiliary_mode) is its behavior characteristic, and
there are mainly the following ways: auxiliary matrix
(matrix_op), auxiliary stem pool (stem pool_op), and
auxiliary free energy parameter (free energy_op).

(3) In this field, the dynamic programming idea is used
to predict the RNA secondary structure. Different RNA
secondary structure prediction algorithms can be obtained
by selecting different dynamic programming strategies.
Therefore, dynamic programming pattern selection is
regarded as a common component in this field. There
are four behavior patterns: based on maximizes base
pairs (Nussinov_op), based on minimizes free energy
(Zuker_op), based on helix-based (helix_op), and based on
partition function (partition function_op).
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(4) Output function (result_op) as a common function in
the field, it has two output modes: matching logarithmic
output (pairing number_op) and matching interval output
(pairing interval_op). Among them, the matching interval
needs backtracking (backtrack) and remembering the
source of elements (element source). Therefore, tracing
back and remembering the source of elements are optional
components.

The established feature model is shown in Figure 3.
A complete domain feature model also needs the interaction

between features. In the feature model, the interaction between
features is mainly reflected by the constraints and dependencies
between features. Therefore, for the feature model established
above, we design the feature interaction model in DP-
SSP domain.

Through the establishment of DP-SSP feature model, it is
analyzed that the algorithm mainly includes three change process
features: matrix_mani, dp_mode, and output. In addition, the
input of the algorithm in this field is gene sequence, so it is
necessary to check the legality of the sequence information before
the algorithm is executed. Therefore, the main components in
this field are seq_check component, matrix_mani component,
dp_mode component, and output component. Other features
in the feature model are used as auxiliary components, and the
interaction model of components is established according to the
dependencies between components, as shown in Figure 4.

Among them, the nodes connected by the solid line represent
the basic features that must be contained in the DP-SSP field.
The direction indicated by the arrow indicates the execution
priority of the four features from high to low. The arrow with
dotted line represents the associated operations required in
the algorithm assembly process. For example, when we choose
dynamic programming mode or perform matrix operations, we
need to use the information of auxiliary storage table operations.
The dotted line indicates the interaction between the two
features in the process of algorithm execution. For example,
matrix operation features need to be used in result output
or backtracking.

Here, we further analyze the feature model and algorithm
component interaction model in the above DP-SSP field and
package them into two ADT components and an RNA secondary
structure prediction algorithm component. With the advantages
of high abstraction, good support for ADT, easy formal
derivation, and correctness verification of Apla program, the
DP-SSP model is formally designed and implemented based on
Apla code.

(1) Matrix-type component
define ADT matrix_mani (sometype elem);
type matrix_mani= private;
var:
matrix:list(array[0. . .n,elem])
aux:auxiliary_storage_mani
procedure apply_memory (m: matrix _ mani;length:integer);
procedure init_matrix(proc initial(); m:matrix_mani;matrix:
list (array[0. . .n, elem]));

procedure setvalue (m:matrix_mani;
matrix:list(array [0. . .n,elem]); i:integer; j:integer;
aux:auxiliary_storage_mani);
function getvalue(m: matrix_mani; matri x:list(array
[0. . .n,elem]);i:integer;j:integer):elem
function the_last_element():elem;
procedure traceback(m: matrix_mani; matrix:list(array
[0. . .n,elem]); aux: auxiliary _ storage_ mani);
procedure output(m:matrix_mani; matrix: list(array
[0. . .n,elem]);aux:auxiliary_storage_mani);
enddef;

The generic ADT named matrix_mani contains a type
parameter elem, which can accept character type or other
types of data. Type matrix_mani = private is the storage
space description, which is used to indicate that the storage
space used by the custom ADT is private. Apply_memory
(m:matrix_mani;length:integer) is used to dynamically
allocate memory space for matrix_mami according to the
value of integer variable length; init_matrix(proc initial();
m:matrix_mani; matrix: list (array[0. . .n,elem])) has a generic
process parameter. Different process parameters can be passed in
to instantiate different matrices. The functions of Procedure
setvalue (m:matrix_mani;matrix:list (array[0. . .n,elem]);
i:integer; j: integer; aux: auxiliary_ storage_mani) and getvalue
(m:matrix_mani; matrix: list (array[0. . .n,elem]); i:integer;
j:integer):elem are to set element values and obtain element
values, respectively; the_last_element():elem indicates the last
element in matrix_mani, i(0 ≤ i ≤ length),j(0 ≤ j ≤ length)
indicates the subscript of the corresponding element, and length
means the length of RNA sequence. Traceback (m:matrix_mani;
matrix: list (array[0. . .n,elem]); aux:auxiliary_storage_mani)
means to backtrack the results. Output (m:matrix_mani; matrix:
list (array[0. . .n,elem]);aux:auxiliary_storage_mani) is used
to output the final result. By default, it outputs the interval
of base pairing.

(2) Auxiliary storage table-type component
define ADT auxiliary_storage_mani(someproc inilization
(sometype:elem);n:integer);
type auxiliary_storage_mani= private;
procedure set_value(a: auxiliary_ storage _mani;i:integer;
j:integer);
function get_value(a: auxiliary_storage_ mani;i:integer;j:
integer):elem;
procedure traceback(a: auxiliary_storage _mani);
enddef;

The ADT contains a process generic parameter someproc
initialization_ auxiliary() and an integer parameter n so that
generic programs can support instantiation of different dynamic
programming patterns. Type auxiliary_storage_mani = private
is the storage space description, which is used to indicate
that the storage space used by the custom ADT is private.
The functions of Procedure set_value (a: auxiliary_
storage_ mani; i:integer;j:integer) and Function get_value(a:
auxiliary_storage_mani; i: integer; j:integer): elem are to set
element values and obtain element values, respectively. Procedure

Frontiers in Plant Science | www.frontiersin.org 6 January 2022 | Volume 12 | Article 83004221

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-830042 January 18, 2022 Time: 14:17 # 7

Shi and Jing RNA Structure Prediction Algorithm Generation

FIGURE 3 | DP-SSP feature model.

FIGURE 4 | Feature interaction model of algorithm components.
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traceback(a:auxiliary_ storage_ mani) means backtracking
auxiliary_storage_mani.

(3) Secondary structure prediction algorithm component
procedure RNA_prediction(m: matrix_mani; a:auxiliary_
storage_mani)
begin
m.apply_memory(m,length);
m.init_matrix();

do
i,j ≤ length
→

m.setvalue(m.matrix,i,j,a);
od;

m.traceback(m,a);
M.output(m,matrix,a);
end;

The algorithm component contains two generic parameters
m and a; corresponding to types matrix_mani and
auxiliary_storage_mani, respectively, users can get different
RNA secondary structure prediction algorithms by passing in
different ADT parameters.

Development of Zuker Algorithm Based
on ADT

program Zuker;
Procedure Zuker_auxiliary_initialization(char);. . .. . .. . .. . . ..À
var
i:integer;
length:integer;
symbol:char;
begin
open(D:\Zuker\sourcedata.txt)
foreach(i= 0;i<= length;i++)
. . .. . . //Code segment, omitted.
end;
ADT Zuker_auxiliary:new auxiliary_ storage_mani(Zuker_
auxiliary_initialization,4);. . .. . .. . .. . .. . .Á
ADT Zuker_ matrix_mani:new matrix_ mami
(double);. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .Â
Zuker_RNA_prediction():Procedure RNA_prediction (Zuker_
matrix_mani; Zuker_auxiliary);. . .Ã
Var:
m:Zuker_ matrix_mani
a:Zuker _ auxiliary
Begin // Main program code. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .
. . .. . .. . .. . .. . .. . .. . .Ä
open(D:\Zuker\sourcedata.txt)
foreach(i= 0,j= 0;i <=length, j<= length;i++,j++)
. . .. . . //Code segment, omitted.
Zuker_RNA_prediction(m,a);
end;

Code block À indicates the dynamic planning mode of Zuker
algorithm, Á indicates the instantiation of auxiliary storage table
of Zuker algorithm, Â indicates the main matrix of instantiating
Zuker algorithm, Ã indicates the implementation of prediction

code of Zuker algorithm, and Ä the following code blocks are
the main programs. As the above Apla program cannot be run
directly, we use Apla-C++ converter in PAR platform to convert
Apla program into C++ program for experimental comparison.

RESULTS

Gutell laboratory provided a large number of real secondary
structures of RNA, so we downloaded six real RNA sequences
from http://www.rna.icmb.utexas.edu/ to run the assembly
algorithm. Figure 5 shows the prediction result of an RNA
sequence named d.5.e.C.carpio. Table 1 shows the comparative
experiments of our assembled algorithm with partition function
and Nussinov algorithm in this field.

At present, researchers often use sensitivity (X), specificity
(Y), and Matthews correlation coefficient (MCC) to measure the
prediction accuracy of the algorithm. Sensitivity refers to the
percentage that the real base pairs in the secondary structure are
correctly predicted. Specificity refers to the percentage of correct
prediction among all predicted base pairs. It is difficult to take
both into account in general prediction methods, so researchers
often use MCC to compromise. The calculation formulas are as
follows:

X =
TP

TP + FN
(8)

Y =
TP

TP + FP
(9)

MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP)(TP + FN)(FN + FP)(TN + FN)

(10)

where TP represents the number of base pairs correctly predicted;
FN indicates the logarithm of base pairs in all real structures
that are not predicted; and FP represents the predicted logarithm
of base pairs that do not exist in the real structure. The value
range of MCC is −1 (TP = TN = 0, completely wrong) to
1(FP = FN = 0, absolutely right). Sometimes, for convenience,
people often simplify formulas (10) and (11) to evaluate the
prediction results.

MCC =
√

XY (11)

In this experiment, formulas (8), (9), and (11) are used to evaluate
the assembly algorithm.

According to the data in Table 1, when the sequence
length is 120, 218, 380, 423, 543, and 670, respectively,
the algorithm assembled in this article can obtain a better
result. The X parameter, Y parameter, and MCC parameter
are not inferior to the other two popular RNA secondary
structure prediction algorithms. This shows that the algorithm
generated by assembly has certain practicability. In addition,
using the formal method PAR to develop the algorithm can
also improve the development efficiency and reliability of the
algorithm, which is convenient for researchers to maintain
and optimize. Users only need to select different components
for assembly according to the configuration knowledge to
generate different specific algorithms. With the continuous
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FIGURE 5 | Experimental results of assembly algorithm.

TABLE 1 | Experimental results of different input sequences.

RNA name Sequence length Partition function algorithm Nussinov algorithm Assembly algorithm

X Y MCC X Y MCC X Y MCC

d.5.e.C.carpio 120 0.66 0.68 0.67 0.64 0.59 0.61 0.61 0.63 0.62

a.I1.e.L.dispersa 218 0.49 0.44 0.46 0.46 0.43 0.44 0.62 0.63 0.62

a.I1.e.P.inouyei 380 0.53 0.59 0.56 0.36 0.29 0.32 0.68 0.65 0.66

a.I1.e.Staurastrum.sp 423 0.45 0.49 0.47 0.30 0.29 0.30 0.53 0.51 0.52

b.I1.e.H.rubra 543 0.42 0.29 0.35 0.19 0.17 0.17 0.51 0.46 0.48

a.16.m.L.tarentolae 670 0.16 0.21 0.18 0.15 0.18 0.16 0.23 0.24 0.23H

expansion of DP-SSP component library, we are expected
to assemble a more efficient new RNA secondary structure
prediction algorithm.

DISCUSSION

RNA secondary structure prediction is a hot research direction
in bioinformatics, and its implementation algorithm has been
widely studied. Because of the flexibility of its algorithm design
strategy and the complexity of the problem, this kind of algorithm
is full of diversity and complexity. In this article, the GP
technology is used to deeply analyze the domain of RNA DP-
SSP, find out the general features and variable features, design a
highly abstract program component based on Apla language by
using the formal method PAR, and use PAR platform to assemble
and generate Zuker algorithm, thus improving the reliability

and reusability of the algorithm component and reducing the
development cost.
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DNA N6-Methyladenine (6mA) is a common epigenetic modification, which plays some
significant roles in the growth and development of plants. It is crucial to identify 6mA
sites for elucidating the functions of 6mA. In this article, a novel model named i6mA-
vote is developed to predict 6mA sites of plants. Firstly, DNA sequences were coded
into six feature vectors with diverse strategies based on density, physicochemical
properties, and position of nucleotides, respectively. To find the best coding strategy,
the feature vectors were compared on several machine learning classifiers. The results
suggested that the position of nucleotides has a significant positive effect on 6mA
sites identification. Thus, the dinucleotide one-hot strategy which can describe position
characteristics of nucleotides well was employed to extract DNA features in our method.
Secondly, DNA sequences of Rosaceae were divided into a training dataset and a test
dataset randomly. Finally, i6mA-vote was constructed by combining five different base-
classifiers under a majority voting strategy and trained on the Rosaceae training dataset.
The i6mA-vote was evaluated on the task of predicting 6mA sites from the genome
of the Rosaceae, Rice, and Arabidopsis separately. In Rosaceae, the performances of
i6mA-vote were 0.955 on accuracy (ACC), 0.909 on Matthew correlation coefficients
(MCC), 0.955 on sensitivity (SN), and 0.954 on specificity (SP). Those indicators, in the
order of ACC, MCC, SN, SP, were 0.882, 0.774, 0.961, and 0.803 on Rice while they
were 0.798, 0.617, 0.666, and 0.929 on Arabidopsis. According to the indicators, our
method was effectiveness and better than other concerned methods. The results also
illustrated that i6mA-vote does not only well in 6mA sites prediction of intraspecies but
also interspecies plants. Moreover, it can be seen that the specificity is distinctly lower
than the sensitivity in Rice while it is just the opposite in Arabidopsis. It may be resulted
from sequence similarity among Rosaceae, Rice and Arabidopsis.
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INTRODUCTION

DNA N6-methyladenine (6mA) is a methyl modification at the
sixth position of the adenine ring, which was discovered by
Vanyushin et al. (1968). 6mA is widely found in prokaryotes
and eukaryotes (Fu et al., 2015; Greer et al., 2015; Zhang et al.,
2015). It is reported that 6mA plays vital roles in DNA replication,
repairing nucleotide dislocations, and preventing the invasion of
foreign DNA (Wion and Casadesús, 2006). Although 6mA in
animal genomes studies have been well studied, those of plants
genomes have still known a little, which hampered to explore
their functions. To better understand the molecular mechanism
of 6mA in plants, it is the first step to determine the 6mA
sites accurately.

To detect 6mA sites, several biochemical methods were
developed, such as single-molecule real-time sequencing
technology (SMRT-seq) (Davis et al., 2013) and restriction
endonuclease-based 6mA sequencing (6MA-RE-seq) (Fu
et al., 2015). In SMRT-seq, single-nucleotide molecules
labeled by different fluorophores were paired with bases
of a DNA sequence, and the fluorescence signals were
recorded during the process of pairing. The fragment of
DNA sequence may be methylated if it showed the continuous
same signal during the process of pairing. 6mA-RE-seq
explored restriction enzymes to fragment genomic DNA
at “CATG” and “GATC” motifs that did not contain 6mA
and then retained these motifs containing 6mA. In this
way, after end-repair and other operations, the methylated
motifs would be enriched in the internal positions of DNA
fragments. However, these methods are hard to detect
6mA sites from high-throughput sequences because they
are time-consuming and expensive.

Therefore, some machine learning models have been
developed to identify 6mA sites in recent years because they
are efficient and cheap. At first, iDNA6mA-PseKNC (Feng
et al., 2019) was proposed to detect 6mA sites in the mouse
genome. In this model, DNA sequences were represented
by pseudo-k-tuple nucleotide composition incorporating
the physicochemical properties of nucleotides, and then
the sequences were classified by a support vector machine
(SVM). Subsequently, i6mA-Pred (Chen et al., 2019) trained
a novel SVM model to identify 6mA sites in the rice genome
based on the chemical properties of nucleotide such as the
loop structure, the hydrogen bond, and the amino groups,
and the nucleotide frequency of DNA sequences. To avoid
overfitting, i6mA-Pred used the maximum correlation maximum
distance approach to select the most representative features.
Afterward, iN6-methylate (Le, 2019), another novel SVM
model, used FastText to generate feature vectors for DNA
sequences based on the assumption that a DNA sequence is a
sentence and a nucleotide is a word. Unlike previous models,
MM-6mAPred (Pian et al., 2019) constructed Markov chains
based on DNA sequences with 6mA sites (positive samples)
and DNA sequences without 6mA sites (negative samples) in
the training dataset. Based on the Markov chains, the positive
and negative probabilities of a DNA sequence were calculated
separately. It is considered that a sequence contained 6mA site

if the ratio of positive probability against negative probability
is greater than 1.

To improve the performance of above methods, ensemble
learning has been increasingly applied to 6mA sites prediction.
In the beginning, iDNA6mA-Rice (Lv et al., 2019), a rice
6mA site classification model based on random forest, encoded
DNA sequences via three feature descriptors, namely the
k-nucleotide frequency, the mono-nucleotide binary coding, and
the natural vector containing the frequency, average position,
and second-order central moment of mono-nucleotides. Soon
afterward, on the basis of bagging with CART, i6mA-DNCP
(Kong and Zhang, 2019) represented rice DNA sequences
by two novel feature descriptors: dinucleotide frequency and
dinucleotide physicochemical properties. In addition, i6mA-
DNCP employed heuristic ideas to select the most representative
features. Several months later, i6mA-Fuse (Hasan et al., 2020)
was proposed to classify Rosaceae DNA sequences with random
forest and linear regression. Subsequently, a random forest-
based multi-species 6mA site prediction model 6mA-Finder
(Xu et al., 2020) was developed, which contained three
modules for mouse, rice, and a general species admixed
by mouse and rice DNA sequences, respectively. i6mA-
stack (Khanal et al., 2021) developed a two-level stacked
ensemble classifier based on linear regression, random forest,
support vector machine, and gaussian naive bayes to recognize
Rosaceae 6mA sites.

With the development of deep learning, some neural network
models were also developed for identifying 6mA sites. For
example, iDNA6mA (Tahir et al., 2019) is composed of four
layers: two convolution layers which extract features of DNA
sequences, a dropout layer which is used to avoid overfitting,
and a full-connection layer which performs classification
tasks. Subsequently, SNNRice6mA (Yu and Dai, 2019) was
improved iDNA6mA by adding a normalization layer and a
pooling layer between the convolution layer and the dropout
layer, which aimed to reduce redundant features of DNA
sequences according to the correlation of the features. i6mA-
DNC (Park et al., 2020) is similar with the above two
models except it extracted features from nucleotide pairs
of DNA sequences rather than from single nucleotides.
It is worth noting that the three neural network models
mentioned above were all developed for predicting 6mA sites in
the rice genome.

Because the previously mentioned models are species-
specific, Meta-i6mA (Hasan et al., 2021) was proposed for
6mA site prediction from multiple plants. Although Meta-
i6mA has achieved encouraging results in intraspecies, it
still has room for improvement in interspecific. To solve
this problem, a novel classification model i6mA-vote was
developed based on an ensemble learning strategy. In this
model, DNA sequences were encoded by nucleotide position-
based feature descriptors, and then these sequences were
classified by an ensemble classifier integrating random
forest, linear discriminant analysis, multi-layer perceptron,
stochastic gradient descent, and extreme gradient boosting.
The details of i6mA-vote will be introduced in the
following sections.
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FIGURE 1 | Frame diagram of i6mA-vote. (DS1, DS2, DS3, and DS4 refer to Rosaceae training dataset, Rosaceae test dataset, Rice test dataset, and Arabidopsis
test dataset; In the DNA sequences, the letter “A” marked in red refers to the possible 6mA site, and the letter “N” indicates the unidentified nucleotide; In the feature
vectors, “p” and “n” are short for the positive sample and the negative sample).

MATERIALS AND METHODS

Framework of i6mA-Vote
In our study, as shown in Figure 1, i6mA-vote was constructed
by four steps. Firstly, positive samples of Rosaceae, Rice,
and Arabidopsis were derived from MDR (Liu et al., 2019),
GEO (Edgar et al., 2002), and MethSMRT (Ye et al., 2017)
databases, and negative samples of these plants were downloaded
from NCBI. For each plant, the positive and negative samples
were filtered by CD-HIT (Li and Godzik, 2006) to reduce
high similar samples. Then all samples were divided into
three datasets according to organisms for the subsequent
experiments. The Rosaceae dataset was split into a training
dataset and a test dataset, and datasets for the remaining
two species were used as cross-species evaluation datasets.
Secondly, to transform DNA sequences into feature vectors,

one-hot encoding method was performed on dinucleotides
(e.g., AA, AG, . . .) of DNA sequences. Because the known
nucleotides can be represented by four symbols (A, G,
C, T) and other unknown nucleotides can be denoted by
symbol N, in this way, there were twenty-five dinucleotide
combinations. Thirdly, an ensemble learning model, named
i6mA-vote, was built by integrating random forest (RF), multi-
layer perceptron (MLP), stochastic gradient descent (SGD),
linear discriminant analysis (LDA), extreme gradient boosting
(XGB), based on majority voting strategy. Then all samples
were represented by feature vectors and the ensemble learning
model was trained on the samples. Finally, to evaluate the
performance of the model, i6mA-vote was used to perform
simulation a task on test datasets, and its superiority was
demonstrated by accuracy, Matthew correlation coefficient,
sensitivity, and specificity. In the following sections, the
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TABLE 1 | Number of samples in each dataset.

Datasets Number of
positive samples

Number of
negative samples

Total
number

DS1 29237 29433 58670

DS2 7298 7300 14598

DS3 153635 153629 307264

DS4 31414 31843 63257

detail process of constructing the i6mA-vote model will be
illustrated step by step.

Datasets
The quality of the dataset affects the performance of the
classification model. In this study, four high-quality datasets that
have been applied in the 6mA prediction domain were selected.

The Rosaceae dataset was collected, collated, and constructed
by Hasan’s team (Hasan et al., 2021). The part containing
6mA were derived from the MDR database (Liu et al., 2019).
After removing similar sequences and excluding 90% sequence
identity, 36,537 positive samples were obtained. The other part,
including the same number of negative ones, was taken from
NCBI, and it was generated by chromosomes with no 6mA
detected. Finally, 80% of this dataset was randomly selected as
the training dataset (DS1), and the remaining 20% was regarded
as the test dataset (DS2).

The Rice dataset (DS3) was created by Lin’s group (Lv et al.,
2019). The positive portion and the negative one were obtained
from the GEO database (Edgar et al., 2002) and NCBI. And they
both included 154000 samples.

The Arabidopsis dataset (DS4) was also constructed by
Hasan’s team (Hasan et al., 2021). It extracted 31,873 6mA sites
from the MethSMRT database (Ye et al., 2017) and replenished
the same number of negative samples from NCBI using the same
way as for the Rosaceae dataset.

Among them, DS1 was used for training the model, DS2, DS3,
and DS4 were used to evaluate the generalization performance
and cross-species prediction ability of the model.

All the above four datasets were downloaded from the
online server of model Meta-i6mA (Hasan et al., 2021)1. In
addition, these datasets were also processed as follows: (1)
Sequences longer than 41bp were removed. (2) If a sequence
was repeated multiple times, it would be deleted, leaving only
one copy. (3) If a sequence was present in both positive and
negative samples, it would be removed from both parts. Finally,
the number of samples included in each dataset is shown in
Table 1. Their sequences all consisted of 41 nucleotides with an
“A” in the middle.

Feature Extraction
To convert DNA sequences into feature vectors, One-hot
encoding method for dinucleotides was employed in our model.
This strategy and other concerned strategies will be described
in detail below.
1http://kurata14.bio.kyutech.ac.jp/Meta-i6mA/download_file/Meta-6mA-
datasets.zip

Our Encoding Strategy
One-hot encoding method for dinucleotides (One-hot2) is based
on the one-hot encoding method in natural language processing.
The one-hot encoding method compiles a dictionary using the
words in the sentences and then encodes each word into a 0-1
vector through this dictionary. The length of the vector is equal to
that of the dictionary, and each bit in the vector corresponds to a
word in the dictionary. When encoding a word, its corresponding
bit is set to 1 in the vector, and the other bits are kept at
0. Similarly, One-hot2 treats DNA sequences as sentences and
dinucleotides as words.

A DNA sequence is usually composed of four standard
nucleotide symbols: A, C, G, and T. However, sometimes the
DNA sequence also include non-standard nucleotide symbol N,
which means that the nucleotide was not identified. Accordingly,
a DNA sequence may consist of 5 symbols, and it contains 25
possible symbol combinations of dinucleotides like AA, AC, AN.
In our method, the one-hot2 encoded each dinucleotide into a
25-dimensional 0-1 vector. The vector of each dinucleotide is
shown in Formula (1).



AA = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
AC = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
AG = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

.

.

.
NT = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)
NN = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

(1)

To show how One-hot2 encodes DNA sequences, an example
is given below. DNA sequence D = ACGTNA can be split into
five dinucleotides (AC, CG, GT, TN, NA), and then they are
replaced with their corresponding one-hot codes. In this way, a
vector with the dimension of 125 is generated.

Because the length of the DNA sequences in our datasets are
41bp, the sequences can be spliced into 40 dinucleotides and thus
the vectors of these dinucleotides were concatenated into a 1000-
dimensional feature vector to describe their primary sequence.

There are three reasons why One-hot2 was chosen: (1) It
can solve the problem that classifiers are not good at handling
continuous data. In addition, it generates sparse vectors, allowing
many machine learning problems to be linearly separated
and models more efficient to be stored. (2) It considers the
relationship between adjacent nucleotides as it is encoded
in dinucleotide. (3) Some studies (Chen et al., 2019; Feng
et al., 2019) found position-specific features can better represent
sequences containing 6mA sites, and One-hot2 happens to be
this kind of method.

The Concerned Encoding Strategies
Density-Based Approach
Accumulated Mono-Nucleotide Frequency (AMNF)
represent the frequency of single nucleotides in the
subsequence which ranges from the first nucleotide to
the current nucleotide of the original sequence. Similarly,
Accumulated Di-Nucleotide Frequency (ADNF) (Chen
et al., 2017) denotes the nucleotide pairs which appears
before current nucleotide. For example, DNA sequence
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D = ACGTNA can be encoded as (1, 0.5, 0.33, 0.25,
0.2, 0.33) and (1, 0.5, 0.33, 0.25, 0.2) by AMNF and
ADNF, respectively.

Physicochemical-Properties-Based Approach
Dinucleotide Physical-Chemical Properties (DPCP) and
Trinucleotide Physical-Chemical Properties (TPCP) (Manavalan
et al., 2019; Wei et al., 2019) replace the DNA sequences with the
vectors calculated by Equation (2) using the physicochemical-
properties in Supplementary Tables 1,2. In Supplementary
Table 1, the columns represent 15 physicochemical properties,
and the rows represent 25 dinucleotides. In Supplementary
Table 2, the columns represent 11 physicochemical properties,
and the rows represent 125 trinucleotides.

xPCPi = Ni × xPCij (2)

where x = D refers to Dinucleotide and x = T denotes
Trinucleotide. When x = D, the values of i range from 1 to
25, the values of j range from 1 to 15, DPCPi is the DPCP value
of the ith dinucleotides, Ni is the count of the ith dinucleotides
in the DNA sequence, and DPCij is the jth properties of the ith
dinucleotides; When x = T, the values of i range from 1 to 125,
the values of j range from 1 to 11, TPCPi is the TPCP value of
the ith trinucleotides, Ni is the count of the ith trinucleotides
in the DNA sequence, and TPCij is the jth properties of the
ith trinucleotides.

Position-Based Approach
One-hot encoding method for mononucleotide (One-hot1) is
similar to One-hot2, except that its encoding unit is the
mononucleotide. It converts a mononucleotide into a one-hot
code with a length of five, corresponding to five mononucleotides
(A, C, G, T, and N). For instance, the encoded vector of
DNA sequence D = ACGTNA is (1,0,0,0,0| 0,1,0,0,0| 0,0,1,0,0|
0,0,0,1,0| 0,0,0,0,1| 1,0,0,0,0).

Classifier
To train a classification model with stable and good performance,
five machine learning algorithms was utilized to construct five
base-classifiers. Subsequently, majority voting was adopted to
integrate these five base-classifiers. Its detailed procedure is
illustrated in the following steps.

(1) The processed training dataset was inputted into five
machine learning algorithms, and five base-classifiers were
generated. These five algorithms were random forest (RF), multi-
layer perceptron (MLP), stochastic gradient descent (SGD), linear
discriminant analysis (LDA), extreme gradient boosting (XGB).
Among them, RF refers to one type of classifier that utilizes
multiple decision trees to train and predict samples. MLP, as a
simple neural network, contains three fully connected layers, the
input layer, the hidden layer, and the output layer. SGD is a kind
of support vector machine model. LDA is a classifier generated
according to Bayes’ rule. XGB is also based on trees, but unlike
random forests, its trees are regressive, and it also optimizes the
algorithm itself, the efficiency and robustness of the algorithm.

(2) The five base classifiers were combined into one ensemble
classifier by majority voting. That is, when three or more base

classifiers judge a sequence to be a positive (or negative) sample,
then their combination also treats this sequence as a positive (or
negative) sample.

It should be noted that the hyperparameters of the base-
learners were optimized by grid search strategy. After manually
specifying variation ranges of hyperparameters, this strategy
adopted an exhaustive method-like approach to find the
best-performing combination from these hyperparameters. In
addition, all classifier algorithms in this paper were implemented
by sklearn (Hinton, 1989; Belhumeur et al., 1997; Platt, 2000;
Breiman, 2001; Bengio and Glorot, 2010; Pedregosa et al., 2011;
Kingma and Ba, 2014; He et al., 2015; Chen and Guestrin, 2016).

Performance Evaluation
Our model was validated according to accuracy (ACC), Matthew
correlation coefficient (MCC), Sensitivity (SN), Specificity (SP)
which had been widely adopted in the field of bioinformatics
(Huang and Gong, 2020; Liu et al., 2020; Smolarczyk et al.,
2020; Wang H. et al., 2020; Wang J. et al., 2020; Shao and Liu,
2021; Zhang et al., 2021). These metrics can be calculated by
equations (3)∼ (6).

ACC =
nTP + nTN

nTP + nFN + nTN + nFP
(3)

MCC =
nTP × nTN − nFN × nFP

√
(nTP + nFP) × (nTP + nFN ) × (nTN + nFP)× (nTN + nFN )

(4)

SN =
nTP

nTP + nFN
(5)

SP =
nTN

nTN + nFP
(6)

Where TP and TN refer to correctly predicted 6mA and non-
6mA; FP and FN denote incorrectly predicted non-6mA and
6mA; nx means the number of x.

RESULTS AND DISCUSSION

DNA Sequence Logos
To find optimal features of samples, the DNA sequences
of samples should be analyzed. Since these sequences were
of equal length, they could be analyzed sequence logos
(Schneider and Stephens, 1990). Two Sample Logo was employed
(Vacic et al., 2006), which calculated the statistical difference
between positive and negative samples at specific positions. The
logo consists of three parts, the upper and lower parts represent
the enriched and depleted nucleotides at specific positions, and
the middle part denotes the consistent results of positive and
negative samples. The x-axis indicates the position. The length
of DNA sequences in our datasets is 41bp, so there are 41
scales on the x-axis. Additionally, as the middle nucleotide is
consistent in both positive and negative samples, it is set to the
0th scale. The y-axis represents the amount of information at
the position. The higher the symbol in a position, the more
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FIGURE 2 | Sequence logos of Rosaceae (A), Rice (B), and Arabidopsis (C).

information the position contains. In addition, the relative size
of a base letter shows its relative frequency at one position. If
a letter is larger than the other letters in the column, it has a
high frequency in that position. At each position, the base letters
are arranged in the order of dominance from top to bottom.
Generally, the consensus motif can be found by reading the top
of each position.

Figures 2A-C are the sequence logos established for Rosaceae,
Rice, and Arabidopsis. From the three figures, it can be
seen that the sequences have a length of 41bp with “A”s
at the center. In addition, “A” enriched at positions −6,
−4, −3, 4, 7, 8, 10, 11, 12, “C” enriched at positions −7,
−2, 2, 6, 9, “G” enriched at positions −8, −1, 2, 3, 5,
8, and “T” enriched at positions 3. Since these sequences
containing 6mA are enriched with some nucleotides at some
positions, it is speculated that position-based approaches are
more suitable for extracting information from the sequences
in our datasets.

Performance Evaluation of Models
To verify the conjecture in the previous section, six methods
were chosen to extract the datasets as features and then

they were applied to five commonly used well-performing
algorithms in sklearn. Since the conjecture is too intuitive
and may lead to some significant features being overlooked,
not only nucleotide position-based methods are compared, but
also density-based and physicochemical property-based methods
were also compared.

The experimental results of 5-fold cross-validation are
displayed in Table 2. The columns indicate the feature
extraction methods which have been introduced in the “Feature
Extraction” section. The rows denote classifier algorithms
and their evaluation metrics, and they have been briefly
described in the “Classifiers” section and the “Performance
Evaluation” section.

As can be seen in Table 2, whichever classifier algorithm
is selected, the ACCs, SNs, SPs, and MCCs of AMNF,
ADNF, DPCP and TPCP are all lower than 0.80, 0.79, 0.83,
and 0.60, whereas them of One-hot1 and One-hot2 are all
higher than 0.93, 0.93, 0.91, and 0.86. These illustrate that
compared with density-based and physicochemical property-
based approaches, position-based ways can better express
the characteristics contained in DNA sequences in our
datasets. XGB performed slightly better with one-hot1 than
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TABLE 2 | Indicators of different features and classifier algorithms.

AMNF ADNF DPCP TPCP One-hot1 One-hot2

Random
forest

ACC 0.786 0.642 0.594 0.669 0.935 0.938

SN 0.746 0.627 0.587 0.683 0.937 0.939

SP 0.825 0.655 0.602 0.656 0.933 0.937

MCC 0.573 0.283 0.189 0.339 0.870 0.877

Linear
discriminant
analysis

ACC 0.643 0.609 0.614 0.660 0.908 0.931

SN 0.650 0.624 0.597 0.629 0.937 0.945

SP 0.637 0.594 0.632 0.692 0.879 0.917

MCC 0.287 0.219 0.228 0.321 0.818 0.862

Multi-layer
perceptron

ACC 0.755 0.627 0.602 0.625 0.937 0.939

SN 0.743 0.602 0.576 0.621 0.936 0.942

SP 0.767 0.652 0.628 0.629 0.939 0.937

MCC 0.510 0.255 0.204 0.250 0.875 0.878

Stochastic
gradient
descent

ACC 0.643 0.605 0.549 0.577 0.910 0.931

SN 0.631 0.647 0.561 0.481 0.917 0.936

SP 0.654 0.563 0.538 0.672 0.904 0.926

MCC 0.287 0.212 0.099 0.157 0.821 0.861

Extreme
gradient
boosting

ACC 0.790 0.647 0.616 0.673 0.944 0.940

SN 0.788 0.650 0.617 0.672 0.948 0.942

SP 0.791 0.644 0.616 0.675 0.939 0.937

MCC 0.579 0.294 0.233 0.346 0.888 0.880

Bold values indicate the best performance.

one-hot2. This may be because XGB may lose some valuable
information when it was applied on high-dimensional one-
hot2 features. Specifically, XGB divides the high-dimensional
feature space into many small parts which may be treated
as noise. In addition, if the feature descriptor is One-hot1
or One-hot2, all classifiers show good performance, which
indicates that all these algorithms are appropriate for this
classification task.

Moreover, to judge intuitively whether the above six feature
extraction methods were good at distinguishing between positive
and negative samples, the tSNE (van der Maaten and Hinton,
2008) technique in sklearn (Pedregosa et al., 2011) was used
to project the sample points of these methods from the high-
dimensional space to the two-dimensional space. If the positive
and negative sample points can be well separated in the
two-dimensional space, they are also separable in the high-
dimensional space. The visualization plots of the projection are
shown in Figure 3. It can be seen from Figure 3 that the
samples of the two labels are separated by certain dividing lines
in Figures 3E,F, while in other subgraphs, the negative sample
points are almost covered by the positive ones. These illustrate
that One-hot1 and One-hot2 can better discriminate the sample
points of the two labels in a high dimensional space than the
other four methods.

Through these arguments, the nucleotide position-based
methods are indeed more suitable for extracting features from
DNA sequences in our datasets, and the assumptions that
was made in the previous section are proved to be correct.
Therefore, in the subsequent analysis, only One-hot1 and One-
hot2 would be considered.

Comparison of Features
In the previous section, it has been learned that the position-
based approaches express the information contained in our
DNA sequences well. However, it is not sure which is the best
among One-hot1, One-hot2, and their fusion. Therefore, in this
subsection, they are compared. The comparison results are shown
in Figure 4.

As can be seen from Figure 4, only when the classifier
is XGB, the effect of the other two is slightly better
than One-hot2; when the classifier is RF, LDA, MLP, or
SGD, One-hot2 is significantly better than One-hot1 and
slightly better than the fusion. The reason for this is
that when encoding a dinucleotide, some information about
the mononucleotide is involved. Therefore, in most cases,
One-hot1 is not as good as One-hot2, and their fusion
produces some redundant information. Consequently, One-hot2
is the best answer.

Efficiency of Ensemble Strategy
Using One-hot2 to extract features and take RF, LDA, MLP,
SGD, and XGB as classifiers, five base models can be obtained.
As shown in Figure 5, except for some differences between
SN and SP of LDA and SGD, SN and SP for the other three
classifiers do not differ much, as well as these base models
are all with excellent performance, so they were tried to be
combined with the majority voting strategy. The integrated
results are also shown in Figure 5. It can be found that after
voting, except for no enhancement in SP, all the other three
metrics improved, which means that after this operation, the
performance of the whole classification system has been risen
to a higher level.

Comparison With Other Machine
Learning Models
To evaluate the generalization capability and cross-species
identification ability of our model, it was applied to three
test datasets, DS2, DS3, and DS4. Moreover, the test results
were compared with several other machine learning models to
demonstrate the advantages of our model. Table 3 shows the
comparative results on Rosaceae, Rice, Arabidopsis. The columns
indicate four evaluation indicators that have been introduced in
the “Performance Evaluation” section. The rows represent the
species and the models applied on these species. The models
include Meta-i6mA (Hasan et al., 2021), i6mA-Fuse (Hasan et al.,
2020), i6mA-stack (Khanal et al., 2021), i6mA-Pred (Chen et al.,
2019), iDNA6mA-Rice (Lv et al., 2019), MM-6mAPred (Pian
et al., 2019), and 6mA-Finder (Xu et al., 2020). Among them,
i6mA-Fuse consists of two modules, which were trained by the
datasets of Fragaria Vesca and Rosa Chinensis, respectively. To
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FIGURE 3 | The tSNE scatterplots of AMNF (A), ADNF (B), DPCP (C), TPCP (D), One-hot1 (E), and One-hot2 (F). (Blue and pink dots indicate DNA sequence
samples with and without 6mA sites, respectively).

FIGURE 4 | Comparison before and after feature fusion.

better distinguish them, i6mA-Fuse_FV and i6mA-Fuse_RC are
used instead. The same situation is true for i6mA-stack.

As can be seen from Table 3, when the species is Rosaceae,
although our SN and SP values only rank second, our ACC and
MCC values are the maximum, suggesting that our model has
the best overall performance in Rosaceae. It can be concluded
that our model can make cross-species predictions for Rice
as all four metrics of our model rank at the top. And it can
better find 6mA sites from unknown Rice sequences because

FIGURE 5 | Effects of the ensemble strategy.

our model has the highest SN value. Like Rosaceae, our model
predicts 6mA sites well in Arabidopsis, and with the highest SP,
our model can better screen out those sequences that do not
contain 6mA sites. Considering the comparative results on the
three species, our model has better generalization performance
and cross-species prediction ability than other methods. This
may be because only the best-performing feature descriptor was
selected to represent the DNA sequences rather than the fusion of
several well-performing features. Thereby, the risk of generating
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TABLE 3 | Comparison with other machine learning models on Rosaceae, Rice,
and Arabidopsis.

ACC MCC SN SP

Rosaceae Meta-i6mA 0.953 0.905 0.954 0.951

i6mA-Fuse_FV 0.943 0.887 0.924 0.962

i6mA-Fuse_RC 0.893 0.786 0.890 0.895

i6mA-stack_FV 0.928 0.856 0.928 0.927

i6mA-stack_RC 0.899 0.798 0.920 0.877

i6mA-Pred 0.840 0.684 0.897 0.782

iDNA6mA-Rice 0.878 0.764 0.951 0.805

MM-6mAPred 0.873 0.758 0.961 0.785

6mA-Finder 0.846 0.701 0.928 0.764

i6mA-vote 0.955 0.909 0.955 0.954

Rice Meta-i6mA 0.880 0.768 0.957 0.802

i6mA-Fuse_FV 0.890 0.781 0.921 0.859

i6mA-Fuse_RC 0.775 0.571 0.907 0.644

i6mA-stack_FV 0.876 0.756 0.938 0.815

i6mA-stack_RC 0.813 0.640 0.915 0.712

i6mA-Pred 0.791 0.592 0.878 0.705

iDNA6mA-Rice 0.755 0.561 0.960 0.547

MM-6mAPred 0.834 0.689 0.958 0.710

6mA-Finder 0.809 0.636 0.928 0.690

i6mA-vote 0.882 0.774 0.961 0.803

Arabidopsis Meta-i6mA 0.787 0.600 0.636 0.936

i6mA-Fuse_FV 0.749 0.542 0.545 0.949

i6mA-Fuse_RC 0.757 0.534 0.615 0.897

i6mA-stack_FV 0.770 0.570 0.604 0.933

i6mA-stack_RC 0.751 0.514 0.634 0.865

i6mA-Pred 0.730 0.462 0.679 0.780

iDNA6mA-Rice 0.734 0.473 0.655 0.812

MM-6mAPred 0.765 0.531 0.784 0.747

6mA-Finder 0.724 0.448 0.741 0.706

i6mA-vote 0.798 0.617 0.666 0.929

Bold values indicate the best performance.

irrelevant and redundant features is reduced so that our model
has better predictive performance. Furthermore, for Rosaceae,
SN is approximately equal to SP and greater than 0.9, indicating
that our model has a good discrimination between 6mAs and
non-6mAs in the same plant family. For Rice, the SN is greater
than 0.9, while the SP is less than 0.9, which may be due to a
strong similarity between Rice sequences and Rosaceae positive
sequences, resulting in a high false-positive rate and a low true-
negative rate when the model recognizes Rice. The situation for
Arabidopsis is contrary to that for Rice. It may be because the
similarity between Arabidopsis sequences and Rosaceae positive
sequences is weak, leading to some 6mAs in Arabidopsis being
identified as non-6mAs.

CONCLUSION

In this study, a plant cross-species 6mA site recognition model
was constructed by ensemble learning. It has been applied on
Rosaceae, Rice, and Arabidopsis and achieved good results.
In the construction process, a hypothesis was put forward

by analyzing the sequence logos of these three plants. The
conjecture was that position-based approaches were more
suitable for extracting information from the sequences in our
datasets. Next, the hypothesis was verified by comparing different
models and observing the tSNE visualization. Then, one-hot
encoding for dinucleotide was chosen to represent the datasets
by contrasting two nucleotide position-based feature extraction
methods and their fusion. Finally, several well-performed models
were integrated to form the final classifier by majority voting.
To simulate a realistic prediction task, the model was trained
on Rosaceae and tested on Rosaceae, Rice, and Arabidopsis.
The experimental results showed that our model was adept
at predicting the 6mA sites in homologous and heterologous
species. In addition, it was also found that there might be a
strong similarity between Rice sequences and Rosaceae positive
sequences, and the similarity between Arabidopsis sequences
and Rosaceae positive sequences is weak. The comparison with
other models also showed the superiority of our model. In
summary, i6mA-vote outperformed other concerned methods
in predicting 6mA sites in the plant genomes. Meanwhile, our
research also has the limitation that only three plants were
considered. Therefore, future studies will focus on the 6mA site
formation characteristics of more plants.
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A High-Quality, Chromosome-Level
Genome Provides Insights Into
Determinate Flowering Time and
Color of Cotton Rose (Hibiscus
mutabilis)
Yuanzhao Yang1, Xiaodan Liu1, Xiaoqing Shi1, Jiao Ma1, Xinmei Zeng1, Zhangshun Zhu1,
Fangwen Li1, Mengyan Zhou2, Xiaodan Guo2 and Xiaoli Liu1*

1 Chengdu Botanical Garden, Chengdu, China, 2 Novogene Bioinformatics Institute, Beijing, China

Hibiscus mutabilis (cotton rose) is a deciduous shrub or small tree of the Malvaceae
family. Here, we report a chromosome-scale assembly of the H. mutabilis genome
based on a combination of single-molecule sequencing and Hi-C technology. We
obtained an optimized assembly of 2.68 Gb with a scaffold N50 length of 54.7 Mb.
An integrated strategy of homology-based, de novo, and transcriptome-based gene
predictions identified 118,222 protein-coding genes. Repetitive DNA sequences made
up 58.55% of the genome, and LTR retrotransposons were the most common repetitive
sequence type, accounting for 53.15% of the genome. Through the use of Hi-C data,
we constructed a chromosome-scale assembly in which Nanopore scaffolds were
assembled into 46 pseudomolecule sequences. We identified important genes involved
in anthocyanin biosynthesis and documented copy number variation in floral regulators.
Phylogenetic analysis indicated that H. mutabilis was closely related to H. syriacus,
from which it diverged approximately 15.3 million years ago. The availability of cotton
rose genome data increases our understanding of the species’ genetic evolution and
will support further biological research and breeding in cotton rose, as well as other
Malvaceae species.

Keywords: Hibiscus mutabilis, genome, Hi-C, phylogenetic affiliation, floral regulators

INTRODUCTION

Hibiscus mutabilis is one of the most popular tree species in the Malvaceae family, which includes
species such as Gossypium raimondii and Hibiscus syriacus (Rose of Sharon). Some members of the
Malvaceae have relatively high economic value. For example, cotton is the largest source of natural
textile fibers in the world, and over 90% of its annual fiber production comes from allotetraploid
cotton (G. hirsutum and G. barbadense) (Wang et al., 2019). Additionally, many Malvaceae species
are used as ornamentals because of their flowers. H. syriacus is an important horticultural species
whose attractive white, pink, red, lavender, or purple flowers are displayed over a long bloom
period, although individual flowers last only a day in the landscape (Kim et al., 2016). This study
of H. mutabilis (2n = 92) (Li et al., 2015) focuses primarily on its ornamental characters, including
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its flower colors, long bloom time, and floral development and
morphogenesis. In addition to its ornamental value, H. mutabilis
is also an ingredient in local herbal remedies. It is thought
to cool the blood, relieve toxins, reduce swelling, and alleviate
pain, and it has long been used in the treatment of ulcers,
swelling, herpes zoster, scalding, bruises, etc. (Liu et al., 2015).
The complete genome sequence of an organism provides a large
amount of information for subsequent biological studies (Yang
et al., 2005). The H. mutabilis genome sequencing project is
therefore extremely valuable for breeding, comparative genomics
research, and other activities.

H. mutabilis has been cultivated for more than 2,000 years
south of the Yangtse River; it is also the city flower of Chengdu
and has great significance for the city. Commonly used as an
ornamental species, its attractive purple, red, pink, or white
flowers are displayed over a long bloom period (3–4 months
or more), although its individual flowers last for less than 48 h
(Figure 1). During flower development, the floral color of some
varieties shows little change, but that of other varieties undergoes
a marked change from white to pink within a single day. This
interesting dynamic phenomenon can be seen in the cultivars
‘Drunk girl’ and ‘Bairihuacai’ and occurs during the process of
individual flower development, unlike the color differences found
in distinct cultivars of chrysanthemum (Ohmiya et al., 2006),
Narcissus pseudonarcissus (Li et al., 2018), or Brassica napus
(Zhang et al., 2015).

The development of genomic resources and molecular
breeding technologies holds promise for targeted character
improvement of H. mutabilis in the near future. Recently, a
1.75 Gb draft genome of H. syriacus was assembled, and a
chromosome-scale genome of H. cannabinus was published in
2020 (Zhang et al., 2020). Many breeding systems and novel
varieties have been produced using traditional methods to meet
horticultural requirements, but a completed genomic sequence
will accelerate the breeding of cotton rose.

The many flower colors of cotton rose give it high ornamental
value and reflect the complexity of the underlying flavonoid
metabolic pathway. One endpoint of flavonoid biosynthesis
is the production of anthocyanins, pigments that produce the
colors of many flowers, fruits, and other plant tissues (Koes et al.,
1994). Chalcone synthase (CHS), chalcone isomerase (CHI),
flavanone 3-hydroxylase (F3H), dihydroflavonol reductase
(DFR), anthocyanidin synthase (ANS), and flavonoid 3-O-
glucosyltransferase (UFGT) all function in the synthesis of
anthocyanins and anthocyanidins, their aglycone counterparts.
CHS represents the first committed step in the flavonoid
pathway (Meer et al., 1993). The second step is performed by
CHI, which acts on the yellow naringenin chalcone product
of CHS, catalyzing its isomerization to the colorless flavanone
naringenin (Moustafa and Wong, 1967). Dihydroflavonols
are subsequently reduced to leucoanthocyanidins by DFR
(Durbin et al., 2004). ANS catalyzes the formation of cyanidin
from leucoanthocyanidin and is the penultimate step in the
biosynthesis of the anthocyanin class of flavonoids (Figure 2).
Despite recent progress in understanding H. mutabilis
anthocyanidin biosynthesis, the lack of a genome sequence
has hampered efforts to elucidate the molecular and genetic

determinants of this trait, which underlies the dynamic
phenomenon of flower color development. Genome and
transcriptome sequences are needed in order to fully analyze the
molecular mechanisms of anthocyanidin biosynthesis.

In the present study, we generated a reference genome
for H. mutabilis using a combination of single-molecule
sequencing and Hi-C technology. We identified functional genes
involved in the biosynthesis of anthocyanins based on homology
searches and functional annotations. We also investigated copy
number variation in floral regulators among multiple species
to gain insight into the evolution of flowering phenotypes in
H. mutabilis. The genomic resources developed here will be
useful for further experimentation, cultivation, and breeding of
H. mutabilis and other Malvaceae species.

MATERIALS AND METHODS

Plant Materials and Whole-Genome
Sequencing
The H. mutabilis material sequenced in this study was the stably
heritable single-petal white color cultivars, which is cultivated in
the nursery of the Chengdu Botanical Garden (CDBG), Sichuan,
China. The breeding system of H. mutabilis belongs to allogamy.
Seeds of ‘single-petal white’ were collected in the laboratory
of the CDBG. Young leaves (∼3 cm width) were harvested to
extract high-quality DNA for Illumina and Oxford Nanopore
Technology (ONT) sequencing. For transcriptome sequencing,
petals were manually collected from three color cultivars (‘single-
petal white,’ ‘single-petal pink,’ and ‘Purple silk’) and at three
stages of color development in ‘Drunk girl’ (white, blended
white and pink, and fully pink). Flowers at the same stage from
individual H. mutabilis plants were pooled and divided into
three samples. These samples were immediately frozen in liquid
nitrogen and then used for RNA sequencing.

High-quality H. mutabilis genomic DNA was extracted from
young leaves with a DNA secure Plant Kit (TIANGEN, China)
and used to construct long-read libraries for the ONT platform.1

Libraries were prepared following the ONT’1D Genomic DNA by
Ligation (Kit 9 chemistry)-PromethION’ protocol and sequenced
using the PromethION protocol. In addition, high-quality DNA
was broken into random fragments, and an Illumina paired-
end library was constructed with an insert size of 350 bp and
sequenced using the Illumina HiSeq X Ten platform.

For Hi-C sequencing, leaves were fixed with 1% formaldehyde
solution in MS buffer (10 mM potassium phosphate, pH 7.0;
50 mM NaCl; 0.1 M sucrose) at room temperature for 30 min
in a vacuum. After fixation, the leaves were incubated at room
temperature for 5 min under a vacuum in MC buffer with 0.15M
glycine. Approximately 2 g of fixed tissue was homogenized
with liquid nitrogen, resuspended in nuclei isolation buffer, and
filtered with a 40-nm cell strainer. The procedures for enriching
nuclei from flow through and subsequent denaturation were
performed according to a 3C protocol. The chromatin extraction
procedures were similar to those described previously. In brief,

1https://nanoporetech.com
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FIGURE 1 | Hibiscus mutabilis floral morphology. (A) Dynamic change in the flower color of H. mutabilis f. mutabilis ‘Drunk girl’ from white to pink. (B) A variety of
colors found in different color cultivars of H. mutabilis, and from left to right in turn are H. mutabilis ‘Single-Petal Pink,’ H. mutabilis ‘Single-Petal White’ and
H. mutabilis ‘Purple silk.’

FIGURE 2 | An abbreviated diagram of the flavonoid pathway that produces anthocyanins. CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone
3-hydroxylase; DFR, dihydroflavonol 4-reductase; ANS, anthocyanidin synthase; 3GT, 3-O-glucosyl transferase.
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chromatin was digested for 16 h with 400 U HindIII restriction
enzyme (NEB) at 37◦C. DNA ends were labeled with biotin and
incubated at 37◦C for 45 min, and the enzyme was inactivated
with 20% SDS solution. DNA ligation was performed by the
addition of T4 DNA ligase (NEB) and incubation at 16◦C for
4–6 h. After ligation, proteinase K was added for reverse cross-
linking during overnight incubation at 65◦C. DNA fragments
were purified and dissolved in 86 µL of water, and unligated
ends were then removed. Purified DNA was fragmented to a
size of 300–500 bp, and DNA ends were repaired. Finally, DNA
fragments labeled with biotin were separated on Dynabeads M-
280 Streptavidin (Life Technologies). Hi-C libraries were assessed
for quality and sequenced on an Illumina HiSeq X Ten sequencer.

Genome Assembly and Chromatin
Interaction Analysis Using Hi-C
Technology
De novo assembly of all Nanopore long reads was performed
using wtdbg2 v2.5 (Ruan and Li, 2020). Because Nanopore reads
contain systematic errors in homopolymeric regions, we polished
the consensus assembly three times using the Nanopore reads
as input to Racon v1.3.1 (Vaser et al., 2017) and then three
additional times using Illumina reads as input to Pilon v1.22
(Walker et al., 2014).

The Hi-C data were mapped to the original scaffold genome
using BWA v0.7.7 (Li, 2009) and only reads with unique
alignment positions were extracted to construct a chromosome-
scale assembly using LACHESIS v201701 (Burton et al., 2013).

We used both CEGMA (Core Eukaryotic Gene Mapping
Approach) (Parra et al., 2007; Supplementary Table 4)
and BUSCO (Benchmarking Universal Single-Copy Orthologs)
(Simão et al., 2015; Supplementary Table 5) to evaluate the
completeness of the assembly.

Genome Annotation
TEs were identified in the genome assembly at both the
DNA and protein levels. We used RepeatModeler, RepeatScout
(Tarailo-Graovac and Chen, 2009), Piler (Edgar and Myers,
2005), and LTR_FINDER (Xu and Wang, 2007) to develop a
de novo TE library. RepeatMasker (Tarailo-Graovac and Chen,
2009) was used for DNA-level identification with Repbase
and the de novo TE library. Tandem repeats were identified
using Tandem Repeats Finder (Benson, 1999). At the protein
level, RepeatProteinMask (Tarailo-Graovac and Chen, 2009) was
used to conduct WU-BLASTX searches against the TE protein
database. Overlapping TEs that belonged to the same type of
repeat were integrated together.

We used homology-based, de novo, and transcriptome-
based approaches to predict protein-coding genes in the
H. mutabilis genome. For homolog-based prediction, sequences
of homologous proteins from six plants (A. thaliana, C.
capsularis, D. zibethinus, G. raimondii, H. umbratica, H. syriacus,
and T. cacao) were downloaded from Ensembl, NCBI, or JGI.
Protein sequences were aligned to the genome using TBLASTN
with an E-value cutoff of 1 × 10−5. The blast hits were
concatenated using solar (Yu et al., 2007). For each blast hit,

GeneWise v2.4.1 (Birney and Clamp, 2004) was used to predict
the exact gene structure in the corresponding genomic regions.
The five ab initio gene prediction programs AUGUSTUS v3.0.2
(Stanke and Morgenstern, 2005), Genescan v1.0 (Aggarwal and
Ramaswamy, 2002), GeneID (Parra et al., 2000), GlimmerHMM
v3.0.2 (Majoros et al., 2004), and SNAP (Korf, 2004) were
used for de novo protein prediction. To further optimize the
genome annotation, RNA-seq data from floral, leaf, and stem
tissues were aligned to the H. mutabilis genome using TopHat
v2.0.13 (Trapnell et al., 2009) to identify exon regions and splice
junctions. The alignment results were then used as input for
Cufflinks v2.1.1 (Trapnell et al., 2010) in order to assemble
transcripts into gene models. Trinity (Grabherr et al., 2011)
was used with default parameters to assemble the RNA-seq
data, and PASA (Haas et al., 2003) was used to improve the
gene structures. A weighted and non-redundant gene set was
generated by EVidenceModeler (EVM) (Haas et al., 2008), which
merged all gene models predicted using the three approaches
above. PASA adjusted the gene models generated by EVM based
on information from the transcriptome assembly.

The functional annotation of protein-coding genes was
evaluated by BLASTP (E-value ≤ 1 × 10-5) against two integrated
protein sequence databases, Swiss-Prot (Bairoch and Apweiler,
2000) and the NCBI non-redundant (NR) database. Protein
domains were annotated using InterProScan v4.8 to search
InterPro v32.0 (Mulder and Apweiler, 2007), which includes the
Pfam, PRINTS, PROSITE, ProDom, and SMART databases. Gene
Ontology (GO) (Ashburner et al., 2000) terms for each gene were
obtained from the corresponding InterPro descriptions. Putative
pathway assignments for each gene were obtained by blasting
against the KEGG (Kanehisa and Goto, 2006) database with an
E-value cutoff of 1 × 10−5.

tRNA genes were predicted by tRNAscan-SE (Lowe and Eddy,
1997), and miRNA and snRNA fragments were identified using
Infernal (Nawrocki et al., 2009) with the Rfam (Griffiths-Jones
et al., 2005) database. rRNA genes were identified using BLASTN
(E-value ≤ 1 × 10−10) against the plant rRNA database.

Genome Evolution Analysis
First, nucleotide and protein data from nine species
(A. trichopoda, A. thaliana, B. ceiba, C. capsularis, D. zibethinus,
G. raimondii, H. syriacus, R. chinensis, and T. cacao) were
downloaded from Ensembl, NCBI, and JGI. The longest
transcript was selected from the alternatively spliced transcripts
of each gene, and genes with ≤ 50 amino acids were removed.
Nucleotide and protein data from H. mutabilis and the other
nine angiosperms were clustered into orthologous groups using
BLASTP and OrthoMCL v2.0.9, and an MCL inflation of 1.5
was used as the cluster granularity setting (Li et al., 2003).
A phylogenetic tree was constructed using shared single-copy
orthologs. Protein sequences of the orthologs were aligned
using MUSCLE (Edgar, 2004), and the protein alignments were
transformed to CDS alignments. We then concatenated the CDS
alignments into a “supermatrix” from which the phylogenetic
tree was constructed using the maximum likelihood (ML)
TREE algorithm in RAxML v8.1.13 (Stamatakis, 2006) with
the best-scoring protein substitution model (GTRGAMMA)
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and 1,000 bootstrap replicates. The MCMCtree program in the
PAML package (Yang, 1997) was used to estimate divergence
times among the ten species. Three fossil calibration points were
used for restraining the age of the nodes: 23–48 Mya (Million
years ago) for the MRCA of T. cacao–G. raimondii, 65–107
Mya for the MRCA of G. raimondii–A. thaliana (Wang et al.,
2012), and 103–109 Mya for the MRCA of Malvales–Rosales
(Wikström et al., 2001). CAFE was used to identify expansions
and contractions within orthologous gene families by comparing
cluster size differences between the ancestor and other species
(De Bie et al., 2006). To estimate the synonymous substitutions
per synonymous site (Ks), all paralogous gene pairs were
analyzed with the ML method in PAML (Yang, 1997). MCscan
(Tang et al., 2008) was used to analyze genome collinearity in
H. mutabilis.

Identification of Nucleotide-Binding
Site-Encoding Genes
To identify NBS-encoding genes, representative genes from each
plant genome were screened using a raw Hidden Markov Model
(HMM3.0) (Marchin et al., 2005) to search for the Pfam NBS
family PF00931 domain with an E-value cut-off of 1.0. All
putative NBS protein sequences were analyzed and manually
curated based on a TBLASTN search against known R gene
sequences in GenBank. To further identify TIR homologs and
sequences that encoded CC and LRR motifs, candidate NBS-
LRR protein sequences were characterized using SMART (Schultz
et al., 1998), the Pfam database (Finn et al., 2013), and the COILS
program (Lupas et al., 1991) with a threshold of 0.9 to specifically
detect the CC domain.

