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Alzheimer’s disease (AD) is a common age-related neurodegenerative disease
characterized by progressive cognitive dysfunction and behavioral impairment. The
typical pathological characteristics of AD are extracellular senile plaques composed of
amyloid ß (Aβ) protein, intracellular neurofibrillary tangles formed by the
hyperphosphorylation of the microtubule-associated protein tau, and neuron loss. In
the past hundred years, although human beings have invested a lot of manpower,
material and financial resources, there is no widely recognized drug for the effective
prevention and clinical cure of AD in the world so far. Therefore, evaluating and exploring
new drug targets for AD treatment is an important topic. At present, researchers have not
stopped exploring the pathogenesis of AD, and the views on the pathogenic factors of AD
are constantly changing. Multiple evidence have confirmed that chronic neuroinflammation
plays a crucial role in the pathogenesis of AD. In the field of neuroinflammation, the
nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3
(NLRP3) inflammasome is a key molecular link in the AD neuroinflammatory pathway.
Under the stimulation of Aβ oligomers and tau aggregates, it can lead to the assembly and
activation of NLRP3 inflammasome in microglia and astrocytes in the brain, thereby
causing caspase-1 activation and the secretion of IL-1β and IL-18, which ultimately
triggers the pathophysiological changes and cognitive decline of AD. In this review, we
summarize current literatures on the activation of NLRP3 inflammasome and activation-
related regulation mechanisms, and discuss its possible roles in the pathogenesis of AD.
Moreover, focusing on the NLRP3 inflammasome and combining with the upstream and
downstream signaling pathway-related molecules of NLRP3 inflammasome as targets, we
review the pharmacologically related targets and various methods to alleviate
neuroinflammation by regulating the activation of NLRP3 inflammasome, which
provides new ideas for the treatment of AD.

Keywords: Alzheimer’s disease, inflammation, neuroinflammation, NLRP3 inflammasome, mitochondrial
dysfunction
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1 INTRODUCTION

Alzheimer’s disease (AD) is a common neurodegenerative disease
that occurs in the elderly, and is also called senile dementia. The
main clinical manifestations of AD patients are the progressive
decline of self-care ability, cognitive impairment, and
neuropsychiatric abnormalities, which seriously affects the
quality of life of AD patients. The typical pathological features
of AD are senile plaques related to extracellular amyloid ß (Aβ)
deposition and neurofibrillary tangles formed by
hyperphosphorylation of intracellular microtubule-associated
tau (d’Errico and Meyer-Luehmann 2020). With the aging of
the global society becoming more and more prominent, the
increasing number of AD patients has become a major public
health problem, which has brought a heavy burden to individuals,
the society and families.

AD is first described by the German physician Alois
Alzheimer in 1906 and has a history of more than one
hundred years (Sanabria-Castro et al., 2017). The
pathogenesis of AD is complex and diverse, which mainly
involves genetic and environmental factors (Dunn et al., 2019),
Aβ toxicity (Benilova et al., 2012), tau hyperphosphorylation
(Wang et al., 2014), central nervous system (CNS)
inflammation (Kinney et al., 2018), synaptic dysfunction (Li
et al., 2018a), cholinergic deficiency (Frost et al., 2017),
oxidative stress (Islam et al., 2019), mitochondrial
dysfunction (Cardoso et al., 2004), autophagy and
mitophagy abnormalities (Reddy and Oliver 2019), lipid
metabolism disorder (Zhu et al., 2019), imbalance of
calcium homeostasis (Popugaeva et al., 2015), endoplasmic
reticulum (ER) stress (Huang et al., 2015), etc. Although the
amyloid cascade hypothesis and the Tau protein theory are
currently accepted by most investigators, the continuous and
excessive neuroinflammatory response also plays a central role
in the pathogenesis of AD. The nucleotide-binding
oligomerization domain-like receptor pyrin domain-
containing 3 (NLRP3) inflammasome is crucial in the
neuroinflammatory pathway and has recently been
highlighted as a potential target for AD treatment.

Inflammasome is a type of cytosolic multiprotein complex
and plays a crucial role in innate immunity. The concept of
inflammasome is first proposed by Tschopp and his colleagues
in 2002. It is mainly composed of three parts: intracytoplasmic
pattern recognition receptors (PRRs), the adaptor protein
domain and the effector domain cysteine protease pro-
caspase-1 (Martinon et al., 2002). In the CNS, the
inflammasome mainly presents in the cytoplasm of immune
cells, neuronal cells, microglia and astrocytes (Minkiewicz
et al., 2013; von et al., 2018; Hanslik and Ulland 2020), and
can recognize pathogen-associated molecular patterns
(PAMPs) or host-derived danger-associated molecular
patterns (DAMPs). Among the many reported
inflammasomes, the NLRP3 inflammasome is currently the
most studied one. Just like the structure of the above-
mentioned inflammasomes, the NLRP3 inflammasome
includes the sensor protein NLRP3, the adaptor protein
apoptosis-associated speck-like protein containing a CARD

(caspase activation and recruitment domain) (ASC), and the
effector protein (pro-caspase-1, a cysteine protease) (Schroder
and Tschopp 2010). These three proteins can interact closely to
regulate the function of NLRP3 inflammasome. Once NLRP3
recognizes the foreign pathogen molecules or internal danger
signals, it will be activated and undergos self-oligomerization.
Then NLRP3 binds to the pyrin domain (PYD) domain of the
adaptor protein ASC, and recruits the protease pro-caspase-1
to form the NLRP3 inflammasome, which cleaves pro-caspase-
1 into activated caspase-1 through autocatalysis. The activated
caspase-1, as an inflammasome effector protein, is able to
cleave the inactive pro-inflammatory cytokines pro-IL-1β
and pro-IL-18 into mature forms of IL-1β and IL-18,
respectively. Ultimately, IL-1β and IL-18 are released
outside of the cell to play a variety of non-specific
inflammatory roles (Martinon et al., 2002; Kelley et al.,
2019). In addition, the activated caspase-1 can also mediate
a type of inflammatory-related programmed cell death, which
is called pyroptosis. A large amount of inflammatory
substances released after cell pyroptosis will induce a strong
inflammatory response (Fink and Cookson 2006; Shi et al.,
2015).

More and more experimental evidence show that the
activation of NLRP3 inflammasome is closely related to
neurodegenerative diseases (Duan et al., 2020; Feng et al.,
2021). Under the stimulation of Aβ plaques and tau
aggregates, microglia and astrocytes mediate chronic
neuroinflammatory response, neuronal death and pyroptosis
through intracellular NLRP3 inflammasome, thereby driving
the occurrence and progression of AD (Han et al., 2020b; Van
Zeller et al., 2021). More importantly, pharmacological
inhibition of NLRP3 inflammasome exhibits neuroprotective
effects. The use of inhibitory treatment against NLRP3
inflammasome can reduce Aβ deposition and alleviate the
cognitive impairment of AD mice (Yan et al., 2020b). In
this review, we mainly summarize the mechanisms of
NLRP3 inflammasome activation, and analyze its possible
roles in the progression of AD. In addition, we also
introduce the upstream and downstream signaling pathways
of the NLRP3 inflammasome, as well as the latest
developments regarding its potential targets and therapeutic
strategies for AD treatment.

2 THE ACTIVATION AND REGULATION OF
NLRP3 INFLAMMASOME

A certain number of exogenous or endogenous stimuli that
induce the activation of NLRP3 inflammasome have been
confirmed so far. The exogenous stimulating factors include
lipopolysaccharide (LPS) (Ma et al., 2021), viral RNA (Allen
et al., 2009), palmitate (Byeon et al., 2017), silica dioxide (Ko
et al., 2020) and so on, while the damage-associated
endogenous activators consist of ROS (Li et al., 2020a),
cathepsin B (Bai et al., 2018), ATP (Amores-Iniesta et al.,
2017), Aβ oligomers (Van Zeller et al., 2021), α-synuclein (α-
syn) (Wang et al., 2020), etc. Although the process of NLRP3
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inflammasome activation induced by the above factors has
been extensively studied, the exact molecular mechanisms still
need to be further explored. Current researches have shown
that there are two main types of signaling pathways that are
responsible for the activation of NLRP3 inflammasome. One is
the canonical signaling pathway involving pro-caspase-1
recruitment and caspase-1 activation, and the other is the
non-canonical signaling pathway, which is mainly related to
the activation of mouse caspase-11 or human caspase-4 and
caspase-5 induced by LPS.

2.1 Canonical NLRP3 Activation
As far as we know, the canonical NLRP3 inflammasome
activation usually requires two steps: priming and activation
(Yang et al., 2019). Generally speaking, in the resting state of
cells, the basal levels of NLRP3 and IL-1β are considered to be
insufficient to activate the inflammasome. Therefore, a
priming step initiates the transcription of these targets.
Priming signal (signal 1): NLRP3 is stimulated by danger
signals (such as TLR4 agonists or endogenous molecules) to
induce the expression of NF-κB, which up-regulates the
transcription of NLRP3, IL-1β and IL-18 genes, resulting in
the increased protein expression of NLRP3, pro-IL-1β and
pro-IL-18 (Bauernfeind et al., 2009; Lamkanfi and Dixit 2014).
Activation signal (signal 2): The second activation step is
usually triggered by PAMPs or DAMPs (such as viral RNA,
aluminum salt, ATP, Aβ, K+ efflux, etc.), which allows the
NLRP3 inflammasome to complete the assembly step. Then,
the cysteine protease pro-caspase-1 is recruited through the
adaptor protein ASC to form a large filamentous protein
complex called ASC speck. Clustered pro-caspase-1
autocatalyzes and autocleaves to generate activated caspase-
1, which cleaves the pro-IL-1β and pro-IL-18 to generate the
activated forms IL-1β and IL-18. At the same time, activated
caspase-1 can initiate pyroptosis through the lysis of
gasdermin D (GSDMD) (Swanson et al., 2019).

Recently, many studies have provided convincing evidence
that the priming step of NLRP3 inflammasome activation is
not limited to the increase of transcription level. There is
another way to affect the activity of inflammasome through
ubiquitination and post-translational modification of NLRP3.
A recent study described that the recruitment of NEK7 to
NLRP3 is controlled by the phosphorylation status of NLRP3
S803 located within the interaction surface, in which NLRP3
S803 is phosphorylated upon priming and later
dephosphorylated upon activation. Phosphomimetic
substitutions of NLRP3 S803 abolish NEK7 recruitment and
inflammasome activity in macrophages in vitro and in vivo
(Niu et al., 2021). Furthermore, Tang et al. found that E3
ubiquitin ligase TRIM65 can bind to the nucleotide-binding
and oligomerization domain (NACHT) domain of NLRP3,
promote lys48-and lys63-linked NLRP3 ubiquitination and
inhibit NEK7-NLRP3 interaction, thereby restraining
NLRP3 inflammasome assembly and caspase- 1 activation
(Tang et al., 2021). In contrast, deubiquitination of NLRP3
leads to its activation. Studies have reported that the E3
ubiquitin ligase TRIM31 can directly bind to NLRP3 to

promote K48-linked polyubiquitination and proteasomal
degradation of NLRP3, thereby inhibiting the activation of
NLRP3 (Song et al., 2016).

2.2 Non-Canonical NLRP3 Activation
In the non-canonical activation pathway, the NLRP3
inflammasome mainly relies on caspase-11 in mice (the
homologues caspase-4 and caspase-5 in humans). LPS
generated by Gram-negative bacteria enters the cytosol and
can bind to caspase-11 in mice, thereby triggering its
oligomerization and activation. The activated caspase-11 can
induce pyroptosis and produce pro-inflammatory cytokines
(Downs et al., 2020).

2.3 The Regulation of NLRP3 Activation
As summarized in previously published reviews, the main
mechanisms involved in the activation of NLRP3
inflammasome include K+ efflux, cathepsin B released after
lysosomal disruption, the change of extracellular Ca2+

homeostasis, and the production of reactive oxygen species
(ROS) (Zhang et al., 2020), etc. We will not repeat any
elaboration of the above activation mechanisms. However, in
recent years, several direct or indirect ways have been reported to
participate in the NLRP3 inflammasome activation. The latest
studies have shown that mitochondrion is the central regulator of
NLRP3 function. Mitochondrial reactive oxygen species (mtROS)
production, mitochondrial DNA (mtDNA) release,
mitochondrial-mediated apoptosis, mitochondrial calcium
overload, and mitochondrial involvement in the localization of
NLRP3 are all related to the regulation of NLRP3 activity (Zhou
et al., 2011; Lawlor and Vince 2014; Rimessi et al., 2015).
Therefore, we primarily discuss the roles of mitochondrial
dysfunction, mitochondrial-associated endoplasmic reticulum
membrane (MAM), autophagy and mitophagy in the
activation and regulation of NLRP3 inflammasome in this review.

2.3.1 Mitochondrial Dysfunction and NLRP3
Inflammasome Activation
Mitochondrion is one of the organelles with a double-layer
membrane structure in cells, and it is the metabolic center and
energy factory of cells. It provides the substrate and energy
required for the biosynthesis of the cell, and plays a decisive
role in the fate of cells. Mitochondria produce mtROS during
aerobic metabolism via respiratory chain. Various intracellular
and extracellular damage factors, including ROS, misfolded
protein aggregation (such as Aβ, Tau, α-syn, etc.), toxic drugs,
etc., can damage the normal function of mitochondria (Cha
et al., 2012; Szabo et al., 2020). When the function of
mitochondria is impaired, the level of mtROS increases
significantly. mtROS accumulates in the cytoplasm and
interacts with the components of the NLRP3
inflammasome, thereby participating in the activation of the
inflammasome. In an earlier study, Nakahira et al. found that
mtROS produced by impaired mitochondria is necessary for
macrophages to activate NLRP3 inflammasome in response to
LPS and ATP (Nakahira et al., 2011). Moreover, there is
accumulating evidence to demonstrate that the use of
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chemical inhibitors to disrupt mitochondrial function can
trigger the NLRP3 inflammasome activation. Mitochondrial
dysfunction inducers such as rotenone (complex I inhibitor)
can lead to increased levels of ROS, activation of NLRP3
inflammasome, and the expression of IL-1β in microglia
(Sarkar et al., 2017). Furthermore, inhibitors or scavengers
of mtROS can effectively restrain the activation of NLRP3
inflammasome. For example, the mtROS scavenger Mito-
TEMPO inhibits the activation of NLRP3 inflammasome
induced by injury factors and reduces the secretion of IL-
1β (Ding et al., 2017). Consistent with these results, impaired
clearance of damaged mitochondria will enhance the
activation of NLRP3 inflammasome. However, there are
also some inconsistent opinions about the relationship
between mtROS and NLRP3 inflammasome activation.
Some previous studies indicated that the activation of
NLRP3 inflammasome may not depend on mtROS, but
through other components of mitochondria (Iyer et al.,
2013). Bauernfeind and his colleagues also showed that
ROS inhibitors only blocked the priming step of NLRP3
inflammasome activation, while its direct activation step
was not affected, which implied that the role of ROS was
limited to the priming step of NLRP3 activation (Bauernfeind
et al., 2011). Despite the existence of the above phenomenon,
more and more evidence indicate that mtROS is located at
upstream of NLRP3 inflammasome activation, and mtROS
directly or indirectly participates in the process of NLRP3
inflammasome activation. Many drugs or chemical agents can
alleviate the inflammatory effect of NLRP3 by reducing the
level of mtROS.

Mitochondrial dysfunction causes increased mitochondrial
breakage, which releases mtDNA, ATP, heat shock protein 60
(HSP60), mitochondrial transcription factor A (TFAM),
cardiolipin, cytochrome c, etc. These substances can be
considered as DAMPs to induce the activation of NLRP3
inflammasome (Dela and Kang 2018). Among them,
mtDNA is the most extensively studied mitochondrial-
derived activator. In an earlier study, Nakahira et al.
showed that the release of mtDNA is crucial for the
activation of NLRP3, which depends on the generation of
ROS (Nakahira et al., 2011). Shimada et al. further used the
293 cells transfected with mtDNA to prove that mtDNA can
directly bind to NLRP3 and mediate the activation of NLRP3
inflammasome. Conversely, macrophages lacking mtDNA
severely reduce IL-1β production (Shimada et al., 2012).
The increased levels of oxidized mtDNA (ox-mtDNA) in
the cytoplasm can promote the binding with NLRP3
inflammasome, which leads to the co-localization of NLRP3
and ASC in the perinuclear space in endoplasmic reticulum-
mitochondrial clusters (Zhong et al., 2018). Given that mtROS
and ox-mtDNA are significantly related to the activation of
NLRP3 inflammasome, a wide range of mitochondrial
antioxidant drugs can attenuate the inflammasome
activation. Epigallocatechin-3-gallate (EGCG) is a
polyphenol with strong antioxidant properties. Luo et al.
evaluated the protective effect of EGCG on acute
pancreatitis (AP)-associated lung injury and found that

EGCG could protect AP-associated lung injury by
removing mtROS and its oxidation product ox-mtDNA. In
addition, the antagonism of NLRP3 signaling by EGCG was
affected in the presence of the mtROS stimulant rotenone or
scavenger Mito-TEMPO (Luo et al., 2021). Idebenone is a
highly acclaimed mitochondrial protective agent. In the
oxygen glucose deprivation/reperfusion (OGD/R) injury
model, Peng et al. found that mitochondrial dysfunction
led to mtDNA translocation and mtROS production, as
well as cytosolic accumulation of oxidized mtDNA, which
promoted its binding to NLRP3. However, idebenone
treatment effectively blocked this process, and alleviated
NLRP3-mediated inflammatory damage after OGD/R (Peng
et al., 2020). In short, increasing evidence show that mtDNA
can be closely related to the expression of IL-1β through the
NLRP3 inflammasome activation.

2.3.2 The Regulation of NLRP3 Inflammasome
Activation by Mitochondrial-Associated Endoplasmic
Reticulum Membrane
The morphological structure of mitochondria and ER in
eukaryotic cells is highly dynamic, which provides
opportunities for coupling between mitochondria and ER. It
has been reported that the mitochondrial outer membrane and
the ER membrane can form an interaction coupling site
membrane structure with a stable interval, which is known
as MAM (Hayashi et al., 2009). In some places, MAM is also
called mitochondria-ER contact sites (MERCs). MAM plays an
important role in material transfer and signal transduction. At
present, MAM has become a well-known important way for
the regulation of cholesterol, lipids, calcium metabolism,
oxidative stress, inflammation and other functions (Yu
et al., 2021). The relationship between MAM and
inflammation is discovered as early as 2011. In
unstimulated cells, NLRP3 is mainly located on the ER
membrane and in the cytoplasm. However, upon activation,
NLRP3 and ASC will redistribute and translocate to the MAM
in the perinuclear region, which makes it easier to sense
mitochondrial damage signals such as mtROS, cardiolipin,
mtDNA, etc (Zhou et al., 2011). MAM can be regarded as a
platform for inflammasome assembly and activation. During
the formation of inflammasome, acetylated α-tubulin can
migrate mitochondria to the perinuclear region and
promote the assembly of ASC on mitochondria with NLRP3
on the ER (Misawa et al., 2013). Recent studies have shown
that MAM participates in the regulation of DAMPs-mediated
effects, antiviral responses, bacterial pathogen-mediated
infections, and other inflammatory processes through direct
or indirect action (Missiroli et al., 2018). Martinvalet also has
introduced the important role of mitochondria and the ER
contact sites in the development of immune response
(Martinvalet 2018). The NLRP3 on the ER and the ASC on
the mitochondrial combine with each other through CARD to
form the NLRP3 inflammasome, and those mitochondrial
outer membrane proteins involved in ER-mitochondrial
binding, such as mitogen, can regulate the structural
stability of MAM, thereby controlling the activation of
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NLRP3 inflammasome. Mitochondrial antiviral signal protein
(MAVS) is an adaptor molecule located on the outer
mitochondrial membrane, which participates in the
secretion of type I interferon. As an important component
of MAM, it plays a pivotal role in regulating the host’s natural
immunity (Horner et al., 2015). Studies found that MAVS can
recruit NLRP3 to mitochondria in response to viral infections.
MAVS is linked to the N-terminal amino acid sequence of
NLRP3, which is the basis of interaction between MAVS and
NLRP3 (Subramanian et al., 2013). In addition, a study carried
out by Guan et al. proved that MAVS is capable of stabilizing
ASC and inducing the formation of cytosolic speck via
recruiting the E3 ligase TRAF3 to ASC. Ubiquitination of
ASC at Lys174 by TRAF3 is essential for speck formation and
inflammasome activation. The deficiency of MAVS or TRAF3
will impair ASC ubiquitination and the formation of
cytoplasmic speck, thereby reducing the NLRP3
inflammasome activation (Guan et al., 2015). Mitofusin 2
(MFN2) is a mitochondrial outer membrane GTPase, which
plays an important role in the mitochondrial fusion process.
Furthermore, MFN2 is also present on the ER membrane.
MFN2 is enriched in MAM and enhances the structural
stability of MAM. MFN2 on the ER bridges ER and
mitochondria by engaging in homotypic and heterotypic
complexes with mitofusin 1 or 2 on the surface of
mitochondria (de Brito and Scorrano 2008). The stable
MAM structure may provide a basis for the assembly of
NLRP3 inflammasome. An earlier study showed that after
infection with influenza virus or encephalomyocarditis virus
(EMCV), MFN2 could interact with NLRP3 to promote the
recruitment of NLRP3 to mitochondria, and subsequently
induce IL-1β secretion. However, the secretion of IL-1β
was significantly restored in MFN2 gene knockout cells
(Ichinohe et al., 2013). Another study described that
infection with mycobacterium tuberculosis up-regulated the
expression of MFN2 and promoted the assembly and
activation of the NLRP3 inflammasome (Xu et al., 2020).
These researches imply that MFN2 may contribute to the
stability of MAM structure, and promote the activation of
NLRP3 inflammasome. However, the specific mechanism still
needs further studies.

It is generally acknowledged that Ca2+ play an important role
in NLRP3 inflammasome activation (Horng 2014). ER is the
main Ca2+ reservoir in cells. The continuous transfer of Ca2+

from ER into the mitochondria will result in mitochondrial Ca2+

overload and dysfunction, which promotes the release of
cardiolipin and mtDNA (Murakami et al., 2012). MAM is
the main site that mediates the transportation of Ca2+ from
ER to mitochondria, which is related to the distribution of Ca2+

transport channel proteins in the MAM region. The IP3R-
GRP75-VDAC-MCU complex is a classic pathway that
mediates the transport of ER Ca2+ to the mitochondria
through the MAM region (Szabadkai et al., 2006). These
proteins are also the constituent molecules of MAM.
Inhibitors or gene knockouts against these molecules may
attenuate NLRP3 inflammasome activation. We believe that
the changes of MAM function will affect the activation of

NLRP3 inflammasome. Therefore, drugs or compounds that
cause changes in MAM function can regulate the NLRP3
inflammasome activation.

2.3.3 The Negative Regulation of NLRP3
Inflammasome via Autophagy and Mitophagy
Autophagy is a process of non-specific degradation of the cell’s
own components such as organelles and abnormal accumulation
proteins through the lysosomal system. Hence, it is essential for
maintaining cell homeostasis and survival (Mameli et al., 2021).
Autophagy has been confirmed to be closely related to the NLRP3
inflammasome activation, as the response of eukaryotic cells to
external stimuli. In an earlier study, Saitoh Tatsuya et al. reported
that the important autophagy gene Atg16L1 regulated endotoxin-
induced inflammasome activation. In LPS-stimulated
macrophages, the deficiency of Atg16L1 could lead to
activation of NLRP3 inflammasome and production of IL-1β
(Saitoh et al., 2008). Furthermore, Atg5 is also an important
autophagy-related gene. Atg5 acetylation can inhibit the
maturation of autophagosomes and induce the activation of
NLRP3 inflammasome. On the contrary, sirtuin 3 (SIRT3) can
form a complex with Atg5 to block the acetylation of Atg5, which
leads to impaired autophagy and accelerates the activation of
NLRP3 inflammasome (Liu et al., 2018). As far as we know, there
is mounting evidence show that autophagy is an important
regulator of inflammasome, which negatively regulate the
NLRP3 inflammasome activation. Autophagy can eliminate the
endogenous activator DAMPs. In AD, autophagy alleviates the
activation of NLRP3 inflammasome induced by Aβ oligomers via
removing abnormally deposited and misfolded proteins (Wen
et al., 2019). Mi-Hyang Cho et al. revealed that, in the microglia
model, Aβ interacts with MAP1LC3B-II through OPTN/
optineurin and is degraded by the autophagy process mediated
by the PRKAA1 pathway (Cho et al., 2014). Deficiency or
inhibition of autophagy can exacerbate the pathology of
NLRP3 inflammasome-mediated neurodegenerative diseases
(Qin et al., 2021). In contrast, autophagy inducers, such as
rapamycin, AICAR, and metformin, can activate autophagy in
microglia, which promotes the phagocytosis and degradation of
misfolded protein aggregates in cells, thereby effectively
inhibiting the excessive activation of NLRP3 inflammasome
(Qiu et al., 2020).

Mitophagy is a process that selectively removes damaged
mitochondria. Once mitochondrial dysfunction occurs,
mitophagy can promote the renewal of mitochondria, thereby
maintaining mitochondrial quality control. As mentioned above,
there is growing evidence that damagedmitochondria activate the
NLRP3 inflammasome through a variety of ways. Therefore,
mitophagy can be considered as an important way to regulate
the activation of NLRP3 inflammasome. Currently, multiple
literatures demonstrate that mitophagy also negatively
regulates the NLRP3 inflammasome activation. Mitophagy
eliminates damaged mitochondria, avoids the release of
endogenous molecules such as ATP, mtROS and mtDNA, thus
reduces the activation of NLRP3 inflammasome (Mishra et al.,
2021). Mitophagy inhibitors or gene knockouts can lead to
mitophagy disorder, cause the accumulation of mtROS and
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mtDNA in cells, and activate the NLRP3 inflammasome.
Researching the role of Parkin, a central player in mitophagy,
in host antiviral responses, Li et al. found that Parkin deficiency
augments innate antiviral inflammation and promotes viral
clearance by enhancing mtROS-mediated NLRP3
inflammasome activation (Li et al., 2019). On the contrary,
mitophagy inducers can enhance the ability to clear
dysfunctional mitochondria, thereby inhibiting NLRP3
inflammasome activation (Peng et al., 2021). Gao et al.
reported in the nonalcoholic fatty liver disease (NAFLD)
model that the expression levels of mitophagy markers PINK1
and Parkin was significantly diminished by deoxycholic acid
(DCA) and the ability of mitophagy was impaired. However,
after treatment with a specific mitophagy agonist carbonyl
cyanide 3-chlorophenylhydrazone (CCCP), the ability of
mitophagy was restored and the DCA-induced inflammasome
response was prevented (Gao et al., 2021b). In conclusion,
numerous current studies have shown that autophagy and
mitophagy may be a self-limiting way to protect cells from
excessive inflammation.

3 THEROLEOFNLRP3 INFLAMMASOME IN
ALZHEIMER’S DISEASE

Neuroinflammation is a double-edged sword. It is regarded as a
defensive mechanism during the acute infection period and plays
an anti-infection role. However, after its transfer to the chronic
inflammation phase, excessive release of cytotoxic factors will
cause inflammation activation. Increasing evidence from AD
patients, in vitro cell models and in vivo animal models
indicate that NLRP3 inflammasome plays an important role in
AD. Saresella et al. showed that the expression level of
NLRP3 inflammasome-related molecules was higher in severe
AD patients than moderate ones via gene expression analysis of
peripheral blood mononuclear cells (PBMCs) in AD patients. In
vitro stimulation of PBMCs with LPS or Aβ42 could activate
NLRP3 inflammasome. They believe that peripheral monocytes
are likely to migrate across the blood-brain barrier (BBB) into the
CNS and participate in the neuroinflammatory response of AD
(Saresella et al., 2016). Mahmoudiasl et al. further detected
increased expression levels of NLRP3, caspase-1, and
inflammasome activation products IL-1β and IL-18 in the
cerebral temporal cortex of AD patients (Ahmed et al., 2017).
Aβ fibrils have unique structural characteristics and can be
regarded as a kind of DAMPs, which are recognized by Toll-
like receptors (TLRs) or nucleotide-binding oligomerization
domain-like receptors (NLRs) and transmit pro-inflammatory
signals. Early studies reported that the senile plaques are
surrounded by activated microglia and astrocytes, and the glial
cells around the Aβ plaques express higher levels of IL-1β (Apelt
and Schliebs 2001). Subsequently, Halle et al. first described the
role of NLRP3 inflammasome in the AD model. They found that
Aβ activates the NLRP3 inflammasome in microglia, causing the
maturation and secretion of IL-1β and IL-18. The increased
amount of Aβ phagocytosed by microglia can cause lysosomal
damage in the cytosol and the release of cathepsin B, and the latter

can act as an endogenous danger signal to activate the NLRP3
inflammasome (Halle et al., 2008). Recent studies have shown
that NLRP3 inflammasome is not only activated by fibrous Aβ
aggregates, but also by lower molecular weight Aβ oligomers and
fibrils. This suggests that the innate immune response of CNS
triggered by Aβ activation may be before the onset of Aβ
deposition (Luciunaite et al., 2020). The researchers further
have explore the mechanisms by which Aβ activates the
NLRP3 inflammasome and have found that this may involve
two signals: the priming signal and the activation signa. When
studying the inflammatory response of primary microglia to Aβ
(1–42) protofibrils, Terrill-Usery et al. found that Aβ (1–42)
protofibrils significantly upregulates the expression of IL-1β,
TNFα mRNA and pro-IL-1β protein through the TLR/MyD88
pathway (Terrill-Usery et al., 2014). Similarly, the results of Liu
et al. showed that Aβ(1–42) activates and up-regulates the
expression of NLRP3 inflammasome-related molecules in BV-
2 microglia via the TLR4/NLRP3 pathway and increases the
secretion of IL-1β (Liu et al., 2020). These results indicate that
Aβ fibrils can provide the priming signal for NLRP3
inflammasome activation. Another study revealed that Aβ
induces the formation of NLRP3 inflammasome in a
cathepsin-dependent manner. Under resting conditions,
NLRP10 can bind to ASC and inhibit the assembly of NLRP3
inflammasome. However, after glial cells are treated by Aβ,
cathepsin can be activated to promote the degradation of
NLRP10, which makes it easier for NLRP3 and ASC to
combine with each other to form inflammasomes (Murphy
et al., 2014). This indicates that Aβ fibrils can also provide
activation signals for NLRP3 inflammasome in an indirect
way. In short, the above evidence mainly reflect that Aβ
activates the NLRP3 inflammasome, and then participates in
the pathogenesis of AD through IL-1β, IL-18 and other
inflammatory cytokines. Moreover, it has been proposed that
Aβ1-42 can also mediate GSDMD lysis through NLRP3-caspase-
1 signal, and induce neuronal cell pyroptosis (Han et al., 2020).

In recent years, a large amount of data from cell experiments
and animal models have confirmed that the activation of NLRP3
inflammasome can also affect the deposition and spread of Aβ.
Heneka et al. found that, compared with APP/PS1 mice, NLRP3
and caspase-1 knockout AD model mice have a significantly
enhanced ability of microglia to phagocytose Aβ and differentiate
microglia into anti-inflammatory M2 type, which facilitates Aβ
clearance (Heneka et al., 2013). In addition, the ability of
microglia to clear Aβ can also be enhanced by inhibitors of
NLRP3 or caspase-1, thereby reducing the accumulation of Aβ in
the brains of APP/PS1 mice (Dempsey et al., 2017). These results
confirm that the activation of NLRP3/caspase-1 inflammasome
reduces the phagocytosis of Aβ by glial cells, whichmakes it easier
for Aβ to accumulate in the cells. After comprehensive analysis of
the related research results of Aβ and NLRP3 inflammasome, we
speculate that when Aβ oligomers or fibrils activate NLRP3
inflammasome, it regulates the production of neurotoxic
inflammatory cytokines such as IL-1β and IL-18. At the same
time, it can induce pyroptosis of neurons by activating caspase-1
to mediate the lysis of GSDMD. On the other hand, the activation
of NLRP3 inflammasome can conversely lead to increased Aβ
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deposition and diffusion in glial cells, thereby inducing Aβ into
the positive feedback loop, and ultimately contributing to the
development of AD.

Although there are many researches to reveal the role of Aβ
aggregates in the activation of NLRP3 inflammasome, there are
limited studies on the relationship between Tau and NLRP3
inflammasome. In an earlier study, Kitazawa et al. used IL-1R
blocking antibodies to inhibit IL-1β signaling in the 3xTg AD
mouse model and found that they could significantly reduce the
activity of tau kinase, such as cdk5/p25, GSK -3β, p38-MAPK,
thereby reducing the level of tau phosphorylation (Kitazawa
et al., 2011). This implies that the inflammatory effect after
activation of NLPR3 inflammasome may have an impact on the
pathogenic effect of Tau. In 2019, a major study revealed the
influence of NLPR3 inflammasome on the pathology of tau.

Ising et al. found that the loss of NLRP3 function could reduce
the hyperphosphorylation and aggregation of tau by regulating
tau kinase and phosphorylase. In addition, intracerebral
injection of homogenate containing Aβ fibrils induced
pathological changes of tau protein, which depends on the
activation of NLRP3. Their study confirms that the activation
of NLPR3 inflammasome in microglia plays an important role in
the pathological changes of tau. Meanwhile, it also supports the
Aβ cascade hypothesis in the pathogenesis of AD and the role of
neurofibrillary tangles in the downstream development of Aβ-
induced activation of microglia (Ising et al., 2019). In the same
year, another highlighted study investigated whether Tau
aggregates could activate NLRP3 inflammasome just like Aβ
fibrils. They demonstrated that Tau activates NLRP3
inflammasome after being taken up by microglias, and its

FIGURE 1 | A schematic diagram of the association between NLRP3 inflammasome activation and AD pathogenesis. Both Aβ oligomers and Tau aggregates are
involved in the inflammatory response of AD. Fibrillar Aβ species are regarded as PAMPs that triggers NF-κB activation through pattern recognition receptors (such as
TLRs) to elevate inflammasome components NLRP3 and pro-IL-1β. NLRP3, ASC, and pro-caspase-1 assemble together to form the NLRP3 inflammasome, which
subsequently activates caspase-1, cleaves pro-IL-1β to produce the active form of IL-1β and secretes it extracellularly. In addition, phagocytosis of soluble Aβ also
triggers lysosome leakage and consequently results in the emission of cathepsin B, which leads to NLRP3 inflammasome activation. Furthermore, Aβ oligomers can act
as damaging stimulis to induce mitochondrial dysfunction, causing the production and accumulation of ROS, release of mtDNA, or cardiolipin externalization, which
activates the NLRP3 inflammasome. Autophagy can not only clear Aβ, but also clear NLRP3, ASC and pro-caspase-1 inflammasome-related protein molecules.
Mitophagy can selectively remove impaired mitochondria and relieve the release of damaging molecules within mitochondria. Therefore, autophagy and mitophagy can
negatively regulate the activation of NLRP3. Aβ also indirectly regulate the activation of the NLRP3 inflammasome through the autophagy or mitophagy pathway.
Moreover, the activation of NLRP3 inflammasome inhibits the phagocytosis of Aβ by glial cells, which contributes to the deposition of Aβ and facilitates the formation of Aβ
plaques. In conclusion, Aβ can activate the NLRP3 inflammasome through different pathways. However, once the NLRP3 inflammasome is activated, it in turn increases
the deposition of Aβ and the formation of Aβ plaque, which forms a positive feedback loop that amplifies Aβ pathogenic effect. Similar to the role of Aβ, Tau is regarded as
an endogenous dangerous molecule that can activate the NLRP3 inflammasome. After the NLRP3 inflammasome is activated, it increases the activity of Tau kinase and
phosphorylase, and facilitates the phosphorylation and aggregation of Tau, thereby also forming a positive feedback loop. Persistent activation of the NLRP3
inflammasome triggered by Aβ and Tau contributes to the development of chronic neuroinflammation, which ultimately leads to the neuronal loss and cognitive
impairment. AD: Alzheimer’s disease; Aβ: amyoid β; PAMPs: pathogen-associatedmolecular patterns; TLRs: Toll-like receptors; NF-κB: nuclear factor kappa B; NLRP3:
nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3; ASC: apoptosis-associated speck-like protein containing a CARD; ROS: reactive
oxygen species; mtROS: mitochondrial ROS; mtDNA: mitochondrial DNA; MyD88: myeloid differentiation factor 88; GSDMD: gasdermin D.
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activation mechanism is similar to that of Aβ. Moreover, Tau-
induced pathology is alleviated in Tau transgenic mice with
ASC gene deletion or NLRP3 targeting inhibitors (Stancu
et al., 2019). Surprisingly, tau protein may also provide the
priming signal for the activation of NLRP3 inflammasome.
Panda et al. used tau-derived PHF6 peptide (VQIVYK) to
stimulate microglia and found that VQIVYK in the form of
fibrous aggregates upregulated the expression of NLRP3 at
mRNA and protein levels in a dose- and time-dependent
manner, ultimately leading to increased expression of IL-1β
and IL-18 (Panda et al., 2021). Experimental results from in
vivo also show that hyperphosphorylation of tau in the mouse
brain significantly increases the activation of NLRP3
inflammasome and the up-regulation of IL-1β levels (Zhao
et al., 2021). In summary, we speculate that the role of tau in
NLRP3 inflammasome is similar to Aβ. On the one hand, tau
aggregates activate the NLPR3 inflammasome to regulate the
expression and secretion of IL-1β and IL-18 and participate in
the pathological damage of tau. On the other hand, the
activation of NLRP3 inflammasome can also increase the
hyperphosphorylation and aggregation of tau through tau
kinase and phosphorylase, thereby inducing tau to go
through the positive feedback loop, and ultimately playing
an important role in the pathogenesis of AD (Figure 1).

4 NLRP3 INFLAMMASOME INHIBITORS AS
A POTENTIAL TARGET FOR THE
TREATMENT OF ALZHEIMER’S DISEASE
With the comprehensive understanding of the molecular
mechanism of NLRP3 inflammasome activation, since 2013,
many published articles have paid more attention to the
therapeutic value of targeted intervention of NLRP3
inflammasome in diseases. In view of the important role of
NLRP3 inflammasome in the pathogenesis of AD, exploring
its drug targets in the treatment of AD has also become a hot
topic in its field. According to the characteristics of the formation
and activation of NLRP3 inflammasome, some compounds that
inhibit the activity of NLRP3 or interfere with its interaction with
ASC are used to block the activation of NLRP3 inflammasome,
which provides new ideas for the treatment of AD. Furthermore,
considering the secretion of inflammatory factors downstream of
the NLRP3 inflammasome and pyroptosis, the targeted
intervention of caspase-1 activation and inhibition of
downstream inflammatory factors of NLRP3 may also be a
way to alleviate chronic inflammation in AD. The NLRP3
inflammasome and involvement of several upstream or
downstream signaling pathways provide promising
pharmacological targets for AD (Figure 2). At present, in the

FIGURE 2 | Pharmacological targets of the NLRP3 inflammasome (LPS: lipopolysaccharide; TLR: Toll-like receptor; NF-κB: nuclear factor kappa B; mtROS:
mitochondrial ROS; mtDNA: mitochondrial DNA; NLRP3: nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3; ASC: apoptosis-
associated speck-like protein containing a CARD; PG: progesterone; TSG: 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside; Qu: Quercetin; MNS: 3,4-
methylenedioxy-β-nitrostyrene; CARD: caspase recruitment domain; NACHT: nucleotide-binding and oligomerization domain; PYD: pyrin domain; LRR: leucine-
rich repeat).
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TABLE 1 | The compounds or extractions targeting NLRP3 inflammasome pathways in AD.

Compounds or
extractions

Mechanism Cell or animal model References

IL-1 inhibitors
anakinra IL-1 receptor antagonist 3xTg-AD transgenic mice Kitazawa et al. (2011)

IL-1 receptor antagonist AD amyloidosis rat model Qi et al. (2018), Batista et al. (2021)
rilonacept IL-1inducible receptor — Giancane et al. (2016)
canakinumab Antibody targeting IL-1β — Giancane et al. (2016)

NLRP3 inhibitors
Glyburide ATP sensible K+ channels, downstream of the P2X7 receptor — Lamkanfi et al. (2009)
JC124 Inhibits the NLRP3 inflammasome and the activation of

caspase-1
APP/PS1 or CRND8 APP
transgenic mice

Fulp et al. (2018), Yin et al. (2018), Kuwar
et al. (2021)

Oridonin Covalent bond with NLRP3 in NACHT domain to block the
interaction between NLRP3 and NEK7

Aβ1-42 induced AD mice Wang et al. (2014), Wang et al. (2016), He
et al. (2018)

CY-09 Binds to the ATP binding motif of the NLRP3 NACHT domain to
inhibit NLRP3 ATPase activity

— Jiang et al. (2017)

MCC950 Walker B motif interaction and inhibition of ATP hydrolysis,
selective inhibitor of NLRP3

APP/PS1 AD, Long evans rats,
SAMP8 mouse

Qi et al. (2018), Coll et al. (2019), Fekete
et al. (2019), Li et al., 2020b)

Selective inhibitor of NLRP3 Microglia induced by Aβ
aggregates

Luciunaite et al. (2020)

OLT1177 Binds to NLRP3 to inhibit its ATPase activity APP/PS1 mice Marchetti et al. (2018), Lonnemann et al.
(2020)

Tranilast Directly binds to the NACHT of NLRP3 and blocks NLRP3
oligomerization

— Huang et al. (2018)

BAY 11–7082 Inhibits NLRP3 ATPase activity APP 23 mice, BV2 cells Ruan et al. (2019)
Parthenolide Inhibits NLRP3 ATPase activity and caspase-1 Primary glial cells Ou et al. (2020)
MNS Inhibits the activity of NLRP3 ATPase through binding to the LRR

and NACHT domains
— He et al. (2014)

ASC inhibitors
BHB Prevents K+ efflux and reduces ASC oligomerization and speck

formation
5xFAD mouse Youm et al. (2015), Shippy et al. (2020)

Improves the cognitive function AD patients Ota et al. (2019)
Caspase-1 inhibitors
VX-765 Inhibits caspase-1 AD J20 mouse Flores et al. (2018), Flores et al. (2020)
Ac-YVAD-CMK Inhibits caspase-1 APP/PS1 AD mice Gu et al. (2021)

Plant-derived compounds
Resveratrol Inhibits TXNIP/TRX/NLRP3 signaling pathway BV-2 cells Feng and Zhang, (2019)

Inhibits NF-κB/IL-1β/NLRP3 signaling pathway AD mouse model induced by
Aβ1-42

Qi et al. (2019)

Pterostilbene Inhibits the NLRP3/caspase-1 pathway Microglia induced by Aβ1-42 Li et al. (2018)
SFN Inhibits the NLRP3 inflammasome N9 microglial cells Tufekci et al. (2021)
GB Inhibits NLRP3 activation and promotes microglia M2 polarization BV2 microglial cells induced by

Aβ1-42
Zhang et al. (2021b)

ABPPκ Inhibits the expression of NLRP3, cleaved caspase-1, and ASC BV2 microglia, Aβ oligomers-
injected mice

Ge et al. (2021)

Chinese herbal medicines
PK Inhibits the NLRP3 inflammasome 5xFAD mouse Kim et al. (2020)
DHM Inhibits the NLRP3 inflammasome APP/PS1 mice Feng et al. (2018)

NSAIDs
IND Reduces the expression of IL-1β and caspase-1 AD rats induced by

streptozotocin
Karkhah et al. (2021)

MicroRNAs Directly or indirectly inhibits the expression of NLRP3 Glial cells, AD mice, and AD
patients

Han et al. (2020), Feng et al. (2021), Wan
et al. (2021)

Autophagy activators
A-68930 Enhances the degradation of NLRP3 inflammasome by activating

the AMPK/autophagy signaling pathway
BV2 cells, AD mice induced by
Aβ1-42

Cheng et al. (2020)

PG Inhibits the activation of NLRP3-caspase-1 via enhancing the
autophagy

Astrocytes Hong et al. (2019)

EGb 761 Down-regulates the level of NLRP3 protein, reduces the
activation of IL-1β and caspase-1 via autophagy

TgCRND8 AD model Liu et al. (2015)

Mitophagy activators
TSG Prevents NLRP3 inflammation through mitophagy APP/PS1 mice, BV2/N2a/SH-

SY5Y cells
Gao et al. (2020)

Qu Inhibits NLRP3 inflammation through mitophagy Primary microglia, BV2 cells Han et al. (2021)
ROS and NF-κB inhibitors
α-lipoic acid Inhibits NLRP3 via the NF-κB signaling pathway BV-2 microglial cells Kim et al. (2019)

(Continued on following page)
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strategy of AD treatment, some compounds that directly inhibit
the activity of NLRP3 ATPase include CY-09, MNS and
OLT1177. There are some drugs interfering with ASC
oligomerization, which is represented by ß-hydroxybutyric
acid (BHB). The inhibitors of caspase-1 activation are VX-740
and VX-765. Biological agents targeting IL-1βmainly include IL-
1β antibody canakinumab and recombinant IL-1β receptor
antagonist anakinra. In the following section, we will review
and summarize in detail the role and therapeutic value of the
above interventions in AD (Table 1).

LRP3: nucleotide-binding oligomerization domain-like
receptor pyrin domain-containing 3; AD: Alzheimer’s disease;
Aβ: amyoid β; ATP: Adenosine triphosphate; P2X7: P2X
purinergic receptor 7; APP: amyloid precursor protein; APP/
PS1: APPswe/PS1dE9; SAMP8: senescence-accelerated mouse
prone 8; NACHT: nucleotide-binding and oligomerization
domain; LRR: leucine-rich repeat; NEK7: NIMA-related kinase
7; MNS: 3,4-methylenedioxy-β-nitrostyrene; BHB: ß-
hydroxybutyric acid; TXNIP: Thioredoxin interacting protein;
TRX: Thioredoxin; SFN: Sulforaphane; GB: Ginkgolide; ABPPκ:
Achyranthes bidentate polypeptide fraction κ; PK: Picrorhiza
kurroa; DHM: Dihydromyricetin; NSAIDs: Nonsteroidal anti-
inflammatory drugs; IND: Indomethacin; AMPK: Adenosine 5′-
monophosphate (AMP)-activated protein kinase; PG:
Progesterone; TSG: 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-
glucoside; Qu: Quercetin; ASC: apoptosis-associated speck-like
protein containing a CARD; mtROS: mitochondrial ROS; NF-κB:
nuclear factor kappa B; STAT3: Signal transducer and activator of
transcription 3

4.1 IL-1β Antibodies and IL-1R Antagonists
IL-1β is usually present in cells as the precursor form pro-IL-1β.
Pro-IL-1β has no biological activity. Activated caspase-1 can
cleave pro-IL-1β into mature IL-1β through enzyme cleavage.
At present, the strategy of targeting IL-1β has certain application
prospects, but it also has some limitations. So far, there are mainly
three biologics targeting IL-1β that have been used in the
treatment of various inflammatory diseases. A recombinant IL-
1 receptor antagonist anakinra, an inducible receptor rilonacept
that binds to IL-1α and IL-1β, and the other one is IL-1β
neutralizing antibody canakinumab (Giancane et al., 2016).
These biological agents have been widely used to treat
inflammation-related diseases, including autoimmune diseases
(Sota et al., 2021), recurrent pericarditis (Fava et al., 2021),
idiopathic arthritis (Autmizguine et al., 2015), gout (Perez-
Ruiz et al., 2014). However, the clinical trials of these biologics
in AD are rarely reported. Long-term injection of IL-1R blocking
antibody to 3xTg-AD mice can significantly reduce brain

inflammation, ameliorate cognitive impairment, relieve tau
pathology, and partially reduce the level of Aβ oligomers
(Kitazawa et al., 2011). In addition, Qi et al. found that
anakinra can improve synaptic plasticity defects in a rat model
of AD amyloidosis and eliminate the inhibitory effect on long-
term potentiation (Qi et al., 2018). A recent study showed that
anakinra can also alleviate synaptic loss and cognitive
impairment in AD (Batista et al., 2021). For the application of
inhibitors targeting IL-1β in AD, the ability of these biologics to
cross the BBB, the ability to penetrate the brain tissue, and the
side effects of drugs should be considered. Furthermore, upon
NLRP3 inflammasome activation, in addition to the secretion of
IL-1β, it also produces IL-18 and pyroptosis. Therefore, it is
difficult to completely inhibit the pathogenic effect of NLRP3
inflammasome after blocking IL-1β. Recently, some new targets
that participate in the regulation of NLRP3 inflammasome have
been identified, which provides a new approach for AD therapy.

4.2 Specific Inhibitors of the NLRP3
Inflammasome
The activation of NLRP3 inflammasome depends on the
integrity of the structure and function of NLRP3 and the
assembly of NLRP3 inflammasome. Therefore, the potential
therapeutic targets for NLRP3 inflammasome mainly include
the NACHT domain of NLRP3, ASC and caspase-1, as well as
other sites that affect its assembly. Targeting the
pharmacological effects of NLRP3 inflammasome may be the
best way to treat AD. Here, we mainly summarize several
inhibitors for NLRP3 inflammasome activation and their
therapeutic targets.

4.3 NLRP3 Activation Inhibitors
4.3.1 Glyburide
Glyburide is a sulphonylurea drug approved by the FDA,
which treats type 2 diabetes by blocking the ATP-sensitive
K+ channel in ß pancreatic cells. Lamkanfi et al. found that
glyburide has anti-inflammatory effects in an early study. It is
the first identified compound that can inhibit the activation of
NLRP3 inflammasome and the secretion of IL-1β induced by
PAMPs, DAMPs and crystals. However, it has no effect on the
activation of NLRC4 or NLRP1. The targets of glyburide still
need to be further clarified. They found that glyburide
targeted the signal components downstream of the P2X7
receptor and might act upstream of NLRP3 to inhibit the
activation of caspase-1 (Lamkanfi et al., 2009). There are few
studies on the application of glyburide in neurodegenerative
diseases. Therefore, its therapeutic value in AD is still unclear.

TABLE 1 | (Continued) The compounds or extractions targeting NLRP3 inflammasome pathways in AD.

Compounds or
extractions

Mechanism Cell or animal model References

Edaravone Reduces the production of mtROS, and inhibits the activation of
NLRP3

Aβ-treated microglia Wang et al. (2017)

Donepezil Down-regulates NLRP3 and pro-IL-1β mRNA levels by inhibiting
NF-κB/STAT3 phosphorylation

BV2 microglial cells, 5xFAD
mice

Kim et al. (2021)
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4.3.2 JC124
JC124 is a specific small molecule inhibitor of NLRP3
inflammasome. In 2018, Fulp et al. developed the methylated
analogue JC124 based on the sulfonamide analogue JC121 of
glyburide. After oral administration, JC124 can penetrate through
the BBB and enter the brain tissue. After JC124 treatment, APP/
PS1 transgenic mice shows significant improvement in cognitive
impairment (Fulp et al., 2018). In addition, Yin et al.
demonstrated that JC-124 inhibits the lysis and activation of
caspase-1 in CRND8APP transgenic mice (TgCRND8) mice, and
selectively restrains the formation of NLRP3 inflammasome,
thereby effectively reducing Aβ deposition and microglia
activation (Yin et al., 2018). After treatment with JC124 in the
traumatic brain injury (TBI) model, it can significantly inhibit the
activation of NLRP3 induced by injury, reduce the expression
level of its downstream effector protein, and thus play a role in
neuroprotection (Kuwar et al., 2019). A recent study has reported
the preventive efficacy of JC124 in AD. They found that JC124 has
the ability to inhibit neuronal inflammation, regulate the
accumulation of Aβ and promote the alleviation of cognitive
impairment. Moreover, improved synaptic plasticity and
endogenous neurogenesis in the hippocampus are also
observed (Kuwar et al., 2021). Therefore, JC124 is a new type
of inhibitor targeting NLRP3 inflammasome, which can reduce
the neuropathology of AD and improve cognitive function,
thereby exhibiting neuroprotective effects.

4.3.3 Oridonin
Oridonin (Ori) is the main bioactive component of the natural
anti-inflammatory Chinese medicinal herb Rabdosia
rubescens, and has been proven to be as a specific covalent
inhibitor of NLRP3 inflammasome. Under the stimulation of
NLRP3 agonists such as monosodium urate crystals (MSU),
ATP or cytosolic LPS (cLPS), Ori treatment inhibits NLRP3
inflammation and reduces IL-1β release (He et al., 2018).
Regarding the target of Ori, studies have reported that Ori
can directly bind to the NACHT domain of NLRP3. Ori forms
a covalent bond with the cysteine 279 of NLRP3 in NACHT
domain to block the interaction between NLRP3 and NEK7,
thereby inhibiting NLRP3 inflammasome assembly and
activation (He et al., 2018). In the AD mouse model, Ori
inhibits the activation of microglia induced by Aβ1-42, reduces
the release of inflammatory cytokines, prevents the loss of
synapses, and improves the cognitive impairment of AD mice
(Sulei Wang et al., 2014; Wang et al., 2016). In addition, it has
also been observed in TBI that Ori treatment can significantly
reduce the expression of NLRP3 inflammasome components
(NLRP3, ASC and caspase-1), and restrict the secretion of IL-
1β and IL-18 (Yan et al., 2020a). In addition to being widely
used to treat inflammatory diseases, Ori also has potential
neuroprotective effects. Therefore, Ori can be applied as a
possible drug for long-term treatment of AD.

4.3.4 CY-09
CY-09 is a selective and direct NLRP3 inhibitor. In 2017, Jiang
et al. confirmed the target of interaction between CY-09 and
NLRP3. They found that CY-09 can directly bind to theWalker A

motif of NLRP3, rather than NLRC4, NLRP1, NOD2, or RIG-1,
which indicates the specificity of CY-09. CY-09 directly binds to
the ATP binding motif of the NLRP3 NACHT domain to inhibit
NLRP3 ATPase activity, thereby inhibiting the assembly and
activation of NLRP3 inflammasome (Jiang et al., 2017). Based
on the high specificity and good pharmacokinetic characteristics
of CY-09 targeting NLRP3, it may become a new method for the
treatment of diseases. Currently, CY-09 can be treated for
inflammatory related diseases such as osteoarthritis (Zhang
et al., 2021a), myocardial fibrosis (Gao et al., 2021a), hepatic
steatosis (Wang et al., 2021), etc. However, the effect of CY-09 has
not been reported in AD, and its application value should be
explored as soon as possible.

4.3.5 MCC950
MCC950 is a small molecule compound of diarylsulfonylurea. It
is a potent and selective small molecule inhibitor of NLRP3,
which can block the activation of canonical and non-canonical
NLRP3 at nanomolar concentrations. MCC950 specifically
inhibits NLRP3 but not AIM2, NLRC4 or NLRP1 activation.
MCC950 reduces IL-1β production in vivo and attenuates the
severity of experimental autoimmune encephalomyelitis (EAE)
(Coll et al., 2015). With the study of MCC950 target, the
researchers have found that MCC950 can also specifically bind
to NLRP3. It directly interacts with the walker B motif in the
NACHT domain of NLRP3, which blocks the activity of NLRP3
ATPase and loses the ability to hydrolyze ATP, thereby blocking
NLRP3 oligomerization and formation (Coll et al., 2019). This is
further supported by another study. They have found that
MCC950 can modify the active conformation of NLRP3 and
prevent NLRP3 oligomerization (Tapia-Abellan et al., 2019).
MCC950 is an effective and selective NLRP3 inhibitor, which
has a wide range of applications in inflammatory diseases.
However, here we mainly discuss the therapeutic effect of
MCC950 in cognitive dysfunction diseases. Dempsey et al.
found that, in the APP/PS1 AD mouse model, MCC950 can
inhibit the activation of NLRP3 inflammasome in microglia,
prevent the release of IL-1β, and promote the phagocytosis of
Aβ by microglia, which reduces the accumulation of Aβ and
improves the cognitive function (Qi et al., 2018). In addition,
MCC950 can also completely inhibit the immune response after
activation of NLRP3 inflammasomes induced by fibrils and low
molecular weight Aβ aggregates (Luciunaite et al., 2020).
MCC950 attenuates the reactivity of microglia induced by
Aβ1-42 oligomers, blocks the activation of NLRP3
inflammasome, and eliminates memory impairment (Fekete
et al., 2019). These results indicate that MCC950 can reduce
Aβ-induced pathological events and enhance cognitive function.
Some studies have also found that MCC950 improves the damage
of synaptic plasticity (Qi et al., 2018), inhibits the activation of IL-
1β induced by tau aggregates, and prevents tau-mediated
pathological changes (Stancu et al., 2019). Li et al. reported
that the administration of MCC950 improves the spatial
memory and brain histology of senescence-accelerated mouse
prone 8 (SAMP8), and reduces the deposition of Aβ in the mouse
brain (Li et al., 2020). MCC950 may be a promising compound
for AD treatment, but this also requires more animal experiments
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and clinical drug observation trials for further evaluation. The
improvement of drugs based on MCC950 can reduce its side
effects and increase its neuroprotective efficacy and safety, which
is also a potential strategy for the development of AD drugs.

4.3.6 OLT1177
OLT1177, also known as Dapansutrile, is an active ß-sulfonyl
nitrile compound. OLT1177 is initially identified as a drug for the
treatment of arthritis and is currently undergoing a phase II
clinical trial for the treatment of acute gouty arthritis (Kluck et al.,
2020). OLT1177 is a potent, selective and orally active inhibitor of
NLRP3 inflammasome. The effect of OLT1177 is similar to that of
MCC950. It blocks the canonical and non-canonical activation of
NLRP3 inflammasome, and directly binds to NLRP3 to inhibit its
ATPase activity (Marchetti et al., 2018). In vitro experiments have
shown that nanomolar concentration of OLT1177 can specifically
inhibit the activation of NLRP3 inflammasome and reduce the
release of IL-1β and IL-18 (Marchetti et al., 2018). In a study,
Lonnemann et al. provided some convincing evidence. Their
results showed that OLT1177 inhibits the activation of NLRP3
inflammasome, thereby improving cognitive dysfunction and
synaptic plasticity in AD mice, reducing the number of
pathological plaque deposits in the cerebral cortex, and
reducing the activity of microglia (Lonnemann et al., 2020).
However, there are still few researches on the application of
OLT1177 in neurodegenerative diseases. In short, considering
that OLT1177 has good safety, pharmacokinetics and less side
effects after oral administration, this makes OLT1177 to become
an option for the treatment of AD in the future.

4.3.7 Tranilast
Tranilast is originally used as an anti-allergic drug, which has a
good therapeutic effect on asthma, allergic rhinitis, idiopathic
dermatitis and other allergic diseases. Now, other uses, such as
myocardial fibrosis and anti-cancer treatment, are gradually
being discovered (Chen et al., 2021; Osman et al., 2021). In
2018, Huang et al. first discovered that Tranilast is a direct NLRP3
inhibitor that can inhibit the NLRP3-NLRP3 interaction.
Tranilast inhibits NLRP3 inflammasome activation in
macrophages, but has no effects on AIM2 or NLRC4
inflammasome activation. Tranilast directly binds to the
NACHT domain of NLRP3 and suppresses the assembly of
NLRP3 inflammasome by blocking NLRP3 oligomerization
(Huang et al., 2018). Moreover, the researchers have also
reported that Tranilast increases the lysine 63 (K63)-linked
ubiquitination of NLRP3, restricts NLRP3 oligomerization,
blocks the assembly and activation of NLRP3 inflammasome,
thereby improving vascular inflammation and atherosclerosis in
Ldlr−/- and ApoE−/- mice (Chen et al., 2020). Tranilast can inhibit
the formation of rat gliomas after oral administration, which
indicates that Tranilast can cross the BBB (Platten et al., 2001).
However, the therapeutic effect of Tranilast in AD is still unclear.
Recent studies have reported that Tranilast can improve cognitive
behavioral parameters and significantly increase memory-related
proteins in Aβ-induced cognitive deficit model mice, thereby
showing the potential for neuroprotection (Thapak et al., 2021).
On the contrary, some researchers have put forward different

views. Connors et al. found that Tranilast is likely to promote
fibrillation by shifting Aβ monomer conformations to those
capable of seed formation and fibril elongation, which
indicates that elderly patients treated with Tranilast may
increase the risk of AD (Connors et al., 2013). The role of
Tranilast in AD still needs further research, and whether
Tranilast plays a role in AD by inhibiting the activation of
NLRP3 inflammasome is also unknown.

4.3.8 BAY 11–7082 and Parthenolide
BAY 11–7082 and Parthenolide are common NF-κB inhibitors.
BAY 11–7082 can inhibit IκBα phosphorylation and prevent
nuclear translocation of NF-κB. Parthenolide is a powerful
natural anti-inflammatory drug derived from the medicinal
plant Feverfew. As early as 2010, Juliana et al. found that BAY
11–7082 and Parthenolide can selectively inhibit the activity of
NLRP3 inflammasome in macrophages, but this effect is not
related to their inhibitory effect on NF-κB activity. They found
that Bay 11–7082 and Parthenolide blocks ASC oligomerization
via inhibiting NLRP3 ATPase activity. Surprisingly, in addition to
directly inhibiting NLRP3, Parthenolide is also a direct inhibitor
of caspase-1, while Bay 11–7082 has no such effect. Therefore,
Bay 11–7082 selectively inhibits the NLRP3 inflammasome
pathway, while Parthenolide inhibits the activity of multiple
inflammasome pathways (Juliana et al., 2010). In the TBI
model, Bay 11–7082 shows a similar effect to NLRP3
knockout, which significantly limits the NLRP3 inflammasome
activation, reduces the levels of caspase-1 and IL-1β, and
improves the cognitive function of model mice (Irrera et al.,
2017). Additionally, the pretreatment of Bay 11–7082 can also
block the activation of inflammasome through the
pharmacological inhibition of NF-κB/NLRP3, thereby reducing
neuronal damage and cognitive dysfunction in aged rats (Liu
et al., 2021). In APP23 mice treated with kainic acid (KA), BAY
11–7082 attenuates KA-induced neuronal degeneration and Aβ
deposition by inhibiting the activation of NLPR3 inflammasome,
and ultimately improves the cognitive function (Ruan et al.,
2019). These studies indicate that BAY 11–7082 has
neuroprotective effects on AD. Parthenolide has been proven
to have antioxidant and anti-inflammatory effects, but its role in
the nervous system has not yet been elucidated. According to
reports, Parthenolide can effectively reduce neuroinflammation
and improve brain damage (Jun-An Wang et al., 2020). More
importantly, the synthesis of Parthenolide derivatives with low
toxicity, such as compound 8b (Ou et al., 2020), may bring hope
for targeting NLRP3 inflammasome to treat AD.

4.3.9 3,4-Methylenedioxy-β-nitrostyrene
3,4-methylenedioxy-β-nitrostyrene (MNS) is a tyrosine kinase
inhibitor. In 2014, He et al. first discovered the inhibitory effect of
MNS on NLRP3 inflammasome activation. They found that MNS
do not affect the activation of NLRC4 or AIM2 inflammasome,
but specifically blocks NLRP3-mediated ASC speck formation
and oligomerization. MNS directly binds to the nucleotide-
binding and oligomerization domain (NOD) and leucine-rich
repeat (LRR) domains of NLRP3 and inhibits the activity of
NLRP3 ATPase, thereby blocking the assembly and activation of

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 84518512

Liang et al. NLRP3 and AD Treatment

16

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


inflammasome (He et al., 2014). It has previously been reported
that MNS can inhibit platelet aggregation, tumor cell invasion
and metastasis (Wang et al., 2007; Chen et al., 2015). At present,
more attention should be paid to the application of MNS in
inflammatory-related diseases by blocking the activation of
NLRP3 inflammasome. The role of MNS in AD is still
unknown, which requires more in vivo and in vitro experiments.

4.4 ASC Oligomerization Inhibitors
4.4.1 β-hydroxybutyrate
β-hydroxybutyric acid (BHB) is a ketone body produced by the
oxidation of fatty acids in the liver under fasting conditions, which
can provide alternative energy for the brain and heart. In 2015,
Youm et al. first discovered that BHB can specifically inhibit the
activation of NLRP3 inflammasome. They found that BHB inhibits
NLRP3 inflammasome assembly and activation by preventing K+

efflux and reducing ASC oligomerization and speck formation
(Youm et al., 2015). Clinical evidence shows that long-term
consumption of ketogenic formula can significantly improve the
cognitive function of AD patients (Ota et al., 2019). In addition,
BHB reduces the level of IL-1β by inhibiting NLRP3-mediated
hippocampal neuroinflammation, thereby exerting an
antidepressant effect (Yamanashi et al., 2017; Kajitani et al.,
2020). Subsequently, BHB is also found to attenuate long-term
stress-induced anxiety-related behaviors and plays an anti-anxiety
effect (Yamanashi et al., 2020). Recently, in the 5xFAD mouse
model, Shippy et al. revealed that the administration of BHB
reduces Aβ plaque formation, microglial proliferation, ASC
formation and caspase-1 activation, thereby alleviating AD
pathology (Shippy et al., 2020). BHB can easily cross the BBB,
which increases its therapeutic potential as a treatment strategy
for AD.

4.5 Caspase-1 Activation Inhibitors
4.5.1 VX-765
Caspase-1 is an important component of NLRP3 inflammasome.
Upon activation, caspase-1 promotes the production of IL-1β/IL-18,
and at the same time mediates the pyroptosis through gasdermin D.
VX-765 is a safe, effective, selective, and small molecule caspase-1
inhibitor. Early studies showed that VX-765 inhibits the production
of IL-1β in forebrain astrocytes, thereby blocking epilepsy in rats
(Ravizza et al., 2008). Currently, VX-765 has entered phase II clinical
trials for patients with epilepsy. VX-765 is a non-toxic caspase-1
inhibitor that is permeable to the BBB. In the AD model, VX-765
prevents progressive Aβ deposition and reverses brain inflammation,
synaptic loss, and memory impairment (Flores et al., 2018). In
addition, VX-765 is promising as an effective drug to prevent the
onset of cognitive deficits. Research by Flores et al. showed that
treatment with VX-765 for 1 month before the onset of symptoms in
AD J20model mice could delay the cognitive impairment of mice by
at least 5 months (Flores et al., 2020). Therefore, VX-765 represents a
safe drug, which may have potential value in the early prevention of
AD cognitive deficits and the improvement of cognitive dysfunction.

4.5.2 Ac-YVAD-CMK
Ac-YVAD-CMK is a selective and irreversible inhibitor of caspase-
1, and prevents the expression of IL-1β. Ac-YVAD-CMK can

inhibit the activation and infiltration of microglia around the
hematoma in the rat model of cerebral hemorrhage, promote
the transformation of microglia from M1 type to M2 type, and
reduce the release of IL-1β/IL-18. At the same time, Ac-YVAD-
CMK inhibits cell pyroptosis, improves nerve function, and
exhibits neuroprotective effect (Lin et al., 2018; Liang et al.,
2019). Infusion of Ac-YVAD-CMK into the lateral ventricle of
aged rats can inhibit the production of hippocampal IL-1β, thereby
improving the memory of aged rats and reversing the decrease of
hippocampal neurons (Gemma et al., 2005, Gemma et al., 2007). In
the AD model, AC-YVAD-CMK treatment improves spatial
learning and memory impairment in APP/PS1 mice, reduces
Aβ plaque deposition, and promotes membrane transport of
GluA1 (Gu et al., 2021).

4.6 Plant-Derived Compounds and Chinese
Herbal Medicines
Some plant-derived compounds and Chinese herbal medicines
can inhibit the activation of NLRP3 inflammasome, and exhibit
the effect of preventing and treating AD. Resveratrol is a natural
polyphenol compound extracted from plants. Many studies have
shown that resveratrol has anti-cancer, anti-oxidant, anti-
inflammatory, anti-aging and other pharmacological effects
(Kumar et al., 2021). In the nervous system, resveratrol can
play a neuroprotective effect by inhibiting the activation of
NLRP3 inflammasome. Feng et al. found that resveratrol
significantly inhibits the proliferation and activation of BV-2
cells induced by Aβ through the TXNIP/TRX/NLRP3 signaling
pathway, and reduces the expression levels of caspase-1 and IL-1β
(Feng and Zhang 2019). Qi et al. also reported that resveratrol
reduces Aβ-induced IL-1β production and mitochondrial
dysfunction through the NF-κB/IL-1β/NLRP3 signaling
pathway, improves learning and cognitive impairment, and
plays an anti-dementia effect (Qi et al., 2019). Picrorhiza
kurroa (PK) is a herbal medicine with antioxidant, anti-
inflammatory, anti-allergic and anti-cancer effects. Kim et al.
found that, in the hippocampus of 5xFAD mice, PK inhibits the
activation of NLRP3 inflammasome, reduces the protein
expression level of NLRP3 and the activity of caspase-1,
thereby blocking the release of IL-1β (Kim et al., 2020).
Dihydromyricetin (DHM) is a kind of plant flavonoids, which
has many unique effects such as anti-oxidation, anti-thrombosis,
anti-cancer, and anti-alcoholism. It is convinced that flavonoids
can cross the BBB to regulate inflammation and exert
neuroprotective effects (Youdim et al., 2003). In the AD
model, DHM treatment can inhibit the activation of NLRP3
inflammasome in APP/PS1 mice and reduce the level of IL-1β.
DHM, as a therapeutic drug that inhibits the activation of
microglia by inhibiting NLRP3 inflammasome, contributes to
prevent the progression of AD-like pathology and improve spatial
memory (Feng et al., 2018). Pterostilbene is a natural compound
with antioxidant, anti-inflammatory and neuroprotective
activities. Li et al. reported that pterostilbene attenuates the
neuroinflammatory response induced by Aβ1-42 in microglia
via inhibiting the NLRP3/caspase-1 inflammasome pathway (Li
et al., 2018b). Sulforaphane (SFN) is an isothiocyanate derivative
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contained in cruciferous vegetables. SFN’s anti-oxidation, anti-
cancer, anti-inflammatory and other uses are being extensively
studied. SFN also exhibits anti-inflammatory effects in the brain.
Tufekci et al. found that SFN inhibits the secretion of IL-1β and
IL-18 mediated by NLRP3 inflammasomes and the pyroptosis of
microglia (Tufekci et al., 2021). Ginkgolide B (GB) is a plant ester
compound extracted fromGinkgo biloba leaves. Through its anti-
inflammatory, anti-oxidant and anti-apoptotic properties, GB
exerts an effective neuroprotective effect on ischemic brain
injury and neurodegenerative diseases. Zhang et al. found that
GB treatment prevents the pathological process of AD and
inhibits neuroinflammation by inhibiting NLRP3
inflammasome activation and promoting microglia M2
polarization (Zhang et al., 2021). Achyranthes bidentate has
anti-inflammatory and antioxidant activities, and has been
used in traditional Chinese medicine for the treatment of
dementia and osteoporosis for a long time. Recent study has
shown that Achyranthes bidentate polypeptide fraction κ
(ABPPκ) can down-regulate Aβ oligomer-induced IκBα
phosphorylation and NLRP3 expression in vitro. In vivo, pre-
administration of ABPPk inhibits the activation of microglia in
the CA3 region of the hippocampus, promotes the polarization of
the microglia M2 phenotype, and reduces the expression of
NLRP3, cleaved caspase-1 and ASC in the brain, thereby
significantly improving the cognitive impairment of mice (Ge
et al., 2021). In addition, there are other Chinese herbal
medicines, including Dl-3-n-butylphthalide (Dl-NBP) (Wang
et al., 2019), Shaoyao Gancao Tang (SG-Tang) (Chiu et al.,
2021), and Liquiritigenin (LG) (Du et al., 2021), which can
play a neuroprotective role in AD by inhibiting the NLRP3
inflammasome pathway. Therefore, these Chinese herbal
medicines and extracts that can inhibit the activation of
NLRP3 may be a promising and safe treatment for AD.

4.7 Nonsteroidal Anti-inflammatory Drugs
Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most
widely used anti-inflammatory drugs in clinical practice. These
drugs have a wide range of effects, including anti-inflammatory,
anti-rheumatic, antipyretic, analgesic and so on, which are widely
applied in rheumatic and painful diseases. NSAIDs mainly act by
inhibiting the cyclooxygenase-1 (COX-1) and COX-2. Researches
have shown that NSAIDs can delay the development or reduce the
risk of AD by acting on the NLRP3 inflammasome pathway
(Deardorff and Grossberg 2017). Early studies found that
NSAIDs of the fenamate class (such as mefenamic acid) are
effective and selective inhibitors of NLRP3 inflammasome,
which can selectively inhibit the activation of NLRP3
inflammasome in macrophages and relieve the cognitive
impairment of AD mice. The effect of NSAIDs on NLRP3 may
be through the inhibition of the volume-regulated anion channel
(VRAC), independently of COX enzymes (Daniels et al., 2016).
Another study showed that Indomethacin (IND) reduces the
expression of IL-1β and caspase-1 via inhibiting NLRC4 and
NLRP3 inflammasomes, thereby improving neuroinflammation
and memory impairment in AD (Karkhah et al., 2021). In a recent
review, Hampel et al. have reported that, in transgenic AD mice,
the researchers have found that NSAIDs not only exert

neuroprotective effects by suppressing inflammatory effects, but
also reduce early Aβ pathology through other mechanisms, thereby
preventing memory decline. However, all controlled prospective
trials from the clinic have not found positive therapeutic effects of
NSAIDs inADpatients, or have limited their application due to the
severe side effects (Hampel et al., 2020). So the researchers do not
have positive data from patients supporting the hypothesis that
NSAIDs are effective in AD. In humans, the occurrence of AD is
related to many predisposing factors (such as age, genetics and
environment, etc.), and its pathogenic mechanisms are also
complex and diverse. This may lead to different mechanistic
pathways for human AD and rodent AD disease models.
Furthermore, human AD is a long-term asymptomatic chronic
disease, and the relatively late treatment time point may also be a
potential reason for the clinical inefficiency of NSAIDs. Because
epidemiological data show that the incidence of AD decreases after
long-term treatment with NSAIDs (Hampel et al., 2020). In the
future, evaluation of the effect of NSAIDs in AD treatment requires
more data from clinical trials.

4.8 MicroRNAs
MicroRNAs can directly target the NLRP3 inflammasome, and
play an important role in the regulation of inflammation. MiR-
138–5p can directly target the 3′-UTR of NLRP3 and inhibit
the expression of NLRP3. Up-regulation of miR-138–5p
inhibits the activation of NLRP3/caspase-1 axis and
microglia, thereby attenuating hippocampal
neuroinflammation and improving the cognitive function of
the rat model (Feng et al., 2021a). MicroRNA-223 also directly
targets and inhibits the expression of NLRP3, thereby reducing
LPS-induced inflammation in microglia and improving
neuronal function (Zhang et al., 2020). However, some
studies have found that microRNAs also affect the
expression of NLRP3 indirectly. MiR-194–5p can target
TNF receptor associated factor 6 (TRAF6), which interacts
with NLRP3 to promote the activation of NLRP3
inflammasome. Overexpression of miR-194–5p can reduce
the interaction of TRAF6/NLRP3, thereby inhibiting the
NLRP3 inflammasome activation and reducing
neuroinflammation (Wan et al., 2021). A recent study found
that the expression level of miR-22 in the peripheral blood of
AD patients is lower than that of healthy people. MiR-22
regulates glial cell pyroptosis by targeting GSDMD, inhibits
the activation of NLRP3 inflammasome, and reduces the
release of inflammatory cytokines, thereby alleviating
cognitive impairment in AD mice (Han et al., 2020a). In
addition, miR-34c (Xu et al., 2019), miR-30e (Li et al.,
2018c), and miR-7 (Zhou et al., 2016) can also directly
target and inhibit NLRP3, regulate the activity of NLRP3
inflammasome, and improve the occurrence of
neuroinflammation. Perhaps targeting microRNAs for
regulating the activation of NLRP3 inflammasome may be a
new direction for AD treatment.

4.9 Autophagy and Mitophagy Activators
As described in the previous regulation of NLRP3
inflammasome activation, autophagy and mitophagy have
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been shown to regulate inflammasome activation. Therefore,
any drugs that activate autophagy or mitophagy can negatively
regulate NLRP3 inflammasome. IIIM-941 can induce
autophagy through AMPK pathway to inhibit ATP-induced
NLRP3 inflammasome activity (Ali et al., 2021). Dopamine D1
receptor agonist A-68930 enhances the degradation of NLRP3
inflammasome and reduces the secretion of IL-1β and IL-18 by
activating the AMPK/autophagy signaling pathway, thereby
improving the neuroinflammation and cognitive impairment
of mice induced by Aβ1-42 (Cheng et al., 2020). Progesterone
(PG) is a steroid with neuroprotective effects. Hong et al.
found that PG inhibits the activation of NLRP3-caspase-1
inflammasome induced by Aβ via enhancing the autophagy
of astrocytes, thereby exhibiting neuroprotective effects (Hong
et al., 2019). In the TgCRND8 AD model, Ginkgo biloba
extract EGb 761 can activate autophagy in microglia, down-
regulate the level of NLRP3 protein, reduce the activation of
IL-1β and caspase-1 induced by Aβ, and improve the cognitive
ability of mice (Liu et al., 2015). Moreover, AICAR and
metformin can activate PRKAA1 to enhance autophagy,
which not only contributes to clear extracellular Aβ fibrils,
but also inhibits Aβ-induced NLRP3 inflammasome activation
and IL-1β release (Cho et al., 2014). 2,3,5,4′-
Tetrahydroxystilbene-2-O-β-D-glucoside (TSG) is one of
the main active ingredients extracted from Polygonum
multiflorum. It has been proven to be used in the treatment
of AD. TSG can effectively alleviate the neuroinflammatory
response induced by LPS via inhibiting the NLRP3 signaling
pathway in microglia and neurons. In addition, TSG can also
prevent LPS/ATP and Aβ-induced inflammation through
AMPK/PINK1/Parkin-dependent enhancement of
mitophagy, thereby exerting a neuroprotective effect (Gao
et al., 2020). Quercetin (Qu) is a natural flavonoid
compound with anti-inflammatory and antioxidant
properties. Recent studies have found that Qu promotes
mitophagy to enhance the clearance of damaged
mitochondria, thereby inhibiting mtROS-mediated
activation of NLRP3 inflammasome in microglia, and
preventing neuronal damage (Han et al., 2021). We believe
that the enhancement of autophagy and mitophagy in
microglia may be a new strategy for the treatment of AD,
but the safety of this treatment remains to be further observed.

5 ROS AND NF-ΚB INHIBITORS

α-lipoic acid (LA) is an antioxidant, and is frequently used in
the treatment of diabetes. LA can easily pass through the BBB
and play a protective role in the nervous system. Studies found
that α-LA inhibits the activation of NLRP3 inflammasome in
microglia, regulates the polarization of microglia from the M1
phenotype to the M2 phenotype, and reduces the
neuroinflammatory response (Kim et al., 2019). Edaravone
(EDA) is a free radical scavenger that has neuroprotective
effects on cerebral infarction, amyotrophic lateral sclerosis and
dementia. In the AD cell model, EDA significantly attenuates
mitochondrial membrane potential (Δψm), reduces the

production of mtROS, and inhibits the activation of NLRP3
inflammasome induced by Aβ (Wang et al., 2017). Donepezil is
a reversible central acetylcholinesterase (AChE) inhibitor that
can be used to improve the cognitive function of AD patients.
Recent studies found that Donepezil can also inhibit LPS-
induced AKT/MAPK signaling and NF-κB/STAT3
phosphorylation in BV2 microglia, and down-regulate
NLRP3 and pro-IL-1β mRNA levels, thereby reducing
neuroinflammation induced by NLRP3 inflammasome (Kim
et al., 2021).

6 CONCLUSION AND FUTURE
PERSPECTIVES

It has been nearly 2 decades since the NLRP3 inflammasome
being discovered. With continuous studies, researchers have
gained a certain understanding of the structure, composition,
regulation and role of NLRP3, but its precise molecular
mechanisms in diseases have not been fully elucidated. In
recent years, the research of NLRP3 inflammasome in
neurodegenerative diseases has attracted much attention. More
and more evidences have confirmed that NLRP3 inflammasome
activation plays an important role in the pathogenesis and
progression of AD. More importantly, microglia and astrocytes
play a crucial role in the chronic neuroinflammatory response of
AD caused by NLRP3 inflammasome. In AD cells and animal
models, the inhibitory measures against NLRP3 or its
inflammasome constituent molecules can alleviate the
inflammatory response, and reduce Aβ deposition, Tau
phosphorylation and other pathological features, thereby
improving AD-related behavioral abnormalities. Therefore,
targeting NLRP3 inflammasome may be a new trend for AD
treatment. The activation of NLRP3 inflammasome involves
upstream signal related regulatory factors, priming signal,
activation signal and downstream IL-1β and IL-18 effectors. In
the early stage of drug development, researchers usually focus on
strategies to block downstream inflammatory cytokines.
Inhibitors targeting IL-1β as drugs for the treatment of
neurological diseases have not achieved satisfactory clinical
results. With the discovery of new drug targets, people
gradually turn their attentions to NLRP3 and the constituent
molecules ASC and caspase-1. This targeting effect is selective
and efficient, which can ensure the specificity of the treatment to
the greatest extent and reduce non-specific effects. In addition,
the upstream-related regulatory factors of NLRP3 inflammasome
activation can also become attractive pharmacological targets, but
due to the complexity of the interaction of upstream signals, it
may bring non-specific therapeutic roles. So far, although many
compounds have successfully been identified to target NLRP3
inflammasome in vitro and in vivo, their therapeutic effects and
safety in AD patients have yet to be verified by clinical trials. In
the CNS diseases, the development of therapeutic drugs targeting
the NLRP3 inflammasome needs to be evaluated by its
permeability across the BBB. More importantly, under the
premise of obtaining the desired therapeutic values, it will not
cause toxic effects on the whole-body or CNS. In addition, AD is a
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long-term chronic progressive disease, and usually requires
intervention in the early stage of the disease. However, whether
long-term use of targeted drugs for inflammasomes will affect the
health of AD patients requires further evaluation. In view of the
good safety and side effects of traditional Chinese herbal medicines
and plant-derived compounds, they may provide new directions
for the treatment of AD.
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Insight Into theMechanismof Exercise
Preconditioning in Ischemic Stroke
Yuanhan Zhu1, Yulin Sun1, Jichao Hu2 and Zhuoer Pan2*

1Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China, 2Department of Orthopedics, Zhejiang Rongjun
Hospital, Jiaxing, China

Exercise preconditioning has attracted extensive attention to induce endogenous
neuroprotection and has become the hotspot in neurotherapy. The training exercise is
given multiple times before cerebral ischemia, effectively inducing ischemic tolerance and
alleviating secondary brain damage post-stroke. Compared with other preconditioning
methods, the main advantages of exercise include easy clinical operation and being readily
accepted by patients. However, the specific mechanism behind exercise preconditioning
to ameliorate brain injury is complex. It involves multi-pathway and multi-target regulation,
including regulation of inflammatory response, oxidative stress, apoptosis inhibition, and
neurogenesis promotion. The current review summarizes the recent studies on the
mechanism of neuroprotection induced by exercise, providing the theoretical basis of
applying exercise therapy to prevent and treat ischemic stroke. In addition, we highlight the
various limitations and future challenges of translational medicine from fundamental study
to clinical application.

Keywords: exercise preconditioning, ischemic stroke, neurprotection, apoptosis, neuroinflammation, oxidative
stress

INTRODUCTION

Stroke is primarily divided into hemorrhagic (intracranial hemorrhage and subarachnoid
hemorrhage) and ischemic stroke. Ischemic stroke accounts for up to 80% of all strokes and is
one of the most fatal global diseases with rapid onset, high mortality, and high disability [Amarenco
et al., 2009; Hsieh et al., 2010 (accessed on 18 January 2022)]. The treatment principle behind
ischemic stroke is to rapidly reconstruct blood reperfusion, restore oxygen supply to the brain, and
remove harmful metabolites to reduce the cerebral infarction volume (Bhatia et al., 2010; Diprose
et al., 2021). In recent years, neuroprotective agents have been studied based on anti-oxidation, anti-
apoptosis, inhibition of excitatory amino acid release, anti-inflammation, vascular neuroprotection,
and nanoparticles (Subedi and Gaire, 2021a; Chen et al., 2021; Zheng et al., 2021; Kaur and Sharma,
2022). However, most effective drugs in animal experiments often fail in clinical trials (Gladstone
et al., 2002; Wahlgren and Ahmed, 2004). Therefore, finding other effective treatments besides drugs
has been the emerging idea.

Ischemia tolerance has attracted wide attention as an effective protective strategy for cerebral
ischemia. Ischemic preconditioning refers to tissue tolerance during long-term ischemic injury after
one or more transient ischemia-reperfusion. It usually manifests as reduced cellular death, decreased
cerebral infarct size, and improved organ dysfunction (Liu et al., 2021a; Correia et al., 2021; Ripley
et al., 2021). Ischemic preconditioning is an effective neuroprotective method of endogenous cerebral
ischemia, with exercise preconditioning being an essential type. Exercise preconditioning can
effectively induce ischemia tolerance, exert neuroprotective effects, and alleviate brain damage
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post-stroke by providing training multiple times before ictus.
Compared with other preconditioning methods, its advantages
are easy to master, operate clinically, and easily accepted by
patients (Egan et al., 2014). Moreover, clinical and animal
experiments have ascertained the neuroprotective effect of
exercise preconditioning Table 1. The underlying mechanism
involves regulating the inflammatory response, inhibiting
oxidative stress and apoptosis, promoting neural regeneration,
contributing to brain structure and function remodeling, and
reducing tissue injury after cerebral ischemia (Sakakima, 2019;
Hafez et al., 2020; Hafez et al., 2021).

MECHANISM OF EXERCISE
PRECONDITIONING INDUCED CEREBRAL
ISCHEMIA TOLERANCE
Attenuation of Neuronal Apoptosis
Apoptosis is programmed cell death, having the characteristics of
selectivity, initiative, and reversibility. Cellular necrosis is
characterized by cell swelling, membrane rupture, and random
degradation of DNA. In contrast, cellular apoptosis involves
dense chromatin, formation of DNA fragments, cytoplasmic
foam, and apoptotic bodies (Park et al., 2021a; Moujalled
et al., 2021; Saleem, 2021). Apoptosis is crucial in ischemic
injury and is the primary form of delayed neuronal death after
cerebral ischemia (Mitsios et al., 2007; Radak et al., 2017;
Uzdensky, 2019). Therefore, brain damage will be alleviated if
the occurrence and development of neuronal apoptosis are
effectively prevented. Primarily, there are three apoptotic
pathways: endoplasmic reticulum stress pathway, death
receptor pathway, and mitochondrial pathway (Prentice et al.,
2015; Redza-Dutordoir and Averill-Bates, 2016; Wei et al., 2018).
In addition, many apoptosis-related genes and proteins are
regulated and involved in apoptosis after cerebral ischemia
(Ferrer et al., 2003; Uzdensky, 2019).

Previous studies have observed that exercise preconditioning
can effectively alleviate cerebral ischemia associated tissue
damage caused. One study revealed that preconditioned
exercise retained more surviving neurons within the
hippocampus of the ischemic brain tissue, effectively reducing
neuronal death (Tahamtan et al., 2013). Another report depicted
that exercise training could effectively induce autophagy and
reduce neuronal apoptosis after stroke (Zhang et al., 2013).
Exercise can induce the expression of the heat shock protein
(HSP)-70, which attenuates apoptosis by inhibiting apoptosis-
inducing factors and elevating anti-apoptotic proteins expression,
such as Bcl-2, leading to the alleviation of cerebral ischemic injury
(Zhang et al., 2011). Wang et al. (2019b) observed that
preischemic treadmill exercise improves post ischemic brain
injury outcomes by preserving both the old and newly formed
HSP-72-containing neurons within rats. Similarly, Lin et al.
(2015) proposed that preischemic treadmill exercise improves
the outcome of ischemic stroke by elevating the numbers of
neurons and glial cells containing HSP-20. In addition, several
studies explored the potential mechanism underlying exercise-
induced neuroprotection after ischemic stroke. Liebelt et al.

(2010) suggested that exercise preconditioning can reduce
neuronal apoptosis and cerebral infarction volume through
upregulation of HSP-70 and ERK ½. Additionally, ERK and
HSP-70 inhibitors could simultaneously eliminate the
protective effects of exercise preconditioning on the brain.
Other studies found that preischemic treadmill exercise
reduced hippocampal microvascular injury after stroke,
prevented zonula occludens-1 reduction in the hippocampus,
and inhibited matrix metalloproteinase-9 (MMP-9) activation
after stroke (Lee et al., 2019). Another team also revealed the
changes of MMP-9 in stroke mice, and they observed that
exercise preconditioning induced a better outcome than the
control ischemic mice, manifested by reduced MMP-9,
diminished infarct volume, and significantly improved
neurological deficits (Naderi et al., 2018). Exercise
preconditioning may inhibit MMP-9 activity by upregulating
ERK1/2 expression and reducing neuronal apoptosis level after
cerebral ischemia (Chaudhry et al., 2010). ERK-mediated
signaling pathways are involved in ischemia-induced apoptosis
and regulate Bax and Bcl-2 protein expression after stroke (Li
et al., 2021b). The mechanism of exercise preconditioning
affecting Bcl-2 and Bax proteins expression is similar to
hypoxia preconditioning, among which caspase 3, Bcl-2, and
Bax are the core members regulating neuronal apoptosis (Liu
et al., 2021d). Choi et al. (2013) observed that short-term running
exercises inhibited the division of DNA induced by hypoxic-
ischemic injury. Thus, it effectively reduced the expression of
caspase-3 and inhibited neuronal apoptosis (Choi et al., 2013).
Zhang et al. (2019). showed that voluntary wheel running inhibits
cellular apoptosis by downregulating the Bax/Bcl-2 ratio and
caspase-3 protein expression. On further analysis, both mild
exercise postconditioning and intense exercise
postconditioning significantly decreased brain infarct volumes
and apoptosis compared to the resting rats. Moreover, mild
exercise postconditioning enhanced Bcl-2 expression and the
Bcl-2/Bax ratio (Li et al., 2021a). Controversially, Li et al.
(2017b) found that Bcl-2 expression was not affected by
exercise after stroke, indicating the importance of the exercise
time point. Terashi et al. (2019) investigated the neuroprotective
effect of various frequency preconditioning exercises on neuronal
apoptosis post cerebral ischemia in rats. They observed that high-
intensity preconditioning exercise for three or more times per
week exert neuroprotective effects by downregulating the Bax/
Bcl-2 ratio and caspase-3 activation after stroke (Terashi et al.,
2019). The above mentioned results indicate that both pre- or
postconditioning exercise can potentially induce ischemic
tolerance by regulating apoptosis and anti-apoptosis-related
proteins. Therefore, exploring the most suitable time points,
intensity and frequency of exercise should be incorporated in
future studies.

Inhibition of Oxidative Stress
When the body is subjected to harmful stimulation, the
oxidation-antioxidation balance system is broken, leading to
oxidative tissue damage through the accumulation of reactive
oxygen species (ROS) in cells (Lushchak et al., 2021). ROS mainly
includes singlet oxygen, ozone, hydrogen peroxide, and oxygen-

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 8663602

Zhu et al. Exercise Preconditioning in Ischemic Stroke

27

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


free radicals. ROS can be produced through aerobic metabolism
during normal physiological conditions, and the production and
elimination of ROS maintain a dynamic balance in the body.
Nitricoxidesynthas, cyclooxygenase, xanthine dehydrogenase/
xanthine oxidase, reduced-type coenzyme II oxygenase,
myeloperoxidase, and other enzymes promote ROS
production. In contrast, superoxide dismutase, catalase,
peroxidase, glutathione peroxidase, and other enzymes inhibit
ROS production (Kalyanaraman, 2013; Griffiths et al., 2014;
Moldogazieva et al., 2018). Increased oxygen free radical
generation and/or decreased scavenging capacity of the anti-
oxidation system in the injured area after cerebral ischemia
contributes to ROS (Shao et al., 2020; Duan et al., 2021;
Jelinek et al., 2021), leading to neuronal death (Li et al., 2018).
Brain tissue is rich in lipids and is highly sensitive to oxidative
damage caused by ROS, characterizing oxidative stress as an
essential target in treating ischemic stroke (Liu et al., 2002; Liu,
2003; Schönfeld and Reiser, 2017).

Ostuka et al. (2021b) conducted an animal study investigating
the role of exercise preconditioning in subarachnoid hemorrhage
(SAH). It was found that preconditioning ameliorates early brain
injury post SAH. Moreover, the expression of 4-hydroxynonenal
and nitrotyrosine was reduced by Nrf2/HO-1 pathway activation,
improving the oxidative stress indicators (Otsuka et al., 2021b).
Another study from the same team revealed that exercise
preconditioning could decrease ROS in focal brain ischemia
(Otsuka et al., 2016). Leite et al. (2012) found that swim
training could relieve oxidative damage under metabolic stress
by inhibiting glutamic acid and promoting the release of nitric
oxide. In addition, several animal studies have also established
that exercise preconditioning can effectively reduce oxidative
damage of brain tissue during cerebral ischemia-reperfusion.
Long-term and short-term exercise preconditioning can elevate
antioxidant enzyme levels in the hippocampus and cortex, reduce
the malondialdehyde content, inhibit oxidative stress, thereby
alleviating oxidative damage post cerebral ischemia-reperfusion.
This effect was coupled with improved sensory-motor function
and memory. Therefore, it suggests that reducing oxidative stress
could be an essential mechanism of exercise preconditioning-
induced cerebral ischemia tolerance (Radak et al., 2007; Schimidt
et al., 2014; Sosa et al., 2015; Chrishtop et al., 2020). The
combination therapy of exercise and scalp acupuncture
counteracts ischemic brain injury through ROS
downregulation, suggesting a potential therapeutic approach in
stroke patients (Li et al., 2020b).

Hypoxia inducible factor-1α (HIF-1α) is a sensitive oxygen
homeostasis regulator and can be rapidly induced by hypoxia/
ischemia. It plays a vital role in ischemic stroke through various
mechanisms, including oxidative stress regulation, apoptosis,
inflammation, and angiogenesis (Guglielmotto et al., 2009;
Miyata et al., 2011; Cheng et al., 2014; Jiang et al., 2020; Peng
et al., 2020; Zhang et al., 2021a; He et al., 2021). Previous studies
have also determined that HIF-1α is crucial in ischemic
preconditioning, which reduces brain damage post cerebral
ischemia (Liu et al., 2005). HIF-1α exhibits beneficial effects
mediated by the Akt signaling pathway and
neuroinflammatory response multi-modulation in remote

ischemic preconditioning (Yang et al., 2018; Du et al., 2020).
In addition, upregulation of HIF-1α expression by hypoxic
preconditioning promotes angiogenesis and neurogenesis. It
reduces neuronal death and improves neurological function
post ischemic stroke (Chen et al., 2017). Moreover, HIF-1α is
involved in attenuating hyperglycemia-enhanced hemorrhagic
transformation through MMP-2 and MMP-9 inhibition post-
stroke (Soejima et al., 2013). As one of the crucial ways of
ischemic preconditioning, exercise-induced neuroprotection is
significantly associated with HIF-1α. Exercise preconditioning
enhanced HIF-1α expression, contributing to elevated glucose
metabolism and ATP production rates after ischemic stroke
(Dornbos et al., 2013). Furthermore, exercise preconditioning
stimulates the release of HIF-1α. It enhances neurogenesis and
angiogenesis (Li et al., 2017a), promoting synaptic plasticity (Li
et al., 2020a), and reducing neuronal apoptosis (Otsuka et al.,
2019). However, exercise preconditioning-induced
neuroprotective effect could be quickly lost after exercise
cessation. This outcome is a reminder that regulating HIF-1α
expression in a time-dependent manner may potentially focus on
the further treatment of ischemic stroke (Otsuka et al., 2021a).

Suppression of Inflammation
An inflammatory response is a pivotal part of the pathological
process of ischemic brain injury. The inflammatory response
involves a series of inflammatory cells and mediators, which have
a dual effect of damage and repair in the occurrence and
development of cerebral ischemia. Its effect is correlated with
time, scope, and the severity of inflammation (Ceulemans et al.,
2010; Wang et al., 2019a; Pluta et al., 2021). Studies have shown
that inflammation factor expression in the ischemic region
increased significantly within a few hours after cerebral
ischemia, with tissue damage caused by various mechanisms,
including microvascular occlusion, oxygen free radical generation
cytotoxicity enzyme, and chemokine release (Zhang et al., 2021b;
Ma et al., 2021).

Glial cells are a significant group of cells in the brain. The
number of glial cells is 10–50 times that of neurons and has
almost the same total volume as that of neurons. They are mainly
categorized into astrocytes, oligodendrocytes, and microglias (Xu
et al., 2020; Sancho et al., 2021). Microglia secretes inflammatory
molecules at the injury site to protect healthy neurons and
remove the dead ones. During cerebral ischemia, microglia are
rapidly activated, presenting antigens, and releasing
inflammatory factors like IL-1β, IL-6, and TNF-α. In contrast,
during the recovery stage of the brain, microglia exhibits an anti-
inflammatory role (Zhang, 2019; Berchtold et al., 2020; Kang
et al., 2020; Subedi and Gaire, 2021b; Hou et al., 2021). Many
scholars have explored the impact of microglia during exercise.
High-intensity interval training elicited better responses at
functional and cardiovascular levels than moderate-intensity
continuous training after ischemic stroke. Thus,
inflammasome-mediated pyroptosis could be suppressed by
the anti-inflammatory effect of exercise due to the shifting of
microglial polarization towards the neuroprotective M2
phenotype (Liu et al., 2021b). Moreover, treadmill exercises
improved short-term memory, inhibited reactive astrogliosis
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and microglial activation, and suppressed the expression of
adhesion molecules and pro-inflammatory cytokines in
hyperlipidemic rats (Park et al., 2021b). Casaletto et al. (2022)
supported the conclusion that physical activity could be leveraged
to reduce pro-inflammatory microglial states in humans through
modifiable behavior. They monitored physical activities and
cognitive performances in life and quantified the microglial
activation and synaptic markers inside brain tissue at death
(Casaletto et al., 2022). Treadmill exercise can significantly
ameliorate cerebral ischemia-reperfusion injury through IL-4
expression elevation to promote M2 microglia polarization
through the JAK1-STAT6 pathway (Lu et al., 2021).

Astrocytes are the most abundant cell type in the central
nervous system responding to various disease states. They assist
in clearing excessive potassium ions around neurons by
regulating the osmotic balance of ions and water and
maintaining the relative stability of the neuronal external
environment (Jensen et al., 2013; Dinuzzo et al., 2017; Yang
et al., 2021b). Astrocytes are also involved in the inflammatory
response post cerebral ischemia (Gao et al., 2021; Mi et al., 2021;
Kieran et al., 2022), although their roles are different in different
stages of inflammation. In the initial phase of inflammation,
astrocytes behave as antigen-presenting cells and secrete pro-
inflammatory antigen-presenting cytokines to protect tissues
from damage. During the inflammatory response and repair
phase peak, astrocytes act as inflammatory regulatory cells,
secreting anti-inflammatory cytokines and promoting tissue
repair (Regunathan and Piletz, 2003). Jiang et al. (2021)
investigated the physical exercise influence on activated
astrocytes polarization. They observed that the impact of
physical exercise on white matter repair and cognition
improvement could be related to astrocytes polarization
regulation, inducing myelin debris clearance and efficient
remyelination (Jiang et al., 2021). He et al. (2017) revealed
that voluntary wheel running accelerated glymphatic clearance,

improved the expression and polarization of astrocytic aquaporin
4, attenuated neuroinflammation, and protected mice against
synaptic dysfunction and decline in spatial cognition. In
addition, Sun et al. (2018) observed that physical exercise
released the immune response by decreasing cytokine levels
and astrocytes population. Voluntary physical training could
modulate the reactive astrocyte state, linked through astrocytic
brain-derived neurotrophic factor (BDNF) to improve
hippocampal cognition (Belaya et al., 2020).

Promotion of Neurogenesis
Traditionally, the non-regeneration of neurons is the main reason
for the difficulty in neurological functional recovery (Caleo, 2015;
Jones, 2017). Recently, researchers have identified that neurons
have plasticity and the ability to repair post-injury, which can
reshape nerve functions after ischemic stroke. Studies have found
that ischemia-induced brain injury can be attenuated by
regenerating neurons, synapses, and vessels, improving the
defense capability of brain tissue. Moreover, the blood supply
to the ischemic area can be restored, thereby promoting
remodeling of neural function after ischemic injury (Yang
et al., 2021a; Liu et al., 2021c; Zong et al., 2021; Puderbaugh
and Emmady, 2022). The improved outcomes indicate that
neural regeneration is an essential mechanism behind exercise
preconditioning inducing ischemia tolerance (Shamsaei et al.,
2015). Praag et al. observed that voluntary exercise ameliorates
certain deleterious morphological and behavioral consequences
of aging connected with neurogenesis regulation (van Praag et al.,
2005). Another study found that treadmill exercise improved
short-term and spatial memories by elevating neurogenesis and
suppressing apoptosis within the hippocampal dentate gyrus of
old-aged rats (Kim et al., 2010). Codd et al. revealed that elevated
neurogenesis is sufficient to reverse hippocampal injury-induced
deficits in either the damaged or intact hippocampus (Codd et al.,
2020). Moreover, the improvement in hippocampal-based
learning in aged mice after physical exercise is dependent on
neurogenesis in the dentate gyrus and is regulated by growth
hormone level changes. Specific changes in hippocampal circuitry
underlying the cognitive improvements resulting from physical
activity were also identified, suggesting dependency on
neurogenesis activation in aged animals (Blackmore et al.,
2021; Zhou et al., 2021). Cheng et al. (2020) observed that
treadmill exercise promotes neurogenesis and myelin repair by
upregulating the Wnt/β-catenin signaling pathway and improves
the neurological deficit caused by focal cerebral ischemia/
reperfusion. Similarly, Hong et al. (2020) showed that
treadmill exercise enhanced motor function and short-term
memory by elevating synaptic plasticity and neurogenesis in
thrombotic stroke mice. Zhang et al. (2020) indicated that
post-stroke exercise improved behavioral function recovery,
where synaptogenesis was a beneficial factor.

BDNF plays a vital role in increasing synaptic plasticity and
promoting neural regeneration. Xu et al. (2021) found an
upregulation of BDNF and TrkB in the treadmill exercise
group in rats. BDNF/TrkB signaling pathway could modulate
the impact of exercise and the enriched environment by
improving learning and memory in rats. BDNF expression

FIGURE 1 | The involved mechanisms underlying preconditioning
exercise-induced neuroprotection in ischmeic stroke.
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TABLE 1 | Summary of pre-clinical studies of exercise preconditioning in ischemic stroke.

Exercise
type

Exercise manner Species and
model

Outcome Involved signal References

treadmill
exercise

10 min/day (15–25 m/min),
5 days/week for 3 weeks

male Sprague–Dawley
rats, 60 min of MCAO

reduced infarct volume and
ameliorated sensorimotor function

upregulate BDNF, HIF-1α, and
P2X7 receptor

Otsuka et al.
(2021a)

treadmill
exercise or
swimming

Swim or run (15 m/min)
30 min/day, 5 days/week for
3 weeks

male Wistar rats, 30 min
of MCAO

Increase brain trophic support and
reduce brain damage

Increase the gene expressions of
TrkB, TNF-α, and MMP2

Teymuri
Kheravi et al.
(2021)

treadmill
exercise

4 weeks, the distance of
exercise per week is about
5,000 m

male Sprague-Dawley
rats, 90 min of MCAO

improve neurocognitive function Increase the basal dopamine level Fan et al. (2021)

treadmill
exercise

25 min/day for 4 days, break
for 2 days, and one acute bout
for 30 min

male Wistar rats, embolic
stroke model

reduce the neurovascular injury
and improved functional outcomes

Increase the expression of peNOS
and pAMPK

Hafez et al.
(2020)

treadmill
exercise

30 min/day (2 m/min for the
first 5 min, 3 m/min for the next
5 min, 5 m/min for the last
20 min) for 4 weeks

male Wistar rats, bilateral
common carotid arteries
occlusion

ameliorate shot-term memory
impairment and prevent
microvascular injury in the
hippocampus

prevente the reduction of ZO-1 in
the hippocampus and inhibite the
activation of MMP-9

Lee et al. (2019)

treadmill
exercise

30 min (20 m/min), 30 min
(30 m/min) and 60 min (30 m/
min) for 1 week each

male Sprague-Dawley
rats, MCAO

attenuate neurological injury preserve old and newly formed
HSP72-containing neurons

Wang et al.
(2019b)

treadmill
exercise

30 min/day (25 m/min) for 3 or
5 days/week for 3 weeks

male Sprague-Dawley
rats, 60 min of MCAO

reduce infarct volumes, improve
neurological scores and
sensorimotor function

reduce the Bax/Bcl-2 ratio and
caspase-3 activation

Terashi et al.
(2019)

treadmill
exercise

30 min/day (25 m/min) for
5 days/week for 3 weeks

male Sprague-Dawley
rats, 60 min of MCAO

reduce ischemic neuronal cell
death, induce neuron- and
astrocyte-mediated brain ischemic
tolerance

Increase expression of HIF-1α, and
inhibit 14-3-3γ/p-β-catenin
Ser37 anti-apoptotic pathway

Otsuka et al.
(2019)

treadmill
exercise

30 min/day for 5 days/week
for 8 weeks

male Wistar rats, 60 min
of MCAO

improve neurological function and
BBB integrity

develop higher levels of cortical
VEGF-A and striatal VEGF-R2

Rezaei et al.
(2018)

treadmill
exercise

40 min/day (18 m/min) for
5 days/week for 4 weeks

ovariectomized mice,
permanent MCAO

diminish infarct volume, and
improve neurological deficits

Decrease MMP-9, and increase
IL-10

Naderi et al.
(2018)

treadmill
exercise

5 days/week for 4 weeks, time
and intensity increase
progressively

male wistar rats, 60 min of
MCAO

reduce brain edema and decrease
the neurological movement
disorders

none Shamsaei et al.
(2015)

treadmill
exercise

30 min/day (15 m/min) for
3 days/week for 4.5 weeks

male C57Bl/6 mice,
13 min of global cerebral
ischemia

forced treadmill exercise induce a
stress response, and lead to
increased neuronal damage

Increase levels of NLRP3, galectin-
3, IFNγ and IL-10

Svensson et al.
(2016)

treadmill
exercise

30 min/day (20 m/min) for
6 days/week

male Sprague Dawley
rats, 90 min of MCAO

reduce brain infarct volume and
neurological deficits

Increase SOD activity and
decrease the concentration
of MDA

Feng et al.
(2014)

treadmill
exercise

30 min/day (15 m/min) for
6 days/week for 3 weeks

male Sprague Dawley
rats, 120 min of MCAO

improve neurological deficits,
reduce infarct volume, mitigate
pathological damage in the
ischemic cortex

regulation of the TLR4/NF-κB
signaling pathway and the
inhibition of central and peripheral
inflammatory cascades

Zhu et al. (2016)

treadmill
exercise

30 min/day (25 m/min) for
5 days/week for 3 weeks

male Sprague Dawley
rats, 60 min of MCAO

reduce neuronal apoptosis,
oxidative stress, and infract
volume, ameliorate motor function,
increase astrocyte proliferation and
angiogenesis

enhance expression of MK and
BDNF

Otsuka et al.
(2016)

treadmill
exercise

30 min (20 m/min), 30 min
(30 m/min) and 60 min (30 m/
min) for 1 week each

male Sprague Dawley
rats, 90 min of MCAO

attenuate brain infarct, glial
apoptosis, and neurological
deficits

Increase the numbers of both the
HSP20-containing neurons and
the HSP20-containing glia

Lin et al. (2015)

swimming 60 min/day for 6 days/week
for 4 weeks

Sprague Dawley rats,
120 min of MCAO

reduce infarct volume upregulate the expression of
HIF-1α

Wang et al.
(2015)

treadmill
exercise

30 min/day (20 m/min) for
6 days/week for 3 weeks

male Sprague Dawley
rats, 120 min of MCAO

Wang et al.
(2014)

(Continued on following page)
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levels in the ischemic brain were significantly upregulated post
exercise cessation in an animal study (Wang et al., 2020),
consistent with another study (Xu et al., 2021). Interestingly, a
meta-analysis summarized the effects of physical exercise with
different intensities, duration, and frequency on peripheral BDNF
levels among the sedentary elderly without any cognitive
impairment. The results showed that physical exercise did not
cause any significant difference in peripheral BDNF
concentration (Fleitas et al., 2022), which indicates that BDNF
expression in the brain and peripheral plasma are influenced
differentially by exercises.

PROSPECTS

Therefore, exercise preconditioning could induce ischemia
tolerance by inhibiting neural apoptosis and oxidative stress,
regulating the inflammatory response, promoting neural
regeneration, and exerting preventive and protective effects on
the ischemic brain injury (Figure 1). Exercise preconditioning
depicts a significant application prospect being a safe and slight
side-effect strategy to prevent cerebral ischemia. Further studies
on the neuroprotective mechanism of exercise preconditioning
will identify new therapeutic targets for ischemic stroke.
Moreover, supporting exercise training could provide a solid
theoretical foundation as effective prevention and control
measures of ischemic stroke patients.

However, many problems regarding exercise preconditioning
require attention. First, the heterogeneity of population

subgroups, including age, gender, dietary habits, etc., should be
considered. Different hypoxic degrees, duration, and intensity will
induce different effects. For example, how does exercise play a
neuroprotective role in inducing cerebral ischemia tolerance
among the elderly population with the most incidence of
ischemic stroke? What type of exercise, frequency, intensity, and
duration could harness the best results? Second, there is a lack of
specific indicators to analyze the effect of exercise preconditioning.
Applying mild stress may exacerbate the disease state rather than
provide a cure in some disease cases. This outcome necessitates
understanding the preconditioning and ischemic strokemechanisms
and the stress response of cells/tissues/organs at different stages of
ischemic stroke. Moreover, it also requires searching for specific
physiological biomarkers to improve the monitoring of disease
progression or treatment effectiveness. In addition, the exercise
preconditioning mechanism needs to be further explored. Does
exercise directly affect the brain or protect brain function
through peripheral effect? Which group of brain cells is more
sensitive to exercise stimulation? Finally, combining exercise
preconditioning with traditional medicine, nanomedicine, or
other preconditioning methods needs to be studied, which could
be a potential therapeutic approach for ischemic stroke.
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TABLE 1 | (Continued) Summary of pre-clinical studies of exercise preconditioning in ischemic stroke.

Exercise
type

Exercise manner Species and
model

Outcome Involved signal References

reduce brain infarct volume,
cerebral edema and neurological
deficits

regulation of PKC-α-GLT-1-
Glutamate and PI3K/Akt-GLT-1-
Glutamate signal pathway

treadmill
exercise

30 min/day (20 m/min) for
5 days/week for 2 weeks

male Sprague Dawley
rats, 120 min of MCAO

improve CBF and neurologic
deficits, reduce infarct volume

Decrease ET-1 expression Zhang et al.
(2013)

treadmill
exercise

30 min/day (18 m/min) for
5 days/week for 3 weeks

male wistar rats, 10 min of
4-vessel occlusion model

improve behavioral functions and
maintain more viable cells in the
dorsal hippocampus

none Tahamtan et al.
(2013)

treadmill
exercise

30 min/day (30 m/min) for
5 days/week for 3 weeks

male Sprague Dawley
rats, 120 min of MCAO

reduce neurological deficit and
infarct volume, increase the rates of
glucose metabolism

reduce ADP/ATP ratio, increase
GLUT1, GLUT3, and PFK

Dornbos et al.
(2013)

treadmill
exercise

30 min/day (30 m/min) for
5 days/week for 3 weeks

Sprague Dawley rats,
MCAO

reduce neuronal apoptosis inhibit the expression of MMP-9
and ERK1/2 expression

Chaudhry et al.
(2010)

treadmill
exercise

30 min/day (30 m/min) for
5 days/week for 3 weeks

Sprague Dawley rats,
MCAO

diminish neuronal injury, reduce
infarct volume

upregulate HSP-70, ERK 1/2 and
Bcl-x(L), downregulate Bax and AIF

Liebelt et al.
(2010)

treadmill
exercise

30 min/day (30 m/min) for
5 days/week for 3 weeks

male Sprague Dawley
rats, 120 min of MCAO

Decrease neurological deficits,
infarct volume and leukocyte
infiltration

Reduce TNF-α, ERK 1/2, MMP-9
and ICDM-1 expression

Curry et al.
(2010)

BBB, blood-brain barrier; BDNF, brain-derived neurotrophic factor; CBF, cerebral blood flow; ERK1/2, extracellular signal-regulated kinase one and 2; GLT-1, glutamate transporter-1;
HIF-1α, hypoxia-inducible factor-1α; HSP, heat shock protein; ICDM-1, intercellular adhesion molecule-1; MCAO, middle cerebral artery occlusion; MDA, malondialdehyde; MK, midkine;
MMP, matrix metalloproteinase-9; NF-κB, nuclear transcription factor-κB; NLRP3, nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3; peNOS,
phosphorylated endothelial nitric oxide synthase; SOD, superoxide dismutase; TLR4, toll-like receptor-4; TNF-α, tumour necrosis factor-α; TrkB, tropomyosin receptor kinase B; VEGF-A,
vascular endothelial g PKC-α, protein kinase C-α; rowth factor A; VEGF-R2, vascular endothelial growth factor receptor 2; ZO-1, zonula occludens-1.
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Three-Day Continuous Oxytocin
Infusion Attenuates Thermal and
Mechanical Nociception by Rescuing
Neuronal Chloride Homeostasis via
Upregulation KCC2 Expression and
Function
Xiyuan Ba1†, Chenqiu Ran2†, Wenjun Guo3, Jing Guo4, Qian Zeng1, Tao Liu5, Wuping Sun1,
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3Department of Pain Medicine, Shenzhen, China, 4Department of Endocrinology and Metabolism, Shenzhen University General
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Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China

Oxytocin (OT) and its receptor are promising targets for the treatment and prevention of the
neuropathic pain. In the present study, we compared the effects of a single and continuous
intrathecal infusion of OT on nerve injury-induced neuropathic pain behaviours in mice and
further explore the mechanisms underlying their analgesic properties. We found that three
days of continuous intrathecal OT infusion alleviated subsequent pain behaviours for
14 days, whereas a single OT injection induced a transient analgesia for 30min, suggesting
that only continuous intrathecal OT attenuated the establishment and development of
neuropathic pain behaviours. Supporting this behavioural finding, continuous intrathecal
infusion, but not short-term incubation of OT, reversed the nerve injury-induced
depolarizing shift in Cl− reversal potential via restoring the function and expression of
spinal K+-Cl- cotransporter 2 (KCC2), which may be caused by OT-induced enhancement
of GABA inhibitory transmission. This result suggests that only continuous use of OT may
reverse the pathological changes caused by nerve injury, thereby mechanistically blocking
the establishment and development of pain. These findings provide novel evidence
relevant for advancing understanding of the effects of continuous OT administration on
the pathophysiology of pain.

Keywords: neuropathic pain, oxytocin, chloride homeostasis, K+-Cl-cotransporter 2, continuous intrathecal drug
delivery

INTRODUCTION

Neuropathic pain is a debilitating condition that affects 7–10% of the general population (Colloca
et al., 2017). Unlike opioids and non-steroidal anti-inflammatory drugs for nociceptive pain, the
medications used to treat neuropathic pain tend to only be modestly effective and can potentially
cause multiple adverse reactions (Baron et al., 2010). Developing mechanism-based therapies for
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neuropathic pain remains a major challenge. A growing body of
literature has demonstrated the analgesic effects of the
neuropeptide oxytocin (OT) in both humans and rodents (see
reviews by Oxytocin and pain perception: from animal models to
human research) (Gimpl and Fahrenholz, 2001; Honda and
Takano, 2009; Koshimizu and Tsujimoto, 2009; Stoop, 2014;
Boll et al., 2018; Herpertz et al., 2019). Electrical stimulation
of the anterior part of the hypothalamic paraventricular nucleus
increased OT concentration in the cerebrospinal fluid (CSF) and
produced antinociception in rats (Martinez-Lorenzana et al.,
2008), and intraperitoneal or intrathecal (i.t.) injection of OT
was shown to block neuropathic pain in rats (Yang et al., 2007).
Clinical data suggested that administration of OT in the
cerebrospinal fluid (CSF) reduces surgical recovery time while
decreasing pain and hypersensitivity in patients after injury
(Wang et al., 2013). Considering it also plays a key
modulatory role in emotions, stress and anxiety, which are
well known to substantially influence pain perception
(Apkarian et al., 2005; Apkarian, 2008; Baron et al., 2010;
Peters, 2015; Tracy et al., 2015), OT has become a promising
target for therapeutic interventions for pain.

Excitation/inhibition imbalance along the entire nociceptive
pathway is considered a main driver in the development of
neuropathic pain (Kahle et al., 2014). One of the mechanisms
proposed for this imbalance involves compromised inhibition in
the superficial dorsal horn of the spinal cord, leading to
hyperactivity of spinal dorsal horn circuit, which is the main
target for primary nociceptive afferents (Prescott, 2015). γ-
aminobutyric acid (GABA) is the most critical inhibitory
neurotransmitter in the central nervous system. The inhibitory
efficiency of GABAergic transmission is determined primarily by
the electrochemical gradient for Cl−, which is depended by the
intra and extracellular concentration of Cl− (Ganguly et al., 2001).
It has been demonstrated that Cl− homeostasis is collapsed and
Cl− levels are elevated in spinal cord neurons under the
pathophysiology of pain disorders (Coull et al., 2003).
Recently, a body of evidence showed that compromised spinal
inhibition resulted from downregulation of K+-Cl- cotransporter
2 (KCC2) and the subsequent disruption of intracellular chloride
homeostasis (Coull et al., 2003; Price et al., 2009; Li et al., 2016;
Mapplebeck et al., 2019). In mature central neurons, KCC2 is
responsible for the low intracellular Cl− concentration ([Cl−]i)
that forms the basis for hyperpolarizing GABAA receptor-
mediated responses. It regulates the formation (Li et al., 2007),
functional maintenance and plasticity of glutamatergic synapses
(Fiumelli et al., 2005; Gauvain et al., 2011; Chevy et al., 2015;
Llano et al., 2015). Indeed, Modol’s results indicate that nerve
injury results in a reduction in the expression of KCC2 in the
spinal dorsal horn that accompanies chronic pain, but prevention
of the downregulation of KCC2 along the central sensory
pathways relieves neuropathic pain after peripheral nerve
injury (Modol et al., 2014). Loss of activity of this transporter
is a key mechanism for chronic pain, and different groups
demonstrated that renormalization of impaired KCC2
alleviated nerve injury-induced neuropathic pain (Gagnon
et al., 2013; Kitayama, 2017). Leonzino et al. found that OT
directly modulates the functional activity of KCC2 by promoting

its phosphorylation and insertion/stabilization at the neuronal
surface in an early developmental time window (Leonzino et al.,
2016). However, little is known on how OT affects chloride
homeostasis and the function of KCC2 in neuropathic pain.

In addition, the current understanding of mechanisms
underlying OT analgesia is mainly based on studies using
single or multiple injections of OT in animals. Little is known
about the effects of continuous OT administration on pain
processing. In this study, we adopted intrathecal drug delivery
technique to administer OT centrally in nerve injured mice.
Chronic intrathecal drug infusion through an implantable
pump is a clinically available strategy to treat a number of
neurological diseases (Ganguly et al., 2001; Kästner, 2010).
Findings based on continuous intrathecal OT delivery in mice
may provide more information on how OT targets the
pathophysiology of pain and better implications for human
therapy.

Thus, in the present study we adopted intrathecal drug
delivery technique to compare the effects of a single or
continuous intrathecal infusion of OT on pain behaviours in
mice; we determined whether they block neuropathic pain by
preventing the disruption of the intracellular Cl− homeostasis in
the spinal superficial dorsal horn, and whether it is mediated by
restoring the KCC2 expression and function.

MATERIALS AND METHODS

Animals
All animal procedures were conducted in strict adherence to the
guidelines of the International Association for the Study of Pain
and were approved by the Animal Care and Use Committee of
Health Science Center at Shenzhen University. 80 male C57BL/6
mice (5–8 weeks of age) were purchased from Guangdong
Province Laboratory Animal Center (Guangzhou, China). 20
vGAT-ires-cre mice and 20 td-Tomato (Ai9) mice were
purchased from Jackson Laboratory. The animals were housed
in plastic cages (5 per cage) in a temperature-controlled
environment on a 12 h/12 h light/dark cycle. Food and water
were available ad libitum.

Reagents
Oxytocin (catalogue: H-2510) and [d(CH2)51,Tyr(Me)2,
Thr4,Orn8,des–Gly–NH29]–vasotocin (dVOT, catalogue: H-
2510) were purchased from Bachem AG (Bubendorf,
Switzerland). TC OT39 (catalogue: 1078) was obtained from
Tocris (Minnesota, United States).

Neuropathic Pain Model
The partial sciatic nerve ligation (pSNL) pain model was
established according to previously described procedures
(Seltzer et al., 1990). Briefly, the animals were anaesthetized
with sodium pentobarbital (50 mg/kg, i.p.) and a tight ligation
of approximately one-third to one-half the diameter of the
right sciatic nerve (ipsilateral) was performed with 6–0 silk
suture. In sham-operated mice, the nerve was exposed without
ligation.
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Behavioural Testing
Von Frey testing was performed to assess mechanical
allodynia. The mice were habituated to the environment for
2 days before the testing began. All the behaviours were tested
blindly. For testing mechanical allodynia, the mice were
confined separately in boxes (14 × 18 × 12 cm) placed on
an elevated metal mesh floor, and their hind paws were
stimulated with a series of von Frey hairs with
logarithmically increasing stiffness (0.16–2.00 g, Stoelting)
situated perpendicularly to the central plantar surface. The
50% paw withdrawal threshold was determined by Dixon’s up-
down method. The hot plate test (Hot/Cold Plate, Cat. 35150,
Ugo Basile, Italy) was used to examine thermal hyperalgesia.
Each mouse was placed on the hot plate, and the latency of paw
withdrawal from the heat stimulus was measured twice
separated by a 5-min interval. The average value was used
as the latency of response. All behavioural testing was done
with the experimenters blinded to the treatment conditions.

Intrathecal Injection and Continuous
Intrathecal Infusion of Drugs
OT (0.1 μg in 10 μL) or dVOT (0.1 μg/10 μL) was injected into the
subarachnoid space through the intervertebral foramen between
L4 and L6 (Hylden and Wilcox, 1980). For the intrathecal
infusion of drugs, an osmotic minipump (model 1003D,
ALZET, Cupertino, CA, United States) connected with a
polyethylene catheter was deposited in a subcutaneous pocket
following partial sciatic nerve ligation. The other end of the
catheter was inserted from the atlanto-occipital membrane
into the subarachnoid space until the tip of the catheter
reached the lumbar spinal enlargement. OT and other reagents
were then delivered continuously with a flow rate of 1 μL/h for
3 days from days 0 to 2 after pSNL surgery. The final dose of OT
intrathecal infusion is 0.3 μg in 100 μL. (The volume delivery rate
and the delivery duration of ALZET pumps are fixed at
manufacture).

Quantitative RT-PCR
The animals were sacrificed and L4–6 spinal cord segments were
collected in tubes with RNAlater (Qiagen Inc., Valencia, CA,
United States) and stored at −80°C until RNA isolation. Total
RNA was isolated from these tissues according to Chomczynski’s
method (Chomczynski and Sacchi, 1987) and reverse transcribed
using Omniscript reverse transcriptase (Qiagen Inc., Valencia,
CA, United States) at 37°C for 60 min. The reaction was
performed in the presence of the RNase inhibitor rRNAsin
(Promega, Madison, WI, United States) and an oligo (dT16)
primer (Qiagen) to selectively amplify the mRNA. For
quantitative PCR, 45 ng of cDNA was used as a template.
Reactions were performed using Assay-On-Demand TaqMan
probes and TaqMan Universal PCR Master Mix (Applied
Biosystems, Foster, CA, United States) according to the
manufacturer’s protocol. Reactions were run on a Real-Time
PCR iCycler IQ (Bio-Rad, Hercules, CA, United States) with
software version 3.0. The expression levels of Kcc2 were
normalized to ß-actin.

Western Blotting
The animals were sacrificed, and the L4-6 spinal cord segments
were removed and stored at −80°C until assayed. The samples
were homogenized and centrifuged to extract the protein, and the
resulting preparations were saved. Equal amounts of protein were
separated by 10% Tris-Tricine SDS-PAGE and transferred onto
polyvinylidene difluoride membranes. The membranes were then
blocked in 5% non-fat milk for 1 h at room temperature, followed
by overnight incubation with rabbit anti-KCC2 antibody (1:1000;
ab49917, Abcam, United States) and ß-actin (1:2000; Sigma,
United States) primary antibody. Immunoblots were then
incubated for 1 h at room temperature with goat anti-rabbit
polyclonal IgG (1:3000, ab205718, Abcam, MA, United States).
Immunoblots were developed by chemiluminescent substrate and
quantified using ImageJ software.

Immunohistochemistry
The mice were deeply anesthetized with isoflurane and
transcardially perfused with PBS followed by 4% PFA. Lumbar
L4-6 spinal cord segments sections were blocked and then
incubated overnight at 4°C with rabbit antibodies against
KCC2 (Abcam, ab49917, United States). The sections were
then incubated for 30 min at 37°C with AF488-conjugated
secondary antibodies (donkey, 1:500, Jackson Immuno-
Research, West Grove, PA, United States), and the nuclei were
stained with DAPI. The sections were viewed under Zeiss 880
inverted confocal microscopy, and images were collected using
identical acquisition parameters and quantified using Image-Pro
Plus 6.0 software (Media Cybernetics, Silver spring, MD,
United States) by experimenters blinded to treatment groups.

In Situ Hybridization
In situ hybridization was performed using the RNAscope system
(Advanced Cell Diagnostics) following the manufacturer’s
protocol. Pre-treatment consisted of dehydration, followed by
incubation with hydrogen peroxide and protease IV at room
temperature. The Multiplex Fluorescent Kit v2 protocol was
followed using commercial probes for the OT receptor (Oxtr,
NM_001081147.1, #402658-C3). Images were captured by Zeiss
880 inverted confocal microscopy. Visualized cells with more
than 5 puncta per cell were classified as positive neurons.

Electrophysiological Recordings
Adult (5–7 weeks) male mice were anaesthetized with urethane
(1.5–2.0 g/kg, i.p.). The lumbosacral spinal cord was removed and
submerged into ice-cold dissection solution saturated with 95%
O2 and 5% CO2 at room temperature. Transverse slices
(300–400 μm) were cut in a vibrating microslicer (VT1200s
Leica). The slices were incubated at 32°C for at least 30 min in
regular artificial cerebrospinal fluid (aCSF) equilibrated with 95%
O2 and 5% CO2.

The following solutions were used: dissection solution
containing (in mM) 240 sucrose, 25 NaHCO3, 2.5 KCl, 1.25
NaH2PO4, 0.5 CaCl2, and 3.5 MgCl2 at pH 7.4; regular artificial
CSF containing 135 NaCl, 2.5 KCl, 3MgCl2, 1 CaCl2, 10 HEPES, 1
NaH2PO4, and 10 glucose at pH 7.4; and normal intrapipette
solution for perforated recording containing 115 K-
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methylsulfate, 25 KCl, 2 MgCl2, 10 HEPES, 0.4 GTP-Na and
5 Mg-ATP at pH 7.2 and 310 mOsm.

To measure the reversal potential of GABA-evoked currents, a
slice was placed in the recording chamber and completely
submerged and superfused at a rate of 2–4 ml/min with aCSF.
A perforated patch-clamp was applied to avoid changes in the
[Cl−]i. To measure the chloride equilibrium potential (ECl),
gramicidin D (80 μg/ml with an 0.8% DMSO final
concentration from an 8 mg/ml stock in DMSO) was added to
the intrapipette solution, and 6-cyano-7- nitroquinoxaline-2,3-
dione (CNQX, 10 μM), DL-2-amino-5-phosphonovaleric acid
(APV, 50 μM) and tetrodotoxin (TTX, 0.5 μM) were added to
the aCSF solution. The tip of the patch pipette was filled with the
normal intrapipette solution, while the rest of the pipette
contained the gramicidin-containing solution. After forming a
seal on the membrane, we waited 30 min for the gramicidin to
effectively reduce the series resistance to below 100 MΩ.
Membrane potential measurements were corrected for liquid
junction potential, which was measured as in(Guo et al.,
2014). GABA (1 mM) was puffed locally and instantaneously,
and the puff pipette was aimed toward the recording pipette.
Voltage ramps were applied from +8 to −92 mV over 200 ms at a
holding potential of −42 mV. Since the voltage ramp might evoke
a basal current, a control voltage ramp was first applied to record
the basal current; 1 min later, GABA was puffed, followed by
another voltage ramp, and then the GABA-evoked currents were
recorded (Billups and Attwell, 2002). The reversal potential was
analysed as in (Billups and Attwell, 2002).

Excitatory and inhibitory post-synaptic currents (EPSCs and
IPSCs) recordings were made from lamina II inhibitory
neurons. The patch-pipette solution contained (in mM)
K-gluconate 135, KCl 5, CaCl2 0.5, MgCl2 2, EGTA 5,
HEPES 5, an Mg-ATP 5; or Cs2SO4 110, CaCl2 0.5, MgCl2 2,
EGTA 5, HEPES 5, Mg-ATP5, tetraethylammonium (TEA)-Cl 5
(pH = 7.2) (Jiang et al., 2014). The former and latter solutions
were used to record EPSCs and IPSCs, respectively. EPSC
recordings were made at a holding potential (VH) of −70 mV,
where no IPSCs were observed, since the reversal potential for
IPSCs was near −70 mV. IPSCs were recorded at a VH of 0 mV,
where EPSCs were invisible as reversal potential for EPSCs was
close to 0 mV. Cs+ and TEA were used to block K+ channels
expressed in the recorded neurons, and thus to easily shift VH

from −70 to 0 mV. GABAergic IPSCs were obtained in the
presence of the glycine-receptor antagonist strychnine (1 mM).
EPSC and IPSC events were detected and analysed using Mini
Analysis Program 6.0. Signals were acquired using an Axopatch
700B amplifier and analysed with pCLAMP 10.3 software. Only
neurons with resting membrane potential < −50 mV and stable
access resistance were included.

Statistical Analysis
The data are expressed as means ± SEM and analysed with a t-test
or variance (ANOVA) using one-way or mixed factorial designs
as appropriate, followed by Bonferroni’s post hoc test or simple-
effects ANOVA. All statistical analyses were performed using
GraphPad Prism 8.0. (GraphPad Inc., La Jolla, CA,
United States). Significance was defined as p < 0.05.

RESULTS

Three-Day Continuous Intrathecal Infusion,
but Not Short-Term Application of OT,
Attenuated the Establishment and
Development of Nerve Injury-Induced
Nociceptive Behaviours in pSNL Mice
pSNL-induced nerve injury produced mechanical allodynia and
thermal hyperalgesia in mice. This mechanical and thermal
hypersensitivity started on day 1 and remained relatively stable
from days 3 to 14 after nerve ligation (Supplementary Figures
S1A,B).

An osmotic minipump was implanted immediately following
partial sciatic nerve ligation. OT was then delivered with a flow
rate of 1 μL/h for 3 days from days 0–2 after pSNL surgery.
Mechanical allodynia and thermal hyperalgesia were tested at
days 3, 5, 7 and 14 after pSNL surgery (Figure 1A). As shown in
Figures 1B,C, infusion of OT (0.3 μg, 100 μL) for 3 days before
the behavioural tests decreased nerve injury-induced
nociceptive behaviours in mice. Compared with the vehicle,
3-days continuous infusion of OT increased the mechanical
threshold in the von Frey test [F(1,14) = 61.57, p < 0.001;
Figure 1B, n = 8] and paw withdrawal latency in the hot-plate
test [F(1,14) = 50.74, p < 0.001; Figure 1C, n = 8] for 14 days,
which was the longest period we tested, indicating that 3-days
continuous intrathecal OT infusion may attenuate the
establishment and development of nerve injury-induced
neuropathic pain.

In comparison, the effect of a single injection of OT on pSNL-
induced mechanical and thermal hypersensitivity was also tested
on day 3 after nerve ligation, when the pain behaviours were well
established (Figure 1D). Single intrathecal OT (0.1 μg/10 μL)
significantly alleviated pSNL-induced mechanical allodynia
[F(1,14) = 42.59, p < 0.001; Figure 1E] and thermal
hyperalgesia [F(1,14) = 29.66, p < 0.001; Figure 1F] at 10 [p <
0.001] and 30 min [p < 0.001] after injection. This effect of OT
was not observed at 60 min after the injection [p > 0.05; Figures
1E,F], indicating that the analgesic effect of a single intrathecal
OT administration on nerve injury-induced pain behaviours is
transient. OT at the doses used in the present study had no effect
on the locomotor activity or motor coordination inmice (date not
shown).

We found no significant differences between male and female
mice in the analgesic effects of oxytocin [p > 0.05; Supplementary
Figure S4].

The Effects of 3-days OT Infusion on Nerve
Injury-Induced Nociceptive Behaviours
Were Mediated by Oxtrs
To determine whether the effects of 3-days OT infusion on
neuropathic pain were mediated by Oxtrs, its agonist or
antagonist was administrated (Figure 2A). Co-intrathecal
infusion (100 μL) of a selective Oxtr antagonist, dVOT
(0.3 μg), with OT (0.3 μg) blocked the analgesic effect of OT
on nerve injury-induced mechanical [F(1,13) = 25.04, p =

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 8450184

Ba et al. Oxytocin Attenuates Pain via KCC2

39

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


0.0002; Figure 2B, n = 7–8] and thermal hypersensitivity
[F(1,12) = 28.92, p < 0.001; Figure 2C, n = 7]. The selective
Oxtr agonists TC OT (0.3 μg/100 μL) produced significant
analgesic effects which were equivalent to OT [von Frey test

F(1,14) = 15.42, p = 0.0015; Hot-plat test F(1,14) = 29.80, p <
0.0001; Figures 2D,E; n = 8]. There results suggested that the 3-
days intrathecal infusion of OT induced analgesic effect is
mediated by the Oxtrs in the spinal cord.

FIGURE 1 | Three-day continuous intrathecal infusion, but not short-term application of OT, attenuated the establishment and development of nerve injury-induced
nociceptive behaviours in pSNL mice. (A) A schematic of the experimental design. (B,C) Continuous intrathecal OT infusion (0.3 μg/100 μL) for 3 days before
behavioural tests decreased pSNL-inducedmechanical allodynia (A) and thermal hyperalgesia (B) for 14 days. (D) A schematic of the experimental design. (E,F) A single
intrathecal OT injection (0.1 μg/10 μL) relieved pSNL-induced mechanical allodynia (E) and thermal hyperalgesia (F) in mice. Two-way repeated-measures ANOVA
with group as the between-subjects factor and day/time as the within-subjects factor. Data are expressed as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 OT vs.
saline; $p < 0.05, $$$p < 0.001 vs. baseline; #p < 0.05, ##p < 0.01, ####p < 0.0001 vs. baseline.
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Three-Day Continuous Intrathecal Infusion,
but Not Short-Term Application of OT,
Renormalized Neuronal Chloride
Equilibrium Potential in Spinal Superficial
Dorsal Horn
It was reported that neuronal intracellular chloride concentration
was increased in the superficial dorsal horn after nerve injury
(Yeo et al., 2021), we performed perforated patch-clamp
recording in spinal cord slices derived from each group to
investigate the effects of OT on chloride homeostasis

(Figure 3A). Since GABAA receptor (GABAAR) is the
dominant chloride ion channel on the membrane of neurons
in the superficial dorsal horn, GABA was puffed briefly to the
recorded neuron to trigger transient chloride influx or efflux.