Transcriptome Sequencing
For analysis of flowering gene(s), petals were manually collected
from three color cultivars at the same time (2–3 p.m.) and at
three stages of color development in ‘Drunk girl’ (white at the
9 a.m., blended white and pink at the 12 a.m., and fully pink
at 6 p.m.) and these samples were immediately frozen in liquid
nitrogen and then used for RNA sequencing, and total RNA was
extracted using an RNAprep Pure Plant Kit (TIANGEN, China).
The quality and quantity of the RNA samples were evaluated
using a NanoPhotometer (Implen, CA, United States), a Qubit
3.0 Fluorometer (Thermo Fisher Scientific, United States), and an
Agilent 2,100 Bioanalyzer (Agilent Technologies, United States).
All RNA samples with integrity values greater than 7.0 were
used for cDNA library construction and sequencing. The cDNA
libraries were prepared using the NEB Next Ultra RNA Library
Prep Kit (E7350L, NEB, United States), and 150-bp paired-
end sequencing was performed on the Illumina NovaSeq 6000
platform (Illumina, CA, United States).

RESULTS

Genome Sequencing and Assembly
We assembled the H. mutabilis genome using a combination
of Illumina HiSeq X Ten and Oxford Nanopore PromethION

sequencing. We generated 315.22 Gb (104-fold coverage) of
raw 150-bp paired-end Illumina reads and 469.91 Gb (155-
fold coverage) of raw Nanopore reads. The genome size
was estimated to be 3032.98 Mb based on the 17-mer
depth distribution (Supplementary Table 1 and Supplementary
Figure 1). Nanopore long reads were assembled into contigs
and scaffolds using wtdbg2 v2.5,13 resulting in a final assembly
of 2.68 Gb with 5,464 contigs and a contig N50 of 2.22 Mb
(Supplementary Table 2). Its GC percentage was 35.36%, similar
to that of the H. syriacus genome (34.04%). In total, 363.5 Gb
of clean reads were obtained from Hi-C sequencing (over 121-
fold coverage). We used these data to construct chromosome-
scale scaffolds, resulting in a total of 5,598 contigs, with a
scaffold N50 of 54.70 Mb and a total length of 2,676,237,573 bp
(Supplementary Table 10 and Figure 3A).

Next, The clustering of contig by hierarchical clustering of
the Hi-C data was performed. Hi-C linkage was used as a
criterion to measure the degree of tightness of the association
between different contigs by standardizing the digestion sites
of DpnII on the genome sketch. The contigs were assembled
into 46 pseudo-chromosomes using LACHESIS package tools.
The Illumina paired-end reads were mapped to the assembled
genome to assess assembly accuracy, resulting in a 98.81%
mapping rate (Supplementary Table 3 and Figure 3B). The
genome assembly captured 96.77% of the core eukaryotic genes
from CEGMA18 (Supplementary Table 4) and 92.6% of the
Embryophyta OrthoDB gene set in BUSCO19 (Supplementary
Table 5), indicating a high level of completeness.

Genome Annotation
We identified 1.56 Gb of non-redundant repetitive elements,
representing approximately 55.85% of the H. mutabilis genome
assembly. Because long terminal repeat retrotransposons
(LTR-RTs) typically make a significant contribution to
large genome size (Zhao and Ma, 2013), we estimated
LTR-RT insertion time in H. mutabilis. We identified a
round of LTR-RT burst approximately 2.5 million years ago
(Mya), especially for the Ty3/Gypsy-del and Ty1/Copia-
Retrofit families (Supplementary Table 6). The transposable
elements (TEs) were primarily long terminal repeats (LTRs),
which accounted for approximately 53% of the genome
(Supplementary Figure 2).

We used de novo and homology-based gene prediction
approaches and combined their results to annotate 118,222
protein-coding genes in the H. mutabilis genome. The average
transcript length was 2,466.97 bp, with an average of 4.53 exons
per gene and an average exon length of 218.86 bp. Compared
with other model plants and Malvaceae species, the H. mutabilis
genome contained a larger number of genes: H. syriacus
(82,827 genes), Arabidopsis thaliana (26,869), Theobroma cacao
(29,144), G. raimondii (35,526), Corchorus capsularis (29,356),
Herrania umbratica (29,262), and Durio zibethinus (63,819)
(Supplementary Table 7).

In addition to RNA-coding genes, we also identified 827
mature microRNAs (miRNAs), 3,604 transfer RNAs (tRNAs),
3,423 ribosomal RNAs (rRNAs), and 9,370 small nuclear RNAs
(snRNAs) in the H.mutabilis genome (Supplementary Table 11).
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FIGURE 3 | (A) Chromosomal features of H. mutabilis. (a) Gene density; (b) Repeat density; (c) AT content; (d) Syntonic blocks. (B) Hi-C map of the H. mutabilis
genome showing genome-wide all-by-all interactions. The map shows a high resolution of individual chromosomes that were scaffolded and assembled
independently. Color intensity indicates the frequency of Hi-C interaction links from low (yellow) to high (red).
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FIGURE 4 | Comparative genomics and evolution of gene numbers. (A) The number of genes in cluster of ten plant species, showing a high gene number in
H. mutabilis compared with the model plant A. thaliana and other angiosperm species. The number of multiple-copy paralogs is high in H. mutabilis. (B) Venn
diagram showing the numbers of shared gene families among H. mutabilis (Hmu), A. thaliana (Ath), H. syriacus (Hsy), R. chinensis (Rch), and G. raimondii (Gra).
(C) Phylogenetic relationships of NBS genes in H. mutabilis.

The probable functions of the predicted genes were assessed
by searching against public databases, including Swiss-Prot,
NR, InterPro, and KEGG of 118,222 predicted genes in
the H. mutabilis genome, 113,821 (96.3%) were assigned
potential functions as a result of these database searches
(Supplementary Table 8).

Genome Evolution
Although morphological investigations have placed H. mutabilis
in the Malvaceae family, there is still no phylogenomic

analysis of its evolutionary position within the family based
on whole-genome data. Here, we compared the H. mutabilis
genome with the genome sequences of nine other angiosperm
plants (H. syriacus, A. thaliana, Rosa chinensis, Bombax ceiba,
Amborella trichopoda, G. raimondii, T. cacao, and C. capsularis).
Orthologous protein groups were identified within the genomes,
yielding a total of 30,208 gene families and 198 single-copy
orthologs across ten species. There were 2,781 gene families
specific to H. mutabilis, and 10,593 gene families were shared
among all species investigated (Figure 4). We detected 4,558
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FIGURE 5 | (A) Phylogenetic tree showing the close relationship between H. mutabilis and H. syriacus. Numbers outside the parentheses represent the divergence
times of species (Mya), and numbers inside the parentheses indicate the confidence intervals. The red points indicated calibration points, and the red stars indicate
WGD events and blue circles indicate diploidization events. (B) Distribution of 4Dtv distances.

gene families expansion when H. mutabilis and H. syriacus have
diverged (Figure 5C).

We constructed a phylogenetic tree based on single-copy
genes using PAML and estimated the divergence times among

the 10 species. The Malvaceae family appeared to have diverged
from a Tiliaceae–Malvaceae most recent common ancestor
(MRCA) approximately 45.8 (34.8–55.6) Mya, and the Hibiscus-
Gossypium divergence was estimated at 23.1 (16.0–30.5) Mya.
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TABLE 1 | Copy numbers of genes encoding flowering time regulators in five plant species.

Gene Arabidopsis locus Copy number

H. mutabilis H. syriacus A. trichopoda T. cacao G. raimondii

CO AT5G15840 8 9 7 3 2

ELF4 AT2G40080 9 12 2 1 5

FCA AT4G16280 4 0 1 2 1

FKE1 AT1G68050 0 3 1 1 2

FLK AT3G04610 5 4 1 1 3

GI AT1G22770 22 15 5 5 7

LFY AT5G61850 4 4 1 1 1

LHY AT1G01060 0 0 1 0 0

VIN3 AT5G57380 0 0 1 0 0

SOC1 AT2G45660 15 12 4 4 6

TFL AT5G03840 24 13 6 5 7

SVP AT1G24260 48 33 8 7 17

PHYA AT1G09570 10 5 3 3 4

PHYB AT2G18790 10 5 4 3 5

PHYC AT5G35840 0 1 1 1 4

PHYE AT4G18130 5 3 3 1 2

TABLE 2 | Numbers and classifications of genes encoding NBS-containing resistance proteins in five plant species.

Protein domain Letter code H. mutabilis H. syriacus T. cacao G. raimondii A. thaliana

CC-NBS-LRR CNL 81 183 202 220 52

CC-NBS CN 32 77 25 24 3

TIR-NBS-LRR TNL 28 68 14 26 87

TIR-NBS TN 10 9 3 1 17

NBS-LRR NL 147 81 34 28 8

NBS N 192 54 9 4 3

Total 490 472 287 303 170

% of total genes 0.41 0.53 0.97 0.81 0.63

H. mutabilis was most closely related to H. syriacus, with an
estimated divergence time of approximately 15.3 (10.1–21.5)
Mya (Figure 5A). In addition to the paleohexaploidization event
shared by the eudicots, we observed three additional whole-
genome duplication (WGD) events in H. mutabilis. Hibiscus and
Gossypium shared a WGD event (13.3–20.0 Mya), H. mutabilis
and H. syriacus shared a WGD event (10.76–21.51 Mya), and
H. mutabilis and H. syriacus each underwent a WGD event
(4.61–9.00 Mya) (Figure 5B).

Flowering Time and Disease Resistance
Genes
Genetic and molecular mechanisms of floral development are
highly conserved among different plant species (Schiessl et al.,
2014) and include four major flowering pathways that have
been well characterized in A. thaliana. H. mutabilis is similar
to H. syriacus, a short-day flowering plant with a long bloom
period that produces more than 30 blossoms per day. Like
those of H. syriacus, the flowers of H. mutabilis open daily and
last for less than 48 h. Because flowering time is frequently
dependent on gene copy number (Grover et al., 2015), we
investigated the copy numbers of genes involved in the four

major flowering pathways in A. thaliana, T. cacao, G. raimondii,
A. trichopoda, H. syriacus, and H. mutabilis. Copy numbers of
most flowering-related genes were higher in H. mutabilis than
in other plants, including T. cacao, G. raimondii, A. trichopoda,
and H. syriacus. In particular, the copy number of the plant-
specific nuclear protein GIGANTEA (GI) was three to four
times greater in H. mutabilis than in A. trichopoda, T. cacao, or
G. raimondii (Table 1).

Nucleotide-binding site (NBS) and carboxy-terminal LRR
domains are found in the majority of R proteins (DeYoung
and Innes, 2006; Takken et al., 2006). Based on resistance
domain analyses in the H. mutabilis genome, a total of 490
NBS-containing resistance genes were identified and classified
into six groups: CC-NBS-LRR, CC-NBS, TIR-NBS-LRR, TIR-
NBS, NBS-LRR, and NBS. In total, their gene numbers were
approximately three times greater in H. mutabilis than in
A. thaliana (170). This trend was particularly striking for the
NBS genes, whose numbers were much higher in H. mutabilis
(192 genes) than in H. syriacus (54), T. cacao (9), G. raimondii
(4), and A. thaliana (3). Although H. mutabilis had the highest
number of NBS-containing resistance genes among the five
angiosperms (Table 2), its number of NBS-containing genes as
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FIGURE 6 | Heatmaps show the expression of key genes in the anthocyanin
biosynthesis pathway of H. mutabilis. (A) Gene expression changes in flowers
of H. mutabilis ‘Drunk girl’ as their color transitions from white to fully pink.
(B) Gene expression in flowers of three different color cultivars: ‘single-petal
white’ (SPW), ‘single-petal pink’ (SPP), and ‘Purple silk’ (PS).

a percentage of total genes was the lowest. All six NBS-containing
groups existed in each plant genome, but their distributions
differed among species.

Transcriptome Sequencing Analysis
Global gene expression patterns were quantified in three stages
of the floral color transition of H. mutabilis ‘Drunk girl’: white
(Stage 1), blended white and pink (Stage 2), and fully pink

(Stage 3). A total of 9,492 genes were up-regulated from Stage
1 to Stage 2, and more than 15,000 genes were up-regulated
from Stage 1 to Stage 3. A total of 8,481 genes were down-
regulated from Stage 1 to Stage 2, and 15,839 genes were down-
regulated from Stage 1 to Stage 3. In particular, we analyzed
expression changes in anthocyanin-related genes at the three
flower stages and present the results in a heatmap (Figure 6A).
A number of key anthocyanin biosynthesis-related genes, such
as Hmchs, HmchI, and Hmans, increased in expression from
Stage 1 to Stage 3, consistent with the pattern of floral
color development.

Key anthocyanin biosynthesis-related genes also differed in
expression among different color cultivars of H. mutabilis,
including ‘single-petal white,’ ‘single-petal pink,’ and ‘Purple silk.’
The highest expression levels were generally found in ‘Purple silk,’
which is a deep purple color form (Figure 6B).

DISCUSSION

Completeness and continuity are important indicators of genome
assembly quality. In this study, we took advantage of the longer
read lengths offered by ONT sequencing that have proven
advantageous in the assembly of other plant genomes such as
Solanum pennellii (Schmidt et al., 2017) and Chrysanthemum
nankingense (Song et al., 2018). Here, we report the first genome
data for H. mutabilis and estimate its genome size to be 2.68
Gb, far larger than that of H. syriacus. Our H. mutabilis genome
assembled using Nanopore reads had a contig N50 of 2.02 Mb.
We then used Hi-C data to cluster the contigs into forty-
six chromosomes with a final scaffold N50 of 54.70 Mb. The
genome contained complete copies of 92.6% of the BUSCO
orthologs examined. This genome sequence will contribute to
our understanding of the biosynthesis of natural products such
as anthocyanins, although additional research is needed to
directly link specific genes to individual traits. Nonetheless, our
high-quality, annotated genome sequence provides insights into
determinate flowering time and flower color in H. mutabilis.

Compared with the H. syriacus genome, the H. mutabilis
genome was larger and contained more protein-coding genes.
H. mutabilis and H. syriacus share an MRCA approximately
15.3 (10.1–21.5) Mya, and investigation of WGD timing in the
H. mutabilis genome showed that two WGDs occurred after
H. mutabilis–H. syriacus divergence and H. mutabilis speciation.
WGD events and tandem duplications are the most important
determinants of genome size variation in angiosperms (Piegu
et al., 2006; El Baidouri and Panaud, 2013). This recent WGD
event not only caused genome expansion in H.mutabilis, but may
also have contributed to the morphological and physiological
diversity of H. mutabilis. We inferred that gene losses, which
had different frequencies in H. mutabilis and H. syriacus, made
the H. syriacus genome smaller than that of H. mutabilis.
H. mutabilis has a long bloom period and high blossom turnover.
The copy numbers of most flowering-related genes, such as GI,
CONSTANS (CO), and SUPPRESSOR OF OVEREXPRESSION
OF CONSTANS1 (SOC1) were higher in H. mutabilis than in
T. cacao, A. thaliana, and H. syriacus. These results show that
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H. mutabilis preserved many copies of flowering-related genes
during the transition from a polyploid to a diploid genome.

The dynamic color change from white to pink in H. mutabilis
‘Drunk girl’ flowers is reported to be caused by variations
in anthocyanin contents (Liu et al., 2008). Flavonoids are
the major molecules involved in plant pigmentation (Lai
et al., 2014) and include anthocyanins, flavan-3-ols (catechins
and proanthocyanidins), flavanonols, flavonols, flavones, and
phenolic acid (Lou et al., 2014). To date, regulation of the
flavonoid pathway has been shown to occur primarily at the
transcriptional level (Mol et al., 1998). Different species have
distinct regulated genes, and these appear to be among the
most important candidate genes for flower color determination
(Casimiro-Soriguer et al., 2016; Jiao et al., 2020). To investigate
the expression of anthocyanin-related genes over the course
of flower development and in different color forms, we
combined the high-quality genome sequence generated here
with RNA-seq data from H. mutabilis The expression levels of
anthocyanin biosynthetic genes such as Hmchs, HmchI, and
Hmans were correlated and increased as flowers transitioned
from white to pink. The pink flower color in cotton rose
is related to the synthesis of cyanidin-based pigments (Chen
et al., 2014), and our results indicate that low CHS, CHI,
and ANS expression may inhibit cyanidin production in white
flowers. Thus, combined genomic and transcriptomic analysis
of H. mutabilis flowers indicated that structural genes had
important roles in anthocyanin biosynthesis during the transition
from white to pink flower coloration. In maize, an MYB-related
protein and a bHLH containing protein interact to activate

genes in the anthocyanin biosynthetic pathway (Schwinn et al.,
2006). However, the functions of transcription factors, including
MYBs, bHLHs, and WD40s, are unknown in H. mutabilis. The
investigation of these TFs in cotton rose will be a subject for
further research.
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Genomic copy number variations (CNVs) are among the most important structural

variations of genes found to be related to the risk of individual cancer and therefore

they can be utilized to provide a clue to the research on the formation and progression of

cancer. In this paper, an improved computational gene selection algorithm called CRIA

(correlation-redundancy and interaction analysis based on gene selection algorithm) is

introduced to screen genes that are closely related to cancer from the whole genome

based on the value of gene CNVs. The CRIA algorithm mainly consists of two parts.

Firstly, the main effect feature is selected out from the original feature set that has the

largest correlation with the class label. Secondly, after the analysis involving correlation,

redundancy and interaction for each feature in the candidate feature set, we choose

the feature that maximizes the value of the custom selection criterion and add it into

the selected feature set and then remove it from the candidate feature set in each

selection round. Based on the real datasets, CRIA selects the top 200 genes to predict

the type of cancer. The experiments’ results of our research show that, comparedwith the

state-of-the-art relatedmethods, the CRIA algorithm can extract the key features of CNVs

and a better classification performance can be achieved based on them. In addition, the

interpretable genes highly related to cancer can be known, which may provide new clues

at the genetic level for the treatment of the cancer.

Keywords: gene selection, correlation-redundancy analysis, interaction analysis, copula entropy, copy number

variations (CNVs), cancers prediction

INTRODUCTION

The occurrence of many diseases is associated with genome structural variations. Human genome
variations include single nucleotide polymorphisms (SNPs), copy number variations (CNVs), etc.
The copy number variations refer to the amplification, deletion, andmore complexmutations in the
genome of DNA fragments longer than 1 kb in length (Redon et al., 2006). SNPs account for 0.5% of
the human genome, and nearly 12% of the human genome often undergoes copy number variations
(Redon et al., 2006). Copy number variations have become an important genomic variation, and
their role in the pathogenesis of complex human diseases is still being revealed.

The close relationship between CNVs and diseases has been widely recognized. Numerous
studies have demonstrated that not a few human diseases involved copy number variations
that could change the diploid status of particular locus of the genome (Zhang et al., 2016).
The Flierl research team found that the higher vulnerability of Parkinson’s disease and stress
sensitivity of neuronal precursor cells carry an α-synuclein gene triplication (Flierl et al., 2014).
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Grangeon et al. (2021) discovered that early-onset cerebral
amyloid angiopathy and Alzheimer Disease (AD) were related
to an amyloid precursor protein (App) gene triple amplification.
Breunis et al. (2008) reported that the copy number variations of
FCGR2C gene promoted idiopathic thrombocytopenic purpura.
Zheng et al. (2017) found that the low copy number of FCGR3B
was associated with lupus nephritis in a Chinese population.
And Pandey et al. (2015) revealed that there was both direct
and indirect evidence suggesting abnormalities of glycogen
synthase kinase (GSK)-3β and β-catenin in the pathophysiology
of bipolar illness and possibly schizophrenia (SZ). Moreover,
several neuro-developmental relevant genes, such as A2BP1,
IMMP2, and AUTS2, were reported with mutational CNVs (Elia
et al., 2010). In 2006, a research team composed of researchers
from the United Kingdom, Japan, the United States, Canada
and other countries studied 270 individuals in 4 groups of
the HapMap project, and constructed the first-generation copy
number variations map of the human genome, and obtained 144
CNVs region (about 12% of the size of the human genome).
Among them, 285 CNVs regions were related to the occurrence
of known diseases (Redon et al., 2006). Compared with SNPs,
CNVs regions contained more DNA sequences, disease sites and
functional elements, which could provide more clues for disease
research. The publication of this map has become an important
tool for studying the complex structural variations of the human
genome and human diseases.

Cancer is a kind of diseases which involves uncontrolled
abnormal cell growth and can spread to other tissues (Du and
Elemento, 2015). The formation and development of cancer
are also associated with copy number variations (Frank et al.,
2007). Van Bockstal et al. (2020) discovered that HER2 gene
amplification had a relationship with a bad result in invasive
breast cancer and the amplification of heterogeneous HER2 had
been described in 5–41% of breast cancer. The experimental
results of Buchynska et al. (2019) shown that assessment of copy
number variations of HER-2/neu, c-MYC and CCNE1 genes
revealed their amplification in the tumors of 18.8, 25.0 and
14.3% of endometrial cancer patients, respectively. Heo et al.
(2020) pointed out that CNVs were related to the mechanism
of lung cancer development through a comparative experiment.
Moreover, Tian et al. (2020) found that CNVs of CYLD,
USP9X and USP11 were significantly associated with the risk
of colorectal cancer. A latest global cancer burden data released
by the International Agency for Research on Cancer(IARC)
of the WHO showed that the number of patients with new
cancer and cancer deaths in China ranked first around the
world with 4.57 million patients with new cancer and 3 million
cancer deaths, accounting for 23.7 and 30%, respectively. It is of
great significance to investigate cancer causes and its treatment.
Because the gene expression patterns in cancer tumor have
high specificity (Liang et al., 2020), studying the relationship
between these genetic information and cancer can provide a
new idea for investigating the causes of cancer and help in early
cancer diagnosis.

However, few studies have utilized machine learning (ML)
or deep learning (DL) methods to use copy number variations
data for the prediction of various cancer types. Zhang et al.

(2016) used the mRMR and IFS methods to select 19 features
from the 24,174 gene features of the copy number variations
data set, which contained a total of 3,480 samples of 6
cancer types. They applied the Dagging algorithm with ten-
fold cross-validation to classify cancer. But the accuracy of final
result only reached 75%. Liang et al. (2020) used CNA_origin
for cancer classification on the same data set. CNA_origin
was an intelligent combined deep learning network, which
was composed of two parts—a stacked autoencoder and a
one-dimensional convolutional neural network with multiscale
convolutional kernels. CNA_origin eventually had an overall
accuracy of 83.81% on ten-fold cross-validation. But it could
not identify which gene features were more important and more
closely associated with cancer classification.

Here, we present an improved novel computational algorithm
named CRIA, which can successfully classify cancer based on
the information of gene CNVs levels from the same dataset.
CRIA can not only effectively perform dimensionality reduction
operation on high-dimensional gene CNVs data, which can
improve the efficiency of the experiment, but also selects specific
gene features closely related to cancer, making it clear which
genes are more important in cancer classification. And the final
results had higher classification accuracy than the state-of-the-
art methods.

The rest sections of this paper are structured as follows:
Section Background describes the theoretical background and
related work. Section The Proposed Method-CRIA introduces
the collection of CNVs dataset, the implementation details
and performance of the proposed algorithm. Section Results
and Discussions demonstrates the experimental results on
CNVs dataset and the performance comparison with the recent
methods. In section Conclusions, we summarize the conclusions
and point out our future work.

BACKGROUND

In section Information Theory, we introduce some basic
information theory knowledge, which is the core of our proposed
algorithm. Before proposing our algorithm, we summarize some
related work on gene selection methods and point out their
drawbacks in section Related Work.

Information Theory
As early as 1948, Shannon’s information theory had been
proposed (Shannon, 2001), providing an effective method for
measuring random variables’ information. The entropy can be
understood as a measure of the uncertainty of a random variable
(Cover and Thomas, 1991). The greater the entropy of a random
variable, the greater its uncertainty. If X = {x1, x2, ..., xl} is a
discrete random variable, its probability distribution is p(x) =

P(X = x), x ∈ X. The entropy of X is defined as:

H(X) = −

l
∑

i=1

p(xi) logp(xi) (1)

where p(xi) is the probability of xi. Here the base of log is 2 and
specified that 0 log 0 = 0.
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If Y = {y1, y2, ..., ym} is a discrete random variable, p(xi, yj)
is the joint probability of X and Y . Then, their joint entropy is
defined as:

H(X,Y) = −

l
∑

i=1

m
∑

j=1

p(xi, yj) log p(xi, yj) (2)

If the random variable X is in a given situation, the uncertainty
measure of the variable Y can be defined by conditional entropy
as follows:

H(Y|X) = H(X,Y)−H(X) = −

l
∑

i=1

m
∑

j=1

p(xi, yj) log p(yj|xi) (3)

where p(yj|xi) is the conditional probability of Y under the
condition of X.

Definition 1: Mutual information (MI) (Cover and Thomas,
1991) is a measure of useful information in information theory.
It can be regarded as the amount of information shared by two
random variables. MI can be defined as:

I(X;Y) =

l
∑

i=1

m
∑

j=1

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)

= H(X)+H(Y)−H(X,Y) = H(X)−H(X|Y) (4)

Definition 2:Conditional mutual information (CMI) (Cover and
Thomas, 1991) can be defined as the amount of information
that shared by variables X and Y , if a discrete random variable
Z = {z1, z2, ..., zn} is known.

I(X;Y |Z ) =
l

∑

i=1

m
∑

j=1

n
∑

k=1

p(zk)p(xi, yj|zk) log
p(xi ,yj|zk)

p(xi|zk)p(yj|zk)

= H(Y|Z)−H(Y |X,Z )

(5)

Definition 3: Joint mutual information (JMI) (Cover and
Thomas, 1991) measures the amount of information shared by
a joint random variable (X1,X2, · · ·Xq) and Y and it can be
defined as:

I(X1,X2, ...,Xq;Y) =
∑

x1∈X1

∑

x2∈X2

· · ·
∑

xq∈Xq

∑

y∈Y
p(x1, x2, ..., xq, y)

log
p(x1 ,x2 ,...,xq ,y)

p(x1 ,x2 ,...,xq)p(y)

= H(X1,X2, ...,Xq)−H(X1,X2, ...,Xq|Y)

(6)

Definition 4: Interaction gain (IG) had been introduced by
Jakulin (2003), Jakulin and Bratko (2004) to measure the
amount of information shared by three random variables at the
same time. Mutual information can be regarded as a two-way
interaction gain. IG is defined as follows:

IG(X;Y;Z) = I(X;Y;Z) = I(X,Y;Z)− I(X;Z)− I(Y;Z) (7)

Related Work
The irrelevant features and redundant features existed in high-
dimensional data will damage the performance of the learning
algorithm and reduce the efficiency of the learning algorithm.
Therefore, the dimensionality reduction of features is one of
the most common methods of data preprocessing (Orsenigo
and Vercellis, 2013) and its purpose is to reduce the training
time of the algorithm and improve the accuracy of final results
(Bennasar et al., 2015). In recent years, the research of gene
selection methods based on mutual information has received
wide attention from scholars. Best individual gene selection (BIF)
(Chandrashekar and Sahin, 2014) is the simplest and fastest
filtering gene selection algorithm, especially suitable for high-
dimensional data.

Battiti utilized the mutual information (MI) between features
and class labels [I(fi; c)] to measure the relevance and the
mutual information between features [I(fi; fs)] to measure the
redundancy (Battiti, 1994). He proposed the Mutual Information
Gene selection (MIFS) criterion and it is defined as:

JMIFS(fi) = I(fi; c)− β
∑

fs∈�S

I(fi; fs), fi ∈ F − �S (8)

where F is the original feature set, �S is the selected feature
subset, F − �S is the candidate feature subset and c is the
class label. β is a configurable parameter to determine the
trade–off between relevance and redundancy. However, β is set
experimentally, which results in an unstable performance.

Peng et al. (2005) proposed the Minimum-Redundancy
Maximum-Relevance (MRMR) criterion and its evaluation
function is defined as:

JmRMR(fi) = I(fi; c)−
1

|ns|

∑

fs∈�S

I(fi; fs), fi ∈ F − �S (9)

where |ns| is the number of selected features.
Similarly, other gene selection methods that consider

relevance between features and the class label and redundancy
between features are concluded, such as Normalized Mutual
Information Gene selection (NMIFS) and Conditional Mutual
Information (CMI), and they were proposed by Estévez et al.
(2009) and Liang et al. (2019) respectively. Their evaluation
function are defined as follows:

JNMIFS(fi) = I(fi; c)−
1

|ns|

∑

fs∈�S

I(fi; fs)

min(H(fi),H(fs))
, fi ∈ F − �S

(10)

JCMI(fi) = I(fi; c)−
H(fi |c )

H(fi)

∑

fs∈�S

I(fs; c)I(fi; fs)

H(fs)H(c)
, fi ∈ F − �S

(11)

where H(fi) is the information entropy and H(fi |c ) is the
conditional entropy.

Many gene selection algorithms based on information theory
tend to use mutual information as a measure of relevance,
which will bring a disadvantage that mutual information tends
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to select features with more discrete values (Foithong et al.,
2012). Thus, the symmetrical uncertainty (Witten and Frank,
2002) (a normalized form of mutual information, SU) is adopted
to solve this problem. The symmetrical uncertainty can be
described as:

SU(fi; c) =
2I(fi; c)

H(fi)+H(c)
(12)

The SU can redress the bias of mutual information as much as
possible and scale its values to [0,1] by penalizing inputs with
large entropies. It will make the performance of gene selection
better. Same as MI, for any two features fi1 and fi2, if SU(fi1; c) >

SU(fi2; c), due to more information can be provided by the
former, fi1 and c are more relevant. If SU(fi1; fs) > SU(fi2; fs),
owing to the information shared by fi1 and fs being more and
providing less information, fi1 and fs have greater redundancy.

Additionally, these gene selection algorithms mentioned
above fail to take the feature interaction into consideration.
After relevance and redundancy analysis, one feature deemed
useless may interact with other features to provide more
useful information. Especially in complicated biology systems,
molecules interacting with each other, they work together to
express physiological and pathological changes. If we only
consider relevance and redundancy but ignore the feature
interaction in data analysis, wemaymiss some useful features and
affect the analysis results (Chen et al., 2015).

Sun et al. (2013), Zeng et al. (2015), and Gu et al. (2020),
respectively proposed a gene selection method using dynamic
feature weights: Dynamic Weighting-based Gene selection
algorithm (DWFS), Interaction Weight based Gene selection
algorithm (IWFS) and Redundancy Analysis and Interaction
Weight-based gene selection algorithm (RAIW). All of them
employ the symmetric uncertainty to measure the relevance
between features and the class label, and exploit the three-
dimensional interaction information (mentioned at Information

Theory Definition 4) to measure the interaction between two
features and the class label. The evaluation functions are defined
as follow:

JDWFS(fi) = SU(fi; c)× wDWFS(fi), fi ∈ −�S (13)

JIWFS(fi) = wIWFS(fi)× [1+ SU(fi; c)], fi ∈ F − �S (14)

JRAIW(fi) = SU(fi; c)× [1− αSU(fi; fs)]

×wRAIW(fi), fiǫF − �s (15)

where w(fi) is the weight of each feature and its initial value is set
to 1, α is a redundancy coefficient and the value is relevant to the
number of dataset’s features, fs is one of features in the selected
feature subset. In each round, the feature weight w(fi) is updated
by their interaction weight factors.

wDWFS(fi) = wDWFS(fi
′)× [1+ CR(fi, fs)] = wDWFS(fi

′)

×[1+ 2
I(fi;c|fs )−I(fi;c)
H(fi)+H(c) ]

= wDWFS(f
′

i )× [1+ 2
I(fi;fs;c)

H(fi)+H(c) ]

(16)

wIWFS(fi) = wIWFS(f
′

i )× IW(fi, fs)

= wIWFS(fi
′)× [1+

I(fi; fs; c)

H(fi)+H(fs)
] (17)

wRAIW(fi) = wRAIW(f
′

i )× [1+ If (fi, fs, c)]

= wRAIW(fi
′)× [1+

2I(fi; fs; c)

H(fi)+H(fs)+H(c)
] (18)

where w(fi
′) denotes the feature weight of the previous round,

I(fi; c
∣

∣fs ) is the conditional mutual information of fi and cwhen fs
is given. I(fi; fs; c) is three-dimensional interaction information.
However, we can find that although DWFS and IWFS take into
account relevance and interaction, they ignore the redundancy
between features. Correlation, redundancy and interaction are all
taken into account by RAIW, but there is a no reasonable value
for α in a specific dataset.

Furthermore, some other gene selection methods about
three-way mutual information are listed and their evaluation
function are defined as follows, such as Composition of Feature
Relevance (CFR) (Gao et al., 2018a), Joint Mutual Information
Maximization (JMIM) (Bennasar et al., 2015), Dynamic Change
of Selected Feature with the class (DCSF) (Gao et al., 2018b)
and Max-Relevance and Max-Independence (MRI) (Wang et al.,
2017).

JCFR(fi) =
∑

fs∈�S

I(fi; c
∣

∣fs )+
∑

fs∈�S

I(fi; fs; c), fi ∈ F − �S

(19)

JJMIM(fi) = max[min
fs∈�S

(I(fi, fs; c))], fi ∈ F − �S (20)

JDCSF(fi) =
∑

fs∈�S

I(fi; c
∣

∣fs )+
∑

fs∈�S

I(fs; c
∣

∣fi )

−
∑

fs∈�S

I(fi; fs), fi ∈ F − �S (21)

JMRI(fi) = I(fi; c)+
∑

fs∈�S

I(fi; c
∣

∣fs )

+
∑

fs∈�S

I(fs; c
∣

∣fi ), fi ∈ F − �S (22)

where I(fi, fs; c) is the joint mutual information of fi, fs and c.
I(fs; c

∣

∣fi ) is the conditional mutual information of fs and c when
fi is given. However, these algorithms only take into account
three-waymutual information among features and the class label,
and none of them considers relevance, redundancy and three-
dimensional mutual information between features at the same
time, which will affect the performance of these algorithms.

THE PROPOSED METHOD-CRIA

In section CNVs Dataset, we firstly introduce the collection
of datasets and the process of data processing specifically.
Subsequently, we redress other methods’ shortcomings and
propose an improved gene selection algorithm called CRIA
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TABLE 1 | The number of samples for each cancer type in this dataset.

Class label Histology Samples Percentage

1 UCEC (Uterine corpus endometrial

carcinoma)

443 12.73%

2 KIRC (Kidney renal clear cell carcinoma) 490 14.08%

3 OV (Ovarian serous cystadenocarcinoma) 562 16.15%

4 GBM (Glioblastoma multiforme) 563 16.18%

5 COAD/READ (Colon

adenocarcinoma/Rect-um

adenocarcinoma)

575 16.52%

6 BRCA (Breast invasive carcinoma) 847 24.34%

Total 3,480 100%

in section The Proposed Algorithm and give it a specific
implementation in section Algorithm Implementation. Finally,
in section Verify the Performance of CRIA, we verify the
performance of CRIA by comparing the experimental results of
CRIA and other 8 algorithms on 5 datasets.

CNVs Dataset
The datasets of copy number variations in different cancer
types used in this paper comes from the cBioPortal for Cancer
Genomics (http://cbio.mskcc.org/cancergenomics/pancan_tcga/,
Release 2/4/2013) (Cerami et al., 2012; Ciriello et al., 2013;
Gao et al., 2013). The copy number values in the dataset are
generated by Affymetrix SNP 6.0 arrays for the set of samples
in the cancer genome atlas (TCGA) study (Liang et al., 2020).
The preprocessing analysis of the dataset is performed with
GISTIC (Beroukhim et al., 2007). There are 11 cancer types in
the cBioPortal database with the largest sample number was 847
and the smallest sample was 135. In order to avoid affecting the
experimental results due to the large difference in the number
of samples of cancer types, we only select six cancer types with
more than 400 samples as our experimental data. The details of
six cancer types are listed in Table 1, and totally there are 3480
samples in our experimental dataset.

In this dataset, each sample consists of labels for 24174 genetic
cytobands. The CNV spectrum is divided into five regions/labels
by setting four thresholds in cancer algorithm (Mermel et al.,
2011). Then, the CNV values are discretized into 5 different
values—“-2,” “-1,” “0,” “1,” “2,” where “-2” denotes the deletion
of both copies (possibly homozygous deletion), “−1” means
the deletion of one copy (possibly heterozygous deletion), “0”
corresponds to exactly two copies, i.e., no gain/loss (diploid), “1”
denotes a low-level copy number gain and “2” means a high-level
copy number amplification (Ciriello et al., 2013).

The CNVs values are preprocessed to the range of [−1,1] with
Equation (23).

val′ =
val

∣

∣val
∣

∣

max

(23)

where val is the value of gene copy number variations of each
sample,

∣

∣val
∣

∣

max
is the maximum absolute value of gene CNVs

among samples and val′ is the recalculated value.

The Proposed Algorithm
In section Related Work, we analyze the 11 gene selection
methods and point out their shortcomings. In view of the
defects of these algorithms, we propose an improved gene
selection algorithm to redress their shortcomings: Correlation-
Redundancy and Interaction Analysis based gene selection
algorithm (CRIA). This method uses the symmetric uncertainty
(SU) to measure the correlation between features and the
class label and the redundancy among features. In addition,
copula entropy is introduced to measure the feature interaction
information. Different from the three-way interaction of DWFS,
IWFS and RAIW, the proposed algorithm considers the
interaction between the candidate feature and the entire set
of selected features, instead of being limited to the three-
dimensional interaction.

As we know, Shannon’s definition of mutual information aims
at a pair of random variables, and it measures the correlation
between two random variables. Therefore, naturally, many
researchers have tried to study how to extend the definition of
mutual information from two variables to multivariate situations.
In 2011, Ma and Sun published a paper (Ma and Sun, 2011),
which contributed to the entropy of information theory. They
defined a new concept of entropy in that paper, called Copula
Entropy. Copula Entropy is defined on a set of random variables
and conformed to symmetry. Therefore, it is a multivariate
extension of mutual information, which can be utilized to
measure the full-order, non-linear correlation among random
variables. They proved the equivalence between copula entropy
and the concept of mutual information, which was, mutual
information was equal to negative copula entropy (Ma and Sun,
2011).

The copula entropy of
→
x = (x1, x2, ..., xN) ∈ RN is defined as:

Hc(
→
x ) = −

∫

c(
→
u ) log c(

→
u )d

→
u (24)

where
→
x are random variables with marginal functions

→
u =

[F1, F2, ..., FN] and copula density c(
→
u ) = dNC(

→
u )

du1du2 ...duN
.

Thus, we can use interaction factor IFCRIA, which is defined in
Equation (25) to measure the interaction between the candidate
feature and the selected feature subset. The meaning of IFCRIA
is that, after adding a random candidate feature fi into the
selected feature subset�S, the amount of interaction information
increased relative to the original selected feature subset. So, the
bigger value of IFCRIA, the bigger value of interaction between fi
and �S. In each round of calculation, we are supposed to choose
the variable that maximizes the IFCRIA value.

IFCRIA =
Hc(�S, fi, c)

Hc(�S, c)
(25)

Where c is the target class label.
Integrating the correlation between the features and the class

label and the redundancy between features that we improved, and
the interaction factor we proposed, we can define the evaluation
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FIGURE 1 | General flow chart of the proposed algorithm.

criterion of a candidate feature as follows:

JCRIA(fi) = max
fi∈F−�S

{[SU(fi, c)−
1
ns

∑

fs∈�S

SU(fi, fs)]× IFCRIA}

= max
fi∈F−�S

{[SU(fi, c)−
1
ns

∑

fs∈�S

SU(fi, fs)]×
Hc(�S ,fi ,c)
Hc(�S ,c)

}
(26)

For the equation (26), we can see that the proposed algorithm can
take into account the relevance between the candidate feature and
the class label, redundancy and multi-dimensional interaction
among the candidate feature and the selected features at the
same time. The formula SU(fi, c) can denote the relevance and
1
ns

∑

fs∈�S

SU(fi, fs) calculates the redundancy. Also, the formula

Hc(�S ,fi ,c)
Hc(�S ,c)

denotes the interaction among the features.

According to the definition of copula entropy and Equation
(24), there is a theorem.

Theorem 1: The mutual information of random variables is
equivalent to their negative copula entropy (Ma and Sun, 2011):

I(
→
x ) = −Hc(

→
x ) (27)

According to Theorem 1, the value of copula entropy can be
calculated by the MI of multivariates. The definition of mutual
information extended from two variables to multivariate is
described as follows:

I(Xm, c) =
∫∫

p(Xm, c) log
p(Xm ,c)
p(Xm)p(c)

dXmdc

=
∫∫

p(Xm−1, xm, c) log
p(Xm−1 ,xm ,c)
p(Xm−1 ,xm)p(c)

dXm−1dxmdc

=
∫

. . .
∫

p(x1, . . . , , xm, c) log
p(x1 ,...,xm ,c)
p(x1 ,...,xm)p(c)

dx1, . . . , dxmdc

(28)

TABLE 2 | Datasets for comparison between CRIA algorithm and other

algorithms.

Datasets type No. Datasets Samples Features Classes Types

Biological data 1 leukemia 72 7,070 2 Discrete

2 Carcinoma 174 9,182 11 Continuous

3 colon 62 2,000 2 Discrete

4 TOX_171 171 5,748 4 Continuous

Digit recognition 5 Gisette 7,000 5,000 2 Continuous

where Xm = {x1, x2, ..., xm−1, xm} = {Xm−1, xm}.
According to the Equation (28), we have:

H(Xm−1, xm) = H(Xm) =
m
∑

i=1
H(xi)− I(Xm)

H(Xm−1, xm, c) = H(Xm, c) = H(c)+
m
∑

i=1
H(xi)− I(Xm, c)

(29)

Therefore,

I(Xm, c) = H(x1)+ . . . +H(xm)+H(c)−H(x1, . . . , xm, c)

I(Xm, X̂s, c) = H(x1)+ . . . +H(xm)+H(X̂s)+H(c)

−H(x1, . . . , xm, X̂s, c)

(30)

According to Equation (26), (27) and (30), we have:

JCRIA(fi) = max
fi∈F−�S

{[SU(fi, c)−
1
ns

∑

fs∈�S

SU(fi, fs)]× IFCRIA}

= max
fi∈F−�S

{[SU(fi, c)−
1
ns

∑

fs∈�S

SU(fi, fs)]×
I(�S,fi ,c)
I(�S ,c)

}
(31)
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Let �S = {f1, f2, ..., fm}, Since,

I(�S, fi, c)

I(�S, c)
=

m
∑

k=1

H(fk)+H(fi)+H(c)−H(�S, fi, c)

m
∑

k=1

H(fk)+H(c)−H(�S, c)

(32)

Therefore,

JCRIA(fi) = max
fi∈F−�S

{[SU(fi, c)−
1
ns

∑

fs∈�S

SU(fi, fs)]×

m
∑

k=1

H(fk)+H(fi)+H(c)−H(�S,fi ,c)

m
∑

k=1

H(fk)+H(c)−H(�S,c)
}

(33)

The general flow chart of the proposed algorithm is presented in
Figure 1 we can see that an original feature set F is first given,
from which we select the main effect feature that maximizes the
value of (12). Then the main feature is put into the selected
feature subset �S. For each feature in the candidate feature set,
after conducting correlation and redundancy analysis, we are
next supposed to use (25) to perform interaction analysis on it.
Choose the feature that maximizes the value of (33), which then
is put into the selected feature set. If the number of the selected
features meets the threshold condition, the above steps will be
executed again, otherwise the program ends directly.

Algorithm Implementation
We propose a gene selection method based on correlation-
redundancy and interaction analysis. The pseudo code of CRIA
algorithm is described as follows.

Here, for the CNVs dataset, we set the value of the threshold
M to be 200 to reduce the calculation time and avoid curse of
dimensionality. In addition, we need to control the number of
selected features to be same as the method proposed by Zhang
et al. (2016).

The CRIA algorithm consists of two stages:
Stage 1 (lines 1–7): In this part, the selected feature subset �S

and the original feature set F are first initialized. For each feature
in the original feature set fi, the symmetrical uncertainty SU(fi; c)
between fi and class label c is calculated. The feature whose value
of symmetrical uncertainty with class label is the maximum is
selected out and added into the selected features subset�S, which
we name “the main effect feature.”

Stage 2 (lines 8-18): The second stage mainly calculates
the correlation measure SU(fi; c) and the redundancy measure
1
ns

∑

fs∈�S

SU(fi, fs). Then the interaction value IFCRIA between �S,

fi and c is updated. JCRIA(fi) is calculated and the feature with the
maximum value is added into the selected feature subset�S. This
procedure terminates until the number of selected features is no
less than predefined thresholdM.

According to Algorithm 1, when the size of the feature subset
reaches the set threshold M, the procedure will be terminated.
The value of the threshold setting should be determined by
different datasets. A small M can reduce the amount of
calculation but may also lose many effective features that are T
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TABLE 4 | Comparision (mean ± std.dev.) of performance between CRIA and other 8 algorithms with IB1 classifier.

Datasets CRIA

(proposed)

RAIW mRMR DWFS IWFS JMIM MRI CFR DCFS

leukemia 99.44 ± 0.97

(1)

97.03 ± 0.87

(2)

96.16 ± 0.43

(4)

95.56 ± 0.90

(7)

88.75 ± 1.88

(9)

96.61 ± 0.78

(3)

96.13 ± 0.90

(5)

95.73 ± 0.95

(6)

94.22 ± 0.80

(8)

Carcinoma 86.84 ± 0.50

(1)

82.45 ± 1.33

(2)

81.39 ± 1.02

(4.5)

82.32 ± 1.07

(3)

76.88 ± 1.97

(9)

81.10 ± 1.06

(7)

81.39 ± 1.16

(4.5)

81.35 ± 1.08

(6)

80.96 ± 1.18

(8)

colon 86.77 ± 1.27

(1)

78.60 ± 2.10

(2)

78.22 ± 1.54

(3)

75.94 ± 2.32

(5)

70.87 ± 1.97

(9)

76.69 ± 2.35

(4)

71.77 ± 3.41

(8)

72.24 ± 2.17

(7)

74.87 ± 1.80

(6)

TOX_171 84.56 ± 0.52

(3)

85.13 ± 1.26

(2)

78.14 ± 1.36

(8)

85.19 ± 1.30

(1)

82.59 ± 1.78

(5)

76.68 ± 1.68

(9)

81.69 ± 1.64

(7)

82.05 ± 1.28

(6)

84.04 ± 1.48

(4)

gisette 93.75 ± 0.14

(1)

91.88 ± 0.08

(6)

91.26 ± 0.09

(7)

92.26 ± 0.07

(5)

91.05 ± 0.15

(8)

90.20 ± 0.10

(9)

92.70 ± 0.06

(3)

92.58 ± 0.05

(4)

93.13 ± 0.10

(2)

Avg.acc 90.27 87.02 85.03 86.25 82.03 84.26 84.74 84.79 85.44

Avg.rank 1.40 2.80 5.30 4.20 8.00 6.40 5.50 5.80 5.60

Improved rate – 3.73% 6.16% 4.66% 10.05% 7.13% 6.53% 6.46% 5.65%

The meaning of the bold values represent the best performance achieved on a certain dataset for the nine methods.

TABLE 5 | Comparision (mean ± std.dev.) of performance between CRIA and other 8 algorithms with Naïve Bayes classifier.

Datasets CRIA

(proposed)

RAIW mRMR DWFS IWFS JMIM MRI CFR DCFS

leukemia 99.58 ± 0.67

(1)

97.44 ± 0.66

(2)

96.27 ± 0.30

(7)

97.03 ± 0.70

(4)

95.48 ± 1.96

(9)

96.18 ± 0.39

(8)

97.15 ± 0.80

(3)

96.79 ± 0.71

(5)

96.70 ± 0.58

(6)

Carcinoma 81.61 ± 1.11

(2)

82.02 ± 0.83

(1)

80.23 ± 1.33

(7)

81.58 ± 0.95

(3)

76.38 ± 1.85

(9)

80.19 ± 1.28

(8)

80.41 ± 0.86

(5)

80.34 ± 0.87

(6)

80.46 ± 1.09

(4)

colon 88.71 ± 0.00

(1)

82.97 ± 1.34

(2)

82.70 ± 1.20

(3)

80.72 ± 1.47

(6)

74.39 ± 4.37

(9)

81.66 ± 1.45

(5)

79.84 ± 2.40

(7)

78.95 ± 1.72

(8)

82.32 ± 2.08

(4)

TOX_171 69.53 ± 0.70

(3)

70.74 ± 1.07

(1)

63.73 ± 1.61

(8)

68.68 ± 1.26

(4)

65.64 ± 1.63

(7)

60.41 ± 2.35

(9)

66.96 ± 1.56

(6)

67.04 ± 1.74

(5)

70.28 ± 1.60

(2)

gisette 93.16 ± 0.05

(1)

90.46 ± 0.13

(2)

88.26 ± 0.02

(4)

87.69 ± 0.08

(5)

86.23 ± 0.24

(8)

86.01 ± 0.05

(9)

87.60 ± 0.04

(6)

87.48 ± 0.03

(7)

89.46 ± 0.05

(3)

Avg.acc 86.52 84.73 82.24 83.14 79.62 80.89 82.39 82.12 83.84

Avg.rank 1.60 1.80 5.80 4.40 8.40 7.80 5.40 6.20 3.80

Improved rate – 2.11% 5.20% 4.07% 8.67% 6.96% 5.01% 5.36% 3.20%

The meaning of the bold values represent the best performance achieved on a certain dataset for the nine methods.
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Algorithm 1 | CRIA: correlation-redundancy and interaction
analysis based gene selection algorithm.

Input N: the number of original features, M: the number of
features to be selected, ns: the
number of selected features.
Output: the selected feature subset (�S ⊆ F).
1 First initializes �S = ∅, F = {f1, f2, ..., fN};
2 for each fi ∈ F do:
3 calculate SU(fi, c);
4 end for
5 select the feature fimax ∈ F with the largest value of SU(fi, c);
6 �S = �S ∪ {fimax};
7 F = F − {fimax};
8 while ns ≤ M do:
9 for fi ∈ F do:
10 calculate SU(fi, c)−

1
ns

∑

fs∈�S

SU(fi, fs);

11 calculate IFCRIA =
Hc(�S ,fi ,c)
Hc(�S ,c)

;

12 calculate JCRIA(fi) = [SU(fi, c) −
1
ns

∑

fs∈�S

SU(fi, fs)] × IFCRIA

and append it into a list;
13 end for
14 select the feature fkmax ∈ F with the largest value of JCRIA(fi)
from list;
15 �S = �S ∪ {fkmax};
16 F = F − {fkmax};
17 end while
18 output �S.

useful; a large M will increase the amount of calculation but
may improve the accuracy of final result (Foithong et al., 2012).
Actually, when the threshold exceeds a certain value, the accuracy
of the final result will not only not increase, but may decrease, and
it will bring computational complexity. The selected features are
ranked according to the value of the evaluation function JCRIA(fi)
from largest to smallest.

Verify the Performance of CRIA
Eight gene selection algorithms—JMIM (Bennasar et al., 2015),
mRMR (Peng et al., 2005), DWFS (Sun et al., 2013), IWFS (Zeng
et al., 2015), RAIW (Gu et al., 2020), CFR (Gao et al., 2018a),
DCSF (Gao et al., 2018b), and MRI (Wang et al., 2017) are
used to compare with CRIA to examine the performance of our
proposed method.

The datasets used in validation experiment come from
Arizona State University (ASU) datasets (Li et al., 2017), which
include four biological data and one other type of data (digit
recognition). They are all high-dimensional data. The smallest
feature number is 2000 and the largest feature number is 9182
among them. The specific details of these datasets are shown
in Table 2. We only use minimum description length method

(Fayyad and Irani, 1993) for gene selection and utilize it to
convert these numerical features.

The number of featuresN used in the experiment is reduced to
50 and three classifiers—IB1, J48 and Naïve Bayes are exploited.
The parameters of the classifiers are set to the default parameters
of Waikato Environment for Knowledge Analysis (WEKA) (Hall
et al., 2009). We use 10 times of ten-fold cross-validation to avoid
the influence of randomness on experimental results. Then mean
value and Standard Deviation (STD) are taken as the comparison
indices of performance of each algorithm and STD is defined
as follows:

STD =

√

√

√

√

1

nrun

N
∑

i=1

(ACCi − u) (34)

where nrun is the number of times of our experiments, here we
set nrun = 10, ACC is the classification accuracy, u represents
the average value of ACC, and N denotes the number of samples.
The bigger ACC, the better performance, and the smaller STD,
the higher stability.

The comparison results between the proposed algorithm and
other gene selection algorithms are shown in Tables 3–5. As
shown in Table 3, for the five data sets in the experiment, we
can see that the classification results of CRIA in four data sets
are better than other eight algorithms, which ranking first, except
TOX_171, ranking fourth. Compared with other algorithms,
the average accuracy of CRIA is increased by 2.42–5.08%. In
Table 4, CRIA also outperforms the other 8 algorithms on
four data sets except TOX_171, on which the experimental
results of CRIA ranking third. The biggest improved rate of the
proposed algorithm is 10.05% and the smallest one is 3.73%.
From Table 5, we can find that the results of CRIA on the
three data sets are superior to other algorithms, ranking first.
However, on the datasets of Carcinoma and TOX_171, compared
with the maximum values, the experimental accuracies of CRIA
are slightly decreased by 0.50 and 1.71%, ranking second and
third respectively. From the perspective of average accuracy,
CRIA’s result is better than other algorithms, and it is improved
by 2.11–8.67%.

RESULTS AND DISCUSSIONS

Evaluation Metrics of Experimental Results
Four evaluationmetrics—precision, recall, accuracy and F1-score
are utilized to evaluate the performance of the corresponding
method and values of these criteria are defined as equation (35).

precision =
TP

TP + FP
(35)

recall =
TP

TP + FN

accuracy =
TP + TN

TP + TN + FP + FN

F1− score =
2× precision× recall

precision+ recall
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TABLE 6 | The top 15 feature genes chosen by CRIA defined as equation (26).

Ranked order Official name Official full gene name Category CRIA value

1 RPS15 ribosomal protein S15 Protein Coding 0.168

2 TBC1D5 TBC1 Domain Family Member 5 Protein Coding 0.089

3 CUL2 Cullin 2 Protein Coding 0.093

4 SMPD3 Sphingomyelin Phosphodiesterase 3 Protein Coding 0.089

5 CTAGE10P CTAGE Family Member 10, Pseudogene Pseudogene 0.071

6 C1orf98 Chromosome 1 Open Reading Frame 98 Protein Coding 0.043

7 ZNF281 Zinc Finger Protein 281 Protein Coding 0.061

8 CDKN2A Cyclin Dependent Kinase Inhibitor 2A Protein Coding 0.161

9 EGFR Epidermal Growth Factor Receptor Protein Coding 0.121

10 TMEM98 Transmembrane Protein 98 Protein Coding 0.103

11 CTBP2 C-Terminal Binding Protein 2 Protein Coding 0.083

12 SEMA6A Semaphorin 6A Protein Coding 0.081

13 MIR1208 MicroRNA 1208 RNA Gene 0.077

14 RBFOX1 RNA Binding Fox-1 Homolog 1 Protein Coding 0.069

15 CDC25A Cell Division Cycle 25A Protein Coding 0.066

FIGURE 2 | Classification accuracies of three classifiers (CatBoost, LightGBM and SVM) with different numbers of features during the IFS procedure. The top 200

feature genes are selected by CRIA method.

where TP, TN , FP, and FN denotes the numbers of
true positives, true negatives, false positives, and false
negatives respectively.

The CRIA and IFS Results
As mentioned in section Evaluation Metrics of Experimental
Results, each sample is represented by 24,174 features, each of
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TABLE 7 | Average performance of precision, recall and F1-score on 10 test datasets with three classifiers via ten-fold cross-validation (%).

Metrics UCEC KIRC OV GBM COAD/

READ

BRCA

Precision CRIA_CatBoost 74.31 93.74 84.59 94.63 89.67 84.48

CRIA_SVM 70.47 90.33 85.40 95.64 88.54 84.76

CRIA_LightGBM 71.46 93.37 82.84 95.72 90.23 84.71

Recall CRIA_CatBoost 73.14 91.63 87.90 90.76 86.09 88.67

CRIA_SVM 73.81 89.59 88.43 89.70 83.30 87.96

CRIA_LightGBM 72.91 92.04 89.32 91.30 83.48 87.01

F1-score CRIA_CatBoost 73.72 92.67 86.21 92.65 87.84 86.52

CRIA_SVM 72.13 89.96 86.89 92.57 85.84 86.33

CRIA_LightGBM 72.18 92.70 85.96 93.46 86.72 85.84

which indicates the expression level of genes. The 24174 feature
genes are sorted by CRIA value in descending order. However, we
only select the top 200 features in this work for the consideration
of computational time and curse of dimensionality. The top 15
key feature genes chosen by CRIA defined by equation (26) are
listed in Table 6.

We use the Incremental Gene selection (IFS) (Yang et al.,
2019) to determine the optimal feature set. The first 200 features
are added one by one to a feature subset in order. Each time
a feature is added, a classifier is trained and examined. So, 200
classifiers are constructed. We use the criteria of accuracy to
evaluate the performance of all the 200 classifiers and then we
choose the classifier with the highest accuracy as the final one.
The corresponding feature subset that the final classifier used is
deemed to be the optimal feature set.

In this paper, three commonly used classifiers are adopted
to verify the generalization performance of the proposed gene
selectionmethod on different classifiers. ten-fold cross-validation
is used to evaluate our algorithm with the selected features. The
complete data set is randomly split into 10 parts of approximately
equal size. The three classifiers are trained 10 times; nine of the
10 subsets are used as the training datasets, and the remaining
one is the test dataset. The average values of accuracy for each
classifier are calculated and the IFS results are shown in Figure 2.
Here, we name our methods as CRIA_CatBoost, CRIA_SVM
and CRIA_LightGBM. From Figure 2, it can be seen that the
highest accuracy of 86.90% for CRIA_CatBoost method followed
by 86.41% for CRIA_LightGBM and 85.98% for CRIA_SVM
method, with only using the CNVs of 131 genes, 138 genes and
122 genes respectively.

The Proposed Algorithm Performance
For the different classifiers used in this work, after determining
the optimal numbers of features according to the CRIA and IFS
results, the classification performance can be further analyzed.
The average values of three metrics-precision, recall and F1-score
defined in Equation (35) on 10 test datasets are listed in Table 7.

Performance Comparison With Other
Methods
After selecting important features, we use three common
classifiers—CatBoost, SVM and LightGBM to predict cancer

TABLE 8 | Performance comparison of the proposed algorithm predictions with

those of other methods (%).

Cancer Predictor Precision Recall F1-score

UCEC CRIA_CatBoost 74.31 73.14 73.72

CRIA_SVM 70.47 73.81 72.13

CRIA_LightGBM 71.46 72.91 72.18

CNA_origin 67.92 72.00 69.90

mRMR_Dagging 74.19 46.93 57.50

KIRC CRIA_CatBoost 93.74 91.63 92.67

CRIA_SVM 90.33 89.59 89.96

CRIA_LightGBM 93.37 92.04 92.70

CNA_origin 88.89 96.00 92.31

mRMR_Dagging 80.85 92.68 86.36

OV CRIA_CatBoost 84.59 87.90 86.21

CRIA_SVM 85.40 88.43 86.89

CRIA_LightGBM 82.84 89.32 85.96

CNA_origin 89.80 86.72 88.00

mRMR_Dagging 84.61 75.86 80.00

GBM CRIA_CatBoost 94.63 90.76 92.65

CRIA_SVM 95.64 89.70 92.57

CRIA_LightGBM 95.72 91.30 93.46

CNA_origin 93.10 84.38 88.52

mRMR_Dagging 88.70 85.93 87.30

COADREAD CRIA_CatBoost 89.67 86.09 87.84

CRIA_SVM 88.54 83.30 85.84

CRIA_LightGBM 90.23 83.48 86.72

CNA_origin 81.58 73.81 77.50

mRMR_Dagging 60.00 73.46 66.05

BRCA CRIA_CatBoost 84.48 88.67 86.52

CRIA_SVM 84.76 87.96 86.33

CRIA_LightGBM 84.71 87.01 85.84

CNA_origin 87.50 92.31 89.84

mRMR_Dagging 79.16 87.35 83.06

samples. The performance of our methods are compared
with other two classification methods published before whose
experimental dataset is the same as ours. Liang et al. (2020)
used a method called CNA_origin which was composed of
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FIGURE 3 | Performance comparison of 4 evaluation metrics: accuracy, precision, recall and F1-score among our methods and the other two algorithms (CNA_origin

and mRMR_Dagging).

a stacked autoencoder and an one-dimensional convolutional
neural network. The 24,174 gene features were extracted to 100
genes by the autoencoder, and then these 100 gene features were
put into the 1D CNN for classification (Liang et al., 2020). A
computationally method for cancer types classification proposed
by Zhang et al. (2016) was named as mRMR_Dagging here
because there was no specific method name given by authors.
It first used mRMR and IFS to select 19 of the 24,174 genes as
classification features, and then used the Dagging algorithm to
give the final results.

In Table 8, it can be seen that if the results of our methods
are superior to CNA_origin and mRMR_Dagging, they are
marked in bold. Similarly, if the largest of CNA_origin and
mRMR_Dagging results is better than our method, it is also
marked in bold. Table 8 demonstrated that the performance of
our methods is superior to CNA_origin and mRMR_Dagging for
UCEC, KIRC, GBM, and COADREAD. For UCEC, the recall
and F1-score of our methods (CRIA_Cat- Boost, CRIA_SVM
and CRIA_LightGBM) are all superior to CNA_origin and
mRMR_Dagging. The best precision of our methods is 0.12
percentage points higher than mRMR_Dagging. SVM and
LightGBM are slightly worse than mRMR_Dagging with
reductions of 5.28 and 3.82% in precision respectively. For KIRC,

the precision and F1-score are all superior to CNA_origin and
mRMR_Dagging except the F1-score of SVM, which performs
slightly worse than the CNA_origin with reductions of 2.61%.
Compared with the best, CNA_origin, the recall of our methods
are decreased by 4.77% for CatBoost, 7.15% for SVM and
4.30% for LightGBM. For OV, compared with CNA_origin,
the recall of our methods is at least increased by 1.36%. The
precision and F1-score are slightly worse than CNA_origin, with
reductions at most of 8.40, and 2.37%, respectively. For GBM
and COADREAD, our methods are better than CNA_origin and
mRMR_Dagging on all evaluation indicators. Compared with
the best of the other two algorithms, the worst precision of
our methods is increased by 1.64 and 8.53%, respectively, the
worst recall is increased by 4.39 and 12.86%, respectively, and
the worst F1-score is increased by 4.58 and 10.76%, respectively.
For BRCA, the worst among ourmethods performs slightly worse
than the best CNA_origin algorithm, with reductions of 3.57% in
precision, 6.09% in recall and 4.66% in F1-score respectively.

In addition, the macro-average results of four evaluation
metrics: accuracy, precision, recall and F1-score are used to
assess our methods and the other two algorithms on the
datasets of six types of cancers. The results can be seen in
Figure 3. For accuracy, our methods have mean values of

Frontiers in Plant Science | www.frontiersin.org 12 March 2022 | Volume 13 | Article 83904461

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Wu and Li Gene Selection for Cancers Prediction

FIGURE 4 | Confusion matrices on the test groups: (A) CRIA_CatBoost; (B) CRIA_SVM; (C) CRIA_LightGBM.

86.90% for CatBoost, 86.41% for LightGBM and 85.98% for
SVM respectively, which are increased by 3.69, 3.10, and 2.59%
compared with CNA_origin. For precision, the average values of
our methods are 86.61, 86.39, and 85.86%, which are increased by
3.49, 3.23, and 2.59%, respectively compared with the best among
CNA_origin and mRMR_Dagging. For recall, our methods’
mean values are 86.37, 86.01, and 85.47%, which are 2.92, 2.56
and 2.02 percentage points higher than CNA_origin, respectively.
For F1-score, compared with our methods, whose average values
are 86.60, 86.14, and 85.62%, CNA_origin is decreased by 3.71,
3.19, and 2.60%, respectively.

Further Discussion
In order to study the relationship between the classes, we
also summarize the confusion matrices in Figure 4 for class
predictions using our methods. From Figure 4, we can find that

there existed a high error rate when predicting the samples of
UCEC. Regardless of whether it is CRIA_CatBoost, CRIA_SVM
or CRIA_LightGBM, more than 10% of the UCEC samples
are incorrectly predicted as OV and BRCA. In Figure 4A,
14.00% of UCEC samples are predicted as OV, while 11.06%
of UCECsamples are predicted to be BRCA. In Figure 4B,
14.45 and 11.74% of UCEC samples are predicted as OV and
BRCA respectively. In Figure 4C, 13.32 and 12.42% of UCEC
samples are predicted as OV and BRCA respectively. The reasons
may be that UCEC, OV and BRCA are hormone-dependent
tumors and they relate closely in tumorigenesis. The 16 and
27 risk regions were identified by an independent genome-wide
association study (GWAS) on endometrial cancer and ovarian
cancer, respectively (Glubb et al., 2020). Studies have shown that
mutations in breast cancer susceptibility genes (BRCA1, BRCA2)
have a relationship in hereditary ovarian cancer. Mutations
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at either end of the BRCA1 gene increase a person’s risk of
breast cancer, and its probability is higher than ovarian cancer.
However, mutations in the middle of the BRCA1 gene put a
person at a higher risk of ovarian cancer than breast cancer (Shi
et al., 2017). In addition, there is also a study indicated that
UCEC, OV and BRCA all have a relationship with the changes
in estrogen and estrogen receptors (Rodriguez et al., 2019).

CONCLUSIONS

In this paper, we introduce a gene selection algorithm—CRIA.
We firstly apply this algorithm to 5 datasets and verify the
effective performance of CRIA through comparison with other
eight gene selection algorithms. The proposed algorithm can
select features which are closely related to the class label. Then,
we use this algorithm to select 200 genes that have a close
relationship with cancer types from 24,174 genes features based
on the value of copy number variations in the samples, and
then combine three common classifiers—CatBoost, SVM and
LightGBM to predict the type of cancer. Our experimental results
show that our methods have higher accuracies than the state-
of-the-art methods for solving this problem. Our research has
a certain degree of interpretability for cancer-related researches
at the genetic level. As we all know, cancer is closely related
to gene structural variations and the appearance of cancer is
often accompanied by abnormalities in the deoxyribonucleic
acid (DNA) sequence. Because CNVs is one of the most crucial
structural variations of genes, studying the relationship between
cancers and CNVs is of great significance. Many studies have
tried to utilize the genetic information of cancers to predict
cancer type, which can provide significant guidance for patient
care and cancer therapy in promptly.

The future direction of this work can continue to develop
from two aspects. First of all, because we only use the datasets
of six cancer types and the total number of samples is only 3,480
in this paper, by collecting data sets of other cancer types and
optimizing the proposed algorithm, we can continue to conduct
further research in the field of cancer classification based on copy
number variations. Moreover, integrating non-CNVs features
for the samples can be taken into consideration. In addition
to using CNVs for cancer prediction, we can also apply other
genetic information for cancer prediction, or combine several
biomarkers to reduce the error rate of classification as much
as possible.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

QW conducted the experiments and wrote the manuscript. DL
conceived and provided the main direction of the manuscript
and guided the writing andmodification of this manuscript. Both
authors read and approved the manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China (Grant No. 11571009) and Applied
Basic Research Programs of Shanxi Province (Grant
No. 201901D111086).

REFERENCES

Battiti, R. (1994). Using mutual information for selecting features in

supervised neural net learning. IEEE Trans. Neural Netw. 5, 537–550.

doi: 10.1109/72.298224

Bennasar, M., Hicks, Y., and Setchi, R. (2015). Gene selection using Joint

Mutual Information Maximisation. Expert Syst. Appl. 42, 8520–8532.

doi: 10.1016/j.eswa.2015.07.007

Beroukhim, R., Getz, G., Nghiemphu, L., Barretina, J., Hsueh, T., Linhart,

D., et al. (2007). Assessing the significance of chromosomal aberrations in

cancer: Methodology and app- lication to glioma. Proc. Natl. Acad. Sci. 104,

20007–20012. doi: 10.1073/pnas.0710052104

Breunis, W. B., van Mirre, E., Bruin, M., Geissler, J., de Boer, M., Peters,

M., et al. (2008). Copy number variation of the activating FCGR2C gene

predisposes to idiopathic thrombocytopenic purpura. Blood 111, 1029–1038.

doi: 10.1182/blood-2007-03-079913

Buchynska, L. G., Brieieva, O. V., and Iurchenko, N. P. (2019). Assessment

of HER-2/neu, α-MYC and CCN- E1 gene copy number variations

and protein expression in endometrial carcinomas. Exp. Oncol. 41.

doi: 10.32471/exp-oncology.2312-8852.vol-41-no-2.12973

Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., et al.

(2012). The cBio cancer genomics portal: an open platform for exploring

multidimensional cancer geno- mics data: figure 1. Cancer Discov. 2, 401–404.

doi: 10.1158/2159-8290.CD-12-0095

Chandrashekar, G., and Sahin, F. (2014). A survey on gene selection methods.

Comput. Electr. Eng. 40, 16–28. doi: 10.1016/j.compeleceng.2013.11.024

Chen, Z., Wu, C., Zhang, Y., Huang, Z., Ran, B., Zhong, M., et al. (2015). Gene

selection with redundancy-complementariness dispersion. Knowl. Based Syst.

89, 203–217. doi: 10.1016/j.knosys.2015.07.004

Ciriello, G., Miller, M. L., Aksoy, B. A., Senbabaoglu, Y., Schultz, N., and Sander,

C. (2013). Emerging landscape of oncogenic signatures across human cancers.

Nat. Genet. 45, 1127–1133. doi: 10.1038/ng.2762

Cover, T. M., and Thomas, J. A. (1991). Elements of Information Theory. New York,

NY: John Wiley and Sons.

Du, W., and Elemento, O. (2015). Cancer systems biology: embracing complexity

to develop better anticancer therapeutic strategies. Oncogene 34, 3215–3225.

doi: 10.1038/onc.2014.291

Elia, J., Gai, X., Xie, H. M., Perin, J. C., Geiger, E., Glessner, J. T., et al. (2010).

Rare structural variants found in attention-deficit hyperactivity disorder are

preferentially associated with neurodevelopmen- tal genes. Mol. Psychiatry 15,

637–646. doi: 10.1038/mp.2009.57

Estévez, P. A., Tesmer, M., Perez, C. A., and Zurada, J. A. (2009). Normalized

Mutual Information Gene selection. IEEE Trans. Neural Netw.20, 189–201.

doi: 10.1109/TNN.2008.2005601

Fayyad, U. M., and Irani, K. B. (1993). “Multi-Interval Discretization of

Continuous-Valued Attributes for Classification Learning,” in Pro-ceedings of

International Joint Conference on Artificial Intel- ligence, pp 1022–1027

Flierl, A., Oliveira Luís, M. A., Falomir-Lockhart Lisandro, J., Mak Sally,

K., Hesley, J., Soldner, F., et al. (2014). Higher vulnerability and stress

sensitivity of neuronal precursor cells carrying an alpha-synuclein

gene triplication. PLoS ONE 9, e112413. doi: 10.1371/journal.pone.01

12413

Frontiers in Plant Science | www.frontiersin.org 14 March 2022 | Volume 13 | Article 83904463

https://doi.org/10.1109/72.298224
https://doi.org/10.1016/j.eswa.2015.07.007
https://doi.org/10.1073/pnas.0710052104
https://doi.org/10.1182/blood-2007-03-079913
https://doi.org/10.32471/exp-oncology.2312-8852.vol-41-no-2.12973
https://doi.org/10.1158/2159-8290.CD-12-0095
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/j.knosys.2015.07.004
https://doi.org/10.1038/ng.2762
https://doi.org/10.1038/onc.2014.291
https://doi.org/10.1038/mp.2009.57
https://doi.org/10.1109/TNN.2008.2005601
https://doi.org/10.1371/journal.pone.0112413
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Wu and Li Gene Selection for Cancers Prediction

Foithong, S., Pinngern, O., and Attachoo, B. (2012). Feature subset selection

wrapper based on mutual information and rough sets. Expert Syst. Appl. 39,

574–584. doi: 10.1016/j.eswa.2011.07.048

Frank, B., Bermejo, J. L., Hemminki, K., Sutter, C., Wappenschmidt, B., Meindl,

A., et al. (2007). Copy number variant in the candidate tumor suppressor

gene MTUS1 and familial breast cancer risk. Carcinogenesis 28, 1442–1445.

doi: 10.1093/carcin/bgm033

Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., et al.

(2013). Integrative analysis of complex cancer genomics and clinical profiles

using the Cbioportal. Sci. Signaling 6, pl1–pl1. doi: 10.1126/scisignal.2004088

Gao, W., Hu, L., and Zhang, P. (2018b). Class-specific mutual

information variation for gene selection. Pattern Recogn. 79, 328–339.

doi: 10.1016/j.patcog.2018.02.020

Gao, W., Hu, L., Zhang, P., and He, J. (2018a). Gene selection considering

the composition of feature relevancy. Pattern Recogn. Lett. 112, 70–74.

doi: 10.1016/j.patrec.2018.06.005

Glubb, D. M., Thompson, D. J., Aben, K. K., Alsulimani, A., Amant, F., Annibali,

D., et al. (2020). Cross-cancer genome-wide association study of endometrial

cancer and epithelial ovarian cancer identifies genetic risk regions associated

with risk of both cancers. Cancer Epidemiol. Biomarkers Prev. 30, 217–28.

doi: 10.1158/1055-9965.EPI-20-0739

Grangeon, L., Cassinari, K., Rousseau, S., Croisile, B., Formaglio, M., Moreaud,

O. et al. (2021). Early-onset cerebral amyloid angiopathy and alzheimer

disease related to an app locus triplication. Neurol. Genet. 7, e609–e609.

doi: 10.1212/NXG.0000000000000609

Gu, X., Guo, J., Li, C., and Xiao, L. (2020). A gene selection algorithm based

on redundancy analysis and interaction weight. Appl. Intell. 51, 2672–2686.

doi: 10.1007/s10489-020-01936-5

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H.

(2009). The WEKA data mining software: an update. SIGKDD Explor Newsl.

11, 10–18. doi: 10.1145/1656274.1656278

Heo, Y., Heo, J., Han, S., Kim,W. J., Cheong, H. S., and Hong, Y. (2020). Difference

of copy number variation in blood of patients with lung cancer. Int. J. Biol.

Markers 36, 3–9. doi: 10.1177/1724600820980739

Jakulin, A. (2003). Attribute Interactions in Machine Learning (Master thesis).

Computer and Information Science, University of Ljubljana.

Jakulin, A., and Bratko, I. (2004). “Testing the significance of attribute

interactions,” in Proceedings of the Twenty-first international conference on

Machine learning - ICML’04. Banff, AL: ACM Press. pp. 409–416.

Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., et al.

(2017). Gene selection: a data perspective. ACM Comput. Surv. 50, 1–45.

doi: 10.1145/3136625

Liang, J., Hou, L., Luan, Z., and Huang, W. (2019). Gene selection with

conditional mutual information considering feature interaction. Symmetry 11,

858. doi: 10.3390/sym11070858

Liang, Y., Wang, H., Yang, J., Li, X., Dai, C., Shao, P., et al. (2020). A deep learning

framework to predict tumor tissue-of-origin based on copy number alteration.

Front. Bioeng. Biotech. 8, 701. doi: 10.3389/fbioe.2020.00701

Ma, J., and Sun, Z. (2011). Mutual information is copula entropy. Tsinghua Sci.

Technol. 16, 51–54. doi: 10.1016/S1007-0214(11)70008-6

Mermel, C. H., Schumacher, S. E., Hill, B., Meyerson, M. L., Beroukhim, R., and

Getz, G. (2011). GISTIC2.0 facilitates sensitive and confident localization of the

targets of focal somatic copy-number al teration in human cancers. Genome

Biol. 12, 4. doi: 10.1186/gb-2011-12-4-r41

Orsenigo, C., and Vercellis, C. (2013). A comparative study of non-linear manifold

learning methods for cancer microarray data classification. Expert Syst. Appl.

40, 2189–2197. doi: 10.1016/j.eswa.2012.10.044

Pandey, G. N., Rizavi, H. S., Tripathi, M., and Ren, X. (2015). Region-specific

dysregulation of glycogen synthase kinase-3β and β-catenin in the postmortem

brains of subjects with bipolar disorder and schizophrenia. Bipolar Disord. 17,

160–171. doi: 10.1111/bdi.12228

Peng, H., Long, F., and Ding, C. (2005). Gene selection based on

mutual information criteria of max-dependency, max-relevance, and

min-redundancy. IEEE T. Pattern Anal. 27, 1226–1238. doi: 10.1109/TPAMI.20

05.159

Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., et al.

(2006). Global variation in copy number in the human genome. Nature 444,

444–454. doi: 10.1038/nature05329

Rodriguez, A. C., Blanchard, Z., Maurer, K. A., and Gertz, J. (2019).

Estrogen signaling in endometrial cancer: a key oncogenic pathway with

several open questions. HORM. CANC. 10, 51–63. doi: 10.1007/s12672-019-

0358-9

Shannon, C. E. (2001). A mathematical theory of communication.

SIGMOBILE Mob. Comput. Commun. Rev. 5, 3–55. doi: 10.1145/584091.

584093

Shi, T., Wang, P., Xie, C., Yin, S., Shi, D., Wei, C., et al. (2017). BRCA1 and BRCA2

mutations in ovarian cancer patients from China: ethnic-related mutations in

BRCA1 associated with an increased risk of ovarian cancer: BRCA1/2mutation

in Chinese ovarian cancer. Int. J. Cancer 140, 2051–2059. doi: 10.1002/ijc.30633

Sun, X., Liu, Y., Xu, M., Chen, H., Han, J., and Wang, K. (2013). Gene selection

using dynamic weights for classification. Knowl. Based Syst. 37, 541–549.

doi: 10.1016/j.knosys.2012.10.001

Tian, T., Bi, H., Liu, Y., Li, G., Zhang, Y., Cao, L., et al. (2020). Copy

number variation of ubiquitin- specific proteases genes in blood

leukocytes and colorectal cancer. Cancer Biol. Ther. 21, 637–646.

doi: 10.1080/15384047.2020.1750860

Van Bockstal, M. R., Agahozo, M. C., van Marion, R., Atmodimedjo, P. N.,

Sleddens, H. F. B. M., Dinjens, W. N. M., et al. (2020). Somatic mutations

and copy number variations in breast cancers with heterogeneous HER2

amplification.Mol. Oncol. 14, 671–685. doi: 10.1002/1878-0261.12650

Wang, J., Wei, J. M., Yang, Z., and Wang, S. Q. (2017). Gene selection by

Maximizing Independent Classification Information. IEEE Trans. Knowl. Data

Eng. 29, 828–841. doi: 10.1109/TKDE.2017.2650906

Witten, I. H., and Frank, E. (2002). Data mining: practical machine learning

tools and techniques with Java implementations. SIGMOD Rec. 31, 76–77.

doi: 10.1145/507338.507355

Yang, Y., Song, S., Chen, D., and Zhang, X. (2019). Discernible neighborhood

counting based incremental gene selection for heterogeneous data. Int. J. Mach.

Learn. Cybern. 11, 1115–1127. doi: 10.1007/s13042-019-00997-4

Zeng, Z., Zhang, H., Zhang, R., and Yin, C. (2015). A novel gene selection

method considering feature interaction. Pattern Recogn. 48, 2656–2666.

doi: 10.1016/j.patcog.2015.02.025

Zhang, N., Wang, M., Zhang, P., and Huang, T. (2016). Classification of cancers

based on copy number variation landscapes. Biochim. Biophys. Acta, Gen. Subj.

1860, 2750–2755. doi: 10.1016/j.bbagen.2016.06.003

Zheng, Z., Yu, R., Gao, C., Jian, X., Quan, S., Xing, G., et al. (2017). Low copy

number of FCGR3B is associated with lupus nephritis in a Chinese population.

Exp. Ther. Med. 14, 4497–4502. doi: 10.3892/etm.2017.5069

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Wu and Li. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 15 March 2022 | Volume 13 | Article 83904464

https://doi.org/10.1016/j.eswa.2011.07.048
https://doi.org/10.1093/carcin/bgm033
https://doi.org/10.1126/scisignal.2004088
https://doi.org/10.1016/j.patcog.2018.02.020
https://doi.org/10.1016/j.patrec.2018.06.005
https://doi.org/10.1158/1055-9965.EPI-20-0739
https://doi.org/10.1212/NXG.0000000000000609
https://doi.org/10.1007/s10489-020-01936-5
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1177/1724600820980739
https://doi.org/10.1145/3136625
https://doi.org/10.3390/sym11070858
https://doi.org/10.3389/fbioe.2020.00701
https://doi.org/10.1016/S1007-0214(11)70008-6
https://doi.org/10.1186/gb-2011-12-4-r41
https://doi.org/10.1016/j.eswa.2012.10.044
https://doi.org/10.1111/bdi.12228
https://doi.org/10.1109/TPAMI.2005.159
https://doi.org/10.1038/nature05329
https://doi.org/10.1007/s12672-019-0358-9
https://doi.org/10.1145/584091.584093
https://doi.org/10.1002/ijc.30633
https://doi.org/10.1016/j.knosys.2012.10.001
https://doi.org/10.1080/15384047.2020.1750860
https://doi.org/10.1002/1878-0261.12650
https://doi.org/10.1109/TKDE.2017.2650906
https://doi.org/10.1145/507338.507355
https://doi.org/10.1007/s13042-019-00997-4
https://doi.org/10.1016/j.patcog.2015.02.025
https://doi.org/10.1016/j.bbagen.2016.06.003
https://doi.org/10.3892/etm.2017.5069
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-841855 April 6, 2022 Time: 19:27 # 1

ORIGINAL RESEARCH
published: 12 April 2022

doi: 10.3389/fpls.2022.841855

Edited by:
Surya Saha,

Boyce Thompson Institute (BTI),
United States

Reviewed by:
Weilong Kong,

Wuhan University, China
Zhenyang Liao,

Agricultural Genomics Institute
at Shenzhen (CAAS), China

Dong Xu,
Laboratory of Genome Analysis,

Agricultural Genomics Institute
at Shenzhen (CAAS), China

*Correspondence:
Amanda J. Burridge

amanda.burridge@bristol.ac.uk

Specialty section:
This article was submitted to

Plant Bioinformatics,
a section of the journal

Frontiers in Plant Science

Received: 22 December 2021
Accepted: 28 February 2022

Published: 12 April 2022

Citation:
Burridge AJ, Winfield MO,

Wilkinson PA, Przewieslik-Allen AM,
Edwards KJ and Barker GLA (2022)

The Use and Limitations of Exome
Capture to Detect Novel Variation
in the Hexaploid Wheat Genome.

Front. Plant Sci. 13:841855.
doi: 10.3389/fpls.2022.841855

The Use and Limitations of Exome
Capture to Detect Novel Variation in
the Hexaploid Wheat Genome
Amanda J. Burridge1* , Mark O. Winfield1, Paul A. Wilkinson2,
Alexandra M. Przewieslik-Allen1, Keith J. Edwards1 and Gary L. A. Barker1

1 School of Life Sciences, University of Bristol, Bristol, United Kingdom, 2 Institute of Systems, Molecular and Integrative
Biology, University of Liverpool, Liverpool, United Kingdom

The bread wheat (Triticum aestivum) pangenome is a patchwork of variable regions,
including translocations and introgressions from progenitors and wild relatives. Although
a large number of these have been documented, it is likely that many more remain
unknown. To map these variable regions and make them more traceable in breeding
programs, wheat accessions need to be genotyped or sequenced. The wheat genome
is large and complex and consequently, sequencing efforts are often targeted through
exome capture. In this study, we employed exome capture prior to sequencing 12
wheat varieties; 10 elite T. aestivum cultivars and two T. aestivum landrace accessions.
Sequence coverage across chromosomes was greater toward distal regions of
chromosome arms and lower in centromeric regions, reflecting the capture probe
distribution which itself is determined by the known telomere to centromere gene
gradient. Superimposed on this general pattern, numerous drops in sequence coverage
were observed. Several of these corresponded with reported introgressions. Other
drops in coverage could not be readily explained and may point to introgressions that
have not, to date, been documented.

Keywords: wheat, Triticum aestivum, introgression, exome capture, exome capture sequencing, sequence
variation

INTRODUCTION

The bread wheat (Triticum aestivum) pangenome is a patchwork containing translocations and
introgressions from wheat’s wild relatives (Przewieslik-Allen et al., 2021) as well as numerous
deletions. Some of these features may be present in only a handful of accessions coming from
a limited geographic area whilst others may be prevalent and present in varying combinations
across many accessions. Some variable regions may have occurred naturally by mutation or as a
consequence of promiscuous pollination events between wheat and one of its primary relatives
(He et al., 2019). Others are the result of breeding efforts (Schneider et al., 2008) using traditional
methods to introduce segments from progenitors and close relatives or, more recently, using more
advanced methods to perform wide crosses (Cseh et al., 2019; Devi et al., 2019; King et al., 2019;
Xu et al., 2020). Regardless of their origin, the number of these variable regions that have been
documented is probably not a genuine reflection of their true number; breeding companies may
not have reported, and indeed may not know, all the introgressed regions in their elite lines, and
chance events in landrace accessions are unlikely to have been documented at all. It would seem
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highly likely, therefore, that there are numerous unknown,
introgressions present in modern wheat accessions
(Przewieslik-Allen et al., 2021).

With this in mind, and with modern techniques allowing
for wide crossing with increasing success, increasingly diverse
wheat accessions are becoming available for pre-breeding (Hao
et al., 2020). To be of use to research and breeding programs,
such material needs to be tracked using either targeted molecular
markers (Singh et al., 2018; Rasheed and Xia, 2019) or
sequencing. The former has most frequently been used because
it offers low cost and high throughput (Zhang J. et al., 2017;
Zhang W. et al., 2017; Przewieslik-Allen et al., 2019). However,
marker probes will only hybridize to, and so provide a signal
for, the sequences for which they were designed. Thus, wheat
genotyping markers intended for introgression detection need to
be designed using sequences from a combination of wheat and
the progenitors and relatives thought to have been the source
of those introgressions (Wang et al., 2014; Zhang J. et al., 2017;
Przewieslik-Allen et al., 2019). Where the source of introgressed
material is unknown, and so not included in probe design,
genotyping is unlikely to track such regions.

Sequencing, having no requirement for prior knowledge of
the target, does not suffer from such a problem. However, the
size and complexity of the wheat genome create problems in
this regard. T. aestivum has a large (∼17 Gb) polyploid and
highly repetitive genome of which the exome constitutes less
than 5% (International Wheat Genome Sequencing Consortium
[IWGSC], 2014). To sidestep these issues, targeted sequencing
approaches, such as exome capture, are used (Kaur and Gaikwad,
2017). In wheat, several exome capture systems that incorporate
capture probe sets derived from both hexaploid wheat and its
relatives have been proposed (Winfield et al., 2012; Gardiner et al.,
2019; He et al., 2019). The capture probes themselves can tolerate
some degree of mismatch thus allowing the capture of sequences
outside the immediate confines of the species from which they
are derived. The Roche SeqCap EZ system can tolerate up to 10%
(Roche pers com) and the Arbor Biosciences myBaits system can
tolerate up to 20% divergence from the target sequence (Arbor
Biosciences, 2021). This property is highly beneficial where the
exact source of the material is unknown and has been exploited to
capture sequences from diverse origins in the wild relative species
of cotton (Salmon et al., 2012), cows (Cosart et al., 2011), and
humans (Jin et al., 2012) as well as in wheat (Saintenac et al., 2011;
Henry et al., 2014; He et al., 2019).

We recently described the variable sequence coverage of the
wheat variety ‘Player’ when exome capture data were aligned
to the ‘Chinese Spring’ reference sequence (Przewieslik-Allen
et al., 2021). Distinct drops in sequence coverage were evident
in chromosomes 2A and 2B which correlated with introgressions
from Aegilops ventricosa and Triticum timopheevii, respectively.
As the use of exome capture prior to sequencing followed
by alignment to a standard reference is common practice,
the potential for this to be disrupted by introgressions is a
concern, especially as many interesting, rare, and novel alleles
may be located in regions derived from wild relatives. This was
investigated using 10 elite T. aestivum cultivars and 2 T. aestivum
landrace accessions used in breeding.

RESULTS

Sequence Coverage
Using gene and promoter sequence capture (Gardiner et al.,
2019), 12 T. aestivum accessions (10 elite varieties and 2 landrace
accessions) were sequenced and total coverage compared. Total
reads were between 48,255,718 and 145,897,760 per accession;
after quality trimming and alignment to the IWGSC RefSeq
v1.0 ‘Chinese Spring’ reference (International Wheat Genome
Sequencing Consortium [IWGSC], 2018), there were between
20,973,857 and 63,662,179 uniquely mapped, paired reads per
accession (Table 1).

Sequence coverage across chromosomes displayed a
characteristic pattern; that is, there was a greater depth of
coverage toward the ends of chromosome arms and lower
coverage across centromeres (Figure 1A). However, this overall
pattern was, in places, interrupted by regions of pronounced
reduction in sequence coverage. These regions were not
seen on all chromosomes or simultaneously in all accessions
(Supplementary File 1). The most pronounced of these
reductions in coverage was observed in ‘Bacanora’, ‘Bobwhite’,
and ‘KWS Kielder’ and extended across the whole of the short
arm of chromosome 1B (c. 240 Mb; Figure 1B) in line with
the well documented and prevalent 1RS/1BL Secale cereale
translocation (Rabinovich, 1998). There was no reduction
in capture probe density across 1BS (Figure 1C) and the
nine accessions without the 1RS translocation do not show
a reduction in read coverage across this chromosome arm
(Supplementary File 1: 1B).

Other large drops in coverage were seen on 2BL, 2DL, and
5BL (Figure 2) which extended over approximately 85, 45, and
40 Mb, respectively. Additional, smaller drops in coverage were
also observed in telomeric regions, such as 2AS (Figure 3), 7DL,
and an additional region in 2DL (Supplementary File 1).

Cluster Analysis of Accessions
To determine whether there was any relationship between the
lines that shared read coverage profiles, cluster analysis was
performed with Axiom 35K Wheat Breeders’ Array genotyping
data (Allen et al., 2016). Analysis was performed on markers
specific to the chromosomes 2B (2,083 markers), 2D (2,237
markers), and 5B (1,749 markers). Accessions showed a pattern
of clustering that corresponded with the drops in coverage
(Figure 2B and Supplementary File 2). For chromosome 5B, for
example, the 12 accessions separated into two main clusters; the
accessions thought to contain the deletion fell into one cluster
while those with even sequence coverage fell into the other. The
separation into two clusters was driven by the markers spanning
the drop. Across the interval corresponding to the decline
in read coverage on chromosome 5B (position 499,569,304–
534,345,241), there were 141 single nucleotide polymorphism
(SNP) markers; for these markers, the mean percentage similarity
between the genotype calls for ‘Chinese Spring’ and those of the
eight accessions displaying the drop in coverage was only 13.3%.
This compares to a mean similarity of 59.1% for the SNP calls
across the rest of the chromosome (Figure 2C).

Frontiers in Plant Science | www.frontiersin.org 2 April 2022 | Volume 13 | Article 84185566

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-841855 April 6, 2022 Time: 19:27 # 3

Burridge et al. Exome Capture in Wheat

TABLE 1 | Read statistics before and after trimming with alignment statistics for total mapped and uniquely mapped reads.

Variety Total reads Trimmed reads Total mapped paired reads Uniquely mapped paired reads

Apogee 66,890,848 64,719,732 (96.8%) 33,445,424 28,796,984 (86.1%)

Bacanora 80,558,016 77,878,454 (96.7%) 38,939,227 33,411,894 (85.8%)

Bobwhite 57,245,246 55,371,124 (96.7%) 27,685,562 24,139,596 (87.2%)

Boregar 48,255,718 46,603,262 (96.6%) 24,127,859 20,973,857 (86.9%)

Cadenza 72,469,144 70,237,432 (96.9%) 36,234,572 31,033,245 (85.6%)

KWS Kielder 65,891,042 63,791,268 (96.8%) 32,945,521 28,236,689 (85.7%)

Maris Huntsman 52,673,928 50,665,506 (96.2%) 25,332,753 21,992,928 (86.8%)

Pavon 76 145,897,760 141,207,878 (96.8%) 72,948,880 63,662,179 (87.3%)

Renan 56,921,314 54,670,680 (96.0%) 28,460,657 24,854,489 (87.3%)

Riband 68,965,154 66,392,980 (96.3%) 33,196,490 28,910,396 (87.0%)

Watkins 141 51,300,352 49,480,812 (96.5%) 24,740,406 21,238,652 (85.8%)

Watkins 777 99,274,852 95,527,090 (96.2%) 49,637,426 43,055,487 (86.7%)

FIGURE 1 | Read coverage for the accession ‘Bacanora’ after alignment to IWGSC ‘Chinese Spring’ assembly version 1.0. (A) Read coverage across
chromosomes tended to be higher toward the telomeres and lower across the centromere. (B) Chromosome 1B shows a clear drop in coverage across the short
arm (NB in all plots, chromosome short arms are on the left). (C) Location and density of capture probes across chromosome 1B (data from Gardiner et al., 2019).

Bibliographic Search for Introgressions
A number of wheat introgressions reported in the literature
were assembled (Table 2) to determine whether there was any
relationship between them and the patterns of reduced sequence
coverage observed in this study. The large drop in coverage
on 1BS, for example, is present in those varieties (Bacanora,
Bobwhite, and KWS Kielder) known to possess a whole arm
translocation from S. cereale; we have previously reported this
ourselves based on genotyping results using the Axiom High-
Density Array (Winfield et al., 2015). Other chromosomal regions
with reduced read coverage were also related to regions of known

introgressions. However, not all the reports of introgressions that
we found in the literature had a corresponding drop in sequence
coverage, and in some cases, there was a drop in sequence
coverage for which no source was found. Notable deletions, such
as that on 1DL of ‘Cadenza’, highlight the similarity between
deletions and introgressions in sequence coverage.

Efficacy of Sequence Capture
The accessions containing the 1RS.1BL translocation (‘Bacanora’,
‘Bobwhite’, and ‘KWS Kielder’) displayed a clear drop in read
coverage across the short arm of 1B; we hypothesized that this was
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FIGURE 2 | (A) Average depth of coverage for chromosome 5B in the accessions ‘Bobwhite’ and ‘Pavon 76’; both show a drop in read coverage on the long arm at
approximately position 490,000,000–540,000,000. (B) Dendrogram based on the 1,749 Axiom markers mapped to chromosome 5B; the 8 varieties (‘Bobwhite’,
‘Boregar’, ‘KWS Kielder’, ‘Maris Huntsman’, ‘Pavon 76’, ‘Renan’, ‘Riband’, and ‘Watkins 141’) with the drop in read coverage cluster. (C) A sample of the SNP calls
across the interval 499,569, 304–534,345,241 highlighting the difference between the two groups (blue and red are the alternative homozygote calls; green indicates
heterozygote calls).

due to capture efficacy in the different backgrounds. The potential
efficacy of probes to capture sequences from either ‘Chinese
Spring’ or S. cereale was assessed by BLASTing their sequences
to their respective assemblies. Capture probe sequences for
chromosome 1BS (26,985 sequences) were BLASTed against the
1B pseudomolecule of ‘Chinese Spring’ and 1R of S. cereale.
This resulted in 29,652 hits to ‘Chinese Spring’ 1BS and 12,120
hits to S. cereale 1RS. To both assemblies, some probes had
multiple hits. The number of probe sequences that had a hit
was 26,222 and 8,419, respectively. Those with a single hit were
23,969 and 5,822, respectively (Figure 4A), and the percentage
similarity between probe sequences and their target was 99.8 and
95.6%, respectively (Figure 4B). That is, a greater number of
probes matched the ‘Chinese Spring’ sequence and with greater
percentage similarity.

In contrast, the known Ae. tauschii introgression into 5DS
of the variety ‘Maris Huntsman’ (Wang et al., 2005) was not
evidenced by a drop in read coverage. The probe sequences
for chromosome 5DS (20,253 sequences) were BLASTed against
the assemblies of both ‘Chinese Spring’ and Ae. tauschii 5DS
resulted in 24,300 hits to the former and 24,173 hits to the

latter. The number of probe sequences that had a hit was
20,082 and 19,872, respectively. Those with a single hit were
17,550 and 17,358, respectively (Figure 4A). The percentage
similarity between probe sequences and their target was 99.1
and 98.9%, respectively (Figure 4B). Thus, it would appear, the
sequences of wheat and Ae. tauschii are sufficiently similar over
this region that capture probes are equally efficient at capturing
sequences from them. To confirm this hypothesis, the sequences
surrounding Pm2, were compared. Based on the alignment, the
‘Chinese Spring’ and Ae. tauschii reference assemblies were highly
similar across the 2 Mb of sequence centered on the Pm2 gene
(99.1% similarity); in each, there were 21 annotated genes and
synteny appears to be maintained apart from the presence of an
inverted repeat of TraesCS5D02G044500 (position 43,382,967–
43,386,355) to the upstream position 42,989015–42,992,511 –
TraesCS5D02G043600 (Supplementary Table 1). The sequences
from ‘Maris Huntsman’ also aligned well to both assemblies.
However, within the coding sequence of the Pm2 gene itself, two
indels, one particularly relevant, supported the hypothesis that
‘Maris Huntsman’ is more similar to Ae. tauschii than to ‘Chinese
Spring’. That is, relative to ‘Chinese Spring’, both Ae. tauschii and
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FIGURE 3 | Sequence coverage across the first 100 Mb of chromosome 2AS. The two accessions, ‘Boregar’ and ‘Renan’, show reduced coverage across the first
25–30 Mb which corresponds with the size of the known introgression from Ae. ventricosa (Robert et al., 1999).

FIGURE 4 | (A) Bar graphs showing the number of capture probes that had BLAST hits to ‘Chinese Spring’ chromosome 1BS (IWGSC v1), S. cereale chromosome
1RS (JADQCU000000000 v1 of the cultivar Weining), ‘Chinese Spring’ chromosome 5DS (IWGSC v1), and Ae. tauschii chromosome 5DS (PRJNA341983 assembly
of Ae. tauschii subsp. strangulata). The number of probe sequences for chromosomes 1BS and 5DS was 26,985 and 20,253, respectively. The number of probes
that produced a hit was 26,222 to ‘Chinese Spring’ 1BS, 8,419 to S. cereale 1RS, 20,082 to ‘Chinese Spring’ 5DS, and 19,872 to Ae. tauschii 5DS. There were
more hits than probe sequences as some probes had multiple hits. (B) Box and whisker plots showing the percentage similarity between the probe sequences and
their respective targets.
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TABLE 2 | Introgressions and deletions reported in the literature for the accessions in this study.

Cultivar Gene Chromosome Source References

Bacanora 1BS S. cereale Driever et al., 2014

Ppd1 2DS Driever et al., 2014

Bobwhite 1BS S. cereale Warburton et al., 2002

Rht8a 2DS Worland et al., 1998

Boregar Pch1 7DL Ae. ventricosa Burt and Nicholson, 2011

Cadenza Eps 1DL Deletion Zikhali et al., 2016

Yr7 2BL T. durum Marchal et al., 2018

Yr5 2BL T. spelta Marchal et al., 2018

Sbm1 5DL Kanyuka et al., 2004

Yr6 7BS T. aestivum Ma et al., 2015

KWS Kielder 1BS S. cereale Przewieslik-Allen et al., 2021

Maris Huntsman Yr3a 1B T. aestivum Bai et al., 2014

Pm6 2BL T. timopheevii Wang et al., 2005

Yr13 2BS T. aestivum Bai et al., 2014

Lr13 2BS T. aestivum McIntosh et al., 1995

Yr34 5AL T. monococcum Chen et al., 2021

Yr4a 6B T. aestivum Bai et al., 2014

Yr2 7BL T. aestivum Bai et al., 2014

Pm2 5DS Ae. tauschii Wang et al., 2005

Pavon 76 Lr10 1A T. aestivum Singh and Rajaram, 1991

Yr29 1BL T. aestivum Cobo et al., 2019

Lr46 1BL T. aestivum Singh and Rajaram, 1991

Yr29 1BL T. aestivum William et al., 2003

Yr7 2BL T. durum Durbin et al., 1989

Lr13 2BS T. aestivum Singh and Rajaram, 1991

Yr30 3BS T. aestivum Boyd, 2005

Sr2 3BS T. dicoccum Mago et al., 2014

Lr1 5D T. aestivum Singh and Rajaram, 1991

Yr6 7BS T. aestivum Wellings, 1986

Renan Pm4b 2AL T. turgidum Chantret et al., 1999

Yr17 2AS Ae. ventricosa Robert et al., 1999

Ppd-B1b 2B Kiseleva et al., 2007

Pch1 7DL Ae. ventricosa Burt and Nicholson, 2011

Riband Lr17b 2AS T. aestivum Pathan and Park, 2006

Stb15 6AS Arraiano et al., 2007

Pm4b 2AL T. turgidum United Kingdom Cereal Pathogen Virulence Survey [UKCVS], 2004

Pm6 2BL T. timopheevii United Kingdom Cereal Pathogen Virulence Survey [UKCVS], 2004

Pm2 5DS Ae. tauschii United Kingdom Cereal Pathogen Virulence Survey [UKCVS], 2004

‘Maris Huntsman’ carry a 3 bp insertion at position 43,405,954
and a 7 bp insertion at position 43,407,045 (Figure 51).

Efficacy of Alignment to the Reference
Assembly
To further investigate the role of sequence alignment in
the regions of reduced sequence coverage, a BLAST search
was performed using the mapped and unmapped reads from
‘Bacanora’ against a database containing both T. aestivum
and S. cereale sequences. Of the 1,959 unmapped reads,
709 (36.2%) hit sequences in the BLAST database: 654

1https://plants.ensembl.org/Triticum_aestivum/Location/Compara_Alignments?
align=9814--Aegilops_tauschii--5D:46999777-47002088;db=core;g=
TraesCS5D02G044600;r=5D:43405783-43407148;t=TraesCS5D02G044600.1

(33.4%) to the S. cereale 1R sequence and 55 (2.8%) to the
T. aestivum 1B sequence. Conversely, for the 1,421 reads that
had successfully mapped to the T. aestivum ‘Chinese Spring’
reference sequence, there were only 167 (11.8%) hits to the
S. cereale 1R sequence while 1,242 (87.4%) hits to the wheat 1B
reference sequence.

For unknown introgressions, it is not possible to compare
the unmapped reads to the source sequence. To better
understand from where these reads came, an assembly of
unmapped reads for all 12 accessions was created and then
compared with a database of Poaceae/S. cereale protein
sequences (Figure 6). The unmapped sequences were
predominantly (62.1%) found in the progenitor accessions
Triticum turgidum (AABB genome), Ae. tauschii (DD),
and Triticum urartu (AA). There were also additional hits
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FIGURE 5 | Details of the Pm2 gene in ‘Chinese Spring’ and Ae. tauschii: (A) a 3 bp insertion and (B) a 7 bp insertion. Respectively, green and blue bases are
‘Chinese Spring’ reference sequences before and after the indel. Red bases are the insertion (found in both Ae. tauschii and ‘Maris Huntsman’).

FIGURE 6 | (A) Pie chart showing the best BLAST hits against a combined Poaceae/S. cereale database for captured reads that didn’t map to the IWGSC ‘Chinese
Spring’ assembly v1. (B) Phylogenetic tree (redrawn from Zhou et al., 2017), showing the relationship of the species used in our Poaceae/S. cereale database.

to the more distant relatives Hordeum vulgare (HH) and
S. cereale (RR).

DISCUSSION

Exome Capture
The ‘Gene Capture v1’ and ‘Promoter Capture v1’ probes are
based on sequences not only from T. aestivum but also Ae.
tauschii and T. turgidum and, thus, should capture sequence

from bread wheat and its progenitors (Gardiner et al., 2019).
In this study, the exome capture protocol proved effective at
capturing a representative genome sample from each of the 12
accessions examined with sequence coverage in distal regions
of chromosomes being greater than that across centromeres
(Figure 1A); this pattern reflects capture probe distribution
which itself is determined by the known telomere to centromere
gene gradient (Pingault et al., 2015; Gardiner et al., 2019).
Probes appear to have successfully captured wheat sequence and
that of introgressions from progenitors as demonstrated by the
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capture of sequence from the 5DS, Ae. tauschii introgression in
‘Maris Huntsman’ (Supplementary Table 1). A review of the
literature reporting primary genepool introgression into bread
wheat, further indicated that probes were effectively capturing
sequence from these introgressions and, thus, resulting in even
sequence coverage across such introgressions and the host
sequences flanking them. For example, an introgression from
T. turgidum subsp. carthlicum has been reported on 2AL of
‘Renan’ and ‘Riband’ (Chantret et al., 1999; United Kingdom
Cereal Pathogen Virulence Survey [UKCVS], 2004); we saw no
decrease in sequence coverage for either accession indicating
successful capture and alignment. Importantly, this was not just
the case for the primary relatives (T. turgidum and Ae. tauschii)
that had been included in the design of the capture probes. An
introgression from the primary relative, Triticum monococcum,
has been reported to be present in 5AL of ‘Maris Huntsman’
(Chen et al., 2021; Supplementary File 1), a Triticum spelta
introgression has been reported in 2BL of ‘Cadenza’ (Marchal
et al., 2018; Supplementary File 1) and introgression from
Triticum dicoccum has been reported in 3BS of ‘Pavon 76’
(Mago et al., 2014; Supplementary File 1) and none had a
corresponding decrease in coverage suggesting adequate capture
of these sequences.

The region associated with the Pm2 gene in ‘Maris Huntsman’
was used as a case study to confirm that sequence diversity
present in regions with successful capture and alignment were,
indeed, from a wild relative source. Alignment of the captured
sequences from ‘Maris Huntsman’ to both the ‘Chinese Spring’
T. aestivum reference (IWGSC v1.0) and Ae. tauschii (Ae. tauschii
v4.0 GCF_002575655.1) assemblies showed them to be highly
similar. However, two small insertions, with respect to ‘Chinese
Spring’, in ‘Maris Huntsman’ and Ae. tauschii give support to
the hypothesis that ‘Maris Huntsman’ harbors an Ae. tauschii
introgression (Figure 5). The successful capture of this region
is hardly surprising considering that Ae. tauschii sequence was
used to guide capture probe design (Gardiner et al., 2019) and
given the high degree of similarity between the two species,
T. aestivum and Ae. tauschii, across the Pm2 region. Indeed,
capture probes designed exclusively from bread wheat sequence
may well have proved equally efficacious at capturing sequence
from this introgressed region.

The design of the probes, then, has allowed the capture of
sequences beyond those belonging exclusively to T. aestivum.
However, one must expect that beyond a certain level of sequence
diversity, a reflection of the evolutionary distance of donors of
introgressed segments, probes will no longer capture sequence.
Such wide introgressions will not be captured, and coverage of
the target will drop. This is a serious limitation if novel regions
from more distant relatives are the aim of the capture sequencing
and other sequencing methods will need to be employed.

Alignment to the Reference Assembly
In addition to successful capture and sequencing, one must be
able to realign the sequence to the reference (in this case ‘Chinese
Spring’ IWGSC v1) for it to be identified as present. There is
the potential for the mapping parameters to under-utilize the
available sequence as the stringency of the parameters used to

align the captured sequences to the ‘Chinese Spring’ reference
genome result in some successfully captured sequences being
unable to align. Not all variation present in sequencing data is
a true reflection of the sequence present and as the alignment
stringency is relaxed, sequencing errors may enter the data.
To preserve the high-quality sequences, it seems inevitable that
diverse sequences will be lost by data processing.

Some mapping protocols, such as the mapping of non-unique
hits, can allow for homoeologous sequences to mask gaps in
coverage due to deletions or introgressions. In addition, as the
mapping of zero in read coverage is not a standard protocol,
the gaps seen as a result of diverse sequences are not made
apparent (Supplementary Figure 1) and the inability to align
diverse sequences to the reference is not reported.

Efficacy of Alignment to the Reference
Assembly
For all 12 accessions, the captured sequences that could
not be mapped to the reference were BLASTed against a
Poaceae/S. cereale protein database (Figure 6). Of the sequences
that had a hit to the protein database, 62.1% had a match to
a sequence derived from a progenitor species (Figure 6). This
indicates that some sequences were captured and sequenced
but had no corresponding sequence in the ‘Chinese Spring’
reference. Given an alternative reference, some of these sequences
may have aligned. The failure of almost 40% of the captured
sequences that did not map to the reference probably reflects
the limitations of the created Poaceae/S. cereale protein database
since we recognize that there is limited sequence data available
for many wheat relatives; the major crop species T. aestivum,
T. turgidum, and H. vulgare are well represented in nucleotide
databases, but this is not the case for wild relatives. Indeed,
we chose to compare our un-mapped sequences to a protein
database, rather than a nucleotide database, to maximize the
amount of sequence data available. The Poaceae/S. cereale protein
database contained 472,031 sequences. Through this approach,
we were able to identify sequences potentially originating
from secondary and tertiary genepool species. However, some
sequences remained completely unidentified emphasizing that,
probably, some diversity is regularly omitted from standard
sequencing and alignment. As such, exome capture followed
by alignment to a hexaploid reference is not a reliable tool
for the identification of introgressions within hexaploid wheat.
Where exome capture has been performed and an introgression
is suspected, identification is limited by the current availability of
wheat relative sequences.

Diverse sequences, such as the Ae. tauschii introgression,
described in ‘Maris Huntsman’ were successfully captured,
sequenced, and aligned in part due to the presence of Ae.
tauschii sequences in the capture probe set and in part due
to the similarity of the progenitor sequence to the D genome
of the reference assembly. For the more distant wild relatives,
both capture and alignment were less successful. The reduction
in mapped sequences was most pronounced in the accessions
containing the 1RS.1BL translocation (Figure 1). This is a known
introgression that is from a tertiary source. When the 1BS capture
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probe sequences (26,985) were BLASTed against 1RS of the
rye genome assembly (JADQCU000000000 v1), 31% had a hit
(Figure 4A), suggesting that some capture would occur, but the
percentage similarity between probe sequence and its target was
lower in rye than in wheat, suggesting that it might not map
back to the reference. This in silico assessment was reflected
in the captured but un-mapped sequences. By performing a
BLAST search against a T. aestivum and S. cereale database, a
number of the unmapped reads in the 1RS containing accession
‘Bacanora’ were found to have matches to the S. cereale sequences
(33.4%), considerably higher than the S. cereale sequences found
within the mapped reads of the same accession (11.8%). This
suggests that some of the unmapped reads were from regions
of 1RS.1BL that were successfully captured but could not be
successfully mapped back to the reference. As S. cereale sequences
are poorly represented in the BLAST database (there were 25,214
out of 472,031 in total), the full extent of S. cereale sequences
captured is not known and the ratio present may be higher.
While it seems that this tertiary relative introgression was not
captured to the same extent as a primary genepool relative, it
is important to note that some sequences were captured despite
the dissimilarity between S. cereale and the T. aestivum target
but the presence of the sequenced further limited by alignment
to the reference.

Each of the 12 accessions used in this study, showed reduced
read coverage across some regions of at least one of its
chromosomes. Most of these drops in coverage were common
to several of the accessions studied and, in many cases, they
co-located with documented introgressions or with regions
where genotyping data had highlighted extensive variability. The
accessions ‘Renan’ and ‘Boregar’ had reduced coverage at the
end of the short arm of chromosome 2A corresponding to the
known introgression from Ae. ventricosa associated with rust
resistance (Lr37, Hanzalová et al., 2007; Yr17 Dedryver et al.,
2009). The size of this introgression has been reported to be c.
33 Mb (Gao et al., 2021) which corresponds with the size of the
decline in coverage observed in this study. The eyespot resistance
gene, Pch1 located on the distal end of 7DL, also introduced
from Ae. ventricosa (Leonard et al., 2007) corresponded to the
terminal drop in coverage seen in ‘Boregar’ and ‘Renan’, both
reported containing the Pch1 gene (Burt and Nicholson, 2011).
The powdery mildew resistance gene Pm6 from T. timopheevii
on 2BL was reported in both ‘Riband’ and ‘Maris Huntsman’
(United Kingdom Cereal Pathogen Virulence Survey [UKCVS],
1996; Wang et al., 2005) and reveals itself as a distinct decrease
in coverage in both accessions. Interestingly, this dip is also
found in ‘Boregar’ which hasn’t been reported to carry the
2BL introgression but, on the basis of evidence here, probably
does. The presence of unreported introgressions is thought to
be quite common. For example, several accessions (‘Bacanora’,
‘Boregar’, ‘Cadenza’, ‘KWS Kielder’, ‘Maris Huntsman’, ‘Renan’,
and ‘Riband’) shared a large region (c. 45 Mb) with reduced
read coverage, which we assume might indicate an introgression,
but for which we could find no documentary evidence. This
region spans over 640 genes with a range of functions, such as
ion channel regulation, phosphorylation, and electron transfer
(Supplementary File 4).

Here we demonstrate that there is a relationship between
drops in sequence coverage and sequence similarity of the
introgression sequence to the region it replaced. That is,
introgressions from primary relatives, such as Ae. tauschii or
T. dicoccum (Table 2), are unlikely to fail capture and thus
be sequenced and aligned. On the other hand, introgressions
from secondary and tertiary genepool species, such as S. cereale,
Ae. ventricosa, and T. timopheevii, are likely to avoid capture
(Figure 4) and, if captured, fail to align to the reference
(Figure 6); such failures are characterized by reduced sequence
coverage across the introgressions. The degree of sequence
similarity between a wheat relative sequence and the T. aestivum
equivalent reflects the evolutionary distance. The observations
of this study agree with the study in which human exome
capture probes were used to capture exome sequences in
non-human primates; “specificity of the capture decreased as
evolutionary divergence from humans increase” (Jin et al., 2012).
Exome capture probes designed for T. aestivum efficiently
captured genic sequences from the D genome progenitor
species, Ae. tauschii, but performed much less well against
S. cereale, an evolutionary more distant species belonging to the
tertiary genome.

Modern elite wheat varieties carry numerous introgressions
which provide genes of important agronomic traits (Table 2),
but exome capture may limit the ability to sequence these
novel and interesting regions. Introgressions from the primary
genepool were successfully captured. Those from more distantly
related species, members of the secondary and tertiary genepool,
however, were poorly represented in the mapped sequences
data (Table 2). While there was evidence that some sequences
from secondary and tertiary genepool relatives were present
amongst the captured sequences (Figure 6) their number was
small and did not map to the reference. Localized reduction in
sequence coverage was observed in all 12 accessions studied,
including the landrace accessions. Many of these regions of
low coverage were collocated with documented introgressions
or deletions, while others remain unknown. The method of
sequencing used here has essentially limited the diversity
of sequence that could be reported. The careful design of
capture probes is critically important as lack of capture probe
diversity will lead to failure to capture sequence introgressed
from distantly related species. The reference genome used will
also strongly bias the sequences that can be aligned and so
reported as present.

EXPERIMENTAL PROCEDURES

Sample Preparation and Sequencing
Genomic DNA from 12 wheat accessions (14 days after
germination) was extracted, RNase treated, and purified as
described in Burridge et al. (2017).

Individual aliquots in a total volume of 55 µl were sheared
to an average of 300 bp using an E220 Focused-ultrasonicator
(Covaris, Woburn, MA, United States). SeqCap EZ HyperCap
Workflow User’s Guide (Version 2.0) was used with the following
modifications. The starting material was increased to 2 µg
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DNA. The A-tailing reaction was changed to 20◦C for 30 min,
followed by 65◦C for 30 min. Size selection of the pre-capture
libraries was replaced with a 0.9 bead: sample ratio. The
precapture amplification was changed to nine cycles followed
by immediate clean-up. COT human DNA was replaced with
1 µl of Developer Reagent Plant Capture Enhancer (NimbleGen)
per 100 ng of DNA.

Exome capture was performed using ‘Gene Capture v1,
4000026820’ and ‘Promoter Capture v1, 4000030160’ wheat
capture probes (Gardiner et al., 2019). Gene and Promoter
capture probes were not lyophilized but capture reactions
performed separately and products combined after post-capture
amplification. For the capture wash, the first Wash Buffer I
and both Stringent Wash Buffer steps used buffer preheated to
57◦C. Fragment size distribution throughout was determined by
TapeStation (Agilent) analysis.

Capture probe enriched sequencing libraries were sequenced
at the Bristol Genomics Facility using NextSeq 500 and
NextSeq500 2 × 150 bp High−Output v2 kit (Illumina). A final
library concentration of 0.8 pM was used with a 5% PhiX
control library. The full library preparation and capture method
are described in detail in Supplementary File 3. All reads are
available from the NCBI sequencing read archive using project
ID: PRJNA789931.

Data Analysis
Fastq files for each wheat variety were subjected to quality
control using FastQC1 (Babraham Bioinformatics, 2020) and
were pre-processed using Fastp (Chen et al., 2018) to trim adaptor
sequence and for quality filtering. Paired-end reads were aligned
to the ‘Chinese Spring’ reference sequence (IWGSV v1.0) using
Burrow-Wheeler Aligner (BWA) (Li and Durbin, 2009) (version
0.7.7-r441), and uniquely mapped reads were identified using
sambamba (Tarasov et al., 2015) (version v0.4.4).

Coverage for each chromosome was calculated using samtools
(Li et al., 2009) (version 0.1.19-44428cd) using the depth option.
Custom perl scripts (available on request) were used to calculate
the average depth of coverage for 5 million base pair bins across
each chromosome and exome coverage graphs were generated
using R (version 3.2.5) (R Core Team, 2013).

Capture probe coverage diagrams were generated with the R
package chromPlot using unique location hits and including 0
reads (Verdugo and Oróstica, 2016).

All unmapped reads for the ‘Bacanora’ were extracted from
the bam file using samtools (Version: 1.10-24-g383a31b), along
with all reads that mapped to the chromosome 1B IWGSC v1.0
reference from physical mapping positions 1–230,000,000 bp
(spanning the putative 1B/1RS introgression. These unmapped
and mapped reads were then separately queried against a local
BLAST database that contained the wheat 1B sequence and the
S. cereale 1R sequence, using default BLASTN parameters. The
top BLAST hit was then parsed from the BLAST output files using
custom perl scripts.

Several gnome assemblies were required for this study:
IWGSC v1 Chinese Spring assembly; Rye assembly of the
Chinese rye cultivar Weining (Li et al., 2021); Ae. tauschii subsp.
strangulata (Luo et al., 2017).

Exome Capture Probes to 1BS and 5DS
The browser extensible data (BED) file containing
the genomic coordinates of the gene capture probes,
Wheat_gene_capture_probes.bed, from Gardiner et al. (2019)
was downloaded from the Grassroots Data Repository.2

From this file, the coordinates for the TGAC v1 probes to
chromosomes 1BS and 5DS were extracted. Using the python
package pysam, the sequences for these probes were extracted
from the TGAC version 1 genome assembly of ‘Chinese Spring’
(Triticum_aestivum.TGACv1.30.dna.genome.fa). The gene
capture probe sequences for chromosome 1BS were BLASTed
against the chromosome 1BS sequence from the IWGSC v1
assembly and to the chromosome 1RS sequence of the genome
assembly of the cultivar ‘Weining’ rye (JADQCU000000000 v1),
an elite Chinese S. cereale variety (Li et al., 2021). Likewise, the
capture probe sequences for chromosome 5DS were BLASTed
against the chromosome 5DS sequence from the IWGSC v1
assembly and to the chromosome 5DS from Ae. tauschii subsp.
strangulata assembly, Aet v4.0 (GCA_002575655.1).

Gene Sequences Surrounding Pm2 Gene
The putative 5D introgression in ‘Maris Huntsman’ containing
the powdery mildew resistance gene Pm2, was used as the point
of reference. The Pm2 gene (TraesCS5D02G044600.1) sequence
downloaded from EnsemblPlants is 1,266 bp long and produces
a protein of 421 aa. To obtain the Ae. tauschii homolog, the
‘Chinese Spring’ Pm2 sequence was BLASTed against the NCBI
Triticeae database; the top hit, with 99.3% identity (1,255/1,264),
was the Ae. tauschii subsp. strangulata sequence on 5D (sequence
id MW538911.1). The full length of this sequence was 4,421 bp.

To compare sequence similarity of ‘Chinese Spring’ and Ae.
tauschii coding sequences around the Pm2 gene, we identified,
using the gff3 file for IWGSC v1 (Ensembl Plants genome
browser), all the annotated genes within 1 Mb up- and down-
stream; in ‘Chinese Spring’, 21 genes were present within this
interval (Supplementary Table 1). The sequences of these 21
genes were BLASTed against the NCBI Triticeae database to
obtain their homologs in Ae. tauschii. These were then BLASTED
against the Ae. tauschii v 4.0 (GCF_002575655.1) assembly to find
their positions.