As voltage ramps were applied from +8 to −92 mV
(Figure 3C), the GABA-evoked currents were recorded to
evaluate chloride equilibrium potential (ECl

-). These currents
were completely blocked by a selective GABAAR antagonist,
bicuculline (10 μM), confirming that they were mediated by
GABAAR (data not shown). The ECl

- in sham mice was
−66.68 ± 1.22 mV (Figures 3B–E, n = 5–6, 3 mice per group),

FIGURE 2 | The effects of 3-days OT infusion on nerve injury-induced nociceptive behaviours were mediated by OXTRs. (A) A schematic of the experimental
design. (B,C) OT’s effect on mechanical allodynia (B) and thermal hyperalgesia (C) was completely blocked by its selective antagonist, dVOT (0.3 μg/100 μL). (D,E)
Selective OT receptor agonists, TC OT (0.3 μg/100 μL, intrathecal infusion) showed similar effects on mechanical allodynia (D) and thermal hyperalgesia (E) in pSNL
mice. Two-way repeated-measures ANOVAwith group as the between-subjects factor. Data are expressed asmean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 TC
OT vs. saline; OT vs. dVOT and OT. $$$p < 0.001, $$$$p < 0.0001 vs. baseline; #p < 0.05, ##p < 0.01, ###p < 0.001 vs. baseline.
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whereas that value in pSNL mice shifted to a more positive value of
−43.54 ± 1.67mV [ p < 0.001 vs. sham group; F(2,12) = 36.26, p <
0.001; Figures 3B–E, n = 5 from 3-4 mice]. Continuous intrathecal
infusion of OT reversed the value of ECl

- to −59.02 ± 2.69mV, which
was much closer to that of the shammice [p > 0.05 vs. sham; Figures
3B–E,n= 5 from3-4mice], suggesting that 3-days infusion ofOTwas
able to restore [Cl−]i in pSNL mice.

In comparison, we also recorded the ECl
- using the spinal cord

slices incubated with saline or OT for 30 min (short-term
application, Figure 4A), and the reversal potentials were
−44.34 ± 2.91mV and −46.10 ± 3.10mV, respectively [p >
0.05 vs. saline; F(2,12) = 31.71, p < 0.0001; Figures 4B–E].
Incubation of the spinal cord slices with OT for a relatively short
time failed to restore the value of ECl

- in pSNL mice, suggesting that
the effect of OT on ECl

- required relatively long-term application.

Three-Day Continuous Intrathecal OT
Infusion Upregulated Spinal KCC2
Expression
Given that the shift of ECl

- in pSNL animals may be due to
depressed function of KCC2, we analysed the transcriptional and

expression levels of KCC2 in the spinal cord. Compared with the
sham group, quantitative PCR data revealed a significant decrease
in spinal Kcc2 mRNA levels at both days 7 and 14 after pSNL
surgery [p < 0.001 vs. sham; F(2,16) = 3.818, p = 0.0441;
Figure 5A, n = 5 per group]. Intrathecal infusion of OT
increased spinal Kcc2 mRNA levels in pSNL mice compared
with saline group [p < 0.01; F(2,16) = 3.818, p = 0.0441;
Figure 5A, n = 5 per group].

Western blotting data also showed that nerve injury-induced a
significant decrease in the protein levels of KCC2 in the spinal
dorsal horn at days 7 and 14 after pSNL surgery [p < 0.0001 vs.
sham; F(2,16) = 8.982, p = 0.0024; Figures 5B,C, n = 5 per group].
Intrathecal infusion of OT restored the protein levels of KCC2 but
did not completely reverse this decrease [p < 0.01 vs. saline;
F(2,16) = 8.982, p = 0.0024; Figures 5B,C, n = 5 per group].
Immunohistochemistry (IHC) of spinal slices from laminae II
further supported the western blotting data, which showed that
the KCC2 signal was widely expressed throughout the spinal
dorsal horn in sham mice (Figure 5D). Nerve injury-induced a
reduction in KCC2 expression at days 7 and 14 after pSNL
surgery [p < 0.0001 vs. sham; F(2,12) = 8.119, p = 0.0059;
Figures 5D,E]. Infusion of OT reversed this reduction [p <

FIGURE 3 | Three-day continuous intrathecal OT infusion renormalized EGABA in spinal dorsal horn. (A) The schematics of the electrophysiological recording.
(B,C) As voltage ramps applied from +8 to −92 Mv (C), basal and GABA-evoked currents were recorded (B). (D,E) Representative (D) and statistical (E) reversal
potential of EGABA recorded from slices of sham and pSNL mice treated with continuous OT or saline. One-way ANOVA followed by Bonferroni’s post hoc test. Data
are expressed as mean ± SEM. ***p < 0.001 sham vs. pSNL; ***p < 0.001 OT vs. saline infusion.
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0.01 vs. sham; F(2,12) = 8.119, p = 0.0059; Figures 5D,E, n = 4 per
group] to some extent.

Oxtrs Are Functionally Expressed in
Inhibitory Interneurons and OT Enhanced
GABAergic Inhibitory Transmission
Through Activation of Oxtrs in the
Superficial Dorsal Horn
To further explore the underlying mechanism of OT on the
regulation of ECl

-, we performed a novel in situ hybridization
assay (RNAscope) to investigate the feature of Oxtr mRNA
expression. Firstly, we used a novel in situ hybridization assay
(RNAscope) to detect the properties of Otxr mRNA distributions
in the superficial dorsal horn. As shown in Supplementary
Figure S2, Oxtrs mRNA (white) were not expressed on
microglia (green) and astrocytes (red), suggesting that majority
of Oxtrs are located in the neurons. To test whether that Oxtrs
were expressed on the inhibitory neurons in the spinal dorsal
horn. Spinal cord slices derived from the vGAT-tdTomato mice
were used, in which the inhibitory neurons were visualized by red

fluorescence. As shown in Figures 6A,B, about 30% of vGAT +
neurons (inhibitory neurons) expressed Oxtrs mRNA signalling
in the in the spinal dorsal horn. Oxtr mRNAs were also found
expressed in vGAT negative interneurons in the superficial
dorsal horn.

We then performed whole-cell voltage clamp on the vGAT
positive interneurons in the superficial dorsal horn. About 72%
recorded vGAT+ neurons (n = 18) produced an inward current
when OT (0.5 μM) was perfused for 3 min at the VH of −70 mV
with an average of −10.40 ± 1.27 pA (upper trace in Figures
6C–E), but OT did not change the frequency and amplitude of
spontaneous EPSCs in all of the examined vGAT+ neurons [t-test,
p = 0.0663, t (34) = 1.963 for frequency; p = 0.6311, t (34) = 0.4890
for amplitude; Figure 6F]. In the presence of the Oxtr antagonist
dVOT (1 μM), OT failed to induce an inward current in all
recorded vGAT positive interneurons in the superficial dorsal
horn (Figures 6G,H, n = 12). In comparison, OT perfusion
produced an inward current in 38% recorded vGAT negative
neurons (Supplementary Figures 3B,C, n = 13).

Due to OT produced inward currents in some vGAT positive
interneurons, we tested the effects of OT on GABAergic

FIGURE 4 | Short-term OT incubation failed to renormalize EGABA in spinal dorsal horn. (A) The schematics of the electrophysiological recording. (B,C) As voltage
ramps were applied from +8 to −92 Mv (C), basal and GABA-evoked currents (B)were recorded. (D,E) The reversal potential of EGABA recorded from slices of naïve and
pSNLmice incubated with OT or saline. One-way ANOVA followed by Bonferroni’s post hoc test. Data are expressed as mean ± SEM. ***p < 0.001, ****p < 0.0001 naïve
vs. pSNL incubated with saline or OT.
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transmission in the spinal cord in the presence of a glycine-receptor
antagonist, strychnine (1 μM). OT (0.5 μM) perfusion for 3 min
increased the frequency and amplitude of spontaneous GABAergic
IPSCs at the VH of 0 mV from 5.02 ± 0.49 Hz to 13.61 ± 1.72 Hz
and 9.40 ± 0.68 pA to 13.17 ± 1.30 pA, respectively (t-test, p =
0.0009, t (12) = 6.026 for frequency; p = 0.0080, t (12) = 3.899 for
amplitude; n = 7; Figures 7A,B). Expectedly, OT enhanced
GABAergic spontaneous transmission was total blocked by pre-
treatment with a selective Oxtr antagonist, dVOT (1 μM, p =
0.2498, t (12) = 1.274 for frequency; p = 0.2987, t (12) = 1.138
for amplitude; n = 7; Figures 7C,D).

DISCUSSION

In this study, we demonstrated that three days of continuous
intrathecal OT infusion alleviated subsequent pain behaviours for
14 days, whereas a single OT injection induced a transient
analgesia for 30 min in mice. Supporting this behavioural
finding, only continuous intrathecal infusion, but not short-
term incubation of OT, reversed the nerve injury-induced

depolarizing shift in Cl− reversal potential, which was
mediated by improving the function and expression of spinal
K+-Cl- cotransporter 2 (KCC2). This result suggests that only
continuous use of OT may reverse the pathological changes
caused by nerve injury, thereby mechanistically blocking the
establishment and development of pain.

Pain is a multidimensional experience that includes not only
nociceptive and nocifensive components but also emotional-
affective and cognitive components. As OT is involved in a
wide range of behaviours, it is a promising target for the
therapeutic pain intervention. The number of studies
supporting that OT has antinociceptive effects grows steadily.
Animal studies in particular have delivered robust evidence
supporting this idea. Unfortunately, these findings have not
been translated into therapeutics. We believe at least two
issues have hampered the clinical use of OT. One is the poorly
defined mechanisms of action of OT, and the other is difficulty
with OT delivery to the central nervous system. Here, we adopted
intrathecal drug delivery technique to administer OT centrally in
nerve injured mice to understand how continuous use of OT acts
on the pathological changes caused by nerve injury.

FIGURE 5 | Three-day continuous intrathecal OT infusion increased KCC2 expression in the spinal dorsal horn in pSNLmice. (A)Continuous intrathecal OT infusion
increased spinal KCC2 mRNA on days 7 and 14 after pSNL. (B,C) Continuous intrathecal OT infusion upregulated spinal KCC2 protein levels on days 7 and 14 after
pSNL. (B) Representative western blots of KCC2 and the loading control (β-actin) are presented for each group. (D) Representative image shows the staining of KCC2
(red) in naïve mice and in pSNL mice treated with saline or OT. DAPI was used to stain the cell nuclei (blue) (E) The intensity of KCC2 staining. One-way repeated
measures ANOVA was used to analyse differences across days within each group. Simple effects ANOVA was used to confirm differences between groups at each time
point. Data are expressed as mean ± SEM. #p < 0.05, ##p < 0.01, ###p < 0.001 vs. saline; ***p < 0.001, ****p < 0.0001 vs. sham.
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As the results showed in this study, continuous intrathecal OT
infusion for three days alleviated subsequent pain behaviours
induced by nerve injury. It is noteworthy that the pSNL mice that
received the OT perfusion in advance showed continuous relief in
pain behaviours for 14 days, which was as long as we tested,
although the OT perfusion has stopped during behavioural tests.
This result suggested that continuous intrathecal OT infusion
may attenuate the establishment and development of nerve
injury-induced neuropathic pain. In comparison, a single
intrathecal injection of OT in intact or neuropathic pain
model mice only induced a transient analgesia for 30 min. The
short-term analgesic effect of a single administration of OT
revealed in this study was compatible with the results derived
from other pain models. For example, Yu found that the duration
of analgesia of OT was within 1 hour in inflammatory pain (Yu

et al., 2003), and Yang reported that the effects of intraventricular
or intrathecal injection of OT lasted about 30 min in intact rats
(Yang et al., 2007).

We also observed that intrathecal OT infusion not only
reverse thermal hyperalgesia but induces analgesia one day
after OT continuous infusion. A single injection of OT also
showed an analgesia effect in the hotplate test 30 min after
injection. This analgesic effect of OT may be related to
presynaptic TRPV1 inhibition in the spinal cord (Sun et al.,
2018). Since we found no significant differences between male
and female mice in the analgesic effects of OT on day 3 after
pSNL surgery (Supplementary Figure S4).We conducted the
experiments using male mice in the present study. However, we
cannot rule out sex differences in the effect of intrathecal OT
infusion.

FIGURE 6 | OT produced an inward current in vGAT+ neurons through activation of Oxtrs in the superficial dorsal horn. (A) RNAscope showed that Oxtrs (pink)
were expressed on the inhibitory neurons (red) in the spinal dorsal horn. Co-expression of a sample inhibitory neuron (red) and the puncta representing Oxtrs (pink) in the
enlarged image. DAPI was used to stain the cell nuclei (blue). (B) percentage of Oxtrs expressed in the vGAT + neurons. (C) The vGAT+ interneurons in the superficial
dorsal horn. (D,E)OT perfusion produced an inward current in 72% recorded vGAT + neurons (n = 18). (F) The frequency and amplitude of spontaneous EPSCs in
all examined vGAT + neurons. Paired t-test. Data are expressed as mean ± SEM. (G,H) Selective Oxtr antagonist dVOT (1 μM) blocked OT induced inward currents in all
recorded vGAT positive interneurons in the superficial dorsal horn (n = 12).
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All the behavioural tested were conducted within 14 days after
the pSNL surgery. Since inflammatory component existed post-
surgery, the current results cannot rule out that anti-
inflammatory mechanisms are involved in the analgesic effect
of OT.

OT plays its effects by activating OT receptors, which belongs
to the G protein-coupled receptor superfamily, together with the
three structurally related arginine-vasopressin (AVP) receptors
(V1aR, V1bR and V2R), forms a small receptor sub-family. All of
these receptors bind to OT albeit with different affinities and
eliciting different responses. Selective activating OXTRs by its
agonist, TC OT produced significant analgesic effects which were
equivalent to OT, whereas antagonizing OXTR by its antagonist,
dVOT blocked the analgesic effect of OT in pSNL mice,
indicating that intrathecal OT infusion induced analgesic effect
is mediated by the OXTRs in the spinal cord.

The current understanding of mechanisms underlying OT
analgesia is mainly based on studies using single or multiple
injections of OT. The acute analgesic mechanisms of OT involve
GABA, potassium channels, sodium channels and TRPV
channels (Breton et al., 2008; Jiang et al., 2014). Little is
known about the actions of continuous, relatively long-term
OT administration on pain processing. It is proposed that
nerve injury causes an imbalance between excitatory and
inhibitory control in the nervous system, which is partially
caused by a loss of inhibition in the dorsal horn of the spinal
cord and which is in turn responsible for neuropathic pain

(Kuner, 2010). The broken of neuronal intracellular Cl−

homeostasis is a major cause for the loss of inhibition in
spinal dorsal horn. In order to investigate the underlying
mechanisms of continuous intrathecal OT infusion on pain
processing, we tested whether they block neuropathic pain by
preventing the disruption of the intracellular Cl− homeostasis in
the spinal superficial dorsal horn, a key region in nociceptive
information transmission; and whether it is mediated by restoring
the KCC2 expression and function.

Firstly, we found that the chloride equilibrium potential (ECl
-)

in pSNL mice was significantly shifted to a more positive value by
using whole-cell patch-clamp technique, indicating an elevated
level of [Cl−]i in pSNL animals. The result was consistent with the
previous finding that neuronal intracellular chloride
concentration was increased in the superficial dorsal horn after
nerve injury (Yeo et al., 2021). Only 3-days continuous
intrathecal infusion, but not a short-term incubation of OT,
restored the value of ECl

-, suggesting that only continuous
intrathecal OT infusion was able to restore [Cl−]i. Considering
neuronal chloride homeostasis plays important role in pain
processing, this result indicated that continuous oxytocin
infusion renormalized neuronal chloride homeostasis to
attenuates neuropathic pain.

KCC2 (Cl− extrusion) and NKCC1 (Cl− uptake) are the most
important chloride transporters in cortical neurons and therefore
represent the main regulators of chloride homeostasis (Kaila,
1994; Delpire, 2000). The elevated level of [Cl−]i in neurons

FIGURE 7 |OT enhanced GABAergic inhibitory transmission through activation of OXTRs in the superficial dorsal horn. (A,B)OT perfusion increased the frequency
and amplitude of spontaneous GABAergic IPSCs. (C,D) The selective Oxtr antagonist dVOT blocked OT-enhancedGABAergic spontaneous transmission. Paired t-test.
Data are expressed as mean ± SEM. **p < 0.01, ***p < 0.001 vs. control.
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suggested a downregulation of KCC2 or an upregulation of NKCC1.
Only continuous intrathecal infusion, but not a short-term
incubation of OT, restored chloride homeostasis, and suggested
the altered function of KCC2 or NKCC1 in pSNL animals.

Since it is reported that lack of Oxtr in neurons affects specifically
KCC2 without impairing NKCC1 (Leonzino et al., 2016), we then
used quantitative PCR, western blotting and immunohistochemistry
to test whether the continuous intrathecal OT infusion upregulated
spinal KCC2 expression and rescued the decrease in KCC2
expression by nerve injury. As the results showed, nerve injury
induced a significant decrease in the expression levels of KCC2 after
pSNL. Intrathecal infusion of OT restored the expression levels of
KCC2 in the spinal dorsal horn.

Coull and his colleagues have shown that the inhibitory
control in GABAergic neurons in the spinal dorsal horn can
be lost when KCC2 activity is impaired, which can eventually lead
to neuropathic pain (Coull et al., 2003). In mature central
neurons, KCC2 is responsible for the low [Cl−]i that forms the
basis for hyperpolarizing GABAA receptor-mediated responses.
Changes in KCC2 function and expression have been observed
under various physiological and pathophysiological conditions.
Nerve ligation often tends to decrease spinal KCC2 expression,
which contributes to the development of neuropathic pain. Nerve
injury-induced brain-derived neurotrophic factor (BDNF) release
may account for the reduction in KCC2 (Kitayama, 2017).
Therefore, it is indicated that spinal KCC2 expression is
responsible for the development and maintenance of
neuropathic pain. Continuous infusion of OT may attenuate
the development and maintenance of neuropathic pain by
restoring the alternations of KCC2.

As a small polypeptide, oxytocin is rapidly broken down in the
gastrointestinal system. It has a very short half-life of 3–5 min in
the blood. Although the half-life of OT is much longer in CSF
(~28min) than in the blood, it is known to penetrate the blood
brain barrier only sparingly (Kang and Park, 2000), making oral or
parenteral administration untenable. Thus, human OT effects on
pain sensitivity have most frequently been investigated using the
intranasal administration route. However, there are many
constraints to the intranasal application of this neuropeptide
that might contribute to the rather inconsistent findings in
human studies. In one study, the elevation of OT levels in the
CSF was observed only in one out of the six macaques that received
intranasal OT (Lee et al., 2018). In 1984, Penn and Kroin
introduced intrathecal administration of baclofen in humans to
alleviate spasticity in severe cases (Penn and Kroin, 1984). Since
then, intrathecal drug delivery has become an important treatment
option for individuals with severe spasticity, dyskinetic cerebral
palsy, stiff-man syndrome, and chronic pain (Penn and Mangieri,
1993; Saval and Chiodo, 2008; Eek et al., 2018). Drugs can be
administered via an intrathecal route that allows for the placement
of themedication in close proximity to the target receptors so that a
much lower dose is needed. By using continuous intrathecal
delivery, a steady drug concentration can be maintained within
the central nervous system (Mathur et al., 2014). In a long-term
(>10 years) clinical study where Baclofen was administrated
intrathecally, patients reported a high level of treatment and life
satisfaction (McCormick et al., 2016). These findings provide novel

evidence relevant for advancing understanding of the effects of
continuous OT administration on the pathophysiology of pain.

Many factors maymediate OT-induced KCC2 upregulation. It has
been reported that BDNFmay be the cause of the reduction in KCC2.
As a neurotrophic factor, BDNF is produced and secreted mainly by
microglia (Fujita et al., 2008). This study showed that Oxtrs were
mainly expressed in the neurons, but not glia cells. Sowe speculate that
OT did not upregulated of KCC2 through BDNF. In this study, we
also found that OT enhanced GABAergic inhibitory transmission
through activation of Oxtrs in the spinal dorsal horn, which may help
us to understand the mechanisms underlying continuous OT’s action
on KCC2. We first confirmed by RNAscope that Oxtr mRNA was
expressed on some of the inhibitory neurons in the spinal dorsal horn,
although it was also observed in vGAT negative neurons. We then
performed whole-cell voltage clamps to record the spontaneous EPSC
in the inhibitory interneurons. OT perfusion produced an inward
current without affecting the frequency and amplitude of spontaneous
EPSCs in the inhibitory neurons. This result suggested that OT
produced a depolarization in some inhibitory neurons without
affecting glutamatergic transmission. As a result of the
depolarization of inhibitory neurons, GABA may be released,
which was further confirmed by the finding that OT enhanced
GABAergic spontaneous transmission by increasing both the
frequency and amplitude of spontaneous GABAergic IPSCs. These
effects of OT on GABAergic inhibitory transmission were completely
blocked by perfusion of a selective OTXR antagonist, dVOT. Ganguly
et al. reported thatGABAergic activity drove the increase in the level of
KCC2 mRNA in mature neurons (Ganguly et al., 2001). Heubl et al.
further demonstrated that enhancing GABAAR-mediated inhibition
confines KCC2 to the plasma membrane, while antagonizing
inhibition reduces KCC2 surface expression by increasing the
lateral diffusion and endocytosis of the transporter. This
mechanism utilizes Cl− as an intracellular secondary messenger
and is dependent on the phosphorylation of KCC2 at threonines
906 and 1007 by the Cl−-sensing kinase WNK1. Taken together, we
hypothesis that OT up-regulated KCC2 in neuropathic pain through
the activation of GABAergic inhibitory transmission. However, this
hypothesis is based on the transient actions of OT on the inhibitory
neurons. Long-term application (3-days infusion) of OT may have
many consequences on receptor binding, trafficking and expression.
Therefore, we cannot rule out that the effect of OT on inhibitory
neurons may be different when applied for a relatively long time, and
that there are othermechanisms involved inOT-induced upregulation
of KCC2.

CONCLUSION

To conclude, this study used an intrathecal delivery technique to
demonstrate that continuous intrathecal OT infusion attenuated
the subsequent establishment and development of nerve injury-
induced neuropathic pain and renormalized neuronal chloride
homeostasis via upregulation of KCC2 expression and function,
which may be caused by OT-induced activation of GABA
inhibitory transmission. These findings provide novel evidence
relevant for advancing the understanding of the effects of
continuous OT administration on the pathophysiology of pain.
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Mechanism Underlying Acupuncture
Therapy in Spinal Cord Injury: A
Narrative Overview of Preclinical
Studies
Kunpeng Jiang1, Yulin Sun2 and Xinle Chen2*

1Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China, 2Department of Neurosurgery, Zhejiang
Rongjun Hospital, Jiaxing, China

Spinal cord injury (SCI) results from various pathogenic factors that destroy the normal
structure and function of the spinal cord, subsequently causing sensory, motor, and
autonomic nerve dysfunction. SCI is one of the most common causes of disability and
death globally. It leads to severe physical and mental injury to patients and causes a
substantial economic burden on families and the society. The pathological changes and
underlying mechanisms within SCI involve oxidative stress, apoptosis, inflammation, etc. As
a traditional therapy, acupuncture has a positive effect promoting the recovery of SCI.
Acupuncture-induced neuroprotection includes several mechanisms such as reducing
oxidative stress, inhibiting the inflammatory response and neuronal apoptosis, alleviating
glial scar formation, promoting neural stemcell differentiation, and improvingmicrocirculation
within the injured area. Therefore, the recent studies exploring the mechanism of
acupuncture therapy in SCI will help provide a theoretical basis for applying acupuncture
and seeking a better treatment target and acupuncture approach for SCI patients.

Keywords: acupuncture, spinal cord injury, therapy, mechanism, apoptosis, inflammation, oxidative stress,
neuroprotection

INTRODUCTION

Spinal cord injury (SCI) causes structural and functional damage through direct or indirect factors,
leading to motor, sensory, and autonomic nerve dysfunction (McDonald and Sadowsky, 2002). The
global incidence of SCI ranges from 3.6 to 195 per 1,000,000 (Jazayeri et al., 2015). In China, the
incidence of traumatic SCI was standardized to 49.8 per 1,000,000 per year based on the 2010 census,
and the mean age of patients at the time of injury was 43.7 ± 17.1 years (Jiang et al., 2021). SCI is a
common cause of death and disability, with severe neurological dysfunction and complications,
including neuropathic pain, pressure ulcers, and urinary tract infection. In addition, it causes a
substantial psychological and social burden on patients, families, and the society (Wannapakhe et al.,
2015; Gedde et al., 2019; Moshi et al., 2021). Pathophysiological changes after SCI include primary
and secondary injuries. Compared with the unpredictability of primary injury, the underlying
mechanism and effective treatment of secondary injury is the primary focus of the current SCI
research (Belegu et al., 2007; Jeong et al., 2021). SCI is a dynamic pathological process causing nerve
cell and nerve fiber edema at the initial stages, followed by microcirculation disorders due to
damaged blood cells (Rivlin and Tator, 1978; Tator and Fehlings, 1991). Then, the nerve cell axons
degenerate or die and are gradually replaced by glial cells (O’Shea et al., 2017; Lukacova et al., 2021).
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TABLE 1 | Summary of preclinical studies of acupuncture therapy in spinal cord injury in recent 5 years.

Ref Species Acupuncture therapy Outcome Mechanism

Wang X et al. (2021) Male SD rats EA at Dazhui (GV14) and Mingmen
(GV4) for 20 min daily until they were
euthanized

Improve neurological function and
promote the repair of the injured spinal
cord tissue

Inhibit the Notch signaling pathway and
regulate the downstream protein
expressions (Delta1, Presenilin1, Hes1,
and Hes5)

Dai et al. (2021) Female C57BL/
6 mice

EA at Zusanli (ST 36) and Sanyinjiao
(SP 6) for 10 min daily for 6 days,
followed by 1 day off and last for
4 weeks

Improve hindlimb motor function and
protect neurons and myelinated axons

Inhibit inflammatory response and
oxidative stress through activating the
ApoE and Nrf2/HO-1 signaling pathway

Hu et al. (2021) Female SD rats EA at Jiaji (EX-B2) for 30 min daily for
2 weeks

Promote the recovery of spinal cord nerve
function

Inhibit the expression of pro-inflammatory
cytokines such as IL-1β, IL-6, and TNF-α
and the Nogo-NgR signaling pathway

Yang et al. (2021) Female SD rats EA at Zhiyang (GV9), Jizhong (GV6),
Yaoshu (GV2), and Changqiang (GV1)
twice a day for 8 weeks

Accelerate neural network reconstruction
and restoration of spinal cord function

Increase the local production of NT-3,
improve the hostile microenvironment of
the injured spinal cord by dampening
local inflammation, and foster the
biological functions of MSC-derived
neuron-like cells

Hongna et al. (2020) Female SD rats EA at Jiaji (EX-B2) for 30 min daily until
they were euthanized

Improve locomotor function Regulate autophagy flux and inhibit
necroptosis

Lu et al. (2020) Male SD rats EA at Ciliao (BL32) and Zhongliao
(BL33) for 20 min daily for 10 days

Improve neurogenic bladder (the Ciliao
acupoint is superior to the Guanyuan
point)

Reduce histomorphological abnormalities
in interstitial cells of Cajal and inhibit the
expression of hyperpolarization-activated
cyclic nucleotide-gated channel proteins

Hu et al. (2020) Male SD rats EA at Jiaji (EX-B2) for 20 min daily for 7
or 14 days

Promote the recovery of the motor
function

Affect the plasticity of peripheral nerve
networks by regulating the Semaphorin
3A signal

Xu H et al. (2021) Female SD rats EA at Zhiyang (GV9), Jizhong (GV6),
Yaoshu (GV2), and Changqiang (GV1)
twice a day for 2 weeks

Promote the survival, axonal regrowth,
and synaptic maintenance of spinal cord
neurons

Trigger the synthesis and secretion of NT-
3 by activating the CGRP/RAMP1/
calcium/αCaMKII pathway

Cheng et al. (2020) Male SD rats EA at Dazhui (GV14) and Mingmen
(GV4) for 30 min daily for a week

Improve functional recovery Inhibit the phosphorylation of JNK/
p66Shc-mediated oxidative stress and
reduce the p38MAPK-mediated
microglial activation and inflammatory
reaction

Zhou et al. (2020) Male SD rats EA at Dazhui (GV14), Mingmen (GV4),
and Jiaji (EX-B2) for 20 min twice daily
for 3 weeks

Improve hindlimb motor function Twenty-nine upregulated and 139
downregulated miRNAs in the EA group.
The MAPK, Wnt, and NF-κB signaling
pathways are involved

Ding et al. (2020) Male SD rats Acupuncture combined with
moxibustion atDazhui (GV14), Jiaji (EX-
B2), Yaoyangguan (GV3), Zusanli
(ST36), and Ciliao (BL32) for 30 min
daily for 7 or 14 days

Recover motor function, preserve the
neuron cells, and alleviate the apoptosis
of nerve cells

Improve the mRNA and protein levels of
Shh and Gli-1

Li et al. (2020) Male SD rats EA at Dazhui (GV14) and Mingmen
(GV4) for 20 min daily until they were
euthanized

Improve locomotor function Affect cell growth, apoptosis, and
autophagy through the PI3K/AKT/mTOR
signaling pathway

Song et al. (2022) Male SD rats EA at Zusanli (ST36) for 20 min daily
until they were euthanized

Promote the recovery of neurological
function

Stimulate ascending peripheral nerve
conduction

Xiao et al. (2019) Female SD rats EA at Yaoyangguan (GV3), Dazhui
(GV14), Zusanli (ST36), and Ciliao
(BL32) for 20 min daily for 2 weeks

Promote axonal regeneration Inhibit the Nogo/NgR and Rho/ROCK
signaling pathway

Hong et al. (2021) Male SD rats EA at Yaoyangguan (GV3), Dazhui
(GV14),
Zusanli (ST36), and Ciliao (BL32)
20 min daily for 2 weeks

Improve lower limb movement
function and spinal cord tissue
morphology

Reduce mRNA and protein expression of
RhoA and ROCKII, decrease p-MLC
protein expression and p-MLC/MLC
ratio, and suppress the cPLA2 activity
and PGE2 level

(Continued on following page)
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TABLE 1 | (Continued) Summary of preclinical studies of acupuncture therapy in spinal cord injury in recent 5 years.

Ref Species Acupuncture therapy Outcome Mechanism

Xu et al. (2019) Female SD rats Fire needle at Jiaji (EX-B2) in 1/3 s daily Improve lower limb locomotor function Promote endogenous NSC proliferation
differentiating into neurons by promoting
the activation of Wnt/β-catenin and
inhibiting the overexpression of ERK.

Prado et al. (2019) Dog EA at GV2, DU20, GV3a, and GV6;
bilateral BL19, BL23, and BL24;
unilateral KI3, ST36, LV3, andWei Jian
for 20 min three times a week for the
initial 7 weeks and two times a week for
5 more weeks

Improve neurological function None

Jin et al. (2019) Female SD rats EA at Zhiyang (GV9), Jizhong (GV6),
Yaoshu (GV2), and Changqiang (GV1)
daily for 8 weeks

Improve locomotor function Enhance the survival and synaptic
integration of grafted NT-3 and TRKC
gene-overexpressing neural stem cell-
derived neural network scaffold with the
host spinal neural network by increasing
the NT-3 level and activating the NT-3/
TRKC/AKT signaling pathway

Alvarado-Sanchez
et al. (2019)

Female
Long–Evans
rats

EA at Mingmen (GV4) per 30 min until
they were euthanized

Improve motor function recovery and the
amount of preserved spinal cord tissue

Decrease oxidative stress and lipid
peroxidation

Zhang et al. (2019) Female SD rats Sacral EA intervention for 7 days Inhibit apoptosis, protect nerve cells,
promote the coordination of micturition
reflex, and improve neurogenic bladder
function

Improve the expressions of both NGF/
TrkA signaling and Akt signaling

Wei et al. (2018) Female C57BL/
6 mice

EA at Jiaji (EX-B2) for 15 min for
5 days, followed by 1 day off and last
for 4 weeks

Restore locomotor function Inhibit the expression of PTEN and p53
and increase the levels of pmTOR/Akt/Erk
and myelin basic protein

On-Ong-Arj et al.
(2018)

Male Wistar
rats

Yellow laser acupuncture at Yaoshu
(GV2) for 10 min at 15 min, 6, 12, and
24 h after SCI on the first day, followed
by 10 min daily for 7 days

Improve both motor deficit and
neurodegeneration in the ventral horn of
the spinal cord

Increase the expression of BDNF and
inhibit inflammation, apoptosis, and
oxidative stress

Wang et al. (2019) Male Wistar
rats

EA at Neiguan (PC6) and Jianshi (PC5) Alleviate SCI-induced neuropathic pain Inhibit the PI3K-mTOR signaling pathway

Wang et al. (2018) Female Wistar
rats

EA atDazhui (GV 14) and Baihui (GV20)
for 15 min daily for 2 weeks

Improve the recovery of nerve movement Reduce the expression of platelet-
activating factor and caspase-9 protein

Li et al. (2018) Female Wistar
rats

EA at Jiaji (EX-B2), Mingmen (GV4),
and Dazhui (GV14) for 15 min daily for
6 days. After a 2-day interval, the
second course started, with three
courses in total.

Enhance the growth of nerve fibers and
improve the hindlimb motor function
recovery

None

Tu et al. (2018) Male SD rats EA at Zusanli (ST-36) and
Yanglingquan (GB-34) performed
between 09:00 and 11:00 daily for
7 days

Reduce mechanical allodynia and thermal
hyperalgesia

Inhibit the activation of spinal microglia
and block the BDNF-TrkB signaling
pathway

Wang et al. (2017) SD rats EA at Zusanli (ST-36)-Xuanzhong
(GB39) and Futu (ST32)-Sanyinjiao
(SP6) for 30 min until they were
euthanized

Improve hindlimb locomotor and sensory
function

Systematic regulation of neurotrophic
factors and their receptors

Tu et al. (2017b) Male SD rats EA at Baihui (GV20) and Fengfu (GV16)
or Dazhui (GV14) and Mingmen (GV4)

EA stimulation at GV14 and GV4 promote
the recovery of locomotor function

Improve mRNA and protein expression of
BDNF and NT-3

Nascimento de Souza
et al. (2017)

Male Wistar
rats

Bee venom at a dose of 0.08 mg/kg
injected subcutaneously at Zusanli
(ST36) and Yaoyangquan (GV3)
(20 μL at each point) once immediately
after SCI and 24 h, 7, and 14 days
after SCI.

Induce locomotor recovery Reduce the expression of IL-6 and
increase the expression of IL-10

(Continued on following page)
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Aggravation of cellular, molecular, and other factors at different
stages post SCI leads to a series of pathophysiological changes,
reducing the spinal cord functional recovery (Tator, 1995). Timely
and efficient intervention can partially stimulate potential nerve cells
and axonal regeneration and resume the function of axons and
neurons. The current treatments for SCI mainly include surgery,
medication, and behavioral, physical, and supportive therapies
(Becker et al., 2003; Boulenguez andVinay, 2009; Ramer et al., 2014).

Acupuncture is a substantial alternative and adjunctive therapy
for SCI and is a vital component of traditional Chinese medicine.
Electroacupuncture, a method based on acupuncture combined with
the micro-current wave of bioelectricity, was developed by
combining traditional and modern medicines. In recent years,
acupuncture–electroacupuncture has been widely used in clinical
practices and exerts a significant neuroprotective effect against SCI
and its complications (Paola and Arnold, 2003; Shin et al., 2009; Ma
et al., 2015; Fan et al., 2018; Lu et al., 2020). Compared with other
therapeutic methods, acupuncture is non-toxic and has a simple
operation and low cost, but its mechanism remains unclear. This
article summarizes the potential mechanism of acupuncture in SCI
to provide the updated theoretical basis depicting various clinical
applications of acupuncture in SCI patients (Table 1).

MECHANISM OF ACUPUNCTURE
THERAPY IN SPINAL CORD INJURY

Reduction of Oxidative Stress
Free radicals can be generated and released after SCI. While the
degree of oxidation exceeds the ability of the antioxidant system,
excessive free radicals will initiate the oxidation chain reaction

(Bringans et al., 2022). Reactive oxygen species (ROS) and
reactive nitrogen species (RNS) can efficiently react with
intracellular macromolecules, causing cell death and tissue
damage and subsequently aggravating SCI. The spinal cord
contains many polyunsaturated fatty acids, thus making it
sensitive to oxidative stress. The spinal cord neurons have
active oxidative metabolism but low antioxidant capacity,
making neurons and glial cells significantly vulnerable to
oxidative stress. Hence, reactive oxygen metabolites
accumulate, resulting in excessive consumption of antioxidants
from tissues after SCI (Genovese and Cuzzocrea, 2008; Figueroa
et al., 2013; Lim et al., 2013; Wojdasiewicz et al., 2020).

Superoxide dismutase (SOD) is an active protease scavenging
free radicals and protecting cells from oxidative damage. It
eliminates the oxidation products produced after SCI. The
SOD level reflects the ability to clear free radicals and has a
vital role in balancing oxidation and antioxidation.
Malondialdehyde (MDA) is a lipid peroxidation metabolite,
reflecting the degree of oxidative stress (Woźniak et al., 2016;
Wu et al., 2017). The lipid peroxidation can interfere with Ca2+

transport from the cell membrane by inhibiting the Ca2+-ATPase
activity, causing intracellular Ca2+ overload and enhanced ion
imbalance (Rohn et al., 1993; Rohn et al., 1996). In addition,
oxidative stress post SCI destroys ion homeostasis both inside and
outside the membrane. Moreover, abundant Ca2+ enters and
accumulates within the mitochondria, leading to
mitochondrial destruction, aerobic energy metabolism
dysfunction, and inhibition of ATP synthesis (Brown et al.,
2006; Visavadiya et al., 2013; Scholpa and Schnellmann, 2017).
Studies have revealed that acupuncture, electroacupuncture, and
laser acupuncture can reduce oxidative stress after SCI (Wu et al.,

TABLE 1 | (Continued) Summary of preclinical studies of acupuncture therapy in spinal cord injury in recent 5 years.

Ref Species Acupuncture therapy Outcome Mechanism

Zhang J et al. (2017) Male SD rats EA at Dazhui (GV14) and Mingmen
(GV4) for 20 min daily for 2 weeks

Promote spinal recovery Promote the differentiation of neural stem
cells into spinal neurons by enhancing
Wnt1/β-catenin signaling

Zhu et al. (2017) Male SD rats EA at Jizhong (GV6) and Zhiyang (GV9)
30 min daily for 7 days

Promote the proliferation of neural stem
cells and the survival of neurons

Promote the expression of neuronal
markers Nestin, NeuN, and CGRP and
inhibit cellular apoptosis and inflammation
by downregulating miR-449a

Tu et al. (2017a) Male SD rats EA at Dazhui (GV14) and Mingmen
(GV4) for 30 min at 30 min, 12, and
24 h after SCI.

Improve hindlimb locomotor function Decrease the mRNA and protein
expression of the subunits of NMDAR
NR1 and NR2A

Liu and Wu (2017) Female SD rats EA at Jizhong (GV6) and Zhiyang (GV9)
for 20 min daily for a week

Improve functional recovery and inhibit
neuronal apoptosis

Reduce Bax and inhibit the sodium
channel Nav1.3 expression by regulating
miR-214

Zhao et al. (2017) Male SD rats EA at Jizhong (GV6) and Zhiyang (GV9)
for 20 min every other day for 4 weeks

Improve motor function Enhance the expression of IL-10, M2
marker CD206, NT-3, and the proportion
of M2 macrophages

Escobar-Corona et al.
(2017)

Male Wistar
rats

EA atHuantiao (GB30), Yinmen (BL37),
Jizhong (GV6), and Zhiyang (GV9) for
40 min every other day for 4 weeks

Improve gait locomotion, H-reflex, and
ventral root potential

None

Abbreviations: αCaMKII: calmodulin-dependent protein kinase; BDNF: brain-derived neurotrophic factor; CGRP: calcitonin gene-related peptide; EA: electroacupuncture; MSC:
mesenchymal stem cell; NMDARs: N-methyl-D-aspartate (NMDA) receptors; NSCs: neural stem cells; NT-3: neurotrophin-3; RAMP: receptor activity-modifying protein; SCI: spinal cord
injury.
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2002; On-Ong-Arj et al., 2018; Alvarado-Sanchez et al., 2019).
The results from a traumatic SCI model study showed that
electroacupuncture at GV26 reduces radical hydroxyl
concentration and increases lipid peroxidation. At the same
time, stimulation of GV4 decreases oxidative stress and
improves motor function recovery in the hind limbs of rats
with paralysis, indicating electroacupuncture at GV4 could be
a therapeutic alternative (Juarez Becerril et al., 2015). Jiang et al.
found that electroacupuncture at Shuigou (DU26) and Fengfu
(DU16) acupoints induce antioxidation effects by enhancing the
SOD activity and decreasing the MDA level (Jiang et al., 2014).
Similar to the effect of the reactive oxygen species (ROS)
scavenger, acupuncture can inhibit superoxide anion
production, decrease JNK/p66Shc-mediated ROS generation,
upregulate the apolipoprotein E (ApoE) and nuclear factor E2-
related factor 2 (Nrf2)/heme-oxygenase-1 (HO-1) signaling
pathways, and reduce the ROS-induced p38MAPK and ERK
activation in microglia after SCI (Choi et al., 2012; Dai et al.,
2021). Notably, the inhibitory effect of electroacupuncture on
p38MAPK is significantly enslaved to the acupuncture frequency
(Cheng et al., 2020).

Inhibition of Neuronal Apoptosis
Apoptosis, predominantly neuronal apoptosis, is an essential
pathological mechanism causing secondary spinal cord injury
(Abbaszadeh et al., 2020; Shi et al., 2021). Axonal injury and
neuronal apoptosis block nerve conduction pathways after SCI
and aggravate secondary injuries. Therefore, inhibition of
apoptosis can induce SCI recovery (Beattie, 2004). The anti-
apoptotic mechanisms of acupuncture have been widely explored.
Acupuncture protects the nerves and reduces apoptosis of
neurons and oligodendrocytes, thus improving functional
recovery after SCI (Cai and Shen, 2018). In addition,
electroacupuncture can inhibit spinal cord neuronal apoptosis
by increasing the Bcl-2 expression and inhibiting caspase-3 and
Bax (Zhao et al., 2008; Shi et al., 2016; Liu and Wu, 2017; Zhu
et al., 2017).

Poly-ADP ribose polymerase (PARP) is the most significant
substrate of caspase-3, and activated PARP can cause apoptosis
mediated by apoptosis-inducing factor (AIF) (Kang et al., 2004).
Previous studies showed that electroacupuncture could
ameliorate early brain injury after subarachnoid hemorrhage
by inhibiting the PARP-1/AIF pathway (Lang et al., 2020).
Moreover, electroacupuncture also reduces the PARP
expression in cerebral ischemia/reperfusion and Parkinson’s
disease (Sun et al., 2003; Yu et al., 2020). Furthermore, Liu
et al. found that apoptosis post SCI was accompanied by
cleaved PARP upregulation and electroacupuncture treatment
attenuation (Liu and Wu, 2017).

BNIP3 is a member of the Bcl-2 family that induces apoptosis
by promotingmitochondrial permeability transport pore opening
and mitochondrial damage (Yu et al., 2018). In addition, the
BNIP3 expression is elevated in rats after SCI (Yu et al., 2018),
and electroacupuncture at GV20-GB7 reduced BNIP3 after
intracerebral hemorrhage (Guan et al., 2021).

Heat shock protein (HSP) is an endogenous stress protein with
various biological protective effects. HSP family members such as

HSP 70 and HSP 72 have a protective effect on neurons after SCI
(Chang et al., 2014; Xu et al., 2021a; Kim et al., 2022).
Acupuncture has been demonstrated to have a neuroprotective
role in cerebral ischemia by regulating HSP 70 (Xu et al., 2014; Shi
et al., 2017). Gao et al. reported that HSP 90 participates in
electroacupuncture-induced analgesia in chronic neuropathic
pain (Gao et al., 2021). Other signaling pathways, such as
PI3K/Akt/Erk, Nogo/NgR, Rho/ROCK, and mTOR, may also
include the acupuncture-related beneficial effects against SCI
(Renfu et al., 2014; Wei et al., 2018; Xiao et al., 2019; Li et al.,
2020).

The toxic effects of excitatory amino acids play an essential
role in the pathogenesis of SCI. The glutamate ion receptor
activated by the N-methyl-D-aspartate (NMDA) receptor
induces excessive Ca2+ influx and destroys mitochondrial
function, thus stimulating the death of neurons (Xie et al.,
2014; Inquimbert et al., 2018). Studies found that
electroacupuncture can protect the spinal cord after SCI by
reducing the expression of the NMDA receptor subunit NR1
and NR2A in the injured area (Tu et al., 2017a). It can also
alleviate mechanical allodynia by inhibiting the upregulation of
NR2B after chronic constrictive injury (Zhao et al., 2019).

Recent studies have observed that electroacupuncture can
improve the locomotor function by regulating autophagy flux
and inhibiting necroptosis after SCI (Hongna et al., 2020).
Furthermore, Fang et al. depicted that pre- and post-
conditioning electroacupuncture alleviates spinal cord
ischemia–reperfusion injury, partly through autophagy
upregulation accompanied by apoptosis inhibition (Fang et al.,
2017). Moreover, studies conducted in intracerebral hemorrhage
rat models show the effect of ferroptosis inhibition by
acupuncture (Kong et al., 2021; Li et al., 2022). Therefore,
apoptosis, autophagy, necroptosis, and ferroptosis should be
clarified in future acupuncture studies on SCI.

Restrain of Inflammatory Response
After SCI, infiltrating leukocytes attracted by the innate immune
response leads to an inflammatory cascade in the area of injury,
and an excessive inflammatory response damages the spinal cord
tissue. In addition, leukocytes, microglia, astrocytes, and
macrophages release many pro-inflammatory cytokines and
chemokines, including interleukin-1 (IL-1), IL-6, and tumor
necrosis factor-α (TNF-α), which aggravate local inflammation
and damage axons and neurons (Zhou et al., 2014a; Tang et al.,
2020a; Brockie et al., 2021; Hellenbrand et al., 2021). Therefore,
regulating inflammatory factors and improving
neuroinflammation is of great significance for the recovery of SCI.

Neuroprotection by acupuncture is partially mediated by
inhibiting inflammation and microglial activation after SCI
(Choi et al., 2010; Jiang et al., 2014). However, the
inflammatory response in SCI has two sides; it exerts a
positive reaction against injury and aggravates secondary
injury post SCI. The pro-inflammatory macrophage/microglia
(M1 subsets) and anti-inflammatory macrophage/microglia (M2
subsets) are significant. Therefore, regulating the polarization of
M1 and M2 macrophages/microglia can affect the inflammatory
response process after SCI (Buzoianu-Anguiano et al., 2021; Ding
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et al., 2021; Hashemizadeh et al., 2022). Previous studies have
shown that acupuncture can ameliorate SCI by regulatingM1 and
M2 macrophages (Zhao et al., 2017). It also reduces the release of
pro-inflammatory cytokines such as IL-6, TNF-α, nitric oxide
synthase, and cycloxygenase-2 (Choi et al., 2010).

The purinergic receptors P2X4 and P2X7 are overexpressed on
the cell surface of spinal dorsal horn microglia involved in
microglial activation, which significantly contributes to the
inflammation after SCI (Deng et al., 2018; Du et al., 2019;
Kobayakawa et al., 2019; Song et al., 2022).
Electroacupuncture can inhibit P2X7 receptor-mediated
microglial activation and attenuate neuropathic pain (Wu
et al., 2021a). It can also relieve pain hypersensitivity by
inhibiting P2X7 receptor-positive microglia after chronic
constriction injury (Xu et al., 2016). In addition, acupuncture
reduces diabetic peripheral neuralgia by downregulating the
P2X4 expression in rat spinal microglia (Tang et al., 2020b).

The inflammasome is an essential component of host defense
response, recognizing pathogen-associated molecular patterns
and damage-associated molecular patterns. It mediates the
release of pro-inflammatory factors after injury. The family of
NOD-like receptors (NLRs) is a vital member of the
inflammasome, with NLRP3 being the most studied
inflammasome in central nervous system disorders. The ability
of acupuncture to attenuate the inflammatory response through
inflammasome regulation, especially NLRP3, has been explored
in many neurological diseases, including autism (Zhao et al.,
2022), postoperative cognitive dysfunction (Sun et al., 2021),
depression (Li et al., 2021), Alzheimer’s disease (Jiang et al.,
2018; Zhang et al., 2021), cerebral ischemia (Jiang et al., 2019),
and vascular dementia (Du et al., 2018). Further research is
needed to explore the role of the inflammasome, including
NLRs, in acupuncture-induced beneficial effects against SCI.

Choi et al. demonstrated that elevated p38MAPK accelerated
the microglial secretion of inflammatory mediators after SCI.
Electroacupuncture can effectively downregulate the p38MAPK
phosphorylation level, inhibit microglial activation, and promote
nerve regeneration (Choi et al., 2010). Hu et al. demonstrated that
the combination of gangliosides with electroacupuncture at
Jiaojia (EX-B2) has a more substantial effect in promoting the
recovery of nerve function, which could be related to the
inhibition of pro-inflammatory cytokines and the Nogo-NgR
signaling pathway (Hu et al., 2021).

Improvement of Microcirculation
Dysfunction
SCI can cause rupture, hemorrhage, and capillary embolism,
leading to microcirculation dysfunction. Improved
microcirculation can reduce cellular apoptosis and promote
functional recovery (Tator and Koyanagi, 1997). Reduced
blood flow and intramedullary vasospasm are seen after SCI.
Vasoconstriction factors such as endothelin 1 (ET-1),
prostaglandin E2 (PGE2), and thromboxane A2 (TXA2) cause
vasospasm aggravation and blood flow reduction. As a result, the
blood–spinal cord barrier gets disrupted, leading to inflammatory
cell infiltration and spinal tissue edema (Tempel and Martin,

1992; Mitsuhashi et al., 1994; McKenzie et al., 1995; Wang et al.,
2007; Sinescu et al., 2010).

Clinical studies conducted in healthy adults demonstrated that
acupuncture influences the tortuousness of capillary loops, the
diameter of the afferent loop, and capillary refill time, thereby
regulating the microcirculation (Scardina et al., 2009; Yeh et al.,
2021). In animal experiments, acupuncture can also improve the
blood flow within the brain after hemorrhage or ischemia. It is
primarily associated with the regulation of the vascular
endothelial growth factor (VEGF), angiopoietin 1 (Ang-1),
Ang-2, angiotensin II type I receptor, endothelin receptor, and
EphB4/EphrinB2-mediated Src/PI3K signal pathways (Tian et al.,
2013; Zhou et al., 2014b; Wu et al., 2021b). In addition, a study
using the intervertebral disc extrusion model revealed that
electroacupuncture improves microcirculation characterized by
high blood flow, micro-vessel density, and reduced vacuolation
within the white matter (Jiang et al., 2015). Acupuncture can also
regulate microcirculation and attenuate neurological dysfunction
by suppressing the cPLA2 activity and PGE2 level (Hong et al.,
2021).

Attenuation of Glial Scar Formation
Glial cells play an essential role in the physiological function
inside the spinal cord microenvironment and induce excessive
hyperplasia of the glial scar under pathological conditions. On the
one hand, a glial scar can limit the lesion expansion and protect
the surrounding tissues from injury. On the other hand, it
restricts neuronal regeneration (Faulkner et al., 2004; Pekny
et al., 2014; Tran et al., 2018; Gu et al., 2019). During the
spinal cord recovery, astrocytes proliferate and secrete a
variety of extracellular matrices to form a glial scar, hindering
the neural pathway recovery. The significant molecules
participating in glial scar formation are chondroitin sulfate
proteoglycans (CSPGs) and keratan sulfate proteoglycans
produced by astrocytes (Zhang et al., 2006; Wang et al., 2021a;
Tran et al., 2021). CSPG accumulation at the injured area inhibits
the axonal growth, and reducing the CSPG expression can
promote axonal regeneration and remyelination (Siebert and
Osterhout, 2011). Electroacupuncture can downregulate the
CSPG protein expression and stimulate axonal regeneration,
leading to structural and functional recovery after SCI (Ding
et al., 2011). It also stimulates the differentiation of transplanted
bone marrow mesenchymal stem cells (MSCs) and promotes
corticospinal tract regeneration across injured sites in the caudal
cord, with CSPG protein involvement (Ding et al., 2013).
Numerous studies have shown that acupuncture can restrict
astrogliosis and alleviate neurological dysfunction caused by
diseases such as hydrocephalus (Tida et al., 2018) and cerebral
ischemia (Han et al., 2010; Tao et al., 2016; Young-Wook et al.,
2019).

Glial fibrillary acidic protein (GFAP) is a crucial component of
astrocytes. As an important marker of glial scar formation, GFAP
depicts the proliferative state of astrocytes (Brenner, 2014; Yang
andWang, 2015). In addition, GFAP secreted by astrocytes forms
a physical barrier to isolate damaged tissue, provides mechanical
strength, and limits axonal growth due to the physical barrier
(Pekny et al., 2014). Fire needle acupuncture and
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electroacupuncture can decrease the GFAP expression, leading to
the differentiation of neural stem cells (NSCs) and inhibition of
astrocyte activation, respectively (Zhang et al., 2018; Xu et al.,
2019). Liu et al. observed that electroacupuncture increases the
gene and protein expression of GFAP and the platelet-derived
growth factor (PDGF) after spinal cord transection, promoting
locomotor function recovery (Liu et al., 2013). Interestingly, Wei
et al. revealed that electroacupuncture elevates GFAP levels only
at the early phase after SCI and reduces the GFAP expression later
during recovery (Wei et al., 2017), indicating diverse
functionalities of acupuncture in SCI. Choosing the time
points and interval of acupuncture therapy exerting a better
effect is an important issue that needs to be explored in future
studies.

Promotion of Neural Stem Cell Proliferation
and Differentiation
SCI induces damage to the segmentary neurons, axons, and glial
cells at the injury site, forming a hole at the center of the spinal
cord. The loss of neurons within the injured section and the
disruption of the ascending sensory and descending motor tracts
of axon conduction caused loss of the neurologic function. NSCs
can differentiate into neurons, astrocytes, or oligodendrocytes,
connect the spinal cord end, and rebuild neural pathways (Pereira
et al., 2019; Vancamp et al., 2020; de Freria et al., 2021; Chen and
Li, 2022). Several experimental studies have shown that
acupuncture can induce the proliferation and differentiation of
NSCs, thereby promoting the repair of injured nerves; however,

the mechanism remains unclear (Tao et al., 2010; Zhang et al.,
2013; Jiang et al., 2016; Dubrovsky et al., 2020).

Various hypotheses have been proposed to illustrate the
acupuncture mechanism on NSCs. First, acupuncture could
promote nerve regeneration and synaptogenesis by regulating
the microenvironment of NSC transplantation and promoting
SCI recovery (Tang et al., 2020c; Zhao et al., 2020; Yang et al.,
2021). Second, electroacupuncture promotes the proliferation
and differentiation of endogenous NSCs by regulating
numerous endogenous signals. The upregulation of exosomal
miR-146b, NeuroD1, the activation of the Notch pathway, and
the downregulation of the PTEN expression are associated with
acupuncture-induced improvement of neurological injury after
ischemic stroke (Tao et al., 2014; Zhao et al., 2015; Sha et al., 2019;
Zhang et al., 2020). In contrast, the potential signals of the
acupuncture-induced NSC regulation in the SCI model include
Wnt/β-catenin (Zhang et al., 2017a), ERK (Xu et al., 2019), miR-
449a (Zhu et al., 2017), and Notch pathway (Wang et al., 2021b).
Third, electroacupuncture reinforces the survival and
synaptogenesis of transplanted NSC-derived neural network
scaffolds as a neuronal relay bridging two severed ends of the
injured spinal cord (Jin et al., 2019). Similarly, two other studies
have shown that electroacupuncture facilitates the integration of
the mesenchymal stem cell (MSC)–derived neural network into
the transected spinal cord by elevating neurotrophin-3 (NT-3)
(Ding et al., 2013; Yang et al., 2021). Moreover, pre-induction
with NT-3 and retinoic acid after SCI before electroacupuncture
could also promote the survival and differentiation of the grafted
MSCs in gelatin sponge scaffolds (Zhang et al., 2014).

FIGURE 1 | Illustration of the possible mechanism underlying acupuncture therapy in SCI, including oxidative stress reduction, inflammation and apoptosis
inhibition, microcirculation improvement, reduction of glial scar formation, and stimulation of NSC differentiation and proliferation.
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NT-3 is tightly associated with SCI recovery as the primary
type of neurotrophic factor (Ding et al., 2009; Mo et al., 2016; Tu
et al., 2017b). Electroacupuncture promotes the intrinsic growth
ability of spinal neurons after SCI by activating the calcitonin
gene-related peptide/α-calcium/calmodulin-dependent protein
kinase/NT-3 pathway (Xu et al., 2021b). Additionally,
electroacupuncture treatment can promote the differentiation
and remyelination of MSCs and oligodendrocyte precursor
cells, protect spinal motor neurons, and alleviate muscle
atrophy after SCI, along with elevation of the NT-3 expression
(Huang et al., 2011; Yan et al., 2011; Ding et al., 2015; Liu et al.,
2015; Zhang et al., 2017b).

SUMMARY AND PROSPECTS

SCI is characterized by high mortality and disability, with
complex regeneration and repair. We explained in detail the
underlying mechanisms of acupuncture therapy for SCI,
including oxidative stress reduction, inflammation and
apoptosis inhibition, microcirculation improvement, glial scar
formation reduction, and stimulation of NSC differentiation
(Figure 1). This review could provide an experimental basis
for better clinical application of acupuncture in SCI. However,
SCI has complex pathophysiology. Therefore, significant research
should be focused on the pathogenesis of acupuncture therapy to
formulate mechanism-based specific intervention strategies and
help SCI patients achieve better outcomes and recovery of
impaired neurological function.

Although this review primarily summarizes recent preclinical
studies, acupuncture clinical trials for SCI have shown positive
results. Acupuncture alleviates the neurogenic bladder (Cheng
et al., 1998; Honjo et al., 2000), chronic shoulder pain (Dyson-
Hudson et al., 2001; Dyson-Hudson et al., 2007), neuropathic

pain (Norrbrink and Lundeberg, 2011; Estores et al., 2017), and
osteoporosis (Meng et al., 2014) and improves neurological
(sensory and motor) functions (Wong et al., 2003).
Interestingly, a study that enrolled seven healthy volunteers
and three cervical SCI patients observed that the functional
magnetic resonance imaging (fMRI) technique detected an
activation centered at C6 and C2 cervical spinal cord levels by
using acupuncture at L4 and L11, proving the existence of the
meridians and points. An fMRI can be used as a harmless
research and monitoring method to explore the effect of
acupuncture therapy on SCI patients (Chen et al., 2007).
However, most clinical trials are single-center trials with few
subjects and are not conducted in a double-blinded manner.

Acupuncture can be an emerging therapy for the treatment of
SCI as a simple, safe, and low-risk treatment. Although many
basic studies and clinical trials have established the advantages of
acupuncture in SCI, large-scale and multi-centric clinical trials
are needed to authenticate the effect further. Moreover, the
concept of precision medicine could further explore the best
indicators in acupoint selection, stimulation frequency, starting
time, and duration, for achieving individualized treatment. Thus,
modern analytical techniques should be used to quantitatively
analyze the variations in physiological and pathological indexes
after acupuncture, which could popularize the global application
of acupuncture.
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Mechanisms Underlying
Curcumin-Induced Neuroprotection in
Cerebral Ischemia
Feng Fan1* and Meng Lei2

1Department of Interventional Neuroradiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,
2Department of Neurology, The Third People’s Hospital of Henan Province, Zhengzhou, China

Ischemic stroke is the leading cause of death and disability worldwide, and restoring the
blood flow to ischemic brain tissues is currently the main therapeutic strategy. However,
reperfusion after brain ischemia leads to excessive reactive oxygen species production,
inflammatory cell recruitment, the release of inflammatory mediators, cell death,
mitochondrial dysfunction, endoplasmic reticulum stress, and blood–brain barrier
damage; these pathological mechanisms will further aggravate brain tissue injury,
ultimately affecting the recovery of neurological functions. It has attracted the attention
of researchers to develop drugs with multitarget intervention effects for individuals with
cerebral ischemia. A large number of studies have established that curcumin plays a
significant neuroprotective role in cerebral ischemia via various mechanisms, including
antioxidation, anti-inflammation, anti-apoptosis, protection of the blood–brain barrier, and
restoration of mitochondrial function and structure, restoring cerebral circulation, reducing
infarct volume, improving brain edema, promoting blood–brain barrier repair, and
improving the neurological functions. Therefore, summarizing the results from the latest
literature and identifying the potential mechanisms of action of curcumin in cerebral
ischemia will serve as a basis and guidance for the clinical applications of curcumin in
the future.

Keywords: cerebral ischemia, curcumin, neuroprotection, oxidative stress, inflammation, blood–brain barrier,
apoptosis, mitochondrial dysfunction

INTRODUCTION

Ischemic stroke is the most common type of stroke and is associated with high mortality and
morbidity. Early restoration of blood supply to ischemic tissues is currently an effective treatment
strategy that improves the energy metabolism, oxygen supply, and neurological outcomes. At
present, recombinant tissue plasminogen activator (r-TPA) is used for thrombolytic therapy;
however, with the limitation of usage within 4.5 h after the onset of stroke, only 3–5% of stroke
patients meet the criteria and use r-TPA in a timely fashion (Wardlaw et al., 2014; Marlier et al., 2015;
Moretti et al., 2015; Campbell et al., 2019; Campbell and Khatri, 2020). Therefore, current research
focuses on exploring pathological mechanisms and discovering the novel potential therapeutic
targets for cerebral ischemia. Cerebral ischemia causes acute brain injury, while reperfusion results in
chronic brain injury. In the acute stage of ischemia, cellular homeostasis and microcirculation are
impaired, cell energy metabolism is disrupted, and the structure of the blood–brain barrier (BBB) is
destroyed. During the reperfusion period, these structures and functions are not restored; many
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substances and cells that would not otherwise reach the brain,
such as inflammatory cells and macromolecules of inflammatory
factors, enter the brain through the damaged BBB. This leads to
further aggravation of injury following cerebral ischemia (Pan
et al., 2007; Jung et al., 2010; Badruddin et al., 2011). In short, the
damage caused by cerebral ischemia and reperfusion involves
oxidative stress, apoptosis, the inflammatory response, BBB
destruction, and energy metabolism disorder, among other
pathological mechanisms. Therefore, it is critical to developing
drugs that can intervene with multiple targets.

Curcumin is the most important polyphenol active
component of turmeric and is slightly soluble in water but
soluble in ethanol and acetone. The ratio of compounds in
turmeric is about 5% dimethoxylcurcumin, 15%
demethoxylcurcumin, and 80% curcumin. It is challenging to
dissolve, extract, and absorb curcumin, resulting in low
bioavailability and limited clinical applications (Esatbeyoglu
et al., 2012; Kotha and Luthria, 2019). In recent years,
numerous drug delivery systems using liposomes,
nanoparticles, and microemulsion as carriers have been
successfully developed, which significantly increased the
solubility, stability, and safety of curcumin, and greatly
improved its biological activity in treating or preventing
diseases, showing great promise for clinical application
(Aggarwal and Sung, 2009; Mahmood et al., 2015; Abd El-
Hack et al., 2021; Jabczyk et al., 2021; Feltrin et al., 2022).

As a natural medicine, curcumin has a wide range of beneficial
pharmacological activities, including antitumor, anti-
inflammatory, antioxidation, anti-apoptosis, etc. (Zhou et al.,
2011; Mandal et al., 2020; Fu et al., 2021). Numerous studies
have revealed the beneficial role of curcumin in cancer, diabetes,
metabolic diseases, autoimmune diseases, atherosclerosis,
arthritis, pulmonary diseases, etc (Aggarwal and Harikumar,
2009; Jabczyk et al., 2021; Mahjoob and Stochaj, 2021).
Recently, researchers discovered that curcumin also has
neuroprotective effects on various neurological diseases,
including neuropsychiatric disorders, neurodegenerative
diseases, traumatic brain injury, spinal cord injury, and
epilepsy (Dhir, 2018; Bhat et al., 2019; Yavarpour-Bali et al.,
2019; Yuan et al., 2019; Farkhondeh et al., 2020; Nebrisi, 2021;
Lamanna-Rama et al., 2022). The involved mechanisms may
include the mediation of neurotransmitters and the
hypothalamus-pituitary-adrenal cortex axis, the release of
neurotrophic factors, and the promotion of nerve regeneration,
thereby influencing a variety of signaling cascades, enhancing
vitality and differentiation of neurons, and ultimately enhancing
neurological functions (Xu et al., 2006; Srivastava et al., 2018;
Ramaholimihaso et al., 2020; Yang et al., 2020; Yang et al., 2021).
Multiple in vitro and in vivo experiments have been carried out to
investigate the role and mechanism of curcumin in cerebral
ischemia and revealed that curcumin participates in the
recovery of ischemic injury by inhibiting the oxidation,
apoptosis and inflammation, protecting the BBB, and restoring
mitochondrial functions (Ovbiagele, 2008; Bavarsad et al., 2019).
A summary of recent studies on curcumin treatment for cerebral
ischemia will assist in identifying its shortcomings and benefits,
thereby guiding future research studies, clinical translational

applications, and the exploration of novel therapeutic
strategies for ischemic stroke.

Mechanisms of Curcumin Against Cerebral
Ischemia
Recently, numerous studies have demonstrated the
neuroprotective effect of curcumin in cerebral ischemia
(Bavarsad et al., 2019; Ułamek-Kozioł et al., 2020; Subedi and
Gaire, 2021). Curcumin can attenuate neurological dysfunction,
and reduce infarct volume and brain edema, thereby improving
the outcome of an ischemic stroke. Various mechanisms are
involved, including the inhibition of oxidative stress,
inflammation, apoptosis, calcium overload, and endoplasmic
reticulum stress, as well as the restoration of BBB, and
mitochondrial structural functions (Supplementary Table S1).
The details are described below.