Using BWA, (Li and Durbin, 2009) we aligned the ‘Maris
Huntsman’ captured sequences against both ‘Chinese Spring’
(IWGSC v1.0) and Ae. tauschii (Aet V4.0) assemblies. Both
assemblies and the ‘Maris Huntsman’ BAM files were indexed
using Samtools. The gff3 file of the ‘Chinese Spring’ assembly
was also downloaded. An equivalent gff3 file for Ae. tauschii
was created based on the positions obtained by BLAST and the
regions viewed in IGV (Robinson et al., 2011).

The ‘Maris Huntsman’ captured sequences were aligned,
using BWA, to both CS and Aet the sequences around the
Pm2 gene (TraesCS5D02G044600 in ‘Chinese Spring’ and
AET5Gv20114600 in Ae. tauschii) in the accession ‘Maris
Huntsman’ to that of the ‘Chinese Spring’ assembly (IWGSC
v1.0) and Ae. tauschii v4.0. For both assemblies, using pysam,

2https://opendata.earlham.ac.uk/wheat/under_license/toronto/Gardiner_2018-
07-04_Wheat-gene-promoter-capture/
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pulled out the sequence for the Pm2 gene (c. 4,420 bp) plus 1 Mb
both up and downstream from it. In both assemblies, this region
contains 21 genes.

We were interested to see whether the exome captured
sequences from ‘Maris Huntsman’ 5DS had greater similarity to
the gene sequences of ‘Chinese Spring’ or those of Ae. tauschii.
Because we believed that the putative introgression contained
the powdery mildew resistance gene Pm2, we used this gene
as our point of reference. We began by pulling down the Pm2
gene (TraesCS5D02G044600.1) sequence from EnsemblPlants;
this is 1,266 bp long and produces a protein of 421 aa. To
obtain the homolog from Ae. tauschii, we BLASTed the ‘Chinese
Spring’ Pm2 sequence (TraesCS5D02G044600) against the NCBI
Triticeae database; the top hit was the homologous gene on
5D of Ae. tauschii subsp. strangulata (AET5Gv20114600). This
sequence was then BLASTed against the NCBI Triticeae database.
With 99.3% identity (1,255/1,264), it hit the Ae. tauschii Pm2
sequence (MW538911.1), which has a full-length functional
gene of 4,421 bp.
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A High-Quality Haplotype-Resolved 
Genome of Common Bermudagrass 
(Cynodon dactylon L.) Provides 
Insights Into Polyploid Genome 
Stability and Prostrate Growth
Bing Zhang 1,2, Si Chen 2, Jianxiu Liu 3, Yong-Bin Yan 1, Jingbo Chen 3, Dandan Li 3 and 
Jin-Yuan Liu 1*

1 School of Life Sciences, Tsinghua University, Beijing, China, 2 College of Animal Science and Technology, Yangzhou 
University, Yangzhou, China, 3 Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China

Common bermudagrass (Cynodon dactylon L.) is an important perennial warm-season 
turfgrass species with great economic value. However, the reference genome is still 
deficient in C. dactylon, which severely impedes basic studies and breeding studies. 
In this study, a high-quality haplotype-resolved genome of C. dactylon cultivar Yangjiang 
was successfully assembled using a combination of multiple sequencing strategies. 
The assembled genome is approximately 1.01 Gb in size and is comprised of 36 
pseudo chromosomes belonging to four haplotypes. In total, 76,879 protein-coding 
genes and 529,092 repeat sequences were annotated in the assembled genome. 
Evolution analysis indicated that C. dactylon underwent two rounds of whole-genome 
duplication events, whereas syntenic and transcriptome analysis revealed that global 
subgenome dominance was absent among the four haplotypes. Genome-wide gene 
family analyses further indicated that homologous recombination-regulating genes 
and tiller-angle-regulating genes all showed an adaptive evolution in C. dactylon, 
providing insights into genome-scale regulation of polyploid genome stability and 
prostrate growth. These results not only facilitate a better understanding of the complex 
genome composition and unique plant architectural characteristics of common 
bermudagrass, but also offer a valuable resource for comparative genome analyses 
of turfgrasses and other plant species.

Keywords: Cynodon dactylon, common bermudagrass, genome, haplotype, tiller angle

INTRODUCTION

Common bermudagrass (Cynodon dactylon L., 2n = 4x = 36) is an important warm-season turfgrass 
species and is widely used to produce beautiful and uniform turf for public parks, home 
lawns, golf courses, and sport fields in warm regions around the world (Yang et  al., 2018; 
Zhang et  al., 2018a). In some regions, C. dactylon is also used as forage, medicinal, and 
energy plants (Hill et  al., 2001; Nagori and Solanki, 2011; Xu et  al., 2011). Since its origination 
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from Africa or Indo-Malaysian, C. dactylon was spread to 
tropical and subtropical areas worldwidely (Kneebone, 1966; 
Harlan and de Wet, 1969). As a cross-pollinating plant, wild 
germplasms of C. dactylon collected at different regions usually 
show enormous genetical and morphological variations (Wu 
et  al., 2004, 2007; Farsani et  al., 2012; Tan et  al., 2014; Zheng 
et  al., 2017). Karyotype and molecular marker analyses not 
only revealed that polyploidy and aneuploidy events exist in 
C. dactylon but also pointed out the genome of C. dactylon 
is highly heterozygous (Wu et  al., 2006; Chaves et  al., 2019; 
Grossman et  al., 2021). These characteristics make C. dactylon 
an interesting plant material to investigate genome stability, 
variability, and evolution (Khanal et  al., 2017).

Unlike domesticated cereal grasses including rice, wheat, 
maize, and sorghum, C. dactylon has typical plant architectural 
characteristics of wild grasses that its stems are differentiated 
into shoots, stolons, and rhizomes (Dong and de Kroon, 1994; 
Zhang et  al., 2019; Ma et  al., 2021). Shoots grow erectly and 
are widely seen in other plants, whereas stolons and rhizomes 
are two types of prostrate stems that grow aboveground and 
underground, respectively (Guo et  al., 2021). Through 
regeneration of new seedlings at stolon nodes, C. dactylon 
plants are asexually reproduced in a colonial growth mode 
(Zhang and Liu, 2018). The high efficiency to build turf using 
commercial C. dactylon cultivars is mainly derived from this 
virtue. During cold days in winter, the aboveground parts of 
common bermudagrass plants withered and died, whereas the 
underground rhizomes remain alive and new plants will 
regenerate from rhizome nodes at warm days next year (Satorre 
et  al., 1996). By repeating the cycle of growth at aboveground 
and dormancy at underground, C. dactylon maintains a perennial 
life style, which also contribute to its usage as an eminent 
turfgrass. Development of asexual reproductive and perennial 
versions of important grain crops is an attractive measure to 
sustainably meet the increasing global food demand (Glover 
et  al., 2010; Ozias-Akins and Conner, 2020). Elucidating the 
mechanism how C. dactylon possesses its unique plant 
architectural characteristics could simultaneously provide new 
insights into turf breeding and crop improvement.

In this study, we  reported a haplotype-resolved assembly 
of the highly heterozygous C. dactylon genome through the 
combined application of Pacific Biosciences (PacBio) single-
molecule sequencing, Illumina paired-end sequencing, Bionano 
optical mapping, and chromosome conformation capture (Hi-C) 
technologies. With the assembled genome dataset and annotation 
information, we  further analyzed the subgenomic composition 
and adaptive evolution of C. dactylon. Results of this study 
not only expand our understanding of genome structure and 
plant architectural regulation in C. dactylon, but also provide 
a valuable resource for genetic studies and breeding of turfgrasses.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Cynodon dactylon cultivar Yangjiang was used for genome 
sequencing and assembly in this study. The bermudagrass turf 

were grown in turfgrass plots of Yangzhou University (longitude 
and latitude: 32°35’N, 119°40′E; average annual temperatures: 
22.4°C; average annual precipitation: 1, 106 mm; annual average 
sunshine hours: 1, 960 h; soil type: 80% river sand; and 20% 
peat soil) under routine management conditions (irrigation: 
keep the soil moist as required; fertilization: four times/year; 
and mowing: one times/month) for 3 years. Healthy leaves were 
randomly collected from the turf plots. Half of the leaf samples 
were frozen and used for de novo sequencing, whereas another 
half of fresh leaf samples were used for Bionano and Hi-C 
sequencing. Oryza sativa subspecies indica cultivar 93–11 was 
grown in growth chamber at 24°C under 16 h/8 h light/
dark conditions.

Flow Cytometry Estimation of Genome 
Size
The genome size of C. dactylon cultivar Yangjiang was estimated 
using flow cytometry as previously described (Zhang et  al., 
2020). Specifically, O. sativa cv. 93–11 with a genome size of 
430 Mb was used as an internal standard. Young leaves of 
C. dactylon and O. sativa were homogenized on ice in Galbraith’s 
buffer (45 mM MgCl2, 30 mM sodium citrate, 20 mM MOPS, 
and 0.1% (v/v) Triton X-100, pH 7.0) with 50 μg mL−1 propidium 
iodide. After filtration with 40 μm nylon cell strainer (BD 
Biosciences, Franklin Lakes, United States), samples were analyzed 
on a FACSCanto™ II flow cytometer (BD Biosciences). The 
flow cytometry data were analyzed using BD Spectrum Viewer.

Illumina Sequencing and K-mer Analysis
Genomic DNA was isolated from the frozen leave samples 
using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany). 
The DNA quality and concentration were tested by 1% 
agarose gel electrophoresis and Qubit 2.0 Fluorometer (Life 
Technologies, Carlsbad, United  States). Two paired-end 
libraries with short insert size of 270 bp and 500 bp were 
constructed using the NEBNext® Ultra™ DNA Library Prep 
Kit for Illumina® (New England Biolabs, Ipswich, 
United  States) and sequenced on the Illumina HiSeq X Ten 
platform (Illumina, San Diego, United  States). The raw 
Illumina sequencing reads were processed with SOAPnuke 
v2.1.61 to remove adapters and low-quality reads (Chen 
et al., 2018). The obtained 161.1 Gb high-quality sequencing 
reads were used to generate a k-mer depth distribution 
curve adopting the Jellyfish v2.3.0.2 The obtained peak k-mer 
number (k = 27) and corresponding peak depth were calculated 
by GenomeScope v2.03 to estimate the genome size and 
heterozygosity (Marçais and Kingsford, 2011).

PacBio Sequencing and Preliminary 
Genome Assembly
High-molecular weight (HMW) DNA fragments were separated 
from the extracted genomic DNA samples using BluePippin 

1 https://github.com/BGI-flexlab/SOAPnuke
2 https://github.com/gmarcais/Jellyfish
3 http://qb.cshl.edu/genomescope
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Size Selection System (Sage Science, Beverly, United  States) 
through pulse-field gel electrophoresis and eight 20-kb sequencing 
libraries were constructed using SMRTbell Template Prep Kit 
(Pacific Biosciences, Menlo Park, United  States) following the 
manufacturer’s instructions. The libraries (16 SMRT cells) were 
sequenced on the PacBio RSII platform (Pacific Biosciences). 
Contig sequences were assembled from the 151.99  Gb PacBio 
sequencing reads using Hifiasm v0.124 and polished by Racon 
v1.4.35 (Cheng et  al., 2021). The Illumina sequencing reads 
were aligned to the assembled contigs using Bwa-mem v2.2.16 
and the draft assembly was corrected by the aligned short 
sequences using Pilon v1.247 (Walker et  al., 2014).

Bionano Optical Genome Mapping
HMW DNA was extracted from the agarose-embedded cell 
nuclei fractions, which were isolated from fresh leaf samples, 
using the Bionano Prep™ Plant DNA Isolation Kit (Bionano 
Genomics, San Diego, United States) following the manufacturer’s 
instructions. The DNA was digested by the single-stranded 
nicking endonuclease Nt.BspQI, fluorescently labeled, loaded 
into a Saphyr Chip®, and imaged on a Saphyr Optical Genome 
Mapping Instrument (Bionano Genomics). The 395.4 Gb image 
data were filtered using a molecule length cutoff of 100 kb 
and a label number cutoff of 6, and assembled to 954 genome 
maps. To assist genome assembly, contigs obtained from the 
above-mentioned PacBio sequencing were transformed into in 
silico BspQI-digested reference genome maps and compared 
with the optical genome maps. The aligned and merged genome 
maps were further transformed into scaffold sequences using 
the Bionano Solve™ v3.6.1.8

Hi-C Sequencing and Pseudochromosome 
Construction
Fresh leaf samples were fixed in 1% formaldehyde to maintain 
the 3-D structure of genome. Genomic DNA was extracted 
and digested with restriction endonuclease MboI. The digested 
DNA fragments were biotin-labeled at the ends and ligated 
to each other randomly. The ligated DNA was sheared into 
300–600 bp fragments, blunt-end repaired, and purified using 
streptavidin pull-down. The purified DNA was also sequenced 
on the Illumina HiSeq X Ten platform, which yielded 
231.38  Gb of data with 771 million paired-end reads. The 
paired-end reads were mapped to the assembled scaffold 
sequences using Juicer v1.69 to discriminate valid and invalid 
interaction pairs (Durand et  al., 2016). The obtained 185 
million valid interaction pairs (55.5  Gb data) were further 
used to adjust the relative locations of the scaffolds and 
cluster the scaffolds into pseudochromosomes using 3D-DNA10 
(Kronenberg et  al., 2021).

4 https://github.com/chhylp123/hifiasm
5 https://github.com/isovic/racon
6 https://github.com/bwa-mem2/bwa-mem2
7 https://github.com/broadinstitute/pilon
8 https://bionanogenomics.com/support/software-downloads
9 https://github.com/aidenlab/juicer
10 https://github.com/aidenlab/3d-dna

Annotation and Analysis of Repetitive 
Sequences
Repetitive sequences were annotated by combining the 
homology alignment and de novo prediction approaches 
(Zhang et  al., 2021). For the homology alignment approach, 
the assembled genome sequence was blast searched against 
the RepBase repeat sequence collection11 using RepeatMasker 
v4.0.912 (Tempel, 2012). For the de novo prediction approach, 
five softwares, including RepeatModeler,13 PILER,14 
RepeatScout,15 LTR_Finder,16 and Tandem Repeats Finder,17 
were used to find the possible repeat sequences (Price et al., 
2005; Flynn et al., 2020). The identified repetitive sequences 
were manually checked and classified according to the 
nomenclature system of transposons. The insertion time of 
different families of long-terminal repeat retrotransposons 
(LTR-RTs) were calculated using the formula T = k/2r, where 
k is the divergence distance between the 5′ LTR and 3′ 
LTR of intact LTR-RTs and r is the base substitution rate 
(1.38 × 10−8 substitutions/site/year for grasses; Ma et al., 2004). 
The LTR Assembly Index (LAI) scores of assembled pseudo 
chromosomes and whole genome were calculated using 
LTR_retriever v2.9.018 with default parameters (Ou et  al., 
2018). Putative centromeric repeat arrays were specifically 
identified using Tandem Repeats Finder with searching 
parameters “1 1 2 80 5 200 2000 -d –h” as previously 
described (VanBuren et al., 2020). The identified centromeric 
repeat array sequences were used to construct a maximum 
likelihood phylogenetic tree using MEGA v10.0.5 with a 
bootstrap of 1,000.

Prediction and Annotation of 
Protein-Coding Genes
Protein-coding genes were identified by combining the homology 
alignment prediction, ab initio prediction, and transcriptome-
assisted prediction approaches (Zhang et  al., 2021). For the 
homology alignment approach, protein sequences of Arabidopsis 
thaliana and five grass species, including O. sativa, Brachypodium 
distachyon, Zea mays, Sorghum bicolor, and Oropetium thomaeum, 
were downloaded from the Phytozome database19 and blast 
searched against the assembled genome sequence to identify 
the homologous proteins, which were then aligned to the 
genome by GeneWise20 to annotate gene structures (Birney 
et  al., 2004). Ab initio gene prediction was conducted using 
five softwares, including Augustus v3.4.0,21 geneid v1.4.4,22 

11 https://www.girinst.org/server/RepBase
12 http://www.repeatmasker.org
13 http://www.repeatmasker.org/RepeatModeler
14 http://www.drive5.com/piler
15 http://bix.ucsd.edu/repeatscout
16 http://tlife.fudan.edu.cn/tlife/ltr_finder
17 https://tandem.bu.edu/trf/trf.html
18 https://github.com/oushujun/LTR_retriever
19 https://phytozome-next.jgi.doe.gov
20 https://www.ebi.ac.uk/Tools/psa/genewise
21 https://github.com/Gaius-Augustus/Augustus
22 https://genome.crg.es/software/geneid/
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FgeneSH,23 GlimmerHMM v3.0.4,24 and Genscan25 with default 
parameters (Yao et  al., 2005; Nachtweide and Stanke, 2019). 
For transcriptome-assisted prediction, the PacBio single-molecule 
transcriptome sequencing data of mixed organ samples (Zhang 
et  al., 2018a) were aligned to the assembled genome using 
GMAP26 and the gene structures were modeled using PASA,27 
whereas Illumina transcriptome sequencing data of six different 
organs (Chen et  al., 2021) were aligned to the genome using 
TopHat v2.1.128 and the gene structures were modeled using 
Cufflinks v2.2.129 (Wu and Watanabe, 2005; Ghosh and Chan, 
2016). A non-redundant reference gene set was generated by 
merging the predicted genes using EVidenceModeler v1.1.130 
(Haas et  al., 2008). Functional annotations of the reference 
gene set were obtained through orthology assignment of the 
eggNOG v5.0 database31 using eggNOG-mapper v232 
(Cantalapiedra et  al., 2021). Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) annotation of 
the reference gene set were obtained through BLAST searching 
against the GO database33 and the KEGG pathway database,34 
respectively. KEGG enrichment analysis were performed using 
KEGG-Orthology Based Annotation System (KOBAS; Xie et al., 
2011).35 Transcription factors (TFs) were annotated using iTAK36 
incorporated with PlantTFDB database37 (Zheng et  al., 2016).

Prediction of Non-coding RNA Genes
rRNA and tRNA genes were predicted using the programs 
Barrnap38 and tRNAscan-SE-2.0,39 respectively (Chan et  al., 
2021). miRNA, snoRNA, and snRNA genes were all identified 
by searching against the Rfam database via Infernal v1.1.440 
with default parameters (Nawrocki and Eddy, 2013).

BUSCO Assessment
The completeness and accuracy of the assembled genome and 
predicted reference gene set were both assessed using the 
embryophyta_odb10 core gene collect (1,375 genes) of the 
Benchmarking Universal Single-Copy Orthologs (BUSCO) v5.2.2 
database41 (Simão et  al., 2015). The number of single-copy 
and duplicated genes with complete coverage, genes with 
fragment coverage, and missing genes were all counted.

23 http://www.softberry.com
24 http://ccb.jhu.edu/software/glimmerhmm
25 http://argonaute.mit.edu/GENSCAN.html
26 http://research-pub.gene.com/gmap
27 https://anaconda.org/bioconda/pasa
28 http://ccb.jhu.edu/software/tophat
29 http://cole-trapnell-lab.github.io/cufflinks
30 http://evidencemodeler.github.io
31 http://eggnog5.embl.de
32 http://eggnog-mapper.embl.de
33 http://www.geneontology.org
34 http://www.genome.jp/kegg
35 http://bioinfo.org/kobas
36 http://bioinfo.bti.cornell.edu/tool/itak
37 http://planttfdb.gao-lab.org
38 https://github.com/tseemann/barrnap
39 http://trna.ucsc.edu/tRNAscan-SE
40 http://eddylab.org/infernal
41 https://busco.ezlab.org

Gene Family Identification, Phylogenetic 
Analysis, and Divergence Time Estimation
The protein sequences of A. thaliana, O. sativa, B. distachyon, 
Z. mays, S. bicolor, O. thomaeum, Panicum hallii, Setaria viridis, 
Hordeum vulgare, and Tritcum urartu were downloaded from 
the Phytozome database. Orthologous gene families were clustered 
using OrthoFinder v2.5.442 through all-against-all blast alignment 
of these protein sequences and predicted protein sequences of 
C. dactylon (Emms and Kelly, 2015). The identified 112 single-
copy orthologous gene families were aligned using MUSCLE43 
and the alignments of each gene family were concatenated to 
a super-alignment matrix. A phylogenetic tree was then 
constructed using OrthoFinder with A. thaliana as the outgroup. 
PAML v4.944 was used to estimate the divergence time of 
C. dactylon using recorded divergence times of other 10 species 
in the TimeTree database45 as calibrations (Yang, 2007).

Synteny and WGD Analysis
Homologous pairs of C. dactylon proteins were identified using 
the all-to-all search in BLASTP v2.12.046 with an E-value 
cutoff  of 10−5. Syntenic blocks with at least 50 collinear gene 
pairs were then identified using MCScanX47 with default 
parameters (Wang et  al., 2012). The same method was used 
to identify the collinear blocks between C. dactylon and 
O. thomaeum/B. distachyon. Synonymous substitutions per site 
values (Ks) of syntenic gene pairs were calculated using PAML 
v4.9 and the distribution of Ks values was plotted to infer 
the time for speciation or whole-genome duplication (WGD) 
events using the formula T = Ks/2λ, where Ks is peak Ks value 
and λ is the average substitution rate (6.5 × 10−9 substitutions/
site/year for grasses; Gaut et  al., 1996).

Transcriptome-Based Gene Expression 
Analyses
The Illumina transcriptome sequencing data of six different 
organs of bermudagrass cultivar Yangjiang were aligned to the 
assembled genome using HISAT v2.1.148 with default parameters 
(Kim et  al., 2015). The numbers of mapped reads for each 
genes were converted to RPKM (reads per kilobase of transcript 
per million mapped fragments) values. The log2 transformed 
RPKM values were applied to perform Hierarchical clustering 
using Pearson’s correlation distance (Chen et  al., 2021). The 
significantly expressed genes were defined as RPKM value > 1, 
the organ-enhanced genes were defined as RPKM value is 
5-fold above the average RPKM values of other organs, whereas 
organ-enriched genes were defined as RPKM value is 5-fold 
above the RPKM values of any other organs (Uhlén et  al., 
2016; Nautiyal et  al., 2020).

42 https://github.com/davidemms/OrthoFinder
43 https://www.ebi.ac.uk/Tools/msa/muscle
44 http://abacus.gene.ucl.ac.uk/software/
45 http://www.timetree.org
46 https://ftp.ncbi.nlm.nih.gov/blast/executables/
47 https://github.com/wyp1125/MCScanX
48 http://daehwankimlab.github.io/hisat2
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Analyses of Homologous 
Recombination-Regulating Genes and 
Tiller-Angle-Regulating Genes
To obtain ZMM (acronym for Zip1-4, Msh4-5, and Mer3) 
protein-coding genes in C. dactylon and other 10 plant species, 
ZMM genes from A. thaliana were used as baits to search 
against the assembled genome of C. dactylon and other plant 
species recorded in Phytozome database or Ensembl Plants 
database49 using BLASTP v2.12.0 with an E-value cutoff of 
10−5. The gene copy numbers and chromosome locations of 
different genes were manually summarized based on their 
identities. For PROG1, LA1, and TAC1 genes, PROG1, LA1, 
and TAC1 proteins from O. sativa were used as baits to search 
against the assembled genome of C. dactylon and other seven 
species of Oryza genus recorded in Ensembl Plants database 
as described above. The amino acid sequences of proteins 
encoded by each gene families were searched against the Pfam 
database50 for domain comparisons (Mistry et  al., 2021).

RESULTS

Assembly of the Cynodon dactylon Genome
The C. dactylon cultivar Yangjiang was used for genome 
sequencing. As a national authorized C. dactylon cultivar., 
cultivar Yangjiang is a typical turf-type common bermudagrass 
and is widely used for turf planting in China (Zhang et  al., 
2018a; Supplementary Figure S1). Based on the K-mer genome 
survey result, the estimated genome size of C. dactylon cultivar 
Yangjiang is approximately 984 Mb, which is in line with the 
flow cytometry genome size estimation result of 1.02  Gb 
(Supplementary Figure S2). K-mer analysis also revealed that 
the genome of C. dactylon cultivar Yangjiang has a high 
heterozygosity (1.92%) with a repeat frequency of 56.91%.

To overcome the impact of high heterozygosity on the genome 
assembly, we adopted an integrated assembly strategy incorporating 
PacBio sequencing, Illumina sequencing, and Bionano and Hi-C 
techniques with the haplotype-resolving Hifiasm algorithm (Cheng 
et al., 2021; Supplementary Figure S3). Firstly, 151.99 Gb PacBio 
long reads (about 150× coverage of the genome) were de novo 
assembled into contigs, which were polished by 161.1 Gb Illumina 
paired-end reads (about 160× coverage of the genome; 
Supplementary Tables S1 and S2). Totally, 3,703 contigs with 

49 http://plants.ensembl.org
50 https://pfam.xfam.org

a N50 contig length of 2.65 Mb and a sum contig length of 
1.295  Gb were obtained (Table  1). Secondly, 395.4  Gb Bionano 
optical maps (about 390× coverage of the genome) were used 
to integrate the contigs into scaffolds (Supplementary Figure S4; 
Supplementary Table S3). This procedure generated 241 scaffolds 
with a N50 scaffold length of 9.38 Mb and a sum scaffold length 
of 1.26  Gb (Table  1). Lastly, 231.3  Gb Hi-C data (24% useful 
information, about 55× coverage of the genome) were used to 
further cluster the scaffolds into pseudo chromosomes 
(Supplementary Figure S5; Supplementary Table S4). The finally 
obtained genome assembly (1.01 Gb) contained 36 chromosome-
level superscaffolds, among which the longest and the shortest 
are 52.77 Mb and 14.32 Mb, respectively (Figure  1; Table  1). 
The assembly size was consistent with the estimated genome 
size. Furthermore, BUSCO analysis against the 1,375 Embryophyta 
gene sets indicated that 96.2% complete genes were successfully 
identified in the genome assembly, among which 88.1% were 
duplicated genes (Supplementary Table S5). These results 
collectively suggested that the assembled C. dactylon genome is 
high quality and complete.

Annotation of the Cynodon dactylon 
Genome
A total of 76,879 protein-coding genes with an average gene 
length of 3,535 bp and an average transcript number per 
gene of 1.9 were successfully predicted from the assembled 
genome (Table  2). The predicted gene model was also 
evaluated by BUSCO analysis. The result indicated that 1,324 
(96.3%) complete core Embryophyta genes were identified 
and the majority (1,272, 96.07%) was duplicated genes 
(Supplementary Table S5). Among the predicted 146,743 
transcripts, 87.89% (128, 966) were annotated by various 
functional database (Supplementary Figure S6; 
Supplementary Table S6). Functional classification further 
indicated that signal transduction mechanism, post-translation 
modification/protein turnover/chaperones, and transcription 
are the top three categories containing the largest number 
of transcripts (Supplementary Figure S7). Specifically, 4,888 
transcription factors (TFs) belonging to 65 classes were 
successfully identified. Compared with other grass species, 
gene numbers of HSF, WRKY, NF-X1, NF-YA, NF-YC, CPP, 
GARP-G2-like, and DDT TF families were greatly increased 
in common bermudagrass (Supplementary Table S7). In 
addition, 6,265 non-protein-coding genes were also identified, 
including 1349 rRNAs, 2047 tRNAs, 1025 miRNAs, 1441 
snoRNAs, and 403 snRNAs (Table  2).

TABLE 1 | Statistics of Cynodon dactylon genome assembly.

Illumina + PacBio Illumina + PacBio + BioNano Illumina + PacBio + BioNano + Hi-C

Assembly size (Mb) 1294.65 1258.08 1005.67
Scaffold number 3,703 241 36
N50 Scaffold length (Mb) 2.65 9.38 28.85
Longest scaffold (Mb) 13.42 34.64 52.77
Mean scaffold length (Mb) 0.35 5.22 27.94
Complete BUSCOs 97.80% 97.67% 96.20%
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Orthologous clustering of protein-coding genes of C. dactylon 
with other ten plant species totally identified 32,695 orthologous 
gene families, including 7,792 commonly shared gene families 
and 3,173 bermudagrass-specific gene families consisting of 
9,152 genes (Supplementary Tables S8 and S9). KOBAS 
enrichment analysis indicated that these bermudagrass-specific 
genes were enriched in glutathione metabolism, zeatin 
biosynthesis, ubiquitin mediated proteolysis, and other eight 
pathways (q value <0.05; Supplementary Table S10). In 
agreement with the BUSCO analysis result, orthologous gene 
clustering further revealed that as many as 91.2% (70117) of 
C. dactylon genes are members of 17,632 multiple-copy gene 
families, which is much higher than that of other ten species 
(Figure  2A; Supplementary Table S8). A phylogenetic tree 

was constructed based on the 112 shared single-copy orthologous 
genes (Figure  2A). The result indicated that O. thomaeum was 
closest to C. dactylon and the estimated divergence time of 
the two species was between 17.85 to 29.19 (midvalue of 23.52) 
million years ago (MYA). In line with phylogenic relationships, 
C. dactylon shared more orthologous gene families with members 
of the PACMAD (acronym for Panicoideae, Aristidoideae, 
Chloridoideae, Micrairoideae, Arundinoideae, and 
Danthonioideae) clade of grasses, including O. thomaeum, 
S. bicolor, and S. viridis, compared with O. sativa belonging 
to the BEP (acronym for Bambusoideae, Ehrhartoideae, and 
Pooideae) clade of grasses (Supplementary Figure S8).

A total of 381.3 Mb of repetitive sequences were also annotated 
in the assembled C. dactylon genome (Table  2 and 

FIGURE 1 | Genome features of C. dactylon cultivar Yangjiang. (A) Circular representation of the 36 pseudo chromosomes with scale mark labeling each 10 Mb. 
The density of (B) long-terminal repeat retrotransposons (LTR-RT), (C) protein-coding genes, (D) tandem repeat sequences, and (E) GC contents were calculated 
using 500 kb non-overlap window. (F) Inter-chromosomal synteny was illustrated with color lines.
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Supplementary Table S11). The most abundant repetitive 
sequences are retrotransposons (70.95% of repetitive sequences 
and 26.9% of genome assembly), among which LTR-RTs and 
non-LTR-RT represent 84.73 and 15.27%, respectively. DNA 
transposons make up 11.29% of the repetitive sequences (4.28% 
of genome assembly), whereas tandem repeats and unclassified 
repeat sequences account for 2.79 and 3.75% of the assembled 
genome, respectively. Interestingly, the total repetitive sequence 
content and retrotransposon content in C. dactylon (37.91 and 
26.9%, respectively) were similar to those of closely related 
species, including O. thomaeum (45 and 26%, respectively), 
P. hallii (36 and 23%, respectively), and S. viridis (46 and 
29%, respectively), but much lower than those of distantly 
related species, including Z. mays (82 and 76%, respectively), 
T. urartu (81 and 72%, respectively), and H. vulgare (80 and 
75%, respectively; Figure  2B). It is also noteworthy that genes 
are unevenly distributed in different chromosomes (39.87 to 
104.80 Mb−1 in density), whereas similar distributions of repetitive 
sequences were found on all chromosomes of C. dactylon 
(482.23 to 559.93 Mb−1 in density; Supplementary Table S12). 
The annotated LTR-RTs were further used to calculate the 
LAI of the assembled genome. The total LAI score of C. dactylon 
genome is 13.63, implying that the current assembly of C. dactylon 
genome reached the reference genome level 
(Supplementary Table S13; Ou et  al., 2018).

Subgenome Composition of Cynodon  
dactylon
Intra-genomic syntenic analysis totally detected 845 syntenic 
blocks containing 84,649 pairs of homoeologous genes in the 
C. dactylon genome, whereas 643 syntenic blocks containing 
52,590 pairs of homoeologous genes were found between 
C. dactylon and O. thomaeum through inter-genomics syntenic 
analysis (Figure 3A and Supplementary Figure S9). Interestingly, 
the syntenic depth ratios of C. dactylon versus O. thomaeum 

and C. dactylon itself were 4:1 and 4:4, respectively, implying 
that C. dactylon genome is composed of four haplotypes 
containing the same number of chromosomes 
(Supplementary Figure S9). To distinguish homoeologous 
chromosomes from the four haplotypes of C. dactylon, putative 
centromeric array tandem repeat sequences were identified 
from the 36 chromosomes and were used to construct a 
maximum likelihood phylogenetic tree as previously described 
(Supplementary Table S14; VanBuren et  al., 2020). The result 
indicated that the 36 centromeric array sequences showed 
distinguishing polymorphisms and could be  clustered in four 
clades (Supplementary Figure S10). Based on this classification 
result and chromosome length variance, the four haplotypes, 
which were named as A1, A2, B1 and B2, respectively, were 
successfully resolved in the C. dactylon genome 
(Supplementary Table S15). In addition, syntenic analysis also 
revealed that chromosome 2, 3, and 10 of O. thomaeum are 
split and merged into chromosome 2 and 7  in four haplotypes 
of C. dactylon, whereas other chromosomes all have one-to-one 
correspondence (Figure  3A and Supplementary Figure S9).

Calculation of Ks of homologous gene pairs in the inter-
genomic and intra-genomic synteny blocks not only confirmed 
the phylogenic analysis result that C. dactylon and O. thomaeum 
diverged at approximately 21.54 MYA (Ks = 0.28), but also 
indicated that two rounds of WGD events occurred in the 
evolutionary history of C. dactylon (Supplementary Figure S11). 
Specifically, the first WGD event occurred at approximately 
5.38 MYA (Ks = 0.07), whereas the second WGD event occurred 
lately at about 0.77 MYA (Ks = 0.01; Supplementary Figure S11). 
Interestingly, the two WGD time points equivalent exactly to 
the divergence time of haplotypes A1/A2 with haplotypes B1/
B2 and haplotype A1 with haplotype A2 (the same as haplotype 
B1 with haplotype B2), respectively (Figure  3B).

In combination with the orthologous gene clustering result, 
syntenic analysis totally identified 20,849 alleles in C. dactylon 
(Supplementary Table S16). Among these alleles, 11,614 have 
four allelic copies in all haplotypes, 2,711 have three allelic 
copies in three of four haplotypes, and 6,524 have two allelic 
copies in two of four haplotypes (Figure  3C and 
Supplementary Figure S12; Supplementary Table S17). 
Meanwhile, 3559, 4954, 1716, and 3530 orphan genes that exist 
as single-copy genes were also identified from haplotype A1, 
A2, B1, and B2, respectively (Figure  3C and 
Supplementary Figure S12; Supplementary Table S17). KOBAS 
enrichment analyses indicated that alleles were enriched in 
valine/leucine/isoleucine degradation, proteasome, brassinosteroid 
biosynthesis, and other eight pathways, whereas orphan genes 
were enriched in plant-pathogen interaction, base excision repair, 
DNA replication, and other nine pathways (q value <0.05; 
Supplementary Table S18). The expression abundance of alleles 
and orphan genes were further analyzed using the organ-specific 
transcriptome sequencing data of C. dactylon cultivar Yangjiang 
(Chen et  al., 2021; Supplementary Table S19). The result 
indicated that similar portions of alleles and orphan genes in 
the four haplotypes were significantly expressed in six organs 
of bermudagrass; however, gene numbers of alleles and orphan 
genes enhance- or enrich-expressed in different organs, especially 

TABLE 2 | Statistics of C. dactylon genome annotation.

Number of non-protein-coding genes 6,264
  Number of rRNA genes 1,349
  Number of tRNA genes 2047
  Number of miRNA genes 1,025
  Number of snoRNA genes 1,340
  Number of snRNA genes 503
Number of protein-coding genes 76,879
  Mean gene length (bp) 3534.75
  Percentage in genome (%) 27.02
  Mean transcript number per gene 1.91
  Total transcript number 146,743
  Mean transcript length (bp) 1680.90
  Mean 5′UTR length (bp) 145.36
  Mean 3′UTR length (bp) 217.54
  Mean coding sequence length (bp) 1392.22
  Mean exon number per gene (bp) 7.29
  Mean exon length (bp) 230.63
  Mean intron number per gene (bp) 6.29
  Mean intron length (bp) 409.82
Number of repetitive sequences 529,092
  Mean repetitive sequence length (bp) 720.67
  Percentage in genome (%) 37.91
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the three types of stems, varied greatly in the four haplotypes 
(Supplementary Figure S13; Supplementary Tables S20 and S21). 
Accordingly, the 11,614 four-copy alleles of the four haplotypes 
showed similar total expression abundance in the six organs 
(Figure  3D).

The distribution of repeat sequences in C. dactylon was 
also analyzed at the haplotype level. Among the four haplotypes, 
haplotype A2 and B1 has the minimum and maximum number 
of RTs, respectively (Supplementary Figure S14). By contrast, 
maximum number of four types of DNA transposons, 
including Tcl/mariner, EnSpm/CACTA, hAT, and muDR, was 
observed in haplotype B2, while haplotype A1 has the 
fewest muDR- and Helitron-type of DNA transposons 
(Supplementary Figure S14). Notably, total sequence length 
of Ty3-Gypsy LTR-RTs in haplotype B1 was 2.2  Mb larger 
than that of haplotype B2, which contributed approximately 
40% of size variance between the two haplotypes, whereas 
another type of LTR-RTs, Ty1-Copia, showed similar sequence 
length in the two haplotypes (Supplementary Figure S14; 

Supplementary Tables S22 and S23). Moreover, 5,066 intact 
LTR-RTs were further used to estimate the insertion time of 
different families of LTR-RTs in C. dactylon genome 
(Supplementary Table S24). The results indicated that four 
families of LTR-RTs, including Athila, SIRE, TAR, and Tork, 
inserted into the four haplotypes of C. dactylon genome at 
different time, whereas other nine families showed similar 
insertion time range in the four haplotypes (Figure  3E). 
Interestingly, among the 244 active LTR-RTs with an insertion 
time of zero, 153 were located in three chromosomes of 
haplotype B1, 47 were located in two chromosomes of 
haplotype A1, whereas only 29 and 16 were located in single 
chromosome of haplotype A2 and B1, respectively 
(Supplementary Table S24).

Adaptive Evolution of Cynodon dactylon
As a polyploid plant species with four sets of chromosomes, 
C. dactylon might develop a mechanism to control proper 
pairing and segregation of chromosomes during meiosis thus 

A

B

FIGURE 2 | Comparative genomic analysis among C. dactylon and other plant species. (A) Phylogenetic relationship, divergence time, and gene family clustering 
of C. dactylon and other ten plant species. Left panel, Maximum parsimony (MP) species tree was constructed using protein sequences of 112 shared single-copy 
orthologous genes. The numbers in the brackets indicate the estimated divergence time of each node, and the blue bars show the 95% confidence interval of 
divergence time. All the nodes are 100% bootstrap support. Right panel, Orthologous gene families of C. dactylon and other ten plant species. (B) Comparison of 
repetitive sequences in C. dactylon and other ten plant species.
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maintain its genome stability (Svačina et  al., 2020). ZMM 
proteins, which stabilize the D-loop crossover intermediate 
of synapsis, are important homologous recombination regulators 
in all eukaryotes (Pyatnitskaya et al., 2019; Figure 4A). Previous 
studies have illustrated that gene copy number reduction of 
a ZMM protein, MSH4, could prevent meiotic crossovers 
between non-homologous chromosomes and stabilize the 
genome in allotetraploid Brassica napus (Gonzalo et al., 2019). 
Similar gene copy number reduction of MSH4 was also 
observed in other two polyploidy plants, allotetraploid 
Gossypium hirsutum and hexaploid Triticum aestivum 

(Figure  4B; Supplementary Table S25). However, MSH4 and 
other four ZMM genes, including ZYP1, MER3, SHOC1, and 
MSH5, all existed as four-copy alleles in C. dactylon genome. 
By contrast, two ZMM genes, PTD and HEL10, existed as 
two-copy alleles, and another ZMM gene, ZIP4, existed as 
single-copy orphan gene in haplotype B1 of C. dactylon 
genome (Figure  4B; Supplementary Tables S25 and S26). 
Syntenic analysis further indicated that different sizes of 
chromosomal fragments containing ZIP4 were lost in other 
three haplotypes (Figure 4C). These results collectively implied 
that C. dactylon also evolved a ZMM-dependent regulatory 

A

C

E

D

B

FIGURE 3 | Subgenomic organization and variation of C. dactylon. (A) Schematic representation of syntenic genes among O. thomaeum and four haplotypes of 
C. dactylon. Gray lines depict homologous genome blocks. Color lines indicate inversion and translocation on the homologous chromosomes. (B) Distribution of 
synonymous nucleotide substitution levels (Ks) of syntenic gene pairs between different haploptypes of C. dactylon. (C) Venn diagram of alleles and orphan genes in 
the four haploptypes of C. dactylon. (D) Total gene expression level of the 11,614 four-copy alleles based on their relative expression level in six organs of 
C. dactylon. Error bars represent SE of the three sequencing replicates. (E) Box plots showing the insertion dynamics of 13 LTR-RT families in four haploptypes of 
C. dactylon. Box boundaries indicate the 25th and 75th percentiles of the insertion time and whiskers extend to 1.5 times the interquartile range.
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mechanism to maintain its genome stability as other polyploidy 
plants did; however, the key regulator might be  ZIP4 rather 
than MSH4.

As a widely used turfgrass species with two types of 
specialized stems, stolon and rhizome, C. dactylon exhibits 
a prostrate plant architecture owing to increased tiller angles 
of the two specialized stems (Dong and de Kroon, 1994). 
Previous studies have successfully identified several tiller-
angle-regulating genes, including PROG1, TAC1, and LA1, 
in rice and other plants (Li et  al., 2007; Yu et  al., 2007; Jin 
et  al., 2008; Tan et  al., 2008; Figure  5A). Eight PROG1-like 
genes, four TAC1-like genes, and two LA1-like genes were 
also identified in C. dactylon (Figure  5B). Similar to semi-
prostrate and prostrate growing Oryza genus plants, the family/
genome gene number ratio of two prostrate growth-promoting 
genes, PROG1-like and TAC1-like, were higher than that of 
erect-growth-promoting LA1-like gene in C. dactylon 
(Figure  5B). Syntenic and phylogenic analysis revealed that 
six of the eight PROG1-like genes existed as three-copy alleles 
and the remaining two genes existed as two-copy alleles, the 
four TAC1-like genes existed as four-copy alleles, whereas 
two LA1-like genes existed as two-copy alleles (Figure  5C 

and Supplementary Figures S15, S16). Pfam domain analysis 
further indicated that all eight PROG1-like proteins have the 
conserved C2H2-type zinc finger domain identified in the 
functional OsPROG1 and OgPROG7 proteins, however, both 
two LA1-like proteins of C. dactylon lack the functional 
C-terminal conserved region V (Figure  5D and 
Supplementary Figure S15). Moreover, the LA1-like protein 
encoded by the allele of haplotype A2 further lack the functional 
N-terminal conserved region I and two other conserved regions 
II and III (Yoshihara and Spalding, 2020; Figure  5D). In 
combination with the observation that large chromosome 
fragments containing the LA1-like gene locus were lost in 
other two haplotypes (Supplementary Figure S16), sequence 
variation of LA1-like genes in the two residual alleles suggested 
that LA1 protein activity was inhibited in C. dactylon. In 
addition, both two LA1-like genes were weakly expressed in 
stolon and rhizome, whereas three of four TAC1-like genes 
were preferentially expressed in the two specialized stems 
(Supplementary Figure S16; Supplementary Table S27). These 
results collectively implied that different tiller-angle-regulating 
genes were synergistically evolved to promote a prostrate plant 
architecture in C. dactylon.

A

C

B

FIGURE 4 | Evolution of homologous recombination-regulating genes in C. dactylon. (A) Diagram depicting the essential roles of ZMM proteins in regulating 
homologous recombination. (B) Comparison of the gene copy number of eight ZMM proteins in C. dactylon, O. thomaeum, and other nine species with different 
ploidy levels. (C) Enlarged chromosomal gene location map showing the loss of ZIP4 gene and other contiguous genes in haplotype A1, A2, and B2 of C. dactylon. 
The ZIP4 gene in haplotype B1 was shown in red color.
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DISCUSSION

Turfgrasses are important groups of grass species serving essential 
functions, including soil stabilization, water conservation, 
filtration of air, and water borne pollutants, in urban and 
suburban landscapes (Huang, 2021). In the past several years, 
genome sequences of many turfgrass species, including 
zoysiagrasses (Zoysia japonica and Zoysia matrella), perennial 
ryegrass (Lolium perenne), centipedegrass (Eremochloa 
ophiuroides), and African bermudagrass (C. transvaalensis), were 
successfully sequenced and assembled using different techniques 
(Tanaka et  al., 2016; Cui et  al., 2021; Frei et  al., 2021; Wang 
et al., 2021). In this study, we reported a high-quality haplotype-
resolved genome of another important turfgrass species, common 
bermudagrass (C. dactylon), consisting of 36 pseudo 
chromosomes with a contig N50 of 2.65 Mb and a LAI score 
of 13.63 (Figure  1; Table  1 and Supplementary Table S13). 
The assembled nome of C. dactylon not only offers a solid 

foundation to study the molecular basis of valuable agronomic 
traits as well as molecular breeding of this important turfgrass 
species, but also provides an essential resource for comparative 
genomic analysis among different turfgrasses and other grasses.

The most prominent characteristics of C. dactylon genome 
are the presence of four haplotypes, named as A1, A2, B1, 
and B2, respectively. As an allotetraploid plants with high 
heterozygosity (1.92%), C. dactylon has four sets of chromosomes 
with significant differences that could be  discriminated as 
different haplotypes using the newest haplotype-resolving Hifiasm 
algorithm; thus, an A1A2B1B2 genome assembly with 36 
chromosomes, rather than an AB genome assembly with 18 
chromosomes, was finally obtained (Kyriakidou et  al., 2018). 
Similar result was also observed in the haplotype-phased genome 
assembly of tetraploid blueberry (2n = 4x = 48), which also 
reported a four haplotype-resolved genome containing 48 pseudo 
chromosomes (Colle et al., 2019). Notably, all the four haplotypes 
of C. dactylon have nine chromosomes; however, the total 

A
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FIGURE 5 | Evolution of tiller angle-regulating genes in C. dactylon. (A) Diagram depicting the positive/negative regulatory roles of PROG1, LAZY1, and TAC1 
genes in tiller angle control of grasses. (B) Comparison of the gene number of PROG1-, LAZY1-, and TAC1-like genes in C. dactylon and eight species of Oryza 
genus with different growth habits. (C) Syntenic relationship of PROG1-like genes in C. dactylon and eight species of Oryza genus with different growth habits. 
(D) Diagram showing the deficiency of key functional motifs in two LAZY1-like proteins of C. dactylon compared with those of eight species of Oryza genus.
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chromosome size showed variance among different haplotypes 
(Figure  3A; Supplementary Table S15). Specifically, haplotype 
A1 and A2 have a similar size (236.96 Mb and 231.36 Mb), 
whereas haplotype B1 and B2 have another similar size (271.19 Mb 
and 266.17 Mb; Supplementary Table S15). Accordingly, genes 
and repeat sequences in haplotype A1 and A2 are fewer than 
those in haplotype B1 and B2 (Supplementary Table S15). 
Interestingly, the size of four haplotypes are similar to the 
genome size of O. thomaeum (10 chromosomes, 243 Mb) and 
the monoploid genome size of Eragrostis tef (10 chromosomes, 
288 Mb), two grass species belonging to the Chloridoideae 
subfamily of PACMAD clade of grasses as C. dactylon does, 
but much smaller than the genome size of African bermudagrass 
C. transvaalensis (nine chromosomes, 444 Mb), which is classified 
along with C. dactylon in the same Cynodon genus (VanBuren 
et  al., 2015, 2020; Cui et  al., 2021). Similar chromosome size 
variation was also observed between Morus notabilis and M. alba, 
both of which belongs to the same Morus genus (Xuan et  al., 
2022). These findings collectively suggested that genome size 
variation among different plant species might not be  simply 
correlated with their phylogenic relationships.

Whole-genome duplication is an extreme mechanism of 
gene duplication that leads to a sudden increase in both genome 
size and the entire gene set thus plays important roles in 
plant genome evolution (Clark and Donoghue, 2018). Ks analysis 
revealed that two rounds of WGD events occurred in C. dactylon, 
which is in correspondence to the divergence time of haplotypes 
A1/A2 with haplotypes B1/B2 at 5.38 MYA and haplotype A1 
with haplotype A2 at 0.77 MYA (the same as haplotype B1 
with haplotype B2), respectively (Figure  3B and 
Supplementary Figure S11). These results collectively implied 
a complex evolutionary history of C. dactylon. At approximately 
5.38 MYA, the ancestor of haplotype A1 and A2, named as 
A, might hybridized with B, the ancestor of haplotype B1 and 
B2, to form an AB hybrid species. At about 0.77 MYA, either 
an autopolyploidization event occurred in the AB hybrid species 
that doubled the genome to AABB or a secondary hybridization 
event occurred between two AB hybrid species to form an 
ABAB hybrid species through allopolyploidization, both of 
which could finally evolved into the present A1A2B1B2 genome 
of C. dactylon. The latter allopolyplodization mechanism seems 
more possible because the ratio of coupling to repulsion linkage 
phase of nondistorted mapped loci was approximately 1: 1  in 
an SSR-maker based linkage mapping of the first-generation 
selfed population of C. dactylon (Guo et  al., 2017). Similar 
two rounds of WGD events were also observed in the formation 
of the polyploidy genome of Miscanthus floridulus and Saccharum 
spontaneum, suggesting a conserved evolution mechanism might 
exist in different genus of polyploid grasses (Zhang et  al., 
2018b, 2021).

A dominant subgenome often emerges immediately following 
the WGD event in the genome of allopolyploids (Liang and 
Schnable, 2018). However, some recent allopolyploids, including 
the above-mentioned M. floridulus and S. spontaneum, display 
indistinguishable or slight subgenome dominance (Zhang et  al., 
2018b, 2021). Orthologous gene clustering analysis indicated that 
four haplotypes of C. dactylon shared similar number of gene 

families with O. thomaeum (Supplementary Figure S8). Syntenic 
analysis further revealed that the four haplotypes have 12,197 
(68.50% of 17,805), 12,039 (68.40% of 17,600), 14,406 (69.20% 
of 20,818), and 14,347 (69.46% of 20,656) syntenic orthologs 
to O. thomaeum, respectively (Supplementary Figure S9). These 
results suggested that four subgenomes of C. dactylon did not 
experience biased gene loss during evolution. Moreover, although 
a few genes from different haplotypes showed biased expression 
in different organs, overall gene expression levels showed high 
similarity among the four haplotypes (Figure  3D and 
Supplementary Figure S13). In addition, similar distribution 
and insertion time of LTRs were also observed in the four 
haplotypes (Figure  3E and Supplementary Figure S14). Taken 
together, these analyses collectively implied subgenome dominance 
is also unobvious in C. dactylon.

Polyploidy brings many advantages to polyploid plants. 
Heterosis could foster a greater biomass and accelerated 
development, whereas gene redundancy could mask deleterious 
mutations and diversify the functions of extra gene copies 
(Comai, 2005). As a worldwidely distributed grass species 
inhabiting diverse and harsh environments, allotetraploid 
C. dactylon undoubtedly benefits from these advantages. However, 
long-term survival of polyploid plants also require a mechanism 
to withstand the extensive genomic instability that accompanies 
with the presence of multiple pairing chromosomes in meiosis 
(Mason and Mason and Wendel, 2020). As a clonal plant with 
stolons and rhizomes, C. dactylon reproduces asexually through 
regenerating new plants from axillary buds of stolon and 
rhizome node (Dong and de Kroon, 1994), thus bypasses 
meiosis and recombination in gamete generation process. On 
the other hand, a ZMM-dependent regulatory mechanism to 
maintain genome stability during meiosis was also identified 
in C. dactylon (Figure  4). Owing to these belt and braces 
strategies, four unbiased haplotypes of subgenome are stably 
maintained in C. dactylon genome.

Tiller angle (branch angle in eudicot plants) is an important 
plant architectural trait affecting the density of growing plants 
(Wang et  al., 2022). Cereal grasses often have compact and 
erect plant architecture characteristics with small tiller angles, 
which is essential for high yields. Specifically, successful 
domestication of cultivated rice from wild rice ancestors depended 
on the transition from prostrate growth to erect growth, in 
which process the tiller angle was greatly reduced (Li et  al., 
2007; Yu et al., 2007; Jin et al., 2008; Tan et al., 2008). However, 
for turfgrasses including C. dactylon, prostrate growth mode 
with large tiller angle is more preferable because it could 
accelerate turf formation, increase soil coverage, and diminish 
mowing frequency (Wang et al., 2021). Blast searches indicated 
that key tiller-angle-regulating genes reported in rice and other 
plants, including PROG1, LA1, and TAC1, were highly conserved 
in C. dactylon (Figure  5B). Similar to prostrate growing wild 
rice species, clustering of PROG1-like C2H2 transcription factor 
genes in adjacent positions of chromosomes were observed in 
C. dactylon (Wu et  al., 2018; Huang et  al., 2020; Figure  5C 
and Supplementary Figure S15). By contrast, LA1-like genes 
that promote erect growth not only experienced gene copy 
lost due to large chromosomal fragment deletions but also 
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mutated to form truncated proteins (Figure  5D and 
Supplementary Figure S16). These results strongly suggested 
that similar selection pressure might also exist in C. dactylon 
to form the prostrate plant architecture characteristics as the 
domestication of rice from wild rice; however, the selection 
target might be  LA1 rather than PROG1.

CONCLUSION

The genome of a widely used warm-season turfgrass species, 
C. dactylon, was sequenced and annotated in this study. The 
assembled genome contains 36 pseudo chromosomes, includes 
37.91% genome size of repeat sequences, and encodes 76,879 
protein-coding genes. The polyploid C. dactylon genome is consists 
of four haplotypes derived from two rounds of WGD events. 
Although a few haplotype-specific genes and transposons were 
identified, no global subgenome dominance was detected among 
the four haplotypes. A ZMM-dependent regulatory mechanism 
to maintain the genome stability was successfully identified. 
Furthermore, synergistic evolution of tiller-angle-regulating genes 
was also observed. In summary, the extensive datasets and 
analyses presented in this study not only offer an essential 
resource for basic studies and breeding researches of turfgrasses, 
but also provide new insights into regulation mechanisms 
underlying polyploid genome stability and prostrate growth.
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Sedum plumbizincicola (Crassulaceae), a cadmium (Cd)/zinc (Zn)/lead (Pb)
hyperaccumulator native to Southeast China, is potentially useful for the
phytoremediation of heavy metal-contaminated soil. Basic leucine zipper (bZIP)
transcription factors play vital roles in plant growth, development, and abiotic stress
responses. However, there has been minimal research on the effects of Cd stress
on the bZIP gene family in S. plumbizincicola. In this study, 92 SpbZIP genes were
identified in the S. plumbizincicola genome and then classified into 12 subgroups
according to their similarity to bZIP genes in Arabidopsis. Gene structure and
conserved motif analyses showed that SpbZIP genes within the same subgroup
shared similar intron–exon structures and motif compositions. In total, eight pairs of
segmentally duplicated SpbZIP genes were identified, but there were no tandemly
duplicated SpbZIP genes. Additionally, the duplicated SpbZIP genes were mainly under
purifying selection pressure. Hormone-responsive, abiotic and biotic stress-responsive,
and plant development-related cis-acting elements were detected in the SpbZIP
promoter sequences. Expression profiles derived from RNA-seq and quantitative
real-time PCR analyses indicated that the expression levels of most SpbZIP genes
were upregulated under Cd stress conditions. Furthermore, a gene co-expression
network analysis revealed that most edge genes regulated by hub genes were related
to metal transport, responses to stimuli, and transcriptional regulation. Because its
expression was significantly upregulated by Cd stress, the hub gene SpbZIP60 was
selected for a functional characterization to elucidate its role in the root response to Cd
stress. In a transient gene expression analysis involving Nicotiana benthamiana leaves,
SpbZIP60 was localized in the nucleus. The overexpression of SpbZIP60 enhanced
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the Cd tolerance of transgenic Arabidopsis plants by inhibiting ROS accumulation,
protecting the photosynthetic apparatus, and decreasing the Cd content. These
findings may provide insights into the potential roles of the bZIP family genes during the
S. plumbizincicola response to Cd stress.

Keywords: bZIP gene family, Sedum plumbizincicola, Cd stress, expression profiles, SpbZIP60

INTRODUCTION

Heavy metal pollution has become a global environmental
problem (Ali et al., 2013). Cadmium (Cd) is a major heavy metal
pollutant that is released into the environment because of human
industrial and agricultural production activities (Tchounwou
et al., 2012). Cd contamination leads to decreased soil quality
and suppressed crop production. Heavy metal stress results
in changes to various physiological and metabolic processes.
For example, the expression of many genes is induced in
plants under heavy metal stress conditions, and the upregulated
expression of stress-responsive genes, which is usually mediated
by transcription factors, may increase plant survival rates (Yao
et al., 2018; Zhang et al., 2020; Xu et al., 2021b).

The basic leucine zipper (bZIP) family is one of the largest and
most diverse transcription factor families in eukaryotes (Pérez-
Rodríguez et al., 2010). These transcription factors contain a
highly conserved bZIP domain with two different functional
regions, one of which is a sequence-specific DNA-binding
alkaline region (N-x7-R/K-x9), whereas the other is a leucine
zipper consisting of several heptapeptide repeats comprising Leu
or other large hydrophobic amino acids (e.g., Ile, Val, Phe, or
Met) that influence dimerization specificity (Jakoby et al., 2002;
Nijhawan et al., 2008). The bZIP gene family was first identified
and classified in Arabidopsis at the genome-wide level (Jakoby
et al., 2002). The current study is related to earlier research,
during which 78 AtbZIP genes were identified and divided into
13 subclasses (A–M) (Dröge-Laser et al., 2018). Additionally,
analyses of the bZIP gene family in diverse species resulted in
the identification of 64 genes in cucumber (Corrêa et al., 2008),
85 genes in rice (Nijhawan et al., 2008), 86 genes in poplar (Zhao
et al., 2021), 96 genes in buckwheat (Liu et al., 2019b), 112 genes
in apple (Zhao et al., 2016), 125 genes in maize (Wei et al., 2012),
and 160 genes in soybean (Zhang et al., 2018).

There is considerable evidence that bZIP transcription
factors in plants play crucial roles in various biological
processes, including seed maturation (Izawa et al., 1994),
organ differentiation (Pautler et al., 2015), photomorphogenesis
(Huang et al., 2012), and floral development (Abe et al., 2005;
Muszynski et al., 2006). They also contribute to responses
to various abiotic stresses, including salinity (Bi et al., 2021),
drought (Wang et al., 2017; Tu et al., 2020), heat (Deng et al.,
2011; Liu et al., 2012), osmotic stress (Xu et al., 2013), and
oxidative stress (Choi et al., 2021). Most of these responses
are abscisic acid (ABA) signal transduction-dependent processes
(Banerjee and Roychoudhury, 2017). As a key member of the
ABA signal transduction pathway, bZIP proteins are activated
by kinases, such as SnRK2, and then bind to an ABA-responsive
element (ABRE) to regulate the expression of downstream genes.
In rice, OsbZIP46 positively regulates ABA signal transduction

and drought stress tolerance (Tang et al., 2012). The stress-
induced expression of the activated form of AtbZIP17 protects
Arabidopsis from salt stress (Liu et al., 2008). In poplar, a loss-of-
function mutation to PtabZIP1 enhances lateral root formation
under osmotic stress conditions (Dash et al., 2017). As the
most dangerous pollutant, heavy metals have been regarded as
new stress factors.

Similar to other abiotic stress responses, there has been
increasing interest in the relationship between bZIP transcription
factors and heavy metal stress responses. The BjCdR15/TGA3
transcription factor gene encodes an important regulator of
Cd uptake by roots and the subsequent long-distance root-to-
shoot transport. The overexpression of this gene in Arabidopsis
and tobacco enhances Cd tolerance and accumulation. This
is related to the regulation of the synthesis of phytochelatin
synthase and the expression of several metal transporter genes
(Farinati et al., 2010). In Arabidopsis, ABI5 (ABA-Insensitive
5), which is a central ABA signaling molecule, represses Cd
accumulation in plants by physically interacting with MYB49 and
preventing it from binding to the downstream genes bHLH38,
bHLH101, HIPP22, and HIPP44, resulting in the inactivation of
IRT1 and decreased Cd uptake (Zhang et al., 2019). The subgroup
F bZIP transcription factors AtbZIP19 and AtbZIP23 are Zn
sensors that regulate Arabidopsis responses to Zn deficiency
via the binding between Zn2+ ions and their Zn sensor motif
(Assunção et al., 2010; Lilay et al., 2019, 2021). Thus, the bZIP
transcription factors appear to participate in plant responses to
heavy metal stress.