Curcumin Reduces Oxidative Stress
Brain tissues have a higher metabolic rate, demand for oxygen
and polyunsaturated fatty acids, and lower levels of antioxidant
enzymes compared with other organs, making the central
nervous system more vulnerable to oxidative damage (Cenini
et al., 2019; Torres-Cuevas et al., 2019; Bhatt et al., 2020).
Oxidative stress caused by the disruption of homeostasis
between oxidative and antioxidant systems are a key
mechanism of cerebral ischemic injury (Li et al., 2018; Torres-
Cuevas et al., 2019; Yang, 2019). As a vital signaling molecule in
the brain, reactive oxygen species (ROS) directly or indirectly
mediates several pathological processes after cerebral ischemia
(Fraser, 2011; Olmez and Ozyurt, 2012; Orellana-Urzú a et al.,
2020). It has been demonstrated that the activity of nitric oxide
synthase (NOS), cyclooxygenase (COX), xanthine
dehydrogenase/xanthine oxidase, myeloperoxidase,
myeloperoxidase (MPO), and other enzymes promoting ROS
production increase following stroke, whereas the activity of
enzymes that prevent ROS production, such as superoxide
dismutase (SOD), catalase, peroxidase, glutathione peroxidase
(GSH-Px) decrease, consequently destroying the dynamic
balance of ROS, and leading to its accumulation. Excessive
ROS can trigger lipid peroxidation, DNA damage, and protein
oxidation damage (Sorce et al., 2012; Bazmandegan et al., 2017;
Shao et al., 2020; Su et al., 2020; Duan et al., 2021). Therefore, the
use of free radical scavengers or other antioxidants is one of the
primary therapeutic options for cerebral ischemia (Ahmadinejad
et al., 2017; Davis and Pennypacker, 2017; Zhou et al., 2021).

Curcumin, as an antioxidant, accelerates the removal of ROS
by activating the antioxidant enzymes and inhibiting the brain
tissue damage induced by oxidative stress (Vajragupta et al., 2003;
Namgyal et al., 2021). The antioxidative effect of curcumin in
cerebral ischemia has been widely explored, and it has been noted
that curcumin could partially exert neuroprotection by alleviating
oxidative stress-induced injury post-stroke (Rathore et al., 2008;
Mukherjee et al., 2019; Zhang et al., 2021). It was previously
reported that pretreatment and posttreatment administration of
curcumin both improved the antioxidative ability of the injured
neurons (Wu et al., 2015), while immediate and delayed (24 h
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after ischemia) treatments with curcumin both prevented
ischemia-induced neuronal damage and oxidative insult,
indicating the wide range time window of curcumin treatment
in cerebral ischemia (Al-Omar et al., 2006).

Moreover, curcumin can lower the production and
accumulation of ROS and oxidation products (MDA, lipid
peroxidation, etc.) (Hosseinzadehdehkordi et al., 2015; Seo
et al., 2017; Khan et al., 2019). Other formulations of
curcumin with polyethylene glycol (PEG)-ylated polylactide-
co-glycolide (PLGA) nanoparticles or solid lipid nanoparticles
(C-SLNs) are also capable of reducing ROS levels (Mukherjee
et al., 2019). Interestingly, a comparative study investigating the
antioxidative effect of three curcuminoids (curcumin,
demethoxycurcumin, and bisdemethoxycurcumin) using a
polymeric N-isopropyl acrylamide nanoparticle formulation
determined that curcumin had the most potent antioxidant
activity (Ahmad et al., 2013). In addition, curcumin elevates
the activity and expression level of antioxidases (NADPH oxidase
2, SOD, CAT, GSH-Px, glutathione reductase, etc.) (Dohare et al.,
2008; Kakkar et al., 2013; Wu et al., 2020). Awad et al.
demonstrated that curcumin synergistically enhanced the
inhibitory action of candesartan on brain ischemia through
the suppression of oxidative stress, implying the beneficial
combined effects and potential therapeutic strategy of
curcumin and other drugs on cerebral ischemia in the future
(Awad, 2011). Various signaling pathways are involved in
curcumin-induced antioxidation. For example, curcumin could
alleviate the oxidative damage by regulating the miR-1287-5p/
LONP2 axis and miR-7/RelA p65 axis in an OGD/R model (Xu
H. et al., 2019; Zhang et al., 2021). Another study described that
dienone monocarbonyl curcumin analogs protected the cellular
growth by eliminating ROS generation by activating the Nrf2/
HO-1 signaling pathway (He et al., 2021). Similarly, curcumin
and hexahydrocurcumin enhanced antioxidant defense partially
through the Nrf2/HO-1 pathway in a rat stroke model (Wicha
et al., 2017). In addition, other signaling pathways such as SP1/
Prdx6 (Jia et al., 2017), AMPK/UCP2 (Pu et al., 2013), Golgi
reassembly, and stacking protein 65 (GRASP65) (Lin et al., 2016)
are also involved in the antioxidant properties of curcumin.

Curcumin Inhibits Cellular Apoptosis
Apoptosis is an autonomous and programmed process of cell
death that is the predominant form of cell death in cerebral
ischemia and is closely related to the prognosis of stroke patients
(Ferrer and Planas, 2003; Mitsios et al., 2007; Uzdensky, 2019;
Gao et al., 2020). Previous research has described that cell
necrosis and apoptosis co-exist in the acute stage of cerebral
ischemia, while apoptosis is the primary type of delayed cell death
post-stroke. Indeed, following the stroke onset, necrosis mainly
occurs in the ischemic central region, whereas apoptosis chiefly
occurs in the ischemic penumbra (Ueda and Fujita, 2004; Radak
et al., 2017). The mechanism of apoptosis induced by cerebral
ischemia is intricate and involves not only alterations in the
expression of apoptosis-related genes but is also regulated by
myriad internal and external factors. The mechanisms that
mediate ischemic stroke-induced apoptosis mainly include the
mitochondrial and endoplasmic reticulum stress and death

receptor pathways (Cao et al., 2001; Zheng et al., 2003;
Broughton et al., 2009; Iurlaro and Muñoz-Pinedo, 2016).

The use of anti-apoptotic agents or therapeutic strategies can
protect against cell injury after cerebral ischemia (Rami et al.,
2008; Luo et al., 2019; Youssef et al., 2021). A large number of
studies have reported that various traditional Chinese medicines,
including curcumin, can effectively alleviate cellular apoptosis
after cerebral ischemia and improve neurologic dysfunction
(Dong et al., 2016; Yu et al., 2020; Zhu et al., 2021). Curcumin
can upregulate the expression of anti-apoptotic proteins such as
Bcl-2 and downregulate the expression of apoptosis-related
proteins such as Bax and caspase-3, thus effectively inhibiting
cellular apoptosis and attenuating cerebral ischemia-induced
injury (Xie et al., 2018; Xu L. et al., 2019). The specific
mechanism of curcumin alleviating apoptosis after cerebral
ischemia is well-documented. Curcumin-laden exosomes target
ischemic brain tissues and alleviate ROS-mediated mitochondrial
apoptosis (He et al., 2020). Additionally, curcumin can alleviate
ischemia-induced brain injury and cell apoptosis via repressing
CCL3, elevating glucose transporter (GLUT)1 and GLUT3,
inactivating the TLR4/MyD88/MAPK/NF-κB and Wnt/JNK1
pathways, and promoting MEK/ERK/CREB, and PI3K/Akt
pathway activation (Xia et al., 2018; Xu L. et al., 2019; Wang
C. et al., 2020; Wu et al., 2020; Zhou et al., 2020). Xu et al. (2018)
showed that a combination of curcumin and vagus nerve
stimulation restored behavioral deficits by inhibiting apoptosis
after cerebral ischemia, with the involvement of the Akt/ERK2
pathway. Notably, curcumin inhibits cellular damage and
apoptosis by diminishing the endoplasmic reticulum stress
(ERS) (Cheng et al., 2020; Keshk et al., 2020; Zhou et al.,
2022). Chhunchha et al. (2013) reported that curcumin abated
hypoxia-induced ERS-mediated cell death in mouse hippocampal
cells by enhancing peroxiredoxin 6 (Prdx6) expressions and
inhibiting NF-κB activation. Another in vitro research using
the neuroblastoma cells exposed that curcumin relieved
neurotoxicity via regulating the PERK-eIF2α pathway (Yan
et al., 2022). Last, curcumin mitigated axonal injury and
neuronal cellular apoptosis through the PERK/Nrf2 signaling
pathway in a rat diffuse axonal injury model (Huang T. et al.,
2018).

However, it is worthwhile noting that curcumin could play an
antitumor role by promoting the apoptosis of tumor cells
(Notarbartolo et al., 2005; Giordano and Tommonaro, 2019;
Walker and Mittal, 2020). Furthermore, exploration of the
mechanism of curcumin in diverse diseases and its effect on
apoptosis under contrasting conditions will assist in evaluating
the safety and effectiveness of curcumin treatment in cerebral
ischemia in the future.

Curcumin Diminishes the Inflammatory
Cascade
Neuroinflammation plays a key role in the progression of cerebral
ischemia. Following cerebral ischemia, microglia, astrocytes, and
neutrophils, as the main effector cells, release a large number of
inflammatory cytokines, such as interleukins, chemokines, and
tumor necrosis factor (TNF), induce neuronal apoptosis, and
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contribute to microvascular dysfunction, secondary cerebral
hemorrhage, and cerebral edema (Wang et al., 2019b; Shi
et al., 2019; Jurcau and Simion, 2021). The activation and
infiltration of inflammatory cells, as well as the synthesis and
secretion of adhesive molecules and inflammatory mediators,
promote the inflammatory cascade (Barrington et al., 2017;
Hendriksen et al., 2017; Živančević et al., 2021).

Curcumin has been shown to possess anti-inflammatory
properties in various neurological disorders, including acute
brain injuries (spinal cord injury (Zhang N. et al., 2017),
traumatic brain injury (Sun et al., 2020), stroke (Miao et al.,
2016), and subarachnoid hemorrhage (Wakade et al., 2009)), and
neurodegenerative diseases (Alzheimer’s disease (Hamaguchi
et al., 2010), Parkinson’s disease (Ojha et al., 2012),
Huntington’s disease (Ullah et al., 2017), and multiple sclerosis
(Mohajeri et al., 2015)). It attenuates the inflammatory response
after cerebral ischemia through multiple mechanisms. For
instance, curcumin can reduce the induction and release
inflammatory cytokines such as IL-6, IL-1β, TNF-α, and COX-
2 (Zhang Y. et al., 2017; Wicha et al., 2017). In addition,
curcuminoids decrease neutrophil rolling and adhesion to the
cerebrovascular endothelium, lower neutrophil numbers, and
inhibit neutrophil activation, thereby ameliorating ischemic
brain injury (Funk et al., 2013). NF-κB is a regulatory factor
with diverse transcriptional effects, which are activated after
cerebral ischemia and participates in the transcription of
relevant target genes contributing to the inflammatory
response. Numerous researchers have demonstrated that the
anti-inflammatory effect of curcumin in cerebral ischemia is
tightly associated with the modulation of NF-κB (Li et al.,
2016, 2017; Li et al., 2021). Ran et al. (2021) observed that
curcumin ameliorated white matter injury after ischemic
stroke via NF-κB suppression and NLRP3 inflammasome
inhibition in a rat stroke model. Triblock copolymer
nanomicelles loaded with curcumin also exert an anti-
inflammatory effect by inhibiting the NF-κB pathway after
cerebral ischemia (Li et al., 2021). Other studies assessing the
link between NF-κB and curcumin established that the anti-
inflammatory impact of curcumin in cerebral ischemia is
mediated by the inhibition of the TLR4/MyD88/MAPK/NF-
κB, TLR2/NF-κB, and PPAR γ/NF-κB pathways (Liu et al.,
2013; Tu et al., 2014; Wang C. et al., 2020). Likewise, the
modulation of the TLR4/p38/MAPK, SIRT1 and JAK2/STAT3
pathways (Li L. et al., 2015; Miao et al., 2016; Huang L. et al.,
2018) are involved in curcumin-induced inhibition of
inflammation in cerebral ischemia. As a recent hotspot area in
stroke, ERS also contributes to inflammation and apoptosis in
cerebral ischemia. Zhu et al. (2017) described the inhibitory effect
of curcumin on ERS by downregulating the expression of
GADD153 and caspase-12 in a rat stroke model. Meanwhile,
an in vitro study exposed that curcumin attenuated neurotoxicity
in the hippocampus by suppressing the ERS-associated TXNIP/
NLRP3 inflammasome activation in an AMPK-dependent
manner (Li Y. et al., 2015).

Microglia are in a resting state under physiological conditions
and play the role of “immune monitoring and defense” in the
microenvironment of brain cells. Conversely, they are rapidly

activated and polarized in the pathological state (Hu et al., 2015;
Ma et al., 2017). After the onset of cerebral ischemia, microglia
play a contrasting role in brain injury or neuroprotection through
M1 or M2 polarization (Xiong et al., 2016; Zhao et al., 2017; Xue
et al., 2021). M1 microglia have cytotoxic effects and cause
inflammatory tissue damage, whereas M2 microglia have a
neuroprotective effect and promote tissue repair and
regeneration. The latter congregate in the ischemic area during
cerebral ischemia and release inflammatory factors to enhance
the inflammatory response. Interestingly, curcumin has a
profound regulatory influence on microglial responses, shifting
the microglial phenotype from the pro-inflammatory M1 state
toward the anti-inflammatory and tissue-reparative M2
phenotype, and inhibiting microglia-mediated pro-
inflammatory responses (Hu et al., 2012). The results from
both in vivo MCAO and in vitro OGD models have
corroborated that curcumin reduces inflammation through the
inhibition of M1 microglial activation and by weakening the
increase in TNF-α and IL-1β (Liu et al., 2017; Wang et al., 2019a).

Curcumin Has a Protective Effect on the
Integrity of the BBB
The BBB is predominantly composed of cerebral microvascular
endothelial cells, astrocytes, basal lamina, and pericytes. The
primary function of BBB is to prevent the diffusion of
macromolecules into the brain parenchyma and maintain the
stability of the internal environment of the nervous system (Huber
et al., 2001; Obermeier et al., 2013; Langen et al., 2019; Alahmari,
2021). After the occurrence of cerebral ischemia, several mediators
cause direct damage to the BBB components, which are
exacerbated by apoptosis, oxidative stress, and inflammatory
reaction, thus increasing the permeability of the BBB and
aggravating brain edema and neurologic injury (Jin et al., 2010;
Jiang et al., 2018; Kunze and Marti, 2019). Numerous studies have
explored the protective role andmechanism of action of curcumin
on BBB after ischemic stroke. Curcumin can protect the integrity
of BBB and reduce brain edema by the upregulation of aquaporin
4 and tight junction proteins such as zonula occluden 1 (ZO-1),
occludin, and claudin-5, and the downregulation of matrix
metalloproteinase 9 (MMP-9), intercellular adhesion molecule-l
(ICAM-1), and vascular cell adhesion molecule-l (VCAM-1) (Li
et al., 2017;Wang et al., 2019a; Wicha et al., 2020;Wu et al., 2021).
Furthermore, curcumin attenuates cerebral capillary endothelial
cell damage by inhibiting the expression of inducible nitric oxide
synthase (iNOS) and the generation of NO(x) (nitrites/nitrates
contents), thereby preventing BBB damage (Jiang et al., 2007). The
protection of shear rate can also prevent neutrophil adhesion to
the cerebrovascular microcirculation and block early
microvascular inflammation (Funk et al., 2013). Mo et al.
(2021) found that curcumin exhibited a protective effect
against cerebral ischemia by reducing the BBB dysfunction
through protein kinase C-θ (PKC-θ) signaling. In addition, it
was previously reported that curcumin ameliorates the
permeability of the BBB during hypoxia by upregulating the
expression of HO-1 in brain microvascular endothelial cells
(Wang et al., 2013).
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Despite many studies demonstrating the protective effect of
curcumin on BBB, there are still unanswered questions such as
which curcumin formulations and routes of administration can
penetrate the BBB more rapidly. What is the main mechanism
through which curcumin prevents BBB injury and how to
determine the optimal dose and administration interval with
favorable safety and efficacy profiles. Further studies are
warranted to develop and identify potential treatment
strategies for cerebral ischemia.

Curcumin Improves Mitochondrial
Dysfunction and Calcium Overload
The mitochondrion is the main structure for regulating cellular
calcium homeostasis. Cellular calcium overload can lead to ROS
generation, mainly released from mitochondria, and induce
oxidative stress (Kirkinezos and Moraes, 2001; Brookes et al.,
2004; Peng and Jou, 2010). Mitochondrial permeability transition
pore (mPTP) is a ROS-dependent protein complex between the
mitochondrial inner and outer membrane. Calcium overload and
oxidative stress in mitochondria can induce the opening of mPTP
through lipid peroxidation and mitochondrial respiratory chain
damage, thus reducing the mitochondrial membrane potential
and releasing cytochrome C (Armstrong, 2006; Rottenberg and
Hoek, 2017). The latter is a small molecule protein located in the
inner membrane of mitochondria, which serves as an electron
carrier between the mitochondrial respiratory chain complex III
and complex IV. Its release activates caspase-9, which in turn
activates the executor of apoptosis protein caspase-3, and
ultimately leads to neuronal apoptosis (Kadenbach et al., 2004;
Choi et al., 2007). Therefore, the destruction of mitochondrial
structural integrity and functional homeostasis is a significant
pathological change in cerebral ischemia injury. Protecting the
mitochondrial structure and function is the focus of
neuroprotection after cerebral ischemia.

Curcumin can alleviate cerebral ischemic injury by preserving
the mitochondrial function and minimizing mitochondrial
injury, elevating mitochondrial membrane potential,
mitochondrial complex I activity, mitochondrial cytochrome c
levels, and maintaining the mitochondrial membrane integrity
(Rathore et al., 2008; Kakkar et al., 2013; Miao et al., 2016; Zhang
Y. et al., 2017;Wang et al., 2019c). Moreover, curcumin may exert
neuroprotective effects by increasing mitochondrial biogenesis,
including nuclear respiratory factor-1, mitochondrial
transcription factor A, and mitochondrial number (Wang
et al., 2005; Liu et al., 2014). He et al. (2020) uncovered that
curcumin-laden exosomes alleviated cerebral ischemia-
reperfusion injury by inhibiting the ROS-mediated
mitochondrial apoptosis. In another study, Mondal et al.
(2019) discovered that tetrahydrocurcumin epigenetically
mitigated mitochondrial dysfunctions by regulating the
mitochondrial tissue inhibitor of metalloproteinase 2 (TIMP-2)
through hypermethylation of the CpG islands of TIMP-2
promoter. Furthermore, curcumin can relieve Ca2+

dysregulation (Shukla et al., 2008), which may be associated
with the inactivation of the P2X7 receptor (Wang Z. et al.,
2020). However, the crosstalk and interactions of

mitochondrial dysfunction, oxidative stress, calcium overload,
and apoptosis in cerebral ischemia are complex. Further research
is necessary to reveal the specific neuroprotective mechanism of
curcumin in this complicated pathological process.

Curcumin Regulates Autophagy
Autophagy is a ubiquitous occurrence in eukaryotic animals in
which cells phagocytose their own cellular components into
vesicles and subsequently fuse with lysosomes to form
autophagolysosomes, which breakdown to maintain the cell
metabolism and organelle renewal (Mizushima et al., 2008;
Mizushima and Komatsu, 2011). It is instrumental in
maintaining cell survival and intracellular homeostasis under
stressful conditions such as ischemia and hypoxia; however,
immoderate autophagy may promote cell death (Smith et al.,
2011; Kubisch et al., 2013; Choi et al., 2018). So far, the
researchers have detected more than 30 autophagy-related
genes involved in regulating autophagy. Cerebral ischemia is
known to activate autophagy. However, the role and
mechanism of autophagy in cerebral ischemia remain elusive
(Wang et al., 2021). The influence and effect of autophagy may be
dependent on the degree of ischemic injury and duration of
ischemia (Sun et al., 2018; Wang et al., 2018; Wolf et al., 2019;
Hou et al., 2022).

Curcumin can exert a beneficial impact by mediating
autophagy, thereby inducing antitumor (Masuelli et al., 2017),
anti-fibrotic (Kong et al., 2020), anti-apoptotic (Chen et al., 2021),
and neuroprotective effects (Forouzanfar et al., 2020). Many
studies have illustrated that curcumin attenuates cerebral
ischemic injury with the involvement of autophagy. Curcumin
can exert neuroprotective effects by suppressing the overactivated
autophagy, with a diminished LC3-II/LC3-I ratio (Tyagi et al.,
2012; Huang L. et al., 2018; Zhang et al., 2018). Conversely, other
researchers hypothesize that curcumin attenuates cerebral
ischemia-reperfusion injury by improving mitophagy, with an
elevated LC3-II/LC3-I ratio (Wang and Xu, 2020). The difference
between curcumin on autophagy may be correlated with the
administration time point and dosage of curcumin, the stage of
ischemic injury, and other factors. The dynamic alterations in
autophagy regulated by curcumin in cerebral ischemia need to be
explored in further research. Interestingly, Hou et al. (2019)
identified that inhibition of autophagy caused a decrease in
HIF-1α and an attenuation in HIF-1α induced autophagy
suppression under OGD/R conditions, indicating the
importance of the interaction of autophagy and HIF-1α
underlying curcumin-induced neuroprotection in brain ischemia.

SUMMARY

Turmeric is a traditional Chinese medicine widely used in food and
medicine and has been used to treat various diseases for millennia.
Akin to many natural products, turmeric has a variety of biological
activities with low toxicity. As a critical active component of
turmeric, curcumin has been found to play a neuroprotective role
in the treatment of cerebral ischemia through various mechanisms,
such as antioxidant activity, anti-apoptosis, anti-inflammatory
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activity, and BBB protection. However, there are unresolved
questions. First, the clinical application of curcumin is
challenging. At present, most of the studies are experimental by
nature, and related clinical trials are limited. Although basic research
has achieved favorable results, it should be noted that animals and
humans have significant differences in terms of drug applications,
such as drug dosage and frequency, administration route, and
treatment time points. In addition, it has a strong desire to
further illustrate the effectiveness, safety, and stability of
curcumin in the body through clinical trials, and choose the
optimal treatment strategy. Second, the effect of curcumin
combined with other drugs and treatment methods should be
explored to determine the potential mechanism of their
synergistic effects in promoting the therapeutic effect of
curcumin. Furthermore, curcumin has a wide range of
therapeutic targets, making it challenging to focus on just one.
Therefore, an effective strategy to maximize the efficacy of
curcumin is by accelerating the development of drug delivery
systems based on nanoparticles and other carriers and to carry
out targetedmodification in the new forms of curcumin. Last but not

least, it is imperative to further deepen our understanding of the
biological and pharmacological activities of curcumin. Considering
that curcumin is almost insoluble in water and has a short half-life
and low bioavailability, further studies are warranted to determine its
application in cerebral ischemic therapy.
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The Involvement of Caspases in
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Chronic pain is a common, complex and unpleasant sensation following nerve injury, tissue
trauma, inflammatory diseases, infection and cancer. It affects up to 25% of adults and is
increasingly recognized as the leading cause of distress, disability and disease burden
globally. Chronic pain is often refractory to most current analgesics, thus emphasizing the
requirement for improved therapeutic medications. It is of great importance to elucidate the
specific pathogenesis of chronic pain with different etiologies. Recent progress has
advanced our understanding in the contribution of neuroinflammation and glial cells
(microglia and astrocyte) activation in the plasticity of excitatory nociceptive synapses
and the development of chronic pain phenotypes. Oxidative stress-associated neuronal
apoptosis is also identified to be a pivotal step for central pain sensitization. The family of
cysteine aspartate specific proteases (Caspases) has been well known to be key signaling
molecules for inflammation and apoptosis in several neurological conditions. Recent
studies have highlighted the unconventional and emerging role of caspases in
microgliosis, astrocytes morphogenesis, chemokines release, cytokines secretion and
neuronal apoptosis in initiating and maintaining synaptogenesis, synaptic strength and
signal transduction in persistent pain hypersensitivity, suggesting the possibility of
targeting caspases pathway for prevention and treatment of chronic pain. In this
review, we will discuss and summarize the advances in the distinctive properties of
caspases family in the pathophysiology of chronic pain, especially in neuropathic pain,
inflammatory pain, cancer pain andmusculoskeletal pain, with the aim to find the promising
therapeutic candidates for the resolution of chronic pain to better manage patients
undergoing chronic pain in clinics.

Keywords: caspase, chronic pain, neuroinflammation, neuronal apoptosis, synaptic plasticity, spinal cord

INTRODUCTION

Pain is officially declared as “The Fifth Vital Sign” (Walid et al., 2008). Chronic pain is characterized
by pain that sustains or recurs for longer than 3 months (Klein, 2015; Treede et al., 2019). Chronic
pain remains to become a major medical issue which affects at least 25% of the general population
and imposes a heavy financial burden to patients and healthcare systems worldwide (Gereau et al.,
2014; Mills et al., 2019). It frequently presents spontaneous pain, allodynia and hyperalgesia, as a
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result of nerve injury, cancer, chemotherapy, tissue trauma and
inflammation (Ji et al., 2014; Ji et al., 2016; Baral et al., 2019).
Patients with chronic pain also often experience insomnia,
depression, anxiety and cognitive impairments, which is
known to be associated with worsening pain and a serious
threat to their quality of life (Moriarty et al., 2011; Tajerian
et al., 2014; Tracey et al., 2019). The etiopathogenesis of chronic
pain is still debated and, consequently, are the strategies for
treating this condition (Ji et al., 2018; Tracey et al., 2019).
Chronic pain is identified to be refractory to most analgesics
currently (opioids, non-steroidal anti-inflammatory drugs and
anticonvulsants) in use (Chou and Huffman, 2007; Tracey et al.,
2019), thus emphasizing the urgent need for investigating the
specific molecular mechanism that underlies the generation and
persistence of chronic pain with different etiology.

Peripheral nociceptive sensitization (trigeminal ganglion and
dorsal root ganglion, DRG) and central nociceptive sensitization
(spinal cord and brain) mediated changes of neural plasticity in
pain neurocircuits contributes to chronic pain phenotypes
(Latremoliere and Woolf, 2009; Luo et al., 2014; Bliss et al.,
2016; Han et al., 2016; Ji et al., 2018). While acute pain is an
essential defensive response involving inflammation, chronic
pain that is critically initiated by continuous
neuroinflammation can be pathologic and maladaptive (Ji
et al., 2016). Neuroinflammation involves glial cells (microglia
and astrocyte) activation, chemokines (CCL1, CCL2, CCL7,
CXCL1) release and pro-inflammatory mediators (TNF-α, IL-
1β, IL-18, BDNF, PGE2) secretion in pain neural circuitry that,
subsequently, mediates excitatory neuronal plasticity and
synaptic transmission for producing and sustaining chronic
inflammatory pain, chronic neuropathic pain, chronic fracture-
associated pain, as well as chronic cancer pain (Zhang et al., 2013;
Ji et al., 2014; Ni et al., 2019; Qiang and Yu, 2019; Wang et al.,
2020b). Accumulating evidence emphasizes that oxidative stress
drive neuronal apoptosis and sensitize nociceptors in the
pathogenesis of chronic pain, such as chemotherapy-induced
peripheral neuropathy (CIPN) and opioid-induced
hyperalgesia (OIH) (Zhang et al., 2014; Shu et al., 2015; Grace
et al., 2016a; Yousuf et al., 2020; Squillace and Salvemini, 2022).
Nevertheless, the involvement of specific molecular signaling in
neuroinflammation and neuronal apoptosis remains
controversial.

Caspases are a family of conserved aspartate-specific cysteine
proteases, which generally exhibits similar structures and
presents in the cytoplasm in an inactive form (pro-caspases)
(Graham et al., 2011). When an appropriate stimulus is given,
caspases will be activated, dimerized and cleaved to form a
heterotetramer, the active form of the enzyme (Van
Opdenbosch and Lamkanfi, 2019). Activated caspases
represent unique catalytic properties and can specifically
recognize certain tetrapeptide motifs and cleave an aspartate
residue in their substrates, executing programmed cell death
(apoptosis) induced by a variety of injuries, including
cytokines, chemokines, inflammatory damage and
excitotoxicity (Van Opdenbosch and Lamkanfi, 2019). The
human caspases family can be subdivided into three functional
groups: apoptosis initiator caspases (Caspase-2, 8, 9, and 10),

apoptosis effector caspases (Caspase-3, 6, and 7), and
inflammatory caspases (Caspase-1, 4, 5, 11, and 12). Initiator
caspases elicit the apoptosis signal while the effector caspases
carry out the mass proteolysis that leads to apoptosis.
Inflammatory caspases do not function in apoptosis but are
rather involved in inflammatory signaling and other types of
cell death such as pyroptosis (Julien and Wells, 2017).

The caspases have been gradually recognized as a cardinal
contributor in neuroinflammatory responses and neuronal
apoptosis in a wide variety of neurological and
neuropsychiatric disorders, including Alzheimer’s disease
(AD), Parkinson’s disease (PD), Huntington’s disease, multiple
sclerosis, amyotrophic lateral sclerosis, tauopathies and age-
related macular degeneration (Flores et al., 2018; Kirby et al.,
2019). Intriguingly, recent progress has advanced our
understanding in the unconventional properties of the
caspases in mediating the perception of pain. Of note, caspase-
1, caspase-3 and caspase-6 are identified as key signaling
molecules for nociception induction and persistence by
regulating neuroinflammation, neural apoptosis and synaptic
plasticity (Berta et al., 2014; Berta et al., 2017a; Gao et al.,
2018) in the spinal dorsal horn (Chen et al., 2018; Ji et al.,
2018). In this review, we provide a more comprehensive view
on the emerging role of caspases in the mechanisms responsible
for various pain states. Apart from nerve injury-induced
neuropathic pain, we discuss caspases cascades in chronic
inflammatory pain, cancer pain, chemotherapy-induced
peripheral neuropathy and opioid-induced hyperalgesia. In
particular, we summarize the latest basic and clinical advance
in this field, and propose the potential therapeutic targets for the
resolution of chronic pain in the clinical setting.

CASPASES AND NEUROPATHIC PAIN

Caspase-1
Neuropathic pain is primarily triggered by direct nerve trauma in
the neurocircuits of peripheral and central somatosensory
nervous system. Caspase-1 is the prototypical member of
inflammatory caspases involved in cytokine maturation.
Dysregulation of inflammasome is strongly associated with the
human inflammatory diseases by the enhancement of Caspase-1
activity (Venero et al., 2013). The NOD-like receptor protein 3
(NLRP3) inflammasome are cytosolic multiprotein complexes,
which consists of inactive pro-caspase-1 (Liang et al., 2022).
When the recruitment of pro-caspase-1 into NLRP3
inflammasome occurs following the exposure to noxious
stimuli, pro-caspase-1 will be auto-cleaved to become mature
caspase-1 with high bioactivity (Liang et al., 2022). Then, caspase-
1 can cleave the pro-IL-1β and pro-IL-18 to generate the activated
forms IL-1β and IL-18, further mediating the extracellular
secretion of IL-1β and IL-18, which facilitates the transmission
of painful information (Rocha et al., 2020; Chen R. et al., 2021).
Xu and his colleagues reported that mice with a chronic
constriction injury (CCI) of sciatic nerve experience pain-like
behaviors followed by the increase of NLRP3 and activated
caspase-1 expression in neurons and astrocytes in the

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 8985742

Zhang et al. Caspases and Chronic Pain

76

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


superficial dorsal horn of spinal cord, and that pharmacological
inhibition of caspase-1 activation attenuates CCI-induced
mechanical allodynia and thermal hyperalgesia (Xu et al.,
2019). Moreover, Grace et al. (2018) demonstrated that
morphine treatment after CCI-induced peripheral nerve injury
results in persistent damage associated molecular patterns
(DAMP) release, which is critical for formation/activation of
spinal caspase-1-dependent NLRP3 inflammasomes, thus
causing the extension of CCI induced neuropathic allodynia,
whereas inhibition of caspase-1, or IL-1β in the spinal dorsal
horn reversed prolonged allodynia. Additionally, morphine
induces the phosphorylation of p38, and up-modulates the
expressions of Nuclear Factor-κB (NF-κB) subunit P65, toll-
like receptor 4 (TLR4) and ionotropic P2X receptors (P2X4
and P2X7) in spinal microglia in CCI rats (Grace et al.,
2016b). These alternations are involved in the activation of
caspase-1 and the secretion of downstream cytokine IL-1β,
which mediates the long-term increase of activity and
excitability in nociceptive sensory neurons, and results in the
production and persistence of chronic neuropathic pain. In

addition to the CCI model, NLRP3 and activated caspase-1
expression were also significantly elevated in spinal glial cells
of mice with partial sciatic nerve ligation (pSNL)-induced
neuropathic pain (Pan et al., 2018). Meanwhile, the synthesis
of caspase-1 in DRG of SNL rats is also increased (Zhang Y. et al.,
2015), suggesting that activation of caspase-1 in peripheral
nervous system is the pathophysiological basis for
pronociceptive hypersensitivity in chronic neuropathic pain.
Furthermore, Qian and his colleagues manifest that spinal
suppression of caspase-1 activation can effectively reduce the
synthesis of cytokines IL-1β and IL-18 and ameliorate mechanical
allodynia phenomena in a model of neuropathic pain with spinal
cord injury (SCI) (Qian et al., 2017).

In addition to neuropathic pain induced by nerve injury, many
antineoplastic agents are capable of eliciting CIPN, which is
characterized by mechanical allodynia, a pain evoked by non-
nociceptive stimuli such as light touch (Shim et al., 2019).
Repetitive injections of intraperitoneal paclitaxel generate and
sustain long-lasting CIPN in rats, which is accompanied by
NLRP3 over-expression, caspase-1 activation and IL-1β

TABLE 1 | Caspase-1 and its associated signaling molecules in rodent models of pain.

Pain conditions Rodent models Up-Regulation of signaling
molecules

References

Neuropathic pain CCI, C57BL/6 mice Caspase-1 and NLRP3 in the spinal cord Xu et al. (2019)
CCI, C57BL/6 mice Caspase-1, ASC and NLRP3 in the spinal cord Tonkin et al. (2018)
CCI, F344 rats Caspase-1, DAMP, P2X7R and TLR4 in the spinal cord Grace et al. (2018)
CCI, F344 and SD rats Caspase-1, DAMP, IL-1β, NLRP3, P2X7R and TLR4 in the spinal cord Grace et al. (2016a)
CCI, SD rats Caspase-1, ASC, IL-1β and NALP1 in the spinal cord Li et al. (2013)
CCI, SD rats Caspase-1, ASC, IL-1β, IL-18 and NLRP3 in the spinal cord Xie et al. (2017)
CCI, Wistar rats Caspase-1, MMP-9, IL-1β, IL-6 and IL-18 in the spinal dorsal horn and DRG Jurga et al. (2017)
SCI, C57BL/6J mice Caspase-1, IL-1β and IL-18 in the spinal cord Qian et al. (2017)
SNL, C57BL/6J mice Caspase-1 and NLRP3 in spinal glial cells Pan et al. (2018)
SNL, SD rats Caspase-1 in DRG Zhang et al. (2015b)
SNL, SD rats Cleaved caspase-1, ASC, IL-1β, IL-18, NF-κB, NLRP3 and TNF-α in the spinal

cord horn
Wang et al. (2021a)

CIPN: oxaliplatin, SD rats, C57BL/6 mice Caspase-1, IL-1β and NLRP3 in the spinal dorsal horn Wahlman et al.
(2018)

CIPN: oxaliplatin and paclitaxel, C57BL/6
mice

Caspase-1, ASC and NLRP3 in the spinal cord Tonkin et al. (2018)

CIPN: oxaliplatin, Swiss mice and C67BL/6
mice

Caspase-1, IL-1β, GFAP mRNA and TNF-α in the spinal cord Agnes et al. (2021)

CIPN: paclitaxel, SD rats Caspase-1, IL-1β and NLRP3 in DRG and sciatic nerve Jia et al. (2017)

Inflammatory pain Carrageenin injection, C57BL/6 mice Caspase-1, IL-1β maturation, COX-2 and PGE2 in paw skins Cunha et al. (2010)
CFA or ceramide injection, C67BL/6 mice Caspase-1, IL-1β and NLRP2 in DRG; caspase-1 and NLRP3 in spinal dorsal

horn neurons
Matsuoka et al.
(2019)

CFA, SD rats and CB2 receptors KO mice Caspase-1, ACS, IL-1β and NLRP3 in the skin tissue Gao et al. (2018)
Hindpaw incision, C57BL/6 mice Caspase-1 near the wounds Liang et al. (2010)
LPS, Balb/c mice Caspase-1, ASC, IL-1β and NLRC4 in the brain and spinal cord Cagli et al. (2021)
LPS, Wistar rats Caspase-1, ASC, IL-1β and p-P38 in the spinal cord Clark et al. (2006)
MIA knee injection, SD rats Caspase-1, ASC, IL-1β, IL-18 and NLRP3 in fibroblast-like synoviocytes Ma et al. (2020)

Cancer pain Walker 256 cells injection in tibial cavity, SD
rats

Caspase-1, ASC and NLRP3 in the spinal cord Chen et al. (2019)

Postoperative
pain

Thoracotomy, SD rats Caspase-1, IL-1β, IL-6, TLR4, TNF-α and in the spinal dorsal horn Hu et al. (2020)
Laparotomy, SD rats Caspase-1, IL-1β, NF-κB, NLRP3, TLR4 and TNF in the spinal dorsal horn Grace et al. (2019)

Abbreviations: ASC, apoptosis-associated speck-like protein containing a Caspase activation and recruitment domain; CB2, cannabinoid receptor type 2; CCI, chronic constriction injury;
CFA, complete Freund’s adjuvant; CIPN, chemotherapy induced neuropathic pain; CPTP, chronic post-thoracotomy pain; COX-2, cyclooxygenase-2; DAMP, damage associated
molecular patterns; DRG, dorsal root ganglion; GFAP, Glial fibrillary acidic protein; IL-1β, interleukin-1β; KO, knockout; LPS, lipopolysaccharide; MIA, monosodium iodoacetate; MMP-9,
matrix metalloproteinase-9; NALP1, NACHT leucine-rich-repeat protein 1; NF-κB, nuclear factor-kappa-B; NLRC4, NOD-like receptor C4; NLRP3, NOD-like receptor protein 3; P2X7R,
P2X7 receptor; PGE2, Prostaglandin E2; SCI, spinal cord injury; SD rats, Sprague Dawley rat; SNL, sciatic nerve ligation; TLR4, toll-like receptor 4; TNF-α, tumor necrosis factor-alpha.
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secretion in DRG and sciatic nerve at 3 weeks after paclitaxel
application. Furthermore, inhibition of caspase-1 activity reduces
the occurrence of CIPN and alleviates the severity of CIPN (Jia
et al., 2017). Simultaneously, up-regulations of caspase-1 and
NLRP3 in the spinal dorsal horn were verified in oxaliplatin-
associated CIPN in rats (Wahlman et al., 2018). The
aforementioned findings identified that inhibition of caspase-
1-dependent neuroinflammation may offer a novel therapeutic
strategy for neuropathic pain control (Table 1).

Caspase-3
Caspase-3 is known as an executioner caspase in apoptosis
because of its potent role in coordinating the destruction of
cellular structures such as DNA fragmentation or degradation
of cytoskeletal proteins (McIlwain et al., 2015). Caspase-3 is one
of the key indicators of apoptosis, and studies in the field of

chronic pain with caspase-3 are still in its exploratory stage. Wu
et al. (2012) elucidated that sciatic nerve injury induced by the
CCI model not only initiates chronic neuropathic pain, but also
increases the expression of caspase-3 in the spinal cord and
caspase-3-dependent apoptosis of dorsal horn neurons, which
is associated with up-regulation of growth associated protein 43
(GAP-43) expression. Behavioral results also indicate that
inhibition of caspase-3 activity by both pharmacological
therapy with caspase-3 inhibitor Z-DEVD-FMK and caspase-3
knockdown attenuates the thermal hyperalgesia in CCI rats (Wu
et al., 2012). Li et al. also found that microRNA-212-3p controls
peripheral neuropathic allodynia and sodium voltage-gated
channel alpha subunit 3 (Nav 1.3) through inhibiting caspase-
3 cleavage and B-cell lymphoma 2-associated X apoptosis
regulator (BAX) expression in rats with CCI surgery (Li Y.
et al., 2019). EphrinB/EphB signaling, the most important

TABLE 2 | Caspase-3 and its associated signaling molecules in rodent models of pain.

Pain conditions Rodent models Up-Regulation of signaling
molecules

References

Neuropathic pain CCI, Kunming mice Caspase-3, calpain-1 in the neurons of spinal cord Yang et al. (2018)
CCI, SD rats Caspase-3 and GAP-43 in the spinal cord Wu et al. (2012)
CCI, SD rats Caspase-3 and TNF-α in the spinal cord Hu et al. (2015)
CCI, SD rats Cytochrome-C-positive neurons and cleaved caspase-3-positive neurons in the

spinal cord
Fu et al. (2017)

CCI, SD rats Caspase 3 and HIF-1α in the spinal cord Mo et al. (2018)
CPN, C57BL/6 mice Caspase 3 in the ACC Wang et al. (2020c)
SCI, SD rats Caspase 3, caspase-8, IL-1β and IL-18 in the spinal cord Turtle et al. (2017)
SCI, SD rats Caspase 3, CD68(+), GFAP, iNOS, MDA, NMDAR1, 3-NT, TNF-α in the spinal

cord
Lv et al. (2017)

SCI, SD rats Caspase-3 mRNA, Bcl-2-associated X protein, COX-2, interleukins, iNOS and
TNF-α in the spinal cord

Cui et al. (2021a)

SCI, Wistar rats Caspase 3 in the spinal cord Hajimashhadi et al.
(2017)

SNL, Wistar rats Caspase-3, ATF-3 and anoctamin-1in DRG García et al. (2018)
PSNL, albino mice Caspase-3, COX-2, IL-1β, IL-6, iNOS, TNF-α in the spinal cord Khan et al. (2021)
CIPN: paclitaxel, SD rats Caspase-3 in DRG Choi et al. (2013)
CIPN: paclitaxel, C57BL/6 rats Caspase 3 and RhoA in DRG Chine et al. (2019)
CIPN: paclitaxel, Wistar rats Caspase 3, NF-kB p65, TNF-α in the sciatic nerve Al-Massri et al. (2018)
STZ-induced diabetes, SD rats Caspase-3, hydroperoxides, lipid peroxides, NOX2 and NOX4 in the sciatic nerve Ji et al. (2017)
STZ-induced diabetes, SD rats Caspase 3, AGE and BAX in the sciatic nerve tissue Yu et al. (2021)
STZ-induced diabetes, SD rats Caspase 3, CX3CL1 in DRG, p38 MAPK in macrophage Huang et al. (2014)
STZ-induced diabetes, Wistar rats Caspase-3 and the Bax/Bcl-2 ratio in the spinal cord Rasoulian et al. (2019)

inflammatory pain CFA, C57BL/6 mice Caspase 3, BAX, NF-KB, NMDAR, TNF-α, P38 phosphorylation in the anterior
cingulate cortex

Fan et al. (2018)

Cancer pain Walker 256 cell intraperitoneal injection,
SD rats

Cleaved caspase-3, ATF6, GRP78, p-IRE1 and p-PERK in the spinal cord He et al. (2019)

Walker 256 cell injection in tibia cavity,
SD rats

Caspase-3, Iba-1, and the mRNA levels of IL-1β, TNF-α and IL-6 in CSF-CN Chen et al. (2021a)

MRMT-1 cell injection in tibia cavity, SD
rats

Cleaved caspase-3, Bcl-2/BAX ratio and Drp1 in the spinal cord Li et al. (2019a)

Musculoskeletal
pain

Tibial fractures Caspase-3 and LRRTM1 in the spinal dorsal horn Zhang et al. (2020)

Abbreviations: ACC, anterior cingulate cortex; BAX, B-cell lymphoma 2-associated X apoptosis regulator; Bcl-2, B-cell lymphoma-2; CCI, chronic constriction injury; CD68(+), CD68-
positive cells; CIPN, chemotherapy induced neuropathic pain; COX-2, cyclooxygenases-2; CPN, common peroneal nerve ligation; CSF-CN, cerebrospinal fluid-contacting neurons;
CX3CL1, chemokine (C-X3-Cmotif) ligand 1; DRG, dorsal root ganglion; GAP-43, growth associated protein-43; GFAP, glial fibrillary acidic protein; GRP78, glucose regulatory protein 78;
HIF-1α, hypoxia inducible factor-1α; IL-1β, interleukin-1β; iNOS, inducible nitric oxide synthase; LRRTM, leucine-rich repeat transmembrane neuronal protein; MDA, malondialdehyde; NF-
κB, nuclear factor-kappa-B; NMDAR, N-methyl-d-aspartate receptor; 3-NT, 3-nitrotyrosine; pSNL, partial sciatic nerve ligation; p-IRE1, phosphorylated inositol-requiring enzyme-1; p38
MAPK, p38 mitogen-activated protein kinase; NOX2, NADPH oxidases 2; p-PERK, phosphorylated protein kinase RNA-like endoplasmic reticulum kinase; SCI, spinal cord injury; SNL,
sciatic nerve ligation; STZ, streptozotocin; TNF-α, tumor necrosis factor-α.

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 8985744

Zhang et al. Caspases and Chronic Pain

78

https://pubmed.ncbi.nlm.nih.gov/31319592/
https://pubmed.ncbi.nlm.nih.gov/31319592/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


subfamily of receptor tyrosine kinases (RTKs) in humans, is one
of pivotal cascades in the spinal pain processing and nociceptive
synaptic plasticity (Deng et al., 2017; Peng et al., 2019). Recent
evidence discloses that caspase-3 activation in the spinal dorsal
horn neurons but not microglia and astrocyte is implicated in
EphrinB/EphB signaling dependent neuropathic pain formation
in a mouse model of CCI (Yang et al., 2018) (Table 2).

Furthermore, spinal caspase-3 cleavage is required for axonal
degeneration, mitochondrial dysfunction, oxidative stress and
apoptosis in the pathogenesis of CIPN after intraperitoneal
vincristine stimulation in mice (Chen et al., 2020). The over-
expression of apoptosis-related proteins of BAX, BCL2, and
caspase-3 in the sciatic nerve is reported in streptozotocin
(STZ)-induced diabetic peripheral neuropathy in rats (Yu
et al., 2021). Blocking caspase-3 signaling cascades can reduce
spinal neuronal apoptosis and down-regulate nociceptor hyper-
responsiveness, which may emerge as a promising strategy for the
treatment of neuropathic pain. Conversely, peripheral nerve
injury induced by common peroneal nerve (CPN) ligation
blocks long-term depression (LTD) induction and caspase-3
expression in the anterior cingulate cortex (ACC).
Electrophysiological and behavioral tests found that disrupting
the link between caspase-3 and α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptor in the ACC inhibits
LTD expression and induces peripheral pro-nociception
phenotypes (Wang YJ. et al., 2020). Restoration of LTD
through caspase-3 accumulation in the ACC relieves persistent
mechanical allodynia (Wang YJ. et al., 2020), which may be used
as a promising therapeutic approach for the management of
chronic pain (Table 2). Acetyl-l-carnitine (ALCAR) is a short
chain ester of carnitine L-isomer, which is the predominant acyl-
carnitine and is involved in the redox reactions to eliminate
reactive oxygen species, and finally, can increase acetylcholine
levels, thus having neuroprotective action. Di Cesare Mannelli
et al. (2007) found the decreased effect of ALCAR on the
induction of apoptosis, the release of cytosolic cytochrome C,
the activation of caspase-3, and the fragmentation of the genome
in CCI rats. And that means ALCARmay be an agent suitable for
clinical use in the prevention of nervous tissue cell death after
peripheral nerve trauma via the inhibition by caspase-3. Di

Cesare Mannelli et al. (2013) also found that antioxidants
(such as silibinin and α-tocopherol) can ameliorate the
symptoms of neuropathy and protect astrocytes from caspase-
3-dependent apoptotic signaling activation in oxaliplatin-
treated rats.

Caspase-6
Caspase-6 is also tightly associated with the pathophysiology of
neuropathic pain. Peripheral nerve injury after CCI
intervention is demonstrated to cause the release of
activating transcription factor-3 (ATF3) and caspase-6 from
axonal terminal, which then acts on microglia to trigger their
activation. After microglial activation, p38 will be
phosphorylated to further induce TNF-α release, and brain-
derived neuro-trophic factor (BDNF) expression, which
inducing central sensitization and supporting the transition
from acute pain to chronic pain (Berta et al., 2016). Caspase-
6 inhibition significantly reverse the development of mechanical
allodynia in a rat model of neuropathic pain following spared
nerve injury (SNI) of sciatic nerve. Moreover, caspase-6 deletion
attenuated behavioral mechanical allodynia in the paclitaxel-
induced CIPN, although the mechanisms that produce
neuropathic pain after exposure to chemotherapeutics may
be fundamentally different from those operating after nerve
injury (Berta et al., 2017b). (Table 3)

Other Caspases
In recent years, in addition to caspase-1, caspase-3 and caspase-6,
other caspases have gained great emphasis on neuropathic pain
syndromes. Specifically, increase of caspase-9, apoptosis,
mitochondrial reactive free oxygen species (fROS), lipid
peroxidation, glutathione (GSH), transient receptor potential
vanilloid-1 (TRPV1) current density, and calcium
concentrations in the DRG and hippocampus was detected in
STZ-induced diabetic peripheral mechanical allodynia and
thermal hyperalgesia (Düzova et al., 2021). Application of
metabotropic glutamate receptor 1 (mGluR1) antagonist can
prevent CCI-induced neuropathic pain by reducing the
synthesis of caspase-7 in the spinal dorsal horn and inhibiting
the process of caspase-7 dependent neuronal apoptosis

TABLE 3 | Caspase-6 and its associated signaling molecules in rodent models of pain.

Pain conditions Rodent models Up-Regulation of signaling
molecules

References

Neuropathic pain SNI, SD rats Caspase-6 in DRG Berta et al. (2016)
CIPN: paclitaxel, C57BL/6 mice,
Casp6 –/–mice

Caspase-6 in DRG Berta et al. (2016)

Inflammatory pain Formalin, CFA, C57BL/6 mice,
Casp6 –/–mice

Caspase-6, TNF-α in the spinal cord Berta et al. (2014)

Musculoskeletal pain Tibial fracture Caspase-6, AMPAR-induced current in dorsal horn neurons, GluA1-containing
AMPAR trafficking, netrin-1 release, spine density in spinal cord

Cui et al. (2021b)
C57BL/6 mice

Opioid-induced
hyperalgesia

Remifentanil Caspase-6, CCL21, CXCR3 in spinal cord Wang et al.
(2020a)SD rats

Abbreviations: AMPAR, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; CCL21=C-C Motif Chemokine Ligand 21; CIPN, chemotherapy induced neuropathic pain;
CXCR3, C-X-C Motif Chemokine Receptor 3; DRG, dorsal root ganglion; SNI, spared nerve injury; TNF-α, tumor necrosis factor-α
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(Siniscalco et al., 2008). However, whether caspase-9 and caspase-
7 inhibitors can provide definitive relief of chronic pain is a
scientific question that requires to be addressed.

CASPASES AND INFLAMMATORY PAIN

Caspase-1
Inflammatory pain is evoked by inflammation-associated stimuli and
is often established in animal models using wound incision or
injection of inflammatory chemical irritants, such as complete
Freund’s adjuvant (CFA), carrageenan or lipopolysaccharides
(LPS) (Pan et al., 2021). Recent literatures have demonstrated that
intraplantar administration of complete Freund’s adjuvant (CFA) or
ceramide not only down-regulates paw withdrawal mechanical
threshold and paw withdrawal thermal latency, but also up-
regulates the expression of the NOD-like receptor protein 2
(NLRP2)/caspase-1/IL-1β in small-sized DRG primary sensory
neurons and the generation of NLRP3/caspase-1 in spinal dorsal
horn neurons (Matsuoka et al., 2019; Hua et al., 2022). Intrathecal
injection of a caspase-1 inhibitor Z-YVAD-FMK impairs CFA-
induced inflammatory pain hypersensitivity through inhibiting IL-
1β secretion inDRG (Matsuoka et al., 2019). Liang et al. also found, in
the mouse model of hind paw incision, that caspase-1 activity was
significantly increased in peri-incisional tissues. Caspase-1 inhibitor
VRTXSD727 significantly reverses mechanical allodynia and thermal
hyperalgesia, and reduces the synthesis and release of macrophage
inflammatory protein-1α (MIP-1α), granulocyte-colony stimulating
factor (G-CSF), Prostaglandin E2 (PGE2), as well as IL-1β around the
wound incision (Liang et al., 2010). Additionally, caspase-1 knockout
mice exhibit the impairment in the mechanical allodynia induced by
intraplantar exposure to carrageenin, TNF-a and exogenous CXCL1,
respectively. Meanwhile, caspase-1 deficiency suppresses
carrageenin-induced PGE2 production, IL-1β maturation and
cyclooxygenase-2 (COX-2) accumulation (Cunha et al., 2010).
These detailed evidences strongly suggest the importance of
caspase-1-dependent inflammatory cascades in the
pathophysiology of inflammatory hyper-nociception (Table 1).

Caspase-3
Caspase-3 plays an important role in inflammatory pain. N-methyl-
d-aspartate (NMDA) receptor, an ionotropic glutaminergic receptor,
consists of the primary GluN1 subunit and one or more GluN2A-D
modulatory subunits (Zhang et al., 2014). Activation of NMDA
receptor is a leading determinant in the hyper-excitability of
nociceptive neurons and central synaptic plasticity underlying
pain-associated syndromes (Chen et al., 2016; Xu et al., 2020).
The excitotoxicity of NMDA receptor is GluN2B dependent
(Zhang et al., 2021). Notably, CFA injection into hind paw can
not only aggravate neuronal apoptosis but also increase the
expressions of Bax, caspase-3 and GluN2B-containing NMDA
receptors in the ACC. Inhibiting caspase-3-dependent cascades
protects neuronal survival, reduces GluN2B-containing NMDA
receptor electrophysiological function and attenuates chronic
inflammation-induced mechanical allodynia and thermal
hyperalgesia (Fan et al., 2018) (Table 2).

Caspase-6
In 2014, a preclinical study by Berta et al. showed that caspase-6 is
specifically expressed in C-fiber axonal terminals in the
superficial spinal cord dorsal horn, and co-localizes with
calcitonin-gene-related peptide (CGRP), suggesting the
transportation of caspase-6 in peptidergic primary afferents to
spinal central terminals, which sustaining nociception-related
synaptic potency. Moreover, injections of formalin or
bradykinin into the plantar induce the cleavage and activation
of caspase-6 in nociceptive neurons of spinal dorsal horn. Spinal
application of specific caspase-6 inhibitor Z-VEID-FMK or
caspase-6 neutralizing antibody or delivery of caspase-6 siRNA
around the sciatic nerve can effectively relieve the inflammatory
pain induced by formalin intervention. Similarly, caspase-6 gene
knockout reduces bradykinin-induced spontaneous pain, CFA-
induced mechanical allodynia, and carrageenan-induced heat
hyperalgesia, respectively. In addition, spinal exposure to
recombinant caspase-6 not only facilitates microgliosis and
microglial activation to result in TNF-α secretion, but also
increases glutamate release from primary afferent terminals to
enhance excitatory postsynaptic currents (Berta et al., 2014).
These detailed results identify that caspase-6 activation may be
a predominant feature of neuroinflammation and neuron-
microglia interaction, as well as a key driver of synaptic
plasticity and central sensitization, thereby mediating
persistent inflammatory pain. Thus, targeting the caspase-6/
TNF-α cascades may offer a novel choice for treating
inflammatory pain states by microglial and synaptic modulation.

Other Caspases
In addition, recent report recapitulates the elevated concentration
of caspase-11, NOD-like receptor C4 (NLRC4), ASC, and IL-1β
in the brain and spinal cord of mice with lipopolysaccharide
(LPS)-induced inflammatory heat hyperalgesia (Cagli et al.,
2021), suggesting the implication of caspase-11-dependent
NLRC4 inflammasome in pain perception.

CASPASES AND CANCER PAIN

Caspase-1
Cancer pain is also an important category of chronic pain and
have the distinctive characteristic of both neuropathic pain
and inflammatory pain processing (Wang K. et al., 2020;
Wang K. et al., 2021). Mounting evidence reveal that the
expression of NLRP3 inflammasome, including NLRP3,
apoptosis-associated speck-like protein containing a
caspase activation and recruitment domain (ASC), and
caspase-1, were significantly increased in a time-dependent
manner in bone cancer pain (Chen et al., 2019). Behavioral
tests confirmed that both single and repetitive treatment with
NLRP3 inhibitor MCC950 markedly attenuated cancer pain
behaviors (Chen et al., 2019), suggesting that the activation of
NLRP3/ASC/Caspase-1 signaling cascades is an essential step
for the initiation and maintenance of central pain
sensitization following bone cancer (Table 1).
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Caspase-3
Bioactivity of endoplasmic reticulum (ER) is vital for life yet toxic if
dysfunction of ER occurs. Especially, ER stress plays a positive role
in acute pain perception and chronic pain sensitization (Zhang E.
et al., 2015; Inceoglu et al., 2015). Bone cancer pain not only induces
bone destruction and unbearable mechanical allodynia, but also up-
regulates the spinal expression of ER stress markers, including
glucose-regulated protein 78 (GRP78), activating transcription
factor-6 (ATF6), phosphorylated protein kinase RNA-like
endoplasmic reticulum kinase (p-PERK), phosphorylated
inositol-requiring enzyme-1 (p-IRE1) and cleaved caspase-3.
Intrathecal blockage of ER stress impairs caspase-3 cleavage-
dependent apoptosis in dorsal horn neurons and relieves bone
cancer pain. More importantly, spinal therapy with a specific
caspase-3 inhibitor Z-DEVD-FMK is enough and effective
against bone cancer pain (He et al., 2019). Also, the modulation
of Bax overload and caspase-3 cleavage inmitochondrial fission and
apoptosis in bone cancer pain is confirmed by other research teams
(Li MY. et al., 2019; Chen P. et al., 2021). Overall, this suggests that
preventing ER stress-induced cellular dysfunction and caspase-3-
dependent neuronal apoptosis may be a new approach for treating
cancer pain (Table 2).

CASPASES AND MUSCULOSKELETAL
PAIN

Caspase-3
Musculoskeletal pain refers to pain in the muscles, bones, ligaments,
tendons, and nerves. Chronic musculoskeletal pain patients in
general show signs of peripheral/central sensitization. Dynamic
recruitment of GluA1-containing AMPAR at spinal synapses
contributes to central sensitization underlying pain-associated
syndromes (Luo et al., 2014; Zhang et al., 2018; Wang Z. et al.,
2020; Liu et al., 2020). Leucine-rich repeat transmembrane protein 1
(LRRTM1) is demonstrated to mediate post-synaptic translocation
of AMPA receptor and synaptogenesis (Bhouri et al., 2018;
Schroeder et al., 2018). But the regulation of LRRTM1 in pain
development remains underestimated. We recently revealed that
tibial fracture with intramedullary pinning causes long-lasting
mechanical allodynia and cold allodynia after orthopedic surgery
in mice, along with the upregulated caspase-3 activity (but not
caspase-3 protein expression) and LRRTM1 expression in spinal
dorsal horn (Zhang et al., 2020). Pharmacological intervention with
caspase-3 specific inhibitor Z-DEVD-FMK reduces fracture-
associated behavioral pain and LRRTM1-mediated alterations in
excitatory synaptic plasticity. Spinal exposure to recombinant
caspase-3 evoked acute pain phenotypes and spinal
LRRTM1 over-expression is reversed by LRRTM1 deficiency
(Zhang et al., 2020). Collectively, this demonstrates the tight
interaction between caspase-3 and LRRTM1 in inducing AMPA
receptor trafficking and chronic central sensitization, ultimately
regulating the formation and maintenance of fracture-associated
pain. Sure, it will be of great interest to investigate how fracture
trauma regulates caspase-3 activation and thus mediates the onset of
chronic pain (Table 2).

Caspase-6
Our latest study provides several lines of evidence to confirm
the requirement of caspase-6 in musculoskeletal pain induced
by tibial fracture with intramedullary pinning (Cui W. et al.,
2021). First, behavioral tests showed that tibial fractures after
orthopedic operation initiate and persist postsurgical
mechanical allodynia and cold allodynia, which is
detectable on 3 days, peaks on 7–14 days, and sustains for
at least 21 days. Second, biochemical tests found that tibial
fracture up-regulates spinal active caspase-6 activity, GluA1-
containing AMPA receptor trafficking, spine density in dorsal
horn neurons. Third, spinal delivery of specific caspase-6
inhibitor Z-VEID-FMK and caspase-6 neutralizing antibody
is sufficient to reduce the recruitment of GluA1-containing
AMPA receptor at synapses and the amounts of mushroom
spines, thereby attenuating fracture-associated chronic pain.
Fourth, electrophysiological tests manifested that
pharmacological inhibition of caspase-6 blocks AMPA
receptor-mediated excitatory post-synaptic currents in the
dorsal horn neurons in fracture animals (Cui W. et al.,
2021). These above-mentioned results demonstrate that
caspase-6-mediated changes in excitatory synaptic structure
and functional plasticity is an important mechanism for the
formation and maintenance of spinal nociception
sensitization after fracture and orthopedic surgery, which
provides a promising approach for chronic fracture pain
therapy. However, there are several outstanding questions
regarding how caspase-6 mediates AMPA receptor post-
synaptic trafficking and ultimately triggers musculoskeletal
pain. Simultaneously, in addition to the mechanism of
affecting receptor transport, future researches are
warranted to explore whether there are epigenetic
regulations that interfere with the expression of glutamate
receptors.

CASPASES AND POSTOPERATIVE PAIN

The requirement of caspase-1 for postoperative pain
development has also been clarified. Extension of laparotomy-
associated postoperative pain after morphine treatment is
attributed to up-regulation of inflammatory genes, including
those encoding caspase-1, NLRP3, TLR4, NF-κB, IL-1β, and
TNF-α (Grace et al., 2019). Thoracotomy induces persistent
postoperative behavioral pain, along with the spinal up-
modulation of caspase-1 and TLR4 co-localization in dorsal
horn neurons (Hu et al., 2020). The decrease of mechanical
withdrawal threshold is attributed to caspase-1-dependent
microglial activation and the overload of inflammatory
mediators (TNF-α, IL-6, and IL-1β) in spinal dorsal horn.
Additionally, the alleviation of postoperative mechanical
allodynia by intrathecal therapy of caspase-1 inhibitor (Ac-
YVAD-CMK) is reversed after TLR4 agonist treatment (Hu
et al., 2020), further indicating the tight interaction between
caspase-1 and TLR4 in spinal nociception transduction and
central sensitization (Table 1).
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CASPASES AND OPIOID-INDUCED
HYPERALGESIA

Remifentanil is a potent short-acting µ-opioid agonist, regarded
as an important component of balanced anesthesia in the

clinical setting. Unfortunately, the intraoperative exposure to
remifentanil elicits behavioral OIH phenotype in animals and
patients (Zhang et al., 2017; Zhang et al., 2018; Li et al., 2021).
Population-based studies also found that remifentanil can
elevate peripheral mechanical nociceptive sensitivity, elicit

FIGURE 1 |Caspase-6 cascades-mediated neuron-microglia interaction in the spinal cord initiates chronic pain through neuroinflammation and central nociception sensitization.
Chronic pain is categorized as inflammatory pain, neuropathic pain, cancer pain, musculoskeletal pain, and drug treatment-induced pain, which is driven by neuroinflammation in the
spinal cord dorsal horn. Painful insults, which includes peripheral tissue inflammation, nerve trauma, fracture with orthopedic surgery, chemotherapy and opioids treatment, result in the
hyperexcitability of primary sensory neurons and trigger the release of caspase-6 from the central terminals of primary nociceptive afferents, which causing microgliosis and
microglia activation, and subsequent microglial TNF-α secretion. Then, the interaction between TNF-α and TNFR at presynaptic sites causes the release of glutamate via ERK and
TRPV1 pathway. Activation of TNFR at postsynaptic neurons also facilitates the phosphorylation of ERK, which drives central sensitization via positive modulations of NMDAR and
AMPAR and subsequent intracellular calcium influx. Simultaneously, caspase-6 cleavage promotes chemokine CCL21 release from presynaptic neurons, which elicits microglia
activation via acting on its specific receptor CXCR3.Microglia activation further increases the secretion of the pro-inflammatorymediators (IL-1β, IL-18, and PGE2). These regulations of
excitatory synaptic transmission by microglial mediators at pre-synaptic, post-synaptic, and extra-synaptic sites drive central sensitization in the nociception circuits, leading to the
development of chronic pain. Abbreviations: AMPAR, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; CCL21, chemokine (C-Cmotif) ligand 21; CXCR3, chemokine
(C-X-Cmotif) receptor 3; ERK, extracellular signal-regulated kinase; IL-1β, interleukin-1β; IL-18, interleukin-18; NMDAR, N-methyl-D-aspartate receptor; p-ERK, ERK phosphorylation;
PGE2, prostaglandin E2; TNF-α, tumor necrosis factor-α; TNFR, tumor necrosis factor receptor; TRPV1: transient receptor potential vanilloid-1.
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hyperalgesia area around the wound incision, and trigger OIH,
even leading to chronicity of postoperative pain (Fletcher and
Martinez, 2014; Zhang et al., 2016). Chemokines and their
receptors-associated neuroinflammation is essential for OIH
generation (Yang et al., 2016; Zhu et al., 2017). Wang et al.
(2020a) confirmed that remifentanil infusion causes mechanical
allodynia and thermal hyperalgesia, along with the spinal
increase in the cleavage of caspase-6, the release of CCL21 in
neurons and the expression of CXCR3 in microglia. Spinal
inhibition of caspase-6 activation ameliorates OIH behavior
and spinal CCL21/CXCR3 accumulation. Exogenous caspase-6
also evokes acute mechanical pain and represents microglial
activation, which is impaired after spinal CCL21 neutralization.
This suggests the contribution of caspase-6 in CCL21 signaling
in chronic pain perception. However, the downstream target
molecules through which caspase-6 upregulates the synthesis of
CCL21 need to be further investigated. As a result, interactions
of microglia-neurons are triggered by caspase-6 activation in
synaptic plasticity and the formation and maintenance of
chronic pain, as the potential pain circuits in the spinal cord
dorsal horn is shown in Figure 1.

SPECIFIC CASPASES INHIBITORS AS A
POTENTIAL CANDIDATE FOR CHRONIC
PAIN TREATMENT
Despite decades of clinical investigation and medical advancement,
current approaches for chronic pain-relief are still limited (Tracey
et al., 2019). Non-steroidal anti-inflammatory drugs and
acetaminophen must be cautiously administered in patients with
gastrointestinal diseases, renal dysfunction and hepatic insufficiency
(Bindu et al., 2020; Ishitsuka et al., 2020). Tricyclic antidepressants,
norepinephrine reuptake inhibitors, NMDA receptor antagonists and
α2-δ anticonvulsants are only partially beneficial to neuropathic pain

and several dose-limiting adverse-effects including sedation,
somnolence and dizziness may block their practical utilization
(Staahl et al., 2009; Thompson et al., 2019). Opioids, as 1st-line
analgesics, frequently cause constipation, nausea, addiction, tolerance
and hyperalgesia (Zhang et al., 2016; Imam et al., 2018; Colvin et al.,
2019). Thus, alternative agents for pain control are urgently required.
In view of the pivotal role of caspases in the pathogenesis of chronic
pain, their targeting agents in the management of chronic pain have
been identified as above-mentioned. The summarization and detail
on therapeutic value of these drugs are shown in Table 4.