Current research on the heavy metal homeostasis in
plants primarily focuses on model plants or crop plants.
Hyperaccumulator plants are valuable research materials
because of their potential utility for remediating heavy metal-
contaminated soil. Moreover, they are useful for investigating
plant adaptation and evolution in extreme environments. The
Cd, Pb, and Zn hyperaccumulator Sedum plumbizincicola (Wu
et al., 2013), which is also known as the hyperaccumulating
ecotype of S. alfredii (Yang et al., 2002), can tolerate, transport,
and accumulate large amounts of Cd (Li et al., 2018), with a
shoot Cd concentration as high as 9,000 mg/kg (Yang et al.,
2004). Its efficient Cd absorption, transport, and detoxification
systems are necessary for its growth in highly contaminated
soils. Some genes related to Cd absorption, resistance, and
hyperaccumulation, such as SpHMA3 (Liu et al., 2017), SpMTL
(Peng et al., 2017), SaNramp6 (Chen et al., 2017; Lu et al., 2020),
SaCAX2 (Zhang et al., 2016), SaHsfA4c (Chen et al., 2020),
SaCAD (Qiu et al., 2018), SaREF (Liu et al., 2016), and SaPCR2
(Lin et al., 2020), have been characterized. However, there has
yet to be a systematic analysis of the transcription factor families
(e.g., bZIP) in S. plumbizincicola to clarify their roles in response
to heavy metal stress.
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In this study, we identified 92 bZIP genes in the
S. plumbizincicola genome and then analyzed their structures,
motifs, cis-acting elements, and phylogenetic relationships. On
the basis of RNA sequencing (RNA-seq) and quantitative real-
time PCR (qRT-PCR) methods, we explored their expression
profiles in response to Cd stress. Furthermore, the bZIP60
function related to plant responses to Cd stress was investigated.
The results of this study will be useful for the future functional
characterization of the SpbZIP genes in terms of their roles
during plant responses to Cd stress.

MATERIALS AND METHODS

Identification of the Basic Leucine Zipper
Family Genes in Sedum plumbizincicola
To identify all members of the bZIP gene family in
S. plumbizincicola, HMMER3.0 was used to screen for candidate
proteins in the S. plumbizincicola genome database (unpublished
work) on the basis of the Hidden Markov Model profile of the
bZIP domain (PF00170).1 A BLASTP search was performed
using 78 Arabidopsis protein sequences that were annotated
according to previously published methods from TAIR.2

Subsequently, Pfam, SMART,3 and CDD4 were used to confirm
the presence of the bZIP domain in candidate proteins. All
putative bZIP genes were named according to their homologs
in Arabidopsis. The encoded protein sequences were analyzed
using the online tool ProtParam5 to predict the amino acid
composition, molecular weight, and isoelectric point (Gasteiger
et al., 2005). Additionally, PSORT prediction6 was used to predict
the subcellular localization of the proteins.

Multiple Sequence Alignment and
Phylogenetic Analysis
ClustalX2 was used to align the full-length SpbZIP and AtbZIP
amino acid sequences. Phylogenetic trees were constructed using
the maximum-likelihood criteria in MEGA 5.0, with 1,000
bootstrap replicates. The identified SpbZIP genes were divided
into different groups according to the AtbZIP classification
scheme. The phylogenetic tree was visualized using iTOL.7

Analysis of cis-Acting Elements in
SpbZIP Promoters
The cis-acting elements in the promoter region 2 kb upstream
of the SpbZIP genes were identified and then submitted to the
PlantCARE database8 (Lescot et al., 2002). The position of the

1http://pfam.xfam.org/
2http://www.arabidopsis.org/
3http://smart.embl-heidelberg.de/
4https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
5https://web.expasy.org/protparam/
6http://psort1.hgc.jp/form.html
7https://itol.embl.de/
8http://bioinformatics.psb.ugent.be/webtools/plantcare/html/

identified elements was graphically displayed using the TBtools
software.9

Analysis of SpbZIP Gene Structures and
Encoded Motifs
The exon/intron structure of SpbZIP genes was analyzed and
displayed using the GSDS platform.10 The conserved motifs in
the SpbZIP proteins were identified using the MEME program
(version 5.0.5),11 with the following parameters: optimum motif
width range of 6–50 amino acid residues and a maximum of 22
motifs (Bailey and Elkan, 1994).

Synteny Analysis and Chromosomal
Distribution of SpbZIP Genes
The default parameters of the Multiple Collinearity Scan
(MCScanX) toolkit were used to analyze gene duplication
events (Wang et al., 2012). Diagrams were generated using the
Circos program (version 0.69)12 (Krzywinski et al., 2009). Non-
synonymous (ka) and synonymous (ks) substitutions in each
duplicated SpbZIP gene were calculated using KaKs_Calculator
2.0 (Wang et al., 2010).

Plant Materials and Cd Stress
Treatments
Sedum plumbizincicola plants were collected from an old Pb/Zn
mine in Huiping town, Quzhou city, Zhejiang province, China.
The shoots from a single genotype were asexually propagated
and cultivated in water in an artificial climate chamber at 25◦C
with a 16-h light/8-h dark cycle. The plants were grown in a half-
strength Hoagland solution for about 4 weeks. Similarly growing
plants were then treated with 400 µM CdCl2. The roots, stems,
and leaves were sampled at 0, 0.5, 2, 4, 8, and 12 h after the
Cd stress treatment. Three biological replicates were collected
for all samples.

SpbZIP Expression Profiles in Response
to Cd Stress
The Total RNA Purification kit (NORGEN, Thorold, ON,
Canada) was used to extract total RNA from the roots, stems, and
leaves. First-strand cDNA was generated using PrimeScriptTM

RT Master Mix (TaKaRa, Dalian, China). The qRT-PCR analysis
was performed in triplicate using the 7,300 Real-Time PCR
System (Applied Biosystems, CA, United States) and the SYBR R©

Premix Ex TaqTM reagent (TaKaRa, Dalian, China). Gene-specific
primers were designed using the “Genes” module of the SPDE
software (Xu et al., 2021a). The UBC gene was selected as
the internal reference (Sang et al., 2013). Primers used are
listed in Supplementary Table 5. Relative expression levels
were calculated according to the 2−11CT method (Livak and
Schmittgen, 2001). The FPKM values for the SpbZIP genes were
derived from the RNA-seq data (Han et al., 2016). Expression

9https://github.com/CJ-Chen/TBtools
10http://gsds.cbi.pku.edu.cn/
11http://meme-suite.org/tools/meme
12http://circos.ca/
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values were normalized via Z-score normalization. An expression
profile heatmap was generated using the pheatmap package in R
(4.0.2).

SpbZIP Co-expression Regulatory
Network
The weighted gene co-expression network analysis (WGCNA)
R package was used to construct a co-expression regulatory
network on the basis of the expression profiles of differentially
expressed genes under Cd stress conditions (Han et al., 2016).
The SpbZIP genes among the co-expressed genes with strong
interconnections were designated as hub genes. The Pearson’s
correlation coefficient threshold was set as 0.40 according to
the FPKM values for each gene pair using the R (version 4.0.2)
program (Han et al., 2016). We screened for co-expression edge
genes associated with the SpbZIP hub genes and performed Gene
Ontology (GO) analyses using the Gene Annotation Software
for Plants (GFAP) (Xu et al., 2022). Subsequently, we classified
the related genes according to their functions and visualized
the relationships between nodes and edges using Cytoscape
(version 3.6.1).

Subcellular Localization of SpbZIP60
The SpbZIP60 coding sequence without the stop codon was
fused to the mGFP-encoding sequence in the pCAMBIA1302
expression vector using the ClonExpress II One Step Cloning Kit
(Vazyme, Nanjing, China). Agrobacterium tumefaciens GV3101
cells were transformed with the recombinant plasmid, which was
then transferred into healthy Nicotiana benthamiana leaves for a
transient gene expression analysis; the empty vector was used as
a control. After co-culturing for 3 days, the leaves were soaked
in a 4,6-diamidino-2-phenylindole (DAPI) staining solution to
visualize nuclear DNA. The LSM 710 confocal laser-scanning
microscope (Zeiss, Germany) was used to detect the fluorescence
of the fusion protein.

Ectopic Expression of SpbZIP60 in
Arabidopsis and Cd Treatment
The SpbZIP60 coding sequence was amplified by PCR and
inserted into the pCAMBIA1300 vector. The recombinant
plasmid was inserted into Arabidopsis (Col-0) plants via
A. tumefaciens (EHA105)-mediated transformation (Zhang et al.,
2006). The T3 homozygous transgenic lines and wild-type (WT)
plants were grown in a half-strength Hoagland solution. The
seedlings were transferred to a solution containing 30 µM
CdCl2 after 4 weeks and grown for 7 days. The roots of the
treated seedlings were immersed in a 10-mM EDTA solution
for 0.5 h to remove Cd from the surface. The samples were
dried and then digested with a solution comprising HNO3
and perchloric acid (9:1 v/v) at 120–200◦C in a microwave-
accelerated reaction system (CEM, Matthews, NC, United States).
The Cd content was determined using the 7500a inductively
coupled plasma mass spectrometry system (Agilent, Santa Clara,
CA, United States). Previously described 3,3’-diaminobenzidine
(DAB) and nitroblue tetrazolium (NBT) staining methods
were used to reveal the presence of H2O2 and O2

− in situ
(Chen et al., 2020). The chlorophyll content was measured

according to an acetone ethanol extraction method (Li et al.,
2000). Chlorophyll fluorescence was analyzed using the Dual-
PAM-100 system (Walz, Effeltrich, Germany); the parameters
were set, and the data were analyzed as previously described
(Su et al., 2020).

RESULTS

Identification and Characterization of
Putative Basic Leucine Zipper
Transcription Factors
Following a search of the S. plumbizincicola genome database
using HMMER3.0, the identified candidate sequences were
examined using CDD, Pfam, and SMART to confirm the
presence of the bZIP domain (E-value < 1e−5). A total of
92 non-redundant genes were identified as bZIP genes in
the S. plumbizincicola genome. They were named according
to the corresponding Arabidopsis homologs. The subsequent
analysis indicated that the SpbZIP proteins comprise 117–707
amino acids (average of 303 amino acids), with a molecular
weight of 13.7–77.3 kDa (average of 33.7 kDa) and a predicted
isoelectric point of 5.05–10.26 (average of 7.02). Most of
the identified SpbZIP proteins were predicted to localize in
the nucleus, which is a characteristic of transcription factors
(Supplementary Table 1).

Phylogenetic Analysis of SpbZIP Genes
To classify the SpbZIP genes into subgroups and elucidate
the evolutionary relationships between S. plumbizincicola and
Arabidopsis genes, we constructed an unrooted phylogenetic
tree using the maximum-likelihood method and the protein
sequences encoded by 78 AtbZIP genes and the 92 identified
SpbZIP genes (Figure 1). On the basis of the phylogenetic tree, the
SpbZIP genes were divided into 12 of 13 subgroups; the exception
was subgroup M. There were no individual clades among the
SpbZIP genes, suggesting that they were relatively conserved.
Similar to the Arabidopsis homologs, most of the SpbZIP genes
were classified into subgroups S and A. Subgroups J and K had
the fewest genes, each with only two SpbZIP genes.

SpbZIP Gene Structure and Protein Motif
Composition
To gain insights into the structures of SpbZIP genes, their introns
and exons were analyzed. Of the SpbZIP genes in subgroup S,
20 (21.7%) lacked introns. In contrast, three (3.3%) and seven
(7.6%) genes contained one and two introns, respectively. Three
or more introns were detected in 62 genes (68.5%) (Figure 2C).
An examination using the MEME online program detected
22 conserved motifs in the SpbZIP proteins. The conserved
motifs comprised 20–50 amino acids. Details regarding the
22 putative motifs are provided in Supplementary Table 2.
Motif 1 (leucine zipper region of bZIP) was identified as the
core conserved domain. A few subgroup-specific motifs were
identified, including motifs 10 and 15 (subgroup A) and motifs
11, 12, and 16 (subgroup G). Most of the SpbZIP proteins in
the same subgroup in the phylogenetic tree had common motifs,
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FIGURE 1 | Phylogenetic relationships among the bZIP genes from Sedum
plumbizincicola and Arabidopsis. The phylogenetic tree was constructed on
the basis of the alignment of S. plumbizincicola and Arabidopsis bZIP proteins
according to the maximum-likelihood method, with 1,000 bootstrap replicates.

indicating a close evolutionary relationship and a high degree
of conservation.

Chromosomal Locations and Collinearity
Analysis of SpbZIP Genes
The 92 SpbZIP genes were distributed unequally among
30 S. plumbizincicola chromosomes (Figure 3). Segmental
duplications of multiple genes are caused by chromosomal
rearrangements (Yu et al., 2005), whereas tandem duplications,
which mainly occur in the recombination region of
chromosomes, usually result in the formation of a cluster of
genes with similar sequences and functions (Ramamoorthy et al.,
2008). During evolution, segmental and tandem duplications are
the two main drivers of the expansion of plant gene families.
In the S. plumbizincicola genome, eight segmental duplication
events involving 16 SpbZIP genes (i.e., 17.4% of the SpbZIP
genes) were detected. Among the segmentally duplicated
gene pairs, SpbZIP42.1/SpbZIP42 and SpbZIP45.2/SpbZIP45.1
were distributed on chromosomes 4 and 14, respectively,
whereas SpbZIP60/SpbZIP60.1 and SpbZIP61.3/SpbZIP61.2
were distributed on chromosomes 5 and 6, respectively.
Additionally, SpbZIP36.1/SpbZIP36, SpbZIP53/SpbZIP53.1,
SpbZIP44/SpbZIP44.1, and SpbZIP52/SpbZIP18.2 resulted
from gene duplication events. Of these gene pairs, six were
assigned to subgroup S. Furthermore, none of the genes were
the result of tandem duplications. Thus, we speculated that
segmental duplications were important for the expansion of
the SpbZIP family in S. plumbizincicola. Moreover, the Ka/Ks

ratios for all eight duplicated SpbZIP gene pairs were less than
0.5 (Supplementary Table 3), indicating that the SpbZIP family
paralogs were primarily under purifying selection.

Next, we created two comparative syntenic maps of the
association between S. plumbizincicola and Arabidopsis or
Kalanchoe fedtschenkoi, which is a representative Crassulaceae
plant species, to further clarify the origin and evolution of
the S. plumbizincicola bZIP family (Figure 4). A total of 15
SpbZIP genes had a syntenic relationship with 17 and 48 genes
in Arabidopsis and K. fedtschenkoi, respectively (Supplementary
Table 4). Additionally, 20 orthologous gene pairs were detected
between S. plumbizincicola and Arabidopsis, which was fewer
than the 54 orthologous gene pairs between S. plumbizincicola
and K. fedtschenkoi. There were more collinear gene pairs
between S. plumbizincicola and K. fedtschenkoi than between
S. plumbizincicola and Arabidopsis, which is in accordance
with the fact S. plumbizincicola is phylogenetically closer to
K. fedtschenkoi than to Arabidopsis. Some collinear gene pairs
(involving 11 SpbZIP genes) among all three species were
identified, implying that the orthologous gene pairs may have
existed before ancestral divergence. These orthologous genes
were also under intense purifying selection.

Analysis of cis-Acting Elements in
SpbZIP Promoters
To clarify the regulatory mechanisms underlying SpbZIP
expression, the cis-acting elements in the promoter sequences
were analyzed using PlantCARE. The identified cis-acting
elements (Figure 5) were divided into three categories (stress-
responsive, plant development-related, and phytohormone
responsive). The following seven abiotic stress-responsive
elements were detected: ARE (important for anaerobic
induction), MBS (MYB-binding site associated with drought-
inducible expression), TC-rich repeat (stress-responsive
element), WUN-motif (wound-responsive element), LTR (low
temperature-responsive element), G-box, and W-box. At least
one stress-responsive cis-acting element was detected in the
promoter of all SpbZIP genes, with the exception of SpbZIP66,
reflecting the importance of SpbZIP expression for plant
responses to various abiotic stresses. Among the phytohormone-
responsive cis-acting elements, ABRE was the most common,
with 251 ABREs detected in 72 SpbZIP promoters (enrichment
level of 3.49), followed by MeJA-responsive cis-acting elements
(TGACG-motif and CGTCA-motif) (enrichment level of 2.49).

SpbZIP Expression Profiles Under Cd
Stress Conditions
We used our previously published RNA-seq data to determine
SpbZIP expression patterns (Han et al., 2016), which were
revealed in terms of FPKM values, in the roots, stems, and
leaves. The SpbZIP expression trends in the roots during the Cd
treatment period were divided into four categories (Figure 6).
The expression levels of 32 SpbZIP genes gradually decreased
or increased over the entire treatment period. In contrast, the
expression levels of 18 genes peaked at 1 day after initiating the
Cd treatment. However, the genes whose expression in the roots
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FIGURE 2 | Phylogenetic relationships, motif compositions, and gene structures of SpbZIP genes in S. plumbizincicola. (A) Phylogenetic analysis of
S. plumbizincicola bZIP family members. (B) All conserved motifs in the SpbZIP proteins were identified using the MEME program. Different motifs are highlighted
with different colored boxes (numbered 1–22). (C) Gene structures. Exons and 5’/3’ untranslated regions are indicated by green and yellow bars, respectively,
whereas gray lines represent introns.

was not induced by Cd stress had upregulated or downregulated
expression levels in the stems (27) or leaves (8) in response to the
Cd treatment. These results suggested that SpbZIP transcription
factors may play a major role in the roots as part of the
initial response to Cd stress. Transcription factors often rapidly
respond to environmental cues. We further shortened and refined
the treatment time and then performed qRT-PCR analysis to
investigate the expression levels of 25 hub genes selected from
the co-expression network. As expected, for most of the SpbZIP
genes, the expression levels peaked earlier in the roots (4 h) than
in the stems (8 h) and leaves (12 h) (Figure 7).

SpbZIP Co-expression Network
To further clarify the regulatory effects of bZIP family members
on the expression of Cd-responsive genes, a co-expression
regulatory network was constructed on the basis of the
expression profiles of differentially expressed genes under Cd
stress conditions determined in an earlier transcriptome analysis,
in which 11 SpbZIP genes were annotated as hub genes. The
nodes associated with hub genes were clustered according
to functional categories, which reflected their association
with metabolic processes, cellular activities, membranes, cells,
binding, and catalytic activities (Supplementary Table 6).
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FIGURE 3 | Genome location and synteny of bZIP genes in S. plumbizincicola. Gray lines indicate syntenic blocks in the S. plumbizincicola genome, whereas the red
lines between chromosomes indicate segmentally duplicated gene pairs.

The Cd-responsive gene co-expression network had 189
nodes (Figure 8). The major categories included transcription
factor (59 edges), transporter activity (52 edges), stimulus-
response (43 edges), signaling (19 edges), and antioxidant
activity (8 edges). The hub gene SpbZIP60.1 was associated
with the most nodes (59), including 19 transcription factor
nodes, 12 transporter activity nodes, 4 stimulus-response
nodes, and 4 signaling nodes, followed by SpbZIP69.2
(34 nodes) and SpbZIP63.3 (21 nodes). Accordingly, in
response to Cd stress, SpbZIP transcription factors appear to

regulate the expression of downstream genes associated with
diverse functions.

SpbZIP60 Was Localized in the Nucleus
In this study, SpbZIP60 was one of the hub genes in
the co-expression regulatory network, and its expression
level was significantly upregulated in the roots during the
Cd stress treatment. Hence, the subcellular localization of
SpbZIP60 was analyzed to elucidate the potential functions of
bZIP transcription factors in S. plumbizincicola. The control
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FIGURE 4 | Synteny between SpbZIP genes and genes in other species (Arabidopsis and K. fedtschenkoi). Gray lines in the background represent collinear blocks
in S. plumbizincicola and the other species, whereas blue lines indicate syntenic bZIP gene pairs.

FIGURE 5 | Analysis of cis-acting elements in the SpbZIP promoter region. (A) Phylogenetic analysis of SpbZIP genes. (B) The number of each cis-acting element in
the promoter region (2 kb upstream of the translation start site) of SpbZIP genes. (C) Distribution of related cis-acting elements in SpbZIP promoters.
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FIGURE 6 | Expression profiles of SpbZIP genes in plant tissues under Cd stress conditions. Gene expression data at 0, 1, and 4 days after the 400 µM CdCl2
treatment were retrieved from an RNA-seq database and visualized using R (version 4.0.2). Expression levels are indicated by a gradient from low (blue) to high (red).
L, S, and R represent leaves, stems, and roots, respectively.
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FIGURE 7 | Expression profiles of hub SpbZIP genes in different tissues of S. plumbizincicola soon after the exposure to Cd stress.

GFP signal was distributed throughout the cell, whereas the
fluorescence of the SpbZIP60-mGFP fusion protein was detected
only in the nucleus (Figure 9). Thus, SpbZIP60 likely functions
as a nuclear protein that regulates transcription.

Overexpression of SpbZIP60 Enhanced
the Cd Tolerance of Arabidopsis
To further explore the function of SpbZIP60 under Cd
stress conditions, transgenic Arabidopsis plants overexpressing
SpbZIP60 were generated. The T0 transgenic lines were verified
by PCR using genomic DNA as the template. After analyzing the
SpbZIP60 expression levels by semi-RT-PCR, the transgenic lines
were cultivated to produce the homozygous T3 lines used for the
subsequent analyses (Supplementary Figure 1).

Leaf chlorosis and damages to the photosynthetic apparatus
are observable symptoms of Cd toxicity. The degree of chlorosis
in leaves at 7 days after initiating the Cd stress treatment was
higher in the WT plants than in the SpbZIP60-overexpressing
plants (Figure 10A). Histochemical staining revealed that less
H2O2 and O2

− accumulated in the transgenic Arabidopsis
lines (OE#5 and OE#8) than in the WT control following
the Cd treatment (Figures 10B,C). Meanwhile, the total
chlorophyll content of the SpbZIP60-overexpressing plants
where significantly higher than those of WT (Figure 10D).
Chlorophyll fluorescence properties, which reflect the
photochemical processes of PSII, are a useful indicator of
the effects of heavy metal stress, especially Cd stress, on the
photosynthetic apparatus. In the WT Arabidopsis plants, the
Fv/Fm decreased, which was indicative of photoinhibition.
Moreover, the inactivation or destruction of PSII resulted in
an increase in the initial fluorescence (F0). Additionally, the
relative PSII electron transport rate was higher in the SpbZIP-
overexpressing plants than in the WT plants (Supplementary
Table 7). These results suggested that in response to Cd
stress, the photosynthetic apparatus was damaged less in the
SpbZIP60-overexpressing plants than in the WT plants. Next,
we analyzed the Cd concentrations in hydroponically grown

SpbZIP60-overexpressing lines. The Cd concentrations in the
leaves and roots decreased substantially in the transgenic lines
(Figure 10E). Therefore, SpbZIP60 significantly decreased the
Cd concentration in the roots of the transgenic Arabidopsis
plants, likely by inhibiting Cd uptake.

DISCUSSION

Sedum plumbizincicola has undergone long-term evolution and
natural selection in heavy metal-contaminated soil (Wu et al.,
2013; Yang et al., 2017). The S. plumbizincicola proteins involved
in the absorption, transport, sequestration, and detoxification of
heavy metals have been thoroughly studied, especially the heavy
metal transporters (Liu et al., 2016, 2017, 2019a; Peng et al.,
2017; Chen et al., 2020; Zhu et al., 2022). However, systematic
analyses of the transcriptional regulation of the genes encoding
these proteins have not been conducted. Transcription factors
in the bZIP family modulate various physiological processes and
abiotic stress responses (Corrêa et al., 2008). Thus, characterizing
the S. plumbizincicola bZIP family is critical for clarifying the
mechanism underlying the responses of S. plumbizincicola plants
to environmental factors, especially heavy metal stress.

In this study, we conducted a genome-wide analysis of
the S. plumbizincicola bZIP transcription factor family and
explored the potential functions in response to Cd stress.
On the basis of the encoded motifs, 92 SpbZIP genes were
identified in the S. plumbizincicola genome. The number of
bZIP genes in S. plumbizincicola is higher than that in some
plant species but lower than that in other plant species (Corrêa
et al., 2008; Nijhawan et al., 2008; Wei et al., 2012; Zhao
et al., 2016, 2021; Dröge-Laser et al., 2018; Zhang et al.,
2018; Liu et al., 2019b). We then divided the 92 SpbZIP
genes into 12 subgroups after comparing the encoded protein
sequences with the corresponding sequences in Arabidopsis.
The classification of the bZIP genes was relatively consistent
between S. plumbizincicola and Arabidopsis. However, AtbZIP72
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FIGURE 8 | SpbZIP gene co-expression network. The genes are divided on the basis of the following seven GO terms, which are represented by different colors:
transporter activity, nucleic acid binding transcription factor activity, response to stimulus, signaling, antioxidant activity, protein binding transcription factor activity,
and molecular transducer activity.

FIGURE 9 | Subcellular localization of SpbZIP60. The SpbZIP60-GFP fusion construct and the GFP gene driven by the CaMV 35S promoter were transiently
expressed in tobacco. The nucleus was visualized using the DAPI staining solution.
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FIGURE 10 | Effects of Cd stress treatments on the growth of SpbZIP60-overexpressing Arabidopsis plants. (A) Phenotypes of SpbZIP60-overexpressing
transgenic lines and wild-type (WT) plants under normal conditions or in response to the Cd treatment. Bar = 5 cm. (B) NBT staining results. (C) DAB staining
results. (D) Chlorophyll contents of the WT and transgenic lines before and after the Cd treatment. (E) Cd contents of the WT and transgenic lines. Bars represent
the mean ± standard deviation (SD) of at least three independent biological replicates. Significant differences according to a one-way analysis of variance are
denoted as follows: p < 0.05 (Duncan’s test).

was included in a separate clade (subgroup M), which lacked
SpbZIP genes, suggesting that this clade is specific to Arabidopsis.
In the phylogenetic tree constructed in this study, there were no
branches that were exclusive to S. plumbizincicola, suggesting the
SpbZIP genes are evolutionarily conserved (Figure 1). Moreover,
genes belonging to the same subgroup were revealed to share
similar gene structures and encode common motifs (Figure 2).
For example, subgroup S consisted of small proteins encoded by
genes lacking introns, which is in accordance with the results of
earlier studies (Dröge-Laser et al., 2018; Wang et al., 2021).

Tandem and segmental duplication events are crucial for
the expansion of gene families and the diversification of gene
functions, which have enabled plants to adapt to environmental
conditions (Cannon et al., 2004). We detected eight pairs
of segmentally duplicated genes on 11 chromosomes, but
no tandemly duplicated genes. Therefore, the expansion of
the bZIP gene family in S. plumbizincicola was mainly the
result of segmental duplications. The calculated Ka/Ks ratios
for all gene pairs were less than 0.5, implying these genes
might have experienced strong purifying selection pressure
during evolution. Furthermore, we analyzed the collinearity
between the SpbZIP genes and genes in Arabidopsis and
K. fedtschenkoi. There were more collinear gene pairs between
S. plumbizincicola and K. fedtschenkoi, which has a relatively close
evolutionary relationship with S. plumbizincicola, than between
S. plumbizincicola and Arabidopsis. A comparison between
S. plumbizincicola and Arabidopsis detected 20 orthologous
pairs of bZIP genes. As putative orthologs of SpbZIP19.1, both
AT4G35040.1 (AtbZIP19) and AT2G16770.1 (AtbZIP23), which
belong to subgroup F, encode Zn sensors that contain a motif
that binds Zn2+ ions, enabling them to regulate plant responses
to zinc deficiency (Lilay et al., 2021). Additionally, the following

four G-box-binding factors (GBFs) were identified: GBF1
(SpbZIP41.1/AT4G36730.1), GBF2 (SpbZIP55/AT4G01120.1),
GBF3 (SpbZIP55/AT2G46270.1), and GBF6 (SpbZIP16.3 and
SpbZIP44.4/AT4G34590.1). Previous research indicated that
GBFs participate in abiotic stress responses (Sun et al., 2015).
For example, the expression of AtGBF3 induces drought and
pathogen stress tolerance by activating ABA-mediated signaling
(Ramegowda et al., 2017; Dixit et al., 2019). Interestingly, the
promoter of SpbZIP55, which is orthologous to AtGBF3, was
revealed to contain the most ABREs among the examined SpbZIP
genes, suggesting that SpbZIP55 may also be related to ABA
signaling and stress responses.

We further explored the SpbZIP expression patterns in
response to Cd stress. Most of the SpbZIP genes were responsive
to Cd stress, especially in the roots. This finding may be related
to the fact that plants first perceive Cd stress in the roots,
which take up Cd from the soil. The Cd is then transported
to the stems and leaves. Therefore, the response to Cd stress
will likely be greater in the roots than in the other plant tissues
(Pan et al., 2019). Transcription factors may regulate metal
ion transport in the stem. For example, in Brassica juncea,
BjCdR15/TGA3 is a transcription factor that is crucial for the
regulation of Cd uptake by the roots and the root-to-shoot
transport of Cd (Farinati et al., 2010). Moreover, bZIP genes
encode transcription factors that respond rapidly to stimuli. A co-
expression regulatory network analysis is useful for identifying
closely co-regulated and functionally related genes or genes
affecting the same signaling pathway or physiological process.
To identify the core SpbZIP genes responsive to Cd stress,
we constructed a co-expression network and identified 11 hub
SpbZIP genes that are co-expressed, with strong interconnections
to edges (Han et al., 2016). These genes may encode proteins that
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sense specific signals, respond to stimuli, regulate the expression
of other transcription factor genes, and ultimately affect metal
transport or oxidative elimination.

The hub gene SpbZIP60 was selected for functional analysis
because its expression was observed to be upregulated by
Cd stress. The overexpression of SpbZIP60 in transgenic
Arabidopsis resulted in increased Cd tolerance. More specifically,
the photosynthetic apparatus was damaged more in the
WT plants than in the transgenic plants following the Cd
treatment. Furthermore, Cd accumulated less in the transgenic
plants than in the WT controls. These results indicate
that SpbZIP60 may affect the uptake or transport of Cd.
However, it is unclear whether the increased Cd resistance
is also the result of enhancements to other detoxification-
related processes. The Chlamydomonas bZIP transcription factor
BLZ8 confers oxidative stress tolerance by inducing a carbon-
concentrating mechanism (Choi et al., 2021). In Arabidopsis,
AtbZIP60 responds to endoplasmic reticulum stress through
the IRE1-bZIP60 mRNA splicing pathway (Deng et al., 2011).
Briefly, AtIRE1 selectively recognizes and cleaves the unspliced
bZIP60 mRNA that normally exists in the ER membrane,
and the resulting spliced bZIP60 mRNA can be translated
into an active bZIP transcription factor (Howell, 2013). The
subcellular localization experiment conducted in the current
study demonstrated that SpbZIP60 is a nuclear protein, but
whether this means SpbZIP60 contributes to the ER stress
response remains to be determined. At present, there are
relatively few studies on Cd-mediated ER stress in plants.

CONCLUSION

In this study, we identified 92 bZIP genes in S. plumbizincicola
and analyzed their evolutionary relationships. These genes
were divided into 12 subgroups, and the members of each
subgroup had common gene structures and motif compositions.
An analysis of the S. plumbizincicola bZIP genes revealed
eight segmental duplication events, but no tandem duplication
events, suggesting that segmental duplication events were
the main force driving the evolution of the bZIP gene
family in S. plumbizincicola. A collinearity analysis involving
S. plumbizincicola and other species and a comparison between
the S. plumbizincicola genes and the genes encoding bZIP
transcription factors with known functions in model plants
will provide new clues regarding SpbZIP functions. We also
characterized the SpbZIP expression profiles under Cd stress

conditions and constructed a co-expression network comprising
11 SpbZIP hub genes. The results of this study reflect the
importance of SpbZIP transcription factors for regulating plant
responses to Cd stress. The expression of the hub gene SpbZIP60
was induced by Cd stress and enhanced the Cd tolerance of
transgenic Arabidopsis. Overall, these findings may provide new
insights into the stress response-related functions of SpbZIP
transcription factors in S. plumbizincicola.
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Ma bamboo (Dendrocalamus latiflorus Munro) is the most widely cultivated clumping

bamboo in Southern China and is valuable for both consumption and wood production.

The development of bamboo shoots involving the occurrence of lateral buds is unique,

and it affects both shoot yield and the resulting timber. Plant-specific TCP transcription

factors are involved in plant growth and development, particularly in lateral bud outgrowth

and morphogenesis. However, the comprehensive information of the TCP genes in Ma

bamboo remains poorly understood. In this study, 66 TCP transcription factors were

identified in Ma bamboo at the genome-wide level. Members of the same subfamily had

conservative gene structures and conserved motifs. The collinear analysis demonstrated

that segmental duplication occurred widely in the TCP transcription factors of Ma

bamboo, which mainly led to the expansion of a gene family. Cis-acting elements related

to growth and development and stress response were found in the promoter regions of

DlTCPs. Expression patterns revealed that DlTCPs have tissue expression specificity,

which is usually highly expressed in shoots and leaves. Subcellular localization and

transcriptional self-activation experiments demonstrated that the five candidate TCP

proteins were typical self-activating nuclear-localized transcription factors. Additionally,

the transcriptome analysis of the bamboo shoot buds at different developmental stages

helped to clarify the underlying functions of the TCP members during the growth

of bamboo shoots. DlTCP12-C, significantly downregulated as the bamboo shoots

developed, was selected to further verify its molecular function in Arabidopsis. The

DlTCP12-C overexpressing lines exhibited a marked reduction in the number of rosettes

and branches compared with the wild type in Arabidopsis, suggesting that DlTCP12-C

conservatively inhibits lateral bud outgrowth and branching in plants. This study provides

useful insights into the evolutionary patterns and molecular functions of the TCP

transcription factors in Ma bamboo and provides a valuable reference for further research

on the regulatory mechanism of bamboo shoot development and lateral bud growth.
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INTRODUCTION

Transcription factors play a critical role in plant growth and
development and can regulate development by transmitting
external environmental factors, mediating hormone signal
pathways, and responding to gene regulatory networks in
plants (Chen et al., 2021). TCP genes, a kind of plant-
specific transcription factors, are typically involved in the plant
developmental process, such as seed germination (Zhang et al.,
2019a), floral organ development (Wang et al., 2015), leaf
morphogenesis (Sarvepalli and Nath, 2011), axillary meristem
development (Aguilar-Martínez et al., 2007; Nicolas et al.,
2015; Min et al., 2021), and hormone signal transduction
(Kosugi and Ohashi, 2002; González-Grandío et al., 2017).
The abbreviation “TCP” comes from its earliest discovered
members: Teosinte Branched1 (TB1) from maize (Zea mays),
CYCLOIDEA (CYC) from snapdragon (Antirrhinum majus), and
the PROLIFERATING CELL FACTORS (PCF) from rice (Oryza
sativa) (Luo et al., 1996; Doebley et al., 1997; Kosugi and Ohashi,
1997). They all have a conserved TCP domain, a basic helix–
loop–helix (bHLH) structure, which is primarily related to DNA
binding, protein interaction, and protein nuclear localization
(Cubas et al., 1999). It can also be divided into Class I (also
known as PCF) and Class II according to the characteristics of
the conserved domain of TCP proteins. Additionally, Class II can
be divided into CIN subfamily and CYC/TB1 subfamily (Martín-
Trillo and Cubas, 2010). The most obvious difference between
Class I and Class II is the absence of four conservative amino
acids in the Class I basic TCP domain. The R domain is rich
in polar amino acids such as lysine, glutamic acid, and arginine
and is only found in Class II members, which is used to mediate
protein interaction (Cubas et al., 1999).

So far, the majority of TCP family members have been
determined to play a role in plant growth and development.
Previous studies have shown that the TCP members of
Class I primarily promotes leaf cell proliferation, thereby

regulating plant growth and development, and plays an

important role in the response to stress (Aguilar Martinez
and Sinha, 2013). In Arabidopsis thaliana, TCP14 and TCP15
are involved in seed germination by acting downstream of

the gibberellin and vernalization pathways (Resentini et al.,
2015; Xu et al., 2020). Through binding to the homologous
GCCCR elements, AtTCP20 regulates the expression of cyclin
and ribosomal protein genes. Furthermore, it acts as a flexible
regulator to coordinate growth and division pathways in post-
embryonic plant development (Li et al., 2005). Additionally,
the downregulation of the expression of OsPCF6 and OsTCP21
enhances the tolerance of rice under cold stress by changing
the scavenging of reactive oxygen species (Wang et al., 2014).
TCP21 is particularly important during plant growth. Its low
expression makes rice more susceptible to rice ragged stunt virus
(RRSV) (Zhang et al., 2016; Wang et al., 2021). Overexpression
lines of TCP21 exhibited increased tiller bud length, biomass, and
tiller number in rice (Wang et al., 2021). PeTCP10 is induced by
drought and ABA treatment and plays a vital role in plant growth
and development and response to environmental stress, which
can be seen due to its effects in the evident effects on drought

tolerance and the lateral root growth of transgenic lines (Liu
et al., 2020). However, the TCP members of Class II primarily
plays an important role in morphological construction and
organ development (Manassero et al., 2013; Sarvepalli and Nath,
2018). Overexpression of AtTCP1, the homolog of CYC, directly
stimulates the expression of the target gene DWF4 to actively
regulate brassinosteroid (BR) biosynthesis, which affects leaf
development and leaf shape regulation (Guo et al., 2010; An et al.,
2011). It was found that OsTCP17 (REP1), a CYC homologous
gene in rice, regulates the attributes and development of palea
and controls the flower symmetry of the inner and outer lemma
axis (Yuan et al., 2009). In wild rice, the OsTCP15 (TIG1) gene is
specifically highly expressed on the distal side of the tiller base,
which promotes cell elongation by activating the expression of
downstream genes such as EXPA3, EXPB5, and SAUR39, which
helps to maintain a large tillering angle (Zhang et al., 2019b).

Branching affects plant morphogenesis and growth to a great
extent and determines plant architecture, yield, and ecological
sustainability (Richards, 2000; Wang and Li, 2008; Wang et al.,
2019). TB1, an inhibitory regulator of the development of axillary
buds, realizes the transformation from lateral branch growth
to apical dominance, transforming teosinte with more tiller
numbers into commonly cultivated maize (Doebley et al., 1997;
Wang et al., 2019). It has been found in many species due
to its conservative function of negatively regulating axillary
bud growth (Takeda et al., 2003; Kebrom et al., 2006; Dixon
et al., 2018; Shen et al., 2019). TCP18 (BRANCHED1, BRC1)
and TCP12 (BRANCHEND2, BRC2) in Arabidopsis are the two
orthologous homologs of ZmTB1 in maize, which are highly
expressed in axillary buds and negatively regulate the growth
of axillary buds, whereas SML 6, 7, and 8 promote branching
through transcriptional inhibition of BRC1 and the non-
transcriptional regulation of auxin (Aguilar-Martínez et al., 2007;
Wang et al., 2020). Strigolactones (SLs) are a new plant hormone
that inhibits the germination of lateral branches and suppresses
the growth of tiller buds in rice by regulating the transcriptional
level of OsTB1 (Takeda et al., 2003; Nicolas and Cubas, 2016;
Wang et al., 2018). Meanwhile, OsMADS57 and OsTB1 jointly
regulate the transcription of its target genes OsWRKY94 and
D14, realizing the transition between organogenesis and cold
adaptation defense in rice at different temperatures (Chen et al.,
2018). As wild cucumbers were domesticated, it was found that
two light response elements inserted in the promoter region
promoted the expression of CsBRC1, which directly restrained
the auxin outflow from the lateral buds mediated by PIN3
(encoding auxin transporter) and reduced the production of
branches due to the accumulation of auxin in axillary buds
(Shen et al., 2019). To date, homologous genes of TB1 were
subsequently identified in numerous gramineous plants such
as rice (Takeda et al., 2003), wheat (Dixon et al., 2018), and
sorghum (Kebrom et al., 2006). They are very conservative in
function, which can cause bud dormancy, and effectively regulate
the growth of axillary buds in response to hormones and the
external environment which controls the tiller number (Wang
et al., 2019).

Bamboo is one of the fast-growing non-timber forest
resources and has significant economic, cultural, and ecological
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value (Zhao et al., 2017). Ma bamboo (Dendrocalamus latiflorus
Munro) is the most widely cultivated clumping bamboo in
Southern China. Its bamboo shoots taste good and are high
in nutritional value. Mature bamboo can be used as building
materials, decorations, and ornamental planting. Therefore, it
is a fast-growing and environmentally friendly clump bamboo
species that can be cultivated for its shoots and timber. Bamboo
shoots have a longer period of emergence because they are often
exposed to the soil surface, which is easily frozen in winter.
When cultivating bamboo forests, seasonal shooting and the low
germination rate of shoot buds directly affect the yield of bamboo
shoots and timber. The formation, growth, and development of
bamboo shoots involved in themorphogenesis of lateral branches
are unique and affect the yield of bamboo shoots and timber.
Therefore, it is important to explore the role of genes related
to lateral branch formation in the outgrowth of bamboo shoots,
which will help to clarify the molecular mechanism of bamboo
shoot development.

Whereas, the TCP family has been characterized in many
species, such as Arabidopsis (Yao et al., 2007), rice (Yao et al.,
2007), sorghum (Francis et al., 2016), and Moso bamboo
(Liu et al., 2018), less is known about the TCP transcription
factors in Ma bamboo. Recently released genomic data about
Ma bamboo, including a representative of hexaploid clumping
bamboo (AABBCC, 2n = 6x = 72), allowed us to perform a
genome-wide analysis of the TCP transcription factors in Ma
bamboo (Zheng et al., 2022). In this study, 66 TCP transcription
factor members of Ma bamboo were identified, and the
phylogenetic relationship, gene structure and motif information,
collinearity, tissue differential expression analysis, subcellular
localization analysis, and transcriptional self-activation analysis
were analyzed. Additionally, we performed transcriptome
analysis of bamboo shoot buds at different developmental stages
to clarify the function of the TCP family during bamboo shoot
outgrowth. Through the phenotypic observation of transgenic
Arabidopsis, we concluded that DlTCP12-C plays a significant
role in controlling the number of branches. Our study reveals
the basic information and evolutionary relationship of plant-
specific TCP transcription factors inMa bamboo, clarifies the role
of candidate genes in bamboo shoot growth and development
by transcriptome analysis, and preliminarily outlines on the
function of candidate TCPs, all of which provides valuable
insights into future investigations.

MATERIALS AND METHODS

Genome-Wide Identification of Putative
DlTCPs
To identify TCP transcription factors, the detailed information
of D. latiflorus genome was obtained through the website (http://
forestry.fafu.edu.cn/pub/Dla/). On the Pfam website (http://
pfam.xfam.org/), the Hidden Markov Model (HMM) of the
conserved TCP domain (PF03634) was downloaded. With
a threshold: e-values < 10−5, all putative TCP members
with conserved TCP domain were obtained in our protein
dataset through the HMMsearch module in SPDE software

(Xu et al., 2021). Subsequently, the putative TCP genes (TCPs)
were further checked the integrity of its domain through
the NCBI (https://www.ncbi.nlm.nih.gov/), InterProScan (http://
www.ebi.ac.uk/Tools/pfa/iprscan/), and SMART (http://smart.
embl-heidelberg.de/) databases. The genes without complete
TCP domain will be manually eliminated. The ExPaSy (https://
web.expasy.org/compute_pi/) and Plant-mPLoc (http://www.
csbio.sjtu.edu.cn/bioinf/plant-multi/#) were used to predict their
molecular weight (MW) and isoelectric point (pI) and subcellular
localization, respectively.

Phylogenetic Tree Construction and
Sequence Alignment
All protein sequences of Arabidopsis, rice, and Moso bamboo
were downloaded from TAIR (https://www.arabidopsis.org/),
China Rice Data Center (https://www.ricedata.cn/gene/), and
Bamboo databases (http://forestry.fafu.edu.cn/db/PhePacBio/
phe/Jbnest.php), respectively. Then, we obtained the sequences
of TCP proteins in Arabidopsis, rice, and Moso bamboo from
previous studies (Supplementary Table S1). To explore the
evolutionary relationships, ClustalW was used to perform
the multiple sequence alignments between 24 Arabidopsis, 22
rice, 16 Moso bamboo, and 66Ma bamboo TCP proteins with
default parameters (Thompson et al., 2003), and MEGA 7.0
was subsequently used to construct a neighbor-joining (NJ)
phylogenetic tree with the following parameters: NJ tree method,
complete deletion, and 1,000 bootstrap replicates (Kumar et al.,
2016). Additionally, the multiple sequences’ alignment of DlTCP
proteins was performed using DNAMAN software (version 9.0),
and the conserved TCP domain regions with 55–60 amino acids
were intercepted to further investigate the conservation and
diversity. The online tool RNA22 v2 microRNA target detection
(https://cm.jefferson.edu/rna22/Interactive/) was used to predict
miRNA target sites (Miranda et al., 2006).

Gene Structure, Conserved Motifs,
Chromosome Distribution, cis-Regulatory
Element Analysis, Synteny, and Gene
Duplication Analysis
The exon–intron structures of DlTCPs were mapped using the
TBtools software (Chen et al., 2020) based on the obtained
coding sequence (CDS) and genomic sequences of Ma bamboo.
The online MEME program version 5.4.1 (http://meme-suite.
org/tools/meme) was used to identify and analyze the conserved
motifs of TCP proteins in Ma bamboo. The 2,000-bp upstream
promoter sequences of the DlTCPs were submitted to the
online program Plant CARE (http://bioinformatics.psb.ugent.be/
webtools/plantcare/html/) to search the predicted cis-regulatory
elements, and these results were visualized using the online tool
Gene Structures Display Server (http://gsds.gao-lab.org/).

MCScanX was used to analyze the duplication events of
the DlTCPs with the default parameters. The diagram of
chromosomal location and synteny relationships was generated
by the program Circos (Krzywinski et al., 2009) version 0.69
(http://circos.ca/) based on the information about collinear pairs
and genetic location. Meanwhile, collinearity analysis between
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Ma bamboo and the three other species of TCPs was performed
using the dual synteny plot module in TBtools. The non-
synonymous (Ka) replacement rate and synonymous (Ks) rate
were calculated by Ka/Ks calculator to analyze gene duplication
events (Wang et al., 2010).

Plant Materials, Growth Conditions, and
qRT-PCR
The seedlings of Ma bamboo were cultured in a culture room
at 25◦C (16-h light, 8-h dark) with stable humidity. About 6-
week-old seedlings in similar growth status were selected to
collect the samples of young roots, stems, leaves, and bamboo
shoots emerging from the bottom. A total of three biological
repetitive samples were collected from each tissue to reduce the
experimental error.

Tiangen RNAprep plant kit (Tiangen) were used to isolate
total RNA from above-mentioned plant samples. Before
dissolving RNA, RNase-free DNaseI (Tiangen, Beijing, China)
was used to eliminate any contaminating genomic DNA. Then,
1 µg RNA was reverse-transcribed into first-strand cDNA using
Takara PrimeScript First-Strand cDNA Synthesis kit (Takara,
Dalian, China). All first-Strand cDNA samples were diluted
5 times and stored at −20◦C for real-time quantitative PCR
(qRT-PCR) experiments. Gene-specific primers were designed
using Primer 5 software and shown in Supplementary Table S2.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was
used as used internal reference (Liu et al., 2014). qRT-PCR was
performed using TB GreenTM Premix Ex TaqTM (Tli RNaseH
Plus) kit (Takara) with the QuantStudioTM 7 Flex Real-Time
PCR instrument (Applied Biosystems). A total of three biological
replicates were carried out to eliminate errors. The relative
expression level was estimated based on the 2−11CT method
(Livak and Schmittgen, 2001).

Transcriptome Sequencing and Expression
Analysis of DlTCPs
The samples used for transcriptome sequencing were collected

fromHua’an County, Zhangzhou City, Fujian Province (117◦24
′
-

117◦35
′
E, 24◦65

′
-25◦02

′
N) in July 2021. A total of four

representative developmental stages of bamboo shoot buds were
selected for sampling. In the Stage 1, the largest shoot buds
located at the lowest layer of mature bamboo shoots were mainly
collected, which were still in the dormant stage. The bamboo
shoots were expanding, and the top of the shoots begins to twist
and grow upward, which are the main characteristics of bamboo
shoots in the Stage 2 (the height is about 8 cm). In the Stage 3,
the bamboo shoots grew completely upright, accompanied by the
further expansion of the bamboo bodies. The bamboo shoots in
the Stage 4 (about 45 cm) have entered the high growth stage,
and the height of bamboo shoots is significantly higher than that
in the Stage 3 (about 20 cm). After removing the bamboo shoot
sheath, the bamboo shoot bud samples around the top 0.4 cm
were immediately collected and frozen in liquid nitrogen to
prevent RNA degradation. A number of four biological repetitive
samples were taken in each stage, and each biological repeat
consists of about seven apical buds. The separation of total RNA,

quality evaluation, and construction of sequencing library were
performed as described in the previous studies (Zou et al., 2021).

Illumina Hiseq 2500 platform (Novogene, Beijing, China)
was used for sequencing, and HISAT 2.0.5 software was used
to map all clean reads to the reference genome of D. latiflorus.
The differentially expressed genes (DEGs) were screened by
DESeq2 package according to the threshold of fold change
≥1.5 and the adjusted p-value < 0.05. Compared with the two
groups, the differentially expressed genes (DEGs) were screened
by pairwise comparison. The above RNA-seq and bioinformatic
analysis were carried out by BioMarker Technologies Illumina,
Inc. (Shanghai, China). To further screen the differential genes in
the transcriptome, all the differential genes were annotated using
Gene Annotation Software for Plants (GFAP) (Xu et al., 2022),
which quickly obtained the detailed information of candidate
differential expressed genes in the transcriptome.

Subcellular Localization and
Transactivation Activity
To analyze the subcellular localization of candidate genes
(DlTCP5-C, DlTCP7-B, DlTCP9-A, DlTCP12-C, and DlTCP23-
C), we designed specific primers to amplify the full-length
coding sequence of candidate TCP genes and then inserted
them into mGFP fusion expression vector pMDC43
(Supplementary Table S2). Then, the location signal was
analyzed in the leaf tissue of Nicotiana benthamiana after
transforming Agrobacterium tumefaciens GV3101 as described
in the previous research (Sparkes et al., 2006). The empty vector
was used as the control. About 72 h later, the transient expression
of GFP fusion protein was observed by LSM900 confocal
microscope imaging system (Zeiss, Germany). The nucleus was
visualized with mCherry-labeled nuclear markers. Subsequently,
the candidate TCP genes were inserted into the pGBKT7 vector
to study the transcriptional activity of DlTCP proteins in yeast
(Supplementary Table S2). Then, the above recombinant vector,
positive control pGBKT7-p53 + pGADT7-T, and negative
control pGBKT7 empty plasmid were transformed with lithium
acetate method into yeast strain AH109. The transformed strains
were cultured on SD medium lacking Trp (SD-Trp) and further
selected on defective medium SD-Trp-His-Ade supplemented
with X-α-gal for 3–5 days. The transcriptional activation activity
was evaluated according to the growth status.

Cloning of the DlTCP12-C Gene and
Phenotypic Analysis of Transgenic
Arabidopsis
The full-length CDS of DlTCP12-C was amplified from
D. latiflorus cDNA and constructed into the binary vector
pCAMBIA1300 driven by the CaMV 35S promoter using
ClonExpress II One Step Cloning Kit (Vazyme, Nanjing, China)
(Supplementary Table S2). Then, Agrobacterium tumefaciens
(EHA105)-mediated transformation ofArabidopsiswas used. The
transgenic Arabidopsis seeds were collected from T1 plants alone,
and positive lines were screened on MS medium with 50mg
L−1 kanamycin until homozygous transgenic Arabidopsis lines

Frontiers in Plant Science | www.frontiersin.org 4 May 2022 | Volume 13 | Article 884443111

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Jin et al. TCP Transcription Factors of Ma Bamboo

of the T3 generation were obtained. The methods of phenotypic
observation refer to the previous studies (Li et al., 2021).

RESULTS

Identification of TCP Genes in Ma Bamboo
A total of 66 TCP members were identified in the D. latiflorus
genome, among which the number of subgenomes A, B, and
C is 22, 20, and 24, respectively. We renamed and classified
the DlTCPs according to their subgenomic attribution and
chromosomal position. Consistent with Arabidopsis thaliana,
rice, and Moso bamboo, most DlTCPs belong to the PCF
subfamily (35 members), whereas the CIN and CYC/TB1
subfamilies have 21 and 10 members, respectively. The molecular
weights (MWs) varied from 13.51 (DlTCP13-C) to 81.80
(DlTCP10-B) kDa, and the lengths varied from 128 (DlTCP13-
C) to 768 (DlTCP10-B) amino acid (aa) of DlTCP proteins.
The isoelectric point (pI) of the DlTCP proteins varied from
5.16 (DlTCP22-C) to 10.60 (DlTCP9-C). As a typical family of
transcription factors, predicted subcellular localization results
indicated that themajority of DlTCP proteins were located on the
nucleus using the online software Plant-mPLoc. The details of the
putative DlTCPs can be found in Supplementary Table S3.

Phylogenetic Analysis of TCPs in the Four
Different Plant Species
To further explore the phylogenetic relationship and
evolutionary process of the TCP gene family, MEGA7.0
was used to construct phylogenetic trees of the TCP members
of Ma bamboo, Moso bamboo, rice, and Arabidopsis thaliana.
The tree constructed by the neighbor-joining (NJ) method
divided the TCP family into two clades with 1,000 bootstraps
replication: Class I and Class II. A total of 35 DlTCPs were
identified in the Class I (PCF) subfamily, and Class II was further
categorized into CIN and CYC/TB1 subfamilies (Figure 1). In
addition, the phylogenetic tree showed that the DlTCPs have a
close evolutionary relationship between Ma bamboo and Moso
bamboo, both of which belong to Gramineae. For example,
DlTCP11-C and PeTCP14, and DlTCP8-C and PeTCP13 were
clustered in the same small subfamily. We also counted the
number of TCP family members in different species (Table 1).
The results demonstrate that the number of TCP family members
in hexaploid Ma bamboo is approximately three times that of
diploid plants, which demonstrates the important role of the
TCP family during the growth and development of Ma bamboo.

Gene Structure and Conserved Protein
Motifs
Gene structure analysis highlighted the differences in conserved
domains and motif compositions among subfamilies. However,
members of the same subfamily often possess similar structures,
for example, motifs 1 and 3 exist in all Class II members
(Figure 2). The consistency and difference in this structure can
be further confirmed in the results of the multiple sequence
alignment of TCP proteins in Ma bamboo. Detailed information
of conserved motifs is displayed in Supplementary Table S4.
The deletion of four conservative amino acids in Class I

members is the most obvious difference compared with
Class II (Supplementary Figure S1). Additionally, most
TCP members, especially the CYC/TB1 subfamily, showed
consistent conservatism with only one exon. In the CIN
subfamily, five DlTCPs (DlTCP2-B, DlTCP3-C, DlTCP12-B,
DlTCP14-B, and DlTCP15-A) were found to have putative
binding sites for miR319 of Ma bamboo (Supplementary

Table S5).

Chromosome Distribution and Synteny
Analysis
As expected, synteny analysis demonstrated that the members of
the TCP gene family had a very complex colinear relationship
in Ma bamboo, suggesting that polyploidization was the main
source of the expansion of the TCP gene family (Figure 3).
As shown in Figure 3, TCP members have only not been
identified on chromosomes 29.1, 30.1, and 31.1, which belongs
to the three subgenomes A, B, and C, respectively. The
chromosome distribution of TCP members in Ma bamboo
was uneven. Chr18.1 contained the largest number of TCP
members (6), including 3 PCF members, 1 CYC/TB1 member,
and 2 CIN members. Tandem duplication events can drive the
renewal of the biological functions of genes. Only one tandem
duplication gene pair, DlTCP5-B and DlTCP6-B, was found in
this study.

Collinearity Analysis
The collinearity of TCPs was analyzed in Ma bamboo,
Arabidopsis, rice, and Moso bamboo by MCscanX. The results
demonstrate that Ma bamboo and Moso bamboo, which are
both Bambusoideae, had a more conservative evolutionary
relationship compared with Arabidopsis (Figure 4). However,
due to polyploidization, several genes are differentiated during
the evolutionary process, producing new gene functions to
adapt to the environment. The number of genes with a
collinear relationship in Ma bamboo is ∼3 times that in
rice, indicating that the hexaploid Ma bamboo has a very
conservative duplication process during evolution. Homologous
gene analysis demonstrated that duplication events occur during
genomic evolution. Using phylogenetic tree analysis, 3 putative
orthologous gene pairs (Dl-Os), 3 putative orthologous gene
pairs (Dl-Pe), and 14 putative paralogous gene pairs (Dl-
Dl) were obtained (Supplementary Table S6). The Ks value
and Ka/Ks ratio of all putative orthologous and paralogous
pairs were calculated to analyze the evolutionary selection
and divergence pattern of TCPs (Supplementary Table S6).
Generally, a Ka/Ks ratio >1, =1, and <1 indicates positive
selection, which will be conducive to genetic variation of
natural adaptation, neutral selection, and purifying selection
to reduce amino acid mutation, respectively. The Ka/Ks
ratios of orthologous gene pairs and paralogous gene pairs
of TCP members were all <1, indicating that these genes
have undergone a strong purifying selection during evolution
(Supplementary Figure S2).
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FIGURE 1 | Phylogenetic analysis of TCP members in Ma bamboo, Moso bamboo, rice, and Arabidopsis. MEGA7.0 was used to construct phylogenetic tree by

neighbor-joining (NJ) method divided the TCP family into two clades with 1,000 bootstraps replication. Triangle, round, star, and square represent the TCP members

of Ma bamboo, rice, Arabidopsis, and Moso bamboo, respectively. Different colored geometric shapes were used to mark TCP members of different species.

Detection of cis-Regulatory Elements in
the Promoter Regions of TCPs in Ma
Bamboo
To analyze the cis-acting elements of the promoter regions,
sequences of the 2,000-bp upstream of 66 TCP members were
extracted from the Ma bamboo genome and predicted on the
Plant CARE website (Figure 5). A total of 14 cis-acting elements
related to hormone response, plant growth and development,
and stress have been discovered, including low-temperature-
responsive elements, drought-inducible elements, seed-specific
regulatory elements, ABA-responsive elements, auxin-responsive

elements, and so on. The different cis-elements on promoters

may lead to functional differentiation between family members.

The number of seed-specific regulatory elements on the
promoters of CYC/TB1 subfamily members exceeds that of

other members, which suggests that these members have
specific functions during seed germination. The results of the
phylogenetic tree showed that TCP members that are closely
related to each other tend to cluster in a small branch whose
promoter region has similar cis-regulatory elements, such as
DlTCP21-A,DlTCP18-B, andDlTCP24-C. This suggests that they
have a conserved molecular function. Additionally, the promoter
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TABLE 1 | The number of TCP family members in five plant species.

Species PCF CIN CYC/TB1 Total References

Arabidopsis 13 8 3 24
Yao et al., 2007

Rice 10 9 3 22
Yao et al., 2007

Sorghum 9 8 3 20
Francis et al., 2016

Moso bamboo 10 5 1 16
Liu et al., 2018

Ma bamboo 35 21 10 66

regions of most TCPmembers have anMYB transcription factor-
binding site and WRKY-binding site, especially DlTCP12-C,
which contains 5 MYB-binding sites and 1WRKY-binding sites.

Tissue-Specific Expression Patterns
The tissue expression pattern can deeply reflect the primary
role of TCPs, highlighting the need to further study its specific
function. According to the above analysis, 16 putative genes
were evenly selected from each subfamily of TCP members
for tissue expression analysis. The expression levels of putative
TCP members were analyzed in bamboo shoots, roots, stems,
and leaves of the 6-week-old seedlings (Figure 6). The results
demonstrated that TCP family members had obvious tissue
expression specificity and were particularly highly expressed
in bamboo shoots and leaves. Numerous TCPs were highly
expressed in shoots, such asDlTCP5-C,DlTCP15-B, andDlTCP9-
A. DlTCP10-B was specifically expressed in leaves, whereas
DlTCP-4A was a transcription factor specifically expressed in the
roots.We then attempted to clarify the potential functions of TCP
members in shoots by other means.