SUMMARY

We have summarized the role of the caspases in the development of
chronic pain with different etiologies, with a view to providing new
ideas for the management of chronic pain. Although significant
progress has beenmade in preclinical study, most of the studies have
only been conducted at the behavioral level, and the upstream and
downstream molecular mechanisms have been poorly investigated,
so there are plenty of issues that still need to be addressed. Future
research should include the following directions: 1) high selective
inhibitors developed for caspase-1, caspase-3 or caspase-6 can release
chronic pain by inhibiting neuroinflammation, altered excitatory
synaptic plasticity or neuronal apoptosis in animal models; however,
whether these inhibitors can alleviate chronic pain in patients and be
safely utilized in clinics remains to be explored. 2) In addition to
caspases-1, 3, 6, 7, 9, and 11, it has not been conclusively established
whether othermembers of the caspase family are also involved in the
regulation of chronic pain. 3) most studies on the role of caspases in
the occurrence and development of chronic pain were conducted in
male animals. Considering the sex differences in the formation
mechanism of chronic pain (Chen et al., 2018; Luo et al., 2018;
Luo et al., 2019a; Luo et al., 2019b; Luo et al., 2021), future research
should emphasize whether the caspase signaling is involved in the

TABLE 4 | The inhibitors targeting caspases cascades in chronic pain treatment in rodents.

Target Inhibitors Administration route Rodent
models of pain

References

Caspase-1 Z-YVAD-FMK Intrathecal injection CFA, C67BL/6 mice Matsuoka et al. (2019)
Intrathecal injection LPS, Wistar rats Clark et al. (2006)

Ac-YVAD-CMK Intrathecal injection Thoracotomy, SD rats Hu et al. (2020)
Intraplantar injection Hind-paw incision, C57BL/6 mice Liang et al. (2010)

VRTXSD727 Oral gavage Hind-paw incision, C57BL/6 mice Liang et al. (2010)
VX-765 Intraperitoneal injection SNL, SD rats Wang et al. (2021b)

Caspase-3 Z-DEVD-FMK Intrathecal injection CCI, SD rats Wu et al. (2012)
Intrathecal injection Walker 256 cell intraperitoneal injection, SD rats He et al. (2019)
Intrathecal injection Tibial fracture, C57BL/6 mice Zhang et al. (2020)

Caspase-6 Z-VEID-FMK Intrathecal injection Formalin, C57BL/6 mice Berta et al. (2014)
Intrathecal injection Formalin, CD1 mice Chen et al. (2018a)
Intrathecal injection SNI, SD rats Berta et al. (2017b)
Intrathecal injection Tibial fracture, C57BL/6 mice Cui et al. (2021b)
Intrathecal injection Remifentanil infusion, SD rats Wang et al. (2020a)

Abbreviations: CCI, chronic constriction injury; CFA, complete Freund’s adjuvant; CPN common peroneal nerve; LPS, lipopolysaccharide; SD rats, Sprague Dawley rat; SNI, spared nerve
injury; SNL, sciatic nerve ligation.
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formation of chronic pain in female animals. 4) Despite recent
advances in pain therapy, visceral pain remains poorly understood.
Recent study confirms that antibiotic-induced microbial changes
resulted in neuro-immune responses and visceral pain attenuation in
wild type but not in caspase-1/11 knockout mice (Aguilera et al.,
2021), supported the notion of the inflammasome as a promising
therapeutic target in the visceral pain. Therefore, further study of
caspase family and visceral pain will be a promising field. 5) It is
unclear whether there is any interaction between different caspases
in specific pain conditions, which needs further investigations.
Anyway, the findings of the above will further provide new
interventional targets for the management of chronic pain and
promote the development of novel drugs related to the caspase
cascades.
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GLOSSARY

ALCAR Acetyl-l-carnitine

AMPAR alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
receptor

ACC anterior cingulate cortex

AD Alzheimer’s disease

ASC apoptosis-associated speck-like protein containing a Caspase activation
and recruitment domain

ATF3 activating transcription factor-3

BAX B-cell lymphoma 2-associated X apoptosis regulator

BDNF brain-derived neuro-trophic factor

CCI chronic constriction injury

CCL21 C-C Motif Chemokine Ligand 21

CFA complete Freund’s adjuvant

CGRP calcitonin-gene-related peptide

CIBP cancer-induced bone pain

CIPN chemotherapy induced neuropathic pain

COX-2 cyclooxygenase-2

CPN common peroneal nerve

CPTP chronic post-thoracotomy pain

CSF-CN Cerebrospinal fluid-contacting nucleus

CXCL1 Chemokine (C-X-C motif) ligand 1

CXCR3 C-X-C Motif Chemokine Receptor 3

DAMP damage associated molecular patterns

DRG dorsal root ganglion

ER endoplasmic reticulum

ERK extracellular signal-regulated kinase

GAP-43 growth associated protein 43

GFAP Glial fibrillary acidic protein

GSH glutathione

G-CSF granulocyte-colony stimulating factor

IL-1β interleukin-1beta

LPS lipopolysaccharide

LRRTM1 leucine-rich repeat transmembrane protein 1

LTD long-term depression

MDA malondialdehyde

MIP-1α macrophage inflammatory protein-1α

mGluR1 metabotropic glutamate receptor 1

NF-κB Nuclear Factor-κB

NLRP3 NOD-like receptor protein 3

NMDA N-methyl-d-aspartate

NLRC4 NOD-like receptor C4

NP neuropathic pain

3-NT 3-nitrotyrosine

OIH opioid-induced hyperalgesia

PD Parkinson’s disease

p-ERK ERK phosphorylation

PGE2 Prostaglandin E2

p-IRE1 phosphorylated inositol-requiring enzyme-1

p-PERK phosphorylated protein kinase RNA-like endoplasmic reticulum
kinase

pSNL partial sciatic nerve ligation

RTKs receptor tyrosine kinases

SCI spinal cord injury model

SNI spared nerve injury

SNL sciatic nerve ligation

STZ streptozotocin

TLR4 toll-like receptor 4

TNF-α Tumor necrosis factor-α

TRPV1 transient receptor potential vanilloid-1.
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Effects of Noninvasive Brain
Stimulation Combined With
Antidepressants in Patients With
Poststroke Depression: A Systematic
Review and Meta-Analysis
Jiabin Liang1,2*†, Jie Feng3†, Jinhua He1, Yong Jiang1,2, Haoyu Zhang1,2 and Hanwei Chen1*

1Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China, 2Graduate School, Guangzhou University of
Chinese Medicine, Guangzhou, China, 3Radiology Department, Sun Yat-sen Memorial Hospital, Sun Yat-sen University,
Guangzhou, China

Objective: To evaluated the efficacy and safety of noninvasive brain stimulation (NIBS)
combined with antidepressants in patients with poststroke depression (PSD).

Methods: Seven databases were searched to identify randomized controlled trials of
NIBS combined with antidepressants in the treatment of PSD based on the international
classification of diseases (ICD-10) criteria and exclusion criteria. The retrieval time was from
the database establishment to 31 October 2021. Two researchers independently
screened the identified studies through the search strategy, extracted their
characteristics, and evaluated the quality of the included literature. Cochrane
Collaboration’s tool was used to assess risk of bias. RevMan 5.3 software was
applied for meta-analysis.

Results: A total of 34 randomized controlled trials were included, involving 2,711 patients
with PSD. Meta-analysis showed that the total effective rate was higher in the combined
therapy than the antidepressant alone [odds ratio (OR): 4.33; 95% confidence interval (CI):
3.07 to 6.11; p < 0.00001]. The Hamilton depressive scale (HAMD) score was significantly
lower in repeated transcranial magnetic stimulation (rTMS) (≤10 Hz) combined with
antidepressant than in antidepressant alone [standard mean difference (SMD): −1.44;
95%CI: −1.86 to −1.03; p < 0.00001]. No significant difference was seen in rTMS (>10 Hz)
combined with antidepressant versus antidepressant alone (SMD: −4.02; 95% CI: −10.43
to 2.39; p = 0.22). In addition, combination therapy more strongly improved the modified
Barthel index (MBI) scale than antidepressants [mean difference (MD): 8.29; 95% CI:
5.23–11.35; p < 0.00001]. Adverse effects were not significantly different between two
therapies (OR: 1.33; 95% CI: 0.87 to 2.04; p = 0.18).

Conclusion: Low-frequency rTMS (≤10 Hz) combined with antidepressants tends to be
more effective than antidepressants alone in patients with PSD, and there are no significant
adverse effects. In addition, combined therapy may enhance quality of life after stroke.
Combination therapy with high-frequency rTMS (>10 Hz) showed no advantage in treating
PSD. The transcranial electrical stimulation (TES) combined with antidepressants might be
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more effective than antidepressants alone, which are needed to confirm by more clinical
trials since the.

Keywords: noninvasive brain stimulation, poststroke depression, repeated transcranial magnetic stimulation,
antidepressant, depression

INTRODUCTION

Stroke is now the third leading cause of death worldwide (Benjamin
et al., 2017). About 795,000 people in the United States experience
new or recurrent stroke every year and, on average, a person has a
stroke every 40 s (Benjamin et al., 2019). In addition to dyskinesia,
patients with stroke often have psychological and emotional
problems. One of the most common psychiatric complications of
stroke is poststroke depression (PSD), which has an incidence in the
first year after stroke as high as 33% (Hackett and Pickles, 2014). It
severely affects the rehabilitation process after stroke and also exerts
a heavy burden on patients’ family and on society. Despite their
prevalence, depression and other mood-related deficits generally get
the least attention. Accordingly, mood disorders need to be
addressed during the rehabilitation process of stroke to improve
quality of life.

Antidepressants are currently the mainstay of treatment for
PSD, but certain adverse reactions are inevitable (Hackett et al.,
2008; Coupland et al., 2011). For example, tricyclic
antidepressants (TCAs) and selective serotonin reuptake
inhibitors (SSRIs) increase the risk of cardiovascular and
anticholinergic adverse effects. Fluoxetine has also been
reported to be unable to improve PSD symptoms (Robinson
et al., 2000; Rice et al., 2021), and some patients with stroke do not
respond to antidepressants (Anderson et al., 2004; Hackett et al.,
2008). Thus, an effective combination therapy for PSD is urgently
required.

Repeated transcranial magnetic stimulation (rTMS) and
transcranial electrical stimulation (TES) have been proven to
be effective in boosting upper limb rehabilitation and improving
aphasia after stroke (Vines et al., 2008; Szaflarski et al., 2011; Hu
et al., 2018; Lefaucheur et al., 2020; Kuzu et al., 2021). More and
more clinical trials have recently focused on noninvasive brain
stimulation (NIBS) treatment of PSD (George et al., 1995; Jorge
et al., 2008; Tang et al., 2018), and most have identified positive
effects. We have found that the clinical effect of NIBS combined
with antidepressants may be better than that of antidepressants
alone, and many studies have also mentioned this possibility
(Slotema et al., 2010; Brunoni et al., 2013). The current meta-
analysis evaluated the efficacy and safety of NIBS combined with
antidepressants in the treatment of PSD to provide evidence-
based information for clinical decision-making and guideline
recommendations.

MATERIALS AND METHODS

Search Strategy
Relevant randomized controlled trials (RCTs) of NIBS combined
with antidepressants in the treatment of PSD were retrieved from

the following databases: PubMed, EMBASE, Web of Science,
CNKI, Cochrane Library, Biology Medicine Disc (CBM), and the
Wanfang database. The retrieval time was from database
establishment to October 2021. Search criteria were formulated
according to different databases. The keywords included
“noninvasive brain stimulation,” “repeated transcranial
magnetic stimulation,” “transcranial direct current
stimulation,” “transcranial magnetic stimulation,”
“antidepressant,” “antidepressant drugs,” “western medicine,”
“after stroke,” “poststroke,” and “depression”. Only English
and Chinese articles were considered.

Inclusion Criteria
The literature included conformed to the following inclusion
criteria (I) participants: patients were diagnosed with PSD and
included those with ischemic stroke and hemorrhagic stroke, with
no limit on the degree of depression. The diagnosis of PSD met
the international classification of diseases (ICD-10) criteria for
organic mental disorder (Brämer, 1988), and the score of
Hamilton rating scale for depression (HAMD) exceeds 7
(Hamilton, 1960), the first onset, and the diagnosis of stroke
was confirmed by magnetic resonance imaging (MRI) or
computed tomography (CT), along with being down in spirits,
fatigue and lack of interest. (II) study type: RCT; (III)
interventions and comparisons: studies comparing the
combination of noninvasive brain stimulation and
antidepressants with antidepressants alone, such as fluoxetine,
paroxetine, sertraline, fluvoxamine, citalopram, maprotiline,
imipramine, amitriptyline, doxepin, and chlorimipramine, with
only rTMS and TES chosen as noninvasive brain stimulation in
this analysis and no frequency limit in the rTMS; (IV) primary
outcomes: total effective rate and Hamilton depressive scale
(HAMD) score; and (V) secondary outcomes: adverse effect
rate and modified Barthel index (MBI) scale score.

Exclusion Criteria
Exclusion criteria of this study were as follows (I) language: non-
English or non-Chinese studies; (II) study type: not RCTs, such as
animal experiments, reviews, retrospective studies, case reports,
conference, and comments; (III) duplicate records, those with
incomplete, unclear or inconsistent outcomes, or those with
missing information that could not be obtained from the
authors; and (IV) studies without a control group or with
placebo stimulation or NIBS at a different frequency to the
control group.

Data Extraction and Management
Two researchers independently searched and browsed the
databases according to the retrieval strategy and then carefully
read the full article and extracted the characteristics of the
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included literature. The following information on the included
literature was recorded: authors’ names, publication year, sample
size, participant age, intervention, control, outcome indicators,
and stimulation frequency, intensity, orientation, control, and
duration. Any disagreements were negotiated and discussed with
a third researcher.

Quality Assessment
Cochrane Collaboration’s risk of bias tool was used to assess the
quality of the included studies. The tool considers six items:
selection bias, performance bias, detection bias, attrition bias,
reporting bias, and other biases. Each item was judged as one of
three levels: low risk, unclear risk, or high risk.

Statistical Analysis
We used RevMan 5.3 software to perform this meta-analysis. The
weighted mean difference was used for continuous variables,
whereas the odds ratio (OR) was used for dichotomous
variables. All data were calculated with 95% confidence
intervals (95% CIs). Heterogeneity analysis and sensitivity
analysis were also performed using RevMan 5.3. The random-

effects model was selected if significant heterogeneity was
identified (p < 0.05 or I2>50%). Subgroup analysis and
investigation of heterogeneity in subgroups were conducted
when necessary. The fixed-effects model was selected if the
heterogeneity was low (p ≥ 0.05 or I2 ≤ 50%). Reporting bias
was assessed by funnel plot, with dissymmetry indicating
significant reporting bias in the analysis.

RESULTS

Selection of Results
A total of 555 records were identified in the electronic databases.
Of these, 248 records remained after the two researchers read the
titles. After the deletion of duplicates and exclusion of 71 studies
due to inconsistent primary standards after abstract screening,
the full text of 50 articles were read for further assessment. Finally,
34 studies were selected for analysis. Figure 1 shows the flow
diagram of the article selection.

The 34 selected studies (Sun and Song, 2013; Hm, 2014; Ma
and Ma, 2015; Wang and Ding, 2015; Xing and Wang, 2016; Tan

FIGURE 1 | Flow diagram of article selection.
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and Zhou, 2017; Wang and Wen, 2017; Yang and Shi, 2018; Zhu,
2018; Wang and Li, 2019; Zhang, 2019; Wang and Qin, 2020;
Wang and Wu, 2020; Yang and Hu, 2020; Wei, 2021) included a
total of 2,784 patients, with 1,391 patients in the NIBS combined
with antidepressant group and 1,393 patients in the
antidepressant alone group. The basic characteristics of the
included studies are summarized in Supplementary Table S1,
including the authors’ names, publication year, sample size,
participant age, type of stroke, intervention, control, outcome
indicators, and stimulation frequency, intensity, orientation,
control, and duration. There was no significant difference in
the baseline data between the two groups. The quality assessment
of the included studies is shown in Figures 2, 3.

Meta-Analysis Results
The main indicators were the HAMD score and the total effective
rate after treatment. The secondary outcome indicators were the
MBI score and adverse effects after treatment.

HAMD Score
Thirty-four of the selected studies (Wei, 2021; Zhu, 2018; Zhang,
2019; Yang and Hu, 2020; Yang and Shi, 2018; Xing and Wang,
2016;Wang andWen, 2017;Wang andQin, 2020;Wang andWu,
2020; Wang and Ding, 2015; Wang and Li, 2019; Hm, 2014; Tan
and Zhou, 2017; Sun and Song, 2013; Ma and Ma, 2015; Xj, 2018;
Lu and Yang, 2016; Liu, 2015; Liu and Wang, 2020; Li and Chen,
2019; Li and Pan, 2013; L, 2014; Li, 2017; Li and Liang, 2016; Hu
and Chen, 2020; Hl, 2021; Gan and Wang, 2015; Xy, 2014; Du,
2005; Xr, 2017; Cheng, 2011; Tian, 2018; Che and Chang, 2018),
which involved 2,711 patients, reported the HAMD score as an
outcome indicator. Because heterogeneity test analysis showed
that there was significant heterogeneity among the included
articles (I2 = 96%, p < 0.00001), a random-effects model was
used to combine results. Subgroup analysis was performed
according to intervention frequency and antidepressant
category (Zhu, 2018; Zhang, 2019; Yang and Hu, 2020; Yang
and Shi, 2018; Xj, 2018; Wei, 2021; Wang andWen, 2017; Ma and
Ma, 2015; Liu and Wang, 2020; Li, 2017; Li and Liang, 2016; L,
2014; Hu and Chen, 2020; Hm, 2014; Gan and Wang, 2015; Du,
2005; Cheng, 2011; Che and Chang, 2018; Fj, 2020). The meta-

analysis showed that the difference was significant (SMD: −1.44;
95% CI: −1.86 to −1.03; p < 0.00001) (Figure 4). However, studies
using rTMS combined with fluoxetine with a frequency exceeding
10 Hz showed no significant effect after treatment (SMD: −4.02;
95% CI: −10.43 to –2.39; p = 0.22).

Total Effect Rate
Seventeen of the included studies (Zhu, 2018; Zhang, 2019; Xy,
2014; Xing and Wang, 2016; Wei, 2021; Hm, 2014; Wang and
Qin, 2020;Wang and Li, 2019; Tian, 2018; Lu and Yang, 2016; Liu
andWang, 2020; Li and Chen, 2019; Hl, 2021; Li and Liang, 2016;
Cheng, 2011; L, 2014; Fj, 2020), which involved 1,406 patients,
reported the total effect rate as an outcome indicator. There was
significant heterogeneity among the included articles (I2 = 0%,
p < 0.00001). Accordingly, the fixed-effects model was used to
combine results. The meta-analysis showed that the difference
was significant (OR: 4.33; 95% CI: 3.07 to 6.11; p < 0.00001)
(Figure 5).

MBI Score
Seven of the selected studies (Xy, 2014; Xj, 2018; Tan and Zhou,
2017; Li and Pan, 2013; L, 2014; Hl, 2021; Cheng, 2011), involving
572 patients, reported the MBI score as an outcome indicator.
The included articles showed significant heterogeneity (I2 = 86%,
p < 0.00001) and the random-effects model was therefore used to
combine results. The meta-analysis showed that the difference
was significant (MD: 8.29; 95% CI: 5.23 to 11.35; p < 0.00001)
(Figure 6).

Adverse Effect Rate
The adverse effect rate was reported as an outcome indicator in 12
of the included studies (Zhu, 2018; Zhang, 2019; Yang and Hu,
2020; Wang and Wu, 2020; Tian, 2018; Sun and Song, 2013; Liu,
2015; Liu and Wang, 2020; Li and Liang, 2016; L, 2014; Hl, 2021;
Fj, 2020), which involved 981 patients. Because heterogeneity test
analysis showed that there was significant heterogeneity among
the included articles (I2 = 47%, p = 0.04), the fixed-effects model
was used to combine results. The meta-analysis showed that there
was no significant difference in the adverse effect rate between the
two groups (OR = 1.33; 95% CI: 0.87–2.04, p = 0.18) (Figure 7).

FIGURE 2 | Risk of bias.
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Adverse reactions mainly included behavioral toxicity,
nervous system abnormalities, and cardiovascular system
abnormalities. Behavioral toxicity included somnolence and

epilepsy. Nervous system abnormalities commonly included
headache. Digestive system abnormalities included nausea,
vomiting, and indigestion. In the NIBS combined with
antidepressant group, 36 patients had headache, three had
insomnia, three had thirst, eight had nausea, 12 had vomiting,
and two had cardiovascular system abnormalities. In the
antidepressant group, four patients had headaches, three had
insomnia, four had thirst, five had nausea, 13 had vomiting, one
had fatigue, and one had cardiovascular system abnormalities.

Sensitivity Analysis
Sensitivity analyses of each outcome indicator were performed by
excluding single articles one-by-one to test the effect of each study
on the pooled effect size. In the meta-analysis of the HAMD
score, the heterogeneity decreased from 92% to 34% after deleting
the study by Liu FJ from 2020 (Fj, 2020). The results showed that
this heterogeneity was mainly due to this study. There was no
qualitative change in the combined effect for all outcome
indicators. Thus, the pooled results of the included studies
were steady.

Publication Bias
Funnel plot analysis was used to analyze the publication bias of
the HAMD score, total effect rate, and adverse effects. There was
no obvious publication bias in the studies of the total effect rate
and adverse effects. The poor symmetry of the funnel plot
indicated the existence of a publication bias due to the study
by Liu LB from 2020 (Liu and Wang, 2020). After deleting this
study, the combined effect was not changed but the total
heterogeneity decreased to 79%. The publication bias results
for the HAMD score analysis are shown in Figure 8.

DISCUSSION

Our meta-analysis included 34 studies of the effects of NIBS
combined with antidepressants for patients with PSD. The results
showed that the combination of NIBS and antidepressants might
have a better effect on PSD and could improve the depression
scale score and quality of life compared with antidepressants
alone. It is well known that guidelines recommend rTMS for the
treatment of major depression, and many meta-analyses have
shown that TMS intervention with PSD was positive (Shen et al.,
2017; Liu et al., 2019; Shao et al., 2021), but a growing number of
studies have recommended multi-module combination therapy
and population-specific personalized treatment (Wang et al.,
2019; Nestor and Blumberger, 2020), which warrants further
research on the frequency and site of TMS intervention. The use
of low-frequency TMS by Daniel R Schaffer significantly
improved depression with cognitive impairment, suggesting
that low-frequency TMS is more effective in specific
populations (Schaffer et al., 2021). Compared with previous
reviews (Bucur and Papagno, 2018; Liu et al., 2019), our
analysis had the following advantages (I) combination NIBS
and antidepressant therapy; (II) internationally recognized
depression assessment scales; (III) inconsistent results with
previous studies due to negative outcomes of high-frequency

FIGURE 3 | Summary of risk of bias of included studies. Red, high risk;
green, low risk; yellow, unclear risk.
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TMS combined with antidepressants; and (IV) the inclusion of
more than 30 studies. There have been no studies evaluating NIBS
in combination with antidepressants for PSD, although
combination therapy is more clinically appropriate. Therefore,
this meta-analysis may have a greater reference value than
previous reviews.

According to the results of this analysis, combined NIBS and
antidepressant therapy reduced the HAMD score of PSD more
than antidepressants alone. However, this result was highly
heterogeneous. We grouped the studies by a variety of
clinically relevant factors, including age, intervention
frequency and intensity, drug type, type of stroke, and
stimulation orientation and duration. In the final analysis,
rTMS combined with fluoxetine (less than 1 Hz and between 5
and 10 Hz) was more effective than fluoxetine alone, but the effect
was not better with a frequency exceeding 10 Hz. TES combined
with antidepressants improved the HAMD score more than
antidepressants alone, although only two included articles

examined this combination. After deleting the study by Liu FJ
from 2020 (Fj, 2020) due to its high heterogeneity, rTMS
combined with paroxetine was also more effective in reducing
the HAMD score. This previous study by Liu FJ (Fj, 2020) was
probably a retrospective study due to its vague description and
was excluded from the pooled effect. Martijn (Arns et al., 2010)
also commented that there were possibly differential effects of
different rTMS stimulation frequencies, although many searches
concluded that high-frequency rTMS has the same effect as low-
frequency rTMS or antidepressants (Berlim et al., 2013).

The results of 17 studies (Zhu, 2018; Zhang, 2019; Xy, 2014;
Xing and Wang, 2016; Wei, 2021; Wang and Qin, 2020; Hm,
2014; Hl, 2021; Wang and Li, 2019; Tian, 2018; Lu and Yang,
2016; Liu and Wang, 2020; Li and Chen, 2019; Li and Liang,
2016; Cheng, 2011; L, 2014; Fj, 2020) also indicated that NIBS
combined with antidepressants was better than
antidepressants alone regarding the total effect rate.
Moreover, for the MBI score, seven studies (Xy, 2014; Xj,

FIGURE 4 | Forest plot of HAMD score.
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2018; Tan and Zhou, 2017; Li and Pan, 2013; L, 2014; Hl, 2021;
Cheng, 2011) showed that the combination therapy has
potential benefits in patients with PSD. Combination
therapy may be able to improve quality of life after stroke.
Since a few included articles reported MBI scores, the meta-
regression did not be conducted. Subgroup analyses were
added based on clinical characteristics, including frequency,
intensity and location of intervention, degree of depression,
and course of disease. Heterogeneity still could not decrease to
a reasonable range. We used sensitivity analysis to find no
articles causing high heterogeneity, and adopted a random
effect model. This result is stable and conservative. Some
studies (Zhu, 2018; Zhang, 2019; Yang and Hu, 2020; Ma
and Ma, 2015; L, 2014; Fj, 2020) have reported headache,
nausea, vomiting, insomnia, thirst, and fatigue in both
control and experimental groups. The adverse reactions may
be caused by antidepressants. Twelve studies (Zhu, 2018;

Zhang, 2019; Yang and Hu, 2020; Wang and Wu, 2020;
Tian, 2018; Sun and Song, 2013; Liu, 2015; Liu and Wang,
2020; Li and Liang, 2016; L, 2014; Hl, 2021; Fj, 2020)
demonstrated consistent and stable results in adverse
reaction rates. This suggests that combined NIBS and
antidepressant therapy is safe.

There is still a contradiction between the advantages and
disadvantages of the different frequencies of NIBS, and the
effects of different frequencies of NIBS are still disputed.
Different frequencies of rTMS have been shown to reduce
fluorodeoxy glucose F18 (18F-FDG) uptake in the dorsal
cortical region while simultaneously increasing 18F-FDG
uptake in the ventral region (Parthoens et al., 2016). The
rTMS decreased glucose metabolism in the stimulated
temporal region, with increases in the bilateral precentral,
ipsilateral superior and midfrontal, prefrontal, and cingulate
gyri. This suggests that 1 Hz rTMS could induce cortical

FIGURE 5 | Forest plot of total effect rate.

FIGURE 6 | Forest plot of MBI score.
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regulation and extensive changes in the neural network through
long-range neuronal connectivity (Lee et al., 2013). Studies have
also shown that low-intensity TMS mainly stimulates low-
threshold inhibitory neurons (Duan et al., 2018). High-
frequency TMS caused greater activation than low-frequency
TMS in normal humans. However, oxidative stress, lipid
peroxidation, and protein oxidation were found in the neural
tissue of stroke patients. Any of these pathophysiological
processes may be related to PSD (Nabavi et al., 2015).
Kimbrell et al. (1999) also reported that the antidepressant
response to rTMS might depend on the pretreatment cerebral
metabolism and the stimulation frequency. Thus, it is possible
that patients with PSD are more sensitive to low-frequency
TMS. Due to abnormal expression of amine neurotransmitters

and cytokine expression after stroke, the combination of
antidepressants with rTMS may be more effective with the
mild stimulation of low-frequency TMS.

The mechanism of PSD is still unclear, which may involve
neurobiological pathways, inflammation and apoptosis
mechanisms (Robinson and Jorge, 2016; Medeiros et al.,
2020). Robinson (Robinson et al., 1984; Narushima et al.,
2003) suggested that lesions in the left frontal lobe or left
basal ganglia were associated with PSD. And focal brain
stimulation using rTMS was only effective when
administered to the left dorsolateral prefrontal cortex in
patients with vascular depression (Jorge et al., 2008). A meta-
analysis (Carson et al., 2000) showed that stroke site was not
associated with depression, and a study (Wei et al., 2015)
suggested a significant association between stroke in the right
hemisphere and the incidence of depression. Some studies have
hypothesized that stroke lesion area is related to depression
degree, which could be explained by some pro-inflammatory
factors (Spalletta et al., 2006). For example, the increase of IFN-
γleads to the cascade reaction of other pro-inflammatory
cytokines IL-6, IL-1βand TNF-α, which aggravates
depression. Secondly, IFN-γcan affect the HPA axis
(Capuron et al., 2003), leading to increased adrenocortical
hormone and cortisol levels, resulting in increased reactive
oxides (Altieri et al., 2012; Ferrari and Villa, 2017), which
further cause cell death and damage. Proinflammatory factors
also stimulate the activity of indoleamine 2, 3-dioxygenase,
which degrades tryptophan, the biological precursor of
serotonin, into a toxic metabolite (Bansal and Kuhad, 2016).
Compared with common depression, PSD is associated with
focal ischemia, which leads to programmed cell death, cell
swelling, or cell necrosis and a series of complex events
related to cellular and molecular mechanisms (Brouns and
De Deyn, 2009). Whether the neuroanatomical location of
stroke affects depression remains controversial. It remains
unknown whether the severity of stroke is positively
correlated with the severity of depression, or whether there

FIGURE 7 | Forest plot of side effect rate.

FIGURE 8 | Funnel plot of publication bias. SE, standard error; SMD,
standard mean difference.
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are differences in depression at different times after stroke. It is
hoped that more RCTs will be designed in this direction in the
future.

LIMITATIONS AND PROSPECTS

This meta-analysis emphasized the clinical efficacy and
depression improvement of combination therapy in PSD
patients but also examined quality of life and safety. However,
all included RCTs were from China, which may indicate
publication bias. Funnel plot analysis revealed that a study by
Liu LB (Liu andWang, 2020) had significant publication bias due
to selective reporting of outcomes. Accordingly, the result should
be treated with caution. This meta-analysis was not registered and
there may be a small deviation, but we still strictly followed the
procedures of systematic evaluation. In addition, some indicators
were significantly heterogeneous. Therefore, caution is required
for these findings. More basic studies are needed to determine the
mechanism underlying the effect of low-frequency TMS
combined with antidepressants on depression after stroke.
Moreover, large multicenter studies are needed to assess the
best frequency and type of depression drugs to promote the
final translation of combination treatment into daily clinical
practice and guidelines.

CONCLUSION

Our analysis demonstrate that low-frequency rTMS(10 ≤ Hz)
combined with antidepressants tends to be more effective than
antidepressants alone in patients with PSD and there are no
significant adverse effects. In addition, combined therapy may
boost quality of life after stroke. Combination therapy with high-
frequency rTMS (>10 Hz) showed no advantage in treating PSD.
The transcranial electrical stimulation (TES) combined with
antidepressants may be more effective than antidepressants
alone. More randomized controlled studies with detailed
design for different stroke periods, depression levels and stroke
location are needed to verify this conclusion.
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Artesunate Therapy Alleviates
Fracture-Associated Chronic Pain
After Orthopedic Surgery by
Suppressing CCL21-Dependent
TREM2/DAP12 Inflammatory
Signaling in Mice
Linlin Zhang1,2†, Nan Li1,2†, Haoyue Zhang1,2†, YigangWang1,2, Tianyu Gao1,2, Yuying Zhao1,2,
Guolin Wang1,2, Yonghao Yu1,2, Chunyan Wang1,2* and Yize Li1,2*

1Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China, 2Tianjin Research Institute of
Anesthesiology, Tianjin, China

Chronic pain after bone fracture and orthopedic surgery is often refractory to most
analgesics currently in use, thus emphasizing the urgent need for improved therapeutic
medications. Chemokine-dependent neuroinflammation is critical for excitatory synaptic
plasticity and central nociception sensitization. Recent studies have focused on the
inhibition of inflammatory responses by artesunate, the first anti-malaria drug extracted
from artemisinin. The present study investigated the analgesic effects and potential targets
of artesunate in a mouse model of chronic pain induced by tibial fracture and orthopedic
surgery. Three injections of artesunate were intrathecally administered on a daily basis from
days 4 to 6 after fracture. We reported that repetitive exposure to artesunate (10 and
100 μg but not 1 μg) dose-dependently prevented fracture-induced mechanical and cold
allodynia. Moreover, single intrathecal injection of artesunate (100 μg) alleviated the
established chronic pain on day 14 after fracture surgery. Intraperitoneal artesunate (10
and 50mg kg−1) therapy was effective against chronic fracture pain. Intriguingly,
artesunate inhibited the upregulation of spinal chemokine CCL21, triggering receptor
expressed on myeloid cells 2 (TREM2) and DNAX-activating protein of 12 kDa (DAP12)
expressions and microglia activation in fracture mice. Furthermore, spinal CCL21
neutralization attenuated the severity of fracture-associated post-surgical pain.
Exogenous CCL21-induced acute inflammatory pain was impaired by artesunate
therapy. Additionally, the pharmacological blockage of TREM2 reduced recombinant
CCL21-elicited behavioral hypernociception. The present findings demonstrate that
artesunate therapy reduces the initiation and maintenance of fracture-associated
chronic postoperative pain by inhibiting CCL21-dependent TREM2/DAP12
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inflammatory signaling and microglia activation, thus suggesting that artesunate could
emerge as a therapeutic strategy for fracture pain management.

Keywords: artesunate, bone fracture, CCL21, chronic pain, DAP12, TREM2, spinal cord

INTRODUCTION

With the rapid development of industry, construction, and
transportation and the aggravation of population aging, the
occurrence of fracture following industrial accidents, construction
injuries, traffic injuries, and osteoporosis in the elderly also increases
(Chen et al., 2017). Chronic pain after bone fracture and orthopedic
surgery is clinically common and imposes a heavy financial burden
to patients worldwide. It has been reported that the incidence of
chronic pain after ankle and wrist fractures is 61.7% and that the
incidence of chronic pain after tibial fracture is 55.1% (Friesgaard
et al., 2016; Khan et al., 2016). Treatment of fracture pain remains a
dramatic challenge to pain physicians. Recent reports have
recapitulated the requirement of neuroinflammation for spinal
pain sensitization, which is critical for multiple nociceptive
perceptions after peripheral nerve injury, cancer, and bone
fracture (Chen et al., 2018; Baral et al., 2019; Li et al., 2021). Yet,
the specific molecular pathogenesis underlying fracture pain
continues to be elusive.

Chemokine-mediated neuroinflammation involves microglia
activation and neuronal plasticity in pain neurocircuits that,
subsequently, maintain the pain phenotype (Ji et al., 2014; Ji et al.,
2016). Chemokine CCL21, as a cardinal microglia-activating factor
localized in dorsal horn neurons, is indicated to mediate excitatory
synaptic transmission via microgliosis in pain states, ranging from
chronic neuropathic pain to persistent cancer pain (Biber et al., 2011;
Zheng et al., 2019; Hirth et al., 2020). Triggering receptors expressed
onmyeloid cells 2 (TREM2) and DNAX-activating protein of 12 kDa
(DAP12) in microglia are gradually recognized as the downstream of
microglial inflammatory signaling in pronociceptive facilitation
during chemotherapy-induced peripheral neuropathy and nerve
trauma-induced neuropathic allodynia (Hu et al., 2018; Wang Y.
et al., 2020). Nevertheless, whether spinal CCL21 contributes to
fracture-associated chronic pain via TREM2/DAP12 pathway
remains largely unknown.

Given that current analgesics including opioid agents and non-
steroidal anti-inflammatory drugs have several side effects and may
interfere with bone healing (Kidner et al., 2009; Lisowska et al., 2018;
Tracey et al., 2019), alternative agents for fracture-associated chronic
pain control are urgently required. Artesunate, as an active derivative
of artemisinin (Qinghaosu) with little toxicity, has been generally
utilized to treat malaria for recent decades (Zou et al., 2020).
Remarkably, artemisinin and its derivatives provide multi-
therapeutic protections of anti-inflammation, anti-oxidation, anti-
cancer, and anti-viral infection in a wide variety of pathophysiological
disorders, such as sepsis, neurodegeneration, ischemia-reperfusion
injury, tumors, and severe coronavirus disease (COVID-19) caused by
SARS-CoV-2 (Duan et al., 2019; Gendrot et al., 2020; Kasaragod et al.,
2020; Bang et al., 2021). Furthermore, artesunate is recently identified
as an effective analgesic prescription for remifentanil-induced
hyperalgesia and complete Freund’s adjuvant (CFA)-induced acute

inflammatory pain via the maintenance of oxidative homeostasis in
rodents (Guruprasad et al., 2015; Zhang et al., 2022). However,
whether artesunate ameliorates fracture-associated chronic pain by
modulating spinal inflammatory responses requires to be further
investigated.

In this study, we characterized the potential role of intrathecal
(i.t.) artesunate in chronic postoperative pain using a mouse model
of tibial fracture with intramedullary pinning. Spinal expressions of
CCL21, TREM2, and DAP12 were measured to verify the
nociceptive pathogenesis and anti-nociceptive targets of
artesunate in our orthopedic model. Our findings identified that
the inhibition of neuroinflammation by artesunate may offer a novel
therapeutic strategy for pain control after orthopedic surgery.

MATERIALS AND METHODS

Animals
Adult male C57BL/6J mice, 8–10 weeks old, were raised in an
artificially regulated 12-h light–dark environment with food and
water ad libitum. All animals were purchased from the
experimental animal center of the Chinese Academy of
Military Medical Science. All experimental studies and
protocols were conducted in strict accordance with the
International Association for the Study of Pain directives and
approved by the Animal Ethical and Welfare Committee of
Tianjin Medical University (Tianjin, China).

Drugs and Administration
Artesunate (MedChemExpress, HY-N0193, China) was dissolved in
10% dimethyl sulfoxide (DMSO, Sigma-Aldrich, D2650,
United States) for i.t. injection. Recombinant CCL21 (Abcam,
ab201361, United Kingdom), a neutralizing antibody against
CCL21 (anti-CCL21, R&D Systems, AF457, United States) and a
neutralizing antibody against TREM2 (anti-TREM2, R&D Systems,
1729-T2, United States), was dissolved in normal saline or 10%
DMSO for i.t.; delivery and the doses of these reagents were chosen
based on previous reports (Hu et al., 2018;Wang et al., 2020a; Zhang
et al., 2022). The intrathecal injection was performed under brief
anesthesia of sevoflurane (induction, 3.0%; surgery, 1.5%; Maruishi
Pharmaceutical Co., Ltd., Japan) and made between the levels of L5
and L6 using a 30-G needle (Donnelly et al., 2021); 5 μl of the reagent
was given when the reflexive tail flick was observed.

Surgery
The tibial fracture-associated postoperative pain model was
established according to the previously described procedures
(Zhang et al., 2018; Cui et al., 2021). Briefly, animals were
anesthetized with sevoflurane (induction, 3.0%; surgery, 1.5%)
by a nose mask under sterile conditions. Muscles were
disassociated following an incision from the knee to the
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midshaft of the left tibia. After osteotomy, a 0.38-mm stainless
steel pin was inserted into the tibia intramedullary canal, and the
incision was sutured with 6–0 prolene. For sham operation, the
incision and muscle disassociation were made identically without
tibial fracture with pinning.

Behavioral Testing
All tests were conducted between 10:00 a.m. and 3:00 p.m. on that
day in a temperature-controlled room at 24°C. The baseline
threshold was tested 1 day before the treatment, and the mice
were habituated 2 h per day in the testing apparatus for 3 days
prior to the baseline threshold test.

In the von Frey test, the mice were placed on a test platform with
a grid spacing of 1.5 mm, covered with a plexiglass box of 49 cm ×
33 cm × 40 cm, and allowed to acclimatize for 2 h. The paw
withdrawal threshold (PWT) of the mice was measured with the
von Frey filaments (Stoelting, United States) between 0.16 and 2 g
using the up-and-downmethod. Starting with 0.16 g to stimulate the
left hind paw, licking or withdrawal during the 5 s stimulus was
considered as a positive response. The force was reduced in the case
of a positive reaction; otherwise, the force was increased, and finally
the PWT was calculated (Zhang et al., 2018; Cui et al., 2021). With
reference to the frequency behaviors, a 0.16 g von Frey filament was
used to stimulate left hind paws for 10 times with a 30 s interval, and
the percentage of withdrawal responses was calculated as frequency
(Zhang et al., 2018; Zhang et al., 2021).

For measurement of cold allodynia, two acetone applications
(20 μl each) were gently applied to the left hind paw bottom using
a pipette and the responses to acetone were scored: 0, no response;
1, quick withdrawal, paw stamping, or flicking; 2, prolonged
withdrawal or repeated flicking of the paw; and 3, repeated paw
flicking and licking (Cui et al., 2021; Zhang et al., 2021).

The same investigator blinded to the treatments collected the
behavioral data.

ELISA Analysis
An enzyme-linked immunosorbent assay (ELISA) was used to
measure the concentrations of CCL21 (ab208985, Abcam),
TREM2 (SAB2501170, Sigma), and DAP12 (EM8531, Wuhan
Fine Biotech Co., China) in the L4-5 segments of spinal cord. The
spinal cord tissues were collected before and after tibial fracture,
as well as at hour 12 after exogenous CCL21 administration. The
spinal cord tissues were homogenized in a lysis buffer containing
protease and phosphatase inhibitors. The tissue samples were
centrifuged at 12,500 ×g for 10 min, and the supernatant was
collected. The BCA protein assay (Pierce) was employed to
determine protein concentrations. For each reaction in a 96-
well plate, 100 μg of proteins of samples were used. All ELISA
experiments followed the manufacturer’s protocol. The optical
densities of samples were measured using an ELISA plate reader
(Bio-Rad) at a wavelength of 450 nm, and the levels of CCL21,
TREM2, and DAP12 were calculated using the standard curves
and normalized to the total protein levels.

Immunofluorescence
The mice were deeply anesthetized and transcardially perfused with
pre-cooled PBS following 4% paraformaldehyde. The whole spinal

cord was blown out using the hydraulic pressure method. The L4–L5
spinal cord was dissected and dehydrated in 30% sucrose for 2 days.
The tissues were then frozen in OCT and cut into 5-µm frozen
sections using a cryostat (Leica Biosystems, Germany). The sections
were blocked with 0.3% Triton X-100 for 10min and 5% goat serum
for 1 h. They were then incubated with primary antibodies overnight
at 4°C. The following primary antibody was used: anti-Iba-1 (1:200,
Abcam, ab178847, United Kingdom). After rinsing three times with
PBS, the sections were incubated with a fluorescence-labeled
secondary antibody for 1 h. Images were collected using a
fluorescence microscope (Olympus, Japan), and the analysis was
performed using Image J software.

Statistical Analysis
All statistical analyses were performed with SPSS 18.0 software (SPSS,
United States). All animals were randomly assigned to experimental
conditions. All data were expressed asmean ± standard error ofmean
(SEM). The sample size was calculated as previously described (Zhang
et al., 2018; Cui et al., 2021; Zhang et al., 2021). The Shapiro–Wilk test
was used for determining the normality of data distribution, and
parametric statistics were applied. The homogeneity of variance was
validated using the Levene test. The statistical analyses of behavioral
data were performed by two-way analysis of variance (ANOVA) with
Bonferroni post hoc comparisons. The results of biochemical
experiments were analyzed using one-way ANOVA with
Bonferroni post hoc comparisons. A p value <0.05 was considered
statistically significant.

RESULTS

Tibial Fracture Generates Chronic
Postoperative Pain and Increases Spinal
Expressions of CCL21, TREM2, and DAP12
After Orthopedic Surgery
First, we did not observe any significant differences in basal
mechanical and cold sensitivities between two groups (p > 0.05,
n = 8; Figures 1A–C). The von Frey test revealed that sham
surgery did not change the postoperative paw withdrawal
threshold and frequency in comparison with baseline (p >
0.05, n = 8; Figures 1A,B). The acetone test did not detect
any marked alternation in cold response scores after sham
operation (p > 0.05, n = 8; Figure 1C). Interestingly, as
compared to sham animals, tibial fracture caused persistent
(>21 days) postoperative pain (mechanical allodynia), as
indicated by significantly decreased paw withdrawal thresholds
[F (1, 70) = 332.5, p < 0.001, n = 8, two-way ANOVA; Figure 1A]
and increased paw withdrawal frequency [F (1, 70) = 471.6, p <
0.001, n = 8, two-way ANOVA; Figure 1B] after orthopedic
treatment. As parallel, the postoperative pain represented
prolonged cold allodynia by a long-lasting elevation of cold
response following fracture with pin insertion, as compared to
sham intervention [F (1, 70) = 166.7, p < 0.001, n = 8, two-way
ANOVA; Figure 1C].

Neuroinflammation-driven synaptic plasticity in the spinal
cord dorsal horn is a central feature of pathological pain with
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different etiologies (Ji et al., 2014; Ji et al., 2018; Qiang and Yu,
2019;Wang et al., 2020b). Thus, the present study emphasized the
specific molecular signaling of spinal nociceptive information
transmission following fracture with pin insertion. ELISA
exhibited that sham operation failed to affect the expression of
CCL21, TREM2, and DAP12 in the spinal dorsal horn (p > 0.05,
n = 5; Figures 1D–F). Noteworthy, our biochemical results
showed that spinal levels of CCL21, TREM2, and DAP12 were
considerably upregulated within 7 days, peaked at 14 days, and
continued for at least 21 days in animals undergoing tibial
fracture and orthopedic surgery (p < 0.05, n = 5; Figures
1D–F), which was consistent with the time course of chronic
postoperative pain phenotypes. All these data suggest that tibial
fracture with pin insertion initiates persistent spinal over-
expression of CCL21, TREM2, and DAP12, which may be
essential for the pathogenesis of chronic fracture pain.

Intrathecal Pretreatment With Artesunate
Prevents Persistent Postoperative Pain
Following Tibial Fracture and Orthopedic
Surgery
To examine the effect of artesunate on basal nociceptive
sensitivity, i.t., artesunate (1, 10, and 100 μg) was injected in
naïve animals. We found that as compared to baseline, artesunate

treatment did not impair peripheral mechanical and cold
sensitivity in naïve mice (p > 0.05, n = 6; Figures 2A–C),
suggesting that DHA therapy at 1, 10, and 100 μg was safe for
our model. Then, to explore the potential role of artesunate in
chronic fracture pain, i.t., artesunate (1, 10, and 100 μg) was
administered daily for three consecutive days on days 4–6 (in the
early phase) after tibial fracture with orthopedic surgery. Also,
artesunate (i.t., 100 μg) was injected on days 4–6 in animals after
sham surgery. Intriguingly, the i.t. therapy of artesunate at 10 and
100 μg but not 1 μg reduced fracture-associated postoperative
pain, as characterized by the abrupt increase in paw withdrawal
mechanical threshold [F (5, 210) = 173.8, p < 0.001, n = 8, two-
way ANOVA; Figure 2D], the significant decrease in paw
withdrawal mechanical frequency [F (5, 210) = 127.0, p <
0.001, n = 8, two-way ANOVA; Figure 2E], and the
considerable reduction in cold scores [F (5, 210) = 64.93, p <
0.001, n = 8, two-way ANOVA; Figure 2F]. Such analgesia of
artesunate strongly lasted for 1–7 days after the termination of the
third treatment in a dose-dependent manner.

We further detected the levels of CCL21 and TREM2/DAP12
to verify whether these inflammatory mediators were involved in
artesunate analgesia in fracture mice. Notably, artesunate
pretreatment (100 μg) reduced the spinal up-modulation of
CCL21, TREM2, and DAP12 expressions after tibial fracture
with pin insertion (p < 0.05, n = 5; Figures 3A–C). Microglia

FIGURE 1 | Fracture-associated behavioral allodynia and spinal over-expressions of CCL21, TREM2, and DAP12 after orthopedic surgery in mice. The
development of mechanical allodynia was assessed by paw withdrawal mechanical threshold (A) and paw withdrawal mechanical frequency to 0.16 g filament (B) in the
von Frey test after sham surgery and tibial fracture (n = 8). The development of cold allodynia was assessed by cold response scoring (C) in acetone test after sham
surgery and tibial fracture (n = 8). The spinal dorsal horn L4-5 segments were collected for biochemical experiments. (D–F) ELISA identified the increased levels of
spinal CCL21, TREM2, and DAP12 proteins after tibial fracture (n = 5). All the data are expressed as mean ± SEM and analyzed by two-way ANOVA with Bonferroni post
hoc comparisons. *p < 0.05, **p < 0.01, ***p < 0.001 vs. group sham surgery.
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FIGURE 2 | Intrathecal pre-administration of artesunate reduces fracture-associated postoperative pain. (A–C) Single injection of artesunate (1, 10, and 100 μg)
was intrathecally administered in naïve mice. (D–F) Intrathecal artesunate (1, 10, and 100 μg) was administered daily for three consecutive days on days 4, 5, and 6
(indicated by red arrows) after tibial fracture with orthopedic surgery. Also, artesunate (i.t., 100 μg) was injected on days 4, 5, and 6 after sham surgery. All behavioral
results are mean ± SEM (n = 6–8) and analyzed by two-way ANOVAwith Bonferroni post hoc comparisons. #p < 0.05 vs. group sham + DMSO, *p < 0.05 vs. group
fracture + DMSO, ^p < 0.05 vs. group fracture + artesunate (10 μg).
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activation in the spinal dorsal horn of mice with fracture pain has
been revealed in previous reports (Li et al., 2015; Shi et al., 2015;
Zhang et al., 2016). Herein, we also found the suppression of
fracture-related spinal microglia activation by artesunate
treatment (p < 0.05, n = 3; Figures 3D,E). All these data
suggest that artesunate therapy prevents chronic fracture pain
via spinal inhibition of neuroinflammation.

Postoperative Treatment With Intrathecal
Artesunate Impaired the Established
Persistent Pain After Tibial Fracture and
Orthopedic Surgery
After the prevention of fracture pain by artesunate was
conformed, we further assessed the efficiency of postoperative
i.t., artesunate therapy at improving chronic pain. The von Frey
tests detected that the single administration of artesunate (i.t.,
100 μg) on 14 days after fracture (in the late phase) produced a
rapid and transient attenuation of the established mechanical
allodynia for 5 h, as reflected by the increase in paw withdrawal
threshold [F (1, 70) = 86.87, p < 0.001, n = 8, two-way ANOVA;

Figure 4A] and the decrease in paw withdrawal frequency [F (1,
70) = 45.34, p < 0.001, n = 8, two-way ANOVA; Figure 4B] in
fracture animals. As parallel, this therapy of artesunate also
suppressed the established cold allodynia for 3 h [F (1, 70) =
12.06, p < 0.001, n = 8, two-way ANOVA; Figure 4C].

Spinal Inhibition of CCL21 Attenuates Tibial
Fracture-Associated Postoperative Pain
To further examine whether the CCL21 pathway is central for the
development of chronic fracture pain, repetitive anti-CCL21 (i.t.,
0.1, 1, and 10 μg) was delivered on a daily basis from days 4 to 6
(in the early phase) after tibial fracture with pin insertion.
Strikingly, pretreatment with anti-CCL21 at 10 μg but not 0.1
and 1 μg generated a significant alleviation of mechanical and
cold allodynia, which sustained for more than 4 days after three
injections, as demonstrated by the increase of paw withdrawal
threshold [F (5, 210) = 192.9, p < 0.001; n = 8, two-way ANOVA;
Figure 5A] and the decrease of cold scores [F (5, 210) = 57.76, p <
0.001, n = 8, two-way ANOVA; Figure 5B] in fracture-treated
animals. Moreover, the single injection of anti-CCL21 (10 μg) on

FIGURE 3 | Intrathecal pre-administration of artesunate reduces fracture-associated spinal over-expressions of CCL21, TREM2, and DAP12 and microglia
activation. Intrathecal artesunate (100 μg) was administered daily for three consecutive days on days 4, 5, and 6 after tibial fracture with orthopedic surgery. All
biochemical data were collected on day 7 after sham and fracture surgeries. (A–C) ELISA identified that pretreatment with artesunate downregulated the increased levels
of spinal CCL21, TREM2, and DAP12 proteins after tibial fracture. (D,E) Immunohistochemistry staining showed representative photomicrographs of the marker of
microglia activation (Iba1) in the spinal dorsal horn after fracture intervention and artesunate treatment (scale bar, 50 μm). All biochemical results are expressed asmean ±
SEM (n = 3–5) and analyzed by one-way ANOVA with Bonferroni post hoc comparisons. #p < 0.05 vs. group sham + DMSO, *p < 0.05 vs. group fracture + DMSO.
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day 14 after fracture intervention attenuated the established
mechanical allodynia for 3 h [F (1, 70) = 36.96, p < 0.001, n =
8, two-way ANOVA; Figure 5C] and cold allodynia for 1 h [F (1,
70) = 7.39, p = 0.008, n = 8, two-way ANOVA; Figure 5D]. Thus,
these behavioral data suggested that the spinal CCL21 pathway
contributes to the production and persistence of chronic
postoperative pain following tibial fracture procedures.

Intrathecal Artesunate Therapy Protects
Against CCL21-Induced Acute Pain
Phenotype and Spinal Increases of TREM2
and DAP12
Then, we further tested the hypothesis that artesunate would
control the spinal CCL21-dependent nociception sensitization.
We previously reported that acute exposure to recombinant
CCL21 (i.t., 0.1 μg) directly initiated an acute allodynia (Wang
et al., 2020a). Herein, artesunate (i.t., 100 μg) was injected 60 min
prior to CCL21 administration. Interestingly, we found that
artesunate intervention ameliorated CCL21-associated
mechanical allodynia [F (2, 84) = 142.1, p < 0.001, n = 8, two-
way ANOVA; Figure 6A] and cold allodynia [F (2, 84) = 26.39,
p < 0.001, n = 8, two-way ANOVA; Figure 6B]. Furthermore,
intrathecal exposure to CCL21 elevated the spinal concentrations
of TREM2 and DAP12, which was compromised by artesunate
pretreatment (p < 0.05, n = 5; Figure 6C). Collectively, these
detailed data further illustrated that CCL21-dependent
inflammatory signaling (TREM2/DAP12) might be a
therapeutic target of artesunate analgesia in pain conditions.

Pharmacological Inhibition of TREM2
Reduces Fracture-Associated Chronic Pain
and CCL21-Induced Acute Pain
Next, we evaluated the effect of TREM2 signaling on pathological
pain development. Intriguingly, a neutralizing antibody against
TREM2 (anti-TREM2, i.t., 2 μg) ameliorated the established
mechanical allodynia [F (1, 70) = 37.75, p < 0.001, n = 8, two-

way ANOVA; Figure 7A] and cold allodynia [F (1, 70) = 16.14,
p < 0.001, n = 8, two-way ANOVA; Figure 7B following tibial
fracture with pin insertion. As parallel, the pre-administration of
anti-TREM2 (i.t., 2 μg) reduced the exogenous CCL21-induced
upregulation of peripheral mechanical sensitivity [F (1, 56) =
25.2, p < 0.001, n = 8, two-way ANOVA; Figure 7C] and cold
sensitivity [F (1, 56) = 15.32, p < 0.001, n = 8, two-way ANOVA;
Figure 7D]. These results indicate a substantial interaction
between CCL21 and TREM2/DAP12 in spinal
neuroinflammation and pain transduction.

Systemic Therapy of Artesunate Alleviates
Fracture-Associated Behavioral Pain After
Orthopedic Surgery
Given that artesunate is often administered via intraperitoneal
injection for the treatment of several diseases in rodents (Cheong
et al., 2020; Bang et al., 2021), we finally investigated whether
intraperitoneal artesunate therapy was also beneficial to chronic
fracture pain. Thus, we administered artesunate (10 and
50 mg kg−1) following intraperitoneal injection on 14 days after
orthopedic surgery. Interestingly, the systemic delivery of
artesunate at 10 and 50 mg kg−1 relieved the fracture-induced
mechanical allodynia and cold allodynia, as manifested by the
elevation in paw withdrawal mechanical threshold [F (2, 105) =
31.23, p < 0.001, n = 8, two-way ANOVA; Figure 8A] and the
decrease in cold response scores [F (2, 105) = 8.59, p < 0.001, n =
8, two-way ANOVA; Figure 8B]. Such analgesia of
intraperitoneal artesunate sustained for 1–3 h.

DISCUSSION

In this current study, the major findings are as follows: first, tibial
fracture originates from the persistentmechanical allodynia and cold
allodynia with the spinal up-modulation of CCL21 and TREM2/
DAP12 expressions following orthopedic surgery. Second, the
intrathecal delivery of artesunate prevents fracture-associated

FIGURE 4 | Intrathecal post-treatment of artesunate impairs the established chronic pain after tibial fracture and orthopedic surgery. Artesunate (i.t., 100 μg,
indicated by a red arrow) was injected on day 14 (in the late phase) after tibial fracture with pin insertion. The development of mechanical allodynia was assessed by paw
withdrawal mechanical threshold (A) and paw withdrawal mechanical frequency to 0.16 g filament (B) in the von Frey test after tibial fracture. The development of cold
allodynia was assessed by cold response scoring (C) in acetone test after tibial fracture. Results are mean ± SEM (n = 8) and analyzed by two-way ANOVA with
Bonferroni post hoc comparisons. *p < 0.05, **p < 0.01, ***p < 0.001 vs. group fracture + DMSO.
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allodynia in a dose-dependent manner and reduces fracture-caused
CCL21 over-expression, as well as the TREM2/DAP12 accumulation
in the spinal dorsal horn. Third, the postoperative therapy of both
intrathecal and intraperitoneal artesunate attenuates the established
fracture allodynia. Fourth, spinal CCL21 neutralization is sufficient
to impair the generation and maintenance of fracture-associated
pain. Fifth, the pre-administration of artesunate impairs exogenous
CCL21-evoked acute inflammatory pain by reducing the spinal
TREM2/DAP12 overload. Sixth, the pharmacologic inhibition of
TREM2/DAP12 also ameliorates fracture-associated chronic pain
and CCL21-elicited acute pain. These results therefore elucidate a
previously undescribed role of artesunate as an alleviator of chronic
pain following tibial fracture and orthopedic surgery by the
inhibition of CCL21-dependent TREM2/DAP12
neuroinflammatory signaling.

Neuroinflammation driven by chemokines is a cardinal
feature of chronic pain following peripheral tissue damage,
nerve trauma, chemotherapy, and cancer (Ji et al., 2014; Ji
et al., 2018; Baral et al., 2019). We previously identified the
requirement for chemokine CCL1 and its receptor CCR8 in
neuroinflammation and neuronal excitability in fracture-
associated pain generation and chronification (Wang et al.,
2020b). The contribution of caspase-6 to the upregulation of
chemokine CCL21 in the development of opioid-induced
hyperalgesia has been recently revealed (Wang et al.,
2020a). Moreover, the spinal inhibition of caspase-6-
dependent neuroinflammation is effective against functional
potentiation in excitatory nociceptive synapses and pain
chronification after tibial fracture (Cui et al., 2021). Given
that caspase-6 regulates fracture-associated pain and CCL21

FIGURE 5 | Spinal neutralization of CCL21 reduces fracture-associated postoperative pain. (A,B) A neutralizing antibody against CCL21 (anti-CCL21) was
intrathecally injected (0.1, 1 and 10 μg) on days 4, 5, and 6 (indicated by red arrows) after fracture surgery. Mechanical allodynia and cold allodynia were measured by the
von Frey test and acetone test, respectively. (C,D) Intrathecal injection of anti-CCL21 (10 μg) on day 14 (indicated by a red arrow) after fracture surgery significantly
inhibited the established mechanical and cold allodynia. All behavioral results are mean ± SEM (n = 8) and analyzed by two-way ANOVA with Bonferroni post hoc
comparisons. #p < 0.05 vs. group sham + DMSO, *p < 0.05 vs. group fracture + DMSO.
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pathway is an important downstream effector of caspase-6 in
spinal pain transmission (Wang et al., 2020a; Cui et al., 2021),
we examined whether CCL21 contributes to persistent fracture
pain. Herein, we initially reported the spinal long-lasting
increase of CCL21 expression in mice with tibial fracture
and orthopedic surgery, consistent with the time course of
chronic mechanical allodynia and cold allodynia. This is the
first study demonstrating that spinal CCL21 neutralization not
only prevents but also reduces fracture-associated
postoperative allodynia. Additionally, we revealed that
exogeneous CCL21 intervention following spinal application
elicits acute pain behaviors in animals. This evidence strongly
suggests the identification of spinal CCL21 pathway in the
development of persistent pain after fracture. Still, how spinal
CCL21 mediates neuroinflammatory process in chronic
fracture pain remains to be investigated.

It is noteworthy that the involvement of TREM2/DAP12 in
neuron–microglia interactions is indispensable for
neuroinflammation-associated pain perception in several rodent
models (Guan et al., 2016; Kobayashi et al., 2016; Wang Y. et al.,
2020). Especially, TREM2, as a pivotal factor for microgliosis, is
upregulated and promotes the recruitment of cytokines in the
pathogenesis of cisplatin-induced peripheral neuropathic pain
(Ma et al., 2022). However, the requirement of TREM2 and
DAP12 for the pathophysiology of chronic fracture pain is
virtually unknown. Interestingly, this is the first study wherein
spinal concentrations of TREM2 and DAP12 represent a robust
elevation after tibial fracture with pin insertion and TREM2
neutralization impairs chronic fracture pain. Simultaneously, it is
clarified, for the first time, that spinal exposure to CCL21 upregulates
TREM2 and DAP12 levels and the pharmacological blockage of
TREM2 reduces CCL21-caused acute pain. These detailed data point
to the possibility that spinal CCL21 over-expression facilitates
TREM2 and DAP12 accumulation to further cause nociception
phenotypes and that inhibiting this may provide a novel therapeutic
target for pain conditions.

Artemisinin and its derivatives perform a potent anti-
neuroinflammatory protection on Alzheimer’s disease
(Qiang et al., 2018), traumatic brain injuries (Zhou et al.,
2020), and lipopolysaccharide (LPS)-induced cognitive
dysfunction (Lin et al., 2021). Recent investigation has
highlighted that artesunate therapy downregulates the
severity of bacterial infection, the release of inflammatory
mediators, nociception-like phenomena, and septic death
(Bang et al., 2021). Artesunate is also effective against
opioid-induced acute hyperalgesia and chemical irritant-
induced acute inflammatory pain (Guruprasad et al., 2015;
Zhang et al., 2022). However, no literature has mentioned the
therapeutic role of artesunate in fracture-associated chronic
pain. To the best of our knowledge, the present study is the first
to uncover that repetitive injections of i.t. artesunate (10 and
100 μg but not 1 μg) prevent long-lasting mechanical and cold
allodynia after tibial fracture and orthopedic surgery in a dose-
dependent manner. We then discovered the mitigation of the
established chronic fracture pain and the prevention of
exogenous CCL21-induced acute inflammatory pain by the
single application of artesunate (100 μg). Furthermore, this is
the first study in which artesunate treatment disrupts spinal
CCL21 over-expression and TREM2/DAP12 accumulation in
fracture animals. Artesunate also reverses the exogenous
CCL21-caused spinal overload of TREM2/DAP12.
Strikingly, the intraperitoneal delivery of artesunate (10 and
50 mg kg−1) is sufficient and effective in abrogating fracture-
associated chronic pain. Taken together, these results
emphasize that artesunate therapy protects against the
generation and maintenance of fracture-associated chronic
pain through inhibiting spinal CCL21-dependent TREM2/
DAP12 inflammatory signaling and microglia activation.
Indeed, microgliosis is capable of raising excitatory
neuronal responsiveness by promoting the secretion of
tumor necrosis factor-α (TNF-α) (Berta et al., 2014). Thus,
it will be of great interest to explore whether TNF-α is a

FIGURE 6 | Induction of acute pain by exogenous CCL21 and attenuation of allodynia by artesunate. Artesunate (i.t., 100 μg, indicated by a red arrow) was injected
60 min prior to recombinant CCL21 (i.t., 0.1 μg) application. (A,B) Exogenous CCL21-induced acute inflammatory pain was alleviated by the pre-application of
artesunate. All behavioral results are mean ± SEM (n = 8) and analyzed by two-way ANOVAwith Bonferroni post hoc comparisons. All biochemical data were collected at
hour 12 after intrathecal injection. (C) ELISA identified that pretreatment with artesunate downregulated the increased levels of spinal TREM2 and DAP12 proteins
after exogenous CCL21 exposure. All biochemical results are expressed as mean ± SEM (n = 5) and analyzed by one-way ANOVA with Bonferroni post hoc
comparisons. #p < 0.05 vs. group DMSO, *p < 0.05 vs. group recombinant CCL21 (0.1 μg) + DMSO.
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potential downstream effector in the anti-nociceptive
mechanisms of artesunate therapy.

Apart from its anti-inflammatory properties, artemisinin
and its derivatives can activate the antioxidant system to exert
potent neuroprotective effects on hydrogen peroxide (H2O2)-
induced retinal neuronal dysfunction, sodium nitroprusside-
induced cortical neurotoxicity, and neurodegenerative disease
(Zheng et al., 2016; Yan et al., 2017; Li et al., 2019). Oxidative
insult-related spinal nociception sensitization has been
identified to be a cardinal step for the generation of
fracture-induced pain (Guo et al., 2018; Guo et al., 2021).
Accordingly, further investigations are warranted to study

whether oxidative molecular signaling is involved in
artesunate analgesia for fracture intervention. Previous
reports disclosed that neuroinflammation underlies the
central pain sensitization and allodynia initiation via α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptor activation in dorsal horn neurons of
fractured animals (Wang et al., 2020b; Cui et al., 2021).
However, the connection between artesunate and AMPA
receptor in our model remains largely undefined. There are
several limitations to be considered. First, we did not evaluate
the anti-nociceptive potency of artesunate treatment for
females, which should be addressed by further studies.

FIGURE 7 | Spinal neutralization of TREM2 reduces fracture-associated chronic pain and CCL21-induced acute pain. (A,B) A neutralizing antibody against TREM2
(anti-TREM2, i.t., 2 μg, indicated by a red arrow) was injected on day 14 after tibial fracture. Behavioral test showed the attenuation of the established fracture-associated
mechanical allodynia and cold allodynia by anti-TREM2. (C,D) Anti-TREM2 (i.t., 2 μg, indicated by a red arrow) was injected 60 min prior to recombinant CCL21 (i.t.,
0.1 μg). Exogenous CCL21-induced acute inflammatory pain was alleviated by the pre-application of anti-TREM2. All results are mean ± SEM (n = 8) and analyzed
by two-way ANOVA with Bonferroni post hoc comparisons. *p < 0.05, **p < 0.01, ***p < 0.001.
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Second, given that all experiments in our study were
performed using adult male C57BL/6J mice (8–10 weeks
old) without significant different body weights, we selected
the same dose of artesunate through intrathecal injection, but
it is unclear whether this dose of artesunate is sufficient to
animals with larger body weights. Third, the intrathecal
injection of drugs or antibodies can both affect spinal cord
and DRG, so it will be important to explore whether the
CCL21-dependent TREM2/DAP12 pathway in DRG is
involved in artesunate analgesia. Fourth, although we
administered the spinal application of exogenous CCL21
protein and neutralizing antibody against CCL21 to
elucidate the mechanism of artesunate analgesia, it will be
of great importance to further utilize spinal knockdown and
over-expression of CCL21 gene in future. Another limitation is
the failure to investigate whether other artemisinin derivatives
(such as dihydroartemisinin and artemether) are also effective
in controlling chronic fracture pain.