Transcriptome Analysis of Shoot Buds at
Different Developmental Stages in Ma
Bamboo
Bamboo shoot buds with a top of∼0.4 cm at four developmental
stages were selected for transcriptome sequencing (Figure 7A).
We used transcriptome analysis to demonstrate that many
growth- and development-related transcription factors were
differentially expressed genes, including MYB, NAC, WRKY,
and TCP. RNA-seq results indicated that the number of
differentially expressed genes (DEGs) in the S1–S2, S1–S3,
and S1–S4 groups were higher than in other groups, whereas
the number of DEGs significantly decreased between S2, S3,
and S4 (Figure 7B). There were only a few differential genes
between S3 and S4, which indicates that the morphological
structure of the top has been basically developed in later
stages of bamboo shoot bud development, making the gene
expression very similar. Therefore, we focused on the DEGs in
the S1–S2, S1–S3, and S1–S4 comparative groups and selected
the common differential genes as the candidate genes. As
shown in Figure 7C, 3, 444 and 3,206 DEGs were consistently
upregulated and downregulated in the S1–S2, S1–S3, and S1–
S4 groups, respectively. The GO enrichment revealed that the

DEGs were involved in biological processes, cellular components,
and molecular functions (Supplementary Figure S4). Genes
related to hormone signaling pathways, transcription factors
(MYB, NAC, and WRKY), and developmental processes
(expansin, growth-regulating factor, and Dof zinc finger
proteins) showed significant differential expression during
four developmental stages in Ma bamboo shoots (Figure 7D;
Supplementary Table S7).

Expression Analysis of TCPs in Shoot Buds
at Different Developmental Stages
The expression levels of TCP family members in different
developmental stages of bamboo shoot buds were obtained to
further explore their roles in shoot bud growth and development
using transcriptome data. A total of 29 TCP family members
were found as DEGs, and 9 and 20 differentially upregulated
and downregulated genes, respectively. The expression levels of
DlTCP9-A and DlTCP12-C belonging to the CYC/TB1 subfamily
were significantly decreased during the shoot germination,
indicating that they play an important role in the growth
and development of bamboo shoots. This is consistent with
the molecular function of the TB1 gene in inhibiting branch
growth (Figure 8A). We further counted the differences in
DEGs in various stages, and the results indicated that the
number of downregulated genes gradually decreased whereas
the upregulated genes gradually increased from S1 to S4 in
bamboo shoots. This indicates that some members of the
TCP family primarily function in the early stage of shoot
bud germination and development, while others are highly
expressed in the later stages of development (Figure 8B). This
emphasized that TCP family members are thoroughly involved
in the growth and development of bamboo shoots. Meanwhile,
we selected 8 TCP members to verify the reliability of the
transcriptome results by qRT-PCR (Figure 8C). GO annotation
indicated that TCP transcription factors were involved in growth
and development, hormone signal transduction, and stimulus
response (Supplementary Figure S3).

Subcellular Localization and
Transactivation Activity
The protein structure of transcription factors is typically
composed of four functional domains: DNA-binding domain,
transcriptional regulatory domain (including activation domain
or inhibitory domain), oligomerization site, and nuclear
localization signal. Transcription factors normally function in the
nucleus to regulate the expression of their target genes by binding
to corresponding binding elements on their promoters. A total of
four putative DlTCPs highly expressed in bamboo shoots were
further selected for subcellular localization and transcriptional
self-activation experiment from the 16 genes used for tissue
expression analysis. The results showed that DlTCP5-C,DlTCP7-
B, DlTCP9-A, and DlTCP23-C are all nuclear-localized TCP
transcription factors (Figure 9). In addition, the yeast transforms
with the four candidate genes can grow on the defective medium
of SD-Trp-His-Ade supplemented with X-α-gal and turned blue,
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FIGURE 2 | Phylogenetic relationships, motif compositions, and gene structure of TCP genes in Ma bamboo. (A) Phylogenetic relationships of 66 TCP members in

Ma bamboo. They were further classified into three subfamilies: PCF, CYC/TB1, and CIN. (B) Different motif compositions of TCP members in Ma bamboo were

detected using MEME. The conserved motifs were represented by boxes with different colors. (C) Gene structures of TCPs in Ma bamboo. Green indicates 5
′
UTR

and 3
′
UTR, yellow indicates exons, and black lines indicate introns.

indicating that DlTCP5-C, DlTCP7-B, DlTCP9-A, and DlTCP23-
C all have transcriptional self-activation activity (Figure 10).

Cloning and Relevant Analysis of
DlTCP12-C
DlTCP12-C, the homologous gene ofOsTB1, is the key node gene
for lateral bud outgrowth, which was significantly differentially
expressed according to the transcriptome analysis. This suggests
that DlTCP12-C could play an important role in the growth of
bamboo shoots. Then, the full-length CDS of the DlTCP12-C
was cloned. The DlTCP12-C gene has no intron and contains
SP, TCP, and R conserved domains (Figure 11). The original
transcriptional self-activating activity was lost after the deletion
of 285 bp at the 5’ end. The results of the expression pattern

and subcellular localization showed that it was a nuclear-localized
TCP transcription factor highly expressed in bamboo shoots.

Phenotypic Assay of the DlTCP12-C

Overexpression Transgenic Arabidopsis
Due to the long period of genetic transformation of Ma bamboo,
preliminary functional verification was performed inArabidopsis.
Transgenic Arabidopsis plants overexpressing DlTCP12-C were
obtained, and the phenotype of the T3 generation Arabidopsis
lines was observed after 35 days of culture (Figure 12). Compared
with the wild type, the overexpressed lines had significantly fewer
rosette leaves and branch numbers. Obviously, no new lateral
branches were found in DlTCP12-C overexpression transgenic
Arabidopsis after 35 days of cultivation, whereas there were
typically 3–4 branches in WT lines, indicating that DlTCP12-C
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FIGURE 3 | Chromosome distribution and synteny analysis of TCP genes in Ma bamboo. Different chromosomes were showed in different colors. The inner gray lines

were used to mark all the collinearity relationships in Ma bamboo and the inner red lines were represented the collinearity relationships of TCP members in Ma

bamboo. Gene names of different colors were used to mark the TCP members from different subgenomes.

plays an important role in the development of branch outgrowth
in Arabidopsis. The results of transgene identification and
expression detection are shown in Supplementary Figure S4.

DISCUSSION

As we all know, members of gene families tend to expand
through several evolutionary mechanisms, including tandem

duplication, large-scale chromosome segmental duplication, and
translocation, This leads to the evolution of complex phenotypes
(Cannon et al., 2004; McCarthy et al., 2015). In Ma bamboo,
numerous genes have undergone triple genome duplication
due to whole-genome duplication events (Zheng et al., 2022).
Approximately 280 gene families have undergone expansion
during their evolution from paleotropical woody bamboos to
allohexaploid Ma bamboo, which could be the reason for some of
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FIGURE 4 | Collinear relationships of genes pairs from Ma bamboo, Moso bamboo, rice, and Arabidopsis. Gray lines indicate that all the collinear gene pairs between

Ma bamboo and other species, whereas red lines indicate the collinear TCP gene pairs.

bamboos’ unique traits, including their rapid vegetative growth
and high biomass (Zheng et al., 2022). In this study, a total
of 66 plant-specific TCP transcription factors were identified in
Ma bamboo, and the number of genes was about three times
that of rice, Arabidopsis, and Moso bamboo (Table 1). In other
words, all DlTCPs possessed 3–5 homologous genes, indicating
that they are preferentially retained during polyploidization.
Similarly, there were three closely related homologous genes
in the TCP family of hexaploid wheat. However, their cis-
acting elements were quite different, which could lead to the
sub-functionalization of wheat homologous genes (Zhao et al.,
2018). Collinear analysis demonstrated that the main reason
for the expansion of the TCP gene family is chromosome
polyploidization (whole-genome duplication) and large-scale
chromosome segment duplication, which primarily occurs
between three subgenomes A, B, and C of D. latiflorus, and only
a few chromosomes do not possess TCP transcription factors
(Figure 3). The TCP family has expanded due to large-scale
segment duplication events that also occurred in upland cotton,
whereas 74 GhTCP genes were identified in the allotetraploid
plant upland cotton genome (AADD) (Li et al., 2017). Tandem
duplication events, which are important events driving the
occurrence of new biological functions, have only been found
one time between DlTCP5-B and DlTCP6-B. This suggests that
TCP transcription factors have conservative and irreplaceable
functions in Ma bamboo (Shang et al., 2012). The TCP family
could have a continually increasing role in the development of the
typical hexaploid bamboo species D. latiflorus. While they may
have functional redundancy, the sub-functionalization of these
homologous genes and gene dosage could make Ma bamboo
more adaptable during growth and development (He et al., 2022).

Plants have several complex regulatorymechanisms and signal
networks, which can quickly perceive the external environment

and regulate gene expression to adapt to unpredictable
environmental changes and resist several biotic and abiotic
stresses in the long-term evolutionary process. Transcription
factors can regulate the occurrence of biological processes
such as plant morphology, developmental patterns, and stress
responses to varying degrees. As the plant-specific transcription
factors, the TCP family plays a vital role in plant growth and
development. A group of functionally redundant phylogenetic-
related class I TCP genes (AtTCP7, AtTCP8, AtTCP22, and
AtTCP23) had similar expression patterns in young leaves,
regulating leaf development by controlling cell proliferation
(Aguilar Martinez and Sinha, 2013). In Arabidopsis, AtTCP14
directly activates the growth potential of the embryo during
seed germination, whose expression level is highest before seed
germination (Tatematsu et al., 2008). In addition, the AtTCP14
mutant was highly sensitive to abscisic acid and gibberellin
synthase inhibitors, indicating that AtTCP14 regulates seed
germination by regulating hormone response (Tatematsu et al.,
2008; Manassero et al., 2013). The senescence phenotype of
TCP19 and TCP20 double mutants was significantly enhanced
in Arabidopsis, and classic genetic and molecular methods
have been used to demonstrate that TCP19 and TCP20 are
involved in controlling leaf senescence in Arabidopsis, despite
functional redundancy (Danisman et al., 2013). OsPCF7 is
primarily expressed at the tillering stage and plays an important
role in the tillering and heading process of rice seedlings. It
significantly affects the panicle numbers, the number of filled
grains per plant, and the grain yield per plant (Li et al., 2020).
CsTCP3 is induced by gibberellin, photoperiod, and temperature
and directly participates in the development of axillary buds by
controlling the content of auxin in axillary buds, which affects
the number of lateral branches in cucumber (Wen et al., 2020).
It can integrate upstream environmental factors and hormone
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FIGURE 5 | Predicted cis-elements of TCP gene promoters in Ma bamboo. Plant CARE was used to predict and analyze the promoter region of the 2,000-bp

upstream of 66 TCP members. Different colored rectangles represented different cis-elements and especial cis-elements were highlighted in different shapes.

signals and further affect the development of axillary meristem,
to adapt the plant architecture to environmental conditions.
Biological processes from shoot bud germination to growth

is crucial for the growth and development of bamboo (Shou
et al., 2020), all of which directly affect the yield of bamboo
shoots and timber in Ma bamboo. Therefore, we collected
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FIGURE 6 | Tissue expression pattern of TCP genes in Ma bamboo. The expression levels of putative TCP members in bamboo shoots, roots, stems, and leaves

were normalized and visualized by R (4.0.2). Red and blue represent high and low expression levels, respectively. 1, 2, and 3 represent three biological replicates,

respectively.

the apical buds of bamboo shoots from four representative
developmental stages for transcriptome analysis to find out
the relevant gene sets involved in this process (Figure 7A).
A total of 29 TCP transcription factors were subsequently
found as differentially expressed genes from RNA-seq data.
Interestingly, TCP transcription factors exhibited spatiotemporal
expression specificity during the development of bamboo shoots
(Figure 8A). From the dormancy stage (S1) to the rapid high
growth stage (S4), the number of downregulated genes gradually
decreased; in contrast, the number of upregulated genes gradually
increased (Figure 8B). These results suggested that there is
an alternation and switching mechanism in the function of
TCP transcription factors to better adapt to the growth and
development of bamboo shoots in Ma bamboo. TB1 is the key
node gene for lateral bud outgrowth, which plays a conservative
role in many species (Takeda et al., 2003; Dixon et al., 2018; Li
et al., 2021). Whereafter, the preliminary functional verification
results confirmed the critical role of DlTCP12-C in inhibiting
axillary bud growth and lateral branch growth in overexpressed
transgenic Arabidopsis (Figure 12). Future research will verify
the biological function and regulation pathway of DlTCP12-
C in shoot buds development using genetic transformation in

Ma bamboo and assess whether there is functional redundancy
among other members of the CYC/TB1 subfamily.

Transcription factors have the binding activity of specific
DNA sequences or the characteristics of known DNA-binding
domains, so they bind to cis-acting elements on the target
site to ensure that the target gene is expressed at a specific
intensity, in a specific time and place. In our study, a large
number of cis-acting regulatory elements related to plant
hormone signals, organ development, stress response, MYB

transcription factors, and WRKY transcription factor-binding
sites accumulated in the promoter of DlTCPs, indicating that
TCP transcription factors could act as a central regulatory
integrin regulated by environmental factors, hormone signals,
and upstream transcription factors to affect plant growth and
development. GhTCP14a/22 is involved in controlling cotton
fiber growth through the gibberellin, brassinosteroids, and
auxin signal transduction pathways, which play a remarkable
role in the development of cotton fiber and are primarily
expressed during fiber initiation and elongation (Li et al.,
2017). DWARF27 (D27) is a key gene involved in strigolactone
synthesis, which can sense strigolactone signaling and activate
downstream TB1-like TCP transcription factors by recruiting
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FIGURE 7 | Transcriptome analysis of shoot buds at different developmental stages in Ma bamboo. (A) A total of four representative developmental stages of Ma

bamboo apical bud were characterized by the length of bamboo shoot. The red dotted line represents the position of shoot buds in S1. A separate scale of each

image is shown separately. (B) The number of differentially expressed genes between different stages was counted by transcriptome analysis. Yellow and blue

represent upregulated and downregulated differentially expressed genes, respectively. (C) Venn diagrams of differentially expressed genes in three group. Left and

right represent upregulated and downregulated, respectively. (D) The expression levels of three kinds of differentially expressed genes in transcriptome data were

related to hormones, transcription factors, and developmental process, respectively. Yellow and blue represent upregulated and downregulated differential expression,

respectively.
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FIGURE 8 | Expression analysis of TCPs in shoot buds at different developmental stages. (A) The expression data of TCP family members in different developmental

stages of bamboo shoot buds were retrieved from transcriptome analysis. The results were normalized and visualized by R (4.0.2). (B) The number of TCP

differentially expressed genes between different stages. Yellow and blue represent upregulated and downregulated differential expression, respectively. (C) qRT-PCR

was used to verify the results of the transcriptome analysis. Error bars were obtained from three replicates. Statistically significant differences between the expression

level of different stage were analyzed by Student’s t-test. Those with different marked letters were represented significantly different: p < 0.05.

SCF complexes to stimulate the ubiquitination and degradation
of DWARF53 (D53) repressor proteins (Kerr and Beveridge,
2017). Cytokinins and sugars also inhibit the expression of
TB1 (Mason et al., 2014; Patil et al., 2021). Auxin upregulates

the expression of MAX3 and MAX4 through the AXR1-AFB-
mediated signaling pathway, but downregulates the members
of the IPT family, promoting strigolactone biosynthesis,
and the inhibition of cytokinin biosynthesis, which further
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FIGURE 9 | Subcellular localization of four mGFP-fused TCP proteins in Ma bamboo. The four candidate TCP proteins (DlTCP5-C, DlTCP7-B, DlTCP9-A, and

DlTCP23-C) and GFP as a control were transiently expressed in Nicotiana benthamiana leaves and observed under a fluorescence microscope. The nucleus was

visualized with mCherry-labeled nuclear markers.

promotes the expression of TB1 (Nordström et al., 2004;
Tanaka et al., 2006). A number of two closely related TCP
transcription factors TCP14 and TCP15 affect the development
of foliage and trichomes, participate in cytokinin-regulated
signal pathways, and stimulate the expression of cytokinin-
regulated gene RESPONSE REGULATOR 5 through interaction
with SPINDLY (SPY) (Steiner et al., 2012). Jasmonic acid
is a kind of plant hormone of lipids (oxylipins), which is
involved in plant development, abiotic stress response, and
the interaction between plants and microorganisms. AtTCP4
reportedly directly targets LIPOXYGENASE2 (LOX2), encoding a
chloroplast enzyme gene involved in α-linolenic acid biosynthesis
and jasmonic acid synthesis, and is involved in the regulation

of jasmonic acid biosynthesis and leaf development (Vick
and Zimmerman, 1983; Danisman et al., 2012). The LsAP2
transcription factor further regulates leaf morphology in lettuce
by inhibiting the activity of the CIN-like TCP transcription
factor (Luo et al., 2021). The TCP-mediated complicated
hormone signal regulatory network further emphasizes the
important role of TCP in affecting plant growth patterns and
biological processes, and more in-depth research is needed
to clarify the pathway of TCP transcription factors. Our
transcriptome and promoter element analyses indicate that TCP
transcription factors regulate the expression of target genes
through transcriptional regulation and hormone signals, which
affect related biological processes in plants. Recent studies
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FIGURE 10 | Transactivational analyses of DlTCP proteins in yeast. The positive control pGBKT7-p53 + pGADT7-T, negative control pGBKT7 empty plasmid, and

four candidate pGBKT7-DlTCPs plasmids were transformed into yeast AH109, and the strains were further cultured on the yeast medium of SD-Trp and

SD-Trp-His-Ade supplemented with X-α-gal to analyze their transactivation activity.

FIGURE 11 | Gene structure, transactivational analyses, subcellular localization, and expression patterns of the DlTCP12-C. (A) Using genomic DNA (I) and cDNA (II)

as template, gel electrophoresis amplification results of DlTCP12-C. (B) Transcriptional self-activation experiments of five truncated forms of DlTCP12-C, SD-T, -T/-H,

-T/-A, and -T/-H/-A represents SD medium lacking Trp, Trp and His, Trp and Ade, Trp, and His and Ade, respectively. (C) Subcellular localization of DlTCP12-C protein.

(D) The expression levels of DlTCP12-C in bamboo shoot, root, stem, and leaf; those with different marked letters were represented significantly different: p < 0.05.
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FIGURE 12 | Phenotypic assay of the DlTCP12-C overexpression transgenic Arabidopsis. (A) Branching phenotypes of 35-day-old wild-type and DlTCP12-C

overexpressing transgenic Arabidopsis lines. Scale bar = 4 cm. (B) Close-up views of the rosettes of the plants in (A). Red arrow indicates branch. Scale bar = 1 cm.

(C) Number of rosettes. Error bars were obtained from five replicates. (D) Number of branches. Error bars were obtained from five replicates. Significant differences

compared with the WT were analyzed by Student’s t-test: **p < 0.01.

have made clarified the mechanism of the direct targeting
regulation of TCP transcription factors by miRNA. Some TCP
members directly targeted by miR319 are widely involved in
plant hormone signal transduction, leaf development, vascular
formation, and response to abiotic stress (Fang et al., 2021).
Comprehensive analysis of catechinmetabolism profiles and TCP
gene expression profiles in different plant tissues at different
developmental stages indicated that the CsmiR319b/CsTCP3-
4 module was not only related to shoot tip development,
but also played a potential role in catechin biosynthesis in
tea plants (Yu et al., 2021). Genetic and molecular analyses
indicated that PtoTCP20, the direct target gene of miR319a,
regulated the proliferation of vascular cambium along with
PtoWOX4a and promoted the differentiation of secondary
xylem by activating the transcription of PtoWND6, thereby
regulating the secondary growth of Populus tomentosa stem
(Hou et al., 2020). A total of five TCP genes were found

to contain miR319 directly targeted binding sites in 3
′
UTR

(Supplementary Table S6). These miR319-targetedDlTCPswere
the members of the CIN subfamily. The regulation mechanism
of DlTCPs related to the bud growth of bamboo shoots requires
further study.

In short, this study identified 66 plant-specific TCP
transcription factors in the D. latiflorus genome using

bioinformatics and analyzed their evolutionary relationship,
duplication events, promoter cis-elements, tissue expression
patterns, subcellular localization, and self-activating
transcriptional activity. Transcriptome analysis of different
developmental stages of bamboo shoot buds was used to
preliminarily study the function of TCP transcription factors in
Ma bamboo, providing a series of differentially expressed genes
that could be involved in the growth and development of bamboo
shoots. Subsequently, the conservative function of DlTCP12-C,
which negatively regulates axillary bud development and lateral
branch growth, was confirmed in overexpressed transgenic
Arabidopsis. This comprehensive study of TCP transcription
factors inMa bamboo provides several candidate genes worthy of
further analysis, including the regulatory mechanism of bamboo
shoot bud growth and development.
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Organization, Phylogenetic Marker 
Exploitation, and Gene Evolution in 
the Plastome of Thalictrum 
(Ranunculaceae)
Kun-Li Xiang 1,2, Wei Mao 3, Huan-Wen Peng 2,4, Andrey S. Erst 5,6, Ying-Xue Yang 1*, 
Wen-Chuang He 1*  and Zhi-Qiang Wu 1,7*

1 Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of 
Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 
Shenzhen, China, 2 State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of 
Sciences, Beijing, China, 3 College of Ecology and Environment, Hainan University, Haikou, China, 4 College of Life Sciences, 
University of Chinese Academy of Sciences, Beijing, China, 5 Central Siberian Botanical Garden, Russian Academy of 
Sciences, Novosibirsk, Russia, 6 Laboratory Herbarium (TK), Tomsk State University, Tomsk, Russia, 7 Kunpeng Institute of 
Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan, China

Thalictrum is a phylogenetically and economically important genus in the family 
Ranunculaceae, but is also regarded as one of the most challengingly difficult in plants 
for resolving the taxonomical and phylogenetical relationships of constituent taxa within 
this genus. Here, we sequenced the complete plastid genomes of two Thalictrum 
species using Illumina sequencing technology via de novo assembly. The two Thalictrum 
plastomes exhibited circular and typical quadripartite structure that was rather conserved 
in overall structure and the synteny of gene order. By updating the previously reported 
plastome annotation of other nine Thalictrum species, we found that the expansion or 
contraction of the inverted repeat region affect the boundary of the single-copy regions 
in Thalictrum plastome. We identified eight highly variable noncoding regions—infA-rps8, 
ccsA-ndhD, trnSUGA-psbZ, trnHGUG-psbA, rpl16-rps3, ndhG-ndhI, ndhD-psaC, and 
ndhJ-ndhK—that can be  further used for molecular identification, phylogenetic, and 
phylogeographic in different species. Selective pressure and codon usage bias of all 
the plastid coding genes were also analyzed for the 11 species. Phylogenetic relationships 
showed Thalictrum is monophyly and divided into two major clades based on 11 
Thalictrum plastomes. The availability of these plastomes offers valuable genetic 
information for accurate identification of species and taxonomy, phylogenetic resolution, 
and evolutionary studies of Thalictrum, and should assist with exploration and utilization 
of Thalictrum plants.

Keywords: Thalictrum, plastid genome, genome structure, molecular markers, phylogeny
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INTRODUCTION

Thalictrum L., comprising ca. 200 species, is a phylogenetically 
and economically important genus in the family Ranunculaceae 
(Tamura, 1995) and is worldwide with main distribution in 
northern temperate regions. Thalictrum plants are rich in 
benzylisoquinoline-derived alkaloids; at least 250 such 
compounds have been isolated from 60 species, and most of 
them show strong biological activities (Zhu and Xiao, 1991). 
Thalictrum plants are used in folk medicine for the treatment 
of many kinds of diseases by various ethnic groups of China, 
which has a long history (Wang and Xiao, 1979; Zhu and 
Xiao, 1989; Wu et  al., 1998; Wang et  al., 2001). In some place, 
roots of Thalictrum were used as substitutes for Rhizoma coptidis 
to treat enteritis and dysentery (Wu et al., 1998). Furthermore, 
bearing luxuriant foliage, extended branches, and attractive 
flowers, Thalictrum species have previously been mainly applied 
as perennial garden plants. At present, the horticultural values 
of Thalictrum plants, such as Thalictrum delavayi, Thalictrum 
reniforme, and Thalictrum grandiflorum have been widely paid 
attention with great commercial prospects (Wang and Xiao, 1979).

Thalictrum is taxonomically and phylogenetically regarded as 
one of the most challengingly difficult taxa in plants. Traditionally, 
Thalictrum was classified into 14 sections based on morphological 
traits such as leaf, flower, and fruit characteristics (Tamura, 1995). 
Molecular phylogenetic analyses have consistently suggested only 
that Thalictrum is a monophyletic group containing two major 
clades, based on the nuclear ribosomal internal transcribed spacer 
(ITS) region (ITS1, ITS2, and 5.8S) and the chloroplast DNA 
(cpDNA) rpl16 intron (Soza et al., 2012). Then, a revised phylogeny 
yielded better resolution based on nuclear ribosomal ITS region, 
external transcribed spacer (ETS) region, and the cpDNA 3’trnV-
ndhC (trnV-ndhC) intergenic region (Soza et al., 2013). Nonetheless, 
none of the sections traditionally assigned to the genus (Tamura, 
1995) are monophyletic (Soza et  al., 2012, 2013). Moreover, 
numerous species and varieties in Thalictrum are poorly defined 
owing to insufficient field studies and lack of consistent characteristics 
for diagnostic methods in the literature (Wang et  al., 2001). 
Therefore, further exploiting more stable genetic variations and 
effective molecular markers in Thalictrum species is greatly important 
for conservation and utilization of the plants from this genus.

The popularity of the ITS region for infrageneric studies 
within angiosperms is well-known (Baldwin et al., 1995; Hughes 
et al., 2006; Mort et al., 2007). Levels of ITS sequence divergence 
within Thalictrum are relatively high (Soza et  al., 2012, 2013). 
However, Thalictrum exhibits an enormous range of ploidy, 
from 2n = 2x = 14 to 2n = 24x = 168 (Löve, 1982; Tamura, 1995), 
with very small chromosomes known as the T-type in 
Ranunculaceae (Langlet, 1927). In Thalictrum, the ITS region 
is often presented as more than one copy (Soza et  al., 2012, 
2013). Owing to their haploidy, maternal inheritance, and high 
conservation in gene content and genome structure, the plastomes 
have been popular in researches on evolutionary relationships 
at almost any taxonomic level in plants. Although sequence 
divergence among the interspecific cpDNAs is generally less 
than ITS (Hughes et al., 2006; Mort et al., 2007), it is necessary 
to utilize cpDNA regions that exhibit relatively high rates of 

substitution in Thalictrum. With the advent of high-throughput 
sequencing technologies, it is now more practical and inexpensive 
to obtain plastome sequences and to upgrade cp-based 
phylogenetics to phylogenomics.

In the present study, we  sequenced the complete plastid 
genomes of two Thalictrum species by using the next-generation 
sequencing platform and performed the first comprehensive 
analysis of Thalictrum plastomes by combining these data with 
previously reported plastomes of other nine species (Park et  al., 
2015; He et  al., 2019, 2021b; Morales-Briones et  al., 2019). Our 
study aims were as follows: (1) to investigate global structural 
patterns of the 11 Thalictrum plastomes; (2) to identify the 
most variable regions of these plastomes as prospective DNA 
barcodes for future species identification; (3) to choose more 
effective molecular markers via reconstruction of phylogenetic 
relationships among the 11 Thalictrum species using various 
makers; and (4) to test for the presence of adaptive evolution 
in all genes located in the two single-copy regions, and one of 
the two inverted-repeat (IR) regions by analyses of selective 
pressure and codon usage bias. The results will provide abundant 
information for further species identification, phylogenetic, and 
phylogeographic studies on Thalictrum, and will assist in 
exploration and utilization of Thalictrum plants.

MATERIALS AND METHODS

Sample Preparation, Sequencing, 
Assembly, and Annotation
The sequenced two Thalictrum species (Thalictrum minus var. 
hypoleucum and Thalictrum simplex) are growing in the Beijing 
Botanical Garden, Beijing, China. Genomic DNA was extracted 
from fresh leaves and purified using the Tiangen Isolation/
Extraction/Purification Kit [Tiangen Biotech (Beijing) Co., Ltd.]. 
Short insert of 300–500 bp libraries were prepared for sequencing 
on the Illumina HiSeq X-Ten platform.

Before assembly of the short reads, plastome original reads 
were extracted by mapping all short reads to the nine plastomes 
as reference with BWA (Li and Durbin, 2009) and SAMtools 
(Danecek et  al., 2021). Then the two plastomes were de novo 
assembled with SPAdes v3.15.2 (Bankevich et  al., 2012) as 
described in He et  al. (2021a). Highly accurate annotation of 
organelle genomes was performed by using the Organellar 
Genome GeSeq tool (Tillich et  al., 2017) with subsequent 
manual correction. Three chloroplast genomes from Thalictrum 
coreanum (GenBank accession No. NC_026103), Thalictrum 
minus (NC_041544), and Thalictrum thalictroides (NC_039433) 
were used as reference sequences. The circular plastomes were 
visualized by using OGDRAW v1.3.1 (Greiner et  al., 2019), 
with subsequent manual editing. We also updated the annotation 
of plastomes for the other 11 species in this study.

Detection and Annotation for Plastid 
Genomic Variations
Multiple sequence alignments of whole plastome sequences 
from the 11 Thalictrum species that have the representatives 
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of the two major clades of this genus in previous studies 
(Soza et  al., 2012, 2013), as well as Paraquilegia anemonoides 
and Leptopyrum fumarioides in Thalictreae as outgroups were 
implemented using MAFFT v7 (Katoh and Toh, 2010) with 
standard parameters, and further adjusted manually in Geneious 
v8.0.4 (Kearse et  al., 2012). For comparison, the gene order 
and structure of the 13 plastomes were compared by using 
IRscope.1

To identifying hypervariable regions, the sequence alignment 
of Thalictrum plastomes without outgroups was subjected to 
a sliding window analysis in DNAsp v6.12.03 (Rozas et  al., 
2017) to evaluate nucleotide diversity (π) of all genes, genes 
without introns, and intergenic spacer (IGS) regions. Functional 
annotations for the nucleotide variations were conducted by 
using snpEff v5.1 (Cingolani, 2012).

Phylogenetic Analysis
Phylogenetic analyses of Thalictrum were performed with 
maximum likelihood (ML) method in RAxML v8.2.11 
(Stamatakis, 2014) with 1,000 replicates under GTRGAMMA 
model. The analyses were carried out based on the following 
nine data sets, including the complete plastid DNA sequences, 
concatenation of 115 IGS regions, concatenation of 114 gene 
sequences, and six genes and/or their introns and spacers (rpl16 
intron, ndhC-trnVUAC, ndhA intron, trnLUAA-trnFGAA, rpl32-
trnLUAG, and rbcL) that have been employed in previous studies 
on Thalictrum (Soza et  al., 2012, 2013; Wang et  al., 2019).

Selective Pressure Analysis
Selective pressures were detected throughout the phylogenetic 
tree of Thalictrum for each plastid gene. Nonsynonymous (dN) 
and synonymous (dS) substitution rates of each plastid gene 
were assessed by using the CODEML program in PAML v4.9 
(Yang, 2007). We tested different hypotheses via branch models, 
H0: the one-ratio model (m0), assumes the same dN/dS ratio 
(ω ratio) for all branches in the phylogeny, HA: the free-ratio 
model (m1) that assumes an independent ω ratio for each 
branch. Likelihood ratio tests were used to test each model’s 
fit. The double log-likelihood difference between the two models 
(2ΔL) was compared to a chi-square distribution with N–1 
degrees of freedom, where N is the number of branches in 
the phylogeny (Whelan and Goldman, 1999).

Codon Usage Analysis
The program DNAsp v6.12.03 (Rozas et  al., 2017) was used 
to examine the synonymous codon usage of 79 protein-coding 
genes in the plastome of Thalictrum and to calculate several 
related parameters such as the effective number codons (ENC), 
codon bias index (CBI), and relative synonymous codon usage 
(RSCU). The ENC and CBI are often used to evaluate codon 
bias at the level of an individual gene (Frank, 1990). RSCU 
is the observed codon frequency divided by the expected 
frequency. An RSCU value close to 1.0 indicates that the 
deviation is not significant (Sharp et  al., 1986). Amino acid 

1 https://irscope.shinyapps.io/irapp/

(AA) frequency was calculated as the percentage of codons 
encoding the same amino acid divided by the total codons.

RESULTS

Genome Features
The 11 plastomes of the Thalictrum species ranged in size 
from 154,924 bp (T. thalictroides) to 156,258 bp (T. minus var. 
hypoleucum). All these plastomes displayed the typical 
quadripartite structure of nearly all land plants, consisting of 
a pair of inverted repeats (IRs, 26,273–26,521 bp) separated 
by a single-copy (LSC) region (84,733–85,700 bp) and a small 
single-copy (SSC) region (17,479–17,655 bp; Table  1). The 
average GC content was ~38.39%, which is almost identical 
with each other among the 11 complete Thalictrum plastomes. 
In the IR region, the GC content (43.22%) was found to 
be much higher than that in the LSC (36.62%) and SSC regions 
(32.45%). Although overall genomic structure including gene 
number and gene order were well-conserved (Figure  1), the 
11 Thalictrum plastomes exhibited obvious differences in the 
IR-SC boundary regions (Figure  2). The gene ycf1 spanned 
the SSC-IRB region while a pseudogene fragment ψycf1 was 
located at the IRA region with a length range of 1,144–1,152 bp. 
The gene rps19 spanned the LSC-IRA region and a pseudogene 
fragment ψrps19 (100–122 bp) was located in the IRB region 
of all Thalictrum species except T. thalictroides. At the junction 
of IRA and SSC regions in most species, the distance between 
ψycf1 and ndhF ranged from 0 to 752 bp, except for that of 
Thalictrum foeniculaceum with an overlap region of 39 bp 
between ψycf1 and ndhF. At the junction of IRB and LSC 
regions, the distances between ψrps19 and trnH ranged from 
42 to 81 bp.

All the 11 plastomes each identically encoded 131 predicted 
functional genes and three pseudo genes, of which seven 
protein-coding genes, seven tRNA genes, four rRNA genes, 
and two pseudo genes were duplicated in the IR regions 
(Figure  1). Two introns were detected in each of two protein-
coding genes (clpP and ycf3) while a single intron was detected 
in each of 11 protein-coding genes (atpF, ndhA, ndhB, petB, 
petD, rpl2, rpl16, rpoC1, rps12, rps16, and ycf15) and six tRNA 
genes (trnAUGC, trnGUCC, trnIGAU, trnKUUU, trnLUAA, and trnVUAC; 
Supplementary Table S1). Among 79 protein-coding genes, 
75 contained standard AUG as the initiation codon, while 
three genes (ndhD, rps19, and ycf15) contained GUG instead, 
and the rpl2 started with ACG.

Polymorphic Variation and Hypervariable 
Regions
Nucleotide variations among the complete plastid genomes of 
the 11 Thalictrum species were identified to elucidate the level 
of sequence divergence (Figure  3). The aligned matrix of the 
11 Thalictrum plastomes (159,334 bp) contained 2,957 single-
nucleotide polymorphisms (SNPs) and 1,016 insertion-deletions 
(indels). The vast majority of SNPs from coding genes were 
functionally silent (synonymous), while 594 SNPs (43.8%) and 
six SNPs (0.4%), from altogether 79 coding genes, were missense 
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and nonsense variations (Supplementary Table S2). A total 
of 549 simple sequence repeats (SSRs) were identified in the 
11 Thalictrum plastomes with a range of 39 (Thalictrum 
petaloideum) to 60 (Thalictrum baicalense) SSRs were detected 
in each species (Supplementary Table S3), indicating rich 
polymorphism of the SSRs among plastomes of different species. 
The SSC regions showed the highest nucleotide diversity 
(π = 0.01381), followed by the LSC (π = 0.00803) and IR 
(π = 0.00154) regions. In the 114 unique genes, the nucleotide 
diversity for each locus ranged from 0 (e.g., rps7, rrn16, and 
trnCGCA) to 0.02608 (infA) with an average of 0.00438, whereby 
10 regions (i.e., infA, rpl32, ycf1, rpl20, ccsA, rpl22, rpl16, 
rps15, rps16, and accD) had remarkably high values (π > 0.0096; 
Supplementary Table S1; Figure  3A). For exons in genes, the 
nucleotide diversity ranged from 0 (e.g., rps7, rrn16, and trnA-
UGC) to 0.02608 (infA) with an average of 0.00373, while for 
the 115 IGS regions it ranged from 0 (e.g., atpE-atpB, rpl23-
trnICAU, rrn16-trnIGAU, and trnIGAU-trnAUGC) to 0.03486 (rpoC1-
rpoB) with an average of 0.01025, except for the rpoC1-rpoB 

(π > 0.07171) with a targetable sequence of only 5 bp. Additionally, 
10 of those regions showed considerably high values (π > 0.0217; 
i.e., ndhF-rpl32, infA-rps8, ccsA-ndhD, rpl32-trnLUAG, trnSUGA-
psbZ, trnHGUG-psbA, rpl16-rps3, ndhG-ndhI, ndhD-psaC, and 
ndhJ-ndhK; see Supplementary Table S4; Figure  3B).

Phylogenetic Analysis
Three datasets, the whole complete plastid genome sequences, 
IGS regions, and gene sequences were constructed to investigate 
the phylogenetic relationships among the 11 Thalictrum species, 
with P. anemonoides and Leptopyrum fumarioides as two 
outgroups. By using ML method, three phylogenetic trees were 
built based on the three respective datasets, whose topologies 
were found to be  highly concordant between one another 
(Figures  4A–C). The Thalictrum was strongly supported as a 
monophyletic group [bootstrap support (bs) = 100%], and 
contained two major clades that are strongly supported as 
sister groups: clades I  (bs = 100%) and II (bs = 100%; 

TABLE 1 | Summary of characteristics of plastome sequnences used in the study.

Species
GenBank 
numbers

Total 
genome 
size (GC 
content)

LSC size 
(GC 

content)

IR size (GC 
content)

SSC size (GC 
content)

No. total 
gene 

(unique 
gene)

No. protein-
coding gene 

(unique 
gene)

No. tRNA 
gene 

(unique 
gene)

No. rRNA 
gene 

(unique 
gene)

No. 
pseudo 

gene

Thalictrum 
aquilegiifolium L.

MZ442608 156,253 
(38.35%)

85,695 
(36.55%)

26,480 
(43.23%)

17,598 (32.41%) 134 (114) 86 (79) 37 (30) 8 (4) 3

Thalictrum 
baicalense Turcz.  
ex Ledeb.

MW133265 155,859 
(38.39%)

85,258 
(36.63%)

26,482 
(43.22%)

17,637 (32.41%) 134 (114) 86 (79) 37 (30) 8 (4) 3

Thalictrum 
coreanum H. Lév.

NC_026103 155,088 
(38.44%)

84,733 
(36.68%)

26,403 
(43.25%)

17,549 (32.49%) 134 (114) 86 (79) 37 (30) 8 (4) 3

Thalictrum 
foeniculaceum 
Bunge

NC_053570 155,923 
(38.34%)

85,323 
(36.57%)

26,486 
(43.21%)

17,628 (32.30%) 134 (114) 86 (79) 37 (30) 8 (4) 3

Thalictrum 
foliolosum DC.

MZ196217 155,764 
(38.46%)

85,086 
(36.71%)

26,521 
(43.22%)

17,636 (32.58%) 134 (114) 86 (79) 37 (30) 8 (4) 3

Thalictrum minus 
var. hypoleucum 
(Siebold & Zucc.) 
Miq.

OM501079 156,258 
(38.35%)

85,700 
(36.55%)

26,480 
(43.23%)

17,598 (32.41%) 134 (114) 86 (79) 37 (30) 8 (4) 3

Thalictrum 
petaloideum L.

MK253449 155,876 
(38.42%)

85,326 
(36.64%)

26,480 
(43.23%)

17,590 (32.55%) 134 (114) 86 (79) 37 (30) 8 (4) 3

Thalictrum  
simplex L.

OM501080 156,211 
(38.36%)

85,662 
(36.56%)

26,481 
(43.22%)

17,587 (32.46%) 134 (114) 86 (79) 37 (30) 8 (4) 3

Thalictrum tenue 
Franch.

MK253448 156,103 
(38.37%)

85,507 
(36.59%)

26,504 
(43.2%)

17,588 (32.43%) 134 (114) 86 (79) 37 (30) 8 (4) 3

Thalictrum 
thalictroides (L.)  
A. J. Eames &  
B. Boivin

NC_039433 154,924 
(38.43%)

84,899 
(36.66%)

26,273 
(43.26%)

17,479 (32.5%) 133 (114) 86 (79) 37 (30) 8 (4) 2

Thalictrum viscosum 
W. T. Wang & S. H. 
Wang

MZ442609 155,984 
(38.38%)

85,339 
(36.63%)

26,495 
(43.2%)

17,655 (32.36%) 134 (114) 86 (79) 37 (30) 8 (4) 3

Leptopyrum 
fumarioides (L.) 
Rchb.

NC_041542 157,448 
(38.41%)

84,907 
(36.41%)

27,821 
(43.34%)

16,899 (32.19%) 133 (113) 86 (79) 37 (30) 8 (4) 2

Paraquilegia 
microphylla (Royle) 
J. R. Drumm. & 
Hutch.

NC_041479 164,383 
(38.87%)

84,925 
(36.62%)

30,979 
(43.77%)

17,500 (32.42%) 134 (114) 86 (79) 37 (30) 8 (4) 3
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Figures 4A–C). The resolution of previously used six molecular 
fragments was also evaluated for Thalictrum species. Five genes 
and/or their introns and spacers yielded similar results except 
for the rpl32-trnLUAG (Figures  4D–I). However, different 
supporting values were observed from the nodes based on 
different sequence dataset. For example, two nodes in clades 
II derived from the dataset of gene sequences both showed 
weaker supports (bs = 54% and bs = 68%; Figure 4C) than those 
derived from complete plastid genome sequences (bs = 100% 
and bs = 95%; Figure  4A) and IGS regions (bs = 100% and 
bs = 95%; Figure  4B). Additionally, the rpl16 intron had the 
strongest support within clades II (Figure  4D), while rbcL 
had the weakest support in them (Figure  4I). These results 
indicated a much stronger resolving power of complete plastid 
genome sequences as well as IGS and intron regions as compared 
to the exon regions, which may serve as a reliable source of 
phylogenetic information in Thalictrum.

Selective Pressure and Codon Usage 
Analysis
Selective pressure analysis was conducted for CDS of all the 
79 plastid protein-coding genes. A total of 66 genes are fit of 
m1 model in which atpF showed the highest ω ratio (1.13) 
except for rpl23 (ω = 999), while other 13 genes (psbL, psaC, 
rps12, rps19, petB, psbN, psbF, psaJ, psbE, rpl36, psbZ, petN, 
and rps7 are fit of m0 model; Table  2). Among the 66 genes, 
most (50/66) were located in LSC region following by IR (7/66) 

and SSC (9/66) regions. The values of ω are significantly 
different (p < 0.05) between Thalictrum species for ndhG (SSC), 
petA (LSC), and rpl22 (LSC) gene based on likelihood ratio 
tests, within some species have positive selection (e.g., ndhG 
in T. coreanum, T. foeniculaceum, Thalictrum foliolosum, and 
T. thalictroides; petA in T. minus var. hypoleucum). No genes 
in IR regions were detected significantly different between 
different species. However, 12 genes (LSC: atpF, rpl33, rpl20, 
rps16, rps18, petG, rpl2, petL, psbJ, psbM; IR: rpl23; SSC: rps15) 
were subject to positive selection in most species (median of 
ω > 1; see Table  2; Supplementary Tables S6, S7), although 
their values of ω are not significantly different between 
different species.

We further analyzed the codon usage bias of the 79 
protein coding genes in the plastomes of the 11 Thalictrum 
species. Most codons (55/64) were found to be used without 
bias or with only a slight bias (0.5 ≤ RSCU ≤ 1.5) in the 
protein-coding genes (Supplementary Table S8). The effective 
number of codons (ENC) and codon bias index (CBI) of 
all the 79 genes varied within a wide range, e.g., from 
25.02 to 61.00 and from 0.28 to 0.85, respectively, with a 
median value of 49.0 and 0.50, respectively (Figure  5; 
Supplementary Figure S1; Supplementary Table S8). The 
data indicated that these genes were probably expressed in 
different levels due to their different usage frequencies of 
the rare and optimal codons, although they are all highly 
conserved in the plastomes. Most genes in SSC region  
(80.0%) showed relatively strong bias in the codon usage 

A B

FIGURE 1 | Plastome of Thalictrum minus var. hypoleucum (A) and Thalictrum simplex (B). The genes inside and outside of the circle are transcribed in clockwise 
and counterclockwise directions, respectively. Genes belonging to different functional groups are shown in different colors. The thick lines indicate the extent of the 
inverted repeats (IRA and IRB) that separate the genomes into small single-copy (SSC) and large single-copy (LSC) regions.
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(ENC ≤ ENCmedian = 49.0 or CBI ≥ CBImedian = 0.5), while 67.2% 
of genes in LSC region and 50.0% of genes in IR region 
performed relatively strong codon usage bias. Notably, almost 
all genes under positively selective pressures in more than 
half species performed relatively strong bias in the codon 
usage (ENC ≤ ENCmedian = 49.0 or CBI ≥ CBImedian = 0.5), e.g., 
atpF featured a relatively strong codon usage bias with a 
low ENC of 41.61. This finding suggested that those important 
genes with higher expression levels may played important 
roles in the evolution and divergence of Thalictrum plastomes.

DISCUSSION

Plastome Characteristics of Thalictrum
In the present study, complete plastome sequences were firstly 
assembled for T. minus var. hypoleucum and T. simplex in the 

Thalictrum genus, with a total length of 156,211 and 156,258 bp, 
respectively (Table 1). The two plastomes are also highly similar 
in overall structure and gene order when compared to the 
majority of previously published plastomes of other nine species 
in Thalictrum (Park et  al., 2015; He et  al., 2019, 2021b; 
Morales-Briones et  al., 2019). However, there was obvious 
variation in the IR-SC boundary regions among the 11 Thalictrum 
plastomes (Figure 2). The variations in IR-SC boundary regions 
in the 11 Thalictrum plastomes led to their length variation 
of the four regions and whole genome sequences. The expansion 
and contraction of the IR-SC boundary regions was considered 
as a primarily mechanism causing the length variation of 
angiosperm plastomes (Kim and Lee, 2004). In general, such 
expansions or contractions of the IRs into or out of adjacent 
single-copy regions are frequently observed in angiosperm 
plastomes (e.g., Yang et  al., 2016; Zhang et  al., 2016; 
Ye et  al., 2018).

FIGURE 2 | Comparison of LSC, inverted-repeats (IRs), and SSC junction positions among Thalictrum plastomes.
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Nonetheless, there are particular genes, especially ycf1, 
rps19, ndhF, ycf15, and ψrpl32, which deserve closer scrutiny. 
For instance, in various members of Thalictrum, ycf1 is 
duplicated, with a shorter copy (ψycf1, 1,144–1,152 bp) and 
a larger copy (ycf1, 5,616–5,658 bp) located at the SSC-IRA 
and SSC-IRB boundaries, respectively (Figure  2). Similarly, 
the rps19 is present as two copies including ψrps19 
(100–122 bp) and rps19 (279 bp) at the SSC-IRB and SSC-IRA 
boundaries respectively except in T. thalictroides (Figure  2). 
Both shorter copies apparently resulted from incomplete 
duplication. Similar pseudogenizations of ycf1 and locations 
of ψycf1 copies are known from other plants (Yang et  al., 
2013, Szczecińska and Sawicki, 2015; Ye et  al., 2018), and 
two copies of rps19 have been found in Podophylloideae 
(Berberidaceae; Ye et  al., 2018). As for the ndhF, the coding 
sequence was unexpectedly terminated by a stop-codon-
gained event caused by nucleotide variation of a poly-A 
region in eight Thalictrum species except for T. coreanum, 
T. foeniculaceum, and T. thalictroides. For the ycf15, an intact 
copy and an interrupted gene have been found in other 
plants, with lengths of c. 150–300 bp (Raubeson et  al., 2007, 
Shi et  al., 2013). By contrast, an interrupted ycf15 gene has 

been annotated in the sequenced chloroplast genomes in 
Thalictrum species. Additionally, ψrpl32 is incomplete because 
the rpl32 gene was found to be  transferred to the nucleus 
in the ancestor of the subfamily Thalictroideae (Park 
et  al., 2015).

Regarding the initiation codon, ndhD, rps19, and ycf15 used 
GUG, while rpl2 used ACG in Thalictrum. The ACG codon 
may be  restored to the canonical start codon (AUG) by RNA 
editing (Hoch et  al., 1991; Takenaka et  al., 2013), whereas 
GUG has been detected in in other plastomes (Kuroda et  al., 
2007; Gao et  al., 2009; Zhang et  al., 2016).

Noncoding Regions as a Source of 
Phylogenetic Information in Thalictrum
Given that the nuclear-genome coded ITS region is often 
presented as more than one copy in Thalictrum, sequences 
of cpDNA intergenic spacers have been employed to uncover 
intraspecific variability in Thalictrum (Soza et  al., 2012, 
2013). The IRs usually showed lower sequence divergence 
than the SC regions in most of higher plants and possibly 
due to copy correction between IR sequences by gene 

A

B

FIGURE 3 | Comparison of nucleotide variability (π) values in Thalictrum plastomes. (A) Pi values among genes, (B) Pi values among intergenic spacer (IGS) 
regions. The break in the middle of the bars indicated that other regions and genes are omitted here. The dot line denoted the average value.
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conversion (Khakhlova and Bock, 2006; Zhang et  al., 2016). 
In the present study, the whole genome and IGS regions 
manifested higher sequence divergence than genes did, and 
genes with introns showed higher sequence divergence than 
genes without introns in Thalictrum species (Figure  3). In 
general, the non-coding regions (introns and spacers) had 
higher variability proportions than coding regions, which 
was also true for most higher plants (Shaw et  al., 2014; 
Zhang et  al., 2016).

In some studies, eight noncoding regions (ndhF-rpl32, 
rpl32-trnLUAG, ndhC-trnV-UAC, rps16-trnQUUG, psbE-petL, 
trnTGGU-psbD, petA-psbJ, and rpl16 intron) have been 

identified as the best possible choices for low-level 
phylogenetic studies on angiosperms (Shaw et  al., 2014). 
Among these regions, ndhF-rpl32, rpl32-trnLUAG, and the 
rpl16 intron were also identified as highly divergent loci 
among Thalictrum species in the present study. Nonetheless, 
two IGS regions related to rpl32 are not suitable as molecular 
markers in Thalictrum because the rpl32 gene is often 
transferred to the nucleus (Park et  al., 2015). Aside from 
these loci, we  also observed high nucleotide diversity in 
infA-rps8, ccsA-ndhD, trnSUGA-psbZ, trnHGUG-psbA, rpl16-rps3, 
ndhG-ndhI, and ndhD-psaC regions. Additionally, an intron 
of rps16 also showed highly variable here, similarly to 

A B C

D E F

G H I

FIGURE 4 | Phylogenetic relationships of Thalictrum inferred from maximum likelihood (ML) analysis. (A) All sequence, (B) concatenation of 115 IGS regions, 
(C) concatenation of 114 gene sequences, (D) rpl16 (with intron, Soza et al., 2012), (E) ndhC-trnVUAC (Soza et al., 2013), (F) ndhA intron (Wang et al., 2019), 
(G) trnLUAA-trnFGAA (Wang et al., 2019), (H) rpl32-trnLUAG (Wang et al., 2019), and (I) rbcL (Wang et al., 2019). The numbers above the branches indicate bootstrap 
support (%), and the asterisk indicates 100% bootstrap support in ML tree.
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TABLE 2 | Summary of models H0 and HA analyzed in the study. dN, dS, and ω are presented as medians.

Gene
H0: m0 HA: m1

2*(HA-H0) p-value
dN dS ω0 lnL dN dS ω lnL

accD 0.0005 0.0019 0.2489 −2437.30 0.000832 0.00428 0.193579 −2433.08 8.44 0.75
atpA 0.0001 0.0021 0.0705 −2272.75 0 0.002509 0.0001 −2266.30 12.90 0.38
atpB 0.0002 0.0022 0.0699 −2221.92 0 0.002701 0.0001 −2213.35 17.14 0.14
atpE 0 0 0.1804 −642.17 0.000001 0.000005 0.0372454 −635.33 13.69 0.32
atpF 0 0 1.1265 −866.78 0.000002 0.000002 124.242 −862.26 9.02 0.70
atpH 0 0 0.0001 −366.55 0.000002 0.000005 0.0001 −366.55 0.000258 1.00
atpI 0.0004 0.0043 0.0857 −1137.90 0.000001 0.004595 0.0001 −1130.12 15.55 0.21
ccsA 0.0022 0.0071 0.3153 −1836.83 0.002604 0.010913 0.169018 −1831.85 9.97 0.62
cemA 0.001 0.0034 0.2884 −1096.08 0.000001 0.000006 0.0001 −1086.23 19.71 0.07
clpP 0 0 0.0694 −935.05 0.000001 0.000004 0.0001 −929.55 11.01 0.53
infA 0.0096 0.0123 0.7783 −269.79 0.013353 0.000013 74.8743 −264.81 9.97 0.62
matK 0.0027 0.0058 0.4631 −2572.82 0.002523 0.006385 0.911524 −2562.74 20.15 0.06
ndhA 0.0008 0.0053 0.1467 −1710.61 0.000002 0.003808 0.329949 −1704.63 11.97 0.45
ndhB 0 0 0.1178 −2133.67 0 0.000006 0.0001 −2129.17 8.99 0.70
ndhC 0 0 0.0916 −566.08 0 0.000005 0.0001 −562.34 7.48 0.82
ndhD 0.0011 0.0108 0.0998 −2601.20 0.00089 0.011321 0.0627638 −2593.10 16.20 0.18
ndhE 0 0 0.0235 −456.81 0 0.000006 0.0001 −454.86 3.92 0.98
ndhF 0.0009 0.0071 0.1292 −2463.23 0.001765 0.007192 0.147131 −2455.95 14.55 0.27
ndhG 0.001 0.005 0.1954 −909.26 0.000003 0.000074 0.0001 −896.00 26.52 0.01
ndhH 0.0005 0.006 0.0866 −1923.38 0.001108 0.003891 0.0698539 −1919.64 7.48 0.82
ndhI 0.0007 0.0061 0.113 −908.57 0.000001 0.008613 0.0001 −902.89 11.35 0.50
ndhJ 0 0 0.3505 −688.53 0 0.000005 0.0001 −686.35 4.38 0.98
ndhK 0 0 0.3155 −1048.40 0 0.000006 0.0001 −1041.06 14.69 0.26
petA 0.0004 0.003 0.1455 −1568.16 0.000002 0.004392 0.0001 −1555.79 24.74 0.02
petD 0 0 0.0307 −741.85 0.000001 0.000005 0.0102435 −739.71 4.29 0.98
petG 0 0 0.8509 −156.93 0.000002 0 999 −155.55 2.77 1.00
petL 0 0 0.1008 −136.46 0.000002 0 313.224 −135.59 1.74 1.00
psaA 0 0.0018 0.0084 −3309.32 0 0.001795 0.0001 −3306.01 6.62 0.88
psaB 0.0002 0.0031 0.0672 −3293.87 0 0.003743 0.0001 −3286.29 15.16 0.23
psaI 0 0 0.8811 −177.10 0 0.000005 0.106004 −174.86 4.48 0.97
psbA 0.0001 0.0037 0.0157 −1554.95 0 0.003857 0.0001 −1552.80 4.31 0.98
psbB 0.0002 0.0021 0.0878 −2235.59 0 0.002695 0.0001 −2229.89 11.39 0.50
psbC 0.0001 0.0024 0.0259 −2138.08 0 0.002509 0.0001 −2131.91 12.33 0.42
psbD 0 0 0.075 −1533.73 0 0.000005 0.0001 −1529.39 8.68 0.73
psbH 0 0 0.12 −321.61 0.000002 0.000006 0.0978274 −319.64 3.93 0.98
psbI 0 0 0.0001 −152.19 0 0.000003 0.0001 −152.19 0.005686 1
psbJ 0 0 0.1454 −163.03 0.000002 0 113.399 −162.51 1.05 1.00
psbK 0 0 0.3253 −268.48 0 0.000005 0.0001 −265.68 5.59 0.94
psbM 0 0 0.0001 −126.66 0.000002 0 212.117 −126.66 0.000884 1.00
psbT 0 0 0.245 −142.20 0 0.000004 0.0001 −141.67 1.05 1.00
rbcL 0.0004 0.0018 0.1906 −2281.62 0 0.002963 0.0001 −2274.83 13.59 0.33
rpl14 0 0 0.037 −529.92 0.000001 0.000006 0.0001 −526.77 6.30 0.90
rpl16 0 0 0.1546 −631.29 0.000001 0.000005 0.0001 −624.98 12.62 0.40
rpl2 0 0 0.183 −1139.62 0.000002 0 31.3706 −1138.57 2.10 1.00
rpl20 0 0 0.4022 −628.11 0.000002 0.000004 9.55435 −623.99 8.24 0.77
rpl22 0 0 0.4957 −931.12 0 0.000007 0.0001 −919.97 22.31 0.03
rpl23 0 0 999 −396.07 0.000002 0.000001 55.6975 −396.07 0.00 1.00
rpl33 0 0 0.1364 −307.30 0.000002 0 491.843 −303.04 8.51 0.74
rpoA 0.001 0.006 0.1692 −1751.50 0.000001 0.010121 0.0001 −1742.58 17.85 0.12
rpoB 0.0003 0.0029 0.1019 −4816.32 0.000418 0.001825 0.0461232 −4807.91 16.82 0.16
rpoC1 0.0007 0.004 0.1796 −3224.37 0.000638 0.002151 0.0743791 −3216.52 15.71 0.20
rpoC2 0.0012 0.0042 0.3139 −6585.10 0.001256 0.004513 0.215304 −6576.06 18.07 0.11
rps11 0 0 0.0797 −634.65 0 0.000005 0.0001 −631.31 6.68 0.88
rps14 0 0 0.1102 −420.73 0 0.000005 0.0001 −418.47 4.51 0.97
rps15 0 0 0.6425 −434.79 0.000002 0 76.3582 −430.76 8.08 0.78
rps16 0 0 0.4244 −380.25 0.000002 0 15.7794 −377.71 5.07 0.96
rps18 0 0 0.0918 −411.02 0.000002 0 192.024 −408.76 4.52 0.97
rps2 0 0 0.4331 −1203.16 0.000002 0.000006 0.134231 −1198.26 9.80 0.63
rps3 0.0005 0.005 0.1081 −1071.79 0.000001 0.005949 0.0001 −1064.71 14.16 0.29
rps4 0.0007 0.0051 0.1334 −944.70 0.000001 0.000006 0.0001 −937.89 13.61 0.33

(Continued)
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Podophylloideae (Berberidaceae; Ye et  al., 2018). These 
divergence hotspot regions of the 11 Thalictrum plastid 
genome sequences provided abundant information for 
developing effective molecular markers to the phylogenetic 
analyses and plant identification of Thalictrum species. 
Besides, the resolution and efficiency of chloroplast markers 
can be  strongly affected by the length of target fragment. 
The rpoC1-rpoB region has a relatively high nucleotide 

diversity among different plastomes, but cannot be  a good 
molecular marker as its target length is only 5 bp.

Phylogenetic Relationships
The plastid genome sequences have been utilized successfully 
for the phylogenetic studies on angiosperms (Jansen et  al., 
2007; Huang et  al., 2014; Kim et  al., 2015; Li et  al., 2019). 

FIGURE 5 | The effective number of codons in the study.