In summary, the current findings recapitulate an
unconventional pharmacological role of artesunate in the
prevention and alleviation of fracture-associated postoperative
pain by inhibiting spinal CCL21-dependent TREM2/DAP12
inflammatory processes. These results suggest that artesunate
administration and CCL21 neutralization may generate
innovative therapeutic concepts for a targeted
neurotherapeutic strategy for fracture pain in clinics.
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Phosphatase and Tensin Homology
Deleted on Chromosome 10 Inhibitors
Promote Neural Stem Cell
Proliferation and Differentiation
Xiaojiang Liu1†, Yiqiu Cui1†, Jun Li1, Cheng Guan1, Shu Cai1, Jinrong Ding1, Jianhong Shen2

and Yixiang Guan1*

1Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Nantong, China, 2Department of Neurosurgery,
Affiliated Hospital of Nantong University, Nantong, China

Phosphatase and tensin homology deleted on chromosome 10 (PTEN) is a tumor
suppressor gene. Its encoded protein has phosphatase and lipid phosphatase
activities, which regulate the growth, differentiation, migration, and apoptosis of
cells. The catalytic activity of PTEN is crucial for controlling cell growth under
physiological and pathological conditions. It not only affects the survival and
proliferation of tumor cells, but also inhibits a variety of cell regeneration processes.
The use of PTEN inhibitors is being explored as a potentially beneficial therapeutic
intervention for the repair of injuries to the central nervous system. PTEN influences the
proliferation and differentiation of NSCs by regulating the expression and
phosphorylation of downstream molecular protein kinase B (Akt) and the
mammalian target of rapamycin (mTOR). However, the role of PTEN inhibitors in the
Akt/mTOR signaling pathway in NSC proliferation and differentiation is unclear.
Dipotassium bisperoxo (picolinoto) oxovanadate (V) [bpv(pic)] is a biologically active
vanadium compound that blocks PTEN dephosphorylation and suppresses its activity,
and has been used as a PTEN lipid phosphatase inhibitor. Here, bpv(pic) intervention
was found to significantly increase the number of rat NSCs, as determined by
bromodeoxyuridine staining and the cell counting kit-8, and to increase the
percentage of neurons undergoing differentiation, as shown by
immunofluorescence staining. Bpv(pic) intervention also significantly increased
PTEN and mTOR expression, as shown by real-time PCR analysis and western
blotting. In conclusion, PTEN inhibitor bpv(pic) promotes the proliferation and
differentiation of NSCs into neurons.

Keywords: Pten, mTOR, neural stem cells, proliferation, differentiation

INTRODUCTION

As an anti-oncogene with dual specific phosphatase activity, phosphatase and tensin homology
deleted on chromosome 10 (PTEN) has become a research hotspot in recent years. It plays an
important role in a variety of diseases, including cancer, liver disease (Ikeda et al., 2020; Chen et al.,
2021), and diabetes (Lu et al., 2021), where it is involved in cell migration, proliferation,
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differentiation, apoptosis, and metabolism (Yamada and Araki,
2001; Hamada et al., 2005; Salmena et al., 2008; Chow and
Salmena, 2020).

PTENmainly catalyzes the conversion of phosphatidylinositol
trisphosphate (PIP3) to phosphatidylinositol biphosphate (PIP2)
by inhibiting the classical phosphatidylinositol 3 kinase (PI3K)-
serine/threonine kinase (Akt) signaling pathway (Song et al.,
2005). When PI3K receives signals from tyrosine kinase and G
protein-coupled receptors, activated PI3K converts PIP2 to PIP3,
and reduces PIP3 to PIP2. PIP3 then binds to the N-PI3KPH
domain of downstream Akt, which is transferred from the
cytoplasm to the cell membrane (Park et al., 2010).

With the assistance of 3-phosphoinositol-dependent protein
kinase 1, PIP3 activates Akt by phosphorylating its threonine
phosphorylation site (Thr308) or serine phosphorylation site
(Ser473). Activated Akt then activates mammalian target of
rapamycin (mTOR). The PI3K/Akt/mTOR signaling pathway
activates and regulates cell proliferation, differentiation, and
migration (Jung et al., 2021). The pathway is also involved in
the repair and regeneration of central nerve injuries, as shown by
PTEN gene knockout using a PTEN inhibitor or small interfering
RNAwhich accelerated the growth of axons at the injured site (Lu
et al., 2020). Although PTEN is not required to determine cell fate
in the central nervous system (CNS), it was shown to function in
NSC differentiation, where its expression changes dynamically.
PTEN expression begins in the late stages of mouse CNS
development and peaks in adulthood. It is widely expressed in
the brain of adult mice, especially in neurons (Li et al., 2020; Yu
et al., 2020).

mTOR is an important signaling molecule in the PTEN
signaling pathway, which regulates pentameric neuronal
ASH2-like, histone lysine methyltransferase complex subunit
at the transcriptional level (Nguyen and Anderson, 2018).
Consequently, it affects neuronal differentiation and
directional axonal outgrowth (Jia et al., 2021). PI3K/AKT/
mTOR signaling was shown to regulate neuronal cell
maturation and differentiation, while Park (Park et al., 2008)
reported regeneration of the optic nerve after PTEN knockdown
following the reactivation of PI3K/Akt/mTOR signaling. PTEN
also regulates neuronal apoptosis, proliferation, renewal, and
differentiation, and inhibits neuronal regeneration by
inhibiting transduction of the PI3K/AKT signaling pathway.
Thus, inhibiting PTEN promotes the survival and
differentiation of NSCs.

Vanadium and vanadium peroxide compounds are widely
used as general inhibitors of protein tyrosine phosphatase,
especially bisperoxovanadium compounds which include
dipotassium bisperoxo (picolinoto) oxovanadate (V)
[bpV(pic)] (vanadium diperoxys 5-hydroxypyridine). Bpv(pic)
is a specific inhibitor of PTEN that promotes neural stem cell
(NSC) proliferation and differentiation in vitro and in vivo, with
no significant effect on cell survival (Guan et al., 2021). Together,
these findings suggest that PTEN plays an important role not only
in peripheral nerve damage but also in the repair and
regeneration of central nerve injury.

In this study, we examined the role of a PTEN inhibitor in
NSC proliferation and differentiation. We found that inhibiting

PTEN expression decreased neuronal proliferation and
differentiation through the activation of PI3K/Akt/mTOR
signaling. Our findings enhance our understanding of the
mechanism of NSC differentiation during neurogenesis.

MATERIALS AND METHODS

Cell Lines and Reagents
Sixteen-day-old pregnant SD rats (Guan et al., 2015) were
provided by the Laboratory Animal Center of Nantong
University. This study was conducted in accordance with the
recommendations of the National Institutes of Health Laboratory
Animal Care and Use Guidelines. The isolated fetal rat cerebral
cortex was removed under aseptic conditions, meninges were
stripped in Dulbecco’s modified Eagle medium (DMEM)
containing 0.25% trypsin for 10 min, and the cell suspension
was obtained in DMEM containing 5% horse serum and 10% fetal
bovine serum (Gibco, Grand Island, NY, United States) at a
density of 1 × 106 cells/ml. Cells were then cultured at 37°C with
5% CO2 in DMEM supplemented with neurobasal neuron-
specific medium (Gibco) containing 1% B-27 supplement and
0.25% L-Glutamine.

Proliferation of NSCs After bpv(pic)
Intervention
After harvesting, the second generation of NSCs was seeded into
24-well plates at a density of 5 × 104 cells/mL. Bpv(pic) (ATCC,
Manassas, VA, United States) was added to the intervention
group at a final concentration of 200 nmol/L (Thellung et al.,
2019). NSCs were cultured for 5–7 days at 37°C with 5% CO2,
then the number of cells was determined using the cell counting
kit-8 (CCK-8; Abcam) and compared between the two groups.
Briefly, cell proliferation wasmeasured by adding 100 µL DMEM/
F-12 and 10 µL CCK-8 reagent to each plate, and incubating for
8 h at 37°C with 5% CO2. The absorbance at 425 nm was then
measured using the Multiskan MK33 microplate reader (Thermo
Electron Corporation, Shanghai, China). Bromodeoxyuridine
(BrdU) solution was also added to the intervention group at a
final concentration of 5 μmol/L to stain proliferating neonatal
neurons which were observed using an Olympus IX71
microscope.

NSC Differentiation
NSCs were inoculated at a density of 5 × 104 cells/ml into 24-well
plates with polylysine-coated glass slides in differentiation
solution (DMEM/F-12 supplemented with 1% fetal bovine
serum) which was changed after 2 h (Guan et al., 2015).
Bpv(pic) was added to the intervention group at a final
concentration of 200 nmol/L, and all cells were cultured for a
further 7 days. Cells were then incubated with the following
primary antibodies at 4°C for 16 h: rabbit anti-rat βIII tubulin
antibody (diluted 1:1000; Abcam), mouse anti-rat glial fibrillary
acidic protein (GFAP) antibody (diluted 1:1000; Abcam), and
rabbit anti-rat receptor interacting protein (RIP) antibody
(diluted 1:1000; Abcam). They were then incubated with goat
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anti-rabbit IgG H&L (Alexa Fluor® 594) (diluted 1:1000; Abcam)
secondary antibodies at 20°C for 2 h. DNA was stained by
immediately incubating the slides in 4′,6-diamidino-2-
phenylindole (0.2 mg/ml) for 2 min. Slides were stored in the
dark at 4°C, then six fields of view per slide were randomly
selected. The percentage of positively staining cells in each field
was calculated under an Olympus IX71 microscope, and the
average value was compared between control and intervention
groups.

Real-Time PCR Analysis
Total RNA was extracted using TRIzol reagent (Invitrogen,
Carlsbad, CA, United States), then reverse-transcribed into
cDNA using the Omniscript RT Kit (Qiagen) according to the
manufacturer’s instructions. PCR was carried out using the
following conditions: 95°C for 2 min, then 30 cycles of 95°C
for 15 s, 54°C for 30 s, and 72°C for 1 min (Guan et al., 2015).
Primer sequences were: mTOR-F: 5′-AGGAGGGACGTTTGC
TCAGA-3′ and mTOR-R: 5′-TCCCTCACTGAACACAGCAG-
3′; PTEN-F: 5′-ACCAGGACCAGAGGAAACCT-3′ and PTEN-
R: 5′-TTTGTCAGGGTGAGCACAAG-3′; and β-actin-F: 5′-
AGGCATCCTGACCCTGAAGTAC-3′ and β-actin-R: 5′-TCT
TCATGAGGTAGTCTGTCAG-3′.

Western Blotting
Membranes were incubated with primary antibodies against β-
actin (diluted 1:3000; Abcam), PTEN (diluted 1:1000; Abcam),
and mTOR (diluted 1:1000; Abcam).

Statistical Analysis
All assays were performed in duplicate a total of three times.
Data are expressed as the mean ± SEM, and were analyzed by
the Student’s t-test and one-way analysis of variance. SPSS v.
17.0 statistical software was used for analysis, and p values ≤
0.05 were considered statistically significant.

RESULTS

NSCs Self-Renewed and Proliferated
Single-cell cloning experiments showed that individual NSCs
(Figure 1A) divided after 3 days (d) of culture (Figure 1B),
exhibited colonies of 15–28 cells after 5 days (Figure 1C), and
proliferated to form a colony of around 50 cells after 7 days
(Figure 1D). This suggests that colony formation occurred
through the self-renewal and proliferation of NSCs rather than
the aggregation of individual NSCs.

Bpv(pic) Promoted NSC Proliferation
BrdU staining showed that the number of NSCs in the intervention
group (65 ± 6 cells) was significantly higher than in the control group
(42 ± 5 cells) (p< 0.05) (Figure 2A). Absorbance values were 0.997 ±
0.085 and 0.788 ± 0.083 for the intervention and control groups,
respectively. The CCK-8 assay found that bpv(pic) significantly
inhibited the proliferation of the intervention group compared
with the control (p < 0.05). These data together suggest that
bpv(pic) promoted the proliferation of NSCs (Figure 2B).

FIGURE 1 | NSC single cell cloning. (A) Single cell culture. (B) After 3 days culture. (C) After 5 days culture. (D) Proliferation to form NSCs after 7 days subculture.
Scale bar: 100 µm.
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Bpv(pic) Promoted the Differentiation of
NSCs Into Neurons and Inhibited Their
Differentiation Into Glial Cells
Immunofluorescence staining (Figure 3A) with anti-βIII tubulin,
anti-GFAP, and anti-RIP antibodies showed that the percentage of
NSCs differentiating (Figure 3B) into neurons was significantly
higher in the intervention group (27.860 ± 1.927%) than in the
control group (13.120 ± 1.130%) (p < 0.05). Moreover, the
percentage of differentiated glial cells was significantly lower in
the intervention group (61.900 ± 1.840%) than in the control
group (77.520 ± 1.035%) (p < 0.05). Some NSCs differentiated
into oligodendrocytes, but there was no significant difference in the
percentage of these between the two groups (p > 0.05).

Bpv(pic) Enhanced the Expression of mTOR
and PTEN in NSCs
RT-PCR (Figure 4A) and western blotting (Figure 4B) were
used to detect the expression of mTOR and PTEN at mRNA
and protein levels, respectively. We observed significantly
increased expression of mTOR and PTEN in the intervention
group compared with the control group (p < 0.05), with a
greater increase seen in mTOR expression.

FIGURE 2 |Cell assessments 5 days after bpv(pic) intervention. (A)Cells
after staining with BrdU. Scale bar: 100 µm. (B) Cell proliferation as detected
by the CCK-8 assay.*p < 0.05. FIGURE 3 | Bpv(pic) modulates the differentiation of NSCs. (A)

Immunofluorescence using anti-β-Tubulin III, anti-GFAP, and anti-RIP
antibodies after bpv(pic) intervention. Scale bar: 100 µm. (B) Statistical
analysis of immunofluorescence. *p < 0.05.
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DISCUSSION

Nerve regeneration and repair play important roles in nerve
function recovery. NSCs are key cells in these processes
because of their potential for self-renewal and
multidirectional differentiation (Rueger and Androutsellis-
Theotokis, 2013), although further research is needed to
fully understand their involvement (Saha et al., 2012).
Inhibiting PTEN expression was shown to increase the
survival and proliferation of mesenchymal stem cells in
myocardial infarction (Feng et al., 2020), while the
proliferation of NSCs and neural progenitor cells is
significantly increased following PTEN deletion. Thus, the
study of molecular mechanisms that affect NSC
proliferation and differentiation is crucial to promoting the
repair of neural function.

PTEN is the first tumor suppressor gene known to encode a
protein with phosphatase activity. It plays an important role
in a variety of diseases by affecting cell proliferation,
differentiation, apoptosis, and metabolism, and achieves its
physiological effects by interacting with a series of
downstream effector molecules (Kuchay et al., 2017).
mTOR is one such signal molecule in the PTEN signaling
pathway, which is activated through phosphorylation and
mediates a series of downstream molecules to promote the
synthesis of cellular proteins and cell growth (Yoon and
Chen, 2008).

Bpv(pic) is a compound that changes the structure and
inactivates the cysteine residues within the catalytic region
of protein tyrosine phosphatases, including PTEN.
Therefore, we used bpv(pic) as a PTEN inhibitor to

investigate its effects on NSC proliferation and
differentiation (Mak et al., 2010; Zhang et al., 2017).
Bpv(pic) was previously shown to significantly enhance
NSC proliferation using a mechanism involving activation
of the Akt/mTOR signaling pathway (Zeng and Zhou, 2008;
Li et al., 2009). In the present study, we observed a
significantly higher number of NSCs after bpv(pic)
treatment compared with the control. Additionally, we
detected significantly increased expression of PTEN and
mTOR in NSCs treated with bpv(pic). This increase in
mTOR reflects inhibition of the action of PTEN and an
increase, rather than a corresponding decrease, in PTEN
expression itself. Because bpv(pic) did not interfere with
PTEN expression at the molecular level, bpv(pic) combined
with downstream molecules of PTEN, leading to positive
feedback that increased PTEN expression (Que et al., 2007;
Winbanks et al., 2007). After bpv(pic) treatment,
downstream pathways were activated to increase the
expression level of mTOR and affect cell proliferation and
differentiation. In nerve cells, the function of mTOR must be
maintained within a certain range to promote cell
differentiation. However, there is currently no consensus
on whether inhibiting PTEN to increase mTOR expression
Chappell et al., 2011 promotes or inhibits cell
differentiation.

Our findings suggest that bpv(pic) inhibits the expression
of PTEN and promotes the migration and differentiation of
NSC into neurons, thus enhancing the repair of central
nervous system injuries. This should be explored in future
work to investigate potential treatments of central nerve
injury.

FIGURE 4 |mTOR and PTEN expression in NSCs 5 days after bpv (pic) intervention. (A)mRNA expression of mTOR and PTEN in rat NSCs. (B) Protein expression
of mTOR and PTEN in rat NSCs. β-actin was used as a loading control. *p < 0.05.
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CONCLUSION

In summary, the PTEN inhibitor bpv(pic) promoted the
proliferation of NSCs and their differentiation into
neurons to some extent. This demonstrates the potential of
bpv(pic) to be used in the recovery and treatment of CNS
injuries.
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Neuroinflammation Involved in
Diabetes-Related Pain and Itch
Xiao-Xia Fang1,2, Heng Wang1, Hao-Lin Song1, Juan Wang1 and Zhi-Jun Zhang1*†

1Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China, 2Department of Medical Functional
Laboratory, School of Medicine, Nantong University, Nantong, China

Diabetes mellitus (DM) is a global epidemic with increasing incidence, which results in
diverse complications, seriously affects the patient quality of life, and brings huge
economic burdens to society. Diabetic neuropathy is the most common chronic
complication of DM, resulting in neuropathic pain and chronic itch. The precise
mechanisms of diabetic neuropathy have not been fully clarified, hindering the
exploration of novel therapies for diabetic neuropathy and its terrible symptoms such
as diabetic pain and itch. Accumulating evidence suggests that neuroinflammation plays a
critical role in the pathophysiologic process of neuropathic pain and chronic itch. Indeed,
researchers have currently made significant progress in knowing the role of glial cells and
the pro-inflammatory mediators produced from glial cells in the modulation of chronic pain
and itch signal processing. Here, we provide an overview of the current understanding of
neuroinflammation in contributing to the sensitization of the peripheral nervous system
(PNS) and central nervous system (CNS). In addition, we also summarize the inflammation
mechanisms that contribute to the pathogenesis of diabetic itch, including activation
of glial cells, oxidative stress, and pro-inflammatory factors. Targeting excessive
neuroinflammation may provide potential and effective therapies for the treatment of
chronic neuropathic pain and itch in DM.

Keywords: neuroinflammation, diabetes mellitus, diabetic pain, diabetic itch, sensitization

INTRODUCTION

Diabetes mellitus (DM), one of the most serious metabolic diseases, is becoming the largest global
epidemic of the 21st century, which causes multiple serious complications, such as neuropathic pain
and diabetic itch. DM seriously affects the lives and economics of individuals, families, and societies
(Stratton et al., 2000; Madsen et al., 2019; Calcutt, 2020; Rayego-Mateos et al., 2020; Schmitz et al.,
2021). Diabetic neuropathy is one of themost prevalent comorbidities in patients with type 1 diabetes
mellitus (T1DM) and type 2 diabetes mellitus (T2DM), which results in chronic pain and itching
(Dewanjee et al., 2018; Zakin et al., 2019). More than 50% of diabetic patients develop diabetic
neuropathy (Papanas and Ziegler, 2015; Feldman et al., 2019). Diabetic peripheral neuropathy
(DPN), as the common form of diabetic neuropathy, leads to neuropathic pain with a characteristic
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“stocking-glove” pattern. Neuropathic pain, one type of chronic
pain, is caused by a lesion or dysfunction of the peripheral or
central somatosensory nervous system (Calcutt, 2020). Over one-
third of patients with diabetic neuropathy develop neuropathic
pain (Veves et al., 2008; Bansal et al., 2014). In recent years,
diabetic neuropathic pain (DNP) is getting more and more
attention, numerous studies have been conducted to identify
the underlying pathological mechanisms in the hope of
developing related therapeutic targets, even if the procedure is
full of challenges and failures.

Itching (also termed pruritus) is the irritating sensation in the
skin that initiates a desire for scratching (Ikoma et al., 2006; Lee
et al., 2016; Dong and Dong, 2018). Patients with systemic diseases
such as skin, kidney, or liver diseases suffer from chronic itching
that is debilitating and has a serious impact on their quality of life
(Yosipovitch and Bernhard, 2013). Chronic itching is also a
common symptom of diabetic neuropathy. Unfortunately, the
etiology of itching involved in diabetic neuropathy remains
poorly understood and therapeutic strategy is inadequate.

Hallmarks of neuroinflammation includes the infiltration of
immune cells, as well as the activation of glial cells [e.g., Schwann
cells (SCs), satellite glial cells (SGCs), microglia and astrocytes],
and increased of inflammatory mediators (e.g., pro-inflammatory
cytokines, chemokines) in the peripheral nervous system (PNS)
and central nervous system (CNS). Accumulating evidence
suggests that neuroinflammation plays a significant role in the
pathogenesis and progression of chronic pain and itching (Ellis
and Bennett, 2013; Ji et al., 2014; Perera et al., 2015; Borghi et al.,
2019; Cevikbas and Lerner, 2020), particularly
neuroinflammation-driven sensitization contributes to the
development and maintenance of DNP and chronic itching.

Here we review the current progress of neuroinflammation in
PNS and CNS that contributes to the induction and maintenance of
DNP, as well as existing treatment therapies for this pain. We
highlight the important roles of neuroinflammation-driven
sensitization involved in DNP. In addition, the neuroinflammation

mechanisms contributing to the pathogenesis of diabetic itching are
also summarized. An expanding understanding of the contribution of
neuroinflammation-driven neuropathic pain and chronic itching in
diabetes is helping to identify new therapeutic targets for the
treatment of neuropathic pain and chronic itch in diabetes.

DEFINITIONS AND TERMS ASSOCIATED
WITH DIABETES-INDUCED PAIN AND ITCH

To better understand this review, some definitions, and terms
associated with diabetes-induced pain and itching are listed in
Table 1.

EPIDEMIOLOGY

Approximately 6.9%–10% of the general population is affected by
neuropathic pain (Bouhassira et al., 2008; van Hecke et al., 2014;
St John Smith, 2018). The increasing incidence is probably due to
the aging population, high incidence of diabetes, and improved
survival of cancer patients with subsequent chemotherapy (St
John Smith, 2018). There is a higher incidence of chronic
neuropathic pain in female patients than in male patients (8%
vs. 5.7%), and in adults over 50 years of age than in those under
49 years of age (8.9% vs. 5.6%) (Bouhassira et al., 2008). Diabetes
Atlas (9th edition, United Nations, 2019) edited by the
international diabetes federation (IDF) describes 460 million
(prevalence is ~9.3%) diabetic patients in the general
population in 2019 (Saeedi et al., 2019), and more than half of
these patients suffered from neuropathy (Dyck and Giannini,
1996; Pop-Busui et al., 2009; Callaghan et al., 2015), of whom ~1/
3 develop neuropathic pain (Daousi et al., 2004; Abbott et al.,
2011; Bouhassira et al., 2013). The prevalence of painful diabetic
neuropathy (pDN) is ranging from 10 to 50% of all DM patients,
(Abbott et al., 2011; Bouhassira et al., 2013; Alleman et al., 2015;

TABLE 1 | Terms and related definitions or description.

Terms Definitions or description References

Neuropathic pain The pain caused by a somatosensory nerve lesion or disease Haanpää et al. (2011)
Loeser and Treede (2008)

Diabetic neuropathy People with diabetes usually develop this neurodegenerative disorder that affects the sensory axons,
autonomic axons, and some motor axons

Calcutt (2020)

Diabetic peripheral
neuropathy (DPN)

The most common form of diabetic neuropathy is featured by injury to neurons, SCs, and blood vessels
within the nerve. The consequence is distressing and costly clinical sequelae, such as leg amputations, foot
ulcerations, and neuropathic pain with a characteristic “stocking-glove” pattern

Feldman et al. (2019)

Painful diabetic neuropathy (pDN) Diabetics experience pain directly as a result of abnormalities in the somatosensory system Tesfaye et al. (2013)
Jensen et al. (2021)

Central sensitization Increase in the sensitivity of neurons in the central pain or itch pathway to normal or subthreshold afferent
input. When peripheral injury or inflammation occurs, persistent stimulation of nociceptors or pruriceptors
leads to an increase in excitability of central pathways or a decrease in the activity of inhibitory pathways

Loeser and Treede (2008)
Cevikbas and Lerner
(2020)

Peripheral sensitization The nociceptors and pruriceptors in the PNS have an increase in responsiveness or a decrease in threshold
to the stimulation in their receptive fields

Loeser and Treede (2008)
Gao and Ji (2010)
Lavery et al. (2016)

Itch (pruritus) An uncomfortable cutaneous sensation that initiates the desire to scratch Ikoma et al. (2006)
Lee et al. (2016)

Chronic itch An unpleasant sensation that leads to intensive scratching lasting 6 weeks or longer Cevikbas and Lerner
(2020)
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Truini et al., 2018), as shown in Table 2. The prevalence of pDN
varies among different studies, many reasons are due to the
differences, containing case definition criteria used,
participants selected, sample size, and types of diabetes
(Ziegler et al., 2014). Amazingly, a recent study has shown a
higher prevalence of neuropathic pain in patients with pDN
(73.11% of 1,547) in mainland China (Zhang et al., 2021), all
these data demonstrate the seriousness of pDN in diabetic
patients. Itching is also a relatively frequent symptom in
patients with diabetes. Although itching has been first
investigated in DM in the late 1920s, until now, literatures
about diabetic chronic itching are still limited. An intense
scratching habit lasting more than 6 weeks is classified as
chronic itching (Cevikbas and Lerner, 2020). The prevalence
of chronic itching in the general population is ~22%
(Weisshaar, 2016), and the prevalence in DM is quite various,
ranging from 18.4 to 35.8% (Neilly et al., 1986; Ko et al., 2013;
Stefaniak et al., 2021a; Stefaniak et al., 2021b). This huge
difference can be attributable to inconsistent definitions, varied
tools for itch evaluation, age, gender, and diabetic populations
with different diabetes types.

NEUROINFLAMMATORY MECHANISMS
UNDERLYING DIABETES-RELATED
NEUROPATHIC PAIN
Accumulating evidence suggests that neuroinflammation is
closely related to chronic pain responding to stimuli (Perera
et al., 2015; Ji et al., 2016; Ji et al., 2018; Borghi et al., 2019). The
inflammation in PNS and CNS is characterized by the following:
1) an increase in the permeability of the blood-spinal cord barrier
and blood-brain barrier (BBB), 2) infiltration of leukocytes, as the
outcome of increased vascular permeability, 3) secretion and
production of pro-inflammatory mediators (e.g., pro-
inflammatory cytokines or chemokines), and 4) activation of
glial cells causing the production of glial mediators that can

regulate pain sensitivity (Ellis and Bennett, 2013; Ji et al., 2013; Ji
et al., 2014).

It is well known that chronic pain results from neuronal
plasticity in pain processing pathways. Neuronal plasticity
involved in pain signal transmission consists of peripheral
sensitization and central sensitization (Hucho and Levine,
2007; Basbaum et al., 2009; Gold and Gebhart, 2010; Woolf,
2011; Luo et al., 2014). Next, we highlight the important roles of
neuroinflammation in promoting peripheral sensitization and
central sensitization and involvement in DNP.

Neuroinflammation and Peripheral
Sensitization in DNP
As a result of inflammation and tissue injury, the critical
characteristic of peripheral sensitization of nociceptors is
presented by a decrease in threshold and an increase in
response to noxious stimuli and spontaneous activity
(Rosenberger et al., 2020). The hyperexcitability of sensory
neurons in both patients and rodent models with diabetes
presents as spontaneous activity and an altered stimulus-
response function (Thrainsdottir et al., 2003; Kim et al., 2012;
Nowicki et al., 2012). The presence of this aberrant activity is
essential to the development and maintenance of DNP.

Increasing reports suggest that SCs which ensheath the nerve
fibers in the PNS are vital victims in the state of chronic
hyperglycemia, causing demyelination in patients with diabetic
neuropathy (Gumy et al., 2008; Dunnigan et al., 2013). SCs
express both neurotrophins and their receptors. However, in
diabetic patients or rodent models of diabetes, the robust
decrease of neurotrophins in SCs results in unable to guide
and support the regeneration of nerve fibers (Leinninger et al.,
2004; Richner et al., 2014). In one previous study, streptozotocin
(STZ)-induced diabetes reduces the level of ciliary neurotrophic
factor (CNTF), an important neurotrophic factor from SCs
(Calcutt et al., 1992). Some other studies have suggested that
SCs and T cells interact with each other in diabetes. Tang et al.,

TABLE 2 | Prevalence of pain and itch in diabetes in different areas, assessment methods in different studies.

Patients and area Number
of diabetic
patients

Prevalence (%) Methods Reference

Pain
Patients with diabetes in northwest England n = 15,692 21 Questionnaire (NSS and NDS) Abbott et al. (2011)
Patients with diabetes in France nationwide n = 766 20.3 Questionnaire (DN4 and MNSI), monofilament test Bouhassira et al. (2013)
Patients with diabetes in United Kingdom n = 350 16.2 Questionnaire (VAS and McGill Pain) and

examination
Daousi et al. (2004)

Patients with diabetes in Italy n = 816 13 Clinical examination and diagnostic tests Truini et al. (2018)
Patients with T2DM in Denmark n = 5,114 10 Questionnaire (DN4 and MNSIq) Gylfadottir et al. (2020)
Itch
Patients with diabetes in the

United Kingdom
n = 300 18.4 Interviewed and clinical examination Neilly et al. (1986)

Diabetic outpatients in Japan n = 2,656 26.3 Questionnaire Yamaoka et al. (2010)
Patients with T2DM in Taiwan, China n = 385 27.5 Questionnaire Ko et al. (2013)
Children with T1DM in Poland n = 100 22 NRS and Questionnaire (4IIQ) Stefaniak et al. (2020)
Patients with T2DM in Poland n = 109 35.8 NRS and Questionnaire (4IIQ) Stefaniak et al. (2021b)

DN4, Diabetic Neuropathy 4; NDS, neuropathy disability score; NSS, neuropathy symptom score; MNSI, Michigan Neuropathy Screening Instrument; VAS, visual analog scale; 4IIQ, Four-
item Itch Questionnaire; NRS, numerical rating scale.
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reported that levels of CXCR3 and phosphalated-p38 (p-p38) in
the peripheral blood mononuclear cell (PBMC) of DPN patients
are significantly increased. CXCR3 is elevated in CD8 (+) T cells
via the p-p38 under high glucose conditions, and then promotes
CD8 (+) T-cell recruitment into the diabetic nerves by CXCL9,
CXCL10, and CXCL11 produced from glucose-stimulated SCs.
Furthermore, results demonstrated that the upregulation of TNF-
α, FasL, and PD-L1 in CD8 (+) T cells stimulating with SCs,
which, in return, induce significant apoptosis of SCs, indicating
the interaction of CD8+ T cells and SCs plays a key role in the
development of DPN (Tang et al., 2013) (Figure 1).

Several previous studies have revealed that SGCs in ganglia are
important for PNS functionality and glia activation. SGCs contact
with each other and enwrap neuronal soma in ganglia.
Deterioration of this communication among SGCs under
pathological conditions leads to abnormal pain signal
transmission (Dublin and Hanani, 2007; Huang et al., 2013).
In T1DM and T2DM mice, the increased levels of glial fibrillary
acidic protein (GFAP) are considered as the activation of
SGCs, which have been shown to be associated with the
induction of neuropathic pain (Hanani et al., 2014; Liu et al.,
2016). In T2DM rats, the upregulation of purinergic signaling
promotes the activation of SGCs, increases tumor necrosis factor-

alpha (TNF-α) release from SGCs, and enhances the
excitability of dorsal root ganglion (DRG) neurons, which
brings about the pain sensitivity (Liu et al., 2016; Gonçalves
et al., 2018) (Figure 1).

The activity and status of ion channels within sensory neurons
largely determine the transmission and processing of pain signals
(Bennett and Woods, 2014; Waxman and Zamponi, 2014). Ion
channels [e.g., voltage-gated sodium channels (Nav), potassium
channels, calcium channels (Cav), and transient receptor
potential channels (TRP)] are participated in resting and
action potentials (Waxman and Zamponi, 2014). In peripheral
sensory neurons, three particularly prevalent Nav-isoforms are
identified and named as Nav1.7, Nav1.8, and Nav1.9 (Dubin and
Patapoutian, 2010; Hameed, 2019). In addition to setting the
excitability of the terminal, Nav1.7 and Nav1.9 also function as
threshold channels for amplifying the sensory signal, while
Nav1.8 plays the role in the upstroke of action potentials in
nociceptors (Blair and Bean, 2002). Potassium channels act as
important breaks in the excitability of sensory neurons. T-type
Ca2+ channels have also been found to play an important role in
pDN by regulating the excitability of nociceptors in the
subthreshold range. The activity of Cav3.2 is increased in
diabetes via the glycosylation of arginine residues within

FIGURE 1 | Neuroinflammation and peripheral sensitization in DNP. SCs are damaged and decrease neurotrophin expression, resulting in demyelination of axons
and failure of nerve regeneration. SGCs release TNF-α and then enhance the excitability of peripheral nociceptive neurons. Cav3.2 activity results in hyperexcitability of
DRG neurons via the glycosylation of extracellular arginine residues in diabetes. Chemokines activate the signaling cascades, such as ERK, AKT, and STAT3, to sensitize
the Nav1.7, Nav1.8, Nav1.9, and TRPA1, leading to hypersensitivity and hyperexcitability of peripheral nociceptive neurons. In addition, GPR177 derives DNP via
WNT5a/TRPV1 interaction.
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extracellular membranes, which causes DRG neurons to be
hyperexcitable. (Orestes et al., 2013). The changes in ion
channels such as genetic variants, epigenetic modification, and
abnormal expression, have all been implicated in the pathogenesis
of neuropathic pain. Sun et al. reported that the increased
expression of Nav1.8 is implicated in pDN, and such an
increase reduces the failure probability of conduction in
unmyelinated C fiber nociceptors, and then promotes more
impulse conduction to the CNS, which results in neuropathic
pain (Sun et al., 2012). Transient receptor potential vanilloid
receptor-1 (TRPV1) ion channels are the important molecules
involved in peripheral sensitization and pain modulation of
chronic pain, which are widely expressed in nociceptive DRG
neurons (Moore et al., 2018). A recent study reported that the
orphan G protein-coupled receptor 177 (GPR177)-mediated
wingless-related mammary tumor virus integration site 5a
(WNT5a) secretion from A-fiber DRG neurons drives DNP by
directly activating the TRPV1 channel and resulting in rapid
currents and calcium elevations in DRG neurons (Xie et al.,
2022). GPR177 and WNT5a are also found co-expressed in
human DRG neurons, and pain intensity is positively related
to WNT5a secretion in cerebrospinal fluid (CSF) among DNP
patients (Xie et al., 2022). DNP is alleviated by interfering with
WNT5a/TRPV1 interaction, thus providing a potential
therapeutic target and intervention strategy for the clinical
treatment of DNP (Xie et al., 2022) (Figure 1).

In addition, patients with diabetes have higher levels of
reactive metabolites such as methylglyoxal (MGO), which
post-translationally modify Nav1.8, then result in sensory
neuron hyperexcitability, and finally lead to the development
of diabetic pain (Bierhaus et al., 2012; Hansen et al., 2015). Rodent
models of pDN showed signs of hypersensitivity in response to
MGO via the activation of the sodium channel Nav1.8 and the
transient receptor potential channel ankyrin 1 (TRPA1)
(Bierhaus et al., 2012; Huang et al., 2016). It has been reported
that MGO regulates the BBB permeability by producing the
redistribution of junctional proteins, containing claudin-5 and
β-catenin (Tóth et al., 2014), resulting in an increase in brain
vessel permeability to MGO (Li et al., 2013). One previous
research demonstrated that MGO specifically affects the
integrated stress response (ISR) in IB4 positive DRG neurons
in vitro and vivo diabetic models. The mechanical
hypersensitivity of diabetic mice induced by MGO is
attenuated by blocking the ISR (Barragán-Iglesias et al., 2019)
(Figure 1).

Neuroinflammation and Central
Sensitization in DNP
Increasing studies also suggest that neuroinflammation-drives
central sensitization play a crucial role in the neuropathic pain via
acting on both PNS and CNS of diabetics (Loeser and Treede,
2008; Ji et al., 2018). The key features of neuroinflammation in
CNS are the activation of glial cells (e.g., astrocytes and
microglia), resulting in the upregulation of inflammatory
mediators such as pro-inflammatory cytokines and
chemokines. These chemokines and cytokines work as potent

neuromodulators in the CNS that play a key role in triggering and
maintaining the hyperalgesia and allodynia under chronic pain
conditions (Samad et al., 2001; Kawasaki et al., 2008; Gao et al.,
2009).

In diabetic neuropathy, synaptic transmission within the spinal
cord is increased by enhancing the input from spontaneously active
nociceptors, which further amplifies nociceptive signaling (Woolf,
2011). It is also believed that this occurs because of a temporal and
spatial accumulation of nociceptive signal inputs, causing the
neurons in the spinal dorsal horn to have a heightened
response to their inputs. Under diabetic neuropathy conditions,
microglial cells transform to a pro-inflammatory phenotype, which
releases pro-inflammatory factors [e.g., TNF-α, interleukin (IL)-6,
IL-1β] and brain-derived neurotrophic factor (BDNF), further
amplify nociceptive signal transmission in the spinal dorsal
horn, and promote mechanical hypersensitivity in pDN (Tsuda
et al., 2008; Salter and Beggs, 2014; Sun et al., 2015; Liu M et al.,
2019). Consistent with the microglia activation, the activation
of astrocytes is also enhanced in diabetic mice (Liu M et al.,
2019). In the T2DM animal model, there is a correlation
between ERK activation [phosphorylated ERK (pERK)] in
spinal superficial neurons and astrocytes and hypersensitivity
to pain, and pERK inhibition may provide a new treatment

FIGURE 2 | Molecular mechanisms of neuroinflammation and central
sensitization in excitatory synapses of the spinal dorsal horn under DNP.
Cytokines and chemokines from spinal glial cells activate pERK in primary
afferent terminals and finally enhance glutamate (Glu) release via
activation of Nav1.7 and Nav1.8. At postsynaptic membrane, activation of
postsynaptic Glu receptors contributes to central sensitization. In addition,
cytokines and chemokines activate postsynaptic pERK, pAKT, and pSTAT3
signaling pathways, which contribute to central sensitization of DNP.
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for diabetes-related pain (Xu et al., 2014). In addition, peripheral
inflammation accompanied by prolonged nociceptive stimulation
also increases the release of neurotransmitters [e.g., glutamate,
BDNF, calcitonin gene-related peptide, and substance P] from the
peripheral sensory fibers into the spinal dorsal horn and trigeminal
nucleus. The increase of these neurotransmitters leads to the
hyperexcitability of neurons in the spinal cord and supraspinal
centers commonly referred to as central sensitization (Woolf, 1983;
Woolf and Salter, 2000) (Figure 2).

An essential step for central sensitization is the activation of
NMDARs and AMPARs at postsynaptic membrane surfaces (Ji
et al., 2003; Latremoliere and Woolf, 2009). The previous study
has shown that spinal activated astrocytes dramatically increase
expression of IL-1β which may induce NMDAR phosphorylation
in spinal dorsal horn neurons to enhance pain signal conduction
in db/db mouse used widely as an animal model of T2DM.
Therefore, the Astrocyte-IL-1β-NMDAR-Neuron axis unveils a
novel mechanism underlying astrocyte-induced allodynia (Liao
et al., 2011).

Chemokines and Chemokine Receptors
Involved in Diabetic Neuropathic Pain
Under both normal and pathological conditions, chemokines
contribute to cell survival, proliferation, and inflammation via
activating intracellular signaling pathways (Jiang et al., 2020).
Accumulating evidence suggests that chemokines and their
receptors also contribute to chronic pain via enhancing
neuroinflammation in the PNS and CNS (Van Steenwinckel
et al., 2011; Zhang et al., 2012; Zhang et al., 2013; Zhang et al.,
2017; Fyfe, 2018; Lin King et al., 2019; Lu et al., 2021). Studies in the
past decade have shown that several chemokines and their receptors
are implicated in the pathogenesis of DPN, and associated signaling
pathways of the chemokine pairs are involved in the mechanisms of
diabetic neuropathy pain (Menichella et al., 2014; Jiang et al., 2016;
Zychowska et al., 2017; Jayaraj et al., 2018; Rojewska et al., 2018; Liu S
et al., 2019) (Figure 2).

Previous studies have demonstrated the crucial role of CCL1 in
the pathogenesis of diabetic neuropathy caused by STZ. As a
mediator of neuroimmune interactions, CCL1 plays an important
role in the DNP through CCL1/CCR8 cross-talk (Zychowska
et al., 2017). In a study of STZ-induced diabetes mice, CCL3 and
CCL9 levels are increased in the lumbar spinal cord, while
neutralizing antibodies against CCL3 or CCL9 delay
neuropathic pain symptoms following STZ administration, and
the application of CCR1 antagonist also alleviates pain-related
behavior in diabetic neuropathy (Rojewska et al., 2018).

In the high-fat diet (HFD)-induced mouse model of T2DM, the
increase of CXCL12 expression is detected in DRG neurons, and
CXCL12/CXCR4 signaling contributes to the development of pain
in diabetes through enhancing calcium influx and excitability of
Nav1.8 positive DRG neurons, as well as promoting inflammatory
cell infiltration (Menichella et al., 2014). Reducing CXCR4-
mediated nociceptor hyperexcitability can reverse pDN in HFD
mice, suggesting that CXCR4 in Nav1.8 positive DRG neurons is
involved in the development of mechanical allodynia in HFD-
induced diabetes (Jayaraj et al., 2018).

Our data have shown the spinal CXCL13/CXCR5 axis participates
in neuropathic pain. Through neuron-to-astrocyte cross-talk,
CXCL13 is upregulated in spinal neurons after spinal nerve
ligation and activates spinal astrocytes by interacting with its
receptor CXCR5 (Jiang et al., 2016). In the spinal dorsal horn of
db/db mice with thermal hyperalgesia and mechanical allodynia, the
CXCL13 and CXCR5 are also significantly increased, and the
phosphorylation of cell signaling kinases, including pERK,
phosphorylated AKT (pAKT) and phosphorylated signal
transducer and activator of transcription proteins 3 (pSTAT3) are
upregulated. Further evidence showed thatCXCL13/CXCR5 signaling
contributes to diabetic pain via activating pERK, pAKT, and pSTAT3
cell signaling pathways and promoting the production of TNF-α and
IL-6 in the spinal cord of diabetic mice (Liu S et al., 2019).

The expression of XCL1 andXCR1 in the lumbar spinal segments
(L4 to L6) of the STZ-induced DPN mice is increased. More
evidence suggested that XCR1 is expressed mainly on neurons in
the pathology of DN. XCL1 intrathecal injection enhances
nociceptive transmission in naive mice, and XCL1 neutralizing
antibody administration diminishes allodynia/hyperalgesia in
STZ-induced diabetic mice (Zychowska et al., 2016).

Advanced Glycation End-Products Involved
in DNP
High levels of glucose lead to the glycation of several functional
and structural proteins, resulting in producing advanced
glycation end-products (AGEs). AGEs change gene expression
and activation of nuclear factor-κB (NF-κB) via interacting with
AGE-specific receptor (RAGE), thus inducing pro-inflammatory
cytokines (e.g., IL-1α, IL-6, and TNF-α) (Neumann et al., 1999;
Singh et al., 2014). In the spinal dorsal horn, TNF-α and IL-1β can
act as neuromodulators to induce spinal synaptic plasticity such
as long-term potentiation, and further promote neuropathic pain
(Sorge et al., 2015; Taves et al., 2016).

NEUROINFLAMMATORY MECHANISMS
UNDERLYING DIABETES-RELATED
CHRONIC ITCH
Itch is an unpleasant cutaneous sensation that is accompanied by
scratching or the desire to scratch (Ikoma et al., 2006; Lee et al.,
2016; Dong and Dong, 2018). However, many similarities have
been found between chronic pain and chronic itch (Ji, 2015;
Moore et al., 2018; Ji et al., 2019). The cell bodies of itch sensory
neurons are also located in the DRGs and trigeminal ganglia, and
most itch neurons belong to C-type neurons (Ringkamp et al.,
2011; LaMotte et al., 2014). The itch signals are generated in the
primary afferent sensory fibers in the skin and then transmitted
through the DRG neurons to the spinal dorsal horn neurons, and
finally to the brain neurons (Ikoma et al., 2006; Han and Dong,
2014). Over the past decade, extensive research has been
conducted on the mechanisms of itch, including peripheral
and central neural mechanisms such as receptors and
pathways involved in itch perception (Dong and Dong, 2018).
According to the researchers, there are twomain causes of the itch
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in diabetics, containing skin xerosis and diabetic polyneuropathy,
suggesting that itch originates from dermatology or neurology
(Stefaniak et al., 2021b). Additionally, oxidative stress and nerve
inflammation contribute to diabetic polyneuropathy (Hagen and
Ousman, 2021).

Previous data have shown that sensitization is also a common
mechanism in itch processing. Peripheral sensitization caused by
the C fibers in the epidermis plays important role in pruritus
sensitization (Ikoma et al., 2006; Tominaga and Takamori, 2014).
Several other results indicated that spinal sensitization occurs
frequently in atopic dermatitis (AD) model mice, but may not in
psoriasis model mice (Shiratori-Hayashi and Tsuda, 2021).
Mechanical itch (also known as touch-evoked itch) is a
notable feature of chronic itch, and also a prominent mark in
diabetic neuropathy (Bourane et al., 2015). Other evidence
suggests that mechanical itch is related to central sensitization
(Pan et al., 2019; Sakai and Akiyama, 2020). However,
mechanisms of chronic itch in diabetes are not fully
understood owing to inadequate related studies. Here, we
summarize the inflammation mechanisms that participated in
diabetic itch, including activity and status of ion channels,
oxidative stress, and pro-inflammatory factors (Figure 3).

Ion Channels Mediate Mechanical Itch in
Diabetic Itch
Increasing evidence has suggested that TRPV1 and TRPA1 are
the downstream effectors of itch-related inflammatory factors
and are involved in itch signals on the nerve fibers. During a

pathological state, pruritus-related inflammatory factors such as
IL-31, IL-4, and NGF, stimulate TRPV1 and TRPA1 repeatedly,
resulting in a decrease in the threshold of itch sensation and
causing chronic itch (Moore et al., 2018; Xie and Li, 2019). Both
pain and itch are direct effects of immune dysfunction, since the
release of pro-inflammatory mediators by immune cells and
epithelial cells after tissue injury can directly activate or
sensitize pain and pruritus neurons, causing hypersensitivity to
pain and pruritus (Ji, 2015). Chronic itch and chronic pain caused
by peripheral sensitization have been reported to be induced
by inflammatory mediators, which require the activation of
TRPA1 and Nav1.7 (Basbaum et al., 2009). It is widely
recognized that MGO is a potential mediator of itch in
diabetes. Incubation of MGO induces inward currents and
calcium influx in TRPA1-expressing HEK293 cells or DRG
neurons. (Cheng et al., 2019). Mechanical itch evoked by
MGO or in STZ-induced T1DM mice is dependent on the
activation of TRPA1, Nav1.7, and the pERK signaling pathway
in DRGs and spinal cord (Cheng et al., 2019).

Oxidative Stress Contributes to Diabetic
Itch
Oxidative stress is an important factor in the pathogenesis of DM,
especially in T2DM, which activates JNK, NF-κB, and p38MAPK
pathways to cause inflammation (Lamb and Goldstein, 2008;
Agrawal and Kant, 2014). Previous studies have also shown that
chronic and acute itching is related to oxidative stress (Liu and Ji,
2013; Zhou et al., 2019). ND7-23 cells (a cell line derived from the

FIGURE 3 |Neuroinflammatory mechanisms underlying diabetes-related chronic itch. Themechanical itch induced byMGOor in the STZ-inducedmousemodel of
T1DM is mediated by activation of TRPA1, Nav1.7, and ERK in the DRG neurons. In the T2DMmouse model, the upregulation of P2Y12 expression in SGCs contributes
to the increase of ROS, followed by the activation of NLRP3 inflammasome, the upregulation of inflammatory cytokines, and the damage to peripheral nerves. These
changes finally result in DRG neuron hyperexcitability and sensitization.
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dorsal root ganglia) exhibit a significant increase in intracellular
reactive oxygen species (ROS) after MGO treatment. MGO or
STZ-induced mechanical itching is significantly reduced by
intraperitoneal injection of antioxidant α-lipoic acid (ALA),
indicating that oxidative stress contributes to diabetic itch
(Cheng et al., 2019). Moreover, T2DM mice with chronic itch
exhibit significantly higher levels of ROS in the DRG cells,
suggesting that these compounds play an important role in
diabetic itch (Xu et al., 2022).

Pro-Inflammatory Factors in Diabetic Itch
Just like in chronic pain, pro-inflammatory factors such as
cytokines and chemokines are also crucial in the pathogenesis
of chronic itch (Liu et al., 2012; Storan et al., 2015). Diabetes was
complicated by peripheral nerve injury results in an increase in
the secretion of neuroinflammatory factors that can activate
sensory C fibers and is accompanied by paraesthesia,
suggesting that diabetic itch is due to abnormal discharges
from damaged peripheral C fibers (Yamaoka et al., 2010;
Yosipovitch and Bernhard, 2013). Spontaneous itching is an
important indicator for evaluating itch behaviors. Recent
studies have indicated that the number of spontaneous
scratches in T2DM model mice is significantly increased. The
increase of P2Y12 expression and SGC activity in these diabetic
mice promotes the upregulation of ROS content, further activates
the NLRP3 inflammatory body, and then produces inflammatory
cytokines such as IL-18 and IL-1β. These inflammatory cytokines,
in turn, cause peripheral nerve injury, abnormally excite DRG
neurons, and result in spontaneous scratching. Treatment of
P2Y12 shRNA or antagonist ticagrelor inhibits the
spontaneous itch behaviors in the mouse model of T2DM (Xu
et al., 2022).

STRATEGIES OF TREATMENT

Approaches to Treatment of Diabetic Pain
In recent years, targeted treatment of neuropathic pain is
disappointing for a series of reasons as follows: 1) the
underlying pathogenic mechanisms involved in neuropathic
pain in diabetes are complex and not fully clarified, resulting
in inadequate engagement of the claimed drug targets (Ji et al.,
2014), 2) a translational gap from animal models of diabetes to
patients with diabetes (King et al., 2009; Mogil, 2009), and 3) the
serious side effects of existing analgesic drugs such as sedation,
respiratory inhibition, tolerance, addiction and hyperalgesia
following acute or chronic treatment.

Up to now, only glycemic control can prevent or slow down
diabetic neuropathy progression in T1DM, but not in T2DM
(Callaghan et al., 2012). Current evidence shows an association
between diabetes and secondary complications with chronic
inflammation. In addition to anti-inflammatory drugs, a
multitude of hypoglycemic drugs such as thiazolidinediones,
dipeptidyl peptidase-4 inhibitors, and metformin, have been
found to reduce inflammation and improve outcomes.

However, for all these hypoglycemic agents, it is necessary to
distinguish between the anti-inflammatory effects produced by
better glucose control and those related to the intrinsic anti-
inflammatory effects of pharmacological compounds (Kothari
et al., 2016).

According to the consensus from multiple guidelines and
systematic reviews (Attal et al., 2010; Bril et al., 2011;
Griebeler et al., 2014; Finnerup et al., 2015; Waldfogel et al.,
2017), several drugs are supported to apply in the treatment of
DNP, including calcium channel a2δ ligands (e.g., gabapentin and
pregabalin) (Freeman et al., 2008; Moore et al., 2009; Griebeler
et al., 2014; Finnerup et al., 2015; Pop-Busui et al., 2017),
serotonin and noradrenaline reuptake inhibitors (SNRIs, e.g.,
duloxetine, venlafaxine) (Rowbotham et al., 2004; Wernicke
et al., 2006; Zilliox and Russell, 2010; Tesfaye et al., 2013;
Pop-Busui et al., 2017), and tricyclic antidepressants (TCAs,
e.g., amitriptyline, nortriptyline, and desipramine) (Max et al.,
1987; Max et al., 1991; Max et al., 1992; Boyle et al., 2012).
However, these drugs do not clarify the potential pathogenesis
for DNP.

Given the important roles of neuroinflammation such as
cytokines and chemokines in the pathogenesis of DNP,
targeting the pro-inflammatory mediators may provide a novel
approach to treating DNP. There are three possible approaches
for developing drugs that target chemokines and their receptors,
including 1) blocking or neutralizing antibodies, 2) small-
molecule inhibitors, and 3) small interfering RNA (siRNA).
For example, antibodies that neutralize CCL3, CCL9, or
XCL1 delay diabetic neuropathic pain symptoms. Similarly,
CCR1 antagonist J113863 also attenuates pain-related
behaviors in the diabetic pain model (Zychowska et al., 2016;
Rojewska et al., 2018). Mechanical allodynia is alleviated in db/
db mice following the injection of CXCR5 shRNA (Liu S et al.,
2019).

More and more evidence has suggested that there is an
inflammatory environment in the islets of patients with
T2DM, including high levels of cytokines and chemokines,
and immune cell infiltration. Therefore, many drugs targeting
inflammatory cytokines such as TNF-α, IL-6, and IL-1β, are used
to reduce insulin resistance and improve insulin secretion, further
alleviating the complications of diabetes (Agrawal and Kant,
2014; Esser et al., 2015). For example, both troglitazone and
gliclazide can reduce the TNF-α level in rodent models of
diabetes. N-acetylcysteine (an anti-oxidant) attenuates the
TNF-α levels in a dose-dependent manner, contributing to a
decrease in the incidence and severity of diabetic neuropathy
(Sagara et al., 1996). Tocilizumab (a monoclonal antibody
targeting IL-6), drugs targeting IL-1β (e.g., anakinra,
canakinumab, and other monoclonal antibodies), appear to
reduce insulin resistance by reducing their pro-inflammatory
effects in adipose tissue and muscle (Goldfine and Shoelson,
2017). Piroxicam statistically decreases the action potential
amplitude of sensory neurons enhanced by STZ (Parry
and Kozu, 1990). Nonsteroidal anti-inflammatory drugs
(NSAIDs) reduce inflammation by inhibiting cyclooxygenase
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(COX) enzymes and are widely used in the prevention and
treatment of T2DM (Bellucci et al., 2017). Moreover, drugs
that target vascular endothelial growth factors (such as
Pegaptanib and Avastin) and chemokines are used for the
treatment of diabetic retinopathy (Kastelan et al., 2013). The
current research studies shown that these drugs against pro-
inflammatory mediators have certain therapeutic effects on
diabetes, but cannot reverse the development of diabetes,
overall, more studies are needed to validate these results. In
addition, the selective blocking of Nav1.7 function
has been successfully applied to trigeminal neuralgia, but
the expected effect in diabetic neuropathy needs further
to explore (Zakrzewska et al., 2017). The decrease of calcium
influx via interfering Cav3.2 expression can also reduce
pain hypersensitivity in diabetic mice (Messinger et al., 2009).

Approaches to Treatment of Diabetic Itch
Currently, the mechanism involved in chronic itching,
especially diabetic itching are poorly understood, resulting in
limited effective therapies for chronic itching. Generally,
treatment should be based on the therapeutic principle:
finding out the cause, treating the primary diseases, avoiding
the inducing factors, and moisturizing the skin (Greaves, 2005;
Song et al., 2018). For diabetic itch, the optimal strategy is the
treatment or prevention of causal diseases, that is, the
maintenance of normal blood glucose (Steinhoff et al., 2018).
In addition, some anti-inflammatory drugs targeting cytokines
and chemokines (described in 6.1) to treat the primary disease
of diabetes probably also be beneficial to the treatment of itching
induced by diabetes. Furthermore, experiments are needed in
the future to confirm the anti-pruritic effect of these drugs on
diabetes. In animal models of diabetes, knocking out of Trpa1,
the blocker of Nav1.7, and TRPA1, antioxidants, and ERK
inhibitor U0126 alleviate itching in mice evoked by STZ or
MGO (Cheng et al., 2019). In addition, P2Y12 may be a
promising target for the treatment of itching in T2DM (Xu
et al., 2022).

Overall, drugs targeting diabetic itch patients are still
inadequate, and further studies are needed to provide more
information on the treatment efficacy.

PERSPECTIVE

As the most common chronic complication of DM, diabetic
neuropathy results in chronic pain and itching. Our
understanding of diabetic neuropathy continues to advance,
especially neuroinflammation and sensitization-driven pain in
diabetic neuropathy. However, the mechanism underlying pDN
and chronic itching is still not fully revealed, hindering the
development of therapies to treat diabetic pain and itch.
Notably, chronic pain and itching are typically accompanied by
anxiety, depression, and sleep disturbances, therefore, the
development of drugs targeting inflammation not only helps
treat diabetic pain and itching but also helps alleviate the
development of mental illness in diabetic patients. Currently,
many promising drugs in animal models or preclinical studies
are aborted in clinical trials, whichmay be related to the insufficient
representativeness of animal models, poor drug design, and design
defects of clinical trials (Malik, 2016). Although regulatory agencies
have approved a number of drugs and therapies to relieve the
chronic pain and itch, it is worth noting that none of them are
designed to target diabetes-specific mechanisms, while their
efficacy varies from patient to patient and is confined to small
subgroups of patients (Finnerup et al., 2010). Therefore, it is urgent
and necessary to develop targeted drugs for diabetic pain and
itching in the future.
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The incidence of cerebral ischemia has increased in the past decades, and the

high fatality and disability rates seriously affect human health. Apelin is a

bioactive peptide and the ligand of the G protein-coupled receptor

APJ. Both are ubiquitously expressed in the peripheral and central nervous

systems, and regulate various physiological and pathological process in the

cardiovascular, nervous and endocrine systems. Apelin-13 is one of the

subtypes of apelin, and the apelin-13/APJ signaling pathway protects against

cerebral ischemia by promoting angiogenesis, inhibiting excitotoxicity and

stabilizing atherosclerotic plaques. In this review, we have discussed the role

of apelin-13 in the regulation of cerebral ischemia and the underlying

mechanisms, along with the therapeutic potential of the apelin-13/APJ

signaling pathway in cerebral ischemia.

KEYWORDS

apelin-13, APJ, cerebral ischemia, pathway, angiogenesis, atherosclerotic plaque,
excitotoxicity

1 Introduction

Cerebral ischemia is a serious threat to human health, and is associated with high

morbidity, disability and mortality. The rapidly aging population, as well as significant

changes in lifestyle and diet brought about by the socio-economic development in China

in recent years, has significantly increased the risk of stroke. It is currently the primary

cause of death and disability among adults in China (Wang et al., 2015;Wang et al., 2017a;

Guan et al., 2017). Therefore, it is crucial to devise suitable intervention methods in order

to improve the prognosis of patients with cerebral ischemia and reduce the burden of

disease.

Studies increasingly show that the apelin/apelin receptor (APJ) signaling pathway is

involved in the occurrence and development of cerebral ischemia (Tables 1, 2). APJ is an

orphan G protein-coupled receptor that was discovered by O’Dowd et al. (1993), and

apelin is its endogenous ligand. The apelin/APJ system is ubiquitous in the peripheral and
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central nervous systems, and regulates blood pressure,

myocardial contraction, immune response, angiogenesis,

cancer development and other biological processes (Hosoya

et al., 2000; Kawamata et al., 2001; Li et al., 2008; Barnes

et al., 2010; Yang et al., 2016a). The currently known subtypes

of apelin include apelin-12, apelin-13, apelin-17, apelin-28, and

apelin-36, of which apelin-13 is the predominant subtype found

in the heart, brain and hypothalamus. Previous studies have

shown that apelin-13 plays an important role in cerebral

ischemia (Duan et al., 2019; Wang et al., 2020) and ischemic

stroke, and changes in the expression level of endogenous apelin-

13 following ischemia has diagnostic and therapeutic relevance.

Exogenous apelin-13 supplementation in ischemic stroke

patients can play a neuroprotective role by regulating multiple

signaling pathways. In this review, we have summarized the role

and mechanism of apelin-13 in cerebral ischemia, in order to

offer new insights into its diagnosis and treatment.

2 Apelin-13

2.1 Biological characteristics of apelin-13

The gene encoding the arginine and lysin-rich apelin

precursor peptide is located on chromosome Xg 25–26.1, and

consists of three exons and two introns. The precursor peptide

contains multiple potential sites of post-translational enzymatic

processing, and can therefore generate multiple active apelin

peptide fragments. For instance, cleavage of the apelin precursor

peptide by angiotensin converting enzyme 2 (ACE2) generates

isoforms of varying lengths such as aplein-12, apelin-13, apelin-

17, and apelin-36. These isoforms differ in terms of tissue

distribution, physiological and pharmacological effects, and

binding strength with APJ (Lee et al., 2000; Reaux et al., 2001;

De Mota et al., 2004). Furthermore, the biological activity of

apelin, especially involving receptor binding and intracellular

receptor transport, is greatly influenced by the size of the

molecular fragment. Smaller apelin isoforms typically display

stronger binding to APJ (Kleinz and Davenport, 2005; Carpéné

et al., 2007).

Apelin-13 is a short peptide consisting of 13 amino acids. The

N-terminal of apelin-13 binds to the APJ receptor, while the

C-terminal is mainly involved in regulating its biological activity

(Kawamata et al., 2001; Medhurst et al., 2003). It is degraded into

an inactive form in the presence of ACE2 (Vickers et al., 2002),

and is also modified into the more stable and active pyroglutamyl

apelin-13. Studies show that pyroglutamyl apelin-13 is the most

biological relevant subtype of apelin present in healthy human

plasma (Mesmin et al., 2010; Zhen et al., 2013). Nevertheless,

apelin-13 is ubiquitously expressed in the digestive system,

cardiovascular system, central nervous system (CNS), kidneys,

adipose tissue and retina, whereas apelin pro-peptide is

predominantly present in the heart, lungs, kidneys and

endothelial cells of large blood vessels (O’Carroll et al., 2000).

Furthermore, apelin mRNA has been detected in the mammary

glands, heart, lungs, brain, kidneys and other tissues of rats.

Based on these findings, we can surmise that apelin has wide-

ranging functions in humans as well as rodents. In particular, the

presence of apelinergic neurons in the brain suggests that apelin

may regulate food intake and digestion, pituitary hormone

release and circadian rhythms (Reaux et al., 2002).

2.2 The APJ receptor

The apelin receptor APJ, also known as angiotensin II (Ang

II) receptor-like 1, is a G protein-coupled receptor consisting of

380 amino acids with seven transmembrane structures. It is

TABLE 1 The evidence from clinical trials demonstrating the role of apelin in stroke.

Subject Main findings Citation

68 MMD patients, 25 MCAO patients, 29 healthy controls Apelin-13 is significantly increased in MMD patients than MCAO patients independent
of NO and VEGF.

Wu et al. (2022)

60 patients with high risk of stroke (AF and non-AF group),
34 healthy controls

Apelin might be used to rule out AF in patients with high risk of stroke Bohm et al. (2021)

109 AIS patients treated with intravenous thrombolysis Apelin can help effectively forecast the occurrence of HT in AIS patients after intravenous
thrombolysis, as an independent protective factor of HT.

Zhu et al. (2021)

156 ischemic stroke patients, 79 hemorrhagic stroke patients,
235 healthy controls

Higher vaspin, apelin, and visfatin levels might be associated with increased stroke risk Yu et al. (2021)

244 AIS patients, 167 healthy controls Serum apelin-13 may be a potential prognostic biomarker for AIS. Serum apelin-13 levels
is lower in the patients than healthy controls, patients with a NIHSS score ≤3 had higher
apelin-13 levels. There is an association between apelin-13 and death or major disability
at the 3-months follow-up, the patients with high apelin-13 levels show a lower incidence
of stroke and combined events at the 1-year follow-up

Wang et al. (2020)

168 AIS patients, 58 healthy controls No difference of apelin between AIS patients and control group, and no difference of
apelin between stroke subgroups with and without significant ipsilateral carotid stenosis

Kadoglou et al.
(2014)
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TABLE 2 The evidence from experimental trials demonstrating the role and mechanism of apelin in stroke.

Subject Apelin treatment Main findings Citation

MCAO/R rats Apelin-13 is injected into the tail vein 5 min before
reperfusion

Apelin-13 attenuates injury following ischemic
stroke by targeting MMP, endothelin-B receptor,
occludin/claudin-5 and oxidative stress

Gholamzadeh
et al. (2021a)

HT22 cells (OGD/R) The cells are treated with 0.1 µM Apelin-36 Apelin-36 protects against OGD/R-induced
oxidative stress and mitochondrial dysfunction by
promoting SIRT1-mediated PINK1/Parkin-
dependent mitophagy

Shao et al. (2021a)

Spragu-Dawley rats (MCAO/R), SH-
SY5Y cells (OGD/R)

Apelin-13 (50 μg/kg) is injected into the right ventricle
of rats at the onset of reperfusion; SH-SY5Y cell is
treated with 10–7 M apelin-13 for 5 h

Apelin-13 inhibits apoptosis and excessive
autophagy by upregulating Bcl-2 and activating
mTOR signaling pathway after cerebral ischemia/
reperfusion injury

Shao et al. (2021b)

Wistar rats (MCAO/R) Intravenous injection of apelin-13 (10, 20, and 40 μg/kg)
via tail vein 5 min before reperfusion

Apelin-13 improve sensory-motor balance defects by
reducing neural death and infarct volume, and
restoration of serum NO levels after cerebral
ischemia

Gholamzadeh
et al. (2021b)

Sprague-Dawley rats (SAH) Apelin-13 (10 mg/kg) is injected into the lateral cerebral
ventricle at 0.5 h after SAH.

Apelin-13 attenuates early brain injury following
subarachnoid hemorrhage via suppressing neuronal
apoptosis through the GLP-1R/PI3K/Akt signaling

Liu et al. (2019)

Sprague-Dawley rats (SAH) Apelin-13 (25 μg/kg, 50 μg/kg, and 100 μg/kg) is
injected intracerebroventricularly immediately after
SAH induction

Apelin-13 attenuates early brain injury through
inhibiting inflammation and apoptosis in rats
after SAH.

Shen et al. (2022)

Sprague-Dawley rats (MCAO/R),
PC12 cells (I/R)

Apelin-13 (30 μg/kg, 60 μg/kg, and 120 μg/kg) is
injected intracerebroventricularly 15 min before
reperfusion in rats; PC12 cells are pretreated with
apelin-13 (0.5, 1, and 1.5 μM) for 6 h

Apelin 13 protects against I/R-induced ROS-
mediated inflammation and oxidative stress through
activating the AMPK/GSK-3β pathway via AR/Gα/
PLC/IP3/CaMKK signaling, and further upregulates
the expression of Nrf2-regulated antioxidant
enzymes

Duan et al. (2019)

CD-1 mice (MCAO/R) 15 μl Apelin-12 is intracerebroventricularly injected
15 min before reperfusion

Apelin-12 inhibits the JNK and p38MAPK signaling
pathway of the apoptosis-related MAPKs family,
thus offering protection to neurons from ischemia-
reperfusion injury

Liu et al. (2018)

118 MCAO patients and 22 controls
patients; Sprague-Dawley rats
(MCAO)

Pretreatment of apelin-17 (1 μmol/L) in rats Plasma apelin-17 levels in ischemic stroke patients
are positively associated with enhanced collateral
circulation, which may have resulted from an apelin-
17-induced cerebral artery dilation mediated
through the NO-cGMP pathway

Jiang et al. (2019)

Wistar rats (MCAO/R) Apelin-13 (10 μl) is injected intracerebroventricularly
30 min before MCAO in rats

Apelin-13 can attenuate activate neuronal apoptosis
by inhibiting eIF2-ATF4-CHOP-mediated ER stress,
involvement of Gαi/Gαq- CK2 signaling

Wu et al. (2018)

Wistar rats (MCAO/R) 10 µl apelin-13 (0.03 µg/µl) or10 µl apelin-36 (0.05 µg/
µl) is injected into the right lateral ventricle at 2 h after
MCAO.