Gene
H0: m0 HA: m1

2*(HA-H0) p-value
dN dS ω0 lnL dN dS ω lnL

rps8 0 0 0.2502 −588.72 0 0.000006 0.0001 −586.69 4.08 0.98
ycf1 0.0035 0.0068 0.5214 −11057.96 0.003664 0.004828 0.495128 −11050.66 14.59 0.26
ycf2 0 0 0.3282 −246.36 0 0.000005 0.0001 −244.96 2.79 1.00
ycf3 0 0 0.1983 −696.68 0.000001 0.000004 0.20605 −693.90 5.54 0.94
ycf4 0 0 0.036 −802.98 0 0.000005 0.0001 −799.72 6.51 0.89
ycf15 0.0001 0.0002 0.552 −9655.78 0.000185 0.000006 0.402698 −9648.33 14.90306 0.246781
petB 0 0.0058 0.0001 −991.11 0.000001 0.005832 0.0001 −991.11 0.000242 1
petN 0 0 0.2706 −116.86 0.000002 0 198.276 −116.86 0.001416 1
psaC 0 0 0.0001 −375.50 0 0.000005 0.0001 −375.50 0.00008 1
psaJ 0 0 0.0001 −208.38 0 0.000004 0.0001 −208.38 0.00036 1
psbE 0 0 0.0001 −350.96 0 0.000005 0.0001 −350.96 0.000432 1
psbF 0 0 0.0001 −159.00 0 0.000005 0.0001 −159.00 0.000294 1
psbL 0 0 0.0001 −162.62 0 0.000007 0.0001 −162.62 0 1
psbN 0 0 0.0001 −180.08 0 0.000004 0.0001 −180.08 0.000258 1
psbZ 0 0 0.0001 −247.62 0 0.000005 0.0001 −247.62 0.000616 1
rpl36 0 0 0.0001 −152.86 0.000001 0.000002 0.520692 −152.86 0.00048 1
rps12 0 0 0.0001 −496.22 0.000002 0 60.2915 −496.22 0.000092 1
rps19 0 0 0.0001 −404.64 0.000001 0.000005 0.0001 −404.64 0.000202 1
rps7 0 0 0.0001 −612.36 0.000002 0 78.7221 −612.36 0.002164 1

TABLE 2 | Continued
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Our phylogenetic trees based on whole complete plastid 
genome sequences, 116 IGS regions, and 114 gene sequences 
revealed that Thalictrum contains two major clades that 
is consistent with previous studies (Figures  4A–C; Soza 
et  al., 2012, 2013; Morales-Briones et  al., 2019; Wang et al., 
2019). However, the relationships along the backbone of 
the clades are not well-supported in their studies. None 
of the sections traditionally circumscribed for this genus 
(Tamura, 1995) is monophyletic. It is necessary to apply 
more samplings and find more efficient molecular markers 
for Thalictrum.

Our phylogenetic trees indicated that 116 IGS regions had 
stronger support than 114 gene sequences (Figures  4B,C). 
Additionally, the rpl16 intron—that was used by Soza et  al. 
(2012) with high sequence divergence in the studies—showed 
also strong support in clades II here (Figure  4D). While the 
coding regions of rbcL employed by Wang et al. (2019) showed 
lower supports within clades II in our analysis (Figure  4I). The 
non-coding regions (introns and spacers) are more variable 
molecular markers. For the ML tree of rpl32-trnLUAG used by 
Wang et  al. (2019), the outgroups are embedded in Thalictrum 
probably because the matrix of rpl32-trnLUAG contained lots of 
indels (Figure  4H). The rpl32 gene is often transfers to the 
nucleus (Park et  al., 2015) that make the ndhF-rpl32, rpl32-
trnLUAG, and rpl32 regions not reliable to be markers for phylogeny 
in Thalictrum.

Positive Selection in Different Genes
It is believed that selection is the most probable components 
of the evolutionary forces acting on most highly expressed 
genes, although all genes are basically subjected to a certain 
degree of natural selection (Gouy and Gautier, 1982; Sueoka, 
1999; Sharp et  al., 2010). And the degeneracy of genetic 
code leads to the expression of variation contained in a 
gene through its manifestation in protein, which varied 
among different species (Edelman and Gally, 2001; Wan 
et  al., 2004; Chakraborty et  al., 2020). In the present study, 
we  observed different codon usage frequency on different 
genes under positive pressure. For example, 12 plastid genes 
(atpF, rpl33, rps15, rpl20, rps16, rps18, petG, rpl2, petL, 
psbJ, psbM, and rpl23) were observed under positive selective 
pressure in most of the 11 Thalictrum species among which 
11 showed relatively higher CBI values (>0.5) suggesting 
high expression level in vivo; while three plastid genes that 
are relative with NADH oxidoreductase (ndhG), cytochrome 
b6/f complex (petA), and ribosomal proteins (rpl22) were 
observed under significantly strong positive selective pressure 
(p < 0.05 based on likelihood ratio tests) in only 1–4 Thalictrum 
species, showing relatively lower CBI (<0.5). The former 
and latter genes performed different codon usage bias 
suggesting different expression levels due to different usage 
frequency of the rare and optimal codons, which could 
further affected the functional patterns of those genes during 
their evolution process. Additionally, it also indicated potential 
functional divergence among plastid genomes of different 
Thalictrum species, according to abundant differences observed 

between selective pressures and usage codon frequencies 
for different plastid genes in these species.

CONCLUSION

This is the first report to describe a comprehensive landscape 
of plastomic variations among Thalictrum species on the basis 
of 11 complete plastomes. Comparison between these plastomes 
uncovered not only high similarities in overall structure, gene 
order, and content but also some structural variations caused 
by the expansion or contraction of the IR regions into or out 
of adjacent single-copy regions. DNA sequence divergence 
across 11 Thalictrum plastomes revealed that infA-rps8, ccsA-
ndhD, trnSUGA-psbZ, trnHGUG-psbA, rpl16-rps3, ndhG-ndhI, 
ndhD-psaC, and ndhJ-ndhK are among the fastest-evolving loci 
and are promising molecular markers. Therefore, these highly 
variable loci should be  valuable for future phylogenetic and 
phylogeographic studies on Thalictrum. Our phylogenomic 
analyses based on whole complete plastid genome sequences, 
116 IGS regions and 114 gene sequences were all supported 
the monophyly of Thalictrum and two major clades within 
this genus. Furthermore, among 79 plastome-derived protein-
coding genes (CDSs), 15 genes were identified as fast evolving 
genes, which were all proved to be  under positive selection 
but showed different bias in their codon usage frequencies. 
Overall, our results demonstrate the ability of plastid 
phylogenomics to improve phylogenetic resolution, and will 
expand the understanding of plastid gene evolution in Thalictrum.
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CONSTANS-like (CO-like) gene is one of the most important regulators in the flowering
process of the plant, playing a core role in the photoperiodic flowering induction
pathway. In this study, we identified 10 distinct CO-like genes (FveCOs) in woodland
strawberry (Fragaria vesca). They were classified into three groups with specific gene
structure characteristics or protein domains in each group. The effect of selection
pressure on the FveCOs in the woodland strawberry was tested by Ka/Ks, and it
was shown that the evolution rate of FveCOs was controlled by purification selection
factors. Intraspecific synteny analysis of woodland strawberry FveCOs showed that
at least one duplication event existed in the gene family members. Collinearity
analysis of woodland strawberry genome with genomes of Arabidopsis, rice (Oryza
sativa), and apple (Malus × domestica) showed that CO-like genes of F. vesca and
Malus × domestica owned higher similarity for their similar genomes compared with
those of other two species. The FveCOs showed different tissue-specific expression
patterns. Moreover, real-time quantitative PCR results revealed that the expressions of
the most FveCOs followed a 24-h rhythm oscillation under both long-day (LD) and short-
day (SD) conditions. Further expression analysis showed that the individual expression
changing profile of FveCO3 and FveCO5 was opposite to each other under both
LD and SD conditions. Moreover, the expression of FveCO3 and FveCO5 was both
negatively correlated with the flowering time variation of the woodland strawberry grown
under LD and SD conditions, indicating their potential vital roles in the photoperiodic
flowering regulation. Further protein interaction network analysis also showed that most
of the candidate interaction proteins of FveCO3 and FveCO5 were predicted to be the
flowering regulators. Finally, LUC assay indicated that both FveCO3 and FveCO5 could
bind to the promoter of FveFT1, the key regulator of flowering regulation in the woodland
strawberry, and thus activate its expression. Taken together, this study laid a foundation
for understanding the exact roles of FveCOs in the reproductive development regulation
of the woodland strawberry, especially in the photoperiodic flowering process.

Keywords: CONSTANS-like, woodland strawberry, flowering, expression profiles, photoperiod
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INTRODUCTION

Flowering is a critical growth transition period during
growth and development of the plant. To ensure the
continuation of species, plants regulate their flowering
process accompanying with the external environmental
factors such as the temperature and day length. Moreover,
plants also adjust their endogenous hormones in response to
the external environmental factors to ensure their vegetative
and reproductive growth (Song et al., 2013). Flowering
regulation is a sophisticated biological process involving various
signaling pathways, which have been extensively revealed in
the past decades (Perrella et al., 2020). Traditional signaling
pathways of flowering regulation are normally known as
the photoperiod, vernalization, autonomy, and gibberellin
pathway (Mouradov et al., 2002; Hayama and Coupland,
2003; Michaels et al., 2005; Wenkel et al., 2006; Domagalska
et al., 2010). The emerging signaling pathways include age
pathway, thermosensory pathway, sugar pathway, stress
pathway, and hormonal signals to control floral transition
(Izawa, 2021). Photoperiodic flowering dominates among
these pathways, especially in Arabidopsis and rice (Putterill
et al., 1995; Yano et al., 2000). According to the day-length
requirements in flowering, photoperiodic condition can be
described as long-day (LD) condition, short-day (SD) condition,
and neutral condition.

CONSTANS (CO) protein is a core transcriptional regulator
in the photoperiodic pathway, which is firstly reported in
Arabidopsis mutant studies. AtCO in Arabidopsis accelerated
flowering only under long-day (LD) condition via activating the
transcriptions of AtFT and AtSOC1 (Valverde, 2011). However,
theCO homologs can also promote flowering under SD condition
in other species. For example, in rice, the CO homolog HEADING
DATE 1 (Hd1) promoted flowering under SD condition, but
suppressed flowering under LD condition, which is completed
by regulating the expression of the rice FT ortholog HEADING
DATE 3a (Hd3a) (Yano et al., 2000).

The CO homologs were characterized as the important
zinc-finger transcription factors (TFs) belonging to a subset
of BBX protein family with the specific B-box and CCT
domains. The B-box domain located in the N-terminal was
found to participate in the protein–protein interaction, while
the CCT domain located in the C-terminal owned the nuclear
localization function (Putterill et al., 1995; Yano et al., 2000;
Robson et al., 2001; Griffiths et al., 2003; Valverde, 2011).
The CONSTANS/CONSTANS-like proteins (CO/COLs) can be
divided into three major groups according to the divergence
of conserved domains (Crocco and Botto, 2013). The CCT
domain in the C-terminal can be found in all group members.
According to the basis of the consistency of amino acid
sequences and the specificity of zinc-binding amino acid
residues, the B-box domain can be divided into two types,
named as B-box1 (B1) and B-box2 (B2) individually. Group
I members owned both B-box1 domain and B-box2 domain,
while group II members possessed only B-box1 domain. Group
III members owned B-box1 domain and one diverged zinc-
finger structure.

Diverse numbers of CO-like gene were detected in different
plant species, such as 17 members of CO family initially identified
in Arabidopsis (Robson et al., 2001; Crocco and Botto, 2013;
Romero-Campero et al., 2013; Wang et al., 2013) and 16
members identified in rice (Griffiths et al., 2003). For horticulture
plants, CO-like genes have also been widely detected, such as
11 members in Medicago truncatula (Wong et al., 2014), 16
members in potato (Solanum tuberosum) (Talar et al., 2017),
20 members in grape (Vitis vinifera) (Wang et al., 2019), 23
members in tomato (Solanum lycopersicum) (Yang et al., 2020),
25 members in banana (Musa acuminata) (Chaurasia et al.,
2016), and 25 members in Chinese cabbage (Brassica campestris)
(Song et al., 2015).

The CO gene was initially identified as the transcriptional
activator of FLOWERING LOCUS T (FT) using its B-box domain
to form a multimeric binding to the FT promoter (Samach et al.,
2000; Tiwari et al., 2010). FT protein plays the “florigen” role
and can directly target the second exon of LFY, the master
regulator of flower fate, to enhance its expression (Zhu et al.,
2020). In Arabidopsis, AtCO is considered to be inactive under
SD conditions. Flowering time of the co mutant is the same
under either LD or SD condition. However, cutting down the
expression of AtCO leads to late flowering under LD condition,
while overexpression promotes the flowering process under both
LD and SD conditions (Putterill et al., 1995; Robson et al., 2001;
Kotake et al., 2003).

In Arabidopsis, the expression of AtFT was increased by
AtCO and AtCOL5 (Hassidim et al., 2009), which were positive
regulators of FT. However, not all the CO members function as
the flowering activator. AtCOL3 and AtCOL4 acted as flowering
repressors under both LD and SD conditions, while AtCOL8 and
AtCOL9 delayed flowering only under LD condition (Cheng and
Wang, 2005). Atcol3 mutant could flower earlier under both LD
and SD conditions. Further researches demonstrate that AtCOL3
may regulate the expression of AtFT by interacting with AtBBX32
to control Arabidopsis flowering (Yang et al., 2019).

Functions of CO/COL members were not only restricted
in the photoperiodic flowering regulation; remarkable different
roles of CO/COL genes had been reported in various species.
For example, in rice, OsBBX5 plays a role in downstream
of phytochrome-B receptor, while OsK accelerates the leaf
senescence. The ectopic expression of AtCO gene in potato can
inhibit the potato tuber expansion, while silencing of potato
StCO gene can promote the potato tuber expansion. In Glycine
max, GmCO9 affects root development and is closely related to
seed maturation (Huang et al., 2011). CO family also mediates
various aspects functions of the plant given as follows: AtCOL3
regulates root growth (Datta et al., 2006), VviCOL1 plays a major
role in bud dormancy (Almada et al., 2009), CrCO regulates
star synthesis and cell division (Deng et al., 2015), GmCO9 is
closely related to seed competition (Liu et al., 2011), AtCOL7
regulates branching (Wang et al., 2013), Ghd2 confers drought
sensitivity (Liu et al., 2016), StCO1 is involved in tuberization
(González-Schain et al., 2012), and MaCOL1 regulates fruit
ripening (Chen et al., 2012).

Strawberry (Fragaria × ananassa), cultivated in different
arable regions all over the world, is one of the most important
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berries characterized by its unique flavor and nutritional
value. Fruit quantity and quality directly determine the
economic value of strawberry. Early flowering is one of the
great advantages of strawberry cultivation with the reduced
production time. Compared with other plants, interesting
flowering habit is reported in strawberry. For example,
while most cultivars of cultivated strawberry are June-bearing
SD plants, there are also strawberry cultivars that flower
perpetually with no requirement for SD or low-temperature
condition, known as the everbearing types (EB). A similar
flowering habit also exists in the wild diploid strawberry,
whose genome is much simpler than that of the cultivated
octoploid strawberry.

At present, studies on strawberry flowering mainly focus on
the effects of ambient temperature, photoperiod, or hormone on
flowering regulation (Koskela et al., 2012; Sønsteby et al., 2017).
Molecular mechanisms research about flowering regulation in
strawberry is mainly limited in the function illustration of its
FT homolog and TFL1 homolog, which were found function
as the florigen and antiflorigen individually (Zhu et al., 2020).
Few reports mentioned the possible roles of CO/COL genes in
woodland strawberry flowering. FvCO, a homologous gene of
AtCO in F. vesca, is found to be indispensable for the generation
of the bimodal rhythm expression profile of FvFT1 and thus
plays its role in the photoperiodic development of strawberry
(Kurokura et al., 2017).

The roles of strawberry CO/COL genes in the flowering
process have not yet been well elucidated. Hence, in this study,
we performed the genome-wide identification of the CO-like
gene family members in the woodland strawberry based on
the high-quality Fragaria vesca v4.0.a1 genome database. We
provide the detailed molecular information about the Fragaria
vesca CO-like gene family, including the chromosomal location,
sequence homology, introns distribution, motif composition, and
evolutionary relationships. The expression of FveCOs in different
tissues and organs was checked. Meanwhile, their diurnal
expression changes in leaf treated with different photoperiodic
conditions (LD or SD) were also analyzed. Our results would be
valuable for understanding the roles of strawberry CO-like genes,
especially in the photoperiodic flowering of strawberry.

MATERIALS AND METHODS

Identification of CO/COL Genes in
Woodland Strawberry
A BLAST search (E-value < 1E−5) was performed against
woodland strawberry (F. vesca) genome data v4.0.a1 in the
Genome Database for Rosaceae (GDR1) using the full-length
amino acid sequences of COs and COLs of Arabidopsis. The
amino acid sequences of 17 CO/COL proteins in Arabidopsis
were obtained from NCBI2. Then, the sequences of the retrieved
woodland strawberry (F. vesca) CO/COL candidates (FveCOs)

1https://www.rosaceae.org/
2https://www.ncbi.nlm.nih.gov/

were submitted to the PFAM database3 to annotate the unique
and conserved protein domains. The amino acid sequences of
the B-box and CCT domains in Arabidopsis CO/COL proteins
peculiar to the members of this family were then used as the query
sequences for further confirmation.

The detailed information of identified woodland strawberry
CO-like genes, including chromosomal location, cDNA length,
ORF, and the amino acid (AA), was then downloaded from
the GDR. Physicochemical properties of the identified FveCOs
proteins, including molecular weight (MV) and isoelectric point
(pI), were counted in the ProtParam database4. The prediction of
subcellular localization was implemented through the PSORT5.

Chromosomal Mapping, Gene Structure,
and Multiple Sequence Alignment
Chromosomal positions of FveCOs were plotted with MapInspect
software6.

Gene structure was drawn with Gene Structure Display Server7

following the DNA and CDS information of FveCOs.
Multiple sequence alignment of FveCOs and other homologs

was performed by ClustalW in the MEGA7 software package
(Saitou and Nei, 1987; Tamura et al., 2011). Then, the alignment
result was illustrated with JalView8.

Phylogenetic Analyzes and Motif
Analyzes
Phylogenetic analysis was performed using the CO/COL
homologous sequences of several plant species together with the
FveCOs. The CO/COL protein sequences used were obtained
from the GDR database9, Ensembl Plants10, NCBI11, and
Phytozomev1012. MEGA7 software was used to construct the
phylogenetic tree using the neighbor-joining (NJ) method and
Jones–Taylor–Thornton (JTT) model by partial deletion with
2000 bootstrap replications.

The main motifs of FveCOs were characterized by the MEME
program13. Then, the schematic diagrams of protein domain
structure and conserved motif were illustrated with the TBtools
software (Chen et al., 2020)14.

Computation of Ka/Ks Values
ParaAT2.0 program15 was used to perform the nucleotide
sequence alignment of FveCOs. Non-synonymous and
synonymous substitution rates (denoted as Ka and Ks,

3http://pfam.xfam.org/
4https://www.expasy.org/
5https://www.genscript.com/psort.html
6http://mapinspect.software.informer.com/
7http://gsds.cbi.pku.edu.cn/
8https://www.jalview.org/
9https://www.rosaceae.org/
10https://plants.ensembl.org/index.html
11http://www.ncbi.nlm.nih.gov
12https://phytozome-next.jgi.doe.gov/
13http://meme-suite.org/tools/meme, v5.3.3
14https://github.com/twdb/tbtools
15https://ngdc.cncb.ac.cn/tools/paraat
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respectively) were implemented by Ka/Ks_Calculator program16.
The ratio of Ka/Ks was used to detect natural selection pressure.

Collinearity Analysis
Genome data of F. vesca, A. thaliana, O. sativa, and
Malus × domestica were used to analyze their collinearity
and synteny relationships. The genome sequences and genome
annotation files were downloaded from Phytozome v1017.
MCScanX software was used to perform the whole gene
collinearity analysis of the three species, and CO-like gene
collinearity of the species was also stood out. The chart was
manufactured with Circos 0.69, drawing software developed
by Perl18.

Analysis of the cis-Acting Elements
The upstream sequences (2000 bp) of FveCOs were collected for
the analysis of cis-acting elements distributed in their promoter
regions. The corresponding analysis was performed by online
tools PlantCARE (Lescot et al., 2002)19, and then, the results were
exported with TBtools software20.

Prediction of FveCOs Interaction
Proteins
The interaction networks of FveCO proteins were predicted
and constructed by the STRING v11.021. The active interaction
sources include text mining, experiments, databases, co-
expression, neighborhood, gene fusion, and co-occurrence. The
minimum required interaction score was set as 0.400.

Expression Detection of FveCOs
Tissue-specific expression analyzes and diurnal expression
analyzes were carried out in the woodland strawberry LD-
flowering accession “Ruegen.” For other analyzes, the plants were
field-grown in a greenhouse under natural LD conditions during
the spring in ShenYang (Liaoning, China; 41◦N, 123◦E).

Tissue-specific expression detection was carried out with the
samples of root (R), petiole (P), leaf (L), flower (F), shoot apex
(SA), green fruit (GF), white fruit (WF), turning red fruit (TF),
and red fully fruit (RF). All the samples were frozen in liquid
nitrogen and laid at –80◦C before total RNA was extracted using a
modified cetyltrimethylammonium bromide (CTAB) method as
described in Koskela et al. (2012). The full-length cDNAs were
synthesized using the PrimeScript RT reagent Kit (TaKaRa).

For diurnal expression analysis, the woodland strawberry
“Ruegen” plants with three true leaves were moved to the
artificial illumination incubators under 12-h light and 12-h dark
conditions for 10 days. Then, the plants were moved into two
artificial illumination incubators with different photoperiodic
treatments, 25◦C/18◦C in day/night under LD (16-h light)
and SD (8-h light) conditions, respectively. Leaves were then

16https://ngdc.cncb.ac.cn/tools/kaks
17https://phytozome-next.jgi.doe.gov/
18http://www.circos.ca/software/download/circos/
19http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
20https://github.com/twdb/tbtools
21https://string-db.org/

collected to detect the diurnal expression profiles of FveCOs
at the beginning of the light phase (zeitgeber time 0, ZT0)
under different photoperiodic conditions. The leaves were
collected as materials every 4 h over 24 h, and the last
time point is ZT24.

Pearson’s correlation analyzes were performed with SPSS
Statistics 22.0 (IBM Corporation, Armonk, USA) to explore
the relationships between the flowering time and relative
expression of FveCO3 and FveCO5. Leaves of three plants
under each mentioned photoperiod were sampled for
expression detection of FveCO3 and FveCO5 when the first
inflorescence appeared.

qRT-PCR was performed on the CFX96 Real-Time PCR
System (Applied Biosystems, Foster City, CA, United States)
using the SYBR Premix Ex Taq Kit (TaKaRa) according to the
manufacturer’s protocol. The FveActin served as an internal
control. The relative expression of genes was presented by
the 2−11Ct method. All of the above samples were executed
independently in triplicate. Primers used in this study are listed
in Supplementary Table 1.

Dual-Luciferase Assays
The dual-luciferase reporter assay was carried out. The
35S:FveCO3 and 35S:FveCO5 vectors were constructed
(Supplementary Figure 1) and used as effectors, and the
2-Kb FveFT1 promoter was inserted into the pGreen II 0800
vector and used as the reporter. The constructed vectors
were transformed into Agrobacterium strain GV1301.
Agrobacterium strains were introduced into tobacco
(Nicotiana tabacum) leaves. The luciferase fluorescence
and luciferase signal intensity were imaged and measured
after three days using a living fluorescence imager (Lb985,
Berthold, Germany).

RESULTS

Identification of CO-like Genes in
Woodland Strawberry
To survey the CO-like members in the woodland strawberry, a
genome-wide search against the GDR database was performed
via selecting the typical B-box and CCT domains. A total
of 10 distinct genes were identified as putative members of
the woodland strawberry CO-like members. The gene names
were entitled according to the order in which they were
found. The detailed information of these genes is shown in
Table 1.

The cDNA length of the FveCOs ranged from 1020 bp to
2376 bp, following the polypeptide sequences varying from 312 aa
to 478 aa and the molecular weights of 51.77 kDa to 34.5 kDa. The
prediction of FveCOs proteins showed that they were all located
to the cell nucleus (Table 1).

Chromosomal distribution detection of FveCOs determined
by the chromosome mapping indicated that these genes were
unevenly distributed on five chromosomes (Figure 1). In
detail, FveCO4 and FveCO6 were both located on chromosome
2, FveCO1 and FveCO7 were independently located on
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TABLE 1 | Sequence analysis of FveCOs.

Gene names Gene ID Length of
cDNA (bp)

Length of ORF
(bp)

AA Chromosome Position MW (kDa) pI Prediction of
protein location

FveCO1 gene00355 2376 1437 478 LG7 90927..92118 51.77 5.66 Nuclear

FveCO2 gene03742 1473 1353 450 LG4 962863..964335 50.33 5.56 Nuclear

FveCO3 gene04172 1863 1158 385 LG6 31553425..31557231 42.35 5.35 Nuclear

FveCO4 gene14981 1020 939 312 LG2 35460923..35461942 34.5 6.33 Nuclear

FveCO5 gene15552 2368 1254 417 LG6 23430145..23432512 45.25 5.45 Nuclear

FveCO6 gene24941 1664 1182 393 LG2 562983..564196 43.58 5.74 Nuclear

FveCO7 gene25171 1726 1374 456 LG5 26696242..26697967 51.23 5.56 Nuclear

FveCO8 gene27383 1191 942 356 LG4 10584825..10586015 38.99 5.63 Nuclear

FveCO9 gene03650 1269 912 303 LG4 24743480..24758335 33.28 6.25 Nuclear

FveCO10 gene03651 2554 1416 471 LG4 24759237..24764662 52.96 5.62 Nuclear

FIGURE 1 | Chromosome localization map of FveCOs. The light green vertical bars with various lengths represent woodland strawberry chromosomes. Short black
vertical lines indicate the position of each FveCOs.

chromosomes 5 and 7, FveCO2, FveCO8, FveCO9, and FveCO10
were located on chromosome 4, and FveCO3 and FveCO5 were
located on chromosome 6.

Phylogeny and Multiple Sequence
Alignment Analyzes of FveCOs
To fully identify the evolutionary relationship of CO homologs
belonging to the woodland strawberry and other plant species,
a phylogenetic tree was constructed with 121 CO-like amino
acid sequences of 20 plant species, including 17 of Arabidopsis,
13 of tomato, 10 of tobacco, 16 of rice, 2 of apple, and
so on. The results (Figure 2) suggested that these CO-like
proteins could be subdivided into three groups, which are
consistent with the previous findings. As shown in the tree,
three Fragaria vesca CO homologs, namely, FveCO3, FveCO4,
and FveCO8, belong to group I, two homologs, namely, FveCO2
and FveCO7, belong to group II, while the other five homologs,
namely, FveCO1, FveCO5, FveCO6, FveCO9, and FveCO10,
belong to group III.

Protein structures and evolutionary relationships could be
elucidated by multiple sequence alignment. The alignment results
of the amino acid sequences of FveCOs showed that all 10 FveCOs
contained at least one B-box domain and one CCT domain. The
identity of 10 FveCOs amino acid sequences ranged from 15.4%
to 49.9% (Supplementary Figure 2).

According to the consistency difference of the amino acid
sequence of B-box domain and the specificity of zinc ion-binding
amino acid residues, the B-box domain can be further divided
into two types: B-box1 (B1) and B-box2 (B2). Besides the B1 and
B2 domains, an additional diverged zinc-finger structure (DZF)
was also found in some CO-like proteins of Fragaria vesca.

B-box1 domain is the most conserved region in all the
FveCOs proteins and is composed of approximately 40 residues,
which owned the consensus C-X2-C-X7-9-C-X2-D-X4-C-X2-
C-X3-4-H-X4-8-H, where X can be any amino acid. CCT
domains are also highly conserved in FveCOs containing 43–45
amino acid residues.

Thus, according to the domain combination, FveCOs can be
grouped into three types, similar to the three clades shown in
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FIGURE 2 | Phylogenetic analysis of CONSTANS/CONSTANS-like (CO/COL) homologs in different species. The clades of groups I, II, and III are marked in green,
blue, and pink, respectively. Fragaria vesca constans-like genes (FveCOs) are indicated by red points. At, Arabidopsis thaliana; Ca, Capsicum annuum; Gm, Glycine
max; Hv, Hordeum vulgare; Lt, Lolium temulentum; Md, Malus domestica; Nt, Nicotiana tabacum; Os, Oryza sativa; Ph, Petunia hybrida; Sb, Sorghum bicolor; Sl,
Solanum lycopersicum; St, Solanum tuberosum; Ta, Triticum aestivum; Vv, Vitis vinifera; Zm, Zea mays.

the phylogenetic tree (Figure 3D). Members in type I (FveCO3,
FveCO4, and FveCO8) own two B-box domains and one CCT
domain (B1 + B2 + CCT), members in type II (FveCO2 and
FveCO7) own only one B-box domain (B1) and one CCT domain
(B1 + CCT), while for members in type III (FveCO1, FveCO5,
FveCO6, FveCO9, and FveCO10), besides a typical B1-type B-box
domain and one CCT domain, the diverged zinc-finger structure
domain was also detected (B1+ DZF+ CCT).

Meme online software was used to further analyze the amino
acid sequence similarity of those domains. The B-box domain is

rich in amino acids such as A, C, D, and L, while the CCT domain
is rich in arginine (R) and lysine (K) (Supplementary Figure 3).
Although the B1, B2, and the DZF domains are all belonging to
the zinc-finger domain, their amino acid sequences are variant,
even in B1 and B2 (Supplementary Figure 3).

Gene Structure Analysis of FveCOs
Intron distribution is important for the gene selective splicing,
allowing a gene to produce different proteins. The distribution
of the FveCOs introns was identified by the comparative
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FIGURE 3 | Genomic and protein structures of FveCOs. (A) Phylogenetic analysis of 10 FveCO genes which are categorized them into three groups. (B) The intron
distribution. The exons and introns are represented by dark ochre boxes and light green lines, respectively. (C) The CDS and UTR are represented by purple boxes
and orange boxes, respectively. (D) The domain distribution of FveCOs. The CCT, B-box1, B-box2, and DZF are represented by light blue ovals, orange boxes, light
green boxes, and blue–gray boxes, respectively.

analyzes of FveCOs DNA sequences with their coding sequences.
Two exons and one intron were detected in all the members
belonging to group I (FveCO3, FveCO4, and FveCO8) and
group II (FveCO2 and FveCO7). For members in group III,
most of them own four exons and three introns, except
FveCO9 and FveCO10. FveCO9 has only one intron just like
members in groups I and II, while five introns were detected in
FveCO10 (Figure 3B).

The introns of FveCOs are 81 bp–1114 bp in length separately,
leading to a large variation in their genomic length. The CDS and
UTR information of FveCOs is listed in Figure 3C.

Synteny Analysis of FveCOs
To estimate the evolutionary character of woodland
strawberry FveCO genes, the replication events about this
gene family in the intraspecific and interspecific genomes
were also analyzed. The results implied that only one pair
of duplicate genes (FveCO2/FveCO7) was found in the
genome of the woodland strawberry, which may be the
result of tandem replication or whole-genome replication
(WGD) (Figure 4).

To further explore the selection pressure between FveCO
duplicate genes, we calculated the Ka, Ks, and Ka/Ks values of
paralogous genes (Table 2). The divergence time of the woodland
strawberry was estimated as 9.4 Mya (million years ago).
Moreover, with the Ks value, we also calculate the substitutions
rate of per site per year as 5.8× e−8.

Moreover, to explore the evolution mechanism and
biochemical features of the FveCOs, a collinearity comparison
of Fragaria vesca genome with genomes of Arabidopsis, rice,
and apple, belonging to dicotyledon plant, monocotyledon
plant, and Rosaceae plant, respectively, was also performed. The
results showed that there are 12 collinear gene pairs between
F. vesca and A. thaliana, 17 pairs between M × domestica and
F. vesca, and 5 pairs between O. sativa and F. vesca (Figure 5).

Orthologous gene numbers identified between F. vesca and
M × domestica, which are all belonging to Rosaceae, were much
larger than those identified between woodland strawberry and
Arabidopsis and rice.

Both FveCO4 and FveCO6 were located on the second
chromosome, and their orthologous gene pairs were detected in
the rice genome. Orthologous gene pairs of FveCO1, FveCO2,
FveCO3, FveCO4, FveCO5, FveCO6, FveCO7, and FveCO8 were
identified in both apple and Arabidopsis, and the remaining
FveCOs were not present in any of the duplicated blocks. These
results suggested that those genes are highly conservative and
the collinear gene pairs may come from the common ancestor
before evolution.

Cis-Element Analysis of Woodland
Strawberry FveCOs
Promoters with 2 kb in length of each FveCO members were used
to identify the putative cis-acting regulatory elements (CREs)
with the PlantCARE database. Totally, 43 kinds of CREs were
identified (Supplementary Table 2). Among them, there are 283
core promoter elements (TATA box) and 109 common cis-acting
elements (CAAT box).

The other cis-acting elements identified might be divided
into three main kinds, namely hormone response element, light
response element, and stress response element.

Fragaria vesca constans-like genes may also play crucial roles
in the regulation of photoperiod flowering just like their reported
homologs; thus, we further analyzed the light response elements
distributed in their promoters. As shown in Figure 6, a large
number of light-responsive elements were detected in all the
promoter regions of 10 FveCO genes, while the kinds and
amounts are various. Promoter of FveCO3 owns 21 light-
responsive cis-elements with the maximum quantity, while
promoter of FveCO6 only has three light-responsive cis-element
with the minimum number.
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FIGURE 4 | Schematic representation of the interchromosomal relationships between FveCOs in the Fragaria vesca genome. Red line indicates the colinear gene
pair, and gray lines indicate the syntenic blocks.

Expression of FveCOs in Different
Tissues
The qRT-PCR results showed that FveCOs were variously
expressed in different tissues (Figure 7). All FveCO genes
exhibited higher expression levels in leaves and petioles than
those in other tissues. For fruits in different development stages,
FveCOs are mainly expressed in green fruit, especially for the
expression of FveCO2, FveCO4, FveCO7, FveCO8, and FveCO10.
It was also found that the lowest FveCO expression level was
detected in the fully red fruit.

Among all of these genes, FveCO3 and FveCO4 showed
similar high expression levels in different tissues, while
the expression of FveCO9 was border on the minimum
in each tested tissue. The specific and varied expression

profiles of FveCOs in different tissues suggest that they may
play diverse roles.

Expression Profile of FveCOs in
Photoperiodic Flowering
According to the previous studies, the expression of the CO-
like genes exhibits a circadian rhythm profile in most plant
species (Suárez-López et al., 2001; Wang et al., 2013; Fu et al.,
2015; Chaurasia et al., 2016). Therefore, to evaluate the potential
functions of FveCOs in photoperiodic flowering, we detected their
diurnal expression profiles over a 24-h period at 4-h intervals
under LD and SD conditions, separately.

As shown in Figure 8, three genes, including FveCO1,
FveCO2, and FveCO5, owned similar expression patterns under
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TABLE 2 | Ka/Ks analysis for the duplicated FveCO paralogs.

Ka Ks Ka/Ks Purifying
selection

Duplicate
type

FveCO2/FveCO7 0.4225 2.9676 0.1423 Yes Segmental

both photoperiodic conditions, with the highest expression
level that appeared at ZT16 h under LD condition and then
gradually reduced at night. However, the expression levels of
these three genes slightly increased during the day of SD and
peaked at midnight. In addition, the peak expressions of these
genes were higher in plants grown under LD condition than
under SD condition.

FveCO4, together with FveCO6, FveCO7, and FveCO10,
showed the consistent expression pattern under SD and LD
conditions, which were slightly similar to that of FveCO1,
FveCO2, and FveCO5. The expression of FveCO4, FveCO6,
FveCO7, and FveCO10 under SD condition was detected higher
separately than that under LD condition. The expression peaks
appeared at ZT20 h and ZT16 h for SD and LD conditions,
respectively. Under SD condition, their expression decreased
rapidly to the lowest level.

Correlation of Woodland Strawberry
Flowering Time and the FveCOs
Expression
To further explore the potential function of FveCOs on
strawberry flowering time, we also investigated the correlation
between the flowering time and the expression levels of FveCOs.
In all the FveCOs, only the expression of FveCO3 and FveCO5
showed the correlation with the flowering time. The results
showed that the expression levels of FveCO3 and FveCO5 were
all negatively correlated with the flowering time under both
LD and SD conditions (r = –0.949, –0.964, –0.936, and –0.891,
respectively) (Figure 9). Plants under LD condition showed
earlier flowering time with higher expression levels of both
FveCO3 and FveCO5, while plants grown under SD condition
owned the lower expression levels of both FveCO3 and FveCO5.

FveCO3 and FveCO5 Activate the
Expression of FveFT1
To explore how FveCO3 and FveCO5 regulate photoperiodic
flowering in the woodland strawberry, luciferase reporter
assay was carried out. The promoter sequence of 2000-
bp upstream of the ATG codon of FveFT1 was cloned
and inserted into the upstream of LUC reporter gene.
The effector plasmid containing 35S-FveCO3 and 35S-
FveCO5 construct was co-transfected into tobacco leaves,
respectively. The luciferase assays indicated that co-expression
of 35S-FveCO3 and proFveFT1-LUC or 35S-FveCO5 and
proFveFT1-LUC resulted in much stronger luminescence
signals than any other points (Figure 10). These results
showed that FveCO3 and FveCO5 could bind to the FveFT1
promoter individually and thus activate the transcription of the
corresponding gene.

Moreover, the interaction networks of FveCO3 and FveCO5
with other flowering-related proteins were predicted and
constructed by the STRING v11.0 (see the footnote 21). As
shown in Figure 11, multiple genes were screened as the
candidate interactors of FveCO3 or FveCO5, including FveSOC1,
FveHOS1, FveAGLs, FveGI, FveFBH, and FveAP1.

DISCUSSION

Molecular Characteristics of FveCOs in
Woodland Strawberry
Normally, plants can be classified as either SD or LD type
according to their flowering response to the photoperiod. In
strawberry, two types of flowering habit exist in different varieties,
known as the June-bearing SD type and perpetually flowering
everbearing type. For the conserved function of CO-FT module
in plant photoperiodic flowering regulation, the characterization
of the roles of CO-like genes in strawberry flowering habit
variation is important for its breeding.

Actually, CO-like genes of strawberry had been reported
in some previous studies. Kurokura reported one woodland
strawberry CO homolog (gene 04172) and another nine putative
CO-like proteins in F. vesca genome (V1.1) using the B-box
domain as the search query (Kurokura et al., 2017). Among
those putative CO-like proteins, six proteins are included in the
FveCOs we reported here, while the CCT domain cannot be
detected in the remaining four proteins they reported, so those
four proteins should not be classified as CO-like proteins.

Using the updated Fragaria vesca genome database v4.0.a1,
here we reported the 10 non-redundant FveCO candidates,
including the new four ones which had not been reported. All the
FveCO candidates contain both B-box domain and CCT domain
(Figure 3). The 10 identified FveCOs can be divided into three
groups depending on the phylogenetic analysis (Figures 2, 3),
which was consistent with the reports in other plants (Putterill
et al., 1995; Cheng and Wang, 2005; Hassidim et al., 2009; Song
et al., 2015).

Although the Arabidopsis genome size (130 Mb) is much
smaller than that of the woodland strawberry (230 Mb), the
number of Arabidopsis COL member is much larger than that
in the woodland strawberry (17:10). The gene structure and
conserved domain of FveCOs are similar to the homologs of
other species. Conserved domain-based CO proteins can also
be divided into three subfamilies in the woodland strawberry.
However, the gene structure classification of these FveCOs
proteins is quite complex. In group III, the gene structures
of FveCO9 and FveCO10 were different, but their amino acid
sequences encoded were similar to each other. Such variation
may come from the duplication, variation and recombination
of exons, or the insertion and loss of introns in the process of
genome evolution.

The existing of duplicated genes implied that independent
duplication events existed besides the whole-genome duplication
event. Only one pair of FveCOs (FveCO2/7) is identified to be
involved in fragment replication. It should be the reason that
the woodland strawberry genome experienced few replication

Frontiers in Plant Science | www.frontiersin.org 9 July 2022 | Volume 13 | Article 931721149

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-931721 July 12, 2022 Time: 7:35 # 10

Zhao et al. FveCOs Regulate Photoperiodic Flowering

FIGURE 5 | Microsynteny of CONSTANS-like (COL) regions across Fragaria vesca, M × domestica, O. sativa, and A. thaliana. The F. vesca, M × domestica,
O. sativa, and A. thaliana chromosomes are shown in different colors. The number on each chromosome box indicates the number of chromosomes. Blue lines
represent the syntenic relationships between AtCOLs, MdCOs, OsCOLs, and FveCOs regions. Light gray lines represent the syntenic relationships between genome
wide of Arabidopsis, woodland strawberry, apple, and rice.

FIGURE 6 | Distribution of the major light-related cis-elements in the promoter sequences of 10 FveCO genes. Different cis-elements are represented by different
symbols as indicated.

events as a kind of diploid variety. Segmental duplication
was a kind of genome replication. Tandem duplications were
characterized as multiple members of one family occurring
within the same intergenic region or in neighboring intergenic
regions. The most representative tandem replication genes
are adjacent homologous genes on a single chromosome
(Moore and Purugganan, 2003; Yu et al., 2005). In this study,
FveCO9 and FveCO10 are adjacent genes on chromosome 4.
Therefore, FveCO9 and FveCO10 are probably the results of
tandem replication.

Collinearity analysis between the genomes of the woodland
strawberry and other three plants suggested that the FveCOs
own the highest relationship with their homologs in apple,
followed by Arabidopsis thaliana, and the lowest relationship
with rice orthologous gene. Such results are consistent with
their taxonomical relationship: Strawberry and apple are both
Rosaceae plants.

The expansion of all CO genes occurs with the divergence
of the plants of the same family. The subclasses of CO genes
extend from the common ancestral genes in a species-specific

manner, which existed before the diversification of the
same family lineage.

Expression Profile of FveCOs Indicates
Their Potential Functions in the
Photoperiodic Flowering Regulation
Most of the FveCO genes are preferentially expressed in leaf
and petiole (Figure 7), which are consistent with the findings
in other species (Almada et al., 2009; Tan et al., 2016; Wu
et al., 2017). As leaf is the organ in which the plant percepts
the light, such result strongly demonstrated that FveCOs might
also involve in the photoperiodic sensitive response. Besides
the leaf and petiole, the expression of FveCOs could also be
detected in many tissues except the root and red fully fruit,
which implies that FveCO members might also function in other
multiple developmental aspects of the woodland strawberry. On
the contrary, the expression of the different FveCO members
could be detected in the same tissue, which might result in their
functional redundancy.
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FIGURE 7 | Expression of FveCOs in different woodland strawberry tissues. Different colors of heat map represent the expression levels. The tissues of the samples
are as follows: R, root; P, petiole; L, leaf; F, flower; SA, shoot apex; GF, green fruit; WF, white fruit; TF, turning red fruit; RF, red fully fruit. For each gene, the
expression level was set to 1 in the root, and the corresponding fold changes were calculated in other tissues. The gene expression heatmap was generated on the
log base 2 average expression fold values.

FIGURE 8 | Diurnal expression pattern of FveCOs under long-day (LD) and short-day (SD) conditions. The collection of samples was started at the beginning of the
light phase (zeitgeber time 0, ZT0) and continued every 4 h over 24 h under LD (16-h light/8-h dark) and SD (8-h light/16-h dark) conditions. Each value is the
mean ± SD of three biological replicates.

Frontiers in Plant Science | www.frontiersin.org 11 July 2022 | Volume 13 | Article 931721151

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-931721 July 12, 2022 Time: 7:35 # 12

Zhao et al. FveCOs Regulate Photoperiodic Flowering

FIGURE 9 | Negative correlation of FveCO3 and FveCO5 expression with flowering time in woodland strawberry “Ruegen.” The black bars indicate the days needed
to flower (flowering time); the gray bar and light gray bar indicate the expression of FveCO3 and FveCO5, respectively. Ten plantlets were used for each. Three
independent samples were used in the expression analysis. Values are the mean ± SD.

FIGURE 10 | FveCO3 and FveCO5 regulate FveFT1 expression by binding to its promoter. (A,B) Schematic diagram of the reporter and effectors used in luciferase
reporter assay. Luciferase reporter assay showing that FveCO3 and FveCO5 regulate FveFT1 expression (C,D), respectively. The FveCO3 and FveCO5 effector and
the proFveFT1 reporter were coinfiltrated into tobacco leaves, and the luciferase signal was measured.
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FIGURE 11 | Interaction network prediction of FveCO3 and FveCO5 with other proteins. The Fragaria vesca constans-like genes (FveCOs) are marked in red.

At the same time, our result also showed that the expression of
most FveCO genes can be regulated by circadian clock (Figure 8),
which resulted in their diurnal expression changes. The one-day
periodic changing expression profile is the prominent character
of almost all the CO-like genes (Martin et al., 2004; Pan et al.,
2021). When treated with different photoperiods, the FveCOs
showed different diurnal expression patterns under SD or LD
condition. FveCO genes showed different circadian rhythms,
including at least four peaks at different ZT time points. Among
them, the expression of FveCO1, FveCO2, FveCO5, and FveCO9
showed notable expressional amplitudes during the circadian
rhythms at the time points of measurement in 24 h under both
LD and SD conditions.

Interestingly, it was found that the individual diurnal
expression profile of FveCO3 and FveCO5 was opposite to
each other under both LD and SD conditions. Further
work should be performed to clarify the mechanism about
such different expression profiles, such as the transcriptional
or posttranscriptional regulation research of the upstream
regulators on FveCO3 and FveCO5.

FveCO3 and FveCO5 Function as
Potential Flowering Promoters in
Woodland Strawberry
Our results showed that, under either LD or SD condition,
the expression levels of FveCO3 and FveCO5 were both
negatively correlated with flowering time (Figure 9). FveCO3
is the woodland strawberry homolog of AtCO belonging to
group I type, while FveCO5 is the homolog of AtCOL9 which

negatively regulates the expression of AtCO and AtCOL9 to
inhibit the flowering in LD. Previous studies have shown
that the expression of AtCO is induced by SD rather than
by LD (Putterill et al., 1995; Robson et al., 2001; Kotake
et al., 2003; Jang et al., 2008), while the expression of
FveCO3 in SD or LD was similar to each other, and the
same expression profile was also detected in FveCO5. Further
work about the protein interaction networks prediction of
FveCO3 and FveCO5 showed that they could interact with
many other reported flowering regulators, such as FveSOC1,
FveHOS1, FveAGLs, FveGI, FveFBH, and FveAP1(Figure 11).
In Arabidopsis, SOC1 is one of the direct targets of CO and
directly regulates the flowering process (Samach et al., 2000).
GI and FBH can both bind to the upstream CO negative
regulatory transcription factor CDFs and thus to degrade the
CDFs and positively regulates the stability of CO (Toledo-
Ortiz et al., 2003; Fornara et al., 2009). GI also promotes
the FT expression to regulate flowering (Imaizumi et al.,
2005; Sawa and Kay, 2011; Ito et al., 2012; Fornara et al.,
2015). Such finding implied that FveCO3 and FveCO5 should
both function in the woodland strawberry flowering and the
mechanism should be more complex than that of Arabidopsis.
The function of CO/COL proteins mainly depends on their
regulation of the expression of the FT-like genes, the master
regulators in plant flowering process. RcCO is the homolog of
FveCO3 in rose, and it regulates the photoperiodic flowering
under long-day condition (Lu et al., 2020). RcCO could bind
to the CORE motif of the RcFT promoter so as to enhance
the RcFT expression. In the woodland strawberry, FveFT1 has
been identified as the key gene to determine the flowering time
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(Koskela et al., 2012). In this study, luciferase reporter assay
suggested that both FveCO3 and FveCO5 could directly bind
to the FveFT1 promoter individually and thus may promote
the flowering process by transcriptional regulation. Similar
upregulation of FveFT1 was also reported in the strawberry
FveCO overexpression lines (Kurokura et al., 2017). Those
findings suggested that the CO-FT module also functions in the
photoperiodic flowering of strawberry.

CONCLUSION

Totally, 10 distinct CO-like genes (FveCOs) in the woodland
strawberry (F. vesca) were identified. The expression analysis
indicated that multiple FveCO genes were highly responsive to the
photoperiodic induction. Both FveCO3 and FveCO5 are potential
positive regulators for photoperiodic flowering, which is different
from their individual homologs in Arabidopsis. FveCO3 and
FveCO5 can bind to the promoter of FveFT1, the key reported
flowering regulator. The mechanism of FveCO3 and FveCO5
in strawberry flowering regulation should be deeply clarified
with further work.

BRIEF SUMMARY

Ten distinct CO-like genes (FveCOs) were identified in the
woodland strawberry (F. vesca). The expression of FveCO3 and
FveCO5 was both negatively correlated with the flowering time
variation of the woodland strawberry grown under both long-
day and short-day conditions. FveCO3 and FveCO5 may function
in flowering induction via the photoperiodic regulation in the
woodland strawberry.
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De novo assembly of two
chromosome-level rice
genomes and bin-based QTL
mapping reveal genetic diversity
of grain weight trait in rice
Weilong Kong1†, Xiaoxiao Deng1†, Zhenyang Liao2,
Yibin Wang2, Mingao Zhou1, Zhaohai Wang3* and
Yangsheng Li1*
1State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China,
2Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant
Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China, 3Key Laboratory of Crop
Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of
the People’s Republic of China, Nanchang, China

Following the “green revolution,” indica and japonica hybrid breeding has

been recognized as a new breakthrough in further improving rice yields.

However, heterosis-related grain weight QTLs and the basis of yield advantage

among subspecies has not been well elucidated. We herein de novo

assembled the chromosome level genomes of an indica/xian rice (Luohui 9)

and a japonica/geng rice (RPY geng) and found that gene number differences

and structural variations between these two genomes contribute to the

differences in agronomic traits and also provide two different favorable allele

pools to produce better derived recombinant inbred lines (RILs). In addition,

we generated a high-generation (> F15) population of 272 RILs from the

cross between Luohui 9 and RPY geng and two testcross hybrid populations

derived from the crosses of RILs and two cytoplasmic male sterile lines (YTA,

indica and Z7A, japonica). Based on three derived populations, we totally

identified eight 1,000-grain weight (KGW) QTLs and eight KGW heterosis

loci. Of QTLs, qKGW-6.1 and qKGW-8.1 were accepted as novel KGW QTLs

that have not been reported previously. Interestingly, allele genotyping results

revealed that heading date related gene (Ghd8) in qKGW-8.1 and qLH-KGW-

8.1, can affect grain weight in RILs and rice core accessions and may also play

an important role in grain weight heterosis. Our results provided two high-

quality genomes and novel gene editing targets for grain weight for future

rice yield improvement project.
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Introduction

Rice is one of the most important food crops in the world,
providing food for more than half of the world’s population
(Qin et al., 2021). Over the past two decades, multiple high-
quality genomes of indica and japonica subspecies have been
assembled, such as Nipponbare (Goff et al., 2002), 9311 (Yu
et al., 2002), ZS97 (Zhang et al., 2016a,b), MH63 (Zhang et al.,
2016a,b), R498 (Du et al., 2017), IR64 (Tanaka et al., 2020), TN1
(Panibe et al., 2021), Huazhan (Zhang H. et al., 2022), Tianfeng
(Zhang H. et al., 2022), etc. Recently, several gap-free reference
genomes were completed, namely, ZS97, MH63, PR106, LIMA,
LARHAMUGAD, KETANNANGKA, NATELBORO, XL628S,
LK638S, J4155S, and HZ (Song et al., 2021; Zhang F. et al.,
2022; Zhang Y. et al., 2022). Advances in third-generation
sequencing and assembly algorithms have continuously updated
the accuracy of the rice pan-genome, revealing some important
functionally related structural variations (SVs) and gene copy
number variations (gCNVs) (Zhao et al., 2018; Qin et al., 2021;
Zhang F. et al., 2022). However, there are dramatically different
genetic backgrounds among thousands of rice cultivars,
especially between subspecies, including cultivar-specific genes,
different alleles of one gene, or gene family expansions (Li et al.,
2021). Differences in rice agronomic traits are closely related to
these genome variations (Stein et al., 2018; Zhao et al., 2018;
Qin et al., 2021). Therefore, the discovery of new genes/alleles
related to agronomic traits is inseparable from the comparative
analysis of the genomes of elite varieties and the fine mapping
in derived populations. For instance, we previously found that
the hybrid progeny of the Luohui 9 (xian/indica) and RPY
geng (geng/japonica) cross had significant heterosis in yield
and resistance traits, and multiple recombinant inbred lines
(RILs) derived from Luohui 9 X RPY geng aggregated the
advantages of both parents (Kong et al., 2022a). Based on the
high-density genetic map, we also obtained some QTLs related
to plant height, salt stress tolerance, submerged germination,
and grain shape (Kong et al., 2021b, 2022a,b; Deng et al., 2022).
But the gene number differences and large structural variations
between Luohui 9 and RPY geng, and the effects of these
variations/differences on traits and heterosis, remain unclear.

Owing to the impacts of human population growth and
limited arable land, breeders and scientists faced the challenge
of breeding higher yield potential crops. Rice yield is a complex
agronomic trait composed of four main factors including
effective panicle number, grain number per panicle, seed setting
rate and 1,000-grain weight (KGW) (Zuo and Li, 2014). In
addition, heterosis refers to the phenomenon that the phenotype
of the hybrid progeny surpasses their parents in biomass,
yield, growth vigor, resistance, etc., (Birchler et al., 2010). Yield
heterosis between indica and japonica subspecies has been
widely used to improve rice yield, causing a worldwide yield
revolution (Li et al., 2018). As statistics, hybrid rice shows a 20–
30% increase in yield than inbred rice and has effectively solved

world food crisis (Xu et al., 2016). Therefore, analyzing the
mechanism of rice grain weight (GW) and mining GW-related
QTLs and GW-related heterosis loci are important foundations
for improving rice yield. Based on different populations and
QTL mapping methods, more than 600 QTLs related to
grain weight and grain shape have been identified on all 12
chromosomes in rice to date1 (Chan et al., 2021), and more than
20 QTLs have been cloned, including GW2 (Yan S. et al., 2011),
GS3 (Liu et al., 2018), TGW6 (Ishimaru et al., 2013), GW6a
(Song et al., 2015), WTG1 (Huang et al., 2017), GL7 (Wang et al.,
2015), and gw5 (Wan et al., 2005). In fact, multiple reported
QTLs may belong to one QTL, but there are differences in the
size of the interval. Meta-analysis of QTLs was used to merge
multiple QTLs from different rice genetic populations and to
identify consensus and stable QTLs (Arcade et al., 2004; Kong
et al., 2020), which narrowed down the confidence intervals of
QTLs (Martinez et al., 2016; Zhang et al., 2017). Recently, 339
published GW QTLs merged into 34 Meta-QTLs (MQTLs) in
rice (Khahani et al., 2020). The new GW QTLs/genes must be
urgently explored in indica X japonica derived populations to
further improve rice yields.

In this study, we performed the chromosome-level de
novo assembly of the Luohui 9 and RPY geng genomes and
characterized their genomic differences in genome-wide scale.
Additionally, the KGW traits of derived RIL populations from
Luohui 9 X RPY geng in four environments were used for QTL
mapping. Two testcross populations derived from the crosses of
RILs and Z7A (japonica) or YTA (indica) were used to explore
the heterosis loci of KGW. These results provided a new insight
into the diversity mechanism of grain weight in rice.

Materials and methods

Materials and sequencing

The highly homozygous O. sativa ssp. indica/xian (Luohui
9, 2n = 2 × = 24) and O. sativa ssp. japonica/geng (RPY
geng, 2n = 2 × = 24) were planted in the field in Wuhan,
China, in 2016, These two subspecies have many significant
differences in important agronomic traits, including plant
height, number of tillers, and heading date, for example, Luohui
9 has excellent agronomic traits, and RPY geng has an ideal plant
architecture (Figure 1A).

The genomic DNA of these two subspecies was extracted
from young leaves using a modified CTAB method and tested
using Qubit Quantitation Starter Kit (Invitrogen, United States)
and a 1% agarose gel electrophoresis, respectively. Libraries
for Illumina short-read and single-molecule real-time (SMRT)
sequencing (Pacific Biosciences, United States) were prepared

1 http://www.gramene.org/
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FIGURE 1

Whole plant phenotype (A), genomic characteristics (B), and large structural variations (C) between RPY geng and Luohui 9. The tracks from
outside to inside are the chromosome, gene density, repeat sequence density, and GC content and the different color links represent
orthologous gene pairs among chromosomes in (B).

according to the respective manufacturer’s instructions. The
short-read DNA libraries were sequenced by paired-end
(2 × 150 bp) method on Illumina HiSeqTM 2,500 (Illumina,
United States) and the SMRT sequencing were sequenced on
the PacBio RS II platform. In addition, Hi-C reads of DNA of
young leaves from F1 progeny of Luohui 9 and RPY geng were
sequenced on Illumina HiSeqTM 2,500 paired-end (2× 150 bp)
sequencing according to standard protocol. The total RNA
of mixed tissues (root, stem, leaf, and young panicle) was
extracted for RNA-seq libraries following the manufacturer’s
standard protocol. Then, RNA-seq libraries were sequenced on
an Illumina HiSeqTM 2,500 paired-end (2 × 150 bp) and raw
reads were filtered using Trimmomatic software as described
previously (Kong et al., 2020).

Genome assembly and annotation

PacBio RSII sub-reads were filtered by the PacBio SMRT-
Analysis package including removing the adapters, low
quality, and short length reads (parameters: readScore, 0.75;
minSubReadLength, 500) and sub-reads after filtering were
corrected by Illumina reads using an error correction module
embedded in Canu v1.5 (Koren et al., 2017). The high-quality
PacBio sub-reads were used for genome contigs assembly
by using Canu v1.5 with default parameters. The contig-
level genome was polished by Plion with these parameters: –
mindepth 10; –changes; –threads 4; –fix bases (Walker
et al., 2014). Hi-C data were used to assist in constructing
chromosome-level genome assemblies. The Hi-C data were
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mapped to the contig-level genomes using BWA aligner
software (Li and Durbin, 2009). A total of 46.73 Gb clean
Hi-C data was mapped to the genome, with a coverage of
116.83 X. These uniquely mapped Hi-C reads were retained
for chromosome-level genome assemblies using LACHESIS
software with these parameters: CLUSTER MIN RE SITES = 22;
CLUSTER MAX LINK DENSITY = 2; CLUSTER NON-
INFORMATIVE RATIO = 2; ORDER MIN N RES IN
TRUNK = 10; ORDER MIN N RES IN SHREDS = 10
(Burton et al., 2013). Finally, the chromosome-level genome
was further improved and corrected by the high-density
binmaps genetic map constructed in this study using all maps
software according to the method described (Tang H. B. et al.,
2015).

Repeat sequence annotation was performed by EDTA with
default parameters (Ou et al., 2019). Coding genes were
predicted by de novo, homolog-based, and transcriptome-
based strategies. Augustus v2.4 (Stanke and Waack, 2003),
Genscan (Burge and Karlin, 1997), GeneID v1.4 (Alioto
et al., 2018), GlimmerHMM v3.0.4 (Majoros et al., 2004),
and SNAP (version 2006-07-28) (Korf, 2004) were used for
de novo prediction. GeMoMa v1.3.1 (Keilwagen et al., 2016)
was used for homolog-based prediction. In the transcriptome-
based prediction, we used Hisat v2.0.4 and Stringtie v1.2.3
for sequence assembly based on a reference genome (Pertea
et al., 2016), and applied TransDecoder v2.02 and GeneMarkS-
T v5.1 (Tang S. Y. Y. et al., 2015) for gene prediction; On
the other hand, PASA v2.0.2 software (Campbell et al., 2006)
was used to perform unigene sequence prediction without
reference assembly based on transcriptome sequencing data.
Finally, we used the EVM v1.1.1 software (Haas et al., 2008)
to integrate all gene prediction results from these three analysis
methods. The predicted coding genes were annotated according
to alignments against (E value 1e–5) databases including GO,
KEGG, KOG, TrEMBL, and Nr databases using BLAST v2.2.31
(Altschul, 2012).

Orthologous clusters analysis and
structural variant identification

We extracted the longest-protein sequences from Luohui 9
and RPY geng genomes for orthologous clusters identification
using OrthoVenn2, E-value was set 1e–10, and other parameters
with default (Xu et al., 2019). Genomic structural variants
between Luohui 9 and RPY geng genomes were identified by
SyRI (Goel et al., 2019). Luohui 9 genome was used as the
reference genome, “nucmer – mum” for sequence alignment,
with parameter, -c 100 -l 50 -g 1,000. Then, “delta-filter” was
used to filter the comparison results, with parameter, -1 -q -r -i

2 http://transdecoder.github.io

TABLE 1 Summary of genome assembly and annotation of RPY
geng and Luohui 9.