Post-stroke administration of low-dose apelin-36
could attenuate infarct volume and apoptosis, which
is associated with the inhibition of ERS/UPR
activation. Low dose of apelin-13 had no protective
effect in rats with ischemic stroke

Qiu et al. (2017)

Chu et al. (2017)

(Continued on following page)
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TABLE 2 (Continued) The evidence from experimental trials demonstrating the role and mechanism of apelin in stroke.

Subject Apelin treatment Main findings Citation

AQP4 +/+ and AQP4 −/− mice
(MCAO/R)

Apelin-13 (50 μg/kg) is injected
intracerebroventricularly 15 min before reperfusion

Apelin-13 protects BBB from disruption after
cerebral ischemia both morphologically and
functionally, which is highly associated with the
increased levels of AQP4, possibly through the
activation of ERK and PI3K/Akt pathways

Spragu-Dawley rats (MCAO/R);
priamary neurons, astrocytes, and
endothelial cells (OGD/R)

Apelin-13 (50 μg/kg) is injected
intracerebroventricularly 15 min before or immediately
after reperfusion in rats; the cells treat with apelin-13
(100 μmol/L)

Protective effects of apelin-13 on ischemic
neurovascular unit injuries are highly associated with
the increase of VEGF binding to VEGFR-2, possibly
acting through activation of ERK and PI3K/Akt
pathways

Huang et al.
(2016)

Mice (MCAO/R) Apelin-13 (100 μg/kg) is injected
intracerebroventricularly 15 min before reperfusion

Apelin-13 protects against apoptosis by activating
AMP-activated protein kinase pathway in ischemia
stroke

Yang et al. (2016b)

C57/BL6 mice (BOCCA) Intranasal administration of apelin-13 (4 mg/kg) is
given 30 min after the onset of stroke and repeat once
daily

Apelin-13 exert neuroprotective effect after ischemic
stroke, through reducing inflammatory activities,
decreasing cell death, and increasing angiogenesis

Chen et al. (2015)

Wistar rats (MCAO/R) Apelin-13 (0.1 μg/g) diluted in 10 μl physiological saline
is injected into the lateral ventricle

Apelin-13 is neuroprotective against cerebral
ischemia/reperfusion injury through inhibition of
neuronal apoptosis

Yan et al. (2015)

Wistar rats (MCAO/R) Apelin-13 (50 ng/kg, 10 μl) is injected
intracerebroventricularly at the onset of reperfusion

Apelin-13 is neuroprotective for neurons against I/R
through inhibiting the neuroinflammation

Xin et al. (2015)

ICR mice (MCAO/R) Apelin-13 (10 μg/kg, 50 μg/kg, 100 μg/kg, 5 μl) is
injected intracerebroventricularly 15 min before
reperfusion

Apelin-13 protects the brain against ischemia/
reperfusion injury through activating PI3K/Akt and
ERK1/2 signaling pathways

Yang et al. (2014b)

ICR mice (MCAO/R, H/I) Apelin-36 (0.1 μg in 10 μl saline) is injected into the left
lateral ventricle at 30 min before MCAO; apelin-36
(1 μg in 100 μl saline) is administrated intraperitoneally
at the beginning of recovery (H/I)

Apelin-36 protects against ischemic brain injury by
reducing apoptosis via activating the PI3K/Akt
pathway

Gu et al. (2013)

Wistar rats (MCAO/R) Apelin-13 (25, 50, and 100 μg in 5 μl saline) is injected
intracerebroventriculary at the beginning of ischemia

Apelin-13 improves infarct volume, brain edema,
and apoptosis, but not change neurological
dysfunction after cerebral ischemia

Khaksari et al.
(2012)

Primary mouse cortical neurons Cortical neurons are incubated with different
concentrations of apelin-13 (10 p.m. - 5 nM)

Apelinmay block apoptosis and excitotoxic death via
regulating Akt/ERK pathway and attenuating
intracellular Ca2+ accumulation

Zeng et al. (2010)

Sprague-Dawley rats (SAH) Apelin-13 (15 μg/kg, 50 μg/kg, and 150 μg/kg in 10 μl
sterile saline) is injected intracerebroventricularly at
30 min after SAH induction

Exogenous apelin-13 binding to APJ attenuates early
brain injury after SAH by reducing ERS-mediated
oxidative stress and neuroinflammation, which is at
least partly mediated by the AMPK/TXNIP/
NLRP3 signaling pathway

Xu et al. (2019)

Sprague-Dawley rats (SAH) Apelin-13 (15 μg/kg, 50 μg/kg, and 150 μg/kg in 10 μl
sterile saline) is injected intracerebroventricularly at
30 min after SAH induction

Apelin-13 could exert its neuroprotective effects via
suppression of ATF6/CHOP arm of ERS-response
pathway in the early brain injury after SAH.

Xu et al. (2018)
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currently the only known apelin-13 receptor so far, and is highly

expressed in neurons and glial cytoplasm in caudate nucleus,

corpus callosum and hippocampus (Hosoya et al., 2000;

Medhurst et al., 2003). APJ relays the signals through Gα
subunit (Gαi or Gαq) of G protein. The structure of APJ is

similar to that of the Ang II type I (AT1) receptor, although it

cannot bind to Ang II (O’Dowd et al., 1993). In addition, G

protein-independent signaling pathways are also involved in the

activation of the apelin/APJ system. Upon binding to apelin, APJ

is activated and recruits G protein-coupled receptor kinases

(GRKs), resulting in APJ phosphorylation. The inhibitor

protein (β-arrestin) then rapidly binds to APJ, resulting in

receptor desensitization, and activation of the G protein-

independent signaling pathways (Chen et al., 2014; Chen

et al., 2020).

2.3 The tissue distribution pattern of
apelin-13 and APJ

Apelin 13 is widely distributed in the CNS, with high

expression levels in neurons and oligodendrocytes, and

relatively lower expression in the astrocytes. Apelin 13 mRNA

has been detected in the spinal cord, brain stem, cerebral cortex,

hypothalamus, cerebellum, striatum, and hippocampus

(O’Carroll et al., 2000). The differential expression pattern of

apelin 13 and APJ in the CNS is indicative of multiple

physiological or pathological functions. Both APJ and apelin

are highly expressed in the hypothalamus, the master regulator of

the neuroendocrine and humoral balance. The co-localization of

apelin and hypothalamic arginine vasopressin (AVP) neurons

suggests that apelin may regulate body fluid balance, feeding and

drinking behavior and the HPA axis by interacting with AVP (De

Mota et al., 2000; Reaux-Le Goazigo et al., 2004). In addition, the

distribution of apelin in hypothalamus and pituitary region also

indicates that apelin may be involved in the regulation of

neurological and adenohypophysial hormones (Brailoiu et al.,

2002; Yang et al., 2019).

Several studies have shown that apelin and APJ are highly

expressed in the cardiovascular system, and can enhance

myocardial contraction, reduce cardiac load, dilate blood

vessels, promote angiogenesis, and regulate cardiac electrical

conduction (Maguire et al., 2009; Aydin et al., 2014; Yu et al.,

2014). Interestingly, the apelin/APJ system is also expressed in

the cerebral blood vessels, and regulates vascular function. For

instance, some studies have demonstrated that apelin can

promote vasodilation in cerebral vessels (Nagano et al., 2019;

Mughal et al., 2020). Mughal et al. (2018) found that apelin

inhibits nitric oxide (NO)-dependent relaxation of cerebral

arteries by activating APJ and inhibiting large-conductance,

calcium-activated K channel in cerebral arterial smooth

muscle cells, partially via a PI3K-dependent mechanism

(Modgil et al., 2013). In addition, apelin promotes

development of new blood branches from preexisting cerebral

vessels following ischemic stroke (Han et al., 2015; Hiramatsu

et al., 2017; Wu et al., 2017). Jiang et al. (2019) correlated the

increased levels of plasma apelin-17 in ischemic stroke patients

with enhanced collateral circulation, which can be attributed to

cerebral artery dilation induced by apelin-17 via regulating the

NO-cGMP pathway.

2.4 The neuroprotective effects of
apelin 13

There is ample evidence demonstrating the

neuroprotective effects of apelin-13. It can protect neuronal

cells against apoptosis and excitotoxic injury by inhibiting

NMDA-induced intracellular Ca2+ accumulation, oxidative

stress, mitochondrial damage, cytochrome C release and

caspase-3 activation via the ERK1/2 signaling pathway

(Zeng et al., 2010). In addition, one study showed that

supraspinal administration of apelin-13 in mice induced

antinociception via the opioid receptor (Xu et al., 2009).

The same group reported that apelin-13 relieved acetic

acid-induced visceral pain in mice when injected into the

subarachnoid space, and this analgesic effect was blocked by

opioid receptor antagonists (Lv et al., 2012). Similarly,

Hajimashhadi et al. (2017) demonstrated that intrathecal

injection of apelin-13 increased the autonomic activity and

relieved signs of pain in rats with spinal cord injury. However,

one study showed that peripheral administration of apelin-13

reduced the latency of painful stimuli and enhanced pain

sensitivity in a dose- and time-dependent manner (Canpolat

et al., 2016), and intrathecal administration of ML221, an APJ

antagonist, transiently reduced chronic constriction injury-

induced pain hypersensitivity (Xiong et al., 2017). These

findings suggest that the spinal apelin/APJ system may

drive neuropathic pain. Thus, the regulatory effects of

apelin-13 on pain may depend on the route of

administration, as well as the type and degree of pain, and

needs further clarification.

Previous studies have shown that apelin-13 can enhance the

consolidation of passive avoidance learning and memory in mice,

and these protective effects are neutralized by antagonists of α-
adrenergic, cholinergic, dopamine, 5-hydroxytryptophan and γ
-aminobutyric acid receptors, as well as inhibitors of nitric oxide

synthesis (Telegdy et al., 2013). In a mouse model of chronic stress-

induced memory deficit, apelin-13 significantly improved the

cognition of new objects and memory deficit of Y maze, likely

through to the upregulation of BDNF (Shen et al., 2019). In

addition, exogenous apelin-13 attenuated cisplatin-induced

cognitive dysfunction by activating the BDNF/TrkB signaling

pathway and suppressing neuroinflammation. Apelin-13 is also

known to relieve the symptoms of anxiety in mice, and these

anti-anxiety effects may be related to α, ß adrenergic, dopamine
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and 5-HT receptors since they were blocked by the

administration of phenbenzamine, haloperidol,

propranolol, and dimethylergometrine (Telegdy and

Jászberényi, 2014). Apelin-13 also reversed depression-like

behavior in rats subjected to chronic social defeat stress and

chronic water immersion restraint stress by regulating

microglial polarization, and ameliorating a dysfunctional

HPA axis and hippocampal glucocorticoid receptor (Dai

et al., 2018; Tian et al., 2018; Zhou et al., 2020).

A clinical study on 126 patients with severe TBI and

126 healthy controls found that lower serum level of

apelin-13 in the patients correlated significantly with

increased severity of TBI, and was an independent

predictor of short-term mortality, indicating that serum

apelin-13 is a promising prognostic biomarker for severe

TBI (Zhuang et al., 2021). The protective effects of apelin-

13 in TBI are associated with inhibition of autophagy (Bao

et al., 2015), suppression of neuronal apoptosis through the

GLP-1R/PI3K/Akt signaling (Liu et al., 2019), and mitigation

of blood-brain barrier (BBB) destruction and brain edema

(Bao et al., 2016a). Early brain injury (EBI) is at present

considered to the key determinant of the neurological

function and clinical outcomes of subarachnoid

hemorrhage (SAH) (Sehba et al., 2012; Fujii et al., 2013).

Apelin-13 can attenuate EBI by inhibiting neuronal apoptosis

and degeneration, and reducing the release of inflammatory

cytokines such as TNF-α and IL-1β in the CSF. These

protective effects were neutralized upon administration of

the APJ inhibitor ML221 (Shen et al., 2022). The anti-

apoptosis effect of apelin-13 in SAH may be related to the

activation of the GLP-1R/PI3K/Akt signaling pathway (Liu

et al., 2019). Xu et al. (2019) found that exogenous apelin-13

can alleviate EBI by suppressing endoplasmic reticulum (ER)

stress-induced NLRP3 inflammasome activation and

oxidative stress after SAH. Furthermore, the APJ inhibitor

dorsomorphine reversed the neuroprotective effects of apelin-

13 in SAH. Another study by Xu et al. (2018) confirmed that

apelin-13 reduced neuronal apoptosis and prevented BBB

disruption after SAH, and eventually improved EBI by

alleviating ER stress partly via the ATF6/CHOP pathway.

Intracerebral hemorrhage (ICH) shares certain pathological

characteristics with SAH. Intracerebroventricular

administration of apelin-13 improved motor function and

brain edema after ICH by reducing neuronal death, which

demonstrates its therapeutic potential (Bao et al., 2016b).

3 Apelin-13 and cerebral ischemia

The apelin/APJ system is closely associated with the

pathogenesis of ischemic stroke, which is currently the most

common cerebrovascular disease. Clinical studies suggest that

apelin is related to the diagnosis and prognosis of cerebral

ischemia, while studies in animal and cellular models indicate

that exogenous apelin-13 can effectively reduce infarct volume

and cerebral edema, and improve neurological function after

cerebral ischemia.

3.1 Clinical studies

In a follow-up cohort study, Wang et al. (2017b) found

that the variant rs9943582 of APJ gene was not significantly

associated with ischemic stroke in the Chinese Han

population. Consistent with this finding, another clinical

study reported that the variant rs9943582 was not

associated with the age at onset and clinical outcomes of

ischemic stroke (Zhang et al., 2017). However, other clinical

studies have reported contradictory findings. One study

conducted in China on 244 AIS patients recruited within

24 h of stroke onset and 167 healthy controls showed that

serum apelin-13 levels were lower in the patients compared to

the healthy controls. In addition, patients with NIHSS

score ≤3 had higher apelin-13 levels than those with

NIHSS score >3. Low apelin-13 level in the patients was

associated with death or major disability within 3-months,

whereas patients with high apelin-13 levels showed a lower

incidence of stroke and combined events after 1-year. These

findings indicated that serum apelin-13 is a potential

prognostic biomarker for acute ischemic stroke (Wang

et al., 2020). Another clinical study demonstrated that

higher apelin levels were associated with increased risk of

stroke (including ischemic and hemorrhagic stroke) (Yu

et al., 2021). Intravenous thrombolytic therapy (ITT) is

commonly used to treat acute ischemic stroke, although it

can enhance the risk of hemorrhagic transformation (HT). To

analyze the predictive significance of apelin on HT in acute

ischemic stroke patients after ITT, Zhu et al. (2021) analyzed

the data of 109 acute ischemic stroke patients that received

ITT, and found that a higher HT grade was associated with

lower apelin level and increased levels of interleukin-1β (IL-

1β) and IL-6. Moreover, lower apelin was also related with a

higher risk of death of patients with both ischemic stroke and

HT, indicating that apelin is an independent protective factor

in stroke patients. Atrial fibrillation (AF) is associated with a

high risk of stroke, and should therefore be detected in a

timely manner. Bohm et al. (2021) showed that apelin levels

were significantly lower in stroke patients with AF compared

to the non-AF group in a multicenter, matched-cohort, and

only apelin was identified as an independent predictor of AF.

Thus, apelin administration should be considered in patients

with high risk of stroke to exclude the possibility of AF.

However, another clinical trial shown that apelin level did not

differ between stroke patients and healthy individuals, and

was not associated with cardiovascular mortality and

morbidity during follow-up. This discrepancy can be
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attributed to differences in sample size and patients selection,

and measurement assays for apelin. Further large-scale

multicenter clinical trials are needed, along with detailed

subgroup analysis, to clarify the therapeutic value of apelin

in stroke.

3.2 Mechanistic investigation

3.2.1 Apelin-13 protects against blood-brain
barrier disruption after cerebral ischemia

The BBB controls the exchange of substances between

blood and brain tissue, allows nutrients to pass and prevents

harmful substances from entering, thereby protecting the

CNS. Given that the secondary injuries after cerebral

ischemia is closely related to the morphological and

structural destruction of BBB, protecting the integrity of

the latter and alleviating cerebral edema are increasingly

being considered as treatment options for ischemic stroke

(Huang et al., 2020; Parvez et al., 2022). Apelin-13 can reduce

BBB permeability and brain vasogenic edema after ischemia

by mitigating oxidative stress, and inhibiting the expression

of matrix metalloproteinases (MMP) and endothelin-B

receptor (Gholamzadeh et al., 2021a). Furthermore, the

protective effect of apelin-13 on BBB post-stroke is

significantly associated with the elevated expression of

aquaporin-4 (AQP4), which is partly achieved by

activating the extracellular signal-regulated kinase (ERK)

and PI3K/Akt pathways (Chu et al., 2017). Several factors

are involved in the destruction of BBB after ischemic stroke,

such as inflammatory cytokines, microvessel and endothelial

cell injury, and the degradation of extracellular matrix. It

remains to be explored how apeline-13 affects these

pathological pathways.

3.2.2 Apelin-13 promotes angiogenesis
after cerebral ischemia

The apelin/APJ system plays an important role in

embryonic vascular development and adult angiogenesis

(Cox et al., 2006). Both APJ and apelin are expressed in

retinal vascular endothelial cells, and apelin promotes the

proliferation and chemotaxis of these cells, as well as

formation of capillary tubes. In addition, the apelin/APJ

system may also be involved in endothelial cell

proliferation and neovascularization (Tao et al., 2010;

Zhang et al., 2013). Apelin-13 can promote proliferation,

migration and tube formation in myocardial microvascular

endothelial cells, as well as angiogenesis via modulation of

AMPK and Akt signaling (Yang et al., 2014a). Knocking out

APJ in glioblastoma cells reduced tumor growth and

angiogenesis, suggesting that targeting the apelin/APJ

system is a promising strategy for preventing angiogenesis

in glioblastoma (Amoozgar et al., 2019; Frisch et al., 2020).

Apelin-13 plays an important role in the formation of

collateral circulation. A clinical trial demonstrated that

apelin-13 was significantly increased in patients with

moyamoya disease compared to those with middle cerebral

artery occlusion independent of NO and VEGF. Given that

moyamoya disease has better collateral circulation compared

to ischemic stroke, high plasma levels of apelin may be

indicative of good collateral circulation (Wu et al., 2022).

Furthermore, intranasal administration of apelin-13

increased the number of new vessels in the area

surrounding infarction, restored the local cerebral blood

flow, and promoted long-term functional recovery by

upregulating vascular endothelial growth factor (VEGF)

and MMP-9 (Chen et al., 2015). Apelin-13 can protect

neurovascular units from ischemic injury by increasing the

expression of VEGF and VEGFR2, and promoting VEGF

binding to VEGFR-2 by activating the ERK and PI3K/Akt

pathways (Huang et al., 2016). Cerebral blood flow blockade

is often accompanied by hypoxia, which activates the apelin/

APJ system, and consequently promotes endothelial cell

proliferation via the PI3K/Akt and MAPK signaling

pathways (Zhang et al., 2015; Zhang et al., 2016).

3.2.3 Apelin-13 inhibits excitotoxicity after
cerebral ischemia

Aspartic acid, glutamate and glycine are excitatory

neurotransmitters that are mainly distributed in the synaptic

terminals of neurons in the CNS. The main excitatory amino acid

released after cerebral ischemia is glutamate, which binds to the

excitatory amino acid receptors on the postsynaptic membrane,

resulting in neurotoxicity and neuronal damage. Nerve cells are

rich in NMDA, which mediates the excitotoxicity of glutamate.

Glutamate activates NMDA receptors and triggers a

massive Ca2+ influx through the specific ion channel,

resulting in intracellular calcium overload in the early

stage of ischemia, and eventually cell death (Hossmann,

1994; Lai et al., 2014). Apelin-13 can reduce NMDA

activity by directly reducing the ion flow potential of the

NMDA receptor membrane. In addition, apelin-13 also

inhibits NMDA in a dose-dependent manner by activating

the pro-survival Ca2+, IP3, PKC, MEK-1/2, Akt, and Raf/

ERK-1/2 signaling pathways, thereby antagonizing the

excitotoxicity effects of glutamate and alleviating neuron

injury (Cook et al., 2011; O’Donnell et al., 2007). Another

experimental study established that apelin protects against

NMDA-induced retinal neuronal death via APJ receptor by

activating Akt and ERK1/2, and downregulating TNF-α
(Ishimaru et al., 2017). Zeng et al. (2010) showed that

apelin-13 can prevent serum deprivation-induced changes
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in Akt and ERK1/2 phosphorylation, and attenuate NMDA-

induced intracellular Ca2+ accumulation, which in turn

inhibits apoptosis and excitotoxic death.

3.2.4 Apelin-13 promotes the stability of
atherosclerotic plaques

Apelin-13 has been implicated in atherosclerosis in

several studies on account of its immunoreactivity in

human aortas and coronary arteries. Furthermore, apelin/

APJ expression patterns are inversely correlated to human

aortic and coronary atherosclerosis (Kostopoulos et al.,

2014). In addition, serum apelin levels are negatively

correlated with the severity of arterial stenosis, and

positively correlated with the stability of atherosclerotic

plaques, indicating its value as a potential biomarker of

atherosclerotic plaque stability (Zhou et al., 2014).

Consistent with this, a clinical trial conducted on 235

(114 black, 121 white) rheumatoid arthritis patients

showed that apelin concentration in the serum was

associated with altered levels of plaque stability mediators

(MMP-2, MMP-9) and atherosclerosis, in a manner partly

dependent on population origin and systemic inflammatory

status (Gunter et al., 2017). A recent study showed that the

apelin/APJ system is involved in the development of

atherosclerosis by influencing vascular smooth muscle

cells (Luo et al., 2018). Moreover, apelin is up-regulated

in human atherosclerotic coronary artery and localized to the

plaque along with macrophages and smooth muscle cells

(Pitkin et al., 2010). Another study confirmed that apelin-13

significantly improves plaque stability by increasing collagen

content and decreasing MMP-9 expression, reducing

inflammatory cell infiltration (neutrophils and

macrophages) and intracellular reactive oxygen species

(ROS) content (Fraga-Silva et al., 2018). Furthermore,

PINK1/Parkin-mediated mitophagy promotes apelin-13-

induced vascular smooth muscle cell proliferation by

AMPKα and exacerbates atherosclerotic lesions (He et al.,

2019).

4 Summary and prospects

The apelin-13/APJ signaling axis is ubiquitous in the

peripheral and central nervous systems. Apelin-13 is an

endogenous neuroprotective molecule that regulates

various physiological and pathological processes in the

brain. Following cerebral ischemia, apelin-13 promotes

angiogenesis, increases the stability of atherosclerotic

plaques and reduces excitatory toxicity, thereby improving

prognosis. At present, little is known regarding the function

of the apelin-13/APJ pathway, and its mechanisms have not

been clarified. To this end, we first need to clarify the

biological functions and mechanism of apelin-13/APJ

signaling in cerebral ischemia, and the long-term effects of

activating this pathway. Secondly, novel APJ receptor

agonists or antagonists have to be developed to verify the

feasibility and efficacy of the apelin-13/APJ system as an

intervention target in ischemic stroke. In addition, the

variation loci related to the apelin/APJ system, their

relationship with brain structure and function, and their

impact on the prognosis of cerebral ischemia also need to be

elucidated. Finally, the injection route, injection time and

treatment frequency of apelin-13 in pre-clinical studies need

to be optimized before clinical studies on ischemic stroke

patients.
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depression-like behaviour by
deactivating the MyD88/PI3K
pathway via E2F2

Zhen-Hua Zhu1†, Xu-Yuan Yin1†, Tu-Sun Xu1†, Wei-Wei Tao2,
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University, Suzhou, China, 2Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources
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Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing,
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Morinda officinalis oligosaccharides (MOs) are natural herbal extracts that have

been shown to exert antidepressant effects. However, the mechanism of this

effect remains unclear. Here, we explored the mechanism by which MOs

improved experimental depression. Using a chronic mild stress (CMS) murine

model, we examined whether MOs could protect against depressive-like

behaviour. Lipopolysaccharide (LPS)- and ATP-treated BV2 cells were used

to examine the potential mechanism by which MOs mediate the inflammatory

response. We found that MOs prevented the CMS-induced reduction in the

sucrose preference ratio in the sucrose preference test (SPT) and shortened the

immobility durations in both the tail suspension test (TST) and forced swim test

(FST). We also noticed that MOs suppressed inflammatory effects by

deactivating the MyD88/PI3K pathway via E2F2 in CMS mice or LPS- and

ATP-stimulated BV2 cells. Furthermore, overexpression of E2F2 blunted the

beneficial effects of MOs in vitro. Collectively, these data showed that MOs

exerted antidepressant effects in CMS mice by targeting E2F2-mediated

MyD88/PI3K signalling pathway.
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1 Introduction

Major depressive disorder (MDD), which is also known as

depression, is a mental disease characterized by a wide range of

symptoms, including depressed mood, cognition dysfunction,

and abnormalities in appetite and sleep (Fava and Kendler,

2000). MDD is a seriously disabling public health problem

with a very high prevalence. Approximately 350 million

people suffer from depression, leading to great societal and

economic burdens worldwide (Athira et al., 2020). At present,

mainstream antidepressants to treat depression act through

monoaminergic mechanisms (Belujon and Grace, 2017).

Unfortunately, 2/3 of patients do not achieve remission after

one course of treatment, and 1/3 fail to remit after four

treatments (Rush et al., 2006). Therefore, it is urgent to

develop new effective drugs for the treatment of depression.

Inflammation is the result of immune system activation, which

often manifests as a localized reaction resulting from irritation,

injury, or infections (Beurel et al., 2020). The brain possesses

specialized immune cells called microglia that are activated by

various stimuli. Cytokines participate in the induction and

effector phases of inflammatory responses and are predominantly

produced by immune cells, including microglia (Beurel et al., 2020).

Previous evidence has shown that inflammation plays a vital role in

depression. Patients with depression show an increased

inflammatory response (Howren et al., 2009; Ye et al., 2018).

Higher levels of inflammation increase the risk of the

development of depression (Nowak et al., 2019). Furthermore,

antidepressant therapies have been reported to inhibit

inflammatory effects (Kalkman and Feuerbach, 2016).

The PI3K/AKT pathway belongs to the family of serine/

threonine protein kinases and is implicated in the regulation of

several downstream target proteins, including NF-κB, through
the phosphorylation of IκBα and p65 (Ju et al., 2020). This

pathway is involved in inflammation and depression.

Abnormalities in this pathway have been found in

inflammation-mediated depression induced by

lipopolysaccharide (LPS) (Guo et al., 2019; Sun et al., 2021).

Vilazodone, a novel antidepressant, improves the depressed

mood of MDD patients, which is associated with reduced NF-

κB activity (Eyre et al., 2017). Increased phosphorylation levels of

PI3K, AKT, and p65 induced by notoginsenoside R1 exert

significant antidepressant efficacy in CUMS rats by alleviating

the inflammatory response in the hippocampus (Zhan et al.,

2022). MyD88 is an essential component of TLR signalling that

binds to PI3K and influences the PI3K/AKT/NF-κB pathway

(Gelman et al., 2006; Laird et al., 2009; Wang S. et al., 2018). The

interactions between MyD88 and PI3K have been observed by

using an immunoprecipitation assay (Laird et al., 2009). Gelman

et al. found that the MyD88 death domain is required for NF-κB
activation, and MyD88 mutations abolish the association of

MyD88 and PI3K, as well as the phosphorylation of AKT, in

T cells (Gelman et al., 2006). Another study reported that

E2F2 controls the PI3K/AKT/NF-κB axis by binding to

MyD88 (Wang S. et al., 2018).

Morinda officinalis oligosaccharides (MOs) are bioactive

compounds extracted from the roots of this plant. MOs have

been approved by the China Food and Drug Administration

(CFDA) for use as a prescribed traditional herbal medicine to

treat depression (Li et al., 2021). Significant attenuation of

behavioural deficits was found in rodents exposed to chronic

unpredictable stress after treatment with MOs (Xu et al., 2017).

However, the mechanism underlying MO-related antidepressant

effects has not been fully elucidated. Recently, MOs have been

shown to suppress hippocampal inflammation in poststroke rats

(Li et al., 2021). Therefore, in the current study, we investigated

whether MOs mitigated depression by targeting hippocampal

inflammation by using a chronic mild stress (CMS) mouse model

of depression and a lipopolysaccharide (LPS)- and adenosine

triphosphate (ATP)-induced cellular model of inflammation.

2 Materials and methods

2.1 Animals and treatment

Male C57BL/6mice (10–12 weeks of age) were used in this study.

Themice were housed under a constant temperature of 23 ± 1°C with

a 12-h light and dark cycle and free access to food and water. All

animal experiments were approved by the Institutional Review Board

at the Affiliated Guangji Hospital of Soochow University.

Themice were randomly assigned to five groups (12 per group):

1) control group; 2) CMS + saline group (model); 3) CMS +

25 mg/kg MO group (MO-L); 4) CMS + 50 mg/kg MO group

(MO-H); and 5) CMS+20 mg/kgfluoxetine group (Flu).Mice in the

CMS groups were housed individually and exposed to two random

stressors per day for 7 weeks. The stressors included food

deprivation (24 h), water deprivation (24 h), cage tilting (24 h),

damp bedding (24 h), inversion of the day/night light cycle,

restraint in a tube (2 h), and tail clipping (1 min). MOs

(Tongrentang) and fluoxetine (Sigma–Aldrich) were administered

(i.g.,) once daily for three consecutive weeks starting in week 5.

2.2 Cell culture and treatment

Murine BV2 microglial cells were obtained from the Cell

Bank of the Type Culture Collection of the Chinese Academy of

Sciences. The cells were maintained in Dulbecco’s modified

Eagle’s medium (DMEM) containing 10% foetal bovine serum

(FBS) and 1% penicillin–streptomycin solution in a humidified

5% CO2 atmosphere at 37°C. BV2 cells were pretreated withMOs

(2.5, 5, 10 mg/ml) for 24 h and then treated with LPS (10 μg/ml)

and ATP (5 mM) for another 12 h (Supplementary Figure S1).

For the E2F2 overexpression experiment, BV2 cells were

transfected with vectors overexpressing E2F2 (Supplementary
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Figure S2) or empty vectors using Lipofectamine 2000 (Thermo

Fisher Scientific) according to the manufacturer’s protocol.

2.3 Luciferase reporter assay

The wild-type (WT) ormutant (MUT)MyD88 promoter was

cloned into a pGL3-basic vector (Promega). Then,

HEK239T cells were cotransfected with either pcDNA3.1 or

pcDNA3.1-E2F2 using Lipofectamine 2000 according to the

manufacturer’s instructions. Luciferase activity was determined

using a Dual Luciferase Assay (Promega).

2.4 Sucrose preference test

The SPT was performed to assess anhedonia in mice according

to a published procedure (Shen et al., 2020). Briefly, all mice were

exposed to two bottles of 1% sucrose for 48 h, followed by 24 h of

water deprivation. On the testing day, the animals were provided a

pre-weighed bottle of 1% sucrose and a pre-weighed bottle of

drinking water for 2 h (Shen et al., 2020). The positions of the

two bottles were switched at the midway point of the test to avoid

side preferences. At the end of the test, the bottles were weighed, and

sucrose preference was calculated as the percentage of sucrose

solution intake divided by the total fluid intake for each mouse.

2.5 Tail suspension test

The TST was performed according as previously described

(Meng et al., 2020). Each mouse was suspended by the tail from a

vertical bar for 6 min, and the total immobility time of the final

4 min of the 6-min testing period was analysed by ANY-MAZE

software. The animals were judged to be immobile when they

hung passively and ceased moving their limbs and body.

2.6 Forced swim test

The FST was conducted as previously described (Zhu et al.,

2020). Each mouse was individually placed in a plastic cylinder

(diameter: 30 cm; height: 40 cm) containing 25 cm of water at

24 ± 1°C and allowed to swim for 6 min. The immobility time was

recorded during the final 4 min of the 6-min test. Mice were

judged to be immobile when they made only minimal

movements to keep their head above water.

2.7 Open field test

The OFT was performed as reported previously (Sevastre-

Berghian et al., 2020). The mice were placed in the centre of the

open field arena and allowed to freely explore the area for 5 min.

Their movements were recorded, and the total distance travelled

and time spent in the central area were analysed by ANY-MAZE

software.

2.8 Quantitative real-time PCR (qRT–PCR)

Total RNA was extracted from hippocampi or cells using

TRIzol reagent (Invitrogen) according to the manufacturer’s

protocols. Quantitative RNA analysis was performed using

Nanodrop spectrophotometry. After reverse transcription of

total RNA into cDNA, SYBR Green qPCR Master Mix was

used for real-time PCR detection according to the

manufacturer’s instructions. The expression of target genes

was normalized to GAPDH mRNA levels. The primers used

in this study are listed below.

2.9 ELISA

The levels of TNF-α (ab208348, Abcam), IL-1α (SEKM-0001,

Solarbio) and IL-1β (ab197742, Abcam) in serum and cells were

measured by ELISA using commercially available kits according

to the manufacturer’s protocol.

2.10 Immunofluorescence

Immunofluorescence staining was performed as previously

reported (Lyu et al., 2018). Sections or cells were fixed in 4%

paraformaldehyde for 20 min, permeabilized with 0.5% Triton X-

100 for 20 min, and blocked with 3% BSA for 1 h. Then, the

samples were incubated with primary antibodies against Iba1

(ab178847, Abcam, 1:100), E2F2 (AF4100, Affinity, 1:100) and

p-NF-κB p65 (AF 2006, Affinity, 1:200) overnight at 4°C,

followed by incubation with goat anti-rabbit IgG Alexa Fluor®
488 (ab150077, Abcam, 1:200) for 1 h at room temperature. Cell

nuclei were labelled with 4′-6-diamidino-2-phenylindole

(DAPI), and images were obtained with a confocal

microscope (Olympus Fluoview TM1000).

2.11 Western blotting

Western blotting was performed as previously described (Ning

et al., 2014). Total protein was extracted from hippocampi or cells

using RIPA lysis buffer and quantified by a bicinchoninic acid

protein assay kit. Equal amounts of protein were then subjected to

SDS-PAGE and transferred onto PVDF membranes. After being

blocked with 5% nonfat milk for 1 h, the blots were probed with

primary antibodies against E2F2 (AF4100, Affinity, 1:1,000),

MyD88 (DF6162, Affinity, 1:1,000), p-PI3K (ab182651, 1:1,000,
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Abcam), PI3K (ab191606, Abcam, 1:1,000), p-AKT (ab38449,

Abcam, 1:1,000), AKT (ab8805, Abcam, 1:500), p-NF-κB p65

(AF 2006, Affinity, 1:1,000), NF-κB p65 (AF5006, Affinity, 1:

1,000) and GAPDH (ab22555, Abcam, 1:3,000) overnight at

4°C. The corresponding secondary antibodies (ab6728, Abcam,

1:4,000) were added and incubated for 1.5 h at room temperature.

Immunoreactive bands were visualized by an enhanced

chemiluminescence reagent and quantified by NIH ImageJ

software.

2.12 MTT assay

Cell viability was determined by the MTT assay (Cui et al.,

2020). Cells were plated into 96-well plates and treated with

different concentrations of MOs for 24 h. Subsequently, 20 μL of

MTT (5 mg/ml) was added to the wells. After incubation for 4 h

at 37°C, the formazan was dissolved in dimethyl sulfoxide

(DMSO). Optical density (OD) values were measured at a

wavelength of 570 nm by a microplate reader.

2.13 Statistical analysis

The data are presented as the means ± SD. The results were

analysed using GraphPad Prism 6.0 software. Significant

differences were determined by Student’s t test or analysis of

variance (ANOVA). Differences of p < 0.05 were considered

statistically significant.

3 Results

3.1 Activation of MyD88/PI3K signaling in
chronic mild stress-exposed mice

First, we examined the changes of the MyD88/PI3K

pathway in the hippocampus of CMS-exposed mice. The

sucrose pereference ratio was significantly decreased in

stressed mice over the control group, suggestive of

successful CMS modeling (Figure 1A). It is noteworthy

that CMS mice exhibited higher MyD88 expression and

phosphorylation levels of PI3K, AKT and NF-κB p65 than

nonstressed controls (p < 0.01), which suggested the

activation of MyD88/PI3K signalling in depression

(Figure 1B).

3.2 Morinda officinalis oligosaccharides
alleviate depressive behaviour and
inflammation by suppressing the E2F2-
mediated MyD88/PI3K pathway in chronic
mild stress-exposed mice

To investigate whether MOs alter depressive behaviour in

CMS-exposed mice, we performed the SPT, TST and FST

(Figures 2A–C). The mice that underwent the CMS challenge

exhibited decreases in sucrose preference in the SPT and

increases in immobility durations in the TST and FST (p <
0.01), and these effects were attenuated by MOs or Flu

administration (p < 0.05, p < 0.01), indicating the

antidepressant efficacy of MOs and Flu in CMS-induced

depression. However, no differences were detected in the OFT

test (p > 0.05, Figure 2D).

Next, we evaluated inflammation in themice. Since abnormal

activation of microglia, the immunologic guardian cells of the

brain, is a major contributor to depression-related inflammation,

we measured Iba1 (a key marker of microglia) fluorescence

intensity to assess microglial activation (Brites and Fernandes,

2015; Wang Y.-L. et al., 2018). The stressed mice exhibited

significant increases in Iba1 immunoreactivity (Control:

0.401 ± 0.0594, Mod: 0.754 ± 0.0293, MOs-L: 0.604 ± 0.0451,

MOs-H: 0.471 ± 0.0751), concomitantly with enhanced levels of

proinflammatory cytokines, including TNF-α (PCR: Control:

1.02 ± 0.053, Mod: 1.83 ± 0.186, MOs-L: 1.39 ± 0.154, MOs-

H: 1.24 ± 0.144; ELISA: Control: 132 ± 22.0 pg/ml, Mod: 294 ±

26.8 pg/ml, MOs-L: 256 ± 20.4 pg/ml, MOs-H: 175 ± 25.2 pg/

ml), IL-1α (PCR: Control: 1.02 ± 0.103, Mod: 2.36 ± 0.168, MOs-

L: 1.72 ± 0.199, MOs-H: 1.57 ± 0.117; ELISA: Control: 7.90 ±

1.00 pg/ml, Mod: 16.8 ± 1.38 pg/ml, MOs-L: 14.9 ± 1.58 pg/ml,

MOs-H: 11.3 ± 0.880 pg/ml) and IL-1β (PCR: Control: 0.994 ±

0.0635, Mod: 2.58 ± 0.384, MOs-L: 1.93 ± 0.139, MOs-H: 1.53 ±

0.118; ELISA: Control: 21.7 ± 4.64 pg/ml, Mod: 49.9 ± 4.69 pg/

ml, MOs-L: 43.5 ± 2.95 pg/ml, MOs-H: 33.5 ± 3.56 pg/ml),

Primers Forward Reverse

E2F2 TCGCAGAGACCATAGAGCCT GGATTGGGGACAGGAACTGG

MyD88 AGGCATCACCACCCTTGAT ATTAGCTCGCTGGCAATGGA

TNF-α AGGCACTCCCCCAAAAGATG CCACTTGGTGGTTTGTGAGTG

IL-1α CAACGTCAAGCAACGGGAAG CAAACTTCTGCCTGACGAGC

IL-1β GAAATGCCACCTTTTGACAGTGA GTCCTCATCCTGGAAGGTCC

GAPDH GGGTCCCAGCTTAGGTTCATC TACGGCCAAATCCGTTCACA
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FIGURE 1
Protein expression of MyD88, p-PI3K, p-AKT and p-NF-κB p65 in the hippocampus of CMS-exposedmice. (A)Mice were subjected to the CMS
protocol for 4 weeks, then sucrose preference test was performed. (B) Densitometric analysis and representative western blots of MyD88, p-PI3K,
p-AKT and p-NF-κB p65 expressed in the hippocampus. Data are expressed as means ± SD (n = 3). #p < 0.05; ##p < 0.01.

FIGURE 2
MOs block CMS-induced depressive-like behavior. (A) Mean sucrose preference (%) in the sucrose preference test. (B) The duration of
immobility during the tail suspension test. (C) The duration of immobility during the forced swim test. (D) Total distance travelled and time spent in
the center zone in the open field test. Data are expressed as means ± SD (n = 10). ##p < 0.01 vs. control; *p < 0.05; **p < 0.01 vs. Mod; ns, not
significant.
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suggesting the activation ofmicroglia after CMSmodelling (p< 0.01,
Figures 3A–C). However, these effects were suppressed by MO

treatment (p < 0.05, p < 0.01). Furthermore, PCR and western

blotting revealed that the mRNA expression of E2F2 and

MyD88 and the protein levels of E2F2, MyD88, p-AKT, p-NF-

κB p65 and p-PI3K were upregulated by CMS exposure (p < 0.05)

and downregulated by MO intervention (p < 0.05, p < 0.01, Figures

4A–H). Together, these findings showed that MOs mitigated CMS-

induced depressive behaviour and inflammation by deactivating

E2F2-controlled MyD88/PI3K signalling in mice.

3.3 Morinda officinalis oligosaccharides
inhibit E2F2 binding to MyD88

To validate the interaction between MyD88 and E2F2, luciferase

reporter assays were performed in HEK293T cells (Figures 5A–C).

Cotransfection of the MyD88-promoter-WT plasmid and

E2F2 vector markedly increased luciferase expression compared

with the effect of the MyD88-promoter-WT plasmid lacking the

E2F2 vector (p < 0.01). However, cotransfection of the

MyD88 promoter-MUT plasmid and E2F2 vector did not affect

FIGURE 3
MOs protect from CMS-induced inflammation. (A) Representative hippocampus immunofluorescent staining for Iba1 (green) and nuclei (blue),
and quantification of relative intensity of Iba1 (n = 3). (B)Measurement of TNF-α, IL-1α and IL-1βmRNA levels in the hippocampus (n = 3). (C) TNF-α,
IL-1α and IL-1β concentrations in the serum (n = 6). Data are expressed as means ± SD. ##p < 0.01 vs. control; *p < 0.05; **p < 0.01 vs. Mod.
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luciferase activity (p > 0.05). These findings showed that E2F2 could

directly bind to the promoter of the MyD88 gene. We then assessed

the effect ofMOs on this binding process. Surprisingly,MO treatment

inhibited the binding of E2F2 and the MyD88 promoter, as

demonstrated by lower luciferase expression in the MyD88-

promoter-WT + MO-H-E2F2 group than in the MyD88-

promoter-WT + NC-E2F2 group (p < 0.01).

3.4 Morinda officinalis oligosaccharides
protect against lipopolysaccharide- and
adenosine triphosphate-induced
inflammation via E2F2-mediated MyD88/
PI3K signalling in BV2 cells

We also examined the protective effect of MOs in LPS- and

ATP-induced cellular models of inflammation. Given that the

maximum concentration of MOs that exerted no cytotoxicity in

BV2 cells was 10 mg/ml, this dose was selected as the high dose for

use in subsequent experiments (Figure 6A). As expected, MOs

prevented LPS- and ATP-induced reductions in cell viability and

the promotion of TNF-α, IL-1α and IL-1β levels (p < 0.05, p < 0.01,

Figures 6B,C). Subsequently, we examined the effect of MOs on the

E2F2-mediated MyD88/PI3K signalling pathway (Figures 7A,B).

The results showed thatMOs decreased E2F2 immunoreactivity and

the protein expression of E2F2, MyD88, p-PI3K, p-AKT and p-NF-

κB p65 in LPS- and ATP-exposed BV2 cells (p < 0.05, p < 0.01).

Thus,MOs exerted anti-inflammatory effects via the E2F2-regulated

MyD88/PI3K pathway in vitro.

To further elucidate the role of E2F2 in the anti-inflammatory

effect of MOs, BV2 cells were transfected with E2F2 overexpression

vectors (Figures 8A–H).We found that E2F2 overexpression reversed

MO-induced decreases in MyD88 mRNA expression; MyD88,

p-PI3K, p-AKT and p-NF-κB p65 protein expression; and p-NF-

κB p65 immunoreactivity (p < 0.01), resulting in increased mRNA

levels of proinflammatory factors (TNF-α, IL-1α and IL-1β, p < 0.01).

These findings suggested that E2F2 inhibition was required for MO-

induced anti-inflammatory effects in vitro.

4 Discussion

In the current study, we investigated the inflammatory

mechanism related to the antidepressant activity of MOs. We

FIGURE 4
Effects of MOs on E2F2-regulated MyD88/PI3K pathway in the hippocampus. (A–B) qRT-PCR analysis of gene expression of E2F2 andMyD88 in
hippocampus tissues. (C–H) Immunoblot analysis of E2F2, MyD88, p-PI3K, p-AKT and p-NF-κB p65 in hippocampus tissues. Data are expressed as
means ± SD (n = 3). ##p < 0.01 vs. control; *p < 0.05; **p < 0.01 vs. Mod.
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found that MOs ameliorated the depressive-like symptoms in

mice underwent CMS protocol. MOs also inhibited CMS- or LPS

+ ATP-induced high levels of inflammation by targeting the

MyD88/PI3K signaling pathway via E2F2. Additionally,

overexpression of E2F2 reversed MO-produced anti-

inflammatory effect in vitro.

Depression is a common psychiatric disorder associated with

marked suffering. Since synthetic antidepressants have obvious

disadvantages, such as limited efficacy, side effects and high

prices, the antidepressant properties of natural medicines are

attracting increasing attention (Liu et al., 2015). Feng et al.

reported that Bupleuri Radix attenuated depression-like

behaviour in rats by regulating metabolic profiles and the gut

microbiota (Feng et al., 2020). A double-blind, randomized

clinical trial revealed that crocin extracted from saffron

(Crocus sativus L.) mitigated depressive symptoms in patients

with breast cancer during chemotherapy (Salek et al., 2021). In

the FST, the antidepressant efficacy of silexan, an essential oil

from the flowering tops of Lavandula angustifolia, was

comparable to the tricyclic antidepressant imipramine after

9 days of treatment (Friedland et al., 2021). In the current

study, we investigated the antidepressant activity of the herbal

medicine MOs by using a chronic mild stress (CMS) mouse

model. CMS is one of the most widely used rodent models of

depression. The primary variable measured in CMS is sucrose

preference; stressed mice show reductions in sucrose

consumption, which is interpreted as anhedonia, a core

symptom of depression (Ramaker and Dulawa, 2017). Here,

we found that MOs inhibited the reduction in sucrose

consumption in the sucrose preference test and increased

immobility durations in the tail suspension and forced swim

tests, indicating the antidepressant activities of MOs in

depressive rodents and further supporting the potential use of

natural medicines in treating depression. It is noteworthy that

although CMS rodents have been reported to have abnormalities

such as decreased duration in the central zone in the OFT test, we

did not observe any changes in the OFT like some other studies,

which might be associated with differences in CMS protocols

(Zhou et al., 2019; Shan et al., 2020; Xia et al., 2020).

Inflammation is an essential immune response that enables

survival during infection or injury and maintains tissue

homeostasis under a variety of noxious conditions

(Medzhitov, 2010). Studies have indicated that inflammation

regulates a wide variety of diseases, including depression.

FIGURE 5
MOs inhibit E2F2 binding to MyD88 in HEK239T cells. (A) Schematic representation of the E2F2 binding motif in the MyD88 promoter. (B)
Luciferase reporter gene assay of E2F2 and MyD88. (C) Effects of MOs (50 mg/kg) on E2F2 binding to MyD88 in the HEK239T cells. Data are
expressed as means ± SD (n = 3). ##p < 0.01; n. s. not significant.
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Compared with healthy controls, patients with major depression

have exhibit increased TNF-α and IL-1β levels both in the

cerebrospinal fluid and in the peripheral blood circulation

(Raison et al., 2006). The administration of interferon (IFN)-α
(a potent inducer of proinflammatory cytokines) to treat cancer

results in the development of depressive symptoms in a high

percentage of patients (Capuron et al., 2002). In addition,

antidepressants, such as selective serotonin reuptake inhibitors

(SSRIs), exert negative immunoregulatory effects, suppressing

the release of proinflammatory cytokines, such as IFN-γ, TNF-α,
IL-1β and IL-6, and stimulating the generation of anti-

inflammatory cytokines, such as IL-10 (Xia et al., 1996; Maes

et al., 1999). In this study, we found that the CMS protocol

increased Iba1 expression as well as TNF-α, IL-1α, and IL-1β
levels in the hippocampus or serum, while MOs successfully

inhibited this effect in CMS-exposed mice, leading to the

attenuation of depression-like symptoms. These findings

confirmed the involvement of inflammation in the aetiology

of depression and MO-induced antidepressant efficacy.

The MyD88/PI3K pathway is an important pathway for

regulating inflammation and depression. MyD88 is an adapter

protein that mediates signal transduction for most TLRs.

Previous evidence suggests that MyD88 can bind to the lipid

kinase enzyme PI3K, which phosphorylates downstream target

AKT and enhances inflammatory response via the NF-κB signal

(Laird et al., 2009; Shorning et al., 2020). Patients with major

depression have higher levels of IL-6 than healthy controls

(Wang et al., 2019). Aerobic exercise inhibits MyD88/NF-κB
signalling and hippocampal inflammation, which contributes to

improvements in desperate behaviour and hippocampal function

(Qu et al., 2020). LPS enhances the levels of IL-1β, IL-6, and TNF-
α in the hippocampus and evokes depressive-like behaviours in

mice, and these effects are alleviated by baicalin through the

PI3K/AKT pathway (Guo et al., 2019). Astrocyte-specific

reductions in Men1 levels enhance NF-κB activation and IL-

1β production, leading to the development of depression in mice,

and these effects can be rescued by an NF-κB inhibitor (Leng

et al., 2018). In this work, upregulated MyD88 mRNA expression

and enhanced phosphorylation of PI3K, AKT and NF-κB
p65 were observed following CMS modelling. However, MO

intervention greatly normalized the mRNA expression and

protein levels of the MyD88/PI3K axis, reflecting the

importance of this signalling pathway in MO-induced anti-

inflammatory effects on depression. Furthermore,

E2F2 overexpression blocked the MO-induced anti-

inflammatory effect on LPS- and ATP-induced BV2 cells,

confirming the necessary role of E2F2 in MO-mediated

antidepressant activities. Previously, MOs have been

demonstrated to generate antidepressant activities in rodents

by suppressing hippocampal inflammation through the

FIGURE 6
Protective effects of MOs against LPS- and ATP-induced inflammation in BV2 cells. (A) BV2 cells were administrated with different
concentrations ofMOs for 24 h, and the cell viability was detected using theMTT assay. (B)Cell viability assay of BV2 cells after 24 h ofMOs treatment
followed by LPS and ATP stimulation. (C) ELISA assays to determine the production of TNF-α, IL-1α and IL-1β in BV2 cells. Data are expressed as
means ± SD (n = 6). ##p < 0.01 vs. control; *p < 0.05; **p < 0.01 vs. Mod.
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microglial NLRP3 inflammasome (Li et al., 2021). Here, we

observed that hippocampal MyD88/PI3K signalling was also

an important pathway by which MOs attenuated hippocampal

inflammation and ultimately induced antidepressant effects. In

addition, the PI3K signalling was activated by E2F2 binding to

the MyD88 promoter in the present study, which was consistent

with the results observed by Wang et al. in rheumatoid arthritis

(Wang S. et al., 2018).

There are certain limitations to the study. First, we only

assessed the antidepressant effect of MOs in the CMS model,

and other models, such as the LPS-induced depression model,

should be used in future studies to fully clarify the

antidepressant efficacy of MOs. Second, although the in vitro

results indicated the important role of E2F2 in MO-induced

antidepressant effects, animal studies with E2F2-overexpression

vectors might be needed to elucidate the role of E2F2 in MO-

mediated antidepressant effects. Third, conventional

antidepressants have a major disadvantage in their several-

week-long lag period of therapeutic efficacy, and whether

MOs can exert a rapid onset antidepressant effect is worth

further exploration.

In summary, our data demonstrated that MOs alleviate

experimental depression and inflammation via the E2F2-

mediated MyD88/PI3K signalling pathway. This work

provides a promising molecular agent for the treatment of

depression.

FIGURE 7
Effects of MOs on E2F2-controlled MyD88/PI3K pathway in LPS- and ATP-stimulated BV2 cells. (A) Representative hippocampus
immunofluorescent staining for E2F2 (green) and nuclei (blue), and quantification of relative intensity of E2F2. (B) Protein expression levels of E2F2,
MyD88, p-PI3K, p-AKT and p-NF-κB p65 in BV2 cells. Data are expressed asmeans ± SD (n = 3). ##p < 0.01 vs. control; *p < 0.05; **p < 0.01 vs. Mod.
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FIGURE 8
Effects of MOs in LPS- and ATP-stimulated BV2 cells were reversed by overexpression of E2F2. (A) qRT-PCR analysis of MyD88 mRNA
expression in BV2 cells. (B–F) Immunoblot analysis of MyD88, p-PI3K, p-AKT and p-NF-κB p65 in BV2 cells. (G) Representative hippocampus
immunofluorescent staining for p-NF-κB p65 (green) and nuclei (blue), and quantification of relative expression of p-NF-κB p65. (H) TNF-α, IL-1α and
IL-1β mRNA levels in BV2 cells. Data are expressed as means ± SD (n = 3). ##p < 0.01; **p < 0.01.
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Single-cell sequencing of brain
tissues reveal the central nervous
system’s susceptibility to
SARS-CoV-2 and the drug
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Background: The severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) caused the current COVID-19 pandemic, resulting in a public health

crisis that required immediate action. The SARS-CoV-2 virus enters human cells

via three receptors, namely cathepsin, angiotensin-converting enzyme 2 (ACE2)

and SARS-CoV receptors. Cathepsin destroys the spike protein (S protein),

thereby allowing the entry of viral nucleic acid into human host cells.

Methods: Utilizing single-cell transcriptome analysis of brain tissues, the

vulnerability of the central nervous system to infection with SARS-CoV-2 in

humans was investigated.

Results: ACE2 is mainly expressed in endothelial cells, with the highest levels

found in ageing endothelial cells. Drug prediction suggests that (-)-catechin

reduces the effects of COVID-19 on the nervous system.

Immunohistochemistry analysis showed that ACE2 was mainly expressed in

cerebral vessels. Immunofluroscenceresults showed the co-expression of

CD31 and ACE2 in human tissues. Western blot further showed that

ACE2 expression was higher in old rats than in young rats.

Conclusion: This study provides insight into the mechanism of SARS-CoV-

2 brain invasion. Accordingly, patients with neurological symptoms who are

infected with SARS-CoV-2 should be given individualised care.
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Introduction

During the early days of December 2019, a novel

transmittable infection of severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) spread rapidly across China

(Ladner et al., 2020). The World Health Organization (WHO)

classified SARS-CoV-2 as a worldwide viral pandemic on

11 March 2020 (Lambertini et al., 2021; Omolaoye et al.,

2021). Millions of individuals globally have been impacted by

the SARS-CoV-2 virus. SARS-CoV-2 infection is a

heterogeneous illness (Bhattacharyya and Thelma, 2020;

Mavian et al., 2020), with extensive clinical characteristics,

such as asymptomatic infection, septic shock, acute respiratory

distress syndrome (ARDS), mild upper respiratory tract

infection, multi-organ failure and mortality (Boras et al., 2021).

Respiratory viral infections, like other forms of viral

infections, invade the central nervous system (CNS) via the

hematoma or various neural retrograde routes. In terms of the

CNS, it is infiltrated by a viral agent via the circulatory system.

Moreover, certain viruses can invade neurons in the peripheral

nervous system and then utilizes the axonal transport mechanism

to obtain entry into the CNS (Schwerk et al., 2015; Dahm et al.,

2016a). In the hematoma pathway, a virus can successfully invade

the endothelium of the blood-brain barrier (BBB) or the

epithelium of the blood-cerebrospinal fluid barrier (BCSFB) in

the choroid plexus (CP), which is located in the ventricular

system of the brain, or leukocytes, which can serve as a vector for

dispersion towards the CNS (Argyris et al., 2007; Atluri et al.,

2015). Furthermore, numerous SARS-COV-2-infected

individuals experienced signs of neurological symptoms such

as vomiting, nausea and headache. A clear association between

these symptoms and unfavourable outcomes has been widely

reported. Additionally, Moriguchi et al. presented the very first

incidence of encephalitis/meningitis correlated with SARS-CoV-

2 infection in the cerebrospinal fluid (CSF) that did not result in a

positive nasal polyp test (Moriguchi et al., 2020). Furthermore, it

is unclear if SARS-CoV-2 can infiltrate the CSF or the CNS of

asymptomatic individuals. Nonetheless, the vulnerability of

human CNS cells to SARS-CoV-2 and its specific pathogenic

processes remain largely unknown.

Catechins, a category of phenolics that are predominantly

found in foodstuffs, including cocoa, tea leaves, vegetables, fruits

and wine, have been well recognized for their intriguing health-

promoting functions, such as antioxidative, antibiotic,

neuroprotective, anti-inflammatory, and anticarcinogenic

functions. As a result, green tea is one of the richest and most

available catechin sources, containing (−)-epigallocatechin-3-

gallate (EGCG), (−)-epigallocatechin (EGC), (−)-epicatechin-

3-gallate (ECG) and (−)-epicatechin (EC) predominantly

(Wang et al., 2021). These compounds have the capacity to

destroy and also inhibit the spread of pathogenic pathogens.

Numerous investigations have shown that EGCG suppresses

influenza virus multiplication in cell cultures and that

catechin has viable viricidal actions against a wide range of

viruses, including those of the Flaviviridae, Orthomyxoviridae

and Retroviridae families. Furthermore, EGCG acts against the

human immunodeficiency virus (HIV) by inhibiting the

enzymatic activities of the herpes simplex virus 1 and 2

(HSV-1 and HSV-2), hepatitis C virus (HCV) and HIV-1

reverse transcriptase (Liu et al., 2021). Based on the principle

of reverse expression, catechin has the potential to prevent SARS-

COV-2 from entering the CNS.

Therefore, understanding the expression patterns of ACE2 in

the nervous system is crucial in determining the neural system’s

vulnerability to SARS-CoV-2 infection. This study examines the

expression of ACE2 and associated genes in brain tissues, aiming

to elucidate the susceptibility of the CNS to SARS-CoV-

2 infection.

Materials and methods

Datasets

A single-cell RNA-seq expression profile of the mouse brain

vascular system was obtained from the Gene Expression

Omnibus (GEO) repository (GSE60361). The gene expression

levels in each cell were analysed. Genes with an expression level

of less than 0.1% of the total number of cells in the study were

excluded. Eventually, 3005 cell samples from the dataset were

selected for analysis, and the samples satisfied the quality control

standards.

Clustering and dimensionality reduction

The Seurat package (version: 3.2.2) in the R software

(version: 4.0.2) was utilized to conduct principal

component analysis (PCA) using the PCEIbowPlot and

JackStraw functions to identify key principal components

(PCs). To determine gene heterogeneity in each cell group,

the FindAllMarkers utility in Seurat was utilized. Following

this, cell clustering and visual analysis of UMAP were

performed utilizing the RunUMAP platform. The singleR

package was subsequently utilized to annotate the marker

genes, and CellMarker was thereafter employed to correct

them based on their features.

Pathway and process enrichment analysis

Pathway and process enrichment analysis was performed

using Metascape (https://metascape.org/gp/index.html).

Pathways and processes enrichment studies were

performed using the following ontology resources for the

ACE2-related gene list: PANTHER Pathway, WikiPathways,
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Transcription Factor Targets, PaGenBase, DisGeNET,

TRRUST, CORUM, Canonical Pathways, Reactome Gene

Sets, GO Biological Processes, KEGG Pathway and

COVID. Moreover, all genes in the genome served as the

enrichment background. To collect and classify terms based

on their affiliation commonalities, a p-value less than 0.01,

the least count of three and an enrichment factor of more

than 1.5 (the enrichment factor denotes the ratio of the

recorded counts and anticipated counts) were used.

Furthermore, p-values were determined utilizing the

accumulative hypergeometric distribution, whereas

q-values were derived utilizing the Benjamini–Hochberg

technique, which involves multiple tests. Kappa score was

used for the hierarchical clustering of the enriched terms,

wherein sub-trees with a similarity degree of more than 0.

3 were deemed to be a cluster. The most significant statistical

term inside a cluster was selected to serve as the cluster’s

representative term (Hochberg and Benjamini, 1990).

Protein-protein interaction enrichment
analysis

To obtain the gene list of ACE2-related proteins, PPI

enrichment analysis was performed utilizing different

databases, includingInWeb_IM9, OmniPath8, BioGrid7, and

FIGURE 1
(A, B) The t-distributed stochastic neighbour embedding (t-SNE) technique classifies 18 cell clusters using the relevant PCs identified via
principal component analysis. (C) A total of 18 clusters were identified using differential analysis. The top 10 marker genes in each cell cluster are
shown in the heatmap.
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STRING6 (Li et al., 2017; Oughtred et al., 2019; Szklarczyk et al.,

2019). Furthermore, only the physical interaction function was

used in STRING (with a physical score greater than 0.132) and

BioGrid databases. The resulting network comprised the

selection of proteins that have established physical interplays

with a minimum of one other component on the list. When the

networks consisted of approximately 3–500 proteins, the

Molecular Complex Detection (MCODE) method was

employed to determine the components of the network that

significantly correlated with each other (Bader and Hogue,

2003).

Small molecules identification

To predict relatively small active molecules that might

attenuate the existing biological state of ACE2-related

endothelial cells, an evaluation of the ACE2-related

endothelial cells was performed via the comparison of the

differentially expressed genes (DEGs) between clusters 4 and

13 against those found in the Connectivity Map database (CMap,

http://www.broadinstitute.org/cmap/). Initially, the DEGs were

classified into two groups, namely downmodulated and

upmodulated groups. Subsequently, for gene set enrichment

FIGURE 2
(A) Bubble plot of ACE2 expression in different cell clusters. (B) Dot plot shows ACE2 expression in each cell cluster. (C,D) The trajectory plot in
pseudotime of each cell cluster using Monocle analysis. Different colours represent different cell states. (E) Venn plot of Cluster 4 and Cluster 13 in
up- and down-regulated states.
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analysis (GSEA), different expression significant probesets were

selected from each group and evaluated, resulting in enrichment

scores that ranged from −1 to +1. Furthermore, small molecules

with positive connectivity values close to +1 were found to drive

gene expression in cluster 13, while those with negative

connectivity values close to −1 showed increased similarities

between genes and small molecules, which might attenuate

cluster 4’s status.

Human protein atlas database analysis

HPA (https://www.proteinatlas.org/) is a database containing

details on cell and tissue distributions among the 24,000 proteins

found in the human body. It employs specialised antibodies and

immunohistochemical technologies to examine the dispersion

and expression of every protein in 48 different types of normal

human tissues, 12 different types of blood cells, 47 different types

of cell lines and 20 different types of tumour tissues. These tissues

are collected from 144 distinct normal and 216 distinct tumour

tissues, thus guaranteeing that the immunohistochemical

findings are representative of the population. Thus, using this

database, both the prognostic value and protein expression levels

of the most possible hub genes in brain tissues were validated.

Immunofluorescence

Juvenile Sprague–Dawley (SD) rats aged 4 weeks and old

SD rats aged 12 months were selected and subsequently

treated with intracardiac perfusion of 0.1 mmol phosphate-

buffered saline (PBS) and 4% paraformaldehyde. Eight-

micrometre coronal cryosections were incubated and

blocked with 5% bovine serum albumin (BSA) for 2 h.

Frozen sections were then incubated overnight at 4°C with

primary antibodies. The primary antibodies used were anti-

CD31 antibody (1:2000, Abcam, ab9498) and anti-ACE2

antibody (1:1000, Proteintech, 21115-1-AP). After

overnight incubation, frozen sections were incubated with

fluorescent secondary antibody (1:2000, Abcam) at room

temperature for 2 h. Then, the sections were washed thrice

with PBS and covered with fluorescent fixation medium

containing 4′,6-diamidino-2-phenylindole (DAPI) (1:1000,

Solarbio). Image acquisition was performed using an

Olympus fluorescence microscope with an eyepiece

magnification of ×10 and an objective lens magnification

of ×20. The exposure time of each section was 20 ms.

Particle fluorescence intensity of ACE2 was calculated using

ImageJ software (National Institutes of Health, United States)

after filming, and each group included six animals.

FIGURE 3
(A) Bar graph representing the enriched terms in the gene list, which are shaded according to their p-values. (B) A network of enriched terms,
shaded according to cluster-ID, with nodes sharing a common cluster-ID often situated adjacent to each other. (C) The gene list reveals a network of
protein-protein interactions and MCODE components.
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Western blot

Brain tissues from juvenile and aged SD rats were lysed in

RIPA buffer (Solarbio, Beijing, China), following this protease

and phosphatase inhibitors were added and then the sample was

denatured at 100°C for 15 min. The protein samples were then

separated using 10% sodium dodecyl-sulfate polyacrylamide gel

electrophoresis and transferred to polyvinylidene fluoride

(PVDF) membranes. Next, PVDF membranes were blocked

with 5% skim milk powder solution for 1 h, incubated with

primary antibodies, including anti-ACE2 antibody (1:1000,

Proteintech, 21115-1-AP) and anti-Tubulin antibody (1:10000,

Abmart, M20005) overnight, followed by secondary antibodies

(1:5000) for 2 h at room temperature. The bands were visualised

using an ECL kit chemiluminescence reagent (Billerica Millipore,

MA, United States). Protein band signals were detected using the

Chemidoc detection system (Bio-Rad, Hercules, CA,

United States) and quantified by the ImageJ software

(National Institutes of Health, United States).

Results

Utilization of scRNA-seq data to analyze
and identify 15 cell clusters in brain tissues

A total of 3,005 cells from 67 mice were acquired in this study.

t-distributed stochastic neighbour embedding (t-SNE) technique

was then used to divide the cells into 18 distinct clusters (Figure 1A).

Differential expression analysis facilitated the identification of

FIGURE 4
(A) Dot plot shows hub gene expressions in each cell cluster. (B) Bubble plot shows hub gene expressions in each cell cluster.
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marker genes of the 18 different cell clusters (|logFC| >1 and

adjusted p-value < 0.05) (Figures 1B,C). Annotations of the types

of cells in the 18 cell clusters were performed utilizing singleR and

the CellMarker database (Figure 1D).

Identification of two separate types of
endothelial cells with unique biological
functions and differentiation states

Using ACE2 as the marker, individual brain cells were

successfully identified. Cluster 4 (endothelial cells) showed the

highest average expression of ACE2 (Figure 2A). The endothelial

cells were classified into two groups, namely cluster 4 and cluster 13

(Figure 2B). Furthermore, a considerable differentiation propensity

was observed between cluster 13 with low-ACE2-expression in the

former branch and cluster 4 within the latter branch on performing

pseudotime trajectory analysis. This suggests that ageing endothelial

cells are more susceptible to the SARS-CoV-2 virus (Figures 2C,D).

DEGs of cluster 4 and cluster 13

To explore the expression model of cluster 4 and cluster 13, a

Venn qplot was drawn to show the up-regulated genes and

downregulated genes in each cluster (Figure 2G). Genes with

opposite expressions were considered to be DEGs in these two

classifications.

Enrichment analyses

For a thorough understanding of the biological mechanisms

of DEGs between clusters 4 and 13, Metascape was used to

conduct GO and KEGG pathway enrichment analyses. The

DEGs were found to be mostly enriched in the ensheathment

of neurons, oligodendrocyte differentiation and oligodendrocyte

specification, leading to myelin components for CNS, small

molecule biosynthetic process, and organic hydroxy

compound biosynthetic process (Figures 3A,B).

Establishment of the PPI network, module
analysis and localization

The PPI network for the DEGs and MCODE showed that

TUBB4A, TSPAN2, TALDO1, SCD5, PSAT1, PHGDH, MSMO1,

MBP, MAG, KCNA1, ERMN and CD9 play a key role in SARS-

CoV-2 infection (Figure 3C). Moreover, the hub genes are highly

expressed in some astrocytes. The interaction of endothelial cells and

FIGURE 5
(A) Pop plot showing the top 20 small compounds capable of reversing gene expression. (B) Structure of top molecule. (C) Representative
immunohistochemistry staining results reveal the protein level expression of ACE2 in brain tissues.
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astrocytes can cause SARS-COV-2 to enter the CNS. The expression

of these hub genes among cell subsets is shown in Figures 4A,B.

Identification of related active small
molecules

The DEG data that had been classified into the

upmodulated and downmodulated groups were entered into

the CMap database, where it was subjected to further

integration with small molecule treatments to evaluate and

identify potential therapeutic medicines for ACE2-related

endothelial cells. Figure 5A illustrate the top 20 relevant

small molecules and their enrichment scores, respectively.

A significant negative score was found to be associated with

the small molecules of phenanthridinone (enrichment

score = −0.954) and (–)catechin (enrichment

score = −0.977), suggesting that these molecules

characterize cluster 13. These prospective small molecule

medications have the capacity of attenuating gene

expression, thereby identifying potential novel pathways

and molecular processes for innovative targeted treatments

focusing on the CNS. However, further research is required to

determine the specific significance of these potential small

compounds.

ACE2 protein expression in the brain

Furthermore, utilizing clinical samples from the HPA

repository, the ACE2 protein expression level was determined.

Immunohistochemical results showed that the gene was mainly

expressed in cerebral vessels (Figure 5B). Representative images

of immunofluorescence staining for CD31 (red), ACE2 (green)

and DAPI (blue) in the young and aged SD rats are shown in

Figure 6A. Additionally, immunofluorescence showed that

ACE2 was mainly expressed in endothelial cells and was

significantly highly expressed in the brain endothelium of

aged rats compared to that of young rats (p < 0.0001; Figures

6B,C). Furthermore, the western blot results showed that

ACE2 expression in the brain in aged rats was significantly

higher than that in young rats (Figures 6C,D).

Discussion

Respiratory viruses are capable of infecting the upper

respiratory system in humans, resulting in mild illnesses in

most cases (Gunathilake et al., 2021). However, in susceptible

groups, such as neonates, infants, older adults and

immunocompromised individuals, these pathogens may also

impact the lower respiratory tract, resulting in more serious

FIGURE 6
(A) Representative images of immunofluorescence staining for CD31 (red), ACE2 (green) and DAPI (blue) in the juvenile and aged
Sprague–Dawley (SD) rats. Scale bar = 100μm; n = 6. (B,C) ACE2 shows a significant difference between the two groups. Data are presented as
mean ± standard deviation (SD); **** p-value < 0.0001; n = 151 and 183 (D) Representative western blot images of ACE2 and tubulin from the two
groups. n = 6. (E) Tubulin was used as a protein loading control; mean ± SD of eight independent experiments. **p-value < 0.01.
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infections such as pneumonia (Desforges et al., 2019).

Furthermore, due to the virus’s ability to adapt quickly and

transcend the species barrier, most of these infections, including

SARS-CoV and influenza A, have sometimes caused epidemics or

pandemics. They have also been correlated with more significant

clinical illnesses and even death (Berth et al., 2009). Additionally,

various studies over decades have reported that certain

respiratory viruses have neural-invasive abilities, indicating

that they may migrate from the respiratory system into the

CNS (Dahm et al., 2016b). Viruses that infect human CNS

cells can subsequently induce various forms of

encephalopathy, such as encephalitis and long-term neurologic

illnesses. Although various therapeutic compounds are currently

being investigated, there remains a scarcity of effective and

reliable therapeutic regimens to treat SARS-CoV-2. Moreover,

studies regarding SARS-CoV-2 in the CNS remain scarce.

Generally, an infection stimulates the endothelial cells to

release chemokines, which improves vascular permeability and

allows viruses to get through the first layer of the BBB (Mladinich

et al., 2021). Furthermore, viruses commonly employ proteins

produced by the endothelium and enter these cells. While SARS-

Cov-2 infections are commonly limited to the airways, it has been

reported to cross the epithelial barrier and infiltrate the CNS.

This is consistent with the mechanism of other respiratory viral

pathogens, such as influenza virus, Nipah virus and respiratory

syncytial virus (RSV). In this study, brain endothelial cells

showed significant expression levels of the enzyme ACE2. The

SARS-CoV-2 virus enters the host cell via the SARS-CoV

receptor ACE2. Hence, it was speculated that SARS-CoV-

2 employs the ACE2 receptor for intracellular penetration into

the CNS by infecting endothelial cells. The time analysis of cells

showed that endothelial cells in the advanced stage had higher

expressions of ACE2. This suggests that elderly patients are more

likely to be infected by SARS-CoV-2 via the endothelial cells of

the CNS.

Several patients with SARS-CoV-2 (i.e., who had a positive

RT-PCR test) also experienced the loss of smell, despite not

experiencing nasal obstruction dysgeusia, albeit exhibiting

swelling in the olfactory cleft, which was validated using

magnetic resonance imaging. The olfactory cleft is responsible

for the flow of odours to the olfactory epithelium and then to the

olfactory bulb. The olfactory epithelium (commonly referred to

as the olfactory mucosa) consists of olfactory receptor neurons,

basal cells and epithelial cells, all of which function together to

create ‘smell’. When TNF-alpha (TNF-α) and interleukin-1 beta

(IL1β) are released, the above cells react to create a “smell”.

Notably, SARS-CoV-2 infection has been demonstrated to

contribute to a higher production of TNF-α and IL1β.
Consequently, the pathogenesis of SARS-CoV-2 could impact

the lower respiratory tract while simultaneously impacting

surrounding cells (such as those found in the respiratory

tract), resulting in affecting the CNS.

Increasing evidence has identified the SARS-Cov-2 virus as

the source of EGCG’s antiviral effects (Upadhyay et al., 2020)

Furthermore, it has been shown that EGCG attenuated the

enzymatic activities of the coronavirus 3CL protease,

preventing the virus from replicating. Moreover, EGCG has

the ability to control particular targets such as the RdRp and

viral S protein. It has also been shown to be effective in

preventing the reproduction of SARS-CoV-2 in cell

incubation experiments. Molecular docking studies also show

that EGCG inhibits SARS-CoV-2 entry into the target cell by

interfering with the RBD in the viral membrane that binds to

ACE2. This study suggests that EGCG could prevent SARS-

CoV-2 from entering the CNS through endothelial cells by

inhibiting its expression. In order to verify the utility of EGCG

in anti-SARS-CoV-2 treatments, more pre-clinical

investigations, clinical trials and epidemiological analyses are

necessary.

The findings in the present research are restricted as only

mouse tissue samples were used. Nonetheless, this study provides

proof that SARS-CoV-2 could infiltrate the CNS through a large

number of susceptible cells. Moreover, endothelial cells in elderly

patients have a greater susceptibility to infection by SARS-CoV-

2. Furthermore, the influence of SARS-COV-2 on the CNS

requires more attention.
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Effects of different anesthetic
depth during propofol anesthesia
on postoperative recovery 24h
after arthroscopic day surgery: A
randomized clinical trial

Meng Ning1†, Yue Sun1†, Hao Zhang1, Caiyun Chen1, Linglu Sun1,
Lijian Chen1*, Zhengyuan Xia2,3* and Yao Lu1,4*
1Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui,
China, 2State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong,
Pokfulam, Hong Kong SAR, China, 3Department of Anesthesiology, Affiliated Hospital of Guangdong
Medical University, Zhanjiang, Guangdong, China, 4Ambulatory Surgery Center, The First Affiliated
Hospital of Anhui Medical University, Hefei, Anhui, China

Background: This study aimed to compare the effects of different depths of

sedation during propofol anesthesia on postoperative recovery 24 h after knee

arthroscopy day surgery in adult patients.

Methods: This prospective randomized controlled trial involved 126 patients

(ASA physical status 1–2) who were scheduled to undergo arthroscopic day

surgery. Patients were randomly divided into two groups: the light-sedation

(L-Group) or deep-sedation (D-Group). In the L-group, the bispectral index

values were kept in the range of 50–59; in the D-group, the bispectral index

values were maintained in the range of 40–49. The Quality of Recovery-15

(QoR-15) score assessed 24 h postoperatively using a 15-item questionnaire

was the primary outcome. Secondary outcomes included Athens Insomnia

Scale scores, postoperative pain scores, nausea or vomiting.

Results: The total QoR-15 score 24 h postoperatively was similar in the two groups

(L-group median:130, IQR [127–132] vs. D-group median:131, IQR [126–135], p =

0.089). But among the five dimensions of the QoR-15, physiological comfort was

significantly better in the D-group than L-group (p < 0.001). The time to open eyes

(p < 0.001), follow the command (p < 0.001) and to extubation (p < 0.001) after

surgery in the L-group were shorter than the D-group. The Athens Insomnia Scale

scores (p < 0.001) and incidence of dreaming (p = 0.041) at the first postoperative

night in the L-group was significantly higher than those in the D-group. Propofol

consumption in the L-group was less than D-group (p < 0.001).

Conclusion: For patients undergoing arthroscopic day surgery, general anesthesia

with high-bispectral-index (50–59) cannot improve the total QoR-15 score 24 h

postoperatively after surgery, but can lessen propofol consumption, reduce the

time of extubation and anesthesia recovery period, compared with low-bispectral-

index (40–49). Patients exposed to general anesthesia with low-bispectral-index

values (40–49) may have better quality sleep and physical comfort than those with

high-bispectral-index values (50–59).
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Clinical Trial Registration: http://www.chictr.org.cn/showproj.aspx?proj=

126526, identifier ChiCTR2100046340

KEYWORDS

bispectral index, anesthesia, arthroscopic, ambulatory, quality of recovery

Introduction

Early recovery after surgery under general anesthesia predicts

early discharge. Recovery from general anesthesia is a critical

perioperative period, and plays an important role in the

promotion of the effect of clinical surgical treatment from the

perspective of both physiological stability and patient satisfaction

(Kehlet and Dahl, 2003). Intraoperative depth monitoring of

anesthesia is crucial to ensure a rapid revive and functional

recovery of patients postoperatively. The bispectral index has

been recognized as one of the most commonly used indicators to

judge the level of sedation and depth of anesthesia, and enable the

doctors to properly adjust the anesthetic dose and avoid

intraoperative awareness (Gan et al., 1997; Myles et al., 2004).

Studies have revealed that deep anesthesia can increase the long-

term postoperative mortality of patients who undergo major

surgery (Liu et al., 2019; Short et al., 2019). However, there are

few studies on the effects of the depth of anesthesia on short-term

postoperative functional recovery during day surgery

ambulatory. Bispectral index values between 40 and 60 are

optimal for depth of sedation, which can avoid intraoperative

awareness and delay of wake up (Avidan et al., 2008; Chiang

et al., 2018). However, the range of best depth sedation is

relatively wide.

Therefore, we conducted a randomized controlled trial to

compare the effects of different depths of anesthesia on

postoperative recovery of patients who underwent daytime

knee arthroscopy. We hypothesized that the quality of

recovery scores 24 h postoperatively of light-sedation

(bispectral index: 50–59) was superior to deep-sedation

(bispectral index: 40–49) after knee arthroscopy day surgery.

Assessing the improvement of interventions on patient

experience after anesthesia and surgery requires an emphasis

on patient-centered outcome measures. The quality of recovery-

15 scale was selected in this study to assess recovery in five

dimensions 24 h after surgery (emotional state, physical comfort,

psychological support, physical independence, and pain)

(Bowyer and Royse, 2016).

Materials and methods

Study design and study population

The trial was approval from the Ethics Committee of the First

Affiliated Hospital of Anhui Medical University (Ethical

Application Reference: PJ 2021-06-09 Anhui, China) and was

registered at the Chinese Clinical Trial Registry

(ChiCTR2100046340) on 14 May 2021, http://www.chictr.org.

cn/showproj.aspx?proj=126526. In this trial, patients aged

18–65 years with ASA I–II, who were scheduled to undergo

arthroscopic day surgery under general anesthesia (GA) from

June 2021 to September 2021, were enrolled. The exclusion

criteria were severe cardiopulmonary system diseases,

endocrine system diseases: pituitary tumors, severe diabetes,

pheochromocytoma, and other mental diseases, including

schizophrenia, depression, alcoholism, opioid dependence;

Parkinson’s disease, Alzheimer’s disease, severe insomnia, and

inability to understand visual analog scale and quality of

recovery-15, cases in which patients were unable to take care

of themselves in their preoperative lives, hemorrhagic disease

history, or abnormal coagulation function.

Randomization

Before surgery, the researchers recruited the patients and

obtained written informed consent. All the included patients

were randomly divided in two groups at a 1:1 proportion using

computer-generated randomization: L-group (bispectral index:

50–59) and D-group (bispectral index: 40–49). The numbers for

allocation were packaged in opaque envelopes, which could only

be observed by the anesthesia providers. Randomization was

done on the morning of surgery using a computer-generated

randomization table (simple randomization without

restrictions). During a preanesthetic visit to the inpatient ward

before surgery, the patients were asked to familiarize with the

quality of recovery-15 questionnaire. The patients, outcome

evaluators, and data information analysts were blinded to the

trial intervention.

Anesthetic procedure and intervention

Standardized monitoring processes were conducted during

anesthesia and operation. Before anesthesia induction, the

patients were assessed by the quality of recovery-15

questionnaire (Stark et al., 2013; Bu et al., 2016). GA was then

induced by intravenous injection of sufentanil (0.4 μg kg−1),

propofol (2.0 mg kg−1), and cisatracurium (0.2 mg kg−1). After

attaining a sufficient depth of anesthesia, an I-gel laryngeal mask

was utilized according to the patient’s body weight (size 3 for
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weights <50 kg, size 4 for 50–70 kg, or size 5 for weights >70 kg).
An anesthesiologist with more than 5 years of experience was

arranged to intubate the patients. All operations were performed

by one surgical team.

Anesthesia was maintained using remifentanil

(0.02–0.5 μg kg−1 min−1), propofol (4–8 mg kg−1 h−1), and

cisatracurium (0.02–0.05 mg kg−1 h−1). The bispectral index

was monitored in two groups. In the L-group, the bispectral

index values were kept in the range of 50–59; in the D-group, the

bispectral index values were maintained in the range of 40–49.

The criteria to trigger intervention to adjust the dosage of

propofol to bring back the BIS into the target range was set as

the BIS index being out of the targeted range for 30 s. And, the

maintenance time of BIS index of targeted range was recorded.

The end-tidal CO2 (EtCO2) was kept between 35 and 45 mmHg.

Patients were given 6–8 ml/kg of Ringer’s lactate solution as early

as the induction period, followed by continuous infusion of

Ringer’s lactate solution at a rate of 5–7 ml kg−1 h−1 until the

end of surgery. Intraoperative heart rate (HR) was maintained at

50–90 beats per min; if HR < 50 beats/min, atropine (0.3–0.5 mg)

was administered; if HR > 90 beats/min, esmolol was

administered (0.3–0.6 mg kg−1. If the systolic blood pressure

increased or dropped by 20% more than the baseline,

nicardipine (5–10 μg kg−1) and ephedrine (3 mg) was given.

The infusion of anesthetic drugs did not stop until the end of

surgery. Approximately 15 min before the end of subcuticular

closure, the anesthesiologist intravenously injected 5 µg of

sufentanil for the postoperative analgesia. Ondansetron,

0.1 mg/kg, was used for antiemetic prophylaxis. At the end of

the surgery, the surgeon injected 10 ml of 0.5% ropivacaine into

the joint cavity for postoperative analgesia. After the operation,

all patients were transported to a postanesthesia care unit. An

I-gel laryngeal mask was removed by the anesthesiologists and

nurse who were blinded, when the EtCO2 was below 45 mmHg

on spontaneous respiration, and when the patient was able to

follow voice commands. Flurbiprofen (50 mg) was given

intravenously when the VAS score was above 3 during the

postoperative period.

Outcome measures

In this study, the primary outcome was the global quality of

recovery-15 score assessed 24 h postoperatively in five

dimensions: emotional state (4 items), physical comfort

(5 items), psychological support (2 items), physical

independence (2 items), and pain (2 items) (Bowyer and

Royse, 2016). The total score on the QoR-15 ranges from 0

(the poorest quality of recovery) to 150 (the best quality of

recovery). By contrast, the secondary outcome was the time to

open eyes, follow voice command and extubation, hospital stays,

hospitalization costs (cost from discharge to admission), and

postoperative pain scores. We defined the time to open the eye as

the time from the end of surgery to the opening of the eyes. Time

to follow the voice commands was defined as the time from the

end of surgery to the time patients responded as instructed.

Additionally, the time of extubation was defined as the time from

the end of surgery to removal of I-gel laryngeal masks. After

surgery, the patients were asked by investigators to rate the pain

of incision at 1, 6, and 24 h postoperatively using the visual

analog scale (VAS) (0 = none, 10 = most severe), the Ramsay

Sedation Scale (RSS) scores, the condition of sleep on the first

night and postoperative nausea and vomiting (PONV) were also

recorded. The incidences of awareness and dreaming was

followed up on the first postoperative day. The

aforementioned parameters were evaluated by the same doctor

who was blinded to the different patient groups. In addition,

mean arterial pressure (MAP) and HR were noted down at

different time points: baseline, 5 min after intubation, 5 min

after tourniquet start and release, end of surgery and extubation.

Sample size estimation and statistical
analysis

The primary outcome measure was the global quality of

recover-15 score. We selected this score as the scale of sample size

evaluation. According to our preliminary study conducted under

GA with bispectral index values 40–49, the quality of recovery-15

scores postoperatively (at 24 h) were equivalent to 128 (12.5). In

the published data, a change of 8 for the quality of recovery-15

scores was identified as clinically significant (Myles et al., 2016).

We hypothesized that this trial would have 90% power to detect

an increment of 8 in the quality of recovery-15 scores at a

significance threshold of 0.05. Furthermore, the Power

Analysis and Sample Size software (version 15.0, NCSS, LLC,

United States) calculated that 53 patients per group were

required. Considering a 20% withdrawal rate, we included

63 patients in each group.

Data were collected and recorded and analyzed using the

Statistical Package for Social Sciences software (version 22.0, IBM

Corporation, United States). The normality of quantitative

variables was assessed with the Shapiro–Wilk test. Categorical

variables were expressed as a number (n) and percentage (%).

The quantitative variables were expressed as mean (SD), median

[IQR], median (range). The mean values of age, weight, height,

BMI, duration of surgery and anesthesia times were analyzed

using the independent-samples t-test. The QoR-15 score,

perioperative cumulative anesthetic dosage, time to open eyes,

follow voice command and extubation, AIS scores, hospital stays,

hospitalization costs were analyzed by the Mann–Whitney

U-tests. The effects of intervention over time for the outcomes

of interest (postoperative pain scores and hemodynamic values)

were assessed using the repeated-measures analysis of variance

(ANOVA) model group by time interaction. For measures that

indicated significant group by time interaction effects, post hoc-
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analysis on differences between the two groups were assessed by

the independent sample t-test with Bonferroni correction. The

Chi-squared test or Fisher’s exact test was used to compare the

number of patients based on the dream, PONV, and the ASA

classification rates. Two-sided p-values of less than 0.05 were

utilized to denote statistical significance.

Results

A total of 136 patients were screened for this study from

1 June 2021, to 1 September 2021. In addition, two patients

refused to consent and eight did not meet the inclusion criteria,

leaving 126 for primary randomized: 63 patients in the L and

63 in the D groups. Among the randomized patients, 4 were lost

to follow-up because of study withdrawal after surgery, and 1 had

changed surgery plan. Thus, 121 patients were remained for the

final analysis: 61 patients in the L-group, 60 in the D-group

(Figure 1). The patients’ demographic profiles were comparable

between the two groups (Table 1). No differences in age, gender,

body mass index (BMI), ASA classification and basic bispectral

index value were observed between two groups. The

perioperative profiles of the patients, such as operative,

anesthetic time, time of maintenance with target bispectral

index values range, vasoactive drug consumption (ephedrine,

atropine), the preoperative quality of recover-15 scores and RSS

scores, had no significant differences between both groups

(Tables 1, 2; Figure 2). However, significant differences in

time to eye opening (p < 0.001), follow the voice command

(p < 0.001) and extubation time (p < 0.001) were observed

between the L and D groups. There were no patients who

reported intraoperative awareness.

No differences in the total QoR-15 scores 24 h

postoperatively were observed in the L-group (p = 0.089,

Table 3). But among the five dimensions of the QoR-15,

physiological comfort was significantly better in the D-group

than L-group (p < 0.001, 48 [46–40] vs. 46 [45–47.5]). The time

to eye opening, follow voice command, and extubation in the

group were shorter than the D-group (6 [5 to 8] vs. 9 [8 to 11]

min, p < 0.001; 7 [6 to 9] vs. 11 [9 to 13] min, p < 0.001; 9 [8 to 10]

FIGURE 1
Consort flow chart that outlines patients’ assignment and treatment protocols. Patients were allocated into two groups (L-group, D-group) to
receive different depths of sedation with bispectral index value maintaining in the range of 50–59 or 40–49 respectively, following a computer-
generated randomization code.
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TABLE.1 Baseline characteristics of included patients in the study.

Group L (n = 61) Group D (n = 60) p-value

Age (yr)

Mean ± SD 45 ± 11 42 ± 13 0.188

Range 18–63 18–59

Sex, n (%) 0.524

Female 32 (52.5%) 28 (46.7%)

Male 29 (47.5%) 32 (53.3%)

BMI (kg/m2) 24.1 ± 2.6 23.9 ± 2.6 0.751

ASA classification, n (%) 0.792

I 14 (23.0%) 15 (25.0%)

II 47 (77.0%) 45 (75.0%)

Basic BIS value 96 ± 1.5 96 ± 1.9 0.702

Operative time (min) 43.7 ± 12.8 46.2 ± 15.3 0.338

Anesthetic time (min) 68.9 ± 12.4 72.8 ± 16.0 0.186

Remifentanil consumption (ug) 500 [385–675] 573 [429–676] 0.147

Sufentanil consumption (ug) 30 [30–35) 32 [30–35] 0.815

Propofol consumption (mg) 346 [250–429] 412 [359–600] <0.001#

AbbreviationsBMI, body mass index; ASA, american society of anesthesiologists; BIS, Bispectral index. The values are expressed as means ± SD, median [interquartile range] or number of

patients (percentage). #p < 0.05.

TABLE.2 Perioperative profiles of the patients.

Group L (n = 61) Group D (n = 60) p-value

Maintenance time of target BIS range (min) 62 ± 17 66 ± 17 0.163

Time to open eyes (min) 6 [5–8] 9 [8–11] <0.001#

Time to follow the command after surgery (min) 7 [6–9] 11 [9–13] <0.001#

Time to extubation (min) 9 [8–10] 12 [10–14] <0.001#

Atropine (mg) 0 (0–0.5) 0 (0–0.5) 0.388

Ephedrine consumption (mg) 6 [0–12] 8 [0–12] 0.563

RSS 2 [1–3] 2 [2–4] 0.085

Intraoperative awareness 0 0 NA

Hospital Stay (h) 23 (17–48) 23 (21–48) 0.609

Hospitalization costs (¥) 12,263 [12,016–12502] 12,355 [11,999–12850] 0.332

AIS scores at the first postoperative night 4 [3–6] 2 [1–3] <0.001#

Patients having dream, n (%) 0.041#

Yes 16 (26%) 7 (12%)

No 45 (74%) 53 (88%)

Postoperative VAS score 0.127

1 h 0 (0–4) 1 (0–4)

6 h 1 (0–4) 1 (0–6)

24 h 1 (0–4) 1 (0–4)

PONV, n (%) 0.131

Yes 9 (15%) 4 (7%)

No 52 (85%) 56 (93%)

Abbreviations BIS, bispectral index; RSS, ramsay sedation scale; VAS, visual analogue scale; AIS, athens insomnia scale; PONV, postoperative nausea and/or vomiting. The values are

expressed as means ± SD, median (interquartile range[range]), median (range) or number of patients (percentage). #p < 0.05.

Frontiers in Pharmacology frontiersin.org05

Ning et al. 10.3389/fphar.2022.972793

173

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.972793


vs. 12 [10 to 14] min, p < 0.001, respectively, Table 2). The

Athens Insomnia Scale scores (p < 0.001) and incidence of

dreaming (p = 0.041) at the first postoperative night in the

L-group was significantly higher than the D-group (4 [3 to 6]

vs. 2 [1 to 3], p < 0.001; 26 vs 12%, p = 0.041, Table 2). Propofol

consumption in the L-group was less than the D-group (p <
0.001, Table 1).

Hemodynamic profiles, such as HR and MAP, were

compared between the two groups. No significant differences

were observed in MAP at baseline, 5 min after intubation, 5 min

after tourniquet onset and release, end of surgery and extubation

between both groups (Figure 3). Furthermore, perioperative

opioid consumption (sufentanil, remifentanil), postoperative

visual analog scale for incision site pain between the two

groups were not significantly different and the difference in

the incidence of PONV between the both groups was also

insignificant (Tables 1, 2).

Discussion

The main findings of this study indicated that compared

with the D-group (bispectral index: 40–49), GA for patients

undergoing knee arthroscopy day surgery (with bispectral index

values in the range of 50–59) did not improve the total QoR-15

score 24 h postoperatively after surgery but was able to lessen

FIGURE 2
Percent of the time maintained in the target BIS values range and anesthetic time. Intraoperative maintenance time of low-bispectral-index
values (40–49) and high-bispectral-index value (50–59) was insignificant (p = 0.163). Notes: X-axis in stands for patients in each group. The area of
the orange range represents the time of target bispectral-index values range. The area of the blue range represents the anesthetic time.

TABLE 3 The QoR-15 scores (121 patients) before surgery and 24 h after surgery between two groups.

Group L (n = 61) Group D (n = 60) p-value

Preoperative score

Physical comfort 49 [46–49] 48.5 [47–49] 0.870

Physical independence 20 [20–20] 20 [20–20] 0.193

Pain 15 [14.5–16] 16 [15–17] 0.313

Psychological support 20 [20–20] 20 [20–20] 0.516

Emotional state 39 [37.5–40] 39 [38–40] 0.858

Total QoR-15 score 142 [139–144] 142.5 [140–145] 0.279

Postoperative score

Physical comfort 46 [45–47.5] 48 [46–49] <0.001#

Physical independence 7 [7–7] 7 [7–7] 0.344

Pain 18 [17–18.5] 18 [17–19] 0.958

Psychological support 20 [20–20] 20 [20–20] 0.135

Emotional state 39 [38–39.5] 39 [38–40] 0.155

Total QoR-15 score 130 [127–132] 131 [126–135] 0.089

AbbreviationsQoR-15, quality of recovery-15; The values are expressed as means ± SD, or median [interquartile range]. #p < 0.05.
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propofol consumption, the time of recovery from the

anesthesia, and extubation. Furthermore, patients who were

exposed to GA (with bispectral index values in the range of

40–49) have better quality sleep and physical comfort than light

sedation (bispectral index: 50–59) at the first night after surgery.

Knee arthroscopy is a common clinical day surgery (Romina

et al., 2017). Promoting day surgery can reduce the length of stay

and enhance recovery after surgery, which could reduce the risk of

venous thromboembolism and hospital-acquired infections

(Bailey et al., 2019). The quality of recovery from GA can

impact patient safety, patient satisfaction and medical costs

(Fritz et al., 2013). Several studies had reported that bispectral

index monitoring for general anesthesia may result in lower

anesthetic doses, a lower incidence of anesthesia awareness, and

faster patient recovery (Liu, 2004; Fritz et al., 2013; Lewis et al.,

2019). In this study, propofol consumption in the L-group was less

compared with the D-group, and no patients were reported

intraoperative awareness. However, the total QoR-15 scores

24 h after knee arthroscopy day surgery in the L-group

(bispectral index: 50–59) was not higher than the D-group

(bispectral index: 49–49) (p > 0.05). This means that light

sedation (bispectral index: 50–59) cannot improve the quality

of recovery from GA 24 h postoperatively compared with deep

sedation (bispectral index: 40–49). Therefore, it may not require

maintaining bispectral index values in the range of 40–49 and

consume more anesthetics for knee arthroscopy. McCormick et al.

suggested that prolonged cumulative double-low conditions (low

MAP (<75 mmHg) and low-bispectral-index values (<45)) were
associated with mortality (McCormick et al., 2016). Furthermore,

Yoon et al. reported that the cumulative duration of double-low

conditions [low MAP (<45 mmHg) and low-bispectral-index

values (<40)] were associated with 90-days postoperative

mortality, and not with a 180-days postoperative mortality

(Yoon et al., 2020). The appropriate dose for a given patient

may contribute to the faster recovery and lower medical costs by

reducing the time during the operating room and PACU (Dexter

et al., 1999;Myles et al., 2004; Clark et al., 2009; Bosslet et al., 2010).

In this study, light sedation (bispectral index: 50–59) reduced the

time to eye opening, follow to voice command, and extubation and

enhancement of the recovery from anesthesia compared with the

D-group (bispectral index: 40–49), which was consistent with

previous studies (Leslie et al., 2005; Mashour et al., 2012).

However, no significant difference in medical costs and hospital

stays was observed between the L-group (bispectral index: 50–59)

and D-group (bispectral index:40–49), which means that light

sedation (bispectral index: 50–59) cannot save hospitalization

spending and reduce the length of stay. Additionally, there

were no significance differences in hemodynamic profiles,

vasoactive drug consumption (ephedrine, atropine), opioid

consumption (sufentanil, remifentanil), and postoperative visual

analog scale (VAS). Compared with the D-group (bispectral index:

40–49), maintaining bispectral index values at 50 to 59 may not

increase opioid and vasoactive drug consumption, and may not

affect the postoperative VAS and the occurrence of PONV.

High-sleep quality after surgery is one of the important

guarantees for postoperative rehabilitation of patients

(Rosenberg-Adamsen et al., 1996; Chen et al., 2017). Studies

showed that sleep disturbance are more likely to occur after

surgery owing to postoperative pain, environmental changes,

trauma and other factors, and may contribute to neurological,

cardiovascular complications, and may lead to increased

morbidity (Redwine et al., 2000; Leung and Bradley, 2001;

Alhola and Polo-Kantola, 2007; Krenk et al., 2012). Therefore,

improving the sleep quality after surgery probably has a positive

effect on the recovery of surgical patients. In this study, the

Athens Insomnia Scale scores associated with the sleeping period

FIGURE 3
Hemodynamic values. (A). Mean artery pressure (MAP); (B). Heart rate (HR). No significant differences were observed in MAP (p = 0.930) and HR
(p = 0.258) at baseline, 5 min after intubation, 5 min after tourniquet onset and release, end of surgery and extubation between both groups by
repeated measures analysis of variance.
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of the first night after knee arthroscopic surgery in the L-group

(Bis 50–59) was higher than the D-group (bispectral index:

40–49). Thus, low-bispectral index values (40–49) can

improve insomnia conditioned and the quality of sleep during

the first night after surgery. This phenomenonmay be one reason

for the better physical comfort score in the D-group (bispectral

index: 40–49). Different propofol consumptions may contribute

to the above phenomenon. Dinesh Pal’s findings showed that

propofol could modulate sleep homeostasis by compensating for

sleep debt in sleep-deprived rats, thus satisfying the need for both

rapid and nonrapid eye movement sleep patterns (Pal et al.,

2011). Evidence suggested that sufentanil may impair sleep and

sleep architecture and insomnia may increase anesthetic

consumption, but there was no difference in opioid

consumption between the two groups (Erden et al., 2016;

Tripathi et al., 2020; Yang et al., 2021). Increased propofol

consumption in the D-group (bispectral index: 40–49) may be

the possible reason for the improvement of the quality of sleep

during the first night after surgery. Another positive result is that

the numbers of patients reported of dreaming at first night sleep

postoperatively in the D-group was less than the L-group.

Combination of Athens Insomnia Scale scores, the occurrence

of dreaming, and low-bispectral-index values (40–49) improved

the first sleep quality by reduction in AIS scores and incidence of

dreaming.

Before the study, we hypothesized that high-bispectral-index

values (50–59) improves the quality of recovery scores 24 h

postoperatively after knee arthroscopy day surgery, when

compared to low-bispectral-index values (40–49). However, the

results were contrary to our expectations. During the operation,

intraoperative maintenance time of low-bispectral-index values

(40–49) and high-bispectral-index value (50–59) was insignificant

([66 ± 17 vs. 62 ± 17] min, p = 0.163, table 2 and Figure 2). Propofol

consumption in the L-group (bispectral index 50–59) was less and

high-bispectral-index values (50–59) can shorten anesthesia

recovery period. In addition, for patients with insomnia, low-

bispectral-index values (40–49) may be more suitable. This may

contribute to patients’ physical comfort score. Several studies

suggested that patients with sleep disorders may benefit from

operations performed in the morning and GA under a median

bispectral index level of 39 may contribute to better recovery of

cognitive function 4–6 weeks postoperatively compared with a

median bispectral index level of 51, particularly with respect to

the ability to process information (Farag et al., 2006; Song et al.,

2020). The understanding of the influences of different depths of

anesthesia on postoperative cognitive function requires additional

research. The aforementioned facts are the reasons for the results of

this trial.

This trial is associated with several limitations. First, this is

only a single-center study. Thus, a multicenter study would be

better for testing our hypothesis. Second, as no “gold

standard” exists for the assessment of the quality of

recovery after surgery and anesthesia, the quality of

recovery-15, was commonly used recently for validations.

More measures should be developed to assess the quality of

recovery. Third, the duration of surgery and hospitalization of

patients were short, and the time to observe was limited; it is

difficult to compare the long-term effects on the patients.

Finally, the effects of different bispectral index values on the

older patients or the children are unknown.

In conclusion, this study demonstrated that in patients who

undergo arthroscopic day surgery, GA with high-bispectral index

values (50–59) cannot improve the total QoR-15 score 24 h

postoperatively but can lessen propofol consumption,

accelerate the time of anesthetic recovery compared with low-

bispectral-index values (40–49). Patients exposed to GA with

low-bispectral-index values (40–49) have better quality sleep and

physical comfort than those with high-bispectral-index values

(50–59).
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Background:Glioma as the most frequently discovered tumor affecting the

brain shows significant morbidity and fatality rates with unfavorable

prognosis. There is an urgent need to find novel therapeutic targets to

overcome the low chemotherapeutic efficacy of glioma. This research

examined whether the copper-metabolism-domain protein, COMMD4,

had predictive and therapeutic significance in glioma.

Methods:Using the freely accessible CGGA (The Chinese Glioma Atlas) and

TCGA (TheCancerGenomeAtlas) databases,weexamined the functionofCOMMD4 in

GBMand LGG.CIBERSORT and TIMERwere utilized to assess the associations between

COMMD4 and immune cells. The Gene Set Enrichment Analysis (GSEA) was employed

toexamine the functional data. Furthermore, the linkbetweenCOMMD4expressionand

predicted treatment response was evaluated via CellMiner Cross-Database. Meanwhile,

qRT-PCR was conducted to examine COMMD4 expression in human glioma. Finally,

Migrationand invasionofgliomacells (U-87,U-251)wereassessedusing transwell assays.

R was used to analyze the statistical data.

Results: According to our findings, COMMD4 expression level was higher in

patients having grade-dependent glioma who also showed an unfavorable

prognosis. Furthermore, qRT-PCR confirmed the high expression of COMMD4 in

glioma tissues and cells. Additionally, using integrated correlation analysis, we

acquired significant prognostic findings between isocitrate dehydrogenase 1(IDH1)

and COMMD4. Meanwhile, a link between COMMD4 and many tumor-infiltrating

immune cells was observed. GSEA and drug response analysis revealed the potential

mechanism of COMMD4 in drug resistance of glioma.

Conclusion: The current findings validated COMMD4 as a novel biological

marker, which might offer insights into the possible drug resistance

mechanisms and the impact of the immune microenvironment on glioma.

COMMD4 might be used to predict glioma prognosis.
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1 Introduction

Glioma is the most prevalent malignancy affecting the central

nervous system (CNS), with roughly 4.7 cases per

100,000 persons being diagnosed each year (Larjavaara et al.,

2007; Ostrom et al., 2013). Currently, the standard treatment

plan for glioma is the combination of chemotherapy,

radiotherapy, and surgical intervention. However, the

prognosis remains unfavorable owing to a low sensitivity of

glioma to radiotherapy and chemotherapy (Tonn et al., 2012;

Jiang et al., 2016; Peng et al., 2018). Thus, a breakthrough in the

treatment of glioma is critical. Nonetheless, the molecular

mechanism in glioma is incompletely understood, hindering

the development of novel treatment methods for glioma

diagnosis and management (Lin et al., 2017).

In 2016, the World Health Organization (WHO) revised its

categorization of CNS malignancies. According to the WHO

classifications, adult diffuse gliomas are commonly identified and

categorized by the nuclear retention, identification of the 1p/19q

chromosomal co-deletion, and mutations in isocitrate

dehydrogenase 1 (IDH1) or isocitrate dehydrogenase 2

(IDH2) genes. (Louis et al., 2014; Louis et al., 2016) In the

2021 revised version, novel molecular indicators, including

telomerase reverse transcriptase (TERT) promoter alterations

and epidermal growth factor receptor (EGFR) gene

amplification, are required to classify adult patients with

gliomas. Additional molecular indicators in gliomas include

tumor protein p53 (TP53) mutation, which is related to poor

prognosis and response to treatment (Louis et al., 2020; Louis

et al., 2021).

The diffuse glioma encompasses both lower-grade gliomas

(LGG) and glioblastomas (GBM), but a subgroup of tumors

within each grade responds significantly differently to treatment.

(Phillips et al., 2006) Even with such a heterogeneity, almost all

glioma patients receive alkylating chemotherapy. The use of

alkylators such as temozolomide (TMZ) could improve overall

patient survival, but many patients experience only limited

benefits. DNA repair enzyme O6-methylguanine DNA

methyltransferase (MGMT) is thought to be the most effective

mechanism of glioma resistance to TMZ. (Stupp et al., 2005; Hegi

et al., 2008) Therefore, for the development of novel molecular

targeting therapeutics, it is essential to identify tumor-specific

pathways underlying DNA damage repair response initiation and

hyperactivation.

The copper metabolismMURR1 domain (COMMD) protein

family has ten members. COMMD proteins exert key roles in

carcinogenesis, progression, invasion, and metastasis. (Green,

2003; Maine and Burstein, 2007; Wang et al., 2021) COMMD4 is

a protein-coding gene belonging to the COMMD family, and is

expressed at a high level in non-small cell lung cancers (NSCLC)

and hepatocellular carcinoma (HCC). (Mao et al., 2011;

Suraweera et al., 2020; Wang et al., 2021) Previous reports

showed that in NSCLC cells, COMMD4 depletion results in

apoptosis mediated by mitotic catastrophe, indicating that

COMMD4 might serve as a therapeutic target. Nonetheless, it

is unknown if COMMD4 could be employed as a biological

marker for glioma and its involvement in gliomas is also unclear.

The data used in this research were obtained from the CGGA

(Chinese Glioma Genome Atlas) and TCGA (The Cancer

Genome Atlas) databases. Potential association between

immune infiltration levels and COMMD4 in LGG and GBM

was examined utilizing CIBERSORT. In addition, the Tumor

Immune Estimation Resource (TIMER) was applied to evaluate

the density of distinct Tumor-Infiltrating Immune Cells (TIICs).

The link between COMMD4 expression and drug response was

analyzed by CellMiner. This research improves the current

understanding of the mechanisms and functions of

COMMD4 in glioma.

2 Materials and methods

2.1 Retrieval and pre-processing of data
from the cancer genome atlas

The LCG and GBM gene expression data and clinical data

were extracted from the TCGA database (http://tcga-data. nci.

nih.gov). The whole dataset had 698 tumors and 5 normal

samples. (Neftel et al., 2019; Huang et al., 2021) Glioma

sequencing data were generated utilizing the RNAseq - HTSeq

platform and Strawberry Perl software (version 5.32.1). R

(version 4.1.1) were used to conduct all the processing

operations.

2.2 Clinical data and the CGGA mRNA
matrix

The CGGA database (http://www.cgga.org.cn) is China’s

most comprehensive glioma genome repository, which

provided this study with 1319 glioma samples. Informed

consent was obtained before the acquisition of all these

samples. Premised on this information, we determined the

variations and the survival values in COMMD4 expression. In

addition, we obtained additional datasets including the

mRNAseq_325 (Illumina HiSeq 2000 or 2500), mRNAseq_693

(Platform: Illumina HiSeq) and mRNA_array_301 (Agilent

Whole Human Genome (array)) datasets. The mRNAseq_

693 dataset contained 693 glioma samples, and the

mRNAseq_325 dataset contained 325 glioma samples. After
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that, we employed the limma packages to normalize and batch the

two mRNAseq matrices. Table 1 shows the clinicopathological

parameters of patients whose clinical data from the CGGA

database were complete. The survival and gene expression of

COMMMD4 were listed in Tables 2, 3 using R software.

2.3 Interaction analysis of gene expression
profiles

GEPIA (http://gepia.cancer-pku.cn/) is an online interactive

server that comprises 8587 normal clinical specimens and the

RNA seq data of 9736 tumors acquired from TCGA and The

Genotype-Tissue Expression (GTEx) datasets. GEPIA was utilized

here to investigate the clinical functions of COMMD4. (Tang et al.,

2017) The bipartite method was applied to classify the

COMMD4 expression into high- and low-expression groups. In

addition, the “survival” modules were utilized to examine the links

between COMMD4 expression and glioma patients’ prognosis.

Furthermore, the variation in the expression levels of

COMMD4 between the tumor and normal samples was evaluated

by the boxplot modules with the disease status as variables (normal or

tumor). We employed the Wilcoxon rank-sum test to examine the

TABLE 1 Baseline of CGGA patients’ information.

Total Low expression High expression χ2 p

PRS_type primary 502 253 249 1.0919 0.5793

Recurrenrt 222 113 109

Secondary 25 10 15

Grade WHO II 218 143 75 36.6424 0

WHO III 240 121 119

WHO IV 291 112 179

Gender Male 442 224 218 2.6105 0.1062

Female 267 152 115

Age < =41 342 188 154 5.7294 0.017

>41 407 188 219

Radio_status No 124 62 62 0.0024 0.961

Yes 625 314 311

Chemo_status No 229 128 101 4.2792 0.0386

Yes 520 248 272

IDH_mutation_status Wildtype 339 151 188 7.9289 0.004

Mutant 410 225 185

1p19q_codeletion_status Non-codel 594 290 304 2.1825 0.1396

Codel 155 86 69

TABLE 2 Cox analysis of the CGGA database.

Id HR HR.95L HR.95H p Value

COMMD4 1.276706 1.144555 1.424117 <0.001
Histology 4.486991 3.695058 5.448654 <0.001
Grade 2.883411 2.526415 3.290853 <0.001
Gender 1.04351 0.865536 1.258081 0.655

Age 1.623833 1.345161 1.960236 <0.001
Radio 0.928909 0.719933 1.198546 0.571

Chemo 1.647389 1.327807 2.043888 <0.001
IDH_mutation 0.317158 0.262089 0.383798 <0.001
1p19q_codeletion 0.230575 0.169012 0.314561 <0.001

TABLE 3 Cox analysis of the TCGA database.

Characteristics Total(N) HR (95% CI) p Value

COMMD4 695 2.238 (1.750–2.861) <0.001
Histological type 695

Astrocytoma 195 Reference

Glioblastoma 168 6.791 (4.932–9.352) <0.001
Oligoastrocytoma 134 0.657 (0.419–1.031) 0.068

Oligodendroglioma 198 0.580 (0.395–0.853) 0.006

WHO grade 634

G2 223 Reference

G3 243 2.999 (2.007–4.480) <0.001
G4 168 18.615 (12.460–27.812) <0.001
Gender 695 1.262 (0.988–1.610) 0.062

Age 695 4.668 (3.598–6.056) <0.001
IDH status 685 0.117 (0.090–0.152) <0.001
1p/19q codeletion 688 4.428 (2.885–6.799) <0.001
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links between COMMD4 expression and grade, 1p/19q codeletion

status, and IDH mutation status. The R software was used with the

tools such as survminer, survival, and ggplot.

2.4 Univariate cox analysis

The links between histology, grade, 1p/19q-codeletion status,

IDH mutations, and COMMMD4 expression were analyzed by

the Univariate Cox analysis. We performed a statistical study

using data from the CGGA and TCGA databases with the

survival function in R (version 4.1.1).

2.5 Gene set enrichment analysis analysis

GSEA including KEGG and GO analyses was employed to

examine the functional enrichment of COMMMD4 expression.

FIGURE 1
(A)COMMD4 expression differs significantly between GBM and LGG. (B) qRT-PCR assays tomeasure themRNA expression level of COMMD4 in
paraneoplastic tissue and tumor tissue from glioma patients. (*p<0.05, with student’s t-test). COMMD4 expression and other clinicopathological
parameters derived from (C) CGGA dataset and (E) TCGA datasets were subjected to a univariate Cox analysis. (D) GEPIA was used to assess the
survival curves of various COMMD4 expression levels. (F) The time-dependent receiver operating characteristic (ROC) curves for survival rates
over one, three, and 5 years.
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The biological coherence and correlations among each predicted

module were investigated using GO analysis with differentially

expressed mRNAs in the GO categories. To explore key pathways

linkedwith COMMMD4 expression, KEGGanalysis was carried out.

2.6 Immune cell infiltration assessment

Associations of TIICs with gene expression profiles in tumor

tissues were assessed with the ssGSEA and CIBERSORT algorithms.

The ssGSEA technique was used to calculate the relative infiltration

levels of 24 distinct immune cells in the TCGAdataset. The “ggplot2”

softwarewas used to visualize the calculated Spearman correlations of

24 distinct immune cell infiltrations with hub genes. In cell type

development, the CIBERSORT method employs a vector regression

model. The consistent performance of CIBERSORT could be used to

evaluate cellular heterogeneity on gene expression profiles of complex

tissues. The algorism was then introduced to transfer the standard-

annotated gene expression data to the CIBERSORT website after

being applied to the LM22-signed matrix (Lin et al., 2021; Sun et al.,

2022; Zhang et al., 2022). The data obtained were classified into low-

and high-COMMMD4 expression subgroups in order to examine

the variations in the percentage of immune cells, including

macrophages, T cells, monocytes, NK cells, dendritic cells, and B cells.

2.7 Tumor immune estimation resource
database analysis

Tumor Immune Estimation Resource (TIMER) (https://cistrome.

sh.inyapps.io/timer/) was utilized to visualize the correlations between

the series of variables in 32 kinds of cancers and over 1000 TCGA

samples and immune infiltration levels. (Li et al., 2017) TIMER uses a

deconvolutional statistical approach to produce an inference on

multiple TIICs. Gene modules were employed to examine the

connection between COMMD4 expression levels and TIICs, which

included CD8+ T cells, B cells, macrophages, neutrophils, dendritic

cells, and CD4+ T cells. The log2 TPMwas applied to show the level of

gene expression.

2.8 Single-cell analysis

Tabula Muris (https://tabula-muris.ds.czbiohub.org/) is a

single-cell transcriptome tool containing over 100,000 cells

from 20 different tissues and organs. (Tabula Muris

Consortium et al., 2018) Using this database, we examined

the associations of COMMD4 expression levels with various

types of cells and tissues, including endothelial cells and T

lymphocytes. Fluorescence-activated cell sorting (FACS) was

also employed here to analyze the connections between

COMMMD4 expression and distinct types of cells with

great sensitivity and coverage.

2.9 COMMD4 and drug response

A link between COMMD4 expression and drug responsiveness

was established by CellMiner (http://discover.nci.nih.gov/cellminer/).

CellMiner, which was created by the Genomic and NCI, CCR, DTB,

Pharmacology Facilit, NIH, is a query tool and database created for

cancer researchers to facilitate the incorporation and evaluation of

molecular as well as pharmacologic data for the NCI-60 tumor cell

lines. The NCI-60 is a panel comprising 60 distinct human tumor cell

lines, and is utilized by the National Cancer Institute’s Developmental

Therapeutics Program to identify more than 100,000 chemical

compounds and natural products (Shankavaram et al., 2009).

2.10 Quantitative RT-PCR

Total RNA was extracted from paraneoplastic tissue and tumor

tissue from glioma patients of different grades using the TRIzol

reagent (Sigma-Aldrich, United States). Cell line samples were

processed in the same way. Then, RNA from each sample (2 μg)

was reverse-transcribed into cDNA, after which reverse transcription-

quantitative polymerase chain reaction (RT-qPCR) was performed

using the FastStart universal SYBR ®Green Master (Roche,

United States) in an ABI QuantStudio5 Q5 real-time PCR System

(Thermo Fisher Scientific, United States). The template for the

reaction was selected as cDNA at a reaction volume of 20 μl (10 μl

of PCR mixture, 0.5 μl reverse and forward primers, 2 μl of cDNA

template, and an appropriate volume of water). For the PCR reactions,

the cycling conditions began with DNA denaturation at 95°C for 30 s

(s), followed by 45 cycles for 15 s at 94°C, 30 s at 56°C, and 20 s at 72°C.

Each sample was performed in triplicates. The 2−ΔΔCT method was

adopted to obtain threshold cycle (CT) measurements, which were

standardized to glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) levels in all samples. The mRNA expression levels were

compared to paracancerous tissue controls. The following are the

sequences of primer pairs for the target genes:

2.11 Cell culture and drug

Human glioma cell lines U-87 and U-251 were obtained

from ATCC (Beijing Beina Chuanglian Biotechnology

Institute) and cultured in F12 and DMEM containing 10%

fetal bovine serum (Gibco, Carlsbad, CA, United States),

respectively. Both cell lines were stored in a humidified

incubator at 37°C with 5% CO2. Temozolomide was

procured from MCE (CAT# HY-17364). Dissolution of

temozolomide was carried out in dimethyl sulfoxide

Gene Forward primer sequence (5–3) Reverse primer sequence (5–3)

COMMD4 TTCTTGGCGCGATGAGGTTC TCAGAGGGCGTGACTCCATA

GAPDH AATGGGCAGCCGTTAGGAAA GCCCAATACGACCAAATCAGAG
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(DMSO, Beyotime). Finally, it was co-cultured with cells at a

concentration of 20 µM/ml.

2.12 Transwell assay

Transwell assays for migration and invasion of glioma

cells (U-87, U-251) were performed. Briefly, cells (5 × 104)

were inoculated into chambers coated (for invasion) or

uncoated with Matrigel (BD Biosciences, San Jose, CA)

(for migration). Serum-free medium was added to the

upper layer and a complete DMEM medium was added to

the lower layer. After 24 h of incubation, migrating or

invading cells were fixed with 4% paraformaldehyde and

stained with 0.1% crystalline violet. Counting under a light

microscope.

FIGURE 2
Expression of COMMD4 in CGGA (A) WHO grades. (C) IDH status-stratified distribution. (E) 1p/19q-codeletion status distribution.
COMMD4 expression in TCGA (B) WHO grades. (D) IDH status-stratified distribution. (F) 1p/19q-codeletion status distribution.
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3 Results

3.1 Relationship between
COMMD4 expression and glioma survival
status

COMMD4 expression level was elevated in both GBM

(num (N) = 207, num (T) = 163) and in LGG (num (N) =

207 num, (T) = 518; Figure 1A). Furthermore, the

COMMD4 overexpression was indicative of a more

unfavorable overall survival (OS) (num (high) = 338, num

(low) = 338, p < 0.001; Figure 1D). By using the bipartite

technique, the expression level of COMMD4 in normal and

malignant tissues was classified into 2 groups (low- and high-

expression groups). These findings demonstrated that

COMMD4 expression levels were greater in tumor tissues

and were linked to a worse OS.

3.2 COMMD4 as an independent predictor
for glioma patients

Based on the CGGA and TCGA databases, univariate Cox

analysis was conducted to assess the utility or practicality of

COMMD4 expression. Factors such as COMMD4 expression

(p < 0.001), histology (astrocytoma, oligodendroglioma,

Glioblastoma) (p < 0.05), grade (WHO grade) (p < 0.001),

chemotherapy (p < 0.001), IDH mutation (p < 0.001) and

1p19qcodeletion (p < 0.001) (Figures 1C,E) were determined

premised on the univariate analysis. According to the receiver

operating characteristic (ROC) analysis, the area under the

curve (AUC) of COMMD4 was found to be 0.651, 0.728, and

0.682 for one-, three-, and 5-year survival, respectively

(Figure 1F).

3.3 The relationships between
COMMD4 expression and world health
organization grade, isocitrate
dehydrogenase 1 phenotype in the
chinese glioma atlas and the cancer
genome atlas

The relationships between COMMD4 expression, WHO

grade, and IDH1 state were analyzed in the two different

datasets. In both datasets, comparable associations between

COMMD4 expression levels and WHO glioma grades could

be found (Figures 2A,B). The elevated COMMD4 expression

level was linked to greater glioma malignancy, according to the

findings. Furthermore, the IDH-wildtype group showed

substantially elevated COMMD4 expression level compared

with that in the IDH-mutant subgroup (Figures 2C,D). The

1p/19q-non-codeletion (non-codel) group had a considerably

elevated COMMD4 expression level compared with that of the

1p/19q-codeletion group (Figures 2E,F), which was calculated

using the Wilcoxon rank-sum test. These findings illustrated that

COMMD4 was expressed at a high level in the 1p19q-non-

codeletion and IDH-wildtype groups.

3.4 Survival analysis and expression of
COMMD4 in primary gliomas derived from
the chinese glioma atlas database

With the two CGGA datasets, an integrative survival analysis

was performed to examine the association of

COMMD4 expression with survival of glioma patients. In

Dataset 1 (ID: mRNAseq 325), patients in the high-COMMD4

expression group with primary glioma demonstrated an

unfavorable prognosis (p < 0.001; Figure 3A). Furthermore,

FIGURE 3
The KM survival curve illustrating the expression of COMMD4 in GBM and LGG patients (A) Dataset ID: mRNAseq_325-Primary Glioma (B)
Dataset ID: mRNA_array_301-Primary Glioma.
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the high-expression group in Dataset 2 (ID: mRNA array 301)

had a significantly unfavorable prognosis in primary glioma (p =

0.001; Figure 3B).

3.5 Multifactorial integrated survival
analysis in the chinese glioma atlas
database

To further analyze the clinical relevance of COMMD4, 1p19q

status (Figure 4A), IDH1 genotypes (Figure 4B), chemotherapy

(Figure 4C), radiotherapy (Figure 4D) were incorporated as

parameters in a multivariate analysis. As demonstrated by the

1p19q status, COMMD4 overexpression and 1p19q non-

codeletion (orange in Figure 4A) were associated with the

poorest prognosis. Notwithstanding a high expression level of

COMMD4, the survival rate remained high in the IDH1-R132-

mutant groups (red Figure 4B). Thus, COMMD4 could be seen as

a viablemarker in the corresponding IDH1 genotypes (p < 0.0001).

Following that, we examined the link between

COMMD4 expression and the survival of patients receiving

chemotherapy, and the worst prognosis was found in the high-

COMMD4 expression group after chemotherapy (red in

Figure 4C). However, favorable prognoses were reported in

patients in the low-COMMD4 expression group who did not

receive chemotherapy (blue in Figure 4C). As a result, patients

FIGURE 4
Survival analysis of GBM and LGG patients with varying levels of COMMD4 expression in comparison with (A) 1p/19q status (B) IDHmutation (C)
chemotherapy (D) radiotherapy.
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receiving chemotherapy with a low COMMD4 expression level

may benefit more. Similarly, patients in the high-COMMD4

expression group receiving radiotherapy (red in Figure 4D)

were found to have unfavorable prognosis in comparison to

those in the low-expression group with radiotherapy (green in

Figure 4D).

3.6 Gene set enrichment analysis
investigation of COMMD4-related
pathways

We performed GO and KEGG analysis to examine the potential

biological role of COMMD4. We identified five gene pathways

strongly linked to COMMD4 expression, and discovered that

COMMD4 was remarkably related to repair-related and

immune-related gene pathways. According to the findings of

GO analysis, the five pathways closely associated with the

elevated level of COMMD4 overexpression included DNA

damage response detection, leukocyte apoptotic process,

nucleoside salvage, purine nucleoside monophosphate

biosynthetic process, and ribosome assembly. Additionally,

five inversely correlated categories were found, including cell

differentiation in the hindbrain, cyclic nucleotide-binding,

RNA destabilization, cerebellar cortex morphogenesis, and

cyclic nucleotide catabolic process (Figure 5A). The findings

of KEGG analysis indicated that the five pathways were

positively linked to upregulation of COMMD4 expression,

including base excision repair, drug metabolism of other

enzymes, nucleotide excision repair, proteasome, and

pyrimidine metabolism. Similarly, the five categories

inversely linked to COMMD4 expression upregulation were

FC gamma r mediated phagocytosis, calcium signaling

pathway, endocytosis, TGF beta signaling pathway, and

neurotrophin signaling pathway (Figure 5B).

3.7 Associations between
COMMD4 expression and tumor-
infiltrating immune cells

The relationship between TIICs in glioma and

COMM4 expression levels was investigated. According to

our results, the COMMD4 expression had a negative

correlation with Tgd, TFH, Tem, Tcm, Th1 cells,

Th2 cells, and Mast cells. (Figure 6A). To further verify

the relationship between TIICs in glioma and COMMD4,

the 703 TCGA samples and the 1018 CGGA samples were

separated into low- and high- COMMD4 expression groups.

According to the samples from the CGGA database, immune

cell infiltration level (activated Mast cells, resting memory

CD4+ T cells, activated memory CD4+ T cells, Neutrophils)

was shown to be considerably lower in the high-risk group

than the low-risk group. Furthermore, the infiltration levels

of immune cells (activated Mast cells, naive CD4 T cells,

activated NK cells, Monocytes, and naïve CD4 T cells) were

considerably lowered in the high-risk group than the low-risk

group. In both the CGGA (Figure 6B) and the TCGA

(Figure 6C) databases, Mast cell activation (p < 0.05) was

greatly attenuated in the high-COMMD4 expression

subgroup.

FIGURE 5
(A)GO findings show the pathways that were associatedwith COMMD4. (B) KEGG analyses showed the pathways that were linked toCOMMD4.
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FIGURE 6
(A) The findings of the relative ratios of TIIC computed utilizing the ssGSEA method premised on the TCGA dataset. The relative ratios of TIIC
derived utilizing the CIBERSORT method premised on the (B) CGGA and (C) TCGA datasets.
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3.8 COMMD4 expression was related to
the infiltration levels of immune cells and
overall survival in glioblastomas and
lower-grade gliomas from tumor immune
estimation resource

The TIMER database was used to investigate whether the

immune infiltration levels in glioma were linked to the

COMMD4 expression levels. The infiltration levels of CD8+

T lymphocytes was inversely linked to the expression of

COMMD4 (r = −0.167, p = 2.44e-04) (Figure 7A) in LGG.

Furthermore, the factors of neutrophils, DCs, macrophages, T

and B cells were related to the OS rate in LGG and GBM

(Figure 7B).

3.9 COMMD4 expression and cells from
various organs were examined by single-
cell analysis

The Tabula Muris database was used to examine the

associations between COMMD4 expression and cells. Glioma

were closely associated with astrocytes of the brain pericyte,

neuron, oligodendrocyte precursor cell, oligodendrocyte,

endothelial cell, and Bergmann glial cell, as shown in

Figure 8A, and were displayed using t-SNE from FACS cells.

As depicted in Figure 8B, COMMD4 was primarily associated

with oligodendrocytes.

3.10 COMMD4 and drug responsiveness

COMMD4 expression was inversely related to drug

responsiveness among patients treated with 5−Fluoro deoxy

uridine, Amonafide, Vorinostat, Cladribine, Triethylenemelar,

Hydroxyurea, Thiotepa, SNS−314, Methylprednisolone,

Karenitecin, Pracinostat, and Gemcitabine. Figure 9 depicts

the association between COMMD4 expression and predicted

drug responsiveness.

3.11 The COMMD4 expression in human
glioma

The level of COMMD4 expression in paraneoplastic

tissue and tumor tissue from glioma patients was initially

examined in this research. According to the RT-qPCR data,

the expression of COMMD4 was up-regulated in glioma

tissues relative to adjoining tissues (Figure 1B).

Furthermore, glioma cells invasion and migratory abilities

were evaluated by using transwell assay results in Figures

10A–D exhibited that the abilities of invasion and migration

FIGURE 7
(A) In GBM and LGG, COMMD4 expression levels have substantial associations with infiltration levels of B cells, T cells, Macrophages,
Neutrophils, and DCs. (B) B cells, T cells, Macrophages, Neutrophils, and DCs are all associated with overall survival in patients with GBM and LGG.
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of U87 and U125 cells were conspicuously reduced by TMZ as

comparison to the control group. In addition, results from

qRT-PCR indicated the expression of COMMD4 was

significantly upregulated after the induction of TMZ in

these two cell lines (Figure 10E).

4 Discussion

Glioma is a type of brain tumor that originates from glial cells in

the CNS and accounts for over 80% of all malignancies occurring in

the brain. (Chen et al., 2017; Zhong et al., 2019)Surgical intervention

and postoperative enhanced radiotherapy and chemotherapy are

widely implemented in glioma treatment. (Bush et al., 2017; Malta

et al., 2018) Glioblastoma, on the other hand, has an unfavorable

prognosis, with a median survival period of shorter than 2 years.

Therefore, viable biomarkers for early glioma detection are beneficial

to patient management and prognosis.

This investigation proved the significance of COMMD4 in

the pathogenesis of glioma, identified a new possible

therapeutic target for glioma treatment and a prognostic

indicator. In LGGs and GBMs, patients diagnosed with

FIGURE 8
Single-cell analysis of COMMD4 expression (A) The cells that were linked to the tissues extracted from the brain. (B) TheCOMMD4 expression in
tissues extracted from the brain.

FIGURE 9
An illustration of the relationship between COMMD4 expression and expected medication response.

Frontiers in Pharmacology frontiersin.org12

Liu et al. 10.3389/fphar.2022.974107

190

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.974107


glioma exhibited low survival rate and elevated

COMMD4 expression level. This study also examined the

relationships between COMMD4 expression and

IDH1 status. IDH1 phenotypes, according to the WHO, are

an innovative diagnostic technique employed in clinical

settings, and IDH1 mutation status is utilized to classify

diffuse glioma in adults. The elevated expression levels of

COMMD4 accelerated the malignant progression of glioma,

as evidenced by the IDH1-wildtype patients’ unfavorable

survival. Furthermore, we compared chemotherapy and

radiotherapy to highlight the role of COMMD4 and

identified COMMD4 as a molecular marker for glioma

patients’ prognosis.

Although the mechanisms of COMMD4 in glioma cells are

unknown, various research reports have shown that it is

intimately linked to tumor genomic stability and apoptosis.

Suraweera et al. found that COMMD4 was subjected to

overexpression in NSCLC cells, and that siRNA knockdown

of COMMD4 attenuated cell proliferation and viability. After

being exposed to DNA-damaging agents, cell death was more

accelerated. Following COMMD4 knockdown, non-small cell

lung cancer (NSCLC) cells experienced mitotic catastrophe

and apoptosis. Meanwhile, higher expression of

COMMD4 has been found in NSCLC and was linked to

unfavorable prognosis in adenocarcinoma (ADC). In

addition, a previous report illustrated that

FIGURE 10
TMZ inhibits migration and invasion of glioma cells in vitro and reduces COMMD4 expression. (A–D) Transwell assay images of migration and
invasion in the NC and TMZ groups, and quantitative counts of cell numbers (E) Relative quantitative analysis of COMMD4 expression in the NC and
TMZ groups.

Frontiers in Pharmacology frontiersin.org13

Liu et al. 10.3389/fphar.2022.974107

191

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.974107


COMMD4 maintains genomic integrity through regulating

chromatin structure at DSB sites. Moreover, the researchers

also discovered that cells lacking COMMD4 are more

susceptible to multiple DNA-damaging agents that induce

DSBs and are less effective in repairing DSBs. Though the

association between COMMD4 and glioma was not yet

completely clarified, it could be speculated that

COMMD4 influenced the development of

pathophysiological pathways of glioma based on our

findings and previous research on COMMD4 (Suraweera

et al., 2020; Suraweera et al., 2021).

GSEA was used to conduct GO terms and KEGG pathway

analyses to further examine the possible biological roles of

COMMD4 in glioma. In samples exhibiting low and high

levels of COMMD4, GSEA indicated substantial differences in

GO term and KEGG pathway enrichment. In particular, GESA

analysis illustrated an enrichment of several immune-related

and repair-related gene sets in the high-COMMD4 group,

including leukocyte apoptotic process, DNA damage response

detection of DNA damage, nucleoside salvage, and nucleotide

excision repair. Notably, according to a growing body of

research, DNA damage repair and immunological

infiltration are both implicated in cancer advancement and

drug resistance. These data indicated that COMMD4 was

implicated in the progression of glioma. In glioma

development, high COMMD4 expression level might affect

mechanisms of treatment resistance and tumor immunology.

Our findings suggested that the upregulation of

COMMD4 expression was linked to a poor prognosis. We

hypothesized that elevated COMMD4 expression level had a

pivotal regulatory function in these oncogenic pathways, and

this resulted in a poorer prognosis for glioma patients.

From CellMiner, we discovered that

COMMD4 expression was adversely related to drug

responsiveness in patients treated with Amonafide and

Cladribinethe. The drug resistance of Amonafide and

Cladribinethe may be related to the DNA damage repair

function of COMMD4 (De Isabella et al., 1995; Liu et al.,

2011). Furthermore, GSEA confirmed the substantial

enrichment of immune-related gene sets in the high-

COMMD4 expression group. We then examined the

relationship between infiltration levels of immune cells in

glioma and COMMD4 expression. COMMD4 expression

demonstrated a strong negative association with the

infiltration level of mast cells (MC), according to

CIBERSORT analysis. Mast cells are specific immune

system cells that release a wide range of physiologically

active chemicals, which can activate, regulate, or decrease

the immune response. (Gordon and Galli, 1990; Falduto

et al., 2022; Fereydouni et al., 2022) When exposed to

FcϵRI, Human MCs produce substantial levels of

granulocyte-macrophage colony-stimulating factor (GM-

CSF), according to Fereydouni et al. This is significant

because both GM-CSF and TNF-α have been shown to

attenuate tumor cell proliferation, promote tumor

regression, and improve anti-tumor co-therapies. (Yan

et al., 2017; Josephs et al., 2018; Plotkin et al., 2019) Our

findings suggested that the negative impact of COMMD4 on

glioma could be resulted from the reduced density of mast

cells. We speculated that COMMD4 may have certain effects

on tumor immunity.

In summary, this is the first research exploring the

function of COMMD4 in glioma. COMMD4 level was

elevated in gliomas and COMMD4 was associated with

tumor grade. In addition, qRT-PCR verified the high

expression of COMMD4 in glioma tissues and cells.

Furthermore, a high level of COMMD4 overexpression was

related to an unfavorable prognosis and impaired infiltration

of immune cells in glioma. Finally, the primary glioma

pathway mediated by COMMD4 may be connected to

genomic stability, which may be associated with glioma

treatment resistance. The study also had certain limitations,

for instance, there was an absence of in vitro and in vivo trials.

Thus, additional research was encouraged to identify

COMMD4 as a viable prognostic marker in glioma

treatment resistance.
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