RPY
geng

Luohui 9

Genome assembly

Assembly size (Mb) 383.45 394.43

Number of contigs 684 569

N50 size of contigs (Mb) 2.81 2.84

Anchored contigs (Mb) 369.49 382.54

Anchored contigs (%) 96.35 96.99

Complete assessment of 456 core genes in CEGMA
v2.5 (%)

99.56 100

Complete assessment of 238 core genes in CEGMA
v2.5 (%)

95.97 97.18

Complete assessment of 1,614 core genes in BUSCO
v3.0.2 (%)

98.9 99.1

The long terminal repeat (LTR)-assembly index (LAI) 19.44 19.37

Genome annotation

Percentage of repeat sequences (%) 44.29 46.96

Number of predicted genes 39,255 39,440

89 -l 50. Finally, “show-coords,” “syri -c,” and “syri plotsr” steps
were done with default parameters.

QTL mapping of KGW

A 272 RILs and their parents were planted in the Ezhou
(30◦N, 114◦E) Experimental Base of Wuhan University, Wuhan
City, Hubei Province in April 2017 (2017EZ) and in April
2018 (2018EZ), the Hybrid Rice Experimental Base of Wuhan
University in Lingshui City (18◦N, 110◦E), Hainan Province in
November 2019 (2019LS), and Breeding Experimental Base of
Wuhan University Tianyuan Co., Ltd in Hannan District (30◦N,
114◦E), Wuhan City, Hubei Province in May 2019 (2019HN).
Two testcross populations (Z7A-TCF1 and YTA-TCF1) were
developed by crossing RILs (F14) with Z7A (japonica) and YTA
(indica) in 2019LS. KGWs of Z7A-TCF1, YTA-TCF1, and RILs
were investigated in 2019HN.

All plants were planted under standard agricultural
management practice (Kong et al., 2022a). KGW was surveyed
in the above four environments. Each inbred line counted five
individual plants, the average KGW value of five individual
plants was considered as the KGW value of each inbred line.

The genetic linkage map of 272 RILs including 4,578
bin blocks with the total bin-map distance 2,356.41 cM was
previously constructed in our lab (Kong et al., 2022a). The QTL
mapping of KGW was analyzed by R/qtl (Arends et al., 2010),
the CIM interval mapping method was adopted and the LOD
threshold was set by 3.0. The confidence interval was calculated
with the function “lodint” (Dupuis and Siegmund, 1999) and the
drop value was set to 1.5.
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QTL mapping of KGW heterosis loci

Heterosis related indexes for the KGW trait were calculated
by the formulas:

MPH = [F1− (P1+ P2)/2 ]/[ (P1+ P2)/2] X 100%

BPH = (F1− P1)/P1 X 100%

LPH = (F1− P2)/P2 X 100%

where MPH is middle-parent heterosis, BPH is better-parent
heterosis, LPH is lower-parent heterosis, P1 is the high parent,
and P2 is the low parent.

The QTL mapping of KGW heterosis related indexes was
analyzed by R/qtl (Arends et al., 2010), the CIM interval
mapping method was adopted and the LOD threshold was
set by 2.5. The confidence interval was calculated with the
function “lodint” (Dupuis and Siegmund, 1999) and the drop
value was set to 1.5.

Results and discussion

De novo assembly and annotation of
RPY geng and Luohui 9 genomes

A total of 25.1 / 36.5 Gb Illumina short reads with 62 / 91
X coverage of the genome and 15.6 / 19.5 Gb PacBio RSII long
reads with 39 / 48 X coverage of the genome of RPY geng /
Luohui 9 was obtained (Supplementary Table 1). The long reads
were polished by the Illumina paired read and the polished long
reads were assembled into contigs by Canu V1.5. After three
rounds of contig polish by Pilon v1.22 and Hi-C data correction,
we obtained a 383.45 Mb RPY geng genome and a 394.43 Luohui
9 genome, with the contig N50 of 2.81 and 2.84 Mb, respectively
(Table 1). Luohui 9 was ∼10.98 Mb larger than the genome of
RPY geng. Finally, 96.35 and 96.99 % of contigs were anchored
onto 12 pseudo-chromosomes of RPY geng and Luohui 9 based
on Hi-C interactions and linkage map from RPY geng x Luohui
9 derived population (Kong et al., 2022a), respectively (Table 1
and Supplementary Figure 1).

The percentages of repeat sequences in the genomes of RPY
geng and Luohui 9 were 44.29 and 46.96% based on EDTA with
default parameters (Supplementary Table 2). A combination of
prediction strategies (de novo, homologous based and RNA-seq
based) totally identified 39,255 and 39,440 gene models among
RPY geng and Luohui 9 genomes, of which 96.81 and 94.75%
had at least one annotation result in GO, KEGG, KOG, TrEMBL,
or Nr database (Supplementary Tables 3, 4). The results of
CEGMA and BUSCO showed that the assembly of RPY geng

and Luohui 9 was complete, with more than 95.0% of the core
genes. The long terminal repeat (LTR)-assembly index (LAI) of
RPY geng and Luohui 9 was 19.44 and 19.37, which is close
to the gold genome level (LAI ≥ 20) (Table 1). All the above-
mentioned genome indices indicated that the newly assembled
genomes of RPY geng and Luohui 9 was of high quality.

Global genome differences between
RPY geng and Luohui 9

RPY geng and Luohui 9 showed obvious differences in
yield, grain shape (Deng et al., 2022), plant height (Kong et al.,
2022a), and abiotic stress resistances (Kong et al., 2020, 2021a,b,
2022b), and the hybrid progeny of RPY geng X Luohui 9 had
the excellent heterosis (Figure 1A). These essential agronomic
differences are inseparable from the number and structural
variation of genes between the two subspecies genomes (Zhao
et al., 2018; Qin et al., 2021). Benefiting from the completion
of the genomes of RPY geng and Luohui 9, we compared their
gene numbers and large structural variations at the genome-
wide level and highlighted some genes that have potential
impact on agronomic traits. A total of 32,720 orthologous
clusters including 32,509 orthologous gene pairs were identified
(Supplementary Figure 2 and Figure 1B). Luohui 9 unique
orthologous clusters were enriched with multiple essential life
GO terms, while RPY geng unique orthologous clusters were
enriched with multiple stress-related GO terms (Supplementary
Table 5), namely, defense response, cellular response to amino
acid stimulus, positive regulation of hydrogen peroxide, as well
as response to osmotic stress, suggesting that RPY geng has more
tolerance-related genes to abiotic stress than Luohui 9. These
results are consistent with our previous findings that RPY geng
has stronger resistance to salt stress and cold stress and carries
important stress tolerance genes (Kong et al., 2020, 2021a,b,
2022b).

We further found 190 inversions, 6,852 translocations, 1,279
(Luohui 9)/1,212 (RPY geng) duplications between RPY geng
and Luohui 9 involving 2,234 SV-related genes in Luohui
9 and 1,544 SV-related genes in RPY geng (Supplementary
Table 6). Notably, at the position of 12.8–18.6 Mb on Luohui
9 chromosome 6 showed a sequence inversion with a length of
about 5.7 Mb compared with the RPY geng genome (Figure 1C)
and this inversion has also been reported in previous
comparative genomic studies between subspecies (Du et al.,
2017; Li et al., 2021; Xie et al., 2021), suggesting that this may
be an important structural difference between subspecies. To
study the potential roles of these SV-related genes in important
agronomic traits, we collected 283 important known genes with
functional function verifications (Supplementary Table 7) as
query sequences to find homologous genes against SV-related
genes by BlastP (value E-10). Totally, 337 SV-related genes were
identified as homologous genes of 138 known functional genes
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FIGURE 2

Thousand-grain weight in 2019HN, 2019LS, 2018EZ and 2017EZ.

TABLE 2 Details of thousand-grain weight QTLs.

QTL Environment Chr QTL position LOD Size of QTL (Mb) Phenotypic variation (%)

qKGW-2.1 2019LS Chr 2 22532020–29979073 3.77 7.45 6.18

qKGW-3.1 2019HN Chr 3 8166100–10764126 7.74 2.60 12.28

qKGW-3.2 2018EZ; 2019LS Chr 3 8166100–11054115 6.49; 8.45 2.89 10.41; 13.33

qKGW-5.1 2019LS Chr 5 2493875–5085048 3.1 2.59 5.11

qKGW-5.2 2018EZ Chr 5 3542240–4415859 4.33 0.87 7.07

qKGW-6.1 2019_HN Chr 6 2215678–2577924 4.83 0.36 7.85

qKGW-8.1 2017EZ; 2018EZ; 2019LS Chr 8 4158052–4833970 3.42; 6.2; 4.41 0.68 5.63; 9.96; 6.20

qKGW-10.1 2017EZ Chr 10 13311698–19472799 3.78 6.16 6.2

belonging to cold tolerance, heat tolerance, salt tolerance, insect
resistance, disease resistance, drought tolerance, fertility, grain
quality, grain shape, heading date, panicle architecture, nutrient
utilization, and panicle architecture (Supplementary Table 8).
The above results suggested that the genome-wide number and
structural differences play essential roles in the trait differences
of RPY geng and Luohui 9, which were consistent with their
differential trait characteristics.

QTLs of KGW

RPY geng and Luohui 9 belonged to japonica/geng
and indica/xian subspecies, respectively, yield traits of

their F1 and many RILs showed obvious over-parent
dominance. To resolve yield-related genes, we here
conducted trait surveys and linkage analysis of KGW based
on the previously constructed high-density genetic map
(Kong et al., 2022a).

KGW of RILs were investigated in Lingshui, Hannan, or
Ezhou among 2017 – 2019. There was extensive variance
of KGW in RIL population while there was a minor
difference of KGW between the parents (Figure 2 and
Supplementary Table 9). KGW of the RIL population showed
a normal distribution with high Pearson coefficients in
four different environments and transgressive segregations
were observed in the RIL population (Figure 2), which
indicated that KGW were controlled by multiple genes and
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FIGURE 3

The positions of QTLs, MetaQTLs, and known KGW-related genes.

FIGURE 4

1000-grain weight of different allele combinations of qKGW-6.1 and qKGW-8.1. In (A), (C–F): qKGW-6.1 AA + qKGW-8.1 AA, (B): qKGW-6.1 AA +
qKGW-8.1 BB; (C): qKGW-6.1 BB + qKGW-8.1 AA; (D): qKGW-6.1 BB + qKGW-8.1 AA.

indica x japonica hybrid breeding strategy can breed high-
yielding rice materials.

We totally identified eight KGW QTLs on Chr 2, Chr 3,
Chr5, Chr6, Chr8, and Chr10 (Table 2). Of QTLs, qKGW-
8.1 was repeatedly detected in 2017EZ, 2018EZ, and 2019LS.
qKGW-3.1 and qKGW-3.2 had almost the same interval and
qKGW-5.2 was fully contained by qKGW-5.1. These results
suggested that these three QTLs had relatively stable effects on
KGW in multiple different environments. The remaining QTLs
(qKGW-2.1, qKGW-6.1, and qKGW-10.1) were only detected

in one specific ecological environment, and were possibly
environment-specific KGW QTLs.

Identification and function
confirmation of two novel KGW QTLs

To distinguish the new TWG QTLs first discovered in
this study, 34 Meta-QTLs from 339 original GW QTLs
(Supplementary Table 10) and 126 known GW genes
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FIGURE 5

The candidate gene prediction of qKGW-8.1. (A). Protein sequence alignment results of Nipponbare, RPYgeng (FaGhd8), Luohui 9 (MoGhd8). (B)
The 1,000-grain weight of RPY geng (AA) and Luohui 9 (BB) allele recombinant inbred lines (RILs). (C) The 1,000-grain weight of different allele
rice core accessions.

FIGURE 6

Grain weight heterosis loci in two testcross populations. Black represents QTL loci in recombinant inbred lines (RILs). Red and blue loci
represent heterosis-related QTLs of YTA and Z7A testcross population, respectively.
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(Supplementary Table 11) were collected (Khahani et al.,
2020). Except for qKGW-6.1 and qKGW-8.1, the remaining
QTLs all had complete or partial overlap with Meta-QTLs,
or contained the known KGW genes in these intervals
(Figure 3). For example, qKGW-3.1 and qKGW-3.2 fully
covered MQTL-GW18 and included pls2 and SRL2. Sequence
alignment result showed that SRL2 had sequence differences
in the coding sequence regions (Supplementary Table 12).
Similarly, qKGW-2.1 containing OsVPE3, OsMADS6, and
OsGRF4, overlapped MQTL-GW7 and MQTL-GW8; qKGW-5.1
and qKGW-5.2 carrying OsPPKL2, SRS3, and GS5 overlapped
MQTL-GW18; qKGW-10.1 including FLO7 overlapped MQTL-
GW29.

Therefore, qKGW-6.1 and qKGW-8.1 were accepted as
novel KGW QTLs. To further confirm the KGW regulation
function of qKGW-6.1 and qKGW-8.1, all RILs were divided into
different allelic combination based on peak maker genotyping
results in genetic map. RPY geng allele (AA) RILs of
qKGW-6.1 showed greater KGW than Luohui 9 (BB) RILs
(Figure 4A). Interestingly, qKGW-8.1 showed the opposite
result relative to qKGW-6.1 (Figure 4B). This suggested that
the favorable alleles of these two QTLs are derived from
RPY geng and Luohui 9, respectively, and the favorable allele
aggregation may enhance KGW of some RILs. As expected,
RILs that aggregated favorable alleles (qKGW-6.1 AA+ qKGW-
8.1 BB) had the largest KGW in all tested environments
(Figures 4C–F). These results demonstrated that qKGW-6.1
and qKGW-8.1 are two new KGW loci that can be used to
improve rice yield.

Ghd8 has a potential function in
regulating rice grain weight

qKGW-8.1 could be detected repeatedly in three
environments with phenotypic interpretation rates of 5.11–9.96.
However, no known genes directly related to grain weight
were found in qKGW-8.1. We therefore traversed the 92
gene annotation results in qKGW-8.1 and tried to correspond
them to the phenotypic differences between the parents. We
found that Ghd8 is located within the qKGW-8.1 interval,
a gene reported to be closely associated with heading date
and yield (Yan W. H. et al., 2011; Dai et al., 2012), which is
consistent with parental heading date differences. Whether
in Hainan or Hubei, both parents maintained the heading
date difference of more than 10 days. We extracted the Ghd8
protein sequences from our newly assembled genome and
sequence alignment revealed multiple sequence variations,
including seven amino acid substitutions, one amino acid
deletion, and a complex C-terminal amino acid variation
(Figure 5A).

To test whether Ghd8 has a potential effect on grain weight
as a pleiotropic gene, we observed grain weight at different

alleles in our RILs and in 532 rice core accessions from
RiceVarMap v2.03 (Zhao et al., 2021). In RILs, the allele types
of Ghd8 was determined based on a bin maker (Block174811)
because Ghd8 is the only gene within block174811. In 532 rice
core accessions, a functional snp (vg0804334484) was found
in Ghd8 gene, containing A, C, and N alleles, and the N
allele was eliminated in further phenotypic comparisons due
to uncertainty about its base type. We found that different
allele RILs or core accessions displayed significantly different
KGW, suggesting that Ghd8 may play a role in KGW regulation
(Figures 5B,C).

KGW heterosis loci

We totally identified two QTLs for KGW BPH, two QTLs
for KGW MPH, and four QTLs for KGW LPH (Figure 6 and
Supplementary Table 13). Three of the eight heterosis-related
QTLs overlapped KGW QTLs: qLH-KGW-5.1 and qLH-KGW-
5.2 were covered by qKGW-5.1 and qLH-KGW-8.1 overlapped
with qKGW-8.1. Interestingly, qLH-KGW-8.1 coincided with a
reported yield heterosis locus, RH8 (rice heterosis 8) (Li et al.,
2016). Ghd8, as a major gene in RH8, was also located in
the qLH-KGW-8.1 interval. This suggested that Ghd8 plays an
important role in rice yield heterosis. In addition, two GW-
related genes were in heterosis-related QTLs, namely, SRS3
and GS5 in qLH-KGW-5.1, GS5 in qLH-KGW-5.2. Whether
these GW-related genes play a role in heterosis remains to be
further explored.

Conclusion

In the present study, we de novo assembled genomes of
an indica rice (Luohui 9) and a japonica rice (RPY geng) at
the chromosome level and analyzed the KGW trait of their
derived RIL populations. We concluded that the substantial
genetic diversity of KGW in RILs were closely related to
genome variations and allele aggregation difference of KGW
QTLs. Importantly, we identified two novel KGW-related QTLs
(qKGW-6.1 and qKGW-8.1) and several KGW heterosis loci
in three derived population. Based on the genotyping results
in RILs and 532 rice core accessions, Ghd8 in qKGW-8.1 was
presumed to play an important role in GW regulation.
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Genomic and transcriptomic-
based analysis of agronomic
traits in sugar beet (Beta vulgaris
L.) pure line IMA1

Xiaodong Li1†, Wenjin He2†, Jingping Fang2, Yahui Liang1,3,
Huizhong Zhang1,3, Duo Chen2, Xingrong Wu1,3,
Ziqiang Zhang1,3, Liang Wang1,3, Pingan Han1,3,
Bizhou Zhang1,3, Ting Xue2, Wenzhe Zheng1,3, Jiangfeng He1,3

and Chen Bai1,3*

1Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China, 2Life
Science College of Fujian Normal University, Fuzhou, China, 3Inner Mongolia Key Laboratory of
Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and
Animal Husbandry Sciences, Hohhot, China
Sugar beet (Beta vulgaris L.) is an important sugar-producing and energy crop

worldwide. The sugar beet pure line IMA1 independently bred by Chinese

scientists is a standard diploid parent material that is widely used in hybrid-

breeding programs. In this study, a high-quality, chromosome-level genome

assembly for IMA1was conducted, and 99.1% of genome sequences were

assigned to nine chromosomes. A total of 35,003 protein-coding genes were

annotated, with 91.56% functionally annotated by public databases. Compared

with previously released sugar beet assemblies, the new genome was larger

with at least 1.6 times larger N50 size, thereby substantially improving the

completeness and continuity of the sugar beet genome. A Genome-Wide

Association Studies analysis identified 10 disease-resistance genes associated

with three important beet diseases and five genes associated with sugar yield

per hectare, which could be key targets to improve sugar productivity. Nine

highly expressed genes associated with pollen fertility of sugar beet were also

identified. The results of this study provide valuable information to identify and

dissect functional genes affecting sugar beet agronomic traits, which can

increase sugar beet production and help screen for excellent sugar beet

breeding materials. In addition, information is provided that can precisely

incorporate biotechnology tools into breeding efforts.

KEYWORDS

Beta vulgaris, whole-gene sequencing, whole genome duplications (WGD), gene
family, genome wide association study (GWAS), male sterility
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Introduction

Sugar beet (Beta vulgaris L.) is in the Caryophyllales in the

family Chenopodiaceae. The chromosome number of cultivated

sugar beet is2n =2x= 18, with a predicted genome size of714 to

758 Mb (Arumuganathan and Earle, 1991). Sugar beet is an

important biennial root crop cultivated in temperate climate

regions with outstanding sugar-producing capability. Sugar beet

was originated by selecting lines with high sugar content in the

storage root from hybridizations between typical fodder beet and

chardin the late eighteenth century (Eberhard, 1989) and thus is

one of the most recently domesticated crops.

Sugar beet productivity is threatened by various pathogens,

including bacteria, fungi, viruses, and nematodes (Larson et al.,

2006; Saleh et al., 2011; Strausbaugh and Eujayl, 2018).

Molecular breeding approaches have been used to create

resistant or high taproot-yield sugar beet germplasms to

increase production while greatly decreasing time, effort, and

costs (Boyd et al., 2013). Many genes associated with important

agronomic traits have been identified in sugar beet, including

those responsible for nematode resistance (Cai et al., 1997), life

cycle adaptation (Pin et al., 2012), cytoplasmic male sterility

(Matsuhira et al., 2012), bolting tolerance (Hébrard et al., 2016),

and salt tolerance (Sahashi et al., 2019). A wide range of

sequence-based genetic and genomic resources are emerging

for sugar beet. Single Nucleotide Polymorphism based genetic

and physical maps have been constructed (Dohm et al., 2012;

Holtgräwe et al., 2014), and transcriptome profiles have been

analyzed to reveal important metabolic pathways and stress-

responsive genes (Mutasa-Göttgens et al., 2012; Lv et al., 2018;

Geng et al., 2019; Zou et al., 2020). Several sugar beet genomes

have been assembled, including chromosome-level assemblies of

double-haploid line RefBeet (Dohm et al., 2014) and the five-

generation inbred line EL10 (Funk et al., 2018). Genome-wide

identification and characterization of various important

functional genes have also been reported (Stracke et al., 2014;

Funk et al., 2018; Wang et al., 2019; Wu et al., 2019a; Wu

et al., 2019b).

However, insufficient publicly available genetic resources

and innovative germplasms are two major factors that limit

the development of superior sugar beet cultivars. In this study,

the chromosome-level genome assembly of the first Chinese

native sugar beet line IMA1 was built by combining

IlluminaHiseq, PacBio SEQUEL, and Hi-C sequencing

platforms. Compared with previously released sugar beet

assemblies, the new genome was 220 Mblarger with N50 size

that was at least 1.6 times larger, thereby greatly improving the

completeness and continuity of the sugar beet genome. Seven

important beet agronomic traits and disease-resistance

characteristics were also assessed by resequencing 114
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accessions. In addition, a group of candidate genes associated

with male sterility in sugar beet were selected based on q-PCR

and transcriptome sequencing.

In conclusion, sequencing, assembly, and annotation of the

sugar beet IMA1line provide the foundation for future

comparative genomics efforts and phylogenetic reconstructions

in the Caryophyllales and eudicots. Furthermore, valuable

information is provided to identify and dissect functional

genes affecting agronomic traits, which can be used to create

breeding materials and to precisely incorporate biotechnology

tools into breeding efforts.
Materials and methods

Sample collection and processing

Beta vulgaris IMA1, an inbreeding line with low level of

heterozygosity, was selected for sequencing. Scientists from the

Inner Mongolia Academy of Agricultural and Animal Science

(IMAAAHS, Hohhot, Inner Mongolia, China) independently

developed line IMA1. The line is standard diploid parent

material with good combining ability that is widely used in

creating sugar beet parent materials and hybrid breeding.

Seeds of IMA1 were planted in one gallon flowerpots filled with

organic loamon August 16, 2018, and placed in a greenhouse at

IMAAAHS. Greenhouse temperatures were 26°C(day) and 21°C

(night). Two months after planting, tender, young, healthy leaf

samples were collected and immediately flash-frozen in liquid

nitrogen for one hour and then stored at −80°C until DNA and

RNA extraction. Voucher specimens of IMA1 were deposited at

IMAAAHS with collection number 14.S4006C.
Sampling germplasms of 114 sugar
beet accessions

Test materials were 114 accessions randomly selected from

the sugar beet gene bank stored at the Special Crop Research

Institute of IMAAAHS. All test materials were planted in the

experimental field of IMAAAHS (longitude 40°46′19.43″N,
latitude 111°39′44.96″E)in Hohhot, Inner Mongolia, China.

The complete data set contained three years (2017 to 2019) of

agronomic traits collected in the field. Sugar beets were planted

at the beginning of May and harvested at the beginning of

October. Each plot was 6 m in length and 55-cm in width. The

114 sugar beet accessions were randomly sampled during the

lush growth period. Newly emerged leaves were removed, put

into zip lock bags, quickly frozen in a sample box with liquid

nitrogen, and placed in a freezer at −80°C.
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Selection of beet accessions for
transcriptome analysis

Two pairs of beet lines with differences in male fertility were

selected for transcriptome analysis: two male-sterile beet lines

MS137 and MS301 and two beet maintainer lines OT152 and

OT302. Beet roots that had undergone vernalization were

planted in a test field arranged for beet breeding and isolation.

On June 20, during the sugar beet budding stage, beet

inflorescences with unopened, mature flower buds were

selected and snap-frozen in liquid nitrogen.
DNA sequencing

To extract DNA and total RNA from young and healthy

sugar beet leaf tissues, a DNeasy Plant Mini Kit (Qiagen,

Germany) and an RNAprep pure Plant Kit (Tiangen, Beijing,

China) were used, respectively. The DNA-seq was used to assist

genome assembly, and the RNA-seq was used for gene model

prediction. Low-quality reads and adaptor sequences were

filtered out with the HTQC utility (Yang et al., 2013).

To obtain long reads for genome assembly, long read

libraries were constructed using the extracted high-quality

DNA in PacBio sequencing. Five SMRT (Single-Molecule Real

Time Sequencing) cells were sequenced, and roughly 65.67 Gb of

data were generated on a PacBio SEQUEL platform (Menlo

Park, CA, USA) (Supplementary Table 1). With a genome size of

700 Mb assumed for sugar beet, the sequencing result

theoretically represented 94-fold coverage. The average

subread length was 10,727 bp, and the N50 length was 17,047

bp. The PacBio sequencing was combined with Illumina

sequencing to generate longer scaffold genome assemblies.
Scaffold-level genome assembly of Beta
vulgaris IMA1

High-quality Illumina sequences with a K-mer size of 17

were counted using the JELLYFISH program (Marçais and

Kingsford, 2011). The PacBio sequencing subreads were

assembled using Canu v1.7 (Koren et al., 2017). There were

two steps of genome assembly polishing to correct random

sequencing errors. Aquiver algorithm (Chin et al., 2013) was

used to polish the Canu assembly using 50× long PacBio

subreads. Next Generation Sequencing (NGS) short reads

deliver a read accuracy of over 99% (Dohm et al., 2008). By

contrast, with PacBio long reads, the error rate isas high as 15%

to 20% (Ono et al., 2013; Ross et al., 2013). Therefore, two

rounds of polishing were conducted with 67.22 Gb of Illumina

short reads recruited with Pilonv 1.21 (Altschul et al., 1990;
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Walker et al., 2014). Organellar contigs were also removed by

BLAST searches against organellar genomes of sugar beet

(chloroplast genome: accession number KR230391.1;

mitochondria genome: accession number BA000024.1).
High-throughput chromatin
conformation capture library
construction and chromosome assembly

In the current study, the Hi-C approach was used for

chromosome-level assembly of sugar beet (Zhang et al., 2018;

Chen et al., 2019; Zhang et al., 2020). To construct a Hi-C

library, young leaves were cross-linked with formaldehyde and

digested with DpnII restriction enzyme overnight. Chimeric

junctions were formed followed by biotinylating and proximity

ligating sticky ends and then sheared and enriched for fragment

sizes from 500 to 700 bp. Chimeric fragments were subjected to

PE sequencing on an Illumina HiSeq X ten system (San Diego,

CA, United States) with the PE 150 nt mode.

After mapping the clean sequencing reads against the

polished sugar beet genome with Bowtie2 software (Langmead

and Salzberg, 2012), over 369.4 million PE reads matched unique

genomic locations, which were assessed and filtered by the hiclib

Python library (Imakaev et al., 2012) and HiC-Pro program

(Servant et al., 2015). Mis-joined contigs were corrected with the

3D-DNA pipeline (Dudchenko et al., 2017), and Hi-C-corrected

contigs were grouped into pseudo-chromosomes by the ALLHIC

pipeline (Zhang et al., 2019) on the basis of relations among

valid reads.
Genome annotation

With gene model parameter strained from Arabidopsis

thaliana, ab initio predictions were conducted using

AUGUSTUS (Stanke and Morgenstern, 2005). Previously

published sugar beet genome RefBeet-1.2.2 of sugar beet line

RefBeet (Dohm et al., 2014) with accession number

GCA_000511025.2 was selected as the reference genome to

perform homology annotation. The protein sequences of the

RefBeet genome were aligned with those of the new genome by

TBLASTN software (Winsor et al., 2016). Gene structures were

further predicted by GeneWise (Birney and Durbin, 2000) on

the basis of TBLASTN results. The RNA-seq data sampled from

leaf tissues were used for Trinity (Haas et al., 2013) de novo

assembly. Transcript abundance was calculated with RNA-Seq

by Expectation-Maximization (RSEM) (Li and Dewey, 2011),

and transcripts with Fragments Per Kilobase Million (FPKM) <1

and iso-percentage <3% were filtered out. The PASA program

(Haas et al., 2003) was used to construct comprehensive
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transcripts using the filtered transcripts. Sugar beet transcripts

were compared with the UniProt to identify candidates covering

≥95% of any target protein. Homology-based annotation, ab

initio, and transcriptome-based gene prediction were combined

to generate a protein-coding gene set by using the Evidence

Modeler pipeline (Haas et al., 2008).Tandem Repeats Finder

(Benson, 1999) and LTR_FINDER (Xu and Wang, 2007) were

used to predict repeat elements. Subsequently, assembled

genome sequences were aligned to the Repbase TE database

(Bao et al., 2015) using Repeat Masker (Tarailo-Graovac and

Chen, 2004) to search for sequences of repeat elements. The

tRNAscan-SE (Schattner et al., 2005) and rRNAmmer (Lagesen

et al., 2007) were used to detect reliable transfer RNA(tRNA)

and ribosomal RNA(rRNA) positions, respectively. The small

RNAs (sRNAs), microRNAs (miRNAs), and small nuclear

RNAs(snRNAs)were predicted by searching the RFAM

databases (Gardner et al., 2009) using INFERNAL software

(Nawrocki et al., 2009) with the default parameters. For

functional annotations, sequence-similarity searches were

performed using Blast with E-value of 10−5 in available protein

databases [(Non-Redundant Proteins (NR), Swiss-Prot, Clusters

of Orthologous Groups (COGs), Kyoto Encyclopedia of Genes

and Genomes(KEGG), and Gene Ontology(GO)].
Phylogenetic analysis and divergence
time estimation

Phylogenetic analysis was conducted using the protein-

coding genes of IMA1 and 25 other species. Protein sequence

alignments and phylogenetic tree construction were conducted

using OrthoFinder software (Emms and Kelly, 2019).

Reconstruction of phylogenetic trees was inferred by

maximum likelihood (ML), and the estimated divergence time

of plant species based on the TimeTree database (Puttick, 2019)

(http://www.time.org/) was used to recalibrate the divergence

time for the 26 plant species. To identify the expansion and

contraction of gene families, CAFE was used (Lu et al., 2017).
Synteny analysis and whole-genome
duplication

The paralogous genes of IMA1 were identified in a BLASTP

search (E-value cutoff of 1E−5). Synteny and collinearity blocks

of those genes were analyzed using MCScanX (Wang et al.,

2012). Gene synteny, gene density, and GC content on

individual pseudo-chromosomes were mapped by using Circos

software (http://www.circos.ca). The synonymous substitution

rate (Ks) was calculated using KaKs_Calculatorand the Nei–

Gojobori method (Wei and Zhang, 2014).
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Single nucleotide polymorphisms and
insertion and deletion calling

Trimmed reads were mapped to the new genome using

BWA-MEM (Li, 2013). Average mapping rates were 99.33%, and

average genome coverage was 7.72-fold of the reference genome.

Mapping results were sorted and duplicate reads marked based

on Sambamba (Tarasov et al., 2015). SNPs and InDels of the 114

accessions were called by GATK HaplotypeCaller (Hasanl et al.,

2015). The results were calculated using the following

parameters: QD < 2.0; MQ < 40.0; FS > 60.0; QUAL <30.0;

MQrankSum <−12.5; Read PosRankSum <−8.0 -clusterSize 2 –

cluster Window Size 5. The identified SNPs were filtered. High-

quality SNPs were defined as only those with a minor allele

frequency >0.05 and missing data rate<0.8. SNPs were annotated

based on the genome with snpEff (Cingolani et al., 2012).

Furthermore, SNPs were classified as coding synonymous

SNPs and non-synonymous SNPs, and InDels in exons were

grouped based on whether they led to a frameshift.
Genome wide association study analysis

Genome wide association study was performed by using

FaST-LMM (v2.07.20140723) or EMMAX (Kang et al., 2010). A

total of3,738,500 SNPs with a minor allele frequency of 0.05 or

greater and a missing data rate of 80% or less in the entire

population were used for GWAS. A Bonferroni correction was

used to determine the genome-wide significance thresholds of

the GWAS, based on a nominal level of −log10(P) values of 5.
Results

Sequencing and assembly of
IMA1 genome

The Illumina resequencing reads combined length was 67.22

Gb, which was 96× the estimated genome size. The RNA-seq

generated a clean dataset of 15.93 Gb consisting of over 98.9

million Paired-end reads. Quality of Illumina resequencing reads

was high (92.06% with Phred quality score >30). In total, 448

million high-quality, 150-bp clean paired-end reads were

retained for use in the following analysis (Supplementary

Table 2). The 17-mer analysis-based genome size of sugar beet

was estimated at 720.5 Mb. A single main peak indicated the

nature of the isolated genomic material, with heterozygosity of

only 0.6% (Supplementary Figure 1). For accurate homozygous

assembly, Illumina, Pacbio, and Hi-C sequences were combined

to perform the sequencing. Approximately 120.75 Gb of clean

data consisting of 805 million PE reads were produced from the
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Hi-C library sequencing (Supplementary Table 2). An initial

786-Mb genome sequence was obtained consisting of 4,824

contigs, with contig N50 of 367.5 kb. The longest contig was

5.91 Mb (Table 1). Additionally, 4,576 contigs from the Canu

assembly were successfully clustered, ordered, and oriented to

nine pseudo-chromosomes. In the IMA1 genome, 171 syntenic

blocks were detected, which involved 3,508 genes (Figures 1, 2).

The results indicated the quality of the genome assembly for

IMA1was high. The interaction signals were enriched in

chromosomes, and the intensity of interaction along the

diagonal was relatively smooth, showing well-organized contig

orderings. The anchor rate was 99.1%, and only 248 contigs

(7.1 Mb) were not anchored. The scaffold N50 was 93.06 Mb,

and the longest chromosome values reached 112.63 Mb

(Supplementary Table 3).
Evaluation of the genome assembly

Assembled genomes were further validated by mapping NGS

short reads, which indicated that 446.7 million (99.23%)
Frontiers in Plant Science 05
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Illumina reads were reliably aligned, which covered 96.84% of

the assembly (Supplementary Table 4). Additionally, 96.8% to

98.08% of RNA-seq clean reads were reliably aligned to the

assembled genome. Genome completeness was assessed based

on the viridiplantae_odb9 database in the BUSCO program (Jia

et al., 1997). A total of 1,326 (96.4%) complete single-copy

orthologs among 1,375 conserved plant genes were recalled in

the assembly (Supplementary Table 5). We assessed the

coherence of the IMA1 genome assembly with LAI (Long

terminal repeat assembly index). LAI score was assessed by
TABLE 1 Assembly statistics of B. vulgaris IMA1nuclear genome.

Canu HiC

Assembly genome size (Mb) 786.13 786.59

Genomic G+C content 35.85% 35.85%

Number of assembled scaffolds 4,824 257

Number of scaffolds (> 2 kb) 4,824 257

Max Length (Mb) 5.91 112.64

Scaffolds N50 (kb) 367.5 93.06
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FIGURE 1

Circos plot showing the distribution of genomic features along the IMA1 genome. The rings from outermost to innermost indicate (A) nine
pseudo-chromosomes of Beta vulgaris IMA1genome; (B) gene density distributed inside 200-kb sliding windows; (C) transposable element
abundance; (D) distribution of GC content; (E) expression values of leaf-expressed genes; and (F) schematic presentation of major inter-
chromosomal relations in the B vulgaris IMA1 genome. Each line represents a syntenic block; block size = 3 kb. Chromosomes in the outer ring
are ordered by chromosomes length as follow:1, chr5; 2, chr4; 3, chr3; 4, chr7; 5, chr6; 6,chr9; 7, chr1; 8, chr8; 9, chr2.
sin.org
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LTR_RETRIEVER (v2.9.0) (Ou and Jiang, 2017). The LAI value

of the IMA1 genome was 13.4, which was at the Reference level.
Gene prediction and functional
annotation

In the IMA1 genome, 35,003 genes encoding proteins were

annotated. Average gene length was 1,121 bp. Total combined

length of all genes was 39.23 Mb, which accounted for 4.99% of the

assembled genome. According to the BUSCO assessment, 86.2% of

core eukaryotic genes were complete in the assembly. Totals of

32,043; 27,574; 20,155; 10,157; and 21,351 genes were annotated in

Nr, GO, COG, KEGG, and Swiss-Prot databases, respectively, and

32,047 (91.56%) genes had at least one hit to the databases

(Supplementary Table 6). There were 8,725 genes annotated in all

five databases, representing 24.93% of all protein-coding genes.

Based on KEGG annotation (Supplementary Figure 2), 10,157

genes were involved in 33 pathways. There were 1,442 tRNAs,

945 5S rRNAs, 138 18S rRNAs, 139 28S rRNAs, 410 snRNAs, and

56 miRNAs in the IMA1 genome (Supplementary Table 7). The

IMA1 genome contained a total of 512.72 Mb of repetitive

sequences, with more than 284,501 tandem repeats identified

(Supplementary Table 8).
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Comparisons of the IMA1 genome
assembly with previously reported sugar
beet genome assembly

The new sugar beet IMA1 assembled genome (~786Mb) was

compared with the two previously released chromosome-level

assemblies of B. vulgaris: line RefBeet (~566 Mb, accession

numbers: GCA_000511025.2) (Dohm et al., 2014) and EL10

(~540 Mb, accession numbers: GCA_002917755.1) (Funk et al.,

2018). The new genome was much larger than those previously

reported. In addition, the IMA1 genome had the longest

chromosome length of 112.63Mb and the largest number of

genes identified, with 35,003 genes. The two previous genome

assemblies of B. vulgaris had scaffold N50 of 57.94 Mb and 2.01

Mb, respectively, which were much shorter than the 93.06 Mb in

the current assembly (Supplementary Table 3). There were 257

scaffolds in the new genome assembly, and longer scaffold N50s

were obtained than those in the EL10 and RefBeet genome,

which was the best assembled genome to date. The completeness

and continuity of the new assembly might be attributed to the

high-sequencing depth of PacBio and Hi-C reads and the

extremely low heterozygosity of the sugar beet line.

The IMA1 genome contained a total of 512.72 Mb of

repetitive sequences, which were 65.18% of the IMA1 genome.
FIGURE 2

Integrated Hi-C interaction heatmap of B. Vulgaris IMA1 genome. The heatmap displays high-resolution single pseudo-chromosomes, which
were scaffolded and composed independently. Lines are ordered by chromosomes length as follow:1, chr5; 2, chr4; 3, chr3; 4, chr7; 5, chr6; 6,
chr9; 7, chr1; 8, chr8; 9, chr2.
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It was higher than the previously released genome of sugar beet

line EL10 and RefBeet (62.91% and 51.75%, respectively) (Dohm

et al.,2014; Funk et al., 2018). The most abundant repetitive

sequences in the IMA1 genome are Class I retroelement (66.65%

of total TEs and 43.44% of genome). The Long terminal repeat

retrotransposons (LTR-RTs) of IMA1 accounted for 31.24% of

the assembly, while those of EL10 and RefBeet accounted for

28.07% and 21.82%, respectively. Over 284,501 tandem repeats

were identified, representing 10.34% of the genome.

(Supplementary Table 8). Compared with RefBeet and EL10,

IMA1 annotated the highest proportion and number of

repetitive sequences with significant improvements in the

continuity and integrity of repeat regions.

The synteny analysis showed that the B. vulgaris IMA1

assembly shared 17,462 and 14,551 common gene pairs with

EL10 and RefBeet, respectively, indicating a high ratio of the

syntenicregion. Most sequences in RefBeet and EL10 genomes

aligned with corresponding counterparts in the IMA1 assembled

genome; whereas the IMA1 assembly had extended sequences,

especially in Chr1, Chr3, Chr4, and Chr7. Some genomic

arrangements were also observed in the IMA1genome

compared with RefBeet and EL10 (Figure 3).
Evolution and gene family analysis of the
Beta vulgaris IMA1 genome

To analyze genome evolution and divergence time of IMA,

some genome sequences of plant species were selected. Gene

family expansions were greater than contractions in Nymphaea

colorata, Brassica napus, Chenopodium quinoa, B. vulgaris

IMA1, Malusbaccata, Rosa chinensis, Cannabis sativa,

Juglansregia, Quercussuber, Duriozibethinus, and Camellia

sinensis, compared with the other species. In the phylogenetic

tree, published B. vulgaris and IMA1 phylogenetically diverged

into the Betoideae branch approximately 11 million years ago

(Mya). Results also showed that published B. vulgaris and IMA1

were sisters in coccolithophores, which is consistent with the

findings of phylogenetic analysis (Figure 4A).

Age distribution of duplicated genes was determined,

followed by using a mixture model implemented in the

mixtools R package (Benaglia et al, 2009) to identify

significant gene duplication peaks consistent with whole

genome duplications (WGDs). The median replication peak

for IMA1 was around 0.55, which was younger than the

ortholog divergence of IMA1 and A. thaliana (Ks, ~2.56)

(Figure 4B). The distribution of ks values indicated that only

one recent WGD event occurred in the IMA1 genome, whereas

an ancient WGD event occurred 29 Mya ago.

From the 26 species, orthologous protein groups were

delineated, and 35,818 orthologous groups were obtained
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(Figure 4A). In the IMA1 genome, 2,907 gene families expanded

and 2,781 contracted. The 2,907 expanded gene families were

annotated in KEGG and GO databases. In the GO analysis, the

expanded orthologous groups were associated with biological

regulation, growth, reproductive process, and signaling. In the

KEGG analysis, most of the expanded genes were enriched to the

categories of cell growth and death, plant hormone signal

transduction, and environmental adaptation. The 2,781

contracted gene families were associated with signal

transduction and steroid biosynthesis, as well as metabolism of

pyruvate, terpenoids, polyketides, or lipids. In KEGG and GO

analysis, contracted genes were also involved in developmental

process and regulation of biological process.

In the comparison of IMA1, RefBeet, A. thaliana, B. napus,

C. quinoa, C. sativa, O. sativa, and S. oleracea, 9,128 gene

families were shared among these species (Figure 4C).

According to the GO analysis, functions of those genes were

primarily in growth, reproductive process, stimulus response,

developmental process, and immune system. According to the

KEGG analysis, enriched pathways for the genes included

phenylpropanoid biosynthesis, purine metabolism, pyrimidine

metabolism, and arginine biosynthesis.
Phylogenetic analysis of SWEET, SUT,
SPS and SUS gene families

To analyze evolutionary relations, a phylogenetic tree was

constructed with SWEET (sugars will eventually be exported

transporters) gene family members from A. thaliana (17), B.

vulgaris IMA1 (9), RefBeet (16), and EL10 (10) (Figure 5A).

Nine SWEET genes were found in the IMA1 genome, and they

were grouped into four clusters: 1, 2, 3, and 4. In cluster 1,there

were more subfamily genes of the SWEET family in IMA1 than

in B. vulgaris RefBeet and EL10. Therefore, cluster 1 members

from the SWEET family in IMA1 might have a more important

role in sugar export transportation. In the SUT (sucrose

transporters) gene family, a transmembrane transporter was

involved in the absorption and transport of sucrose.

Evolutionary relations among SUT gene proteins from B.

vulgaris IMA1(11), RefBeet(12), and EL10 (8) and C. quinoa (9),

S.oleracea (12), and A. thaliana (9) were also determined via

phylogenetic tree analysis (Figure 5B). The SUT gene proteins

were classified into three groups, including clusters 1, 2, and 3 of

subfamily genes. In cluster 3, B. vulgaris IMA1 had eight SUT

genes, which was higher than that of RefBeet (6) and EL10 (6). It

was hypothesized that the cluster 3 gene proteins have a key role

in sucrose accumulation in IMA1.

Evolutionary relations among SPS (sucrose phosphate

synthase) gene proteins from B. vulgaris IMA1(3), RefBeet (1),

and EL10 (2) and C. quinoa (4),Cucumissativus (3), B. napus (5),
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O. sativa (4), S.oleracea (2), and A. thaliana (4) were determined

via phylogenetic tree analysis (Supplementary Figure 3). The SPS

gene proteins were divided into clusters 1, 2, and 3. In IMA1,

clusters 3 and 2 had two and one SPS genes, respectively. In

addition to SWEET, SUT, and SPS gene families, evolutionary

relations of the SUS (sucrose synthase) gene family were also

analyzed (Supplementary Figure 4). The SUS gene proteins were

analyzed in B. vulgaris IMA1 (4), RefBeet (6), and EL10 (4) and

A. thaliana (6), C. quinoa (7), and S. oleracea (4). Numbers in

SPS and SUS gene families in IMA1 were fewer than those in

other species. However, because IMA1 accumulated higher

sugar content than that in other species, it was hypothesized

that SPS and SUS gene family members in IMA1 had higher

sugar accumulation efficiency than that in the other species.
Frontiers in Plant Science 08
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Genome wide association study of seven
agronomic traits in Beta vulgaris IMA1

Phenotyping data of seven major agronomic traits of 114 B.

vulgaris samples were used to perform GWAS (Supplementary

Table 9). Sucrose content is an important economic trait

for superior individuals of B. vulgaris. Nine strong GWAS

signals were detected, including BvNR (IMABv01g023663),

BvGN4 (IMABv01g023668), BvMYST1 (IMABv01g023671),

BvPGD (IMABv01g018581), BvSNAT (IMABv01g018582),

BvCDK12_13 (IMABv01g018584), BvGBF (IMABv01g018599),

BvPOD(IMABv01g018569), and BvTOGT1(IMABv01g018570)

genes (Figure 6A; Supplementary Figure 5A; Supplementary

Table 10).

Some strong GWAS signals on Chr6 and Chr7 were

significantly associated with sugar yield per hectare, which is an

important target in sugar beet breeding. For example, three genes

were located in the strong association peaks, including BvPGD

(IMABv01g018581), BvE3.2.1.6 (IMABv01g018526), and

BvSLC35F1-2 (IMABv01g015264), which participate in the

carbohydrate metabolism. The geneBvYGK1 (IMABv01g018527)

is associated with purine metabolism, and there was a strong

GWAS signal on Chr7 for BvACP7 (IMABv01g015268), which is

associated with purple-acid phosphates (Figure 6B; Supplementary

Figure 5B; Supplementary Table11). In addition, genes were also

identified that were associated with root yield per hectare, including

BvPGD (IMABv05g004241), BvSTP (IMABv04g007036), BvHPGT

(IMABv05g004244), and glucose-6-phosphate 1-epimerase

(IMABv05g004245), which were associated with the pentose

phosphate pathway and galactose and monosaccharide transport.

Serine/threonine protein kinase (STPK), a type of eukaryotic cell-

like protein kinase, is involved in the transport of glucose and

glutamine (Jia et al., 1997). Genes BvULK4 (IMABv03g010205),

BvTMK1 (IMABv09g022186), and BvPTO (IMABv03g013119)

code serine/threonine kinases and were also associated with root

yield per hectare (Figure 6C; Supplementary Figure 5C;

Supplementary Table 12).

Root rot, damping off, and rhizomaniaare emerging serious

threats to sugar beet production. In the GWAS, several genes

associated with disease defense were identified, including

BvTSSK6 (IMABv02g031103), BvCLCN7 (IMABv09g022351),

BvPRPS (IMABv01g024513), BvEXO1 (IMABv08g027895),

BvFAR1 (IMABv04g006805), BvSERK1 (IMABv09g023194),

BvLRR (IMABv03g010906), BvPTI1 (IMABv03g010905),

WRKY1 (IMABv09g020695), and BvDELLA (IMABv09g02

0694) (Figures 6D–F; Supplementary Figures 5D–F;

Supplementary Tables 13–15).

In the GWAS analysis on pollen scale types of different beet

varieties, there were some strong signals on Chr2, Chr3, and Chr4.

Genes were identified that were related to pollen number, including

BvHSFF (IMABv03g011676), BvQUA3 (IMABv03g011680),

BvARR-B (IMABv03g011683), BvBRI1 (IMABv02g031269),
B
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FIGURE 3

Genomic alignment among three genome assemblies of sugar
beet lines IMA1, EL10, and RefBeet. (A) Schematic representation
of synteny among IMA1, EL10, and RefBeet genomes. Gray lines
connect matching gene pairs. (B) Scatter plot of syntenic blocks
of conserved genes between Beta vulgaris IMA1 and RefBeet
genomes. (C) Scatter plot of syntenic blocks of conserved genes
between B. vulgaris IMA1 and EL10 genomes. Chromosome
order in the new assembly was determined by length (from
largest to smallest). Rightward and downward are 5′ to 3′ on
assembly plus strands.
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BvNXN (IMABv02g031270), BvERAL1(IMABv02g031271),

BvFRK1(IMABv04g005357), BvDELLA(IMABv04g005358), and

BvANKRD44 (IMABv04g005362). The gene BvQUA3, a putative

homo-galacturonan methyl-transferase, is involved in regulating

cell wall biosynthesis inArabidopsis suspension-cultured cells (Miao

et al., 2011). The gene BvARR-B is a member of the two-component

response regulator ARR-B family, which is a partially redundant

negative regulator of cytokinin signaling (To et al., 2004; Mason

et al., 2005). The gene BvBRI1, protein brassinosteroid insensitive 1,

is another gene associated with plant hormone signal transduction,

which can transfer phosphorus-containing groups (Zipfel, 2008).

The gene BvFRK1, a target of AtWRKY6 regulation during plant

senescence, is a senescence-induced receptor-like serine/threonine-

protein kinase (Robatzek and Somssich, 2002) (Figure 6G;

Supplementary Figure 5G; Supplementary Table 16). The results

provide valuable information on the characteristic genes associated

with B. vulgaris pollen fertility, which can be used in

molecular breeding.
Gene ontology and KyotoEncyclopedia
of genes and genomes pathway analysis
of differential expressed genes

Transcriptomes of two pairs of sugarbeet cytoplasmic male

sterility (CMS) lines were compared (MS137 vs. OT152 and
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MS301 vs. OT302). MS137 and MS301 are sugar beet sterile

lines, and OT152 and OT302 are sugar beet maintainer lines.

There were 2,032 and 2,090 significant DEGs identified in MS137

vs. OT152 and MS301 vs. OT302 comparisons, respectively

(Supplementary Figure 6; Supplementary Tables 17, 18). Six

hundred and twenty-one DEGs were identified in both MS137

vs. OT152 and MS301 vs. OT302 comparisons (Supplementary

Tables 19, 20). In the KEGG analysis, the 621 shared genes were

enriched in plant–pathogen interaction [two up-regulated genes,

including FRK1 (IMABv09g022061) and RPS2 (IMABv03

g008950)], glycolysis/gluconeogenesis [two down-regulated

genes , including pdhC (newGene_5384) and gapN

(IMABv04g008381)], photosynthesis [one down-regulated gene,

petF (IMABv02g032492)), andMAPK signaling pathway (one up-

regulated gene, FRK1 (IMABv09g022061)]. “Binding”

(GO:0005488, four up- and one down-regulated genes) and

“catalytic activity” (GO:0003824, five up- and two down-

regulated genes) were the two most enriched GO terms in the

molecular function ontology. “Cell” (GO:0005623, two up- and

one down-regulated genes) and “membrane part” (GO:0044425,

three up- and two down-regulated genes) were the two most

enriched GO termsin the cellular component. In addition, there

were 997 up-regulated and 1,035 down-regulated DEGs in MS137

vs. OT152 (Supplementary Table 17) compared with 997 up-

regulated and 1,093 DEGs in MS301 vs. OT302 (Supplementary

Table 18). Among those DEGs, 334 were up-regulated and 285
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FIGURE 4

(A) Phylogenetic tree of gene families number unveiling expansion (green) and contraction (red) among 26 species. Pie diagrams represent the
ratio of expanded (green), contracted (red), and conserved (blue) genes among whole gene families. The estimated divergence time (million
years ago) is shown in black next to the phylogenetic tree. MRCA: most recent common ancestor. (B) Ks distributions for duplicated gene pairs
in Beta vulgaris IMA1, RefBeet, and Arabidopsis thaliana. (C) UpSet plot of gene families intersection in B. vulgaris IMA1, RefBeet, A. thaliana,
Brassica napus, Chenopodiumquinoa, Cannabis sativa, Oryza sativa, and Spinacia oleracea. Gene family numbers (clusters) are marked for each
species and species intersection.
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FIGURE 5

Genes in the SWEET and SUT families were clustered by neighbor-joining method. (A) Evolutionary tree of SWEET genes in Arabidopsis thaliana,
Chenopodium quinoa, Spinacia oleracea, and Beta vulgaris IMA1, EL10, and RefBeet. (B) Evolutionary tree of SUT genes in A. thaliana, C. quinoa,
S.oleracea, and B. vulgaris IMA1, EL10, and RefBeet.
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were down-regulated between MS137 vs. OT152 and MS301 vs.

OT302 (Supplementary Figure 7).

Based on GO and KEGG analyses of differential expression,

six genes with significant differential expression were selected for

a real-time fluorescence quantitative PCR test for verification

(Supplementary Figure 8; Supplementary Table 21). The SGNH

hydrolase gene (IMABv04g006046), GDSL esterase gene

(IMABv05g001851), galacturonase gene (IMABv04g007649),

and pectinlyase gene (IMABv07g016298) were up-regulated in

ma in t a ine r s . Gene s fo r UDP-g lucosy l t r an s f e r a s e

(IMABv06g016651) and cytochrome P450 (IMABv09g022885)

were up-regulated in sterile lines. The results showed that

expression profiles of the genes were consistent with

transcriptome results.
Discussion

The newly assembled genome was compared with the two

previously released chromosome-level assemblies of B. vulgaris:

line RefBeet (Dohm et al., 2014) and EL10 (Funk et al., 2018)

(accession numbers: GCA_000511025.2 and GCA_002917755.1,

respectively). The covered genome size of ~786 Mb was very

close to the estimated sugar beet genome of 714 to 758 Mb

(Arumuganathan and Earle, 1991) and was much larger than

that of previous reports (RefBeet about ~540 Mb and EL10 about

~566 Mb). Compared with EL10, the best previously assembled

genome, the new genome contained fewer scaffolds (257) and

had a longer scaffold N50 (93.06Mb), indicating a significant

improvement in sequence continuity.

When sugar beet IMA1 assembly and RefBeet genome were

compared, the synteny analysis revealed that part of segments in

Chr6 of IMA1 had inverted compared with the counterpart in

Chr9 of RefBeet. Inherited variation between the two sugar beet

cultivars and the much more accurate and complete assembly of

IMA1 genome might be major reasons for differences. Overall,

the quality of the new genome assembly of B. vulgaris IMA1was

higher than that of the RefBeet genome, and therefore, it will be

valuable in genetic analyses of sugar beet and related species.

The SUS and SPS gene families are well documented in plants,

and gene family members vary from species to species (Castleden

et al., 2004). In the metabolism of uridine diphosphate glucose, it

is catalyzed and hydrolyzed to sucrose, and SPS is the key rate-

limiting enzyme in the process (Lunn andMacrae, 2003). Changes

in sugar content are closely related to expression levels of SUS and

SPS genes (Lv et al., 2018). For example, increases inactivities of

SUS and SPS enzymes are correlated with increases in sucrose

content in the high sucrose-accumulating Japanese pear ‘Chojuro’.

By contrast, activity of the enzymes does not increase in the low

sucrose-accumulating pear cultivar ‘Yali’ during fruit ripening

(Moriguchi et al., 1992). In addition, in the early stages of fruit

development, Asian pear cultivars ‘Niitaka’ and ‘Whangkeumbae’
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have relatively low sucrose content with relatively low activities of

SUS and SPS enzymes, but when sucrose content reaches the peak

value, SUS and SPS enzymes have the highest activities (Choi

et al., 2009).

Cluster analysis of the SUS gene family in six dicotyledons

was performed, and 31 genes were categorized into three

different clusters. Six and four SUS genes were identified in

sugar beet RefBeet and sugar beet IMA1, respectively. Similarly,

SPS gene families were compared in nine dicotyledons, and 28

genes were categorized into three different clusters. Three and

two SPS genes were identified in IMA1 and EL10, respectively,

which were categorized to clusters 2 and 3, respectively. In

addition, the number of SPS genes was species-related, and sugar

metabolism regulation was related to the activity of SPS enzymes

but was not affected by the quantity of genes.

In the distribution and transport of sucrose from source to

sink in plants, sucrose transporters (SUTs) are important genes

(Chao et al., 2020). However, the molecular mechanisms of SUT

function in the sugar metabolism pathway are not fully

understood. Three different SUT clusters have been identified

in the analysis of SUT gene family clusters in eight dicot species

(Chen et al., 2010).

The SUS, SPS, and SUT gene families are involved in sucrose

synthesis, transport, and accumulation. Although there are fewer

SUS, SPS, and SUT genes, sugar beet accumulates much more

sugar in storage tissues than that of other dicots. Therefore, it

was hypothesized that compared with other species, members of

those gene families in sugar beet have more important roles in

sugar catalysis and sugar transport efficiency or some strong

transcription regulatory factors regulate those functional genes.

As a result, sugarbeet has strong capability to synthesize,

transport, and accumulate sugar.

The SWEET gene family in plants is categorized into four

different clusters. SWEETs in cluster1 are mainly responsible for

glucose transport. For example, AtSWEET1 of Arabidopsis can

mediate the absorption and transport of glucose (Chong et al.,

2014; Tao et al., 2015). SWEETs in cluster 2 are mainly

responsible for monosaccharide transport (Chong et al., 2014).

Most of the SWEETs in cluster3 are associated with sucrose

transportation (Kryvoruchko et al., 2016). In Arabidopsis,

AtSWEET11 and AtSWEET12 are responsible for transporting

intracellular sucrose to the apoplast and then moving it into the

phloem for long-distance transport (Chen et al., 2012). In cluster

4, AtSWEET16 is associated with transport of glucose, fructose,

and sucrose (Klemens et al., 2013). In IMA1, 11 SWEET family

genes were identified, including four in cluster1, one in cluster2,

four in cluster3, and two in cluster4. It was hypothesized that the

SWEET family genes in IMA1 are involved in transporting

sucrose, fructose, and glucose, as well as long-distance

transport from mesophyll cells into the phloem.

In summary, the data collected from gene sequencing of IMA1

were used to identify the members of SUS, SPS, SUT, and SWEET
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gene families that are generally considered to be crucial genes

involved in plant sugar metabolism. Genes related to disease

resistance were also identified. Candidate genes were nominated

with the potential to regulate sugar metabolism and improve sugar

productivity. Genes were also nominated that were related to

disease-resistance, which could be targets for genetic improvement.

In this study, GWAS was performed for a set of sugar beet

agronomic traits. Ten disease-resistance genes significantly

associated with root rot, damping off, and rhizomania were

identified. Five genes were identified that had significant

relations with sugar yield per hectare of sugar beet. Among

those genes, BvSLC35F1-2 is involved in carbohydrate

metabolism, whereas gene BvACP7 codes a purple-acid

phosphatase in a family of binuclear metallohydrolases

identified in plants, animals, and fungi (Flanagan et al., 2006).

In addition, nine highly expressed genes associated with sugar

beet pollen fertility were identified. Those genes were involved in
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regulating cell wall biosynthesis, plant hormone signal

transduction, and plant senescence. Among six significant

DEGs, SGNH hydrolase, GDSL esterase, and pectinlyase were

associated with another development, pollen wall development,

and pollen tube growth (Guan et al., 2008; Wang et al., 2018; An

et al., 2019). Those genes were down-regulated in sugar beet

sterile lines, which might be related to sugar beet pollen abortion

and male sterility. Plant auxin metabolism involves cytochrome

P450 (Feldmann, 2001), and excessive auxin content can lead to

stunting and sterility of plants. Cytochrome P450 was

significantly up-regulated in sugar beet sterile lines, which

might be related to sugar beet fertility. Yuan long Wu (Wu

et al., 2022) recently identified a galacturan 1, 4-alpha-

galacturonidase [EC:3.2.1.67] gene that controls the formation

of cotton pollen outer cell wall. They revealed the important role

of galacturan 1, 4-alpha-galacturonidaseis to de-esterify

homogalacturonan in the formation of the outer wall of cotton
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FIGURE 6

Manhattan plots for seven agronomic traits of 114 sugar beet lines. (A) Sugar content, (B) sugar yield per hectare, (C) root yield per hectare, (D)
root rot of sugar beet, (E) damping off of sugar beet, (F) rhizomania of sugar beet, and (G) pollen fertility of sugar beet.
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pollen. In this study, galacturan1, 4-alpha-galacturonidase gene

expression was up-regulated in MS301 in the MS301 vs. OT302

DEG analysis (Supplementary Table 22). There were multiple

copies of the gene, and expression of all copies was up-regulated

(IMABv01g025187, IMABv01g025166, IMABv01g025186,

IMABv01g025168). However, in the analysis of MS137 vs.

OT152 DEGs, there was no difference in expression of a

galacturan1, 4-alpha-galacturonidase gene, suggesting that

the mechanism of male sterility might be diverse. The results

suggested that secondary metabolism regulates the expression of

male sterility genes. The results also provide a valuable resource

to study male sterility related pathways in sugar beet.
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